

Ada User Journal Volume 34, Number 3, September 2013

ADA
USER
JOURNAL

Volume 34

Number 3

September 2013

Contents
Page

Editorial Policy for Ada User Journal 134

Editorial 135

Quarterly News Digest 136

Conference Calendar 157

Forthcoming Events 162

Special Contribution

 J. G. P. Barnes
“Rationale for Ada 2012: Epilogue” 167

Articles from the Industrial Track of Ada-Europe 2013

 D. Bigelow
“Using the GNAT environment to maintain a large codebase
inherited from another compilation system” 175

Reports

 A. Burns
“16th International Real-Time Ada Workshop” 183

 E. Plödereder, J. Bundgaard
“How to Use the Heap in Real-Time Systems: Panel Report” 187

Ada Gems 190

Ada-Europe Associate Members (National Ada Organizations) 192

Ada-Europe 2013 Sponsors Inside Back Cover

134

Volume 34, Number 3, September 2013 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 135

Ada User Journal Volume 34, Number 3, September 2013

Editorial

This September issue of the Ada User Journal closes the publication of the Ada 2012 Rationale chapters, with a last
installment, an epilogue, which summarizes many general issues which were considered (or not considered) in the standard
revision. I would like to thank John Barnes for producing this valuable guide of the changes in the latest version of the Ada
standard. Ada-Europe is now taking the necessary steps to publish the consolidated chapters in a volume of the Lecture Notes
on Computer Science series.

The issue follows by publishing a contribution originating from the Industrial Track of the Ada-Europe 2013 conference. In
this paper, Daniel Bigelow, from Bigelow Informatics, Switzerland, presents a strategy to convert a large application code
from another compilation system to GNAT. The Industrial Track of Ada-Europe conferences provides very valuable work,
which the Journal promotes to be extended to regular papers. We are looking forward to present to our readers with more
inputs from the conference in later issues.

Also coming from the Ada-Europe 2013 conference, we publish a report on the panel that analyzed the use of heap
technologies in real-time systems. The panel included three specialists on the topic: Ludovic Gauthier, from Atego Systems,
Inc., USA; S. Tucker Taft, from AdaCore, USA; and James Hunt, from aicas GmbH, Germany, and was moderated by
Erhard Plödereder, from the University of Stuttgart, Germany. This paper provides a report of the presentations and
discussion of the session, from the session rapporteur, Jørgen Bundgaard.

Following the publication in the June issue of the session reports from the 15th International Real-Time Ada Workshop,
which took place in 2011, in this issue we present a summary, provided by Alan Burns, the workshop chair, of the 16th
edition of the workshop, which took place in York, UK, last April. We plan to provide our readers with the more detailed
session summaries of the workshop, in a forthcoming issue of the Journal.

As usual, the issue also presents the news digest and calendar sections, by their respective editors, providing the readers with
a review to the world of Ada, and reliable software in general. The forthcoming events section provides the advance program
for the forthcoming SIGAda International Conference on High-Integrity Language Technology (HILT) that will take place
November 10-14 in Pittsburgh, USA, and the call for papers for the 19th International Conference on Reliable Software
Technologies - Ada-Europe 2014, taking place in Paris, France, June 23-27, 2014. Finally, the Ada Gems section provides a
gem on some potentially unexpected behavior on the update of variables, by Emmanuel Briot and Robert Dewar, of AdaCore.

 Luís Miguel Pinho
Porto

September 2013
 Email: AUJ_Editor@Ada-Europe.org

136

Volume 34, Number 3, September 2013 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Events 136
Ada and Education 137
Ada-related Resources 137
Ada-related Tools 138
Ada-related Products 142
Ada and GNU/Linux 143
Ada and MacOS X 143
References to Publications 143
Ada Inside 145
Ada in Context 146

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Ada-Belgium Spring 2013
Event

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sun, 23 Jun 2013 11:33:28
 Subject: Ada-Belgium Spring 2013 Event,

Sat 29 June 2013
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,be.comp.programming

Ada-Belgium Spring 2013 Event

Saturday, June 29, 2013, 12:00-19:00

Leuven, Belgium

including at 15:00

2013 Ada-Belgium General Assembly

and at 16:00

Ada Round-Table Discussion

<http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/local.html>

Announcement

The next Ada-Belgium event will take
place on Saturday, June 29, 2013 in
Leuven.

For the sixth year in a row, Ada-Belgium
decided to organize their "Spring Event",
which starts at noon, runs until 7pm, and
includes an informal barbecue, a key
signing party, the 20th General Assembly
of the organization, and a round-table
discussion on Ada-related topics the
participants would like to bring up.
Afterwards, those interested can once
more get practical hands-on experience on
packaging Ada software for Debian with
Ludovic Brenta, principal maintainer of
Ada in Debian.

Schedule

 * 12:00 welcome and getting started
(please be there!)

 * 12:15 informal barbecue

 * 14:45 key signing party

 * 15:00 Ada-Belgium General Assembly

 * 16:00 Ada round-table + informal
 discussions

 * 19:00 end

Participation

Everyone interested (members and non-
members alike) is welcome at any or all
parts of this event.

For practical reasons registration is
required. If you would like to attend,
please send an email before Wednesday,
June 26, 21:00, to Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> with
the subject "Ada-Belgium Spring 2013
Event", so you can get precise directions
to the place of the meeting. Even if you
already responded to the preliminary
announcement, please reconfirm your
participation ASAP.

If you are interested to become a new
member, please register by filling out the
2013 membership application form[1] and
by paying the appropriate fee before the
General Assembly. After payment you
will receive a receipt from our treasurer
and you are considered a member of the
organization for the year 2013 with all
member benefits[2]. Early renewal
ensures you receive the full Ada-Belgium
membership benefits (including the Ada-
Europe indirect membership benefits
package).

As mentioned at earlier occasions, we
have a limited stock of documentation
sets and Ada related CD-ROMs that were

distributed at previous events, as well as
back issues of the Ada User Journal[3].
These will be available on a first-come
first-serve basis at the General Assembly
for current and new members. Ada-
Belgium sponsor AdaCore provided us
some Ada books, and we'll organize a
small raffle to hand them out to interested
members.

[1] http://www.cs.kuleuven.be/~dirk/ada-
belgium/forms/member-form13.html

[2] http://www.cs.kuleuven.be/~dirk/ada-
belgium/member-benefit.html

[3] http://www.ada-europe.org/auj/home/

Informal barbecue

The organization will provide food and
beverage to all Ada-Belgium members.
Non-members who want to participate at
the barbecue are also welcome: they can
choose to join the organization or pay the
sum of 15 Euros per person to the
Treasurer of the organization.

Note: if spring would still not have
arrived yet in Belgium at this (theoretical)
summer day (read: if heavy rain is
expected), the barbecue might be replaced
with an alternative; but rest assured: food
and drinks will be available!

General Assembly

All Ada-Belgium members have a vote at
the General Assembly, can add items to
the agenda, and can be a candidate for a
position on the Board [4]. See the separate
official convocation [5] for all details.

[4] http://www.cs.kuleuven.be/~dirk/ada-
belgium/board/

[5] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/13/130629-abga-
conv.html

Key Signing Party

Wouldn't it be nice if a majority of people
used GPG to sign their email every day so
that you could send all non-signed email
into the spam bin? To make that dream
come true, please join and expand the
global Web of Trust[6]!

What you should bring with you:

* an official ID card issued by your
national government;

Ada-related Resources 137

Ada User Journal Volume 34, Number 3, September 2013

* your GPG key fingerprint (i.e. the
output of gpg --fingerprint) on small
paper slips; a dozen copies or so should
be enough.

What you will go home with:

* signatures from all other participants;

* automatic inclusion in the global Web
of Trust;

* the ability to digitally sign or encrypt
anything you like.

[6] http://en.wikipedia.org/wiki/
 Web_of_Trust

Ada Round-Table Discussion

This year, we plan to keep the technical
part of the Spring event informal as well.
We will have a round-table discussion on
Ada-related topics the participants would
like to bring up. We invite everyone to
briefly mention how they are using Ada in
their work or non-work environment,
and/or what kind of Ada-related activities
they would like to embark on. We hope
this might spark some concrete ideas for
new activities and collaborations.

Afterwards, those interested can get
practical information and hands-on
experience on "Packaging Ada Software
for Debian" [7][8]. See the event's web
page for more info.

[7] http://www.debian.org/

[8] http://people.debian.org/~lbrenta/
 debian-ada-policy.html

[…]

[See also “Ada-Belgium Spring 2012
Event”, AUJ 33-2, p. 73. —sparre]

GNAT Industrial User Day

From: Jamie Ayre <ayre@adacore.com>
Date: Tue, 9 Jul 2013 11:46:43 +0200
Subject: [AdaCore] GNAT Industrial User

Day 2013
To:"libre-news@lists.adacore.com

AdaCore is once again happy to invite
you to join us for the GNAT Industrial
User Day that will take place in Paris on
September 25th, 2013.

This year's event will provide information
on the recent evolutions in the Ada and
SPARK languages, important upgrades to
GNAT Pro and complementary
technologies and roadmaps that will all
help you get fully up-to-date with our
technology.

Specific sessions include:

- Writing reliable software: formal
verification and static analysis
techniques and possibilities.

- Qualimetrics: a software development
dashboard.

- A new generation of toolsets: GPS 6
(IDE presentation, Gtk 3), GNAT
Tracker 3.

- Ada development on ARM processors.

- The latest and greatest (and future
developments) in GNAT Pro:
(GPRbuild, GNAT2XML, new ports,
GNATcoverage/GNATemulator,
Qualifying Machine, …).

- AdaCore partner presentations.

 Many members of AdaCore's technical
staff will be present and will be happy to
discuss any questions you may have on
Ada, SPARK, and AdaCore products.

For the full agenda and to register, please
visit:

http://www2.adacore.com/gnatpro-day

Ada 2012 talk at
DANSAS'13

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Thu, 15 Aug 2013 10:39:59 +0200
Subject: Ada 2012 talk at DANSAS'13
Newsgroups: comp.lang.ada

I've gotten a talk on Ada 2012 accepted
for the Danish Static Analysis
Symposium (DANSAS'13) Friday August
23rd in Odense. The title and abstract are:

Contract-based Programming with Ada
2012 - an experience report.

The 2012 version of the Ada
programming language standard includes
checked "contracts" and "aspects" for
subprograms and types. Some of these are
by definition checked at compile-time,
while other checks can be postponed to
run-time, if a static analysis is unfeasible
(or just not implemented).

At AdaHeads, we are currently
developing a hosted telephone reception
system, where the core component is
written in Ada 2012. We picked Ada 2012
specifically to be able to use the contracts
and aspects to increase our confidence
that the software is correct.

Our experience so far is that GNAT-GPL-
2013 (the only generally available Ada
2012 compiler) only implements static
(compile-time) checking of contracts and
aspects where it is required by the
language standard. This means that for
now, the big static analysis benefits of
using Ada are related to the basic type
system, which also existed in earlier
versions of the standard, and the major
benefit of switching to Ada 2012 at the
moment is in the improved run-time
checks.

General information on DANSAS'13 can
be found at:

 http://dansas.sdu.dk/2013/

Ada and Education

On Teaching Types

From: Mike Hopkins <postmaster@ada-
augusta.demon.co.uk>

Date: Sun, 11 Aug 2013 16:15:59 +0100
Subject: Re: 4 beginner's questions on the

PL Ada
Newsgroups: comp.lang.ada

Once again a thread in this news group
shows a polarisation of mind sets
concerning right and wrong approaches to
writing a program. I am reminded of my
teaching days when, even before writing a
single piece of Ada code on the white
board, I would initiate some class
discussion on the question of whether
time and duration are same and, if they
are not the same, does it matter. I knew I
could expect general agreement that the
result of adding a pair of time variables
was meaningless whereas subtracting
such pair of times could be valid, but only
if one was aware that the result was not a
time. The fun would start when the
discussion moved on to questions of how
one might detect or, better still prevent, a
time/duration program error. If I was
lucky, opinions would become quite
heated concerning personal responsibility
and managerial responsibility should such
an error reach a production version of a
product.

When the dust began to settle I would ask
whether it might not be useful if such an
error could be detected at compilation
time. Sometimes there would be a small
minority who would greet that question
with incredulity. More interesting to me
was identifying those who showed an
interest in how this might be achieved in
well written Ada and, in comparison,
those who were sufficiently sure of their
own capabilities that they could regard
any additional lines of defensive coding in
any language as an unnecessary
irrelevance. Worse still were those who
would be deaf to the idea that although
additional lines of declaration source code
can be expected to change the resulting
executable code that does not necessarily
mean a change of the amount of generated
execution code nor necessarily a change
of execution times.

Ada-related Resources

Experimental Continuous
Integration System for Open
Source Projects

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon, 12 Aug 2013 08:40:00 +0300
Subject: Experimental Continuous

Integration system for open source Ada
projects

Newsgroups: comp.lang.ada

138 Ada-related Tools

Volume 34, Number 3, September 2013 Ada User Journal

I have setup an experimental continuous
integration system for open source Ada
projects at

 http://build.ada-language.com/

The system builds selected set of projects
in regular intervals using 3 different Ada
compilers (GNAT, Janus/Ada, ICCAda)
on two platforms (Windows 7,
Debian/amd64 7.0).

The idea is to see how well the projects
can be built with different compilers and
to catch changes which break portability.

For now, I have included only projects
which are known to be portable across
compilers and which have public source
code repository available.

The system is implemented by running
Jenkins [1] on a cheap "lowend" virtual
private server (from waveride.at), so there
are no availability or uptime guarantees
and the server might get wiped out at any
moment (I do backups and the server +
connections have been stable for a month
or so, but still…)

If you want to get your project listed and
built, please send me an email.

And to get useful results, please make
sure that your project doesn't use any
GNAT.* packages or GNAT-specific
features (like 'Img). Keeping external
dependencies in minimum also helps.

For security reasons, I don't allow any
builds commands (like "make") to be run.
Instead, I include all build commands
directly to the Jenkins, so I know what is
executed. (So, if your project source files
need some specific treatment and cannot
be compiled with "gnatmake
mainprocedure", please mention that.)

[1] http://jenkins-ci.org/

SPARK 2014

From: AdaCore & Altran
Date: Wed Aug 14 2013
Subject: SPARK 2014
URL: http://www.spark-2014.org/

[Papers and reference information on the
upcoming version of SPARK. —sparre]

[See also the discussion "The Future of
SPARK (and Ada)" in the "Ada in
Context" section. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon Aug 19 2013
Subject: Repositories of Open Source

software
To: Ada User Journal

AdaForge: 7 repositories [1]

Bitbucket: 53+ repositories [2,3]

Codelabs: 17 repositories [4]

GitHub: 384 repositories [5]

 97 developers [6]

Rosetta Code: 570 examples [7]

 25 developers [8]

Sourceforge: 224 repositories [9]

[1] http://forge.ada-ru.org/adaforge

[2] https://bitbucket.org/repo/all/relevance
?name=binding&language=ada

[3] https://bitbucket.org/repo/all/
relevance?name=ada&language=ada

[4] http://git.codelabs.ch/

[5] https://github.com/search?q=language
%3AAda&type=Repositories

[6] https://github.com/search?
q=language%3AAda&type=Users

[7] http://rosettacode.org/wiki/
Category:Ada

[8] http://rosettacode.org/wiki/
Category:Ada_User

[9] http://sourceforge.net/directory/
language%3Aada/

[See also “Repositories of Open Source
software”, AUJ 34-2, p. 65. —sparre]

Ada-related Tools

Ada-Fuse

From: Nicolai Ruckel
<nicolai.ruckel@uni-weimar.de>

Date: Fri Apr 19 2013
Subject: Ada-Fuse
URL: https://github.com/RanaExMachina/

ada-fuse

Ada-Fuse provides Ada bindings for Fuse.
Our goal was to make it possible to use
the Fuse operations with Ada-like types
and functions.

You can use most of the Fuse operations.
The missing operations are `lock`,
`utimens`, `bmap`, `ioctl` and `poll`. For
most filesystems this should not be a
problem, in fact we never saw a Fuse-
Filesystem using these operations. Be
aware that not all of the implemented
functions are tested. Untested functions
are marked in the source.

Ada-Fuse should work on 32bit and 64bit
Linux and Mac OS. See “Known
limitations / bugs” for more info.

[…]

Ada 2005 Math Extensions

From: Simon Wright
<simon@pushface.org>

Date: Wed, 29 May 2013 19:43:28 +0100
Subject: ANN: Ada 2005 Math Extensions

20130529
Newsgroups: comp.lang.ada

Available at
https://sourceforge.net/projects/
gnat-math-extn/files/20130529/

Packages Ada_Numerics.Float_Arrays
and .Long_Float_Arrays are provided;
they are instantiations of .Generic_Arrays
for the standard Float and Long_Float
types.

The packages are declared Pure.

The code is compatible with GNAT GPL
2013 (a minor change was required to
avoid a compilation warning).

[See also “Math Extensions”, AUJ 33-3,
p. 143. —sparre]

GNAT GPL

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 29 May 2013 15:36:31 +0200
Subject: GNAT 2013 is out!
Newsgroups: comp.lang.ada

Just connected to libre and surprise! The
site proposed the 2013 edition!

[http://libre.adacore.com/download/
configurations —sparre] From: Jamie
Ayre <ayre@adacore.com>

Date: Wed, 5 Jun 2013 10:09:07 +0200
Subject: [AdaCore] Announcing the

availability of GNAT GPL and SPARK
Hi-Lite GPL 2013

To: libre-news@lists.adacore.com

Dear GNAT and SPARK GPL user,

We are pleased to announce the
availability of GNAT GPL 2013 and
SPARK Hi-Lite GPL. GNAT GPL 2013
provides new Ada 2012 language
features, introduces new tools and new
versions of existing tools, incorporates a
range of improvements and adds several
new platforms. Some of the key
enhancements:

New Language Features

- Final touches on Ada 2012 support

- Automatic Endianness conversion
('Scalar_Storage_Order)

- Dimensionality checking (new aspects
and packages)

New version of existing tools

- GtkAda

Gtk+ version 3 brings new widgets, a
CSS-based theming framework, and an
improved API that has been clarified and
has a more homogeneous naming scheme.

- New versions of IDEs

- GPRbuild

- GDB debugger

Switch to GCC 4.7 back-end

New GNATcheck rules

SPARK Hi-Lite GPL 2013 is a package
that can be installed after GNAT GPL
2013, to provide access to the new
SPARK toolset that was developed in
project Hi-Lite. This release is a major
evolution of the SPARK toolset providing
formal verification for a subset of Ada

Ada-related Tools 139

Ada User Journal Volume 34, Number 3, September 2013

programs. This new toolset uses Ada
2012-style contracts (e.g. pre- and
postconditions), instead of the stylized
comments in previous versions, to provide
specifications of programs. The benefits
of this new version are:

- larger supported subset of Ada
(including generics, discriminants, etc.)

- same contracts used for testing and
formal verification

- applicable to units partly in SPARK

- improved automatic proof of complex
contracts

- new integration in GPS

A preview of the data and information
analysis is also available. For more
information on SPARK 2014, please visit
www.spark-2014.com.

Both toolsets can be downloaded from
libre.adacore.com.

LDAP Client

From: Diogenes <phathax0r@gmail.com>
Date: Thu, 30 May 2013 17:40:02 -0700
Subject: LDAP client/server in Ada?
Newsgroups: comp.lang.ada

Has anyone done this yet?

I need to write an Ada client that speaks
the LDAP protocol. The protocol is
specified using ASN.1 notation.

I could do the work by hand…done that
sort of thing before, but I was wondering
if anyone else has done it before.
Preferably without needing an ASN.1
compiler.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 31 May 2013 07:04:14 +0200
Subject: Re: LDAP client/server in Ada?
Newsgroups: comp.lang.ada

There is some LDAP support in AWS, not
complete though. Check if it fits your
needs.

Matreshka

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Mon, 3 Jun 2013 10:16:28 -0700
Subject: Announce: Matreshka 0.5.0
Newsgroups: comp.lang.ada

We are pleased to announce next major
release of Matreshka framework. It
includes new features:

- support to process data in JSON format

- driver for MySQL server

and enhancements of:

- SQLite3 database driver

- WSDL to Ada translator

- text codecs for IBM-437, KOI-8R and
KOI-8U

See Release Notes for detailed list of
changes:

http://forge.ada-ru.org/matreshka/
wiki/ReleaseNotes/0.5

Matreshka 0.5.0 can be downloaded in
source code and binary form from page:

http://forge.ada-ru.org/matreshka/
wiki/Download

[See also “Matreshka”, AUJ 34-1, p. 8.
—sparre]

Paraffin

From: Brad Moore
<brad.moore@shaw.ca>

Date: Wed, 19 Jun 2013 00:41:43 -0600
Subject: ANN: Paraffin 4.3, Parallelism

Generics
Newsgroups: comp.lang.ada

I am pleased to announce Paraffin 4.3.

Paraffin is a set of Ada 2012 generics that
may be used to add parallelism to iterative
loops and recursive code. Older releases
(prior to 4.0) also support Ada 2005.

Paraffin includes generics for both
Ravenscar and non-Ravenscar use. The
Ravenscar version utilizes static task
pools with dispatching domains intended
for real-time programming.

Paraffin also includes Paraffinalia, which
is a suit of useful parallel utilities that
utilize the Paraffin generics. These
include generics for;

1) generic to integrating a function in
parallel

2) generic to apply quicksort algorithm in
parallel to an array

3) generic to apply fast fourier transform
to an array of data.

4) generic Red-Black tree container that
performs some operations in parallel.

5) function to solve matrices using Gauss-
Jordan Elimination

6) generic to perform prefix sum
calculations

7) generic to perform sequence alignment
using the Smith-Waterman algorithm to
find similar regions between two strings
for problems such as comparing genetic
nucleotide or protein sequences, or
checking for plagiarism between two
text sources.

This release has the following notable
features;

1) Most importantly, to those who want to
compile Paraffin with the latest GNAT
2013 GPL release, this version contains
bug fixes that allow compilation.

2) A new Paraffinalia app has been added.
This implements the Smith-Waterman
dynamic algorithm in parallel. This app
performs sequence alignment, which
means it may be used to find similar
regions between two text strings. Such
an algorithm is of interest to genetic

comparisons of nucleotide or protein
sequences. It may also be used to
compare two text documents against
each other for plagiarism, etc.

3) A Ravenscar compliant version of the
Smith-Waterman app has also been
added.

4) Several wait-free barriers have been
added. These offer several advantages
over the facilities of
Ada.Synchronous_Barriers, in that the
workers are released in parallel, as
opposed to sequentially, for barriers that
are implemented as protected objects. In
addition, there is no blocking, no
queues, and these new barriers are
Ravenscar compliant, and objects of
these barriers can be declared at nested
levels in a Ravenscar application, unlike
barriers that are implemented as
protected objects. The last point to note
is that using these barriers can make a
significant improvement in performance.
The matrix-solving paraffinalia app has
been seen to complete twice as fast in
certain circumstances.

5) A new facility has been added to the
work sharing loop iteration packages.
This is a subprogram, Get_Worker_Id,
that allows the caller to statically
determine which worker will be
assigned to a particular loop iteration
number. This is particularly useful for
algorithms that use barriers, as typically
one needs to know how many workers
will be synchronizing on the barrier, as
well as to map intermediate user-defined
result arrays with worker numbers.

6) The Smith-Waterman app, the matrix
solving app, and the histogram
cumulative sum paraffinalia apps were
modified to use this new facility.

The latest stable release and older releases
may be downloaded from;

https://sourceforge.net/projects/paraffin/
files/

For those who want the current
development versions of the source they
can download using git (http://git-
scm.com/) by issuing the following
commands;

mkdir sandbox

cd sandbox

git clone git://git.code.sf.net/p/
paraffin/code paraffin-code

[See also “Paraffin and Paraffinalia”,
AUJ 34-2, p. 67. —sparre]

RTEMS and Ada on
Raspberry Pi

From: Brian Catlin
<brian.catlin@gmail.com>

Date: Wed, 3 Jul 2013 17:42:08 -0700
Subject: RTEMS (and thus Ada) on
Raspberry Pi

Newsgroups: comp.lang.ada

140 Ada-related Tools

Volume 34, Number 3, September 2013 Ada User Journal

It appears that RTEMS has been ported to
the RasPi

http://www.raspberrypi.org/phpBB3/
viewtopic.php?f=72&t=38962

From: Simon Wright
<simon@pushface.org>

Date: Thu, 04 Jul 2013 17:31:28 +0100
Subject: Re: RTEMS (and thus Ada) on

Raspberry Pi
Newsgroups: comp.lang.ada

[…]

What I meant was, does the port of
RTEMS to the Pi include a BSP so that
applications built to RTEMS can run on
the bare Pi?

And on re-reading the link, I see that it
does [1], though only the timer and the
UART are supported so far.

[1] http://alanstechnotes.blogspot.co.uk/
2013/03/rtems-on-raspberry-pi.html

AdaControl

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 11 Jul 2013 07:01:46 +0200
Subject: [Ann] New version of AdaControl

released
Newsgroups: comp.lang.ada

Adalog is pleased to announce the release
of version 1.15r5 of AdaControl,
featuring 452 possible checks, including a
number of checks for Ada 2012 constructs
like expression functions, quantifiers,
if/case expressions… and of course “in
out” parameters in functions!

As usual, it is available on SourceForge
(http://adacontrol.sourceforge.net) or from
its home page
(http://www.adalog.fr/adacontrol2.htm).

AdaControl is free software (GMGPL)
with commercial support available, see
User's Guide. Don't hesitate to write to
info@adalog.fr for more information on
the great benefits of commercial support.

[See also “AdaControl”, AUJ 33-3,
p. 146. —sparre]

Qt5Ada

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Fri, 12 Jul 2013 03:09:13 -0700
Subject: Announce: Qt5Ada version 5.1.0

release 10/07/2013 free edition
Newsgroups: comp.lang.ada

Qt5Ada is an Ada 2012 binding to the Qt5
framework (based on Qt 5.1.0 final).

Qt5ada version 5.1.0 open source and
qt5c.dll(libqt5c.so) built with Microsoft
Visual Studio 2012 in Windows and gcc
x86 in Linux.

Package tested with GNAT-GPL-2012 in
Windows 32bit and 64bit and Linux x86
Debian 7.

It supports GUI, SQL, multimedia, web,
networking and many others things.

Qt5Ada for Windows and Linux (Unix) is
available from
http://users1.jabry.com/adastudio/
index.html

My configuration script to build Qt5 is:

configure -opensource -release -nomake
tests -opengl desktop -icu -plugin-sql-
mysql -plugin-sql-odbc -plugin-sql-oci -
prefix "e:/Qt/5.1"

I have added new packages to support
Touch devices, SerialPorts and Sensors.

The full list of released classes is in “Qt5
classes to Qt5Ada packages relation
table.pdf”.

[See also “Qt5Ada”, AUJ 34-2, p. 68.
—sparre]

Pseudo Random Number
Generators

From: Yannick Duchêne
<yannick_duchene@yahoo.fr>

Date: Fri, 19 Jul 2013 21:28:32 +0200
Subject: “A Comparison of Four Pseudo

Random Number Generators
Implemented in Ada”

Newsgroups: comp.lang.ada

I was searching the web for simple
pseudo‑random number generator
suitable for Monte Carlo simulation, when
I found a paper comparing some PRNG
implemented in Ada. Don't know if it well
suited for simulation and “calculation”
based on random input, but probably
always worth to be mentioned here :-p

“A Comparison of Four Pseudo Random
Number Generators Implemented in Ada”

http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.21.7884&
rep=rep1&type=pdf

William N. Graham

April 1999

Ada source is provided at the end of the
document.

From: Shark8
<onewingedshark@gmail.com>

Date: Fri, 19 Jul 2013 14:43:56 -0700
Subject: Re: “A Comparison of Four
Pseudo Random Number Generators
Implemented in Ada”

Newsgroups: comp.lang.ada

I recall a RNG that was posted [or posted
about] here on Comp.Lang.Ada; here's a
link to a thread:

https://groups.google.com/forum/?
fromgroups#!searchin/comp.lang.ada/
RNG/comp.lang.ada/Iy6J3UzDwVQ/
fvVkxUQoRfoJ

Its name, if you need to search, was/is:
KISS4691

From: Yannick Duchêne
<yannick_duchene@yahoo.fr>

Date: Sat, 20 Jul 2013 02:41:16 +0200
Subject: Re: ³A Comparison of Four Pseudo

Random Number Generators
Implemented in Ada²

Newsgroups: comp.lang.ada

> Why not use
Ada.Numerics.{Discrete,Float}_
Random ?

Also and more basically, it's often
suggested to not rely on a single generator
and use at least two ones, different
enough, for comparison of results, as most
papers about Monte Carlo methods
introduces this. That's after all just like
with hash functions.

You may also favour algorithms (either in
mathematical or comprehensible source
form) over libraries when, as you say, you
want to be able to reproduce an exact
same sequence without a record of it (may
weight too much, easily some hundreds of
MB), or else want the same in different
contexts, say Ada and SML without
external binding.

And above all, this paper mentions Ada
and put it at the front, so that's a lot
worthy anyway :-D

From: PragmAda Software Engineering
<pragmada@pragmada.x10hosting.com>

Date: Sun, 11 Aug 2013 14:37:14 -0700
Subject: New RNGs in the PragmARCs
Newsgroups: comp.lang.ada

The beta version of the PragmAda
Reusable Components for ISO/IEC
8652:2007 now contains an
implementation of Marsaglia's KISS
RNG, and a "combined" RNG that
combines both the Universal and KISS
generators to result in a generator that
should be both better quality than either
and with a much longer period as well.
You can find the PragmARCs at

http://pragmada.x10hosting.com/
pragmarc.htm

I hope those of you who are into RNGs
will take a look and provide feedback.

[See also “PragmAda Reusable
Components”, AUJ 34-2, p. 66. —sparre]

AdaControl for FreeBSD

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Tue, 23 Jul 2013 09:35:14 +0200
Subject: AdaControl now officially

supported on FreeBSD
Newsgroups: comp.lang.ada

Thanks to John Marino, AdaControl is in
the FreeBSD Ports Collection. It is built
with lang/gcc-aux which is GNAT FSF
4.7 which is paired with ASIS 2011. So
it's the "old" version for now.

http://www.freshports.org/lang/
adacontrol/

Ada-related Tools 141

Ada User Journal Volume 34, Number 3, September 2013

AdaSockets

From: Freecode
<http://www.freecode.com/>

Date: Sun, 4 Aug 2013 11:16:00 +0000
Subject: AdaSockets 1.8.11 has been

released [Freecode]
To: Ada User Journal

sigra just announced version 1.8.11 of
AdaSockets on Freecode.

The release notes for this version are as
follows:

This release uses the right compiler to
compile C constants files.

Project description:

AdaSockets is a library that lets you use
sockets in Ada 95. It supports unicast and
multicast sockets, and uses object oriented
structures to ease sockets manipulation.

Detailed history and release notes are
available here:

http://freecode.com/projects/
adasockets#release_356761

Gate3-in Code Generator for
Glade2 and Glade3
GtkBuilder

From: Rob Groen <robgr@xs4all.nl>
Date: Sun, 04 Aug 2013 13:33:01 +0200
Subject: gate3-in code generator (v0.4) for

Glade GtkBuilder and LibGlade files
To: gtkada <gtkada@lists.adacore.com>

Last February I "released" version 0.3 of
gate3-in, an Ada code sketcher for Glade,
based on gate-in which is not maintained
anymore. Now I am releasing version 0.4
which sees a number of fixes and
enhancements (I hope). The sketcher still
targets Gtk2 (Gtkada 2.24) and Glade3
version prior to 3.8.1. When time permits
I will move gate3-in to GTK3 (Gtkada
3.x), but this will probably take some
time.

The work is based on the sources found in
the 2011 GtkAda distribution, notably
Glib.Glade, Gtk.Glade and
Gtk_Generates. This is work in progress,
so not all Glade features are supported
(yet). Also, testing is limited to Glade
files that I have used in the past and new
ones that were created targeting changes
that I made, so they probably don't touch
all the functionality. Testing has been
done on WinXP and on Ubuntu 10.04,
using the 2012 GNAT GPL and GtkAda
2.24 distribution. No other prerequisites
are known to me.

Download the zip file from:
http://robgr.home.xs4all.nl/

Both versions (0.3 and 0.4) can be found
there. Zip files include a list of changes.
When building gate3-in the gpr file
specifies "debug" and "obj" subdirectories
relative to the directory where the sources
and the gpr file are found. You must
create these subdirectories before using

gnatmake.

If you have problems downloading, send
me an e-mail so I can mail the zip file
directly.

Comments are welcome!

[See also “Gate3-in code generator for
Glade2 and Glade3 GtkBuilder”,
AUJ 34-1, p. 12. —sparre]

Comfignat

From: Björn Persson <bjorn@xn--
rombobjrn-67a.se>

Date: Wed, 07 Aug 2013 19:32:09 +0200
Subject: Introducing Comfignat
Newsgroups: comp.lang.ada

Last Friday I published the first release of
Comfignat. Comfignat is common,
convenient, command-line-controlled
compile-time configuration of software
built with the GNAT tools on Unix-like
operating systems.

In my work on packaging Ada software in
Fedora I have found that most Ada
projects have rather inflexible build
systems. Makefiles and project files
usually have to be modified to meet
Fedora’s policies. Files placement is often
not configurable enough, and support for
multiarch systems and installation to a
staging directory is often missing. There
is also a lack of naming conventions. In C
projects Make variables such as CFLAGS
and LDFLAGS are a well established de
facto standard. Among Ada projects there
is no consensus. The lack of conventions
slows packaging down as it takes time to
figure out each makefile.

It’s quite understandable that Ada
programmers don’t want to write a lot of
Make code for every project but rather
focus on their Ada programming, but the
result is inflexible makefiles that don’t
meet users’ and distributions’ needs.

To make my own projects fully
configurable, multiarch-capable and
stageable while minimizing the amount of
Make code that must be written for every
new project, I have written Comfignat. It
consists of a makefile foundation with
generic Make code to be included by each
project’s makefile, and an abstract GNAT
project file to be imported by each
project’s project files. Leveraging GNU
Make and Gnatprep, Comfignat adds the
flexibility that GNAT project files lack,
so that programs and libraries can easily
be configured for all sorts of use cases,
such as installing locally from source,
packaging in a distribution, building
relocatable binary packages, or testing
and debugging on a developer’s
workstation.

As all the code in Comfignat is generic it
should be useful in any project that targets
GNAT and Unix-like systems, and will
greatly reduce the amount of Make code
that needs to be written for each project. It
works for mixed-language projects as

well as pure Ada projects, and Gnatmake
and GPRbuild are both supported.

Read more:

https://www.rombobjörn.se/Comfignat/

Download the tarball:

https://www.rombobjörn.se/Comfignat/
download/

Browse the code online:

https://gitorious.org/comfignat/comfignat/
trees/master

See how my projects use Comfignat:

https://gitorious.org/adamilter/adamilter/
trees/master

https://gitorious.org/adamilter/
system_log/trees/master

From: Björn Persson <bjorn@xn--
rombobjrn-67a.se>

Date: Mon, 12 Aug 2013 11:03:57 +0200
Subject: Re: Introducing Comfignat
Newsgroups: comp.lang.ada> […] How do

you control what goes to staging
directory?

GPRbuild or Gnatmake copies the source
files. It's supposed to be only those files
that are needed for compiling code that
uses the library, that is the specifications
of the interface packages and those bodies
that contain generics or inlined
subprograms. Your build project says “for
Library_Interface use ("Ahven");”, so the
package Ahven is the only interface
package. It contains a generic procedure.
Therefore ahven.ads and ahven.adb are
staged.

> Also, how do I get documentation (built
by a separate Python tool) there
(easily)?

Comfignat doesn't know about the Python
tool so you'll need to write a rule in your
makefile to invoke it. To get the
documentation staged you should use the
Make variables stage_mandir (for
manpages), stage_infodir (for the Info
format) and stage_miscdocdir (for other
documentation).

Hopefully the tool allows you to specify
an output directory, and then you can tell
it to write directly to
"${stage_miscdocdir}/ahven" for
example.

In case the tool is hardcoded to write the
files in the source tree, your makefile will
have to copy them to the appropriate
directories. In that case the tool also
doesn't support out-of-tree builds, but will
write the files in the source tree even
when a separate build directory is used, so
you'll be copying from srcdir. The
commands might be:

mkdir -p "${stage_miscdocdir}/ahven"

cp -RPp ${srcdir}/some/where/*
"${stage_miscdocdir}/ahven/"

142 Ada-related Products

Volume 34, Number 3, September 2013 Ada User Journal

A possible future extension to Comfignat
might be additional makefile modules for
some popular documentation generators.

Lapack

From: Leo Brewin
<leo.brewin@internode.on.net>

Date: Sun, 11 Aug 2013 16:53:29 -0700
Subject: Updated ada-lapack on
Sourceforge

Newsgroups: comp.lang.ada

I've updated the ada-lapack library on
sourceforge. The library now provides
native Ada code for

- Matrix determinant and inverse on
general matrices,

 - Eigenvalues and eigenvectors of
general, real and hermitian symmetric
matrices,

- Solutions of systems of equations for
general, real and hermitian symmetric
coefficient matrices,

- Singular value decomposition for
general matrices

New procedures in this release are

syev, syevd, sysv, heev and heevd

(implementing dsyev, dsyevd, dsysv,
zheev, zheevd and zsysv).

There are also a collection of functions
(and two procedures)

MatrixDeterm,
MatrixInverse,
Eigenvalues,
EigenvaluesRealSymm,
EigenvaluesHermSymm,
Eigensystem,
EigensystemRealSymm,
EigensystemHermSymm,
SolveSystem,
SolveSystemRealSymm,
SolveSystemHermSymm

These provide a more familar Ada style
interface to the Lapack routines. There
are, as yet, no similar interfaces for the
singular value decompostion procedures
(gesv,gesdd).

You can find the code at

http://sourceforge.net/projects/ada-lapack/

[See also “Lapack”, AUJ 34-1, p. 8.
—sparre]

Simple Web-based IDE

Subject: Compile and Execute Ada online
Date: Mon Aug 19 2013
From: compileonline</>com
URL: http://www.compileonline.com/

compile_ada_online.php

[A web site, where you can compile and
test Ada applications on-the-fly.
 —sparre]

Ada-related Products

Vector Software Announces
Support for the AdaCore
GNAT Pro Compiler for
ARM Cortex

From: Vector Software Press Releases
Date: 24 June 2013
Subject: Vector Software Announces

Support for the AdaCore GNAT Pro
Compiler for ARM Cortex

URL: https://www.vectorcast.com/news/
vector-software-press-releases/2013/
vector-software-announces-support-
adacore-gnat-pro-compiler

Newest VectorCAST integration
strengthens Vector Software’s offering for
embedded Ada software development

June 24, 2013

Vector Software, the leading provider of
dynamic software testing solutions for
embedded systems, today announced
VectorCAST support for AdaCore’s
GNAT Pro Safety-Critical product for
ARM micro-controllers.

The AdaCore GNAT Pro Safety-Critical
application provides a complete Ada
development environment, oriented
towards systems that have safety-critical
or stringent memory constraints
requirements.

ARM is a popular low-cost, low power
microprocessor that is growing in
popularity in industries like aerospace,
defense, and transportation.

Vector Software’s VectorCAST
embedded software testing platform, is a
family of products that automates testing
activities across the software development
lifecycle and supports C, C++, and Ada.
VectorCAST includes a suite of Ada test
tools that significantly reduces the time,
effort, and cost associated with testing
safety-critical software written in Ada.

Support for ARM by AdaCore and
VectorCAST allow organizations
developing safety-critical applications for
ARM in Ada, or a combination of Ada, C,
and C++, to have a complete Ada
development and automated testing
environment. In addition, the
VectorCAST platform supports
AdaCore’s customized run-time profiles
including: ZFP, Cert, and Ravenscar.

“Ada has long been recognized for its
strong software engineering benefits
including portability, reliability and
maintainability,” said Jamie Ayre,
Marketing Director at AdaCore. “We are
delighted that Vector Software has
integrated its industry-leading
VectorCAST suite with AdaCore’s
GNAT Pro Safety Critical product for
ARM.”

“This new integration demonstrates our
commitment to providing the Ada
development community a complete
safety-oriented development toolset on a
large range of targets,” said William
McCaffrey, Chief Operating Officer at
Vector Software. “Customers can now
benefit from the richness of the hardware
platforms used by the wider market
beyond safety-critical systems.”

GNAT Pro for Wind River
Linux

From: AdaCore Press Center
Date: Tue Jul 2 2013
Subject: AdaCore Brings Ada to Wind River

Linux
URL: http://www.adacore.com/press/

adacore-brings-ada-to-wind-river-linux/

GNAT Pro 7.1 now on Wind River Linux,
with full Ada 2012 support

STUTTGART, NEW YORK and PARIS,
July 2, 2013 – Embedded Konferenz –
AdaCore today announced the availability
of the GNAT Pro Ada development
environment on the Wind River Linux
platform. This new implementation
continues a long, successful relationship
between AdaCore and Wind River,
marked by hundreds of joint customers
worldwide, and brings the Ada language’s
reliability benefits to the increasingly
popular Wind River Linux platform.
AdaCore offers the industry’s leading
Ada solution for Wind River’s products,
including a GNAT Pro implementation
for Wind River’s VxWorks® real-time
operating system (RTOS).

Wind River Linux is the market-leading
commercial grade Linux solution for
embedded device development. It features
an optimized run-time; a flexible, scalable
build system; pre-integrated middleware
packages for specific device types; an
integrated development environment; and
a suite of professional open source tools,
adapted and extended for embedded
development.

Programmers can use AdaCore and Wind
River products together to develop
applications that freely combine modules
in Ada, C and C++, and can manipulate
and analyze Ada applications through
Wind River’s Linux browser and tools.
Furthermore, this new implementation of
GNAT Pro on Wind River Linux supports
all versions of Ada (Ada 2012 / 2005 / 95
/ 83) and is tightly integrated into the
Wind River Workbench development
environment.

“AdaCore and Wind River share many of
the same goals in embedded software
development: reliability, performance and
portability,” explains AdaCore product
manager Dr. Pat Rogers. “We’re very
excited that this latest port of our
technologies to Wind River Linux
continues to build on our strong
relationship and offers our joint customers

References to Publ icat ions 143

Ada User Journal Volume 34, Number 3, September 2013

a highly sophisticated and efficient
software development process.”

“This new integration brings the Ada
development community everything they
need to build and support highly
differentiated solutions and deploy on an
industry leading commercial grade Linux
solution, based on the Yocto Project open
source development infrastructure," said
Davide Ricci, Product Line Manager at
Wind River. “With AdaCore’s long
history in providing solutions for high-
integrity applications such as in the
aerospace and defense industry, the
combination of Wind River Linux and
GNAT Pro provides embedded
developers with powerful capabilities
during the development process of secure
applications.”

GNAT Pro for Wind River Linux includes
support for the Wind River Linux 4.3
platform, the PowerPC and Power PC
e500v2 target platforms, and the Linux
host.

Ada and GNU/Linux

GtkAda in Fedora

From: Björn Persson <bjorn@xn--
rombobjrn-67a.se>

Date: Mon, 22 Jul 2013 12:09:55 +0200
Subject: The status of GTKada in Fedora
To: gtkada@lists.adacore.com

> […]

Fedora 18 and later has GTKada 2.24.2.
Fedora 17 has GTKada 2.18.0. I should
look into packaging GTKada 3 but I
haven't had time for that yet. Would you
like to help?

AVR-Ada for Fedora

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Fri, 26 Jul 2013 21:56:19 +0300
Subject: AVR-Ada 1.2.2 RPMs for Fedora

19
To: AVR-Ada <avr-ada-

devel@lists.sourceforge.net>

Just in case someone doesn't follow my
Twitter feed, reddit/r/ada, comp.lang.ada,
or planet.ada.cx, same info here:

I build AVR-Ada 1.2.2 RPM packages for
Fedora 19. They are available from my
personal fedora.ada-language.com RPM
repository.

The package sources consist of 1.2.2
release sources + 2 patches from me. First
patch reverts UART back to AVR-Ada
1.2 version, and another fixes libavrada.a
linking problems so that board/mcu
specific stuff is built and linked correctly.

More details at http://arduino.ada-
language.com/avr-ada-122-rpms-for-
fedora-19.html.

Ada and Mac OS X

GNAT

From: Simon Wright
<simon@pushface.org>

Date: Sun, 07 Jul 2013 19:37:02 +0100
Subject: GCC 4.8.1 for Mac OS X
Newsgroups: comp.lang.ada

You can find this at

https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
4.8.1/

The README says:

This is GCC 4.8.1 built for Mac OS X
Mountain Lion (10.8.4, Darwin 12.4.0).

gcc-4.8.1-x86_64-apple-darwin12.tar.bz2

==============================

Compilers included: Ada, C, C++,
Objective C, Objective C++, Fortran.

Tools included: ASIS, AUnit, GPRbuild,
GNATColl, XMLAda from GNAT GPL
2013.

Target: x86_64-apple-darwin12

Configured with:

../gcc-4.8.1/configure \

 --prefix=/opt/gcc-4.8.1 \

 --disable-multilib \

 --enable-languages=
 c,c++,ada,fortran,objc,obj-c++ \

 --target=x86_64-apple-darwin12 \

 --build=x86_64-apple-darwin12

Thread model: posix

gcc version 4.8.1 (GCC)

MD5 (gcc-4.8.1-x86_64-apple-
darwin12.tar.bz2) =
549d32da94a7af15e99bb98a7d288be9

Install by

==========

$ cd /

$ sudo tar jxvf ~/Downloads/gcc-4.8.1-
x86_64-apple-darwin12.tar.bz2

and put /opt/gcc-4.8.1/bin first on your
PATH.

Notes

=====

The compiler is GPL version 3 with the
Runtime Exception, so executables built
with it can be released on proprietary
terms PROVIDED THAT they make no
use of the packages from GNAT GPL
2013, which are full GPL.

Changes made to GPRbuild GPL 2013 are
in gprbuild-2013-src.diff. They:

- remove the '-c' flag that is wrongly
passed to ranlib (and isn't by gnatmake).

- correct a problem when building static
stand-alone libraries.

Changes made to GNATColl GPL 2013
are in gnatcoll-gpl-2013-src.diff. Only
changes necessary for the build are
included.

Changes to ASIS GPL 2013 are in asis-
gpl-2013-src.diff. Only changes necessary
for the build are included.

In addition to the above, a new library
gnat_util is required by GNATColl. A
Sourceforge project to provide this has
been set up at
https://sourceforge.net/projects/gnatutil/;
release 4.8.1 is included here. This is the
equivalent of the Debian libgnatvsn.

The GNATColl build was configured as
below, which is minimal apart from GNU
Readline being enabled. Users may wish
to reconfigure for their own requirements.

 Shared libraries: yes (default: static)

 Gtk+: no (requires pkg-config and
gtkada.gpr)

 Python: yes /System/Library/
Frameworks/Python.framework/
Versions/2.7 (see --with-python)

 PyGtk: no (see --enable-pygtk)

 PyGObject: no (see --enable-pygobject)

 Syslog: yes (see --enable-syslog)

 Readline (GPL license): yes (see --with-
readline --enable-gpl)

 gmp: no (see --with-gmp)

 PostgreSQL: no -L/usr/lib (see --with-
postgresql) Sqlite: embedded
(see --with-sqlite)

 Iconv: yes (see --with-iconv)

 Projects: yes

References to
Publications

Storing Large Volumes of
Data With AVR-Ada

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue 28 May 2013
Subject: Storing large data amount to flash

memory
URL: http://arduino.ada-language.com/

storing-large-data-amount-to-flash-
memory.html

If you paid attention in my Olimex MOD-
LCD3310 article [1], you noticed that I
stored a large array for font/characters to
RAM memory. This is highly inefficient
since the array takes space both on the
flash and on the memory at the same time.

To make the space usage more efficient,
you can specify the array to be only on
the flash. This way, you can use the
precious RAM to other things. The
downside is that you cannot access the
array on the flash as easily as from RAM.

144 References to Publ icat ions

Volume 34, Number 3, September 2013 Ada User Journal

However, AVR-Ada provides you
relatively simple means to place data on
flash and to retrieve it from there. You
need to do only two things, add a linker
pragma like:

pragma Linker_Section (
 Fonts, ".progmem");

and use AVR.Programspace package to
fetch the data:

Place := Fonts (0, I)'Address;
Offset := AVR.Programspace.
 Get_Byte (Place);

Notice how the (flash) address of Fonts
array is specified by Address attribute.
You don't need to know any details how
the address is calculated, the compiler
handles everything for you.

The updated code is available at my
arduino-mod-lcd3310 repository [2] as
usual. The revision number for this
change is ab6d9f7edc6f.

And here the .bss usage before and after
Linker_Section pragma:

 $ avr-size main-ram.elf

text data bss dec hex filename

2570 582 512 3664 e50 main-
 ram.elf

 $ avr-size main-progmem.elf

text data bss dec hex filename

3038 112 511 3661 e4d main-
 progmem.elf

The data (RAM) usage is higher without
.progmem Linker_Section pragma, and
with the pragma the text (flash section) is
higher.

[1] http://arduino.ada-language.com/
displaying-characters-on-mod-lcd3310-
by-using-olimexino-328-with-ada.html

[2] https://bitbucket.org/tkoskine/
arduino-mod-lcd3310

Developing Secure Code
Using SPARK

From: Benjamin M. Brosgol, AdaCore
Date: Sat Jun 1 2013
Subject: Developing secure code using

SPARK – Part 1
URL: http://www.embedded.com/design/

safety-and-security/4419246/
Developing-secure-code-using-SPARK---
Part-1-

The modern cyberworld is a dangerous
place. Software must not only be
reliable—i.e., perform its intended
functions—but also robust: It needs to
withstand attempts at subversion from the
array of threats posed by malevolent
sources. Implementing security as an add-
on isn’t effective. Performing static
analysis retrospectively on the source
code of an existing system may uncover
bugs and vulnerabilities but can never

demonstrate their absence. Instead,
developers have to consider preventive
measures from the start, and for the most
critical kinds of systems, implement an
approach backed by mathematical rigor.

One technique is to use an appropriate
programming language that permits
specifying relevant security-oriented
properties (“contracts”), and then
demonstrate statically that these
properties are satisfied by applying
automated tools as the system is being
designed and implemented.

[…]

Managing Assertion
Execution

From: Yannick Moy
Date: Jun 2013
Subject: Gem #149 : Asserting the truth, but

(possibly) not the whole truth
URL: http://www.adacore.com/adaanswers/

gems/gem-149-asserting-the-truth-but-
possibly-not-the-whole-truth/

[…]

So now the Ada programmer has a rich
set of assertions to state control-relevant
properties (Assert, Pre, Post,
Loop_Invariant, Assume,
Assert_And_Cut) and data-relevant
properties (Static_Predicate,
Dynamic_Predicate, Type_Invariant).

How does one state which assertions get
executed? And how does one differentiate
between different executables, say,
between one created for
debugging/testing, and one created for
production?

[…]

[Yannick Moy explains how you select
which assertions get executed, both with
"pragma Assertion_Policy" and with
GNAT command line arguments.
—sparre]

Ada-Python Demonstration

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Thu, 11 Jul 2013 14:12:24 -0700
Subject: Ada-Python demo
Newsgroups: comp.lang.ada

Some time ago I have posted an article
presenting the principles of writing Ada
loadable modules that can be used as
extensions for Python scripts.

This time I have gathered some basics for
the opposite case, which is writing the
Ada program that embeds the Python
interpreter and loads external Python
scripts:

http://www.inspirel.com/articles/
Ada_Python_Demo.html

Having covered both directions of the
inter-language integration, the article also

contains the complete two-part working
demo that shows all this magic working.

Attiny4313 and I2C Master
Using USI

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: July 13 2013
Subject: Attiny4313 and I2C master using

USI
URL: http://arduino.ada-language.com/

attiny4313-and-i2c-master-using-
usi.html

Getting I2C working with attiny
processors has been yet another long-time
project of me. It has been stuck mostly
because I haven't had time to create
attiny4313 board with I2C chip on it.

But finally, I managed to create one:

[…]

The Attiny_TWI.Master package still
needs some finishing touches (like fixing
some delays), but once I am happy with it,
I will commit it into AVR-Ada repository.

Ada for the C++ or Java
Developer

From: Quentin Ochem, AdaCore
Date: July 23 2013
Subject: Ada for the C++ or Java

Developer
URL: http://www.adacore.com/knowledge/

technical-papers/ada-for-the-c-or-java-
developer/

This document will present the Ada
language using terminology and examples
that are familiar to developers that
understand the C++ or Java languages.

[67 pages PDF document presenting Ada.
—sparre]

SPARK 2014: Why I am
Backing a Predictable
Winner

From: Stuart Matthews, Altran
Date: Sun Aug 4 2013
Subject: SPARK 2014: Why I am backing a

predictable winner
URL: http://www.embedded.com/

electronics-blogs/other/4419245/
SPARK--Why-I-am-backing-a-
predictable-winner

In a recent posting, Embedded.com
technical editor Bernard Cole compared
the C programming language to a prize-
winning race horse: temperamental,
stubborn, and unpredictable

These are not the qualities that you would
choose for a programming language you
intend to deploy for a high-integrity
embedded system, where safety or
security are key requirements. In this
context, we want languages that offer
predictability and an efficient and
effective means of automated verification.

Ada Inside 145

Ada User Journal Volume 34, Number 3, September 2013

[…]

Embedded.com

From: KK6GM
<mjsilva@scriptoriumdesigns.com>

Date: Mon, 5 Aug 2013 19:32:56 -0700
Subject: Embedded.com goes gaga over Ada
Newsgroups: comp.lang.ada

Almost a dozen articles on Ada and/or
SPARK. Must be a record!

http://e.ubmelectronics.com/audience/
UBMTechNewsletters/08-05-13-EMB-
Tech-Focus.html

Now, where is that ARM Cortex GNAT
release…release…release… (yes, that's
the sound of a broken record).

Updated Ada 2012 Rationale
Available

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri Aug 16 2013
Subject: Updated Ada 2012 Rationale

available
URL: http://www.adaic.org/2013/08/

updated-ada-2012-rationale-available/

An updated edition of the Ada 2012
Rationale is available at:

http://www.ada-auth.org/standards/
rationale12.html

This edition of the Rationale combines the
first eight chapters of the Rationale into a
single document, fixes a number of errors,
adds an index, and adds discussion of
various details of Ada 2012 that were
changed since the original publication of
these chapters in the Ada User Journal.
We expect that additional chapters will be
added to this edition roughly every three
months.

The Rationale for Ada 2012 provides an
overview of new Ada 2012 features,
examples of their use, compatibility with
Ada 95 and 2005, and more. It was
written by John Barnes, and was
sponsored in part by the Ada Resource
Association. This is an unofficial
description of the language; refer to the
Ada 2012 standard for detailed language
rules.

Randy Brukardt, ARG Editor

Ada Inside

Scala Musical Software

From: Manuel Op de Coul
<Manuel.op.de.Coul@eon.com>

Date: Wed Dec 12 2012
Subject: Scala Home Page
URL: http://www.huygens-fokker.org/scala/

Scala is a powerful software tool for
experimentation with musical tunings,
such as just intonation scales, equal and

historical temperaments, microtonal and
macrotonal scales, and non-Western
scales. It supports scale creation, editing,
comparison, analysis, storage, tuning of
electronic instruments, and MIDI file
generation and tuning conversion. All this
is integrated into a single application with
a wide variety of mathematical routines
and scale creation methods. Scala is ideal
for the exploration of tunings and
becoming familiar with the concepts
involved. In addition, a very large library
of scales is freely available for Scala and
can be used for analysis or music creation.

[…]

Features

- Reliable. Scala is written in the
programming language Ada.

- Available on multiple platforms:
Windows, GNU Linux, MacOS X (10.4
or higher) and Unix, see the Download
page.

- Free. Please read the distribution section
below.

[…]

Development software

Scala was developed in Ada with the
following excellent free tools:

- Excel Writer

- GNAT: Gnu Ada Translator

- Glade

- GtkAda

- Gtk+

- Zip-Ada

NetWeather

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Sun Apr 21 2013
Subject: NetWeather
URL: https://github.com/pchapin/

netweather

NetWeather is a network accessible
weather station. It was used as a class
project during the Spring 2008 semester
of ELT-2720 and CIS-2720. A team of
students in Williston (under the direction
of Matt Gallagher) developed the weather
station hardware and electronics. A team
of students in Randolph (under my
direction) developed the server software.
This repository contains the result of
those efforts.

It is my hope that NetWeather will
continue to grow and develop. Many
useful and interesting extensions can be
imagined. The project is, in general, a
good example of the nature of electrical
and computer engineering technology as
taught at Vermont Technical College. The
existing system could serve as a good
starting point for future projects or even
have a role as a marketing and
recruitment tool.

GNAT Pro and PolyORB to
be used for the ISS Core
Ground System

From: AdaCore Press Center
Date: Tue Jun 11 2013
Subject: Astrium Selects AdaCore's GNAT

Pro and PolyORB for International
Space Station

URL: http://www.adacore.com/press/
astrium-polyorb/

Ada-based software development
environment and middleware ensure high
reliability of essential communications
technologies for ISS' Core Ground
System.

BERLIN, PARIS, and NEW YORK, June
11, 2013 - Ada-Europe 2013 Conference -
AdaCore announced today that Astrium, a
wholly owned subsidiary of EADS, has
selected AdaCore's GNAT Pro
development environment and PolyORB
middleware toolset for use in the Core
Ground System (CGS) - CGS forms the
basis to operate the Columbus laboratory,
the European contribution to the
International Space Station (ISS). The
CGS insures efficient communication
across a network of User Support and
Operation Centres distributed throughout
Europe. GNAT Pro and PolyORB are
being used to facilitate efficient, reliable
communication across the Ada
applications that Astrium developed for
Columbus ground and onboard
applications. PolyORB also supplies
Astrium's developers with the
interoperability necessary for CGS,
allowing for equally seamless integration
of software systems written in Java or
C++.

The CGS was first built as a test and
checkout system, in Ada, to test and
qualify the Columbus laboratory on the
ground, and it continues to be used as a
monitoring and control system for the
Columbus laboratory and the European
payloads integrated in Columbus at the
Columbus Control Centre in
Oberpfaffenhofen and various payload
operation centers spread across Europe.
More specifically, the CGS is an
integrated software toolset that is used as
the common software in all operational
European ground facilities. It links
together the processes and phases of
development, integration, test and
operations, eliminating incompatibilities
in the work flow.

To carry out the Ada development of
CGS, Astrium selected the GNAT Pro
development environment. This product
includes tools that take advantage of
Ada's properties to perform additional
static and dynamic analysis, reaching
even higher levels of reliability. For the
middleware implementation of the CGS,
Astrium selected the PolyORB toolset.
PolyORB provides distribution services

146 Ada in Context

Volume 34, Number 3, September 2013 Ada User Journal

through standard programming interfaces
and communication protocols. It
addresses distribution model
interoperability issues by allowing a
single middleware instance to efficiently
support multiple personalities executing
simultaneously. Its modular architecture,
emphasizing code reuse, allows the
definition and deployment of middleware
configurations that are specially adapted
for real-time, high integrity applications.

“Heterogeneity in modern systems is an
increasing reality, driving strong
requirements in terms of interoperability,”
explains Quentin Ochem, Technical
Account Manager at AdaCore. “PolyORB
provides an integrated solution, allowing
the interconnection of components
developed using the Ada programming
language with software developed by
other providers on different technologies,
guaranteeing the longevity of the
development investments.”

“The usage of CORBA allows us to use
our well-proven Ada applications in a
complex operation scenario in connection
with other ground products. With
PolyORB, we now get all major Ada
development tools and components from
one source. The competent support of the
AdaCore team and the high quality of the
AdaCore products helped us in selecting
the PolyORB middleware,” states Stephan
Marz, software engineer at Astrium.

By selecting AdaCore's products, Astrium
has found a valuable `one-shop' solution
for both the Ada development and the
middleware implementation of the CGS.
The expert advice and unmatched product
support that AdaCore offers can take into
account the needs of Astrium's Ada
developers, and also answers the
challenges Astrium faces creating robust
software that functions efficiently across
the many different systems created by the
international community at work on the
ISS.

Authoritative DNS Server

From: Barry Fagin and Martin Carlisle
Date: Wed Jun 12 10:45:00 2013
Subject: Provably Secure DNS: A Case

Study in Reliable Software
URL: http://ironsides.martincarlisle.com/

IRONSIDES is an authoritative DNS
server that is provably invulnerable to
many of the problems that plague other
servers. It achieves this property through
the use of formal methods in its design, in
particular the language Ada and the
SPARK formal methods tool set. Code
validated in this way is provably
exception-free, contains no data flow
errors, and terminates only in the ways
that its programmers explicitly say that it
can. These are very desirable properties
from a computer security perspective.

IRONSIDES is not a complete
implementation of DNS. In particular, it

does not support zone transfers or
recursive queries. It does, however,
support a sufficient number of DNS
records to be useful as an authoritative
DNS server for an enterprise.

[...]

Wasabee

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sun Aug 11 2013
Subject: Gautier's blog: Wasabee's first

steps…
URL: http://gautiersblog.blogspot.dk/

2013/08/wasabees-first-steps.html

Wasabee's first steps…

http://sf.net/projects/wasabee

[Wasabee is intended to become a Web
browser with a focus on user safety.
—sparre]

Elliot 900 Emulator

From: Erik Baigar <erik@baigar.de>
Date: Wed, 14 Aug 2013 19:55:15 +0200
Subject: Re: Low-level programming in

Ada?
Newsgroups: comp.lang.ada

> […]

Hey very nice that someone mentions the
Elliott machines here. The awareness of
this architecture is near to zero.

2003 I got hands on a small mil spec
computer which I reverse engineered and
reanimated. Only years later I learned,
that it is an embedded 102 (essentially 12
bit variant of the 900 series machines
which have been the successor of the
803).

I also ported an emulator for the 920
which was written by two good old hands
in Ada many years ago to more modern
platforms - if interested you may have a
look to my page regarding the project:

http://www.programmer-electronic-
control.de

Ada in Context

Dummy “out” Parameters

From: Adam Beneschan
<adam@irvine.com>

Date: Wed, 29 May 2013 19:01:50 -0700
Subject: Re: GNAT 2013 is out!

Newsgroups: comp.lang.ada

[…]

I've always wanted some kind of feature
in Ada that would allow a caller to
provide a “dummy” for OUT parameters,
without having to declare a new variable.
The compiler would allocate a temporary
object (and a separate one for each use of
a “dummy”) and then discard it after the
call. It wouldn't work well when

parameter types are unconstrained array
or discriminant records, though.

[…]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 30 May 2013 14:53:43 -0500
Subject: Re: GNAT 2013 is out!
Newsgroups: comp.lang.ada

> […]

Hmm, that seems like a good idea to me.
But what would the syntax be? <>
maybe?

My_Proc (Obj1, Obj2, Result => <>);

Someone should seriously propose
something on this line on Ada-Comment.
I can see objections about making it too
easy to ignore errors -- but errors
shouldn't be returned in parameters in the
first place, so I don't find that terribly
compelling.

Anyway, this problem was a significant
annoyance in the design of Claw. We
have routines that return rarely used
values that would normally just be
discarded. That's especially an issue for
call-back routines, where we have to
provide all of the parameters that you
could possibly use, even if you have no
need for half of them. (And the typical
solutions using overloading and/or default
parameters is impractical.)

I tried to work out a solution based on
default parameters for all modes (which
would provide your dummy result along
with other uses), but it didn't work out
very well. The main problem was that the
default objects usually had to be globals,
and that could cause an unsafe use of
shared variables in a tasking environment.

The <> solution doesn't suffer from this,
and it also would make the dummy--ness
of the parameter visible to the reader,
which would reduce two of the major
objections. (The latter means that style
checkers could prevent the use of such
dummies if it was considered a problem --
and it would make the fact that they're
dummies much more visible than a
regular declaration does.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 31 May 2013 17:07:37 -0500
Subject: Re: GNAT 2013 is out!
Newsgroups: comp.lang.ada

> […] won't work if the type of Result is
unconstrained, […]

That's not an issue, that's a feature. I
would not expect this to work, because
the “dummy” needs bounds/discriminants.
<> means “default initialized”, and if that
is illegal, it should be illegal here, too.

[…]

Ada in Context 147

Ada User Journal Volume 34, Number 3, September 2013

Proper Flags to 'gnatmake'

From: Peter Brooks
<peter.h.m.brooks@gmail.com>

Date: Mon, 17 Jun 2013 03:57:26 -0700
Subject: Range check for type 'Integer'

Newsgroups: comp.lang.ada

[…]

procedure Compute_Loop is

 procedure Double(Item : in out Integer) is
 begin
 Item := Item * 2;
 end Double;

 X : Integer := 1;
begin
 loop
 Put ("This is ");
 Put (X);
 New_Line;
 Double (X);
 end loop;
end Compute_Loop;

Output:

[…]

This is 268435456
This is 536870912
This is 1073741824
This is -2147483648
This is 0

… [forever]

So the 'Integer' has rolled over to negative
and then rolled back to 0 - but with no
run-time error.

Why is there no range check error on type
Integer?

From: Simon Wright
<simon@pushface.org>

Date: Mon, 17 Jun 2013 12:54:02 +0100
Subject: Re: Range check for type 'Integer'
Newsgroups: comp.lang.ada

[…], compile with -gnato to enable
integer overflow detection.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon, 17 Jun 2013 15:23:11 +0200
Subject: Bug in 'gnatmake' (Was: Range

check for type 'Integer')
Newsgroups: comp.lang.ada

> […]

Because there is a major error in the
design of GNAT. You have to give
'gnatmake' a very specific set of command
line flags to turn it into an Ada compiler:

-fstack-check -- Generate stack checking
 code

-gnata -- Enable assertions

-gnatE -- Dynamic elaboration
 checking

-gnato -- Overflow checking

If you use the GNAT Project Manager
(and '*.gpr' files), I suggest that you copy

this file project file and use it in all your
GNAT based Ada projects:

abstract project Ada_2012 is
 for Source_Dirs use ();
 package Compiler is
 for Default_Switches ("Ada")
 use ("-fstack-check", -- Generate stack
 -- checking code (part of Ada)
 "-gnata", -- Enable assertions
 -- (part of Ada)
 "-gnatE", -- Dynamic elaboration
 -- checking (part of Ada)
 "-gnato", -- Overflow checking
 -- (part of Ada)
 -- Project preferences below:
 "-gnatf", -- Full, verbose error
 --messages
 "-gnatwa", -- All optional warnings
 "-gnatVa", -- All validity checks
 "-gnaty3abcdefhiklmnoOprstux",
 -- Style checks
 "-gnatwe", -- Treat warnings as
 -- errors
 "-gnat2012", -- Use Ada 2012
 "-Wall", -- Enable all GCC warnings
 "-O2"); -- Optimise (level 2/3)
 end Compiler;
end Ada_2012;

Here is a simple example of how to use
the file:

with "ada_2012";
project AUJ_Tools is
 for Main use ([…]);
 package Compiler renames
 Ada_2012.Compiler;
end AUJ_Tools;

The more complicated version reads
something like this:

project AUJ_Tools is
 for Main use ([…]);
 package Compiler is
 for Default_Switches ("Ada")
 use Ada_2012.Compiler'
 Default_Switches ("Ada") &
 ("-some-extra-switches");
 end Compiler;
end AUJ_Tools;

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Mon, 17 Jun 2013 12:50:06 -0400
Subject: Re: Bug in 'gnatmake' (Was: Range

check for type 'Integer')
Newsgroups: comp.lang.ada

> -fstack-check
 -- Generate stack checking code

> -gnata -- Enable assertions

> -gnatE
 -- Dynamic elaboration checking

> -gnato -- Overflow checking

You should never use -gnatE, unless you
are dealing with legacy code that that
won't work without it, and you can't
afford to fix the code.

-fstack-check is the default, at least on the
most popular targets.

You usually want -g (debugging info).
And the debugger works better if you turn
off optimizations (-O0).

Elaboration Order Handling

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Tue, 18 Jun 2013 18:21:02 -0700
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

> […]

Elaboration order isn't entirely
implementation defined, is it? There's a
partial order defined by calls made during
elaboration from one package to another.
Within that ordering there may be groups
of packages that may be elaborated in any
order after the packages that must be
elaborated before them and before the
packages they must be elaborated before.
Within those groups, why not use lexical
order of package names?

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 19 Jun 2013 08:38:21 -0400
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

> […]

In standard Ada, there's a partial order
defined by 'with' clauses, parent/child
relationships, and various pragmas.

GNAT takes into account calls made
during elaboration, but standard Ada does
not. And GNAT's rules are necessarily
conservative (see Halting Problem).

> […] Within those > groups, why not use
lexical order of package names?

Good idea. ;-)

It doesn't solve all the problems with
Ada's elaboration model, but it solves the
most expensive one (portability). We'd
still have the problem that the chosen
order can be wrong. And the fact that
programmers have to deal with a bunch of
kludgy pragmas. And the fact that what
should be a compile-time error is a run-
time exception. And the fact that the order
is global, rather than localized to the
children of a single package.

Oh, and the fact that the whole model is
overly restrictive.

For example, it makes perfect sense to
say:

 package Symbols is
 type Symbol is private;
 function Intern(S: String) return
 Symbol;
 Empty_Symbol: constant Symbol :=
 Intern(""); -- Wrong!

But that doesn't work in Ada. […]

148 Ada in Context

Volume 34, Number 3, September 2013 Ada User Journal

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 19 Jun 2013 08:22:30 -0400
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

[…]

Or you could base it on the order in which
'with' clauses happen to appear.

Programmers shouldn't be depending on
lexicographic (or whatever) order, but if
they do so by accident, it's best that their
program still works 10 years later when it
is ported (probably by a different set of
programmers).

> […]

There's no reason the order has to be
“natural”. I'm just saying it should be the
same on all implementations.

[…] with elab order, there is exactly
ZERO benefit to allowing arbitrary
orders. And the disadvantage is huge: I've
seen people wasting boatloads of money
on this!

[…]

From: Adam Beneschan
<adam@irvine.com>

Date: Wed, 19 Jun 2013 08:46:10 -0700
Subject: Re: Elaboration order handling
(Was: Bug in 'gnatmake')

Newsgroups: comp.lang.ada

[…]

> Or you could base it on the order in
which 'with' clauses happen to appear.

No, I don't think that would work. Say
there are two packages, Pack1 and Pack2,
that get included in the program, and there
is no rule (in the current language) that
specifies which one gets elaborated first.
Adding a rule based on the “with” clause
order would work if Pack1 and Pack2 are
both with'ed by the same package, Pack3,
and are not with'ed anywhere else. But
other than that one narrow case, I don't
see how you could write a rule to base
elaboration order on “with” clause order.

From: Georg Bauhaus
<bauhaus@maps.arcor.de>

Date: Wed, 19 Jun 2013 22:47:29 +0200
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

[…]

Having had to live with products of
programmers favoring symbolic
cleverness, I naturally think of what
happens when some project depend on
lexicographical order and then someone
wishes to give packages different names.
ARGH!

From: Adam Beneschan
<adam@irvine.com>

Date: Wed, 19 Jun 2013 14:36:42 -0700
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

> […]

Yeah, I thought about that. It would seem
strange to have a program that had been
tested suddenly quit working when a
programmer decides to change the name
of a package, and makes no other change.
That would certainly be a frustrating
occurrence.

On the other hand, the current situation
isn't any better. If you have two packages
whose elaboration order isn't defined by
the language, the compiler could elaborate
them in one order, and then in a future
build, could choose the reverse order for
whatever reason it chooses. Depending on
the compiler, changing the name of a
package could cause that to happen, if
(say) that causes an old package name to
be removed from the middle of some
internal list and then inserted at the end of
the list with the new name, which could
cause a difference in how the compiler
determines the elaboration order.

The more I think about it, the more I think
the answer is that the elaboration of
library package P should just be
prohibited from calling subprograms in
another package Q, or accessing variables
declared in Q's specification, unless there
is an Elaborate(_All) pragma, or unless
there's some other reason Q must be
elaborated before P (e.g. P's
specification says “with Q”), or Q is
Pure, or perhaps some other things.
Writing the rules to make sure this
happens wouldn't be easy. It probably
means that P's elaboration code also can't
call a subprogram in P unless that
subprogram is also declared as
“promising not to call anything outside
this package”. There would have to be
restrictions on dispatching calls and calls
through access-to-subprograms. I'm not
sure this would be a feasible solution. But
to me, having the language defined so that
“if the elaboration order is undefined,
we'll put restrictions on things so that the
order can't possibly matter” seems better,
theoretically, than coming up with some
unnatural order just so that we can say
“something is defined”. That's just my gut
feeling. Since I doubt anyone is really
going to think about adding this to Ada,
all this is hypothetical until Bob decides
to finally define and implement his hobby
language. :-)

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 19 Jun 2013 20:57:35 -0400
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

> […]

Of course programmers shouldn't do that
(depend on lexicographical order). But as
I said before, that's already possible with
GNAT -- it uses lexicographical order. I
doubt if anyone depends on that on
purpose, but it's easy to do so by accident.

And with standard Ada, it's even worse:
the order can change for any reason, or
for no reason. The implementation is
allowed to roll dice to determine the
order! Even running the exact same
program without recompiling could
change order!

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Wed, 19 Jun 2013 18:09:24 -0700
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

Since we're discussing elaboration order,
there's a case that I wonder about:

with B;
package A is

 function F (I : Integer) return B.Thing;
 function R return Integer;

end A;

package body A is

 function F (I : Integer) return B.Thing is
 begin
 return B.To_Thing (I);
 end F;

 function R return Integer is
 begin
 return 7;
 end R;

end A;

package B is
 type Thing is private;

 function To_Thing (I : Integer) return
 Thing;
private
 type Thing is new Integer;

end B;

with A;
package body B is
 function To_Thing (I : Integer) return
 Thing is
 begin
 return Thing (I);
 end To_Thing;

 C : constant Integer := A.R;
end B;

It seems to me there's a valid elaboration
order for these:

* spec of B

* spec of A

* body of A

* body of B

I've never been able to get such code to
bind, though. Is there some way to get this
accepted, or is it illegal Ada?

Ada in Context 149

Ada User Journal Volume 34, Number 3, September 2013

From: Adam Beneschan
<adam@irvine.com>

Date: Wed, 19 Jun 2013 19:29:48 -0700
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

> […]

It's legal Ada (and should run without
raising Program_Error). It looks like
http://docs.adacore.com/gnat-unw-
docs/html/gnat_ugn_36.html, especially
C.10, discusses this sort of situation, but I
don't know if you looked there already.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Wed, 19 Jun 2013 23:08:46 -0700
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

> […]

No, I hadn't. Thanks for pointing it out. I'd
always tried to fix this using “pragma
Elaborate[_All]” in the context clauses,
which always failed. I hadn't considered
the effect of putting “pragma
Elaborate_Body” in the spec of A. With
that, I can get it to build.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Thu, 20 Jun 2013 11:11:11 -0400
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

> […]

A case of mutually-recursive packages.
That's unusual, because it's usually better
to design software in layers, where higher
layers use the lower layers, but not vice-
versa.

But sometimes such mutually-dependent
packages are exactly the right thing.

> […]

In standard Ada, the above is perfectly
legal, and does not raise Program_Error.

> It seems to me there's a valid
elaboration order for these:

 * spec of B

 * spec of A

 * body of A

 * body of B

Yes, and that is the only order allowed by
the RM.

> […]

Without -gnatE, GNAT will complain
about an elaboration cycle, because it is
inserting an implicit “pragma
Elaborate_All(A);” on the body of B. It
does that because it's trying to preserve
abstraction -- it wants the code to work no
matter what A.R does (it's not looking at
the body of A.R while compiling body of
B). In fact, A.R could have called A.F, in
which case the program is broken -- the
only allowed order causes Program_Error

in standard Ada, and the whole point of
the not-gnatE mode is to do all such run-
time checks statically. Imagine adding
that call to A.F during maintenance.

And the reason the implicit pragma causes
a cycle is that Elaborate_All is transitive -
- it requires the body of B to be elaborated
before the body of B, which is impossible.

But you've got mutual recursion here, so
A and B are necessarily tightly coupled,
and you, the programmer, can know that
A.R does NOT call anything in B. In that
case, you can solve the problem by
putting “pragma Elaborate(A);” on the
body of B. GNAT uses that Elaborate
instead of the implicit Elaborate_All,
and Elaborate is nontransitive, so it all
works, using the order you showed above.

But be careful: If you later change A.R to
call A.F, you'll be in trouble.

The other way to get this example to work
is to use -gnatE. I don't recommend that.

From: Adam Beneschan
<adam@irvine.com>

Date: Wed, 19 Jun 2013 19:11:14 -0700
Subject: Re: Elaboration order handling
(Was: Bug in 'gnatmake')

Newsgroups: comp.lang.ada

> […] the order can change for any
reason, or for no reason. The
implementation is allowed to roll dice
to determine the order! Even running
the exact same program without
recompiling could change order!

You say that like it's a bad thing.
Actually, I can see a use for a compiler
option to use a random number generator
to determine the elaboration order (or
other things that are implementation-
dependent), because if the program relies
on the order when it shouldn't, a random
order will increase the chance that
repeated testing will expose the problem.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Thu, 20 Jun 2013 10:44:53 -0400
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

> […]

Yes, I agree that would be useful. But
only as an option, and only for testing.

It would be a useful option even if Ada
were designed as I've been saying it
should (such that elaboration order is
deterministic/portable). If the rule was
“lexicographic order”, as I have
suggested, I still don't think programmers
should depend on lexicographic order,
and this option could help prevent that.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 19 Jun 2013 12:41:46 -0400
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

> […] semantics could depend on the
lexicographical order of the identifiers.

Well, the GNAT dialect of Ada does just
that! Is it weird to have it in the Ada RM,
but not so weird to have it in the GNAT
RM?

Yes, it's kind of weird to use that order,
but there's no other order that's any less
weird. What we want is an arbitrary order
that is the same for all compilers.
“Arbitrary” in the sense that we don't care
what the order is, and we don't
deliberately write code that depends on it.

> […]

The with clauses (and parent/child
relationships and so forth) form a directed
graph. You can define an order in which
to walk it however you like, so long as it's
deterministic. You could say, start at the
main procedure spec. Walk all of the
with'ed specs, in the order mentioned.
Walk the corresponding body. (“Walk” is
recursive, of course. And as usual for
graph walks, you keep track of which
nodes have been visited, and if you run
across an already-visited node, do
nothing.)

This visits all the library items in a well-
defined order, and if all compilers were
required to use that algorithm, it would be
a portable order. Then you say that
whenever the current Ada rules allow
multiple orders, you must choose the
order from the above graph-walking
algorithm.

> […]

If Pack1 and Pack2 are with-ed elsewhere
(than Pack3), then either that “elsewhere”
comes before or after Pack3 in the walk
(or some of each). Whichever 'with Pack1'
you run across first in the walk is the one
that determines where Pack1 occurs in the
order.

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Wed, 19 Jun 2013 14:07:59 +0100
Subject: Re: Elaboration order handling

(Was: Bug in 'gnatmake')
Newsgroups: comp.lang.ada

> […]

I did not know about -gnatwl, and had
dozens of Elaborate_All pragmas, which I
now know to have been mostly
unnecessary.

C Bindings and Memory
Management

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 1 Jul 2013 14:32:27 +0200
Subject: Re: Thick bindings to a C library

and gnattest: suggestions?
Newsgroups: comp.lang.ada

> [passing huge arrays to and from C
functions]

150 Ada in Context

Volume 34, Number 3, September 2013 Ada User Journal

The first point is that it is not the
objective of bindings to manage memory.
Of course, there could be bindings which
do that, in which case you would allocate
objects transparently to the caller and
have some garbage collection schema
behind opaque handles to the objects.
This is a possible design but it is not what
you probably wanted. So let us take for
granted that it is the client's responsibility
to allocate objects. In this case the
bindings shall work for any kind of
objects allocated in any possible memory
pool, stack included.

Now, how would you do that? There are
many ways.

1. Prior to Ada 2005, the usual method
was one you find in
Ada.Text_IO.Get_Line. You use a
procedure and a parameter telling how
much elements were written:

 procedure
 Read_Double_Array_From_FITS
 (A : in out Double_Array;
 Last : out Positive);

 Here Last indicates the last element of
A containing data. The implementation
would raise End_Error when there are
more than A'Length elements in A.
Get_Line, for example, returns Last =
A'Last meaning that there is more to
read. The caller uses A (A'First..Last) in
further calls.

 In my libraries I am using a slightly
more universal approach:

 procedure
 Read_Double_Array_From_FITS
 (A : in out Double_Array;
 Pointer : in out Positive);

 Here A (Pointer..A'Last) is where the
result is stored and then Pointer is
advanced to the first element following
the input. So the result is between old
pointer and new pointer - 1.

2. With Ada 2005 you can use return
statement

 procedure
 Read_Double_Array_From_FITS
 return Double_Array is
 begin
 return Result : Double_Array
 (1..Get_Number_Of_Elements) do
 -- Fill Result here
 end return;
 end Read_Double_Array_From_FITS;

 The caller is free to use this function
with the allocator new:

 A : access Double_Array :=
 new Double_Array'
 (Read_Double_Array_From_FITS);

 Theoretically the compiler could
optimize temp object away. (You should
check if GNAT really does this)

Dealing with huge arrays I would prefer
the approach #1.

 I would probably allocate some scratch
buffer and reuse it all over again.

Another approach is using #1 or #2 with
some custom storage pool organized as a
stack or arena in order to minimize
memory management overhead.

In any case, it is not the bindings'
business.

> The fact that Ada arrays can have
arbitrary bounds whom they carry is
one of the things that made me
interested towards Ada at the
beginning. Why did you say this might
be “troublesome”?

Because C arrays have none. When you
want to pass an Ada array to C you must
flatten it. One way is to declare a subtype:

 procedure Bar (A : Double_Array) is
 subtype Flat is A (A'Range);
 B : Flat := …;
 begin
 -- B does not have bounds and can be
 -- passed around as-is

Some pass pointer to the first element.
After all, C's arrays are a fiction.

Some use addresses. E.g. GtkAda
bindings pass System.Address for any C
objects sparing headache of proper types.
Purists would consider this approach
rather being sloppy.

[…]

From: Georg Bauhaus
<bauhaus@maps.arcor.de>

Date: Tue, 02 Jul 2013 10:55:39 +0200
Subject: Re: Thick bindings to a C library

and gnattest: suggestions?
Newsgroups: comp.lang.ada

> […]

Avoid pointers on the Ada side and you
need not worry about the stack. This is
true insofar as Ada language definition
says that Ada arrays will be passed as
pointers to the C world, automatically.
(See Interfacing to C)

Indeed, just do what is natural on both
sides:

You can pass C-array variables (pointers)
on the C side and expect Ada to handle
plain Ada-array variables. No pointers
needed. In fact, they complicate things
due to doubled indirections.

The following seems to work on my
system.

The Ada side “imports” data and exports
its subprograms.

#include <stdlib.h>
#include <stdio.h>
double call_ada (size_t n)
{
 extern void ada_side_takes_vector
 (double*, size_t);

 double *thing = malloc(n * sizeof(double));
 for (int k = 0; k < (int)n; ++k) {
 thing[k] = k;

 }
 ada_side_takes_vector(thing, n);
 return thing[n/2];
}

int main()
{
 extern void adainit(void);
 extern void adafinal(void);
 double result;

#define M ((2<<20)/sizeof(double))

 adainit();
 result = call_ada(500 * M);
 adafinal();
 printf("result is %f\n", result);
 return 0;
}

with Interfaces.C; use Interfaces;

package Bigimport is

 pragma Pure (Bigimport);
 subtype Dbl is C.Double;
 subtype Zint is C.ptrdiff_t range
 0 .. C.ptrdiff_t'Last;
 type Lots_Of_Numbers is array (Zint) of
 Dbl;
 pragma Convention (C,
 Lots_Of_Numbers);
 procedure Takes_Vector (V : in out
 Lots_Of_Numbers;
 N : in C.size_t);
 pragma Export (C, Takes_Vector,
 "ada_side_takes_vector");

end Bigimport;

package body Bigimport is

 procedure Takes_Vector (V : in out
 Lots_Of_Numbers;
 N : in C.size_t) is
 use type Dbl, C.size_t;

 begin
 for K in Zint range 0 .. Zint (N - 1) loop
 V (K) := V (K) / 2.0;
 end loop;
 end Takes_Vector;

end Bigimport;

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Tue, 02 Jul 2013 10:00:29 -0700
Subject: Re: Thick bindings to a C library

and gnattest: suggestions?
Newsgroups: comp.lang.ada

> […]

There is no need for access types in Ada
to do this. See ARM B.3 (70):

“An Ada parameter of an access-to-
subprogram type is passed as a pointer to
a C function whose prototype corresponds
to the designated subprogram's
specification.”

In other words, you can write

Ada in Context 151

Ada User Journal Volume 34, Number 3, September 2013

 type Vector is array (Positive range <>) of
 Natural;

 procedure Read_Vector_From_File
 (A : out Vector) is
 procedure Internal (A : out Vector;
 N : in Interfaces.C.Unsigned);
 pragma Import (C, Internal,
 "read_vector");
 begin
 Internal (A => A,
 N => A'Length);
 end Read_Vector_From_File;

and the compiler takes care of passing a C
pointer to the 1st component of A. No
need for the components of Vector to be
aliased, and no problems with
accessibility checks.

Switching from GtkAda 2 to
GtkAda 3

From: Chris Sparks <mr_ada@cox.net>
Date: Mon, 01 Jul 2013 06:10:58 -0700
Subject: Surprised by the changes to GTK

3.0
Newsgroups: gmane.comp.gnome.gtk+.ada

I have been using GTK 2.x for a while
and going to the 3.0 version really messed
up years of personal software
development. I was wondering if anyone
has a reference to how one converts from
the 2.0 series to the 3.0 series?

From: Nicolas Setton
<setton@adacore.com>

Date: Mon, 1 Jul 2013 15:21:21 +0200
Subject: Re: Surprised by the changes to

GTK 3.0
Newsgroups: gmane.comp.gnome.gtk+.ada

Yes, the GtkAda manual has a chapter
about this, “Transitioning from GtkAda 2
to GtkAda 3”. This contains an overview,
and a package-by-package transition
guide.

You can also refer to the Gtk+
documentation at:

<https://developer.gnome.org/gtk3/3.3/
gtk-migrating-2-to-3.html>

[…]

For having gone through this in GPS, the
most impacting change from the
application developer's perspective was
switching all the low-level drawing from
Gdk to Cairo - the rest is fairly
mechanical.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 1 Jul 2013 15:55:00 +0200
Subject: Re: Surprised by the changes to

GTK 3.0
Newsgroups: gmane.comp.gnome.gtk+.ada

> […]

Well, other nasty stuff is:

1. RC files are gone. CSS is the
replacement which lacks a good deal of
features RC files had. E.g. stock images.

BTW, Gtk promptly crashes on an
attempt to load a non-existent CSS file.

2. “expose-event” is now “draw”. That is
not just already mentioned switching
from GC to cairo. “draw” is propagated
differently than “expose-event” did.

3. “size-request” signal is gone. If your
custom widget needs resizing that has to
be reworked completely. There is new
“configure-event” for that.
Unfortunately it is impossible to catch in
some cases, even with Gtk_Event_Box
added and various event masks set.

4. Gtk_Object is gone. All custom
widgets derived from it must be
redesigned.

5. There is no more messages loop quit
handler. You should move cleanup to
the application window or a widget.

6. Regarding GtkAda.

6.a It made many things tagged, but for
reasons I don't understand it does not
use Ada 2005 interfaces. As the result in
old code you will have to add a lot of
explicit conversions which weren't
needed before. E.g.

 Add_Model (View, To_Interface (Store));

 Since it is Ada 2005 anyway, why
Gtk_Tree_Model cannot be an interface
Gtk_List_Store_Record implements?

6.b. Initialization of widgets, their classes
are slightly different, yet enough
different to break all custom widgets
which register their own classes and
properties.

6.c. Signal handlers must be library level.
Of course, this is not a problem for a
real-life project. But if you are
accustomed writing small single-file unit
tests, you should either split them into
multiple files or else do ugly
Unchecked_Conversions to work around
accessibility checks.

Benefits of Ada on Small
Embedded Systems

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 3 Jul 2013 14:19:02 -0500
Subject: Re: Help with embedded

hardware/software platform selection for
ADA

Newsgroups: comp.lang.ada

[…]

Ada was designed as a programming
language for "programming in the large",
and that means that its strengths don't
really show up on tiny programs (which is
what you can fit on tiny boards). That's a
problem for Ada if you consider the tiny
boards as an entry to working on larger
systems down the road; so I'm not against
efforts to use Ada on those sorts of
systems -- I'm just dubious that they really
can be successful (if they make Ada into
"just another programming language", it's

unclear that anyone will understand why
Ada is so great).

From: Georg Bauhaus
<bauhaus@maps.arcor.de>

Date: 03 Jul 2013 20:50:15 GMT
Subject: Re: Help with embedded

hardware/software platform selection for
ADA

Newsgroups: comp.lang.ada

> […]

This still seems pessimistic, in particular
since Ada 2012.

Ada has a few features that single it out. It
could not become just another
programming language, even when
tasking we dropped and exception
handling limited.

1) The type system uses name
equivalence for every kind of type.

2) If you define a scalar type, you know
it, unlike int, or CARDINAL.

3) Structures are built from types, not
from pointers and preprocessing
definitions.

3) static binding of operations is the
default.

4) Geared to explicit formality, not to
artful exegesis of things implied.

5) change a type and have the compiler
remind you of the other necessary
changes.

When writing low level software in Ada,
you can set the third bit of something by
assigning True to a component of a
packed array. In C, the main contender,
you can pride yourself on having
mastered C's shifting and masking.
(Problem solving provides for
combinatorial exercise already. Why
more?)

McCormick's long term study shows how
this has made a real difference, more than
tasking has.

I think that Ada 2012 adds to that set. It is
a good language for expressing exactly
what you want to happen in the small, and
a good language for describing interfaces
of objects explicitly, in packaged types,
including all scalar types, and bridled
named pointer types.

A reasonably small Ada, therefore, could
not be just like some other language, I
think.

From: Eryndlia Mavourneen
<eryndlia@gmail.com>

Date: Mon, 8 Jul 2013 05:53:24 -0700
Subject: Re: Help with embedded

hardware/software platform selection for
ADA

Newsgroups: comp.lang.ada

> […]

And don't forget the ability to specify the
address of a variable -- Sooo much easier
and clearer than using offsets and address
arithmetic!

152 Ada in Context

Volume 34, Number 3, September 2013 Ada User Journal

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Thu, 04 Jul 2013 01:02:48 +0300
Subject: Re: Help with embedded

hardware/software platform selection for
ADA

Newsgroups: comp.lang.ada

> […]

In addition to the syntax, you are gaining
much of the conceptual and compile-time
support of Ada, which is a vast
improvement over C, IMO.

>> (Ada without exceptions and most
tasking isn't Ada at all, IMHO).

Still much better than C.

>> RRS tried to serve that market back in
the early days and got nowhere.

That was a shame, but I don't think it
proves your point.

> […]

Present-day "tiny boards" or
microcontrollers can have up to a few
megabytes of code; more if off-chip
memory is added. By 1983 standards, that
qualifies as "large".

> […]

I concur with other replies that even an
Ada with limited or no tasking and run-
time support still has much of the
goodness of Ada.

The Future of SPARK (and
Ada)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 10 Jul 2013 18:10:15 -0500
Subject: Re: The future of SPARK . SPARK

2014 : a wreckage
Newsgroups: comp.lang.ada

> […]

I'm always presuming a proper globals
annotation. You really can't do anything
without it (Janus/Ada does almost no
optimizations across subprogram calls
precisely because Ada doesn't have this
information in its contracts).

> Secondly, Ada's "in", "out", and "in
out" information give only a cursory
view of what is going on.

Of course. But that and the postcondition
is all you ought to be depending upon. If
you're depending on more, your program
is more fragile than it ought to be.

… (detailed and possibly interesting
examples of Depends removed)

 …

> Without "Depends", your cool analysis
tool verifying all pre- and
postconditions will not catch this bug.

Sure, but so what? It's a fools game to try
to catch all bugs, it not even a worthwhile
goal. (That's essentially where SPARK
goes wrong, in my view.)

If you had some magic annotations that
could specify a totally bug-free program,
then there no longer is any need for the
program at all. Just execute the
annotations, and forget the error-prone
Ada code!

What I care about is extending what Ada
already does well: catch the low-hanging
fruit of bugs. There are always going to
be a few really tough bugs that aren't
going to be detectable automatically -- the
goal should be to reduce that number in
practical programs (no matter how large),
not to eliminate all bugs in a barely usable
subset of tiny programs.

Think about all of the "bugs" that we Ada
programmers don't really have to deal
with, because the compiler or runtime has
already automatically detected it. That's
not just type errors and array indexes out
of range, but also dereferencing null
pointers, accessing the wrong variant in a
record, and many more. (I don't think
Janus/Ada would have ever worked
reliably without the variant check -- the
early versions always had weird stability
problems that disappeared as soon as we
implemented the variant checks [and
spent months eliminating all of the errors
that turned up]).

What I think is important is bringing that
level of ability to user-defined properties
(think Is_Open and Mode for Text_IO
files), and detecting more of these
problems at compile-time (which is
always better then runtime).

It's not being able to detect every possible
bug.

My main point is that I think people are
trying to solve the wrong problem, and
that leads to having over-elaborate
contracts.

> I agree that no one should depend on
what the body of some Subprogram
does. But then, information flow
analysis is actually useful!

…in very marginal cases. I don't think it's
worth trying to cover every possible base,
certainly not before compilers even do a
plausible job on the easy cases. Once
every Ada compiler does basic proof
using pre/post/globals/exception
contracts, we can revisit.

From: Stefan Lucks <stefan.lucks@uni-
weimar.de>

Date: Thu, 11 Jul 2013 21:23:29 +0200
Subject: Re: The future of SPARK . SPARK

2014 : a wreckage
Newsgroups: comp.lang.ada

> […]

Your program can depend on whatever
has been specified (and hopefully proven)
in the specification. Which is one reason
why "Depends" is actually useful -- you
are allowed to make more specific
contracts.

> […]

By my own experience, having worked
occasionally with SPARK, information
flow analysis actually catches a lot of
errors -- even without having specified
any pre- or postconditions. In other
words, SPARK's information flow
analysis actually gives you the low-
hanging fruits you mention.

The fruits (well, bugs) you catch by
employing pre- and postconditions are a
bit higher, actually. At least, that is what I
gather from my own experience YMMV.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 11 Jul 2013 19:21:16 -0500
Subject: Re: The future of SPARK . SPARK

2014 : a wreckage
Newsgroups: comp.lang.ada

> […]

You want to catch this very unlikely bug,
and add a giant pile of extra junk
annotations for this purpose. My
contention is that it won't catch enough
bugs by itself to be worth the
complication.

> […] information flow analysis actually
catches a lot of errors -- even without
having specified any pre- or
postconditions. […]

Preconditions (and constraints) come first.
You write them before you write any
bodies, before you write any comments
even - they're an integral part of the
specification of a subprogram. So the
situation you speak of isn't even possible.

Moreover, the vast majority of the
information in "Depends" is already in the
Ada subprogram specification (once you
include its pre and postconditions). The
question is how much it adds to already
properly annotated subprograms, not what
happens when the tools are misused.

I don't care at all about "after-the-fact"
addition of these things. Hardly anyone is
going to be adding annotations to existing
packages (it's not clear whether we're ever
going to do that for the language-defined
packages).

> The fruits (well, bugs) you catch by
employing pre- and postconditions are
a bit higher […]

Your experience seems to have been on
annotating existing code, and doing it
backwards ("depends" first). I can see
why you might have annotated existing
code that way, but that's not a goal or
concern of mine. I'm only interested in
new code, and code that's written properly
(that is, the parameter modes tell one the
data flow).

From: Stefan Lucks <stefan.lucks@uni-
weimar.de>

Date: Fri, 12 Jul 2013 11:12:26 +0200
Subject: Re: The future of SPARK . SPARK

2014 : a wreckage
Newsgroups: comp.lang.ada

> […]

Ada in Context 153

Ada User Journal Volume 34, Number 3, September 2013

Firstly, whatever data flow annotations
are, they are not "junk".

Secondly, there is no "giant pile" of data
flow annotations. Actually, they usually
take a lot less lines of "anno-code" than
writing pre- and postconditions. So even
if you consider the data flow annotations
as redundant, their overhead is small.

Thirdly, maybe my example has been too
artificial. Below, I'll briefly describe one
real-world example.

> Your experience seems to have been on
annotating existing code,

Not at all! (Well, I tried once to
SPARKify existing Ada code -- but I got
rid of that disease very very quickly.
Turning naturally-written Ada into proper
SPARK is a pain in the you-know-
where!)

One real life example (simplified for the
purpose of posting this) is the
implementation an authenticated
encryption scheme. Consider two byte
strings X and Y of the same length, X
being the message and being Y the "key
stream". There is additional authentication
key K. The output of the authenticated
encryption is the ciphertext (X xor Y),
followed by a cryptographic checksum[*]
of X under the key K.

Specifying and proving the first part of
the output (X xor Y) was easy. But
specifying and proving the checksum part
turned out to be tough. So I stopped trying
it -- concentrating on the low-hanging
fruits, as you put it.

However, I still had the flow annotations
in my spec. (I use to write the flow
annotations first, then the pre- and
postconditions, and then the
implementation.) The flow annotations
specified the flow from X and K to Z.
And that actually caught my error of
using (X xor Y) instead of X in the
implementation.

> […] And it tries to do too much as well.

Agreed! Well, certainly there are people
who require as much assurance as
SPARK 05 provides, but I did find the
work with old SPARK rather tedious, and
I don't need that amount of assurance.

[*] The correct terminology would be
"message authentication code" or "MAC",
rather than "checksum".

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 12 Jul 2013 15:47:40 -0500
Subject: Re: The future of SPARK . SPARK

2014 : a wreckage
Newsgroups: comp.lang.ada

> […]

I called them "junk" because they're
redundant (certainly in well-designed
code). The OP complained that the
proposed annotations for SPARK 2014,
and I agree with him on that. But I find it
irrelevant because they're redundant.

And I'm strongly opposed to putting
redundant information in specifications or
anywhere else. I've learned by painful
experience over the years that redundant
information -- in type declarations, a
compiler symbol table, or a programming
language standard -- always ends up out
of sync with the original information.
That's especially true if it cannot be
automatically checked (I'm dubious that
"Depends" could be checked that way
given the information available to an Ada
compiler). So, I want to eliminate as
much as possible of that information.

Clearly, we're not getting rid of parameter
modes. Clearly, we need preconditions
and postconditions, they can't be done any
other way. That makes "Depends" the
redundant information that we should not
have in a specification.

Moreover, I really don't see what value
they could possibly have. A subprogram
has a number of "in" parameters and a
number of "out" parameters (and possibly,
but hopefully not some input globals and
output globals, and treating a function
result as a "out" parameter for this
discussion). All of the "in" parameters
should somehow effect the "out"
parameters (and it is best if there is only
one output).

Routines that don't have this structure are
already dubious. It sometimes can't be
avoided, but it should be extremely rare.
So, already, the extra information gained
by this "flow" information is minimal. On
top of that, "out" parameters that don't
depend on some parameters are likely to
be obvious in the postcondition for that
parameter.

The point is that there isn't much
information to be gained from such an
annotation; the vast majority of it is
repeating the obvious (inputs affect
outputs). I realize that there are a lot of
badly designed subprograms out there, but
I wouldn't want a significant language
feature just for badly designed
subprograms -- especially when we still
need lots of support for *well* designed
subprograms!

> […]

The reason I said that if you design new
code, you write the preconditions and
postconditions along with the subprogram
specification (many in the form of
predicates, I would hope, as those are a lot
easier than repeating large pre- and post-).
(And you surely don't write subprograms
where only some of the inputs affect some
of the outputs.) Before you write anything
else (like bodies or even descriptions of
the purpose of the routine). I've never
heard of any experienced Ada
programmer writing subprogram
specifications without considering the
proper subtypes of the parameters
immediately! So I don't see how you
could get just "Depends" annotations.

I grant that you might "beef up" the
preconditions and postconditions later, to
provide a more complete description, but
you're almost always going to start with
some.

> [implementation an authenticated
encryption scheme]

This sounds like precisely the bad sort of
subprogram that typically should be
avoided. Multiple outputs, and a strange
non-dependence of some of the outputs on
some of the inputs. I grant this can be
unavoidable in some cases, but it should
be rare. I don't see any point of an
annotation that only provides extra
information for such rare cases.

Probably a more sensible annotation here
would be the negative: that is, declare
which inputs a particular output does
not depend upon. That normally should
be a null list, in the rare case where it is
non-null the information could be given.

But, as I said, this is not information
useful to an Ada compiler (while the other
annotations will improve code quality).

On Contracts and
Implementations

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 12 Jul 2013 16:30:23 -0500
Subject: Re: On contracts and

implementations
Newsgroups: comp.lang.ada

> […]

I understand your point, but I think it's
short-sighted to think about removing the
contracts. If you do so, then the contracts
can't be used to "hoist" what otherwise
have to be checks in the code (as in
Text_IO, the containers, and many other
packages). Turning off these checks in
language-defined code is a complete non-
starter, the result would not meet the
language specifications (and would
introduce erroneousness where none
currently exists).

Secondly, as compiler's proof abilities
increase, most of these contract assertions
will disappear. The compiler will be able
to prove that they always will succeed,
and thus no check will be made.

After all, this is the case with existing
constraints and exclusions. Compilers
work overtime to eliminate unnecessary
checks, and tend to remove 60-80% of the
checks. It's rare that I see an explicit range
check when I examine generated code
these days. The same should happen to
assertion checks (but only if they are
well-written, using globals annotations
and/or expression functions).

To look further at your example, I agree
that evaluating Is_Sorted could be
prohibitively expensive. But how did that
object *get* sorted? One presumes that it
was explicitly sorted somewhere, in

154 Ada in Context

Volume 34, Number 3, September 2013 Ada User Journal

which case that routine has an Is_Sorted
postcondition. If the compiler can tie
those together, there certainly is no need
to reevaluate the Is_Sorted on a following
precondition. Similarly, the compiler may
have been able to prove that the Is_Sorted
postcondition is always true. In that case,
that won't be executed either. So you still
will have the safety of checks on, and
still have no actual overhead.

Now, obviously, these things won't
always be next to each other; the array
might have been a parameter. But in that
case you can use a predicate to ensure that
that parameter Is_Sorted, pushing the
optimization to another level.

To summarize, I expect these to become
much like range checks. You'll sometimes
have to suppress them, but it will be
pretty rare, and often you can add some
subtypes in appropriate places to remove
the checks rather than actually
suppressing them (the latter being more
dangerous).

Speed Test

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Fri, 12 Jul 2013 02:01:29 +0100
Subject: Slow? Ada??
Newsgroups: comp.lang.ada

[…]

When debugging Whetstone Algol under
my KDF9 emulator I looked at the KDF9
assembly code programming of the arctan
function and was completely baffled by it,
so I asked my former colleague, Michael
Jamieson to investigate. He successfully
reconstructed the mathematics behind it,
which are very non-obvious (to put it
mildly).

A couple of days ago I idly wondered
how well this 50 years old algorithm
would compare with modern
implementations, so I wrote a test
program to race it against GNAT GPL
2013's arctan. I expected to find that 2013
would spank 1963's botty. To my
astonishment, the old algorithm was
faster.

Digging down, I found that
Ada.Numerics.Long_Elementary_Functio
ns.arctan does quite a bit of argument
range reduction and result error checking,
but finally invokes the "fpatan" opcode of
the x86_64 CPU.

The 1963 algorithm, expressed in Ada
2012 but compiled with aggressive
optimization, is only 17% slower than that
single CPU opcode!

Note also that, although it was designed
for a machine with 48-bit floating point, it
gets the same accuracy as the hardware
method on a machine with 64-bit floating
point.

Here is the code, with the observed results
included as commentary:

with
Ada.Numerics.Long_Elementary_Functions;
with Ada.Text_IO;
with CPU_Timing;
with System.Machine_Code;

use
Ada.Numerics.Long_Elementary_Functions;
use Ada.Text_IO;
use CPU_Timing;
use System.Machine_Code;

procedure arctan_test64 is

 -- typical output:
 -- R = 100000000 evaluations
 -- checksum = 5.00000005000000E+07,
 -- loop time per repetition = 6 ns
 -- checksum = 4.38824577044418E+07,
 -- P51V15 time per evaluation = 49 ns
 -- checksum = 4.38824577044418E+07,
 -- arctan time per evaluation = 53 ns
 -- checksum = 4.38824577044418E+07,
 -- fpatan time per evaluation = 41 ns

 -- P51V15 is the KDF9 algorithm used in
 -- Whetstone Algol, ca. 1963
 -- See http://www.findlayw.plus.com/
 -- KDF9/Arctan%20Paper.pdf

 type vector is array (0 .. 5) of Long_Float;

 V : constant vector :=
 (28165298.0 / 1479104550.0,
 28165300.0 / 1479104550.0,
 56327872.0 / 1479104550.0,
 113397760.0 / 1479104550.0,
 179306496.0 / 1479104550.0,
 1073741824.0 / 1479104550.0);

 function P51V15 (x : Long_Float) return
 Long_Float with Inline;

 function P51V15 (x : Long_Float) return
 Long_Float is
 A : Long_Float := 1.0;
 S : Long_Float := V(0);
 B : vector;

 begin
 B(0) := sqrt (x * x + 1.0);
 -- 4 AGM (Arithmetic-Geometric Mean)
 -- cycles give a set of values …
 for i in 0 .. 3 loop
 A := (A + B (i)) * 0.5;
 B (i + 1) := sqrt (A * B (i));
 end loop;
 -- … that is subjected to a convergence
 -- acceleration process:
 for i in 1 .. 5 loop
 S := S + V (i) * B (i - 1);
 end loop;
 return x / S;
 end P51V15;

 -- this is the hardware arctan function of the
 -- x86_64 Core i7 CPU
 function fpatan (X : Long_Float) return
 Long_Float with Inline;

 function fpatan (X : Long_Float) return
 Long_Float is

 Result : Long_Float;

 begin
 Asm (Template => "fld1"
 & Character'Val (10) -- LF
 & Character'Val (9) -- HT
 & "fpatan",
 Outputs => Long_Float'Asm_Output
 ("=t", Result),
 Inputs => Long_Float'Asm_Input
 ("0", X));
 return Result;
 end fpatan;

 R : constant := 1e8;
 -- number of loop repetitions

 function ns_per_rep
 (c : CPU_Usage_in_Microseconds)
 return Natural is

 begin
 return Natural (c * 1e3 / R);
 end ns_per_rep;

 x : Long_Float;
 c : CPU_Timer;
 l : CPU_Usage_in_Microseconds;
 t : CPU_Usage_in_Microseconds;

begin
 Put_Line ("R =" & Integer'Image (R) & "
 evaluations");

 -- determine the fixed overhead time
 x := 0.0;
 Reset_Timer (c);

 for i in 1 .. R loop
 x := x + Long_Float (i) / Long_Float (R);
 end loop;
 l := User_CPU_Time_Since (c);
 Put_Line ("checksum =" & x'Img & ", "
 & "loop time per repetition ="
 & Natural'Image
 (ns_per_rep (l)) & " ns");

 x := 0.0;
 Reset_Timer (c);

 for i in 1 .. R loop
 x := x + P51V15 (Long_Float (i) /
 Long_Float (R));
 end loop;
 t := User_CPU_Time_Since (c) - l;
 Put_Line ("checksum =" & x'Img & ", "
 & "P51V15 time per evaluation ="
 & Natural'Image
 (ns_per_rep (t)) & " ns");

 x := 0.0;
 Reset_Timer (c);

 for i in 1 .. R loop
 x := x + arctan (Long_Float (i) /
 Long_Float (R));
 end loop;
 t := User_CPU_Time_Since (c) - l;
 Put_Line ("checksum =" & x'Img & ", "
 & "arctan time per evaluation ="
 & Natural'Image
 (ns_per_rep (t)) & " ns");

Ada in Context 155

Ada User Journal Volume 34, Number 3, September 2013

 x := 0.0;
 Reset_Timer (c);

 for i in 1 .. R loop
 x := x + fpatan (Long_Float (i) /
 Long_Float (R));
 end loop;
 t := User_CPU_Time_Since (c) - l;
 Put_Line ("checksum =" & x'Img & ", "
 & "fpatan time per evaluation ="
 & Natural'Image
 (ns_per_rep (t)) & " ns");

end arctan_test64;

The difference in time between
Ada.Numerics.Long_Elementary_Functio
ns.arctan and the fpatan function above is
due to the afore-mentioned range
reduction and checking. The KDF9
programmers in 1963 were less
punctilious about such matters than we
rightly expect Ada to be nowadays.

Separate Private Part of
Packages

From: Yannick Duchêne
<yannick_duchene@yahoo.fr>

Date: Thu, 25 Jul 2013 07:41:58 +0200
Subject: Re: GNAT GPL is

proving…educational
Newsgroups: comp.lang.ada

> […]

Would be nice to even go further, with
separate package's private part.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 25 Jul 2013 22:25:35 +0200
Subject: Re: GNAT GPL is

proving…educational
Newsgroups: comp.lang.ada

> […]

This was considered for Ada 2012 -
another of these nice little features that
end up opening truck-loads of worms…

Low-level Programming

From: Paul Rubin
Date: Wed, 07 Aug 2013 21:39:58 -0700
Subject: Low-level programming in Ada?
Newsgroups: comp.lang.ada

I'm wondering if anyone can suggest a
reference (preferably online) about low-
level programming (e.g. for operating
system implementation) in Ada. Not
about the language itself, but examples of
dealing with machine addresses, device
registers, page tables, memory
management, etc., preferably without
dropping to assembler more than a tiny
bit.

This isn't for a specific project or anything
like that. It's just general interest in how
to do this stuff that's traditionally the
domain of C.

From: Michael Erdmann
<michael.erdmann@snafu.de>

Date: 08 Aug 2013 13:47:47 GMT
Subject: Re: Low-level programming in

Ada?
Newsgroups: comp.lang.ada

> […]

Maybe you should have a look at florist:

http://en.wikibooks.org/wiki/
Ada_Programming/Platform/POSIX

http://www.cs.fsu.edu/~baker/florist.html

For the assembler stuff; if you really need
it refer to the GNAT manual and what is
written in the gnuasm manual; e.g.

http://tigcc.ticalc.org/doc/gnuasm.html

From: Eryndlia Mavourneen
<eryndlia@gmail.com>

Date: Thu, 8 Aug 2013 07:59:04 -0700
Subject: Re: Low-level programming in

Ada?
Newsgroups: comp.lang.ada

> […]

with System;

package Addresses is

 Data_Address : constant
 System.Address_Type := 16#22000#;
 Data : Integer;
 for Data'Address use Data_Address;

begin
 Data := 555;

end Addresses;

Of course, for device registers and the
like, you will want to use record
representation clauses to specify the bit
fields, etc.

Using these techniques will allow you to
delve into the dark world of virtual-to-
physical address translation, paging, or
what-have-you. :-)

All of this is sooooo much easier than
messing around with offsets, shifts, and
such in C and its offspring.

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: 8 Aug 2013 21:17:45 GMT
Subject: Re: Low-level programming in

Ada?
Newsgroups: comp.lang.ada

> […]

You might like to have a look at the code
for my KDF9 emulator, which deals with
similar issues around the representation of
hardware structures:

http://www.findlayw.plus.com/KDF9/
emulation/emulator.html#About

Have a look in particular at the kdf9*.ad?
files.

From: Mike Hopkins <postmaster@ada-
augusta.demon.co.uk>

Date: Sat, 10 Aug 2013 12:25:03 +0100

Subject: Re: Low-level programming in
Ada?

Newsgroups: comp.lang.ada

> […]

I have only done it once and it is nearly
30 years since I did it, but I remember
starting by writing a mirror of the
memory map of the target device as an
Ada package. Perhaps my memories are
rose-tinted but, from there, it all seemed
to grow naturally.

From: Luke A. Guest
<laguest@archeia.com>

Date: Tue, 13 Aug 2013 08:14:54 +0000
Subject: Re: Low-level programming in

Ada?
Newsgroups: comp.lang.ada

> […]

Have a look at the Ada bare bones I wrote
on osdev.org wiki.

When Is Formal Verification
Appropriate

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Thu, 15 Aug 2013 15:02:17 +0200
Subject: SPARK vs. Ada 2012 for static

analysis (Was: Ada 2012 talk at
DANSAS'13)

Newsgroups: comp.lang.ada

Paul Rubin wrote:

> Does SPARK-2014 help? I'm not sure if
it exists yet, but I gather GNATProve
(which is out there) is some kind of
precursor to it.

SPARK would of course give
compile/analysis-time checking, but we
don't consider it appropriate for the
project. The cost of implementing sockets
and containers in SPARK alone would
probably kill that idea.

SPARK-2014 wasn't announced when we
started the project, and I don't consider it
ready for real-life use, as tasking isn't
covered yet.

We want as much static analysis as we
can get, but we are at the same time
working in a context where the value of
making an "absolutely perfect"
application isn't that much bigger than
writing a "definitely above average
reliability" application. The whole system
also depends on other parts, which may
fail too. As long as we have a few orders
of magnitude fewer failures than the other
parts, we are quite happy.

As I see things, the important place for
complete static analysis (i.e. SPARK) is
in components which have a unique
possibility of breaking your system. One
obvious example is a PRNG used for
cryptography; if it is broken, your whole
system is broken, and nothing else can
break the system in quite the same way.

156 Ada in Context

Volume 34, Number 3, September 2013 Ada User Journal

From: Shark8
<onewingedshark@gmail.com>

Date: Thu, 15 Aug 2013 07:01:21 -0700
Subject: Re: SPARK vs. Ada 2012 for static

analysis (Was: Ada 2012 talk at
DANSAS'13)

Newsgroups: comp.lang.ada

> […]

I see what you're saying, but I [somewhat]
disagree: the scope you're using is too
small. it's the small "everybody uses it

and assumes it's correct" things that need
SPARK-verification.

Take DNS for example: there's a *lot* of
bugs that have been found in any main
DNS0server over the past decade [or
two]. Everybody using the internet is
interacting with a DNS, even if indirectly.
And so it behooves us to eliminate
everything [bug-wise] that we can --
which is what formal verification does,
and it's what the twp guys who developed

Ironsides did. (
http://ironsides.martincarlisle.com/)

The two papers linked just above the
"Download" heading are quite
informative and say things much better
than I can.

I would love to see a formally-verified
OS, and to be honest MS would have a
much better product to sell if they did so
to their OS instead of worrying about
"looking stylish". (See the Windows 8
disaster).

 157

Ada User Journal Volume 34, Number 3, September 2013

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2013

 October 03 ICPP2013 - International Workshop on Embedded Multicore Systems (EMS'2013), Lyon, France.
Topics include: programming models for embedded multicore systems; software for Multicore, GPU,
and embedded architectures; real-time system designs for embedded multicore environments;
applications for automobile electronics of multicore designs; compiler for worst-case execution time
analysis; formal method for embedded systems; etc.

October 03-04 5th International Workshop on Software Engineering for Resilient Systems (SERENE'2013), Kiev,
Ukraine. Topics include: relations between resilience, dependability and quality attributes; requirements
engineering & re-engineering for resilience; error, fault and exception handling in the software life-
cycle; verification and validation of resilient systems; empirical studies in the domain of resilient
systems; global aspects of resilience engineering: education, training and cooperation; frameworks,
patterns and software architectures for resilience; etc.

October 10-11 7th International Symposium on Empirical Software Engineering and Measurement (ESEM'2013),
Baltimore, Maryland, USA. Topics include: qualitative methods; replication of empirical studies;
empirical studies of software processes and products; industrial experience and case studies; evaluation
and comparison of techniques and models; reports on the benefits / costs associated with using certain
technologies; empirically-based decision making; quality measurement and assurance; software project
experience and knowledge management; etc.

October 14-17 20th Working Conference on Reverse Engineering (WCRE'2013), Koblenz, Germany. Topics
include: program comprehension, reengineering to distributed systems, mining software repositories,
software architecture recovery, empirical studies in reverse engineering, program analysis and slicing,
re-documenting legacy systems, reengineering patterns, program transformation and refactoring, reverse
engineering tool support, etc.

October 20-23 13th International Conference on Formal Methods in Computer-Aided Design (FMCAD'2013),
Portland, Oregon, USA. Co-located with MEMOCODE'2013 and DIFTS'2013. Topics include: theory
and application of formal methods in hardware and system design and verification; modeling and
specification languages, model-based design, correct-by-construction methods, experience with the
application of formal and semi-formal methods to industrial-scale designs, application of formal
methods in new areas, etc.

October 26-28 6th International Conference on Software Language Engineering (SLE'2013), Indianapolis, Indiana,
USA. Topics include: formalisms used in designing and specifying languages and tools that analyze
such language descriptions; language implementation techniques; program and model transformation
tools; language evolution; approaches to elicitation, specification, or verification of requirements for
software languages; language development frameworks, methodologies, techniques, best practices, and
tools for the broader language lifecycle; design challenges in SLE; applications of languages including
innovative domain-specific languages or "little" languages; etc.

 October 26-31 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2013), Indianapolis, Indiana, USA.

158 Conference Calendar

Volume 34, Number 3, September 2013 Ada User Journal

 Oct 26-31 28th Annual Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA'2013). Topics include: any aspect of programming,
systems, languages, and applications; any aspect of software development, including
requirements, modeling, prototyping, design, implementation, generation, analysis,
verification, testing, evaluation, maintenance, reuse, replacement, and retirement of
software systems; large-scale software repositories; tools (such as new languages,
program analyses, or runtime systems) or techniques (such as new methodologies,
design processes, code organization approaches, and management techniques) that go
beyond objects in interesting ways; etc.

Oct 27 - Nov 01 8th International Conference on Software Engineering Advances (ICSEA'2013), Venice, Italy.
Topics include: advances in fundamentals for software development; advanced mechanisms for software
development; advanced design tools for developing software; software security, privacy, safeness;
specialized software advanced applications; open source software; agile software techniques; software
deployment and maintenance; software engineering techniques, metrics, and formalisms; software
economics, adoption, and education; improving productivity in research on software engineering; etc.

Oct 29 - Nov 11 15th International Conference on Formal Engineering Methods (ICFEM'2013), Queenstown, New
Zealand. Topics include: abstraction and refinement; program analysis; software verification; formal
methods for software safety, security, reliability and dependability; tool development, integration and
experiments involving verified systems; formal methods used in certifying products under international
standards; formal model-based development and code generation; etc.

November 04-07 24th IEEE International Symposium on Software Reliability Engineering (ISSRE'2013), Pasadena,
CA, USA.

 Nov 10-14 ACM SIGAda Annual International Conference on High Integrity Language
Technology (HILT'2013), Pittsburgh, Pennsylvania, USA.

November 13-16 15th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS'2013), Osaka, Japan. Topics include: fault-tolerance and dependability, formal methods and
distributed systems, etc.

November 17-22 26th International Conference for High Performance Computing, Networking, Storage and
Analysis (SC'2013), Denver, Colorado, USA. Topics include: applications, programming systems
(technologies that support parallel programming, such as compiler analysis and optimization, parallel
programming languages and notations, programming models, runtime systems, tools, software
engineering for parallel programming, solutions for parallel programming challenges, ...), state of the
practice, etc.

December 02-05 20th Asia-Pacific Software Engineering Conference (APSEC'2013), Bangkok, Thailand. Topics
include: software engineering methodologies; software analysis and understanding; software testing,
verification and validation; software maintenance and evolution; software quality and measurement;
software process and standards; software security, reliability and privacy; software engineering
environments and tools; software engineering education; distributed and parallel software systems;
embedded and real-time software systems; formal methods in software engineering; etc.

December 09-11 11th Asian Symposium on Programming Languages and Systems (APLAS'2013), Melbourne,
Australia. Topics include: foundational and practical issues in programming languages and systems,
such as semantics, design of languages and type systems, domain-specific languages, compilers,
interpreters, abstract machines, program analysis, verification, model-checking, software security,
concurrency and parallelism, tools and environments for programming and implementation, etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

 December 15-18 19th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2013), Seoul,
Korea. Topics include: parallel and distributed applications and algorithms, multi-core and
multithreaded architectures, security and privacy, dependable and trustworthy computing and systems,
real-time systems, cyber-physical systems, embedded systems, etc.

December 18-21 20th IEEE International Conference on High Performance Computing (HiPC'2013), Hyderabad,
India. Topics include: parallel and distributed algorithms / applications, parallel languages and
programming environments, hybrid parallel programming with GPUs, scheduling, resilient/fault-tolerant

Conference Calendar 159

Ada User Journal Volume 34, Number 3, September 2013

 algorithms and systems, scientific/engineering/commercial applications, compiler technologies for
high-performance computing, software support, etc.

2014

January 09-11 15th IEEE International Symposium on High Assurance Systems Engineering (HASE'2014),

Miami, Florida, USA. Topics include: tools and techniques used to design and construct systems that, in
addition to meeting their functional objectives, are safe, secure, and reliable.

January 20-22 9th International Conference on High-Performance and Embedded Architectures and Compilers
(HiPEAC 2014), Vienna, Austria. Topics include: processor, memory, and storage systems architecture;
parallel, multi-core and heterogeneous systems; architectural support for programming productivity;
architectural and run-time support for programming languages; programming models, frameworks and
environments for exploiting parallelism; compiler techniques, etc.

January 20 2nd Workshop on High-performance and Real-time Embedded Systems (HiRES
2014). Topics include: runtimes and operating systems combining high-performance and
predictability requirements; programming models and compiler support for providing
real-time capabilities to multi- and many-core architectures, models and tools for code
generation, system verification and validation, etc.

 January 22-24 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2014),
San Diego, USA. Topics include: all aspects of programming languages and systems, with emphasis on
how principles underpin practice.

Jan 20-21 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM'2014). Topics include: program and model manipulation techniques (such as:
partial evaluation, slicing, symbolic execution, refactoring, ...); program analysis
techniques that are used to drive program/model manipulation (such as: abstract
interpretation, termination checking, type systems, , ...); techniques that treat
programs/models as data objects (including: metaprogramming, generative
programming, embedded domain-specific languages, model-driven program generation
and transformation, ...); etc. Application of the above techniques including case studies
of program manipulation in real-world (industrial, open-source) projects and software
development processes, descriptions of robust tools capable of effectively handling
realistic applications, benchmarking. Deadline for submissions: October 5, 2013
(papers).

February 12-14 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Computing
(PDP'2014), Turin, Italy. Topics include: embedded parallel and distributed systems, multi- and many-
core systems, programming languages and environments, runtime support systems, simulation of
parallel and distributed systems, dependability and survivability, real-time distributed applications, etc.

February 19-21 7th India Software Engineering Conference (ISEC'2014), Chennai, India. Topics include: static
analysis, specification and verification, model-driven software engineering, component-based software
engineering, embedded and real-time systems, software security, software architecture and design,
development paradigms, tools and environments, maintenance and evolution, software engineering
education, multicore software engineering, etc. Deadline for submissions: October 1, 2013 (workshops,
tutorials).

February 26-28 6th International Symposium on Engineering Secure Software and Systems (ESSoS'2014), Munich,
Germany. Topics include: security architecture and design for software and systems; specification
formalisms for security artifacts; verification techniques for security properties; systematic support for
security best practices; programming paradigms, models and DSL's for security; processes for the
development of secure software and systems; support for assurance, certification and accreditation;
security by design; etc.

March 24-28 29th ACM Symposium on Applied Computing (SAC'2014), Gyeongju, Korea.

 Mar 24-28 Track on Programming Languages (PL'2014). Topics include: compiling techniques,
domain-specific languages, formal semantics and syntax, garbage collection, language
design and implementation, languages for modeling, model-driven development, new
programming language ideas and concepts, practical experiences with programming

160 Conference Calendar

Volume 34, Number 3, September 2013 Ada User Journal

languages, program analysis and verification, programming languages from all
paradigms, etc.

 Mar 24-28 Track on Object-Oriented Programming Languages and Systems (OOPS'2014).
Topics include: aspects and components, distribution and concurrency, formal
verification, integration with other paradigms, software evolution, language design and
implementation, modular and generic programming, secure and dependable software,
static analysis, type systems, etc.

Mar 24-28 Track on Software Verification and Testing (SVT'2014). Topics include: new results
in formal verification and testing, technologies to improve the usability of formal
methods in software engineering, applications of mechanical verification to large scale
software, etc.

March 24-28 Design, Automation & Test in Europe (DATE 2014), Dresden, Germany.

March 24-28 Track on Embedded Systems Software (Track E). Topics include: real-time,
networked, and dependable systems, compilation and code generation for embedded
software, model-based design and verification for embedded systems, embedded
software architectures, cyber-physical systems.

Mar 31- Apr 04 7th IEEE International Conference on Software Testing, Verification and Validation (ICST'2014),
Cleveland, Ohio, USA. Topics include: embedded software testing, testing concurrent software, testing
large-scale distributed systems, testing in multi-core environments, security testing, quality assurance,
inspections, testing of open source and third-party software, software reliability, formal verification,
empirical studies of testing techniques, experience reports, etc.

April 05-13 European Joint Conferences on Theory and Practice of Software (ETAPS'2014), Grenoble, France.
Events include: CC, International Conference on Compiler Construction; ESOP, European Symposium
on Programming; FASE, Fundamental Approaches to Software Engineering; FOSSACS, Foundations of
Software Science and Computation Structures; POST, Principles of Security and Trust; TACAS, Tools
and Algorithms for the Construction and Analysis of Systems. Deadline for submissions: October 4,
2013 (abstracts), October 11, 2013 (papers).

April 22-26 13th International Conference on Modularity (Modularity'2013), Lugano, Switzerland. Topics
include: varieties of modularity (generative programming, aspect orientation, software product lines,
components; ...); programming languages (support for modularity related abstraction in: language
design; verification, contracts, and static program analysis; compilation, interpretation, and runtime
support; formal languages; ...); software design and engineering (evolution, empirical studies of existing
software, economics, testing and verification, composition, methodologies, ...); tools (refactoring,
evolution and reverse engineering, support for new language constructs, ...); applications (distributed
and concurrent systems, middleware, cyber-physical systems, ...); complex systems; etc. Deadline for
submissions: October 13, 2013 (round 2).

Apr 29 - May 05 6th NASA Formal Methods Symposium (NFM'2014), NASA Johnson Space Center, Houston, Texas,
USA. Topics include: identifying challenges and providing solutions to achieving assurance in mission-
and safety-critical systems; static analysis; model-based development; applications of formal methods to
aerospace systems; correct-by-design and design for verification techniques; techniques and algorithms
for scaling formal methods, e.g. abstraction and symbolic methods, compositional techniques, parallel
and distributed techniques; application of formal methods to emerging technologies; etc. Deadline for
submissions: November 14, 2013 (abstracts), November 21, 2013 (papers).

May 13-16 10th European Dependable Computing Conference (EDCC'2014), Newcastle upon Tyne, UK. Topics
include: hardware and software architecture of dependable systems, safety critical systems, embedded
and real-time systems, impact of manufacturing technology on dependability, testing and validation
methods, privacy and security of systems and networks, etc. Deadline for submissions: October 13, 2013
(papers).

 June 01-07 36th International Conference on Software Engineering (ICSE'2014), Hyderabad, India.

June 16-20 26th International Conference on Advanced Information Systems Engineering (CAiSE'2014),
Thessaloniki, Greece. Topics include: methods, techniques and tools for IS engineering (models and
software reuse; adaptation, evolution and flexibility issues; languages and models; variability and
configuration; security; ...); innovative platforms, architectures and technologies for IS (model-driven
architecture; component based development; distributed and open architecture; ...); etc. Deadline for

Conference Calendar 161

Ada User Journal Volume 34, Number 3, September 2013

submissions: October 18, 2013 (workshops), November 29, 2013 (papers), December 13, 2013
(tutorials).

 June 23-27 19th International Conference on Reliable Software Technologies - Ada-
Europe'2014, Paris, France. Sponsored by Ada-Europe, in cooperation requested
with ACM SIGAda, SIGBED, SIGPLAN. Deadline for submissions: December 8, 2013
(papers, tutorials, workshops), January 19, 2014 (industrial presentations).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

H
IL

T
 2

01
3:

 H
IG

H
 I

N
T

EG
R

IT
Y

 L
A

N
G

U
A

G
E

T
EC

H
N

O
LO

G
Y

A

C
M

 S
IG

A
d

a’
s

A
n

n
u

al
 I

n
te

rn
at

io
n

al
 C

on
fe

re
n

ce

N
ov

em
be

r
10

 –
14

, 2
01

3
/ P

it
ts

bu
rg

h
, P

en
n

sy
lv

an
ia

 /
A

dv
an

ce
 P

ro
gr

am

H
ig

h
 in

te
gr

it
y

so
ft

w
ar

e
m

u
st

 n
ot

 o
n

ly
 m

ee
t

co
rr

ec
tn

es
s

an
d

 p
er

fo
rm

an
ce

 c
ri

te
ri

a
bu

t
al

so
 s

at
is

fy

st
ri

n
ge

n
t

sa
fe

ty
 a

n
d

/o
r

se
cu

ri
ty

 d
em

an
d

s,
 t

yp
ic

al
ly

 e
n

ta
il

in
g

ce
rt

ifi
ca

ti
on

 a
ga

in
st

 a
 r

el
ev

an
t

st
an

d
ar

d
.

A
 s

ig
n

ifi
ca

n
t

fa
ct

or
 a

ff
ec

ti
n

g
w

h
et

h
er

 a
n

d
 h

ow
 s

u
ch

 r
eq

u
ir

em
en

ts
 a

re
 m

et
 is

 t
h

e
ch

os
en

 la
n

gu
ag

e
te

ch
n

ol
og

y
an

d
 it

s
su

p
p

or
ti

n
g

to
ol

s:
 n

ot
 ju

st
 t

h
e

p
ro

gr
am

m
in

g
la

n
gu

ag
e(

s)
 b

u
t

al
so

 la
n

gu
ag

es
 f

or

ex
p

re
ss

in
g

sp
ec

ifi
ca

ti
on

s,
 p

ro
gr

am
 p

ro
p

er
ti

es
, d

om
ai

n
 m

od
el

s,
 a

n
d

 o
th

er
 a

tt
ri

bu
te

s
of

 t
h

e
so

ft
w

ar
e

or

ov
er

al
l s

ys
te

m
.

H
IL

T
 2

01
3

w
il

l p
ro

vi
d

e
a

fo
ru

m
 f

or
 e

x
p

er
ts

 f
ro

m
 a

ca
d

em
ia

/r
es

ea
rc

h
, i

n
d

u
st

ry
, a

n
d

 g
ov

er
n

m
en

t

to
 p

re
se

n
t

th
ei

r
la

te
st

 fi
n

d
in

gs
 in

 d
es

ig
n

in
g,

 im
p

le
m

en
ti

n
g,

 a
n

d
 u

si
n

g
la

n
gu

ag
e

te
ch

n
ol

og
y

fo
r

h
ig

h

in
te

gr
it

y
so

ft
w

ar
e.

Sp
on

so
re

d
by

 S
IG

A
da

, A
C

M
’s

 S
pe

ci
al

 In
te

re
st

 G
ro

up
 o

n
 t

h
e

A
da

 P
ro

gr
am

m
in

g
La

n
gu

ag
e,

 in
 c

oo
pe

ra
ti

on
 w

it
h

SI

G
A

PP
, S

IG
BE

D
, S

IG
C

A
S,

 S
IG

C
SE

, S
IG

PL
A

N
, S

IG
SO

FT
, A

da
-E

ur
op

e,
 a

nd
 t

h
e

A
da

 R
es

ou
rc

e
A

ss
oc

ia
ti

on
.

FE
A

T
U

R
ED

 S
PE

A
K

ER
S

M
od

el
 C

h
ec

k
in

g:

Pa
st

, P
re

se
n

t,
 a

n
d

 F
u

tu
re

ED
M

U
N

D
 M

. C
LA

R
K

E
C

ar
n

eg
ie

 M
el

lo
n

 U
n

iv
er

si
ty

El

ec
tr

ic
al

 a
n

d
 C

om
p

u
te

r
En

gi
n

ee
ri

n
g

(E
C

E)

Fo
rm

al
 M

et
h

od
s:

A

n
 I

n
d

u
st

ri
al

 P
er

sp
ec

ti
ve

JE
A

N
N

ET
T

E
W

IN
G

M

ic
ro

so
ft

 R
es

ea
rc

h

B
u

il
d

in
g

C
on

fi
d

en
ce

in

 S
ys

te
m

 B
eh

av
io

r
JO

H
N

 G
O

O
D

EN
O

U
G

H

C
ar

n
eg

ie
 M

el
lo

n
 U

n
iv

er
si

ty

S
of

tw
ar

e
En

g
in

ee
ri

n
g

In
st

it
u

te
 (

SE
I)

M
od

el
-B

as
ed

 E
n

gi
n

ee
ri

n
g

M
IC

H
A

EL
 W

H
A

LE
N

U

n
iv

er
si

ty
 o

f
M

in
n

es
ot

a

PL
A

T
IN

U
M

 L
E

V
EL

G
O

LD
 L

E
V

EL

A
ss

oc
ia

ti
on

 fo
r C

om
pu

ti
ng

 M
ac

hi
ne

ry
2

Pe
nn

 P
la

za
, S

ui
te

 7
01

N
ew

 Y
or

k,
 N

Y
10

20
1-

07
01

U
SA

V
is

it
 w

w
w

.s
ig

ad
a.

or
g/

co
n

f/
h

ilt
20

13

C
om

e
to

 H
IL

T
 2

01
3

an
d

di
sc

ov
er

 th
e

la
te

st

de
ve

lo
pm

en
ts

 in
 la

n
gu

ag
e

te
ch

n
ol

og
y

fo
r

sa

fe
, s

ec
u

re
, a

n
d

re
lia

bl
e

so
ft

w
ar

e.

Li
st

en
 to

 a
n

d
m

ee
t w

or
ld

-r
en

ow
n

ed
 e

xp
er

ts
 in

 th
e

fie
ld

, s
ee

 h
ow

 in
du

st
ry

 is

co
n

ve
rt

in
g

re
se

ar
ch

 in
to

 p
ra

ct
ic

al
 e

xp
er

ie
n

ce
, a

n
d

le
ar

n
 b

ot
h

 th
e

ch
al

le
n

ge
s

co
n

fr
on

ti
n

g
h

ig
h

-i
n

te
gr

it
y

so
ft

w
ar

e
an

d
th

e
so

lu
ti

on
s

av
ai

la
bl

e
to

 a
dd

re
ss

 th
em

.

R
EG

IS
T

ER
 O

N
LI

N
E

B
Y

 O
C

T
O

B
ER

 2
1

FO
R

 T
H

E
LO

W
ES

T
 R

EG
IS

T
R

A
T

IO
N

 R
A

T
ES

A
C

M
’s

 H
ig

h
 I

n
te

gr
it

y
La

n
gu

ag
e

Te
ch

n
ol

og
y

C
on

fe
re

n
ce

H

IL
T

 2
01

3
A

dv
an

ce
 P

ro
gr

am

Pi
tt

sb
u

rg
h

, P
en

n
sy

lv
an

ia
, U

S
A

 /
 N

ov
em

be
r

10
 –

14
, 2

01
3

w
w

w
.s

ig
ad

a.
or

g/
co

n
f/

h
il

t2
01

3
Sp

on
so

re
d

by
 A

C
M

 S
IG

A
da

S
IL

V
ER

 L
E

V
EL

B
A

S
IC

 L
E

V
EL

Th
e

S
of

tw
ar

e
Ve

rif
ic

at
io

n
C

om
pa

ny
Th

e
S

of
tw

ar
e

Ve
rif

ic
at

io
n

C
om

pa
ny

C
O

R
PO

R
A

T
E

S
PO

N
S

O
R

S

T
EC

H
N

IC
A

L
PR

O
G

R
A

M
 /

 N
ov

em
be

r
12

 –
 1

4
T

U
ES

D
A

Y

9
:0

0
A

M
–1

0
:3

0
A

M
G

re
et

in
gs

SI
G

A
d

a
a

n
d

 C
on

fe
re

n
ce

 O
ffi

ce
rs

K
ey

n
ot

e
A

d
d

re
ss

Ed
m

u
n

d
 C

la
rk

e,
 C

M
U

/E
C

E
M

od
el

 C
h

ec
ki

n
g:

 P
as

t,
 P

re
se

nt
, a

n
d

Fu
tu

re

10
:3

0
A

M
–1

1:
00

 A
M

 B
re

ak
 /

 E
x

h
ib

it
s

11
:0

0
A

M
–1

2
:3

0
PM

Pa
n

el
 o

n
 U

n
d

er
ly

in
g

Fo
rm

al

V
er

ifi
ca

ti
on

 T
ec

h
n

ol
gi

es
To

pi
cs

 t
o

be
 c

ov
er

ed
: M

od
el

 C
h

ec
k

in
g,

S

A
T

 S
ol

ve
rs

 a
n

d
 S

M
T

 S
ol

ve
rs

, S
ta

ti
c

A
n

a
ly

si
s

a
n

d
 A

b
st

ra
ct

 I
n

te
rp

re
ta

ti
on

,
C

oq
-B

as
ed

 P
ro

of
s

Sp
on

so
r

Pr
es

en
ta

ti
on

12
:3

0
PM

–2
:0

0
PM

 B
re

ak
 /

 E
x

h
ib

it
s

2
:0

0
PM

–3
:3

0
PM

Fo
rm

al
 V

er
ifi

ca
ti

on
 T

oo
ls

et
s

J.
H

en
d

ri
x

SA
W

: T
h

e
So

ft
w

ar
e

A
n

al
ys

is
 W

or
kb

en
ch

A
. H

aw
th

or
n

O
pt

im
iz

in
g

D
ev

el
op

m
en

t
an

d

V
er

ifi
ca

ti
on

 E
ff

or
t

w
it

h
 S

PA
R

K
 2

01
4

Z
. Z

h
a

n
g

To
w

ar
ds

 t
h

e
Fo

rm
al

iz
at

io
n

 o
f

SP

A
R

K
 2

01
4

Se
m

an
ti

cs
 w

it
h

Ex

pl
ic

it
 R

un
-t

im
e

C
h

ec
ks

 U
si

n
g

C
oq

3:
30

 P
M

–4
:0

0
PM

 B
re

ak
 /

 E
x

h
ib

it
s

4
:0

0
PM

–5
:3

0
PM

H
ig

h
-I

n
te

gr
it

y
Pa

ra
ll

el
 P

ro
gr

am
m

in
g

Pa
n

el
 o

n
 S

af
e,

 E
ffi

ci
en

t

Pa
ra

ll
el

 P
ro

gr
am

m
in

g
To

pi
cs

 t
o

be
 c

ov
er

ed
: R

ea
l-

T
im

e
Pr

og
ra

m
m

in
g

on
 A

cc
el

er
at

or

M
a

n
y-

C
or

e
Pr

oc
es

so
rs

, B
ri

n
gi

n
g

Pa

ra
ll

el
 P

ro
gr

a
m

m
in

g
to

 t
h

e

SP
A

R
K

 V
er

ifi
ab

le
 S

u
b

se
t

of
 A

d
a,

D

ea
d

lo
ck

 D
et

ec
ti

on
 f

or
 A

d
a

20
12

Sp
on

so
r

Pr
es

en
ta

ti
on

5:
30

 P
M

–6
:0

0
PM

 B
re

ak

6
:0

0
PM

–1
0

:0
0

PM
S

oc
ia

l
E

ve
n

t
/

D
in

n
er

W
ED

N
ES

D
A

Y

9
:0

0
A

M
–1

0
:3

0
A

M
A

n
n

ou
n

ce
m

en
ts

S
IG

A
d

a
A

w
ar

d
s

R
ic

k
y

E
. S

w
a

rd
, P

as
t

SI
G

A
d

a
C

h
a

ir

In
vi

te
d

 T
al

k
M

ic
h

ae
l W

h
al

en
, U

n
iv

er
si

ty
 o

f
M

in
n

es
ot

a
M

od
el

-B
as

ed
 E

n
gi

n
ee

ri
n

g

10
:3

0
A

M
–1

1:
00

 A
M

 B
re

ak
 /

 E
x

h
ib

it
s

11
:0

0
A

M
–1

2
:3

0
PM

M

od
el

-B
as

ed
 I

n
te

gr
at

io
n

an

d
 C

od
e

G
en

er
at

io
n

D
. W

a
rd

A
n

 A
pp

ro
ac

h
 t

o
In

te
gr

at
io

n
 o

f
C

om
pl

ex

Sy
st

em
s:

 T
h

e
SA

V
I

V
ir

tu
al

 I
nt

eg
ra

ti
on

Pr

oc
es

s
(i

n
du

st
ri

al
 p

re
se

nt
at

io
n

)

M
. B

ee
b

y
U

si
n

g
A

ut
oc

od
e

G
en

er
at

or
s

fo
r

A

vi
on

ic
s

Sy
st

em
s

an
d

M
ai

nt
ai

ni
n

g
C

om
pl

ia
n

ce
 t

o
D

O
-1

78
 a

n
d

D
O

-3
31

(i

n
du

st
ri

al
 p

re
se

nt
at

io
n

)

In
du

st
ri

al
 P

re
se

nt
at

io
n

12
:3

0
PM

–2
:0

0
PM

 B
re

ak
 /

 E
x

h
ib

it
s

2
:0

0
PM

–3
:3

0
PM

K
ey

n
ot

e
A

d
d

re
ss

Jo
h

n
 G

o
od

en
ou

gh
, C

M
U

/S
E

I
Bu

ild
in

g
C

on
fid

en
ce

 in
 S

ys
te

m
 B

eh
av

io
r

3:
30

 P
M

–4
:0

0
PM

 B
re

ak

4
:0

0
PM

–5
:3

0
PM

A

rc
h

it
ec

tu
re

-L
ev

el
 D

es
ig

n
 L

an
gu

ag
es

an

d
 C

om
p

os
it

io
n

al
 V

er
ifi

ca
ti

on

A
. M

u
ru

ge
sa

n
C

om
po

si
ti

on
al

 V
er

ifi
ca

ti
on

of

 a
 M

ed
ic

al
 D

ev
ic

e
Sy

st
em

B
. L

a
rs

on
Il

lu
st

ra
ti

n
g

th
e

A
A

D
L

Er
ro

r

M
od

el
in

g
A

nn
ex

 (
v.

 2
)

U
si

n
g

a

Si
m

pl
e

Sa
fe

ty
-C

ri
ti

ca
l M

ed
ic

al
 D

ev
ic

e

Sp
on

so
r

Pr
es

en
ta

ti
on

5:
30

 P
M

–7
:0

0
PM

 B
re

ak

7:
0

0
PM

–1
0

:0
0

PM
W

or
ks

h
op

s
/

Bi
rd

s-
of

-a
-F

ea
th

er
 S

es
si

on
s

T
H

U
R

S
D

A
Y

9
:0

0
A

M
–1

0
:3

0
A

M
A

n
n

ou
n

ce
m

en
ts

B
es

t
Pa

p
er

 a
n

d
 S

tu
d

en
t

Pa
p

er
 A

w
ar

d
s

Tu
ck

er
 T

af
t,

 H
IL

T
 2

01
3

Pr
og

ra
m

 C
h

a
ir

K
ey

n
ot

e
A

d
d

re
ss

Je
a

n
n

et
te

 W
in

g,
 M

ic
ro

so
ft

 R
es

ea
rc

h
Fo

rm
al

 M
et

h
od

s:
 A

n
 I

n
du

st
ri

al
 P

er
sp

ec
ti

ve

10
:3

0
A

M
–1

1:
00

 A
M

 B
re

ak

11
:0

0
A

M
–1

2
:0

0
PM

Pa
n

el
 o

n
 A

p
p

ro
ac

h
es

 t
o

S

of
tw

ar
e

Sa
fe

ty
 a

n
d

 S
ec

u
ri

ty
To

pi
cs

 t
o

be
 c

ov
er

ed
: S

ec
u

re
 C

od
in

g,

St
at

ic
 A

n
a

ly
si

s,
 F

or
m

a
l

V
er

ifi
ca

ti
on

,
A

u
to

m
at

ic
 v

s.
 I

n
te

ra
ct

iv
e

Pr
og

ra
m

V

er
ifi

ca
ti

on

12
:0

0
PM

–1
2

:3
0

PM
A

n
n

ou
n

ce
m

en
ts

(A

d
a-

Eu
ro

p
e

20
14

, S
IG

A
d

a
20

14
)

C
lo

si
n

g
R

em
ar

k
s

an
d

C

on
fe

re
n

ce
 A

d
jo

u
rn

m
en

t

C
O

N
FE

R
EN

C
E

T
EA

M
C

on
fe

re
n

ce
 C

h
ai

r
/

Lo
ca

l
A

rr
an

ge
m

en
ts

 C
h

ai
r

Je
ff

 B
ol

en
g,

 S
of

tw
ar

e
En

gi
n

ee
ri

n
g

In
st

it
u

te
 /

 JL
Bo

le
ng

@
SE

I.C
M

U
.e

du

P
ro

gr
am

 C
h

ai
r

/
P

ro
ce

ed
in

gs
 C

h
ai

r
Tu

ck
er

 T
af

t,
 A

d
aC

or
e

/
ta

ft
@

ad
ac

or
e.

co
m

T
re

as
u

re
r

R
ic

k
y

E
. S

w
a

rd
, T

h
e

M
IT

R
E

C
or

p
or

at
io

n
 /

 r
sw

ar
d@

m
it

re
.o

rg

W
or

k
sh

op
s

C
h

ai
r

/
T

u
to

ri
al

s
C

h
ai

r
Jo

h
n

 W
. M

cC
or

m
ic

k,
 U

n
iv

er
si

ty
 o

f
N

or
th

er
n

 I
ow

a
/

m

cc
or

m
ic

k@
cs

.u
ni

.e
du

W
eb

m
as

te
r

C
ly

d
e

R
ob

y,
 I

n
st

it
u

te
 f

or
 D

ef
en

se
 A

n
a

ly
se

s
/

cl
yd

er
ob

y@
ac

m
.o

rg

Ex
h

ib
it

s
an

d
 S

p
on

so
rs

h
ip

s
C

h
ai

r
G

re
g

G
ic

ca
, V

er
oc

el
 /

 g
ic

ca
@

ve
ro

ce
l.c

om

R
eg

is
tr

at
io

n
 C

h
ai

r
/

A
ca

d
em

ic
 C

om
m

u
n

it
y

Li
ai

so
n

M
ic

h
ae

l
B

. F
el

d
m

a
n

, G
eo

rg
e

W
as

h
in

gt
on

 U
n

iv
er

si
ty

 (
R

et
.)

/
m

fe
ld

m
an

@
gw

u.
ed

u

P
u

bl
ic

it
y

C
h

ai
r

A
lo

k
Sr

iv
as

ta
va

, T
A

SC
 I

n
c.

 /
 a

lo
k.

sr
iv

as
ta

va
@

ta
sc

.c
om

Lo
go

 D
es

ig
n

er
W

es
to

n
 P

a
n

, R
ay

th
eo

n
 S

p
ac

e
a

n
d

 A
ir

b
or

n
e

Sy
st

em
s

S
IG

A
d

a
O

ffi
ce

rs

C
h

ai
r

D
av

id
 C

oo
k,

 S
te

p
h

en
 F

. A
u

st
in

 S
ta

te
 U

n
iv

er
si

ty
 /

 c
oo

kd
a@

sf
as

u.
ed

u

V
ic

e
C

h
ai

r
Tu

ck
er

 T
af

t,
 A

d
aC

or
e

/
ta

ft
@

ad
ac

or
e.

co
m

S
ec

re
ta

ry
 /

 T
re

as
u

re
r

C
ly

d
e

R
ob

y,
 I

n
st

it
u

te
 f

or
 D

ef
en

se
 A

n
a

ly
se

s
/

cl
yd

er
ob

y@
ac

m
.o

rg

In
te

rn
at

io
n

al
 R

ep
re

se
n

ta
ti

ve
D

ir
k

C
ra

ey
n

es
t,

 K
 U

 L
eu

ve
n

, D
ep

ar
tm

en
t

of
 C

om
p

u
te

r
Sc

ie
n

ce
 /

di
rk

.c
ra

ey
ne

st
@

cs
.k

ul
eu

ve
n.

be

Pa
st

 C
h

ai
r

R
ic

k
y

E
. S

w
a

rd
, T

h
e

M
IT

R
E

C
or

p
or

at
io

n
 /

 r
sw

ar
d@

m
it

re
.o

rg

A
C

M
 A

d
a

Le
tt

er
s

Ed
it

or
A

lo
k

Sr
iv

as
ta

va
, T

A
SC

 I
n

c.
 /

 a
lo

k.
sr

iv
as

ta
va

@
ta

sc
.c

om

T
o

re
gi

st
er

 o
n

li
n

e,
 a

n
d

 f
or

 m
or

e
in

fo
rm

at
io

n
 a

n
d

 u
p

d
at

es
, v

is
it

w

w
w

.s
ig

ad
a.

or
g

/c
on

f/
h

il
t2

01
3

PR
E-

C
O

N
FE

R
EN

C
E

T
U

T
O

R
IA

LS
 /

 N
ov

em
be

r
10

 –
11

S
U

N
D

A
Y

S
A

1—
M

or
n

in
g

/
9

:0
0

A
M

–1
2:

30
 P

M
Ed

 C
ol

b
er

t
/

A
b

so
lu

te
 S

of
tw

a
re

A
da

 2
01

2
Pa

rt
 1

S
A

2—
M

or
n

in
g

/
9

:0
0

A
M

–1
2:

30
 P

M
Tu

ck
er

 T
af

t
/

A
d

aC
or

e
Pr

ov
in

g
Sa

fe
ty

 o
f

Pa
ra

lle
l/

M
ul

ti
-T

hr
ea

de
d

Pr
og

ra
m

s

SP
1—

A
ft

er
n

o
on

 /
 2

:0
0

PM
–5

:3
0

PM
Ed

 C
ol

b
er

t
/

A
b

so
lu

te
 S

of
tw

a
re

A
da

 2
01

2
Pa

rt
 2

SP
2—

A
ft

er
n

o
on

 /
 2

:0
0

PM
–5

:3
0

PM
Et

h
a

n
 K

. J
ac

k
so

n
 /

 M
ic

ro
so

ft
 R

es
ea

rc
h

Fo
rm

ul
a

2.
0

: A
 L

an
gu

ag
e

fo
r

Fo
rm

al
 S

pe
ci

fic
at

io
n

s;

A
 T

oo
l f

or
 A

ut
om

at
ed

 A
n

al
ys

is

M
O

N
D

A
Y

M
A

1—
M

or
n

in
g

/
9

:0
0

A
M

–1
2:

30
 P

M
N

ik
ol

aj
 B

jo
rn

er
 /

 M
ic

ro
so

ft
 R

es
ea

rc
h

Sa
ti

sfi
ab

ili
ty

 M
od

ul
o

T
h

eo
ri

es
 f

or
 H

ig
h

 I
nt

eg
ri

ty
 D

ev
el

op
m

en
t

M
A

2—
M

or
n

in
g

/
9

:0
0

A
M

–1
2:

30
 P

M
Fr

a
n

ce
sc

o
Lo

go
zz

o
/

M
ic

ro
so

ft
 R

es
ea

rc
h

Pr
ac

ti
ca

l S
pe

ci
fic

at
io

n
 a

n
d

V
er

ifi
ca

ti
on

 w
it

h
 C

od
eC

on
tr

ac
ts

M
P1

 —
A

ft
er

n
o

on
 /

 2
:0

0
PM

–5
:3

0
PM

Sa
ga

r
C

h
a

k
i /

 S
E

I
B

ou
n

de
d

M
od

el
 C

h
ec

ki
n

g
fo

r
H

ig
h-

In
te

gr
it

y
So

ft
w

ar
e

M
P2

—
A

ft
er

n
o

on
 /

 2
:0

0
PM

–5
:3

0
PM

R
ic

k
y

Sw
a

rd
 /

 M
it

re
 C

or
p

or
at

io
n

Je
ff

 B
ol

en
g

/
SE

I
Se

rv
ic

e-
O

ri
en

te
d

A
rc

hi
te

ct
ur

e
(S

O
A

)
C

on
ce

pt
s

an
d

Im
pl

em
en

ts

V
EN

U
E

/
H

O
T

EL
H

IL
T

 2
01

3
w

il
l b

e
h

el
d

 a
t

th
e

W
y

n
d

h
am

 P
it

ts
bu

rg
h

 U
n

iv
er

si
ty

 C
en

te
r,

 w
w

w
.t

in
yu

rl
.c

om
/H

IL
T

20
13

-h
ot

el
.

T
h

e
W

y
n

d
h

am
 P

it
ts

bu
rg

h
 U

n
iv

er
si

ty
 C

en
te

r
h

as
 r

es
er

ve
d

 a
 b

lo
ck

 o
f

ro
om

s
fo

r
th

e
H

IL
T

 2
01

3
co

n
fe

re
n

ce
. T

h
e

co
n

fe
re

n
ce

 r
at

e
is

 $
11

9
fo

r
si

n
gl

e,
 d

ou
bl

e,
 t

ri
p

le
, o

r
q

u
ad

ru
p

le
 o

cc
u

p
an

cy
 r

o
om

s.
 T

h
is

 in
cl

u
d

es
 c

om
p

li
m

en
ta

ry

w
ir

el
es

s
In

te
rn

et
 in

 a
ll

 t
h

e
gu

es
t

ro
om

s
an

d
 f

re
e

p
ar

k
in

g
fo

r
gu

es
ts

. S
ta

te
 a

n
d

 lo
ca

l t
ax

es
 w

il
l b

e
ad

d
ed

 p
er

 n
ig

h
t.

A

ll
 r

es
er

va
ti

on
s

m
u

st
 b

e
gu

ar
an

te
ed

 b
y

cr
ed

it
 c

ar
d

. P
le

as
e

al
so

 v
is

it
 w

w
w

.s
ig

ad
a.

or
g/

co
nf

/h
ilt

20
13

/h
ot

el
-r

at
es

.h
tm

l a
n

d

w
w

w
.a

cm
.o

rg
/s

ig
_v

ol
un

te
er

_i
nf

o/
w

hy
ho

te
l.h

tm
 f

or
 a

d
d

it
io

n
al

 d
et

ai
ls

. F
or

 d
ir

ec
ti

on
s

fr
om

 P
it

ts
bu

rg
h

 I
n

te
rn

at
io

n
al

 A
ir

p
or

t
(P

IT
) a

s
w

el
l a

s
in

fo
rm

at
io

n
 a

bo
u

t
tr

an
sp

or
ta

ti
on

 t
o

an
d

 f
ro

m
 t

h
e

ai
rp

or
t

v
ia

 S
u

p
er

 S
h

u
tt

le
, T

ax
i S

er
v

ic
es

, a
n

d
 B

u
s

Se
rv

ic
e,

 p
le

as
e

v
is

it
 w

w
w

.p
it

ai
rp

or
t.

co
m

, o
r

w
w

w
.p

it
ai

rp
or

t.
co

m
/p

ub
lic

_t
ra

ns
po

rt
at

io
n

fo
r

p
u

bl
ic

 t
ra

n
sp

or
t

op
ti

on
s.

S
PO

N
S

O
R

S
 /

 E
X

H
IB

IT
O

R
S

H
IL

T
 2

01
3

w
il

l i
n

cl
u

d
e

ve
n

d
or

 p
ar

ti
ci

p
at

io
n

, f
ea

tu
ri

n
g

p
re

se
n

ta
ti

on
s

on
 t

h
ei

r
p

ro
d

u
ct

s
an

d
 s

er
v

ic
es

 d
u

ri
n

g
m

ai
n

se

ss
io

n
s.

 F
or

 s
p

ec
ifi

c
in

fo
rm

at
io

n
, p

le
as

e
co

n
ta

ct
 t

h
e

Ex
h

ib
it

s
C

h
ai

r,
 G

re
g

G
ic

ca
, g

ic
ca

@
ve

ro
ce

l.c
om

.

G
R

A
N

T
S

 T
O

 E
D

U
C

A
T

O
R

S
A

s
in

 p
as

t
ye

ar
s,

 S
IG

A
d

a
is

 o
ff

er
in

g
gr

an
ts

 t
o

ed
u

ca
to

rs
 t

o
at

te
n

d
 t

h
e

co
n

fe
re

n
ce

. G
ra

n
ts

 c
ov

er
 t

h
e

re
g

is
tr

at
io

n

an
d

 t
u

to
ri

al
 f

ee
s;

 m
em

b
er

s
of

 t
h

e
G

N
A

T
 A

ca
d

em
ic

 P
ro

g
ra

m
 m

ay
 b

e
el

ig
ib

le
 f

or
 t

ra
ve

l f
u

n
d

s
fr

om
 A

d
aC

or
e.

 A
p

p
ly

b

y
e-

m
ai

l,
n

o
la

te
r

th
an

 O
ct

ob
er

 1
4,

 2
01

3.
 G

ra
n

t
p

ro
g

ra
m

 d
et

ai
ls

 a
re

 a
va

il
ab

le
 f

ro
m

 t
h

e
co

n
fe

re
n

ce
 w

eb
si

te
 o

r
Pr

of
es

so
r

M
ic

h
ae

l B
. F

el
d

m
an

, m
fe

ld
m

an
@

gw
u.

ed
u

.

W
O

R
K

S
H

O
PS

 /
 B

IR
D

S
-O

F-
A

-F
EA

T
H

ER
T

o
p

ro
p

o
se

 a
 f

o
cu

se
d

 w
or

k
sh

op
 o

r
in

fo
rm

al
 B

ir
d

s-
of

-a
-F

ea
th

er
 s

es
si

on
 r

el
at

ed
 t

o
th

e
co

n
fe

re
n

ce
 t

h
em

e,
 p

le
as

e
co

n
ta

ct
 t

h
e

W
or

k
sh

op
s

C
h

ai
r,

 Jo
h

n
 W

. M
cC

or
m

ic
k

, m
cc

or
m

ic
k@

cs
.u

ni
.e

du
.

R
EG

IS
T

R
A

T
IO

N
 F

EE
S

C
O

N
FE

R
EN

C
E

(F
U

LL
)

M
em

b
er

 o
f

A
C

M
, S

IG
A

d
a,

 o
r

co
op

er
at

in
g

or
ga

n
iz

at
io

n
:

$
57

5
ea

rl
y

/
$7

25
 a

ft
er

 O
ct

. 2
1

N
on

-m
em

b
er

s:
$

87
5

ea
rl

y
/

$
97

5
af

te
r

O
ct

. 2
1

Fu
ll

-t
im

e
St

u
d

en
t:

 $
50

C
O

N
FE

R
EN

C
E

(O
N

E
D

A
Y

)
M

em
b

er
 o

f
A

C
M

, S
IG

A
d

a,
 o

r
co

op
er

at
in

g
or

ga
n

iz
at

io
n

:
$

32
5

ea
rl

y
/

$
32

5
af

te
r

O
ct

. 2
1

N
on

-m
em

b
er

s:
$

32
5

ea
rl

y
/

$
32

5
af

te
r

O
ct

. 2
1

Fu
ll

-t
im

e
St

u
d

en
t:

 $
25

T
U

T
O

R
IA

L
(F

U
LL

 D
A

Y
)

M
em

b
er

 o
f

A
C

M
, S

IG
A

d
a,

 o
r

co
op

er
at

in
g

or
ga

n
iz

at
io

n
:

$
31

0
ea

rl
y

/
$

37
0

af
te

r
O

ct
. 2

1
N

on
-m

em
b

er
s:

$
42

0
ea

rl
y

/
$

47
0

af
te

r
O

ct
. 2

1
Fu

ll
-t

im
e

St
u

d
en

t:
 $

30

T
U

T
O

R
IA

L
(H

A
LF

 D
A

Y
)

M
em

b
er

 o
f

A
C

M
, S

IG
A

d
a,

 o
r

co
op

er
at

in
g

or
ga

n
iz

at
io

n
:

$
15

5
ea

rl
y

/
$1

85
 a

ft
er

 O
ct

. 2
1

N
on

-m
em

b
er

s:
$

21
0

ea
rl

y
/

$
23

5
af

te
r

O
ct

. 2
1

Fu
ll

-t
im

e
St

u
d

en
t:

 $
15

Fo
r

ea
rl

y
re

gi
st

ra
ti

on
 r

at
es

, r
eg

is
te

r
on

lin
e

by
 O

ct
ob

er
 2

1
at

 h
tt

p
:/

/s
ig

ad
a.

or
g

/c
on

f/
h

il
t2

01
3/

re
gi

st
er

/i
n

d
ex

.h
tm

l

Ph
ot

o
of

 P
it

ts
bu

rg
h

by
 U

se
r:

D
er

ek
.c

as
hm

an
 c

ou
rt

es
y

of
 W

ik
im

ed
ia

 C
om

m
on

s

164 Forthcoming Events

Volume 34, Number 3, September 2013 Ada User Journal

Call for Papers

19th International Conference on
Reliable Software Technologies –

Ada‐Europe 2014
23‐27 June 2014, Paris, France

http://www.ada‐europe.org/conference2014

General Chair

Jean‐Pierre Rosen
Adalog
rosen@adalog.fr

Program co‐Chairs

Laurent George
LIGM/UPEMLV ‐ ECE Paris
lgeorge@ieee.org

Tullio Vardanega
University of Padova
tullio.vardanega@unipd.it

Industrial Chair

Jørgen Bundgaard
Rambøll Denmark A/S
jogb@ramboll.dk

Tutorial co‐Chairs

Liliana Cucu
INRIA
Liliana.Cucu@inria.fr

Albert Llemosí
Universitat de les Illes Balears
albert.llemosi@uib.cat

Exhibition Chair

To be appointed

Publicity co‐Chairs

Jamie Ayre
AdaCore
ayre@adacore.com

Dirk Craeynest
Ada‐Belgium & KU Leuven
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Magali Munos
ECE
munos@ece.fr

In cooperation requested with
ACM SIGAda, SIGBED, SIGPLAN

General Information

The 19th International Conference on Reliable Software Technologies – Ada‐Europe 2014 will take
place in Paris, France. As per its traditional style, the conference will span a full week, including,
from Tuesday to Thursday, three days of parallel scientific, technical and industrial programs,
along with tutorials and workshops on Monday and Friday.

Schedule

Topics

The conference has over the years become a leading international forum for providers,
practitioners and researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and maintenance of
long‐lived, high‐quality software systems for a challenging variety of application domains. The
program will allow ample time for keynotes, Q&A sessions and discussions, and social events.
Participants include practitioners and researchers representing industry, academia and
government organizations active in the promotion and development of reliable software
technologies.

Topics of interest to this edition of the conference include but are not limited to:

 Multicore and Manycore Programming: Predictable Programming Approaches for Multicore
and Manycore Systems, Parallel Programming Models, Scheduling Analysis Techniques.

 Real‐Time and Embedded Systems: Real‐Time Scheduling, Design Methods and Techniques,
Architecture Modelling, HW/SW Co‐Design, Reliability and Performance Analysis.

 Theory and Practice of High‐Integrity Systems: Challenges from Mixed‐Criticality Systems;
Medium to Large‐Scale Distribution, Fault Tolerance, Security, Reliability, Trust and Safety,
Languages Vulnerabilities.

 Software Architectures: Design Patterns, Frameworks, Architecture‐Centred Development,
Component‐based Design and Development.

 Methods and Techniques for Software Development and Maintenance: Requirements
Engineering, Model‐driven Architecture and Engineering, Formal Methods, Re‐engineering
and Reverse Engineering, Reuse, Software Management Issues.

 Enabling Technologies: Compilers, Support Tools (Analysis, Code/Document Generation,
Profiling), Run‐time Systems and Libraries.

 Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

 Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health
Care, Transportation, Cloud Environments, Smart Energy systems, Serious Games, etc.

 Experience Reports in Reliable System Development: Case Studies and Comparative
Assessments, Management Approaches, Qualitative and Quantitative Metrics.

 Experiences with Ada and its Future: Reviews of the Ada 2012 new language features;
implementation and use issues; positioning in the market and in the software engineering
curriculum; lessons learned on Ada Education and Training Activities with bearing on any of
the conference topics.

8 December 2013 Submission of regular papers, tutorial and workshop proposals
19 January 2014 Submission of industrial presentation proposals
16 February 2014 Notification of acceptance to all authors
16 March 2014 Camera‐ready version of regular papers required
18 May 2014 Industrial presentations, tutorial and workshop material required

Forthcoming events 165

Ada User Journal Volume 34, Number 3, September 2013

Program Committee
Mario Aldea, Universidad de

Cantabria, Spain
Ted Baker, US National Science

Foundation, USA
Johann Blieberger, Technische

Universität Wien, Austria
Bernd Burgstaller, Yonsei

University, Korea
Maryline Chetto, University of

Nantes, France
Liliana Cucu, INRIA, France
Christian Fraboul, ENSEEIHT,

France
Laurent George, ECE Paris, France
Xavier Grave, CNRS, France
Emmanuel Grolleau, ENSMA,

France
Jérôme Hugues, ISAE, France
Albert Llemosí, Universitat de les

Illes Balears, Spain
Kristina Lundqvist, Mälardalen

University, Sweden
Franco Mazzanti, ISTI-CNR, Italy
John McCormick, University of

Northern Iowa, USA
Stephen Michell, Maurya Software,

Canada
Laurent Pautet, Telecom ParisTech,

France
Luís Miguel Pinho, CISTER/ISEP,

Portugal
Erhard Plödereder, Universität

Stuttgart, Germany
Juan A. de la Puente, Universidad

Politécnica de Madrid, Spain
Jorge Real, Universitat Politècnica

de València, Spain
José Ruiz, AdaCore, France
Sergio Sáez, Universidad Politècnica

de Valencia, Spain
Amund Skavhaug, NTNU, Norway
Yves Sorel, INRIA, France
Tucker Taft, AdaCore, USA
Theodor Tempelmeier, University of

Applied Sciences, Germany
Elena Troubitsyna, Åbo Akademi

University, Finland
Tullio Vardanega, University of

Padova, Italy
Juan Zamorano, Universidad

Politécnica de Madrid, Spain

Industrial Committee
Jacob Sparre Andersen, JSA

Consulting, Denmark
Roger Brandt, Telia, Sweden
Ian Broster, Rapita Systems, UK
Jørgen Bundgaard, Rambøll, DK
Dirk Craeynest, Ada-Belgium &

KU Leuven, Belgium
Peter Dencker, ETAS, Germany
Ismael Lafoz, Airbus, Spain
Maria del Carmen Lomba

Sorrondegui, GMV, Spain
Ahlan Marriott, White Elephant, CH
Robin Messer, Altran-Praxis, UK
Quentin Ochem, AdaCore, France
Steen Palm, Terma, Denmark
Paolo Panaroni, Intecs, Italy
Paul Parkinson, Wind River, UK
Ana Rodriguez, Silver-Atena, Spain
Jean-Pierre Rosen, Adalog, France
Alok Srivastava, TASC, USA
Claus Stellwag, Elektrobit, Germany
Jean-Loup Terraillon, European

Space Agency, Netherlands
Rod White, MBDA, UK

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to submit
original contributions. Paper submissions shall exceed 14 LNCS‐style pages in length. Authors shall
submit their work via EasyChair following the relevant link on the conference web site. The
format for submission is solely PDF.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS)
series by Springer, and will be available at the start of the conference. The authors of accepted
regular papers shall prepare camera‐ready submissions in full conformance with the LNCS style,
not exceeding 14 pages and strictly by March 16, 2014. For format and style guidelines authors
should refer to http://www.springer.de/comp/lncs/authors.html. Failure to comply and to
register for the conference by that date will prevent the paper from appearing in the proceedings.

The CORE ranking (dated 2008) has the conference in class A. The CiteSeerX Venue Impact Factor
had it in the top quarter. Microsoft Academic Search has it in the top third for conferences on
programming languages by number of citations in the last 10 years. The conference is listed in
DBLP, SCOPUS and Web of Science Conference Proceedings Citation index, among others.

Awards

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference seeks industrial presentations which deliver value and insight but may not fit the
selection process for regular papers. Authors are invited to submit a presentation outline of
exactly 1 page in length by January 19, 2014. Submissions shall be made via EasyChair following
the relevant link on the conference web site. The Industrial Committee will review the
submissions and make the selection. The authors of selected presentations shall prepare a final
short abstract and submit it by May 18, 2014, aiming at a 20‐minute talk. The authors of accepted
presentations will be invited to submit corresponding articles for publication in the Ada User
Journal, which will host the proceedings of the Industrial Program of the Conference. For any
further information please contact the Industrial Chair directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be
proposed as either half‐ or full‐day events. Proposals should include a title, an abstract, a
description of the topic, a detailed outline of the presentation, a description of the presenter's
lecturing expertise in general and with the proposed topic in particular, the proposed duration
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced),
the recommended audience experience and background, and a statement of the reasons for
attending. Proposals should be submitted by e‐mail to the Tutorial Chair. The authors of accepted
full‐day tutorials will receive a complimentary conference registration as well as a fee for every
paying participant in excess of 5; for half‐day tutorials, these benefits will be accordingly halved.
The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half‐ or full‐day events, to be scheduled at either end of the conference week.
Workshop proposals should be submitted to the General Chair. The workshop organizer shall also
commit to preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and
providers of software products and services should contact a Conference Co‐Chair for information
and for allowing suitable planning of the exhibition space and time.

Grant for Reduced Student Fees

A limited number of sponsored grants for reduced fees is expected to be available for students
who would like to attend the conference or tutorials. Contact the General Chair for details.

 167

Ada User Journal Volume 34, Number 3, September 2013

Rationale for Ada 2012: Epilogue
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract

This is the last of a number of papers describing the
rationale for Ada 2012. In due course it is anticipated
that the papers will be combined (after appropriate
reformatting and editing) into a single volume for
formal publication.

This last paper summarizes a small number of general
issues of importance to the user such as compatibility
between Ada 2012 and Ada 2005. It also briefly
revisits a number of problems that were considered
for Ada 2005 but rejected for various reasons; the
important ones have been solved in Ada 2012.

Finally, it discusses a small number of corrections
that have been found necessary since the standard
was approved.

Keywords: rationale, Ada 2012.

1 Compatibility

There are two main sorts of problems regarding
compatibility. These are termed Incompatibilities and
Inconsistencies.

An incompatibility is a situation where a legal Ada 2005
program is illegal in Ada 2012. These can be annoying but
not a disaster since the compiler automatically detects such
situations.

An inconsistency is where a legal Ada 2005 program is also
a legal Ada 2012 program but might have a different effect
at execution time. These can in principle be really nasty but
typically the program is actually wrong anyway (in the
sense that it does not do what the programmer intended) or
its behaviour depends upon the raising of a predefined
exception (which is generally considered poor style) or the
situation is extremely unlikely to occur.

As mentioned below in Section 2, during the development
of Ada 2012 a number of corrections were made to Ada
2005 and these resulted in some incompatibilities and
inconsistencies with the original Ada 2005 standard. These
are not considered to be incompatibilities or inconsistencies
between Ada 2005 and Ada 2012 and so are not covered in
this section.

1.1 Incompatibilities with Ada 2005
Each incompatibility listed below gives the AI concerned
and the paragraph in the ARM which in some cases will
give more information. Where relevant, the section in this
rationale where the topic is discussed is also given. Where
appropriate the incompatibilities are grouped together.

Note that this list only covers those incompatibilities that
might reasonably occur. There are a number of others
which are so unlikely that they do not seem worth
mentioning.

1 – The word some is now reserved. Programs using it as
an identifier will need to be changed. (AI-176, 2.9)

Adding new reserved words is a very visible
incompatibility. Six were added in Ada 95, three in Ada
2005, and now just one in Ada 2012. Perhaps this is the end
of the matter. The word some is used in quantified
expressions; it already was reserved in SPARK [1] where it
is used in quantified expressions in proof contexts.

2 – If a predefined package has additional entities then
incompatibilities can arise. Thus suppose the predefined
package Ada.Stuff has an additional entity More added to it.
Then if an Ada 2005 program has a package P containing
an entity More then a program with a use clause for both
Ada.Stuff and P will become illegal in Ada 2012 because
the reference to More will become ambiguous. This also
applies if further overloadings of an existing entity are
added.

This can be overcome by adding child packages of course.
However, adding lots of child packages can be an
inconvenience for the user and so in many cases extending
a package seemed more appropriate especially if the
identifiers concerned are unlikely to have been used by
programmers.

The following packages have been extended with
additional entities as listed.

Ada.Characters.Handling – Is_Line_Terminator, Is_Mark,
Is_Other_Format, Is_Punctuation_Connector, Is_Space.
(AI-185, A.3.2)

Ada.Containers – Capacity_Error. (AI-1, A.18.1)

Ada.Containers.Vectors – Assign, Copy, Constant_
Reference, Constant_Reference_Type, Iterate,
Reference, Reference_Type, Vector_Iterator_Interfaces.
(AI-1, AI-212, A.18.2)

There are similar additions to the other containers
Ada.Containers.Doubly_Linked_Lists etc.

Ada.Directories – Name_Case_Kind, Name_Case_
Equivalence. (AI-49, A.16)

Ada.Dispatching – Yield. (AI-166, D.2.1)

Ada.Environment_Variables – Value. (AI-285, A.17)

168 Rat ionale for Ada 2012: Epi logue

Volume 34, Number 3, September 2013 Ada User Journal

Ada.Execution_Time – Interrupt_Clocks_Supported,
Separate_Interrupt_Clocks_Supported, Clocks_For_
Interrupts. (AI-170, D.14)

Ada.Task_Identification – Environment_Task, Activation_
Is_Complete. (AI-189, C.7.1)

Ada.Strings.Fixed – Find_Token. (AI-31, A.4.3)

Ada.Strings.Bounded – Find_Token. (AI-31, A.4.4)

Ada.Strings.Unbounded – Find_Token. (AI-31, A.4.5)

There are similar additions to Ada.Strings.Wide_Fixed,
Ada.Strings.Wide_Bounded and Ada.Strings.Wide_
Unbounded. (AI-31, A.4.7)

Ada.Tags – Is_Abstract. (AI-173, 3.9)

It seems unlikely that existing programs will be affected by
these potential incompatibilities.

3 – Membership tests are no longer allowed as a discrete
choice. This is explained in detail in Section 6 of the paper
on Expressions. (AI-158, 3.8.1)

4 – Allowing functions to have parameters of all modes
led to the introduction of stricter rules on aliasing. It is
possible that a program that seemed to work in Ada 2005 is
illegal in Ada 2012. See Section 2 of the paper on Structure
and Visibility. (AI-144, 6.4.1)

5 – Implicit conversion is now allowed from anonymous
access types to general access types. Such conversions can
make calls ambiguous in the presence of overloading where
only one call was permitted in Ada 2005. Consider

type RT is access all T;
function F return RT;
function F return access T;

procedure B(R: RT);

and then the call

B(F); -- ambiguous in Ada 2012

The call of B is ambiguous in Ada 2012 because the call
could be to either function F. But in Ada 2005, the implicit
conversion is not possible and so the call has to be to the
first function F. (AI-149, 8.6)

6 – It is now illegal to declare a formal abstract
subprogram whose controlling type is incomplete. This is
related to various improvements to incomplete types
described in Section 3 of the paper on Structure and
Visibility. (AI-296, 12.6)

7 – The pragma Controlled has been removed from the
language. It was never implemented anyway. (AI-229,
13.11.3)

8 – The package Ada.Dispatching was Pure in Ada 2005
but has been downgraded to Preelaborable because of the
addition of Yield. This is unlikely to be a problem. (AI-166,
D.2.1)

1.2 Inconsistencies with Ada 2005
Note that this list only covers those inconsistencies that
might reasonably occur. There are a number of others
which are so unlikely that they do not seem worth
mentioning.

1 – The definition of character sets can change with time.
It is thus possible that the result of character classification
functions for obscure characters might be or become
inconsistent. (AI-91, AI-227, AI-266, 2.1, 2.3)

2 – User defined untagged record equality is now defined
to compose and be used in generics. Code which assumes
that predefined equality reemerges in generics and in
predefined equals for composite types could fail. However,
it is more likely that this change will fix bugs. (AI-123,
4.5.2)

3 – A stand alone object of an anonymous access type
now has dynamic accessibility. This is most likely to make
illegal programs now legal. However, it is possible that a
program that raised Program_Error in Ada 2005 will not do
so in Ada 2012. It seems very unlikely that a program
would rely on the raising of this exception. (AI-148, 4.6)

4 – There is an obscure interaction between the change to
the composability of equality and renaming. Renaming of
user-defined untagged record equality is now defined to
call the overridden body so long as the overriding occurred
before the renames. Consider

package P is
 type T is
 record
 ...
 end record;
 -- (1) consider renaming here
private
 function "=" (L, R: T) return Boolean;
end P;

with P;
package Q is
 function Equals renames P."=";
end Q;

In Ada 2005, Equals refers to the predefined equality,
whereas in Ada 2012 it refers to the overridden user-
defined equality in the private part. This is so that
composed equality and explicit calls on "=" give the same
answer. However, if the renaming had been at the point (1)
then calling Equal would call the predefined equality.
Remember that renaming squirrels away the operation so
that it can be retrieved. (AI-123, 8.5.4)

5 – A group budget is now defined to work on a single
processor. However, it is unlikely that any implementation
of Ada 2005 managed to implement this on multiprocessors
anyway. (AI-169, D.14.2)

2 Retrospective changes to Ada 2005

In the course of the development of Ada 2012, a number of
small changes were deemed to apply also to Ada 2005 and

J. G. P. Barnes 169

Ada User Journal Volume 34, Number 3, September 2013

thus were classified as binding interpretations rather than
amendments. Some were mentioned in previous papers
(including that which ensured that package Ada is legal);
see Sections 2 and 6 of the paper on Iterators, Pools etc.
Most of these do not introduce incompatibilities or
inconsistencies so will not be discussed further.

A few binding interpretations do introduce minor
incompatibilities or inconsistencies and will now be briefly
discussed.

2.1 Incompatibilities with original Ada 2005
There are a small number of incompatibilities between the
original Ada 2005 and that resulting from various
corrections.

1 – The rules for full conformance have been
strengthened; for example, null exclusions must now
match. (AI-46, AI-134, AI-207, 6.3.1)

2 – When an inherited subprogram is implemented by a
protected function, the first parameter has to be an in
parameter, but not an access to variable type. Ada 2005
allowed access to variable parameters in this case; the
parameter will need to be changed to access to constant by
the addition of the constant keyword. (AI-291, 9.4)

3 – A missing rule is added that a limited with clause
cannot name an ancestor unit. (AI-40, 10.1.2)

4 – Matching of formal access to subprogram types uses
subtype conformance in Ada 2012 whereas it only used
mode conformance in original Ada 2005. This change was
necessary to avoid undefined behaviour in some situations.
(AI-288, 12.5.4)

5 – An address attribute with a prefix of a subprogram
with convention Intrinsic is now illegal. This is discussed in
Section 6 of the paper on Iterators, Pools etc. (AI-95, 13.3)

6 – Stream attributes must be specified by a static
subprogram name rather than by a dynamic expression.
(AI-39, 13.13.2)

7 – The use of discriminants on Unchecked_Union types
is now illegal in record representation clauses. It makes no
sense to specify the position of something that is not
supposed to exist. (AI-26, B.3.3)

8 – A nonvolatile generic formal derived type precludes a
volatile actual type. (AI-218, C.6)

9 – The restriction No_Relative_Delay has been extended
to also prohibit a call of Timing_Events.Set_Handler with a
Time_Span parameter. (AI-211, D.7)

10 – Various restrictions have been reworded to prevent
the bypassing of the restriction by calling the forbidden
subprogram via renames. (AI-211, D.7)

2.2 Inconsistencies with original Ada 2005
There are a small number of inconsistencies between the
original Ada 2005 and that resulting from various
corrections.

1 – The description of Dependent_Tag has been changed
to say that it must raise Tag_Error if there is more than one
type that matches the requirements. (AI-113, 3.9)

2 – A curious omission regarding checking arrays allows a
component in an aggregate whose value is given as <> even
if the component is outside the bounds. It is now clarified
that Constraint_Error is raised. (AI-37, 4.3.3)

3 – The first procedure Split in Ada.Calendar.Formatting
raises Time_Error for a value of exactly 86400.0. This was
unspecified in Ada 2005. (AI-238, 9.6.1)

4 – An address attribute with a prefix of a generic formal
subprogram whose actual parameter has convention
Intrinsic now raises Program_Error. (AI-95, 13.3)

5 – User specified external tags that conflict with other
external tags now raise Program_Error or are illegal. (AI-
113, 13.3)

6 – The definition of Set_Line is corrected. As originally
defined in Ada 95 and Ada 2005, Set_Line(1) could call
New_Line(0) which would raise Constraint_Error which is
unhelpful. This was mentioned right at the end of the
Postscript in the Rationale for Ada 2005 [2]. (AI-38,
A.10.5)

7 – The definitions of Start_Search, Search,
Delete_Directory, and Rename are clarified so that they
raise the correct exception if misused. (AI-231, A.16)

8 – If Count = 0 for a container Insert subprogram that has
a Position parameter, the Position parameter is set to the
value of the Before parameter by the call. The original
wording remained silent on this. (AI-257, A.18.3)

3 Unfinished topics from Ada 2005

A number of topics which seemed to be good ideas initially
were abandoned during the development of Ada 2005 for
various reasons. Usually the reason was simply that a good
solution could not be produced in the time available and the
trouble with a bad solution is that it is hard to put it right
later. This section briefly reconsiders these topics which
were discussed in the Rationale for Ada 2005 [2]; some
have now been solved in Ada 2012; the others were
considered unimportant.

3.1 Aggregates for private types
The <> notation was introduced in Ada 2005 for aggregates
to mean the default value if any. A curiosity is that we can
write

type Secret is private;

type Visible is
 record
 A: Integer;
 S: Secret;
 end record;

X: Visible := (A => 77; S => <>);

but we cannot write

S: Secret := <>; -- illegal

170 Rat ionale for Ada 2012: Epi logue

Volume 34, Number 3, September 2013 Ada User Journal

The argument is that this would be of little use since the
components take their default values anyway.

For uniformity it was proposed that we might allow

S: Secret := (others => <>);

for private types and also for task and protected types. One
advantage would be that we could then write

S: constant Secret := (others => <>);

whereas it is not possible to declare a constant of a private
type because we are unable to give an initial value.

However, discussion of this issue led into a quagmire in
Ada 2005 and so was abandoned. It remains abandoned in
Ada 2012!

3.2 Partial generic instantiation
Certain attempts to use signature packages led to
circularities in Ada 95. Consider

generic
 type Element is private;
 type Set is private;
 with function Union(L, R: Set) return Set is <>;
 with function Intersection(L, R: Set) return Set is <>;
 ... -- and so on
package Set_Signature is end;

Remember that a signature is a generic package consisting
only of a specification. When we instantiate it, the effect is
to assert that the actual parameters are consistent and the
instantiation provides a name to refer to them as a group.

If we now attempt to write

generic
 type Elem is private;
 with function Hash(E: Elem) return Integer;
package Hashed_Sets is
 type Set is private;
 function Union(L, R: Set) return Set;
 function Intersection(L, R: Set) return Set;
 ...
 package Signature is new Set_Signature(Elem, Set);
private
 type Set is
 record
 ...
 end record;
end Hashed_Sets;

then we are in trouble. The problem is that the instantiation
of Set_Signature tries to freeze the type Set prematurely.

After a number of false starts this problem is partially
overcome in Ada 2012 by the introduction of incomplete
formal generic parameters. This is discussed in Section 3 of
the paper on Structure and Visibility. See also Section 4.1
of this paper.

3.3 Support for IEEE 559: 1989
The proposal was to provide full support for all aspects of
IEEE 559 arithmetic such as NaNs (a NaN is Not A

Number). This would have necessitated adding attributes
such as S'Infinity, S'Is_NaN, S'Finite and so on plus a
package Ada.Numerics.IEC_559.

The proposal was abandoned because it would have had a
big impact on implementers and it was not clear that there
was sufficient demand. It was not reconsidered for Ada
2012.

3.4 Defaults for generic parameters
Generic subprogram parameters and object parameters of
mode in can have defaults. But other parameters such as
packages and types cannot. This was considered irksome
and untidy and efforts were made to define a suitable
notation for all possible generic parameters.

However, it was abandoned partly because an appropriate
syntax seemed hard to find and more importantly, it was
not felt to be that important. Again, it was not deemed
important enough to be reconsidered for Ada 2012.

3.5 Pre/post-conditions for subprograms
The original proposal was to add pragmas such as
Pre_Assert and Post_Assert. Thus in the case of a
subprogram Push on a type Stack we might write

procedure Push(S: in out Stack; X: in Item);
pragma Pre_Assert(Push, not Is_Full(S));
pragma Post_Assert(Push, not Is_Empty(S));

This was all abandoned in Ada 2005 for various reasons;
one being that pragmas are ugly for such an important
matter.

However, this is neatly solved in Ada 2012 by the
introduction of aspect specifications so we can now write

procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S),
 Post => not Is_Empty(S);

which is really excellent; this is discussed in detail in the
paper on Contracts and Aspects.

3.6 Type and package invariants
This defined further pragmas similar to those in the
previous proposal but concerned with packages and types.
Thus the pragma Package_Invariant proposed for Ada 2005
identified a function returning a Boolean result. This
function would be implicitly called after the call of each
subprogram in the package and if the result were false the
behaviour would be as for an Assert pragma that failed.

This proposal was also abandoned for Ada 2005. However,
Ada 2012 has introduced type invariants thus

type Stack is private
 with Type_Invariant => Is_Unduplicated(Stack);

as discussed in the paper on Contracts and Aspects. On the
other hand, package invariants remain abandoned.

3.7 Exceptions as types
This proposal originally arose out of a workshop organized
by Ada-Europe. It was quite complex and considered far

J. G. P. Barnes 171

Ada User Journal Volume 34, Number 3, September 2013

too radical a change and probably expensive to implement.
As a consequence it was slimmed down considerably. But
having been slimmed down it seemed pointless and was
then abandoned. The only part to survive was the idea of
raise with message which became a separate AI and was
incorporated into Ada 2005.

This was not pursued in Ada 2012.

3.8 Sockets operations
This seemed a very good idea at the time but no detailed
proposal was forthcoming and so it died. It has been left
dead.

3.9 In out parameters for functions
The proposal was to allow functions to have parameters of
all modes. The rationale for the proposal was well
summarized thus "Ada functions can have arbitrary side
effects, but are not allowed to announce that in their
specifications".

But strangely, this AI was abandoned quite early in the Ada
2005 revision process on the grounds that it was "too late".
(Perhaps too late in this context meant 25 years too late.)

However, in Ada 2012, the bullet has been bitten and
functions can indeed now have parameters of all modes.
See the discussion in Section 2 of the paper on Structure
and Visibility.

3.10 Application defined scheduling
The International Real-Time Ada Workshops have been a
source of suggestions for improvements to Ada. The
Workshop at Oporto suggested a number of further
scheduling algorithms [3]. Most of these such as Round
Robin and EDF were included in Ada 2005. But that for
application defined scheduling was not.

No further action on this topic was taken in Ada 2012.

4 Unfinished topics for Ada 2012

A number of topics which seemed to be good ideas initially
were abandoned during the development of Ada 2012 for
various reasons. It is interesting to note that there are far
fewer of these loose ends than there were in Ada 2005. The
following deserve mention.

4.1 Integrated packages (AI-135)
Difficulties sometimes arise with nested packages.
Consider for example a package that needs to export a
private type T and a container instantiated for that type. We
cannot write

package P is
 type T is private;
 package T_Set is new Ordered_Sets(T);
private
 ...
end P;

because the type T is not frozen. We have to write
something like

package P is
 package Inner is
 type T is private;
 private
 ...
 end Inner;
 package T_Set is new Ordered_Sets(Inner.T);
end P;

What we now want is some way to say that the declarations
in Inner are really at the level of P itself after all. In other
words we want to integrate the package Inner with the outer
package P.

Various attempts were made to solve this by another kind
of use clause or perhaps by putting Inner in a <> box. But
all attempts led to difficulties so this remains unresolved.

4.2 Cyclic fixed point (AI-175)
Measurements in the physical world of Euclid and Newton
are either lengths or angles. Angles are cyclic in nature and
so can be mapped with a modular type. However, this
leaves scaling in the hands of the user and is machine
dependent. Consideration was given to the possibility of a
cyclic form of fixed point. Sadly, there was much hidden
complexity and so no solution was agreed.

One might have thought that it would be easy to use the
natural wrap-around hardware. However, with a binary
machine, if 180 degrees is held exactly then 60 degrees is
not which excludes an exact representation of an equilateral
triangle. The whole point about using fixed point is that it is
precise but it just doesn't work unless the hardware uses a
base with divisibility by 60. The Babylonians would have
understood. The text of AI-175 includes a generic which
might be useful for many applications.

4.3 Global annotations (AI-186)
The idea here was that the specification of a subprogram
should have annotations indicating the global objects that it
might manipulate. For example a function can have side
effects on global variables but this important matter is not
mentioned in the specification. This topic has strong
synergy with the information given in contracts such as
pre- and postconditions. However, it was abandoned
perhaps because of the complexity arising from the richness
of the full Ada language. It should be noted that such
annotations have always featured in SPARK as comments
and moreover, at the time of writing, are being considered
using the aspect notation in a new version of SPARK.

4.4 Shorthand for assignments (AI-187)
Consideration was given to having some short of shorthand
for assignments where source and target have commonality
as in statements such as

A(I) := A(I) + 1;

But maybe the thought of C++ was too much. In any event
no agreement that it was worthwhile was reached and there
was certainly no agreement on what syntax might be
acceptable.

172 Rat ionale for Ada 2012: Epi logue

Volume 34, Number 3, September 2013 Ada User Journal

5 Postscript

It should also be noticed that a few corrections and
improvements have been made since Ada 2012 was
approved as a standard. The more important of these will
now be discussed.

A new form of expression, the raise expression, is added
(AI12-22). This means that by analogy with

if X < Y then
 Z := +1;
elsif X > Y then
 Z := –1;
else
 raise Error;
end if;

we can also write

Z := (if X<Y then 1 elsif X>Y then –1 else raise Error);

A raise expression is a new form of relation so the syntax
for relation (see Section 6 of the paper on Expressions) is
extended as follows

relation ::=
 simple_expression [relational_operator simple_expression]
| simple_expression [not] in membership_choice_list
| raise_expression

raise_expression ::=
 raise exception_name [with string_expression]

Since a raise expression is a relation it has the same
precedence and so will need to be in parentheses in some
contexts. But as illustrated above it does not need
parentheses when used in a conditional expression which
itself will have parentheses.

Raise expressions will be found useful with pre- and
postconditions. Thus if we have

procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S);

and the precondition is false then Assertion _Error is raised.
But we can now alternatively write

procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S) or else raise Stack_Error;

and of course we can also add a message thus

 Pre => not Is_Full(S) or else
 raise Stack_Error with "wretched stack is full";

On a closely related topic the new syntax for membership
tests (also see Section 6 of the paper on Expressions) has
been found to cause ambiguities (AI12-39).

Thus

A in B and C

could be interpreted as either of the following

(A in B) and C -- or
A in (B and C)

This is cured by changing the syntax for relation yet again
to

relation ::=
 simple_expression [relational_operator simple_expression]
| tested_simple_expression [not] in membership_choice_list
| raise_expression

and changing

membership_choice ::=
 choice_expression | range | subtype_mark

to

membership_choice ::=
 choice_simple_expression | range | subtype_mark

Thus a membership_choice no longer uses a
choice_expression. However, the form choice_expression
is still used in discrete_choice.

A curious difficulty has been found in attempting to use the
seemingly innocuous package Ada.Locales described in
Section 4 of the paper on the Predefined Library.

The types Language_Code and Country_Code were
originally declared as

type Language_Code is array (1 .. 3) of Character
 range 'a' .. 'z';
type Country_Code is array (1 .. 2) of Character
 range 'A' .. 'Z';

The problem is that a value of these types is not a string
and cannot easily be converted into a string because of the
range constraints and so cannot be a simple parameter of a
subprogram such as Put. If LC is of type Language_Code
then we have to write something tedious such as

Put(LC(1)); Put(LC(2)); Put(LC(3));

Accordingly, these types are changed so that they are
derived from the type String and the constraints on the
letters are then imposed by dynamic predicates. So we have

type Language_Code is new String(1 .. 3)
 with Dynamic_Predicate =>
 (for all E of Language_Code => E in 'a' .. 'z';

with a similar construction for Country_Code (AI12-37).

Readers might like to contemplate whether this is an
excellent illustration of some of the new features of Ada
2012 or simply an illustration of static strong or maybe
string typing going astray.

AI12-45 notes that pre- and postconditions are allowed on
generic units but they are not allowed on instances. See
Section 3 of the paper on Contracts and Aspects where this
topic should have been mentioned.

Another modification in this area is addressed by AI12-44
which states that type invariants are not checked on in
parameters of functions but are checked on in parameters of
procedures. See Section 4 of the paper on Contracts and

J. G. P. Barnes 173

Ada User Journal Volume 34, Number 3, September 2013

Aspects. This change was necessary to avoid infinite
recursion which would arise if an invariant itself called a
function with a parameter of the type. Note also that a class
wide invariant could not be used at all without this
modification.

A further aspect, Predicate_Failure, is defined by AI12-54-
2. The expected type of the expression defined by this
aspect is String and gives the message to be associated with
a failure. So we can write

subtype Open_File_Type is File_Type
 with
 Dynamic_Predicate => Is_Open(Open_File_Type),
 Predicate_Failure => "File not open";

If the predicate fails then Assertion_Error is raised with the
message "File not open". See Section 5 of the paper on
Contracts and Aspects.

We can also use a raise expression and thereby ensure that
a more appropriate exception is raised. If we write

 Predicate_Failure =>
 raise Status_Error with "File not open";

then Status_Error is raised rather than Assertion_Error with
the given message. We could of course explicitly mention
Assertion_Error thus by writing

 Predicate_Failure =>
 raise Assertion_Error with "A message";

Finally, we could omit any message and just write

 Predicate_Failure => raise Status_Error;

in which case the message is null.

A related issue is discussed in AI-71. If several predicates
apply to a subtype which has been declared by a refined
sequence then the predicates are evaluated in the order in
which they occur. This is especially important if different
exceptions are specified by the use of Predicate_Failure
since without this rule the wrong exception might be raised.
The same applies to a combination of predicates, null
exclusions and old-fashioned subtypes.

This can be illustrated by an extension of the above
example. Suppose we have

subtype Open_File_Type is File_Type
 with
 Dynamic_Predicate => Is_Open(Open_File_Type),
 Predicate_Failure => raise Status_Error;

subtype Read_File_Type is Open_File_Type
 with
 Dynamic_Predicate =>
 Mode(Real_File_Type) = In_File,
 Predicate_Failure => raise Mode_Error with
 "Can't read file: " & Name(Read_File_Type);

The subtype Read_File_Type refines Open_File_Type. If
the predicate for it were evaluated first and the file was not
open then the call of Mode would raise Status_Error which
we would not want to happen if we wrote

if F in Read_File_Type then ...

Care is needed with membership tests. The whole purpose
of a membership test (and similarly the Valid attribute) is to
find out whether a condition is satisfied. So if we write

if X in S then
 ... -- do this
else
 ... -- do that
end if;

we expect the membership test to be true or false. However,
if the evaluation of S itself raises some exception then the
purpose of the test is violated.

It is important to understand these related topics. Another
example might clarify. Suppose we have a very simple
predicate as in Section 5 of the paper on Contracts and
Aspects such as

subtype Winter is Month
 with Static_Predicate => Winter in Dec | Jan | Feb;

where

type Month is (Jan, Feb, Mar, Apr, ..., Nov, Dec);

and we declare a variable W thus

W: Winter := Jan;

If we now do

W := Mar;

then Assertion_Error will be raised because the value Mar is
not within the subtype Winter (we assume that the assertion
policy is Check). If, however, we would rather have
Constraint_Error raised then we can modify the declaration
of Winter to

subtype Winter is Month
 with Static_Predicate => Winter in Dec | Jan | Feb,
 Predicate_Failure => raise Constraint_Error;

and then obeying

W := Mar;

will raise Constraint_Error.

On the other hand suppose we declare a variable M thus

M: Month := Mar;

and then do a membership test

if M in Winter then
 ... -- do this if M is a winter month
else
 ... -- do this if M is not a winter month
end if;

then of course no exception is raised since this is a
membership test and not a predicate check.

Note however, that we could write something odd such as

174 Rat ionale for Ada 2012: Epi logue

Volume 34, Number 3, September 2013 Ada User Journal

subtype Winter2 is Month
 with Dynamic_Predicate =>
 (if Winter2 in Dec | Jan | Feb then true else raise E);

then the very evaluation of the predicate might raise the
exception E so that

M in Winter2

will either be true or raise the exception E but will never be
false. Note that in this silly example the predicate has to be
a dynamic one because a static predicate cannot include a
raise expression.

So this should clarify the reasons for introducing
Predicate_Failure. It enables us to give a different
behaviour for when the predicate is used in a membership
test as opposed to when it is used in a check and it also
allows us to add a message.

Finally, it should be noted that the predicate expression
might involve the evaluation of some subexpression
perhaps through the call of some function. We might have a
predicate describing those months that have 30 days thus

subtype Month30 is Month
 with Static_Predicate =>
 Month30 in Sep | Apr | Jun | Nov;

which mimics the order in the nursery rhyme. However,
suppose we decide to declare a function Days30 to do the
check so that the subtype becomes

subtype Month30 is Month
 with Dynamic_Predicate => Days30(Month30);

and for some silly reason we code the function incorrectly
so that it raises an exception (perhaps it accidentally runs
into its end and always raises Program_Error). In this
situation if we write

M in Month30

then we will indeed get Program_Error and not false.

Perhaps this whole topic can be summarized by simply
saying that a membership test is not a check. Indeed a
membership test is often useful in ensuring that a
subsequent check will not fail as was discussed in Section 4
of the paper on Iterators, Pools etc.

On a rather different topic, AI12-28 discusses the import of
variadic C functions (that is functions with a variable
number of parameters). In Ada 95, it was expected that
such functions would use the same calling conventions as
normal C functions; however, that is not true for some
targets today. Accordingly, this AI adds additional
conventions to describe variadic C functions so that the
Ada compiler can compile the correct calling sequence.

Finally, an important modification is made to the topic of
dispatching domains by AI12-33. See Section 3 of the
paper on Tasking and Real-Time.

As defined originally, a dispatching domain consists of a
set of processors whose CPU values are contiguous.
However, this is unrealistic since CPUs are often grouped
together in other ways. Accordingly, the package
System.Multiprocessors.Dispatching_Domains is extended
by the addition of a type CPU_Set and two further
functions thus

type CPU_Set is array (CPU range <>) of Boolean;
function Create(Set: CPU_Set)
 return Dispatching_Domain;
function Get_CPU_Set(Domain: Dispatching_Domain)
 return CPU_Set;

So if we want to create a domain consisting of processors 0,
4, and 8 we can write

My_Set: CPU_Set(0 .. 8) :=
 (0 | 4 | 8 => true, others => false);

and then

My_Domain: Dispatching_Domain := Create(My_Set);

and so on. The function Get_CPU_Set can be applied to
any domain and returns the appropriate array representing
the set of CPUs. Note that this function can be applied to
any domain and not just to one created from a CPU_Set.

6 Acknowledgements

This is the last of the papers in this series and so this seems
a good moment to once more thank Randy Brukardt for his
diligence and patience in reviewing various drafts and
putting me back on track when I got lost.

I must also thank AdaCore and the British Standards
Institute for financial support for attending various
meetings.

As usual, writing this rationale has been a learning
experience for me and I trust that readers will also have
found the material useful in learning about Ada 2012. An
integrated description of Ada 2012 as a whole will be found
in a forthcoming version of a familiar textbook.

References

John Barnes (2012) SPARK – The proven approach to High
Integrity Software, Altran Praxis.

John Barnes (2008) Ada 2005 Rationale, LNCS 5020,
Springer-Verlag.

ACM (2003) Proceedings of the 12th International Real-
Time Ada Workshop, Ada Letters, Vol 32, No 4.

© 2013 John Barnes Informatics.

 175

Ada User Journal Volume 34, Number 3, September 2013

Using the GNAT environment to maintain a large
codebase inherited from another compilation system
Daniel Bigelow
Bigelow Informatics, Bern, Switzerland; email: daniel.bigelow@bigelow.ch

Abstract

This paper describes a two-phase strategy using
GNAT technologies to gain control over a large
codebase inherited from another compilation system.
In phase-one we create an environment to contain the
state of an incremental release for the purpose of
extension in a developer workspace. In phase-two we
systematically incorporate project files representing
key components into a domain-model to reflect the
top-level architecture. Phase-one quickly provides a
code-view of the system so that development work can
begin. The transition to phase-two requires more
time, but eventually brings the architecture of the
system to the surface where it is visible to all
stakeholders.

Keywords: Ada, porting, maintenance, architecture

1 Introduction

When using the GNAT environment to develop a large
application from scratch, we reference architecture
diagrams and other supporting artefacts to logically
organize the software into a system of interconnected
components, which are encapsulated in loosely-coupled
modules that comprise a subsystem. Each software
component is represented by one or more GNAT project
files (GPFs) and the modules and subsystems are organized
as directory structures. By applying good design principles,
even huge systems can be constructed and efficiently
maintained using this methodology.

However, after porting a large application to GNAT from
another compilation system we don’t have the benefit of an
existing set of projects files to reflect the architecture.
Instead, what we have are the following raw materials: the
code-base, a long list of main programs, several directories
containing related units, a top-level domain model (if we
are lucky), and tons of documentation which is usually out
of date. The sections that follow describe a solution for
taking this scenario and moving forward with GNAT.

2 GNAT project file

Programming is a creative activity and therefore we tend to
jump into it as soon as possible. However, without a well-
designed process to guide development activities and an
efficient development environment for making changes and
managing complexity, the joy of programming comes to an
end somewhere around 100-thousand lines of code or even
less if your application is safety-critical and therefore
subject to a formal certification process.

Figure 1. GPFs connect the application to the tool-chain

The GNAT Project Manager (GPM) facility uses the
GNAT Project File (GPF) as the keystone for connecting
the application to the tool-chain (Figure 1). For small to
medium-sized projects the GNAT Programming Studio
(GPS) is all you should need to create and configure GPFs
to your requirements; there should be no need to manually
edit the GPF. For large systems however, the GPF might
require use of advanced features not supported by the GUI
in GPS. In that case, it is necessary for at least one person
on the development team to have a good understanding of
the syntax and semantics of GPF code in order to setup the
best possible environment for development and production
purposes.

3 Compiling inherited code with GNAT

Large applications originally developed with Rational-
Apex, ObjectAda, DEC-Ada, etc, often contain compiler-
specific dependencies that prevent GNAT from compiling
the entire codebase on the first attempt. For example, if the
code makes direct use of declarations in package System
and/or package Standard then portability issues will arise,
especially if predefined numeric types are used in
conjunction with representation, size and alignment
clauses.

Fortunately, the GNAT environment provides facilities for
extending the set of definitions in package System with
those from another compiler. For example, when porting
from DEC-Ada, the GPF can specify the attribute
Global_Configuration_Pragmas to point to a file
containing pragma Extend_System (Aux_DEC) which has
the effect of creating the child package System.Aux_Dec. If
necessary, it is possible to override one or more Ada
runtime library packages with non-GNAT declarations by
passing the ‘-gnatg’ switch to gprbuild.

176 Using the GNAT environment to maintain a large codebase

Volume 34, Number 3, September 2013 Ada User Journal

Each compiler has its own personality traits which make it
unique, but also complicate the porting activity. For
example, when porting from Rational Apex one needs to
deal with the notion of an Apex subsystem which is top-
level enclosure containing related Ada packages. Each
Apex subsystem is decomposed into so-called “views”
(subdirectories) to support configuration management,
where each view represents a specific version of the
subsystem. Also, each view specifies an interface that
defines the set of Ada units visible to another (importing)
view. To facilitate the task of porting from Rational Apex,
GNAT provides pragma Profile (Rational) and other
supporting mechanisms.

4 Loading the ported codebase into GPS

Once the codebase is able to compile with GNAT, the next
step is to setup the development environment to take full
advantage of the GNAT Programming Studio (GPS) which
integrates all required tools into one place.

4.1 Medium-sized system
With the computing power available in today’s PCs, GPS
able to load several thousand lines of code at once and still
provide good performance for all software development
activities including configuration as illustrated in Figure 2.

Figure 2. Medium-sized system loaded into GPS

4.2 Large-sized system
For large systems the scenario shown in Figure 2 does not
work due to information overload. It is simply not practical
from the perspective of workstation-performance or the
ability of a developer to confront millions of lines of code
all at once. Even if one has the patience to wait 10 or 15
minutes for several thousand packages to load into the GPS
entity database, any attempt to perform development
activities will be frustrated by additional processing delays.
Therefore, the scenario in Figure 3 is not used.

5 Divide & Conquer

So what is the solution if you want to use the GNAT
development environment with a large application that has
just been ported from another compilation system? The
answer of course is to break the problem down into
manageable parts.

Figure 3. Large-sized system loaded into GPS

5.1 Subsystem view
Fortunately, most large systems in production or in the
planning stages employ “loosely-coupled” subsystems that
communicate with each other via middleware. Because
middleware prevents direct compilation dependencies
between subsystems, we can build, and to a large extent
also develop & test each subsystem as a stand-alone entity
(Figure 4).

Figure 4. Subsystem loaded into GPS

A given subsystem normally has characteristics that are
very different from the others and therefore, a separate GPF
will exist to represent each subsystem. Examples of real-
world project file names are subsystem_Search_Radar.gpr
and subsystem_Engine_Control.gpr.

By selecting the subsystem view, we pass all sources to the
workspace that is visible to the subsystem-project. For a
large project a subsystem normally contains a lot of code
and therefore, the subsystem-view represents the maximum
amount of code you would ever want to load into GPS at
any one time.

This view is not normally used for development purposes
but rather for examining the “big picture” by browsing
disparate regions of the code-base, checking conformance
to programming standards, running suites of regression
tests, measuring code-coverage, and building library and
executable components for both development and
production environments.

If your system is large and does not support loosely-
coupled subsystems or even subsystems for that matter,
then your application is probably monolithic and difficult to
maintain. Nevertheless, assuming the code-base contains

D. Bigelow 177

Ada User Journal Volume 34, Number 3, September 2013

several main programs, the techniques described in this
paper may still be applied to gain control and extend the
service life of your application using the GNAT
development environment.

6 Canonical subsystem architecture

For the purpose of this discussion, each subsystem uses the
layered architecture shown in Figure 5. The Framework
layer consists of self-contained modules that provide
library services. Note that some framework modules, such
as “Domain-Specific Types” would be deployed on each
subsystem.

Figure 5. Subsystem architecture

The Application layer consists of modules that contain
executable programs. These programs use library services
and therefore the Application layer has compilation
dependencies on code within the framework. Fortunately,
mature framework libraries are very stable and not subject
to change during the course of a major release. If however a
library change is required which affects an interface, then
each module in the application layer must be rebuilt and
retested. But, that is why we have lots of regression tests.

The Transport layer is encapsulated in a module that
provides interface protocols and mechanisms for inter-
module and inter-subsystem communication. Each
subsystem will contain an instance of this module.
Infrastructure-type modules should, whenever possible, be
purchased as a commercial off the shelf product (with
support and source code) instead of developed in-house.

It is important to note that there are no direct compilation
dependencies between subsystems or between modules in
the same layer. The development environment should be
setup to provide a mechanism to prevent direct imports
between modules in the same layer because without this
mechanism in place, it is only a matter of time before
someone under pressure breaks this rule in order make a
quick-fix. Program hacks that violate architecture rules
cause an application to accumulate technical debt, which is
seldom repaid by refactoring the code at a later time.

7 Modules

Continuing the analogy with hardware, subsystems contain
modules. Like subsystems, modules also communicate via
middleware and thereby avoid direct compilation
dependencies with each other.

Figure 6. A module contains related components

Figure 6 shows the sources associated with the components
in Module_D passed to a developer in a Workspace - the
other modules in the subsystem (A, B, C) are filtered out.

The module view is useful for interface design, change-
impact analysis, stress-testing, code-browsing, and build-all
operations. By filtering-out all sources not related to the
selected module, the demands on the workstation are
greatly reduced and the developer only sees the code that
matters. Source code filtering is accomplished using
features of the GNAT tool chain and a scripting language to
execute a simple algorithm.

In some runtime environments, application modules can be
updated on-the-fly if the operating system supports the
notion of a computer cluster. As for the library modules in
the framework layer, these provide stable and widely-used
services which under normal circumstances should not be
changed by application developers.

8 Components

Each component in a module encapsulates strongly-related
Ada packages that collaborate to produce the behaviour
specified at the component interface.

Projects using Ada 2012 can take advantage of the
contract-model to specify the semantics of an interface with
such a high-degree of accuracy that static analysis may be
used to validate the correctness of the associated body
using mathematical logic.

Components are represented by main-programs that
become executable images or class-categories that become
static or dynamic library resources. In the component-view
(Figure 7) the amount of code to be processed by the
development environment is small enough to allow the
workstation to react quickly to commands that invoke
CodePeer to analyze subprograms, or AUnit to determine if
a regression has occurred, GNATcheck to verify
conformance to specific coding rules, GNATcoverage to
expose any untested code segments, and GDB to visually

178 Using the GNAT environment to maintain a large codebase

Volume 34, Number 3, September 2013 Ada User Journal

trace the flow of processing to the cause of a problem.
When programming, debugging, or using the static
analyzer, the less the code, the better.

Figure 7. Programming in a component view

9 Project extension with source filters

Figure 8 illustrates a read-only, pre-built, baseline project
representing the state of the last incremental release and a
workspace project that extends that release, including the
object files. Hence, if a developer transfers a unit from the
release to the workspace, checks it out of version control,
and makes a change to the body, then only that unit must be
re-compiled - all other objects are found on the release
drive. As a result, the project-extension strategy is very
efficient in terms of computing resources because the
application as seen from the workspace is already
compiled; a process that can take hours on a build-server.

Figure 8. Project extension strategy

This environment is also safe and easy to manage because
everyone is using the same release-project and
configuration-files, all of which are read-only. That means
developers can focus on design and implementation
activities and need not concern themselves with complex
information settings embedded in the baseline release on a
network drive.

The only project file under the control of the developer is
that in the workspace and this project file is very simple.
Developers edit a template project file to specify only three
basic attributes: Object_Dir, Exec_Dir and Source_Dirs.

10 Source filters

10.1 Executable component filter
After porting a large codebase to GNAT the only concrete
things we have to represent executable components are the
main programs. That being the case, how do we generate a
source-filter for a main program?

Figure 9. Project extension strategy

The first step shown in Figure 9 is to compile the main
program. We do that by passing the release-project as a
subsystem and the name of the main-program to the builder
(gnatmake in this case) so as to generate the object and Ada
Library Information (ALI) files needed by the binder.

The ‘P’ switch identifies the Project file, ‘X’ allows us
assign a value to an eXternal scenario-variable via the
command line and ‘c’ limits processing to the compilation
phase.

Figure 10. Generating source filter for executable

The form of step 2 shown in Figure 10 is very similar to the
previous step. This time however we call the binder on the
main program to compute the closure and save the result in
a text file that represents the filter, which is simply a list of
units - one on each line. Using a consistent naming
convention for files and directories greatly simplifies the
implementation of the script that generates the source
filters. The meaning of the switches above is as follows: R
= list sources Referenced in closure, Z = Zero formatting
(i.e. do not include the path to the file name), and ws =
warnings are suppressed.

D. Bigelow 179

Ada User Journal Volume 34, Number 3, September 2013

10.2 Module filter for executable components
To generate a module filter we apply the steps in the
pseudo code of Figure 11. In this example we generate a
filter for Module_A that contains four executable
components: A01 through A04. The resulting file
(Mod_A_Exec_Filter.txt) contains a sorted list (with no
duplicates) of all units needed to build each component.

Figure 11. Producing source filter for a module

10.3 Executable component filter in project file
The location of a component filter in the Release project
appears within a select-branch of the “case Source_Filter”
statement as shown in Figure 12. The project file attribute
“Main” identifies the main program and the attribute
“Source_List_File” points to the component filter.

Figure 12. Location of exec source filter in a project file

10.4 Module filter in project file

A module-filter is located in the release project (see Figure
13) in a manner similar to a component filter. However,
this time the Main attribute identifies the set of main
programs contained in the module.

10.5 Library component filter
We have seen how to create source filters for executable
components in the application layer. We will now discuss
the creation of source filters for library components in the
framework layer.

Figure 13. Location of exec module filter in a project file

Referring to Figure 5, we see that Module_A and
Module_B invoke services in the XML library module. The
list of sources in the XML module that are required by the
application layer will be a small subset of the available
sources that comprise the module. In other words, the XML
library module filter is based on the needs of the
application as determined by that portion of the API
invoked by modules A and B.

Note that a framework developer responsible for
maintaining a library component would load the
corresponding library project and not the release project,
unless the objective was to see how the library is being
used from the client’s perspective.

Figure 14. Generating required library object and ali files

As shown in Figure 14, the first step is to compile all
sources in the module needed by the application. In this
example the application needs services provided by the
DOM component. This will generate the object and Ada
Library Information (ALI) files needed by the binder.

In step 2 (Figure 15) we call the binder on the interface (the
list of imported Ada specs) and send the output to a text file
which represents the filter. The meaning of the (not yet
encountered) GNAT switches are: n = no Ada main-
program and z = zero foreign main-programs.

180 Using the GNAT environment to maintain a large codebase

Volume 34, Number 3, September 2013 Ada User Journal

Figure 15. Generate the library source filter required by
modules A and B in the application layer

10.6 Library module filter in project file

A library module-filter is located in the release project as
shown in Figure 16. There is no main program in the case
of a library and therefore only the “Source_List_File”
attribute is needed to point to the filter.

Figure 16. Location of libr module filter in a project file

10.7 Impact analysis using source filters
The information in source filters can be used to determine
the impact of a change to a unit. As shown in Figure 17, if
we make a change to the body of Unit_X from Main_1 and
the same unit also appears in the closure of Main_2, then
Main_2 must be retested. As the number of main programs
impacted by a change to a given unit increases then
obviously so does the time, cost, and risk.

Figure 17. Unit(s) shared between main programs

If several units are shared between two or more processes
(i.e. main programs) then it might make sense to factor
these units out into a library located in the framework. A
decision such as this must take into account various
considerations such as the potential for reuse, robustness,
and the unlikelihood of future code changes.

Since source filters are simply text files containing unit
names, it is straightforward to data-mine these files with a
script to extract change-impact and other useful results.

10.8 The effect of source filters in GPS
Once GPS is up and running, the developer selects from a
dropdown list, the subsystem, a module, or a component in
a module. Figure 18 shows the effect of loading
Component_A01 in Module_A.

Figure 18. A source filter loaded into GPS

The project panel provides some useful information. For
example, directories that contain source code are indicated
by the presence of a plus or minus symbol.
Component_A01 has no dependency on A02 and A04.
Module_A is isolated from Modules B and C, and the
Schema component in the XML module is not touched.
Hence, both the presence and the absence of code serve to
validate visibility rules dictated by the architecture.

11 Production build

Up to now we have described the development
environment and in particular the form of a release project
used by software engineers. However, at some point we
have to produce another kind of release that can be
deployed in a pre-production environment for use by

D. Bigelow 181

Ada User Journal Volume 34, Number 3, September 2013

professional testers and domain experts to verify and
validate the state of the application. For that purpose we
need an optimized set of project files designed to satisfy
space and performance requirements of the application
under real-world conditions.

The production build for a subsystem is a two-stage
process. In stage 1 we produce the static and dynamic
libraries for the framework layer. In stage 2 we produce the
executable images for the application layer.

Figure 19. Project file hierarchy for a production build of the
application layer.

In the example illustrated in Figure 19, the application layer
of the subsystem consists of three modules, where
module_A contains four components. For visualization
purposes, it is helpful to use the hardware analogy where a
subsystem is an electronic cabinet or a rack within a
cabinet. A module is a VME-type circuit board that plugs
into a slot in the cabinet. And a component is an electronic
chip mounted on a circuit board.

The purpose of each component-level GPF in the
application layer is to create an executable image for use in
production. For example, since the visual debugger is never
used on the production system, the executable images will
not contain debug information. Also, most assertions are
turned off and the code is optimized for performance.

A package in a GPF can be defined by a renaming-
declaration to obtain attributes specified in an external GPF
(e.g. Shared_Production_Attributes.gpr). This is standard
practice for the Compiler and Builder packages in each
component-level project file so as to maintain switch and
configuration-pragma information in one place, thus
ensuring a consistent build environment.

Modules are a construct for encapsulating related
components and therefore, a module project file is simply
an aggregate of its components. Similarly, the application
layer is an aggregate of module aggregates.

Aggregate projects, which are an extension of the standard
project paradigm, simplify the building of architectures that
use modules and components as building blocks as
illustrated in Figure 20. The simplification occurs in that
we only need one command to build an entire application
or framework layer. In addition, aggregate projects allow
for a very-efficient build due to the fact that the builder
process (e.g. gprbuild) has visibility to the sources of each

component. Having this overview means duplicate work is
avoided and parallel processing techniques can be used to
exploit all available CPU cores.

Figure 20. Aggregate projects used in the production build
environment

The issue of build efficiency is particularly important in
large projects involving millions of lines of code. For
example, if the nightly-build process fails, then after
someone has fixed the problem, the job must be restarted to
run during working hours, and depending on
circumstances, this delay can be very expensive. Therefore,
it pays to have the most efficient build environment
possible, and for that purpose the use of aggregate projects
is recommend.

12 Conclusion

The most pragmatic and expedient way to apply GNAT
technologies to a new codebase is by extending a pre-built
release in a workspace and using source filters to manage
complexity. This is called the code-view because initially
that is all we have - the source code.

The code-view allows you to use a single GPS instance to
quickly move between different modules and components
within a given subsystem. Note however that the code-view
configuration requires some programming effort to create
the scripts for generating and applying source filters.

If the ported application is the result of conscious design
then it will have an identifiable architecture, which should
be brought to the surface where it is visible to all
stakeholders. To accomplish this objective, project files
representing key components are systematically add to each
incremental release until the domain model for each
subsystem is complete. Depending on the size of the
application and available resources, it might require several
months to establish this view.

The architecture-view is useful when development is, for
example, focused on the development and testing of an
algorithm in a specific component over the course of a few
days. In that case, you would load the root-level project
representing the component into GPS and get to work.
Unlike the code-view, we are not obligated to load all the
sources associated with the enclosing main program.

Electronic engineers have been applying the concepts of
subsystems, modules, components, and interfaces for

182 Using the GNAT environment to maintain a large codebase

Volume 34, Number 3, September 2013 Ada User Journal

decades to build highly-reliable systems with great success.
Hence, it only makes sense for software engineers to apply
the same principals to the construction of software systems.
This is easier said than done, but the design of Ada and the
GNAT development environment contribute greatly to this
objective.

References

[1] GNAT Pro User’s Guide (2011/11/03), The GNAT Pro
Ada Compiler, Version 7.0.1, Document revision level
180256 AdaCore.

[2] GNAT Pro Reference Manual (2012/01/03), The
GNAT Pro Ada Compiler, Version 7.0.1, Document
revision level 181986 AdaCore.

[3] GPS Documentation (2013/01/02), Release 5.2.1
AdaCore.

[4] GPRbuild User’s Guide (2012/03/28), Document
revision level 187710 AdaCore.

 183

Ada User Journal Volume 34, Number 3,September 2013

The 16th International Real-Time Ada Workshop
Alan Burns
Department of Computer Science, University of York, UK

Abstract

The 16th occurrence of this successful workshop
series took place in York, UK from 17th to 19th of
April in 2013. The venue for the workshop was the
medieval King’s Manor situated in the centre of
historical York. The workshop was sponsored by
Ada-Europe, AdaCore and the University of York,
and was organised by the programme committee
consisting of Mario Aldea Rivas, Alan Burns,
Michael González Harbour, José Javier Gutiérrez,
Stephen Michell, Brad Moore, Luís Miguel Pinho,
Juan Antonio de la Puente, Jorge Real, Jose F. Ruiz,
Joyce Tokar, Tullio Vardanega, Andy Wellings and
Rod White. In all twenty people attended the event as
listed below.

Workshop Participants

 Mario Aldea Rivas, University of Cantabria, Spain.
 Geert Bosch, AdaCore, USA.
 Alan Burns, University of York, UK.
 Robert Dewar, AdaCore, USA.
 Michael González Harbour, University of Cantabria,

Spain.
 Kristoffer Nyborg Gregersten, Norwegian Institute of

Science and Technology (NIST), Norway.
 Stephen Michell, Maurya Software Inc., Canada.
 Brad Moore, General Dynamics, Canada.
 Luís Miguel Pinho, Polytechnic Institute of Porto,

Portugal.
 Juan A. de la Puente, Technical University of

Madrid, Spain.
 Jorge Real, Universitat Politècnica de València,

Spain.
 José Ruiz, AdaCore, France.
 Sergio Sáez, Universitat Politècnica de València,

Spain.
 Amund Skavhuag, NIST, Norway.
 Joyce Tokar, Pyrrhus Software, USA.
 Tullio Vardanega, University of Padua, Italy.
 Simon Vincent, MBDA UK Ltd, UK.
 Andy Wellings, University of York, UK.
 Rod White, MBDA UK Ltd, UK.
 Juan Zamorano, Technical University of Madrid,

Spain.

1 Introduction

A call for papers and subsequent review process lead to
11 papers being accepted for the workshop. Final versions
of these papers will appear in Ada Letters in due course.
The structure for the workshop followed the usual pattern
for this series of meetings. Participants received and read

the pre-workshop versions of the papers before the
workshop began. For the workshop itself, a set of topics
(derived from the accepted papers, and to some extent
topics addressed at previous IRTAWs) were identified
and formed the basis for detailed round-the-table
discussions facilitated by a session chair and summarised
by a session rapporteur.

The main topics for the workshop were:

 Language features that will allow parallel hardware
to be exploited;

 Protocols to support shared resources in both single
processor EDF scheduling systems and fixed priority
multi-processor systems;

 Language improvements and potential future for
Ada; and

 Profiles that go beyond Ravenscar.

Each session gave rise to useful discussions and the
identification of potential future directions for research
and the development of the Ada programming language.
Summaries of each of the sessions are now provided
below.

2 Parallel Ada

This was the longest session at the workshop. It addressed
the important issue of how to support and exploit highly
parallel hardware. The majority of the session’s
discussions were based on the collaborative work of
Michell, Moore and Pinho. The motivation for a parallel
solution in Ada is in response to changes in computer chip
architectures currently available, as well as future
directions. The first important change noted is that
Moore's law no longer applies. We can no longer rely on
faster CPU clock speeds to absorb increasing complexity
and demands of computer applications. Another related
factor has to do with how chip manufacturers are
responding to practical limits in CPU clock speed, by
increasing the number of cores on a single computer chip.

The term Parallelism OPportunity (POP) was introduced
to represent the locations in the program code that are
suitable for parallel execution. The goal for the general
model is to allow for POPs to be explicitly identified in
the programmer's code. To illustrate the use and need for
POPs, the example of a parallel loop was used, as loops
are very prevalent in application code, and are amenable
to a divide and conquer approach.

Discussion focused on the wisdom of giving any directive
further than with parallel for the program to control the

184 The 16th Internat ional Real-Time Ada Workshop

Volume 34, Number 3, September 2013 Ada User Journal

details of how parallelism is configured, executed and
potentially mapped to cores at runtime. Programmers may
not provide the correct specification of detailed controls,
and as hardware changes over time, some argued that it is
better to let the compiler have the control on these inputs.
The counter argument was raised that in real-time systems
there is a need for the programmer to specify such control
to directly specify the behaviour, which is required for
behaviour analysis and timing analysis. In other cases, the
default performance parameters may be suboptimal for a
particular problem, and the programmer may need to
squeeze out extra performance by tweaking the controls.
This could be the case in particular when code is being
written for a very specific target hardware platform.

Questions were raised about the memory model of the
proposal under discussion. The general model is that it
supports a shared memory system, with cache coherency,
with uniform access to memory, within a single partition.
At the same time the desire was not to restrict the model if
at all possible. Underlying memory buses and memory
organization, however, mean that there can be orders of
magnitude difference in accessing any particular memory
location from various CPUs, and issues such as cached
memory and cache flushes can cause wildly varying
access times, and possibly inconsistent views of shared
data. It was emphasized that the view of a partition as a
shared memory model is ingrained in Ada.

There was significant discussion about needing a
definition for the unit of parallelism, and to define the
semantics of a Tasklette, and indeed whether Tasklette is
even an appropriate name for the concept. Alternate
names suggested were Strand, Fibre and even Lemming.
The difficulty that participants had with Tasklette was that
name is very close to Task, which seems to imply that one
should be able to have attributes, execution time
accounting, and blocking on such creations, which was
antithetic to what participants wanted.

A subtopic of the discussion of Tasklettes, was what
happens to exceptions that are raised inside of Tasklettes.
Since Tasklettes simply represent a parallel execution
within a parent task, the exception must be delivered back
to parent at the point of synchronization. If multiple
exceptions are raised by Tasklettes, all but one exception
are discarded. Following Ada's exception semantics, it is
irrelevant what Tasklette instance captured the exception,
because you cannot rely upon any state that was being
changed when an exception occurred.

A discussion was held that there is a model of Ada
partitions as units of concurrency, which could possibly
be extended to units of parallelism, however, the current
restrictions on partitions make using partitions in this way
less efficient. It was agreed that the remote procedure call
mechanisms are heavy-weight for communicating
between Tasklettes, and the shared passive partition
model prevents the usual communication models between
partners. A number of solutions were proposed and
discussed, but no consensus was reached in this session.

At the end of the discussions the workshop concluded that
efforts should continue to try and define means by which
a future version of Ada could effectively exploit parallel
hardware.

3 Resource Locking Protocols

This session considered two main issues: the introduction
of the deadline floor locking protocol and multiprocessor
locking policies. Non-locking protocols were also
discussed.

Ada 2005 introduced EDF scheduling across priority
bands with a version of Baker's Stack Resource Control
Protocol so that ceiling priorities for protected objects
could be used within an EDF context. However, this
protocol is complex and the position paper by Aldea,
Burns, Gutierrez and Gonzalez Harbour entitled
Incorporating the Deadline Floor Protocol in Ada has
proposed an alternative protocol that is conceptually
much simpler and easier to implement. The protocol is
targeted at single processor system and the discussion was
held within this context. The protocol requires each
protected object to have a relative deadline associated
with it. This deadline is the minimum (floor) relative
deadline of all the tasks that use that protected object.
Proper setting of the floors ensures that each task gets
only a single block and mutual exclusion is guaranteed by
the protocol itself. This is achieved by reducing the
absolute deadline of a task (d) when it enters a protected
object (PO) at time t to the value t+F, where F is the
deadline floor of the PO. This temporary change only
happens if d is initially greater then t+F. After questions
of clarification, a number of further issues were identified
and dealt with; there included coping with release jitter,
POs shared between EDF and FIFO_Within_Priority
scheduling, other inheritance points in Ada. Following
these discussions, the workshop agreed that the deadline
floor protocol would be a useful addition to Ada and that
the current protocol should be made obsolete. This could
be achieved with a new dispatching policy and/or a new
locking policy.

The issue of how to integrate appropriate policies for
accessing protected objects in multiprocessor system (into
the Ada language) is still largely unresolved. The Ada
reference manual suggests that tasks busy-wait for a lock
but does not specify any priority or queuing policy
associated with this. There were two papers submitted to
the workshop on this topic. One considered a new lock-
based approach (Locking Policies for Multiprocessor Ada
by Burns and Wellings). The other considered a lock free
approach (Lock-Free Protected Types for Real-Time Ada
by Bosch). The workshop discussed both approaches but
felt they were both not yet mature enough to warrant
suggested language changes at this time. Much of the
discussion on the lock-free approach focused on the
restrictions that had to be placed on the application code
so that updates to the protected data could be achieved by
a single machine instruction.

A. Burns 185

Ada User Journal Volume 34, Number 3, September 2013

The workshop felt the approach was promising but
wanted to see more detailed definitions of the restrictions
(and how they would be checked) and whether other
forms of lock-free approaches and algorithms were
possible.

4 Language Improvements

This session considered how the current Ada Language
could be improved. Three papers were discussed in this
session:

I. Programming Simple Reactive Systems in Ada:
Premature Program Termination, A.J. Wellings,
A. Burns, A.L.C. Cavalcanti and N.K. Singh.

II. Execution time timers for interrupt handling,
Kristoffer Nyborg Gregertsen and Amund
Skavhaug.

III. Deferred Setting of Scheduling Attributes for
Periodic and Sporadic Tasks, Sergio Sáez, Jorge
Real and Alfons Crespo.

The first paper covered the use of Ada to develop simple
reactive, deterministic automata, and the issues of
termination of non-tasking programs. The paper identifies
two main issues:
 Queuing of interrupts and the difficulty of

determining the ordering of multiple events, and
more fundamentally

 Program termination – the issue that prevents the
simple reactive model from working.

The proposal to the workshop was that the termination
semantics for Ada should be changed. Whilst the
termination in the presence of attached interrupts was not
seen as a major issue there was a general consensus that
termination in the presence of active timing events was
incorrect – as these had been programmed, and if they
were not needed then they should be explicitly cancelled
by the application. It was noted in the paper that if the
termination semantics are changed as suggested it will
break backwards compatibility as it is currently possible
for programs to terminate with timers and attached
interrupts. However, the change introduced in Ada 95 to
handle interrupts via protected objects rather than tasks
also introduced a compatibility issue. The workshop
concluded that this was not a pressing issue given the
simple work-around that exist and that there was little
merit in making language changes in this area.
The second paper considered execution timer timers for
interrupts. Ada 2012 introduced execution time clocks for
interrupt handlers – the proposal made in the paper was
that Ada should be extended to provide execution time
timers for interrupt handlers. Identified issues with
interrupts include:

 Hard to predict their rate of arrival;

 Hardware faults can result in bursts;

 In Ada 2012 it is only possible to measure the
execution time of interrupt handlers (using the Clocks
defined in Ada.Execution_Time.Interrupts);

 Interrupt timers can be efficient with respect to the
alternative of polling the time to determine when it
has been exceeded;

 There is also a related issue with timing events where
the facilities are even more limited; here, unlike
interrupts, it is neither possible to measure the
execution time, nor to set an execution time timer.

In general it was felt that interrupt handler code should be
straightforward and serial, and hence of limited and
bounded duration, this in turn led to the concern that there
might be significant overheads due to the facility that
might detract from this position. This led to the question:
are we really only interested in the total interrupt count
and rate of arrival rather than the CPU time consumed? It
was noted that there is probably more of an interest in
providing timers for timing events as these are firmly in
the application domain, the one where timers are more
widely considered to be useful.

A number of issues were noted that had to be worked on
to give a more coherent solution to these problems.

 The way in which the deferrable server would work
was not entirely clear and a more complete
description was required;

 The type model needs to be reworked to make the
types for timers in general coherent;

 The model should be extended to also include timers
for timing events;

 It is important that any implementation can ensure
that its support for this feature results in zero
overhead for any application that does not make use
of the feature.

Given these issues are adequately addressed, interrupt
timers could be a feature for inclusion in a future revision
of the language.

The final paper for this session was concerned with the
setting of task attributes. Over the past two IRTAWs the
issue of setting multiple scheduling attributes
simultaneously has been noted as a topic of some interest
and importance. This paper is a follow-on from the
previous IRTAW where the issue of setting the various
attributes of a task atomically had been considered – the
current model in Ada 2012 allows only for the setting of a
single attribute at a time (except for period and deadline).
In outline, the paper proposes a new type to capture a set
of scheduling attributes, an instance of which is
associated with each individual task, which can be passed
to the underlying kernel in a single call, hence facilitating
their simultaneous, atomic setting.

The proposal includes two basic options with respect to
setting the attributes of a task: setting them immediately,
and setting them and suspending for them to apply at the

186 The 16th Internat ional Real-Time Ada Workshop

Volume 34, Number 3, September 2013 Ada User Journal

next release. In both cases, issues were raised regarding
exactly how these might work. In the first case, there was
the point that setting could not be immediate if the caller
was in a protected operation – the application would have
to be deferred until after the protected operation had been
completed. In the second case, where the task becomes
suspended, a number of significant points were raised.
Given the complexity, an alternative approach was
tentatively suggested. Why not replace the suspension by
a timing event that sets the attribute in its protected
operation? The fact that it is a PO will ensure atomicity of
the attribute change, but it was noted that this is not
necessarily the case where the affinity is changed. From
this there was some discussion as to whether affinity is
particularly difficult and should be treated as a special
case – no specific conclusion emerged from this
discussion.

5 Language Profiles
Most of the session was focused on discussing the
opportunity to define a new Ada profile by adding
execution-time control mechanisms to the Ravenscar
profile.

The main motivation for such a profile is to overcome the
limitations of the Ravenscar profile with respect to real-
time fault tolerance. The features that could be included in
the new profile are: execution-time timers, group budgets,
asynchronous task control, dynamic priorities,
asynchronous transfer of control and the abort statement.

Execution-time timers and group budgets are proposed as
run-time mechanisms for detecting overruns.
Asynchronous task control and dynamic priorities can be
used to lower the priority of a faulty task, thus reducing
its impact on the system, and asynchronous transfer of

control and abort can provide further support for this
purpose.

There was a lively discussion on the proposal. A basic
consideration is the wish to keep the run-time system
efficient and small, in order to facilitate certification when
required. Robert Dewar made a point that adding a profile
would not be too complex for compiler builders, but
adding new restrictions might be. There was general
agreement that abort and ATC are the most complex
features to implement, whereas the rest would not pose so
much of a problem.

Another topic is the possible uses of the extended profile.
The Ravenscar profile forces a static environment that
enables schedulability analysis to be carried out in critical
systems, and was originally conceived as a replacement
for cyclic executives that were dominant at the time. On
the other hand, an extended profile may add flexibility for
other possible uses. Geert Bosch commented that
Ravenscar is too limited for some users, while Rod White
observed that some non-critical applications use the
Ravenscar runtime because it is small and simple. Amund
Skavhaug stressed the interest of the extended profile in
education, where it could be used in small student
projects. There was however consensus that asynchronous
task control is a complex issue that can be difficult to
implement in a reduced runtime system.

Conclusions
The workshop concluded by summarising its
achievements and recommendations, and by reiterating
topics worthy of future study. It was agreed that a further
workshop in approximately 18 months time would be
worthwhile. Possible venues for IRTAW17 were
identified and responsibilities were accepted to bring
about the next workshop.

 187

Ada User Journal Volume 34, Number 3, September 2013

How to Use the Heap in Real-Time Systems:
Panel Report
Chair: Erhard Plödereder

Rapporteur: Jørgen Bundgaard

Abstract

In the Ada-Europe 2013 conference, a panel was
dedicated to the subject of how to use the heap in
real-time systems.

This document provides a report of the presentations
and discussion of the session.

Keywords: Heap, Real-Time Systems

1 Introduction

The session started with three presentations from
renowned specialists, presenting different viewpoints, and
a final wrap-up. The panellists were

 Ludovic Gauthier, from Atego Systems, Inc., USA,
presenting how to extend the Java type system to
enforce disciplined use of scope-allocated objects;

 S. Tucker Taft, from AdaCore, USA, presenting
region-based storage management for parallel
programming; and

 James Hunt, from aicas GmbH, Germany, presenting
dynamic memory management in real-time, safety-
critical systems.

After each presentation the floor was open to questions
and comments from the audience.

The panel moderator was Erhard Plödereder, from the
University of Stuttgart, Germany, who started by
introducing the objectives and participants of the panel,
and by encouraging the audience to ask aggressive and
provocative questions.

This paper reports a brief summary of the presentations
and of the questions (and answers) that followed.

2 Extending the Java Type System

The first presentation started by discussing why
developers use heap memory technologies, contrasting
with the needs of safety-critical software. This leads to
important considerations for safety-critical heaps such as
clearly understanding (and statically specifying) the
memory requirements of the application, executing
without run-time errors, or being able to verify memory
behaviour on the modular composition of software
components.

Ludovic Gauthier presented the stack-of-scopes execution
model, where the stack scope of nested threads is created

from the parent’s stack, and nested threads can always
access the outer scope’s objects.

Afterwards, the presentation focused on the PERC Pico
(Virtual Machine for Java real-time and safety critical
systems) approach to safety-critical memory management,
which enhances the Java type system to represent relevant
memory management details. The traditional Java
mindset is “not to be concerned” about memory, while the
new approach adds resource constraint annotation
(annotations to be inserted in the code), allowing
programmers to “assert” bounds on loop iterations and
recursion depths. A key point is to reduce the heap issue
to a stack allocation problem.

The first comments from the floor were related to the
problems which originate from the usage of heaps, and
the burden on the programmer to need to annotate the
code, compared to using languages which reduce such
problems. Ludovic Gauthier answered that, by adding
restrictions, we can still use the flexibility of the heap, and
that the compiler can help considerably in the burden of
analysing. Answering to doubts on the use of Java in
safety-critical systems, he noted that Ada also enforces
restrictions on the use of dynamic memory in safety-
critical applications.

The audience also asked for experience with industrial
projects, and in particular for reuse (one of the main
Java’s intended advantages). The answer was that there
were experiences, mostly from the avionics domain, and
that reuse had been required in one particular case. The
work was significant, but achievable.

3 Region-based storage management

The second presentation dealt with the use of region-
based storage management in multicore programming
models. The presentation started by providing some
insights in the challenges of using automatic storage
management in parallel programs, which is something
that programmers “love” to have. The presentation put
forward that global garbage collected heap is bad in the
context of parallel languages, presenting as alternatives
the Rust memory model and region-based storage
management.

Afterwards, Tucker Taft explained the latter, which is
similar to stack-based memory management, presenting
the concept of stack of regions with region chunks, global
vs. region-based storage management (differences
concerning locking, object locality, and object

188 How to Use the Heap in Real -Time Systems: Panel Report

Volume 34, Number 3, September 2013 Ada User Journal

separation). Eliminating pointers simplifies the region-
based storage management approach, without the need to
worry about annotations.

The presentation ended with an example of pointer-free
(binary) trees, and some of the ParaSail virtual machine
statistics.

A few questions arose on how the approach deals with
fragmentation, and explicit freeing. The answer was that
by reclaiming storage before leaving the region, the
fragmentation problem was bounded; if an object is set to
null, the storage is reclaimed immediately. Answering to
another question on how it is decided which region to use,
Tucker Taft noted that this was decided depending on the
scope of the object.

A question was asked on dimensioning the region and
how to set the correct size. The answer was that regions
are of fixed size. If exhausted, a new chunk is allocated,
with each processor having its pool of region chunks.
These operations are bounded (in time).

4 Dynamic memory management

The final presentation of the session started by providing
some sample applications where dynamic memory
management is necessary, such as path retracing or object
recognition, which are now increasingly considered in
critical domains. James Hunt then described the main
dynamic memory (DM) vulnerabilities, and the DM
safety objectives. Afterwards he discussed how different
memory management techniques achieve these objectives,
considering in particular deterministic garbage collection,
since it allows reducing development time and improves
safety.

Afterwards he focused on real-time garbage collection,
describing some of the existent techniques: paced and
slack garbage collection. In both he noted that the
programmer must provide both maximum memory use
and maximum allocation rate. He then presented the
work-based garbage collector approach. One interesting
note was that to allow for real-time garbage collector, it
was not only necessary to use a deterministic approach,
but also to use the real-time programming model, which
the Real-Time Specification for Java has taken from Ada.

A concluding remark was that generating code from a
state machine is best, if possible. For complex safety
critical programs, deterministic garbage collection may
work. But not all Java implementations are suitable.

The first question was if a specific Java compiler was
being used, to which James Hunt replied positively.
Afterwards, a question was raised if it is safe to use
garbage collection for safety critical applications. What
about the interaction between the application and the
garbage collectors and certification? James Hunt replied
that this garbage collector approach had already been used
in avionics systems and qualification guidance is now in
place.

Another comment was that the memory management
infrastructure cannot do timely de-allocation unless the
user sets the pointer to null? Is a memory leak inevitable?
To this James Hunt replied that this was true for variables
that do not go out of scope; the programmer still needs to
worry about the application being written. He also noted
that there was a region approach (the JamaicaVM garbage
collector uses fixed size blocks for allocation to ensure
very low latency) being used inside the garbage collector.

Another doubt was about the bounded behaviour of the
collector. Worst case execution time is known for
allocation and deallocations. Although complex, it is
possible to analyze it.

Answering to a question on overhead, James replied that
20% extra memory is needed, maybe 10% for less
demanding applications.

3 Wrap-up

Towards the end of the session, questions were posed to
all panellists, who also had the opportunity to voice a
final comment.

The first general comment was on the use of heap at all. A
member of the audience noted that in the automotive
domain, there are 4 wheels, 8 pistons, etc. Tucker noted
nevertheless that autonomous cars must take a very
dynamic environment into account, everything cannot be
allocated statically. In other domains objects have very
different sizes. Allocating objects of the exact same size
will not be efficient, and will not be maintainable.

This was followed by the question whether heaps can
indeed be used in safety critical applications. When can
we be confident that they can be?

James Hunt replied that deterministic garbage collection
will be proven in use, and then it will spread. Most safety
critical applications are currently state machines, so do
not require this change, but in future this will need to
change (due to increased complexity). Tucker noted that it
was not safe to use today but it will become safer, and
eventually bodies such as FAA may consider it. Ludovic
opined that nevertheless, for really critical applications,
unrestrained dynamic memory allocation will probably
never be allowed.

Another note from the audience was that even in complex
systems the environment can be represented in 2 or 3
dimensions, and that is static. Tucker did not agree, noting
the answer to a previous similar question. James added
that loop/recursion behaviour is the biggest problem.

Finally, there was a question on how far it is possible to
go with pre-conditions (non-null pointers). James
answered that with pre-conditions a lot of the complexity
of the garbage collector can be reduced by applying
relative simple analysis in the compiler.

Afterwards each of the panellists summarized their view
on the topic.

E. Plödereder, J . Bundgaard 189

Ada User Journal Volume 34, Number 3, September 2013

James Hunt considered that there are regulatory
frameworks in place for avionics; we will get to a point
where it will be accepted to use dynamic memory
allocation.

Tucker Taft considered that it is not realistic to do
everything with static allocation. Automation is necessary
for safety critical applications, manual techniques do not

scale. New languages, or annotations, will come. It will
become part of our world.

Ludovic Gauthier considered that it will be possible to
reduce Java to a subset where it will be acceptable for use
in safety critical applications. Dynamics will be more and
more necessary to manage systems.

190

Volume 34, Number 3, September 2013 Ada User Journal

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/adaanswers/gems.

Gem #150: Out and initialized
Emmanuel Briot, AdaCore
Robert Dewar, AdaCore

Abstract. This Gem describes some perhaps unexpected cases
where variables aren't necessarily updated following
assignments, though it might not be obvious from the code.

Let’s get started…

Perhaps surprisingly, the Ada standard indicates cases where
objects passed to out and in out parameters might not be
updated when a procedure terminates due to an exception.
Let's take an example:

with Ada.Text_IO; use Ada.Text_IO;
procedure Gem is

 procedure Local (A : in out Integer; Error : Boolean) is
 begin
 A := 1;

 if Error then
 raise Program_Error;
 end if;
 end Local;

 B : Integer := 0;

begin
 Local (B, Error => True);
exception
 when Program_Error =>
 Put_Line

("Value for B is" & Integer'Image (B)); -- "0"
end Gem;

This program outputs a value of 0 for B, whereas the code
indicates that A is assigned before raising the exception, and
so the reader might expect B to also be updated.

The catch, though, is that a compiler must by default pass
objects of elementary types (scalars and access types) by copy
and might choose to do so for other types (records, for
example), including when passing out and in out parameters.
So what happens is that while the formal parameter A is
properly initialized, the exception is raised before the new
value of A has been copied back into B (the copy will only
happen on a normal return).

In general, any code that reads the actual object passed to an
out or in out parameter after an exception is suspect and
should be avoided. GNAT has useful warnings here, so that if
we simplify the above code to:

with Ada.Text_IO; use Ada.Text_IO;
procedure Gem2 is

 procedure Local (A : in out Integer) is
 begin
 A := 1;
 raise Program_Error;
 end Local;

 B : Integer := 0;

begin
 Local (B);
exception
 when others =>
 Put_Line ("Value for B is" & Integer'Image (B));
end Gem2;

We now get a compilation warning:

gem.adb:6:10: warning: assignment to pass-by-copy
formal may have no effect

gem.adb:6:10: warning: "raise" statement may result in
abnormal return (RM 6.4.1(17))

Of course, GNAT is not able to point out all such errors (see
first example above), which in general would require full flow
analysis.

The behavior is different when using parameter types that the
standard mandates passing by reference, such as tagged types
for instance. So the following code will work as expected,
updating the actual parameter despite the exception:

procedure Gem3 is

 type Rec is tagged record
 Field : Integer;
 end record;

 procedure Local (A : in out Rec) is
 begin
 A.Field := 1;
 raise Program_Error;
 end Local;

 V : Rec;

begin
 V.Field := 0;
 Local (V);
exception
 when others => Put_Line

("Value of Field is" & V.Field'Img); -- "1"
end Gem3;

Ada Gems 191

Ada User Journal Volume 34, Number 3, September 2013

It's worth mentioning that GNAT provides a pragma called
Export_Procedure that forces reference semantics on out
parameters. Use of this pragma would ensure updates of the
actual parameter prior to abnormal completion of the
procedure. However, this pragma only applies to library-level
procedures, so the examples above have to be rewritten to
avoid the use of a nested procedure, and really this pragma is
intended mainly for use in interfacing with foreign code. The
code below shows an example that ensures that B is set to 1
after the call to Local:

package Gem4_Support is

 procedure Local (A : in out Integer; Error : Boolean);
 pragma Export_Procedure (Local,

Mechanism => (A => Reference));
end Gem4_Support;

package body Gem4_Support is

 procedure Local (A : in out Integer; Error : Boolean) is
 begin
 A := 1;
 if Error then
 raise Program_Error;
 end if;
 end Local;

end Gem4_Support;

with Ada.Text_IO; use Ada.Text_IO;
with Gem4_Support; use Gem4_Support;
procedure Gem4 is
 B : Integer := 0;
begin
 Local (B, Error => True);
exception
 when Program_Error =>
 Put_Line ("Value for B is" & Integer'Image (B)); -- "1"
end Gem4;

In the case of direct assignments to global variables, the
behavior in the presence of exceptions is somewhat different.
For predefined exceptions, most notably Constraint_Error, the
optimization permissions allow some flexibility in whether a
global variable is or is not updated when an exception occurs
(see Ada RM 11.6). For instance, the following code makes an
incorrect assumption:

X := 0; -- about to try addition
Y := Y + 1; -- see if addition raises exception
X := 1 -- addition succeeded

A program is not justified in assuming that X = 0 if the
addition raises an exception (assuming X is a global here). So
any such assumptions in a program are incorrect code which
should be fixed.

192

Volume 34, Number 3, September 2013 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Rationale for Ada 2012: Epilogue
	Using the GNAT environment to maintain a large codebase inherited from another compilation system
	The 16th International Real-Time Ada Workshop
	How to Use the Heap in Real-Time Systems:Panel Report
	Ada Gems
	National Ada Organizations

