

Ada User Journal Volume 34, Number 4, December 2013

ADA
USER
JOURNAL

Volume 34

Number 4

December 2013

Contents
Page

Editorial Policy for Ada User Journal 194

Editorial 195

Letter from the President of Ada-Europe 196

Quarterly News Digest 197

Conference Calendar 211

Forthcoming Events 217

Press Release

 "Ada 2012 Language Rationale Published" 223

Articles from the Industrial Track of Ada-Europe 2013

 J. Sparre Andersen
“Alice in Adaland” 226

Overview of the 16th International Real-Time Ada Workshop (IRTAW 2013) 230

 L. M. Pinho, S. Michell and B. Moore
" Session Summary: Parallel and Multicore Systems" 231

 A. Burns and A. Wellings
"Session Summary: Locking Protocols" 237

 T. Vardanega and R. White
" Session Summary: Improvements to Ada" 239

 J. Real and J. A. de la Puente
" Session Summary: Open Issues" 242

SPARK 2014 Rationale

 Y. Moy 243

Ada Gems 253

Ada-Europe Associate Members (National Ada Organizations) 256

Ada-Europe 2013 Sponsors Inside Back Cover

194

Volume 34, Number 4, December 2013 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 195

Ada User Journal Volume 34, Number 4, December 2013

Editorial

In this close of the year I would like to draw the attention of the reader to the announcement that the Rationale for Ada 2012
is being published, both online, freely downloadable, but also as a book as usual in the Springer Lecture Notes in Computer
Science series, Volume 8338, to be released in mid-December 2013. We are much honored to have had the opportunity to
publish the individual chapters of the Rationale in the Ada User Journal, even more because it was really enjoyable to be
among the first to read the usual highly educative and insightful writing of John Barnes.

I would also like to refer the reader to the letter from the President of Ada-Europe (that the Journal publishes in the next
page), calling for 2014 sponsors for the Ada-Europe organization. This sponsorship is fundamental to maintain the activities
Ada-Europe is charted (and committed) to perform. Even if you personally may not be able to be a sponsor, please forward
this information to potential sponsors in your network. You can find an electronic version of the letter in the Ada-Europe
website at www.ada-europe.org.

The issue continues with the usual News Digest, Calendar and Forthcoming Events sections. The latter provides information
on three events which will take place in 2014: the Ada Developer Room at the Free and Open source Software Developers'
European Meeting (FOSDEM) next February in Brussels, Belgium; the call for papers and industrial presentations for the
19th International Conference on Reliable Software Technologies – Ada-Europe 2014, to take place June 2014 in the heart of
Paris, France; and the ACM SIGAda’s High Integrity Language Technology, to take place (tentatively) October 2014 in
Portland, Oregon, USA.

The technical part of the Journal continues the publication of articles from the Industrial Track of Ada-Europe 2013; in this
issue with a contribution from Jacob Sparre Andersen, from Denmark, presenting the experience of using Ada 2012 in the
development of Alice, a core component of a hosted telephone reception system.

This issue also publishes the more detailed reports of the four sessions of the 16th International Real-Time Ada Workshop,
which took place at York, UK, last April. The workshop discussed several important topics for the evolution of Ada such as
fine-grain parallel models, multiprocessor locking protocols, deferred setting of attributes, execution time timers, or potential
extensions to the Ravenscar profile. The reader is encouraged to analyze the discussion and results, and collaborate in the
open topics for a next edition of the workshop which is tentatively planned for the fall of 2014.

Afterwards, the issue starts the publication of a set of articles on the Rationale for SPARK 2014, based on information and
posts available at www.spark-2014.org, provided by Yannick Moy of AdaCore, France. These articles will allow the reader to
know the main topics of this major SPARK evolution, which both aligns with the new contracts specification capabilities of
Ada 2012 and provides new capabilities, profiles, and automation tools.

Finally, the topic of safer software is also present in the Ada Gems section, which provides two gems on Ada 2012 assertions,
also by Yannick Moy.

 Luís Miguel Pinho
Porto

December 2013
 Email: AUJ_Editor@Ada-Europe.org

196

Volume 34, Number 4, December 2013 Ada User Journal

Dear All,

I am writing to you on behalf of Ada-Europe, the international organization that promotes the use, the maintenance and the
evolution of the Ada language and technology.

As part of its charter, Ada-Europe organizes a high-quality yearly International Conference on Reliable Software
Technologies (http://www.ada-europe.org/confs/ae), produces and distributes the Ada User Journal, a fine quarterly
magazine (http://www.ada-europe.org/auj/home), and offers financial grants to initiatives that help further the resonance and
relevance of Ada in engineering and scientific domains.

An important proportion of the Ada-Europe grant program supports the language maintenance process and, when the time
comes, the production of the language Rationale and the Reference Manual books produced by Springer as part of their
famous LNCS series.

The total volume of those financial undertakings is very significant for a not-for-profit organization such as us, which we can
only sustain thanks to the generous support by our past, present and future sponsors.

This letter is a call for sponsors for the year 2014.

On behalf of Ada-Europe I would like you to consider becoming a sponsor. Our sponsorship program offers multiple ways in
which you can flexibly design your sponsorship package, dependent on your business, your need for visibility, and your wish
to selectively support specific initiatives, across the whole spectrum of Ada-Europe’s activities, from the yearly conference,
to the Ada User Journal and our web presence, to the language books and the related language maintenance initiatives.

Visibility at the annual conference is attractive for organizations that want to present product offerings or industrial capacity.
Our yearly conference attracts over 100 delegates from Europe, the USA, and occasionally from Australia, South America
and Asia, with equally sized presence from industry and academia, and has a contact list of more than 1,500 professionals.

Also the Ada User Journal and the Ada-Europe web site are vehicles for visibility, not only for technology vendors, but also
for organizations who want to show their support for Ada. We know the latter are numerous and we would be delighted to see
them become active sponsors of Ada-Europe.

Further financial aid is currently very much required in order that we can support the production of the Reference Manual for
Ada 2012 as a Springer LNCS book, after completing the production of the Ada 2012 Rationale, which is also about to be
printed by Springer. This is really for everyone, regardless of size and business, who wants the latest version of Ada to attain
the prominence that it deserves.

I really hope you will consider becoming a sponsor for some of the above initiatives of Ada-Europe in the year 2014.
Sponsorship packages can be designed to suit both large and small organizations, and start with as little as 350 EUR.

In case you wanted to know more or have some specific interest – even if only provisional at this time – may I kindly invite
you to make contact with the Treasurer of Ada-Europe at <treasurer@ada-europe.org>.

In response to an expression of interest from you, our Treasurer will contact you by phone and discuss with you your possible
sponsorship profile for the year 2014.

I do hope you will find this proposal of some interest and I look forward to including your Company as a valued 2014
sponsor.

Yours sincerely.

President, Ada-Europe: Ada-Europe ivzw/aisbl
Tullio Vardanega phone: +39-049-8271359 http://www.ada-europe.org
University of Padova fax: +39-049-8271499 Legal address:
Department of Mathematics email: president@ada-europe.org c/o Offis nv/sa – Aubay Group
via Trieste 63 Gatti de Gamondstraat 145
I-35121 Padova, Italy B-1180 Brussels, Belgium

 197

Ada User Journal Volume 34, Number 4, December 2013

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Events 197
Ada and Education 198
Ada-related Resources 198
Ada-related Tools 198
Ada-related Products 204
Ada and Operating Systems 204
References to Publications 204
Ada Inside 206
Ada in Context 207

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
 —sparre]

FOSDEM 2014

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sun, 20 Oct 2013 17:48:46 +0000
Subject: CfP - Ada Developer Room at

FOSDEM 2014, Brussels, Belgium
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

Preliminary Announcement and Call for
Presentations

5th Ada Developer Room at FOSDEM
2014

Saturday 1 February 2014, Brussels,
Belgium

http://www.cs.kuleuven.be/
~dirk/ada-belgium/events/14/

140201-fosdem.html

Organized in cooperation with Ada-
Europe

Ada-Belgium [1] is pleased to announce
that there will be a one-day Ada
Developer Room on Saturday 1 February
2014 at FOSDEM 2014 in Brussels,
Belgium. This Ada DevRoom is once
more organized in cooperation with Ada-
Europe [2].

General information

FOSDEM [3], the Free and Open source
Software Developers' European Meeting,
is a free and non-commercial two-day

weekend event organized each February
in Brussels, Belgium. It is highly
developer-oriented and brings together
5000+ participants from all over the
world.
The goal is to provide open source
developers and communities a place to
meet with other developers and projects,
to be informed about the latest
developments in the open source world, to
attend interesting talks and presentations
on various topics by open source project
leaders and committers, and to promote
the development and the benefits of open
source solutions.

Ada Developer Room

At previous FOSDEM events, Ada-
Belgium has organized very well attended
Ada Developer Rooms, offering a full day
program in 2006 [4], a two-day program
in 2009 [5], and full day programs in
2012 [6] and 2013 [7]. One of our
important goals is to present Ada also to
people outside the traditional Ada
community.

Our proposal for another dedicated Ada
DevRoom was accepted recently, and
now work continues to prepare the
detailed program. We most probably will
have a total of 8 schedulable hours
between 10:00 and 18:00 in a room which
holds up to 80 participants. More
information will be posted later on the
dedicated web-page on the Ada-Belgium
site [8], and final announcements will of
course also be sent to various lists and
newsgroups.

Call for presentations

Ada-Belgium calls on you to:

- inform us at
ada-belgium-board@cs.kuleuven.be
about specific presentations you would
like to hear in this Ada DevRoom;

- for bonus points, subscribe to the
Ada-FOSDEM mailing list [9] to
discuss and help organize the details;

- for more bonus points, be a speaker: the
Ada-FOSDEM mailing list is the place
to be!

Do you have a talk you want to give?

Do you have a project you would like to
present?

Would you like to get more people
involved with your project?

We're looking for proposals that are
related to Ada software development, and
include a technical oriented discussion.

You're not limited to slide presentations,
of course. Be creative. Propose something
fun to share with people so they might
feel some of your enthusiasm for Ada!

Speaking slots are 25 or 50 minutes,
including Q&A. Depending on interest,
we might also have a session with
lightning presentations (e.g. 5 minutes
each).

We'd like to put together a draft schedule
by the end of November. So, please act
ASAP, and definitely before November
30, 2013.

We look forward to lots of feedback and
proposals!

[1] http://www.cs.kuleuven.be/~dirk/
ada-belgium

[2] http://www.ada-europe.org

[3] https://fosdem.org

[4] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/06/
060226-fosdem.html

[5] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/09/
090207-fosdem.html

[6] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/12/
120204-fosdem.html

[7] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/13/
130203-fosdem.html

[8] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/14/
140201-fosdem.html

[9] http://listserv.cc.kuleuven.be/
archives/adafosdem.html

Meeting in Stockholm

From: Åke Ragnar Dahlgren
<ake.ragnar.dahlgren@gmail.com>

Date: Fri, 4 Oct 2013 00:07:46 -0700
Subject: Ada meetup in Stockholm the 16:th

of October
Newsgroups: comp.lang.ada

I was checking meetup.com the other day
for things to do in Stockholm. Looks like
there's an Ada meetup the 16:th of
October.

http://www.meetup.com/Ada-Stockholm/

Best regards,

Åke Ragnar Dahlgren

198 Ada-related Tools

Volume 34, Number 4, December 2013 Ada User Journal

GNAT Industrial User Day
Presentations

From: Jamie Ayre <ayre@adacore.com>
Date: Tue Oct 8 2013
Subject: GNAT Industrial User Day

Presentations
URL: http://www.adacore.com/developers/

development-log/
gnat-industrial-day-user-presentations/

The following slides are from
presentations given at the GNAT
Industrial User Day Conference on
September 25, 2013 in Paris.

[“AdaCore Roadmap for 2013-2015”,
“GNATdashboard” and “GNAT Pro for
ARM”. —sparre]

Vermont Tech CubeSat
Launch Delayed

From: VTDigger
Date: Sun Oct 20 2013
Subject: Launch of Vermont Tech's lunar

CubeSat delayed by government
shutdown

URL: http://vtdigger.org/2013/10/20
/launch-vermont-techs-lunar-cubesat-
delayed-government-shutdown/

A small satellite built and programmed at
Vermont Technical College will soon be
orbiting Earth, but its launch date has
been pushed back because of the
government shutdown. Still, the college
will be the first in New England to have
its own cube satellite launched from
NASA’s Mid-Atlantic Regional
Spaceport in Virginia, beating MIT and
Harvard, among others.

[…]

The launch, which was scheduled for
Nov. 4, has been delayed because of the
government shutdown. Brandon is now
waiting to get a new launch date from
NASA. But he’s not too concerned about
the delay. His cube satellite will still be in
space before MIT's.

[…]

[The Vermont Tech CubeSat is
programmed in Ada and SPARK.
—sparre]

Ada and Education

AdaCore University

From: AdaCore Press Center
Date: Wed Sep 25 2013
Subject: AdaCore Launches Free, Online

Ada Educational Resource for the
Software Development Community

URL: http://www.adacore.com/press/
adacoreuniversity/

AdaCore today launched AdaCore
University - a free, web-based resource
center for anyone interested in learning
about, or how to program in, the Ada

programming language. The new website
offers pre-recorded courses and other
learning materials on Ada, with access to
AdaCore’s GNAT Ada toolset for writing
and running example programs. It also
utilizes the latest in website design and
learning tool features. Students at all
levels of experience and expertise can
begin writing programs quickly and can
proceed at their own pace.

AdaCore University courses educate
through examples, allowing students to
see, understand and experiment with most
features of the Ada programming
language. Drawing on the experience and
teaching credentials of Ada experts, such
as AdaCore founders and New York
University Emeritus Professors Robert
Dewar and Edmond Schonberg, the
courses explain Ada’s technical concepts
with insight into the rationale and usage
of particular features.

The initial curriculum includes two
courses:

- Ada 001, “Overview” – a module that
presents an overall picture of the
language and that allows students to
write small programs; and

- Ada 002, “Basic Concepts” – the first in
a formal series of Ada classes,
introducing basic Ada programming
concepts and allowing students to write
programs based on these features.

Both of these modules, and all future
courses, provide sources and installation
instructions for all learning materials and
tools. The courses cover the latest version
of the Ada language (Ada 2012), and
students have access to AdaCore’s GNAT
Ada development environment and
programming tools. The AdaCore
University website also hosts a number of
technical papers on Ada, offering insight
into particular aspects of the language’s
design and usage.

AdaCore University is an ongoing, live
project that will be expanded to include
more advanced courses on Ada, and
SPARK 2014 – an Ada-based
programming language designed for high-
integrity software (i.e., where reliability is
essential and where safety and/or security
certification may be required).

For more information on AdaCore
University please visit
http://u.adacore.com.

Ada-related Resources

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed Nov 13 2013
Subject: Repositories of Open Source

software
To: Ada User Journal

AdaForge: 7 repositories [1]

Bitbucket: 54+ repositories [2,3,4]

Codelabs: 17 repositories [5]

GitHub: 438 repositories [6]

 118 developers [7]

Rosetta Code: 570 examples [8]

 26 developers [9]

Sourceforge: 224 repositories [10]

[1] http://forge.ada-ru.org/adaforge

[2] https://bitbucket.org/repo/all/
relevance?name=binding&language=ada

[3] https://bitbucket.org/repo/all/
relevance?name=library&language=ada

[4] https://bitbucket.org/repo/all/
relevance?name=ada&language=ada

[5] http://git.codelabs.ch/

[6] https://github.com/search?q=language
%3AAda&type=Repositories

[7] https://github.com/search?q=language
%3AAda&type=Users

[8] http://rosettacode.org/wiki/
Category:Ada

[9] http://rosettacode.org/wiki/
Category:Ada_User

[10] http://sourceforge.net/directory/
language%3Aada/

[See also “Repositories of Open Source
Software”, AUJ 34-3, p. 138. —sparre]

Ada-related Tools

YAMI4

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Tue, 3 Sep 2013 02:30:55 -0700
Subject: YAMI4 1.8.0 released
Newsgroups: comp.lang.ada

I'm pleased to announce that the new
version of YAMI4, 1.8.0, was just
released:

http://inspirel.com/yami4/

YAMI4 is a messaging solution for
distributed systems. This new release
provides a range of improvements for all
supported programming languages; from
the Ada point of view the most important
is the extension of the data model, which
now allows to create nested arrays of
parameters objects.

[See also “YAMI4”, AUJ 33-4, p. 236.
—sparre]

Sparkel Programming
Language

From: Jamie Ayre <ayre@adacore.com>
Date: Tue Sep 10 2013
Subject: Sparkel Programming Language
URL: http://www.open-do.org/2013/09/10/

sparkel-programming-language/

Ada-related Tools 199

Ada User Journal Volume 34, Number 4, December 2013

Sparkel is a new parallel programming
language inspired by the SPARK subset
of Ada, and designed to support the
development of inherently safe and
secure, highly parallel applications that
can be mapped to multicore, manycore,
heterogeneous, or distributed
architectures.

To learn more about Sparkel and to
follow the project, please visit
http://www.sparkel.org

From: S. Tucker Taft, AdaCore
Date: Thu Sep 26 2013
Subject: FrontPage - sparkel
URL: http://www.sparkel.org/

[…]

Sparkel Introduction

Sparkel is intended to be a lean, elegant,
parallel language inspired by the SPARK
subset of Ada. Sparkel is for both
specifying and implementing parallel
applications. As such, it includes high-
level specification features, including
parameterized types with full separation
of interface from implementation, pre-
and postconditions for individual
operations of a type, invariants that apply
across all operations of a type, and
constraints that apply to individual
subtypes.

Sparkel provides support for both implicit
and explicit parallelism. Every Sparkel
expression is defined to have parallel
evaluation semantics. That is, given a
Sparkel expression like F(X) + G(Y), the
language rules ensure that it is safe to
evaluate F(X) and G(Y) in parallel. The
compiler makes the decision based on
complexity or other criteria whether a
given computation should be created as a
potentially parallel activity. An
underlying scheduler then maps these
potentially parallel activities to particular
processing resources, by default using a
work-stealing approach, which provides
load balancing across processors while
also providing good locality of reference
and minimal cache contention.

The primary approach to ensuring the safe
parallelism is by simplification of the
language, with the elimination of features
that interfere with safe parallelization. In
particular, Sparkel:

- eliminates global variables — operations
may only access variables passed as
parameters;

- eliminates parameter aliasing — two
parameters passed to the same operation
must not refer to the same object if
either parameter is updateable within the
operation;

- eliminates pointers — optional and
expandable objects and generalized
indexing provides an approach that
allows safe parallelization;

- eliminates run-time exception handling
— strong compile-time checking of

preconditions and support for parallel
event-handling provides a safer
alternative;

- eliminates a global garbage-collected
heap — automatic storage management
is provided using region-based storage
management which provides immediate,
automatic reclamation of storage with
none of the global contention and
disruption associated with a global
garbage-collected heap;

- eliminates explicit threads, lock/unlock,
or signal/wait — parallel activities are
identified automatically by the compiler,
and language rules prevent data races
between readers and writers of the same
object, while explicitly protected objects
can be used for safe synchronization
when concurrent access from multiple
readers and writers is required, without
any need for explicit lock/unlock or
signal/wait.

[…]

Additions to AVR-Ada

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon Sep 16 2013
Subject: [Avr-ada-devel] New stuff:

I2C/TWI via USI, teensy++ 2.0, and
Arduino Leonardo

To: avr-ada-devel@lists.sourceforge.net

Just a note that I pushed a bunch of
changes to AVR-Ada repo.

Main highlights are:

- I2C master (TWI in Atmel terms) via
USI interface of attiny MCUs

- Better support for at90usb1286 MCU
and teensy++ 2.0[1] board (gnatmake -
XBOARD=teensyplusplus2 …)

- Support for atmega32u4, which is on
Arduino Leonardo[2], Arduino Micro
and teensy 2.0 devices (no “board”
support for these yet)

AVR.USI_TWI package might see (API)
changes still, so use with care. Also, if
you have improvement ideas, please send
them to me.

at90usb1286 and atmega32u4 MCUs
don't have all peripherals supported, but at
least UART and Timer0/Timer1 should
work.

In addition, the clock frequency of
at90usb1286/teensy++ 2.0 is somewhat
problematic since teensy++ 2.0 has
16MHz crystal but by default that is
divided by 8, so running frequency is
2MHz.

teensy++ 2.0 author also encourages to
change this frequency via MCU.CLKPR
register, so the code get timings totally
wrong if don't change CLKPR to the
expected value at the beginning.

For now, teensyplusplus2 board expects
16MHz frequency, and I am using

following code in my programs to set the
frequency:

 MCU.CLKPR := 16#80#;
 MCU.CLKPR := 16#00#;

 -- .. rest of the code

AVR-Ada for Teensy,
Arduino Leonardo and
Arduino Micro

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon 16 September 2013
Subject: AVR-Ada gets teensy 2.0, teensy++

2.0, Arduino Leonardo and Arduino
Micro support

URL: http://arduino.ada-language.com/
avr-ada-gets-teensy-20-teensy-20-
arduino-leonardo-and-arduino-micro-
support.html

I just pushed initial support for
atmega32u4 and improved support for
at90usb1286 MCUs to AVR-Ada
repository. This means you can now use
AVR-Ada with your teensy and Arduino
Leonardo devices.

Teensy 2.0, Arduino Leonardo, and
Arduino Micro devices have atmega32u4
processor and teensy++ 2.0 has
at90usb1286 processor. These processors
have USB functionality built in the
processor itself, so in theory you can let
them simulate USB keyboards, mouses,
and other devices relatively easily.
However, AVR-Ada itself does not
contain any USB code yet, so you are
expected to do everything from scratch by
yourself.

In addition, I also pushed some USI code
for attiny processors and now you can use
attiny2313 or attiny4313 as I2C master.

Request: Triplestore

From: Peter Brooks
<peter.h.m.brooks@gmail.com>

Date: Mon Sep 16 2013
URL: http://www.linkedin.com/
Subject: Is there a triplestore written in

Ada?

I have tried to find one, but it may just be
that I've not looked hard enough. If so,
sorry for wasting your time.

If there isn't one, is there a project
working on writing one?

[See http://en.wikipedia.org/wiki/
Triplestore for a definition. —sparre]

SDL Binding

From: Kevin Keith <krfkeith@gmail.com>
Date: Fri, 20 Sep 2013 21:30:07 -0700
Subject: SDL Bindings?
Newsgroups: comp.lang.ada

I've done some searches for SDL
bindings, however they all seem to be
somewhat incomplete. Moreover, they all
appear to be of the thin variety. How

200 Ada-related Tools

Volume 34, Number 4, December 2013 Ada User Journal

involved would writing a set of thick
bindings for SDL be?

From: Oliver Kleinke <oliver.kleinke@c-
01a.de>

Date: Sat, 21 Sep 2013 18:51:50 +0200
Subject: Re: SDL Bindings?
Newsgroups: comp.lang.ada

> [...]

Pro tip: Start with a thin binding, you can
use that code in your thick binding later
on ...

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 21 Sep 2013 21:59:27 +0000
Subject: Re: SDL Bindings?
Newsgroups: comp.lang.ada

> [...]

I've been thinking about doing this again
for a while so I started binding SDL 2.0
yesterday. It'll be a variable thickness
binding.

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sat, 21 Sep 2013 16:24:43 -0700
Subject: Re: SDL Bindings?
Newsgroups: comp.lang.ada

If you are using GNAT, did you consider
the SDL bindings that they provide ?

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 22 Sep 2013 00:29:36 +0000
Subject: Re: SDL Bindings?
Newsgroups: comp.lang.ada

> [...]

1) I didn't realise AdaCore provided any,
and

2) I wouldn't touch then with yours given
their propensity for slapping pure GPL
licences on their libraries.

From: Kevin Keith <krfkeith@gmail.com>
Date: Sun, 22 Sep 2013 22:59:34 -0700
Subject: Re: SDL Bindings?
Newsgroups: comp.lang.ada

The SDL bindings in GNAT are just
cleaned up auto-generated thin bindings.

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Tue, 24 Sep 2013 02:25:40 -0700
Subject: Re: SDL Bindings?
Newsgroups: comp.lang.ada

> [...]

And they work? If so that's great news for
me. I've been looking for a development
setup for complex game-like apps with
the requirements:

1. main program written in Ada

2. cross platform, from desktop to mobile

I have considered Qt but the Ada bindings
don't seem good enough. They are either
at Qt 4, only old desktop GUI style, no
mobile style interface, or Qt 5 only for
Windows.

I have considered Gtk but it does not
seem cross platform enough, and also
only old desktop GUI style, no mobile
style interface.

From: Kevin Keith <krfkeith@gmail.com>
Date: Tue, 24 Sep 2013 17:39:27 -0700
Subject: Re: SDL Bindings?
Newsgroups: comp.lang.ada

That's an excellent question actually, and
I'm not sure. I'd have to do some more
research. I *believe- the package is gnat-
sdl.

From: Thomas Løcke <tl@ada-dk.org>
Date: Wed, 25 Sep 2013 07:38:38 +0200
Subject: Re: SDL Bindings?
Newsgroups: comp.lang.ada

On 09/24/2013 11:25 AM, Marius
Amado-Alves wrote:

> From this thread and the web it seems
that GNAT + SDL + Agar could be it.

I would love to hear from you about your
Ada + Agar experience.

Please don't forget to tell the community
about how things pan out. :o)

Galois Fields

From: Riccardo Bernardini
<framefritti@gmail.com>

Date: Sun, 22 Sep 2013 02:43:13 -0700
Subject: Re: Galois fields
Newsgroups: comp.lang.ada

> Are Galois Fields (I only need binary
GFs) supported by any publicly
available Ada library?

I have a GF binary library that I wrote for
myself in my early Ada days. It is a
generic package that you must instantiate
with the desired GF size (up to 2^64, so it
fits in a 64-bit integer).

Unfortunately I did not publish the code
by itself, but you can find it “embedded”
in an old (and, alas, sleeping) project of
mine hosted on launchpad. Just go here

http://bazaar.launchpad.net/
~riccardo-bernardini/+junk/pre-ppetp/
files/head:/src/lib/Algebra/Galois/

(or here: http://bit.ly/1gOe996 if the URL
above is too long) and take the two files
gf_2p_varsize.{ads, adb}. You just need
to instantiate it with something like

 package GF32 is
 new Gf_2p_Varsize(Exponent => 32,
 Basic_Type => Unsigned_32);

and then use it like

 X, Y, Z : GF32.Galois;
 X = Y * Z;

Disclaimer: As I said, I wrote this
package in my early Ada days, so maybe
it is not the most elegant code around, but
it works…

Should you decide to use it and have any
question, please ask.

Excel Writer, GNAVI,
Mathpaqs and Zip-Ada

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Mon Sep 30 2013
Subject: September 2013 releases
URL: http://gautiersblog.blogspot.dk/2013

/09/september-2013-releases.html

New maintenance releases have been
uploaded for…

- Excel Writer [1]

- GNAVI: GNU Ada Visual Interface [2]

- Mathpaqs [3]

- Zip-Ada [4]

Enjoy!

[1] http://excel-writer.sf.net/

[2] http://sourceforge.net/projects/gnavi/

[3] http://sf.net/projects/mathpaqs/

[4] http://unzip-ada.sf.net/

[See also “Excel Writer”, AUJ 34-1, p. 8.
—sparre]

[See also “GWindows Setup”, AUJ 34-1,
p. 8. —sparre]

[See also “Mathpaqs, February 2011”,
AUJ 32-2, p. 72. —sparre]

[See also “Zip-Ada”, AUJ 34-1, p. 8.
—sparre]

PLplot

From: Jerry Bauck
<lanceboyle@qwest.net>

Date: Tue, 1 Oct 2013 17:31:44 -0700
Subject: ANN: PLplot plotting library with

Ada bindings
Newsgroups: comp.lang.ada

PLplot 5.9.10 has just been released.
PLplot is an extensive plotting library
with Ada bindings.

http://plplot.sourceforge.net/

In addition to the bindings, the Ada
component adds substantial ease-of-use
functionality that eliminates the need to
learn and code a lot of set-up routines.
These easy-to-use routines will work for
most day-to-day plotting. For example, to
make an x-y plot:

with PLplot;
use PLplot;
procedure Simple_Example is
 x, y : Real_Vector (-10 .. 10);
begin
 for i in x'range loop
 x(i) := Long_Float (i);
 y(i) := x (i) ** 2;
 end loop;
 Initialize_PLplot; -- Call this only once.
 Simple_Plot (x, y); -- Make the plot.
 -- Make more plots here.
 End_PLplot; -- Call this only once.
end Simple_Example;

Ada-related Tools 201

Ada User Journal Volume 34, Number 4, December 2013

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Tue, 01 Oct 2013 17:45:57 -0700
Subject: Re: ANN: PLplot plotting library

with Ada bindings
Newsgroups: comp.lang.ada

> Initialize_PLplot; -- Call this only
once.

Why doesn't the elaboration of Plplot do
this?

> End_PLplot; -- Call this only once.

Why not use finalization to do this?

From: Graham Stark
<graham.stark@virtual-worlds.biz>

Date: Tue, 12 Nov 2013 07:27:37 -0800
Subject: Re: ANN: PLplot plotting library

with Ada bindings
Newsgroups: comp.lang.ada

I'm looking for a plotter routine that could
be used safely inside the AWS web
server, so I can implement a 'callback'
chart server (currently I have one written
in Java).

Could this be used for that? Some simple
tests suggest to me that it isn't thread safe.
The Initialize_PLplot and associated
procedures to set filenames, etc, seem to
set global variables somewhere. Is there
some trick I'm missing?

It does make lovely looking charts.

From: Jerry Bauck
<lanceboyle@qwest.net>

Date: Wed, 13 Nov 2013 14:51:31 -0800
Subject: Re: ANN: PLplot plotting library

with Ada bindings
Newsgroups: comp.lang.ada

Thanks for your interest in PLplot. I don't
know how to answer your question about
thread safety so I put it to the PLplot
development list. There are two responses
so far, from Alan and Hezekiah.

Alan

To answer the question at hand, I am
virtually positive PLplot is not thread
safe, but you should wait for Andrew's
response for the definitive view on that,
especially the question of what would
need to be done to make PLplot thread
safe and ideally a plan for getting there.

Just as important as thread safety in my
option is security. If I were a webserver
designer interested in safe plotting, then it
is important to acknowledge that plotting
software by its very nature is inherently
insecure; the problem is that plotting
software has lots of different user input
channels (titles, text annotations, legends,
colorbars, etc.,) that could be the source
of potential buffer overflows or other
intrusion possibilities. We do make some
concious decisions for PLplot
development to avoid obvious security
issues, but at the same time security is not
our primary interest and certainly not a
fundamentally important area of expertise
for us. And I am sure that is the case for

developers of other plotting software as
well; we are all primarily interested in
making pretty pictures (“lovely looking
charts”) rather than designing secure
software. :-)

So for any plot software including PLplot,
the web designer should filter down the
possible user input channels as much as
possible (ideally no user-controlled input
text allowed at all). After that, a full
security audit (only possible with open-
source plotting software such as PLplot)
should be done of what is left to target by
a malicious user after such filtering. And
we would certainly be happy to accept
patches that were the result of any such
audit.

Hezekiah

PLplot is not thread safe. While you can
use PLplot in a threaded program, only
one thread per process may interact with
PLplot at a given time. This limitation
holds even if you are working with
multiple plot streams in a single process.

Regarding Alan's follow-up - while it is
possible to make PLplot thread-safe, the
changes required are invasive and
pervasive. They are all good changes to
make! But there is a lot to be done and the
result is a completely backwards-
incompatible API. The three big pieces
required are:

a) All PLplot functions will need to
explicitly operate on a given plstream
value representing the affected plot
stream. This requires adding an
additional stream argument to all PLplot
functions and removing any global state
from plot streams.

b) Remove all of the globals used through
the PLplot code base in the actual
plotting logic. One example is the
contour/shading routines which use
several global variables to track their
state.

c) Confirm/ensure that each of our output
devices can be and are used in a thread-
safe manner.

Each of these big pieces is made up of
several smaller chunks. (a) is where the
API breakage would come in. It is also
likely the simplest (simple being relative
here!) to complete. (b) could be pretty
hairy as the logic in the contouring
routines in particular is tricky to translate
to something which doesn't use globals.
(c) should be attainable for at least the
Cairo, Qt and built-in output drivers
(SVG, PS, null). I would be happy to help
in putting together a plan for this work.
Unfortunately my PLplot time is very
limited these days so it's unlikely I'll be
able to provide much development
assistance.

VTKAda

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Thu, 3 Oct 2013 04:50:11 -0700
Subject: I'm pleased to announce VTKAda

version 6.0 free edition release
01/10/2013

Newsgroups: comp.lang.ada

VTKAda is an Ada-2012 binding to
Visualization Toolkit by Kitware (VTK)
and the Qt5 application and UI framework
by Nokia.

VTK version: 6.0.0

Qt version: 5.1.1

Built with Microsoft Visual Studio 2012
in Windows and gcc in Linux x86-64.
Package was tested with the GNAT-GPL-
2012 Ada compiler (-gnat12 option) on
Windows 8 64bit and Debian 7 x86-64.

With VTKAda(+QtAda) you can build
any desktop applications with powerful
2D/3D rendering and imaging (games,
animations, emulations) GUI, Database
connection, server/client, Internet
browsing and many others things.

Current state of VTKAda is 42064
procedures and function distributed in 672
packages. 135 examples. All QtAda
examples are Qt5 applications.

Current state of QtAda is 11925
procedures and function distributed in 324
packages. There are many new packages
and examples in this release.

VTKAda you can be used without the
QtAda subsystem.

QtAda is an Ada binding to the Qt5
framework and can be used as an
independent system.

VTKAda and QtAda for Windows and
Linux (Unix) free edition with prebuilt Qt
5.1 and VTK 6/0 are available from

http://www.multiupload.nl/ST1R8GBDG
W

[See also “VTKAda”, AUJ 33-3, p. 144.
—sparre]

Embedded Web Server

From: Simon Wright
<simon@pushface.org>

Date: Wed, 16 Oct 2013 16:58:19 +0100
Subject: Embedded Web Server 20131016
Newsgroups: comp.lang.ada

This release[1] of EWS allows the
software to be built as a library.

It requires an Ada 2012 capable compiler
(GCC 4.8 or later, GNAT GPL 2012 or
later (but “make install” requires GNAT
GPL 2013's gprinstall)).

The licence has been changed to GPL v3,
with the GCC Runtime Library Exception
v3.1 in place of GMGPL.

It no longer requires the Booch
Components (XML/Ada is still required).

202 Ada-related Tools

Volume 34, Number 4, December 2013 Ada User Journal

[1] https://sourceforge.net/projects/
embed-web-srvr/files/ews-20131016/

[See also “New release of the Embedded
Web Server”, AUJ 32-1, p. 11. —sparre]

AdaMAnT (MAT I/O in
Ada)

From: Riccardo Bernardini
<framefritti@gmail.com>

Date: Fri, 18 Oct 2013 13:09:20 -0700
Subject: Re: Ada library to read/write

matlab files?
Newsgroups: comp.lang.ada

[…] I “threw together” a solution good
enough for me:

 https://launchpad.net/adamant

Currently it is very limited (but you can
copy it! :-) [did you get the joke? no?!?
Then, what are you doing in this
newsgroup? :-) :-) :-)]

It allows you only to write Matlab files
and only matrices of double (of any
dimensionality) and strings. Cells, structs
and reading are for a future release
(maybe)

It requires Ada 2012 since I spotted the
occasion of using a dynamic predicate
(too cool!). If you want to use it with a
non Ada 2012 compiler, just go to the
specs of Matlab.IO and remove the
predicate from Matlab_Name.

Request: Health Level
7/MLLP implementation?

From: Peter Brooks
<peter.h.m.brooks@gmail.com>

Date: Fri, 18 Oct 2013 22:20:24 -0700
Subject: HL7/MLLP - any work on reliable

implementation in Ada?
Newsgroups: comp.lang.ada

Does anybody know if there is a working
group anywhere to produce a reliable
version of the interchange protocol MLLP
that supports the Health Level 7 standard?

Are there any implementations of HL7
components in Ada - or work to produce
these?

Ada 2012 Grammar

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 25 Oct 2013 21:07:04 -0500
Subject: Re: Ada 2012 grammar
Newsgroups: comp.lang.ada

> […] a complete grammar for Ada 2012,
lets say, in Flex+Bison or similar
compiler construction tool-chain?

Website: http://stephe-leake.org/
emacs/ada-mode/emacs-ada-mode.html

The grammar there has conflicts, so it
relies on a generalized LALR parser
(http://en.wikipedia.org/wiki/
Generalized_LR_parser), which I
implemented in Emacs lisp.

The grammar file can be parsed by a new
OpenToken feature, and it will generate
either Ada OpenToken source code, or
Emacs lisp for a parser table; that version
of OpenToken is available on the Ada
mode website (not the OpenToken
website http://stephe-leake.org/ada/
opentoken.html).

However, OpenToken only has a (non-
generalized) LALR parser. It would be
interesting to implement a generalized
parser for Opentoken; let me know if
you'd like to use that and/or help
implement it.

It might not be too hard to eliminate the
conflicts so you can use the OpenToken
parser (or some other parser); I did not do
that because it seemed easier (not to say
way more fun) to implement the parser :).
In addition, the grammar source is closer
to the Ada LRM Annex P this way.

I've improved Ada mode a bit since the
last post on the website; it's quite usable
now. The latest is in monotone; see the
Ada mode website for access info. It is
time to post another release; maybe this
weekend.

Also note that I fixed several bugs in
OpenToken, so if it was not working for
you before, you should try it again.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 11 Nov 2013 08:55:15 -0600
Subject: Re: Ada 2012 grammar
Newsgroups: comp.lang.ada

> Version 4.0b 29 Jun 2010?

That's the “current stable release” version
at the OpenToken website http://stephe-
leake.org/ada/opentoken.html, and also in
Debian distributions.

The experimental, alpha release version
that supports creating a parse table for a
generalized parser is at http://stephe-
leake.org/emacs/ada-mode/emacs-ada-
mode.html

OS-Lovelace

From: Xavier Grave
<xavier.grave@ipno.in2p3.fr>

Date: Tue, 29 Oct 2013 19:25:42 +0100
Subject: Re: Try to compile OS-Lovelace

with gcc-4.6
Newsgroups: comp.lang.ada

> I was looking the internet for some
code, but I didn't find OS-Lovelace.
Can you provide a link to the code,
please?

You should use monotone :

Prompt> mtn --db=./base_lovelace.db db
init

Prompt> mtn --db=./base_lovelace.db pull

mtn://www.ada-france.org?org.os-
lovelace.*

Prompt> mtn --db=./base_lovelace.db list
branches

org.os-lovelace.micro-kernel

org.os-lovelace.multi

org.os-lovelace.toy

org.os-lovelace.tutorial

The tutorial branch contains some test
code for C, Ada for x86 and ARM
architectures.

The micro-kernel one is the
implementation of the code tested in the
previous branch.

The toy branch is an archive of the Ada
translation of SOS (Simple OS, written in
C), there is support for Ada tasking, OO
and exceptions in it.

To commit a branch :

Prompt> mtn --db=./base_lovelace.db co -
b org.os-lovelace.micro-kernel

Hope it will help, Xavier

GNATColl ORM foreign key
twins

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed Oct 30 2013
Subject: GNATColl ORM foreign key twins
URL: http://repositories.jacob-sparre.dk/

gnatcoll-orm-foreign-key-twins

Demonstration source text for using the
GNATColl ORM generator, when you
have a table for linking pairs of rows in
another table together.

FNV1 and FNV1a Hash
Functions

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Wed, 30 Oct 2013 16:31:39 -0700
Subject: FNV-1
Newsgroups: comp.lang.ada

I did up the following implementation of
the FNV1 and FNV1a hashes after
needing a decent cross-platform,
compiler-independent way to hash things
(64-bit pointers, specifically), but it ought
to be good for other things as well. I
haven't done any extensive testing, but it
seems to suit my needs; perhaps it will
suit yours as well. Any suggestions are
welcome, especially tips on better ways to
use static expressions, or any cross-
platform 'gotchas'. The code is public
domain.

-- Fowler/Noll/Vo hash functions
with Ada.Containers;

package FNV is
 -- FNV-1 Hash
 generic
 type T is private;
 function FNV1 (Item : T) return
 Ada.Containers.Hash_Type;

 -- FNV-1a Alternative Hash
 generic
 type T is private;

Ada-related Tools 203

Ada User Journal Volume 34, Number 4, December 2013

 function FNV1a (Item : T) return
 Ada.Containers.Hash_Type;
end FNV;

pragma Assertion_Policy (Check);
with Ada.Storage_IO;

package body FNV is
 subtype FNV_Hash_Type is
 Ada.Containers.Hash_Type;
 use type FNV_Hash_Type;

 -- Prime Values
 Prime_32 : constant :=
 2**24 + 2**8 +16#93#;
 Prime_64 : constant :=
 2**40 + 2**8 +16#b3#;
 Prime_128 : constant :=
 2**88 + 2**8 +16#3b#;
 Prime_256 : constant :=
 2**168 + 2**8 + 16#63#;
 Prime_512 : constant :=
 2**344 + 2**8 +16#57#;
 Prime_1024 : constant :=
 2**680 + 2**8 +16#8d#;

 subtype FNV_Prime_Type is
 FNV_Hash_Type range 1 ..
 FNV_Hash_Type'Last;

 K_Prime : constant := (case
 FNV_Prime_Type'Size is
 when 32 => Prime_32,
 when 64 => Prime_64,
 when 128 => Prime_128,
 when 256 => Prime_256,
 when 512 => Prime_512,
 when 1024 => Prime_1024,
 when others => 0);

 Prime : constant FNV_Prime_Type :=
 K_Prime;

 -- Start Offset Values
 Offset_32 : constant := 2166136261;
 Offset_64 : constant :=
 14695981039346656037;
 Offset_128 : constant :=
144066263297769815596495629667062367
629;
 Offset_256 : constant :=
100029257958052580907070968620625704
837092796014241193945225284501741471
925557;
 Offset_512 : constant :=
965930312949666949800943540071631046
609041874567263789610837432943446265
799458293219771643844981305189220653
980578449532823934008387619192870158
3869517785;
 Offset_1024 : constant :=
141977950649476210687220706414032183
208806227954419339608784749146175827
232522967323037177221508640965212023
555493656281746691085718147604710150
761480297559698040773201576924585630
032153049571501574036444603635505054
127112859663616102678680828938239637
90439336411086884584107735010676915;

 subtype FNV_Offset_Type is
 FNV_Hash_Type range 1 ..

 FNV_Hash_Type'Last;

 K_Offset : constant := (case
 FNV_Offset_Type'Size is
 when 32 => Offset_32,
 when 64 => Offset_64,
 when 128 => Offset_128,
 when 256 => Offset_256,
 when 512 => Offset_512,
 when 1024 => Offset_1024,
 when others => 0);

 Offset : constant FNV_Offset_Type :=
 K_Offset;

 function FNV1 (Item : T) return
 Ada.Containers.Hash_Type is
 package Data_Buffers is new
 Ada.Storage_IO (Element_Type => T);
 Buffer : Data_Buffers.Buffer_Type;
 begin
 Data_Buffers.Write (Buffer => Buffer,
 Item => Item);

 return Hash : FNV_Hash_Type := Offset
 do
 for Byte of Buffer loop
 Hash := Hash * Prime;
 Hash := Hash xor
 FNV_Hash_Type(Byte);
 end loop;
 end return;
 end FNV1;

 function FNV1a (Item : T) return
 Ada.Containers.Hash_Type is
 package Data_Buffers is new
 Ada.Storage_IO (Element_Type => T);
 Buffer : Data_Buffers.Buffer_Type;
 begin
 Data_Buffers.Write (Buffer => Buffer,
 Item => Item);

 return Hash : FNV_Hash_Type := Offset
 do
 for Byte of Buffer loop
 Hash := Hash xor
 FNV_Hash_Type(Byte);
 Hash := Hash * Prime;
 end loop;
 end return;
 end FNV1a;
end FNV;

Mathematics and Statistics

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Thu Oct 31 2013
Subject: Mathematics and Statistics
URL: http://repositories.jacob-sparre.dk/

mathematics-and-statistics

Various packages for mathematics and
statistics.

[…]

Recent activity:

- Minor code clean-up.

- Fix for warnings from GNAT GPL
2013.

- Raw import of random number
generator packages.

- Using fancy overflow checking.

- […]

Comfignat

From: Björn Persson <bjorn@xn--
rombobjrn-67a.se>

Date: Wed, 6 Nov 2013 22:48:36 +0100
Subject: Comfignat 1.2 released
Newsgroups: comp.lang.ada

In August I published the first release of
Comfignat, the makefile foundation and
the abstract GNAT project for common,
convenient, command-line-controlled
compile-time configuration of software
built with the GNAT tools on Unix-like
operating systems. Today I have released
Comfignat version 1.2. These are the most
noteworthy changes:

- The interaction between directory
variables and directories projects has
been corrected so that a directories
project overrides the default values of
some directory variables, but an
explicitly set Make variable overrides
the corresponding variable in the
directories project.

- A directory variable named “alidir” has
been added so that installing users can
control the placement of ALI files and
binary libraries independently. This
proved necessary in Debian, where ALI
files are not kept in immediate
subdirectories of libdir, but farther
down.

- Comfignat's behaviour in sub-Makes has
been fixed so that subprocesses working
in subdirectories use the right build and
staging directories.

- The persistent configuration feature has
been improved so that Make variables
that can be overridden by environment
variables can also be configured from
the environment. In subsequent Make
invocations environment variables
override values that were configured
from the environment, and variables set
on the command line override all
configured values.

- A command “make
show_configuration” has been added,
making it easier to see the configured
variables.

Comfignat resides at
https://www.rombobjörn.se/Comfignat/.

Agar

From: Kevin Keith <krfkeith@gmail.com>
Date: Sat, 9 Nov 2013 04:52:10 -0800
Subject: Has anyone here used libAgar?
Newsgroups: comp.lang.ada

If so, would you recommend it? Are the
bindings to it complete?

204 References to Publ icat ions

Volume 34, Number 4, December 2013 Ada User Journal

[Agar is a powerful open-source, cross-
platform toolkit for graphical applications
in C, C++ or Objective-C (bindings to
Perl and Ada are also available).
Designed for ease of integration, Agar
follows the philosophy of building the
GUI around the application, and not the
other way around. Agar applications
should work seamlessly under any
platform, and Agar itself should work
without relying on other libraries (Agar
1.4 can be compiled without
dependencies, and has even been used on
embedded devices without filesystems or
operating systems at all). When compiled
with optional threads support, Agar's
entire documented API is thread-safe.
—sparre]

Ada-related Products

Vector Software Achieves
TÜV SÜD Re-Certification
for Safety Related Software
Development

From: Vector Software Press Releases
Date: Mon Aug 12 2013
Subject: Vector Software Achieves TÜV

SÜD Re-Certification for Safety Related
Software Development

URL: https://www.vectorcast.com/news/
vector-software-press-releases/2013/
press-release-vector-software-achieves-
tuv-sud-re-certification

Vector Software, the world’s leading
provider of innovative software solutions
for testing safety and mission critical
embedded applications, today announced
that it has re-certified its VectorCAST
embedded software test platform and
expanded its safety certification support
to include railway applications certifiable
to SIL 4 (safety integrity level).

TÜV SÜD Rail GmbH assessed
VectorCAST as suitable for development
processes that must comply with the
stringent CENELEC EN 50128 standard.
TÜV SÜD also confirmed the re-
certification of the latest VectorCAST
release to IEC 61508-3 (general
industrial) and ISO 26262-8 (automotive).
VectorCAST was first certified in
February 2011.

TÜV SÜD Rail GmbH, an international
service corporation focusing on
consulting, testing, certification and
training, assessed the VectorCAST tools
for dynamic testing with respect to
functional safety. The TÜV SÜD
assessment and resulting tool qualification
of the Vector Software products offer
safety related development organizations
the required evidence to demonstrate
compliance with IEC 61508 and ISO
26262, and now CENELEC EN 50128.

VectorCAST is a family of co-operating
software tools used for test automation in

the development of embedded software
applications. VectorCAST/C++,
VectorCAST/Ada, VectorCAST/Cover,
and VectorCAST/Manage support
automated test execution for unit- and
integration testing, test coverage analysis,
and the management of test projects.

“We are pleased that VectorCAST is now
a TÜV SÜD certified product for railway
applications. This expands the
certification we received over 2 years ago
for automotive and industrial applications
and validates the way our products are
built,” said William McCaffrey, Chief
Operating Officer at Vector Software, Inc.
“This is not a minor achievement. This
certification separates us from our
competitors and it is recognized by all
Vector employees and departments that
our clients can feel confident selecting our
VectorCAST products for their most
critical software development.

Ada Plugin for SonarQube

From: Maurizio Martignano
Date: Mon Oct 14 2013
Subject: Spazio IT just finished to port its

Ada Plugin to SonarQube version 3.7.2!
URL: http://www.linkedin.com/

Spazio IT just finished to port its Ada
Plugin to SonarQube version 3.7.2!

http://www.spazioit.com/pages_en/
sol_inf_en/code_quality_en/

Ada and Operating
Systems

New and Updated FreeBSD
Ports

From: John Marino
<dragonlace.cla@marino.st>

Date: Tue Jul 02 2013
Subject: New and Updated FreeBSD ports
URL: http://www.dragonlace.net/posts/

New_and_Updated_FreeBSD_ports/

There has been a fair amount of activity
for Ada in the FreeBSD Ports collection.
Two new ports have been added:

- libsparkcrypto - Cryptographic library
implemented in SPARK
security/libsparkcrypto

- matreshka - Ada framework for
information systems development
devel/matreshka

Some existing ports have been updated:

- xmlada was updated from version 4.2 to
4.4

- gtkada was updated from version 2.22 to
2.24.4

- Gnat Programming Studio was updated
from version 5.0.1 to 5.2.1

More Ada ports will be coming soon!

MacOS X Mavericks

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Fri, 25 Oct 2013 02:34:51 +0100
Subject: GNAT GPL 2013 on OS X

Mavericks
Newsgroups: comp.lang.ada

I have installed Mavericks on my second
computer (I'm not stupid 8-) and find that
gnatmake fails at the link stage: ld fails to
find libraries and reports them as missing
from /usr/lib. They are present in Xcode
for OS X 10.8, but not in 10.9. Adding the
library location in Xcode to
LIBRARY_PATH seems to make no
difference. Copying one or two from
Xcode to /usr/lib makes ld go on to
complain about others; copying the lot
borks Mavericks.

Reinstallation looms ...

BTW, doinstall in Mavericks demands
that the Xcode licence terms be agreed to
before it will complete the installation!

From: Martin Dowie
<martin@thedowies.com>

Date: Thu, 24 Oct 2013 23:12:58 -0700
Subject: GNAT GPL 2013 on OS X

Mavericks
Newsgroups: comp.lang.ada

No need!!!

Installing the command line tools is
different. Try this
http://www.computersnyou.com/2025/
2013/06/install-command-line-tools-in-
osx-10-9-mavericks-how-to/

I installed them via the Apple developer
website but this should work. The CLTs
used to be install able from within Xcode
itself but that seems to have changed.

From: Martin Dowie
<martin@thedowies.com>

Date: Thu, 24 Oct 2013 23:35:51 -0700
Subject: GNAT GPL 2013 on OS X

Mavericks
Newsgroups: comp.lang.ada

https://developer.apple.com/downloads/in
dex.action

The new Mavericks command line tools
are there too.

References to
Publications

Contract-based
Programming

From: Benjamin M. Brosgol, AdaCore
Date: Sat Aug 24 2013
Subject: Contract-based programming:

making software more reliable
URL: http://www.embedded.com/design/

programming-languages-and-tools/
4420114/Contract-based-programming--
making-software-more-reliable

References to Publ icat ions 205

Ada User Journal Volume 34, Number 4, December 2013

The elements of 'contract-based
programming' – assertions of program
properties that are part of the source text –
have been available in some programming
languages for many years but have only
recently moved into the mainstream of
software development. The latest version
of the Ada language standard, Ada 2012,
has added contract-based programming
features that can be verified either
dynamically with run-time checks, or
statically through formal analysis tools.
Both approaches help make programs
more reliable by preventing errors from
getting into production code.

[…]

Measuring Current With an
Arduino

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon 26 Aug 2013
Subject: Measuring current with INA219

sensor
URL: http://arduino.ada-language.com/

measuring-current-with-ina219-
sensor.html

To optimize the power usage of my
Arduino devices, I first needed to measure
the power usage.

I could have done it traditionally with
multimeter, but then I found Adafruit's
INA219 sensor breakout board.

[image:http://farm4.staticflickr.com/3804/
9358734151_73017e60f7.jpg]

Adafruit also has nice tutorial for the
sensor (which I actually bought from
oomlout.co.uk to avoid customs/extra
taxes as European).

So, for the setup I gathered following
parts:

- Arduino UNO, for reading the INA219
sensor

- The INA219 sensor itself

- Olimexino-328 as a target device for
measurements

- Sparkfun Breadboard Power Supply for
providing power to Olimexino-328.

- A small breadboard and a few jumper
wires

When assembled together, the setup looks
like this:

[image:http://farm8.staticflickr.com/7344/
9361731678_8b441a72f2.jpg]

Code

The code consists of my I2C package and
translation of Adafruit's INA219 code
(written in C) to Ada.

The INA219 Ada package interface looks
like this:

package INA219 is
 procedure Init;

 function Get_Bus_Voltage return

 Interfaces.Unsigned_16;
 function Get_Shunt_Voltage return
 Interfaces.Unsigned_16;
 function Get_Current return
 Interfaces.Unsigned_16;
 function Get_Power return
 Interfaces.Unsigned_16;

 function Get_Error return Boolean;

 procedure Set_Calibration_32V_2A;
end INA219;

Procedure Init needs to be called before
other functions. It initializes the I2C bus
and sets the default calibration.

Once the device is initialized and
calibrated, you can query voltage, current,
and power values with the related
functions.

INA219.Init;
…
loop
 AVR.UART.Put (" ***");
 AVR.UART.CRLF;
 AVR.UART.Put
 (INA219.Get_Bus_Voltage);
 AVR.UART.CRLF;
 AVR.UART.Put
 (INA219.Get_Shunt_Voltage);
 AVR.UART.CRLF;
 AVR.UART.Put (INA219.Get_Current);
 AVR.UART.CRLF;
 AVR.UART.Put (INA219.Get_Power);
 AVR.UART.CRLF;
 delay 1.0;
end loop;

Using the above program and opening the
serial console, we can see how much
power our target device draws. If you
want to know how to change this value,
you need to either do it by yourself or
wait for future articles about AVR power
saving using AVR-Ada :).

The code for the program is available in
my arduino-blog repository (see
examples/ina219 directory).

SPARK 2014 Rationale: Pre-
call and Pre-loop Values

From: Yannick Moy
Date: Sat Sep 14 2013
Subject: SPARK 2014 : SPARK 2014

Rationale: Pre-call and Pre-loop Values
URL: http://www.spark-2014.org/entries/

detail/spark-2014-rationale-pre-call-
and-pre-loop-values

Subprogram contracts are commonly
presented as special assertions: the
precondition is an assertion checked at
subprogram entry, while the postcondition
is an assertion checked at subprogram
exit. A subtlety not covered by this
simplified presentation is that
postconditions are really two-state
assertions: they assert properties over
values at subprogram exit and values at
subprogram entry.

[…]

SPARK 2014 Rationale:
Mixing SPARK and Ada
Code

From: Yannick Moy
Date: Sun Oct 20 2013
Subject: SPARK 2014 : SPARK 2014

Rationale: Mixing SPARK and Ada Code
URL: http://www.spark-2014.org/entries/

detail/spark-2014-rationale-mixing-
spark-and-ada-code

The first step before any formal
verification work with SPARK is to
delimitate the part of the code that will be
subject to formal verification (the code in
SPARK) within the overall Ada
application (which could also contain
parts coded in C, in Java, in assembly,
etc.).

[…]

How not to Design Safety
Critical Software

From: Junko Yoshida
Date: Fri Oct 25 2013
Subject: Toyota Case: Single Bit Flip That

Killed
URL: http://www.eetimes.com/

document.asp?doc_id=1319903

Could bad code kill a person? It could,
and it apparently did.

[A textbook example of how not to design
safety critical software. —sparre]

From: Michael Dunn
Date: Mon Oct 28 2013
Subject: Toyota's killer firmware: Bad

design and its consequences
URL: http://www.edn.com/design/

automotive/4423428/
Toyota-s-killer-firmware--Bad-design-
and-its-consequences

On Thursday October 24, 2013, an
Oklahoma court ruled against Toyota in a
case of unintended acceleration that lead
to the death of one the occupants. Central
to the trial was the Engine Control
Module's (ECM) firmware.

[…]

[More on the Toyota engine control
system. —sparre]

Saving Power with AVR-
Ada

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue Nov 5 2013
Subject: Saving power with AVR-Ada
URL: http://arduino.ada-language.com/

saving-power-with-avr-ada.html

As I got my INA219 sensor working, the
next logical step was to actually find out
how you can save some power with
Arduinos.

206 Ada Inside

Volume 34, Number 4, December 2013 Ada User Journal

Sparkfun provides a nice article about the
subject and atmega328p datasheet is also
an useful information source.

To save power, I basically did following
things:

- Turned off all unnecessary peripherals.

- Turned off brown-out-detection (BOD,
either via software or via FUSE bits).

- Slow down CPU frequency

- Put the processor in power save mode.

[Followed by detailed descriptions of
each of the steps in the process —
including source code. —sparre]

Summary:

When you need to a lower power
Arduino, Diavolino or Olimexino-328
looks like the best bet.

If my measurements are correct, you can
run Diavolino on 400mAh battery for one
month or even more, if you run the board
at 3.3V instead of 5V.

Also, I didn't even try all the available
power saving tricks, so it should be
possible to go even lower. (See the
Sparkfun tutorial for details.)

The complete code is available from my
arduino-blog repository [1], under
examples/sleeper directory.

[1] https://bitbucket.org/tkoskine/arduino-
blog/

Ada 2012 Language
Rationale Published

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Tue, 12 Nov 2013 13:00:10 +0000
Subject: Press Release - Ada 2012

Language Rationale Published
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

FOR IMMEDIATE RELEASE

Ada 2012 Language Rationale Published

New educational resource by Ada expert
John Barnes explains key Ada 2012

concepts

PITTSBURGH, Pa., November 12, 2013 -
Today at ACM SIGAda's HILT 2013
(High Integrity Language Technology)
Conference, the Ada Resource
Association (ARA) and Ada-Europe
announced the publication of the Ada
2012 Rationale and its free availability for
downloading. Sponsored in part by Ada-
Europe, the Ada Resource Association,
and AdaCore, the Ada 2012 Rationale
was written by longtime Ada authority
John Barnes. It summarizes the new Ada
2012 features, shows examples of their
use, describes compatibility with earlier
versions of the language standard, and
explains the reasons behind critical

language design decisions. This new
Rationale will be a valuable resource for
anyone interested in learning the
innovations introduced by the Ada 2012
standard.

The Rationale may be downloaded at no
cost from [1], [2], and [3]. The book may
also be purchased through its commercial
publisher, Springer, as volume LNCS
8338 in their Lecture Notes in Computer
Science series, to be released in mid-
December 2013.

[1] www.adaresource.com/rationale-2012/

[2] www.ada-europe.org/resources/online/

[3] www.adacore.com/rationale-2012/

The Ada 2012 Rationale contains the
following chapters:

- Introduction, covering the development
of Ada 2012 and giving a brief overview
of the main changes from Ada 2005.

- Contracts and Aspects, describing the
contract mechanism, one of the major
enhancements in Ada 2012. It explains
subprogram preconditions and
postconditions, type invariants, and
subtype predicates, and also presents the
new unifying concept of “aspects”.

- Expressions, describing the new flexible
forms of expressions introduced in Ada
2012. These new forms - conditional
expressions, quantified expressions, and
expression functions - are especially
useful in conjunction with contracts.

- Structure and Visibility, describing
various improvements including the
generalization of parameter modes to
functions, additional flexibility with
incomplete types, and new forms for
“use” clauses and return statements.

- Tasking and Real-Time, describing
various enhancements including control
over task allocation on multiprocessor
architectures, improvements to the
scheduling mechanisms, and control of
budgets with regard to interrupts.

- Iterators, Pools, etc., describing various
improvements in a number of general
areas in Ada 2012. These include
important new features regarding
indexing and accessing that simplify
iterating over containers, and a subpool
facility for additional flexibility in
storage management.

- Predefined Library, describing a variety
of minor improvements in areas
including string and character handling,
directory processing, locale, and
streams.

- Containers, describing enhancements to
the Containers library, including a new
facility for bounded containers that does
not require dynamic storage
management, more elegant mechanisms
for element access and iteration, support
for multiway trees, a more general
sorting facility, and queues that can be

manipulated in a well-defined fashion by
multiple tasks.

“John Barnes has the rare ability to take
complex material, distill it down to its
essence, and explain it in an
understandable and often entertaining
manner,” said Ben Brosgol, ARA
President. “Ada 2012 has advanced the
state of the art in language design, and the
new Rationale will help developers
understand and appreciate the language's
innovations.”

“To encourage Ada 2012's adoption,
educational material needs to be widely
and easily accessible,” said Tullio
Vardanega, Ada-Europe President. “The
Ada 2012 Rationale is an excellent
training resource, and we hope that both
students and professional developers will
take advantage of its free availability.”

[…]

Ada Inside

SparForte

From: Ken Burtch <koburtch@gmail.com>
Date: Sun, 8 Sep 2013 07:15:16 -0700
Subject: ANN: SparForte 1.4
Newsgroups: comp.lang.ada

SparForte 1.4

Type: Programming Language

Platforms: Linux i386/x86_64/Pi and
FreeBSD

License: GPL

Home URL: http://www.sparforte.com

NEW

SparForte is an Ada-based command
shell, template engine and scripting
language. It natively interprets Bourne
shell commands and basic database
commands at the command prompt and
has an integrated debugger. There are 23
built-in packages including MySQL,
PostgreSQL, CGI and Memcache and
over 80 example scripts.

Major Features in Version 1.4

- software lifecycle awareness

- unused identifier and style checks

- simple exception handling

- database fixes/improvements

- sound support switched to GStreamer

- pragma blocks and chains

See ChangeLog in sources for a complete
list.

See http://www.pegasoft.ca/coder/
coder_august_2013.html blog for a more
detailed overview.

Started in 2001 as the Business Shell,
SparForte is an open project being
supported in my spare time. If you enjoy
SparForte and find it useful, contact me

Ada in Context 207

Ada User Journal Volume 34, Number 4, December 2013

and I'll continue to support it. Volunteers
are welcome to contribute.

Email me at my pegasoft account if you
find errors. However, I'm working on a
second university degree at night so
please be patient as it may take some time
to provide fixes.

[See also “SparForte”, AUJ 33-2, p. 85.
—sparre]

Job: Proprietary Trading

From: Duncan Sands
<duncan.sands@deepbluecap.com>

Date: Mon, 30 Sep 2013 09:18:39 -0700
Subject: Ada job available in Amsterdam
Newsgroups: comp.lang.ada

DeepBlueCapital is a proprietary trading
firm, trading on most of the world's stock
markets for its own account. All of our
trading is done automatically, by
programs executing algorithms our
researchers have developed. The trading
programs are written in Ada, with a
smattering of other languages. We are
growing fast and need additional
developers in order to keep up with the
growth.

We are looking to hire an Ada developer,
preferably one with experience of soft
real-time and highly reliable systems.
Knowledge of finance and trading is not
required, but would be nice to have. The
main job would be to help our researchers
turn their algorithms into reliable and
efficient code (this is why you really need
to be in Amsterdam, so you and our
researchers can work together in the same
place). But we would also want you to
work on our core code. Some examples of
possible tasks are: boosting performance
and scalability, improving our testing
infrastructure; adding interfaces to new
stock exchanges; writing analysis tools
and graphical user interfaces. The
company is quite small, less than 20
people, so you can easily make an impact.

See http://www.deepbluecap.com/
recruitment.html for more.

Ada in Context

Constraint Error When
“out” Parameter Has Wrong
Discriminant at Call Time

From: Pascal Malaise
<pascal.malaise@gmail.com>

Date: Sun, 25 Aug 2013 07:07:39 -0700
Subject: Constraint error when “out”

parameter has incorrect initial content
Newsgroups: comp.lang.ada

I am wondering if GNAT is correct when
raising Constraint_Error in the following
case:

procedure Out_Discr is

 type T (B : Boolean := False) is record
 case B is
 when True => null;
 when False => null;
 end case;
 end record;
 subtype Tt is T(True);

 procedure P (V : out Tt) is
 begin
 V := (B => True);
 end P;

 M : T;

begin
 M := (B => False);
 P (M); -- <-- Here
end Out_Discr;

>> raised CONSTRAINT_ERROR :
out_discr.adb:20 discriminant check
failed

Indeed M is not Tt when calling P, but M
is “out” parameter. Shouldn't it be
overwritten without any constraint check?

From: Christoph Karl Walter Grein
<christ-usch.grein@t-online.de>

Date: Sun, 25 Aug 2013 07:31:11 -0700
Subject: Re: Constraint error when “out”

parameter has incorrect initial content
Newsgroups: comp.lang.ada

RM 6.4.1(16) A formal parameter of
mode in out or out with discriminants is
constrained if either its nominal subtype
or the actual parameter is constrained.

Thus the compiler may assume that
variables supplied to calls already have
the correct subtype.

Web-based User Interfaces

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed, 28 Aug 2013 11:35:36 +0200
Subject: Web-UI for Ada applications (Was:

Object Pascal vs Ada -- which is better
for a hobbyist?)

Newsgroups: comp.lang.ada

> […] browser is the future […]

The problem with this is that you both add
an extra “OS” layer (the browser) _and_
require GUI operations to be interpreted
(to some extent) rather than executed as
binary code.

> […] application consists of user
entering some data, then performing
different calculations (using 3rd party C
lib as well) and render that data
graphically on the screen.

>

> After data is rendered, user should be
able to easily change some parameters
to refine rendered data as well as do
further calculations along with some
other simulation going in 'real' time.

>

> Do you have any hint how to do it in
browser?

Use Dart (or some other event-oriented
language) for the processing in the
browser.

Make the calculation (and rendering?)
server available through HTTP, pushing
results over a websocket.

This way the users can push tasks from
the UI to the server, and the UI will
receive the results (activating an event
handler) once they are available for
display.

We are developing an application with a
structure similar to this at AdaHeads.

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Wed, 28 Aug 2013 11:32:43 +0000
Subject: Re: Web-UI for Ada applications
Newsgroups: comp.lang.ada

> I'm not sure I get the 2nd part?
[interpreted vs. binary code —sparre]

When a program which uses, say, the
GTK toolkit wants to draw a text box on
the screen, it does it by making a direct
subroutine call to the GTK function from
the program itself.

OTOH, if you use HTML input to render
a text box in the browser, then the HTML
code is treated as source code input to the
browser's rendering engine and needs to
first be translated to a internal format
before the rendering engine can process
the HTML code.

IOW, every time the rendering engine
reads the HTML input, it needs to treat it
in the same way as, say, a Python or bash
interpreter would treat it's input.

Given the high level nature of pure
HTML itself, this should not be too great
a overhead for pure HTML code.
However, this can change if the input also
contains a scripting language (such as
Javascript) section as well as the HTML
code.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed, 28 Aug 2013 16:08:38 +0200
Subject: Re: Web-UI for Ada applications
Newsgroups: comp.lang.ada

> Is using Dart/JS less evil than 3rd party
GUI lib via Ada bindings?

JS is definitely more evil.

I'm not quite sure if Dart or bindings to a
non-Ada GUI library are preferable in
general.

> I was already told here about that option
and using e.g. ZeroMQ or something…

I don't know if ZeroMQ talks HTTP and
web-sockets. We use AWS for that
purpose.

[…]

208 Ada in Context

Volume 34, Number 4, December 2013 Ada User Journal

Style and Optimisation

From: kennethesills@gmail.com
Date: Tue, 1 Oct 2013 19:58:40 -0700
Subject: Optimizing Ada
Newsgroups: comp.lang.ada

Just started using Ada. Two code samples
are on the bottom, one is Ada, one is Rust.
The functions simply return a map of
words and how often they are used in a
given string. The Ada one is far slower
even though almost all other test cases are
faster, and I wanted to know how I might
be able to optimize it a bit.

And for those who want a bit more detail:

I decided to give Ada a spin recently and
started working on Martyr's Mega Project
List to learn the language. I use this to
judge the languages performance,
readability, etc. And have implemented in
quite a few languages.

I've also recently been experimenting with
Rust, which (if you don't already know) is
another safety-oriented language, but far
newer and some bit more C++-ish. So
simultaneously, I've been working on the
Rust version.

So far, Ada has been more verbose (by
far), but the tooling (compiler and GPS),
but also comes out easier for me to read
looking back at the code. The only real
snags I've hit with Ada is trouble with
finding documentation on the standard
library.

The performance Ada has been putting
out is actually very impressive, as well.
Consistently demolishing Rust's
performance, and sometimes even C++:

Count_Vowels:

Rust => 19 ns

Ada => .5 ns (-O2 actually optimizes the
benchmark away entirely).

Reverse String:

Rust => 111 ns

Ada => 29.3 ns

Is Palindrome:

Rust => 119 ns (Rust version is actually
case sensitive, so technically “broken”.)

Ada => 56.1 ns

To Pig Latin (Best/Worst/Middle):

Rust => 91 - 141 - 140 ns

Ada => 34 - 44 - 35 ns

I just finished implementing the Count
Word Use function (pretty self-
explanatory - makes a map of how often
words are used) for both languages, and
expected the same result in terms of
performance. However, the actuals were
completely opposite to my expectations:

Count Word Use:

Rust => 2763 ns (Again, case sensitive, so
technically it's “broken”.)

Ada => 7436.9 ns

So I was just wondering if anyone could
help me optimize my Ada code a bit, as
well as tell me how I'm doing in terms of
general code style and idiomatic code
writing.

Here are the two code samples:

Ada Code:

package Word_Count_Maps is new
 Ada.Containers.Indefinite_Hashed_Maps
 (Key_Type => String,
 Element_Type => Natural,
 Hash =>
 Ada.Strings.Hash_Case_Insensitive,
 Equivalent_Keys =>
 Ada.Strings.Equal_Case_Insensitive,
 "=" => "=");

function Count_Words(Original : in String)
return Word_Count_Maps.Map is
 Word_Map : Word_Count_Maps.Map;
 Word_Start : Natural := Original'First;

 procedure Add_Word(Word : in String) is
 use Word_Count_Maps;

 Location : Cursor;
 Added : Boolean;

 procedure Increment_By_One(
 Key : in String;
 Occurances : in out Natural) is
 begin
 Occurances := Occurances + 1;
 end Increment_By_One;

 begin
 Word_Map.Insert(Key => Word,
 New_Item => 0,
 Position => Location,
 Inserted => Added);
 Word_Map.Update_Element(
 Position => Location,
 Process =>
 Increment_By_One'Access);
 end Add_Word;
 pragma Inline(Add_Word);

 Is_Delimiter : Array(Character) of
Boolean:=
 (ASCII.LF| ' '| '+'| ';'| '/'| '\'| '.'| '!'|
 '$'| '%'| '&'| '*'| '('| ')'| '['| ']'| '{'|
 '}'| ':'| '<'| '>'| '?'| '"'| '|'| '`'| '~'|
 '@'| '#'| '^'| '-'| '_'| '=' | ',' => True,
 Others => False);

begin
 for I in Original'Range loop
 if Is_Delimiter(Original(I)) then
 -- Prevent stacked delimiters from being
 -- considered words.
 if I = Word_Start then
 Word_Start := I + 1;
 else
 Add_Word(Original(
 Word_Start .. I - 1));
 Word_Start := I + 1;
 end if;
 end if;
 end loop;

 if Word_Start /= Original'Last then
 Add_Word(Original(Word_Start ..
 Original'Last));
 end if;

 return Word_Map;
end Count_Words;

Rust Code: http://pastebin.com/1ZVL7Pjf

From: kennethesills@gmail.com
Date: Tue, 1 Oct 2013 20:53:44 -0700
Subject: Re: Optimizing Ada
Newsgroups: comp.lang.ada

> Ada is the fastest correct
implementation you have.

Yes. However, is case sensitivity the
reason for a 2.7x slow down? Highly
unlikely. In fact, using case-sensitive
comparisons in Ada only reduce the time
taken by around 50ns. So I just
disregarded that fact.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Tue, 01 Oct 2013 21:13:59 -0700
Subject: Re: Optimizing Ada
Newsgroups: comp.lang.ada

[…]

I agree that the implementation of
Indefinite_Hashed_Maps is probably the
culprit, but until you have an apples-to-
apples comparison, you have no
complaint. (Actually, I can't think of any
application that could use such a function
where the difference would prevent it
from meeting reasonable timing
requirements, so you probably have no
complaint anyway.)

From: kennethesills@gmail.com
Date: Tue, 1 Oct 2013 21:24:43 -0700
Subject: Re: Optimizing Ada
Newsgroups: comp.lang.ada

[…] is the code itself clean/idiomatic
enough? Not teaching myself any bad
habits?

From: Egil Harald Høvik
<ehh.public@gmail.com>

Date: Wed, 2 Oct 2013 00:01:29 -0700
Subject: Re: Optimizing Ada
Newsgroups: comp.lang.ada

> The only real snags I've hit with Ada is
trouble with finding documentation on
the standard library.

The Standard Library is defined in Annex
A of the reference manual,

http://www.adaic.org/resources/add_conte
nt/standards/12rm/html/RM-A.html

Specifically, see section A.18.4 for a
description of Maps:

http://www.adaic.org/resources/add_conte
nt/standards/12rm/html/RM-A-18-4.html

> […]

You could try to preallocate space in the
Word_Map by calling
Word_Map.Reserve_Capacity(some_fairl
y_large_number);

Ada in Context 209

Ada User Journal Volume 34, Number 4, December 2013

Also, you're calling Update_Element even
for new words. Depending on your
dataset, that could potentially be a lot of
unneccessary callbacks. Try this:

Word_Map.Insert(Key => Word,
 New_Item => 1, -- <----
 Position => Location,
 Inserted => Added);
if not Added then
 Word_Map.Update_Element(
 Position => Location,
 Process =>
 Increment_By_One'Access);
end if;

Rust probably have a faster hash function
(seems they use SipHash 2-4). Try to
implement the same algorithm in Ada, see
if that makes a difference.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 02 Oct 2013 08:16:02 +0100
Subject: Re: Optimizing Ada
Newsgroups: comp.lang.ada

> […]

Looks pretty good to me (we disagree
about having a space between the
subprogram name and the opening paren,
but then the ALRM is wrong about that
too :-)

I'm not sure that pragma Inline is meant to
work when applied to a subprogram body,
so I'd apply it to the spec (I always write
specs, because I've set the GNAT style
options to standard (-gnaty), and that
warns me about missing specs - and about
missing spaces, see above).

GNAT may not have implemented your
Inline anyway. There's a GNAT pragma
Inline_Always, and there are switches (-
gnatn, -gnatN I think) that affect inlining.
The last time I did a check, inlining made
my program slower - cache effects,
presumably. That was on powerpc

AdaCore's house rules don't allow I as a
variable name (confusion potential), they
start at J.

I wonder whether your performance
problem is caused by using a function?
The internal Word_Map is, I think, going
to be copied to the destination and then
finalized. Could you use an out
parameter? (remembering to clear it
before adding ne new content).

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed, 02 Oct 2013 10:11:07 +0200
Subject: Re: Optimizing Ada
Newsgroups: comp.lang.ada

> […]

There are some style issues:

- space before parenthesis (i.e. “procedure
Increment_By_One (…”).

- lower-case keywords (i.e. “array”,
“others”, …).

You may get a performance gain by using
an extended return statement:

 return Word_Map :
Word_Count_Maps.Map do
 …
 end return;

From: kennethesills@gmail.com
Date: Wed, 2 Oct 2013 07:24:21 -0700
Subject: Re: Optimizing Ada
Newsgroups: comp.lang.ada

> You may get a performance gain by
using an extended return statement:

That was exactly what I needed,
apparently; Cut the run-time in half.

From: kennethesills@gmail.com
Date: Wed, 2 Oct 2013 07:43:15 -0700
Subject: Re: Optimizing Ada
Newsgroups: comp.lang.ada

> I wonder whether your performance
problem is caused by using a function?
[…]

That was exactly it, actually. As per
Jacob's suggestion - I used an extended
return and it dropped down to 2900ns.

Another suggestion was that Rust uses a
faster hash function (SipHash 2-4).

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Wed, 02 Oct 2013 09:41:38 -0700
Subject: Re: Optimizing Ada
Newsgroups: comp.lang.ada

> […]

The code reads fine. There are some
stylistic differences from how I'd write it,
but that's true for everyone. I haven't seen
that version of Insert used very much, so I
might add a comment to remind the
reader how it works when the key is
already in the map. I would probably
avoid calling Update_Element when
Insert succeeds. Perhaps most important, I
would be leery of writing a function that
returns a map, but that may be a
requirement out of your control

From: John B. Matthews
<trashgod@gmail.com>

Date: Wed, 02 Oct 2013 14:58:07 -0400
Subject: Re: Optimizing Ada
Newsgroups: comp.lang.ada

> […]

For comparison with
Indefinite_Hashed_Maps, this example
[1] uses an instance of
Ada.Strings.Bounded.Generic_Bounded_
Length as the Key_Type in an instance of
Ada.Containers.Hashed_Maps. Your
problem domain may suggest a suitable
maximum length.

[1] http://home.roadrunner.com/
~jbmatthews/jumble.html

Writing “.all” or not

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 18 Oct 2013 21:36:21 -0500
Subject: Re: Dereferencing and style guides
Newsgroups: comp.lang.ada

[…]

But I'd be very unhappy if we required it
[writing “.all” —sparre]. The fact that it is
not required is very important to giving
the illusion that you can index a container
object directly in Ada 2012 (and modify
the elements in place). And in general,
you don't really want to expose the fact
that access types are used in reference
objects — the idea is to allow direct
modifications of the object — the
mechanism used to achieve that should be
irrelevant (especially to a reader).

Ergo, you never really want to write
“.all”, because if you have to, you're using
too many access types in your program.
:-)

Exceptions in Predicates

From: Simon Wright
<simon@pushface.org>

Date: Thu, 31 Oct 2013 21:52:36 +0000
Subject: Exceptions in (dynamic) predicates
Newsgroups: comp.lang.ada

A StackOverflow answer contains the
following code:

 subtype XYZ is ABC
 with Dynamic_Predicate =>
 ((XYZ.A in Positive) and
 (XYZ.B not in Positive)) or else
 raise Constraint_Error;

(actually, the original didn't have the
'else', with unhelpful results :)

I can't see where in the ARM “raise
Constraint_Error” can be a (component of
a) boolean expression? or is this a
GNATism?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 2 Nov 2013 01:23:04 -0500
Subject: Re: Exceptions in (dynamic)

predicates
Newsgroups: comp.lang.ada

> […]

>

> http://www.ada-auth.org/cgi-
bin/cvsweb.cgi/ai12s/ai12-0022-1.txt

>

> Looks like it's a planned addition to
Ada 202x.

Well, actually it's an after-the-fact
addition to Ada 2012. (AI12-0022-1 is a
Binding Interpretation, not an
Amendment 1.) We realized that we
needed it at the last meeting before
sending out the Standard wording, but we
couldn't get the details right at the
meeting and decided to look at it later.
Within a few weeks after the meeting, we
had figured out the appropriate semantics.

The problem is that without it, you can't
replace existing natural language text
specifications (that is, comments) with
preconditions and predicates, because the

210 Ada in Context

Volume 34, Number 4, December 2013 Ada User Journal

exception raised would change. That
doesn't seem helpful.

The Ada 2012 Rationale Epilogue
discusses this (and the following) —
although you'll have to wait until next
week for it to be on-line at ada-auth.org.

Note that for a predicate, you really
should use the new Predicate_Failure
aspect rather than putting the exception in
the predicate proper, because otherwise
memberships and validity checks would
raise the exception instead of returning
the appropriate True or False answer.
(That took a lot longer to work out, but
that's less jarring as aspects can be added
at any time and by implementers.)

 subtype XYZ is ABC
 with Dynamic_Predicate =>
 (XYZ.A in Positive) and
 (XYZ.B not in Positive),
 Predicate_Failure =>
 raise Constraint_Error;

See the Rationale Epilogue for a better
explanation that I can put here.

Not sure exactly when GNAT will
support Predicate_Failure (we only nailed
it down at the June meeting), but I'd
expect it to be soon.

Use of Fixed Point Types

From: Riccardo Bernardini
<framefritti@gmail.com>

Date: Mon, 11 Nov 2013 07:04:12 -0800
Subject: A curiosity about decimal fixed

point types…
Newsgroups: comp.lang.ada

Just a silly curiosity about decimal fixed
point types, e.g.,

 type Euro is delta 0.01 digits 20;

 -- Would be 20 enough? :-)

Are they currently used? Where? Since
most of the examples are about money
(mine and RM's) included, I guess that
they were thought for financial
applications, but I am unsure if nowadays
financial software uses this type of types
or just floating point.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue, 12 Nov 2013 13:31:53 +0100
Subject: Re: A curiosity about decimal fixed

point types…
Newsgroups: comp.lang.ada

[…]

> Are they currently used?

Yes.

> Where?

In 182 out of 119_391 Ada source files
(including duplicates) on my laptop.

Reduced to unique type declarations,
there is:

 type Decim is delta 0.1 digits 5;
 type Duration is delta 0.001 digits 9 >
 range -24.0 * 3600.0 .. 48.0 * 3600.0;
 type Duration is delta 1.0 digits 9
 range -24.0 * 3600.0 .. 48.0 * 3600.0;
 type Kroner is delta 0.01 digits 10;
 type Megabucks is delta 0.01 digits 15;
 type My_Float is delta 0.01 digits 10;
 type Percent is delta 0.01 digits 5
 range 0.0 .. 100.0;
 type Push_Data_Type is delta 0.01
 digits 7;
 type Real_Val_To_Print is delta 0.01
 digits 8;

> […]

This indicates that they are used for a few
more cases than just money (2 of 9 are
money types), but it appears that they
aren't all that common.

 211

Ada User Journal Volume 34, Number 4, December 2013

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2014

January 09-11 15th IEEE International Symposium on High Assurance Systems Engineering (HASE'2014),
Miami, Florida, USA. Topics include: tools and techniques used to design and construct systems that, in
addition to meeting their functional objectives, are safe, secure, and reliable.

January 20-22 9th International Conference on High-Performance and Embedded Architectures and Compilers
(HiPEAC 2014), Vienna, Austria. Topics include: processor, memory, and storage systems architecture;
parallel, multi-core and heterogeneous systems; architectural support for programming productivity;
architectural and run-time support for programming languages; programming models, frameworks and
environments for exploiting parallelism; compiler techniques, etc.

January 20 2nd Workshop on High-performance and Real-time Embedded Systems (HiRES
2014). Topics include: runtimes and operating systems combining high-performance and
predictability requirements; programming models and compiler support for providing
real-time capabilities to multi- and many-core architectures, models and tools for code
generation, system verification and validation, etc.

January 20-23 12th Australasian Symposium on Parallel and Distributed Computing (AusPDC'2014), Auckland,
New Zealand. Topics include: multicore systems; GPUs and other forms of special purpose processors;
middleware and tools; parallel programming models, languages and compilers; runtime systems;
reliability, security, privacy and dependability; applications; etc.

 January 22-24 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2014),
San Diego, USA. Topics include: all aspects of programming languages and systems, with emphasis on
how principles underpin practice.

Jan20-21 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM'2014). Topics include: program and model manipulation techniques (such as:
partial evaluation, slicing, symbolic execution, refactoring, ...); program analysis
techniques that are used to drive program/model manipulation (such as: abstract
interpretation, termination checking, type systems, ...); techniques that treat
programs/models as data objects (including: metaprogramming, generative
programming, embedded domain-specific languages, model-driven program generation
and transformation, ...); etc. Application of the above techniques including case studies
of program manipulation in real-world (industrial, open-source) projects and software
development processes, descriptions of robust tools capable of effectively handling
realistic applications, benchmarking.

 Jan 21 Workshop on Programming Languages meets Program Verification (PLPV'2014).
Topics include: research at the intersection of programming languages and program
verification; attempts to reduce the burden of program verification by taking advantage
of particular semantic or structural properties of the programming language; all aspects,
both theoretical and practical, of the integration of programming language and program
verification technology. Includes: invited talk on "Programming Languages for High-
Assurance Autonomous Vehicles".

212 Conference Calendar

Volume 34, Number 4, December 2013 Ada User Journal

 February 01 Ada at the Free and Open-Source Software Developers' European Meeting
(FOSDEM'2014), Brussels, Belgium. FOSDEM 2014 is a two-day event (Sat-Sun 01-02
February). This years' edition includes again an Ada Developer Room, organized by
Ada-Belgium in cooperation with Ada-Europe, which will be held on Saturday 1
February.

February 03-07 Conference on Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE'2014), Antwerp, Belgium. Topics include: development of new and maintainable systems;
evolution, migration and reengineering of existing systems; recovering information from software,
software engineering documents and systems artifacts; using this information in system renovation and
program understanding.

 February 12-14 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Computing
(PDP'2014), Turin, Italy. Topics include: embedded parallel and distributed systems, multi- and many-
core systems, programming languages and environments, runtime support systems, simulation of
parallel and distributed systems, dependability and survivability, real-time distributed applications, etc.

 February18-21 SIAM Conference on Parallel Processing for Scientific Computing (PP'2014), Portland, Oregon,
USA. Deadline for submissions: January 3, 2014 (posters).

February 19-21 7th India Software Engineering Conference (ISEC'2014), Chennai, India. Topics include: static
analysis, specification and verification, model-driven software engineering, component-based software
engineering, embedded and real-time systems, software security, software architecture and design,
development paradigms, tools and environments, maintenance and evolution, software engineering
education, multicore software engineering, etc.

February 26-28 6th International Symposium on Engineering Secure Software and Systems (ESSoS'2014), Munich,
Germany. Topics include: security architecture and design for software and systems; specification
formalisms for security artifacts; verification techniques for security properties; systematic support for
security best practices; programming paradigms, models and DSL's for security; processes for the
development of secure software and systems; support for assurance, certification and accreditation;
security by design; etc.

 March 19-21 Fachtagung Fachbereich "Sicherheit - Schutz und Zuverlässigkeit" (Conference on Safety and
Security), Vienna, Austria. Contributions in German, but also welcome in English. Topics include: all
aspects of IT Security, Safety and Dependability, such as (in German) Fehlertoleranz, insbesondere in
verteilten Systemen; Hoch zuverlässige/verfügbare Systeme; Modellierung und Verifikation von
Sicherheit; Sicherheit eingebetteter und mobiler Systeme; Sicherheitskritische Systeme;
Software/System Testing; Sprachbasierte Sicherheit; Verifikation & Validierung; Verlässliche
Echtzeitsysteme; Zertifizierung funktionaler Sicherheit; etc. Deadline for early registration: January 31,
2014.

March 24-28 29th ACM Symposium on Applied Computing (SAC'2014), Gyeongju, Korea.

 Mar 24-28 Track on Programming Languages (PL'2014). Topics include: compiling techniques,
domain-specific languages, formal semantics and syntax, garbage collection, language
design and implementation, languages for modeling, model-driven development, new
programming language ideas and concepts, practical experiences with programming
languages, program analysis and verification, programming languages from all
paradigms, etc.

 Mar 24-28 Track on Object-Oriented Programming Languages and Systems (OOPS'2014).
Topics include: aspects and components, distribution and concurrency, formal
verification, integration with other paradigms, software evolution, language design and
implementation, modular and generic programming, secure and dependable software,
static analysis, type systems, etc.

March 24-28 Track on Software Verification and Testing (SVT'2014). Topics include: new results
in formal verification and testing, technologies to improve the usability of formal
methods in software engineering, applications of mechanical verification to large scale
software, etc.

Mar 29 - Apr 03 26th Annual IEEE Software Technology Conference (STC'2014), Long Beach, California, USA.
Theme: "Meeting Real World Challenges through Software Technology". Topics include: software

Conference Calendar 213

Ada User Journal Volume 34, Number 4, December 2013

 resiliency; software engineering processes, including process improvement and quality management;
agile development methods; open source; model-based software engineering; verification, validation,
and testing; software risk management; software reliability; cybersecurity issues and approaches for
complex systems; software assurance; software engineering competency, education and training;
technology transfer between academia and industry; etc.

Mar 31 - Apr 04 7th IEEE International Conference on Software Testing, Verification and Validation (ICST'2014),
Cleveland, Ohio, USA. Topics include: embedded software testing, testing concurrent software, testing
large-scale distributed systems, testing in multi-core environments, security testing, quality assurance,
inspections, testing of open source and third-party software, software reliability, formal verification,
empirical studies of testing techniques, experience reports, etc.

April 05-13 17th European Joint Conferences on Theory and Practice of Software (ETAPS'2014), Grenoble,
France. Events include: CC, International Conference on Compiler Construction; ESOP, European
Symposium on Programming; FASE, Fundamental Approaches to Software Engineering; FOSSACS,
Foundations of Software Science and Computation Structures; POST, Principles of Security and Trust;
TACAS, Tools and Algorithms for the Construction and Analysis of Systems.

April 07-11 20th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS'2014). Topics include: specification and verification
techniques; analytical techniques for real-time systems; analytical techniques for safety,
security, or dependability; static and dynamic program analysis; abstraction techniques
for modeling and verification; system construction and transformation techniques; tool
environments and tool architectures; applications and case studies; etc.

April 07-11 17th International Conference on Fundamental Approaches to Software
Engineering (FASE'2014). Topics include: software engineering as an engineering
discipline; specification, design, and implementation of particular classes of systems
(embedded, distributed, ...); software quality (validation and verification of software
using theorem proving, model checking, testing, analysis, refinement methods, metrics,
...); model-driven development and model transformation (design and semantics of
domain-specific languages, consistency and transformation of models, ...); software
evolution (refactoring, reverse and re-engineering, ...); etc.

April 12 11th International Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA'2014). Topics include: modelling formalisms,
temporal properties and their formal verification, interface compliance and contractual
use of components, static and dynamic analysis, industrial case studies and experience
reports, etc.

 April TBD Programming Language Approaches to Concurrency and communication-cEntric
Software (PLACES'2014). Topics include: the general area of programming language
approaches to concurrency, communication and distribution, such as design and
implementation of programming languages with first class support for concurrency and
communication; concurrent data types, objects and actors; verification and program
analysis methods for concurrent and distributed software; high-level programming
abstractions addressing security concerns in concurrent and distributed programming;
multi- and many-core programming models, including methods for harnessing GPUs
and other accelerators; integration of sequential and concurrent programming
techniques; programming language approaches to web services; etc.

April 07-10 23rd Australasian Software Engineering Conference (ASWEC'2014), Sydney, Australia. Topics
include: dependable and secure computing; domain-specific models and languages, and model driven
development; engineering/operating large-scale distributed systems; formal methods; legacy systems,
software maintenance and reverse engineering; modularisation techniques; open source software
development; programming languages and techniques; quality assurance; real-time and embedded
software; software analysis; software architecture, design and patterns; software processes and quality;
software risk management; software reuse and product lines; software security, safety and reliability;
software verification and validation; standards; etc. Deadline for submissions: January 31, 2014
(doctoral symposium).

April 22-26 13th International Conference on Modularity (Modularity'2014), Lugano, Switzerland. Topics
include: varieties of modularity (generative programming, aspect orientation, software product lines,
components; ...); programming languages (support for modularity related abstraction in: language

214 Conference Calendar

Volume 34, Number 4, December 2013 Ada User Journal

design; verification, contracts, and static program analysis; compilation, interpretation, and runtime
support; formal languages; ...); software design and engineering (evolution, empirical studies of existing
software, economics, testing and verification, composition, methodologies, ...); tools (refactoring,
evolution and reverse engineering, support for new language constructs, ...); applications (distributed
and concurrent systems, middleware, cyber-physical systems, ...); complex systems; etc. Deadline for
submissions: February 2, 2014 (ACM student research competition), February 7, 2014 (demonstrations),
March 2, 2014 (posters).

April 23-25 27th Conference on Software Engineering Education and Training (CSEET'2014), Klagenfurt,
Austria.

Apr 29 - May 01 6th NASA Formal Methods Symposium (NFM'2014), NASA Johnson Space Center, Houston, Texas,
USA. Topics include: identifying challenges and providing solutions to achieving assurance in mission-
and safety-critical systems; static analysis; model-based development; applications of formal methods to
aerospace systems; correct-by-design and design for verification techniques; techniques and algorithms
for scaling formal methods, e.g. abstraction and symbolic methods, compositional techniques, parallel
and distributed techniques; application of formal methods to emerging technologies; etc.

May 12-16 19th International Symposium on Formal Methods (FM'2014), Singapore. Topics include:
interdisciplinary formal methods (techniques, tools and experiences demonstrating formal methods in
interdisciplinary frameworks); formal methods in practice (industrial applications of formal methods,
experience with introducing formal methods in industry, tool usage reports, etc); tools for formal
methods (advances in automated verification and model-checking, integration of tools, environments for
formal methods, etc); role of formal methods in software and systems engineering (development
processes with formal methods, usage guidelines for formal methods, method integration, qualitative or
quantitative improvements); theoretical foundations (all aspects of theory related to specification,
verification, refinement, and static and dynamic analysis). Deadline for submissions: January 16, 2014
(industry track).

May 13-16 10th European Dependable Computing Conference (EDCC'2014), Newcastle upon Tyne, UK. Topics
include: hardware and software architecture of dependable systems, safety critical systems, embedded
and real-time systems, impact of manufacturing technology on dependability, testing and validation
methods, privacy and security of systems and networks, etc.

 May 19-23 28th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2014), Phoenix,
Arizona, USA. Topics include: parallel and distributed algorithms, applications of parallel and
distributed computing, parallel and distributed software, including parallel and multicore programming
languages and compilers, runtime systems, parallel programming paradigms, programming
environments and tools, etc. Deadline for submissions: January 1, 2014 (PhD forum posters).

 May 31- Jun 07 36th International Conference on Software Engineering (ICSE'2014), Hyderabad, India.

June 03-06 9th International Federated Conferences on Distributed Computing Techniques (DisCoTec'2014),
Berlin, Germany. Includes the COORDINATION, DAIS, and FORTE conferences.

June 03-06 14th IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS'2014). Topics include: all aspects of distributed applications and
systems, throughout their lifecycle; design, architecture, implementation and operation
of distributed computing systems, their supporting middleware, appropriate software
engineering methods and tools, as well as experimental studies and practical reports;
language-based approaches; parallelization; domain-specific languages; design patterns
and methods; etc. Deadline for submissions: February 1, 2014 (abstracts), February 7,
2014 (papers).

June 09-11 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2014),
Edinburgh, UK. Topics include: programming languages, their design, implementation, development,
and use; innovative and creative approaches to compile-time and runtime technology, novel language
designs and features, and results from implementations; language designs and extensions; static and
dynamic analysis of programs; domain-specific languages and tools; type systems and program logics;
checking or improving the security or correctness of programs; memory management; parallelism, both
implicit and explicit; debugging techniques and tools; etc.

Conference Calendar 215

Ada User Journal Volume 34, Number 4, December 2013

 June 12-13 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES'2014). Topics include: programming language challenges (features to exploit multicore
architectures; features for distributed and real-time control embedded systems; language capabilities for
specification, composition, and construction of embedded systems; language features and techniques to
enhance reliability, verifiability, and security; virtual machines, concurrency, inter-processor
synchronization, and memory management; ...); compiler challenges (interaction between embedded
architectures, operating systems, and compilers; support for enhanced programmer productivity; support
for enhanced debugging, profiling, and exception/interrupt handling; ...); tools for analysis,
specification, design, and implementation (distributed real-time control, system integration and testing,
run-time system support for embedded systems, support for system security and system-level reliability,
...); etc. Deadline for submissions: January 31, 2014.

June 16-20 26th International Conference on Advanced Information Systems Engineering (CAiSE'2014),
Thessaloniki, Greece. Theme: "Information Systems Engineering in Times of Crisis". Topics include:
methods, techniques and tools for IS engineering (models and software reuse; adaptation, evolution and
flexibility issues; languages and models; variability and configuration; security; ...); innovative
platforms, architectures and technologies for IS (model-driven architecture; component based
development; distributed and open architecture; ...); etc. Deadline for submissions: March 17, 2014
(visionary short papers, demo papers, case study reports).

June 23-25 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'2014), Prague,
Czech Republic. Topics include: parallel and distributed algorithms; multi-core architectures; compilers
and tools for concurrent programming; synergy of parallelism in algorithms, programming, and
architecture; etc. Deadline for submissions: January 22, 2014 (abstracts), January 25, 2014 (full papers).

 June 23-27 19th International Conference on Reliable Software Technologies - Ada-
Europe'2014, Paris, France. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN. Deadline for submissions: January 19, 2014 (industrial
presentations).

 July 8-11 26th Euromicro Conference on Real-Time Systems (ECRTS 2014), Madrid, Spain. Contributons on
all aspects of real-time systems are welcome. These include, but are not limited to: applications,
hardware/software co-design, multicore and manycore architectures for real-time and safety, operating
systems, run-time environments, software architectures, programming languages and compiler support,
component-based approaches, distribution technologies, modelling and formal methods for design and
analysis, safety, reliability, security and survivability; mixed critical systems, etc.

July 8 10th International Workshop on Operating Systems Platforms for Embedded Real-
Time Applications (OSPERT 2014).

July 8 5th International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS 2014).

July 18-22 26th International Conference on Computer Aided Verification (CAV'2014), Vienna, Austria.
Topics include: theory and practice of computer-aided formal analysis methods for hardware and
software systems. Deadline for submissions: January 15, 2014 (CAV Award nominations), January 31,
2014 (abstracts), February 7, 2014 (papers).

July 21-25 38th Annual International Computer Software and Applications Conference (COMPSAC'2014),
Västerås, Sweden. Topics include: software engineering, security and privacy, quality assurance and
assessment, embedded and cyber-physical environments, etc. Deadline for submissions: January 13,
2014 (paper abstracts), January 31, 2014 (full papers), March 23, 2014 (workshop papers), April 8, 2014
(fast abstracts, posters, doctoral symposium papers).

 Jul 28 - Aug 01 28th European Conference on Object-Oriented Programming (ECOOP'2014), Uppsala, Sweden.
Topics include: all areas of object technology and related software development technologies, such as
concurrent and parallel systems, distributed computing, programming environments, versioning,
refactoring, software evolution, language definition and design, language implementation, compiler
construction, design methods and design patterns, aspects, components, modularity, program analysis,
type systems, specification, verification, security, real-time systems, etc.

216 Conference Calendar

Volume 34, Number 4, December 2013 Ada User Journal

August 29-31 9th International Conference on Software Engineering and Applications (ICSOFT-EA'2014),
Vienna, Austria. Topics include: software integration, software testing and maintenance, model-driven
engineering, software quality, software and information security, formal methods, programming
languages, parallel and high performance computing, software metrics, agile methodologies, risk
management, quality assurance, certification, etc. Deadline for submissions: March 18, 2014 (regular
papers), May 21, 2014 (position papers).

September 01-05 12th International Conference on Software Engineering and Formal Methods (SEFM'2014),
Grenoble, France. Topics include: abstraction and refinement; programming languages, program
analysis and type theory; formal methods for real-time, hybrid and embedded systems; formal methods
for safety-critical, fault-tolerant and secure systems; software verification and validation; formal aspects
of software evolution and maintenance; light-weight and scalable formal methods; tool integration;
applications of formal methods, industrial case studies and technology transfer; education and formal
methods; etc. Deadline for submissions: March 14, 2014 (abstracts), March 21, 2014 (papers).

 Oct 20-22 ACM SIGAda Annual International Conference on High Integrity Language
Technology (HILT'2014), Portland, Oregon, USA. Dates are approximate.
Sponsored by ACM SIGAda, in cooperation with Ada-Europe and the Ada Resource
Association (approvals pending).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

 217

Ada User Journal Volume 34, Number 4, December 2013

Preliminary Call for Participation

Ada Developer Room at FOSDEM 2014
1 February 2014, Brussels, Belgium

Organized by Ada-Belgium

in cooperation with Ada-Europe

FOSDEM1, the Free and Open source Software Developers' European Meeting, is a free two-day annual
event organized in Brussels, Belgium, that offers open source communities a place to meet, share ideas
and collaborate. It is renowned for being highly developer-oriented and brings together 5000+ “geeks”
from all over the world. The 2014 edition takes place on Saturday 1 and Sunday 2 February, 2014.

For the 5th time, Ada-Belgium2 organizes a series of presentations related to Ada and Free Software in a
s.c. Developer Room. The “Ada DevRoom” at FOSDEM 2014 is held on the first day of the event, i.e.
on Saturday 1 February. The program offers introductory presentations on the Ada programming
language, including features of the new Ada 2012 standard, as well as more specialised presentations on
focused topics. We also provide time for discussion and interaction, and organize the by now famous
“Adaists dinner” on Saturday evening...

More details are available on the Ada at FOSDEM 2014 web-page, such as the full list with abstracts of
presentations, biographies of speakers, and the concrete schedule. For the latest information at any time,
contact <Dirk.Craeynest@cs.kuleuven.be>, or see:

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/14/140201-fosdem.html

1 https://fosdem.org/2014
2 http://www.cs.kuleuven.be/~dirk/ada-belgium

218 Forthcoming Events

Volume 34, Number 4, December 2013 Ada User Journal

Call for Papers

19th International Conference on
Reliable Software Technologies –

Ada‐Europe 2014
23‐27 June 2014, Paris, France

http://www.ada‐europe.org/conference2014

General Chair

Jean‐Pierre Rosen
Adalog
rosen@adalog.fr

Program co‐Chairs

Laurent George
LIGM/UPEMLV ‐ ECE Paris
lgeorge@ieee.org

Tullio Vardanega
University of Padova
tullio.vardanega@unipd.it

Industrial Chair

Jørgen Bundgaard
Rambøll Denmark A/S
jogb@ramboll.dk

Tutorial co‐Chairs

Liliana Cucu
INRIA
Liliana.Cucu@inria.fr

Albert Llemosí
Universitat de les Illes Balears
albert.llemosi@uib.cat

Exhibition Chair

Jamie Ayre
AdaCore
ayre@adacore.com

Publicity Chair

Dirk Craeynest
Ada‐Belgium & KU Leuven
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Magali Munos
ECE
munos@ece.fr

In cooperation with
ACM SIGAda, SIGBED, SIGPLAN

General Information

The 19th International Conference on Reliable Software Technologies – Ada‐Europe 2014 will take
place in Paris, France. As per its traditional style, the conference will span a full week, including,
from Tuesday to Thursday, three days of parallel scientific, technical and industrial programs,
along with tutorials and workshops on Monday and Friday.

Schedule

Topics

The conference has over the years become a leading international forum for providers,
practitioners and researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and maintenance of
long‐lived, high‐quality software systems for a challenging variety of application domains. The
program will allow ample time for keynotes, Q&A sessions and discussions, and social events.
Participants include practitioners and researchers representing industry, academia and
government organizations active in the promotion and development of reliable software
technologies.

Topics of interest to this edition of the conference include but are not limited to:

 Multicore and Manycore Programming: Predictable Programming Approaches for Multicore
and Manycore Systems, Parallel Programming Models, Scheduling Analysis Techniques.

 Real‐Time and Embedded Systems: Real‐Time Scheduling, Design Methods and Techniques,
Architecture Modelling, HW/SW Co‐Design, Reliability and Performance Analysis.

 Theory and Practice of High‐Integrity Systems: Challenges from Mixed‐Criticality Systems;
Medium to Large‐Scale Distribution, Fault Tolerance, Security, Reliability, Trust and Safety,
Languages Vulnerabilities.

 Software Architectures: Design Patterns, Frameworks, Architecture‐Centred Development,
Component‐based Design and Development.

 Methods and Techniques for Software Development and Maintenance: Requirements
Engineering, Model‐driven Architecture and Engineering, Formal Methods, Re‐engineering
and Reverse Engineering, Reuse, Software Management Issues.

 Enabling Technologies: Compilers, Support Tools (Analysis, Code/Document Generation,
Profiling), Run‐time Systems and Libraries.

 Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

 Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health
Care, Transportation, Cloud Environments, Smart Energy systems, Serious Games, etc.

 Experience Reports in Reliable System Development: Case Studies and Comparative
Assessments, Management Approaches, Qualitative and Quantitative Metrics.

 Experiences with Ada and its Future: Reviews of the Ada 2012 new language features,
implementation and use issues, positioning in the market and in the software engineering
curriculum, lessons learned on Ada Education and Training Activities with bearing on any of
the conference topics.

15 December 2013 (Extended) Submission of regular papers, tutorial and workshop proposals
 19 January 2014 Submission of industrial presentation proposals
 16 February 2014 Notification of acceptance to all authors
 16 March 2014 Camera‐ready version of regular papers required
 18 May 2014 Industrial presentations, tutorial and workshop material

Forthcoming Events 219

Ada User Journal Volume 34, Number 4, December 2013

Program Committee
Mario Aldea, Universidad de

Cantabria, Spain
Ted Baker, US National Science

Foundation, USA
Johann Blieberger, Technische

Universität Wien, Austria
Bernd Burgstaller, Yonsei

University, Korea
Maryline Chetto, University of

Nantes, France
Liliana Cucu, INRIA, France
Christian Fraboul, ENSEEIHT,

France
Laurent George, ECE Paris, France
Xavier Grave, CNRS, France
Emmanuel Grolleau, ENSMA, France
Jérôme Hugues, ISAE, France
Albert Llemosí, Universitat de les

Illes Balears, Spain
Kristina Lundqvist, Mälardalen

University, Sweden
Franco Mazzanti, ISTI-CNR, Italy
John McCormick, University of

Northern Iowa, USA
Stephen Michell, Maurya Software,

Canada
Laurent Pautet, Telecom ParisTech,

France
Luís Miguel Pinho, CISTER/ISEP,

Portugal
Erhard Plödereder, Universität

Stuttgart, Germany
Juan A. de la Puente, Universidad

Politécnica de Madrid, Spain
Jorge Real, Universitat Politècnica

de València, Spain
José Ruiz, AdaCore, France
Sergio Sáez, Universidad Politècnica

de Valencia, Spain
Amund Skavhaug, NTNU, Norway
Yves Sorel, INRIA, France
Tucker Taft, AdaCore, USA
Theodor Tempelmeier, University of

Applied Sciences, Germany
Elena Troubitsyna, Åbo Akademi

University, Finland
Tullio Vardanega, University of

Padova, Italy
Juan Zamorano, Universidad

Politécnica de Madrid, Spain

Industrial Committee
Jacob Sparre Andersen, JSA

Consulting, Denmark
Roger Brandt, Roger Brandt IT

Konsult, Sweden
Ian Broster, Rapita Systems, UK
Jørgen Bundgaard, Rambøll, DK
Dirk Craeynest, Ada-Belgium &

KU Leuven, Belgium
Peter Dencker, ETAS, Germany
Ismael Lafoz, Airbus, Spain
Maria del Carmen Lomba

Sorrondegui, GMV, Spain
Ahlan Marriott, White Elephant, CH
Robin Messer, Altran-Praxis, UK
Quentin Ochem, AdaCore, France
Steen Palm, Terma, Denmark
Paolo Panaroni, Intecs, Italy
Paul Parkinson, Wind River, UK
Ana Rodriguez, Silver-Atena, Spain
Jean-Pierre Rosen, Adalog, France
Alok Srivastava, TASC, USA
Claus Stellwag, Elektrobit, Germany
Jean-Loup Terraillon, European

Space Agency, Netherlands
Rod White, MBDA, UK

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to submit
original contributions. Paper submissions shall not exceed 14 LNCS‐style pages in length. Authors
shall submit their work via EasyChair following the relevant link on the conference web site. The
format for submission is solely PDF.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS)
series by Springer, and will be available at the start of the conference. The authors of accepted
regular papers shall prepare camera‐ready submissions in full conformance with the LNCS style,
not exceeding 14 pages and strictly by March 16, 2014. For format and style guidelines authors
should refer to http://www.springer.de/comp/lncs/authors.html. Failure to comply and to
register for the conference by that date will prevent the paper from appearing in the proceedings.

The CORE ranking (dated 2008) has the conference in class A. The CiteSeerX Venue Impact Factor
had it in the top quarter. Microsoft Academic Search has it in the top third for conferences on
programming languages by number of citations in the last 10 years. The conference is listed in
DBLP, SCOPUS and Web of Science Conference Proceedings Citation index, among others.

Awards

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference seeks industrial presentations which deliver value and insight but may not fit the
selection process for regular papers. Authors are invited to submit a presentation outline of
exactly 1 page in length by January 19, 2014. Submissions shall be made via EasyChair following
the relevant link on the conference web site. The Industrial Committee will review the
submissions and make the selection. The authors of selected presentations shall prepare a final
short abstract and submit it by May 18, 2014, aiming at a 20‐minute talk. The authors of accepted
presentations will be invited to submit corresponding articles for publication in the Ada User
Journal, which will host the proceedings of the Industrial Program of the Conference. For any
further information please contact the Industrial Chair directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be
proposed as either half‐ or full‐day events. Proposals should include a title, an abstract, a
description of the topic, a detailed outline of the presentation, a description of the presenter's
lecturing expertise in general and with the proposed topic in particular, the proposed duration
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced),
the recommended audience experience and background, and a statement of the reasons for
attending. Proposals should be submitted by e‐mail to the Tutorial Chair. The authors of accepted
full‐day tutorials will receive a complimentary conference registration as well as a fee for every
paying participant in excess of 5; for half‐day tutorials, these benefits will be accordingly halved.
The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half‐ or full‐day events, to be scheduled at either end of the conference week.
Workshop proposals should be submitted to the General Chair. The workshop organizer shall also
commit to preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and
providers of software products and services should contact the Exhibition Chair for information
and for allowing suitable planning of the exhibition space and time.

Grant for Reduced Student Fees

A limited number of sponsored grants for reduced fees is expected to be available for students
who would like to attend the conference or tutorials. Contact the General Chair for details.

220 Forthcoming Events

Volume 34, Number 4, December 2013 Ada User Journal

ACM SIGAda Annual International Conference
High Integrity Language Technology HILT 2014

Preliminary Call for Technical Contributions

Developing and Certifying Critical Software

Portland, Oregon, USA
October 20-22, 2014

(date is approximate)

Sponsored by ACM SIGAda in cooperation with
Ada-Europe and the Ada Resource Association

Contact: SIGAda.HILT2014@acm.org www.sigada.org/conf/hilt2014

SUMMARY
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety
and/or security demands, typically entailing certification against a relevant standard. A significant factor affecting
whether and how such requirements are met is the chosen language technology and its supporting tools: not just
the programming language(s) but also languages for expressing specifications, program properties, domain
models, and other attributes of the software or overall system. HILT 2014 will provide a forum for experts from
academia/research, industry, and government to present the latest findings in designing, implementing, and using
language technology for high integrity software. We are soliciting technical papers, experience reports, and
tutorial proposals on a broad range of relevant topics.

POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:
 New developments in formal methods
 Multicore and high integrity systems
 Object-Oriented Programming in high integrity systems
 High-integrity languages (e.g., SPARK)
 Use of high reliability profiles such as Ravenscar
 Use of language subsets (e.g., MISRA C, MISRA C++)
 Software safety standards (e.g., DO-178B and DO-178C)
 Typed/Proof-Carrying Intermediate Languages
 Contract-based programming (e.g., Ada 2012)
 Model-based development for critical systems
 Specification languages (e.g., Z)
 Annotation languages (e.g., JML)

 Teaching high integrity development
 Case studies of high integrity systems
 Real-time networking/quality of service guarantees
 Analysis, testing, and validation
 Static and dynamic analysis of code
 System Architecture and Design including

Service-Oriented Architecture and Agile Development
 Information Assurance
 Security and the Common Criteria /

Common Evaluation Methodology
 Architecture design languages (e.g., AADL)
 Fault tolerance and recovery

KINDS OF TECHNICAL CONTRIBUTIONS
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 10-
20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings and
in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library accessible
online to university campuses, ACM’s mare than 100,000 members, and the wider software community.

EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If
your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will be
double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work
(with bibliographic references), results to date, and future directions.

EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 1-2 page description of the
project and the key points of interest. Descriptions will be published in the final program or proceedings, but a
paper will not be required.

Forthcoming Events 221

Ada User Journal Volume 34, Number 4, December 2013

PANEL SESSIONS gather groups of experts on particular topics. Panelists present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.

INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at
least 1 page in size) of the proposed presentation and, if selected, a subsequent abstract for a 30-minute talk. The
authors of accepted presentations will be invited to submit corresponding articles for ACM Ada Letters.

WORKSHOPS are focused sessions that allow knowledgeable professionals to explore issues, exchange views,
and perhaps produce a report on a particular subject. Workshop proposals, up to 5 pages in length, will be selected
based on their applicability to the conference and potential for attracting participants.

TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial
proposals should include the expected level of experience of participants, an abstract or outline, the qualifications
of the instructor(s), and the length of the tutorial (half day or full day).

HOW TO SUBMIT: Except for Tutorial proposals use www.easychair.org/conferences/?conf=hilt2014

Submission Deadline Use Easy Chair Link Above
Technical articles, extended abstracts,
experience reports, panel session
proposals, or workshop proposals

June 7, 2014
For more info contact:
Tucker Taft, Program Chair
taft@adacore.com
 Industrial presentation proposals July 3, 2014 (overview)

Send Tutorial proposals to June 7, 2014 John McCormick, Tutorials Chair
mccormick@cs.uni.edu

At least one author is required to register and make a presentation at the conference.

FURTHER INFORMATION
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: Please contact Greg Gicca (gicca@verocel.com) to learn the benefits of
becoming a sponsor and/or exhibitor at HILT 2014.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be particularly
aware and careful about visa requirements, and should plan travel well in advance. Visit the conference website
for detailed information pertaining to visas.

ANY QUESTIONS?
Please send email to SIGAda.HILT2014@acm.org or Conference Chair (Michael Feldman, mfeldman@gwu.edu), or
Program Chair (Tucker Taft, taft@adacore.com).

 223

Ada User Journal Volume 34, Number 4, December 2013

 FOR IMMEDIATE RELEASE

Ada 2012 Language Rationale Published

New educational resource by Ada expert John Barnes explains key Ada 2012 concepts

PITTSBURGH, Pa., November 12, 2013 – Today at ACM SIGAda’s HILT 2013 (High
Integrity Language Technology) Conference, the Ada Resource Association (ARA) and
Ada-Europe announced the publication of the Ada 2012 Rationale and its free
availability for downloading. Sponsored in part by Ada-Europe, the Ada Resource
Association, and AdaCore, the Ada 2012 Rationale was written by longtime Ada
authority John Barnes. It summarizes the new Ada 2012 features, shows examples of
their use, describes compatibility with earlier versions of the language standard, and
explains the reasons behind critical language design decisions. This new Rationale will
be a valuable resource for anyone interested in learning the innovations introduced by
the Ada 2012 standard.

The Rationale may be downloaded at no cost from www.adaresource.com/rationale-
2012/, from www.ada-europe.org/resources/online/, and from
www.adacore.com/rationale-2012/. The book may also be purchased through its
commercial publisher, Springer, as volume LNCS 8338 in their Lecture Notes in
Computer Science series, to be released in mid-December 2013.

The Ada 2012 Rationale contains the following chapters:
 Introduction, covering the development of Ada 2012 and giving a brief overview of

the main changes from Ada 2005.
 Contracts and Aspects, describing the contract mechanism, one of the major

enhancements in Ada 2012. It explains subprogram preconditions and
postconditions, type invariants, and subtype predicates, and also presents the
new unifying concept of “aspects”.

 Expressions, describing the new flexible forms of expressions introduced in Ada
2012. These new forms – conditional expressions, quantified expressions, and
expression functions – are especially useful in conjunction with contracts.

 Structure and Visibility, describing various improvements including the
generalization of parameter modes to functions, additional flexibility with
incomplete types, and new forms for “use” clauses and return statements.

 Tasking and Real-Time, describing various enhancements including control over
task allocation on multiprocessor architectures, improvements to the scheduling
mechanisms, and control of budgets with regard to interrupts.

224 Press Release

Volume 34, Number 4, December 2013 Ada User Journal

 Iterators, Pools, etc., describing various improvements in a number of general
areas in Ada 2012. These include important new features regarding indexing and
accessing that simplify iterating over containers, and a subpool facility for
additional flexibility in storage management.

 Predefined Library, describing a variety of minor improvements in areas including
string and character handling, directory processing, locale, and streams.

 Containers, describing enhancements to the Containers library, including a new
facility for bounded containers that does not require dynamic storage
management, more elegant mechanisms for element access and iteration,
support for multiway trees, a more general sorting facility, and queues that can be
manipulated in a well-defined fashion by multiple tasks.

“John Barnes has the rare ability to take complex material, distill it down to its essence,
and explain it in an understandable and often entertaining manner,” said Ben Brosgol,
ARA President. “Ada 2012 has advanced the state of the art in language design, and
the new Rationale will help developers understand and appreciate the language’s
innovations.”

“To encourage Ada 2012’s adoption, educational material needs to be widely and
easily accessible,” said Tullio Vardanega, Ada-Europe President. “The Ada 2012
Rationale is an excellent training resource, and we hope that both students and
professional developers will take advantage of its free availability.”

About Ada
The Ada programming language was designed for high-integrity systems – critical
applications where reliability is essential and where compliance with safety and/or
security standards may be required. Its compile-time and run-time checks help detect
errors early in the software development life cycle, avoiding vulnerabilities such as
buffer overflow that are prevalent in other languages. Ada is an international (ISO)
standard, with the latest version (Ada 2012) introducing direct support for contract-
based programming among other new features. Ada continues to see a growing usage
in safety-certified applications, including commercial aircraft avionics, military systems,
air traffic management/control, railroad systems, and medical devices, and in security-
sensitive domains such as financial services.

About the Ada Resource Association
The Ada Resource Association (ARA) is a non-profit organization chartered to support
the continued evolution of the Ada language and its infrastructure, to serve as a source
of information about Ada and its usage, and to promote Ada as a language for effective
software engineering. To these ends the ARA maintains the Ada Information
Clearinghouse website www.adaic.org and has provided funding for the development
and maintenance of the Ada language standard and the Ada Conformance
Assessment Test Suite. For information about the ARA, including sponsorship
opportunities, please visit www.adaresource.com. The ARA is headquartered in
Oakton, VA (US).

Press Release 225

Ada User Journal Volume 34, Number 4, December 2013

About Ada-Europe
Ada-Europe is the international non-profit organization that promotes the knowledge
and use of the Ada programming language in academia, research and industry in
Europe. Its flagship event is the annual international conference on reliable software
technologies, a high-quality technical and scientific event that has been successfully
running in the current format since 1996. Ada-Europe has member organizations all
over the continent, in Belgium, Denmark, France, Germany, Spain, Sweden, and
Switzerland, as well as individual members in many other countries. For information
about Ada-Europe, its charter, activities and sponsors, please visit: www.ada-
europe.org. Ada-Europe is headquartered in Brussels, Belgium.

Organization Contacts
Ada Resource Association
 Ben Brosgol, ARA President
 brosgol@adacore.com

Ada-Europe
 Tullio Vardanega, Ada-Europe President
 tullio.vardanega@math.unipd.it

Press Contacts
Ada Resource Association
 Jessie Glockner
 Rainier Communications
 Tel: +1-508-475-0025 x140
 jglockner@rainierco.com
 http://twitter.com/JessieGlockner

Ada-Europe
 Dirk Craeynest, Ada-Europe Vice-president
 c/o KU Leuven, Department of Computer Science
 dirk.craeynest@cs.kuleuven.be

226

Alice in Adaland
Jacob Sparre Andersen
JSA Research & Innovation, Vesterbrogade 148K, 1620 København V, Denmark; Phone: +45 21 49 08 04; E-mail:
jacob@jacob-sparre.dk

Abstract

This paper will present a number of examples where
using new features in Ada (2012) [1] has made an ap-
plication [2] more reliable and easier to understand. In
addition to this, there will be a short overview of the
external Ada libraries which are instrumental in making
the creation of the case application – if not a walk in
the park, then at least – reasonably easy.

The case application, Alice, is the core component in
a hosted telephone reception system. Alice manages
where a PBX1 directs calls when they arrive from the out-
side and brings the receptionists live information about
the organisations being called. A hosted telephone re-
ception service is the core of out-sourced handling of
incoming phone calls; figuring out which employee(s)
to redirect a call to, receiving messages, directing calls
to voice-mail, etcetera. The intended users of Alice
are companies specialised in receiving incoming phone
calls for lots of (mostly) SME customers.

The customer co-funding the development of Alice con-
siders the complete system mission critical, and intends
to use it for a long time. As Alice is interacting with
human callers and receptionists, it is treated as a soft
real-time system. Alice is implemented in Ada 2012
to the extent it is supported in GNAT GPL 2013 (and
relevant for the application). Surrounding Alice are
Bob (user interface), Chloe (management interface) and
FreeSWITCH (PBX).

Alice is Open Source software.

1 Introduction
This section will present the system the Alice is a part of
together with arguments for implementing it in Ada.

Alice, Bob and Chloe form a hosted telephone reception
system.

• Alice manages where a PBX directs calls when they
arrive from the outside and brings Bob live information
about the organisations being called.

• Bob is the user interface seen by the receptionists doing
the actual work of talking to the callees, taking messages
and figuring out where calls should be directed.

• Chloe is the administration interface seen by the staff
setting up receptions for new (and existing) customers.

1“Private Branch Exchange”, i.e. a telephone exchange.

When we decided to implement Alice in Ada, it was based on
a number of factors. The most important of them is probably
that all the developers on the initial team like to program in
Ada. The technical excuses we have found to back up our
personal preferences map to the design goals of Ada as they
appear in the LRM:

. . . three overriding concerns: program reliabil-
ity and maintenance, programming as a human
activity, and efficiency.

The customer co-funding the development considers the com-
plete system mission critical, and as such is it very important
that the resulting system is reliable. One might argue that
writing the system in SPARK or RavenSPARK would make
it even more reliable, but since the complete system also de-
pends on external components, there is only a limited value
in making the custom components much more reliable than
the external ones. We assume that Ada will give us a good
trade-off, making the custom components more reliable than
the external components, without having to figure out how to
work with the restrictions in SPARK or RavenSPARK.

The customer intends to use the developed system for a mul-
tiple decades, and we all expect that the requirements for the
system will change while it is in operation. Maintainabil-
ity of the system is thus likely to be a significant factor in
lowering the total cost of use of the system. Ada is the only
programming language we are aware of, where maintainabil-
ity is an explicit design goal.

The least plausible of our arguments for using Ada is that
the system should be viewed as a soft real-time system. The
system is interacting with human callers and receptionists
which expect responses within a fixed time-frame after which
the value of the response falls off. A more fair argument
might be that we want the application to be sufficiently fast
and that it is documented that Ada compilers can generate
quite efficient executables [3].

Altogether these technical arguments are a sound reason for
implementing Alice in Ada.

As the customer wants the user interface to run in HTML 5
supporting web browsers, we have decided to implement Bob
and Chloe in a combination of Dart and HTML.

2 Examples
This section will present some real-life examples using Ada
2012 features and discuss how they improve software reliab-
ility and maintainability. These Ada 2012 features will be
covered in the following:

Volume 34, Number 4, December 2013 Ada User Jour na l

J. S. Andersen 227

function Create
(Title : in String;
Start_At : in String;
End_Points : in Receptions.

End_Point_Collection.Map;
Decision_Trees : in Receptions.

Decision_Tree_Collection.Map)
return Instance
with Pre => (not End_Points.Is_Empty);

Figure 1: Dial-plan object constructor. (Lines 30–36 in
“receptions-dial_plan.ads” from [4].)

• Pre- and postconditions

• Subtype predicates

• Functions with out parameters

• Expression functions

• Set notation

• for ... of ... loop notation

2.1 Preconditions

We use precondition aspects to document and check assump-
tions and requirements of subprograms.

In figure 1 we see the specification of a function creating a
dial-plan object. A dial-plan consists of a title (for identifying
the customer) and a number of actions, one of which is the
first action to process. The actions are either decision-trees
(for processing conditions) or end-points (which the incoming
call can be connected to). A dial-plan does not make sense
if it contains infinite loops or if it doesn’t have at least one
end-point. The precondition aspect assures that the dial-plan
object will have at least one end-point. The check for loops
happens on-the-fly when the dial-plan object is used.

We consider aspects on subprograms equivalent to other parts
of subprogram specifications, and as such, we intend to keep
checks declared in aspects active in production builds of Alice.
At the same time, we acknowledge that some executable
checks may be prohibitively costly to perform in a production
system. In case we introduce such a check, we will have to
give it individual consideration.

2.2 Postconditions

We use postconditions to document and check the promises
subprograms make to their callers.

In figure 2 we see the specification of a procedure which
copies information from a HTTP request object to a HTTP
response object. This information is required for building a
full HTTP response and there is a matching precondition on
the “Build” function generating the response to be passed to
AWS [5] and onwards to the client.

procedure Status_Data
(Instance : in out Object;
Request : in AWS.Status.Data)

with Post => Instance.Has_Status_Data;
-- Set the client request data. This makes the

response object aware of
-- Cookies, Sessions, GET/POST request

parameters and everything else that
-- the AWS.Status.Data object contains.

Figure 2: Adding information to a HTTP response object.
(Lines 126–132 in “response.ads” from [2].)

subtype Organization_URI is String
with Dynamic_Predicate => (Organization_URI’

Length <= 256);

Figure 3: Putting an upper limit on the length of a subtype of
String. (Lines 25–26 in “model.ads” from [2].)

2.3 Subtype predicates

We use subtype predicates as an extension of the kinds of
constraints one can put on a subtype.

In figure 3 we create a bounded length subtype of type
String. The bound is introduced to match the constraints
in the database backend used for storing customer inform-
ation. We see this as a cheap alternative to instantiating
“Ada.Strings.Bounded”; no package instantiation and no type
conversions.

2.4 Functions with out parameters

We have found a critical error in how GNAT-GPL-2013 imple-
ments functions with out parameters, which means that this
feature currently is banned (but not yet completely exorcised)
from our software.

Figure 4 shows a source text snippet where we made use
of functions with out parameters. The intent was to have
a function for checking each kind of error state – in some
case with an out parameter describing the state – each with
a matching function generating a descriptive HTTP error
message.

2.5 Expression functions

We use expression functions when there is no need to hide
the implementation of a function – or maybe even a benefit
from publishing the implementation.

Figure 5 shows a primitive operation of an (abstract) interface
to a PBX. In a live system the function should return a value
from the system clock, just as its specification shows is does.
As we may want to work with a simulated PBX – for example
when testing dial-plans – we allow actual PBX interfaces to
override the “default” implementation.

Ada User Jour na l Vo lume 34, Number 4, December 2013

228 Al ice in Adaland

function Bad_Or_Missing_Message return
Boolean;

function No_Contacts_Selected return
Boolean;

function Contact_Does_Not_Exist
(ID : out Contact_In_Organization)

return Boolean;
function

Contact_Without_Messaging_Addresses
(ID : out Contact_In_Organization)

return Boolean;

function Bad_Or_Missing_Message return AWS.
Response.Data;

function No_Contacts_Selected return AWS.
Response.Data;

function Contact_Does_Not_Exist
(ID : in Contact_In_Organization)
return AWS.Response.Data;

function
Contact_Without_Messaging_Addresses

(ID : in Contact_In_Organization)
return AWS.Response.Data;

function Message_Sent return AWS.Response.
Data;

if Bad_Or_Missing_Message then
return Bad_Or_Missing_Message;

elsif No_Contacts_Selected then
return No_Contacts_Selected;

elsif Contact_Does_Not_Exist (ID) then
return Contact_Does_Not_Exist (ID);

elsif Contact_Without_Messaging_Addresses (
ID) then

return
Contact_Without_Messaging_Addresses
(ID);

else
-- Send message and then ...
return Message_Sent;

end if;

Figure 4: Checking for and reporting various parameter errors
before sending a message. The first block of source text shows
the specifications of the functions called in the second block.
(Lines 162–177 and 421–432 in “handlers-message.adb” from
revision adfbe8f943 of [2].)

2.6 Set notation

We use set notation as a readable extension/addition to ranges.

Figure 6 shows two snippets from a phone number normal-
isation package. In both cases we “save” an or operator and
manage with a readable list of the possibilities2.

2.7 for ... of ... loop notation

Whenever the task of a for loop is a matter of processing the
individual elements in a collection/array – without having to
reference prior or following elements – a for ... of ... loop
simplifies how we write and read the loop.

Figure 7 gives a different view of the phone number norm-
alisation package references in the previous example. Each

2As a mathematician I wonder if it would improve the readability to
require that the sets are surrounded by “curly brackets” ({. . . }).

function Clock (PBX : in Instance) return Ada.
Calendar.Time is

(Ada.Calendar.Clock);

Figure 5: Public default implementation. The intent is that
a PBX interface used for simulations can override the system
clock. (Lines 35–36 in “receptions-pbx_interface.ads” of [4].)

function Is_Whitespace (Item : in Character)
return Boolean is

use Ada.Characters.Latin_1;
begin

return Item in Space | No_Break_Space | HT;
end Is_Whitespace;

elsif First and then C in ’+’ | ’0’ .. ’9’
then

Figure 6: Set notation examples. (Lines 23–27 and 37 in
“phone_numbers.adb" of [2].)

character from the source string is processed in order, and a
normalised version of the passed phone number is returned –
unless the passed string is deemed not to be a phone number.

3 External libraries

We use a number of external, Open Source libraries in Alice3.

AWS (Ada Web Server) provides a reasonably complete – and
efficient [7] – HTTP server implementation. You just have to
add the business logic and data.

We use the GNAT Component Collection [8] (GNATcoll)
for accessing SQL databases. One of the nice features of
GNATcoll is that it can generate an Ada interface to a database
simply by querying the server about the schema4.

Our external dial-plan language is based on XML. We use
XML/Ada [9] to process the XML formatted dial-plans before
we convert them to the internal data model.

We use the convenience library Yolk [10] for centralised log-
ging and configuration handling, as well as various utilities
on top of AWS and GNATcoll.

Without these libraries it would be practically impossible to
create Alice, as the investment would have been prohibitive
compared to the expected return.

3We have also factored out some potentially reusable parts of Alice
in “libdialplan” [4] (dial-plan processing) and “libesl” [6] (FreeSWITCH
interface).

4GNATcoll also offers an “Object-Relational Mapping” facility, which
provides a type-safe database interface. Once that facility is sufficiently
mature (i.e. can handle foreign key tuples), we expect to start using it.

Volume 34, Number 4, December 2013 Ada User Jour na l

J. S. Andersen 229

for C of Item loop
if Is_Whitespace (C) then

null; -- removing it
elsif First and then C in ’+’ | ’0’ .. ’9’

then
First := False;
Filled_To := Filled_To + 1;
Buffer (Filled_To) := C;

elsif C in ’0’ .. ’9’ then
Filled_To := Filled_To + 1;
Buffer (Filled_To) := C;

else
return Item; -- not a (normal) phone

number
end if;

end loop;

Figure 7: Processing the characters of a string in order. (Lines
34–47 and 37 in “phone_numbers.adb" of [2].)

4 Conclusion
Our experience so far is that the new features in Ada2̃012
features definitely provide improved readability. Especially
set notation and the new for ... of ... loop notation shine in
this respect.

It looks like functions with out parameters and preconditions
also are features which can improve how well readers compre-
hend source text, but we don’t have much evidence to support
it yet.

Preconditions, postconditions and subtype predicates should
improve the reliability of our software. In practice we haven’t
yet had a case where we have located an error based on a
check of one of these kinds, so we are not completely sure
about their actual value.

In addition to all the new features, we are of course very
happy with the basics of Ada; tasking and strong typing.

• We use tasks to manage logically parallel execution. It
may speed up the execution, but that is (generally) not
why we do it.

• Strong typing is a useful tool to avoid mixing up different
kinds of objects (even when they are non-composite).

All in all we are very happy to be implementing Alice in Ada
2012.

References
[1] ISO/IEC JTC 1/SC 22/WG 9 Ada Rapporteur

Group (2012), Ada Reference Manual – ISO/IEC
8652:2012(E), http://www.adaic.org/
ada-resources/standards/ada12/.

[2] AdaHeads K/S (2013), “Alice", https://github.
com/AdaHeads/Alice.

[3] B. Fulgham et al. (2013), Computer language
benchmarks game, http://benchmarksgame.
alioth.debian.org/u64q/ada.php.

[4] AdaHeads K/S (2013), “libdialplan”, https://
github.com/AdaHeads/libdialplan.

[5] AdaCore et al., “Ada Web Server’,’ http://libre.
adacore.com/tools/aws/.

[6] AdaHeads K/S (2013), “libesl"’, https://github.
com/AdaHeads/libesl.

[7] T. Løcke (2011), Ada Web Server (AWS) vs node.js,
News from Ada in Denmark.

[8] AdaCore et al., “GNAT Component Collection",
http://libre.adacore.com/tools/
gnat-component-collection/.

[9] AdaCore et al., “XML/Ada"’, http://libre.
adacore.com/tools/xmlada/.

[10] T. Løcke (2013) et al., “Yolk", https://github.
com/ThomasLocke/Yolk.

Ada User Jour na l Vo lume 34, Number 4, December 2013

230

Volume 34, Number 4, December 2013 Ada User Journal

Overview of the 16th International Real-Time Ada Workshop

17-19 April 2013
Kings Manor, York, England

Contents *

Workshop Session Summaries
- L. M. Pinho, S. Michell and B. Moore, "Session Summary: Parallel and

Multicore Systems"

- A. Burns and A. Wellings, "Session Summary: Locking Protocols"

- T. Vardanega and R. White, " Session Summary: Improvements to Ada"

- J. Real and J. A. de la Puente " Session Summary: Open Issues"

Program Committee

Mario Aldea Rivas, John Barnes, Ben Brosgol, Alan Burns (Program Chair), Michael González Harbour,
José Javier Gutiérrez, Stephen Michell, Brad Moore, Luís Miguel Pinho, Juan Antonio de la Puente, Jorge
Real, Jose F. Ruiz, Joyce Tokar, Tullio Vardanega, Andy Wellings (Workshop Chair) and Rod White.

Workshop Participants

Mario Aldea Rivas, University of Cantabria, Spain
Geert Bosch, AdaCore, USA
Alan Burns, University of York, UK
Robert Dewar, AdaCore, USA
Michael González Harbour, University of Cantabria, Spain
Kristoffer Nyborg Gregersten, Norwegian Institute of Science and Technology (NIST), Norway
Stephen Michell, Maurya Software, Canada
Brad Moore, General Dynamics, Canada
Luis Miguel Pinho, Polytechnic Institute of Porto, Portugal
Juan Antonio de la Puente, Technical University of Madrid, Spain
Jorge Real, Universitat Politècnica de València, Spain
José Ruiz, AdaCore, France
Sergio Sáez, Universitat Politècnica de València, Spain
Amund Skavhuag, NIST, Norway
Joyce Tokar, Pyrrhus Software, USA
Tullio Vardanega, University of Padua, Italy
Simon Vincent, MBDA UK Ltd, UK
Andy Wellings, University of York, UK
Rod White, MBDA, UK
Juan Zamorano, Technical University of Madrid, Spain

Sponsors

* The Proceedings of the 16th International Real-Time Ada Workshop are published in the August 2013 issue of ACM Ada Letters.

 231

Ada User Journal Volume 34, Number 4, December 2013

Session Summary: Parallel and Multicore Systems
Chair: Luís Miguel Pinho

Rapporteur: Stephen Michell and Brad Moore

1 Introduction

The majority of the session was based on the position
papers submitted by Michell, Moore and Pinho. An
addition paper [1] had also been distributed to the
workshop participants as necessary reading to understand
the papers submitted to the workshop, as it deals with the
general model of fine-grained concurrency proposed by the
authors. The second part of the session was mostly based
on the position paper submitted by Zamorano and de la
Puente.

2 Discussions – Fine-grained Parallelism
for Ada

Papers:

 Burns - “Parallel Ada – A Requirement for Ada 2020”
[1]

 Michell, Moore and Pinho - “Tasklettes – a Fine-
Grained Parallelism for Ada on Multicores” [2]

 Moore, Michell and Pinho – “Parallelism in Ada –
General Model and Ravenscar” [3]

Miguel Pinho opened the discussion in the morning, and
laid out the format of the discussion.

Alan Burns had proposed to not have a separate discussion
on his position paper, saying that it served as a placeholder
to generate discussion, but that the material that it covered
was also present in the other papers.

Stephen Michell then continued to present the basic model
proposed for supporting augmenting Ada to support
parallel computation models. The motivation for a parallel
solution in Ada is two-fold, in response to changes in
computer chip architectures currently available, as well as
future directions. The first important change to note, is that
Moore's law no longer applies. We can no longer rely on
faster CPU clock speeds to absorb increasing complexity
and demands of computer applications. The second factor
is related and has to do with how chip manufacturers are
responding to practical limits in CPU clock speed, by
increasing the number of cores in the computer chip.

The term Parallelism OPportunity (POP) was introduced
which was invented for the IRTAW papers to represent the
locations in the programmers code that are suitable for
parallel execution.

The goal for the general model is to allow for POP's to be
explicitly identified in the programmer's code. To illustrate
the use and need for POP's, the example of a parallel loop
was given, which seemed like a good choice given that

loops are very prevalent in application code, and that
applying a divide and conquer strategy is perhaps easier to
understand than perhaps a recursive subprogram example.

There was significant discussion about the first example.
Some attendees had the impression that the work being
presented only dealt with parallelism of control flow
artifacts, such as loops, as illustrated below:

 for I in 1 .. N
 with parallel, chunk_size => X
 loop
 F(i)
 end loop;

Discussion followed about the wisdom of giving any
directive further than with parallel for the programmers to
control the details of how parallelism is configured,
executed and potentially mapped in the runtime.
Programmers may not provide the correct specification of
detailed controls, and as hardware changes over time, some
argued that it is better to let the compiler have the control
on these inputs. The counter argument was raised that in
real-time systems there is a need for the programmer to
specify such control to directly specify the behaviour,
which is required for behaviour analysis and timing
behaviour analysis. In other cases, the default performance
parameters may be suboptimal for a particular problem, and
the programmer may need to squeeze out extra
performance by tweaking the controls. This could be the
case in particular when code is being written for a very
specific target hardware platform.

Questions were raised about the memory model of the
proposal. The general model is that it supports a shared
memory system, with cache coherency, with uniform
access to memory, within a single partition. At the same
time the desire was not to restrict the model if at all
possible, to other possibilities. Underlying memory buses
and memory organization, however, mean that there can be
orders of magnitude difference in accessing any particular
memory location from various cpu's, and issues such as
cached memory and cache flushes can cause wildly varying
access times, and possibly inconsistent views of shared
data.

It was emphasized that the view of a partition as a shared
memory model is pretty ingrained in Ada.

The presenter explained some of the terminology
associated with parallelism, in particular, the term Reduce,
is described as a special subprogram needed to combine
results from multiple workers into a single overall result. In
addition, the term Identity value is described as a value that

232 Session Summary: Paral le l and Mult icore Systems

Volume 34, Number 4, December 2013 Ada User Journal

when applied as one of the arguments to the reducer
function produces the identical result. This terminology is
commonly used in fine-grained parallelism approaches.

It follows that the syntax of the proposal can be
implemented entirely through the use of the addition of
special parallelism aspects, although one of the other
language syntax changes would involve adding the ability
to specify aspects on a loop, in order to support parallel
loops to connect the programmers code to the backend
parallelism model.

The additional controls that could be specified for the fine-
grained parallelism were presented, with the idea that
defaults were always provided (or selected by the
implementation based upon the number of cores and
memory layout specifics. Examples of controls that a
programmer might wish to specify include:

 the reduction function;

 identity value;

 parallelism strategy (e.g. work-stealing, work-seeking,
work-sharing);

 chunk size;

 worker count;

 ceiling priority;

 affinity;

 worker task storage size; and

 task pool size and behaviours (such as dynamic or
static).

As an example of a reducing loop, the example of a loop
that calculated the sum of integers from 1 to N was given,
where Sum is a variable declared in a global scope outside
the loop. Ordinarily computing the sum in parallel would
cause problems due to concurrent access to the Sum
variable, but this can be avoided if each worker computes a
local Sum value for each worker task, which is then
combined (Reduced) into a single value by the time all the
workers have completed their work.

There was significant of discussion about needing a
definition for the unit of parallelism, and to define the
semantics of a Tasklette, and indeed whether Tasklette is
even an appropriate name for the concept. Alternate names
suggested were Strand, and Fibre. The difficulty that
participants had with Tasklette was that name is very close
to Task, which seems to imply that one should be able to
have attributes, execution time accounting, and blocking on
such creations, which was antithetic to what participants
wanted. No decision was taken, so this summary uses the
term tasklette to stay consistent with the workshop papers.
The reader is invited to substitute strand or fibre as they
choose.

Andy Wellings presented a glimpse of the model of the
Multicore Association “Multicore Programming Practices”
and in particular the model of differentiated control level
parallelism 3 from data level parallelism. Although the
presentation started off with discussing data-level
parallelism constructs such as parallel loops and parallel
recursion, the group felt that the case for control-level
parallelism was more important and relevant for discussion
in a real time context. Miguel and Steve point out that the
proposal is about providing some basic building blocks for
parallelism, which included both control-level parallelism
and data-level parallelism. Nonetheless, the group
expressed interest in focusing on control-level parallelism,
which was the subject for the remaining part of the
discussion.

Some participants objected to the “bottom up” approach
taken by the authors. There was a discussion that programs
often take a top-down design of the software (such as an
object/method view of the world and disassemble or refine
these objects as needed), and that parallelism models
should be developed from the application models.

A request was made to discuss the parallelism model
without discussing the underlying implementation. This
was agreed in general and the rest of the morning's
discussion largely stayed away from the underlying
implementation model.

A discussion was held about how exceptions in the
proposal were handled. The authors agreed that exceptions
were not explicitly discussed in their papers, but stated that
exceptions could take the following form:

 An exception raised in a tasklette is returned to the
tasklette parent and the tasklette ceases to exist

 Any other exception raised in another tasklette would
detect that an exception had already been raised in this
POP and the tasklette ceases to exist.

 Any tasklettes that have not commenced execution of
their portion will not be started, even if the values that
they process would have executed in the sequential
model.

 When the parent resumes execution from the end of the
POP, it does so in an exception handler following the
standard Ada model.

 The semantics of parallel exception handling will be
different from the sequential model, but it was noted
that, in Ada, one cannot rely on any data values being
updated in a construct that is the subject of an
exception.

A belief was expressed that parallel loop operations seem
to be always on an array. This led to a discussion of the
characteristics of loop POP's. The most obvious loops that

3 The literature calls Task-level parallelism, but we use the term control-
level parallelism to make it clear that we are talking about the parallelism
of control structures, not task-based parallelism.

L. M. Pinho, S. Michel l , B. Moore 233

Ada User Journal Volume 34, Number 4, December 2013

can be parallelized are for loops that span a predetermined
(i.e. before the execution of the first pass of the loop) count
of iterations. These match very closely with arrays so it is
natural to give simple examples over arrays.

It was pointed out that the example of finding out if a
number is prime, is an example where a loop could be used
in parallel, without any association with an array.

It is also possible to parallelize loops that do not have a
known stopping point, but the most efficient parallelization
techniques may create a significant amount of execution
that must be discarded once the actual exit condition is
calculated (i.e. all iterations corresponding to execution
beyond the exit condition).

A discussion item was raised on the possibility of having
fine grained and coarse grained parallelism within same
programming domain? The presenter responded that the
model being presented accommodates both simultaneously.

A point of view was given that perhaps all of the needed
functionality could be provided through libraries, i.e. no
new language syntax. The presenter responded that libraries
alone (i.e. with no supporting language syntax) almost
always require the programmer to rewrite the algorithm to
take advantage of the libraries and that this often makes
reading and maintaining the algorithm problematic. The
authors also pointed out that the model not only provides
what a set of libraries would provide, but also gives the
user the ability to plug in or provide the functionality to
handle more challenging environments, such as uneven
memory systems, real time systems and even hard real time
systems.

It was agreed by the workshop that they needed to
understand what other languages were doing in this
domain. Miguel presented the parallelism proposals for
other languages such as C, C++, C#, including the Cilk and
Cilk Plus functionality for C and C++, Open MP, Thread
Building Blocks (TBB) and a little on ParaSail.

It was noted that Cilk Plus uses a strict fork-join model.
Strict means that a Cilk task4 cannot jump into the middle
of a parallel computation, and no execution can proceed
beyond the end of the POP until all tasklettes have
completed. Cilk Plus has an explicit Cilk_Sync that should
be used before any variables written by the tasklettes are
consumed, but that there is an implicit sync before the
block or function containing the POP returns. It was
explained that the Ada model being proposed contains only
implicit synchronizations and that it must occur before the
result of the POP is consumed.

One advantage of the Cilk Plus fork-join model is that, if
you remove the Cilk_Spawn, Cilk_For and the Cilk_Sync
commands, the program executes completely sequentially.

4 The C++ usage of the term task to refer to what Moore, Pinho and
Michell call tasklettes is a source of confusion. Therefore, when talking
about the C++ usage, the term Cilk task or a C++ task is used.

For the proposals for Ada, removal of the with Parallel
aspect results in the normal sequential execution.

Another advantage of the strict fork-join model is that the
strands have full visibility into the stack of the task that
contains the POP, with the knowledge that the stack frame
cannot be finalized until after all strands have finished.
Models that use futures must create explicit return objects
for the POP to deliver results into (likely on the heap)
which can then be consumed at the explicit discretion of the
programmer.

The issue of functions without side effects was raised, i.e.
no in out or out parameters, no aliased parameters, and no
access types passed as parameters, unless there is a
mechanism to show that such actuals are not written to
during the execution of the strands. The issue of pure
functions was discussed, but no conclusions were reached.

Discussions were held about whether or not tasklettes
should be named entities within Ada. There was interest
that explicit algorithms could be created that used such
named entities. The presenters explained that there is a
clear separation between concurrency, which is captured by
tasks, and parallelism, which is the transformation of the
sequential code so that it could be executed by as many
execution resources as are needed at the time. After
significant discussion, it was agreed that tasklettes need not
be named entities.

The issue of the language Parasail generated further
discussion. Parasail permits all constructs that are not
explicitly made sequential to be executed in parallel with
other parallel statements or constructs. Loops can be
executed in parallel, unless designated forward or reverse.
The workshop considered if

 for I in reverse 1 .. N
 with parallel loop
 . . .
 end loop;

meant that the loop must be executed sequentially for Ada.
It was noted that, since Ada already had the reverse
keyword, one could not automatically enforce a rule that all
such loops must be sequential. It was also noted that there
were viable parallel algorithms for such cases, meaning that
the use of such keywords to signify directed sequential
behaviour would likely not work.

A discussion was held about whether or not parallel code
should be executed explicitly by library routines, such as
Paraffin. It was pointed out by the presenters that the
library mechanism did not provide automatic
transformation of POP code. It takes significant rewrite of
the sequential code to fit it into the library call mechanism,
and the code becomes more fragile, more difficult to read
and more difficult to maintain when using libraries. Syntax
provided by the presenters, on the other hand, becomes
aspects of the POP structures that provide direction to the
compiler in how to map the sequential code for parallel
execution.

234 Session Summary: Paral le l and Mult icore Systems

Volume 34, Number 4, December 2013 Ada User Journal

A subtopic of the discussion of tasklettes, was what
happens to exceptions that are raised inside of tasklettes.
Since tasklettes represent simply a parallel execution of the
parent task, the exception must be delivered back to parent
at the point of synchronization. If multiple exceptions are
raised by tasklettes, all but one exception are discarded.
Following Ada's exception semantics, it is irrelevant what
tasklette instance captured the exception, because you
cannot rely upon any state that was being changed when an
exception occurred.

Another issue discussed was how much support that
compilers can give to programmers in identifying code that
cannot be successfully parallelized by the compiler. This
could be because of data dependencies between tasklettes,
aliasing of parameters, non associativity of operations, etc.
It was noted that in other languages that compilers are not
required to make such checks, but with Ada's stricter
language rules it may be possible to have more language
support to at least detect and report parallelization errors.

Real Time Properties of Tasklettes

As the discussion moved towards the real-time aspects of
the model, the workshop began to focus on what properties
of tasklettes were needed in the semantic model.

Many participants saw tasklettes as exclusively a run-to-
completion model, where tasklettes could only execute
code to the synchronization point, and should not block, i.e.
call barriers, suspension objects, entries, delays or file IO.
This notion is at odds with what competing languages are
doing, as C++ examples show many tasklettes (tasks in
C++) performing HTML-based calls over the internet,
which certainly is a blocking operation. It also is at odds
with the notion of higher priority tasklettes interrupting
lower priority tasklettes. It was noted that one of the
reasons why those non-Ada models of parallel
computations went other ways than run-to-completion may
be due to their missing concurrency in the original
language, hence causing the need to address concurrency
and parallelism in the same entity space.

There are, however, reasons for wanting a run-to-
completion model for tasklettes that is derived from
performance considerations of massively parallel machines.
Effectively, processors with dozens or hundreds of cores
cannot maintain a strict cache coherence between all cores,
and although they can construct a model of shared
completely shared memory, the reality is that the time to
access any given address in the system may vary by orders
of magnitude between different cores, and cache flushes
may have dramatic adverse effects on neighbouring but
independent variables. One way to mitigate such effects is
to copy all relevant code and data needed for an algorithm
to a worker task (or worker CPU), have it execute the
algorithm, then copy back the results when finished.

Another issue supporting the no blocking approach is that
such blocking involves the scheduler that manages tasks,
but anonymous tasklettes do not have task control blocks,
hence may not be schedulable. Even if each tasklette is
executed by a worker task as proposed by the presenters, it

is an open issue whether the blocking of a tasklette would
result in a block of the carrying worker task, or if that task
or if that worker task would simply pick up another
tasklette for execution. There is an obvious impact in
analysability, depending what approach is taken.

The issue was not resolved, but there was brief mention
made that such blocking behaviour could be selectable by
an aspect.

In the same vein, significant discussion was held about
what the runtime should return if a call was made to
Current_Task, or to get or set task attributes within a POP,
resulting in tasklettes making such calls. There was some
opinion that in such cases, tasklettes should act as if it was
the parent task making the call, for example returning the
Parent's Task_ID for Current_Task. Since no polls were
taken on these subjects, it remains open.

Another issue discussed was whether or not tasklettes could
be aborted. Since tasklettes cannot be named in the
program, there is no way to explicitly abort a tasklette.

Nested Parallelism

There were discussions as to whether or not tasklettes could
spawn other tasklettes. The issue of recursive subprograms
or subprograms being executed by a tasklette and
containing a POP shows clearly that tasklettes must be able
to spawn more tasklettes.

Explicit Programmer Control

There was a discussion about the need for explicit
programmer control of the various factors that impact the
performance of parallelism, but also the explicit needs of
real-time systems. Some of the issues that programmers
may need to control include

1. Data locality

2. Aliasing of data

3. Reuse of already-calculated objects

4. Calculation deadlines of the parent task

5. Derived calculation deadlines of POP's

6. Blocking or non-blocking of tasklettes

Some that implement compilers and runtimes raised the
issue that many times programmers try to control an
algorithm but often hinder the implementation's ability to
manage all of the issues effectively. This is especially true
when the same code can be executed on widely varying
underlying hardware. The opinion was expressed that
programmers should give high-level guidance to
implementations on the management issues and leave it to
the implementation to perform the actual layout and
management.

Those that build real-time systems raised the issue that
regulators will not permit them to “trust the
implementation”. They work in an environment where they
must be able to account for all behaviours produced by the

L. M. Pinho, S. Michel l , B. Moore 235

Ada User Journal Volume 34, Number 4, December 2013

program and the implementation; hence must be able to
specify and control such behaviours.

It was generally agreed that the management of POP's
needs to support multiple modes of control. The three
identified were:

 The compiler decides everything as much as possible

 The programmer provides general guidance; and

 The programmer provides explicit control of how the
POP is implemented.

There was some support that the aspect mechanism
provided by the presenters had many of the characteristics
needed, and that more discussion of the individual aspects
of the proposal was required, but is still considered an open
issue.

3. Other parallel architecture issues

Paper: Juan Antonio de la Puente and Juan Zamorano -
“On Real Time Partitioned Multicore Systems”

The authors presented their position that there are ways that
high criticality systems and low criticality systems can
reside on the same system. The implementation requires
that all levels of criticality be separated into their own
partitions. These partitions are separated from each other in
time (partition scheduler), and by memory space (MMU).
Individual partitions are scheduled locally.

Various approaches have been used in prototyping such
systems. One approach is to place partitions onto virtual
cores, and to map the virtual cores using the Hypervisor
virtual machine system. Physical processors were statically
scheduled, with predictable scheduling within each
partition.

The potential difficulties with this approach are memory
access contention and maintaining cache coherence.

The presenters have implemented a demonstration system
on a single board using an Intel processor and a Leon 32
processor sharing common memory and running
Hypervisor. They also analyzed Ada 2012 with respect to
mixed criticality systems, and report that there are no new
language features needed (beyond those available in Ada
2012) in Ada for such systems.

As systems move to many-core systems, proposals have
been made to place a single Ravenscar task on each core
and analyzing the system using that paradigm. In high
criticality systems, however, there is deep concern that bus
contention, memory contention, and cache coherence issues
make timing analysis and behaviour reasoning unreliable.

Significant issues remain in designing and implementing
such systems. Communication between partitions is a
concern, in that safety-related partitions must not rely on
data from low criticality partitions, and security-related
partitions cannot pass secure data to less secure systems.
Similarly, the possibility that the individual MMU's can be
compromised, or that shared buses can be overloaded by
the low criticality systems are significant concerns. There

was also discussion on approaches where high and low
criticality code were executed inside the same partition (an
example was presented), but it was felt that the correct
model should be to separate criticalities in different
partitions.

One of the issues raised was if the inter-partition
communication model of Ada is appropriate for these types
of systems. It was felt that other models (such as publish-
subscribe based) could also be interesting. It was agreed
that other inter-partition models would be a reasonable
future direction for workshop submissions.

These systems are being investigated, but for now
multiprocessor mixed criticality multicore systems are not
possible. For now all high criticality systems disable all but
a single cpu in their systems.

It was recommended that IRTAW follow this thread as it
progresses. Of interest is what the aviation community is
doing, as well as the automotive industry.

Paper: Pinho, Michell and Moore – “Ada and Many-
core Platforms”

Miguel Pinho led the discussion, raising the idea that
partitions could also be units of concurrency or parallelism.
It was questioned whether the Ada single memory-space /
few task model was really capable of describing where
technology was moving with thousands of processors,
possibly with non-uniform instruction sets, and non-
uniform memory structures.

A discussion was held that there is a model of Ada
partitions as units of concurrency, which could possibly be
extended to units of parallelism, but that the current
restrictions on partitions make using partitions in this way
less efficient. It was agreed that the remote procedure call
mechanisms are heavy-weight for communicating between
tasklettes, and the shared passive partition model prevents
the usual communication models between partners in a
communication. The solutions proposed by the authors
were discussed, but no consensus was reached in this
session.

4. Conclusions

The following summarize the agreements reached at the
workshop about the applicability of fine-grained
parallelism to Ada programs.

It would be useful to have a syntax and a semantic model
for control-oriented parallelism, and such a model could be
based on the notion of an unit of potential parallelism. In
such a model:

1. Tasklette need support of some schedulable entity that
gains cores for execution.

2. Tasklette/Strand do not have identities and do not have
their own existence

3. Any attributes or invocations such as Current_Task
could be the Creator task

4. Their executing time is not accounted

236 Session Summary: Paral le l and Mult icore Systems

Volume 34, Number 4, December 2013 Ada User Journal

5. The underlying entity that executes a tasklette may be
a task, but may be other constructs.

6. The creator task should not block but should continue
executing, usually by executing one or more tasklettes
and execution time accounting is done only for the
parent task. This could lead to busy waiting just
because of execution time accountancy.

7. The model should be a strict fork-join model. The
entity that created tasklettes may needs to wait for their
completion. This could be a busy wait to satisfy
execution time accounting.

8. In the priority model, tasklettes inherit the priority of
the task and may be executed non-preemptively. It was
noted that issues associated with processor affinities
and dispatching domains must be revisited.

9. Exceptions could be treated in the same way that Cilk
is treating them – the first exception is flagged to be

raised in the parent and others are discarded. This may
create different behaviour from a sequential program.

10. The nominal units for parallelization are:

- subprogram calls, including in expressions

- for loops

- Ada whole operations, such as assignment of
aggregates

- but we need syntax to address conflicts, such as
overlapping ranges.

References
[1] S. Michell, B. Moore, L.M. Pinho (2013), Tasklettes –

a Fine-Grained Parallelism for Ada on Multicores,
Ada Europe 2013.

 237

Ada User Journal Volume 34, Number 4, December 2013

Session Summary: Locking Protocols
Chair: Alan Burns

Rapporteur: Andy Wellings

1 Introduction

The session considered two main issues: the introduction
of the deadline floor locking protocol into a future version
of Ada and multiprocessor locking policies.

2 The Deadline Floor Protocol

Ada 2005 introduced EDF scheduling across priority
bands. A version of Baker's Stack Resource Control
Protocol (called the Preemption Level Control Protocol)
was also introduced so that ceiling priorities could be
used within an EDF context. However, the Preemption
Level Control Protocol is complex and the position paper
by Aldea, Burns, Gutierrez and Gonzalez Harbour entitled
``Incorporating the Deadline Floor Protocol in Ada'' has
proposed an alternative protocol that is conceptually
much simpler and easier to implement.

Alan Burns introduced the protocol and explained its
main motivations and features. The protocol is targeted at
single processor system and the discussion was held
within this context. The protocol requires each protected
object to have a related deadline associated with it. This
deadline is the minimum (floor) relative deadline of all
the tasks that use that protected object. Proper setting of
the floors ensures that each task gets only a single block
and mutual exclusion is guaranteed by the protocol itself.

Several issues were raised in the discussion and these are
summarised below.

 The impact of release jitter on the correctness of the
protocol. Michael Gonzalez Harbour explained that
care had to be taken when tasks could be subject to
release jitter as this could result in the delayed
execution of a shorter deadline tasks that then could
preempt a longer deadline tasks while it was active in
the protected object. It was, therefore, necessary to
use the values of Deadline — Jitter for each task
rather than its simple deadline. Failure to do this
would invalidate the protocol, and mutual exclusion
would not be guaranteed by the protocol itself.
Hence, for safety it is also necessary to provide a
mutex lock to control protected object access. It was
noted, that a similar problem occurs with jitter and
the priority ceiling protocol. However, there more
priority inversion results instead of the breaking of
mutual exclusion. It was also noted that it was
possible to optimize the lock so that it was a single
bit that indicate that the protected object occupied.
Any attempt to access an occupied protected object
would result in an exception being raised.

 The meaning of an inherited deadline. In a real-time
system there are usually consequences that must be
managed if a task misses its deadline. With the
deadline floor protocol, a task may inherit a deadline,
which will be shorter than its application-defined
deadline. The workshop discussed the consequences
of a task missing its inherited deadline. It was agreed
that inherited deadlines were required to control
scheduling and missing them had no repercussions
for the application tasks. For example, the default
floor for a protected object is Time_Span_First, and
hence it is quite possible that an absolute deadline
computed using this floor value is missed.
Consequently, the workshop recommended that,
similar to priorities, that there should be a notion of
base and active deadline. The programmer would
have no visibility of the active deadline of a task.
Any application-level deadline detection mechanisms
involves its base rather than its active deadline.

 Protected objects shared between EDF-scheduled and
priority-scheduled tasks. In order to fit into the Ada
framework for scheduling mixed systems, it is
necessary to allow some protected objects to have
both a priority ceiling and a deadline floor. The rules
are simple, if the ceiling of the protected object is a
FIFO-within priority level, the task's active deadline
is not updated while executing within the protected
object (i.e. there is no need to have a deadline floor).
If the ceiling priority is an EDF-within priority level,
the task's active deadline is updated (i.e. it does need
a floor). Nested protected object across levels require
further consideration.

 Dynamic changes to the base deadline. It was noted
that asynchronous changes to the base deadline of a
task does not result in the recalculation of any active
deadline associated with the task. Also a new
optional check could be specified when using
Delay_Until_And_Set_Deadline to ensure that the
new deadline is longer than or equal to now plus the
relative deadline of the tasks (as set by the pragma
Relative_Deadline).

 Deadlines and other inheritance points in Ada. For
completeness, the workshop agreed that in principle a
server task should run with an active deadline which
is the shortest of its own deadline and the deadline of
the calling tasks during a rendezvous between two
tasks. Similarly, deadline inheritance should occur
during task activation.

238 Session Summary: Locking Protocols

Volume 34, Number 4, December 2013 Ada User Journal

Following the above discussion, the workshop agreed that
the deadline floor protocol would be a useful addition to
Ada and that the Preemption Level Control Protocol
should be made obsolete. This could be achieved with a
new dispatching policy and/or new locking policy.

3 Multiprocessor Issues

The issue of how to integrate appropriate policies for
accessing protected objects in multiprocessor system (into
the Ada language) is still largely unresolved. The Ada
reference manual suggests that tasks busy-wait for a lock
but does not specify any priority or queuing policy
associated with this. There were two papers submitted to
the workshop on this topic. One considered a new lock-
based approach (``Locking Policies for Multiprocessor
Ada'' by Burns and Wellings). The other considered a
lock-free approach (``Lock-Free Protected Types for
Real-Time Ada'' by Bosch). The workshop discussed both

approaches but felt they were both too immature to
warrant suggested language changes at this time. For the
Burns-Wellings paper, further experiments and evaluation
were needed including a prototype Ada implementation.

Much of the discussion on the lock-free approach focused
on the restrictions that had to be placed on the application
code so that updates to the protected data could be
achieved by a single machine instruction. This was
compared to an approach of having library-supported
atomic operations on primitive types (e.g. operations on
atomic integers). The main advantage of using protected
objects was that the application got to define its own
atomic regions rather than having pre-defined operations.
The workshop felt the approach was promising but
wanted to see more detailed definitions of the restrictions
(and how they would be checked) and whether other
forms of lock-free approaches and algorithms were
possible.

 239

Ada User Journal Volume 34, Number 4, December 2013

Session Summary: Improvements to Ada
Chair: Tullio Vardanega

Rapporteur: Rod White

1 Introduction

This session took place in the afternoon of the 18th April.
It was introduced by Tullio who outlined the papers being
considered and how they might lead to improvements in
the Ada language and some of the potential challenges
they posed.

Three papers were discussed in this session:

 Programming Simple Reactive Systems in Ada:
Premature Program Termination, Andy Wellings,
Alan Burns, A.L.C. Cavalcanti and N.K. Singh

 Execution time timers for interrupt handling,
Kristoffer Nyborg Gregertsen and Amund Skavhaug

 Deferred Setting of Scheduling Attributes for
Periodic and Sporadic Tasks, Sergio Sáez, Jorge Real
and Alfons Crespo.

2 Programming Simple Reactive
Systems in Ada

The paper covers the use of Ada to develop simple
reactive, deterministic automata, and the issues of
termination of non-tasking programs. Paper identifies two
main issues:

 Queuing of interrupts and the difficulty of
determining the ordering of multiple events, and
more fundamentally

 Program termination – the issue that prevents the
simple reactive model from working.

The proposal to the workshop was that the termination
semantics for Ada should be changed to be defined thus:

The environment task should terminate when all of
its dependent tasks have terminated, and the partition
has:

- No active timers, and

- No handlers attached to interrupts that are
serviced by the partition.

(Proposed changes in italics)

It was noted in the paper that if the termination semantics
are changed as suggested it will break backwards
compatibility as it is currently possible for programs to
terminate with timers and attached interrupts.

In the case of the active timers there was a consensus that
the termination in their presence is probably an incorrect,
and possibly unintended, behaviour. The interrupt issue is
slightly less clear, it can be addressed by either handlers

being attached and detached dynamically, or by
permitting statically attached handler to be detached
dynamically – possibly a somewhat counter intuitive
concept. The paper also recognised that the problem can
be overcome within the context of the current language
facilities – a kludge is possible: the main procedure can
either perform either a delay until Time’last or a wait on a
suspension object that is never set true.

Two possible approaches were initially suggested that
would solve the problem without impacting backwards
compatibility.

 An indication via a pragma (or aspect) that the
environment thread was not to terminate, or

 The ability to control termination – for cases where
termination is required.

In this discussion only single processor programs were
considered, restricting the discussion to task-free
programs – inclusion of multiple processors and tasks
would add further complexity.

Whilst the termination in the presence of attached
interrupts was not seen as a major issue there was a
general consensus that termination in the presence of
active timing events was incorrect – as these had been
programmed, and if they were not needed then they
should be explicitly cancelled by the application.

There was some concern over the need to check for
outstanding timing events – when and where should this
be done? There was another concern regarding the pattern
whereby timing events are programmed to give a periodic
behaviour; this pattern would never terminate, but explicit
cancellation could address this.

It was noted that the problem has its origin in the change
to the interrupt handling model that occurred between
Ada 83 and Ada 95 – in Ada 83 interrupts were handled
directly by tasks – hence there was no problem with
interrupt handlers being left attached after the tasks had
terminated. This change in the way interrupts are
addressed by the language has been one of the biggest
issues in the migration of applications from Ada 83 to
Ada 95.

The group concluded that this was not a pressing issue
given the simple work-arounds that exist and that there
was little merit in making language changes in this area.

It was also agreed that the termination issue should be
noted in the assessment of concurrency vulnerabilities.

240 Session Summary: Improvements to Ada

Volume 34, Number 4, December 2013 Ada User Journal

3 Execution time timers for interrupt
handling

Ada 2012 introduced execution time clocks for interrupt
handlers – the proposal made in the paper was that Ada
should be extended to provide execution time timers for
interrupt handlers.

Identified issues with interrupts include:

 Hard to predict their rate of arrival;

 Hardware faults can result in bursts;

 In Ada 2012 it is only possible to measure the
execution time of interrupt handlers (using the Clocks
defined in Ada.Execution_Time.Interrupts);

 Interrupt timers can be efficient with respect to the
alternative of polling the time to determine when it
has been exceeded;

 There is also a related issue with timing events where
the facilities are even more limited; here, unlike
interrupts, it is neither possible to measure the
execution time, nor to set an execution time timer.

The proposal was for there to be a timer for each
Interrupt_Id but not one for the overall time consumed by
all interrupts (Ada 2012 also supports the concept of a
single execution time clock for all interrupts). A prototype
of such a solution has been implemented in the GNAT
compiler for the AVR32 processor.

Whilst the paper viewed this as an extension to Ravenscar
it was noted that it would fall outside of Ravenscar as
execution time timers were not in the Ravenscar profile
owing to the lack of an effective model of use that would
fit the spirit of the profile.

It was proposed that the timer type should be a derived
type of the task timer, but the group felt that this was
inappropriate/incorrect as the as here was a mismatch
between the two forms: the task timer contains a Task_Id
whilst the interrupt timer required an Interrupt_Id. It was
suggested (and agreed) that the best approach would be to
define a now root type for timers that could be specialised
for the specified of the task and interrupt timers; this
approach would then allow for the inclusion of timers for
timing events in a similar manner.

In general it was felt that interrupt handler code should be
straightforward and serial, and hence of limited and
bounded duration, this in turn led to the concern that there
might be significant overheads due to the facility that
might detract from this position. This led to the question:
are we really only interested in the total interrupt count
and rate of arrival rather than the CPU time consumed? It
was noted that there is probably more of an interest in
providing timers for timing events as these are firmly in
the application domain, the one where timers are more
widely considered to be useful.

A major concern expressed quite widely was the potential
cost/overhead of the feature. The authors explained the

advantages of hardware support to provide timers, but this
clearly was not going to be a universal solution. There
was a concern regarding the overhead of accessing the
hardware clock, which for some modern processors is
seen as being potentially significant.

Fundamentally the group agreed that the goal must be to
retain predictable behaviour.

It was felt that, with the inclusion of the timers for timing
events, this was a useful facility that would be of use now;
the inclusion of counters was seen as being a useful
addition. There was general support for the basic idea if
not the detail – given we already have half the facility
(clocks for interrupts) it seems sensible to provide this
kind of extension.

A number of issues were noted that had to be worked on
to give a more coherent solution.

 The way in which the deferrable server would work
was not entirely clear and a more complete
description was required;

 The type model needs to be reworked to make the
types for timers in general coherent;

 The model should be extended to also include timers
for timing events;

 It is important that any implementation can ensure
that its support for this feature results in zero
overhead for any application that does not make use
of the feature.

Given these issues are adequately addressed interrupt
timers could be a feature for inclusion in a future revision
of the language.

4 Deferred Setting of Scheduling
Attributes for Periodic and Sporadic
Tasks

Over the past two IRTAWs the issue of setting multiple
scheduling attributes simultaneously has been noted as a
topic of some interest and importance.

This paper is a follow on from the previous IRTAW
where the issue of setting the various attributes of a task
atomically had been seen as being an issue – the current
model in Ada 2012 allows only for the setting of a single
attribute at a time (except for period and deadline). In
outline the paper proposes a new type to capture a set of
scheduling attributes, an instance of which is associated
with each individual task, which can be passed to the
underlying kernel in a single call, hence facilitating their
simultaneous, atomic setting.

The Ada code is relatively straightforward:

 A simple extendable type holding the attributes for
the task appropriate to its dispatching regime and the
execution platform, e.g. priority, affinity for
FIFO_Within_Priorities dispatching, and extending to
include relative and absolute deadlines where EDF
dispatching is used;

T. Vardanega, R. White 241

Ada User Journal Volume 34, Number 4, December 2013

 Some helper subprograms to set/get the various
attributes in a the local copy of the attributes object;
and

 A pair of subprograms to commit/recover the current
attributes to the underlying OS.

The OS can be source of much of the problem, and in the
case of general purpose operating systems the provision
of appropriate OS support for the Ada tasking model, and
its semantics and attributes is the hardest part to solve.

The proposal includes two basic options with respect to
setting the attributes of a task: setting them immediately,
and setting them and suspending for them to apply at the
next release. In both cases issues were raised regarding
exactly how these might work. In the first case there was
the point that setting could not be immediate if the caller
was in a protected operation – the application would have
to be deferred until after the protected operation had been
completed. In the second case, that where the task
becomes suspended, two significant points were raised:

 Firstly, does the suspension take place in the context
of the new or the old attributes? This leads to a
number of more detailed considerations such as:
where the affinity is changed in the attributes is the
task suspended on the original, or new processor?

 Secondly: what should the behaviour be for zero and
negative delay values? The Ada behaviour is not
necessarily the same as that of operating system
interfaces such as POSIX where these cases may not
result in a dispatching point.

It was agreed that the suspend form of the operation could
only be applied to the current task (i.e. itself) and thus the
Task_Id parameter was redundant – this principle was not
extended to the immediate form of the operation.

Given the complexity, an alternative approach was
tentatively suggested. Why not replace the suspension by
a timing event that sets the attribute in its protected
operation? The fact that it is a PO will ensure atomicity of
the attribute change, but it was noted that this is not
necessarily the case where the affinity is changed. From

this there was some discussion as to whether affinity is
particularly difficult and should be treated as a special
case – no specific conclusion emerged from this
discussion.

There was some concern about where this facility would
feature in the ARM. It was agreed that it would be in an
Annex, probably Annex D, and that its implementation
would have to be all or nothing at the level of the
individual child package. Thus it would be an optional
feature.

It was noted that the parameters must be scheduling
parameters, the “At_Time” field was viewed as being a
helper, for the EDF extension the absolute and relative
deadlines should be discrete fields in the record.

In summary:

 The possibilities are not well tied down – there is a
high degree of operating system dependence in the
current proposal.

 The facility is highly dependent on the underlying OS
for its support – if the OS does not support the
concept of task attributes in a way that is compatible
with the Ada model then simply don’t support the
facility.

 Experimental changes need to be made to the Linux
kernel to facilitate the feature – results should be
reported at the next IRTAW. (It was felt that it would
be easier to make the change to Linux than to get
POSIX changed for a feature that is essentially
needed for real-time operation – the POSIX real-time
community is seen as being less active than that of
Linux).

 In terms of the code, the unnecessary references to
Task_Id should be removed.

 Attributes must be true scheduling parameters – not
“helpers” – thus for EDF dispatching both relative
and absolute deadlines should be captured;

 The feature should be developed for inclusion in
Annex D.

242

Volume 34, Number 4, December 2013 Ada User Journal

Session Summary: Open Issues
Chair: Jorge Real

Rapporteur: Juan Antonio de la Puente

1 Introduction

Most of the session was focused on discussing the
opportunity to define a new Ada profile by adding
execution-time control mechanisms to the Ravenscar
profile. The basis for the proposal was the position papers
by Gregertsen. Related work includes the paper by
Gregertsen and Skavhaug [1] on execution-time control
mechanisms.

The session started by the chair recalling a statement from a
proposal presented at IRTAW-15 [2]:

 To make it worthwhile to define a new profile, there
 must be

- a clear application need,

- a computational model that reflects this need,

- and an implementation strategy that leads to a
run-time footprint significantly smaller

 than that needed by the full language.

The above criteria were considered meaningful by the
group.

2 An extended Ravenscar profile

Kristoffer Gregertsen presented his proposal of an extended
Ravenscar profile with execution-time control mechanisms.
The main motivation is to overcome the limitations of the
Ravenscar profile with respect to real-time fault tolerance.
The features that could be included in the new profile are:

 execution-time timers;

 group budgets;

 asynchronous task control;

 dynamic priorities;

 asynchronous transfer of control;

 abort statement.

Execution-time timers and group budgets are proposed as
run-time mechanisms for detecting overruns. Asynchronous
task control and dynamic priorities can be used to lower the
priority of a faulty task, thus reducing its impact on the
system, and asynchronous transfer of control and abort can
provide further support for this purpose.

There was a vivid discussion on the proposal. A basic
consideration is the wish to keep the run-time system
efficient and small, in order to facilitate certification when
required. Robert Dewar made a point that adding a profile
would not be too complex for compiler builders, but adding

new restrictions might be. There was general agreement
that abort and ATC are the most complex features to
implement, whereas the rest would not pose so much of a
problem.

Another topic is the possible uses of the extended profile.
The Ravenscar profile forces a static environment that
enables schedulability analysis to be carried out in critical
systems, and was originally conceived as a replacement for
cyclic executives that were dominant at the time. On the
other hand, an extended profile may add flexibility for
other possible uses. Geert Bosch commented that
Ravenscar is too limited for some users, while Rod White
observed that some non-critical applications use the
Ravenscar runtime because it is small and simple. Amund
Skavhaug stressed the interest of the extended profile in
education, where it could be used in small student projects.

The discussion went on by considering some specific
details of the proposal. Dynamic priorities and
asynchronous task control were considered as mechanisms
for dealing with faulty tasks. Tullio Vardanega pointed out
three possible policies after a deadline overrun:

 the faulty task can be made non-eligible for running;

 if it can still do some useful work, it can be allowed to
run at a low priority;

 it can be restarted, or a mode changed can be triggered.

There was consensus that asynchronous task control is a
complex issue that can be difficult to implement in a
reduced runtime system.

3 Conclusions

The proposal of defining a new profile that adds flexibility
and run-time control mechanisms to Ravenscar while
keeping a reduced size and complexity seems interesting
and the group agrees that it deserves further investigation.
Especially asynchronous control and dynamic priorities
have to be studied in detail in order to find all the possible
implementation issues. Further work is also needed on the
definition of useful fault recovery policies.

References
[1] K. N. Gregertsen and A. Skavhaug (2011),

Implementation and usage of the new Ada 2012
execution-time control features, 15th International
Real-Time Ada Workshop, Liébana, Spain.

[2] A. Burns, A. Wellings, and A. H. Malik (2011), TTF-
Ravenscar: A profile to support reliable high-integrity
multiprocessor Ada applications, 15th International
Real-Time Ada Workshop, Liébana, Spain.

 243

Ada User Journal Volume 34, Number 4, December 2013

SPARK 2014 Rationale
Yannick Moy

AdaCore, France

1 Introduction

SPARK has an enviable industrial track record. Over the
past 25 years it has been applied worldwide in a range of
industrial applications such as civil and military avionics,
railway signaling, cryptographic and cross-domain
solutions. SPARK 2014 is the next generation of the
language. Below we describe some of the major new
features, further information can be found on www.spark-
2014.org.

 Convergence with Ada2012 Syntax

The latest version of the Ada language now contains
contract-based programming constructs as part of the core
language: preconditions, postconditions, type invariants
and subtype predicates. SPARK 2014 uses the same
syntax for contracts, meaning that a program written in
Ada 2012 can be verified by the SPARK 2014
verification tools without having to rewrite the contracts.
Subprograms in SPARK and in full Ada can now coexist
more easily.

Using the Ada 2012 aspect notation, SPARK 2014
strengthens the specification capabilities of the language
by the addition of contracts for:

- Data dependencies

- Information flows

- State abstraction

- Data and behaviour refinement

 Bigger Language Subset

The SPARK 2014 language comprises a much bigger
subset of Ada than its predecessors. The only features
excluded are those which are not amenable to sound static
verification, which principally means access types,
function side effects, aliasing, goto's, controlled types and
exception handling.

Relative to previous versions of the language, the main
additions to SPARK 2014 include:

- Generic subprograms and packages

- Discriminated types

- Types with dynamic bounds

- Array slicing

- Array concatenation

- Recursion

- Early exit and return statements

- Computed constants

- A limited form of raise statements

 Selectable Language Profiles

Previous versions of SPARK embodied a set of
restrictions essentially targeted at highly constrained run-
time environments. SPARK 2014 provides the user with
flexibility to choose their own language profile to suit
their application environment: stay with the full language
for server-based applications or apply the Strict profile for
embedded applications with limited memory or minimal
run-time support. Alternatively you can tailor the pre-
defined profiles to prohibit particular language features
according to project-specific constraints and regulations.

 Executable Contracts

Functional contracts (pre- and postconditions) have a dual
purpose in SPARK 2014. As in previous versions of
SPARK, they can be used to specify the functional
behaviour required from a subprogram, against which its
implementation can be statically verified (i.e. pre-
compilation) by the proof system that forms part of the
toolset. In SPARK 2014, the same contracts can also be
compiled and executed, which in practice means that the
compiler turns them into run-time assertions. The
executable semantics have a number of applications, not
only hybrid verification, but also as an aid to the
validation and development of the contracts themselves.

 Hybrid Verification

Hybrid Verification is an innovative approach to
demonstrating the functional correctness of a program
using a combination of automated proof and unit testing.
Once the functional behaviour or low-level requirements
of a program have been captured as SPARK 2014
contracts, the verification toolset can be applied to
automatically prove that the implementation is correct and
free from run-time exceptions. Only where verification
cannot be completed automatically is it necessary to write
unit tests - with the same contracts used to check the
correct run-time behaviour of the relevant subprograms.

 Generative Mode for Data Dependencies

When the implementation of a unit is available, the
SPARK tools can extract the information flow and data
dependencies for those subprograms in the unit. The user
has the choice to specify information flow contracts on
the code where they must be enforced, but otherwise let
the tools generate the missing contracts to allow overall
analysis to be completed.

244 SPARK 2014 Rat ionale

Volume 34, Number 4, December 2013 Ada User Journal

 Formal Container Library

SPARK 2014 excludes data structures based on pointers,
because they make formal verification intractable.
Instead, users can either hide pointers from client units by
making the data structures private, or benefit from the
library of formal containers provided with SPARK 2014.
These generic containers (vectors, lists, maps, sets) have
been specifically designed to facilitate the proof of client
units.

2 Contract Cases

Besides the usual expression of a subprogram contract as
a pair of a precondition and a postcondition, SPARK 2014
provides a way to express such a contract by cases. A
little history helps understanding how we came up with
this new feature.

For example, one might specify by cases the work plan of
a 15th century castle guard opening the gate to visitors:

 procedure Open_Gate (V : Visitor) with
 Contract_Cases => (
 Is_Beggar (V) => Is_Open (No_Gate),
 Is_Serf (V) => Is_Open (Side_Gate),
 Is_Merchant (V) => Is_Open (Small_Gate),
 Is_High_Ranking (V) => Is_Open (Big_Gate));

The cases can be read as follows:

 if the visitor is a beggar, then no gate should be
opened,

 if the visitor is a serf, then the side gate should be
opened,

 if the visitor is a merchant, then the small gate should
be opened,

 if the visitor is high-ranking, then the big gate should
be opened.

At first sight, it could seem that the above contract can
also be expressed as a regular postcondition with an if-
expression:

 procedure Open_Gate (V : Visitor) with
 Postcondition => (
 if Is_Beggar (V) then Is_Open (No_Gate)
 elsif Is_Serf (V) then Is_Open (Side_Gate),
 elsif Is_Merchant (V) then Is_Open
 (Small_Gate),
 elsif Is_High_Ranking (V) then Is_Open
 (Big_Gate));

But there is a bit more than that, which makes contract
cases more than syntactic sugar for a an if-expression, and
a little history might help to understand it.

Previous versions of SPARK only had preconditions and
postconditions. This was carried to Ada 2012. But
SPARK 2014 also draws its inspiration from other
specification languages, such as JML[1] and ACSL[2],
which define the notion of subprogram behavior.

JML is the main specification language for Java. In JML,
the specification of a subprogram is either lightweight
(made up of a precondition and postcondition), or
heavyweight (made up of several behaviors). Each
behavior corresponds to a separate contract for the
method, with its own precondition (introduced by
requires) and postcondition (introduced by ensures). For
example, the contract given for Open_Gate would be
written as follows in JML:

 /*@ public normal_behavior
 @ requires is_beggar(v);
 @ ensures is_open(no_gate);
 @ also
 @ public normal_behavior
 @ requires is_serf(v);
 @ ensures is_open(side_gate);
 @ also
 @ public normal_behavior
 @ requires is_merchant(v);
 @ ensures is_open(small_gate);
 @ also
 @ public normal_behavior
 @ requires is_high_ranking(v);
 @ ensures is_open(big_gate);
 @*/
 public void openGate(visitor v);

Each of the behaviors given above is independent from
the others, as shown by the desugaring process that
transforms this contract into the equivalent:

 /*@ public normal_behavior
 @ requires is_beggar(v) || is_serf(v) ||
 @ is_merchant(v) || is_high_ranking(v);
 @ ensures (\old(is_beggar(v)) ==>
 @ is_open(no_gate)) &&
 @ (\old(is_serf(v)) ==>
 @ is_open(side_gate)) &&
 @ (\old(is_merchant(v)) ==>
 @ is_open(small_gate)) &&
 @ (\old(is_high_ranking(v)) ==>
 @ is_open(big_gate));
 @*/
 public void openGate(visitor v);

Note that the precondition is not directly visible on the
original contract, as it is the disjunction of all requires
clauses of all behaviors.

Note also that the precondition allows calling openGate to
a lord coming to ask for money, which would fit both the
descriptions of the beggar and the high-ranking visitor,
leaving the poor guard worry that he may be blamed for
both leaving the gates closed on a high-ranking visitor, or
letting in a beggar.

Both issues have been solved in ACSL, a specification
language for C that builds on the lessons from JML. In
ACSL, the specification of a function can contain both a
plain precondition/postcondition pair, and a set of
behaviors. For example, the contract given for Open_Gate
would be written as follows in ACSL:

Y. Moy 245

Ada User Journal Volume 34, Number 4, December 2013

 /*@ requires is_beggar(v) || is_serf(v) ||
 @ is_merchant(v) || is_high_ranking(v);
 @ behavior beggar:
 @ assumes is_beggar(v);
 @ ensures is_open(no_gate);
 @ behavior serf:
 @ assumes is_serf(v);
 @ ensures is_open(side_gate);
 @ behavior merchant:
 @ assumes is_merchant(v);
 @ ensures is_open(small_gate);
 @ behavior high_ranking:
 @ assumes is_high_ranking(v);
 @ ensures is_open(big_gate);
 @ complete behaviors;
 @ disjoint behaviors;
 @*/
 void open_gate(visitor v);

The precondition is now in one place, and the case of a
begging high-ranking visitor is ruled out by the annotation
"disjoint behaviors", which requires that only one
behavior applies at any time. The other annotation
"complete behaviors" requires that at least one behavior
applies at any time.

For SPARK 2014, we started with a design very close to
the one of ACSL, with individual contract cases matching
the behaviors of ACSL. So initially, the contract of
Open_Gate was written:

 procedure Open_Gate (V : Visitor) with
 Contract_Case => (Name => "beggar",
 Requires => Is_Beggar (V),
 Ensures => Is_Open (No_Gate)),
 Contract_Case => (Name => "serf",
 Requires => Is_Serf (V),
 Ensures => Is_Open (Side_Gate)),
 Contract_Case => (Name => "merchant",
 Requires => Is_Merchant (V),
 Ensures => Is_Open (Small_Gate)),
 Contract_Case => (Name => "high-ranking",
 Requires => Is_High_Ranking (V),
 Ensures => Is_Open (Big_Gate));

Our discussions on the (now closed) public mailing list of
project Hi-Lite revealed that:

1. the above notation is less readable than the equivalent
if-expression

2. the property that each execution matches a unique
contract case should be the default

The final synthetic syntax was proposed by Tucker Taft,
and we added the rule that contract cases in SPARK 2014
are always disjoint and complete. Et voilà!

Since then, I have found it extremely valuable that
contract cases are disjoint and complete, both during
proof and testing (yes, these properties are checked at run
time when compiling with switch -gnata in GNAT). The
concise syntax and the additional expressive power make
it indeed valuable to use contract cases in many cases!

3 Specification Functions

Specifying a program's behavior is seldom expressible in
a satisfiable way without the capability of abstraction
provided by function calls. Yet, specification functions
must obey specific constraints like absence of side-effects
and termination, that have led to different solutions in
various specification languages. Here is what we did in
SPARK 2014.

Consider a Reset procedure which sets a valid initial state
for a variable X of type T. Rather than stating in the
postcondition the individual constraints satisfied by every
component of X, it is much better to abstract these details
away under calls to functions Is_Valid and Is_Initial:

 procedure Reset (X : in out T) with
 Post => Is_Valid (X) and then Is_Initial (X);

If Reset is part of the public API of private type T, this is
the only way to define a contract for Reset, as the details
of implementation of T are not visible.

The specification functions like Is_Valid and Is_Initial that
are called in contracts and other annotations (assertions,
loop invariants, etc.) must obey specific constraints:

 They must not perform side-effects, like writing to a
global variable, which could change the behavior of
the program depending on whether annotations are
executed or not.

 They must always terminate, so that the contract in
which they appear can be logically interpreted.

Both come easily when specifications are not executable,
like in SPARK 2005 or the ACSL specification language
for C: a logic function cannot have side-effects, and it is
defined to always compute a result.

This is not so easy when specifications are executable,
and specification functions are the same functions as the
ones called in code. For example, the programming
language Eiffel recommends that functions used in
annotations are free from side-effects, but does not
provide means to enforce it. The specification language
JML for Java goes further by requiring that specification
functions are declared pure [1], which indicates that they
are free from side-effects and they terminate. So Is_Valid
could be declared in JML as follows:

 /*@ pure @*/ boolean isValid(T x);

JML tools check that a pure method only calls other pure
methods, which guarantees that a pure method does not
have side-effects, but termination is not checked. In other
words, a non-terminating implementation of isValid could
invalidate all proof results:

 /*@ pure @*/ boolean isValid(T x) {
 return not isValid(x); /* does not terminate */
 }

The Spec# specification language for C# has borrowed
from JML the notion of purity for the absence of side-

246 SPARK 2014 Rat ionale

Volume 34, Number 4, December 2013 Ada User Journal

effects, that can be both declared by the programmer or
inferred by the Spec# verifier:

 [pure] public bool IsValid(T x) {
 return not IsValid(x); // does not terminate
 }

Spec# does not consider termination at all though, so the
same non-terminating implementation of IsValid as above
could invalidate all proof results.

So how does SPARK 2014 compares to all that? For one
thing, all functions in SPARK 2014 are free from side-
effects, like in previous versions of SPARK. It is as
simple as that. If you want a subprogram that modifies a
parameter or a global variable, you should define it as a
procedure instead of a function:

 procedure Is_Valid_Log_Result (X : T;
 Result : out Boolean);

A procedure cannot be called in an expression in Ada,
hence cannot appear in an annotation. But Ada allows
functions that have side-effects, so the formal verification
tool GNATprove checks specifically that SPARK 2014
functions cannot have side-effects. Take for example the
following implementation of Is_Valid:

 function Is_Valid (X : T) return Boolean is
 Result : Boolean;
 begin
 ... -- compute result here
 Log := Result; -- store result in global variable
 return Result;
 end Is_Valid;

GNATprove issues the following error on this code:

p.ads:5:13: function with side-effects is not in SPARK

GNATprove does not attempt to prove termination. So,
like in Eiffel, JML and Spec#, a non-terminating
implementation of Is_Valid could theoretically invalidate
all proof results:

 function Is_Valid (X : T) return Boolean is
 (not Is_Valid (X));

In practice, GNATprove uses two mechanisms to limit the
extent to which an incorrect specification function
invalidates proof results:

1. Non-termination caused by other reasons than
recursion (for example, a loop that does not
terminate, or raising an exception) do not invalidate
proof results. This is obtained by only generating
axioms in the proof system for expression functions
(like Is_Valid above) whose definition is given by a
single expression, not for other more complex
functions.

2. Only results for subprograms that use directly or
indirectly the incorrect specification function can be
invalidated. This is obtained by restricting visibility
in the proof system to axioms of entities used directly
or indirectly in the component being proved.

To completely avoid issues with incorrect specification
functions, users can either check manually that
specification functions are not recursive, or adopt a
general coding standard that forbids recursion completely
(like the Recursive_Subprogram rule checked
automatically by the coding standard tool GNATcheck).

What we have achieved with these two mechanisms is
that GNATprove does not generate global incorrect
axioms in the proof system for subtly wrong specification
functions. Take for example the following function that
returns a number between 0 and its parameter Max:

 function Pseudo_Random_Value (G : Generator;
 Max: Natural) return Natural with
 Post => Pseudo_Random_Value'Result >= 0 and
 then Pseudo_Random_Value'Result < Max;

If we generated an axiom for such a function, it would be
something like (in the syntax of the Why intermediate
language):

 function pseudo_random_value (g:generator,
 max:natural): natural

 axiom pseudo_random_value_def:
 forall g:generator. forall max:natural.
 pseudo_random_generator g max >= 0 /\
 pseudo_random_generator g max < max

Can you spot the problem? If not, take the value 0 for
max, and you get

 pseudo_random_generator g 0 >= 0 /\
 pseudo_random_generator g 0 < 0

so the value pseudo_random_generator g 0 is both non-
negative and negative, which is a contradiction. If an
automatic prover manages to discover such a
contradiction, it can then prove anything, even on code
that does not use Pseudo_Random_Value. The problem in
the original contract for Pseudo_Random_Generator is
that it cannot always return a value between 0 (included)
and Max (excluded) if Max is of type Natural. So either
Max should be of type Positive, or the postcondition
should allow returning a value between 0 included and
Max included.

GNATprove avoids these problems by not generating
such wrong axioms. Instead, callers of the function
Pseudo_Random_Generator will get access in their
context to the postcondition of the function.

4 Pre-call and Pre-loop Values

Subprogram contracts are commonly presented as special
assertions: the precondition is an assertion checked at
subprogram entry, while the postcondition is an assertion
checked at subprogram exit. A subtlety not covered by
this simplified presentation is that postconditions are
really two-state assertions: they assert properties over
values at subprogram exit and values at subprogram entry.
A special attribute Old is defined in Ada 2012 to support
these special assertions. A special attribute Loop_Entry is

Y. Moy 247

Ada User Journal Volume 34, Number 4, December 2013

defined in SPARK 2014 to support similar special
assertions for loops.

Take the very simple example of a procedure Increment:

procedure Increment (X : in out Integer) with
 Post => X = X'Old + 1;

The postcondition of Increment states that the value of X
at subprogram exit, denoted X, is one above the value of X
at subprogram entry, denoted X'Old. We're using a special
attribute Old in SPARK 2014 (and in Ada 2012) to denote
the value of an object at subprogram entry. By using
X'Old in the postcondition, we instruct the compiler to
create a copy of X at subprogram entry, that can be
dynamically tested when exiting the subprogram to check
that the postcondition holds.

This special attribute has many equivalent constructs in
other languages:

 the special expression old in the Eiffel language

 the special function \old in the JML specification
language for Java

 the special function \old in the ACSL specification
language for C

 the special function old in the Spec# specification
language for C#

 the special function OldValue in CodeContracts for
.NET

Like most its counterparts, the Old attribute can only be
used in postconditions (and consequence expressions in
contract cases, that have the same scope as
postconditions). But in Ada 2012, its use was restricted to
avoid a common pitfall found in all other languages.

Take the example of a procedure Extract, which copies
the value of array A at index J in parameter V, and zeroes
out this value in the array, but only if J is in the bounds of
A:

procedure Extract (A : in out My_Array;
 J : Integer; V : out Value) with
 Post => (if J in A'Range then V = A(J)'Old
 and A(J) = 0); -- INCORRECT

Clearly, the value of A(J) at subprogram entry is only
meaningful if J is in the bounds of A. If we allowed the
code above, then a copy of A(J) would be made on entry
to subprogram Extract, even when J is out of bounds,
which would raise a run-time error. Therefore, use of Old
in expressions that are potentially unevaluated (like the
then-part in an if-expression, or the right argument of a
shortcut boolean expression) is restricted to plain
variables: A is allowed, but not A(J). The GNAT compiler
issues the following error on the code above:

example.ads:5:44: prefix that is potentially unevaluated
must denote an entity

The correct way to specify the postcondition in that case
is:

procedure Extract (A : in out My_Array;
 J : Integer; V : out Value) with
 Post => (if J in A'Range then V = A'Old(J)
 and A(J) = 0); -- CORRECT

For formal verification with SPARK 2014, the attribute
Old is not sufficient: the postcondition is not the only
two-state assertion, loop invariants (special assertions
used by the formal verification tool to summarize the
effect of a loop) have the same property that they need to
relate the state of the program before the loop starts, and
the state of the program after a given number of loop
iterations. The attribute Loop_Entry was added in SPARK
2014 for that purpose.

Take the example of a procedure Increment_N, which
calls N times the previous procedure Increment:

procedure Increment_N (X : in out Integer;
 N : Positive) is
begin
 for J in 1 .. N loop
 Increment (X);
 pragma Loop_Invariant (X = X'Loop_Entry + J);
 end loop;
end Increment_N;

The loop invariant expresses that the value of X after the
J'th iteration is the initial value of X at loop entry, denoted
X'Loop_Entry, plus J. With this loop invariant, the formal
verification tool GNATprove is able to prove that the
contract of Increment_N is fulfilled:

procedure Increment_N (X : in out Integer;
 N : Positive) with
 Post => X = X'Old + N;

To avoid similar pitfalls as the one mentioned above for
attribute Old, attribute Loop_Entry is similarly restricted
in expressions that are potentially unevaluated, and it can
only be used in assertions, loop invariants and loop
variants in the top-level list of statements in a loop.

Note that Old and Loop_Entry do not apply to any
expression like (X + Y), but only to name expressions (in
Ada grammar), such as a component selection X.C'Old, a
dereference X.all'Old, a call F(X,Y,Z)'Old, etc.

For more details on the use of attributes Old and
Loop_Entry, see:

 the definition of attribute Old in Ada Reference
Manual [3].

 the definition of attribute Loop_Entry in SPARK
2014 Reference Manual [4].

5 Loop Invariants

Formal verification tools like GNATprove rely on two
main inputs from programmers: subprogram contracts
(preconditions and postconditions) and loop invariants.
While the first ones are easy to understand (based on the
"contract" analogy, in which a subprogram and its caller
have mutual obligations), the second ones are not so

248 SPARK 2014 Rat ionale

Volume 34, Number 4, December 2013 Ada User Journal

simple to grasp. This post presents loop invariants and the
choices we made in SPARK 2014.

The need is the same though: like calls are "opaque" to
the formal verification tool, hence the need for contracts
on subprograms, loops are also "opaque" to the formal
verification tool, hence the need for loop invariants.

Note that static analysis tools on the contrary do not
require either contracts or loop invariants. It is due to the
difference in technology between static analysis tools and
formal verification tools: the first ones do not require
annotations, but they are less powerful, leading to more a
posteriori manual work (the review of false positives) if
one wants to use them as verification tools instead of
simply bug-finding tools.

A loop invariant is a special assertion, expressed with a
pragma, that is true at each iteration of the loop. It is
executed as a regular assertion, but used differently from
assertions by the formal verification tool. For example,
here is a function Get_Prime searching for the smallest
prime number between Low and High, and the loop
invariant giving the range of values of J, and expressing
that no integer between Low and the current value J is
prime:

 function Get_Prime (Low, High : Positive)
 return Natural is
 J : Positive := Low;
 begin
 while J <= High loop
 if Is_Prime (J) then
 return J;
 end if;
 pragma Loop_Invariant
 (J in Low .. High
 and
 (for all K in Low .. J => not Is_Prime (K)));
 J := J + 1;
 end loop;
 return 0;
 end Get_Prime;

The loop invariant states here properties related to the
loop index J: because the value of J changes during the
loop, the formal verification tool knows about J only the
properties that are stated in the loop invariant. On the
code above, GNATprove proves the loop invariant in two
stages:

 It proves first that the loop invariant is true at the first
iteration.

 It proves then that, assuming the loop invariant held
at the previous iteration, it still holds at the next
iteration.

This strategy looks a lot like the proof by induction that
all students learn in school. Here are the two
corresponding checks that GNATprove proves:

loopinv.adb:33:7: info: loop invariant initialization
proved

loopinv.adb:33:7: info: loop invariant preservation
proved

Now, loop invariants in SPARK 2014 are a bit different
from the classical "Hoare" loop invariants (invented by
C.A.R. Hoare in 1969), as implemented in Eiffel, JML,
ACSL or Spec#.

In all these languages, the loop invariant must be true
when reaching a loop, each time the loop resumes, and at
loop end. If we had adopted this style of loop invariants in
SPARK 2014, the code above would have to be written:

 function Get_Prime (Low, High : Positive)
 return Natural is
 J : Positive := Low;
 begin
 while J <= High loop
 pragma Loop_Invariant
 ((if Low <= High then J in Low .. High + 1)
 and
 (for all K in Low .. J - 1 => not Is_Prime (K)));
 if Is_Prime (J) then
 return J;
 end if;
 J := J + 1;
 end loop;
 return 0;
 end Get_Prime;

You can see immediately that the loop invariant gets more
complex, because:

 Low might be greater than High, hence the guard "if
Low <= High" before stating the range of J, for the
loop invariant to hold when reaching the loop

 J may end up being greater than High by 1, hence the
range for J "Low .. High + 1", to account for the
possible highest value at loop end

 J has been increased before resuming the loop, hence
the range for J from Low to J - 1, due to the fact the
loop invariant is checked at the beginning of an
iteration.

Hence the decision in SPARK 2014 to allow loop
invariants anywhere in the loop, so that the user can put it
where it is most natural to express. The loop invariant
thus needs not hold when reaching the loop, if the loop is
never entered, nor does it need to hold when exiting the
loop.

In case you wonder if the loop invariant given previously
is useful, it allows you to prove the following contract
automatically with GNATprove (expressed with contract
cases):

 function Get_Prime (Low, High : Positive) return
 Natural with Contract_Cases =>
 -- case 1: there is a prime between Low and High

 ((for some J in Low .. High => Is_Prime (J)) =>
 -- the smallest prime greater or equal to Low is
 -- returned

Y. Moy 249

Ada User Journal Volume 34, Number 4, December 2013

 Get_Prime'Result in Low .. High and
 Is_Prime (Get_Prime'Result) and
 (for all J in Low .. Get_Prime'Result -1 => not
 Is_Prime (J)),
 -- case 2: there is no prime between Low and High

 (for all J in Low .. High => not Is_Prime (J)) =>
 -- zero is returned
 Get_Prime'Result = 0);

6 Loop Variants

Loop variants are the little-known cousins of the loop
invariants, used for proving termination of subprograms.
Although they may not look very useful at first, they can
prove effective as I show with a simple binary search
example. And we came up with both an elegant syntax
and a slick refinement for loop variants in SPARK 2014,
compared to similar constructs in other languages.

I presented previously loop invariants as one of the key
annotations (with subprogram contracts) that users should
provide for using a tool like GNATprove. What about
loop variants? On the one side, they can be omitted, and
on the other side, it's up to you to check termination if you
do so...

I must confess I've never been a big supporter of loop
variants, so I did not care much that they get included in
SPARK 2014 or not. SPARK 2005 did not have them and
users have never complained about it.

I did not care because:

 Many loops in critical embedded software are "for"
loops, for which termination is not an issue (in Ada).

 For most other loops in such software ("while" loops
and "plain" loops), termination can be easily checked
manually.

 The remaining loops require usually a complex
termination argument, that is unlikely to be proved
automatically by a tool.

Loop variants made it nonetheless in SPARK 2014, with a
rather elegant syntax, and a slick refinement compared to
similar constructs in other languages. For example, here is
the loop variant that expresses that the scalar quantity J
always increases through the loop:

 pragma Loop_Variant (Increases => J);

Because J is a scalar value (an integer or an enumeration),
it is bounded by the value of its type, so it cannot increase
forever without failing a range check. So, by proving that
J always increases through the loop, and that no run-time
error occurs in the loop, one can be sure that the loop
terminates normally.

In all other languages, the loop variant must always be a
decreasing positive integer. We can express it this way in
SPARK 2014 too, for example the above is equivalent to:

 pragma Loop_Variant (Decreases => Type_Of_J'Last
 - J + 1);

SPARK 2014 offers the possibility to choose which
direction (increasing or decreasing) is most natural, and
takes care of comparing with the right bounds.
Additionally, more complex loop variants can be
expressed with multiple components. A countdown in
hours, minutes and seconds can use the following loop
variant:

 pragma Loop_Variant (Decreases => Hours,
 Decreases => Minutes,
 Decreases => Seconds);

Here, the first component (Hours) should decrease
between two consecutive iterations of the loop, or else it
stays the same and the second component (Minutes)
decreases, or else this one also stays the same and the last
component (Seconds) decreases. And one can mix
decreasing and increasing directions of variations. Nicer
than the alternative:

 pragma Loop_Variant (Decreases => Hours * 3600 +
 Minutes * 60 + Seconds);

(plus in the above, you should also check that the
expression does not fail a range check or an overflow
check)

So, when is it useful? The typical example is an algorithm
that iterates or traverses a collection (an array or a
container), and whose termination is not obvious. I found
just a few days ago the following test in our test suite
where a loop variant was useful. GNATprove proved all
checks and assertions on the initial (wrong)
implementation of binary search:

 function Search (A : Ar; I : Integer) return T with
 Pre => (for all I1 in A'Range =>
 (for all I2 in I1 .. A'Last =>
 A (I1) <= A (I2))),
 Post => (if Search'Result in A'Range then A
 (Search'Result) = I
 else (for all Index in A'Range =>
 A (Index) /= I));

 function Search (A : Ar; I : Integer) return T is
 Left : U;
 Right : U;
 Med : U;
 begin
 Left := Ar'First;
 Right := Ar'Last;

 if A (Left) > I or else A (Right) < I then
 return 0;
 end if;

 while Left < Right loop
 pragma Loop_Invariant
 ((for all Index in A'First .. Left => A (Index) <= I)
 and then
 (for all Index in Right .. A'Last => I <= A
 (Index)));

250 SPARK 2014 Rat ionale

Volume 34, Number 4, December 2013 Ada User Journal

 Med := Left + (Right - Left) / 2;
 if A (Med) <= I then
 Left := Med;
 elsif A (Med) >= I then
 Right := Med;
 else
 return Med;
 end if;
 end loop;

 return 0;
 end Search;

Except that I added a very simple loop variant to show
that the loop terminates:

 pragma Loop_Variant (Decreases => Right - Left);

and GNATprove could not prove it!

binary_search.adb:20:10: warning: loop variant might
fail

for a good reason: the loop never terminates when the
value searched is in the array! The update to Med is
incorrect, and should be written:

 if A (Med) < I then
 Left := Med + 1;
 elsif A (Med) > I then
 Right := Med - 1;
 else
 return Med;

end if;

which (with an updated loop invariant) leads to a fully
proved implementation, including the loop variant!

For more details on loop variants, see the SPARK 2014
Reference Manual [4].

7 Mixing SPARK and Ada Code

The first step before any formal verification work with
SPARK is to delimitate the part of the code that will be
subject to formal verification (the code in SPARK) within
the overall Ada application (which could also contain
parts coded in C, in Java, in assembly, etc.). This post
presents the solution we've come up with for SPARK
2014.

The possibility of easily linking Ada code with code in
other programming languages (C in particular) has been
one of the landmark features of Ada since the start, with
an Annex of the Ada Reference Manual [3] dedicated to
such interfacing. As in many programming languages for
embedded applications, Ada also offers the capacity to
call directly assembly instructions within the program.

None of these models is suitable for interfacing Ada code
with SPARK code:

 SPARK being a subset of Ada, it would be overly
restrictive to limit the interface to link-time
combination of separate units written fully in Ada or
fully in SPARK;

 SPARK being used for formal verification, it would
be overly permissive to allow freely mixing of Ada
and SPARK code, without clear boundaries.

The solution we've come up with for SPARK 2014 is to
let the user define those parts of the code that are in
SPARK, using a special aspect or pragma SPARK_Mode.
The rest of the code is allowed to use Ada features that
are not in SPARK. For example, assume I have a unit
with a core service in SPARK, called Compute, and
logging and display services in Ada. I can describe this as
follows:

 package Services is
 procedure Compute with SPARK_Mode;
 procedure Log;
 procedure Display;
 end Services;

I can still call the SPARK and Ada procedures freely from
each other, for example:

 package body Services is
 procedure Compute with SPARK_Mode is
 begin
 -- do something
 Log;
 end Compute;

 procedure Log is ...

 procedure Display is
 begin
 Compute;
 -- display values
 end Display;
 end Services;

Because procedures in SPARK and in Ada are clearly
identified, formal verification can be applied to the first
and usual verification based on testing to the second.
Combining these results is possible by using subprogram
contracts.

What is important to be able to formally analyze Compute
above is that the procedure Log has a signature that is
compatible with SPARK restrictions, and that it declares
in a subprogram contract any constraint for calling it (the
precondition) and any effect it has on its environment (the
global annotation), although tool GNATprove
automatically generates a safe approximation of the
global annotation if the user does not give one.

If a unit is mostly in SPARK, it can be marked itself in
SPARK, and individual subprograms in the unit can opt
out of SPARK, for example:

 package Services with SPARK_Mode is
 procedure Compute;
 procedure Log with SPARK_Mode => Off;
 procedure Display with SPARK_Mode => Off;
 end Services;

Y. Moy 251

Ada User Journal Volume 34, Number 4, December 2013

A spec (subprogram or package) can be in SPARK and
not its body, which it typical of features that will be called
from SPARK code, but which are not themselves
implemented in SPARK. Likewise, a package public part
can be in SPARK, but not its private part, which is
expressed as follows:

 package Services with SPARK_Mode is
 -- SPARK interface
 private
 pragma SPARK_Mode (Off);
 -- implementation in Ada
 end Services;

Finally, entities that are neither marked in SPARK or not
in SPARK may be used in SPARK code, as far as their
declaration does not violate SPARK rules. This greatly
facilitates using other units from SPARK code, as the
code used needs not be marked with SPARK_Mode
aspect or pragma. For example, this is the case for the
Ada standard library: many subprograms of the standard
library have a declaration compatible with SPARK, but
they are not currently marked in SPARK; they can
nonetheless be called from SPARK code (for example, to
do I/O).

If you want to know more, a brief overview of
SPARK_Mode is given in the SPARK 2014 Toolset
User's Guide [5].

8 Global State

Global variables are a common source of programming
errors: they may fail to be initialized properly, they can be
modified in unexpected ways, sequences of modifications
may be illegal, etc. SPARK 2014 provides a way to define
abstractly the global state of a unit, so that it can be
referred to in subprogram specifications. The associated
toolset checks correct access to global variables in the
implementation.

Global variables can be easily subverted to cater for poor
design and quick-and-dirty workarounds, to a point that
they are considered as evil in some professional
environments. Their extended scope and lifetime is a
source of programming errors: as they are sometimes
initialized far from their definition, it's easy to forget to
initialize them completely; as they are accessible from
many points in the program, they can be used to
implement conflicting needs; as they may be modified
through different subprograms, their correct use may
require specific sequences of calls, etc.

SPARK 2014 provides a way to define abstractly the
global state of a unit, so that it can be referred to in
subprogram specifications. For example, a unit describing
an HTML page might have a global variable to hold the
content, and another one to hold the CSS style sheet:

package HTML_Page with
 Abstract_State => (Content, Style_Sheet)
is ...

Then, operations over this HTML page can specify
whether they read or write the global state of the page.

 procedure Initialize_Content with
 Global => (Output => Content);

 procedure Update_Content (New_Item : Item) with
 Global => (In_Out => Content);

 procedure Display_Text with
 Global => (Input => (Content, Style_Sheet));

The above states that:

 Initialize_Content should initialize the value of the
Content global state, but not read it, and neither read
not write the value of the Style_Sheet global state.

 Update_Content may update the value of the Content
global state, but neither read nor write the value of
the Style_Sheet global state.

 Similarly, Display_Text may read both parts of the
global state, but it should not write any.

The benefit of describing global state abstractly thus
appears already at the level of the unit spec, as a way to
clearly describe interactions between subprograms and
global state.

But the real benefit appears when checking that the body
of the unit correctly implements its spec. First, each
abstract state is refined into a list of concrete variables:

package body HTML_Page with
 Refined_State =>
 (Content => (Header, Content_Body, Footer),
 Style_Sheet => (Background, Fonts,
 Title_Styles))
is
 Header : HTML_Section;
 Content_Body : HTML_Section;
 Footer : HTML_Section;
 Background : Color;
 Fonts : List_Of_Fonts;
 Title_Styles : List_Of_Styles;
 ...

Then, each Global contract of subprogram is expressed
with respect to concrete variables, in a Refined_Global
contract:

 procedure Initialize_Content with
 Refined_Global => (Output => (Header,
 Content_Body, Footer)) is
 ...

 procedure Update_Content (New_Item : Item) with
 Refined_Global => (In_Out => Content_Body) is
 ...

 procedure Display_Text with
 Refined_Global => (Input => (Content_Body, Fonts,
 Title_Styles)) is
 ...

252 SPARK 2014 Rat ionale

Volume 34, Number 4, December 2013 Ada User Journal

When the tool GNATprove is applied to this program, it
checks that the refined contracts correctly refine the
abstract ones (this is the case above), and that the
implementation implements the refined contracts. For
example, if Update_Content reads Header, contrary to
what is specified in its Refined_Global contract,
GNATprove issues an error:

html_page.ads:8:14: "Header" must be listed in the
Global aspect of "Update_Content"

Or if Display_Text does not read the value of Fonts,
contrary to what is specified in its Refined_Global
contract, GNATprove issues a warning:

html_page.adb:26:49: warning: unused initial value of
"Fonts" [unused_initial_value]

And that's not all! Thanks to contracts on subprograms,
GNATprove can detect any possible read of uninitialized
global variables. For example, if Initialize_Content
attempts to read the value of Header before initializing it,
GNATprove issues an error:

html_page.adb:22:20: "Header" is not initialized
[uninitialized]

The same is true for client units of HTML_Page, which
may also read and write its global state through calls to its
API. If a client program calls Update_Content before
Initialize_Content, GNATprove issues the error:

client.adb:8:04: "Content" is not initialized [uninitialized]

Finally, a special contract Initializes can be used to specify
that a package initializes some state at elaboration, for
example:

package HTML_Page with
 Abstract_State => (Content, Style_Sheet),
 Initializes => Content
is

Again, GNATprove will check correct initialization of the
concrete variable which refine global state Content here.

In summary, SPARK 2014 allows users to specify correct
access to global variables, and the associated tool
GNATprove checks that all accesses to global variables
are indeed according to the specification.

References
[1] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C.

Ruby, D. Cok, P. Müller, J. Kiniry, P. Chalin, and D.
M. Zimmerman (2011), JML Reference Manual
(DRAFT).

[2] P. Baudin, P. Cuo, J.-C. Filliâtre, C. Marché, B.
Monate, Y. Moy, V. Prevosto (2013), ACSL:
ANSI/ISO C Specification Language v1.7.

[3] ISO/IEC 8652:2012(E) (2012), Ada 2012 Reference
Manual.

[4] AdaCore and Altran UK Ltd (2013), SPARK 2014
Reference Manual.

[5] AdaCore and Altran UK Ltd (2013), SPARK 2014
Toolset User’s Guide.

 253

Ada User Journal Volume 34, Number 4, December 2013

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/adaanswers/gems.

Gem #149: Asserting the truth, but
(possibly) not the whole truth
Yannick Moy, AdaCore

Abstract. In Ada 2012, assertions that state desired
properties of programs are not limited to pragma Assert. This
Gem presents how pragma Assertion_Policy can be used to
control which of these assertions should be executed at run
time.

Let’s get started…

In the beginning was created Ada. It did not have any
assertions. Then came GNAT, which introduced pragma
Assert. The ARG saw that it was good, and adopted it in Ada
2005. Then came GNAT again, which introduced pragma
Precondition and pragma Postcondition. The ARG saw that
they were good too, and adopted them as aspects in Ada
2012. The ARG even tried to beat GNAT at this game, and
introduced at the same time aspects for type predicates (see
Gems #146 and #147) and type invariants (see Gem #1485),
which are other forms of assertions. Then came GNAT
again, introducing pragmas Assume, Assert_And_Cut, and
Loop_Invariant, and aspect Contract_Cases, yet other forms
of assertions.

So now the Ada programmer has a rich set of assertions to
state control-relevant properties (Assert, Pre, Post,
Loop_Invariant, Assume, Assert_And_Cut) and data-
relevant properties (Static_Predicate, Dynamic_Predicate,
Type_Invariant).

How does one state which assertions get executed? And how
does one differentiate between different executables, say,
between one created for debugging/testing, and one created
for production?

GNAT provides a switch -gnata that enables all assertions:
pragma Assert of course, but also all the newer forms of
assertions presented above. So each unit can be
independently compiled with or without assertions. But that's
not always adequate.

Let's take the example of writing a library. We want to use
preconditions to prevent the library from being called in an
invalid context (defensive programming), and postconditions
plus type predicates to help with debugging and maintenance
of the library (assertion-based verification). Here is the code:

package Library is
 type Status is (None, Acquired, Released);

 type Resource is record

5 Gems #146, #147 and #148 were published in the June 2013 issue of
AUJ.

 Id : Integer;
 Stat : Status;
 end record
 with Dynamic_Predicate =>
 (if Resource.Id = 0 then Resource.Stat = None
 else Resource.Stat /= None);

 No_Resource : constant Resource :=
 Resource'(0, None);

 procedure Get (R : in out Resource; Id : Integer)
with
 Pre => R.Stat = None,
 Post => R.Stat = Acquired;

 procedure Free (R : in out Resource) with
 Post => (if R.Stat'Old = Acquired
 then R.Stat = Released);
end Library;

package body Library is
 procedure Get (R : in out Resource; Id : Integer) is
 begin
 R.Stat := Acquired;
 R.Id := Id;
 end Get;

 procedure Free (R : in out Resource) is
 begin
 if R.Stat /= Acquired then
 return;
 end if;
 R.Stat := Released;
 end Free;
end Library;

When this code is compiled with the switch -gnata, each call
to Get incurs four run-time assertions (and calls to Free have
three):

 a precondition check on subprogram entry

 a postcondition check on subprogram exit

 a predicate check for parameter R on subprogram entry

 a predicate check for parameter R on subprogram exit

That's fine during testing and debugging (when we use -
gnata), but we'd like the production code to only contain run-
time assertions for the preconditions, to catch misuse of the
library in the actual product, while avoiding the overhead of
the other checks.

Ada 2012 provides pragma Assertion_Policy for that
purpose. This pragma can take the name of an assertion
aspect/pragma as first argument, and the desired policy for

254 Ada Gems

Volume 34, Number 4, December 2013 Ada User Journal

that aspect as second argument. To enforce checking of
preconditions even when -gnata is not used, one only has to
include the following line at the start of library.ads:

pragma Assertion_Policy (Pre => Check);

Now, any misuse of the library by client code will be
detected, no matter how the library is compiled. Take for
example a program that fails to release the resource between
two calls to Get:

with Library; use Library;
procedure Client is
 R : Resource := No_Resource;
begin
 Get (R, 1);
 Get (R, 2); -- incorrect
end Client;

This code (and the library code) can now be compiled
without -gnata:

$ gnatmake client.adb
gcc -c client.adb
gcc -c library.adb
gnatbind -x client.ali
gnatlink client.ali

And it still raises an error at run time:

$./client
raised SYSTEM.ASSERTIONS.ASSERT_FAILURE :
failed precondition from library.ads:16

For more information on pragma Assertion_Policy, or the
new assertion pragmas/aspects supported by GNAT, see the
GNAT Pro Reference Manual.

And as Tony Hoare puts it: "Assert early and assert often!.

Gem#151 Specifying Mathematical
Properties of Programs
Yannick Moy, AdaCore

Abstract. With the addition of many new kinds of assertions
in Ada 2012, it is tempting to state properties of your data
that "forget" about the possibility of overflows. GNAT has
defined a compilation switch and a pragma that make it
possible.

Let’s get started…

Integer overflows are exotic and dangerous beasts, that most
programmers do not encounter very often, and tend to forget
about. An integer overflow occurs when the result of an
arithmetic computation does not fit in the machine integer
type that needs to hold the result. Of course, Ada requires
run-time checks to protect against integer overflows, which
are enabled by the switch -gnato in GNAT. But it is common
to compile without this switch for production binaries, in
which case an integer overflow will result in what the Ada
Reference Manual calls "erroneous behavior", which means
that anything could happen (see Gems #132 to #135) 6.

6 Ada Gems #132 and #135 were published in the March 1013 issue of
AUJ.

Let's consider a function Max_Payload computing the
maximum payload less than a capacity Capacity that can be
constructed with two items It1 and It2:

package Pack is

 type Payload is new Natural;

 function Max_Payload
 (It1, It2 : Payload;
 Capacity : Payload) return Payload;

end Pack;

The implementation of Max_Payload tries to fit the biggest
payload first, and then the smallest one:

package body Pack is

 function Max_Payload
 (It1, It2 : Payload;
 Capacity : Payload) return Payload
 is
 Result : Payload := 0;
 Small : Payload := Payload'Min (It1, It2);
 Big : Payload := Payload'Max (It1, It2);
 begin
 if Big <= Capacity then
 Result := Big;
 end if;

 if Small <= Capacity - Result then
 Result := Result + Small;
 end if;

 return Result;
 end Max_Payload;

end Pack;

Note that the test:

 if Small <= Capacity - Result then

is written this way to avoid integer overflows, while the
more natural way of writing this test:

 if Small + Result <= Capacity then -- incorrect

is vulnerable to integer overflows, if Small + Result is
larger than the maximum integer.

While it is expected to write such unnatural expressions in
code in order to avoid integer overflows, we would like to
write specifications (like subprogram contracts) in a more
mathematical way. For example, a natural way to express the
postcondition for the function Max_Payload is:

 function Max_Payload
 (It1, It2 : Payload;
 Capacity : Payload) return Payload;
 with Post =>
 Max_Payload'Result =
 (if It1 + It2 <= Capacity then It1 + It2

elsif It1 <= Capacity and
 (It1 >= It2 or It2 > Capacity) then It1

Ada Gems 255

Ada User Journal Volume 34, Number 4, December 2013

 elsif It2 <= Capacity then It2
 else 0);

As contracts are executable in Ada, one can compile them as
run-time assertions when passing the switch -gnata to
GNAT. (For finer-grain control over execution of assertions,
see Gem #149.)

Let's test the above implementation:

with Pack; use Pack;

procedure Test_Pack is
begin
 pragma Assert (Max_Payload
 (1, Payload'Last, 10) = 1);
end Test_Pack;

Compiling and running leads to a run-time error, because It1
+ It2 does not fit in an integer:

$ gnatmake -gnata -gnato test_pack.adb
$./test_pack

raised CONSTRAINT_ERROR : pack.ads:10 overflow
check failed

Does that mean we cannot write specifications in the most
natural way? With GNAT, the answer is no, by using an
alternative overflow-checking mechanism for assertions
(including subprogram contracts, pragma Assert, etc.)

The idea is to use 64-bit integers (Long_Long_Integer) for
arithmetic computations in assertions, to eliminate the
possibility of overflow in most cases. This can be achieved
either by compiling with the switch -gnato12 or by adding
the following pragma in pack.adb or in a configuration file:

pragma Overflow_Mode (General => Strict,
 Assertions => Minimized);

Compiling and running now results in no errors:

$ gnatmake -gnata -gnato12 -s test_pack.adb
$./test_pack

Note that GNAT uses 64-bit integers only when they are
needed, based on the knowledge of static type bounds.
Another mode (Eliminated, also triggered with switch -
gnato13) directs the compiler to completely remove the
possibility of overflows by using a run-time library of
infinite-precision integers. Finally, the alternative overflow
modes can also be used for code, as well as assertions, if the
user wishes. For more details on overflow modes see the
GNAT User's Guide.

PS: Still not sure that the body of Max_Payload
implements its contract? As the code above is in SPARK
2014, just use the tool GNATprove to prove it! That's what
I did.

256

Volume 34, Number 4, December 2013 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Press Release: Ada 2012 Language Rationale Published
	Alice in Adaland
	Overview of the 16th International Real-Time Ada Workshop
	Session Summary: Parallel and Multicore Systems
	Session Summary: Locking Protocols
	Session Summary: Improvements to Ada
	Session Summary: Open Issues
	SPARK 2014 Rationale
	Ada Gems
	National Ada Organizations

