

Ada User Journal Volume 35, Number 1, March 2014

ADA
USER
JOURNAL

Volume 35

Number 1

March 2014

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 26

Forthcoming Events 33

Articles

 K. Sargsyan
“Reliable Software in Bioinformatics: Sequence Alignment with Coq, Ada and SPARK” 38

 C. K. W. Grein
“Physical Units with GNAT” 42

 M. Ekman, H. Thane, D. Sundmark, S. Larsson
"Tool Qualification for Safety Related Systems" 47

 J. A. de la Puente, A. Alonso, J. Zamorano, J. Garrido, E. Salazar, M. A. de Miguel
"Experience in Spacecraft On-board Software Development" 55

SPARK 2014 Rationale: Formal Containers

 C. Dross 61

Ada Gems 65

Ada-Europe Associate Members (National Ada Organizations) 68

Ada-Europe 2013 Sponsors Inside Back Cover

2

Volume 35, Number 1, March 2014 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volume 35, Number 1, March 2014

Editorial

In this editorial I would like to note to our readers the 19th International Conference on Reliable Software Technologies –
Ada-Europe 2014, which will take place 23-27 of June 2014 in the heart of Paris, France. The advance program of the
conference, which can be found in the forthcoming events section of the issue, illustrates that it will be a remarkable event,
both due to its rich program and beautiful location in central Paris.

On the program of the conference, I would like to highlight the four sessions of technical papers and two sessions of
industrial presentations, as well as the special featured keynote talks by Robert Lainé, on the lessons learned in space projects
leadership at ESA and EADS; Mohamed Shawky, on futuristic work on intelligent transportation systems; and Alun Foster,
to explore the results and objectives of the large Artemis and ECSEL European R&D programmes. Another highlight is the
retrospective session on the occasion of the 20th anniversary of GNAT, the open source Ada compiler.

The conference week will also encompass ten tutorials (with topics including parallel programming, developing real-time and
mixed criticality systems, high-integrity object oriented programming, Ada 2012 contracts, Model driven engineering,
testing, robotics, and SPARK 2014), and three workshops on “Challenges and new Approaches for Dependable and Cyber-
Physical Systems Engineering”; “Mixed Criticality Systems: Challenges of Mixed Criticality Approaches and Benefits for the
Industry”; and “Ada 2012: le point sur le langage (Ada 2012: Assessing the Language)”.

On the location, the conference will take place at the ECE School, located near the Tour Eiffel, in the heart of Paris. And the
social program includes a conference banquet held aboard a boat, cruising along the Seine, a wonderful opportunity to
sightsee some of the most important Parisian monuments. Finally, although not listed in the announcement, it may happen
that the new book of John Barnes, Programming in Ada 2012, will be on display in Paris. A full week indeed!

Continuing with the forthcoming events, on the other side of the Atlantic, the SIGAda HILT 2014 conference will be co-
located with the SIGPLAN SPLASH conference, in Portland, Oregon, October 18-21, 2014. Registration will allow attending
both conferences.

After the usual news digest and calendar and events sections, the technical part of this issue of the Journal also provides a rich
set of contents. It starts with an article by Karen Sargsyan, of Academia Sinica, Taiwan, on the use of Coq, Ada and SPARK
for bioinformatics applications. After that, Christoph Grein, from Germany, provides an analysis on the use of aspects by
GNAT to specify properties of physical units. In the following paper, a group of authors from Sweden discuss the means for
lightweight and pragmatic qualification of tools as an alternative to regular certification processes. The final paper, by authors
from Universidad Politécnica de Madrid, Spain, provides an overview and analysis of spacecraft on-board software
development, instantiated in the UPMSat-2 satellite software.

The issue also continues the publication of articles on the Rationale for SPARK 2014, with an article on the use of Formal
Containers, based on contributions by Claire Dross of AdaCore, France. Finally, the Ada Gems section presents a two-part
tutorial on Multicore Maze Solving by Pat Rogers, of AdaCore, USA.

 Luís Miguel Pinho
Porto

March 2014
 Email: AUJ_Editor@Ada-Europe.org

4

Volume 35, Number 1, March 2014 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada Rationale 2012 4
Ada-related Events 4
Ada-related Resources 6
Ada-related Tools 7
Ada-related Products 10
Ada and Operating Systems 11
References to Publications 13
Ada Inside 14
Ada in Context 16

Ada Rationale 2012

Errata for Printed Version
of Ada 2012 Rationale

- section/page: 2.5/59

the static predicate for subtype Double
should be

Double in 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18
| 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38
| 40;

- section/page: 2.5/59

the static predicate for subtype Treble
should be

Treble in 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27
| 30 | 33 | 36 | 39 | 42 | 45 | 48 | 51 | 54 | 57
| 60;

- section/page: 4.6/96

in para starting "The other small change
..."

"subtype give in the profile" should be
"subtype given in the profile"

- section/page: 6.3/122

towards end of para starting There are
other ...

(rather than is) should be (rather than in)

section/page: 6.3/124

last line

"one using is" should be "one using in"

- section/page: 6.4/133

top of page

function Reverse should be
function Reverse_List and at end

- section/page: 6.4/133

near bottom of page
"to named access types" should be
"to named general access types"

Declaration of Class_Acc should be
type Class_Acc is access all T'Class;
-- named general access type

- section/page: 7.2/149

last para
"done be functions" should be
"done by functions"

- section/page: 7.2/151

about two thirds down in list of functions
"function Is_Other ..." should be ..
" function Is_Other_Format ..."

- section/page: 7.5/156

middle of page
"Ada.Wide_Strings.Equal_Case" should
be "Ada.Strings.Wide_Equal_Case_"

- section/page: 8.4/171

second displayed fragment of program
"for C in The_Tree.Iterate(S) loop"
should be

"for C in The_Tree.Iterate_Subtree(S)
loop"

- section/page: 8.4/176

in function Eval, the declaration of L, R:
Float needs semicolon thus
L, R, Float;

- section/page: 8.6/184

in with function Get_Priority and Before,
no need for space before colon
(my style, so can ignore)

- section/page: 8.6/186

in para starting "As a final example"
"They might included usual ..." should be
"They might include usual ..."

dated 10 Feb 2014

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Ada in Denmark: Birthday
of Ada - Talk on Cyclomatic
Complexity

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue, 10 Dec 2013 10:43:53 +0100
Subject: Ada in Denmark: Birthday of Ada -

Talk on cyclomatic complexity
Newsgroups: comp.lang.ada

Tonight at 17:30 Ada in Denmark will
meet at:

 Responsum K/S

 Farum Gydevej 87

 3520 Farum

https://plus.google.com/u/0/events/
c5i8f6pga7apck08ss0nuqdicjk

The meeting is also open to non-
members. Please let me or Thomas Løcke
(+45 60 43 19 92) know if you intend to
attend the meeting.

Thomas Pedersen (who is an intern at
AdaHeads K/S at the moment) will give a
short talk based on McCabe's cyclomatic
complexity paper
(http://www.literateprogramming.com/mc
cabe.pdf).

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed, 11 Dec 2013 12:32:47 +0100
Subject: Re: Ada in Denmark: Birthday of

Ada - Talk on cyclomatic complexity
Newsgroups: comp.lang.ada

A short report from the Ada in Denmark
meeting yesterday:

We started the evening with Thomas
Pedersen's presentation of the principles
in McCabe's cyclomatic complexity
measure. Following up on the
presentation we discussed the
experimental evidence available to
identify which (cyclomatic) complexities
are acceptable. Per Dalgas was kind
enough to provide a "problematic" legacy
subprogram in Ada which we found to
have a cyclomatic complexity of 9.
McCabe himself indicates 10 as an upper
limit and references some provided
examples of problematic subprograms
with complexities of 16 and above (IIRC).
I have done a search for Ada subprograms
with complexity above 10 in my
published Ada projects. All the examples
I have found so far were straight
transcriptions from old FORTRAN
sources.

The discussion continued on the subject
of measuring source text quality. Per
Dalgas posed the challenge of how we get
more software developers to _use_ the
available metrics. One option which came
up was to run quality metrics
automatically on the source texts on
public version control repository services
(such as Bitbucket, Github and
Sourceforge). This has the benefit of
being something which initially can be
implemented as an independent service
and only later be pushed to the actual

Ada-related Events 5

Ada User Journal Volume 35, Number 1, March 2014

source hosting services (if they want it).
But would implementing such a measure
make a difference? Will the developers
worry about it? Will the users of software
use it as selection criteria if they get the
possibility?

Then SQALE came up as an example of a
"combined" source text quality measure (I
had the pleasure of attending Jean-Pierre
Rosen's talk on SQALE at Ada Europe
2011), but it appears that only few tools
exist (and none of them Open Source) and
it wasn't obvious which languages the
tools can analyse.

In another branch of the discussion we
wondered if we could get big
buyers/tenderers of software to require
SQALE measures with constraints on
what are acceptable levels as a part of
software delivery contracts.

Doom 3 in Ada at FOSDEM

From: Justin Squirek
<jsquirek1@student.gsu.edu>

Date: Sat Feb 1 2014
Subject: Building a cross platform media

layer based on Doom 3
URL: https://fosdem.org/2014/schedule/

event/doom3_cross_platform/

Resolving API dependencies and Id Tech
4 modding

A short talk on common programming
APIs used by games as well as creating
simple Doom 3 levels and menus - with
examples from current programming
projects AdaDoom3 and a Neotokyo
tribute modification.

Links:

- Main code repository:
https://github.com/AdaDoom3/AdaDoo
m3

- Doom 3 Modification:
https://github.com/AdaDoom3/Neotoky
oMod

[It was not only in the Ada DevRoom that
Ada applications were presented.
—sparre]

[See also “First Person Shooter”, AUJ 34-
2, p. 73. —sparre]

From: Justin Squirek
<jsquirek1@student.gsu.edu>

Date: Sun Feb 16 2014
Subject: Ada Programming
URL: https://plus.google.com/

104228556547212920341/posts
/KaJjfqM5wYf

I uploaded my Media layer/AdaDoom3
FOSDEM presentation slides to github if
anyone wants to have a look:

https://github.com/AdaDoom3/
AdaDoom3/blob/master/
FOSDEM%20Presentation.pdf?raw=true

DragonLace at
FOSDEM'2014

From: John Marino
<dragonlace.cla@marino.st>

Date: Mon Feb 3 2014
Subject: DragonLace at FOSDEM'14
URL: http://www.dragonlace.net/posts/

DragonLace_at_FOSDEM__39__14/

Once again the Ada language merited a
large room at FOSDEM. On February 1, a
series of talks took place in the Ada
Devroom, ending with a presentation
about the DragonLace project and future
plans.

All of presentations were video recorded,
and the presentations have been uploaded
to the Ada-Belgium site. The DragonLace
Presentation is available in PDF and ODP
formats. It discusses the latest state of
Ports and Pkgsrc support as well as some
potential future work.

[See also “New and Updated FreeBSD
Ports”, AUJ 34-4, p. 204. —sparre]

FOSDEM Presentations
On-line

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sat, 15 Feb 2014 21:10:42 +0000
Subject: FOSDEM 2014 - Presentations

Ada Developer Room on-line
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

** All presentations available on-line **

Ada Developer Room at FOSDEM 2014

(Ada at the Free and Open Source
Software Developers' European Meeting)

Saturday 1 February 2014

Université Libre de Bruxelles (U.L.B.),
Solbosch Campus, Room K.4.601

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organized in cooperation with Ada-
Europe

<http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/14/140201-fosdem.html>

All presentations from our 5th Ada
Developer Room, held at FOSDEM 2014
in Brussels recently, are available on the
Ada-Belgium web site.

- “Welcome”
by Dirk Craeynest - Ada-Belgium

- “An Introduction to Ada for Beginning
and Experienced Programmers”
by Jean-Pierre Rosen - Adalog

- “Ada Task Pools: Multithreading Made
Easy”
by Ludovic Brenta - Debian Project

- “SPARK 2014: Hybrid Verification
using Proofs and Tests”
by José F. Ruiz - AdaCore

- “Contract Based Programming in Ada
2012”
by Jacob Sparre Andersen - JSA
Research & Innovation

- “Formal Verification with Ada 2012: a
Very Simple Case Study”
by Didier Willame - Argonauts-IT

- “Speedup and Quality Up with Ada
Tasking (Solving polynomial systems
faster and better on multicore computers
with PHCpack)”
by Jan Verschelde - University of
Illinois at Chicago

- “Safer Web Servers with Ada and
AWS”
by Jean-Pierre Rosen - Adalog

- “Ada in Fedora Linux”
by Pavel Zhukov - Fedora Project

- “Ada in Debian Linux”
by Ludovic Brenta - Debian Project

- “Ada in *BSD”
by John Marino - FreeBSD Project

Presentation abstracts, copies of slides,
speakers bios, pointers to relevant
information, links to other sites, etc., are
all available on the Ada-Belgium site at:

<http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/14/
140201-fosdem.html>

Shortly, some pictures and video
registrations will be posted as well. If you
have additional pictures or other material
you would like to share, or know someone
who does, then please contact me.

Finally, thanks once more to all presenters
for their work and collaboration, thanks to
the many participants for their interest,
and thanks to everyone for another nice
experience!

Ada Course in Carlsbad,
California

From: Ed Colbert <colbert@abssw.com>
Date: Fri, 21 Feb 2014 23:30:00 -0800
Subject: [Announcing] Public Ada Courses

24-28 March 2014 in Carlsbad CA
Newsgroups: comp.lang.ada

Absolute Software will be holding a
public Ada course during the week of 24
March in Carlsbad, CA. You can find a
full description and registration form on
our web-site, www.abssw.com. Click the
Public Courses button in the left margin.
(We also offer courses on real-time
system design, software architecture-
based development, safety-critical
development, object- oriented methods,
and other object-oriented languages.)

If there is anything you'd like to discuss,
please call, write, or send me E-mail.

6 Ada-related Resources

Volume 35, Number 1, March 2014 Ada User Journal

Video Recordings from
FOSDEM

From: The FOSDEM Video Team
Date: Mon Feb 24 2014
Subject: Index of /2014/K4601/Saturday
URL: http://video.fosdem.org/2014/K4601/

Saturday/

[Currently available video recordings
from the Ada DevRoom at FOSDEM
2014: —sparre]

- Welcome

- Introduction to Ada for Beginning and
Experienced Programmers

- Ada Task Pools Multithreading Made
Easy

- SPARK 2014 Hybrid Verification using
Proofs and Tests

- Contract Based Programming in Ada
2012

- Formal Verification with Ada 2012 a
Very Simple Case Study

Ada-Europe 2014 in Paris

From: Ada-France
Date: Tue Feb 25 2014
Subject: Registration
URL: http://ada-europe2014.org/

registration1.html

Registration to the conference will open
on March 10th. See you then!

[It is soon time to sign up for Ada-Europe
2014. —sparre]

Ada-related Resources

Writing Spreadsheets

From: Serge Mosin <svmosin@gmail.com>
Date: Sat, 16 Nov 2013 20:45:12 -0800
Subject: Ada Spreadsheet output
Newsgroups: comp.lang.ada

I wish to know, if there are some Ada
libraries for spreadsheet output,
preferably OpenOffice. I mean the ability
to create a spreadsheet file and write
there/read it from the Ada program. The
method should be fast enough, because
big amount of data is supposed to be
transferred, so launching OpenOffice and
controlling output through it is not the
solution.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sat, 16 Nov 2013 22:44:14 -0700
Subject: Re: Ada Spreadsheet output
Newsgroups: comp.lang.ada

> [...]

There's Excel Writer for output:

http://excel-writer.sourceforge.net/

I'm not aware of anything for OpenOffice,
nor for reading Excel files. This thread
from 2004

(http://coding.derkeiler.com/Archive/Ada/
comp.lang.ada/2004-10/0299.html)
suggests using ODBC to read Excel files.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 20 Nov 2013 03:03:45 -0600
Subject: Re: Ada Spreadsheet output
Newsgroups: comp.lang.ada

[...]

A CSV file has characters in cells. Each
row of cells is separated by a newline, and
within each row, each cell is separated by
a comma (or any other delimiting
character). http://en.wikipedia.org/wiki/
Comma-separated_values

The interpretation of the characters in
each cell is up to the spreadsheet program,
so the structure can be as complex as
needed. In particular, if you want commas
in a cell, the spreadsheet has to define a
quoting syntax. Usually it's easier to use a
different delimiter, such as tab, that is not
needed in the cell data.

For example, I just wrote a CSV file in
Emacs, by typing the characters:

1,0

2,=A1-B1

3,=A2-B2

Then I opened that file in OpenOffice
Calc; the cells starting with "=" were
interpreted as formulas, and the
spreadsheet display is:

1 0

2 1

3 1

When I examine cell B2, it has the
formula =A1-B1. I can then save it in any
format OpenOffice supports. However, if
I save it as a CSV, the file has numbers,
not the formulas. That makes sense,
because you might be exporting the
results to a plotting program. But it would
also make sense to have an option to
export the formulas.

So as far as I can see, any formula in an
OpenOffice spreadsheet can be imported
into OpenOffice via a CSV file.

What else do you need?

The standard OpenOffice file format of
ODS supports metadata; cell formatting
styles, color, everything else you can set
via the toolbars. That data is not
representable in the CSV. So if you need
to import that data, you'd have to write the
ODS format directly. That's a zip of xml
files, and there are Ada libraries that do
both, so there is code you could build on.

The representation of the single cell B3 in
the ODS content.xml file looks like this:

<table:table-cell
table:formula="of:=[.A2]-[.B2]"
office:value-type="float"
office:value="1">

That should be easy to generate with the
GNAT XML/Ada library.

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Tue, 19 Nov 2013 03:09:46 -0800
Subject: Re: Ada Spreadsheet output
Newsgroups: comp.lang.ada

I saw some support of Open Document
Format (aka OpenOffice files) in
Matreshka project.

http://forge.ada-ru.org/matreshka/
wiki/ODF

I don't know actual status however. You
can try download or contact author if you
are interested.

Experimental Continuous
Integration System for Open
Source Projects

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Sun Dec 1 2013
Subject: build.ada-language.com status
URL: http://tero.stronglytyped.org/

buildada-languagecom-status.html
Jenkins update broke the distributed
builds, so other than Debian 7 builds at
http://build.ada-language.com/ are not
updating at the moment.

I am waiting for Jenkins fix and also
looking for alternative build systems, but
that might take a while.

[See also “Experimental Continuous
Integration System for Open Source
Projects”, AUJ 34-3, p. 137. —sparre]

From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Tue Feb 18 08:25:00 CET 2014
IRC-channel: #Ada
IRC-network: irc.freenode.net

08:25 < tkoskine> sparre: I fixed
build.ada-language.com yesterday.
(Found finally time to build my own
version of build publisher plugin with the
fix.)

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue Feb 18 2014
Subject: Repositories of Open Source

software
To: Ada User Journal

AdaForge: 8 repositories [1]

Bitbucket: 103 repositories [2]

 16 developers [2]

Codelabs: 18 repositories [3]

GitHub: 489 repositories [4]

 130 developers [5]

Rosetta Code: 575 examples [6]

 26 developers [7]

Ada-related Tools 7

Ada User Journal Volume 35, Number 1, March 2014

Sourceforge: 224 repositories [8]

[1] http://forge.ada-ru.org/adaforge [2]
http://edb.jacob-
sparre.dk/Ada/on_bitbucket

[3] http://git.codelabs.ch/

[4] https://github.com/search?q=language
%3AAda&type=Repositories

[5] https://github.com/search?q=language
%3AAda&type=Users

[6] http://rosettacode.org/wiki/
Category:Ada

[7] http://rosettacode.org/wiki/
Category:Ada_User

[8] http://sourceforge.net/directory/
language%3Aada/

[See also “Repositories of Open Source
Software”, AUJ 34-4, p. 198. —sparre]

Ada-related Tools

Deepend

From: Brad Moore
<brad.moore@shaw.ca>

Date: Sun Jun 23 2013
Subject: Deepend
URL: http://sourceforge.net/projects/

deepend/

Deepend is a storage pool with subpool
capabilities for Ada 2005.

- Fixed issues preventing compilation of
Ada 2012 version for GNAT GPL 2013.

- Removed workarounds for GNAT
compiler bugs for the Ada 2012 version
that were fixed in the GNAT GPL 2013
version of the compiler.

[See also “Deepend”, AUJ 33-3, p. 146.
—sparre]

OpenGLAda and
OpenCLAda

From: Felix Krause <usenet@flyx.org>
Date: Thu, 14 Nov 2013 22:37:34 +0100
Subject: ANN: OpenGLAda 0.3 and

OpenCLAda 0.1 released
Newsgroups: comp.lang.ada

These are quite thick Ada bindings for the
OpenGL and OpenCL APIs. OpenGLAda
also contains additional wrappers for
GLFW 2/3, SOIL and FTGL.

The two wrappers are interoperable (you
can use the cl_gl extension of OpenCL to
transfer data between OpenGLAda and
OpenCLAda).

Some online documentation, including
overviews of what the wrappers add to the
bare C APIs, is available at

- http://flyx.github.io/OpenGLAda/

- http://flyx.github.io/OpenCLAda/

Releases are available as tags of the
GitHub repositories:

- https://github.com/flyx/OpenGLAda/
tags

- https://github.com/flyx/OpenCLAda/
tags

AWS and the TechEmpower
Framework Benchmark
Project

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 18 Nov 2013 18:59:04 -0800
Subject: AWS Entry into the TechEmpower

Framework Benchmark Project
Newsgroups: comp.lang.ada

TechEmpower is Benchmarking different
frameworks for web-development
(http://www.techempower.com/
benchmarks/#section=motivation&hw=i7
&test=json).

There was no entry for AWS, or any other
Ada showing (I know there's matreshka,
and IIRC several Ada/CGI bindings), so I
coded one up.

Unfortunately there is no DB-
functionality in it right now, as I couldn't
get the ODBC to work, nor could I find a
working InterBase (or FireBird) binding
for Ada.

https://github.com/OneWingedShark/
web-framework-test

From: Graham Stark
<graham.stark@virtual-worlds.biz>

Date: Thu, 28 Nov 2013 04:32:04 -0800
Subject: Re: AWS Entry into the

TechEmpower Framework Benchmark
Project

Newsgroups: comp.lang.ada

> [...]

That's interesting. I had a go at the first
two database tests using the Posgres stuff
in GnatColl and a little database code
generator I wrote a couple of years ago
(http://virtual-worlds-
research.com/downloads/mill). The code
is here:

https://github.com/grahamstark/
techempower/

I suspect my version is much slower than
their peak performers, though I've just
tested it locally. They have a peak on the
first database test of 105,939 whereas I'm
struggling to get above 2,000; I'm
guessing that's still under 10,000 on their
hardware.

Embedded Web Server

From: Simon Wright
<simon@pushface.org>

Date: Thu, 21 Nov 2013 21:02:54 +0000
Subject: Embedded Web Server 20131121
Newsgroups: comp.lang.ada

This minor release of EWS makes no
functional changes, but includes support
for building on Windows without Cygwin
and INSTALL instructions.

https://sourceforge.net/projects/
embed-web-srvr/files/ews-20131121/

[See also “Embedded Web Server”, AUJ
34-4, p. 201. —sparre]

Markup Templates Engine

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Wed Nov 27 2013
Subject: Matreshka Ada Framework -

Markup Templates Engine
URL: http://forge.ada-ru.org/matreshka/

wiki/XML/Templates

Markup Templates Engine reads XML
template documents and generates XML
or HTML5/XHTML5 documents.

[...]

[See also “Matreshka”, AUJ 34-3, p. 139.
—sparre]

Qt5Ada

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Fri, 13 Dec 2013 03:29:30 -0800
Subject: Announce: Qt5Ada version 5.2.0

release 13/12/2013 free edition
Newsgroups: comp.lang.ada

Qt5Ada is Ada-2012 port to Qt5
framework based on Qt 5.2.0 final Qt5ada
version 5.2.0 open source and qt5c.dll
(libqt5c.so) built with Microsoft Visual
Studio 2012 in Windows and gcc x86-64
in Linux.

Package tested with GNAT-GPL-2012
Ada compiler in Windows 32bit and 64bit
and Linux x86-64 Debian 7.

It supports GUI, SQL, Multimedia, Web,
Network, Touch devices, Sensors and
many others things.

Qt5Ada for Windows and Linux (Unix) is
available from

http://users1.jabry.com/adastudio/
index.html

My configuration script to build Qt 5.2 is:
configure -opensource -release -nomake
tests -opengl desktop -icu -plugin-sql-
mysql -plugin-sql-odbc -plugin-sql-oci -
prefix "e:/Qt/5.2"

The full list of released classes is in "Qt5
classes to Qt5Ada packages relation
table.pdf"

[See also “Qt5Ada”, AUJ 34-3, p. 140.
—sparre]

GNATColl.SQL Object-
Relational Mapping

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Thu, 19 Dec 2013 15:53:12 +0100
Subject: Experiences with GNATColl.SQL

ORM?
Newsgroups: comp.lang.ada

8 Ada-related Tools

Volume 35, Number 1, March 2014 Ada User Journal

Can somebody report on their experiences
with the Object-Relational Mapping
(ORM) layer in GNATColl.SQL?

We are using plain GNATColl.SQL at
AdaHeads, and I am experimenting with
it for some other projects, but I would like
to use ORM and not the untyped
GNATColl.SQL interface.

I have tried to run the “gnatcoll_db2ada”
tool on our data model for Alice, but it
fails with an internal error:

A database error occurred, please try
again...

Exception name:
CONSTRAINT_ERROR

Message: gnatcoll-sql-inspect.adb:174
access check failed

This does not make me very confident of
the quality of the ORM layer of
GNATColl.SQL. :-(

Are there any alternatives out there? (The
requirements are that the persistence
backend shouldn't be specific to the tool
and that the storage access should be
strongly typed.)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 19 Dec 2013 16:20:47 +0100
Subject: Re: Experiences with

GNATColl.SQL ORM?
Newsgroups: comp.lang.ada

> A database error occurred, please try
again...

> Exception name:
CONSTRAINT_ERROR

> Message: gnatcoll-sql-inspect.adb:174
access check failed

A strayed accessibility check? Maybe,
replacing Access with Unchecked_Access
would cure it.

> [...] alternatives [...]

A different approach:

http://www.dmitry-kazakov.de/ada/
components.htm#persistent_objects

Supported back-ends are ODBC and
SQLite3. APQ was dropped due to lack of
maintenance

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 19 Dec 2013 19:25:58 +0100
Subject: Re: Experiences with

GNATColl.SQL ORM?
Newsgroups: comp.lang.ada

> Reading the documentation, it seems
like the actual storage is as strings, and
not as types equivalent to those used on
the Ada side. Is that correct?

Yes, it is a standard OO
serialize/deserialize schema. Objects are
stored as blobs. Object's types and
dependencies are stored independently.

Request: B-tree Library

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 16 Jan 2014 17:12:08 +0100
Subject: Single file resident B-tree library?
Newsgroups: comp.lang.ada

Is there an Ada implementation of (under
a commercially-friendly license)?

Something like this:

http://people.csail.mit.edu/jaffer/wb/
C-Interface.html#C-Interface

with an ability to scan adjacent keys
(ranges of keys). Yet better to be able to
attach some data to non-leaf nodes.

P.S. I know that SQLite3 uses B+ trees,
but it has an SQL interface, while I need
something more light-weight. Berkeley
DB does not support scanning, right?

TASH

From: Simon Wright
<simon@pushface.org>

Date: Sun, 19 Jan 2014 18:08:18 +0000
Subject: ANN: TASH 8.6-1 20140118
Newsgroups: comp.lang.ada

This release is now available at
Sourceforge[1].

Changes in 20140118

A new package Tcl.Async supports
writing Tcl variables from Ada. This is
especially important if the Ada code isn't
running in the same thread as the Tcl
interpreter.

You can use the 'trace' facility in Tcl to
detect when such a write has taken place.

The build scripts recognise XQuartz in
Mac OS X >= Mountain Lion.

Question for users

The thin binding is full of code like:

 type Tcl_Interp_Rec (<>) is private;
 type Tcl_Interp is access all
 Tcl_Interp_Rec;
 pragma Convention (C, Tcl_Interp);
 Null_Tcl_Interp : constant Tcl_Interp :=
 null;
 function Is_Null (Ptr : in Tcl_Interp)
 return Boolean;

the last 2 lines of which are a holdover
from the original C2Ada-generated
binding. I'd like to get rid of them. Any
problems?

[1] https://sourceforge.net/projects/
tcladashell/files/source/20140118/

[See also “Tcl/Tk”, AUJ 33-4, p. 237.
—sparre]

Matreshka

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Tue, 21 Jan 2014 01:00:34 -0800
Subject: ANN: Matreshka 0.6.0
Newsgroups: comp.lang.ada

We are pleased to announce new release
of Matreshka framework. New features:

 - markup template processor to process
XML/XHTML documents

 - optimizing HTML5 writer to generate
HTML5 documents (mostly for use with
template processor)

 - support package to help to process
XML namespaces in applications

 - binding to GCC's intrinsic functions to
use SIMD instructions in Ada code
without use of assembler code

 - GDB plugin to output content of
Universal_String in user friendly form

 - support for ARM/Linux, FreeBSD,
Windows 64-bit

 - update to Unicode 6.3.0 and CLDR 24

for complete list of fixed bugs and new
features see

http://forge.ada-ru.org/matreshka/wiki/
ReleaseNotes/0.6

Matreshka can be downloaded as source
code archive or as binary package for
some operating systems from

http://forge.ada-ru.org/matreshka/wiki/
Download

[See also “Matreshka”, AUJ 34-3, p. 139.
—sparre]

Turbo Pascal 7 Emulation

From: Pascal <p.p14@orange.fr>
Date: Wed, 29 Jan 2014 20:44:37 +0100
Subject: [gtkada] [ANN] TP7 emulation

V3.0 with GTK-Ada.
To: <gtkada@lists.adacore.com>

Hello, here is TP7-Ada based now on
GTKAda 3.4.

Other changes are (versus version 2.7):

- implementation of ShowMouse and
HideMouse

- bug fix in Delay1.

TP7-Ada is a port of Turbo Pascal
libraries in Ada with GTK-Ada support.

Moreover it can be used as a basic multi-
purpose library for simple text or graphic
stuff with GTK-Ada.

See screen captures on:

http://blady.pagesperso-orange.fr/
tp7ada.html

The complete code is here:

http://sourceforge.net/p/p2ada/code/
HEAD/tree/extras/tp7ada/current

See also (in French):

http://blady.pagesperso-orange.fr/
creations.html#ada_tp7

All TP7 features are not completely
functional, see current status:

http://sourceforge.net/p/p2ada/code/
HEAD/tree/extras/tp7ada/current/
TurboPascal7.0-Ada.html

Ada-related Tools 9

Ada User Journal Volume 35, Number 1, March 2014

All Pascal source codes were translated in
Ada with P2Ada translator:

http://sourceforge.net/projects/p2ada/

Feel free to send any feedback.

PS for Mac users: XAdaLib 2013 with
GTKAda 3.4 binaries have been upload
again on SourceForge due to an upload
issue.

http://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2013-mavericks/

[See also “Turbo Pascal 7 emulation”,
AUJ 34-1, p. 7. —sparre]

Emacs Ada Mode

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Tue, 04 Feb 2014 09:01:46 -0600
Subject: Emacs Ada mode 5.0.1 available in

Gnu ELPA
Newsgroups: comp.lang.ada

Emacs Ada mode 5.0.1 is now available
in Gnu ELPA.

It requires Emacs 24.3; I'm working on
backporting to Emacs 24.2 for Debian
stable, and possibly 23.4.

This supercedes the Emacs Ada mode
4.0b that is in the Emacs distribution; that
will be removed in a future distribution.

To install from Gnu ELPA:

add to ~./emacs:

(package-initialize)

then invoke M-x list-packages, install Ada
mode 5.0.1.

To install from source: download from

http://stephe-leake.org/emacs/
ada-mode/emacs-ada-mode.html

This is the long-awaited complete rewrite,
supporting almost all Ada 2012 syntax
(aspects are not there yet, but I already
have one request for them, so they will be
soon). It has been alpha-tested by me and
several users on the Emacs Ada mode
mailing list, so it is ready for general use.

It is based on an OpenToken-generated
grammar, which enables more
sophisticated navigation features (i.e.
move from 'if' to 'then', 'else', 'end if' etc).
It's also a _lot_ easier to maintain.

It also includes experimental support for
the new GNAT cross-reference tool
gnatinspect, which handles C, C++, Ada.

For more info, see the updated Ada mode
manual in the package in info format, or
at http://stephe-leake.org/emacs/
ada-mode/ada-mode.html

Report bugs/requests to the Emacs Ada
mode mailing list; see
http://host114.hostmonster.com/mailman/
listinfo/emacs-ada-mode_stephe-leake.org

VTKAda

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Fri Feb 7 2014
Subject: Announce: VTKADA 6.1
URL: linkedin.com

I'm pleased to announce VTKAda version
6.1 free edition release 07/02/2014.

VTKAda is Ada-2012 port to VTK
(Visualization Toolkit by Kitware, Inc)
and Qt5 application and UI framework by
Nokia VTK version 6.1.0, Qt version
5.2.0 open source and vtkc.dll, vtkc2.dll,
qt5c.dll (libvtkc.so, libvtkc2.so,
libqt5c.so) were built with Microsoft
Visual Studio 2012 in Windows (WIN32)
and gcc in Linux x86-64 Package was
tested with gnat gpl 2012 Ada compiler in
Windows 8 64bit,Debian 7.3 x86-64.

As a role Ada is used in embedded
systems, but with VTKAda(+QTAda) you
can build any desktop applications with
powerful 2D/3D rendering and imaging
(games, animations, emulations) GUI,
Database connection, server/client,
Internet browsing and many others things.

Current state of VTKAda is 42064
procedures and function distributed in 643
packages. 135 examples. All QTAda
examples are Qt5 applications.

Current state of QTAda is 11925
procedures and function distributed in 324
packages. There are many new packages
and examples in this release.

VTKAda you can use without QTAda
subsystem QTAda is Ada port to Qt5
framework and can be used as
independent system.

VTKAda and QtAda for Windows and
Linux (Unix) free edition with prebuilt Qt
5.2 and VTK 6.1.0 are available from
VTK 6.1.0 and Qt 5.2.0 prebuilt for
win32 and x86-64
https://rapidshare.com/download/share/
5CD62F6FFB431DC394A7F47F5CEFF8
DD

[See also “VTKAda”, AUJ 34-4, p. 201.
—sparre]

Ada Utility Library

From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: Sun Feb 9 2014
Subject: Ada Utility Library 1.7.0 is

available
URL: http://blog.vacs.fr/index.php?post/

2014/02/09/
Ada-Utility-Library-1.7.0-is-available

Ada Utility Library is a collection of
utility packages for Ada 2005. A new
version is available which provides:

- Added a text and string builder

- Added date helper operations to get the
start of day, week or month time

- Support XmlAda 2013

- Added Objects.Datasets to provide list
beans (lists of row/column objects)

- Added support for shared library loading

- Support for the creation of Debian
packages

- Update Ahven integration to 2.3

- New option -r <test> option for the unit
test harness to execute a single test

- Port on FreeBSD

It has been compiled and ported on Linux,
Windows, Netbsd, FreeBSD (gcc 4.6,
GNAT 2013, gcc 4.7.3). You can
download this new version at
http://download.vacs.fr/ada-util/ada-util-
1.7.0.tar.gz.

[See also “Ada Utility Library”, AUJ 34-
1, p. 8. —sparre]

TclAdaShell

From: Simon Wright
<simon@pushface.org>

Date: Mon, 10 Feb 2014 20:58:11 +0000
Subject: ANN: TclAdaShell 8.6-2
Newsgroups: comp.lang.ada

TclAdaShell 8.6-2 is available:

https://sourceforge.net/projects/tcladashell
/files/source/20140210/

Tcl and Tcl.Tk no longer provide
"Null_*" constants or "Is_Null (Ptr : in *)
return Boolean;" functions (the types
concerned are visibly access types, so the
standard "null" is available).

Tcl, Tcl.Ada and Tcl.Tk use "not null" in
subprogram parameters where applicable.
Note that, although this is an Ada 2005
construct, your GNAT project can still
specify Ada 95 if required, because of the
use of the GNAT-specific "pragma
Ada_2005".

Fixed some confusion between
Tcl_UniChar and strings of same.

[See also “TclAdaShell 20090611”, AUJ
30-3, p. 146. —sparre]

Ahven

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue, 11 Feb 2014 16:45:16 +0200
Subject: ANN: Ahven 2.4
Newsgroups: comp.lang.ada

I released Ahven 2.4 on Sunday (2014-
02-09) and it is available at
http://sourceforge.net/projects/ahven/files/

It is mostly a maintenance and bug fix
release and the biggest changes are:

- A work-around to Ahven.Framework for
Apex and ICCAda. Now Apex Ada
compiles the body of Ahven.Framework
without errors and ICCAda does not
produce any warnings.

The compilers did not correctly handle the
body of Indefinite_Test_List package

10 Ada-related Products

Volume 35, Number 1, March 2014 Ada User Journal

inside Ahven.Framework when
Indefinite_Test_List was at the end of
ahven-framework.adb. This was fixed by
moving the body to the beginning of the
file. (No functional changes.)

Special thanks to Atego and Irvine for
providing help with the issue. - Various
documentation improvements.

- Alternative comfignat-based build
system (contrib/comfignat). It is
experimental for now and meant mostly
for Linux distribution packagers. From
Bjorn Persson.

Known issues:

- Fedora Linux systems need libgnat-
static package to be installed before
Ahven can be compiled.

- On Windows 8.1 you need to use
JNT_RTS instead of JTN_RTS_Console
as Janus/Ada runtime. Otherwise,
Janus/Ada fails to find Ada runtime
system for Ahven.

About Ahven:

Ahven is a simple unit test library (or a
framework) for Ada programming
language. It is loosely modelled after
JUnit and some ideas are taken from
AUnit.

Ahven is free software distributed under
permissive ISC license and should work
with any Ada 95, 2005, or 2012 compiler.

http://ahven.stronglytyped.org/

[See also “Ahven”, AUJ 34-1, p. 10.
—sparre]

OpenToken

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 21 Feb 2014 14:27:56 -0600
Subject: OpenToken 5.0a released
Newsgroups: comp.lang.ada

OpenToken 5.0a is released; see

http://stephe-leake.org/ada/
opentoken.html.

There are many bugs related to empty
productions fixed in this version.

OpenToken can now accept bison-style
input syntax, and generate OpenToken
Ada source for declaring the syntax and
grammar, or Emacs lisp source. The
Emacs lisp source is used for the Ada and
gpr grammars in Emacs Ada mode 5.0

Happy parsing!

[See also “Ada 2012 Grammar”, AUJ 34-
4, p. 202. —sparre]

Ada-related Products

GNAT Programming Studio

From: AdaCore Press Center
Date: Tue Nov 12 2013

Subject: AdaCore Releases Major New
Version of GNAT Programming Studio

URL: http://www.adacore.com/press/gps6/

GPS 6.0 Integrated Development
Environment brings upgraded and
modernized “Look and Feel”

PITTSBURGH, Pa., NEW YORK and
PARIS, November 12, 2013 – ACM
SIGAda HILT Conference – AdaCore
today announced the release of the GPS
6.0 graphical Integrated Development
Environment (IDE), a major upgrade with
a significantly revised and cleaner user
interface that eases program navigation
and editing. With this new version of the
GNAT Programming Studio, developers
can take advantage of more space for
editing and a number of design changes
that bring program-related information
within easy reach. The revised look and
feel is supported by a new relational
database at the heart of the GPS engine,
making code navigation much more
efficient. The principles underlying the
GPS 6.0 revision help the IDE achieve its
main goal: to serve as a customizable
platform for multi-language, multi-tool
integration, usable by developers at all
experience levels.

The improvements to the IDE’s look and
feel exploit the latest Gtk+/GtkAda
graphical toolkit and encompass a
reorganized interface (including more
economic usage of screen space), a global
search facility, additional view
capabilities and further support for color
tailoring. GPS 6.0 also brings improved
performance and new functionality,
including language support for SPARK
2014, syntax highlighting and tool tips for
Ada 2012 and SPARK 2014 aspects,
editor enhancements, and a number of
additions to the scripting API. The GPS
6.0 enhancements have received an
enthusiastic response from the product's
beta sites.

“GPS 6.0 comes from a major
engineering effort to improve the
product’s overall usability,” said Nicolas
Setton, GPS Product Manager at
AdaCore. “We have been listening to
what customers have been telling us, and
this new version should be more than an
IDE, it should also be a pleasure to use.”

GPS is provided with the GNAT Pro
development toolset on most platforms,
for both native and embedded software
development, and GPS 6.0 is available to
GNAT Pro customers for download
through GNAT Tracker.

A GPS 6.0 demo will be available at
www.adacore.com/gps-demo. For further
information please contact
info@adacore.com.

About GNAT Programming Studio (GPS)

GPS is a powerful Integrated
Development Environment (IDE) written
in Ada using the GtkAda toolkit. GPS’s

extensive source-code navigation and
analysis tools can generate a broad range
of useful information, including call
graphs, source dependencies, project
organization, and complexity metrics. It
also supports configuration management
through an interface to third-party
Version Control Systems, and is available
on a variety of platforms. GPS is highly
extensible; a simple scripting approach
enables additional tool integration. It is
also customizable, allowing programmers
to specialize various aspects of the
program’s appearance in the editor for a
user-specified look and feel.

CodePeer

From: AdaCore Press Center
Date: Wed Feb 5 2014
Subject: AdaCore Releases Major New

Version of CodePeer Static Analysis
Tool

URL: http://www.adacore.com/press/
codepeer2-3/

Automatic code review and validation
tool brings a new level of flexibility and
efficiency to Ada software developers

TOULOUSE, PARIS and NEW YORK,
February 5, 2014 – ERTS2 Conference –
AdaCore today announced the release of
CodePeer 2.3, the latest version of its
static analysis tool for the automated
review and validation of Ada source code.
CodePeer assesses potential bugs before
program execution to find errors
efficiently and early in the development
life cycle. It also performs impact and
vulnerability analysis when existing code
is modified, and, using control-flow, data-
flow and other advanced static analysis
techniques, the tool detects problems that
would otherwise only be found through
labor-intensive debugging.

The latest update to CodePeer delivers
more precise diagnostic messages and
fewer “false positives”. It also includes an
independent Ada front end, making it
even more efficient and flexible. To
simplify the development process,
CodePeer 2.3 provides better integration
with AdaCore’s two IDEs: GNAT
Programming Studio (GPS) and
GNATbench (the GNAT Pro Ada plug-in
for Eclipse and Wind River Systems
Workbench). Other enhancements include
support for floating point overflow on
unconstrained types, the ability to supply
target configuration files, and improved
support for existing codebases in Ada 83.
Improved message review capabilities are
now available through pragma Annotate,
and the tool provides new warnings when
a formal parameter could be declared with
a more restrictive mode.

CodePeer is fully integrated into the
GNAT Pro development environment and
comes with a number of complementary
static analysis tools common to the
technology – a coding standard

Ada and Operat ing Systems 11

Ada User Journal Volume 35, Number 1, March 2014

verification tool (GNATcheck), a source
code metric generator (GNATmetric), a
semantic analyzer and a document
generator.

“It has been exciting to bring the 2.3
release to our customers, with CodePeer
now established as the most advanced and
precise static analysis tool available for
Ada,” said Tucker Taft, AdaCore Vice
President and Director of Language
Research. “It was especially gratifying to
integrate CodePeer with Ada 2012’s
contract-based programming capabilities;
this has really advanced the state of the art
in software verification.”

About CodePeer

Serving as an efficient and accurate code
reviewer, CodePeer identifies constructs
that are likely to lead to run-time errors
such as buffer overflows, and it flags legal
but suspect code, typical of logic errors.
Going well beyond the capabilities of
typical static analysis tools, CodePeer also
produces a detailed analysis of each
subprogram, including pre- and post-
conditions. Such an analysis makes it
easier to find potential bugs and
vulnerabilities early: if the implicit
specification deduced by CodePeer does
not match the component’s requirements,
a reviewer is alerted immediately to a
likely logic error. During system
development, CodePeer can help prevent
errors from being introduced, and it can
also be used as part of a systematic code
review process to dramatically increase
the efficiency of human review.
Furthermore, CodePeer can be used
retrospectively on existing code, to detect
and remove latent bugs.

[see also AUJ 34-2, p. 70: AdaCore
Releases Major New Version of CodePeer
Static Analysis Tool]

GNATcoverage

From: AdaCore Press Center
Date: Wed Feb 5 2014
Subject: AdaCore Releases New Version of

GNATcoverage Dynamic Analysis Tool
URL: http://www.adacore.com/press/

gnatcoverage1-2/

Award-winning, non-intrusive coverage
tool supports all levels of safety
certification and adds hardware probe
functionality

TOULOUSE, PARIS and NEW YORK,
February 5, 2014 – ERTS2 Conference –
AdaCore today announced the release of
GNATcoverage 1.2, the latest version of
its source and object code coverage
analysis tool. GNATcoverage’s
innovative technology does not require
instrumentation of the executable, and this
new product release supports usage with
an iSystem hardware probe generating
Nexus trace data, as well as usage with
Valgrind on Linux.

GNATcoverage 1.2 supports Ada 95, Ada
2005 and many new features in Ada 2012.
It can also be used for the upcoming
SPARK 2014 revision and includes Beta
support for C. Other enhancements
include generation of coverage
information for generics on a per-instance
basis, and improved HTML output
(sortable columns, project awareness).
The tool is now integrated with the
GNAT Pro development environment.

Qualification material is available to
support GNATcoverage usage as a
verification tool (DO-178B) or a tool at
TQL-5 (DO-178C). It can be used as part
of the verification process for systems that
need to be certified up to Level A, and
can thus supply analysis up to Modified
Condition/Decision Coverage (MCDC).
GNATcoverage can also be used for
railway applications that need to comply
with EN-50128:2011 (T2).

“This new release of GNATcoverage
considerably expands the product’s
capabilities,” said Cyrille Comar,
AdaCore Managing Director.
“Furthermore, now that it has been
established that object branch coverage is
not sufficient for claiming MCDC, we can
assert that GNATcoverage is the only
coverage technology that does complete
MCDC without application-level
instrumentation.”

About GNATcoverage

Originally developed as part of the
Couverture research project,
GNATcoverage performs coverage
analysis on both object code - instruction
and branch coverage - and Ada and C
language source code - statement,
decision, and Modified
Condition/Decision Coverage (MCDC).
Unlike most current technologies, the tool
works without requiring instrumentation
of the executable. Instead, it analyzes
trace data generated from a program
running on either an instrumented version
of AdaCore’s GNATemulator tool,
Valgrind on Linux, or a target platform
equipped with a supported hardware
probe. GNATcoverage helps software
developers assess the breadth of a testing
campaign and provides precise answers to
the needs of safety-certification processes,
such as the DO-178 avionics standard and
the EN-50128 railway standard.
GNATcoverage is a major example of an
Open Source tool dedicated to software
certification, and the tool was awarded an
Electrons d’Or prize in 2011 by France’s
Electroniques magazine in recognition of
its innovations and predicted impact on
the industry.

Ada and Operating
Systems

Mac OS X: XAdaLib

From: Pascal Pignard <p.p11@orange.fr>
Date: Fri, 06 Dec 2013 21:06:37 +0100
Subject: [ANN] XAdaLib 2013 binaries for

MacOS including GTKAda and more.
Newsgroups: comp.lang.ada

This is XAdaLib 2013 built on MacOS
10.9 Mavericks for X11 including:

- GTK Ada 3.4.2 with GTK+ 3.4.1
complete,

- Glade 3.10.2,

- GnatColl GPL 2013,

- Florist GPL 2013,

to be installed for instance at /usr/local:

$ cd /usr/local

$ sudo tar xzf xadalib-gpl-2013-x11-
x86_64-apple-darwin13.0.0-bin.tgz

Update your PATH to include gtkada-
config, glade and other executables in it:

$ PATH=/usr/local/xadalib-
2013/bin:$PATH

Update your GPR_PROJECT_PATH to
include gtkada.gpr in it:

$ export
GPR_PROJECT_PATH=/usr/local/xadali
b-2013/lib/gnat:$GPR_PROJECT_PATH

$ export
XDG_DATA_DIRS=/usr/local/xadalib-
2013/share

Then see documentation and examples in
share directory and enjoy.

See the instructions which have produced
the libraries on Blady web site:

http://blady.pagesperso-orange.fr/
creations.html#gtkada

XAdaLib binaries have been post on
Source Forge:

http://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2013-mavericks/

Fedora: AVR-Ada

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon Dec 23 2013
Subject: AVR-Ada 1.2.2 RPMs for Fedora

20
URL: http://arduino.ada-language.com/

avr-ada-122-rpms-for-fedora-20.html

As a small Christmas gift, AVR-Ada
1.2.2 RPMs for Fedora 20 (i386 and
x86_64) are now available in my
fedora.ada-language.com repository.

Like always, create file
/etc/yum.repos.d/fedora-adalanguage.repo
with contents:

[fedora-adalanguage]

12 Ada and Operat ing Systems

Volume 35, Number 1, March 2014 Ada User Journal

name=Tero's Fedora RPM repository for
Ada packages

baseurl=http://fedora.ada-
language.com/repo/$releasever/$basearch

enabled=1

And run:

sudo yum install avr-gnat avr-ada-lib --
nogpgcheck

Notes:

- The used GCC version is still 4.7.2.
Fedora 20 ships with avr-gcc 4.8.x, but
AVR-Ada is tested mainly with 4.7.x.

- As before, the packaging is done by
using gnat 4.7 binaries from Fedora 18.

- The release contains two of my patches,
which are not in the official AVR-Ada
1.2.2 release.

 - The first patch reverts AVR.UART
behaviour back to AVR-Ada 1.2
(=interrupt mode also works)

 - The second patch fixes linking errors
with libavrada.a, so that all boards get
correct CPU frequencies and other code.

- The RPMs are unofficial in every
possible way and they are not endorsed
by Fedora or AVR-Ada projects.

- This time I was bit in a hurry, so they
are not tested as well as before. If there
are bugs, complain to me
(tero.koskinen@iki.fi).

[See also “AVR-Ada for Fedora”, AUJ
34-3, p. 143. —sparre]

Debian: GHDL

From: Joris van Rantwijk
<joris@jorisvr.nl>

Date: Wed, 15 Jan 2014 21:14:46 +0100
Subject: New Debian package for GHDL
To: Nicolas Boulenguez

<nicolas.boulenguez@free.fr>
Cc: debian-ada@lists.debian.org, ghdl-

discuss@gna.org

[GHDL is a VHDL compiler/simulator
using GCC/GNAT technology. —sparre]

There has recently been a new upstream
release of GHDL which fixes many bugs
and makes it easier to build the software
on Debian systems.

I made a Debian package for that release,
ghdl-0.31-1, available here:

http://mentors.debian.net/package/ghdl

I believe the package is in good shape and
(almost) ready to upload to the Debian
archive. It would be great if you could
have a look at it and tell me what you
think.

Debian: Default Compiler in
Debian 9 “Jessie”

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Mon, 03 Feb 2014 00:13:39 +0100

Subject: The default Ada compiler for
Debian 8 "Jessie"

Newsgroups:
gmane.linux.debian.packages.ada

GCC 4.9.0 should be released in a few
months from now, possibly in March
2014. It is already available in
experimental and Matthias Klose is
actively working on it. Apparently[1] he
intends to make GCC 4.9 the default
compiler for C, C++ and other languages
as soon as it reaches unstable, on as many
architectures as possible.

The maintainer of Ada in FreeBSD and
Dragonlace has stated at FOSDEM[2] that
he intends to skip GCC 4.8 altogether for
Ada and package GCC 4.9 instead (but
note that the default C and C++ compiler
on FreeBSD is now clang/LLVM, not
GCC).

Debian 8 “Jessie” will be frozen on
November 5, 2014 [3], which leaves us 9
months to transition all Ada packages to
the next default Ada compiler.

gnat-4.8 has been in Jessie (testing) since
November 2013 but gnat-4.9 does not
exist at all yet.

We are faced with a tough choice for the
next default Ada compiler. If we choose
gnat-4.8, then the transition of all
packages can start immediately but Jessie
ends up with an “old” compiler (4.8.0:
March 2013) which is not the default for
other languages and which is different
from the one in FreeBSD. If we choose
gnat-4.9, this will allow better support for
Ada 2012 (e.g. contracts and other
aspects) and probably a more recent
version of PolyORB too.

I have just created the branch
org.debian.gnat-4.9 in monotone and I
propose the following plan:

- starting right now, everyone interested
(and in particular the maintainers I
talked to at FOSDEM: you know who
you are!) works hard on updating all the
Debian patches for gnat-4.9; this is the
top priority.

- at the end of March 2013 (two months
from now), we review the state of gnat-
4.9: is upstream GCC 4.9.0 released? Is
it in unstable? Are we satisfied with the
quality and stability of gnat-4.9? and we
make the final decision as for the Ada
compiler for Jessie.

- Immediately after this decision is made,
we update all other packages to the
chosen new compiler, starting with
ASIS and PolyORB.

The obvious risk with this plan is that, if
gnat-4.9 turns out not to be viable, we'll
have wasted two precious months for the
big transition.

Objections? Commitments? Exuberant
enthusiasm? Lukewarm support? Please
tell me...

[1] https://lists.debian.org/debian-
gcc/2013/12/msg00034.html

[2] http://people.cs.kuleuven.be/
~dirk.craeynest/ada-
belgium/events/14/140201-fosdem/10-
ada-bsd.pdf

[3] https://lists.debian.org/
debian-devel-announce/2013/10/
msg00004.html

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Mon, 03 Feb 2014 11:28:02 +0000
Subject: Re: The default Ada compiler for

Debian 8 "Jessie"
Newsgroups:

gmane.linux.debian.packages.ada

> [...]

GHDL has been problematic because,
being a compiler itself, it depends rather
closely on the sources of gcc. I can report
that it has been modified to build against
gcc-4.9-20140112 (though I think the
compiler used to build it was gnat-4.8
rather than my build of 4.9) and the result
passed its testsuite.

So barring major changes between that
snapshot and gcc4.9 release, GHDL
should not impede this transition if you
decide to go for 4.9.

(However the current Debian GHDL
package, awaiting sponsorship at
http://mentors.debian.net/package/ghdl is
based on 4.8, and I think it would be
better to push this forward and update to
4.9 later rather than wait for Gnat-4.9)

From: Florian Weimer
Date: Thu, 06 Feb 2014 20:58:06 +0100
Subject: Re: The default Ada compiler for

Debian 8 "Jessie"
Newsgroups:

gmane.linux.debian.packages.ada

> [...]

My own Ada 95 sources do not compile
with either GCC 4.8 or GCC trunk.
GNAT 4.6 in wheezy appears to be fine.
This is just one data point. Not sure what
to read into it, and considering that 4.8
and probably 4.9 are similarly afflicted, it
doesn't seem to matter anyway.

I need Ada 95 mode because I use limited
return types (correctly, I think) to
implement multiple inheritance. I suspect
that's why you get if you learn the
language by yourself, without guidance
from experienced users. You tend to rely
on features that are rarely used by others.

From: Florian Weimer
Date: Thu, 06 Feb 2014 23:02:37 +0100
Subject: Re: The default Ada compiler for

Debian 8 "Jessie"
Newsgroups:

gmane.linux.debian.packages.ada

> A better data point would be an actual
bug report with a reproducer.

<http://gcc.gnu.org/PR57902>

References to Publ icat ions 13

Ada User Journal Volume 35, Number 1, March 2014

I had succeeded in reducing the test case,
but I had not been able to bisect the
change that caused it or isolated the bug
further.

Debian: GNAT

From: Nicolas Boulenguez
<nicolas.boulenguez@free.fr>

Date: Tue, 11 Feb 2014 01:59:08 +0100
Subject: gnat-4.9
Newsgroups:

gmane.linux.debian.packages.ada

Congratulations, head of the gnat-4.9
branch builds on amd64!

[...]

I have tried to build some packages,
everything seems ok without refreshing
one single patch: asis (2013), dh-ada-
library (with all warnings), libxmlada
(quite old version though), libgmpada
(with all warnings), ada-reference-
manual.

Maybe gnat-4.9 should conflict with gnat-
4.8, at least until we are bored playing
with them and one is selected for
unstable.

Maybe gnat-4.9 should be named gnat4.9
instead, because policy 5.6.12 forbids
hyphens in native package names.

Only warnings have changed a lot:

* Either -gnatwa should not activate -
gnatw.i, or the online documentation
should be modified accordingly.

* I think that the new -gnatw.y warning
should not be activated by -gnatwa, as it
produces a lot of noise for a very rare use
case.

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Sat, 22 Feb 2014 00:59:32 +0100
Subject: gnat-4.9 uploaded to the NEW

queue
To: debian-ada@lists.debian.org

I have just uploaded gnat-4.9 (4.9-
20140218-1) to the NEW queue; the FTP
masters will examine the package and
upload it to experimental, hopefully
within a few days.

This is revision
3f519073fea55539758f3fcd82235352699
11255 on org.debian.gnat-4.9.

Thanks to all who contributed to this; the
near future is looking bright with several
other packages almost ready for upload :)

FreeBSD: Ahven

From: John Marino
<dragonlace.cla@marino.st>

Date: Wed, 12 Feb 2014 04:16:25 -0800
Subject: Re: ANN: Ahven 2.4
Newsgroups: comp.lang.ada

I've updated the Avhen port in FreeBSD
to version 2.4:

http://www.freshports.org/devel/ahven

[See also the release announcement for
Ahven 2.4 earlier in this issue. —sparre]

FreeBSD: PLplot and
Ncurses

From: John Marino
<dragonlace.cla@marino.st>

Date: Sun Feb 16 2014
Subject: Ports: PLplot Ada bindings now

available
URL: http://www.dragonlace.net/posts/

Ports:PLplot_Ada_bindings_now_availa
ble/

FreeBSD has PLplot, cross-platform
software package for creating scientific
plots, at the latest stable version 5.10.0 (as
of today). What it did not have is the
option to build the Ada bindings although
most other languages were available as an
option. Rather than update the currently
unmaintained PLplot port, I created a new
port at math/plplot-ada to build the Ada
bindings separately.

In separate news, the Ada bindings to
ncurses were completely revamped.
Previously the port didn't actually build
the library. Now it does and it should
work as expected. The port is located at
devel/adacurses.

FreeBSD: Ironsides

From: John Marino
<dragonlace.cla@marino.st>

Date: Mon Feb 17 12:30:00 CET 2014
IRC-channel: #Ada
IRC-network: irc.freenode.net

12:30 < marino> sparre: dns/ironsides is
in FreeBSD ports now

Debian: PolyORB

From: Xavier Grave
<xavier.grave@ipno.in2p3.fr>

Date: Fri, 21 Feb 2014 13:57:13 +0100
Subject: polyorb build ok with gnat-4.9
To: <debian-ada@lists.debian.org>

I have a first build version [1] of polyorb
with gnat-4.9 (at least !). It's building a
very up to date [2] version of upstream.
My code source checks seem to indicate
that the PCS_version are compatible.

I have tests available mostly on the dsa
part, I'll be interested if people can be
volunteers to test CORBA part.

The test suite is still disabled and I'll
check this as soon as possible.

[1] org.debian.polyorb
a60b2e30ffad798f3666803b079f5e2548
04bf45

[2] com.adacore.polyorb.debian
a33ec96a70d7827d73ad160eceee81781c
d529cd

References to
Publications

Power-saving with AVR-
Ada

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue Nov 12 2013
Subject: Saving power with AVR-Ada, part

2: power down mode and watchdog
URL: http://arduino.ada-language.com/

saving-power-with-avr-ada-part-2-
power-down-mode-and-watchdog.html

After my previous article[1], Olimex
people pointed out[2] that their
Olimexino-328 board is able to use much
less than 4mA if powered through the
battery connector.

So, I went and tested their claims and they
were correct, indeed. When running
Olimexino-328 at 3.3V using battery
connector, power down mode instead of
power save mode, and watchdog to wake
up the board once per minute, I managed
to get power usage down to 0.02mA (0.02
milliamps, 20 microamps).

I also made some observations:

 - INA219 sensor is pretty accurate when
compared to readings from my
multimeter

 - However, INA219 sensor can measure
current only down to 0.1mA, after that I
get 0 or negative readings (could be
something related to my code)

 - The AVR.Watchdog package of AVR-
Ada doesn't really support
Arduino/atmega328p, so I had to
configure the watchdog manually

 - At one point, Olimexino-328 was
sleeping really deeply and I had to
solder ISP header pins to the board
because I wasn't able to program the
board via serial port

It is somewhat complex to add good
watchdog support for atmega328p and
also “trigger an interrupt instead of reset”
functionality, so I won't be committing
my watchdog code to AVR-Ada repos
any time soon. Meanwhile, you can get
the code from my arduino-blog
repository[3], examples/deep-sleep[4]
directory.

[See also “Saving Power with AVR-Ada”,
AUJ 34-4, p. 205. —sparre]

[1] http://arduino.ada-language.com/
saving-power-with-avr-ada.html

[2] http://olimex.wordpress.com/
2013/11/05/experimenting-with-low-
power-modes-and-arduino/

[3] https://bitbucket.org/tkoskine/
arduino-blog/

[4] https://bitbucket.org/tkoskine/
arduino-blog/src/tip/examples/
deep-sleep/

14 Ada Inside

Volume 35, Number 1, March 2014 Ada User Journal

Parallel Addition

From: Jim Rogers
Date: Sat Jan 4 2014
Subject: Parallel Addition
URL: http://sworthodoxy.blogspot.dk/

2014/01/parallel-addition.html

While sequential addition of a set of
numbers, such as the elements of an array,
is well understood, the implementation of
a parallel addition algorithm provides
both a new set of challenges and an
opportunity to use more than one core on
your computer.

The concept behind this parallel addition
algorithm is to create several tasks, each
of which reads a pair of values from the
set of values to be added, performs the
addition, then puts its result back into the
set of values to be added. When the set of
values to be added is reduced to 1 the
addition is complete, and the remaining
value in the set is the final total.

The following figures graphically show a
concept of how the algorithm works. In
practice the exact pairing of values to be
added may differ. That difference is not
important to the result of the program
because addition is commutative.

[Includes source text. —sparre]

Case Study for System to
Software Integrity Includes
SPARK 2014

From: Yannick Moy
Date: Tue Jan 21 2014
Subject: Case Study for System to Software

Integrity Includes SPARK 2014
URL: http://www.spark-2014.org/entries/

detail/case-study-for-system-to-software-
integrity-includes-spark-2014

The NoseGear challenge[1] was proposed
at the Workshop on Theorem Proving in
Certification[2] as a small yet realistic
case of critical system, to demonstrate and
compare benefits and limitations of
formal methods.

We have extended the scope of the
challenge to add a logger and a GUI to the
initial computation problem, to make it
more realistic. We have developed an
architecture of this system in AADL, a
model of the computation in Simulink,
code for the logger in SPARK and code
for the GUI in Ada. Code is also
automatically generated from AADL (to
Ada) and Simulink (to SPARK), so that
the complete concurrent application can
be run with a simulator of the physical
system. Verification activities include
formal verification of the manual and
generated SPARK code for absence of
run-time errors and verification of
properties expressed as contracts. All the
artifacts (models, code, verification
results) can be accessed from a prototype
tool for agile certification, which records

automatically traceability links between
artifacts.

The paper we will present at ERTS
explains the motivation behind this work,
and the expected benefits when applied to
actual systems.

[1] http://www.cl.cam.ac.uk/~mjcg/
FMStandardsWorkshop/NoseGear.html

[2] http://www.cl.cam.ac.uk/~mjcg/
FMStandardsWorkshop/

Will My Car be Safe to
Drive?

From: Robert Dewar
Date: Mon Feb 3 2014
Subject: Will My Car be Safe to Drive?
URL:

http://johndayautomotivelectronics.com/
will-my-car-be-safe-to-drive/

It’s no secret that the cars we drive today,
and especially those we will drive in the
near future, have huge amounts of
sophisticated software aboard. By some
accounts the number of lines of code in a
car can significantly exceed the number of
lines of code in a modern commercial
jetliner. And as with the jetliner, we are
entrusting our safety to the reliability of
this software.

[An interesting article about the (lack of)
safety in automotive software. —sparre]

Reference Manual in “info”
Format

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 24 Feb 2014 03:53:50 -0600
Subject: arm_info 2012.2 released
Newsgroups: comp.lang.ada

Version 2012.2 of arm_info is available at
http://stephe-leake.org/ada/arm.html

This contains the latest standard text from
AdaIC, which has minor editing changes
from the previous version.

There are also changes in the source to
help with Debian packaging.

Ada Inside

SPARK CubeSat in Space

From: AdaCore Press Center
Date: Tue Nov 19 2013
Subject: AdaCore and Altran Toolsets Help

Launch CubeSat into Orbit
URL: http://www.adacore.com/press/

cubesat/

NASA-sponsored satellite from Vermont
Technical College uses GNAT Pro and
SPARK

NEW YORK, PARIS, and BATH (UK),
November 19, 2013 – Today, AdaCore
and Altran announced a new space
application for the GNAT Pro technology

and SPARK language toolset, with the
successful launch of Vermont Technical
College’s Lunar CubeSat. The tiny
satellite, measuring only 10 cm x 10 cm x
10 cm and weighing 1.1 kg, was launched
into a 500 km earth orbit, where it will
remain for about three years to test the
systems that will be used for the eventual
lunar mission. The CubeSat project is part
of NASA’s ELaNa IV program
(Educational Launch of Nano-satellites).

The CubeSat’s navigation and control
software was developed in SPARK/Ada
using AdaCore’s GNAT Programming
Studio (GPS) IDE and GNAT Pro
compiler and exploiting Altran’s SPARK
toolset to prove the absence of run-time
errors. The software was developed at
Vermont Technical College by a team of
undergraduate students under the
direction of Dr. Peter Chapin. Although
they had no previous knowledge of
SPARK or Ada, the students came up to
speed quickly and were able to take
advantage of SPARK’s various
annotations to produce robust code.

“We specifically chose to write the
control program for our CubeSat in
SPARK because it offers increased
reliability over the C language software
used in almost all CubeSats to date,” said
Prof. Carl Brandon, the project leader
from Vermont Technical College. “The
success of the fairly complicated software
on this ELaNa CubeSat gives us
confidence in using SPARK 2014 for the
much more complicated and expensive
lunar mission.”

“We are delighted to see our technologies
once again being launched into space,”
said Robert Dewar, AdaCore President.
“You only get one shot for this kind of
application, so it is critical to produce safe
and totally reliable software. In this case,
it is very encouraging to see students
without prior experience using SPARK
and GNAT Pro together to achieve this
goal.”

For more information, please visit:

- http://www.cubesatlab.org

[See also “Vermont Tech CubeSat
Launch Delayed”, AUJ 34-4, p. 198.
—sparre]

Muen Separation Kernel

From: AdaCore Press Center
Subject: Muen Separation Kernel Lays

Open Source Foundation for High-
Assurance Software Components

Date: Tue Dec 10 2013
URL: http://www.adacore.com/press/

muen-separation-kernel/

Swiss university develops formally
verified Open Source kernel using
SPARK language and AdaCore GNAT
tools

Ada Inside 15

Ada User Journal Volume 35, Number 1, March 2014

NEW YORK, PARIS and
RAPPERSWIL, Switzerland, December
10, 2013 – The Institute for Internet
Technologies and Applications at the
University of Applied Science in
Rapperswil (Switzerland) and AdaCore
today announced a significant expansion
of the Open Source software model into
the domain of high-assurance systems
with the preview release of the Muen
Separation Kernel. The Muen Kernel
enforces a strict and robust isolation of
components to shield security-critical
functions from vulnerable software
running on the same physical system. To
achieve the necessary level of
trustworthiness, the Muen team used the
SPARK language and toolset to formally
prove the absence of run-time errors.
Using AdaCore’s GNAT development
environment to build their software, the
team was able to achieve high
productivity.

The public preview release of the Muen
Separation Kernel in Autumn 2013 is the
first major milestone for the ongoing
Muen project, whose goal is to produce a
trustworthy Open Source foundation for
component-based high-assurance systems.
This is an area of high potential growth,
and indeed Open Source software
promises to play an increasing role in the
development of safe and secure systems.

“It’s an exciting occasion,” said Cyrille
Comar, Managing Director of AdaCore,
“for AdaCore to be participating in the
birth of an Open Source community
around a separation kernel that can be
verified formally using Open Source
tools, such as those we develop with our
partner Altran. Since this type of software
is expensive to produce, community-
based development offers an attractive
cost-sharing model for the main
stakeholders. And openness in the code,
and in its security-related verification
data, is a key element of the trust that is
required for secure software.”

The name “Muen” is a Japanese term that
means “unrelated” or “without relation”,
reflecting the main objective for a
separation kernel: ensuring the isolation
between components. Since a separation
kernel enforces isolation, resource control
and data flow in a component-based
system, any errors in the kernel would be
fatal to the security of all components. To
prevent such a calamity, the Muen Kernel
was written in SPARK, an Ada-based
language with a long and successful track
record in developing high-assurance
systems. The SPARK toolset enabled the
Muen team to perform static formal
verification of the Kernel and to prove the
absence of all run-time errors. In the
future, functional correctness proofs will
be added to the Kernel by using SPARK
in conjunction with an interactive theorem
prover.

The Muen developers used SPARK with a
zero-footprint runtime – a mode where no
runtime environment, and only a
minimum of supporting code, is required.
This setup is ideal for critical low-level
programming, since no unnecessary
libraries are introduced into the system.

“The Open Source license of the Muen
Separation Kernel, combined with the
SPARK and GNAT tools, makes it
possible for the community to use Muen
as a trusted core component in high-
assurance systems,” said Prof. Dr.
Andreas Steffen, Head of the Institute for
Internet Technologies and Applications.
“Anyone can inspect and compile the
source code and reproduce the formal
proofs at any time.”

About the Muen Project: “Trustworthy by
Design -- Correct by Construction”

The Institute for Internet Technologies
and Applications (ITA) at the University
of Applied Science Rapperswil (HSR) in
Switzerland started the Muen Separation
Kernel project to create an Open Source
foundation for high-assurance platforms.
To achieve trustworthiness exceeding any
other Open Source kernel or hypervisor,
the absence of runtime errors has been
formally proven using the SPARK
language and toolset. Through close
cooperation with secunet Security
Networks AG in Germany during the
whole design and implementation
process, the Muen Separation Kernel is
assured of meeting the requirements of
existing and future component-based
high-security platforms.

The Git repository for the Kernel is
available here:

- http://git.codelabs.ch/?p=muen.git

A snapshot of the Muen repository can be
downloaded here:

- http://git.codelabs.ch/?p=muen.git;
a=snapshot;h=master;sf=zip

The Muen Separation Kernel is available
under the GNU General Public License
version 3.

From: Reto Buerki <reet@codelabs.ch>,
Adrian-Ken Rueegsegger
<ken@codelabs.ch>

Subject: The Muen Separation Kernel
Date: Mon Feb 10 2014
URL: http://muen.codelabs.ch/

Trustworthy by Design – Correct by
Construction

The Muen Separation Kernel is the
world’s first Open Source microkernel
that has been formally proven to contain
no runtime errors at the source code level.
It is developed in Switzerland by the
Institute for Internet Technologies and
Applications (ITA) at the University of
Applied Sciences Rapperswil (HSR).
Muen was designed specifically to meet
the challenging requirements of high-
assurance systems on the Intel x86/64

platform. To ensure Muen is suitable for
highly critical systems and advanced
national security platforms, HSR closely
cooperates with the high-security
specialist secunet Security Networks AG
in Germany.

A Separation Kernel (SK) is a specialized
microkernel that provides an execution
environment for components that
exclusively communicate according to a
given security policy and are otherwise
strictly isolated from each other. The
covert channel problem — largely ignored
by other platforms — is addressed
explicitly by these kernels. SKs are
generally more static and smaller than
dynamic microkernels, which minimizes
the possibility of kernel failure, enables
the application of formal verification
techniques and the mitigation of covert
channels. Muen uses Intel’s hardware-
assisted virtualization technology VT-x as
core mechanism to separate components.
The kernel executes in VMX root mode,
while user components, so called subjects,
run in VMX non-root mode.

Note:

- Muen is currently a prototype
implementation. We do not yet consider it
to be fit for production use.

Features:

- Minimal SK for the Intel x86/64
architecture written in the SPARK
language

- Full availability of source code and
documentation

- Proof of absence of runtime errors

- Multicore support

- Nested paging (EPT) and memory
typing (PAT)

- Fixed cyclic scheduling using Intel
VMX preemption timer

- Static assignment of resources according
to system policy

- Event mechanism

- Shared memory channels for inter-
subject communication

- Minimal Zero-Footprint Run-Time
(RTS)

- Support for 64-bit native and 32/64-bit
VM subjects

[...]

Deep Blue Capital Selects
Ada for Financial System
Development

From: AdaCore Press Center
Date: Wed Jan 22 2014
Subject: Deep Blue Capital Selects Ada for

Financial System Development
URL: http://www.adacore.com/press/

deep-blue-capital-financial-system-
development/

16 Ada in Context

Volume 35, Number 1, March 2014 Ada User Journal

Reliable Ada software gives trading firm
a competitive edge

NEW YORK and PARIS, January 22,
2014 – AdaCore today announced the
adoption of its GNAT Pro Ada
Development Environment by Deep Blue
Capital (DBC), a propriety trading firm.
DBC rotates teams through the world time
zones at their Amsterdam-based offices to
trade twenty-four hours a day on all of the
world’s major stock exchanges. DBC
employs algorithmic trading systems
developed in Ada with AdaCore’s GNAT
Pro development environment; these
systems gather market information and
automatically send buy and sell orders
with minimal human intervention. DBC, a
small company with fewer than twenty
employees, can operate globally because
of its efficient and reliable software.

The Ada language and AdaCore’s GNAT
Pro development environment help
DBC’s developers create systems that can
easily and reliably handle the huge influx
of price data they receive and the large
number of daily financial operations.
Their business requires their computers to
run continuously, and DBC’s use of Ada
means that their transaction system is
immune to issues like integer overflow
that plague systems developed in other
languages.

The automated trading system contains
more than 1 million lines of code written
almost entirely in Ada. It must handle
40,000 price updates a second at the same
time as smoothly managing DBC’s
10,000 daily transactions, all while
remaining perfectly dependable. These
volumes and the ceaseless invention of
new trading strategies by DBC’s
researchers requires systems that are
easily updatable and adaptable to new
technologies. The Ada programming
language offers developers a high degree
of control so they can create systems
capable of handling a large number of
operations. As Ada detects many kinds of
errors at compile time rather than run
time, mistakes are detected and corrected
early. This reduces debugging costs.

According to DBC Chief Technology
Officer Duncan Sands, creating reliable
and efficient software is vital to his
company’s ability to compete with much
larger financial institutions. “Given the
fact that we are a small company with
limited resources, using Ada with GNAT
Pro allows us to create the software we
need to compete with the systems of
much bigger financial companies,” Sands
explains. “Our efficiency in controlling
the costs of writing reliable software is
crucial for our business performance. We
just do not have the luxury of spending
days tracking down programming errors
through heavy debugging sessions.
Combined with the fact that our
development team's speciality is finance
and not software engineering, that our

code base exceeds one million lines and
that our software up-time requirement is
24 hours a day, selecting Ada was the
obvious choice.”

Ada in Context

Maximum Number of
Tasks?

From: Fritz VonBraun <sf@saf.com>
Date: Tue, 12 Nov 2013 01:53:53 -0800
Subject: Maximum Number Of Tasks?
Newsgroups: comp.lang.ada

I was wondering about the maximum
number of tasks in Ada but I couldn't find
any information. The question is, is a task
in Ada technically similar to a thread in
Windows under the hood? Threads are
restricted by the stack size that each
thread has reserved, so in practice the
maximum number of threads is about
2000.

The reason I'm asking is that I wonder if
Ada provides a more comfortable solution
to the thread pool problem. In C++ for
example I create a number of threads
roughly equal to the number of processor
cores and then have a number of jobs that
are distributed over the threads and which
implement a time sharing system by
returning control to the thread which then
assigns time to another job.

Would I have to do the same in Ada or are
tasks meant to be “micro objects” of
which many can be created and the Ada
runtime does effectively what my
threadpool system does in C++?

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue, 12 Nov 2013 11:59:13 +0100
Subject: Re: Maximum Number Of Tasks?
Newsgroups: comp.lang.ada

> [maximum number of tasks]

Probably because it is both compiler,
hardware and operating system
dependent.

> [task similar to a thread in Windows]

That depends on which compiler you use.
Some (most?) versions of GNAT use
operating system threads to implement
tasks. Janus/Ada implements tasks in its
own run-time system.

> [maximum number of threads is about
2000]

I just made a quick test on my laptop. It
appears that I can create 32041 tasks
before I have to do something special to
avoid problems.

The test was done on a Debian 7.2 system
with the GNAT 4.6 compiler distributed
with Debian.

The test program:

with Ada.Text_IO; use Ada.Text_IO;
procedure Task_Demo is

 task type Demo_Task (Index : Positive) is
 entry Stop;
 end Demo_Task;
 type Demo_Task_Reference is access
 Demo_Task;
 task body Demo_Task is
 begin
 Put_Line (Positive'Image (Index) & "
 launched.");
 accept Stop;
 Put_Line (Positive'Image (Index) &
 " stopping.");
 exception
 when others =>
 Put_Line (Positive'Image (Index) &
 " terminated by an exception.");
 end Demo_Task;

 Collection : array (1 .. 32_041) of
 Demo_Task_Reference;
begin
 for I in Collection'Range loop
 Collection (I) := new Demo_Task
 (Index => I);
 end loop;

 delay 1.0;

 for I in Collection'Range loop
 Collection (I).Stop;
 end loop;
end Task_Demo;

Reducing the stack size for the individual
tasks does not seem to make a difference.

> [...] are tasks meant to be “micro
objects” of which many can be created
and the Ada runtime does effectively what
my threadpool system does in C++?

That depends on your compiler.

From: Georg Bauhaus
<bauhaus@maps.arcor.de>

Date: Tue, 12 Nov 2013 13:52:15 +0100
Subject: Re: Maximum Number Of Tasks?
Newsgroups: comp.lang.ada

> [...]

If you have jobs that do not require
intermittent communication among them,
then in particular, I'd be sure to have a
look at the Paraffin library.
http://paraffin.sourceforge.net/

As an example of a different setup, I have
seen a program that had the number of
tasks be about 4x that of processors; all
ran at the “same” time and the number of
tasks was suggested by the program's
logic, not by either hardware or OS. Load
distribution seemed very well handled
(GNAT on GNU/Linux in this case), 4 x
#CPU was a sweet spot regarding the
number of tasks.

From: Brad Moore
<brad.moore@shaw.ca>

Date: Thu, 05 Dec 2013 20:26:50 -0700
Subject: Re: Maximum Number Of Tasks?
Newsgroups: comp.lang.ada

> [...]

Paraffin has had several flavours of task
pools implemented for some time now.

Ada in Context 17

Ada User Journal Volume 35, Number 1, March 2014

You can do as you suggest and have a
task pool that has the same number of
tasks as there are cores in your system,
and distribute work across these tasks.

There are three main “flavours” of task
pool.

1) No pool at all, just allocate workers on
the fly and distribute work across the set
of workers

2) A task pool that can be dynamically (or
statically) created that contains a
bounded (or unbounded) number of
workers that can be applied to any
number of parallelism opportunities.
These task pools allow a worker to
migrate to cores, if the OS supports
migration (e.g. Windows and Linux)

3) A Ravenscar compliant task pool that
is more suitable for real time, where the
workers must be statically allocated to
cores, and cannot migrate.

To see a demo of these task pools, you
could try running the test_parallel_loops
or test_parallel_recursion executables that
are included with the source for Paraffin.

To see the Ravenscar version of these task
pools, you would need to execute the
test_ravenscar_parallel_loops and
test_ravenscar_parallel_recursion
examples.

Rather surprisingly, there is not a
significant difference between these three
task pool models. In general using a task
pool will give a slight edge in
performance over creating workers on the
fly, but the difference is barely noticeable
in these examples.

Also, intermittent communication
between the workers is OK, as long as the
communication has the necessary
safeguards.

For instance you could have several
workers performing some lengthy
calculation, that briefly writes some value
to an IO port. If the IO port was wrapped
in a protected object, it may make sense
to allow the multiple workers to access
this protected object to perform I/O.

From: Riccardo Bernardini
<framefritti@gmail.com>

Date: Tue, 12 Nov 2013 05:21:05 -0800
Subject: Re: Maximum Number Of Tasks?
Newsgroups: comp.lang.ada

> [...]

I remember that I saw at FOSDEM 2013
in the “Ada Developer Room” a demo
that plotted a Mandelbrot set by using a
matrix of tasks. A participant asked then
“can you do that with 10_000 tasks?” The
size of the matrix was changed to 100 x
100 and everything worked smoothly; so,
in that case you could create at least
10_000 tasks. The PC was a laptop
running some kind of Linux + GNAT, if I
remember correctly.

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Tue, 12 Nov 2013 21:02:46 +0100
Subject: Re: Maximum Number Of Tasks?
Newsgroups: comp.lang.ada

> [FOSDEM 2013, Ada Developer
Room]

Yes, you remember correctly; I was the
one doing that demo :)

That's because the Linux kernel allocates
virtual address space to each task but does
not allocate any physical memory (RAM
or swap) unless and until the task writes
to memory (i.e. creates variables on its
stack). Even then, Linux only allocates
the pages actually written to, not the full 2
MiB (or whatever the default is) per task.

After the demo, I re-ran the program at
home and saw it allocate 19.8 GiB of
virtual address space (I re-checked just
now) and thought: gosh am I lucky I've
been running 64-bit Linux since 2006 :)

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Tue, 12 Nov 2013 21:04:12 +0100
Subject: Re: Maximum Number Of Tasks?
Newsgroups: comp.lang.ada

> [...]

Oh and by the way, I will introduce task
pools in my demo at FOSDEM 2014 :)

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Tue, 12 Nov 2013 08:54:18 -0700
Subject: Re: Maximum Number Of Tasks?
Newsgroups: comp.lang.ada

> [threadpool system]

Tasks should reflect inherent concurrency
in the problem space, not some aspect of
the hardware or OS. I have never
encountered any problem following this
rule, whether it was 60-70 Ada-83 tasks
on a 640 KB DOS system in the 1980s or
hundreds of tasks on Linux this year.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 12 Nov 2013 17:17:11 +0100
Subject: Re: Maximum Number Of Tasks?
Newsgroups: comp.lang.ada

> [...] are tasks meant to be “micro
objects” of which many can be created
and the Ada runtime does effectively what
my threadpool system does in C++?

If you have native tasking then tasks are
as fat as threads. If you have tasking
implemented within one thread (rare),
tasks can be “micro”, but then they most
likely will be unable to perform I/O
concurrently.

> Tasks should reflect inherent
concurrency in the problem space, not
some aspect of the hardware or OS.

It is not that simple. The problem space
may encompass the hardware, e.g. in the
case of communication and services.
Which is typically the case when worker
tasks pool comes in question.

Making Guarantees About
Record Components

From: J. Kimball <jkimball4@gmail.com>
Date: Tue, 19 Nov 2013 12:49:26 -0600
Subject: Making guarantees about record

components
Newsgroups: comp.lang.ada

I'm trying to guarantee that two record
component values map to the same value
of another type.

type A is (...);
type C is (...);

M : array (A) of C := (...);

type R is record
 A1 : A;
 A2 : A;
end record
 with Dynamic_Predicate =>
 (M (R.A1) = M (R.A2));

Is this the best solution we have as of Ada
2012?

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Tue, 19 Nov 2013 15:57:22 -0700
Subject: Re: Making guarantees about

record components
Newsgroups: comp.lang.ada

> [...]

If you really want to guarantee that the
property always holds, this doesn't do
that. Changes to components of variables
of type R, and changes to M, may
invalidate the predicate but not be
detected until later. To really guarantee
the property, you'd have to encapsulate M
and all instances of R so that all such
changes can be checked.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 20 Nov 2013 03:36:50 -0600
Subject: Re: Making guarantees about

record components
Newsgroups: comp.lang.ada

> [...]

The rules for when the
Dynamic_Predicate is checked are in
LRM 3.2.3 31/3. To me, that says any
changes to an object of type R are
checked, but not changes to M.

There is no value for M that satisfies this
constraint for all possible values of R, so
this does not seem like a well-defined
problem.

I think you need a private type hiding
both R and M to enforce this constraint.

Arduino Due

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 21 Nov 2013 01:33:42 -0600
Subject: Arduino Due
Newsgroups: comp.lang.ada

18 Ada in Context

Volume 35, Number 1, March 2014 Ada User Journal

I've recently purchased an Arduino Due
(http://arduino.cc/en/Main/arduinoBoard
Due), to build a home robot. The
processor is an AT91SAM3X8E, which
according to Atmel
http://www.atmel.com/devices/SAM3X8
E.aspx is an ARM Cortex-M3 84 MHz 32
bit processor, no floating point hardware,
along with a bunch of IO stuff.

Has anyone ported GNAT to this? It
appears I can use gcc targeted to arm, and
specify -mcpu=cortex-m3.

I'm guessing the runtime from AVR-Ada
could be useful, depending on how much
is in assembler.

The Atmel website provides a C/C++ IDE
and a download tool, so I can at least
write hello_world.c and try things out, but
I'd like to write real code in Ada.

I've ported GNAT to a couple of different
processors before, but it's been a while ...

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Thu, 21 Nov 2013 17:58:09 +0200
Subject: Re: Arduino Due
Newsgroups: comp.lang.ada

> [...]

I have also Due, actually has been almost
a year already[1], but I haven't had time to
port GNAT on it yet. But it is on my todo
list along with N+1 other things. :)

> [gcc]

Yes, Due has Atmel's Cortex-m3 class
ARM microcontroller and it is

supported by gcc.

> [run-time]

You can probably get the runtime
skeleton from AVR-Ada, but most of
AVR.* packages are useless. They control
peripherals of attiny/atmega/at90 AVR
microcontrollers (done mostly in Ada, but
most of the register addresses and stuff
should be specific to AVRs).

Currently, the best place to start is
Lucretia's work at https://github.com/
Lucretia/ , especially TAMP:

https://github.com/Lucretia/tamp

> [...]

I haven't checked AT91SAM3X8E
datasheet in detail, but unless Atmel has
recycled their UART/I2C/SPI/etc
peripheral logic from AVRs to ARM, you
have pretty hard road a head. (You need
to either create bindings to C functions or
implement all peripheral handling from
scratch.)

Btw, if you would use Arduino Uno and
AVR-Ada, you could have robot coded in
about 30 lines of code[2]. ;)

[1] http://arduino.ada-
language.com/arduino-due.html

[2] http://arduino.ada-
language.com/remote-controlled-robot-
using-xbees-and-ada.html

From: MatthiasR
<MatthiasR@invalid.invalid>

Date: Sun, 24 Nov 2013 14:12:35 +0100
Subject: Re: Arduino Due
Newsgroups: comp.lang.ada

I don't know about a ready-to-use solution
*) for Cortex-M3, but besides the already
mentioned project from 'Lucretia' there
are some more starting points:

http://sourceforge.net/projects/arm-ada/

- for LPC21xx (ARM7); with Ravenscar
runtime

- as far as I know based on GNAT for
Mindstorms

https://github.com/telrob/stm32-ada

- for STM32F4 (Cortex M4F); with
Ravenscar runtime

- I have made some tests on a STM32F4-
Discovery board; simple test programs
with multiple tasks are working

*) technically speaking, there is one, but I
assume it's out of question for your
project:

- GNAT Pro for ARM supports Cortex
M3, M4F and R4F, 'Zero Footprint' and
Ravenscar runtimes are provided.

The source distribution of GNAT GPL
2013 contains most parts of the ARM
support, but it is not complete. Some parts
of the bareboard runtimes are located in
the 'zfp-support' package. This package
was publicly released only as part of the
sources for GNAT GPL for Mindstorms
and GNAT GPL for AVR. There was
neither a 2013 release for Mindstorms nor
for AVR, thus the most recent release of
this package was in 2012. And back then,
there was no support for ARM...

Passing Large Objects as
Arguments

From: Fritz Von Braun <sf@saf.com>
Date: Sat, 23 Nov 2013 23:20:53 -0800
Subject: How To Pass Large Object

Arguments
Newsgroups: comp.lang.ada

I am fairly new to Ada and I am
wondering how I should pass large
parameters to subprograms like arrays or
records that contain other components
like vectors or lists.

I did a lot of reading but wasn't able to
find a definite answer. The general
consensus I got from Barne's book and
various blogs and whitepapers from
Universities was that in theory IN
parameters are copied but the compiler
manufacturer is free to implement a
reference to the original object and so on.
So basically what I found out there is no
concrete rule that says "parameter of that
size or greater are passed by reference
internally".

So my question is, is there a de facto
standard at least? What does GNAT do in

such cases? (In all honesty, my programs
will never run on anything but GNAT, so
other compilers don't really matter to me).
I am considering passing objects that I
think are too big for a copy operation
through an access parameter, but that
would basically contradict the principle of
problem orientation instead of machine
orientation. I would really rather be able
to handle these situations without having
to worry about the underlying mechanism
myself.

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Sun, 24 Nov 2013 12:12:46 +0100
Subject: Re: How To Pass Large Object

Arguments
Newsgroups: comp.lang.ada

> [...]

You should not pass parameters by copy
or by reference; this is the job of the
compiler. And you should not presume to
know better than the optimizer in the
compiler which method is faster.

So, pass parameters "in" or "in out".

> I did a lot of reading but wasn't able to
find a definite answer.

The definitive resource is the Ada
Reference Manual (i.e. the ISO standard
that defines the language), which is Free,
unlike for some other languages...

http://www.adaic.org/resources/
add_content/standards/12rm/html/
RM-6-2.html

GNAT normally passes arrays (including
Strings) by reference but very short arrays
might be passed by copy in registers,
which is *faster* than by reference.

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Sun, 24 Nov 2013 07:45:31 -0500
Subject: Re: How To Pass Large Object

Arguments
Newsgroups: comp.lang.ada

> [...]

Let the compiler worry about it.

You only need to step in if you can show
(for example with profiling) that your
program's performance is inadequate
AND the problem is due to a "foolish"
choice of parameter passing mechanism
on the part of the compiler.

Certain types are definitely passed by
reference, e.g., limited types that can't be
copied. For types that could be passed
either way I think you can be confident
that any sane compiler will do "the right
thing" and pass large objects by reference.

From: Georg Bauhaus
<bauhaus@maps.arcor.de>

Date: Mon, 25 Nov 2013 11:59:33 +0100
Subject: Re: How To Pass Large Object

Arguments
Newsgroups: comp.lang.ada

> [...]

Ada in Context 19

Ada User Journal Volume 35, Number 1, March 2014

Exactly. The language rules in LRM 6.2
(see Ludovic's message) make the
compiler choose among the possibilities
so established. In addition, some rules are
AS-IF rules, so optimizers can manage
parameter passing as they see fit. They
do, drawing upon the compiler writers'
knowledge of the architecture:

If a primitive operation of a "small"
tagged type has Inline applied to it, then,
for example, GNAT's optimizer may drop
all reference to the object when
translating Object.<primitive operation>.

 function Val (Object : OO_Type)
 return Some_Integer;
 pragma Inline (Val);

 function Val (Object : in T)
 return Integer is
 begin
 return Object.Data;
 end Val;

is one example. Its translation, at -gnatn -
O2, shows that record components need
not be made publicly visible to address
worries about mechanism.

This feature of the language, i.e. making
by-copy/by-reference and in/out separate
concepts, removes the need for access
parameters almost everywhere. And also
thinking about them if not problem
oriented ;-)

From: Adam Beneschan
<adam@irvine.com>

Date: Mon, 25 Nov 2013 08:53:56 -0800
Subject: Re: How To Pass Large Object

Arguments
Newsgroups: comp.lang.ada

> [...]

The RM has some rules about how certain
types are to be passed. Elementary types
are always passed by copy; those are
types that essentially aren't broken down
into subcomponents, i.e. numbers,
enumerations, access types. This is true
even for IN OUT parameters; the value
will be passed by copy, and a new value
will be copied back after the procedure or
function returns. Tagged types, tasks,
protected types, other limited types, and
any record or array containing one of
those, are always passed by reference.
This is true even for IN parameters. If the
"vectors" or "lists" you're referring to are
types in one of the Ada.Containers
packages, then they will be passed by
reference since
Ada.Containers.Vectors.Vector is defined
to be a tagged type, and I think that's true
for all the other containers.

But for records and arrays that don't fall
into one of those categories, it's up to the
compiler. And the compiler's decision
may depend on the target processor. One
of our compilers (for a particular RISC-
ish target) would pass any record up to
four 32-bit words by copy, in registers.
However, for a Pentium, which has very

few registers, an implementation like this
wouldn't make sense, and there's no point
in copying a record to the stack if it isn't
required by the language.

So for record and array types that aren't
specified by the RM, you shouldn't worry
about the parameter passing mechanism,
and let the compiler decide what it thinks
the best way is. You should also write
code in a way that assumes either one or
the other mechanism could be used. That
is, if you call Foo(Param => X) where X's
type is some record type, and somewhere
while Foo is running, something happens
that causes a field in X to be modified,
Foo itself may or may not notice that that
field has changed if it accesses
Param.Field. (And that's true even if X is
passed by reference, since the compiler
could generate code that "knows"
Param.Field won't change, since it can't
tell whether the actual record will change
behind its back.)

 “Go Ada”

[Something like this kind of an Ada
source repository has been discussed for a
while on the #Ada IRC channel on
Freenode. Some related posts to
comp.lang.ada are quoted here. Note: This
is still vapour-ware. —sparre]

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon, 2 Dec 2013 19:10:28 +0200
Subject: Re: CPAN style Ada repository
Newsgroups: comp.lang.ada

> [...] Jenkins server for building and
testing Ada projects. That might be a
good place to work from. No need to pick
specific version control repositories or
anything. Just publish and demonstrate
working build scripts for your Ada
projects.

It was me. The Jenkins server(s) is up at
http://build.ada-language.com/

I have access to three different compilers,
GNAT, Janus/Ada, and Irvine ICCAda, so
I have setup them to compile various Ada
projects automatically in multiple
environments.

However, unfortunately, the distributed
build results are not updated/reported
currently because of Jenkins bug
https://issues.jenkins-
ci.org/browse/JENKINS-20067

Once that is fixed or once I find time to
switch to another CI system, the build
reports will be updating again.

From: Björn Persson <bjorn@xn--

rombobjrn-67a.se>
Date: Wed, 11 Dec 2013 21:49:34 +0100
Subject: Re: CPAN style Ada repository
Newsgroups: comp.lang.ada

> Would there be interest in a Perl CPAN
style Ada repository?

This might seem like a good idea, until
one starts to realize the implications.

I assume that you would want this
repository to be usable on many different
operating systems, and maybe with
different compilers (because if you were
planning to target only GNAT and Debian
for example, then you'd simply make
Debian packages instead of proposing a
new repository). The Ada language itself
is quite portable between operating
systems and compilers, but how to get the
Ada code compiled and installed is quite
another story. There is no standard for
how to invoke a compiler or how to link
to libraries, no standard set of compiler
options and so on. Different operating
systems have different commands for
making directories and copying files,
vastly different filesystem layouts, and
even differences in pathname syntax.
GNAT project files do only parts of the
job, and are specific to GNAT as far as I
know.

CPAN has it easy by comparison. There is
only one Perl interpreter (probably
because the language is such a hideous
mess that it's impossible to write a
compatible second implementation), so
they don't need to worry about different
compilers.

I recommend packaging for one of the
existing distributions instead. Come join
us in Fedora, Debian or some other
distribution of your choice. Version
control systems, bug trackers, build
servers, mirrors and packaging standards
are already there for you (at least in
Fedora), and the packages will be just as
readily available to users as any other
package.

It may seem like duplicated effort to
package the same software multiple times
for different distributions, but it's actually
not so bad. Packaging for one operating
system is easier than packaging for many
of them at once, so it's several smaller
efforts instead of one big effort. I took
part in the Gnuada project at Sourceforge
for a while. There we tried to make RPM
packages that could be built for both Suse
and Fedora. Only two target platforms,
very similar and based on the same
package manager, and even that was
enough to cause problems.

One thing that would help considerably,
and that would be surmountable, would
be if developers of free Ada software
could agree on some conventions for how
makefiles should be written. Free projects
usually have build systems made of
makefiles and Gnat project files, but most
of them are too inflexible to adapt to
different filesystem layouts, support
staging or allow compiler options to be
customized. Packaging is slow when
packagers have to figure out how each
makefile works and often patch makefiles
to get them to meet packaging standards.
We could get much more libraries and

20 Ada in Context

Volume 35, Number 1, March 2014 Ada User Journal

programs packaged if developers would
follow some conventions. Such
conventions would need to work for
mixed-language projects as well as pure
Ada projects, and for both Gnatmake and
GPRbuild.

I recommend using the Make variable
names from the GNU Coding Standards
(https://www.gnu.org/prep/standards/html
_node/Makefile-Conventions.html) and
extending that with Ada-specific variables
in the same style.

Developers, please support LDFLAGS for
linker options, and support CFLAGS if
there is C code in your project. Stick to
this naming scheme and use
"ADAFLAGS" for Ada compiler options,
"GNATBINDFLAGS" for gnatbind
options, and so on.

Support the GNU standard directory
variables so that your software can be
installed in different systems with
different filesystem layouts: prefix,
exec_prefix, bindir, libdir, libexecdir and
all the others as appropriate for the types
of files that your project installs. Extend
with "gprdir" for GNAT project files and
"alidir" for ALI files. Install ALI files in a
library-specific subdirectory of alidir, just
like source files go in a subdirectory of
includedir. Support DESTDIR so that
packagers can install to a staging
directory and don't have to build packages
as root.

Writing such a flexible makefile is of
course nontrivial work that you don't want
to do over and over. You can avoid most
of the work by using Comfignat
(https://www.rombobjörn.se/Comfignat/).
Comfignat gives you all of the above,
except that limitations in Gnatmake's and
GPRbuild's command line syntax prevent
it from automatically supporting
LDFLAGS and GNATBINDFLAGS
when libraries are built.

This approach covers only those operating
systems that are Unix-like enough to have
Make and basic commands such as cp and
mkdir, but that should include OS X, and
hopefully even Windows with Cygwin or
MinGW is Unix-like enough, so it's a
decent set of target platforms. (And none
of the above prevents you from also
supporting some other platform by other
means.)

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Thu, 12 Dec 2013 09:23:05 +0100
Subject: Re: CPAN style Ada repository
Newsgroups: comp.lang.ada

> Would there be interest in a Perl CPAN
style Ada repository?

Something like it, yes.

I have earlier discussed the subject with
Thomas Løcke and Kim Rostgaard
Christensen in terms of the tools and
infrastructure provided with the Go
programming language from Google.

Step one must be to decide what the
purpose of the project is. Some
possibilities:

a) Make it easier for newcomers to Ada to
get started.

b) Make it easier to find and install Open
Source libraries and applications written
in Ada.

c) Document how (and how well) Open
Source libraries and applications written
in Ada build and run on various
platforms and with various compilers.

d) Advertise the existence of other Ada
compilers than GNAT.

e) Survive, grow, and encompass all
published Open Source Ada source
texts.

I know that not all contributors to this
thread weigh these purposes equally, but I
think they all have value for the Ada
community as a whole.

Based on these objectives I propose:

1) Make a "first download" package,
which provides (or downloads or
validates the existence of) a compiler
and a client (developer) tool.

 (Like for Go. A step towards objective
a.)

2) Besides the "first download", the
system provides "projects", which may
be libraries, applications or a mix of
both. (A "library" is basically a project
without any non-test executables.) The
collection of projects can be queried and
downloaded through the client tool.

 (A step towards objectives a and b.)

3) All projects are required to have some
built-in tests. As a minimum there
should be test applications which ensure
that all compilation units in the project
sources are compiled.

 (A step towards objective c.)

4) Support multiple compilers. Tero
Koskinen has both GNAT, Irvine
ICCAda and Janus/Ada on his
<http://build.ada-language.com/> site,
so it should be possible.

 (A step towards objectives c and d.)

5) Make it easy for developers to submit
new projects to the system.

 (A step towards objective e.)

Refining the proposals above:

6) Each project needs some build rules.
As we want to support multiple
compilers (proposal 4), it makes sense to
have a very simple (proposal 5) build
rule format, which then can be compiled
to build rules for the various supported
compilers.

The minimum requirements for the build
rules might be as simple as three lists:

 - Which projects this project depends on.

 - Which applications are to be generated
by this project.

 - Which test programs are included in
the project.

7) If an up-stream project is parameterised
(or uses different sources for different
hosts/compilers/targets), our view of it is
multiple unparameterised projects. This
will allow for simpler build rules
(proposal 5 and 6) and at the same time
simplify testing (objective c and
proposal 3)

The following is a collection of various
ideas for the project on a more practical
level. These ideas are not (yet) tied
properly to the objectives listed above.

General:

- Source-only projects - Skip the whole
problem of generating dynamic libraries.
Not many systems will have more than
one application running using large parts
of the same Ada library.

- Use ISO dates plus a single latin letter as
version identifiers for projects. This will
allow about one version per hour per
project. Is this an unreasonable limit?

- Project naming: As Ada identifiers with
the extra constraint that they can't end in
"_" & Possible_Version_Identifier or
"_" & Possible_Version_Identifier &
"_test". (Other constraints?) This is to
allow GPR files to reference either the
"head" version of a project or a specific
revision.

- Project parameters:

 + Build rules.

 + Version control link.

 + Provides: API ID's.

 + Dependencies: Both other projects in
the system, API ID's _and_ operating
system specific dependencies.

 + (plus revision information)

Client (developer tool):

- Keep track of which projects the
developer has fetched explicitly (and
which specific versions have been
requested, where that is relevant)

- Keep track of the dependencies of the
installed projects, and make sure they
are fulfilled.

- When updating; only pull the newest
versions of previously requested
projects, when the developer hasn't
asked for a specific version or has asked
for "head".

- The Go command-line tool has (at least)
the following operations: get, build, test,
run, install. I'm not sure I care about
"run", but "drop" (sort-of "uninstall")
and "select-compiler" (as we want to
support more than one) would be nice
additions.

Ada in Context 21

Ada User Journal Volume 35, Number 1, March 2014

Service:

- Generate new project versions from up-
stream commits automatically.

- Test new project versions automatically
as they are generated.

- Only release project versions which pass
the tests on at least one host-compiler-
target combination.

- It would be nice if it automatically could
test which revisions of the dependencies
of a project result in a working (test-
passing) system.

- Should we host copies of the sources of
the projects as a part of the service? J.
Kimball doesn't like to do it, but I like
the idea of fetching sources and build
rules from a single location.

PS: I like a name like "go Ada" better
than "something-CPAN".

From: Björn Persson
<bjorn@xn--rombobjrn-67a.se>

Date: Fri, 13 Dec 2013 19:38:18 +0100
Subject: Re: CPAN style Ada repository
Newsgroups: comp.lang.ada

> I would leave "install" to the packagers;
upstream Makefiles should just build in
place.

I disagree with that for the following
reasons:

- The directory variables aren't used only
for copying files in the installation step.
Some of these pathnames sometimes
need to be embedded in programs so that
they'll know where to find data files or
other programs.

- Some of the directory variables also
need to be embedded in libraries' usage
project files. Packagers will have to
patch usage projects if the upstream
build system doesn't configure them
correctly, and patches are much more of
a maintenance burden than command
line parameters are.

- Libraries need some source files
installed, but usually not all of the
source files. At least some specifications
are always needed, but sometimes
bodies are also needed, if they contain
generic units or inline subprograms.
Manually keeping track of which files
are needed is difficult, especially for a
packager who isn't also an upstream
developer, but the GNAT builders know
which files are needed and can install
them for you.

- Packagers aren't the only ones who will
build your software. Users who
download the source tarball and install
locally won't like to dig files out of the
source tree manually and edit project
files.

> [...] sounds like an Ada-style alternative
to automake, which is very welcome.

Yes, that's a good comparison. The
purpose of Comfignat is similar to that of
Automake, but the way it works is

somewhat different. You import a generic
makefile instead of generating a makefile,
and it delegates dependency tracking to
GPRbuild or Gnatmake.

Reason for
Ada.Strings.Bounded not
Being Pure

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 5 Dec 2013 14:17:05 -0600
Subject: Re: Reason for

'Ada.Strings.Bounded' not being
declared 'pragma Pure' ?

Newsgroups: comp.lang.ada

We re-analyzed all of the existing
packages for Ada 2005, and changed the
categorization of some of them. The
details can be found in AI95-0362-1
(http://www.ada-auth.org/cgi-
bin/cvsweb.cgi/ais/ai-00362.txt).

There is a listing of every predefined
package in that AI. Here's the entry for
Bounded strings:

Ada.Strings.Bounded -- A.4.4;
Preelaborate

This package contains no state, no
dependence on non-pure units, no other
items that prevent the package from being
pure, and does not declare any types that
would be a problem for Annex E, so it
could be declared pure.

But it's large and complex, and many of
the operations are not conceptually pure
(they do in-place updates), so no change
is recommended.

This admittedly does not seem very
satisfying. We didn't redo this exercise for
Ada 2012, the only change we made was
to make Stream_IO preelaborated so that
loggers and the like can be written. (It's
not practical to make the full Text_IO
preelaborated [the obvious approach is
not task-safe], and there was no
agreement on the contents of a
preelaborable subset.) I suppose you
could send a request to reconsider this to
Ada-Comment (but it would probably
have to wait until the next Standard,
whenever that is).

Someone asked about Ada.Tags. The
entry for it says:

Ada.Tags -- 3.9; not categorized

Package Tags has state, so it cannot be
pure. That state is generally either set up
at link-time (before elaboration) or during
the elaboration of tagged types (that is,
during the elaboration of other units). In
either case, no complex state need be
initialized at elaboration time. Thus, this
package can be Preelaborated.

(The "state" that is talked about here is the
table of internal tag <=> external tag
mappings. Distributing that could be a
significant overhead.) Making it Pure is
not practical.

From: Brad Moore
<brad.moore@shaw.ca>

Date: Thu, 05 Dec 2013 20:03:09 -0700
Subject: Re: Reason for

'Ada.Strings.Bounded' not being
declared 'pragma Pure' ?

Newsgroups: comp.lang.ada

> [...]

Actually, this wasn't the only related
change in Ada 2012. We also allowed
Remote_Types packages and
Remote_Call_Interface packages to
depend on preelaborated packages, if that
dependency is via a private with clause.

See http://www.ada-auth.org/
cgi-bin/cvsweb.cgi/ai05/ai05-0206-1.txt

This means that you can build
abstractions that use Ada.Bounded_String
(Or Ada.Tags for that matter), so long as
they are not used in the visible part of a
Remote_Types or Remote_Call_Interface
package. eg.

private with Ada.Strings.Bounded;

package RT is
 pragma Remote_Types;
 type W is private;

 procedure Set (Item : in out W;
 Value : in String);
 function Get (Item : W) return String;

private
 package My_String is new
 Ada.Strings.Bounded.
 Generic_Bounded_Length
 (Max => 100);
 type W is
 record
 D : My_String.Bounded_String;
 end record;

 function Get (Item : W) return String is
 (My_String.To_String (Item.D));
end RT;

package body RT is
 procedure Set (Item : in out W;
 Value : in String) is
 begin
 My_String.Set_Bounded_String
 (Target => Item.D,
 Source => Value);
 end Set;
end RT;

Freezing Rules

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 17 Jan 2014 17:23:55 -0600
Subject: Re: 'Protected' abstract

subprograms
Newsgroups: comp.lang.ada

Robert A Duff wrote:

> The freezing rules make my brain hurt.
Even though I had a hand in writing
them! ;-)

>

22 Ada in Context

Volume 35, Number 1, March 2014 Ada User Journal

> A better-designed language would not
have anything like freezing rules.

That's a fascinating assertion from the guy
that's responsible for most the AARM
notes describing the freezing rules.
Especially as you guys pretty much
redesigned that area in Ada 95 -- you
essentially created a whole new language
design for it. It makes me wonder how a
language could be better designed and not
“have anything like freezing rules”.

After all, a compiler has to have a known
representation for types and objects at
some point, certainly before code
generation. If one is going to support
some sort of separate compilation
(especially *safe* separate compilation),
freezing rules or something like them
seems mandatory. [There is an argument
to be made that a truly modern language
doesn't need to support separate
compilation at the language level, given
that it is now practical to delay
compilation until bind time. But that
seems awfully radical and would seem to
put an upper limit on the sizes of
programs that could be written in the
language. I don't think that's what you
meant.]

Ada's freezing rules are far more detailed
than absolutely necessary, but the obvious
way to get simplify them would be to
require that all types are declared before
all objects (a-la Pascal) -- and we have
evidence that's too inflexible. There don't
seem to be any obvious way to simplify
them if objects can be declared anywhere.

So I have to wonder what sort of “well-
designed language” you have in mind.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Sun, 19 Jan 2014 16:07:41 -0500
Subject: Re: 'Protected' abstract

subprograms
Newsgroups: comp.lang.ada

> [...]

Not really. Ada 83 had “forcing
occurrences” regarding rep clauses. And I
think a bunch of similar rules regarding
premature use of private types. IIRC, we
decided that these two sets of rules should
be combined. Also, the rules were buggy,
and we wanted to fix them.

The actual rules in Ada 95 are almost the
same as in Ada 83. They don't look the
same, because the wording was changed a
lot. But the things that are legal and
illegal in Ada 83 didn't change much in
Ada 95.

In other words: Don't mix up “the Ada
language” with “the words we use to
describe the Ada Language in the RM”.
The latter can change without changing
the former. And in this case, the latter
changed a lot while the former changed a
little.

>... It makes me wonder how a language
could be better designed and not “have
anything like freezing rules”.

Well, I'm too lazy to give all the details,
but here's one key point:

It is obvious[*] that module specs should
not be elaborated. They should be purely
a compile-time description of the
interface, and should not exist at all at run
time.

[*] I'm just kidding about “obvious”. It
took me years to figure that out. But
having done so, it's obvious (to me).

Another point: Something like Ada's
aspect clauses are better than pragmas and
separate syntax for rep clauses. That's
because aspect clauses are physically
attached to the declaration, so there's less
of an issue about when things are
evaluated. Also, you don't have to refer to
the thing by name; you're just saying “this
thing has so an so properties”. Every time
you refer to something by name, you put a
(slight) burden on the person reading the
code, who has to match up uses with
declarations.

> After all, a compiler has to have a
known representation for types and

> objects at some point, [...]

No, that's not what I meant.

> Ada's freezing rules are far more
detailed than absolutely necessary, but

> the obvious way to get simplify them
would be to require that all types are

> declared before all objects (a-la Pascal)
[...]

I hate that aspect of Pascal. I wouldn't call
Pascal a well-designed language, although
it is much better than many others in
many respects.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 20 Jan 2014 19:21:54 -0600
Subject: Re: 'Protected' abstract

subprograms
Newsgroups: comp.lang.ada

> [...]

Right. Aspect clauses eliminate quite a bit
of the need for freezing rules. (Although
we ended up using them to describe the
semantics of aspect clauses, that was
mainly historical in nature -- it would
have been better to wait until the end of
the unit for those determinations, but that
would have not allowed various things
legal in Ada.)

I believe your point that a purely compile-
time description would eliminate freezing.
I'm not convinced that such a restriction
would really be usable -- I suppose it
depends on what could actually be
described that way. (Personally, I find
Ada interfaces useless; I much prefer

package specifications for abstraction. I'm
not sure if that carries over to your idea.)

Anyway, not particularly relevant for
Ada, since we're surely not reducing what
is allowed in a package specification.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Tue, 21 Jan 2014 09:35:42 -0500
Subject: Re: 'Protected' abstract

subprograms
Newsgroups: comp.lang.ada

> Of course, I know this, but I don't really
think that this is relevant. You (“you”
meaning Ada 9x team here since I don't
know for sure who did what)

I did most of the work on chapter 13. I did
the initial work on freezing rules, and I
think I'm responsible for the term
“freezing”. We modified them over and
over, trying to fix bugs, and trying to
clarify. At some point, I got frustrated,
and told Tucker I'm sick of those rules,
you (Tucker) please work on them, and
I'll finish up chapter 3 (which Tucker had
been working on at the time). So Tucker
is responsible for the final wording of the
freezing rules in Ada 95.

> could have changed the language more
(since you guys had already decided to
change the wording drastically), but
you didn't. I would say that was mainly
because it wasn't really possible to
change the language further without
changing it's philosphosy.

Not philosophy, so much as compatibility.

>...After all, you did make a number of
cases illegal that were legal in Ada 83.

Yes, but pretty obscure cases. I don't
remember the details, and I'm too lazy to
look them up, but I recall cases in Ada 83
where ARG had ruled “X is legal” for
some feature X. But if you do X it's
guaranteed to raise an exception during
elaboration (so for a library package, the
program is guaranteed to fail every time).
Also, in order to generate correct code for
X, the compiler has to KNOW that it's
going to raise an exception; otherwise it
would generate code that would follow
dangling pointers and the like.

Clearly, making such an X illegal is an
acceptable incompatibility.

> Right. Aspect clauses eliminate quite a
bit of the need for freezing rules.

Yeah, too bad they weren't invented in the
late 1970's, in time for Ada 83.

> I believe your point that a purely
compile-time description would eliminate
freezing. I'm not convinced that such a
restriction would really be usable -- I
suppose it depends on what could actually
be described that way.

I'm convinced. ;-) In fact, my language
design allows some useful things that Ada
does not. For example, in Ada:

Ada in Context 23

Ada User Journal Volume 35, Number 1, March 2014

 package Sequences is

 type Sequence is private;

 function Make_Sequence
 (Length: Natural) return Sequence;

 Empty_Sequence : constant :=
 Make_Sequence (Length => 0);
 -- Wrong!

 ...

 private

 ...

 end Sequences;

That won't work, and it's annoying. In my
language, it works fine, because
Make_Sequence is called during
elaboration of the BODY of Sequences.

But that's not Ada, and it's not even
possible to compatibly change Ada in this
way, so I should stop talking about off-
topic stuff. ;-)

> [...]

In any case, you're right that SOME sort
of rules are needed. You need to prevent
circular things like X is of type T, and the
Size of T depends on the value of X. I just
don't think it needs to be anywhere near as
complicated as the freezing rules.

Difference in Sizes of Integer
Types

From: user3261820
<http://stackoverflow.com/users/
3261820/user3261820>

Date: Sun Feb 2 2014
Subject: Ada types size difference
URL: http://stackoverflow.com/questions/

21506182/ada-types-size-difference

I have this Ada program:

with Ada.Text_IO, Ada.Integer_Text_IO;
use Ada.Text_IO, Ada.Integer_Text_IO;

procedure Test is
 type MY_TYPE is new Integer
 range 1 .. 20;
 subtype MY_TYPE2 is MY_TYPE
 range 5 .. 6;
 C : MY_TYPE := 10;
 F : MY_TYPE2 := 6;
begin
 Put (Integer (C'Size));
end Test;

and when I run it I get 32. If I replace

type MY_TYPE is new Integer
 range 1..20;

with

type MY_TYPE is range 1..20;

I get 8. What is the difference between the
two declarations?

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Sun Feb 2 2014
URL: http://stackoverflow.com/questions/

21506182/ada-types-size-difference

You are allowing the compiler to choose
the sizes for these different type
declarations, and it is picking the size of
your INTEGER type according to the size
of its base type (INTEGER).

You have control over the sizes of these
types : if you rewrite the first declaration
as

type MY_TYPE is new Integer range 1..20;
for MYTYPE'SIZE use 8;

you should get an 8-bit MY_TYPE.

for MYTYPE'SIZE use 5;

ought to pack MYTYPE into 5 bits (as I
understand it, a compiler is permitted to
reject this with an explicit error, or
generate correct code, but NOT to accept
it and generate garbage.)

Why would you want to pack MYTYPE
into 5 bits? One reason is if it's used as a
component of a record : that leaves room
for 3 more components in a single byte, as
long as they are booleans and their SIZE
attribute is 1!

This may look like extreme packing, but
it's actually quite common in embedded
programming, where that record type
matches the bits in a peripheral or I/O
port. You would also specify the bit-level
layout within the record, as in:

type Prescale is new Integer range 1..20;
for Prescale'SIZE use 8;

type Timer_Ctrl_Reg is record
 Scale: Prescale;
 Up: Boolean;
 Repeat : Boolean;
 Int_En : Boolean;
end record;

for Timer_Ctrl_Reg use record
 Scale at 0 range 0 .. 4;
 Up at 0 range 5 .. 5;
 Repeat at 0 range 6 .. 6;
 Int_En at 0 range 7 .. 7;
end record;

at specifies the offset from the record base
in "storage units" usually bytes or words :
range specifies the bit positions within the
storage unit.

No more dodgy bit masking and
extraction to worry about!

On the other hand,

for MYTYPE'SIZE use 4;

ought to fail, as MYTYPE has more than
16 discrete values.

From: Keith Thompson
<Keith.S.Thompson@gmail.com>

Date: Sun Feb 2 2014
URL: http://stackoverflow.com/questions/

21506182/ada-types-size-difference

This:

type MY_TYPE is new Integer range 1..20;

explicitly inherits MY_TYPE from
Integer, which apparently is 32 bits on
your system.

This:

type MY_TYPE is range 1..20;

leaves it up to the compiler to decide how
to represent MY_TYPE. The result is
implementation-specific; apparently your
compiler chooses to implement it as an 8-
bit integer type.

Aborting a Process That
Uses a Protected Object
That Requeues

From: ArthurTheLearner
<http://stackoverflow.com/users/
2643554/arthurthelearner>

Date: Thu Feb 20 2014
Subject: Aborting a process in Ada that uses

a protected object that requeues
URL: http://stackoverflow.com/

questions/21907632/

I'm experiencing some troubles with my
program.

I have a process that calls a function
(Take_Job) that is supposed to remain
blocked until a time (MINIMUM_WAIT)
passes. If it doesn't happen that way, a
message informing of this situation will
appear.

for Printer_ID in Type_Printer_ID loop
 select
 delay MINIMUM_WAIT
 Pragma_Assert (True, "");
 then abort
 Take_Job (Controller,
 Printer_ID,
 Max_Tonner,
 Job,
 Change_Tonner);
 Pragma_Assert (False, "Testing of
 Take_Job hasn't been successful.
 It should have remained blocked.");
 end select;
end loop;

The function Take_Job calls to an entry in
a protected object:

procedure Take_Job
 (R: in out Controller_Type;
 Printer: in Type_Printer_ID;
 Siz: in Typo_Volume;
 Job : out Typo_Job;
 Excep_Tonner : out Boolean) is
begin
 R.Take_Job (Printer, Siz, Job,
 Excep_Tonner);
end Take_Job;

Where "R" is the protected object.

The following code is the entry of the
protected object. Actually, the "when"
condition is True because I need to check
some stuff with the parameters of the
entry. Since Ada doesn't allow me to do
that, I copy the parameters inside the
protected object and call to a "delayed
entry", then in the "delayed entry" I will

24 Ada in Context

Volume 35, Number 1, March 2014 Ada User Journal

make sure that the condition is met before
proceeding.

entry Take_Job
 (Printer_ID : in Type_Printer_ID;
 Remaining : in Type_Volume;
 Job : out Type_Job;
 exceptionTonner : out Boolean)
when True is
begin
 Copy_Remaining (Printer_ID) :=
 Remaining;
 requeue Take_Job_Delayed (Printer_ID);
end Take_Job;

Let's see the "delayed entry" code:

entry Take_Job_Delayed
 (for J in Type_Printer_ID)
 (Printer_ID : in Type_Printer_ID;
 Remaining : in Type_Volume;
 Job : out Type_Job;
 exceptionTonner : out Boolean)
when False is -- I've done this on purpose
begin
 null; -- Actually, there would be a lot of
 -- code here
end Take_Job_Delayed;

Let's say that my goal is to pass the
MINIMUM_WAIT and run the
"Pragma_Assert(True, "")". If I put the
"when" condition of Take_Job to "False",
then everything works fine. Take_Job is
never accepted and the Pragma_Assert
will be executed. If I set it to "True" and
the "when" condition of
Take_Job_Delayed to "False", I don't get
the same effect and the process gets
blocked and neither of the
Pragma_Asserts will be executed.

Why? It looks like the problem is in the
"requeue" or somewhere near that, but
why is this happening?

From: Simon Wright
<simon@pushface.org>

Date: Thu Feb 20 2014
URL: http://stackoverflow.com/

questions/21907632/

You need to do the requeue with abort;

entry Take_Job_Delayed
 (for J in Type_Printer_ID)
 (Printer_ID : in Type_Printer_ID;
 Remaining : in Type_Volume;
 Job : out Type_Job;
 exceptionTonner : out Boolean)
when True is
begin
 Copy_Remaining(Printer_ID) := Remaining;
 requeue Take_Job_Delayed(Printer_ID)
with abort;
end Take_Job;

because otherwise the opportunity to
abort the entry call has been lost. There
are details in ARM 9.5.4[1], and a more
understandable explanation in Burns &
Wellings, “Concurrency in Ada”.

[1] http://www.adaic.org/resources/
add_content/standards/12rm/html/
RM-9-5-4.html

Rationale for Encapsulation
of Dynamically Dispatching
Operations

From: coredump
<http://stackoverflow.com/users/
124319/coredump>

Date: Mon Feb 24 2014
Subject: Rationale behind Ada

encapsulation of dynamically
dispatching operations (primitives)

URL: http://stackoverflow.com/questions/
21991312/

In Ada, Primitive operations of a type T
can only be defined in the package where
T is defined. For example, if a Vehicles
package defines Car and Bike tagged
record, both inheriting a common Vehicle
abstract tagged type, then all operations
than can dispatch on the class-wide
Vehicle'Class type must be defined in this
Vehicles package.

Let's say that you do not want to add
primitive operations: you do not have the
permission to edit the source file, or you
do not want to clutter the package with
unrelated features.

Then, you cannot define operations in
other packages that implicitly dispatches
on type Vehicle'Class. For example, you
may want to serialize vehicles (define a
Vehicles_XML package with a To_Xml
dispatching function) or display them as
UI elements (define a Vehicles_GTK
package with Get_Label, Get_Icon, ...
dispatching functions), etc. The only way
to perform dynamic dispatch is to write
the code explicitly; for example, inside
Vehicle_XML:

if V in Car'Class then
 return Car_XML (Car (V));
else
 if V in Bike'Class then
 return Bike_XML (Bike (V));
 else
 raise Constraint_Error
 with "Vehicle_XML is only defined for
 Car and Bike."
end if;

(And a Visitor pattern defined in Vehicles
and used elsewhere would work, of
course, but that still requires the same
kind of explicit dispatching code.)

My question is then:

Is there a reason why operations
dynamically dispatching on T are
restricted to be defined in the defining
package of T?

Is this intentional? Is there some historical
reasons behind this?

From: ajb
<http://stackoverflow.com/users/
2464386/ajb>

Date: Mon Feb 24 2014
Subject: Rationale behind Ada

encapsulation of dynamically
dispatching operations (primitives)

URL: http://stackoverflow.com/questions/
21991312/

I can think of several reasons:

(1) Your example has Car and Bike
defined in the same package, both derived
from Vehicles. However, that's not the
"normal" use case, in my experience; it's
more common to define each derived type
in its own package. (Which I think is
close to how "classes" are used in other
compiled languages.) And note also that
it's not uncommon to define new derived
types afterwards. That's one of the whole
points of object-oriented programming, to
facilitate reuse; and it's a good thing if,
when designing a new feature, you can
find some existing type that you can
derive from, and reuse its features.

So suppose you have your Vehicles
package that defines Vehicle, Car, and
Bike. Now in some other package V2,
you want to define a new dispatching
operation on a Vehicle. For this to work,
you have to provide the overriding
operations for Car and Bike, with their
bodies; and assuming you are not allowed
to modify Vehicles, then the language
designers have to decide where the bodies
of the new operation have to be.
Presumably, you'd have to write them in
V2. (One consequence is that the body
that you write in V2 would not have
access to the private part of Vehicles, and
therefore it couldn't access
implementation details of Car or Bike; so
you could only write the body of that
operation if terms of already-defined
operations.) So then the question is: does
V2 need to provide operations for all
types that are derived from Vehicle? What
about types derived from Vehicle that
don't become part of the final program
(maybe they're derived to be used in
someone else's project)? What about types
derived from Vehicle that haven't yet been
defined (see preceding paragraph)? In
theory, I suppose this could be made to
work by checking everything at link time.
However, that would be a major paradigm
change for the language. It's not
something that could be easily. (It's pretty
common, by the way, for programmers to
think "it would be nice to add feature X to
a language, and it shouldn't be too hard
because X is simple to talk about",
without realizing just what a vast impact
such a "simple" feature would have.)

(2) A practical reason has to do with how
dispatching is implemented. Typically, it's
done with a vector of procedure/function
pointers. (I don't know for sure what the
exact implementation is in all cases, but I
think this is basically the case for every
Ada compiler as well as for C++ and Java
compilers, and probably C#.) What this
means is that when you define a tagged
type (or a class, in other languages), the
compiler will set up a vector of pointers,
and based on how many operations are
defined for the type, say N, it will reserve

Ada in Context 25

Ada User Journal Volume 35, Number 1, March 2014

slots 1..N in the vector for the addresses
of the subprograms. If a type is derived
from that type and defines overriding
subprograms, the derived type gets its
own vector, where slots 1..N will be
pointers to the actual overriding
subprograms. Then, when calling a
dispatching subprogram, a program can
look up the address in some known slot
index assigned to that subprogram, and it
will jump to the correct address
depending on the object's actual type. If a
derived type defines new primitive
subprograms, new slots are assigned
N+1..N[2], and types derived from that
could define new subprograms that get
slots N[2]+1..N[3], and so on.

Adding new dispatching subprograms to
Vehicle would interfere with this. Since
new types have been derived from
Vehicle, you can't insert a new area into
the vector after N, because code has
already been generated that assumes the
slots starting at N+1 have been assigned
to new operations derived for derived
types. And since we may not know all the
types that have been derived from Vehicle
and we don't know what other types will
be derived from Vehicle in the future and

how many new operations will be defined
for them, it's hard to pick some other
location in the vector that could be used
for the new operations. Again, this could
be done if all of the slot assignment were
deferred until link time, but that would be
a major paradigm change, again.

To be honest, I can think of other ways to
make this work, by adding new operations
not in the "main" dispatch vector but in an
auxiliary one; dispatching would probably
require a search for the correct vector
(perhaps using an ID assigned to the
package that defines the new operations).
Also, adding interface types to Ada 2005
has already complicated the simple vector
implementation somewhat. But I do think
this (i.e. it doesn't fit into the model) is
one reason why the ability to add new
dispatching operations like you suggest
isn't present in Ada (or in any other
compiled language that I know of).

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue Feb 25 2014
Subject: Rationale behind Ada

encapsulation of dynamically
dispatching operations (primitives)

URL: http://stackoverflow.com/questions/
21991312/

Without having checked the rationale for
Ada 95 (where tagged types were
introduced), I am pretty sure the freezing
rules for tagged types are derived from
the simple requirement that all objects in
T'Class should have all the dispatching
operations of type T.

To fulfill that requirement, you have to
freeze type and say that no more
dispatching operations can be added to
type T once you:

- Derive a type from T, or

- Are at the end of the package
specification where T was declared.

If you didn't do that, you could have a
type derived from type T (i.e. in T'Class),
which hadn't inherited all the dispatching
operations of type T. If you passed an
object of that type as a T'Class parameter
to a subprogram, which knew of one more
dispatching operation on type T, a call to
that operation would have to fail. - We
wouldn't want that to happen.

26

Volume 35, Number 1, March 2014 Ada User Journal

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2014

April 05-13 17th European Joint Conferences on Theory and Practice of Software (ETAPS'2014), Grenoble,
France. Events include: CC, International Conference on Compiler Construction; ESOP, European
Symposium on Programming; FASE, Fundamental Approaches to Software Engineering; FOSSACS,
Foundations of Software Science and Computation Structures; POST, Principles of Security and Trust;
TACAS, Tools and Algorithms for the Construction and Analysis of Systems.

April 07-11 20th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS'2014). Topics include: specification and verification
techniques; analytical techniques for real-time systems; analytical techniques for safety,
security, or dependability; static and dynamic program analysis; abstraction techniques
for modeling and verification; system construction and transformation techniques; tool
environments and tool architectures; applications and case studies; etc.

April 07-11 17th International Conference on Fundamental Approaches to Software
Engineering (FASE'2014). Topics include: software engineering as an engineering
discipline; specification, design, and implementation of particular classes of systems
(embedded, distributed, ...); software quality (validation and verification of software
using theorem proving, model checking, testing, analysis, refinement methods, metrics,
...); model-driven development and model transformation (design and semantics of
domain-specific languages, consistency and transformation of models, ...); software
evolution (refactoring, reverse and re-engineering, ...); etc.

 April 12 Programming Language Approaches to Concurrency and communication-cEntric
Software (PLACES'2014). Topics include: the general area of programming language
approaches to concurrency, communication and distribution, such as design and
implementation of programming languages with first class support for concurrency and
communication; concurrent data types, objects and actors; verification and program
analysis methods for concurrent and distributed software; high-level programming
abstractions addressing security concerns in concurrent and distributed programming;
multi- and many-core programming models, including methods for harnessing GPUs
and other accelerators; integration of sequential and concurrent programming
techniques; programming language approaches to web services; etc.

April 12 11th International Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA'2014). Topics include: modelling formalisms,
temporal properties and their formal verification, interface compliance and contractual
use of components, static and dynamic analysis, industrial case studies and experience
reports, etc.

April 07-10 23rd Australasian Software Engineering Conference (ASWEC'2014), Sydney, Australia. Topics
include: dependable and secure computing; domain-specific models and languages, and model driven
development; engineering/operating large-scale distributed systems; formal methods; legacy systems,
software maintenance and reverse engineering; modularisation techniques; open source software
development; programming languages and techniques; quality assurance; real-time and embedded

Conference Calendar 27

Ada User Journal Volume 35, Number 1, March 2014

software; software analysis; software architecture, design and patterns; software processes and quality;
software risk management; software reuse and product lines; software security, safety and reliability;
software verification and validation; standards; etc.

April 13-16 22nd High Performance Computing Symposium (HPC'2014), Tampa, Florida, USA. Topics include:
high performance/large scale application case studies, multicore and many-core computing, distributed
computing, tools and environments for coupling parallel codes, high performance software tools, etc.

April 22-26 13th International Conference on Modularity (Modularity'2014), Lugano, Switzerland. Topics
include: varieties of modularity (generative programming, aspect orientation, software product lines,
components; ...); programming languages (support for modularity related abstraction in: language
design; verification, contracts, and static program analysis; compilation, interpretation, and runtime
support; formal languages; ...); software design and engineering (evolution, empirical studies of existing
software, economics, testing and verification, composition, methodologies, ...); tools (refactoring,
evolution and reverse engineering, support for new language constructs, ...); applications (distributed
and concurrent systems, middleware, cyber-physical systems, ...); complex systems; etc.

April 23-25 27th Conference on Software Engineering Education and Training (CSEET'2014), Klagenfurt,
Austria.

April 23-25 XVII Ibero-American Conference on Software Engineering (CIbSE'2014), Pucón, Chile. Topics
include: formal methods applied to software engineering; languages, methods, processes, and tools;
model-based engineering; proof, verification, and validation; quality, measurement, and assessment of
products and processes; reverse engineering and software system modernization; software development
paradigms; software evolution and maintenance; software product families and variability; software
reuse; reports on benefits derived from using specific software technologies; quality measurement;
experience management; systematic reviews and evidence-based software engineering; etc.

Apr 29 - May 05 6th NASA Formal Methods Symposium (NFM'2014), NASA Johnson Space Center, Houston, Texas,
USA. Topics include: identifying challenges and providing solutions to achieving assurance in mission-
and safety-critical systems; static analysis; model-based development; applications of formal methods to
aerospace systems; correct-by-design and design for verification techniques; techniques and algorithms
for scaling formal methods, e.g. abstraction and symbolic methods, compositional techniques, parallel
and distributed techniques; application of formal methods to emerging technologies; etc.

May 12-16 19th International Symposium on Formal Methods (FM'2014), Singapore. Topics include:
interdisciplinary formal methods (techniques, tools and experiences demonstrating formal methods in
interdisciplinary frameworks); formal methods in practice (industrial applications of formal methods,
experience with introducing formal methods in industry, tool usage reports, etc); tools for formal
methods (advances in automated verification and model-checking, integration of tools, environments for
formal methods, etc); role of formal methods in software and systems engineering (development
processes with formal methods, usage guidelines for formal methods, method integration, qualitative or
quantitative improvements); theoretical foundations (all aspects of theory related to specification,
verification, refinement, and static and dynamic analysis).

May 13 3rd International Workshop on Engineering Safety and Security Systems
(ESSS'2014). Topics include: methods, techniques and tools for system safety and
security; methods, techniques and tools for analysis, certification, and debugging of
complex safety and security systems; case studies and experience reports on the use of
formal methods for analyzing safety and security systems; etc.

May 13-16 10th European Dependable Computing Conference (EDCC'2014), Newcastle upon Tyne, UK. Topics
include: hardware and software architecture of dependable systems, safety critical systems, embedded
and real-time systems, impact of manufacturing technology on dependability, testing and validation
methods, privacy and security of systems and networks, etc.

 May 19-23 28th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2014), Phoenix,
Arizona, USA. Topics include: parallel and distributed algorithms, applications of parallel and
distributed computing, parallel and distributed software, including parallel and multicore programming
languages and compilers, runtime systems, parallel programming paradigms, programming
environments and tools, etc.

28 Conference Calendar

Volume 35, Number 1, March 2014 Ada User Journal

 May 19 19th International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS'2014). Topics include: all areas of parallel
applications, language design, compilers, run-time systems, and programming tools;
such as New programming languages and constructs for exploiting parallelism and
locality; Experience with and improvements for existing parallel languages and run-time
environments; Parallel compilers, programming tools, and environments; Programming
environments for heterogeneous multicore systems; etc.

May 19 4th NSF/TCPP Workshop on Parallel and Distributed Computing Education
(EduPar-14). Topics include: experience with incorporating Parallel and Distributed
Computing (PDC) topics into core CS/CE courses; pedagogical tools, programming
environments, and languages for PDC; etc.

 May 20 International Workshop on Programming Models, Languages and Compilers
(PLC'2014). Topics include: programming models (thread and task based models, data
parallel models, stream programming), programming environments for heterogeneous
systems, compiler optimizations, runtime systems for multicore processors, applications
and benchmarks, etc.

May 26-29 8th ACM International Conference on Distributed Event-Based Systems (DEBS'2014), Mumbai,
India. Topics include: software systems, distributed systems, dependability, programming languages,
security and software engineering, real-time analytics, embedded systems, enterprise application
integration, etc. Deadline for submissions: April 5, 2014 (Doctoral Symposium papers, posters, demos).

 May 31- Jun 06 36th International Conference on Software Engineering (ICSE'2014), Hyderabad, India. Deadline for
early registration: April 14, 2014.

May 31-Jun 01 11th Working Conference on Mining Software Repositories (MSR'2014). Topics
include: mining of repositories across multiple projects; characterization, classification,
and prediction of software defects based on analysis of software repositories; techniques
to model reliability and defect occurrences; search techniques to assist developers in
finding suitable components and code fragments for reuse; empirical studies on
extracting data from repositories of large long-lived and/or industrial projects; mining
execution traces and logs; etc.

June 01-07 Software Engineering Education and Training Track (SEET'2014). Topics include:
new best practices for SEET, continuing education in the face of rapid technological
change, ensuring graduated students meet new industry needs through the understanding
of development practices for different environments, etc.

 June 03-05 DAta Systems In Aerospace (DASIA'2014), Warsaw, Poland.

June 03-06 9th International Federated Conferences on Distributed Computing Techniques (DisCoTec'2014),
Berlin, Germany. Includes the COORDINATION, DAIS, and FMOODS & FORTE conferences.
Deadline for early registration: May 5, 2014.

June 03-06 14th IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS'2014). Topics include: all aspects of distributed applications and
systems, throughout their lifecycle; design, architecture, implementation and operation
of distributed computing systems, their supporting middleware, appropriate software
engineering methods and tools, as well as experimental studies and practical reports;
language-based approaches; parallelization; domain-specific languages; design patterns
and methods; etc.

June 09-11 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2014),
Edinburgh, UK. Topics include: programming languages, their design, implementation, development,
and use; innovative and creative approaches to compile-time and runtime technology, novel language
designs and features, and results from implementations; language designs and extensions; static and
dynamic analysis of programs; domain-specific languages and tools; type systems and program logics;
checking or improving the security or correctness of programs; memory management; parallelism, both
implicit and explicit; debugging techniques and tools; etc.

 June 12-13 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES'2014). Topics include: programming language challenges
(features to exploit multicore architectures; features for distributed and real-time control

Conference Calendar 29

Ada User Journal Volume 35, Number 1, March 2014

embedded systems; language capabilities for specification, composition, and
construction of embedded systems; language features and techniques to enhance
reliability, verifiability, and security; virtual machines, concurrency, inter-processor
synchronization, and memory management; ...); compiler challenges (interaction
between embedded architectures, operating systems, and compilers; support for
enhanced programmer productivity; support for enhanced debugging, profiling, and
exception/interrupt handling; ...); tools for analysis, specification, design, and
implementation (distributed real-time control, system integration and testing, run-time
system support for embedded systems, support for system security and system-level
reliability, ...); etc.

June 16-20 26th International Conference on Advanced Information Systems Engineering (CAiSE'2014),
Thessaloniki, Greece. Theme: "Information Systems Engineering in Times of Crisis". Topics include:
methods, techniques and tools for IS engineering (models and software reuse; adaptation, evolution and
flexibility issues; languages and models; variability and configuration; security; ...); innovative
platforms, architectures and technologies for IS (model-driven architecture; component based
development; distributed and open architecture; ...); etc.

June 23-25 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'2014), Prague,
Czech Republic. Topics include: parallel and distributed algorithms; multi-core architectures; compilers
and tools for concurrent programming; synergy of parallelism in algorithms, programming, and
architecture; etc.

June 23-25 19th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2014), Uppsala, Sweden.

 June 23-27 19th International Conference on Reliable Software Technologies - Ada-
Europe'2014, Paris, France. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN. Deadline for early registration: May 31, 2014.

 June 24-27 13th International Symposium on Parallel and Distributed Computing (ISPDC'2014), Porquerolles
Island, France. Topics include: methods and tools for parallel and distributed programming, tools and
environments for parallel program design/analysis, parallel programming paradigms and APIs,
distributed software components, multi-agent systems, security and dependability, real-time distributed
and parallel Systems, etc.

Jun 30- Jul 02 8th IEEE International Conference on Software Security and Reliability (SERE'2014), San
Francisco, USA. Theme: "Software Quality Assurance". Topics include: security, reliability,
availability, and safety of software systems; fault tolerance for software reliability improvement;
validation, verification, and testing; software vulnerabilities; benchmark and empirical studies; etc.

 July 08-11 26th Euromicro Conference on Real-Time Systems (ECRTS'2014), Madrid, Spain. Topics include: all
aspects of real-time systems, such as applications, hardware/software co-design, multicore and
manycore architectures for real-time and safety, operating systems, run-time environments, software
architectures, programming languages and compiler support, component-based approaches, distribution
technologies, modelling and formal methods for design and analysis, safety, reliability, security and
survivability; mixed critical systems, etc.

July 08 10th International Workshop on Operating Systems Platforms for Embedded Real-
Time Applications (OSPERT 2014).

July 08 5th International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS 2014).

July 15-19 33rd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2014), Paris, France.

 July 18-20 GNU Tools Cauldron 2014, Cambridge, UK. Topics include: gathering of GNU tools developers, to
discuss current/future work, coordinate efforts, exchange reports on ongoing efforts, discuss
development plans for the next 12 months, developer tutorials and any other related discussions.

July 18-22 26th International Conference on Computer Aided Verification (CAV'2014), Vienna, Austria.
Topics include: theory and practice of computer-aided formal analysis methods for hardware and
software systems.

30 Conference Calendar

Volume 35, Number 1, March 2014 Ada User Journal

July 21-25 38th Annual International Computer Software and Applications Conference (COMPSAC'2014),
Västerås, Sweden. Topics include: software engineering, security and privacy, quality assurance and
assessment, embedded and cyber-physical environments, etc. Deadline for submissions: April 8, 2014
(fast abstracts, posters, doctoral symposium papers).

July 21-25 10th European Conference on Modelling Foundations and Applications (ECMFA'2014), York, UK.
Topics include: domain specific modelling languages and language workbenches; model reasoning,
testing and validation; model transformation, code generation and reverse engineering; Model-Based
Engineering (MBE) environments and tool chains; MBE for large and complex industrial systems; MBE
for safety-critical systems; comparative studies of MBE methods and tools; etc.

July 21-25 4th International Workshop on New Algorithms and Programming Models for the Manycore Era
(APMM'2014), Bologna, Italy. Topics include: parallelisation with appropriate programming models
and tool support for multi-core and hybrid platforms; software engineering, code optimisation, and code
generation strategies for parallel systems with multi-core processors; etc.

 Jul 28 - Aug 08 28th European Conference on Object-Oriented Programming (ECOOP'2014), Uppsala, Sweden.
Topics include: all areas of object technology and related software development technologies, such as
concurrent and parallel systems, distributed computing, programming environments, versioning,
refactoring, software evolution, language definition and design, language implementation, compiler
construction, design methods and design patterns, aspects, components, modularity, program analysis,
type systems, specification, verification, security, real-time systems, etc.

August 04-07 19th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS'2014), Tianjin, China. Topics include: verification and validation, security of complex
systems, model-driven development, reverse engineering and refactoring, design by contract, agile
methods, safety-critical & fault-tolerant architectures, real-time and embedded systems, tools and tool
integration, industrial case studies, etc.

August 14-17 Symposium on Dependable Software Engineering: Theories, Tools and Applications
(SETTA'2014), Nanjing, China. Topics include: formal software engineering methods; formal aspects of
engineering approaches to software and system quality; integration of formal methods into software
engineering practice; formal methods for embedded, real-time, hybrid, and cyber-physical systems;
formal aspects of security, safety, reliability, robustness, and fault-tolerance; model checking, theorem
proving, and decision procedures; contract-based engineering of components, systems, and systems of
systems; formal and engineering aspects of software evolution and maintenance; scalable approaches to
formal system analysis and design; applications of formal methods and industrial experience reports;
etc.

 August 25-29 20th International European Conference on Parallel Computing (Euro-Par'2014), Porto, Portugal.
Topics include: all aspects of parallel and distributed computing, such as support tools and
environments, scheduling, high-performance compilers, distributed systems and algorithms, parallel and
distributed programming, multicore and manycore programming, theory and algorithms for parallel
computation, etc.

August 27-29 40th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2014),
Verona, Italy. Topics include: information technology for software-intensive systems.

August 29-31 9th International Conference on Software Engineering and Applications (ICSOFT-EA'2014),
Vienna, Austria. Topics include: software integration, software testing and maintenance, model-driven
engineering, software quality, software and information security, formal methods, programming
languages, parallel and high performance computing, software metrics, agile methodologies, risk
management, quality assurance, certification, etc. Deadline for submissions: May 21, 2014 (position
papers).

September 01-03 8th International Symposium on Theoretical Aspects of Software Engineering (TASE'2014),
Changsha, China. Topics include: theoretical aspects of software engineering, such as specification and
verification, program analysis, model-driven engineering, aspect and object orientation, embedded and
real-time systems, component-based software engineering, software safety, security and reliability,
reverse engineering and software maintenance, etc.

September 01-05 12th International Conference on Software Engineering and Formal Methods (SEFM'2014),
Grenoble, France. Topics include: abstraction and refinement; programming languages, program

Conference Calendar 31

Ada User Journal Volume 35, Number 1, March 2014

analysis and type theory; formal methods for real-time, hybrid and embedded systems; formal methods
for safety-critical, fault-tolerant and secure systems; software verification and validation; formal aspects
of software evolution and maintenance; light-weight and scalable formal methods; tool integration;
applications of formal methods, industrial case studies and technology transfer; education and formal
methods; etc.

 Sep 09-12 43rd Annual International Conference on Parallel Processing (ICPP'2014), Minneapolis, MN, USA.
Topics include: all aspects of parallel and distributed computing, such as applications, architectures,
compilers, programming models, etc.

September 14-15 7th International Conference on Software Language Engineering (SLE'2014), Vasteras, Sweden.
Topics include: techniques for software language reuse, evolution and managing variation
(syntactic/semantic) within language families; engineering domain-specific languages (for modeling,
simulating, generation, description, checking); novel applications and/or empirical studies on any aspect
of SLE (development, use, deployment, and maintenance of software languages); etc. Deadline for
submissions: May 16, 2014 (abstracts), May 23, 2014 (full papers).

September 15-19 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2014), Turin, Italy. Topics include: qualitative methods, replication of empirical studies,
empirical studies of software processes and products, industrial experience and case studies, evaluation
and comparison of techniques and models, reports on the benefits / costs associated with using certain
technologies, empirically-based decision making, quality measurement and assurance, software project
experience and knowledge management, etc. Deadline for submissions: May 19, 2014 (short papers,
posters).

September 22-25 14th International Conference on Runtime Verification (RV'2014), Toronto, Canada. Topics include:
monitoring and analysis of software and hardware system executions. Application areas include:
safety/mission-critical systems, enterprise and systems software, autonomous and reactive control
systems, health management and diagnosis systems, and system security and privacy. Deadline for
submissions: April 8, 2014 (abstracts), April 15, 2014 (full papers).

September 24-26 14th Workshop on Automated Verification of Critical Systems (AVoCS'2014), Twente, the
Netherlands. Topics include: model checking, specification and refinement, verification of software and
hardware, specification and verification of fault tolerance and resilience, real-time systems, dependable
systems, verified system development, industrial applications, etc. Deadline for submissions: June 16,
2014 (abstract), June 23, 2014 (full papers), August 7, 2014 (research ideas).

October 12-16 9th International Conference on Software Engineering Advances (ICSEA'2014), Nice, France.
Topics include: advances in fundamentals for software development; advanced mechanisms for software
development; advanced design tools for developing software; software security, privacy, safeness;
specialized software advanced applications; open source software; agile software techniques; software
deployment and maintenance; software engineering techniques, metrics, and formalisms; software
economics, adoption, and education; improving productivity in research on software engineering; etc.
Deadline for submissions: May 16, 2014.

 Oct 18-21 ACM SIGAda Annual International Conference on High Integrity Language
Technology (HILT'2014), Portland, Oregon, USA. Sponsored by ACM SIGAda, in
cooperation with Ada-Europe and the Ada Resource Association (approvals pending).
Deadline for submissions: June 7, 2014 (technical articles, extended abstracts,
experience reports, panel sessions, workshops, tutorials), July 3, 2014 (industrial
presentations).

 October 20-24 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2014), Portland, Oregon, USA. Deadline for submissions: June 8, 2014 (Dynamic
Languages Symposium). Deadline for early registration: September 19, 2014.

November 03-07 16th International Conference on Formal Engineering Methods (ICFEM'2014), Luxembourg,
Luxembourg. Topics include: abstraction and refinement; program analysis; software verification;
formal methods for software safety, security, reliability and dependability; tool development, integration
and experiments involving verified systems; formal methods used in certifying products under
international standards; formal model-based development and code generation; etc. Deadline for
submissions: April 11, 2014 (abstracts), April 18, 2014 (papers).

32 Conference Calendar

Volume 35, Number 1, March 2014 Ada User Journal

November 04-06 14th International Conference on Software Process Improvement and Capability dEtermination
(SPICE'2014), Vilnius, Lithuania. Topics include: process assessment, improvement and risk
determination in areas of application such as automotive systems and software, aerospace systems and
software, medical device systems and software, safety-related systems and software, financial
institutions and banks, small and very small enterprises, etc. Deadline for submissions: June 13, 2014
(tutorials), June 20, 2014 (full papers, extended abstracts). Deadline for early registration: September 1,
2014.

November 16-22 22nd ACM SIGSOFT International Symposium on the Foundations of Software Engineering
(FSE'2014), Hong Kong, China. Topics include: architecture and design; components, services, and
middleware; distributed, parallel, and concurrent software; embedded and real-time software; formal
methods; model-driven software engineering; program analysis; reverse engineering; safety-critical
systems; scientific computing; software engineering education; software evolution and maintenance;
software reliability and quality; specification and verification; tools and development environments; etc.

December 08-12 15th ACM/IFIP/USENIX International Middleware Conference (Middleware'2014), Bordeaux,
France. Topics include: design, implementation, deployment, and evaluation of distributed system
platforms and architectures for computing, storage, and communication environments, including
reliability and fault-tolerance; scalability and performance; programming frameworks, parallel
programming, and design methodologies for middleware; methodologies and tools for middleware
design, implementation, verification, and evaluation; etc. Deadline for submissions: May 9, 2014
(abstracts), May 16, 2014 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 10-12 15th International Conference on Product Focused Software Development and Process
Improvement (PROFES'2014), Helsinki, Finland. Topics include: software engineering techniques,
methods, and technologies for product-focused software development and process improvement as well
as their practical application in an industrial setting. Deadline for submissions: June 18, 2014 (full
papers), June 25, 2014 (short papers), November 3, 2014 (posters).

December 17-20 21st IEEE International Conference on High Performance Computing (HiPC'2014), Goa, India.
Topics include: parallel and distributed algorithms/systems, parallel languages and programming
environments, hybrid parallel programming with GPUs and accelerators, scheduling, resilient/fault-
tolerant algorithms and systems, scientific/engineering/commercial applications, compiler technologies
for high-performance computing, software support, etc. Deadline for submissions: May 16, 2014
(papers), September 16, 2014 (student symposium submissions). Deadline for early registration:
November 14, 2014.

2015

April 11-19 18th European Joint Conferences on Theory and Practice of Software (ETAPS'2015), London, UK.
Events include: CC (International Conference on Compiler Construction), ESOP (European Symposium
on Programming), FASE (Fundamental Approaches to Software Engineering), FOSSACS (Foundations
of Software Science and Computation Structures), POST (Principles of Security and Trust), TACAS
(Tools and Algorithms for the Construction and Analysis of Systems).

December 10 200th birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Forthcoming Events 33

Ada User Journal Volume 35, Number 1, March 2014

The 19th International Conference on Reliable Software Technologies ‐ Ada‐Europe 2014 is an exciting
event with an outstanding technical program, keynote talks, an exhibition from Tuesday to Thursday,
and a rich program of workshops and tutorials on Monday and Friday.

The conference is hosted by ECE, a French engineering school located near the Tour Eiffel, right in the
heart of Paris, with convenient connections to all places of interest, and lots of facilities around. An
event not to be missed!

For full details and up‐to‐date information, see the conference website:

http://www.ada-europe.org/conference2014

Conference	program	at	a	glance	

Monday Tuesday Wednesday Thursday Friday

 Opening/Welcome

3 tutorial tracks
+ CPS workshop

Keynote talk Keynote talk
Ada‐France
workshop

Keynote talk
3 tutorial tracks

+ MCS workshop

... continued ... Technical papers
Technical
papers

... continued ... Technical papers ... continued ...

3 tutorial tracks
+ CPS workshop

Vendor session
Industrial track
Ada in Aerospace

Industrial track
Ada in Railway

3 tutorial tracks
+ MCS workshop

... continued ... Presentations GNAT retrospective Technical papers ... continued ...

Ada‐Europe General

Assembly
Cruise and conference banquet

Best paper award

Best presentation
award

Closing session

 Keynote	talks
On the three central days of the conference week, a keynote will be delivered as the opening event to
address hot topics of relevance in the conference scope. The keynote speakers include: Robert Lainé,
to talk about Lessons learned and easily forgotten, drawing from his many years of experience in space
projects leadership at the European Space Agency and EADS Astrium; Mohamed Shawky, from
Université de Technologie Compiègne (France), to present his futuristic work on Intelligent
Transportation Systems; and Alun Foster, Acting Executive Director and Programme Manager of the
ARTEMIS JU, to expose From ARTEMIS to ECSEL: growing a large eco‐system for high‐dependability
systems, about the results achieved in ARTEMIS and the objectives of the new ECSEL program.

Exhibition	
The exhibition will open on Tuesday morning, and run until the last session on Thursday. It will take
place in the conference venue; coffee breaks will be served in the exhibition space. Don't let your

34 Forthcoming Events

Volume 35, Number 1, March 2014 Ada User Journal

company miss this opportunity of engaging with Ada, reliable software, real‐time, and embedded
community experts from some of Europe’s largest and well‐known companies and institutes; contact
exhibit@ada‐europe2014.org.

Tutorials	
Improve the benefits of coming to the conference further by attending our tutorials, all given by
famous experts.

Monday Friday

T1 T3 T5 AM T7 T9 T10

T. Taft
I. Broster and
A. Coombes

B. Brosgol

W. Bail L. Asplund
R. Chapman and

Y. Moy

Proving Safety of
Parallel/Multi‐
Threaded
Programs

Debugging Real‐
time Systems

High‐Integrity
Object‐Oriented
Programming with
Ada 2012

 Technical Basis of
Model Driven
Engineering

Robotics
Programming

Introduction to
Verification with
SPARK 2014

T2 T4 T6 PM T8

T. Taft
A. Alonso,

A. Crespo and
J. Martin

J. Sparre‐
Andersen

W. Bail

Multicore
Programming
using Divide‐and‐
Conquer and Work
Stealing

Developing Mixed‐
Criticality Systems
with GNAT/ORK
and Xtratum

Ada 2012
(Sub)type and
Subprogram
Contracts in
Practice

 An Overview of
Software Testing
with an Emphasis
on Statistical
Testing

	 	 	 	 				Social	program	
The conference banquet will be held aboard a
ship, cruising along the Seine! Enjoy excellent
food while passing by the world's famous Tour
Eiffel, Louvre, Musée d'Orsay, Notre‐Dame, and
more in the night's light!

Workshops
In addition to various co‐located events, three major workshops are taking place in connection with the
conference:

 Monday June 23rd: Workshop on Challenges and new Approaches for Dependable and Cyber‐
Physical Systems Engineering, organized by CEA and Thales.

 Wednesday June 25th: Ada‐France day: Ada 2012: le point sur le langage (Ada 2012: Assessing
the Language), a special session in French for software managers who want to learn about the
current state of Ada.

 Friday June 27th: Workshop on Mixed Criticality Systems: Challenges of Mixed Criticality
Approaches and Benefits for the Industry, organized by ECE.

GNAT	retrospective	
The 2014 Ada‐Europe conference marks the 20th anniversary of GNAT as a supported open‐source Ada
compiler. This started a new era for the distribution and the promotion of the Ada language. A
retrospective will look back at these important 20 years.

Forthcoming Events 35

Ada User Journal Volume 35, Number 1, March 2014

ACM SIGAda Annual International Conference
High Integrity Language Technology HILT 2014

Call for Technical Contributions

Developing and Certifying Critical Software

P Portland Marriott Downtown Waterfront Hotel
Portland, Oregon, USA

October 18-21, 2014

Sponsored by ACM SIGAda in cooperation with
Ada-Europe and the Ada Resource Association

Contact: SIGAda.HILT2014@acm.org www.sigada.org/conf/hilt2014

NOTE
HILT 2014 will take place on the four days immediately preceding — and in the same hotel as — the 2014 ACM
SIGPLAN conference on Systems, Programming, Languages and Applications: Software for Humanity
(SPLASH). This “co-location” will make it possible for registrants to attend both conferences.

SUMMARY
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety
and/or security demands, typically entailing certification against a relevant standard. A significant factor affecting
whether and how such requirements are met is the chosen language technology and its supporting tools: not just
the programming language(s) but also languages for expressing specifications, program properties, domain
models, and other attributes of the software or overall system. HILT 2014 will provide a forum for experts from
academia/research, industry, and government to present the latest findings in designing, implementing, and using
language technology for high integrity software. We are soliciting technical papers, experience reports, and
tutorial proposals on a broad range of relevant topics.

POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:
 New developments in formal methods
 Multicore and high integrity systems
 Object-Oriented Programming in high integrity systems
 High-integrity languages (e.g., SPARK)
 Use of high reliability profiles such as Ravenscar
 Use of language subsets (e.g., MISRA C, MISRA C++)
 Software safety standards (e.g., DO-178B and DO-178C)
 Typed/Proof-Carrying Intermediate Languages
 Contract-based programming (e.g., Ada 2012)
 Model-based development for critical systems
 Specification languages (e.g., Z)
 Annotation languages (e.g., JML)

 Teaching high integrity development
 Case studies of high integrity systems
 Real-time networking/quality of service guarantees
 Analysis, testing, and validation
 Static and dynamic analysis of code
 System Architecture and Design including

Service-Oriented Architecture and Agile Development
 Information Assurance
 Security and the Common Criteria /

Common Evaluation Methodology
 Architecture design languages (e.g., AADL)
 Fault tolerance and recovery

KINDS OF TECHNICAL CONTRIBUTIONS
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 10-
20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings and
in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library accessible
online to university campuses, ACM’s more than 100,000 members, and the wider software community.

EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If
your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will be
double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work
(with bibliographic references), results to date, and future directions.

36 Forthcoming Events

Volume 35, Number 1, March 2014 Ada User Journal

EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 1-2 page description of the
project and the key points of interest. Descriptions will be published in the final program or proceedings, but a
paper will not be required.

PANEL SESSIONS gather groups of experts on particular topics. Panelists present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.

INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at
least 1 page in size) of the proposed presentation and, if selected, a subsequent abstract for a 30-minute talk. The
authors of accepted presentations will be invited to submit corresponding articles for ACM Ada Letters.

WORKSHOPS are focused sessions that allow knowledgeable professionals to explore issues, exchange views,
and perhaps produce a report on a particular subject. Workshop proposals, up to 5 pages in length, will be selected
based on their applicability to the conference and potential for attracting participants.

TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial
proposals should include the expected level of experience of participants, an abstract or outline, the qualifications
of the instructor(s), and the length of the tutorial (half day or full day).

HOW TO SUBMIT: Except for Tutorial proposals use www.easychair.org/conferences/?conf=hilt2014

Submission Deadline Use Easy Chair Link Above
Technical articles, extended abstracts,
experience reports, panel session
proposals, or workshop proposals

June 7, 2014
For more info contact:
Tucker Taft, Program Chair
taft@adacore.com
 Industrial presentation proposals July 3, 2014 (overview)

Send Tutorial proposals to June 7, 2014 John McCormick, Tutorials Chair
mccormick@cs.uni.edu

At least one author is required to register and make a presentation at the conference.

FURTHER INFORMATION
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: Please contact Greg Gicca (gicca@verocel.com) to learn the benefits of
becoming a sponsor and/or exhibitor at HILT 2014.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be particularly
aware and careful about visa requirements, and should plan travel well in advance. Visit the conference website
for detailed information pertaining to visas.

ANY QUESTIONS?
Please send email to SIGAda.HILT2014@acm.org or Conference Chair (Michael Feldman,
mfeldman@gwu.edu), or Program Chair (Tucker Taft, taft@adacore.com).

38

Volume 35, Number 1, March 2014 Ada User Journal

Reliable Software in Bioinformatics: Sequence
Alignment with Coq, Ada and SPARK
Karen Sargsyan
Institute of Biomedical Sciences, Academia Sinica, 128 Sec. Academia Rd., Taipei, Taiwan; Tel:+886-2-
27899043; email: karsar@ibms.sinica.edu.tw

Abstract

Bioinformatics is becoming an indispensable tool for
personalized medicine. Software is the most important
factor to enable bioinformatics in practical
applications and the reliability of such software has
not been previously discussed. In this paper we share
our strategy to ensure the reliability of the software
for biological sequence alignment, which is the most
widely used application in bioinformatics. We present
the first findings of our project, which incorporates
Coq, Ada and SPARK tools, and illustrate the
reliability issues specific to bioinformatics.

Keywords: Bioinformatics, Coq, Ada, SPARK

1 Introduction

Bioinformatics is a computer science applied to biological
problems, as a result, it is a subject to high expectations in
the current era of computational technologies and advances
in biology. Research in bioinformatics results in software,
which means to provide solutions for biomedical problems.
It is therefore of interest to discuss the reliability
requirements which must apply to such software and to our
knowledge, this is not currently taking place within the
bioinformatics community. However, we do need highly
reliable software in this field and we need to assess the
requirements of its reliability.

The rapid development of bioinformatics during the last
few decades brings huge advancements for the biomedical
field, as well as new technical challenges for researchers. In
the near future, doctors will have access to genetic data on
which to base and tailor their medical treatment. To outline
the advances in this field, we refer to the announcement of
the full genome sequencing which costs less than $1000
[8]. In addition, a complete clinical assessment of a patient
incorporating a personal genome [4] and the 1000 Genomes
Project to sequence 1000 individuals [1] serve as further
examples. Although these achievements merely appear to
be of scientific value, recent developments benefit
medicine directly. Thousands of DNA variants are
associated with diseases and traits [14]. Chemotherapy
medications (imatinib and trastuzumab) to treat specific
cancers [11, 15] and a targeted pharmacogenetic dosing
algorithm for warfarin [16, 17] demonstrate the potential of
personalized medicine. Checking for susceptible genotypes
for abacavir, carbamazepine and clozapine [13, 9, 7]
reduces adverse effects. All of these examples demonstrate

a rapid development in the field of personalized medicine.
Reliability is important if life or health is dependent on the
software in use. We expect the latter will become the case
for bioinformatics software in near future. Here, we pay
attention to reliability issues, which specifically apply, to
bioinformatics, whilst avoiding a discussion of measures
that any reliable software development has to apply.

2 Typical sources of errors in
Bioinformatics

One of the biggest challenges in bioinformatics is the
amount of data. It is not practical to store all results and
make similar runs on the same datasets. These problems are
still awaiting solutions and an increased speed of
algorithms is desired. As a consequence, safety of the
software is not a high priority for scientists in the short-
term. However, we raise the importance of applying visible
integration of bioinformatics with medicine and the time
required to develop reliable software.

Errors come from different sources within bioinformatics.
The error rate of available sequencing technologies results
in significant challenges for applications. We still have to
verify a novel DNA variant identification by placing it into
its genomic context due to the high false positive rate.
Verification itself is dependent on genome size and is time
consuming. Therefore, it is not always a simple task to
distinguish software errors from those which arise from
data during experimental verification.

A programming language of choice can contribute to error
accumulation in the code, if the language is not equipped
with safety assurance tools or their usage is neglected. As
illustrated in [10], popular choices of programming
languages in bioinformatics, are C, C++, C#, Java, Perl and
Python. Unfortunately, the only subjects of [10] are speed
of execution and memory usage for popular algorithms in
bioinformatics, with no analysis of software reliability
provided. Moreover, R language for statistical software is
omitted, although much is done in R to make statistical
analysis reliable. In our survey we did not find the
application of verification tools (provers, statistical analysis
of the code, etc.), except for unit tests (which do not always
exist) in conjunction with those languages for the case of
bioinformatics software. The survey was conducted on
published research articles and open source software, which
are representative for the current stage of bioinformatics
development. Furthermore, there are implementations of
the new algorithms and verified/tested algorithms on a

K. Sargsyan 39

Ada User Journal Volume 35, Number 1, March 2014

small number of datasets due to the absence of additional
data. In severe cases, software is provided for the sole
demonstration of the algorithm and verification of the
results is provided in the paper, but with no further
warranty provided for its accuracy. Despite these facts,
several software tools have been developed over recent
decades and the results of these applications prove their
safety in scientific settings.

Application of the existing non-bioinformatics software for
the analysis of biological data where no special software
exists, may still lead to erroneous results. For example:
Excel (Microsoft Corp., Redmond, WA) altered
irreversibly gene names, which looked like dates [18].

3 Sequence Alignment

The general term of bioinformatics includes sequence
analysis, genome annotation, gene expression analysis and
other subfields. The wide variety of approaches also
includes sequential, structural (structures of the molecules
are analyzed), network analysis, multi-agent modeling and
others. Sequence alignment, which is singled out as a
mature and applied part of bioinformatics, will be the main
focus for the rest of this paper. Also, problems of software
reliability mentioned in this specific context are general
enough to be discovered in other parts of bioinformatics.
Hence, instructions to solve issues, which are illustrated in
this specific context are also valuable in other subfields.
However, scenarios existing in other approaches, different
from the sequence analysis, will require additional attention
in the future.

The sequence (of protein, RNA or DNA) provides
information about genes encoding proteins, RNA genes,
regulatory sequences, structural motifs, and repetitive
sequences. Sequence alignment tries to match up biological
sequences to others and evolutionary arguments justify
sequence alignment by stating that the similar sequences
have a comparable function and/or molecular structure.
Therefore using sequence alignment we may answer such
questions as:

 Which species have a protein that is evolutionarily
related to a certain known protein?

 Which other genes encode proteins that exhibit given
structures?

Programs for sequence alignment, such as Basic Local
Alignment Search Tool (BLAST), search sequences from
more than 260,000 organisms, containing over 190 billion
nucleotides daily [5]. The sequencing process, which is the
power of contemporary genetics, incorporates a variant of
sequence alignment itself. Some algorithms contain
sequence alignment as subroutines. Therefore, the
reliability of sequence alignment software has an impact on
bioinformatics.

4 A formal model of Sequence Alignment
with Coq

Here we concentrate mostly on the Smith-Waterman (SW)
local alignment algorithm. This algorithm may be briefly
described as:

miiH 0,0)0,(
njjH 0,0),0(

If)(),(matchwjbiawjbia or if

)(),(mismatchwjbiawjbia

),()1,(

),(),1(

),()1,1(

0

max),(

jbwjiH
iawjiH

jbiawjiH
jiH

Where a,b are the strings over alphabet corresponding to
nucleotides in case of DNA/RNA or amino-acids for
proteins, m,n are the lengths of the sequences, ‘-‘ denotes
gap, H(i,j) - is the maximum similarity score and w(x,y) is
the scoring scheme. After obtaining H(i,j), one starts with
the highest value in it and moves backwards to one of
positions (i − 1,j), (i, j − 1), and (i − 1, j − 1), which has the
highest value, until (0, 0) is reached. So (i − 1,j), (i, j − 1)
moves correspond to adding gaps to the second and the first
sequence accordingly.

The motivation for using local alignments is the existence
of a reliable statistical model. Another incentive is
difficulty in obtaining correct alignments in regions of low
similarity for distantly related biological sequences.
Whether local alignment as described above is a useful tool
depends on how it agrees with biological experiment.
Therefore, one may consider it as a formal model, which is
the subject of experimental verification. In the context of
software reliability, we need to note that the direct
implementation of the algorithm will have long execution
time, which is not fast enough for the majority of real-time
applications. To solve this problem, more advanced
implementations of SW are suggested [12, 2]. Their aim is
to provide results similar to SW, with a faster performance
in order of times. Because of the importance of SW,
implementations using FPGA, CUDA and SIMD
architectures exist. The next optimization of the algorithm
is more complicated as it becomes harder to ensure the
implementation is equivalent to the outcome of SW. This is
where the proof assistants, such as Coq (http://coq.inria.fr),
may be helpful. Availability of libraries, documentation
and an organized community for Coq make it a natural
choice for our project. Although, other alternatives to Coq
may also work. Our approach is to implement a Coq
module corresponding to SW and use it to prove
equivalence to SW for each new optimized implementation.
Coq also allows extraction of the proof in the form of a
certified functional program.

40 Rel iable Software in Bioinformat ics

Volume 35, Number 1, March 2014 Ada User Journal

These are arguments we would like to bring in justification
of this strategy. It is always better to ensure the
implementation used for medical purposes adheres to a
well-known formal specification or a model. In scientific
settings, it is clear which formal model is used and whether
it sufficiently models reality, without guessing if the errors
of implementation impact on observed disagreement. In the
case of such errors one either ignores the correct model or
the errors mask the disagreement.

The complex biological problems have different models to
achieve the same goals, with application under different
conditions. For sequence alignment, the most widely used
substitution of SW is BLAST [3]. BLAST is regarded as
less precise than SW, producing inferior alignment under
some settings, but having a practical execution speed. As
its description is lengthy, we do not discuss it here.
However, it is of interest to present a module specifying
BLAST in Coq. This is valuable, since many optimizations
of BLAST exist (CS-BLAST, CUDA-BLASTP, Tera-
BLAST, etc.), similar to SW. Moreover, in such a setup,
judgments about SW and BLAST are subject of exact
proofs. To illustrate our ideas the author provides Coq
codes for SW specification and an example of simple
certified SW alignment program under the GPLv3 license
(forbars.github.io). The listing of the code is not given here,
as it is subject to further refinement.

It is possible to describe SW alignment in a language of
paths on the graphs. Alternatively, one might choose
another general mathematical framework in which SW
alignment is a particular case. In our approach we do not
assume any knowledge on the future form of formalized
bioinformatics. Our first specifications are not of an
abstract nature and our work follows an exploratory
approach. In the author's view, it is risky to assume what
the mathematics of bioinformatics will look like
beforehand.

5 Reliable Sequence Alignment with Ada
and SPARK

Although model specifications implemented in Coq are
valuable in general, it is more interesting to apply
specifications in a more practical realm. Our choice of
language for a sequence alignment package implementation
is Ada 2012 and SPARK 2014. Decades of development
with attention on safety of code, compilation on a wide
variety of platforms (including embedded applications) and
acceptable speed of execution (in comparison to C) make
these a natural option. It is not an easy task to modify a
functional program extracted from Coq to the requirements
of a particular (embedded and real-time) hardware.
Therefore, our specifications in Coq are intended to
formalize bioinformatics and do not deal with specific
requirements, such as integer number representation in a
provided system. SPARK, being a subset of Ada, allows
proof of the correctness of subroutines before compilation.
In addition, its subset is actively formalized in Coq [6],
which makes it possible in the future to compare programs
written in SPARK against specifications in Coq. Proving

SPARK code with even fewer strict specifications is
important, as testing of the bioinformatics tool involves
large datasets and this makes it harder to prepare valid unit
tests and find errors.

Ada contracts serve in a similar way, however, it is not
always an option, as they check pre- and post- conditions
during runtime. It is less desirable for medical software if a
precompiled verification is available. Here, we avoid
discussion of the improvements that are possible due to the
access of suitable tools and methods in writing safe
applications for general software case. It is worth noting,
the practices which exist for safe code have to be
transferred to the software in bioinformatics. Rather, we
present a specific issue in sequence alignment with
demonstration of natural capabilities of Ada to provide a
solution.

 Different alignment algorithms often yield different
results. This fact is widely ignored in practice. As a result
of increased sizes of sequence datasets, faster alignment
tools are needed. The trend is to make assumptions about
the nature of frequent sequences and apply simplifications,
which result in faster alignment, but this leads to a loss of
quality. Methods incorporating sequence alignment as a
subroutine are usually verified in experiments with a
specific alignment in mind. Therefore, it is not immediately
known how they behave if an alignment procedure is
replaced with an alternative one. Moreover, those
algorithms are dependent on parameters, such as weight
matrix (BLOSSOM65 in BLAST). Weight matrices
contribute to the difference between outputs, as their
customized versions may be in use. Furthermore, tools for
the sequence alignment are not always designed to provide
output in the same format, as a consequence, several
packages implement unification of interfaces for sequence
alignment methods (an experiment in BioPython as an
example). This makes it easy to interchange alignment
tools in the code. However, as far as alignment algorithms
are not equivalent, it is necessary to choose a suitable
output and reject the production from the untested
alignment with application in mind. This is where strong
typing of Ada becomes important. Ada types are different
in case their names differ, without accounting for the fact
that the implementations are the same. As an example:

type Aligned is … ;
type SW is new Aligned;
type BLAST is new Aligned;

Here, we see two different versions of Aligned, which
differ only in their name. However, functions and
procedures that require the result of SW alignment will not
accept the output of other forms of alignment. Thus, we
associate separate types with outputs of different
alignments. Strict distinction of the outputs, as proposed
here, is not implemented or suggested in other
packages/tools to our knowledge. It forces us to pay more
attention to proven facts and methods in bioinformatics
during software implementation and to avoid ignorance of
the differences between sequence alignment algorithms.

K. Sargsyan 41

Ada User Journal Volume 35, Number 1, March 2014

6 Conclusion and Further Research

It has become even more apparent that bioinformatics
software will play an important role in personalized
medicine. However, current trends in software development
for bioinformatics tend to give priority to the speed of the
algorithms, together with complicated optimizations of
existing implementations and accessibility, such as a
service via cloud computing. Without denying the
importance of all those topics, we raise the question of the
implementation reliability of the core algorithms in
bioinformatics and consider its importance for the future.
Our plans include providing Coq modules as formal
specifications for the important algorithms in
bioinformatics and the corresponding tools for developing
bioinformatics software in Ada and SPARK. All
specifications in Coq and some examples of SPARK and
Ada code are published or are subject of publication under
the GPL license (forbars.github.io).

References
[1] 1000 Genomes Project Consortium (2010), A map of

human genome variation from population-scale
sequencing. Nature, 467:1061-1073.

[2] S. F. Altschul, B. W. Erickson (1986), Optimal
sequence alignment using affine gap costs, Bulletin of
Mathematical Biology 48: 603–616.

[3] S. F. Altschul et al. (1990), Basic local alignment
search tool, Journal of Molecular Biology 215 (3):
403–410.

[4] E. A. Ashley, et al. (2010), Clinical assessment
incorporating a personal genome, Lancet, 375:1525-
1535.

[5] D. A. Benson, et al. (2008), GenBank, Nucleic Acids
Res. 36(Database issue): D25–D30.

[6] P. Courtieu et al. (2013), Towards the formalization of
SPARK 2014 semantics with explicit run-time checks
using coq, HILT '13 Proceedings of the 2013 ACM
SIGAda annual conference on High integrity language
technology, pp: 21-22.

[7] M. Dettling, et al. (2007), Clozapine-induced
agranulocytosis in schizophrenic Caucasians:
confirming clues for associations with human

leukocyte class I and II antigens, Pharmacogenomics J.
7:325-332.

[8] R. Drmanac, et al. (2010), Human genome sequencing
using unchained base reads on self-assembling DNA
nanoarrays, Science, 327:78-81.

[9] P. B. Ferrell, H. L. McLeod (2008), Carbamazepine,
HLA-B*1502 and risk of Stevens-Johnson syndrome
and toxic epidermal necrolysis: US FDA
recommendations, Pharmacogenomics, 9:1543-1546.

[10] M. Fourment, M. R. Gillings (2008), A comparison of
common programming languages used in
bioinformatics, BMC Bioinformatics. 9: 82 – 91.

[11] C. Gambacorti-Passerini (2008), Part I: Milestones in
personalised medicine–imatinib, Lancet Oncol., 9:
600.

[12] O. Gotoh (1982), An improved algorithm for matching
biological sequences, Journal of molecular
biology 62(3):705–708.

[13] S. Hetherington, et al. (2002), Genetic variations in
HLA-B region and hypersensitivity reactions to
abacavir, Lancet, 359:1121-1122.

[14] L. A. Hindorff, et al. (2009), Potential etiologic and
functional implications of genome-wide association
loci for human diseases and traits, Proc. Natl Acad.
Sci. USA, 106: 9362-9367.

[15] C. A. Hudis (2007), Trastuzumab–mechanism of action
and use in clinical practice, N. Engl. J. Med. 357:39-
51.

[16] International Warfarin Pharmacogenetics Consortium
et al (2009), Estimation of the warfarin dose with
clinical and pharmacogenetic data, N. Engl. J. Med.
360:753-764.

[17] H. Sagreiya, et al. (2010), Extending and evaluating a
warfarin dosing algorithm that includes CYP4F2 and
pooled rare variants of CYP2C9, Pharmacogenet.
Genomics. 20:407-413.

[18] B. Z. Zeeberg, et al. (2004), Mistaken Identifiers: Gene
name errors can be introduced inadvertently when
using Excel in bioinformatics, BMC Bioinformatics,
5:80-86.

42

Volume 35, Number 1, March 2014 Ada User Journal

Physical Units with GNAT
Christoph K W Grein
email: christ-usch.grein@t-online.de

Abstract

There has often been a demand to be able to compute
with physical items where dimensional correctness is
checked. However, methods working at compile-time
suffered from the combinatorial explosion of the
number of operations required for mixing units and
thus could be used with a set of only very few units
like e.g. distance, time, and speed. The full SI system
with seven base dimensions evaded all such attempts.
On the other hand, methods working at run-time were
not really applicable because of the memory and
calculation overhead.

Ada with its newest generation of 2012 has intro-
duced so-called aspect clauses to allow, among
others, specifying additional type properties like type
invariants. AdaCore's GNAT uses these aspects in an
implementation-specific way to handle physical units
at compile-time. This paper presents an overview of
the achievements and shortcomings of this method.

With some modification, AdaCore's invention, in the
author's opinion, might be apt to standardization in a
future Ada generation.

Keywords: physical units, aspect clause, Ada en-
hancement.

1 Introduction

In the Ada Europe conference in Toulouse 2003, the
present author, with co-authors Dmitry Kazakov and Fraser
Wilson, gave an overview of methods used to handle
physical units in Ada [3, 4]. Unfortunately, the Ada 95
issue 324 [5] dealing with a proposal by the Ada
Rapporteur Group had not been able to be included in the
proceedings because the final submission date for papers
had just expired when the ARG proposal was published, so
it was mentioned only orally. The conclusion to be drawn
from all those attempts was that neither compile-time nor
run-time methods were satisfactory for general use.

With the Ada 2012 aspects, things might turn out different.
AdaCore's [1] GNAT compiler handles physical
dimensions with implementation defined aspects at
compile-time in such an ingenious way that it might be apt
to be standardized with the next Ada generation (whenever
this might be). However, for this to occur, proper demand
from the Ada community must be shown to the ARG and
the method must prove itself free from pitfalls. Otherwise,
ARG would view any such request with utmost reluctance.

This paper presents the author's personal view on the
achievements and shortcomings of the GNAT method (as

of GNAT GPL 2013 [2]). As you will see, the notation is
very natural; any combination of units is possible without
the dreaded combinatorial explosion. Some problems have
already been solved since the method's first release a few
years ago due to user input. It is the author's hope that this
paper will induce further discussions among physicists and
help to optimize the method so that its chances of
standardization will be increased.

2 Shortcomings of hitherto used methods

Compile-time methods using separate types for each
dimension and overloading for operators mixing types are
well-known to suffer from the combinatorial explosion of
the number of operators needed. Thus also the ARG
proposal [5] was doomed to fail, which was heavily based
on a very clever use of generics. Hence those methods are
only applied for a small set of dimensions.

Run-time methods, on the other hand, store dimension
information for each item in additional components and
thus suffer from the vast additional time and space de-
mands for storing and calculating them. It is unknown to
the present author whether these methods have found any
application at all.

3 GNAT's use of aspects

GNAT uses an implementation-specific language extension
of the new Ada 2012 aspects to define a type and appro-
priate subtypes for any physical dimension in such a way
that dimensional correctness can be checked at compile-
time.

The type to be used for physical items is defined with the
GNAT-specific aspect Dimension_System, a kind of record
aggregate, specifying the seven base dimensions together
with the base unit names and symbols. The symbols may be
either characters or strings. (The dimension symbols are
used for error messages in case of dimensional errors only.)
This is done in a package called System.Dim.MKS (see next
page). Conceptually, the Dimension_System aggregate
declares a record with components

record is
 Meter, Kilogram, Second, Ampere,
 Kelvin, Mole, Candela: Fraction;
end record;

which the compiler invisibly affixes to any object of the
type MKS_Type during compile-time, where the type of
each record component is a fraction, i.e. either an integer or
a rational number; the Unit_Symbol might be seen as a
shortcut for an aggregate like e.g.

'm' := (Meter => 1, others =>0):

C. K. W. Grein 43

Ada User Journal Volume 35, Number 1, March 2014

package System.Dim.MKS is
type MKS_Type is new Long_Long_Float with
 Dimension_System =>
 ((Unit_Name => Meter , Unit_Symbol => 'm' ,
 Dim_Symbol => 'L'),
 (Unit_Name => Kilogram, Unit_Symbol => "kg" ,
 Dim_Symbol => 'M'),
 (Unit_Name => Second , Unit_Symbol => 's' ,
 Dim_Symbol => 'T'),
 (Unit_Name => Ampere , Unit_Symbol => 'A' ,
 Dim_Symbol => 'I'),
 (Unit_Name => Kelvin , Unit_Symbol => 'K' ,
 Dim_Symbol => "Ɵ"),
 (Unit_Name => Mole , Unit_Symbol => "mol",
 Dim_Symbol => 'N'),
 (Unit_Name => Candela , Unit_Symbol => "cd" ,
 Dim_Symbol => 'J'));

Other such types may be defined, using at most seven base
dimensions, but less are tolerated like for instance the
outdated Gaussian CGS with only three dimensions
(centimeter, gram, second; the electric and magnetic items
use combinations of fractional powers thereof):

type CGS_Gauss is new Long_Long_Float with
 Dimension_System =>
 ((Unit_Name =>Centimeter, Unit_Symbol => "cm",
 Dim_Symbol => 'L'),
 (Unit_Name => Gram , Unit_Symbol => 'g' ,
 Dim_Symbol => 'M'),
 (Unit_Name => Second , Unit_Symbol => 's' ,
 Dim_Symbol => 'T'));

From this type, GNAT creates subtypes via another aspect
Dimension, again in the form of a kind of record aggregate:

subtype Length is MKS_Type with
 Dimension => (Symbol => 'm',
 Meter =>1,
 others =>0);

Here, no connection is present to any of the dimensions
defined before, although the aggregate component's name
Meter seems to indicate so, because no check is made that
the symbol does not conflict with the unit symbol defined
above. Any nonsense is possible like Symbol => 's' or even
Symbol => "XYZ".

subtype Speed is MKS_Type with
 Dimension => (Symbol => "m/s",
 Meter => 1,
 Second =>-1,
 others => 0);

Again no check is performed that the symbol is compatible
with the exponents as long as it is composed from basic
symbols. Silly lapses like Symbol => "m/s**2" will remain
undetected.

Of course, new names may be defined for further subtypes'
dimension symbols. We even can use fractional powers:

subtype Charge is CGS_Gauss with
 Dimension => (Symbol => "esu",

 Centimeter =>3/2,
 Gram =>1/2,
 Second =>-1,
 others =>0);

For sure, no check can be performed here that this is
correct, as the symbol "esu" has no connection to the unit
symbols. This in fact is an implicit declaration of the unit
g**(1/2)*cm**(3/2)/s.

In this way, GNAT defines all other SI units with names
and symbols by further subtypes:

subtype Pressure is MKS_Type with
 Dimension => (Symbol => "Pa",
 Meter => -1,
 Kilogram => 1,
 Second => -2,
 others => 0);

subtype Thermodynamic_Temperature is
 MKS_Type with Dimension =>
 (Symbol => 'K',
 Kelvin =>1,
 others => 0);

subtype Celsius_Temperature is
 MKS_Type with Dimension =>
 (Symbol => "°C",
 Kelvin =>1,
 others =>0);

The declaration of Celsius_Temperature in the author’s
opinion is a bad mistake, since temperatures in Kelvin are
not simply compatible with those in Celsius.

In effect, the GNAT method is very similar to one of those
described in the Toulouse Ada Europe conference 2003 [3],
except that the type is not private and the dimension record
is present only during compile-time.

4 Notation

The package System.Dim.MKS goes on to declare constants
for all named SI units with names reflecting the symbols in
order to be able to write values with units:

 m : constant Length := 1.0;
 s : constant Time := 1.0;
 g : constant Mass := 1.0e-3;
 A : constant Electric_Current := 1.0;
 Si: constant Electric_Conductance := 1.0;
 dC: constant Celsius_Temperature := 273.15;

 Dist := 5.0 * m;
 Dist := 5.0 * M;

Whether this is a good idea is questionable, because
symbols (and prefixes, see below) are case sensitive
whereas Ada is not.

So please note here that the correct symbol S(upper case)
for Siemens is impossible (and therefore replaced by the
invention Si) because of the s (lower case) for Second
defined before. Also note that in the last line, M for Meter in
upper case is legal, but actually in the wrong casing,

44 Physical Uni ts in GNAT

Volume 35, Number 1, March 2014 Ada User Journal

misleading the reader to think of some other item like a
mass.

And GNAT's declaration of dC looks like a severe error in
the author’s opinion since 5°C is anything but 5.0 * dC!
Most probably this constant is meant as the conversion
factor between Kelvin and Centigrade, but the latter should
not have been declared as a subtype in the first place.

On the other hand, short names should be avoided in any
case in software. In physics literature, items are written in
italics, units in straight face, so that 5g is 5 grams, but 5g
could be 5 times the earth acceleration. With short names,
mistakes are probable if not inevitable.

A better idea could be to do without these declarations and
use the original symbol names instead, since this would
easily solve the casing problem, e.g.:

Dist := 5.0 * 'm';
Dist := 5.0 * 'M'; -- illegal
Pres := 2.1 * "Pa";

Here, the symbol M would be wrong and illegal since there
is no such symbol.

An even better idea could be to define a dimensioned
literal, i.e. a new kind of numeric literal with unit suffixes
(in a similar way as C defines literals with suffixes
describing the length like 1L for a long integer):

Time_of_Travel := 5.0's';
Conductance := 4.2'S';

Prefixes
Prefixes pose the same case sensitivity problem – mS is
Milli-Siemens, Ms is Mega-Second. You often find such
wrong casings in software, and the author, being a physi-
cist, finds this abhorrent.

GNAT defines prefixes only for a few of the base units
(meter, kilogram, second, ampere), and only for some
powers (milli to mega) of all those defined for the SI
system (from 10-24 to 10+24). Case sensitivity hits back here
– names different from the SI ones have to be used for
some prefixes like Meg instead of Mg.

mg : constant Mass := 1.0E-06; -- milli
Meg: constant Mass := 1.0E+03; -- mega

To define prefixes in this way for all named units and all
powers is of course feasible, but introduces names that will
never be used because of inappropriate size (like GF,
gigafarad, whereas capacities generally lie in the pico-
respectively nanofarad range; or kT, kilotesla, a magnetic
field strength which would tear apart any matter).

A better proposal could be: Again use dimensioned literals
like 5.0"ms", and the casing problem is solved. The author
has no proposal how these prefixed units could be defined.
Ideas are welcome.

As a preliminary conclusion, we see that, apart from some
problematic cases, the notation is very natural.

Grav: constant Accelaration := 9.81*m/s**2;
 -- 9.81"m/s**2"; -- author’s proposal

 T: Time;
 D: Length;

 D := 0.5*Grav*T**2;

As was mentioned above, even fractional powers are
provided, so that the author’s pet equation, the Schottky-
Langmuir equation, may be solved for any item, the current
density j, the voltage U, the distance d.

2

2

3

0

0
0

2

9

4

d

U

m

e
j

When you declare constants of unknown dimension like
intermediate values, the dimension is taken from the initial
value as has always been the case with indefinite subtypes:

Material_Const: constant MKS_Type :=
 4.0/9.0 * Eps0 * (2.0 * E0/M0)**(1/2);

Unfortunately, GNAT does not allow this for variables.

Let us deal with some more fractional exponents.

Dist: constant Length := (8.0*cm)**(1/3+2/3);

This fails with dimension mismatch because of preference
of integer division in the exponent (1/3+2/3=0+0).
However, this works:

Eight_cm: constant Length := (8.0*cm)**((1+2)/(5-2));

Admittedly, who would write such nonsense, but the ratio-
nal arithmetics package (there is no documentation) seems
inconsistent.

You have to be very careful with fractional powers because
of the preference of integer division. The reason for this
behaviour lies in the very base of Ada and is partly
unavoidable:

 8.0**(1/3) = 1.0 -- (a)
 8.0**(1/3)*cm = 2.0*cm -- (b)
 (8.0*cm)**(1/3) = 2.0*cm**(1/3) -- (c)

Case (a) is “classical” Ada: 1/3=0; (b) and (c) use fractional
arithmetic with the GNAT invention because the item is
dimensioned. You also need a dimensioned value to give
the expected result for expression (a) (by the way: what is
expected here?):

 One: constant MKS_Type := 1.0;
 8.0**(1/3)*One = 2.0 -- GNAT invention
 8.0**(1/3) = 1.0 -- classical Ada

Here, the constant One also has dimension 1, i.e. in normal
parlance it is “dimensionless”. This behaviour might lead to
very difficult to find problems, to say the least.

Exponents must be known at compile time, so X**N may be
written as long as N is a static integer constant, but the
following is illegal when X is not dimensionless:

for N in A_Range loop
 … X**N … -- illegal
end loop;

C. K. W. Grein 45

Ada User Journal Volume 35, Number 1, March 2014

This is not really a limitation since variable exponents turn
up normally only in power series, and these can be
reformulated so that the dimension is extracted to a
common factor.

Fractional constants cannot be written at all since GNAT
does not disclose their type:

One_Third: constant ?:= 1/3;

5 Mathematical functions

We have seen that fractional powers are possible. This
means that the exponentiation operator is triply overloaded:

function "**" -- Standard
 (Left: MKS_Type'Base; Right: Integer)
 return MKS_Type'Base;
function "**" -- GNAT invention
 (Left: MKS_Type'Base;
 Right: Rational)
 return MKS_Type'Base;
function "**" -- gen.elem.functions
 (Left: MKS_Type'Base;
 Right: MKS_Type'Base)
 return MKS_Type'Base;

where the first two have dimensioned arguments and return
another dimensioned value, whereas the last requests all
parameters dimensionless and also returns a pure number.

(The second declaration is in fact a lie, there is no type
named Rational, but a function with such a profile must
exist somewhere, albeit hidden. And it is absolutely not
clear how GNAT manages to resolve the overloading of an
expression like a**(1/3), since 1/3=0 if the literals in the
fraction are of type Integer; see the cases (a) and (b) above
in the previous section. So of which type are the literals if
1/3 is a Rational and not an Integer.)

This leads us to the question which dimensions are allowed
for arguments of mathematical functions. From physics, we
know the answer: They must all be dimensionless except
for the square root (i.e. the rational exponent 1/2) and some
of the trigonometric functions, e.g.:

function Sin (X, Cycle: MKS_Type'Base)
 return MKS_Type'Base;

Both arguments here must have the same dimension, the
result is dimensionless, a pure number. The corresponding
rule holds for the inverse function:

function Arcsin (X, Cycle: MKS_Type'Base)
 return MKS_Type'Base;

must request X dimensionless and return a value that is
dimensioned like Cycle.

Similar rules apply to the arctangent as the reverse of the
tangent:

function Arctan (Y: MKS_Type'Base;
 X: MKS_Type'Base := 1.0;
 Cycle: MKS_Type'Base])
 return MKS_Type'Base;

must request X and Y to have the same dimension (the
quotient Y/X must be dimensionless) and the return value
must be dimensioned like Cycle.

On the other hand, an expression like Exp(5.0*m) or
Sin(42.0*kg) is complete nonsense.

GNAT requires all mathematical functions except SQRT of
an instantiation of the package Ada.Numerics.
Generic_Elementary_Functions for a dimensioned type to
have dimensionless parameters.

6 Vectors and records

An instantiation of package Ada.Numerics.Generic_
Real_Arrays provides arrays and matrices, which may serve
as vectors and tensors. Providing a dimension is possible,
but is partly ignored:

subtype Axis is Integer range 1 .. 3;
subtype Vector is Real_Vector (Axis);
 A: Vector := (1=> 1.0, 2 => 0.0, 3 => -9.8) * cm/s**2;
 D: Vector := (Axis => 0.0) * m**2;
 T: Mass := 10.0*kg;
 D := A * T**2 / 2.0;

The result of this equation with nonsense units is computed
numerically correct, i.e. the factor 10-2 (because of the unit
cm) is taken into account in the acceleration vector A. The
result, when output (see IO below), is without unit
indication. It seems that GNAT takes the units into account
when computing the values, but then ignores dimensions.

While a matrix and a vector may have a dimension as a
whole, individual components with different dimensions
are not allowed. This is in best order, since using the
method for linear algebra (see below) is more than can be
expected.

On the other hand, records may serve for instance as a
collection of particle properties, so each component may
indeed have a different dimension like mass, charge,
location, speed, etc.

GNAT allows those multidimensional components:

type Particle is record
 M: Mass;
 Q: Electric_Charge;
 R: Vector := (Axis => 0.0) * m;
 -- Darn, this conflicts with M!
 V: Vector := (Axis => 0.0) * m/s;
 -- Same conflict.
end record;

We see here another reason why short names especially for
units are evil.

7 Input and output

There is a generic package System.Dim.Float_IO, which
however is a plain lie – only output exists, however with
unit indication; input of dimensioned items is still an open
issue. Also the output facility leaves a lot of wishes open.

46 Physical Uni ts in GNAT

Volume 35, Number 1, March 2014 Ada User Journal

 Q: Electric_Charge := 40.0 * C;
 R: Length := 10.0 * cm;
 Put (Q**2/R**2, Aft => 2, Exp => 0);

This results in

 160000.00 m**(-2).s**2.A**2

The opinions about the dot as a unit separator may vary.
However, the fact that there is a blank character between
the number and the unit makes it difficult to read the value
back in. How can a potential Get operation discriminate
between a pure value (with dimension 1) and a dimen-
sioned value when there is no indication how far to read?
Also the dot separator makes the integer number 2 in a
sequence like s**2.A look like a floating point number 2.0
(remember that upon input, the decimal digits after the dot
may be omitted).

The specification of Put is

procedure Put
 (Item : Num_Dim_Float;
 Fore : Field := Default_Fore;
 Aft : Field := Default_Aft;
 Exp : Field := Default_Exp;
 Symbol: String := "");

There is some description given in the package specifi-
cation how the Symbol could be used, but when used the
compiler complains (as of GNAT GPL 2013):

 Symbol parameter should not be provided
 reserved for compiler use only

In former compiler versions, the symbol could be any
string, which, when given, replaced the unit output. There
was not any check that the string was appropriate, so any
nonsense could be supplied.

What is expected when the symbol string is given, is at
least a check that the symbol be appropriate or else an
exception be raised. Far better would be an adaptation to
the magnitude requested. So for instance the expected
output for

 Put (12.0*m, Symbol => "km");

must be something like 0.012 km.

The compiler developers are well aware of the missing
input facility. On a personal note to the author they said
they were waiting for user requirements.

Compare [3] for a better solution of IO.

8 Type conversions

Since GNAT's dimensional types are numeric types, the
Ada type conversion is available, e.g. with the two types
shown in this paper, we could write:

 H: MKS_Type := CGS_Gauss (1.0 * Oe);

This is utter nonsense! The H-field is measured in Oersted
in the Gaussian system, in A/m in SI. The correct con-
version is

1 Oe =
4

1000
A/m

A type conversion like this cannot handle the unit con-
version, so the best would be that this be illegal.

GNAT allows such conversions!

Of course, for being able to provide correctly dimensioned
conversions, some form of the Ada type conversion must
be available. Ideas are welcome again. One possible way
would be to allow type conversions only for dimensionless
values, so that the original dimension would first have to be
stripped, the value type-converted, last the new dimension
added together with the necessary conversion factors.

9 Linear algebra

There is one further application which in the author's view
need not be handled: linear algebra. This means that
physical dimensions need not be included when linear
equations are solved like e.g. for linear partial differential
equations. Thus, vectors (like velocity or force) (represent-
ed as arrays with three components) and tensors (3 by 3
matrices) just have one physical dimension, whereas in
linear algebra, arrays and matrices may have any number of
components and each component may have a different
dimension. This is, in the author's opinion, way beyond
what this method can (and should be able to) handle.

10 Conclusion

GNAT's use of Ada's new aspects, despite its present short-
comings, for physical dimensions is indeed ingenious and
deserves attention and thoughtfulness by the Ada commu-
nity. It has been much improved over the years, and most
of the problems mentioned in this paper can easily be
solved. Also a few improvement proposals have been pre-
sented.

Thus the author again wants to express his hope that
widespread use of this method will persuade Ada program-
mers to further improve the method by communicating
their findings to AdaCore and eventually ask the Ada
Rapporteur Group to consider incorporation into the next
Ada standard.

References
[1] AdaCore, http://www.adacore.com/

[2] GNAT GPL 2013, http://libre.adacore.com/tools/gnat-
gpl-edition/

[3] C. Grein, D. A. Kazakov and F. Wilson, A Survey of
Physical Unit Handling Techniques in Ada, In Jean-
Pierre Rosen, Alfred Strohmeier (Eds), Reliable
Software Technologies - Ada-Europe 2003, Lecture
Notes in Computer Science, Vol. 2655, Springer-
Verlag.

[4] C. Grein, Handling Physical Dimensions in Ada,
http://www.christ-usch-grein.homepage.t-
online.de/Ada/Dimension.html

[5] AI95-00324-01 Physical Units Checking
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/
ai-00324.txt?rev=1.3.

 47

Ada User Journal Volume 35, Number 1, March 2014

Tool Qualification for Safety Related Systems
Mathias Ekman
Bombardier Transportation Sweden AB, Västerås, Sweden; email: mathias.ekman@se.transport.bombardier.com

Henrik Thane
Safety Integrity AB, Västerås, Sweden; email: henrik.thane@safetyintegrity.se

Daniel Sundmark
Mälardalen University, Västerås, Sweden; email: daniel.sundmark@mdh.se

Stig Larsson
Effective Change AB, Västerås, Sweden; email: stig.larsson@effectivechange.se

Abstract

Tools used in the development of safety related
software applications need to be qualified as safe.
That is, the tools cannot be allowed to introduce
hazardous faults into the application, e.g., a compiler
shall not generate dangerous code due to failure of
the compiler. In many cases laws and regulations
require the product development of safety related
applications to comply with industry sector specific
safety standards. Examples of such standards include
EN50129/50128 for railway applications,
ISO/EN13849 for machines with moving parts, DO-
178B/C for avionics, or ISO26262 for cars. These
standards require the use of a rigorous development
and maintenance process. The standards are also
mainly intended to be used when developing systems
from scratch. However, most development and test
tools are not developed from scratch according to the
rigorous processes of these standards. In order to
address this issue, some of the standards provide
means for qualifying existing tools as a more
lightweight and pragmatic alternative to a regular
certification process. In this paper we analyze the
concept of these qualification approaches. The result
of the analysis in our contribution includes a set of
approaches that can be applied individually or as a
combination in order to reduce the effort needed for
qualifying tools. As a running example we use one of
the most flexible but at the same time dangerous, even
prohibited, maintenance techniques available:
dynamic instrumentation of executing code. With this
example, we describe how exceptions in these
standards can be utilized in order to qualify a
dynamic instrumentation tool with a minimal effort,
without following the process of tool certification as
defined by the standards.

Keywords: tool qualification; certification; functional
safety; software instrumentation; dynamic
instrumentation.

1 Introduction

Many of the products we use every day have safety related
software in them, controlling vital and potentially
dangerous functions. The most obvious examples are
functionality in modern cars like airbags, ABS systems,
stability control systems, radar controlled cruise controls,
and automatic braking systems. Similarly, for railway, like
trains and subways, computer software controls the doors,
propulsion, brakes, traffic signaling, etc. For these systems
to be deemed safe, the functionality has to be deemed free
from unreasonable risk, i.e., free from dangerous failures
as defined in the best-practice functional safety standard
IEC61508:2010 [1]. The IEC61508 is a generic standard,
covering the entire safety life cycle of a safety related
system. This standard, even though you can use it on its
own, is a template for the implementation of industry-
specific functional safety standards, which may also be
harmonized with relevant legislation. Example
implementations include EN50129/50128 [2] for railway
applications, and ISO26262 [3] for cars. Another
significant standard, albeit not descendant from IEC61508,
is the avionics standard DO-178B/C [4]. All these
standards make use of their own, in some cases - the same,
classification into how dangerous systems are and what
kind of integrity is required of the safety protection
mechanisms in order to reduce the identified risks down to
a tolerable, safe, level. For example, IEC61508 defines SIL
– Safety Integrity Levels 1 to 41, while ISO26262 defines
ASIL – Automotive Safety Integrity Levels A to D. In the
remainder of this paper we will use SIL as synonymous to
any type of safety integrity level allocation to hazards or
mitigations as they may be defined in any of the standards.

The functional safety standards do not only define
requirements on the development and maintenance of
safety related systems, but also on tools used in the
development and maintenance of such systems. The
standards may, for example, require the usage of a certified

1 In IEC61508, SIL 4 denotes the highest risk, and the highest requirement
on the mitigation. ASIL D is correspondingly the highest risk
classification in ISO26262.

48 Tool Qual i f icat ion for Safety Related Systems

Volume 35, Number 1, March 2014 Ada User Journal

compiler or a certified test tool with a SIL that is on par
with safety related system’s required SIL.

In this paper, we review alternative approaches of qualify
tools to be used for safety related systems, and apply as a
running example a complex and potentially dangerous
dynamic software instrumentation tool for exemplifying
and evaluating some of these approaches. We investigate
these approaches by posing the following research
questions:
 RQ1: What are the alternatives for tool qualification in

different standards?

 RQ2: What are the differences in terms of
qualification effort?

 RQ3: What are the risks associated with different
approaches to tool qualification?

We will begin by briefly describing the tool that we are
using as a running example.

2 Dynamic instrumentation

As a running example in this paper we use one of the most
flexible but at the same time dangerous, even prohibited,
maintenance techniques available: dynamic instrumentation
of executing code. Here is a brief introduction to the basic
concepts and techniques.

When testing, debugging or running diagnostics on a
system it is essential to be able to observe the system
behaviour: typically, inputs, outputs and internal execution
activities. A common means to increase the observability is
to make use of some type of online-monitoring mechanism,
like software instrumentation [8]. Static software
instrumentation requires code to be prepared prior
execution and is limited to only allow for activation of
prepared instrumentation code, making it difficult to add or
modify code after deployment. A more flexible approach is
dynamic software instrumentation, which is a technique
that allows for information extraction software to be
downloaded, and patched into a running system, so that
run-time information can be collected from the real-world
execution. This approach has several advantages over static
instrumentation, due to its flexibility to modify
instrumentation code and alter the instrumentation points
during runtime without having to restart the actual
execution of target. Since there is no need to restart the
system to extract execution information or data for
debugging or verification purposes, rare fault conditions
that are difficult to reproduce off-target can be analyzed
with the actual real-time environmental data available.

2.1 The running example
We have previously published two methods for dynamic
instrumentation based on binary modification [8,10].
Implemented in our tool, these methods automate the entire
process of inserting and activating code for monitoring
purposes. Our tool makes it possible to instrument a
running system without preparing the original source code,
and relying on dynamic linking of object files. Experiments
have shown a low probe effect since only few instructions
are needed for invoking the actual instrumentation code.

Also, when the instrumentation code is disabled, there is no
dormant code that needs to be executed, resulting in an
even lower probe effect. Instrumentation points do not need
to be prepared, allowing for a high flexibility of where to
insert the instrumentation code. See author’s previous
publications [8,9] for details about these methods.

An overview description of the process of using our tool is
provided in Figure 1. Basically, the user adds
instrumentation code (2.a) to the original source code (1.a)
of the running application. The user then compiles the new
code and run our tool (3.a). The tool identifies what have
changed between the old executable code (1.c - running on
the target) and the instrumented code (2.b). The tool then
allows for downloading a patch to the running target (3.b-c)
and activates it. The tool allows for extracting logs from the
running target (3.b), and then allows the user to disable the
patch in order to restore the system to its original state.

Figure 1 - Dynamic Instrumentation Process2.

When using dynamic software instrumentation tools in
safety-critical systems, there is a risk that bugs in the code
may lead to hazardous failures. Examples of such bugs
include invalid code or data generated as output from the
tool, which may lead to memory corruptions on the target.
Consequently, if a dynamic software instrumentation tool is
used, then the tool must be deemed to be safe according to
an applicable standard. In some of the standards, e.g.,
EN50129/50128 [2,17], and IEC61508 [1], dynamic
reconfiguration, like in-run-time instrumentation, is not
recommended for use, or in other words it is prohibited for
higher SILs, unless it can be proven to be safe. In the
following sections, we will investigate the research
questions as stated in 1, in order to understand the
possibilities to qualify our tool.

3 Qualification of tools

There are basically three approaches to qualify tools
according to standards like EN50128 and ISO26262:

1. Develop the safety case from scratch according to the
standard with the rigor needed for achieving the target
SIL.

2. Follow procedures defined in the standard for
qualification of tools not developed according to the
standard; “Tool Qualification”.

3. Design a protection harness that shelters the safety
related system from dangerous tool outputs.

2 DRCA=Dynamic Relink Code Analyzer, DRTT=Dynamic Relink
Transfer Tool, DRTA=Dynamic Relink Target Agent.

M. Ekman, H. Thane, D. Sundmark, S. Larsson 49

Ada User Journal Volume 35, Number 1, March 2014

Of the above approaches (1) is most expensive in terms of
effort since it implies the full use of a standard and the
retroactive usage of the standard to an already existing tool,
while (3) is only limited to prove SIL integrity of the tool’s
protection system that should have less complexity than the
tool itself, thus requiring significantly less effort. The
alternative of qualifying existing tools (2) can be seen as a
back door, were the full weight of the standards can be
avoided while maintaining the safety of the system. This
approach includes proving that previously used tools are
legible for the “proven in use” concept as described in the
standards requiring proofs to be supplied that for example
the hardware and runtime-environment is unmodified, in
conjunction with providing a history of successful
execution records. In the following sections, we elaborate
on these three approaches, to reduce the effort needed for
qualifying tools, with a focus on dynamic instrumentation
as a running example.

4 Approach I: Develop the safety case
from scratch

This approach requires either tools to be developed from
scratch, or that the entire safety case is constructed after the
product has been developed and released. This is typically
the approach that requires most effort in terms of
qualification effort. But, even for minor projects, like in our
case with the dynamic instrumentation example, a
relatively large amount of planning, specification,
reviewing, testing and, documentation is needed to argue
and substantiate that the target SIL has been achieved,
which is in our case according to SIL4/ASIL-D. The
number of requirements that must be fulfilled for this
approach according to the EN50128 standard is about 390,
and for the ISO26262 standard it is about 370. Even though
this approach implies an extensive qualification effort, it
also allows for the most stringent and safest approach in
terms of risks to expose safety hazards.

5 Approach II: Tool qualification

In this chapter, we review tool qualification according to
the railway standard EN50128 and the automotive standard
ISO26262, with the aim to qualify our dynamic
instrumentation tool according to these standards. The
sections for each standard are divided into tool
classification, and tool qualification process.

Essentially, the tool qualification approach addresses two
basic questions:

 What harm can the tool-set do to the system?

 Is there a way to detect or even prevent that a fault in
the tool-set leads to a hazard?

5.1 Tool classification
EN50128 classifies tools into on-line and off-line tools,
with different requirements for use cases and hazard
analysis for each category. There are three tool categories
defined for off-line support tools in EN50128 (3.1):

 T1: “generates no outputs which can directly or
indirectly contribute to the executable code (including
data) of the software”

 T2: “supports the test or verification of the design or
executable code, where errors in the tool can fail to
reveal defects but cannot directly create errors in the
executable software”

 T3: “generates outputs which can directly or indirectly
contribute to the executable code (including data) of
the safety-related system”

Examples of tools belonging to class T1 are editor and
configuration management tools, as these do no generate
output that can contribute to the software execution. A
verification tool that fails to detect an error introduces a
risk to the system, is classified as class T2. Examples of
tools belonging to class T2 are test coverage tools, and
static analysis tools. Class T3 include source code
compilers and compilers that incorporate executable run-
time packaging into executable code, like in dynamic
instrumentation tools, but also tools used for configuration
of parameters or variables.

EN50128 allows tools to be qualified as proven in use
according to EN50128: 6.7.4.4.a; “a suitable combination
of history of successful use in similar environments and for
similar applications.” This means that arguments must be
provided that the runtime environment is identical, but also
that the actual application is similar. This is only valid
within an organization where it has been previously used.

ISO26262 has a slightly different approach, since it
classifies software tools into different tool confidence
levels, namely TCL1, TCL2 and TCL3. A software tool is
classified in ISO26262 based on its possible use cases, but
classification is also based on an analysis if erroneous tool
output leads to violation of safety requirements, or if the
tool fails to detect or prevent these kinds of errors.

The tool classification level (TCL) combined with the
Automotive Safety Integrity Level (ASIL) of the safety-
related software developed using the software tool,
determines the selection of the appropriate tool
qualification methods. There is also a possibility to qualify
a tool that has been proven in use according to ISO26262-
8, clause 14. The validity of the proven in use argument is
evaluated based on factors including; number of hours
previously in use, field data analysis relevant to safety-
related events and runtime environment conformance –
including hardware. For a proven in use status to be
obtained, reports that indicates the frequency of incidents
during a specific period of usage must be provided. An
incident in this case is defined as a failure that is potential
to lead to the violation of a safety goal, see table 1. For
example, for ASIL-D status to be obtained there must be
provided usage reports that indicate a maximum of 10-9
safety violating failures per hour.

50 Tool Qual i f icat ion for Safety Related Systems

Volume 35, Number 1, March 2014 Ada User Journal

ASIL Observable incident rate
D < 10-9/ h
C < 10-8/ h
B < 10-8/ h
A < 10-7/ h

Table 1 – Observable incident rate.

ISO26262 defines a tool classification approach where the
TCL can be determined based on its tool impact level (TI)
and tool error detection (TD) levels (see table 2). The TI
level is defined as the possibility that a malfunction in the
tool can introduce or fail to detect errors in a safety-related
item, or element being developed. The possible impact is
analyzed, and if the tool can satisfy all safety requirements,
impact level TI 1 shall be selected, for all other cases TI 2
shall be selected. After selecting TI, the TD level shall be
selected. This level determines the degree of confidence
that the tool prevents or detects erroneous output data. TD
levels range between TD1 and TD3, where TD3 is the
lowest confidence in error prevention or detection, and
TD1 is the highest. In case when several use cases results in
different TCL levels, the highest level that implies highest
requirements shall be selected.

 Tool Error Detection
TD 1 TD 2 TD 3

Tool
Impact

TI 1 TCL 1 TCL 1 TCL 1
TI 2 TCL 1 TCL 2 TCL 3

Table 2 – Determination of TCL levels.

Running example – dynamic instrumentation
In our case, we apply the off-line parts of the dynamic
instrumentation toolset, excluding the on-line parts of the
toolset running on the target, since it requires a different
approach for qualification and will be considered as future
work. The EN50128 standard classifies offline tools into
three categories, where our dynamic instrumentation tool is
to be considered as a class T3 tool (highest requirements),
since it generates outputs similar to a source code compiler,
which can directly or indirectly contribute to the executable
code, including data.

ISO26262 has a different approach where no differentiation
is made between offline and online tools. The standard
classifies tools according to the reliability of the behaviour,
tool confidence level combined with the expected ASIL.
The input for this judgment is an evaluation of the tool
impact level (TI) in conjunction with the tool error
detection level (TD). Since the tool should fulfill all safety
requirements according to ASIL-D in our case, any
malfunction shall be avoided or detected, as required by
TI1. The tool is developed according to ASIL-D, the level
with the highest degree of confidence, which allows the
selection of TD1. Based on the selections of TI1 and TD1,
TCL1 should be selected according to table 2.

5.2 Tool qualification process
EN50128 states that any potential failure of the toolset
must be detected by technical or organizational measures
outside the tool. Evidences must be provided that tool
failures do not affect the toolset output in a safety related
manner (EN50128: 6.7.1). Also, for a tool in class T3 it is
required that the output from the tool conforms to the
specification of the output or that failures in the output are
detected. Tools in categories T2 and T3 shall include
identification of potential failures that can affect the tool
output, and actions should be specified to avoid such
failures. Evidences must be provided that the tool output
conforms to the specification, or that failures in the output
are detected. Evidence can also be based on (EN50128:
6.7.4.4):

 a suitable combination of successful history use in
similar environments and applications

 tool validation (as specified in EN50128: 6.7.4.5)

 diverse redundant code (allows detection and control
of failures)

 compliance with safety integrity levels derived from
risk analysis

 other appropriate methods for avoiding or handling
tool failures

In case conformance evidence according to EN50128:
6.7.4.4 is not available, effective methods should be applied
to control failures of the software that the tool imposes. For
example a non-trusted compiler can be justified if a
combination of tests, checks and analysis, which are
capable of ensuring the correctness of the code, and that, it
is consistent to the target safety integrity level.

ISO26262 states that confidence is needed that the software
tool effectively achieves the following goals;
 (1) Minimizing the risk of systematic faults due to

software tool malfunctioning

 (2) Adequate development process used, if activities or
tasks required by the standard rely on the correct
functioning of the software tool used

Software tools needs to be certified for each project. When
a software tool is to be used, the environmental and
functional constraints and its operating conditions must be
determined. The qualification process requires a planning
of the software usage according to the following:

 Identification and version number of the software tool

 Configuration of the tool (for example compiler
switches)

 Use cases of the tool (user interaction)

 Software environment

 Maximum ASIL from all the safety requirements

 Based on confidence level: Qualification Methods

M. Ekman, H. Thane, D. Sundmark, S. Larsson 51

Ada User Journal Volume 35, Number 1, March 2014

In addition, the tool qualification process requires
identification of possible use cases. When this is
performed, goals 1 and 2 above are considered, i.e. the
possibility that a malfunction of the tool (behavior or
output) leads to a condition not fulfilling the safety-
requirements. The probability to detect or prevent such
failures shall be evaluated. When these steps are performed,
the required TCL is considered. As stated above, TCL 3 is
the most stringent level, and TCL 1 is the lowest.

Tools with TCL 1 are not required to apply for tool
qualification. Tools with TCL 2-3 require tool
qualification. The TCL and the ASIL3 level of the safety-
related software being developed is the base for the
selection of allowed tool qualification methods, as listed in
ISO26262-8, see table 3 and 4.

 Qualification Methods for
tools classified as TCL3

A B C D

1a Increased confidence from use
in accordance with 11.4.7

+
+

+
+

+ +

1b Evaluation of the tool
development process in
accordance with 11.4.8

+
+

+
+

+ +

1c Validation of the software tool
in accordance with 11.4.9

+ + +
+

+
+

1d Development in accordance
with a safety standard

+ + +
+

+
+

Table 3 – Qualification methods TCL3 in ISO26262-8.

 Qualification Methods for

tools classified as TCL2
A B C D

1a Increased confidence from use
in accordance with 11.4.7

+
+

+
+

+
+

+

1b Evaluation of the tool
development process in
accordance with 11.4.8

+
+

+
+

+
+

+

1c Validation of the software tool
in accordance with 11.4.9

+ + + +
+

1d Development in accordance
with a safety standard

+ + + +
+

Table 4 – Qualification methods TCL2 in ISO26262-8.

Running example – dynamic instrumentation
The approach of applying tool qualification of dynamic
instrumentation tools begins with follow procedures
defined in the standard for qualification of tools not
developed according to the standard. This approach is
applicable for off-line parts of tools like dynamic
instrumentation techniques, since it contains code generator
parts that may otherwise be difficult to develop according
to a standard. This is a prominent approach also for existing
tools that are not developed from scratch.

3 ++ - Highly recommended. + - Recommended. ASIL A-D.

EN50128: 6.7 describes the process of qualifying tools; a
non-trusted compiler, as in our case the code generator part
of the tool, can be justified if a combination of tests, checks
and analysis are available, which are capable of ensuring
the correctness of the code, and that, it is consistent to the
target safety integrity level. ISO26262: 11.4.9 describes the
process in a similar manner, validation measures,
malfunction and erroneous output should be detected, but
also reaction of the tool to anomalous operating conditions
shall be examined. For EN50128, the tool qualification
process emphasizes on that evidences must be provided that
potential failures of the tool do not affect the output in a
safety related manner, such that failures are not detected.
Since dynamic instrumentation tools are classified as T3,
evidences must be provided that the tool output conforms
to the specification, or that failures in the output are
detected. Evidences may be automated; in our case a
possible approach is to automate the correctness check of
the output from the tool, before the code is activated on
target. Another approach would be to formally prove that
the output conforms to the specification, for example by
invoking a model checking tool analyzer. Other options
include proven in use (successful history), but this option is
more likely to be suitable for tools like compilers with a
relative static output result from a certain input. This option
may not be suitable for dynamic instrumentation tools
because of its rather limited usage compared to for example
a widely used commercial compiler. Validation is another
option. Design deviations of the tool are identified, by
facilitating coverage tests, static code analyzers etc. but
require extensive testing and, depending on the
implementation complexity of the dynamic instrumentation
tool, may be an overwhelming task in terms of effort.
Another option available, which is mentioned in the
standard as “other appropriate methods”, is to introduce a
protection harness like a safety shell that detects all failures
in the output (see section 6).

In ISO26262, qualification methods may include validation
methods for detecting and preventing software faults, like
the introduction of code coverage tools, static code
analyzers and model checkers. One approach for our
running example is to reduce the TCL to TCL1, by
implementing a tool error detection system. By using this
approach, all failures in the output will be detected for the
dynamic instrumentation toolset. This means that there is
no need to follow the actual qualification process as stated
in the standard, since tools classified as TCL1 do not need
any qualification methods.

In both ISO2626 and EN50128, tools might be qualified
according to ‘increased confidence from use’ versus
‘proven in use’. ISO26262 defines a rigorous separate
section for this (ISO26262: 11.4.7), and specifies different
levels of recommendations regarding confidence from use,
depending on relevant ASIL. EN50128 limits the
requirements to ‘a suitable combination of history of
successful use in similar environments and applications
within the organization’ (EN50128: 6.7.4.4.a), thus leaves a
larger freedom to the assessor to interpret the requirements.

52 Tool Qual i f icat ion for Safety Related Systems

Volume 35, Number 1, March 2014 Ada User Journal

This might of course lead to a divergent qualification level
among different qualifications.

Consequently, both these standards allows for two options
in our running example:

1. Validation – Extensive tests are performed to detect
any design deviations of the tool like code coverage
tests, static code analyzer, simulators and model
checkers.

2. Detecting all failures in the output – design
diagnostics. By applying design diagnostics based on
Failure mode and Effect Analysis (FMEA) or Fault
Tree analysis (FTA), possible failure modes can be
identified to analyze the causes and effects, in order to
take protective action. This option is possible even
without specification of the tool (COTS). For
ISO26262, applying design diagnostics implies
reduction to TCL1 by implementing a TD1 error
detection system.

The effort needed for the tool qualification approach is
directly related to the number of requirements in the
standards. For EN50128, the requirements for qualifying
tools in class T3 (as in our running example), is applicable
to EN50128: 6.7.4.1-5. In case conformance evidences are
unavailable, EN50128: 6.7.4.6-6.7.4.11 (see table 5) is
applicable. This means that there are at most 6
requirements according to EN50128 for the tool
qualification approach in our running example.

Tool Class # Requirements
T1 1
T2 5
T3 5 or 6

Table 5 – Tool Qualification requirements for EN50128.

ISO26262 defines five general requirements for tool
qualification. In addition, depending on qualification
methods selected according to table 3 and 4, there are at
most four requirements (see table 6).

Qualification Methods #
Requirements

Increased confidence from use in
accordance with 11.4.7

4

Evaluation of the tool development
process in accordance with 11.4.8

3

Validation of the software tool in
accordance with 11.4.9

2

Table 6 – Tool Qualification Requirements for ISO26262-8.

6 Approach III: Protection harness

Both standards allow for “other appropriate methods” to be
used for avoiding or handling failures introduced by the
tool. This includes applying internal measures regarding
evaluation of safety related functions, to prevent or detect
malfunctions in the software tool. This allows for an

approach of using a protection system like a safety shell
that monitors and shelters dangerous output from the
dynamic instrumentation toolset. One way to achieve this is
to introduce a safety shell [18] as a protection system that
detects a malfunction of the tool and also takes action to
handle the failure so that the tool retains its safety integrity.
The safety shell should for every intermediate step in the
tool-chain sequence be involved to evaluate the result,
before the output is passed into the next tool in the chain.
For example, to search for invalid combinations of machine
operations (e.g. invalid writes) in the binary code
representing the new instrumentation code, which may
otherwise harm the safety integrity of the system. The
evaluation result for the safety shell in this case would be to
halt the tool execution as a protection harness. The safety
shell should be developed according to EN50128 (SIL4) or
ISO26262 (ASIL-D), and should also apply design
diagnostics like FMEA/FTA, which is possible even for
tools without specifications (e.g., COTS). The motivation
for this approach is that it allows for existing tools to be
used as is, without the need for a rigorous work to rebuild
the tool or safety case from scratch according to approach 1
(section 3), or to qualify the tool according to approach 2
(section 4). A limiting requirement is that the tool chain has
a limited set of possible outputs that can be evaluated by
the safety shell, without introducing too much complexity
to the safety shell, which otherwise may complicate the
argumentation for safety cases and thus increase the risk for
propagation to safety hazards. However, if this requirement
is fulfilled, the approach of utilizing a safety shell
significantly reduces the qualification effort compared to
approach 1 and 2.

7 Discussion

In this paper, we elaborated on approaches to qualify a tool
in safety standards like EN50128 and ISO26262, within the
context of a dynamic instrumentation tool (RQ1). In both
standards, there are alternative approaches available that
can be utilized to minimize the qualification effort
regarding number of requirements to the development
process, as described in respective standard for tool
qualification (RQ2). A possible alternative according to
ISO26262: 5.2 includes the opportunity for the developer to
reduce the tool confidence level to 1 (TCL1) by introducing
an error detection system of level 1 (TD1), and thus
allowing a minimal number of requirements to be
anticipated – a back door. EN50128 allows for a similar
back door alternative, by classifying the tool as T3 with a
minimal set of general requirements (not T3 specific). Both
these alternate qualification approaches, back doors,
reduces the effort significantly compared to approach 1
(development from scratch). For example, only four
requirements needs to be fulfilled in ISO26262 in such
case, compared to about 370 requirements for approach 1.
In case the protection harness approach (3) is applied for
ISO26262, the user needs basically (as alternative to full
standard compliance) to perform an FMEA, and develop an
exception handler to detect erroneous output, and the
requirements are fulfilled for qualification! A similar
approach can be selected for EN50128, where a T3

M. Ekman, H. Thane, D. Sundmark, S. Larsson 53

Ada User Journal Volume 35, Number 1, March 2014

classification implies a reduction of requirements to a
minimum. We consider these back doors as a weakness in
the standard (RQ3), since the lightweight approach of not
following processes and methods as stated in the standard,
significantly increases the risk that safety related hazards
may occur in the system.

8 Related work

Conrad et al. [14] summarizes experiences from qualifying
tools according to the standard for tools like Mathworks
Embedded Coder and Polyspace Client/Server for C/C++
[6]. The authors state that there is no established tool
qualification best practice available in the standard. There
is no straightforward mapping between activities/tools and
their corresponding verification activities, which leave the
practice open to interpretation. The authors suggests that
there should be a definition of suitable verification and
validation measures to be used in conjunction with a
qualified tool, to be able to provide a necessary guidance to
successfully utilize the tool in projects that need to comply
with ISO26262. Hillebrand et al. [15] propose a systematic
methodology to establish confidence in the usage of
software tools for ISO26262. The method is based on
multi-layered analysis that systematically identifies the risk
of tool-introduced errors and error detection failures, and
also allows for derivation of the tool confidence level
(TCL). By using this methodology, existing verification
measures used in the development process can be identified
and reused. Asplund et al. [16] presents nine safety goals
based on safety-related characteristic of a tool chain to be
qualified, including EN50128 and ISO26262. The authors
suggest an approach for qualification by dealing with
software tools as reusable entities deployed in the context
of different tool chains. By this method, authors claim that
the problem with stipulating either to narrow or to wide
qualification effort for tool qualification is solved.

9 Conclusions and future work

Domain specific safety standards like EN50128 for railway
applications, ISO/EN13849 for machines with moving
parts, DO-178B/C for avionics, or ISO26262 for cars
typically require the use of a complex development
environment and also require an extensive maintenance
process. These standards are mainly intended for systems
that are built from scratch. However, most development
and test tools are not developed from scratch according to
the rigorous processes of these standards.

In this paper, we have elaborated on tool qualification
approaches available among these standards, which is an
approach to avoid the rigorous process of a complete
certification. The research contribution in this paper is the
identification of alternate approaches for reducing the effort
needed for qualifying one of the most flexible but also
complex and dangerous techniques available; dynamic
instrumentation of safety related systems during run-time.
However, we consider these alternative back doors as a
weakness in the standards because most requirements for
processes and methods as described in the standards are

avoided, thus significantly increases the risk that safety
related hazards might occur in the system.

In future work, we will consider alternative qualification
methods, including formal proofs in terms of reduced effort
with retained safety integrity of all the tool chain
components.

Acknowledgements. This research is supported by the
Knowledge Foundation (KKS) through ITS-EASY, an
Industrial Research School in Embedded Software and
Systems, affiliated with Mälardalen University, Sweden.

References
[1] IEC61508:2010 (2010), Functional safety of electrical/

electronic/programmable electronic safety-related
systems, International Electrotechnical Comission.

[2] EN50128:2011 (2011, Communication, signalling and
processing systems, Software for railway control and
protection systems.

[3] ISO26262:2011 (2011), Road vehicles – Functional
safety.

[4] D. Evans and D. Larochelle (2002), Improving
Security Using Extensible Lightweight Static Analysis,
IEEE Software, 19(1): p. 42.

[5] EEMBC Adopts DoubleCheck (TM) for Its Industry-
Standard Processor; Benchmarks; Green Hills
Software's Static Analysis Tool Increases Code Quality
(2007).

[6] Techsource-asia Ltd. http://techsource-asia.com/
products-a-solutions/products/92-iec-certification-kit-
for-iso-26262-and-iec-61508/description/3.html

[7] Mathworks Inc,
http://www.mathworks.co.uk/products/iec-61508/

[8] M. Ekman and H. Thane (2007), Dynamic Patching of
Embedded Software, IEEE Real-Time and Embedded
Technology and Applications Conference, Seattle,
WA, USA.

[9] M. Ekman and H. Thane (2012), Software
Instrumentation of Safety Critical Embedded Systems –
A Problem Statement, IEEE System, Software, SoC
and Silicon Debug Conference, Vienna, Austria.

[10] M. Ekman and H. Thane (2008), Real-Time Dynamic
Relinking, Proceedings of the 22:th IEEE International
Parallel and Distributed Processing Symposium,
Miami, USA.

[11] Mathworks Inc, http://www.vectorcast.com/pdf/
VectorCAST_IEC_Certification_Kit.pdf

[12] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa (1987),
Electron spectroscopy studies on magneto-optical
media and plastic substrate interface, IEEE Transl. J.
Magn. Japan, vol. 2, pp. 740–741[Digests 9th Annual
Conf. Magnetics Japan, p. 301, 1982].

[13] M. Young (1989), The Technical Writer’s Handbook.
Mill Valley, CA: University Science.

54 Tool Qual i f icat ion for Safety Related Systems

Volume 35, Number 1, March 2014 Ada User Journal

[14] M. Conrad, P. Munier, F. Rauch (2010), Qualifying
Software Tools According to ISO26262, In proc.
Dagstuhl-Workshop Modellbasierte eingebetteter
Systeme (MBEES10).

[15] J. Hillebrand, P. Reichenpfader, I. Mandic, H. Siegl, C.
Peer (2011), Establishing Confidence in the Usage of
Software Tools in the Context of ISO26262,
SAFECOMP 2011: p 257-269.

[16] F. Asplund, J. El-khoury, M. Törngren, Qualifying
Software Tools, a Systems Approach, KTH Royal
Institute of Technology, Stockholm, Sweden.

[17] EN50129:2003 (2003), Communication, signaling and
processing systems, Safety related electronic systems
for signaling.

[18] J. Katwijk, H. Toetenel, A. Sahraoui, E. Anderson, J.
Zalewski (2000), Specification and Verification of a
Safety Shell with Statecharts and Extended Timed
Graphs, SAFECOMP, volume 1943, page 37-52.
Springer, 2000.

55

Experience in Spacecraft On-board Software
Development
Juan A. de la Puente, Alejandro Alonso, Juan Zamorano, Jorge Garrido, Emilio Salazar,
Miguel A. de Miguel
Universidad Politécnica de Madrid, ETSIT, Avda. Complutense 30, E-28040 Madrid, Spain

Abstract

This paper describes some important aspects of high-
integrity software development based on the authors’
work. Current group research is oriented towards mixed-
criticality partitioned systems, development tools, real-
time kernels, and language features. The UPMSat-2
satellite software is being used as technology demonstra-
tor and a case study for the assessment of the research
results. The flight software that will run on the satellite
is based on proven technology, such as GNAT/ORK+
and LEON3. There is an experimental version that
is being built using a partitioned approach, aiming at
assessing a toolset targeting partitioned multi-core em-
bedded systems. The singularities of both approaches
are discussed, as well as some of the tools that are being
used for developing the software.

Keywords: Real-time systems, model-driven engineer-
ing, Ada.

1 Introduction
The UPM STRAST group has a long time experience in de-
veloping high-integrity real-time systems. The group research
in this domain is currently oriented towards mixed-criticality
partitioned systems, development tools, real-time kernels, and
language features. In order to validate technical achievements
in this field, the UPMSat-2 satellite software is being used
as a case study. In this paper, ongoing work and experiences
from this development are described.

UPMSat-2 is a project aimed at building a micro-satellite
that can be used as a platform for experimenting with various
technologies and acquiring long-term experience in different
aspects of space systems. The project is being carried out
by a multi-disciplinary team at UPM, with the collaboration
of several research groups and industrial companies. The
satellite is expected to be launched in the final quarter of
2015. STRAST is responsible for developing all the software
required for the mission, including on-board software for
platform and payload management. The flight software is
built as a monolithic system, running on top of an ORK+
kernel on a LEON3 [1] computer board. The software is
being developed according to the provisions in the ECCS-
E-ST-40 [2] and ECCS-Q-ST-80 [3] standards, in order to
ensure that the final software product can be validated for the
mission.

Mixed-criticality systems are raising a growing interest in
the area of embedded systems, due to their potential for im-
proving software productivity and quality. In the context of
the MultiPARTES and HI-PARTES projects, methods and
tools for mixed-criticality partitioned multi-core embedded
systems are being developed. One of the responsibilities of
the group is the development of a toolset for supporting this
approach. In this context, UPMSat-2 is being used as a case
study. In particular, a partitioned implementation running on a
XtratuM hypervisor [4] is being developed for demonstration
and validation of the project outcomes.

The methodological and architectural approaches used in this
work is described in the rest of the paper. Section 2 contains
an overview of the satellite system and the architecture of
the on-board computer. The main software subsystems and
the architectural approaches are also discussed in this section.
Section 3 describes the development tools used. Some details
of the validation facility are presented in section 4. Finally, a
summary of the lessons learned so far and plans for the next
future is presented in section 5.

2 The UPMSat2 On-Board Software Sys-
tem

2.1 Overview of the satellite system

UPMSat-2 is a micro-satellite with a geometric envelope of
0.5×0.5×0.6m and an approximate mass of 50 kg (figure 1).
It will describe a low Earth noon sun-synchronous polar or-
bit [5] with a period about 97min. There are two visibility
periods from the ground station every 24 hours, with an ap-
proximate duration of 10min each.

X+! Y+!

Z+!

Z-!

Figure 1: General view of the satellite platform.

Ada User Jour na l Vo lume 35, Number 1, March 2014

56 Exper ience in Spacecraf t On-board Sof tware Development

Electrical power is provided by solar panels and batteries.
Voltage control is analog, keeping voltages for the satellite
subsystems within appropriate ranges.

The attitude of the satellite is computer-controlled, using basic
sensors and actuators. The attitude is determined by means of
magnetometers, which provide a measurement of the Earth
magnetic field vector in the satellite reference frame. Devia-
tions are corrected by means of magnetorquers, which create
a magnetic field that makes the satellite rotate accordingly.

Communications with the ground station are carried out by
means of a dual radio link in the VHF 400MHz band, with
a raw transfer rate of 9600 bit/s. A simplified version of the
X.25 data link layer protocol is used for error control and
packet transmission.

The payload of the satellite consists of a set of experiments
focused on testing different kinds of equipment in a space en-
vironment. The experiments have been proposed by industry
and some research groups.

There is a single on-board computer (OBC) that executes all
the data handling, attitude control, and telecommunications
functions. It is based on a LEON3 processor implemented
on a radiation-hardened FPGA, with 4 MB RAM, 1 MB
EEPROM, and digital and analog interfaces. The on-board
software system runs on this hardware platform.

2.2 Software functionality

The main functions of the on-board software can be grouped
as follows:

• Platform monitoring and control (housekeeping). Plat-
form data, such as voltages and temperatures at different
points, are periodically sampled and checked in order to
assess the status of the satellite.

• On-board data handling (OBDH), including decoding
and executing telecommands (TC) received from the
ground station, and composing and sending telemetry
(TM) messages with housekeeping data, event and error
logs, or experiment results.

• Attitude determination and control (ADCS). Magne-
tometer values are read periodically, and used by the
control algorithm to compute the intensity output to the
magnetorquers in each sampling period.

Alternative ADCS devices, such as solar sensors or reac-
tion wheel actuators, as well as variations in the control
algorithm, will be tested as experiments.

• Experiment management. Most of the experiments re-
quire control actions to be executed on them, and sensor
data to be collected and sent to ground to be analysed.

Figure 2 shows the software context and the top-level func-
tional blocks.

A key concept in on-board software systems is that of operat-
ing modes. The system may be in different modes, and may
perform different functions, or execute them in different ways,
according to the operating conditions of the system. Figure 3

OBC!

ADC actuators!
-  magnetorquers"
-  reaction wheel"

ADC sensors!
-  magnetometres"
-  solar cells"

Radio!
-  uplink (TC)"
-  downlink (TM)"

Housekeeping
sensors!
-  temperatures"
-  voltages"
-  currents"

Experiments!

OBDH!

platform!

ADCS!

experiments!

Figure 2: Context and top-level functions.

shows the main operating modes of the on-board software
and the events that trigger mode transitions.

The specific functions that are executed in each mode are:

• Initialization mode: load executable code, start execu-
tion, and configure I/O devices.

• Nominal mode: housekeeping, OBDH and ADCS as
above defined.

• Safe mode: same as nominal mode, with longer periods
and reduced functionality in order to save energy power.

• Latency mode: the computer is switched off until batter-
ies are charged (signalled by a hardware timer).

• Experiment mode: one of the experiments is executed,
with changes to nominal behaviour if required by the
experiment.

Nominal!

Experiment!

TC!

Latency!

low battery | error | TC!

Initialization!

timer!

Safe!

watchdog  
timer!

critical  
battery! TC!

Figure 3: Satellite operating modes.

2.3 Architectural approaches

In order to ensure a timely implementation of the flight soft-
ware, a monolithic implementation has been designed, using
a well known architecture based on GNAT/ORK (figure 4a).

On the other hand, there is growing interest on developing
satellite software on partitioned architectures, as exemplified
by recent work directed by ESA/ESTEC to develop a parti-
tioned version of the EagleEye reference mission software [6].

The MULTIPARTES project [7] is aimed at developing tools
and solutions based on mixed criticality virtualization for
multicore platforms. The virtualization kernel is based on
XtratuM, a cost-effective open source hypervisor specifically
developed for real-time embedded systems [8]. The UPMSat-
2 software is being used in MultiPARTES as a case study for

Volume 35, Number 1, March 2014 Ada User Jour na l

J.A. de la Puente et a l . 57

Hardware

ORK+

Drivers

GNARL

Application software

(a) Monolithic architecture.

Hardware

 ORK+

Drivers

GNARL

ADCS

XtratuM

 ORK+

Drivers

GNARL

Platform management

Partition 1! Partition 2!

(b) Partitioned architecture.

Figure 4: Software architecture.

validating the mixed-criticality technology developed in the
project. To this purpose, a partitioned version of the software
system is being developed. The partitions run on an adapted
version of GNAT/ORK for XtratuM [4]. An example showing
the ADCS control subsystem running in one partition and the
platform manager providing access to devices in another is
shown in figure 4b.

3 Development tools
The increasing complexity of high integrity embedded sys-
tems and the need to comply with demanding safety-related
standards require suitable toolsets for supporting developers.
Model Driven Engineering (MDE) is an appropriate software
development approach, that enables the abstraction level of
languages and tools used in the development process to be
raised. It also helps designers to isolate the information and
processing logic from implementation and platform aspects.
A basic objective of MDE is to put the model concept on the
critical path of software development. This notion changes
the previous situation, turning the role of models from con-
templative to productive.

The STRAST group has been working with this technology
for a long time. The ASSERT project1 explored the use
of MDE technology in space software systems, from which
different sets of tools emerged. One of them evolved un-
der the auspices of ESA, resulting in the TASTE toolset [9].
TASTE supports a wide set of modelling languages, such
as Simulink [10] and SDL [11], and uses AADL [12] as a
glue for architecture modelling. The TASTE tools generate
Ravenscar Ada code that can be compiled with GNAT/ORK,
and are being used as the primary toolset for the monolithic
implementation of the UPMSat-2 software.

Another follow-up of ASSERT was the CHESS project,2

which was focused on property preservation and compos-
ability. In the context of this project, an MDE framework
for high-integrity embedded systems was originally devel-
oped [13]. In this framework, the functional part of the sys-
tem is modelled using UML [14]. Models can be enriched

1Automated proof-based System and Software Engineering for Real-Time
systems. FP6 IST 004033.

2Composition with Guarantees for High-integrity Embedded Software
Components Assembly, ARTEMIS-2008-1-100022.

with non-functional annotations, in order to integrate different
aspects of the software in a single model. This approach has
a number of advantages, as it makes models maintenance eas-
ier, enables efficient communication within the development
team, and supports the validation and analysis of models.

The framework relies on the UML profile for Model-
ing and Analysis of Real-Time and Embedded Systems
(MARTE) [15] to describe real-time requirements, proper-
ties, resource usage information, and other non-functional
properties. A response-time analysis model is automatically
generated, which can be used to validate real-time require-
ments. Finally, source code skeletons in Ravenscar Ada are
generated for the main system components.

Mixed-criticality systems are emerging as a suitable approach
for dealing with system complexity and reducing develop-
ment costs, by integrating applications with different critical-
ity levels on the same hardware platform. A separation kernel
provides isolation mechanisms in order to guarantee that ap-
plications do not interfere with each other. In this way, it is
possible to certificate or qualify applications with different
criticality levels in an independent way.

Partitioned systems are a remarkable way of providing isola-
tion to applications. In these systems, the separation kernel
can be built as a hypervisor that implements a number of
partitions as virtual machines isolated from each other in the
time and space domains. In this way, applications with dif-
ferent criticality levels can run in different partitions without
experimenting any interference from other applications. This
approach makes the system development more difficult, as
its time behaviour may get much more complex, and requires
the hypervisor to be carefully configured.

In the context of the MultiPARTES project, the original
CHESS framework is being improved in order to deal with
mixed-criticality systems [16]. The first activity accomplished
is the identification of toolset requirements, which are driven
by the inputs from industrial applications in domains such
as aerospace, automotive, video surveillance or wind power
generation. The most relevant requirements are:

• Development of mixed-criticality systems: The concept
of criticality should be central in the system.

Ada User Jour na l Vo lume 35, Number 1, March 2014

58 Exper ience in Spacecraf t On-board Sof tware Development
http://www.multipartes.eu http://twitter.com/#!/FP7MultiPARTES

Toolset'Objec,ves'
'

•  Support'for'system'par..oning'

•  Non3func.onal'requirements:'

real3.me,'security,'safety'

•  Applica.ons'&'pla;orms'reuse'

•  System'valida.on'

•  Genera.on'of'artefacts'

Applications modelPlatform model
Partitioning

restrictions model

System model

System 
partitioning Partitioning

tool

Deployment model

Neutral model

Transformation to
neutral model

Source code

Transformation to
source code

XtratuM configuration
files

Transformation to
configuration files

System building  
files

Transformation for
system building

Validation
tool

Tool input model Transfor- 
mation

Tool output
model

Transfor- 
mation

Toolset 
result model

Validation

Final 
Artifacts

Generation

Development'Steps'
'

1.  System'modelling:'

NFR'annota.ons'

2.  System'par..oning'

3.  System'Valida.on'

4.  Genera.on'of'final'artefacts'
5.  Integrate'source'code'
6.  System'execu.on'

WP7'–'aerospace'

UPMSat2:''

Satellite'by'UPM'

Toolset'Implementa,on'
'

•  Model3Driven'Engineering'

•  UML2'+'metamodels'(Ecore)'

•  Implemented'Eclipse'–'EMF'

•  UML2'GUI:'Other'tools'(RSA)'

Demo'Descrip,on'
'

•  Subsystem:'A[tude'control.''

•  Two'communicated'par..ons:'

•  Control'algorithm'

•  I/O'opera.ons'

•  Spacecra`'simulator'on'a'PC'

•  Satellite:'FGPA'with'LEON3'CPU'

•  XtratuM'&'ORK+'

HIPEAC,(Vienna,(January(2014(

FPGA'(Leon'3)'

XtratuM'

ORK+'

PlaEorm'I/O' AGtude''
Control'

PC'

Linux'

Simulink'

RSL232'

SpacecraN'Model'

ORK+'

ONLBOARD'computer' Simula,on'computer'

Demo'Descrip,on'
'

•  Show'current'state'of'the'toolset'

•  Validate'the'architecture'

•  Exercise'with'a'WP7'case'study'

•  Exercise'ORK+'por.ng'to'XtratuM''

Figure 5: Architecture of the real-time safety systems development framework.

• Support for non-functional requirements: The frame-
work has to provide mechanisms for specifying and
validating these requirements. Additionally, the inte-
gration of requirements from different components must
be supported. Currently safety, real-time, and security
requirements are being considered.

• Support for multi-core architectures: Current processor
technologies are more and more based on multicores.
Design aspects such as modelling, partition allocation,
or response time analysis, should be supported.

• System modelling: The toolset must provide means for
modelling the whole system, including the applications,
platform, and any other elements required for its descrip-
tion.

• Support for system deployment: this implies the gener-
ation of a bootable software image with the hypervisor
and the partitions code, including the operating systems
and applications allocated to them.

The current framework design is shown in figure 5. A system
model is composed of three models:

• Platform model: it describes the execution platform, in-
cluding hardware, hypervisor, operating system. The
platform model relies on UML-MARTE, with some ex-
tensions.

• Applications model: it includes the functional model
and the required non-functional properties.

• Partitioning restrictions model: it describes the restric-
tions to be fulfilled by a valid partitioning of the system.

Platform and applications models are independent of a par-
ticular system. In this way, it is possible to reuse them in

different developments. The restrictions model includes in-
formation that applies to a particular system, and any specific
criteria for partitioning. Restrictions may include statements
that must be fulfilled by a valid partitioning, such as “an appli-
cation must be allocated to a given partition”, “an application
must (not) be in the same partition as another one”, “an appli-
cation requires a particular hardware device”, or “a partition
or application must run on a given core or processor”.

The system partitioning component is in charge of generating
a valid system partitioning, i.e. a number of partitions, an
allocation of applications to partitions, and an assignment of
computational resources to partitions. This information is de-
scribed in the deployment model. A deployment model must
meet the defined restrictions, as well as the specification of
non-functional requirements. For example, if an application
has a certain criticality level, it must not be allocated to the
same partition as a non-critical application.

Some non-functional requirements may be difficult to validate.
The validation component can provide validation tools for
some of them. For example, a validation tool can support
the validation of real-time requirements by carrying out a
response time analysis of the system.

As above, inputs to validation processes can be generated au-
tomatically. Failure to validate one or more requirements can
provide feedback to add restrictions to the partitioning model,
so that an alternative deployment model can be produced.

The final step of development consists of the generation of
the following final artefacts:

• Hypervisor configuration files, for implementing a be-
haviour compliant with the deployment model.

• System building files, for automatically generating the
final executable system.

Volume 35, Number 1, March 2014 Ada User Jour na l

J.A. de la Puente et a l . 59

• Source code skeletons, for the main entities.

The framework is currently under development. There are
working versions of system model, and the artifacts genera-
tion tools. With respect to the partitioning component, it is
possible to define partitions manually. The automatic parti-
tioning algorithm is under development. Finally, there is an
ongoing work on the support for response time analysis of
partitioned multi-core systems. The framework is currently
tailored for a LEON3 hardware architecture, the XtratuM
hypervisor, and the ORK+ operating system. Code skeletons
generation is targeted to Ravenscar Ada.

4 Software validation approach
The flight version of the on board computer, based on a
LEON3 processor, is still under development. For this reason,
an engineering model is currently being used for preliminary
software validation. The engineering model is based on a
GR-XC3S1500 Spartan3 development board with a LEON2
processor at 40MHz clock frequency and 64 MB of SDRAM.
Cache memory is not used in this implementation. The main
difference between the LEON2 processor used in the engi-
neering model and the envisaged production LEON3 are that
the latter has a 7-stage pipeline instead of the 5-stage pipeline
of LEON2. The differences between these versions of the pro-
cessors are not significant as they are not central for system
behaviour.

The engineering version of the OBC is being used to test
and analyse some parts of the software that already mature
enough for preliminary validation. For example, there is a
working version of the ADCS subsystem, implementing an
elaborate attitude control algorithm that has been designed
by aerospace engineers, based on a mathematical model of
the spacecraft dynamics and the torque perturbations. Due
to the complexity of the model, a functional model has been
created with Simulink in order to design, test and validate the
structure of the control algorithm and to tune its parameters
to the most appropriate values.

As it is not possible to test the satellite software in its real
environment, a software validation facility (SVF) including
hardware-in-the-loop (HIL) simulation has been built. The
basic idea is to test the embedded system against a simulation
model instead of the real environment. The test environment
includes a simulation model that interacts with the control
module running on the real computer, as shown in figure 6.
Some additional components have been included as well, in
order to model the sensors and actuators that carry out the
interaction between the computer and the modelled environ-
ment. The tests performed so far show a correct behaviour of
the attitude control software. The SVF approach has also been
used to analyse the worst-case execution time and the maxi-
mum response time of the attitude control procedure [17].

In order to validate the partitioned architecture described
in 2.3, a prototype has been built with the two partitions shown
in figure 4b. The partitioned system runs on the on-board
computer. The platform management partition interacts with
the SVF computer. The ADCS partition executes the control

SVF

OBC!
engineering!

model
simulation!

model HMI

RS-232

analog IF

Figure 6: Architecture of the software validation facility.

algorithm, and interacts with the other partition in order to
exchange data with the SVF simulation of the spacecraft
dynamics.

The results of this exercise have been quite promising. Sys-
tem partitioning has been straightforward using the devel-
opment framework. The original application was split into
two components that were allocated to different partitions.
Communication was performed using the XtratuM mecha-
nisms for inter-partition interaction. Partitioning and resource
assignment have been done manually. The generation of the
artefacts has simplified the deployment of the final system.
The next steps include to continue the UPMSat-2 develop-
ment, and to apply this technology to a more complex system.
We are also planning to make an assessment of the response
time analysis facilities, in order to guarantee the required
timing behaviour.

5 Conclusions and future plans
Model-driven engineering has lived up to its promise to raise
abstraction level and make software development easier. Be-
ing able to reason with models in the development of the
UPMSat-2 software is a real gain over older development
methods, and lets the design team concentrate on the system
behaviour rather than implementation details.

The use of the TASTE toolset for the monolithic software ver-
sion is straightforward. We are modelling most of the system
behaviour with SDL, except for the ADCS component which
is being modelled with Simulink. Automatic code generation
from the models has enabled experimenting with the ADCS
algorithm and carry out analysis and testing procedures on
this subsystem at an early stage. The implementation of
this software version on the monolithic GNAT/ORK/LEON3
platform is also straightforward, as this is a well-known and
proven platform for space systems.

The partitioned version of the software leaves room for ex-
perimenting newer software development methods and tools.
Using a partitioned architecture allows the design engineers
to separate subsystems from each other and assigning them
different criticality levels. For example, the system manager,
the ADCS, and the communications (TTC) subsystems can be
assigned level B (as per ECSS-Q-ST-80), whereas the experi-
ments in the payload can be considered level C, as they are
not critical for the success of the mission. Even subsystems
with the same criticality level can profit from partitioning, as
they can be validated independently, thus simplifying qualifi-
cation. However, the virtualization kernel has to be qualified
at the maximum criticality level of the partitions, which may
in turn make the qualification process more complex. This

Ada User Jour na l Vo lume 35, Number 1, March 2014

60 Exper ience in Spacecraf t On-board Sof tware Development

issue is being addressed in the MultiPARTES project, where
a roadmap to the qualification of the satellite software case
study based on UPMSat-2 is being developed.

Effective use of a partitioned approach such as discussed
above requires support from a toolset that integrates parti-
tioning with modelling and code generation. The toolset that
has been described in the paper has already shown a high
potential for this development paradigm, and is also being
completed in the framework of MultiPARTES.

Other topics dealt with in the paper, such as the use of a soft-
ware validation facility with a hardware-in-the-loop configu-
ration and the way to overcome some minor inconsistencies
in the design of actuator control tasks, are directly extracted
from the authors’ experience and have also contributed to
clarifying the development process

Plans for the near future include completing the design and
implementation of the monolithic software system, and carry-
ing out the complete validation and qualification activities as
required by the ESA standards. This requires testing on the
flight computer with the actual I/O devices.

With respect to the partitioned software systems, the imme-
diate tasks are completing the toolset, finalise the software
design (note that the functional model is the same as in the
monolithic version), and complete the roadmap to ESA quali-
fication.

Acknowledgments.
The work described in this paper has been partially funded
by the Spanish Government, project HI-PARTES (TIN2011-
28567-C03-01), and by the European Commission FP7 pro-
gramme, project MultiPARTES (IST 287702).

The UPMSat-2 project is led by IDR/UPM.3 We would like to
acknowledge the collaboration of the IDR team, TECNOBIT,
as well as the MultiPARTES consortium members.

References
[1] LEON3 - High-performance SPARC V8 32-bit Processor.

GRLIB IP Core User’s Manual (2012).

[2] European Cooperation for Space Standardization (2009),
ECSS-E-ST-40C Space engineering — Software, Mar.
Available from ESA.

[3] European Cooperation for Space Standardization (2009),
ECSS-Q-ST-80C Space Product Assurance — Software
Product Assurance, Mar. 2009. Available from ESA.

[4] A. Esquinas, J. Zamorano, J. A. de la Puente, M. Mas-
mano, I. Ripoll, and A. Crespo (2011), ORK+/XtratuM:
An open partitioning platform for Ada, in Reliable
Software Technologies — Ada-Europe 2011 (A. Ro-
manovsky and T. Vardanega, eds.), no. 6652 in LNCS,
pp. 160–173, Springer-Verlag, 2011.

[5] P. Fortescue, G. Swinerd, and J. Stark (2011), Spacecraft
Systems Engineering. Wiley, 4 ed.

3Instituto Ignacio da Riva, www.idr.upm.es.

[6] V. Bos, P. Mendham, P. Kauppinen, N. Holsti, A. Crespo,
M. Masmano, J. de la Puente, and J. Zamorano (2013),
Time and space partitioning the EagleEye Reference
Mission, in Data Systems in Aerospace — DASIA 2013,
(Porto, Portugal).

[7] S. Trujillo, A. Crespo, and A. Alonso (2013), Multi-
PARTES: Multicore virtualization for mixed-criticality
systems, in Euromicro Conference on Digital System
Design, DSD 2013, pp. 260–265.

[8] M. Masmano, I. Ripoll, A. Crespo, and S. Peiró (2010),
XtratuM for LEON3: An opensource hypervisor for
high-integrity systems, in Embedded Real Time Soft-
ware and Systems — ERTS2 2010, (Toulouse (France)).

[9] M. Perrotin, E. Conquet, P. Dissaux, T. Tsiodras, and
J. Hugues (2010), The TASTE toolset: Turning human
designed heterogeneous systems into computer built ho-
mogeneous software, in Embedded Real Time Software
and Systems — ERTS2 2010, (Toulouse (France)).

[10] Mathworks, Simulink, 2013.

[11] ITU (2011), Specification and Design Language –
Overview of SDL-2010. Recommendation ITU-T Z.100.

[12] P. Feiler (2012), Architecture Analysis & Design Lan-
guage — SAE AADL AS5506B. SAE.

[13] E. Salazar, A. Alonso, M. A. de Miguel, and J. A. de la
Puente (2013),A model-based framework for developing
real-time safety Ada systems,” in Reliable Software Tech-
nologies - Ada-Europe 2013 (H. Keller, E. Plödereder,
P. Dencker, and H. Klenk, eds.), vol. 7896 of Lecture
Notes in Computer Science, pp. 127–142, Springer
Berlin Heidelberg.

[14] OMG (2011), Unified Modeling Language (UML). Ver-
sion 2.4.1.

[15] OMG (2011), UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems. Version 1.1.

[16] A. Alonso, E. Salazar, and J. A. de la Puente (2014),
A toolset for the development of mixed-criticality parti-
tioned systems, in 2nd Workshop on High-performance
and Real-time Embedded Systems.

[17] J. Garrido, D. Brosnan, J. A. de la Puente, A. Alonso,
and J. Zamorano (2012), Analysis of WCET in an ex-
perimental satellite software development, in 12th In-
ternational Workshop on Worst-Case Execution Time
Analysis (T. Vardanega, ed.), vol. 23 of OpenAccess
Series in Informatics (OASIcs), pp. 81–90.

[18] J. Garrido, J. Zamorano, and J. A. de la Puente (2013),
Static analysis of WCET in a satellite software subsys-
tem,” in 13th International Workshop on Worst-Case
Execution Time Analysis (C. Maiza, ed.), vol. 30 of
OpenAccess Series in Informatics (OASIcs), pp. 87–96.

Volume 35, Number 1, March 2014 Ada User Jour na l

 61

Ada User Journal Volume 35, Number 1, March 2014

SPARK 2014 Rationale: Formal Containers
Claire Dross

AdaCore, France

Abstract

This paper continues the publication of the "SPARK
2014 Rationale", which was started in the previous
issue of the Ada User Journal. In this instalment, we
present three contributions on the use of formal
containers in SPARK.

1 Formal Containers

SPARK 2014 excludes data structures based on pointers.
Instead, one can use the library of formal containers. They
are variant of the Ada 2012 bounded containers,
specifically designed and annotated to facilitate the proof
of programs using them.

To work around the previous restriction, the content of a
data structure can be hidden using private types. Thanks
to specification functions, a model can be defined for the
content of these data structures that can then be used to
specify the API functions. For example, here is a SPARK
2014 specification of a linked list package using pointers.
It uses a specification function Get_Model that returns the
content of a linked list as an array:

package Lists is

 pragma SPARK_Mode (On);

 type Int_Array is array (Positive range <>) of
 Integer;
 type My_List is private;

 function Get_Model (L : My_List) return Int_Array;

 function Head (L : My_List) return Integer with
 Post => Get_Model (L) (1) = Head'Result;

 function Cons (I : Integer; L : My_List)
 return My_List
 with Pre => Get_Model (L)'Last < Natural'Last,
 Post => Get_Model (Cons'Result) = I &
 Get_Model (L);

private
 pragma SPARK_Mode (Off);

 type My_List_Record is record
 Head : Integer;
 Tail : My_List;
 end record;

 type My_List is access My_List_Record;

end Lists;

Instead of implementing such a linked list package
herself, a user may want to use a generic container
package from the library. For example, the package
Ada.Containers.Doubly_Linked_Lists offers two sub-
programs, First_Element and Prepend, that can be used in
place of Head and Cons. Unfortunately, these packages
are not adapted to formal verification. In particular,
cursors, that are iterators over containers, contain an
internal reference to their container. As a consequence,
every sub-program that modifies a container also silently
modifies every cursor that references it.

As part of the SPARK 2014 development, new containers
library have been introduced. Those formal containers,
available under Ada.Containers.Formal_<something>,
closely resemble Ada 2012 bounded containers except
that cursors are not tied to a particular container and can
be valid in several of them. This modification allows in
particular to refer to the element designated by a given
cursor Cu in a container Cont before and after a
modification of Cont using the same cursor. For example,
we can specify a procedure that takes a list of integers L
and a cursor Cu and increments the element designated by
Cu in L:

package My_Lists is new
Ada.Containers.Formal_Doubly_Linked_Lists
 (Element_Type, My_Eq);

use My_Lists;

procedure Increment_Element (L : in out List;
 Cu : Cursor) with
 Pre => Has_Element (L, Cu) and then
 Element (L, Cu) < Element_Type'Last,
 Post => Has_Element (L, Cu) and
 Element (L, Cu) = Element (L'Old, Cu) + 1;

Note that the specification of the procedure
Increment_Element is not complete. Indeed, it does not
state that the rest of the list L is not modified, that is, that
it contains the same elements in the same order and that
iteration can be done on L before and after the
modification using the same cursors. These frame
condition statements are common enough for the formal
containers packages to include specific functions that
facilitate their expression.

The function First_To_Previous takes a container Cont
and a cursor Cu in argument and returns a container that is
Cont where Cu and every cursor following it in Cont have
been removed:

62 SPARK 2014 Rat ionale: Formal Containers

Volume 35, Number 1, March 2014 Ada User Journal

function First_To_Previous (Container : List;
 Current : Cursor) return List;

The function Current_To_Last takes a container Cont and
a cursor Cu in argument and returns a container that is
Cont where every cursor preceding Cu in Cont have been
removed:

function Current_To_Last (Container : List;
 Current : Cursor) return List;

Finally, the function Strict_Equal takes two containers
and returns true if and only if they contain the same
elements in the same order and iteration can be done on
both of them using the same cursors.

function Strict_Equal (Left, Right : List)
 return Boolean;

Thanks to these function, we can complete the
specification of Increment_Element:

procedure Increment_Element (L : in out List;
 Cu : Cursor) with
 Pre => Has_Element (L, Cu) and then
 Element (L, Cu) < Element_Type'Last,
 Post => Has_Element (L, Cu) and then
 Element (L, Cu) = Element (L'Old, Cu) + 1
 and then
 Strict_Equal (First_To_Previous (L, Cu),
 First_To_Previous (L'Old, Cu))
 and then
 Strict_Equal (Current_To_Last (L, Next(L, Cu)),
 Current_To_Last (L'Old, Next(L'Old, Cu)));

The implementation of Increment_Element is as simple as
calling procedure Replace_Element from the formal
containers' API:

procedure Increment_Element (L : in out List;
 Cu : Cursor) is
begin
 Replace_Element (L, Cu, Element (L, Cu) + 1);
end Increment_Element;

And guess what? GNATprove manages to prove
automatically that the implementation above indeed
implements the contract that we specified for
Increment_Element. And that no run-time errors can be
raised in this code. Not bad for a non-trivial specification!

2 Expressing Properties over Formal
Containers

We saw in the previous post how formal containers can be
used in SPARK code. In this post, I describe how to
express properties over the content of these containers,
using quantified expressions. In their simplest form,
quantified expressions in Ada 2012 can be used to express
a property over a scalar range. For example, that all
integers between 1 and 6 have a square less than 40:

(for all J in 1 .. 6 => J * J < 40)

or that every even integer greater than 2 can be expressed
as the sum of two primes (also known as Goldbach's
conjecture):

(for all J in Integer =>
 (if J > 2 then
 (for some P in 1 .. J / 2 => Is_Prime (P) and then
 Is_Prime (J - P))))

The second form of quantified expressions allows to
express a property over a standard container. For
example, that all elements of a list of integers are prime,
which can be expressed by iterating over cursors as
follows:

(for all Cu in My_List => Is_Prime (Element (Cu)))

The general mechanism in Ada 2012 that provides this
functionality relies on the use of tagged types (for the
container type) and various aspects involving access types
so cannot be applied to the SPARK formal containers.

Instead, we have defined in GNAT an aspect Iterable that
provides the same functionality in a simpler way, leading
also to much simpler object code. For example, here is
how it can be used on a type Container_Type:

type Container_Type is ... -- the structure on which we
 -- want to quantify
 with Iterable => (First => My_First,
 Has_Element => My_Has_Element,
 Next => My_Next);

where My_First is a function taking a single argument of
type Container_Type and returning a cursor:

function My_First (Cont : Container_Type)
 return My_Cursor_Type;

and My_Has_Element is a function taking a container and
a cursor and returning whether this cursor has an
associated element in the container:

function My_Has_Element (Cont : Container_Type;
 Pos : My_Cursor_Type) return Boolean;

and My_Next is a function taking a container and a cursor
and returning the next cursor in this container:

function My_Next (Cont : Container_Type; Pos :
 My_Cursor_Type) return My_Cursor_Type;

Now, if the type of object Cont is iterable in the sense
given above, it is possible to express a property over all
elements in Cont as follows:

(for all Cu in Cont => Property (Cu))

The compiler will generate code that iterates over Cont
using the functions My_First, My_Has_Element and
My_Next given in the Iterable aspect, so that the above is
equivalent to:

declare
 Cu : My_Cursor_Type := My_First (Cont);
 Result : Boolean := True;

C. Dross 63

Ada User Journal Volume 35, Number 1, March 2014

begin
 while Result and then My_Has_Element (Cont, Cu)
loop
 Result := Result and Property (Cu);
 Cu := My_Next (Cont, Cu);
 end loop;
end;

where Result is the value of the quantified expression.

We have used the Iterable aspect to provide quantification
for formal containers, using the functions First,
Has_Element and Next of the formal containers' API. For
example, the definition of formal doubly linked lists looks
like:

type List (Capacity : Count_Type) is private with
 Iterable => (First => First,
 Next => Next,
 Has_Element => Has_Element);

This allows a user to specify easily the contract of a
function that searches for the first occurrence of 0 in a
doubly linked list, using here contract cases:

function Search (L : List) return Cursor with
 Contract_Cases =>
 -- first case: 0 not in the list
 ((for all Cu in L => Element (L, Cu) /= 0) =>
 Search'Result = No_Element,

 -- second case: 0 is in the list
 (for some Cu in L => Element (L, Cu) = 0) =>
 Element (L, Search'Result) = 0
 and then
 (for all Cu in First_To_Previous (L, Search'Result)
 => Element (L, Cu) /= 0));

The first case specifies that, when the input list does not
contain the value 0, then the result is the special cursor
No_Element. The second case specifies that, when the
input list contains the value 0, then the result is the first
cursor in the list that has this value.

3 Verifying Properties over Formal
Containers

We saw in the previous post how we could express
complex properties over formal containers using
quantified expressions. In this post, I present how these
properties can be verified by the proof tool called
GNATprove.

A naive support for formal containers would consist in
adding contracts to all subprograms in the API of formal
containers, and let GNATprove analyze calls to these
subprogram as it does for regular code. The problem with
that approach is that, either we add lightweight contracts
which don't allow proving all properties of interest, or we
add heavyweight contracts that make it harder to prove
properties automatically. So instead, we chose to
"axiomatize" the library of formal containers, that is, we
directly wrote axioms explaining to the prover how they
work. This particularity is specified using a specific

annotation pragma in the implementation of formal
containers:

pragma Annotate (GNATprove,
 External_Axiomatization);

GNATprove makes some hypothesis on the function
parameters used for the instantiation of a formal
container. Let's see how this works on My_Sets, a set of
integers defined as follows:

type Element_Type is new Integer range 1 .. 100;

function Hash (Id : Element_Type) return Hash_Type;

function Equivalent_Elements (I1, I2 : Element_Type)
 return Boolean;

function My_Equal (I1, I2 : Element_Type)
 return Boolean is
(I1 = I2);

package My_Sets is new
Ada.Containers.Formal_Hashed_Sets
 (Element_Type => Element_Type,
 Hash => Hash,
 Equivalent_Elements => Equivalent_Elements,
 "=" => My_Equal);

Note that we do not support passing operators as actuals
in a generic instantiation, so we cannot leave the default
argument for the parameter "=" nor explicitly give the
equality symbol "=" as an argument. We need to
introduce a function wrapper My_Equal.

For GNATprove to give correct results, the arguments of
the generic instantiation must respect some crucial
properties:

1. The functions Hash, Equivalent_Elements, and
My_Equal must not read or write any global.

2. Then, as specified in the Ada reference manual, the
function Equivalent_Elements should be an
equivalence relation.

GNATprove uses these properties in its proofs, so, for
example, it can always prove automatically that the
following properties hold for Equivalence_Elements:

-- Reflexivity
pragma Assert (for all E in Element_Type =>
 Equivalent_Elements (E, E));

-- Symmetry
pragma Assert
 (for all E1 in Element_Type =>
 (for all E2 in Element_Type =>
 (if Equivalent_Elements (E1, E2) then
 Equivalent_Elements (E2, E1))));

-- Transitivity
pragma Assert
 (for all E1 in Element_Type =>
 (for all E2 in Element_Type =>
 (for all E3 in Element_Type =>

64 SPARK 2014 Rat ionale: Formal Containers

Volume 35, Number 1, March 2014 Ada User Journal

 (if Equivalent_Elements (E1, E2) and
 Equivalent_Elements (E2, E3) then
 Equivalent_Elements (E1, E2)))));

Let us now see how we can prove programs using
My_Sets. As an example, let us consider a function
Double_All that takes a set of elements S and returns the
set of all the doubles of elements of S:

-- A subtype of Set with Capacity 100.
-- The Modulus discriminant is used for the hash
-- function.
subtype My_Set is Set (Capacity => 100,
 Modulus => Default_Modulus (100));

function Double_All (S : My_Set) return My_Set with
 Pre => (for all E of S => E <= 50),
 Post => (for all E of S => Contains
 (Double_All'Result, 2 * E));

The precondition of function Double_All states that it is
called on a set whose elements are all less than or equal to
50, using a quantified expression. Its postcondition states
that the result of the function contains all the doubles of
the elements of the function argument.

Here is a possible implementation for Double_All:

function Double_All (S : My_Set) return My_Set is
 R : My_Set;
 Current : Cursor := First (S);
begin
 Clear (R);

 while Has_Element (S, Current) loop
 pragma Loop_Invariant
 (Length (R) <= Length (First_To_Previous
 (S, Current))
 and then
 (for all Cu in First_To_Previous (S, Current) =>
 Contains (R, 2 * Element (S, Cu))));
 Include (R, 2 * Element (S, Current));
 Next (S, Current);
 end loop;
 return R;
end Double_All;

Note that we use a call to the procedure Clear at the
beginning of the program for GNATprove to know that
the set R is empty. The proof of Double_All requires a
loop invariant. It states that we have already included in R
the elements that appear in S before the Current cursor
using the function First_To_Previous. We also need to
bound the length of R to be able to prove that we do not
exceed the capacity of R. Remark that we cannot prove
that the length of R is equal to the number of already
included elements. Indeed, since we do not know the
definition of Equivalent_Elements, it could be the case
that two elements of S have the same double modulo this
relation.

GNATprove proves automatically that the code of
Double_All cannot raise a run-time exception, and that is
implements the contract of the function.

 65

Ada User Journal Volume 35, Number 1, March 2014

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/adaanswers/gems.

Gem #153: Multicore Maze Solving,
Part 1
Pat Rogers, AdaCore

Abstract. This Gem series introduces the "amazing" project
included with the GNAT Pro compiler examples. The project
is so named because it involves maze solving (as in "Joe and
Julie go a-mazing"). But these aren’t typical mazes that have
only one solution. These mazes can have many solutions,
tens of thousands, for example. The point is to find all of
them as quickly as possible. Therefore, we solve the mazes
concurrently, applying multiple CPUs in a divide-and-
conquer design. In this first Gem we introduce the program
and explain the approach.

Let’s get started…

This Gem series introduces the "amazing" project included
with the GNAT Pro compiler examples. The project is so
named because it involves maze solving (as in "Joe and Julie
go a-mazing"). But these aren’t typical mazes that have only
one solution. These mazes can have many solutions, tens of
thousands, for example. The point is to find all of them as
quickly as possible. Therefore, we solve the mazes
concurrently, applying multiple CPUs in a divide-and-
conquer design. In this first Gem we introduce the program
and explain the approach.

We actually have two programs for maze solving: one
sequential and one concurrent. Based on the notion of a
mouse solving a maze, the sequential program is named
mouse and the concurrent version is named – you guessed it
– mice. Both are invoked from the command line with
required and optional switches. The available switches vary
somewhat between the two, but in both cases you can either
generate and solve a new maze or re-solve a maze previously
generated.

When generating a new maze you have the option to make it
"perfect", that is, to have only one exit. Otherwise the maze
will have an unknown number of solutions. For our purposes
we use mazes that are not perfect, and in fact the number of
solutions depends solely on the size of the mazes and the
random way in which they are generated.

Switches "-h" and "-w" allow you to specify the height and
width of a new maze, but other than that their layout is
randomly determined. In addition, the concurrent program
allows you to specify the total number of tasks available for
solving the maze using the "-t" switch. This switch is useful
for experimentation, for example in determining the effect of
having a great many tasks, or in determining the optimal
number of tasks relative to the number of processors
available. There are four tasks available by default. The
concurrent program will run on as many or as few processors
as are available.

Finally, you can control whether a maze and its solutions are
displayed. At first glance this might seem a strange option,
but displaying them makes the program heavily I/O-bound
and serialized, hiding the benefits of parallelism and making
it difficult to determine the effects of design changes.
Disabling the display is achieved via the "-q" switch.

After either program solves a new maze, you are asked
whether you want to keep it. If so, you specify the file name
and the program then writes it out as a stream. To re-solve an
existing maze you specify both the "-f" switch and the file’s
name.

As the programs execute they display the maze, the unique
solutions through the maze, and the running total of the
number of solutions discovered (unless the "-q" switch is
applied). Currently there are two kinds of "console"
supported for depicting this information. The selection is
determined when building the executables, under the control
of a scenario variable having possible values "Win32" and
"ANSI".(Terminals supporting ANSI escape sequences are
common on Linux systems, so there is a wide range of
supported machines.

Now that you know what the programs can do, let’s see how
they do it.

The sequential mouse program illustrates the fundamental
approach. As it traverses the maze, it detects junctions in the
path where more than one way forward is possible. There
may be three ways forward, in fact, but not four because that
would involve going back over the location just visited.
Hence, at any junction the mouse saves all but one of the
other alternative locations, along with the potential solution
as it is currently known, and then pursues that one remaining
lead. Whenever the mouse can go no further – either because
it has encountered a dead end or because it has found the
maze exit – it restores one of the previously saved alternative
location/solution pairs and proceeds from there. The program
is finished when the mouse can go no further and no
previous alternatives are stored.

The mice program uses the same basic approach, except it
does it concurrently. A "searcher" task type implements the
sequential mouse behavior, but instead of storing the
alternatives at junctions, it assigns a new searcher task to
each of the alternatives. These new searchers continue
concurrently (or in parallel) with the searcher that assigned
them, themselves assigning new searchers at any junctions
they encounter. Only when no additional searcher task is
available does any given searcher store alternative leads for
later pursuit. If it does restore a lead, it uses the same
approach at any further junctions encountered.

A new searcher task may be unavailable when requested,
because we use a pool of searcher instances, with a capacity
controlled by the command-line parameter. When no further
progress is possible, a searcher task puts itself back into this
pool for later assignment, so additional searchers may be
available when restored leads are pursued. The main program

66 Ada Gems

Volume 35, Number 1, March 2014 Ada User Journal

waits for all the searchers to be quiescent, waiting in the pool
for assignments, before finishing.

The body for the Searcher task type (declared in package
Search_Team) implementing this behavior follows:

 task body Searcher is
 Path : Traversal.Trail;
 The_Maze : constant Maze.Reference :=
 Maze.Instance;
 Current_Position : Maze.Position;
 Myself : Volunteer;
 Unsearched : Search_Leads.Repository;
 begin
 loop
 select
 accept Start (My_ID : Volunteer;
 Start : Maze.Position;
 Track : Traversal.Trail)
 do
 Myself := My_ID;
 Current_Position := Start;
 Path := Track;
 end Start;
 or
 terminate;
 end select;

 Searching : loop
 Pursue_Lead (Current_Position, Path,
 Unsearched);

 if The_Maze.At_Exit (Current_Position) then
 Traversal.Threaded_Display.Show (Path,
 On => The_Maze);
 end if;

 exit Searching when Unsearched.Empty;

 -- Go back to a position encountered earlier that
 -- could not be delegated at the time.
 Unsearched.Restore (Current_Position, Path);
 end loop Searching;

 Pool.Return_Member (Myself);
 end loop;
 end Searcher;

The Searcher task first suspends, awaiting either initiation, to
start pursuing a lead, or termination. The rendezvous thus
provides the initial location and the currently known solution
path. The parameter My_Id is a reference to that same task
and is used by the task to return itself back into the pool,
when searching is finished. The accept body simply copies
these parameters to the local variables. The other local
variables include a reference to the maze itself (we use a
singleton for that) and the repository of unsearched leads,
used to store position/solution pairs for future pursuit.

As the task searches for the exit, procedure Pursue_Lead
delegates new searcher tasks to alternatives when junctions
are encountered. The procedure returns when no further
progress can be made on a given lead. In effect we "flood"

the maze with searcher tasks, so this is a divide-and-conquer
design typical of classical concurrent programming.

In the next Gem in this series, we will describe a
fundamental implementation change made very recently
(September 2013) to the original concurrent program. This
change solved a critical performance bottleneck that was not
present when the original program was first deployed in the
1980s, illustrating one of the fundamental differences
between traditional multiprocessing and modern multicore
programming.

As mentioned, the "amazing" project is supplied with the
GNAT Pro native compiler. Look for it in the
share/examples/gnat/amazing directory located under your
compiler’s root installation. Note that the design change will
appear in future releases of the compiler.

Gem#154 Multicore Maze Solving,
Part 2
Pat Rogers, AdaCore

Abstract. This series of Gems describes the concurrent maze
solver project ("amazing") included with the GNAT Pro
examples. The first Gem in the series introduced the project
itself and explained the concurrent programming design
approach. This second Gem explores the principal change
that was required for optimal performance on multicore
architectures. This change solved a critical performance
bottleneck that was not present when the original program
was first deployed in the 1980s, illustrating one of the
fundamental differences between traditional multiprocessing
and modern multicore programming.

Let’s get started…

This series of Gems describes the concurrent maze solver
project ("amazing") included with the GNAT Pro examples.
The first Gem in the series introduced the project itself and
explained the concurrent programming design approach. This
second Gem explores the principal change that was required
for optimal performance on multicore architectures. This
change solved a critical performance bottleneck that was not
present when the original program was first deployed in the
1980s, illustrating one of the fundamental differences
between traditional multiprocessing and modern multicore
programming.

The original target machine was a Sequent Balance 8000, a
symmetric multiprocessor with eight CPUs and shared
memory. The operating system transparently dispatched Ada
tasks to processors, so one could write a highly portable
concurrent Ada program for it. In the 1980s this was a very
attractive machine, as you might imagine. The resulting
program successfully demonstrated Ada's capability to
harness such architectures, as well as the general benefits of
parallel execution. In particular, the execution time for the
sequential version of the maze solver grew at an alarming
rate as the number of maze solutions grew larger, whereas
the parallel version showed only modest increases.
(Remember, the point is to find all the possible solutions to a
given maze, not just one.)

The program was indeed highly portable and ran on a
number of very different vendors' machines, some parallel
and some not. Over time, we have incorporated the language
revisions' advances, primarily protected types, and added
features such as command-line switches for flexibility, but

Ada Gems 67

Ada User Journal Volume 35, Number 1, March 2014

the architecture and implementation have largely remained
unchanged. Until recently, that is.

As described in the first Gem in this series, the program
"floods" the maze with searcher tasks in a classic divide-and-
conquer design, each searcher looking for the exit from a
given starting point. The very first searcher starts at the maze
entrance, of course, but as any searcher task encounters
intersections in the maze, it assigns another identical task to
each alternative location, keeping one for itself. Thus, a
searcher task that finds the exit has discovered only part of a
complete solution path through the maze. If the very first
searcher happened to find the exit, it would have a complete
solution, but all the other searchers have only a part of any
given solution path because they did not start at the entrance.

As the searchers traverse the maze they keep track of the
maze locations they visit so that those locations can be
displayed if the exit is eventually found. But as we have
seen, those locations comprise only a partial path through the
maze. Therefore, when a successful searcher displays the
entire solution it must also know the locations of the solution
prior to its own starting point, as well as the locations it
traversed itself to reach the exit. To address that requirement,
when a searcher is initiated at a given starting location it is
also given the current solution as it is known up to that
location. The very first searcher is simply given an empty
solution, known as a "trail" in the program. Successful
searchers display both the part they discovered and the part
they were given when started.

Note that these partial solutions are potentially shared,
depending on the maze. (Solutions are unique if any
constituent maze locations are different, but that does not
preclude partial sharing.) Those maze locations closer to the
entrance are likely to be heavily shared among a large
number of unique solutions. Conceptually, the complete
solutions form a tree of location sequences, with prior shared
segments appearing earlier in the tree and unique
subsegments appearing beneath them. The maze entrance
appears once, in the root at the top of the tree, whereas the
maze exit appears at the end of every solution.

Imagine, then, how one might want to represent this tree.
Given that segments of the solutions – the trails – are likely
shared logically, perhaps we can also share them physically.
However, as a shared data structure, race conditions are an
obvious concern. We therefore want a representation that
will minimize the locking required for mutual exclusion. We
also want a representation that can contain any number of
location pairs per segment because the mazes are randomly
generated initially. That is, we don't know how many
locations any given solution will contain, much less how
many solutions there will be.

An unbounded, dynamically allocated list of maze locations
meets these goals nicely. It can directly represent the logical
sharing and can handle trails of any length as long as

sufficient memory is available. Even better, no mutual
exclusion locking is required because we only need to
append list segments to prior, existing segments. There is no
need to alter the prior segments themselves, so there is no
need to lock the tree at all!

The representation seems ideal, and for the original
symmetric multiprocessor target it was a reasonable
approach, but when the program was run on modern
multicore machines the performance was very poor. Indeed,
individual processor utilization was so poor that the
sequential version of the maze solver was quite competitive
with the concurrent version.

Poor processor utilization is the key to the problem. Even
though we are harnessing multiple processors and can have
as many threads available per processor as we may want,
individual processors are performing poorly. The problem is
caused by poor cache utilization, itself a result of poor
locality of reference. Specifically, the dynamically allocated
elements within the trails are not in memory locations
sufficiently close to one another to be in the same cache line,
thereby causing many cache misses and poor overall
processor performance.

The issue is that searcher tasks must also examine the
locations within their prior solution trails as they search for
the exit. (In other words, not only when displaying
solutions.) They do so to prevent false circular solutions
through the maze, made possible by the presence of
intersections. Therefore, the searcher tasks must determine
whether they have been to a given location in the maze
before including that location in their solution. Not all
location pairs in a trail need be visited, however, to perform
this check. The presence of an intersection in a prior path
segment suffices to indicate circular motion, so each trail
includes a list of intersections, and it is this secondary list
that the searchers examine. Unfortunately any benefits of that
implementation optimization are overwhelmed by the results
of the cache misses.

A different trail representation is needed for programs
intended for multicore targets, one with much better locality
of reference. Arrays have that precise characteristic, so we
have chosen a bounded, array-backed list to represent trails.
That choice will not surprise those familiar with this
problem, even though the resulting copying and lack of
physical sharing would argue against it.

In the next Gem in this series we will provide the details of
this implementation change and the reusable components
involved.

As mentioned, the "amazing" project is supplied with the
GNAT Pro native compiler. Look for it in the
share/examples/gnat/amazing/ directory located under your
compiler’s root installation. Note that the described design
change will appear in future releases of the compiler.

68

Volume 35, Number 1, March 2014 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Reliable Software in Bioinformatics: Sequence Alignment with Coq, Ada and SPARK
	Physical Units with GNAT
	Tool Qualification for Safety Related Systems
	Experience in Spacecraft On-board SoftwareDevelopment
	SPARK 2014 Rationale: Formal Containers
	Ada Gems
	National Ada Organizations

