

Ada User Journal Volume 35, Number 2, June 2014

ADA
USER
JOURNAL

Volume 35

Number 2

June 2014

Contents
Page

Editorial Policy for Ada User Journal 70

Editorial 71

Quarterly News Digest 72

Conference Calendar 94

Forthcoming Events 100

Press Release

 “Ada 2012 Language Standard Published in Springer's LNCS and as Free eBook” 104

Articles

 M. Mefteh, N. Bouassida and H. Ben-Abdallah
“Feature Model Extraction from Documented UML Use Case Diagrams” 107

Proceedings of the “Workshop on Mixed Criticality for Industrial Systems” of Ada-Europe 2014 117

 R. Davis et al.
“PROXIMA: A Probabilistic Approach to the Timing Behaviour of Mixed-Criticality Systems” 118

 A. Alonso and E. Salazar
“Toolset for Mixed-Criticality Partitioned Systems: Partitioning Algorithm and Extensibility
Support” 123

 P. Lindgren, D. Pereira, J. Eriksson, M. Linder and L.M. Pinho
“RTFM-lang Static Semantics for Systems with Mixed Criticality” 128

 M. Jan, L. Zaourar, V. Legout and L. Pautet
“Handling Criticality Mode Change in Time-Triggered Systems through Linear Programming” 133

 O. Cros, F. Fauberteau, L. George and X. Li
“Mixed Criticality over Switched Ethernet Networks” 138

 A. Cohen, V. Perrelle, D. Potop-Butucaru, E. Soubiran and Z. Zhang
“Mixed Criticality in Railway Systems: A Case Study on Signaling Application” 144

Ada-Europe Associate Members (National Ada Organizations) 148

Ada-Europe Sponsors Inside Back Cover

70

Volume 35, Number 2, June 2014 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 71

Ada User Journal Volume 35, Number 2, June 2014

Editorial

This editorial is being written at the location of the 19th International Conference on Reliable Software Technologies – Ada-
Europe 2014, in the heart of Paris, France, after a really intense week. As usual, the five days of the conference provided both
very rich technical contents (some of which we start publishing in this issue) as well as a very pleasant networking
atmosphere; I would like to congratulate the conference committees for the excellent week we enjoyed!

I also take the opportunity to invite our readers to the next Ada-Europe conference, which will take place in Madrid, Spain,
22-26 June 2015, organised by the Universidad Politécnica de Madrid. More details about Ada-Europe 2015 can be found in
the forthcoming events section of the Journal. Also in this section the reader will find updated information on the SIGAda
HILT 2014 conference, which will be co-located with the SIGPLAN SPLASH conference, in Portland, Oregon, October 18-
21, 2014. And I am very pleased to inform about the next edition of the International Real-Time Ada Workshop, which will
take place April 2015, in Vermont, USA. We expect to publish the call for papers of IRTAW 2015 in the next issue of the
Journal.

Concerning the technical contents of this issue, the first paper, from a group of authors from the Sfax University, Tunisia and
King Abdulaziz University, Saudi Arabia, presents an automated approach to extract the features model from software
product lines.

Afterwards, the issue publishes the Proceedings of the “Workshop on Mixed Criticality for Industrial Systems”, which took
place at Ada-Europe 2014, June 27. The workshop provided a discussion forum on research and practice in Mixed-Criticality
Systems, showing how research activities interact with industrial needs. The workshop program consisted of a keynote talk,
and two technical sessions.

The keynote talk was given by Albert Cohen, senior research scientist in the PARKAS group at INRIA, France on the topic
of “Correct-by-Construction Multiprocessor Programming: A Common Approach for Parallel and Mixed-Critical System
Design”. Multicore and mixed-criticality are important topics, being even more important to provide safe ways to develop
such kind of systems.

The first technical session started with a position paper on the PROXIMA project, on the topic of probabilistic approaches for
timing behaviour of mixed-criticality systems, from a group of authors from multiple institutions: the University of York,
UK, University of Padova, Italy, Aeroflex Gaisler, Sweden, Sysgo, France, Rapita Systems, UK, Ikerlan, Spain, Airbus
Operations, France, INRIA Paris-Rocquencourt, France, Astrium, France, Infineon Technologies, UK and Barcelona
Supercomputing Center, Spain. Then, a work from Universidad Politécnica de Madrid, Spain, provided insights in the support
for automatic partitioning generation in the MultiPARTES toolset. The third work, from the Luleå University of Technology,
Sweden and the CISTER Research Centre, Portugal, described the RTFM-lang approach using compile-time analysis to
distinguish critical and non-critical functions and generate the appropriate access mechanisms.

The second session of the workshop started with a work from CEA-LIST, France, Virginia Tech, USA and Telecom
Paristech, France, showing how a linear programming approach can be used to generate time-triggered schedules for mode
changes in dual-criticality systems. After that, a work from ECE Paris and University Paris-Est, France, analysed how to
integrate criticality handling in the IEEE 1588 Precision Time Protocol. And finally, a work from INRIA, Technological
Research Institute SystemX, and Alstom Transport, France, presented a case study of mixed-criticality systems, in a
signalling railway application.

It was a very rich workshop, with fruitful interaction between participants promoting collaboration between the different
communities represented. A very interesting day at the end of the Ada-Europe week.

 Luís Miguel Pinho
Paris

June 2014
 Email: AUJ_Editor@Ada-Europe.org

72

Volume 35, Number 2, June 2014 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Events 72
Ada Semantic Interface

Specification (ASIS) 73
Ada-related Resources 74
Ada-related Tools 74
Ada-related Products 81
Ada and Operating Systems 82
References to Publications 84
Ada Inside 84
Ada in Context 85

Ada-related Events

Ada-Europe 2014 in Paris

From: Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be>

Date: Sun, 4 May 2014 21:29:23 +0200
Subject: 19th Int.Conf. Reliable Software

Technologies, Ada-Europe 2014
To: Ada-Europe-attendees@

cs.kuleuven.be

Call for Participation

*** PROGRAM SUMMARY ***

19th International Conference on Reliable
Software Technologies -

Ada-Europe 2014

23-27 June 2014, Paris, France

http://www.ada-europe.org/
conference2014

Organized by Ada-France on behalf of
Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN and the

Ada Resource Association (ARA)

*** Online registration open! ***

All info available on conference web site

Early registration discount until May 31

The 19th International Conference on
Reliable Software Technologies - Ada-
Europe 2014 takes place in Paris, France,
from June 23 to 27, 2014. It is an exciting
event with an outstanding technical
program, keynote talks, and exhibition
from Tuesday to Thursday, and a rich
program of workshops and tutorials on
Monday and Friday.

The conference is hosted by ECE, a
French engineering school located near

the Tour Eiffel, right in the heart of Paris,
with convenient connections to all places
of interest, and lots of facilities around.

An event not to be missed!

The Ada-Europe series of conferences has
become established as a successful
international forum for providers,
practitioners and researchers in all aspects
of reliable software technologies. These
events highlight the increased relevance
of Ada in safety and security-critical
systems, and provide a unique opportunity
for interaction and collaboration between
academics and industrial practitioners.

Extensive information is available on the
conference web site, such as the list of
accepted papers and industrial
presentations, and detailed descriptions of
all workshops, tutorials and keynote
presentations.

Also check the conference web site for
registration, accommodation and travel
information.

Quick overview

- Mon 23 & Fri 27: tutorials

- Tue 24 - Thu 26: core program

Proceedings

- published by Springer

- volume 8454 in Lecture Notes in
Computer Science series (LNCS)

- will be available at conference

Program co-chairs

- Laurent George, LIGM/UPEMLV -
ECE Paris, France
lgeorge@ieee.org

- Tullio Vardanega, University of Padova,
Italy
tullio.vardanega@unipd.it

Invited speakers

- Robert Lainé, "Lessons Learned and
Easily Forgotten",
drawing from his many years of
experience in space projects leadership
at the European Space Agency and
EADS Astrium.

- Alun Foster, "From ARTEMIS to
ECSEL: Growing a Large Eco-System
for High-Dependability Systems",
 about the results achieved in ARTEMIS
and the objectives of the new ECSEL
program, as Acting Executive Director
and Programme Manager of the
ARTEMIS JU.

- Mohamed Shawky, "Future Challenges
in Design Tools and Frameworks for

Embedded Systems; Application to
Intelligent Transportation Systems",
presenting his futuristic work at the
Université de Technologie Compiègne.

Workshops (full day)

- Workshop on "Challenges and new
Approaches for Dependable and Cyber-
Physical Systems Engineering" (De-CPS
2014),
 organized by CEA and Thales

- Workshop on "Mixed Criticality
Systems" (WMCIS 2014): Challenges of
Mixed Criticality Approaches and
Benefits for the Industry,
 organized by ECE

Workshop (half day)

- "Ada 2012: le point sur le langage" (Ada
2012: Assessing the Language), a special
session in French for software managers
who want to learn about the current state
of Ada, organized by Ada-France.

Tutorials (full day)

- "Robotics Programming",
Lars Asplund, Asplund Data, Sweden

- "Introduction to Verification with
SPARK 2014",
Rod Chapman, Altran UK, Yannick
Moy, AdaCore, France

Tutorials (half day)

- "Proving Safety of Parallel/Multi-
Threaded Programs",
 Tucker Taft, AdaCore, USA

- "Multicore Programming using Divide-
and-Conquer and Work Stealing",
Tucker Taft, AdaCore, USA

- "Debugging Real-time Systems",
Ian Broster and Andrew Coombes,
Rapita Systems, UK

- "Developing Mixed-Criticality Systems
with GNAT/ORK and Xtratum",
Alfons Crespo, Universidad Politécnica
de Valencia, Alejandro Alonso,
Universidad Politécnica de Madrid, Jon
Pérez, Ikerlan, Spain

- "High-Integrity Object-Oriented
Programming with Ada 2012",
Ben Brosgol, AdaCore, USA

- "Ada 2012 (Sub)type and Subprogram
Contracts in Practice",
Jacob Sparre Andersen, JSA Research &
Innovation, Denmark

- "Technical Basis of Model Driven
Engineering",
William Bail, The MITRE Corporation,
USA

Ada Semantic Inter face Specif icat ion 73

Ada User Journal Volume 35, Number 2, June 2014

- "An Overview of Software Testing with
an Emphasis on Statistical Testing",
William Bail, The MITRE Corporation,
USA

Papers and Presentations

- 12 refereed technical papers in sessions
on Formal Methods, Uses of Ada, Real-
Time Scheduling, Applications

- 6 industrial presentations in sessions on
Ada in Aerospace, Ada in Railways

- 3 presentations in special "Experience
Report" session

- submissions by authors from 22
countries, and accepted contributions
from Austria, Canada, Denmark, France,
Germany, Italy, Portugal, Republic of
Korea, Spain, Sweden, UK, and USA

GNAT Retrospective

- 20th anniversary of GNAT as a
supported open-source Ada compiler

- started new era for distribution and
promotion of Ada language

- retrospective will look back at these
important 20 years

Vendor exhibition

- 5 exhibitors already committed:
AdaCore, Altran, Ellidiss Software,
Rapita Systems, and Squoring
Technologies; others expected to
confirm soon

- vendor presentation sessions in core
program

Social events

- each day: coffee breaks in the exhibition
space and sit-down lunches offer ample
time for interaction and networking

- Tuesday evening: Welcome Party

- Wednesday evening: Cruise and
Conference Banquet, the traditional
Ada-Europe banquet will be on board an
all-glass luxury boat, cruising along the
Seine right in the heart of Paris!

Registration

- early registration discount up to
Saturday May 31, 2014

- additional discount for academia, Ada-
Europe, ACM SIGAda, SIGBED and
SIGPLAN members

- a limited number of student discounts is
available

- registration includes copy of printed
proceedings at event

- includes coffee breaks and lunches

- three day conference registration
includes all social events

- payment possible by credit card, check,
or bank transfer

- see registration page for info on novel
student waiver program!

Please make sure you book
accommodation as soon as possible.

Paris will be very busy in that week.

For more info and latest updates see the
conference web site at

<http://www.ada-europe.org/
conference2014>.

Ada Semantic Interface
Specification (ASIS)

ASIS to XML Tools

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Thu, 20 Mar 2014 11:27:44 -0400
Subject: Re: Kickstarter for beginning work

on a new open-source Compiler
Newsgroups: comp.lang.ada

> [...]

The latest GNAT Pro ASIS fully supports
Ada 2012. I don't know if that has made it
into the GPL version yet.

It will likely be updated to support Ada
2022 (or whatever it will be) when that
comes along.

> translates (using ASIS GPL 2012 and
my ASIS2XML) to

I didn't know about your ASIS2XML
project until now.

Do you know about gnat2xml? It is a
similar tool produced by AdaCore. (I
wrote it.) It is based on ASIS, and
supports Ada 2012. Looking at:

http://gnat-asis.sourceforge.net/
pmwiki.php/Main/ASIS2XML

I see some differences:

- gnat2xml has cross-links. E.g. each
name points to the declaration it denotes,
and each expression points to its type.

- There is an XML schema, automatically
generated by an ASIS-based tool called
gnat2xsd.

- Each XML element has a "source
location", which tells you the starting
and ending line and column numbers for
the corresponding source text. The root
of the tree has various information,
including the name of the source file.

- There is also a mode in which gnat2xml
generates XML interspersed with Ada
source text, including comments.

I think XML is horrible. But it has the
advantage of being standard, and
everybody uses it, and there are all sorts
of useful XML-based tools out there.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Fri, 21 Mar 2014 12:07:39 -0400
Subject: Re: Kickstarter for beginning work

on a new open-source Compiler
Newsgroups: comp.lang.ada

> [...]

That's the xml2gnat tool, which back-
translates XML into Ada. It was
originally developed for testing purposes:
Ada-->XML--Ada ought to produce an
Ada program that has identical output to
the original.

Then I rewrote the pretty-printer (gnatpp)
to use that same Ada-generating code.
gnatpp does not use XML, but almost all
of the code in xml2gnat is shared by
gnatpp.

You could use xml2gnat on modified
XML, but you would have to make sure
the XML looks like what gnat2xml would
generate from some legal Ada. Validating
it against the schema using xmllint would
help with that. But nobody at AdaCore
has ever done that; we use xml2gnat
purely for testing gnat2xml. For example,
we run all the executable ACATS tests
that way (translate the test into XML, then
back into Ada, then compile and run the
generated Ada, and the output should be
identical to the output of the original
ACATS test, with the usual "=====
PASSED ================"
message).

The first version of xml2gnat left out all
the comments, which aren't needed for the
above kind of testing. But of course
gnatpp can't leave out comments, so now
xml2gnat also includes the comments,
using the same shared code.

[...]

The Future of ASIS

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 20 Mar 2014 15:17:26 +0100
Subject: Re: Kickstarter for beginning work

on a new open-source Compiler
Newsgroups: comp.lang.ada

> [...]

Since there is currently only one
implementation of Ada 2012, and since
this implementation's ASIS is following
the compiler, the decision was taken that
the only sensible path was to let GNAT
do the work, and standardize on that.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 21 Mar 2014 06:23:35 +0100
Subject: Re: Kickstarter for beginning work

on a new open-source Compiler
Newsgroups: comp.lang.ada

> Hopefully though, the ASIS WG will
come out with the proper specs soon.

That's the problem: there is no ASIS WG
anymore. The ARG tried to take over, but
it's resources are limited, and better used
to the maintenance of the language.

> And FYI, another reason why we need
another competing implementation :D

As far as ASIS is concerned, the Gela
project was promising. The idea was to
have a compiler targeting ASIS, and then

74 Ada-related Tools

Volume 35, Number 2, June 2014 Ada User Journal

 make code generation from ASIS. It was
sufficiently advanced that AdaControl
compiled with it (except for GNAT
extensions for Ada 2005/2012), and even
passed a good part of its test suite.

Unfortunately, the author turned to other
occupations. It would be nice to have
volunteers taking over this project.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 21 Mar 2014 17:51:12 -0500
Subject: Re: Kickstarter for beginning work

on a new open-source Compiler
Newsgroups: comp.lang.ada

> [...] Have any private documents made
public so that we or others who want to
try to implement it, can do? That is, if
there are any that are still private.

No. ASIS (unlike the Ada standard) is
owned by ISO, and we can't give away
their "property". In any case, the updated
ASIS standard draft was effectively
rejected by the ASIS implementors (by
ignoring it and doing their own thing).
Vendors have told us outright that they
don't think there is any value to an ASIS
standard and that they won't support one
if it is made. As such, there is no point in
putting any more effort into it.

I suggest considering ASIS past Ada 95
as implementation-specific. Perhaps
someday there will be agreement on a
way forward, but it really only matters for
people that want to port ASIS tools. At
this point, that community appears to
exist solely of J-P Rosen -- everybody
else seems to be using GNAT ASIS only
(or one of the Atego ASIS
implementations only). So there's little
point to a standard.

If you disagree, then you need to form
your own ASIS WG, put pressure on
ASIS vendors to define a consistent set of
extensions and ways to plug the many
holes in the ASIS standard, and then it's
likely that the energy to actually update
the standard will materialize. The key
here is the pressure on vendors from
customers -- they have to see a benefit
from having a standard -- they don't see
that now.

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue, 25 Mar 2014 17:16:43 +0200
Subject: Re: Kickstarter for beginning work

on a new open-source Compiler
Newsgroups: comp.lang.ada

>>>> There is also GELA ASIS:
http://gela.ada-ru.org/gela_asis_ug

>>> Unfortunately, still incomplete and
not making progresses any more.

Yes, the project itself is kind of alive (or
zombie at least?). Source repository saw
commits just 9 days ago:

http://forge.ada-ru.org/gela/browser

And the latest release (0.3.2) is from
December 2013:

http://www.ada-ru.org/files/
gela-asis-0.3.2.tar.bz2

I guess the author is not that active on
keeping the documentation up-to-date. :)

(PS: Most of this was provided via
#ada@Freenode IRC channel. It is quite
good information source for all kinds of
informal "news".)

Ada-related Resources

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sun May 11 2014
Subject: Repositories of Open Source

software

AdaForge: 8 repositories [1]

Bitbucket: 109 repositories [2]

 16 developers [2]

Codelabs: 18 repositories [3]

Free(code): 79 [4]

GitHub: 543 repositories [5]

 127 developers [6]

Rosetta Code: 596 examples [7]

 27 developers [8]

Sourceforge: 229 repositories [9]

[1] http://forge.ada-ru.org/adaforge

[2] http://edb.jacob-sparre.dk/Ada/
on_bitbucket

[3] http://git.codelabs.ch/

[4] http://freecode.com/search?page=1&
submit=Search&with=2880

[5] https://github.com/search?
q=language%3AAda&type=Repositories

[6] https://github.com/search?
q=language%3AAda&type=Users

[7] http://rosettacode.org/wiki/
Category:Ada

[8] http://rosettacode.org/wiki/
Category:Ada_User

[9] http://sourceforge.net/directory/
language%3Aada/

[See also “Repositories of Open Source
Software”, AUJ 35-1, p. 6. —sparre]

Ada-related Tools

Bound-T: RAM Usage
Analysis for AVR-Ada

From: Vinicius Franchini
<viniciusnf@gmail.com>

Date: Sun, 19 Jan 2014 10:18:18 -0800
Subject: Ram Usage
Newsgroups: comp.lang.ada

I'd like to know if there are any way to
know how much of ram is been used by
my code.

I tried the avr-size, but it gives you just
the static ram. The problem is how to
evaluate the full memory consumption,
including the non-static part.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Mon, 20 Jan 2014 11:40:15 +0200
Subject: Re: Ram Usage
Newsgroups: comp.lang.ada

> [...]

For stack consumption you can try a static
analyzer such as my Bound-T
(www.bound-t.com). This analyzer does
not (yet) address the GNAT secondary
stack, but, if I remember correctly, there
is no secondary stack in GNAT for AVR.
I have no suggestions for heap memory
usage.

[Since January 2014 Bound-T has been
Open Source software. —sparre]

Markdown to HTML

From: Natasha Kerensikova
<lithiumcat@gmail.com>

Date: Sun, 19 Jan 2014 22:26:04 +0000
Subject: RFC: markdown to HTML library
Newsgroups: comp.lang.ada

I have been working on an Ada library
that parses lightweight markup languages
and render them in various output format
(somewhat like pandoc, except I'm not
sure my architecture scales easily to a
feature set as big as pandoc's).

I wanted to integrate it in the server for
my website and let it run in production for
a while before formally realising it,
however for various reasons it may take a
while before I reach that point.

Currently, the library is fully functional
with only Markdown front-end and
(X)HTML back-end, it passes the official
markdown test suite (that I don't distribute
because of licence uncertainty) and a
decently-covering homegrown test suite
(according to gcov, it covers 1112 lines
out of 1217 in official markdown front-
end, 657/732 lines in markdown
extensions, and 348/398 lines in
(X)HTML back-end).

Since recently there has been discussions
here about Ada for the web, and there's
even a FOSDEM talk about it, so maybe
Markdown-to-HTML is of interest too.

I would be greatly interested in hearing
any comment or criticism or event bug
reports about it.

Features request are welcome too, though
I can't tell for now when I will manage to
look into them. Currently reStructuedText
front-end and fully-configurable ODT
back-end are on my radar. I can get into
the details of how it works internally, but

Ada-related Tools 75

Ada User Journal Volume 35, Number 2, June 2014

I won't bore you with it if it's not
necessary.

The code is released under ISC licence
and currently available on github at
http://github.com/faelys/markup-ada and
eventually the "official" fossil repository
will be on my aforementioned website.

POSIX File Descriptors as
Streams

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Thu, 06 Mar 2014 11:51:59 +0100
Subject: POSIX streams
Newsgroups: comp.lang.ada

I've just written a package wrapping a
POSIX file descriptor as an Ada stream
for use at AdaHeads:

http://repositories.jacob-sparre.dk/
posix-streams

Feel free to reuse it as Beer-Ware or
GPLv3.

ZanyBlue

From: Michael Rohan
<michael@zanyblue.com>

Date: Sun, 9 Mar 2014 22:08:43 -0700
Subject: ANN: ZanyBlue v1.2.0 Beta

Available
Newsgroups: comp.lang.ada

A new release of ZanyBlue is now
available: 1.2.0 Beta. This is an Ada
library currently targeting localization
support for Ada (along the lines of Java
properties) with supporting message
formatting and built-in localization for
about 20 locales.

The properties files are compiled into Ada
sources which are then built with your
application and used to access application
messages at run-time. The run-time locale
is used to select localized messages, if
they are available.

The changes for this release are:

- Updates for building with GNAT 2013.

- Moved usage of Generic packages to
library level (stricted accessibility
checks with GNAT2013).

- Dropped definition of "ld run path"
definition (created issues on MacOS).

- Updated CLDR data to v24 Release (see
cldr.unicode.org).

- Allow localization for +/- characters to
be multi-character strings.

- Improved errors messages for invalid
zbmcompile command line arguments.

- Implemented message filtering for all
Print routines.

- Added directory tree level initialization
files for zbtest.

- Bugfixes, e.g., handling OS LANG
values with dashes in the encoding.

- Some documentation updates.

- Added a patch to ZanyBlue-ize GNAT
GPS 5.2.1 (released with GNAT 2013).
The resultant executable is identical to
the standard gps but with support for
pseudo translation (no real attempt is
made to supply localized properties files
for GPS).

Please see the project page on Source
Forge for download links, documentation,
etc,

http://zanyblue.sourceforge.net

This project is licensed under a simple
BSD style license.

Adaino

From: Pablo Rego <pvrego@gmail.com>
Date: Tue, 11 Mar 2014 04:26:10 -0700
Subject: Adaino (2.0) released
Newsgroups: comp.lang.ada

I am pleased to announce that I released
my library for coding Arduino-like boards
with Ada using avr-elf-windows, in
github for public access. Named Adaino, I
just released v.2.0.

https://github.com/pvrego/adaino

Request: LEGO Mindstorms
EV3 Development Kit

From: Karen Sarkisyan
<karen.sarkisyan@gmail.com>

Date: Tue, 11 Mar 2014 02:02:41 -0700
Subject: Ada for Mindstorms EV3
Newsgroups: comp.lang.ada

I'm interested to know if there are some
examples of Ada code or developments
for the new version of Lego Mindstorms
(EV3 Brick). I know that there is much
done for NXT, but the question is about
present/future of Ada on this new
platform. Any ideas? As far as I know,
NXT development resources are
incompatible with EV3.

Something from AdaCore to use (Open
Source)?

Emacs Ada Mode

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sat, 15 Mar 2014 08:09:29 -0500
Subject: Emacs Ada mode 5.1.1 and wisi

1.0.2 released
Newsgroups: comp.lang.ada

Emacs Ada mode 5.1.1 and wisi 1.0.2 are
now available in Gnu ELPA, and on my
web page:

http://stephe-leake.org/emacs/
ada-mode/emacs-ada-mode.html

See the NEWS file there for release notes.

The main changes are support for Emacs
24.2 (for Debian stable) and better
support for aspects. There are also several
bug fixes.

Ada EL

From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: Wed Mar 19 2014
Subject: Ada EL 1.5.0 is available
URL: http://blog.vacs.fr/vacs/blogs/

post.html?post=2014/03/19/
Ada-EL-1.5.0-is-available

Ada EL is a library that implements an
expression language similar to JSP and
JSF Unified Expression Languages (EL).
The expression language is the foundation
used by Java Server Faces and Ada Server
Faces to make the necessary binding
between presentation pages in
XML/HTML and the application code
written in Java or Ada.

The presentation page uses an UEL
expression to retrieve the value provided
by some application object (Java or Ada).
In the following expression:

 #{questionInfo.question.rating}

the EL runtime will first retrieve the
object registered under the name
questionInfo and look for the question and
then rating data members. The data value
is then converted to a string.

The new release is available for download
at http://download.vacs.fr/ada-el/ada-el-
1.5.0.tar.gz

This version brings the following
improvements:

- EL parser optimization (20% to 30%
speed up).

- Support for the creation of Debian
packages.

Augusta

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Wed, 19 Mar 2014 09:24:36 -0400
Subject: Augusta: An open source Ada 2012

compiler (someday?)
Newsgroups: comp.lang.ada

In another thread Shark8 posted a
proposal to build an IDE+compiler for
Ada 2012. In his post he notes that having
a second open source compiler offering
(besides GNAT) for Ada would be good
for the Ada community.

I agree.

GNAT is a fine product but it would
enrich the eco-system if there were
alternatives. Accordingly I started a pet
project for myself to build an Ada 2012
compiler from the ground up which I'm
calling "Augusta." The project is here:

 https://github.com/pchapin/augusta

I am not as naive as I probably sound. I
fully understand that such a project is
massive and not likely to actually ever be
completed. Fortunately that's not
important to me. The project is just a
hobby project and its *real* purpose is to
provide me with a source of entertainment

76 Ada-related Tools

Volume 35, Number 2, June 2014 Ada User Journal

in my off hours. It can fulfill that role
perfectly well even if it never amounts to
anything. This situation also frees me to
make design choices that interest me
without feeling the need to justify them
rationally. For example Augusta will be
written in Scala and will target LLVM. I
choose these technologies because I like
them and I'd like to learn more about
them, not because I think they are
somehow the "best" or most logical
choices.

I have been planning to announce
Augusta's existence to the community at
some point but right now the project is
99% talk and 1% action (at most) and I
had thought to wait until the balance was
a little different. However, Shark8's
announcement of his IDE proposal made
this seem like a reasonable time. I support
his desire to develop such tools and who
knows... perhaps Augusta can play some
role in his project someday.

Right now Augusta is little more than a
place holder with some documents
outlining my vision for the project. I have
set a release date for myself of December
31, 2020 in an effort to apply some
structure to my work. My hope is to have
something "interesting" done by that
time... although I'm not going to claim it
will be full Ada 2012.

In the meantime I've been using Augusta
as a source of class examples and student
exercises in a compiler course I'm
teaching at Vermont Technical College.
The work there has been in a sub-project
called Allegra which is intended to be a
compiler for a series of highly reduced
Ada subsets with increasing complexity.
In addition to supporting my course, my
thought was to use Allegra as a kind of
experimentation space for the
technologies that will ultimately be part of
Augusta. However, I'm not clear how
much, if any, of the methods used in
Allegra would actually transfer to the
more complex Augusta project itself.

Anyway, enough said... I invite anyone
who is interested to browse around in the
project. Let me know if you have any
questions or comments.

[See also “Augusta”, AUJ 34-2, p. 68.
—sparre]

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Wed, 19 Mar 2014 20:56:46 +0200
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

[...] it is nice to always see someone to
start a new open source Ada compiler to
"compete" with GNAT (or just for
hobby), however in the history all of the
earlier attempts have sadly failed. The
Open Source Ada community may be too
small and diverse for such a project.

One alternative approach could be to
persuade one of the existing Ada vendors

to open source their compiler; perhaps
even create a (kickstarter) project to
collect the money required for it. (Like it
was done for Blender.[1])

[1] https://en.wikipedia.org/wiki/
Blender_%28software%29#History

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Wed, 19 Mar 2014 23:04:50 GMT
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [https://github.com/pchapin/augusta]

Good luck!

> [...]

LLVM appears to have problems
supporting nested (locally declared)
subprograms. This appears to be behind
slow progress on the Dragonlace project,
to use Gnat as an LLVM front end.

Tristan Gingold has recently added an
experimental LLVM interface to GHDL
(a VHDL compiler; I strongly believe
Ada and VHDL users should talk to each
other more than they do!) and he also ran
into this.

As VHDL makes heavy use of parallel
processes, he indicated he would reuse his
implementation of processes - essentially
closures - to support local subprograms. I
don't know the details of how he does
this.

(The other advantage of gcc as a backend
is that it opens up many more target
processors. It would be nice to be able to
support both, and the code required in
GHDL to support both is really not very
much)

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 20 Mar 2014 11:49:27 +0100
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...]

All those who have been involved in an
Ada compiler will tell you that it is a lot
more difficult than it appears, unless you
stick to the Pascal subset and don't care
for validation.

In the early days of Ada, we have seen
compilers announcing proudly that they
passed 95% of the validation and that
delivery was expected in a few weeks -
they never succeeded to pass the
remaining 5%.

For example, and as a test, make sure you
are able to understand the implications of
4.3.3 (a nightmare for code generation),
or 13.14, or 3.10.2(3/2)...

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Fri, 28 Mar 2014 07:31:36 -0400
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...]

One reason why I choose Scala as an
implementation language for Augusta is
because I wanted to see if I could
productively take advantage of Scala's
functional features when writing a serious
compiler. As much as I like Ada, I don't
think Ada is the most wonderful compiler
implementation language imaginable.

For example Scala's algebraic data types
and pattern matching make processing
trees quite enjoyable and compilers tend
to use a lot of trees. Also Scala has good
support for creating what the community
calls "internal domain specific
languages." See for example Graph for
Scala (http://www.scala-graph.org/), a
library for manipulating graphs (perhaps
control flow graphs?) in a arguably
elegant way. Finally, of course, there
might be interesting ways to use higher
order functions. I won't know until I try.

My intention has also been to use LLVM
or something similar (C, the JVM, etc) as
a back end to reduce the amount of work
involved in actually getting executable
code generated. I understand it is still
necessary to generate code for whatever
target I use, but the targets above are all
higher level than machine language and
so (I anticipate) easier to manage.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 31 Mar 2014 18:43:28 -0500
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...] As much as I like Ada, I don't think
Ada is the most wonderful compiler
implementation language imaginable.

But of course Ada is the most wonderful
language for everything. :-) :-)

Seriously, though, Ada's strengths are in
building large long-lived systems, and any
serious attempt to build an alternative Ada
compiler has to plan to be a large, long-
lived system. Add in the advantages in
"eating your own dogfood", and it seems
like the obvious choice for such a project.

It seems to me that you have other goals,
which is of course fine, but it does a
disservice to hold up something that's not
really designed for long life as a true
alternative system.

> [...]

What's sad (to me) about this is that Ada
has added a lot of stuff since Ada 83 that
might be very helpful to implementing an
structuring a compiler. But all of the
existing Ada front-ends originated in Ada
83 and don't use much in the way of Ada
95 features much less newer versions. (It
simply doesn't make sense to rewrite large
portions of a compiler's code just because
one could -- a lot of the time, rewrites
don't actually end up any better than the
code they replaced, just swapping a set of
known problems for unknown ones.)

Ada-related Tools 77

Ada User Journal Volume 35, Number 2, June 2014

For instance, Ada 2012 has tree
containers that exist in large part because
of how common such structures are in
compilers and similar applications (like
XML and HTML). It would be
interesting, for instance, to see if an
expression tree written using a class-wide
node type stored in an indefinite tree
container could be efficient enough to use
in a compiler implementation. I'd
probably at least consider such a structure
(which would eliminate all storage
management from being a concern) rather
than a access-and-variants that we use.
Maybe it wouldn't be better, but it would
be different.

It also would be nice to predicates,
preconditions, null exclusions, and so on,
all of which can allow errors to be
detected earlier and easier. (Janus/Ada has
many self-checking features, but those all
require some work on use by the
programmers - it would be better to do
that just at writing.)

My point is that there is a lot of the
possibilities of Ada for compiler
construction (especially of Ada 2012) that
hasn't really been explored.

(I'm dubious that pattern matching has
much to do with the construction of a
compiler front-end, either; that's almost
exclusively the provence of optimization
and code generation, the parts of the
compiler you're not planning to work on -
- even though that's the fun part. :-)

Starting on a new Open
Source Compiler and IDE

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Tue, 18 Mar 2014 16:23:57 -0700
Subject: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

It is my belief that a new, non-GNAT,
open-source [and free] Ada 2012
translator would be a good thing for both
the Ada community and the general
programming population -- this without
even breaking from the traditional
approaches. However, I think that a good,
quality IDE/PSE could be quite
advantageous; offering better project-
management, documentation, verification,
versioning, and correctness/consistency
checking.

The working-copy of the proposal is here:

https://drive.google.com/file/d/
0BwQVNNshW39cTXVOdWxQaVJ5Wj
A/edit?usp=sharing

The link to the Kickstarter is here:

https://www.kickstarter.com/projects/
871049686/squid-open-source-compiler-
and-ide-for-the-ada-201

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Wed, 19 Mar 2014 02:06:05 -0700
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

> [...]

Short version: this will fail.

Long version follows.

The proposal itself is fundamentally
broken. You have to be aware that the
biggest challenge for the Ada community
is that of industry awareness. That is,
most of the programming community
never heard about Ada and those few that
did do not see any reason to invest their
time in it. The proposal for starting a
significant project with public funding
should focus on the rationale to explain
why such an investment makes sense. But
your proposal does not even attempt to do
that. In fact, I think that the word "Ada"
appears there fewer times than, say,
"Delphi". Leaving aside my own
relationship with Ada ;-), I see no reason
whatsoever why I should give my money
to this project.

You can see this problem in the following
way: what will happen if you replace the
word "Ada" with "Java" or "Scala" in this
proposal? It will still be the same proposal
and will still make as much (or as little)
sense. Which means that this proposal is
not about Ada. It is about your opinion
about how IDE should look like.

Which brings us to another important
flaw. The Ada (or Java or Scala, if you
decide to replace words) programming
language was *defined* in terms of text.
It *is* a text-based language. If you think
it is a problem, you will not fix it by
reinventing the IDE. You have to redefine
the programming language to break its
natural ties the text format, but if you take
the text-based language and try to work
with it as if there is no text, you will fail.
This idea (should I write IDEa?) is not
even new, it was already practiced. I have
had a misfortune to work with something
like this in the past and it was utter crap
that prevented programmers from doing
their work efficiently, because the whole
concept isolated the programmers from
the existing tools. You will never solve all
problems in the IDE, at best you will end
up with something that is miserable at
some selected aspect of programming
work and that instead of enabling
programmers to spread their wings, just
pisses everybody off.

Which basically already started by fixing
parts of the solution before exploring the
problem - I'm talking about the precise
selection of tools that you have proposed
at the very beginning: Delphi + .NET +
Mono + InterBase? Really?

No, REALLY?

I just fail to imagine Ada enthusiasts (and
you need *a lot* of enthusiasm to make
something as significant) running to
contribute to this.

Sorry.

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Wed, 19 Mar 2014 09:02:02 -0400
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

I think the proposal is interesting and I
would love to see it succeed. Maciej
Sobczak is concerned about the tool
isolation that might arise by storing
program information in a database of
ASTs (or similar). I can see how that
might be a problem. An IDE of the
proposed nature would definitely require
a robust way to import/export traditional
source text. A user of such an IDE could
then still use traditional version control
systems, CI systems, documentation
generators, etc.

I understand that environments such as
the one proposed have been attempted
before. However, just because they didn't
work well in the past doesn't mean this
attempt must necessarily fail. This attempt
could take lessons from the other systems
and, perhaps, avoid or work around the
issues that caused problems in the past.

The proposal is very ambitious because it
provides both a complex IDE and a
compiler for Ada 2012. Either one of
those projects would be daunting on its
own. To the OP: have you considered
ways of having the IDE interact with
existing compilers? Ada, in particular,
does have an ASIS standard that can
guide, to some extent, the design of
abstract program representations.

I ask this because I have a pet project of
my own to write an Ada 2012 compiler
from scratch. I will post more about that
in another thread to avoid hijacking this
one. However, my vision follows the lead
of clang, Microsoft's Roslyn C# compiler,
and to a lesser extent the Scala compiler.
Modern compilers, I believe, should not
just slurp up text and output object code.
Instead they should be provided as a
collection of well documented libraries
that can be directly loaded into other
applications. This allows applications,
such as IDEs, to exchange information
with the compiler using abstract
representations while at the same time
keeping both projects well isolated. See
the clang documentation for what I
believe is the right way to do it.

Thus as a potential Ada 2012 compiler
writer I ask: what sort of APIs would be
useful if one wanted to split off the code
analysis and generation from the IDE
itself and move it into a separately
developed library?

78 Ada-related Tools

Volume 35, Number 2, June 2014 Ada User Journal

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 19 Mar 2014 14:48:18 +0100
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

> [...]

... designed in a [obscene, dying, vendor-
locked, the list can easily be continued]
language like Delphi. I doubt Ada
community will be eager to contribute in
Delphi. I did projects in Turbo, Object
Pascal and Delphi, never again!

> [...]

Yes, and it is not the compiler alone to
interact with the system. No less
important components are:

- source code control system

- project management system

- debugger

Project management is especially
important for Ada because Ada projects
mainly are cross-platform and/or
embedded. That require handling of
various targets, cross-compilation,
linking, uploading (for embedded targets)
etc. For example, mere abstraction of OS-
specific dynamic linking as done by
GNAT project system is a huge task.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 19 Mar 2014 17:11:32 -0500
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

> [...]

Beyond that, I'd be very suspicious of any
supposedly general purpose programming
system that couldn't be created in itself.
There is a great value to eating your own
dogfood (as the saying goes). It gets rid of
gross usability problems in a hurry, and it
reduces risk in the project (as there cannot
be show-stopping bugs in the
development tools -- you just have to fix
any problems that occur).

It does require care to avoid the Catch 22
situation where an old bug is preventing
work using the old compiler and a new
bug is preventing work using a new
compiler so that there isn't any obvious
way to do any work. (That happened to us
once in the mid-1980s - I had to fix the
bug in the old compiler with a binary
patch in order to cut the Gordian knot and
continue. Have been much more careful
about regression testing before
abandoning old compiler versions since.)

And of course, we all know that Ada is
the best language for creating large
projects. An Ada development system is
surely a large project. There's a reason
that virtually all Ada compilers are largely
written in Ada. (Some share backends
with other systems, but I don't know of
any Ada frontends not written in Ada.)

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Thu, 20 Mar 2014 10:56:46 -0400
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

>...I don't know of any Ada frontends not
written in Ada.)

The AdaMagic front end is written
primarily in C, although I wrote an
optimization pass for it in Ada when I was
at Intermetrics. The run-time system is
written in Ada.

AdaMagic is used by Green Hills, ADI,
and others.

If I were writing an Ada compiler from
scratch, I would write it in Ada, using
GNAT at first, and then bootstrap.
Bootstrapping removes any licensing
concerns -- you can use whatever license
you want for your own work.

Of course, writing an Ada compiler and
an IDE is many, many years of work, as
has been pointed out.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 19 Mar 2014 16:59:48 -0500
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

> [...]

It has to provide text import to be
considered an Ada 2012 compiler. Ada
2012 requires the compiler to process
UTF-8 text in specific formats in order to
meet the standard. That's a new
requirement for Ada 2012, although as a
practical matter any Ada compiler has to
be able to process the ACATS and thus
needs to have some way to import text.

Unless you're insisting on being an island
(and that's not what Ada's about, IMHO),
you also need to have export, for no other
reason than to allow your code to be used
on other Ada compilers when necessary.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 19 Mar 2014 17:03:40 -0500
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

> I ask this because I have a pet project of
my own to write an Ada 2012 compiler
from scratch.

Ah, another delusional soul. ;-) Take it
from someone who seriously followed
that path -- there be dragons. :-) For one
thing, if you're at all successful, you'll be
stuck there for the rest of your working
life. And to get far enough to be at all
successful, you'll have to figure out how
to deal with lovely things like resolution,
visibility, and tyranny of interfaces. Odds
are, you'll never get far enough to work
on anything interesting.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 20 Mar 2014 18:04:29 -0500
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

> [...]

> With the "tyranny of interfaces" do you
mean in-general like a generic's formal
parameters and a subprogram's signature?
Or do you mean the construct of the
'interface' keyword?

The interface construct itself. The issues
with actually implementing multi-
dispatching are quite daunting, especially
given the other requirements of Ada. It
clearly can be done; whether I could
actually do it is a much more interesting
question (particularly without abandoning
other properties of our implementation).

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 19 Mar 2014 09:25:39 -0500
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

[...]

1) Why write the new tool in Delphi and
not Ada?

The Rationale section "Why implement in
Delphi 2007" provides a rationale for
implementing in dotnet, not Delphi. There
is an Ada compiler for dotnet (I think it
needs work, but you are already
proposing a huge amount of work, so
what's a little more?).

And even that rationale is not convincing.
Emacs, Eclipse, GPS are all portable to
Linux and Windows; in what other
environments do you require running the
IDE?

2) The Rationale section "Why Write an
Ada Compiler?" provides a justification
for writing an IDE plugin, not an Ada
compiler.

You can easily extract text from the
database and feed it to gnat, or any other
Ada compiler.

3) Storing text as correct, structured data:

 a) has been tried before; in Rational
R1000 (http://en.wikipedia.org/wiki/
R1000 - not a very informative link,
unfortunately). Did you review any
lessons learned from that?

 b) Prevents people checking in code so
colleagues can answer the question
"why doesn't this compile"?

 c) Prevents writing skeletons; something
I do when starting a totally new project.

4) You don't address "Why write a new
IDE rather than a plugin for an existing
one?"

IDEs are huge, complex beasts. What you
propose to do can be accommodated as a
plugin for Eclipse, Emacs, or GPS.

Ada-related Tools 79

Ada User Journal Volume 35, Number 2, June 2014

GPS from AdaCore is a nice Ada IDE,
but it lacks many features that I find
essential on a daily basis, which is why I
use Emacs instead. Any new tool you start
will be even more limited.

5) Current IDEs (GPS, Eclipse, less so
Emacs) use a parsed representation of the
source for refactoring, completion, and
the other tasks you require in an IDE.
That gives the best of both worlds.

6) What is your business plan? You are
proposing to directly compete with
AdaCore; it is not at all clear from the
proposal that you understand what that
means.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Wed, 19 Mar 2014 22:49:45 GMT
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

> One reason to use Delphi rather than
Ada is licensing; [...]

Look into that a little more closely ... it is
not the case that code *compiled* with a
GPL compiler is itself GPL'ed.

However it *is* the case that code
linked (statically) with a pure GPL
runtime system is GPL if the runtime does
not have the old "gnat modified GPL"
license (aka GMGPL) making an
exception by permitting linking to the
runtime without extending GPL to the
entire executable.

The Libre version of GNAT no longer has
GMGPL so you cannot use its runtime in
a non-GPL executable.

However, you can build a "zero footprint"
Ada program (without the RTS) as is
done for very small embedded MPUs,
Atmel AVR. MSP430 etc. and (unless I
misread the licensing) these should be
GPL-free.

Which means you could in principle
substitute another RTS licensed under
another license (GMGPL or GPLv3 with
the equivalent runtime exception) and link
your program (in this case, your own
compiler) to that RTS.

And you have to provide such an RTS
anyway.

So to use GNAT to bring up your
compiler, write the RTS first.

Here's another alternative Ada compiler
project...

https://sourceforge.net/projects/
hacadacompiler/

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 20 Mar 2014 03:21:47 -0700
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

> One reason to use Delphi rather than
Ada is licensing; [...]

There is no reason why you cannot use
the FSF GNAT, I use this instead of GPL
GNAT for the same reason. Plus I think
that GPL is not right for libs.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 20 Mar 2014 18:35:23 -0500
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

[...]

> But storing it as unprocessed text means
that you [well, your computer/tools]
have to repeat a lot of work (e.g.
parsing) again and again.

Parsing is very cheap (Emacs Ada mode
does it for indentation); the rest of the
compiler is hard.

GNAT is open source; you might be able
to split out the parsing phase from the
rest, and use that parsed representation as
the interface between the IDE and the
compiler (I have no idea if the GNAT
Ada front end is divided that way).

> Non-working code should be kept out
of the [main] code-base; this situation
can be handled with a chat/message-
board (or similar) sort of functionality -
- There's *no* need to pollute your
revisions with code that cannot work.

Not true; sometimes the reason it doesn't
compile is related to some other change
you made. So you need _all_ of the code.
And that's what CM system branches are
for.

What is in the main branch of your CM is
different than what is in some developer's
branch; controlling the flow from
developer branches to the main (release)
branch is a CM issue, not an IDE source
code representation issue.

> You can still have the procedure's "is
null" spec; and Delphi itself has been
generating empty subprograms forever.

Emacs Ada mode skeletons don't compile
in GNAT, but the indentation parser
accepts them. For example, 'case foo C-e'
expands to:

 case Foo is
 when =>
 end case;

I can store that in a file, and since it
doesn't compile, I'm reminded to finish it.

Can I store that in your database?

[...]

From: Simon Wright
<simon@pushface.org>

Date: Fri, 21 Mar 2014 08:17:40 +0000
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

> case Foo is

> when =>

> end case;

The Rational Environment used to include
recognisable and storable markers in such
cases: for example {statement}. As far as
I remember they were displayed in
inverse video to make them stand out!

From: Erlo
Date: Mon, 24 Mar 2014 21:31:54 +0100
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

>> The problem was (at least for the OS/9
cross) that the programs would compile
and link, resulting in an exception
(Illegal program, I think) when you
tried to execute the code.

> AFAICR the R1000 wouldn't do (the
equivalent of) object code generation -
"promoting to the code state"? - with
placeholders present. But it's a while
back!

Been a while for me too! I remember this
because it occurred to me that this was a
major bummer. It happened more than
once that we got these 'illegal program'
exceptions on the target caused by
placeholders.

When the guys at datamuseum.dk
(http://datamuseum.dk/wiki/Rational/
R1000s400) get their machine running,
it's worth a test.

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Thu, 20 Mar 2014 13:30:44 -0700
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

[...]

> 5. This whole project, to me, puts the
programmer too far away from the
source code. Buries it. That is not a
good objective.

That's one problem I'm trying to address,
it's not about burying the source, but
getting closer to the [underlying] structure
and ideas that the code is expressing. An
example would be CASE statements, the
language mandates that they have
complete coverage (individually or via
OTHERS) so would it be putting the
programmer "too far away from the
source" to allow something like "right-
click > show as table" to convert the
[possibly nested] CASE statement into a
decision table? I mean we already have
the mandate that all the possibilities must
be covered.

Or, imagine having the ability to visually
tinker with a [sub]type; say you have
Type Voltage is new Natural range 0 ..
220. that you could have represented with
two sliders in the same channel (for First
and 'Last) and possibly a tab for
indicating [or specifying] the
default/uninitialized value. (Perhaps
packaging Annex H's "Pragma
Normalize_Scalars" value right there with
the type.)

80 Ada-related Tools

Volume 35, Number 2, June 2014 Ada User Journal

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Sun, 23 Mar 2014 23:41:54 -0700
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

[...]

My grand, overarching idea was basically:

1) to have the first (and open-source /
freely-available) Ada 2012 compiler be
written (implementation language rather
irrelevant), then

2) have the second be written in Ada 2012
(probably w/ SPARK
verification/proving) -- hopefully w/ all
annexes (though that's a LOT of work) --
and this would be the commercial
product, then

3) have that compiler/PSE/IDE available
for implementing a verified/proved OS.

Like I said upthread; I believe that we
/need/ our foundational tools to be
without error... and that means investing
in verification & correctness checking.

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Thu, 20 Mar 2014 14:35:02 -0700
Subject: Re: ANN: Kickstarter for beginning

work on a new open-source Compiler
Newsgroups: comp.lang.ada

Good luck with this ambitious project. A
challenge is that at some point the AST
knows too much about the program. I've
developed a similar system 25 years ago
(in Turbo Pascal!) for Ada 83. The pros:
no more parsing, compilation is
straightforward, links are readily
available, the system is able to manage
the layout itself, to indent etc. . The cons:
formatting rigidity, and if the programmer
needs to make a big change, use another
package, types and so on, plus all
depending changes, he needs to have his
program "incorrect" for a while. In my
system, it meant export to text, rework the
text and then reimport the changed text.
Too cumbersome - and tools like GPS
offer nowadays navigation tools and
autocomplete even in the middle of a such
a rework, thanks to smart guessing, and
all that at text level...

Gela

From: Zhu Qun-Ying
<zhu.qunying@gmail.com>

Date: Thu, 20 Mar 2014 11:20:33 -0700
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

There is another Ada compiler project,
and it seems not developed anymore.

http://gela.ada-ru.org/

http://forge.ada-ru.org/gela/wiki

It is based on the TenDRA compiler.

[See also “The Future of ASIS”, earlier in
this issue. —sparre]

ASIS2XML

From: Simon Wright
<simon@pushface.org>

Date: Sun Mar 23 2014
Subject: ASIS2XML
URL: http://asis2xml.sourceforge.net/

ASIS2XML

ASIS is the Ada Semantic Interface
Specification; see
http://www.acm.org/sigada/WG/asiswg/.

This program converts a unit's ASIS
representation into XML, so as to make it
easier to develop transformational tools
using (for example) XSLT.

There is no XML Schema as yet. The
output's structure is quite close to that of
ASIS, at least in overall terms; for
example, an A_Defining_Name element
in ASIS is represented as a
<defining_name/> element in XML.

This project was originally hosted on
SourceForge as part of ASIS for GNAT,
and releases up to 20140413 can be found
there.

Copyright

This work is derived from the Node_Trav
component of Display_Source, which is
distributed as a part of the ASIS
implementation for GNAT and is
Copyright (c) 1995-1999, Free Software
Foundation, Inc. The original work in the
program is Copyright (c) Simon Wright .

Licensing

The work is distributed under the terms of
the GPL.

Download

http://sourceforge.net/projects/asis2xml/
files/

Prerequisites

- GNAT: GPL 2012 or later, or GCC 4.8
or later

- The corresponding GNAT ASIS

- XML/Ada 1.0 or later

Building & Use

See the file INSTALL in the distribution.

Excel Writer

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sat, 12 Apr 2014
Subject: Excel Writer v.13
URL: http://gautiersblog.blogspot.com/

2014/04/excel-writer-v13.html

Some recently added features:

- freeze panes

- cell comments

- vertical text alignment

- text orientation

- Ada.Calendar.Time Put/Write and date
built-in formats

- background colours

- wrap_text format option

- Next and Next_Row

- Text_IO's New_Line(lines), Line, Col
now available

Excel Writer (Excel_Out) is a free,
standalone, portable, open source package
for producing Excel spreadsheets with
basic formattings and page layout. It can
be used in an "Ada.Text_IO" fashion,
with Put, Put_Line and New_Line.

Download and more informations here:
http://excel-writer.sf.net/

GNAT GPL and SPARK
GPL

From: Jamie Ayre <ayre@adacore.com>
Date: Tue, 13 May 2014 09:46:33 -0400
Subject: [AdaCore] Announcing the

immediate availability of GNAT and
SPARK GPL 2014

To: libre-news@lists.adacore.com

We are pleased to announce the
availability of the GNAT and SPARK
GPL 2014 toolsets.

GNAT GPL 2014 incorporates more than
120 new features, including Ada 2012
mode enabled by default, many new
warnings and improved diagnostics, code
generation optimizations, support for
symbolic traceback in shared libraries,
and improved cross Ada/C++ exception
handling.

GNAT GPL 2014 introduces
GNAT2XML, for generating XML files
from Ada sources, which will help in
writing Ada analysis tools quickly in any
language. It also provides enhancements
to existing tools, including:

- A new version of GNATpp, providing
improved Ada layout and greater
flexibility

- Support in the GPRbuild multipurpose
builder for distributed builds, and better
support for parallel builds

It also comes with the latest version of the
GPS IDE. The complete list of the major
new features in GPS 6.0.1 is accessible
here:

http://docs.adacore.com/gps-docs/
release_notes/build/singlehtml/

SPARK GPL 2014, supporting SPARK
2014, is the first GPL release of the next
generation SPARK toolset.

The main features of the new language
and toolset are as follows:

- Convergence with Ada 2012 Syntax

- Bigger Language Subset

- Executable Contracts

- Hybrid Verification (the ability to mix
unit proof with unit test)

- Formal Container Library

Ada-related Products 81

Ada User Journal Volume 35, Number 2, June 2014

- Generative Mode for Data Dependencies
(the ability to perform data flow analysis
without explicit global declarations)

- Improved IDE feedback in relation to
information flow and verification errors

You will find documentation about the
SPARK 2014 toolset here:

http://libre.adacore.com/developers/docu
mentation

See in particular the SPARK 2014 Toolset
User's Guide to get started. You can also
read more about the SPARK 2014
language - including a growing number of
tips and tricks here:

http://www.spark-2014.org

Both toolsets can be downloaded from
libre.adacore.com.

Ada-related Products

GNAT Pro

From: AdaCore Press Center
Date: Tue Feb 25 2014
Subject: AdaCore Releases GNAT Pro 7.2
URL: http://www.adacore.com/press/gnat-

pro-7-2/

New major release of Ada software
development environment includes 120+
new features and extends support across
ARM platforms.

NEW YORK, PARIS, and
NUREMBERG, Germany, February 25,
2014 – Embedded World Conference –
AdaCore today announced the next major
release of its Ada development
environment, GNAT Pro 7.2. Embodying
the constant innovation that has driven the
product’s evolution, this latest GNAT Pro
toolsuite incorporates more than 120 new
features, many of which are based on
customer suggestions. This latest GNAT
Pro toolsuite includes several new tools,
is available on additional platforms,
implements the Ada 2012 language
standard by default, and extends its
coverage of ARM configurations. The
wide range of new or improved
functionality brings Ada developers the
benefits of increased flexibility, greater
efficiency, and broader platform support,
all within the context of AdaCore’s open
source technology and unrivaled support.

GNAT Pro is available on more native
and cross platforms than any other Ada
development environment, and the 7.2
release adds support for Wind River’s
VxWorks Cert and LynuxWorks’
LynxOS-178 Real-Time Operating
Systems (RTOS). It also extends GNAT
Pro’s ARM support to now include
Android, generic Linux on ARM,
Bareboard ARM, and Wind River’s
VxWorks 6 on ARM.

GNAT Pro 7.2 comes with the GPS
(GNAT Programming Studio) 6.0
Integrated Development Environment,

providing developers with more space for
editing and a number of design
improvements that bring program-related
information within easy reach. The
revised look and feel is supported by a
new relational database at the heart of the
GPS engine, making code navigation
much more efficient. It also includes a
new version of GNATbench, the Eclipse
plug-in. GNATbench 2.8 provides
improved support for Wind River’s
WorkBench, a new source navigation
engine, and improved support for the
CodePeer static analysis tool.

GNAT Pro 7.2 includes several new tools,
including GNAT2XML, which generates
XML files from Ada sources and helps
developers write Ada analysis tools in any
language. Enhancements to existing tools
include a new version of GNATpp (pretty
printer) with improved Ada layout, and an
enhanced GPRbuild multi-purpose builder
that offers greater flexibility and support
of both distributed and parallel builds.

Other new features of GNAT Pro 7.2
include new warnings and improved
diagnostics, code generation
optimizations, support for symbolic
traceback in shared libraries, and
improved cross Ada/C++ exception
handling.

“With so many new features and tools in
GNAT Pro 7.2, it’s difficult to choose
which to highlight,” said Cyrille Comar,
AdaCore EU Managing Director. “I’ll
pick the new, extremely efficient
distributed build capability. Its first
industrial user reported that the build time
for its complete multi-million SLOC
application went down from two hours to
five minutes on a Linux farm with dozens
of machines. This opens the door to a new
level of agility in the development of such
massive applications!”

GNAT Pro for ARM/Linux

From: AdaCore Press Center
Date: Tue Feb 25 2014
Subject: AdaCore Releases GNAT Pro 7.2

for ARM/Linux
URL: http://www.adacore.com/press/

gnat-pro-7-2-arm-linux/

New major release of AdaCore’s
development environment extends
support for ARM platforms.

NEW YORK, PARIS and
NUREMBERG, Germany, February 25,
2014 – Embedded World Conference –
AdaCore today announced the release of
its latest Ada cross-development
environment, GNAT Pro 7.2, for ARM
processors running Linux. This GNAT
Pro ARM product provides a complete
Ada development environment oriented
towards embedded systems that require
the flexibility and extensive services
provided by Linux. Developers of such
systems can now exploit the software
engineering benefits of the Ada language,

including reliability, maintainability, and
portability.

”Ada and ARM share at least one major
characteristic: they provide a combination
of strong industrial maturity and
innovative adaptability to their
ecosystem,” said Cyrille Comar, AdaCore
EU Managing Director. “While ARM was
systematically addressing the whole
spectrum of embedded, low-consumption
processors, from the smallest
microcontroller to the most powerful
multicore, Ada was addressing the rising
needs of safer programming techniques
through its enhanced support of contract
programming. Thanks to GNAT Pro’s
recent and extensive ARM support, it is
now possible to benefit from these
combined elements simultaneously.”

Incorporating more than 120 new
features, this latest GNAT Pro toolsuite
implements the Ada 2012 language
standard by default, and extends its
coverage of ARM configurations to
complement GNAT Pro products for
VxWorks 6 ARM and bare-board ARM.
Some of the new Ada 2012 language
features include:
- Contract-based programming

(preconditions, postconditions, and type
invariants).

- In-out parameters for functions (a much-
requested enhancement to the language).

- Enhanced multiprocessor support
(multiprocessor affinity and barriers).

- Enhanced integration of concurrency
and OOP (re-queue on synchronized
interfaces).

- Additional language-defined libraries
(vector/matrix libraries).

GNAT Pro 7.2 comes with the GPS
(GNAT Programming Studio) 6.0
Integrated Development Environment,
providing developers with more space for
editing and a number of design changes
that bring program-related information
within easy reach. The revised look and
feel is supported by a new relational
database at the heart of the GPS engine,
making code navigation much more
efficient. GNAT Pro 7.2 also includes a
new version of GNATbench, the Eclipse
plug-in. GNATbench 2.8 provides a new
source navigation engine and improved
support for the CodePeer static analysis
tool.

SPARK Pro

From: AdaCore Press Center
Date: Tue May 6 2014
Subject: Altran and AdaCore Release Next-

Generation Static Verification Toolset
URL: http://www.adacore.com/press/

next-gen-static-verification-toolset/

SPARK Pro 14.0 brings new proof
technology and additional language
features to developers of high-integrity
software.

82 Ada and Operat ing Systems

Volume 35, Number 2, June 2014 Ada User Journal

Altran and AdaCore announce the release
of the SPARK Pro 14.0 integrated
development and verification
environment. This product marks a major
step forward in software verification
technology, providing users with more
powerful and easier to use tools that
support the latest version of the SPARK
language, SPARK 2014. SPARK Pro 14.0
offers an integrated approach to the entire
software development and verification
lifecycle – bringing software
specification, coding, testing and unit
verification by proof within a single
integrated framework.

SPARK Pro 14.0 has been completely re-
engineered to use the latest compiler and
proof technology, providing advanced
verification of an enhanced subset of the
Ada language. The new technology also
supplies an improved user interface:
warnings generated by the tools are
displayed as navigable messages mapped
back to the source code with path
information that helps users understand
how the errors can occur.

SPARK Pro 14.0 meets the requirements
of all high-integrity software safety
standards, including DO-178B/C (and the
formal methods supplement DO-333),
CENELEC 50128, IEC 61508, and
DEFSTAN 00-56. The SPARK Pro
toolset generates evidence that can be
used to build a constructive assurance
case and demonstrate conformance to the
appropriate standard. SPARK Pro can
also be used to help achieve the highest
Evaluation Assurance Levels (EAL) of
the Common Criteria security standard.
Building software that is right the first
time avoids the costs associated with
extensive test and debug cycles and
expensive product failures and recalls.

“Given the widespread use of Intelligent
Systems across many sectors, the
adoption of the new SPARK 2014
technology makes complete business
sense” said Keith Williams, Group Vice
President, Intelligent Systems / Altran.
“Our clients need to ensure user
requirements are met and costly events
such as recalls are avoided ... SPARK Pro
14.0 does both”.

SPARK Pro 14.0 is the first version of the
toolset to support SPARK 2014, the
newest version of the language. SPARK
2014 is based on Ada 2012 and
encompasses a rich subset of the
language, excluding only those features
which would make program verification
unsound. SPARK uses and extends the
contract notation introduced in Ada 2012,
allowing software engineers to express
and formally verify key properties that
must be satisfied by a program.

“After decades as a niche technology, we
have finally reached the stage where
formal proof techniques can play an
important part in the development of a
wide range of software” said Robert

Dewar, co-founder and President of
AdaCore. “SPARK Pro 14.0 embodies the
new promise of this technology.”

Ada and Operating
Systems

OpenBSD: Compiler
Availability

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Fri, 21 Feb 2014 07:59:57 +0200
Subject: Re: Best book to learn ada?

assuming openbsd 5.4 amd64 box here
Newsgroups: comp.lang.ada

> [...]

OpenBSD has gnat. Just type

 pkg_add gnat-4.8.1p1

or

 pkg_add gnat-4.6.4p1

and you will have mostly working gnat in
your system.

Windows: Opening a Web
Page

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon Mar 3 2014
Subject: Opening a web page using default

browser with Ada on Windows
URL: http://ada.tips/opening-a-web-page-

using-default-browser-with-ada-on-
windows.html

Here is how you can open a web page
with the default browser on Windows:

with Interfaces.C; use Interfaces.C;
with Interfaces.C.Strings;
use Interfaces.C.Strings;

procedure Browser is
 Cmd : aliased char_array := To_C("open");
 HTML_Path : aliased char_array :=
 To_C ("http://ada.tips/");
 Dir : aliased char_array := To_C ("\");
 H : Long;

 function Shell_Execute
 (Wnd : Int;
 Operation, File, Parameters,
 Directory : chars_ptr;
 ShowCmd : Int) return Long;

 pragma Import (Stdcall, Shell_Execute,
 "ShellExecuteA");
begin

 -- ShellExecute(null, "open", htmlpath,
 -- NULL, "\", SW_SHOWNORMAL);
 H := Shell_Execute
 (0,
 To_Chars_Ptr (Cmd'Unchecked_Access),
 To_Chars_Ptr
 (HTML_Path'Unchecked_Access),
 Null_Ptr,
 To_Chars_Ptr (Dir'Unchecked_Access),

 1);
end Browser;

As you can see, you need only need to
import Shell_Execute and call it with
"open" parameter and the url you want to
see.

FreeBSD: State of Ada Ports

From: John Marino
<dragonlace.cla@marino.st>

Date: Sat, 15 Mar 2014 10:55:00 -0700
Subject: State of FreeBSD Ports: All built

with GCC 4.9.0 (2014-03-02)
Newsgroups: comp.lang.ada

State of FreeBSD Ports: All built with
GCC 4.9.0 (prerelease, 2014-03-02)

It's been a while since I posted on CLA.
I've primarily been working with *BSD
support although I also came up with the
first Android cross compiler. As part of
the BSD support, I updated FreeBSD
Ports to all build with GCC 4.9.0
prerelease (02 March snapshot). In the
last few months I've steadily been adding
Ada support to FreeBSD Ports (which
supports FreeBSD and DragonFly BSD)
and I believe that these two platforms are
now very strong candidates for Ada
development.

As can be seen on resurgent
dragonlace.net website, the new FSF
GNAT compiler still passes all tests on
ACATS and GNAT.DejaGNU suites. I've
also been updating available software lists
at
en.wikibooks.org/wiki/Ada_Programming
/Installing#FreeBSD_and_DragonFly

The current versions of Ada ports are as
follows:

- archivers/zip-ada (46)
Zip-Ada (Library)

- devel/adabooch (2013-03-22)
 Ada95 Booch Components (Library)

- devel/adacurses (2011-04-04)
AdaCurses (Binding)

- devel/afay (41111)
 AFlex and AYACC parser generators

- devel/ahven (2.4)
 Ahven (Unit Test Library)

- devel/florist-gpl (2013)
Florist (Posix Binding)

- devel/gnatpython (2014-02-05)
GNATPython (python-based test
framework)

- devel/gprbuild (2013)
GPRbuild (Multi-language build tool)

- devel/gps (5.2.1)
GNAT Programming Studio

- devel/matreshka (0.6.0)
Matreshka (Info Systems Library)

- devel/libspark2012 (2012)
SPARK 2012 library source files-
devel/sdl_gnat (2013)
GNAT SDL bindings (Thin)

Ada and Operat ing Systems 83

Ada User Journal Volume 35, Number 2, June 2014

- dns/ironsides (2014-02-20)
 Spark/Ada Ironsides DNS Server

- lang/adacontrol (1.15r5)
AdaControl (Construct detection tool)

- lang/asis (2013)
Ada Semantic Interface Specification

- lang/gcc-aux (4.9.0-PR)
GNAT Ada compiler (FSF GCC)

- lang/gcc47-aux (4.7.3)
GNAT Ada compiler (FSF GCC)

- lang/gnatdroid-armv5 (4.7.3)
Android 2.3 cross-compiler, ARMv5

- lang/gnatdroid-armv7 (4.7.3)
Android 2.3 cross-compiler, ARMv7

- math/plplot-ada (5.10.0)
PLplot Ada bindings

- net/anet (0.2.3)
Network library (IPv4 and IPv6)

- net/polyorb (2.10.0/2013)
PolyORB (CORBA/SOAP/DSA
middleware)

- net/adasockets (1.8.11)
IPv4 socket library

- security/libsparkcrypto (0.1.1)
LibSparkCrypto (Cryptography Library)

- textproc/adabrowse (4.0.3)
AdaBrowse (Ada95 HTML doc.
generator)

- textproc/opentoken (5.0a)
Ada Lex analyzer and parser

- textproc/py-sphinxcontrib-adadomain
(0.1)
Sphinx Ada docs generator

- textproc/words (1.97F)
Words (Latin/English dictionary)

- textproc/xmlada (4.4.0)
XML/Ada (Library)

- www/aws (3.1.0.0w)
Ada Web Server

- www/aws-demos (3.1.0.0w)
Ada Web Server demos

- x11-toolkits/gtkada (2.24.4)
GTK/Ada (bindings)

- x11-toolkits/qtada (3.2.0.0)
Qt/Ada (bindings)

I'm still improving this list though.
GNATDroid should get upgraded to
GNAT 4.9.0 soon, and when SPARK
2014 is available I'll look to add that as
well. There are also a list of smaller ports
that will trickle in.

As one can see, most of these ports are the
latest available so FreeBSD and
DragonFly BSD deserve serious
consideration when looking for a platform
that facilitates Ada development.

From: John Marino
<dragonlace.cla@marino.st>

Date: Sun, 23 Mar 2014
Subject: Four new ports added
URL: http://www.dragonlace.net/posts/

Four_new_ports_added/

Four new packages have been added to
FreeBSD ports collection:

- textproc/xml_ez_out

- graphics/generic_image_decoder

- misc/ini_files_manager

- misc/excel-writer

Three of those are the works of Gautier de
Montmollin, and they have been
converted into static libraries with
dedicated gpr files in the standard GNAT
location.

From: John Marino
<dragonlace.cla@marino.st>

Date: Sat, 12 Apr 2014
Subject: New ports and gnatdroid update
URL: http://www.dragonlace.net/posts/

New_ports_and_gnatdroid_update/

Recently added to the FreeBSD ports
collection was codelabs.ch's pscs-ada
(thick Ada binding to PC/SC-middleware)
and the APQ Ada95 database binding
with drivers for MySQL, PostgreSQL,
and ODBC included as separate ports.

A huge effort went into updating the
GNATDroid ARM cross-compiler to be
based on GCC 4.9. This is the only ARM
compiler that supports sockets to my
knowledge -- socket support is disabled
on a stock gcc, but I've got it working and
it passes the related testsuite.

The only thing that doesn't pass is the
stack-check tests. That is because stack-
checking as not yet been implemented for
the ARM target on GCC. A patch to add
the capability was created but never
added, but hopefully it gets added soon.

Other internal improvements include
getting the ACATS test to run on a remote
device in 15 minutes rather than 6 hours,
and to get the gnat.dg testsuite to run for
the first time on a remote device. The
results are publish on the main page (they
look good!)

Windows: System Tray and
Taskbar Manipulation

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Thu Mar 20 2014
Subject: Tiny but useful gadgets
URL: http://gautiersblog.blogspot.com/

2014/03/tiny-but-useful-gadgets.html

New GWindows packages, for accessing
the system tray and the taskbar in a
confortable way from your Ada
applications.

- GWindows.System_Tray

- GWindows.Taskbar

Latest additions to GWindows are
available from the SVN repository:
http://sourceforge.net/p/gnavi/code/HEA
D/tree/

Debian: Switching to GNAT
4.9

From: Ludovic Brenta
 <ludovic@ludovic-brenta.org>

Date: Thu, 24 Apr 2014 23:12:29 +0200
Subject: gnat-4.9 4.9.0-1 uploaded to

unstable
To: debian-ada@lists.debian.org

Hello, world.

GCC 4.9.0 has been officially released on
Tuesday and uploaded to unstable on
Wednesday. I just uploaded gnat-4.9
4.9.0-1 to match.

We're three weeks late on the schedule[1]
I proposed after FOSDEM but things are
looking very good indeed. Several
packages, including ASIS and GtkAda,
are almost ready for upload. I wish to
specially commend the excellent work by
Nicolas Boulenguez on several packages
that made this possible. In addition, a new
and very recent version of polyorb has
already been uploaded to the NEW queue,
thanks to Xavier Grave.

Therefore, real soon now(tm) I will
upload a new version of "gnat" that
switches the default Ada compiler to gnat-
4.9, which will begin the transition of all
packages to this new compiler. Note that
this will cause all current Ada packages to
be removed from testing. Package
maintainers, please start working on this
transition as soon as possible if you have
not already started.

[1] https://lists.debian.org/
debian-ada/2014/02/msg00000.html

Mac OS X: GNAT 4.9.0

From: Simon Wright
<simon@pushface.org>

Date: Wed, 30 Apr 2014 10:12:08 +0100
Subject: ANN: GCC 4.9.0 for Mac OS X

Mavericks
Newsgroups: comp.lang.ada

GCC 4.9.0, with the GNAT GPL 2013
tools, is available at

https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
4.9.0/

There will be another release when
GNAT GPL 2014 appears.

This is the README:

This is GCC 4.9.0 built for Mac OS X
Mavericks (10.9.2, Darwin 13.1.0), with
Xcode 5.1.1.

gcc-4.9.0-x86_64-apple-darwin13-
01.tar.bz2

Compilers included: Ada, C, C++,
Objective C, Objective C++, Fortran.

Tools included: ASIS, AUnit, GPRbuild,
XMLAda from GNAT GPL 2013 and
GNATColl from the public Subversion
repository.

84 Ada Inside

Volume 35, Number 2, June 2014 Ada User Journal

 Target: x86_64-apple-darwin13
Configured with: ../gcc-4.9.0/configure \

 --prefix=/opt/gcc-4.9.0 \

 --disable-multilib \

 --disable-nls \

 --enable-languages=c,c++,ada,fortran,
 objc,obj-c++ \

 --host=x86_64-apple-darwin13 \

 --target=x86_64-apple-darwin13 \

 --build=x86_64-apple-darwin13

 Thread model: posix

 gcc version 4.9.0 (GCC)

MD5 (gcc-4.9.0-x86_64-apple-darwin13-
01.tar.bz2) = 74229b5339324cd7ef7bbaa
b0316c4bb

Install by

$ cd /

$ sudo tar jxvf ~/Downloads/gcc-4.9.0-
x86_64-apple-darwin13-01.tar.bz2

and put /opt/gcc-4.9.0/bin first on your
PATH.

Notes

The compiler is GPL version 3 with the
Runtime Exception, so executables built
with it can be released on proprietary
terms PROVIDED THAT they make no
use of the packages from GNAT GPL
2013, which are full GPL.

The command 'gnat', as originally built,
failed with SIGSEGV. It was rebuilt on its
own, using the project file gnatcmd.gpr,
and no longer failed; the working version
is provided.

Changes made to GPRbuild GPL 2013 are
in gprbuild-2013-src.diff. They:

- remove the '-c' flag that is wrongly
passed to ranlib (and isn't by gnatmake).

- correct a problem when building static
stand-alone libraries.

GNATColl GPL 2013 wouldn't build.
Instead, GNATColl (SVN revision
226851) was configured as below, which
is minimal apart from GNU Readline
being enabled. Users may wish to
reconfigure for their own requirements.

 ./configure \

 --prefix=/opt/gcc-4.9.0 \

 --build=x86_64-apple-darwin13 \

 --enable-gpl

resulting in

 Shared libraries: yes (default: static)

 Gtk+: no (requires pkg-config and
 gtkada.gpr)

 Python: yes

 /System/Library/Frameworks/
 Python.framework/Versions/2.7
 (see --with-python)

 PyGtk: no (see --enable-pygtk)

 PyGObject: no (see --enable-pygobject)

 Syslog: yes (see --enable-syslog)

 Readline (GPL license): yes
 (see --with-readline --enable-gpl)

 gmp: no (see --with-gmp)

 PostgreSQL: no -L/usr/lib
 (see --with-postgresql)

 Sqlite: embedded (see --with-sqlite)

 Iconv: yes (see --with-iconv)

 Projects: yes

Changes to ASIS GPL 2013 are in asis-
gpl-2013-src-4.9.0.diff. Only changes
necessary for the build are included.

In addition to the above, a new library
gnat_util is required by ASIS and
GNATColl. A Sourceforge project to
provide this has been set up at
https://sourceforge.net/projects/gnatutil/;
release 4.9.0 is included here. This is the
equivalent of the Debian libgnatvsn.

References to
Publications

Books for Learning Ada

From: John W. McCormick
<mccormick@cs.uni.edu>

Date: Thu, 20 Feb 2014 12:23:41 -0800
Subject: Re: Best book to learn ada?

assuming openbsd 5.4 amd64 box here
Newsgroups: comp.lang.ada

I cannot recommend my book "Ada Plus
Data Structures" for learning Ada. It is
targeted at CS2 (2nd course in computer
science) students. It assumes that you
already know the control structures and
some of Ada's type model. It then teaches
the basic data structures. Only a brief
introduction to Ada's OO capabilities.
Really a beginning level book best paired
with my introductory book "Programming
and Problem Solving with Ada".

Since I have damned one of my books, I
will recommend another that includes an
introduction to Ada for folks who have
skills in other programming languages.

Building Parallel, Embedded, and Real-
Time Applications with Ada

McCormick, Singhoff, and Hugues

Cambridge Press, 2011

Check http://www.embedded.com/
electronics-blogs/break-points/
4411676/A-new-Embedded-Ada-book for
a review by Jack Ganssle.

From: Richard Riehle <rriehle@itu.edu>
Date: Thu, 20 Feb 2014 12:59:17 -0800
Subject: Re: Best book to learn ada?

assuming openbsd 5.4 amd64 box here
Newsgroups: comp.lang.ada

> [...]

Reminder. My book, Ada Distilled, is
available on-line. It is designed to help

someone who already can program in
another language learn how to program in
Ada.

All the examples are fully coded. They
will compile. They will execute. It is not
completely ready for Ada 2012, but Ed
Colbert is working on updating it for the
new 2012 standard.

You can download Ada Distilled free
from several sites.

From: Jerry Bauck
<lanceboyle@qwest.net>

Date: Fri, 21 Feb 2014 15:22:24 -0800
Subject: Re: Best book to learn ada?

assuming openbsd 5.4 amd64 box here
Newsgroups: comp.lang.ada

> [...]

My standard reply to this question is
Norman H. Cohen's Ada as a Second
Language. I have the second edition
which is for the 95 standard. I wish it
would be updated for newer Ada's but
that's not happening. I find his exposition
to be outstanding, and he doesn't weigh
the book down with lengthy examples or
a running book-length example, only
short, to-the-point examples.

Amazon lists it new for $595.15 to
$3,295.38 (U.S.) or used at $84.85. I'd say
used would be your best buy. 8^).

Ada Inside

Airbus Helicopters Selects
Vector Software as Software
Testing Solution Provider

From: Vector Software Press Releases
Date: Tue Apr 22 2014
Subject: Airbus Helicopters Selects Vector

Software as Software Testing Solution
Provider

URL: https://www.vectorcast.com/news/
vector-software-press-releases/2014/
airbus-helicopters-selects-vector-
software-software-testing

VectorCAST Continuous Build and
Integration Capabilities Enable Robust
Ada and C++ Testing

Vector Software, the world’s leading
provider of innovative software solutions
for testing safety and mission critical
embedded applications, announced today
that Airbus Helicopters selected the
VectorCAST™ solution to test software
for the UH-Tiger military helicopter
project. The company chose the
VectorCAST/Cover, VectorCAST/C++
and VectorCAST/Ada tools to ensure that
they are able to use a fully automated
regression test environment to continually
verify the correctness of their code.

Airbus Helicopters in Germany develops
software for the UH-Tiger military
helicopter, and the firm needed to quickly
achieve DO-178B structural coverage
while using limited resources to develop

Ada in Context 85

Ada User Journal Volume 35, Number 2, June 2014

User Control Panels. The RTCA DO-
178B standard is one of the most stringent
safety critical standards in the world,
incorporating the most rigorous testing
and traceability requirements of any
industry. In order to meet these goals,
Airbus Helicopters selected the
VectorCAST/C++ and VectorCAST/Ada
tools to obtain the most automated
solution available for unit and integration
testing of complex C/C++, and Ada code
applications.

The UH-Tiger helicopter is a medium
weight, multiple role support helicopter
developed for the German Armed Forces.
The aircraft is known for being the first
all-composite, European-built helicopter
and includes advanced features like a
glass cockpit, stealth technology and
tremendous agility for enhanced combat
survivability. Airbus Helicopters is using
VectorCAST products on projects such as
the User Control Panels, and selected the
testing solution because of the tool’s ease
of test case development and execution in
addition to its flexible reporting options.

“The VectorCAST tools help Airbus
Helicopters ensure that complex
applications meet DO178B standards”,
said Bill McCaffrey, Chief Operating
Officer, Vector Software. “Organizations
that use automated testing solutions can
more easily meet rigorous standards like
DO-178B on time, and on budget.”

Ada in Context

Where to Override Stream
Attributes

From: HP <hanslad@gmail.com>
Date: Thu, 23 Jan 2014 10:53:23 -0800
Subject: Binary and XML serialization of

types
Newsgroups: comp.lang.ada

I am an Ada beginner who is working on
a private project. The project is to
implement a protocol which either does
binary or XML serialization of the
different defined records.

I have tried to separate all the "encoding"
details from the type declaration in a sub
package like this:

 package A.Types is
 type Guid_Array is array (1 .. 8) of
 Unsigned_8;
 type Guid is record
 Data1 : Unsigned_32;
 Data2 : Unsigned_16;
 Data3 : Unsigned_16;
 Data4 : Guid_Array;
 end record;
 end A.Types;

 with Ada.Streams; use Ada.Streams;
 package A.Types.BinaryEncoder is
 procedure Guid_Write
 (Stream : access Ada.Streams.

 Root_Stream_Type'Class;
 Item : in Guid);
 for Guid'Write use Guid_Write;
 end A.Types.Encoders;

I get the following error:

7:8 entity must be declared in this Scope

How can I separate all the encoding and
decoding details from the type
declaration? I like the idea of splitting this
into packages with different functionality.
Is this possible at all?

From: Adam Beneschan
<adam@irvine.com>

Date: Thu, 23 Jan 2014 11:15:56 -0800
Subject: Re: Binary and XML serialization

of types
Newsgroups: comp.lang.ada

> [...]

I think you simply want to do something
like this. Put the declaration of
Guid_Write and the "for" clause the
specification of in A.Types. Then, in the
body of A.Types:

 with A.Types.BinaryEncoder;
 package body A.Types is
 -- other stuff as needed
 procedure Guid_Write
 (Stream : access Ada.Streams.
 Root_Stream_Type'Class;
 Item : in Guid)
 renames A.Types.BinaryEncoder.
 Guid_Write;
 -- this is called a "renaming-as-body"

or this, which amounts to the same thing:

 with A.Types.BinaryEncoder;
 package body A.Types is
 -- other stuff as needed
 procedure Guid_Write
 (Stream : access Ada.Streams.
 Root_Stream_Type'Class;
 Item : in Guid) is
 begin
 A.Types.BinaryEncoder.Guid_Write
 (Stream, Item);
 end Guid_Write;

(Note: I think the "renames" will work,
but I haven't tested it. The second one will
definitely work.)

Now you declare and implement
Guid_Write in A.Types.BinaryEncoder as
you were trying to do. (You don't actually
need to give it the same name. You can
call your "implementation" procedure
Guid_Write_Impl, or
Any_Other_Name_You_Feel_Like.)

What's going on is that if some client
package says "with A.Types" and uses the
Guid_Write type, and uses
Guid_Write'Write(...) or
Guid_Write'Output(...), the client has to
know that there's a Write routine that isn't
the default. That's why the "for
Guid_Write'Write use ..." has to be in the
visible part of A.Types, so that other
clients are allowed to know about it.

From: Adam Beneschan
<adam@irvine.com>

Date: Thu, 23 Jan 2014 15:43:00 -0800
Subject: Re: Binary and XML serialization

of types
Newsgroups: comp.lang.ada

> [...]

> But, more importantly, are you sure
about this? GNAT's
Ada.Containers.Vectors, for example,
declares the stream-related stuff in the
private part.

Sorry, I think I must have had caffeine
deficiency syndrome when I wrote that.

You're right. Here's what I should have
said:

What's going on is that "for Guid'Write"
specifies a property, or "aspect", of the
type Guid, and that needs to be done in
the same place where Guid is defined,
which in this case is the package
specification (although it could be in the
private part).

Anyway, my goal was to help the OP
understand intuitively why it wouldn't
make sense to have a type declared in one
package and then allow a property of that
type to be changed in some other package.
I hope I got that across, even if I did so
badly.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 23 Jan 2014 18:58:51 -0600
Subject: Re: Binary and XML serialization

of types
Newsgroups: comp.lang.ada

> [...]

To clarify (or confuse?) this more, it does
have to be visible if Guid is a limited
type, because in that case it won't have a
usable 'Write unless it is explicitly
defined. For other types, it can be in the
private part.

Untyped For Loops

From: Adam Beneschan
<adam@irvine.com>

Date: Tue, 11 Feb 2014 15:56:52 -0800
Subject: Re: character literals
Newsgroups: comp.lang.ada

[...]

This is different, though:

 for Ch in '0' .. '9' loop

because this loop statement *is* the
declaration of Ch, so the compiler has to
be able to resolve the type just from the
literals '0' and '9', and it can't. However,
this is legal:

 Start_Ch : Character;
 for Ch in Start_Ch .. '9' loop

because now although '9' is ambiguous,
the language will use the type of Start_Ch
to resolve the type of '9'. I don't think it's
necessary (even from a style standpoint)

86 Ada in Context

Volume 35, Number 2, June 2014 Ada User Journal

to include the type name in the "for"
statement; others may differ.

The first "loop" statement, which is
ambiguous, was legal in Ada 83, when
there was only one character type; when
Wide_Character was added to Ada 95
[Wide_Wide_Character wasn't added
until Ada 2005], this became illegal,
which caused some compatibility
headaches for existing code.

Also:

 type Traffic_Light is (Red, Yellow, Green);
 type RGB is (Red, Green, Blue);

 for Color in Red .. Green loop
 -- ambiguous, illegal
 for Color in Green .. Blue loop
 -- legal, since there is only one meaning
 -- of Blue

However, I'd definitely recommend
including the type name in a case like
this.

 for Color in RGB range Green .. Blue loop

Finally, the language does have one
special rule:

 for I in 0 .. 9 loop

The literals 0 and 9 could be resolved to
any integer type, which would make this
ambiguous since there are normally
multiple integer types visible in the
program (Integer, Long_Integer,
Short_Integer, maybe types in Interfaces
if you "use" that packaged). But the
language rules decree that the type will be
Integer in that case. This is a situation
where some programmers might
recommend making the type Integer
explicit.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 12 Feb 2014 10:53:24 -0500
Subject: Re: character literals
Newsgroups: comp.lang.ada

> [...]

Like me. I think the special-case for
Integer is a kludge, so I would write:

 for I in Some_Type range 0 .. 9 loop

One exception: If I want to say "do this 5
times", I might write:

 for I in 1 .. 5 loop

and there are no references to I in the
loop, so its type is irrelevant.

On the other hand, if the type is clear
from the bounds, as in

 for I in 1 .. Some_Array'Last - 1 loop

I wouldn't put the type in.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 12 Feb 2014 18:55:26 +0100
Subject: Re: character literals
Newsgroups: comp.lang.ada

> [...]

>

> for I in Some_Type range 0 .. 9 loop

<shameless_plug> and this can be
enforced by AdaControl with the rule:

 check statements (untyped_for);

</shameless_plug>

[see-also "AdaControl", AUJ 34-3, p. 140.
—sparre]

Locking Implementations

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Sat, 15 Feb 2014 12:20:00 -0800
Subject: Implementation Locks
Newsgroups: comp.lang.ada

In the past, using other languages, I spent
lots of time worrying about whether I
should use a spinlock or a semaphore
based on how long an sequence of
operations was expected to be and how
many CPU's were on the system, and
wrote lots of overly complicated code to
chose the best option in each situation.

Now in Ada, I have difficulty giving up
the habit and lay awake at night worrying
about whether the implementation is
going busy-wait or block for a protected
action or closed entry, especially now that
everyone has multicore CPU's. I'm
particularly consternated by closed
entries, since I doubt the compiler can
predict whether it will open back up in
several microseconds or in several days.
Is it unreasonable to expect an
implementation to use some sort of
dynamic, hybrid model that takes into
account both how many CPU's are in the
system and the average time to wait?
Should I just trust the runtime and try not
to worry? Is there even anything I can do
about it either way?

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sat, 15 Feb 2014 14:34:29 -0700
Subject: Re: Implementation Locks
Newsgroups: comp.lang.ada

> [...]

You should trust the implementation, and
measure your results. If you're meeting
your timing requirements, then you have
nothing to worry about.

A Reminder on Compiler
Warnings

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Sun, 16 Feb 2014 09:25:35 -0500
Subject: Re: Best representation for spares
Newsgroups: comp.lang.ada

Pablo Rego <pvrego@gmail.com> writes:

> Ah, pragma Warnings (Off) is not fair.
When I get the warning, I prefer to
believe in the compiler. So it must exist
a better way to do it (and do not get the
warning).

You are wrong to always believe in the
compiler. In GNAT, and most other
compilers for Ada or any other language,
a warning indicates that something
MIGHT be wrong, not that something
definitely IS wrong.

You are smarter than the compiler
(although perhaps not as detail oriented).
When you see a warning, you should
inspect the code, and if you think the code
is correct, use pragma Warnings (Off, ...)
to suppress it, along with a comment
explaining why. Don't write less-elegant
code just to make the compiler shut up.

Detecting Use of Unsafe
Features

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Sun, 16 Feb 2014 09:13:26 -0500
Subject: Re: Differences between Ada 83

and other revisions
Newsgroups: comp.lang.ada

Martin Dowie <martin@thedowies.com>
writes:

> But at least it spells out that it is
potentially dangerous by being called
'Unchecked", like all the other
'Unchecked" parts of the language
...very easy to find!

If only that were true. I don't see any
"unchecked" here:

 for X'Address use ...;

 X := ...;

It would be great if you could find all
unsafe (i.e. potentially erroneous) code by
searching for something like "unchecked".
But alas.

On the bright side, Ada doesn't have very
many unsafe features, and mostly allows
them to be avoided and/or encapsulated.
Compare with C, where every array
indexing operation is unsafe.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Sun, 16 Feb 2014 16:58:24 +0100
Subject: Re: Differences between Ada 83

and other revisions
Newsgroups: comp.lang.ada

> [...]

But AdaControl can find every use of
(instantiations of) Unchecked_*, and all
usages of 'Address, or only address
clauses that refer to the address of another
object.

There needs to be a boundary between
what is checked by the compiler and what
is best handled by external tools; you may
not agree to where the line has been
drawn, but tools that can find unsafe
features do exist!

[see-also "AdaControl", AUJ 34-3, p. 140.
—sparre]

Ada in Context 87

Ada User Journal Volume 35, Number 2, June 2014

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 19 Feb 2014 17:09:31 -0500
Subject: Re: Differences between Ada 83

and other revisions
Newsgroups: comp.lang.ada

> [...]

That's useful. Can it find all unsafe
features? There are some that are quite
difficult to detect, such as passing a
component of a variant record to a
procedure that causes that component to
vanish.

> [...]

I didn't mention any compiler checking up
there. I said "search". I'm asking for a
language-design principle that says "you
cannot use any unsafe feature without
with-ing a package called Unsafe, or a
descendant thereof". Then a simple search
for "unsafe" finds them all, without any
need for sophisticated tools.

Can you name all the unsafe features of
Ada off the top of your head, and tell
what strings to search for to find them? I
can't. You can find them by looking up
"erroneous" in the Index.

(C is far worse in that regard!)

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 19 Feb 2014 23:23:44 +0100
Subject: Re: Differences between Ada 83

and other revisions
Newsgroups: comp.lang.ada

> [...] all unsafe features? There are some
that are quite difficult to detect, such as
passing a component of a variant record
to a procedure that causes that
component to vanish.

Not this one, currently. But if you are
willing to fund the development of this
check, I'll be very happy to add it!

> [...]

Right, but be careful not to throw the
baby with the bathwater. You can find
many of the unsafe features, and that's
much better than any other language!

Discussion on a new Text I/O
System

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Sun, 16 Feb 2014 11:17:16 -0500
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> [...]

I/O should be separated from processing.
In this case, the "processing" I'm talking
about is formatting and parsing of data
(e.g. turning an integer into a human-
readable sequence of characters). See how
it's done in Java.

Formatting for type T belongs with type
T, not in Text_IO.

Input should be separate from output.
Put(Stream, X), where X is an integer
makes sense, because we know X is an
integer. Get(X) makes no sense, because
we have no idea what the user is going to
type. For text input, you need "read the
next token, and tell me what it is", not
"read an integer token, and blow up if the
user typed something else".

A simplified and type-safe version of C's
printf style (template-based) formatting
would be more readable than
concatenating a bunch of strings together
to print messages, and MUCH better than
using a series of Put calls to print a single
message.

I/O should be task safe, at least for
standard output and friends.

There are various ways operating systems
have chosen to represent text files: lines
separated by a single character, lines
separated by two characters (CR/LF),
record oriented. Obviously, the language
design needs to pick one of those models,
and the implementation needs to map that
model onto whatever the OS does. Any
model will work, but Ada chose the least
convenient one.

Path names (file names with directory
names and so on) should be represented
using an appropriate type, with structure,
properly interoperating with
Ada.Directories. String is the wrong type
for that. See how it's done in Common
Lisp, quite portably.

The Get_Line procedure invites people to
write broken programs with arbitrary
annoying line-length limitations. However
long you make that String, it will be either
too short or too long, and most likely
both. The Get_Line function is better.

There should be a convenient way to read
an entire file into a String. Similar for
writing.

String should be a private data type with
appropriate operations, representing full
Unicode, probably represented in UTF-8.
But we can't blame the designers of Ada
83 for choosing 7-bit ASCII. Even that
was a bold move, at a time when most
languages didn't even define a standard
character set, leaving it up to the
operating system.

There should be a standard way to
represent multi-line text in a String.

There is no convenient way to open a file
in append mode, creating it (empty) if it
doesn't exist, atomically.

Calling Create followed by Close, with no
intervening output, does not create an
empty file. That's broken.

The line-counting business is largely
useless, and somewhat confusing.

The page-handling is largely pointless,
and gets in the way even when you don't
care about pages.

Finalization (which didn't exist in Ada 83)
should be used to automatically close files

Open should be a build-in-place function
(which didn't exist in Ada 83), instead of
a procedure.

> [...] do you think Text_IO should be
outright replaced ?

You mean if compatibility were not a
concern? Yeah, the only reason to keep
Text_IO as it is for compatibility. In a
from-scratch language design, I'd do it
rather differently.

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Mon, 17 Feb 2014 12:52:21 +0000
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> [...]

>

> Formatting for type T belongs with type
T, not in Text_IO.

Agreed, but it should be a two-way thing.

There should be both
External_To_Internal and
Internal_To_External support to convert
between the external (human readable)
format and the internal format. You
would also need to specify a format when
going from internal to external format so
the output would fit in the requested field
width and obey the requested attributes
(for example, number of decimal places).

[...]

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Mon, 17 Feb 2014 16:32:15 +0100
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> A simplified and type-safe version of
C's printf style (template-based)
formatting [...]

I wonder if this feature could be tacked
onto the string types? With the help of
attribute functions and named bindings,
formatting could be handled flexibly,
leaving room for internationalization, for
example. Formatting could also be
handled conveniently, insofar as the
language provides "obvious" default
formatting.

 For_Invoice : constant Wide_String :=
 -- not Ada
 Wide_String'Edited ("A total of %{Sum}
 %{Currency} for %{Pieces}")
 with Bindings =>
 (Sum => (Value => <>,
 Money'Wide_Formatted =>
 Using_Pic_String),
 Currency => (I18N.CU,
 Money'Wide_Formatted => <>),
 Pieces => (Amount * 2.0,
 Three_Colums'Access));
 Format : constant -- needs to be a static
 -- constant

88 Ada in Context

Volume 35, Number 2, June 2014 Ada User Journal

Wide_String'Edited := "Process #
 %{pnum} : %{n}µs";

A <> stands for the default choices, viz. a
variable or parameterless function named
"Sum" in the first row, and a default
"formatter" in the third. When no
specialized formatting is needed for an
item, write

 with Bindings =>
 (...,
 Foo => <>,
 ...);

As an example of a flexible solution,
"Using_Pic_string" from the first example
above would be a function with a profile
like that of 'Wide_Image. (Its body uses
existing language features, in this case
picture strings from Information Systems
Annex.) Also, since the generics of
Text_IO already provide for formatting
numbers (Putting them into strings), these
routines could be borrowed for the
meaning of

 T'[Wide_][Wide_]_Formatted

Safety of the template is guaranteed
insofar as the number of items (and types,
I think) in any actual binding is known at
compile time; type checking looks
possible. Hence, the simplest formatting
would be

 String'Edited("%{n} bottles of beer on the
wall")
 with Bindings (others => <>);

It requires only that there be a
variable/function named N.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Mon, 17 Feb 2014 18:59:43 +0200
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> A simplified and type-safe version of
C's printf style (template-based)
formatting [...]

I disagree, but then I don't understand
how Robert would make C's template idea
type-safe -- might Robert expand on his
ideas?

I think that the present method of
concatenating strings or using several
Puts is good; what is needed is to extend
or replace the 'Image attribute with similar
value-to-string functions which are more
controllable, flexible, and work also for
composite types. Perhaps something
analogous to the stream attributes, but
with the ability to control the output
format at each invocation, which is not
possible with the stream attributes.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 17 Feb 2014 18:17:16 +0100
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> [...] to extend or replace the 'Image
attribute with similar value-to-string
functions which are more controllable,
flexible, and work also for composite
types.

Except that all these need to be MD
primitive operations. There is no way to
solve this without MD.

Needless to say that templates could solve
nothing only add further problems.

> Perhaps something analogous to the
stream attributes, but with the ability to
control the output format at each
invocation, which is not possible with
the stream attributes.

I don't think there is any need in having
formats. A few formatting parameters
could be passed along to Image or
equivalent.

Environment settings (e.g. locale) should
come from the rendering surface object.
No need to specify them at all. This is
how stuff like fonts, colors etc is handled
in GUI.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Mon, 17 Feb 2014 19:42:07 +0200
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> [...]

Why multiple dispatch? Which would be
the multiple controlling parameters? I
think only the input value should be
controlling; perhaps you think that the
output channel/device should also be
controlling?

> [...] A few formatting parameters could
be passed along to Image or equivalent.

Well, parameters and options is what I
meant. For example, the ability to specify
blank fill, zero fill, center/left/right
alignment, digit group spacing (1 123
456,00 or 1_123_456.00), etc.

> Environment settings (e.g. locale)
should come from the rendering surface
[...]

A "rendering surface" is not always
available at the point where the string is
generated.

There could be a private predefined type
for such settings. A value of that type
could be given as a parameter in the
Image call to set the default format
(which could then be overridden if the
Image call also has some specific format
parameters). A GUI toolkit could have a
function to return a suitable value of this
type from a "rendering surface" object. I
don't see why this, or the output channel,
should be a controlling parameter.

Something like these flexible Image
functions already exists in Annex F
(Information Systems), but it is partly
template-driven ("picture"-driven).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 17 Feb 2014 20:55:12 +0100
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> Why multiple dispatch?

Print (Display, Shape)

is a textbook example of MD.

> Which would be the multiple
controlling parameters?

File and Value

> [...] perhaps you think that the output
channel/device should also be
controlling?

Certainly so. Consider ASCII_File,
UTF8_File, Gtk_Text_Buffer_Record and
so on. You cannot convert to string before
sending it out, because ASCII will use E
for power of 10, UTF8 will use
superscript characters for it, and
Gtk_Text_Buffer_Record will do the
GTK markup language.

[...]

> A "rendering surface" [...]

String itself is such a surface. That is the
point of having it controlled. You can
replace it with whatever type, e.g. File,
Stream etc. And string itself is a Universe
of types because of encodings.

> There could be a private predefined
type for such settings. A value of that
type could be given as a parameter in
the Image call to set the default format
(which could then be overridden if the
Image call also has some specific
format parameters).

Yes of course, but this is usually another
set of parameters. Less volatile
parameters, such as whether to use '.' or ','
to introduce fraction belong to the
surface.

> A GUI toolkit could have a function to
return a suitable value of this type from
a "rendering surface" object.

Possible but tedious.

> I don't see why this, or the output
channel, should be a controlling
parameter.

Because you cannot predict all possible
combinations of and because it is a huge
wasting of human and computational
resources as no given application will
ever use more than 1% of it.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Tue, 18 Feb 2014 09:14:26 +0200
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> [...]

> Certainly so. Consider ASCII_File,
UTF8_File, Gtk_Text_Buffer_Record
and so on.

Ada in Context 89

Ada User Journal Volume 35, Number 2, June 2014

That could be done using overloading
based on the expected type of the Image
function result, instead of multiple
dispatch. Of course that would require
different types to represent ASCII strings
and UTF8 strings, etc. Using different
types for different kinds of strings would
be a good thing anyway, IMO (but I know
that this causes problems with a
combinatorial explosion of the number of
predefined subprograms involving
strings).

> You cannot convert to string before
sending it out [...]

Hrm. I'm not at all sure that I would want
such different formatting for different
output channels to happen automatically.
For one thing, using superscripts for
exponents would prevent or complicate
the user's copy-paste operations, for
example copying the output of a Float
number into a calculator accessory.

There should really be a type "Text" that
represents text, with all its complications
of encoding, formatting, styles, fonts,
lines, paragraphs, tabulation, indentation,
language, ... True, that is horribly
complex, but that's reality now. It is
debatable if this should be in the
language, or in toolkits (GUI or others).
Probably some core part of it should be in
the language and the rest in a toolkit or in
an optional Annex to the language.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Wed, 19 Feb 2014 10:36:29 +0200
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> [...] You mean text buffer like in GUI?

Possibly so, but I'm not familiar with GUI
text buffers. It sounds like a similar thing.

> To me text buffer, stream, file, string
are all instances of the class of types
over which Put dispatches. OK, we can
call the abstract root type of the class
"Text."

Perhaps Put would just be overloaded for
these types. It depends if you consider the
types a class, or not. I'm not sure what is
best.

> Yes, that Put would be an
implementation of the primitive
operation defined for the class Text.

I would make Text a type, not a class.
This would avoid the need for multiple
dispatch on a controlling Text parameter.

I'm thinking of two levels of "Put":

 Put (To : in out Text, Item : in String);

Add items to a Text, building a logically
structured Text, but without rendering it
yet. This will probably need some concept
of "points in a Text where more stuff can
be inserted" so that the Put can preserve
or extend the logical Text structure.

 Put (To : in out Text, Item : in Text);

Render the Text into some external File.

The Text buffer intermediary means that
each level of Put can (if desired) be
dispatching on one of the parameters,
without needing multiple dispatch.

> I think it is only logical for a strongly
typed language to map this kind of stuff
onto types.

I agree.

> This search for other "ways" (aspects,
generics etc) is really damaging the
language.

I don't agree. I see aspects as
strengthening or broadening the type
concept, and generics as a meta-type
level. But I must admit that I have lately
been using generics less often and have
instead used classes and dispatching more
often. However, I think that generics are
useful and are not entirely subsumed by
classes.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Wed, 19 Feb 2014 15:20:18 +0200
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> [...]

My notion of type "Text" is an internal
representation of text meant for human
reading and viewing. I don't see any
logical need for making this type a class;
there would be only one predefined (and
private) type.

(There might be some technical reasons
for making the type a class, for example
with a root type that is low-cost but
simple, and some derived classes which
provide more functionality but at greater
cost. Perhaps the simple root type would
be a mandatory language feature, and the
derived classes optional features.)

By the way, perhaps the word "text" is
ambiguous. I think it is time to make a
clear distinction between:

(1) a text file (sometimes called an "ASCI
file"), which is a sequence of basic
symbols (e.g. Character or
Wide_Character) used to represent *data*
for either reading by another program, or
for human reading (without formatting),
and

(2) a text meant only for human
reading/viewing and therefore to be
rendered as nicely and readably as the
chosen viewing device allows. That some
parts of the text can be seen as sequences
of characters is secondary, and the
specific characters and their sequence can
change according to the rendering.

Ada.Text_IO implements mainly (1), with
some basic support for typewriter-style
formatting (column spacing, line spacing,
page tracking).

The "Text" type I am talking about aims
to be the internal representation of (2),
before rendering on some viewing device.

> [...] This was attempted before, many
many times, actually. From PostScript
to HTML, an intermediate language
that would take care of separating
higher level formatting from lower
level rendering. It never worked how
many times tried.

Uh... surely PostScript and HTML
"work". I'm pretty sure that a large
fraction, perhaps even a majority of
programs today generate most of their
human-readable output as HTML. Even if
the final HTML generation is delegated to
some web-application framework.

> And for sure, it will be even more hated
than Text_IO page formatting is,
because the overhead will be far bigger.
Imagine describing the semantics of,
say, conversion of File, Stream, String
to Text and backward.

Overhead compared to what? If the need
is to generate nicely formatted output,
rendered in device-specific ways, and
typewriter formatting is not enough, what
is the alternative?

The overhead of Text_IO are important
only when processing large text *data*
files (meaning (1) of "text"). For
generating human-readable text (meaning
(2)), especially in an interactive context,
the overhead is utterly negligible.

I don't see any need for converting a
File/Stream *into* Text, unless the
File/Stream is a serialized representation
of the full internal structure of a Text
object, in which case the File/Stream
structure is private and normal
serialization/deserialization methods
apply.

I don't intend that the type "Text" should
be so fancy and complete that it could be
used as such to implement an advanced
word processor. Following the same
rationale as Ada.Containers, "Text"
should provide as much functionality as
can be expected to be useful for (and used
by) many Ada programs and
programmers, but programmers requiring
high performance or high/specific
functionality would have to implement
more advanced "text" representations
themselves.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 19 Feb 2014 16:46:45 -0500
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> [...] how Robert would make C's
template idea type-safe -- might Bob
expand on his ideas?

My answer depends on if (or how much)
I'm allowed to change Ada's type system.
I've done this in pure standard Ada.
Something like:

 type Template is new String;
 procedure Put (T : Template; X1, X2, X3,
 X4, X5, X6, X7, X8 : String := "");

90 Ada in Context

Volume 35, Number 2, June 2014 Ada User Journal

 Put ("There were \1 warnings and \2
 errors.\n",
 Image (Warning_Count),
 Image (Error_Count));

prints the template as is to standard
output, except it replaces \1 with X1, and
\2 with X2, and the "\n" is new-line. You
can have multi-line templates. "\\"
represents "\".

Note my use of X1...X8 to simulate C's
variable-length parameter lists. This is a
kludge.

Note that Template is a different type
from String. This prevents a bug that can
happen in C, where you say printf(blah),
and blah is some data read off the
internet. That can be a security hole!

The user is responsible for writing
suitable Image functions for their data
types, and they can take whatever
formatting parameters you like. This
seems much more readable than C's way
of encoding the field widths and whatnot
in the template.

For localization/internationalization, you
can have a table mapping "There were \1
warnings and \2 errors.\n" to the
corresponding template in (say) French.
Different languages have different word
orders, so you might have:

 "... \2 ... \1 ... \n"

to reverse the order of insertion.

This is all 100% type safe. Most of the
checking is static. It checks at run time
that the number of \1, \2, \3, ... escapes
matches the number of non-empty Xn
parameters passed.

Now, if you let me change Ada, I'd allow
user-defined literals. Any type derived
from the Has_Literals interface allows
literal syntax, and it overrides the
Literal_Value function to convert the
sequence of characters to that type.
Template would no longer need to be
derived from String; it could be a private
extension of Has_Literals, and the
Literal_Value function could
"precompile" the template into some
convenient/efficient internal form.

The Literal_Value call is evaluated at
compile time, so the above-mentioned
run-time check can now be static.

Change the types of the Xn parameters to
Has_Image'Class, so you can pass
Warning_Count, and it automatically
dispatches to Image(Warning_Count). If
you want to use extra formatting options
you'd call your own Image function
explicitly. Integer types are derived from
Has_Image, and the Image function is not
an attribute, and (most importantly of all!
;-)) it doesn't insert an annoying extra
blank.

I'd also allow variable-length argument
lists and/or arrays of strings.

> I think that the present method of
concatenating strings or using several
Puts is good;

I think Put (at least to standard
output/error) should be task safe. That is,
it should be atomic with respect to other
tasks doing Put. Puts from different tasks
would be interspersed, but you wouldn't
get character-by-character interspersal,
and you certainly wouldn't get the Ada
rule ("erroneous and therefore
unpredictable behavior").

That rules out the "series of Puts" method.
You need to build up your whole message
(possibly multi-line) and then Put it in one
fell swoop.

The concatenating strings method just
looks ugly to me -- I can't easily see what
the message is going to look like. With a
template, I see the whole message, with
marks for where variable data is inserted.

[...]

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Thu, 20 Feb 2014 22:02:42 +0200
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

> [...] Note my use of X1...X8 to simulate
C's variable-length parameter lists. This
is a kludge.

That is where I think this breaks down for
current Ada. To really add this to Ada,
you need variable-length parameter lists,
or the ability to aggregate strings of
various lengths into a vector of strings.

> [...]

But Template objects can still be variable,
so they can still be constructed at run-time
from external data (say, some application
configuration file). Or do you intend to
define Template as a type that forbids
variable objects and allows only static
constants?

But even with variable Templates, this is
clearly less risky than the case in C,
where AIUI the risk comes from
malicious type breaking where the format
conversion character misuses the
corresponding parameter. That cannot
happen in your proposal because all
parameters are Strings and there are no
format conversion characters in the
Template.

[...]

> Now, if you let me change Ada,

Apart from the type-safe variable-length
parameter lists, you mean? ;-)

> I'd allow user-defined literals. [...]

Not a bad idea. Would only string literals
qualify, not character or numeric ones?
To avoid ambiguities, this should be
forbidden for any type that already allows
string literals, right?

But this is beginning to look a bit like
C++ parameterized constructors, called
implicitly... slippery slope?

> [...] The Literal_Value call is evaluated
at compile time, so the above-
mentioned run-time check can now be
static.

If the Template is defined by a literal, yes.
But I assume Templates could still be
variable objects, too, forcing a run-time
check.

[...]

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 19 Feb 2014 16:15:10 -0500
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

[... The] "read the next token, and tell me
what it is" method is how it should
normally be done, and if the language

 doesn't support it, then the programmer
will do that, which is fine.

But the "read an integer token, and blow
up if the user typed something else"
method is rarely useful. I'd stick with
"read a character", "read a line", and "read
the whole file".

> [...]

> [Reading an entire file:] One for binary
(unchanged) input and one for text
input with end of line conversions.

Maybe. Should the binary one return a
String, or an array of bytes, or something
else?

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Wed, 19 Feb 2014 22:01:43 +0000
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

[...]

> Maybe. Should the binary one return a
String, or an array of bytes, or
something else?

Conceptually, I would have to say an
array of bytes data type distinct from a
String. This is based on my perception of
a String as been associated with text data
(after all, it _is_ called a String :-)) and
that conceptually you cannot really assign
such meaning to something you have
gone to the trouble to read as binary data.

What really matters is that you can
guarantee the binary data will not be
altered during the I/O process, that you
know the exact length of the data, and that
you can cleanly access the bytes in the
binary data.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Tue, 18 Feb 2014 09:04:27 +0100
Subject: Re: Text_IO, was: Re: Something I

don't understand
Newsgroups: comp.lang.ada

Ada in Context 91

Ada User Journal Volume 35, Number 2, June 2014

> [...]

Starting from some frequent use cases,
such as

- logging and similar technical status
reports,

- invoices, bank statements and other
economic reports

static constant formats would cover a lot.
I'd think that generics, as Mark H noted,
might allow for elaborating minor
variations at run-time, at least in some
cases.

A big plus of templates is that they are
instances of Bentley's programming
pearls, of proven value. They shift the
focus from how the language achieves
printing to what is being printed, the latter
being what matters.

Recursive Type Invariants

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Tue, 25 Feb 2014 19:29:45 -0800
Subject: Class Wide Type Invariants - My

bug or compiler bug
Newsgroups: comp.lang.ada

GNAT did not raise Assertion_Error
where I thought it should for the
following codes. Either I misunderstood
the LRM or it is a compiler bug.

 package Places is
 type Disc_Pt is tagged private
 with Type_Invariant'Class =>
 Check_In (Disc_Pt);
 Initial_Disc_Pt : constant Disc_Pt;

 function Check_In (D : Disc_Pt)
 return Boolean with Inline;

 procedure Set_X_Coord
 (D : in out Disc_Pt; X : Float)
 with Pre => (X >= -1.0 and then
 X <= 1.0);

 procedure Set_Y_Coord
 (D : in out Disc_Pt; Y : Float)
 with Pre => (Y >= -1.0 and then
 Y <= 1.0);
 private
 type Disc_Pt is tagged
 record
 X, Y : Float range -1.0 .. +1.0;
 end record;

 Initial_Disc_Pt : constant Disc_Pt :=
 (others => 0.5);
 end Places;

 package body Places is

 function Check_In (D : Disc_Pt)
 return Boolean is
 begin
 return (D.X**2 + D.Y**2 <= 1.0);
 end Check_In;

 procedure Set_X_Coord
 (D : in out Disc_Pt; X : Float)

 begin
 D.X := X;
 end Set_X_Coord;

 procedure Set_Y_Coord
 (D : in out Disc_Pt; Y : Float)
 begin
 D.Y := Y;
 end Set_Y_Coord;
 end Places;

 package Places.Inner is
 type Ring_Pt is new Disc_Pt with
 private
 with Type_Invariant'Class =>
 Check_Out(Ring_Pt);

 Initial_Ring_Pt : constant Ring_Pt;

 function Check_Out (R : Ring_Pt)
 return Boolean
 with Inline;
 private
 type Ring_Pt is new Disc_Pt with null
 record;

Initial_Ring_Pt : constant Ring_Pt :=
Ring_Pt'(Initial_Disc_Pt
 with null record);

 function Check_Out (R : Ring_Pt)
 return Boolean is
 (R.X**2 + R.Y**2 >= 0.25);
 end Places.Inner;

 with Ada.Text_IO;
 with Ada.Exceptions; use Ada;

 with Places.Inner;

 procedure Invariants_Inheritance_Test is
 use Text_IO;

 Child_Pt : Places.Inner.Ring_Pt :=
 Places.Inner.Initial_Ring_Pt;
 begin
 Places.Inner.Set_X_Coord(Child_Pt, 0.0);
 -- OK since 0.5**2 + 0.0 >= 0.25
 Places.Inner.Set_Y_Coord(Child_Pt, 0.1);
 -- should fail Check_Out(...),
 -- 0.1**2 + 0.0 < 0.25
 exception
 when Err : others =>
 Put_Line ("Houston help!!! " &
 Exceptions.Exception_Information(Err));
 end Invariants_Inheritance_Test;

From: Adam Beneschan
<adam@irvine.com>

Date: Wed, 26 Feb 2014 14:35:52 -0800
Subject: Re: Class Wide Type Invariants -

My bug or compiler bug
Newsgroups: comp.lang.ada

> [...]

It looks to me like this should work,
according to 7.3.2(19). I don't know what
GNAT's default Assertion_Policy for
Type_Invariant'Class is, however.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 26 Feb 2014 19:01:45 -0600
Subject: Re: Class Wide Type Invariants -

My bug or compiler bug
Newsgroups: comp.lang.ada

> [...]

7.3.2(19/3) is a mess, however. AI12-
0042-1 changed it a lot, but that change
isn't right either, so it's rather in limbo at
the moment. (See the working RM for the
current state of things.)

Note that a literal implementation of
7.3.2(19/3) would cause every invariant
check to go infinitely recursive, since
there is supposed to be an invariant check
on the parameter of Check_In, which is
called from the invariant check - repeat
forever. GNAT doesn't implement that for
obvious reasons, so it can't exactly
implement the rule as written, and once
you have to go off the grid, all bets are
off.

Some parts will be in every rule (checking
of in out and out parameters, for
instance), so you probably can assume
those are checked. But that's about it.
Probably it would be better to not depend
too much on Type_Invariants until we
figure out what rules actually make sense
(and we find a set that isn't insane for one
reason or another).

Request from the ARG:
Static Constants

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 3 Mar 2014 18:03:56 -0600
Subject: Request for help from the ARG:

Static constants
Newsgroups: comp.lang.ada

There is a language-lawyer level question
that some of the ARG members have been
discussing privately for far too long in the
past week. An important part of the
question is the compatibility effect of
changing the rules to match the
expectation. As such, I'd like to find out
what various compilers do on the
following test program. I've tried recent
versions of GNAT and Janus/Ada, both of
which reject the program citing an error at
(2). [This is not supported by the RM
wording, BTW.] If you have access to
some other Ada compiler, please attempt
to compile this program and report the
result, either here or to me privately
(randy@rrsoftware.com).

with Ada.Text_IO;
procedure SC is
 Item_Size : constant := 0;
begin
 Ada.Text_IO.Put_Line ("Start Static
 Constant check");
 if Item_Size > 0 then
 declare
 Length : constant Positive :=
 Item_Size; -- (1)

92 Ada in Context

Volume 35, Number 2, June 2014 Ada User Journal

 type Data_Index is range 1 .. Length;
 -- (2)
 type Data_Array is array (Data_Index)
 of Natural;
 begin
 Ada.Text_IO.Put_Line
 ("Can't get here");
 exception
 when Constraint_Error =>
 Ada.Text_IO.Put_Line
 ("Can't get here, either");
 end;
 else -- Do nothing
 Ada.Text_IO.Put_Line
 ("Nothing as expected");
 end if;
 Ada.Text_IO.Put_Line
 ("End Static Constant check.");
end SC;

From: Tom Moran <tmoran@acm.org>
Date: Tue, 4 Mar 2014 02:59:46 +0000
Subject: Re: Request for help from the ARG:

Static constants
Newsgroups: comp.lang.ada

> (2). [This is not supported by the RM
wording, BTW.] If you have access to
some other Ada compiler, please
attempt to compile this program and
report

An ancient ObjectAda compiler gives:

--------------------Target: Win32 (Intel)
Debug--------------------

sc.adb: Warning: line 8 col 39
LRM:11.5(17), Value outside range,
Constraint_Error will be raised

Front end of f:\oa722\console\sc.adb
succeeded with no errors.

Tool execution has completed.

Checking “out” Parameters

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Sat Mar 8 2014
Subject: Checking "out" parameters with

Adacontrol
URL: http://ada.tips/checking-out-

parameters-with-adacontrol.html

Have you ever accidentally written code
like this?

 procedure Example_Proc (X : out
 Boolean) is
 begin
 null; -- Do something, but do not touch X
 end Example_Proc;

 with Example_Proc;
 procedure Main is
 My_Flag : Boolean;
 begin
 Example_Proc (My_Flag);
 end Main;

In the above code, parameter X with
mode “out” is left untouched. Because of
this, value of My_Flag is undefined after
Example_Proc (My_Flag) call.

To prevent mistakes like this, you can use
Adacontrol and a rule:

 check improper_initialization
(out_parameter);

With the rule, Adacontrol will warn you
about your mistake:

 $ adactl -f rules.aru example_proc.adb
example_proc.ads main.adb

 example_proc.adb:1:25: Error:
IMPROPER_INITIALIZATION: out
parameter "X" not safely initialized

 $

[see-also "AdaControl", AUJ 34-3, p. 140.
—sparre]

Simplifying the Language?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 20 Mar 2014 18:15:30 -0500
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...]

Heck, we (the ARG) aren't quite sure how
you implement accessibility checks for
Ada 2005 and Ada 2012 (see AI12-0016-
1 for some thinking); you could waste a
lot of time trying to figure that out. And
like J-P says, a 95% solution isn't good
for much -- the real solution is 95%
different. :-)

It's for good reason that 3.10.2 is
informally named "The Heart of
Darkness"! ;-)

From: J. Kimball <jkimball4@gmail.com>
Date: Mon, 24 Mar 2014 03:18:21 -0500
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...]

It's becoming abundantly clear that there
has to be a massive break in backward
compatibility in the next revision of the
language that makes writing compilers
easier, not just keeping AdaCore in
business, but breaking out of the
framework of Ada 95.

We find ourselves discussing this
regularly in #ada on Freenode. Many of
us see Ada as a sinking ship because of all
its baggage. The ideals are strong, but the
implementation is losing us.

I surely need to review the AIs for the
next revision to see what's happening.

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Mon, 24 Mar 2014 08:51:00 -0400
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...]

This is one reason why having multiple
implementations is a good thing. As an
example the C++ community basically

decided that template export, as required
by the C++ 1998 standard, wasn't worth
the implementation difficulties. As a
result export has been removed from the
C++ 2011 standard... despite the fact that
there was one (only one) compiler that
implemented it.

If another compiler existed that *almost*
implemented Ada 2012 but left out
controversial features (are there any?),
and if that compiler proved acceptable
and useful to a significant part of the
community, it would help provide a kind
of reality check on the standardization
process.

I'm not saying Augusta will ever be
mature enough to do this. I'm speaking
here in general terms about the value to
the community of having multiple
competing implementations. It certainly
seems, at the moment, as if GNAT is the
only viable Ada 2012 compiler in
existence and that isn't healthy for Ada.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 24 Mar 2014 16:21:20 -0500
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...] Your own compiler can't even
compete because of the labyrinth of rules.

Not really. My compiler can't compete
because I'm a lousy businessman and to a
lesser extent because I'm rather burned
out. Some of these corner cases
(especially "the Heart of Darkness") are
obscure corners of the language of little
interest to anyone. Until you try to get rid
of them, and then the safety argument
rears up (dangling pointers are a scourge).

> [...] It's becoming abundantly clear that
there has to be a massive break in
backward compatibility in the next
revision of the language that makes
writing compilers easier [...]

I'd be in favour of that, but I'm dubious
that the customers that support Ada would
want to make that sort of change. And if
the customers don't come along, then
there is little energy for anything to
happen. After all, most hobbyist driven
projects tend to wane after a couple of
years, and that's not going to work for the
sorts of long-lived projects that Ada is
best at.

> [...] The ideals are strong, but the
implementation is losing us.

I could see some relatively small tweaks,
but I doubt that would help
implementation effort much. In particular,
one of the nastiest things is type
resolution. But the part of type resolution
that is hard is the ability to overload on
result types. (That's not allowed by C++,
for instance.) But a large part of the
elegance and ease-of-use of operators
comes from that ability. Taking it away
would prevent a lot of common

Ada in Context 93

Ada User Journal Volume 35, Number 2, June 2014

techniques (for instance, it's what allows
overloading of enumeration literals).

I'd be more interested in regularizing
some of the rules (such as making objects
overloadable) -- but I doubt that would
have any positive impact on the effort to
implement Ada.

One could try removing/altering large but
not frequently used areas -- fixed point,
tasks, discriminant-dependent
components come to mind -- but for each
one, you'd lose a bunch of Ada fans.

> [... next revision ...]

Nothing to speak of yet; too soon after
Ada 2012 to do anything formally. We're
just gathering ideas at this point.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Mon, 24 Mar 2014 19:18:16 -0400
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...] I'd be in favor of that, but I'm
dubious that the customers that support
Ada would want to make that sort of
change. [...]

Aye; The paying customers aren't going to
put up with the cost of recertifying
something like a flight management
system because a language revision has
dropped support for some feature (or just
made a small change in the semantics of
existing syntax). And such systems may
be in use for 20+ years.

I think I've overheard stuff at work where
they are talking about having to do side-
by-side examination of the generated
object code to validate a new release of
the compiler -- without changing the
language standard in use.

From: J. Kimball <jkimball4@gmail.com>
Date: Mon, 24 Mar 2014 18:50:18 -0500
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...]

Why would an ATCS system change
language revision at all? Anyone whose
using features they don't want to give up
can safely stay with old revisions of the
language. GNAT has had those -
gnat{83,95,05,12) switches for a long
time. These are not valid reasons for not
shaking things up. Even if some project
decided to leave Ada, you may just as
easily find new people approaching the
language. Large projects who think just
changing the switch in their Makefile to
the new language revision is sufficient
probably shouldn't be using Ada in the
first place.

From: Stefan Lucks
<stefan.lucks@uni-weimar.de>

Date: Tue, 25 Mar 2014 10:37:55 +0100
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...]

What about moving not-so-often used
language features into an annex?

Thus, if your customers demand the
feature, you are allowed to support it.
Furthermore, anyone supporting that
feature would do so in a completely
compatible way.

But if you don't want to support that
feature, or you can't for some reason, you
are allowed to support Ada 20XY without
that annex.

As an example, I would consider
interfaces. The support for multiple
inheritance from "interface" could be
moved into an annex, and thus become
optional for the language implementer.
The keyword "interface" should remain
reserved, for compatibility reasons.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 25 Mar 2014 15:47:35 -0500
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...]

This would work, but it wouldn't have any
effect on simplifying the Standard (since
the wording in the Standard would have
to be prepared to handle the feature --
that's especially likely to be an issue for
things like interfaces, which have an
effect on virtually every definition in the
Standard). And if one doesn't simplify the
Standard, it's fairly unlikely that you're
actually going to simplify implementation
that much.

> [Moving interfaces to an annex.]

Right.

But as always, the difficulty would be
agreeing on what goes into such an annex.
I'd vote for interfaces and anonymous
access types, but I'm sure the fans of those
features would not be very happy. And
they probably have some features that I
find important that they think ought to be
in the junk bin.

You'd be amazed at how hard it is to even
move a feature into Annex J (Obsolescent
Features), even those are required to be
implemented. I'm still hearing flack about
the decision to move aspect pragmas
there, even though entity-specific
pragmas was one of worst ideas ever
known to mankind. :-)

From: Michael B.
Date: Tue, 25 Mar 2014 20:41:23 +0100
Subject: Re: Augusta: An open source Ada

2012 compiler (someday?)
Newsgroups: comp.lang.ada

> [...] It's becoming abundantly clear that
there has to be a massive break in
backward compatibility in the next
revision of the language that makes
writing compilers easier [...]

But breaking compatibility is very
dangerous. Python did this and now there
are two incompatible languages: Python
2.x and Python 3.x. Many library
maintainers said, they will never support
3.x. Pascal made the same mistake.
Instead of enhancing the language,
Modula and Oberon were created. Today
none of these three languages is used
anywhere. I'm sure Ada would suffer a
similar fate.

On the Value of Interfaces
and Multiple Inheritance

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 21 Mar 2014 18:02:28 -0500
Subject: Re: How to hide inherited

implementation of a public interface?
Newsgroups: comp.lang.ada

Exactly. "Abstract types" (which can have
components, implementations, etc.) are
not worthless. The restrictions on
interfaces make them worth little.
("Worthless" is going a bit far, of course,
but it makes a good sound bite.) The costs
of multiple inheritance (which are
considerable) make them not worth the
effort.

Full multiple inheritance CAN be
implemented, but it's expensive enough in
compiler and language complexity that
the costs outweight the value. The
halfway Java-like solution is easier to
implement but makes no one happy. We
should have told the multiple inheritance
nuts to forget it, because it makes no
sense for Ada.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 22 Mar 2014 09:31:56 +0100
Subject: Re: How to hide inherited

implementation of a public interface?
Newsgroups: comp.lang.ada

> [...]

In the real-life project I am working on,
lack of proper MI led to a massive cut-
and-paste code explosion on the scale 1 to
1000, at least.

> [...]

MI is not a language property, it is more
of software design. You cannot get rid of
the fact that software engineers will keep
on trying to reuse code, sharing the code
implementing file reading in the code of
read-only and read-write files. This is a
sound design. It is the opposite [*] that
does not make sense. If the language does
not support sound software design
decisions, well, that is what we call a
language flaw.

[*] The standard library is full of flaws
caused by not using MI. From minor
issues that Root_Stream_Type does not
implement Limited_Controled, to massive
mess that Character and Wide_Character
to don't share common interface.

94

Volume 35, Number 2, June 2014 Ada User Journal

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with  denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2014

July 21-25 38th Annual International Computer Software and Applications Conference (COMPSAC'2014),
Västerås, Sweden. Topics include: software engineering, security and privacy, quality assurance and
assessment, embedded and cyber-physical environments, etc.

July 21-25 10th European Conference on Modelling Foundations and Applications (ECMFA'2014), York, UK.
Topics include: domain specific modelling languages and language workbenches; model reasoning,
testing and validation; model transformation, code generation and reverse engineering; Model-Based
Engineering (MBE) environments and tool chains; MBE for large and complex industrial systems; MBE
for safety-critical systems; comparative studies of MBE methods and tools; etc.

July 21-25 4th International Workshop on New Algorithms and Programming Models for the Manycore Era
(APMM'2014), Bologna, Italy. Topics include: parallelisation with appropriate programming models
and tool support for multi-core and hybrid platforms; software engineering, code optimisation, and code
generation strategies for parallel systems with multi-core processors; etc.

July 21-25 Software Technologies: Applications and Foundations (STAF'2014), York, UK. Successor of the
TOOLS federated events. Topics include: practical and foundational advances in software technology,
from object-oriented design, testing, mathematical approaches to modelling and verification,
transformation, model-driven engineering, aspect-oriented techniques, and tools.

 Jul 28 - Aug 08 28th European Conference on Object-Oriented Programming (ECOOP'2014), Uppsala, Sweden.
Topics include: all areas of object technology and related software development technologies, such as
concurrent and parallel systems, distributed computing, programming environments, versioning,
refactoring, software evolution, language definition and design, language implementation, compiler
construction, design methods and design patterns, aspects, components, modularity, program analysis,
type systems, specification, verification, security, real-time systems, etc.

 July 28 11th Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (ICOOOLPS'2014). Topics include:
implementation of fundamental OO and OO-like features (e.g. inheritance, parametric
types, memory management, objects, prototypes), runtime systems (e.g. compilers,
linkers, virtual machines, garbage collectors), optimizations (e.g. static or dynamic
analyses, adaptive virtual machines), resource constraints (e.g. time for real-time
systems, space or low-power for embedded systems) and relevant choices and tradeoffs
(e.g. constant time vs. non-constant time mechanisms, separate compilation vs. global
compilation, dynamic loading vs. global linking, dynamic checking vs. proof-carrying
code...).

 July 28 24th Doctoral Symposium. Topics include: concurrency, real-time, embeddedness,
distribution, language design, language constructs, static analysis, language
implementation, virtual machines, methodology, model engineering, design languages,
software evolution, formal methods, tools, programming environments, etc.

Conference Calendar 95

Ada User Journal Volume 35, Number 2, June 2014

 July 29 3rd Workshop on Combined Object-Oriented Modeling and Programming
Languages (COOMPL'2014). Topics include: differences and similarities between
modeling and programming; modeling constructs not supported by programming
languages and vice versa; support for concurrent/distributed modeling and
programming; tools for modeling and programming; implementation techniques;
techniques for embedding domain specific languages in a combined language; new
mechanisms to raise the level of abstraction; experience reports regarding pros/cons in
using separate modeling and programming languages, modeling in a programming
language, executable modeling languages, etc.

August 04-07 19th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS'2014), Tianjin, China. Topics include: verification and validation, security of complex
systems, model-driven development, reverse engineering and refactoring, design by contract, agile
methods, safety-critical & fault-tolerant architectures, real-time and embedded systems, tools and tool
integration, industrial case studies, etc.

August 14-17 Symposium on Dependable Software Engineering: Theories, Tools and Applications
(SETTA'2014), Nanjing, China. Topics include: formal software engineering methods; formal aspects of
engineering approaches to software and system quality; integration of formal methods into software
engineering practice; formal methods for embedded, real-time, hybrid, and cyber-physical systems;
formal aspects of security, safety, reliability, robustness, and fault-tolerance; model checking, theorem
proving, and decision procedures; contract-based engineering of components, systems, and systems of
systems; formal and engineering aspects of software evolution and maintenance; scalable approaches to
formal system analysis and design; applications of formal methods and industrial experience reports;
etc.

August 20-22 11th IEEE International Conference on Embedded Software and Systems (ICESS'2014), Paris,
France. Topics include: embedded real-time systems, distributed embedded computing, fault tolerant &
trusted embedded systems, multicore systems, embedded real-time operating systems, cyber-physical
systems, formal methods for embedded systems, middleware for embedded systems, compilation and
debug techniques, IDE and software tools, robotics and control systems, automotive, medical and
avionics systems, etc.

August 20-22 16th IEEE International Conference on High Performance Computing and Communications
(HPCC'2014), Paris, France. Topics include: languages and compilers for high performance computing,
parallel and distributed software technologies, parallel and distributed algorithms, embedded systems,
tools and environments for software development, distributed systems and applications, high-
performance scientific and engineering computing, reliability and fault-tolerance, trust, security, etc.

 Aug 24-27 Communicating Process Architectures (CPA'2014), Oxford, UK. Theme: "36th WoTUG Conference
on Concurrent and Parallel Systems". Topics include: all aspects of theory, design and implementation
of concurrency in computer systems.

 Aug 25-29 20th International European Conference on Parallel Computing (Euro-Par'2014), Porto, Portugal.
Topics include: all aspects of parallel and distributed computing, such as support tools and
environments, scheduling, high-performance compilers, distributed systems and algorithms, parallel and
distributed programming, multicore and manycore programming, theory and algorithms for parallel
computation, etc. Deadline for early registration: July 25, 2014.

 Aug 25 7th International Workshop on Multi/many-Core Computing Systems
(MuCoCoS'2014). Topics include: programming models, languages, libraries and
compilation techniques; case studies highlighting performance portability and tuning;
etc. Deadline for early registration: July 25, 2014.

 Aug 25 1st International Workshop on Reproducibility in Parallel Computing
(REPPAR'2010). Topics include: design, implementation, execution, and analysis of
experiments in parallel computing in order to improve the reproducibility of results.

 Aug 25 2nd Workshop on Runtime and Operating Systems for the Many-core Era
(ROME'2010). Topics include: many-core aware runtime support for large-scale
applications; dealing with legacy software on novel many-core architectures;
experiences porting, running, or developing applications; traditional and new
programming models for novel many-core hardware; bare-metal programming and
system software; etc.

96 Conference Calendar

Volume 35, Number 2, June 2014 Ada User Journal

 Aug 26-28 12th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2014), Milan, Italy. Topics include: parallel and distributed algorithms, and applications; high-
performance scientific and engineering computing; middleware and tools; reliability, fault tolerance,
and security; parallel/distributed system architectures; tools/environments for parallel/distributed
software development; novel parallel programming paradigms; code generation and optimization;
compilers for parallel computers; distributed systems and applications; scheduling and resource
management; etc.

August 27-29 40th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2014),
Verona, Italy. Topics include: information technology for software-intensive systems.

August 29-31 9th International Conference on Software Engineering and Applications (ICSOFT-EA'2014),
Vienna, Austria. Topics include: software integration, software testing and maintenance, model-driven
engineering, software quality, software and information security, formal methods, programming
languages, parallel and high performance computing, software metrics, agile methodologies, risk
management, quality assurance, certification, etc.

September 01-03 8th International Symposium on Theoretical Aspects of Software Engineering (TASE'2014),
Changsha, China. Topics include: theoretical aspects of software engineering, such as specification and
verification, program analysis, model-driven engineering, aspect and object orientation, embedded and
real-time systems, component-based software engineering, software safety, security and reliability,
reverse engineering and software maintenance, etc.

September 01-05 12th International Conference on Software Engineering and Formal Methods (SEFM'2014),
Grenoble, France. Topics include: abstraction and refinement; programming languages, program
analysis and type theory; formal methods for real-time, hybrid and embedded systems; formal methods
for safety-critical, fault-tolerant and secure systems; software verification and validation; formal aspects
of software evolution and maintenance; light-weight and scalable formal methods; tool integration;
applications of formal methods, industrial case studies and technology transfer; education and formal
methods; etc.

September 07-10 FedCSIS2014 - 7th Workshop on Computer Aspects of Numerical Algorithms (CANA'2014),
Warsaw, Poland. Topics include: parallel numerical algorithms; libraries for numerical computations;
languages, tools and environments for programming numerical algorithms; paradigms of programming
numerical algorithms; etc.

September 09-12 11th International Conference on integrated Formal Methods (iFM'2014), Bertinoro, Italy. Topics
include: the combination of (formal and semi-formal) methods for system development, regarding
modeling and analysis, and covering all aspects from language design through verification and analysis
techniques to tools and their integration into software engineering practice.

 Sep 09-12 43rd Annual International Conference on Parallel Processing (ICPP'2014), Minneapolis, MN, USA.
Topics include: all aspects of parallel and distributed computing, such as applications, architectures,
compilers, programming models, etc.

 Sep 09 International Workshop on Embedded Multicore Systems (EMS'2014). Topics
include: programming models for embedded multicore systems; software for multicore,
GPU, and embedded architectures; real-time system designs for embedded multicore
environments; applications for automobile electronics of multicore designs; compiler for
worst-case execution time analysis; formal method for embedded systems; etc.

 Sep 09 5th International Workshop on Parallel Software Tools and Tool Infrastructures
(PSTI'2014). Topics include: static and dynamic analysis tools; instrumentation,
measurement, analysis, and modeling of applications; analysis and visualization tools
for assisting programmers with parallel software design; etc.

September 15-16 7th International Conference on Software Language Engineering (SLE'2014), Vasteras, Sweden.
Topics include: techniques for software language reuse, evolution and managing variation
(syntactic/semantic) within language families; engineering domain-specific languages (for modeling,
simulating, generation, description, checking); novel applications and/or empirical studies on any aspect
of SLE (development, use, deployment, and maintenance of software languages); etc.

September 15-17 27th International Workshop on Languages and Compilers for Parallel Computing (LCPC'2014),
Hillsboro, OR, USA. Topics include: parallel programming models, parallel programming languages,

Conference Calendar 97

Ada User Journal Volume 35, Number 2, June 2014

compiling for parallelism and parallel compilers, formal analysis and verification of parallel programs,
debugging tools for parallel programs, parallel applications, synchronization and concurrency control,
software engineering for parallel programs, etc.

September 15-19 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2014), Turin, Italy. Topics include: qualitative methods, replication of empirical studies,
empirical studies of software processes and products, industrial experience and case studies, evaluation
and comparison of techniques and models, reports on the benefits / costs associated with using certain
technologies, empirically-based decision making, quality measurement and assurance, software project
experience and knowledge management, etc.

September 17-20 11th International Colloquium on Theoretical Aspects of Computing (ICTAC'2014), Bucharest,
Romania. Topics include: principles and semantics of programming languages; relationship between
software requirements, models and code; program static and dynamic analysis and verification; software
specification, refinement, verification and testing; model checking and theorem proving; integration of
theories, formal methods and tools for engineering computing systems; models of concurrency, security,
and mobility; real-time, embedded, hybrid and cyber-physical systems; etc.

September 22-25 14th International Conference on Runtime Verification (RV'2014), Toronto, Canada. Topics include:
monitoring and analysis of software and hardware system executions. Application areas include:
safety/mission-critical systems, enterprise and systems software, autonomous and reactive control
systems, health management and diagnosis systems, and system security and privacy.

September 24-26 14th Workshop on Automated Verification of Critical Systems (AVoCS'2014), Twente, the
Netherlands. Topics include: model checking, specification and refinement, verification of software and
hardware, specification and verification of fault tolerance and resilience, real-time systems, dependable
systems, verified system development, industrial applications, etc. Deadline for submissions: August 7,
2014 (research ideas).

Sep 28 – Oct 03 30th IEEE International Conference on Software Maintenance and Evolution (ICSME'2014),
Victoria, British Columbia, Canada. ICSME is the newly evolved ICSM.

Sep 29 – Oct 01 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS'2014), Paderborn, Germany. Topics include: fault-tolerant and dependable systems, formal
methods, safety, and security, cyberphysical systems, etc.

 Oct 02-03 CBSoft2014 - 18th Brazilian Symposium on Programming Languages (SBLP'2014), Maceió,
Alagoas, Brazil. Topics include: the fundamental principles and innovations in the design and
implementation of programming languages and systems; programming paradigms and styles, including
object-oriented, real-time, multithreaded, parallel, and distributed programming; program analysis and
verification, including type systems, static analysis and abstract interpretation; programming language
design and implementation, including new programming models, programming language environments,
compilation and interpretation techniques; etc.

October 02-03 14th International Conference on Quality Software (QSIC'2014), Dallas, Texas, USA. Topics
include: software testing, software quality (review, inspection and walkthrough, reliability, safety and
security, ...), static and dynamic analysis, validation and verification, economics of software quality,
formal methods, component software and reuse, component-based systems, cyber-physical systems,
distributed systems, embedded systems, safety critical systems, etc.

October 06-09 33rd International Symposium on Reliable Distributed Systems (SRDS'2014), Nara, Japan. Topics
include: distributed objects and middleware systems, experimental or analytical evaluations of
dependable distributed systems, formal methods and foundations for dependable distributed computing,
high-assurance and safety-critical distributed system design and evaluation, secure and trusted
distributed systems, etc.

October 12-16 9th International Conference on Software Engineering Advances (ICSEA'2014), Nice, France.
Topics include: advances in fundamentals for software development; advanced mechanisms for
software development; advanced design tools for developing software; software security, privacy,
safeness; specialized software advanced applications; open source software; agile software techniques;
software deployment and maintenance; software engineering techniques, metrics, and formalisms;
software economics, adoption, and education; improving productivity in research on software
engineering; etc.

98 Conference Calendar

Volume 35, Number 2, June 2014 Ada User Journal

October 15-16 6th International Workshop on Software Engineering for Resilient Systems (SERENE'2014),
Budapest, Hungary. Topics include: requirements engineering & re-engineering for resilience;
frameworks, patterns and software architectures for resilience; verification, validation and evaluation of
resilience; empirical studies in the domain of resilient systems; etc.

 Oct 18-21 ACM SIGAda Annual International Conference on High Integrity Language
Technology (HILT'2014), Portland, Oregon, USA. Sponsored by ACM SIGAda, in
cooperation with Ada-Europe and the Ada Resource Association. Co-located with
SPLASH 2014. Deadline for submissions: July 5, 2014.

 October 20-24 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2014), Portland, Oregon, USA. Deadline for early registration: September 19,
2014.

October 21-24 14th International Conference on Formal Methods in Computer-Aided Design (FMCAD'2014),
Lausanne, Switzerland. Co-located with MEMOCODE'2014 and DIFTS'2014. Topics include: theory
and application of formal methods in computer-aided design and verification of computer systems and
related topics; synthesis and compilation for computer system descriptions, modeling, specification, and
implementation languages; model-based design; correct-by-construction methods; experience with the
application of formal and semi-formal methods to industrial-scale designs; etc.

November 03-06 25th IEEE International Symposium on Software Reliability Engineering (ISSRE'2014), Naples,
Italy. Topics include: reliability, availability, and safety of software systems; validation, verification,
testing and dynamic analysis; software quality and productivity; software security; dependability,
survivability, and resilience of software systems; open source software reliability engineering;
supporting tools and automation; industry best practices; empirical studies; etc. Deadline for
submissions: July 11, 2014 (tutorials), August 15, 2014 (workshop papers), August 25, 2014 (student
papers), August 31, 2014 (fast abstracts).

November 03-07 16th International Conference on Formal Engineering Methods (ICFEM'2014), Luxembourg,
Luxembourg. Topics include: abstraction and refinement; program analysis; software verification;
formal methods for software safety, security, reliability and dependability; tool development, integration
and experiments involving verified systems; formal methods used in certifying products under
international standards; formal model-based development and code generation; etc.

November 04-06 14th International Conference on Software Process Improvement and Capability dEtermination
(SPICE'2014), Vilnius, Lithuania. Topics include: process assessment, improvement and risk
determination in areas of application such as automotive systems and software, aerospace systems and
software, medical device systems and software, safety-related systems and software, financial
institutions and banks, small and very small enterprises, etc. Deadline for early registration: September
1, 2014.

November 16-21 27th International Conference for High Performance Computing, Networking, Storage and
Analysis (SC'2014), New Orleans, Louisiana, USA. Topics include: parallel algorithms, applications,
distributed computing, performance, programming systems, system software, state-of-the-practice, etc.
Deadline for submissions: July 31, 2014 (BOFs, Emerging Technologies, posters, showcases).

November 16-22 22nd ACM SIGSOFT International Symposium on the Foundations of Software Engineering
(FSE'2014), Hong Kong, China. Topics include: architecture and design; components, services, and
middleware; distributed, parallel, and concurrent software; embedded and real-time software; formal
methods; model-driven software engineering; program analysis; reverse engineering; safety-critical
systems; scientific computing; software engineering education; software evolution and maintenance;
software reliability and quality; specification and verification; tools and development environments; etc.

November 17-19 12th Asian Symposium on Programming Languages and Systems (APLAS'2014), Singapore. Topics
include: foundational and practical issues in programming languages and systems, such as semantics,
design of languages and type systems, domain-specific languages, compilers, interpreters, abstract
machines, program analysis, verification, model-checking, software security, concurrency and
parallelism, tools and environments for programming and implementation, etc.

November 27-28 European Conference Software Engineering Education (ECSEE'2014), Seeon Monastery, Germany.
Topics include: new methods, techniques, best practices, and experiences in SE education; illustrative

Conference Calendar 99

Ada User Journal Volume 35, Number 2, June 2014

examples to highlight SE topics in education; tools for SE education, both commercial and public
domain; etc.

December 01-04 21st Asia-Pacific Software Engineering Conference (APSEC'2014), Jeju Island, Korea. Topics
include: embedded real-time systems; formal methods; SE environments and tools; security, reliability,
and privacy; software engineering methods; software maintenance and evolution; software process and
standards; testing, verification, and validation; etc. Deadline for submissions: July 30, 2014 (industry
track papers, postgraduate symposium papers, tutorials).

December 08-12 15th ACM/IFIP/USENIX International Middleware Conference (Middleware'2014), Bordeaux,
France. Topics include: design, implementation, deployment, and evaluation of distributed system
platforms and architectures for computing, storage, and communication environments, including
reliability and fault-tolerance; scalability and performance; programming frameworks, parallel
programming, and design methodologies for middleware; methodologies and tools for middleware
design, implementation, verification, and evaluation; etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

 Dec 16-19 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2014), Hsinchu,
Taiwan. Topics include: parallel and distributed applications and algorithms, middleware, multi-core
and multithreaded architectures, scheduling, security and privacy, dependable and trustworthy
computing and systems, real-time systems, cyber-physical systems, embedded systems, etc. Deadline
for submissions: July 1, 2014 (papers).

December 17-20 21st IEEE International Conference on High Performance Computing (HiPC'2014), Goa, India.
Topics include: parallel and distributed algorithms/systems, parallel languages and programming
environments, hybrid parallel programming with GPUs and accelerators, scheduling, resilient/fault-
tolerant algorithms and systems, scientific/engineering/commercial applications, compiler technologies
for high-performance computing, software support, etc. Deadline for submissions: September 16, 2014
(student symposium submissions). Deadline for early registration: November 14, 2014.

2015

January 19-21 10th International Conference on High Performance and Embedded Architectures and Compilers
(HiPEAC'2015), Amsterdam, the Netherlands. Topics include: computer architecture, programming
models, compilers and operating systems for embedded and general-purpose systems; parallel, multi-
core and heterogeneous systems; reliability and real-time support in processors, compilers and run-time
systems; architectural and run-time support for programming languages; programming models,
frameworks and environments for exploiting parallelism; compiler techniques; etc.

April 11-19 18th European Joint Conferences on Theory and Practice of Software (ETAPS'2015), London, UK.
Events include: CC (International Conference on Compiler Construction), ESOP (European Symposium
on Programming), FASE (Fundamental Approaches to Software Engineering), FOSSACS (Foundations
of Software Science and Computation Structures), POST (Principles of Security and Trust), TACAS
(Tools and Algorithms for the Construction and Analysis of Systems).

 June 22-26 20th International Conference on Reliable Software Technologies - Ada-
Europe'2015, Madrid, Spain. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association (ARA) (requests
pending).

 Sep 01-04 International Conference on Parallel Computing 2015 (ParCo'2015), Edinburgh, Scotland, UK.
Topics include: all aspects of parallel computing, including applications, hardware and software
technologies as well as languages and development environments, in particular parallel programming
languages, compilers, and environments, tools and techniques for generating reliable and efficient
parallel code, testing and debugging techniques and tools, best practices of parallel computing on
multicore, manycore, and stream processors, etc.

December 10 200th birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

100 Forthcoming Events

Volume 35, Number 2, June 2014 Ada User Journal

ACM SIGAda Annual International Conference

High Integrity Language Technology HILT 2014
Call for Technical Contributions

Developing and Certifying Critical Software

October 18-21, 2014 — Portland, Oregon (USA)
Pre-conference tutorials: October 18-19

Conference: October 20-21; Co-located with SPLASH 2014

Sponsored by ACM SIGAda in cooperation with SIGBED, SIGCSE, SIGPLAN, SIGSOFT,
Ada-Europe and the Ada Resource Association

Contact: SIGAda.HILT2014 at acm.org www.sigada.org/conf/hilt2014

KEYNOTE SPEAKERS

 Tom Ball Christine Anderson
Thomas Ball is a principle researcher in the area of Software Engineering at Microsoft Research where he
manages the Software Reliability Research group. Tom was instrumental in the development of the SLAM model
checker, and will be talking about “A Decade of Program Verification at Microsoft.” Christine Anderson was
Manager of the Ada 9X Project, which completed its technical work 20 years ago to produce Ada 95; Christine is
now Executive Director of Spaceport America, which is supporting commercial space flights by SpaceX and
Virgin Galactic; she will be talking about her journey “From Ada9X to Spaceport America - Going Where No
One Has Gone Before.” Other invited speakers to be announced soon.

SUMMARY
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety
and/or security demands, typically entailing certification against a relevant standard. A significant factor affecting
whether and how such requirements are met is the chosen language technology and its supporting tools: not just
the programming language(s) but also languages for expressing specifications, program properties, domain
models, and other attributes of the software or overall system. HILT 2014 will provide a forum for experts from
academia/research, industry, and government to present the latest findings in designing, implementing, and using
language technology for high integrity software. We are soliciting technical papers, experience reports, and
tutorial proposals on a broad range of relevant topics.

POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:

 New developments in formal methods
 Multicore and high integrity systems
 Object-Oriented Programming in high integrity systems
 High-integrity languages (e.g., SPARK)
 Use of high reliability profiles such as Ravenscar
 Use of language subsets (e.g., MISRA C, MISRA C++)
 Software safety standards (e.g., DO-178B and DO-178C)
 Typed/Proof-Carrying Intermediate Languages
 Contract-based programming (e.g., Ada 2012)
 Specification languages (e.g., Z)
 Annotation languages (e.g., JML)

 Model-based development for critical systems
 Teaching high integrity development
 Case studies of high integrity systems
 Real-time networking/quality of service guarantees
 Analysis, testing, and validation
 Static and dynamic analysis of code
 Information Assurance
 Security and the Common Criteria /

Common Evaluation Methodology
 Architecture design languages (e.g., AADL)
 Fault tolerance and recovery

Forthcoming Events 101

Ada User Journal Volume 35, Number 2, June 2014

KINDS OF TECHNICAL CONTRIBUTIONS
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 10-
20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings and
in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library accessible
online to university campuses, ACM’s mare than 110,000 members, and the wider software community.

EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If
your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will be
double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work
(with bibliographic references), results to date, and future directions.

EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 2-3 page description of the
project and the key points of interest. Descriptions will be published in the final program or proceedings, but a
paper will not be required.
PANEL SESSIONS gather groups of experts on particular topics. Panelists present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.
INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at
least 2 page in length) of the proposed presentation and, if selected, a subsequent extended abstract for a 30-
minute talk. The authors of accepted presentations will be invited to submit corresponding articles for ACM Ada
Letters.
WORKSHOPS are focused sessions that allow knowledgeable professionals to explore issues, exchange views,
and perhaps produce a report on a particular subject. Workshop proposals, up to 5 pages in length, will be selected
based on their applicability to the conference and potential for attracting participants.
TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial
proposals should include the expected level of experience of participants, an abstract or outline, the qualifications
of the instructor(s), and the length of the tutorial (half day or full day).
HOW TO SUBMIT: Except for Tutorial proposals use http://www.easychair.org/conferences/?conf=hilt2014

Submission Deadline Use Easy Chair Link Above
Technical articles, extended abstracts,
experience reports, panel session
proposals, or workshop proposals

June 7, 2014 now July 5! For more info contact:
Tucker Taft, Program Chair
taft@adacore.com
 Industrial presentation proposals

July 5, 2014 (overview)
Aug 6, 2014 (extended abstract)

Send Tutorial proposals to June 7, 2014 now July 5! John McCormick, Tutorials Chair
mccormick@cs.uni.edu

At least one author is required to register and make a presentation at the conference.

FURTHER INFORMATION
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for 2 days of
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)
OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: Please contact Greg Gicca (Gicca@Verocel.Com) to learn the benefits of
becoming a sponsor and/or exhibitor at HILT 2014.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be particularly
aware and careful about visa requirements, and should plan travel well in advance. Visit the conference website
for detailed information pertaining to visas.

ANY QUESTIONS? Please send email to SIGAda.HILT2014@acm.org or Conference Chair Prof. Michael B.
Feldman (MFeldman@gwu.edu) or Program Chair Tucker Taft (Taft@adacore.com).

102 For thcoming Events

Volume 35, Number 2, June 2014 Ada User Journal

Preliminary Call for Papers

20th International Conference on
Reliable Software Technologies –

Ada‐Europe 2015
22‐26 June 2015, Madrid, Spain

 http://www.ada‐europe.org/conference2015

Conference Chair

Alejandro Alonso
ETSIT‐UPM
alonso@dit.upm.es

Program co‐Chairs

Juan A. de la Puente
ETSIT‐UPM
jpuente@dit.upm.es

Tullio Vardanega
Università di Padova
tullio.vardanega@unipd.it

Tutorial Chair

Jorge Real
UPV
jorge@disca.upv.es

Exhibition Chair

Santiago Urueña
GMV
suruena@gmv.com

Industrial Chair

Jørgen Bundgaard
Rambøll Danmark A/S
jogb@ramboll.dk

Ana Rodríguez
Silver Atena
ana.rodriguez@silver‐atena.es

Publicity Chair

Dirk Craeynest
Ada‐Belgium & KU Leuven
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Juan Zamorano
ETSIINF‐UPM
jzamora@fi.upm.es

"In cooperation" requested
with

ACM SIGAda, SIGBED,
SIGPLAN, and ARA

General Information

The 20th International Conference on Reliable Software Technologies – Ada‐Europe 2015 will take
place in Madrid, Spain. Following its traditional style, the conference will span a full week,
including a three‐day technical program and vendor exhibition from Tuesday to Thursday, along
with parallel tutorials and workshops on Monday and Friday.

Schedule

Topics

The conference has over the years become a leading international forum for providers,
practitioners and researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and maintenance of
long‐lived, high‐quality software systems for a challenging variety of application domains. The
program will allow ample time for keynotes, Q&A sessions and discussions, and social events.
Participants include practitioners and researchers representing industry, academia and
government organizations active in the promotion and development of reliable software
technologies.

Topics of interest to this edition of the conference include but are not limited to:

 Multicore and Manycore Programming: Predictable Programming Approaches for Multicore
and Manycore Systems, Parallel Programming Models, Scheduling Analysis Techniques.

 Real‐Time and Embedded Systems: Real‐Time Scheduling, Design Methods and Techniques,
Architecture Modelling, HW/SW Co‐Design, Reliability and Performance Analysis.

 Mixed‐Criticality Systems: Scheduling methods, Mixed‐Criticality Architectures, Design
Methods, Analysis Methods.

 Theory and Practice of High‐Integrity Systems: Medium to Large‐Scale Distribution, Fault
Tolerance, Security, Reliability, Trust and Safety, Languages Vulnerabilities.

 Software Architectures: Design Patterns, Frameworks, Architecture‐Centred Development,
Component‐based Design and Development.

 Methods and Techniques for Software Development and Maintenance: Requirements
Engineering, Model‐driven Architecture and Engineering, Formal Methods, Re‐engineering
and Reverse Engineering, Reuse, Software Management Issues, Compilers, Libraries, Support
Tools.

 Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

 Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health
Care, Transportation, Cloud Environments, Smart Energy systems, Serious Games, etc.

 Experience Reports in Reliable System Development: Case Studies and Comparative
Assessments, Management Approaches, Qualitative and Quantitative Metrics.

 Experiences with Ada and its Future: Reviews of the Ada 2012 new language features,
implementation and use issues, positioning in the market and in the software engineering
curriculum, lessons learned on Ada Education and Training Activities with bearing on any of
the conference topics.

11 January 2015 Submission of regular papers, tutorial and workshop proposals
25 January 2015 Submission of industrial presentation proposals
1 March 2015 Notification of acceptance to all authors

29 March 2015 Camera‐ready version of regular papers required
12 April 2015
17 May 2015

Industrial presentations abstracts required
Tutorial and workshop materials required

Forthcoming Events 103

Ada User Journal Volume 35, Number 2, June 2014

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to submit original contributions. Paper
submissions shall not exceed 14 LNCS‐style pages in length. Authors shall submit their work via EasyChair following the relevant
link on the conference web site. The format for submission is solely PDF.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS) series by Springer, and will be
available at the start of the conference. The authors of accepted regular papers shall prepare camera‐ready submissions in full
conformance with the LNCS style, not exceeding 14 pages and strictly by March 29, 2015. For format and style guidelines authors
should refer to http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register for the conference by that date
will prevent the paper from appearing in the proceedings.

The CiteSeerX Venue Impact Factor has the Conference in the top quarter. Microsoft Academic Search has it in the top third for
conferences on programming languages by number of citations in the last 10 years. The conference is listed in DBLP, SCOPUS and
Web of Science Conference Proceedings Citation index, among others.

Awards

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference seeks industrial presentations which deliver value and insight but may not fit the selection process for regular
papers. Authors are invited to submit a presentation outline of exactly 1 page in length by January 25, 2015. Submissions shall be
made via EasyChair following the relevant link on the conference web site. The Industrial Committee will review the submissions
and make the selection. The authors of selected presentations shall prepare a final short abstract and submit it by April 12, 2015,
aiming at a 20‐minute talk. The authors of accepted presentations will be invited to submit corresponding articles for publication
in the Ada User Journal (http://www.ada‐europe.org/auj/), which will host the proceedings of the Industrial Program of the
Conference. For any further information please contact the Industrial Chair directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be proposed as either half‐ or full‐day
events. Proposals should include a title, an abstract, a description of the topic, a detailed outline of the presentation, a description
of the presenter's lecturing expertise in general and with the proposed topic in particular, the proposed duration (half day or full
day), the intended level of the tutorial (introductory, intermediate, or advanced), the recommended audience experience and
background, and a statement of the reasons for attending. Proposals should be submitted by e‐mail to the Tutorial Chair. The
authors of accepted full‐day tutorials will receive a complimentary conference registration as well as a fee for every paying
participant in excess of 5; for half‐day tutorials, these benefits will be accordingly halved. The Ada User Journal will offer space for
the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half‐ or full‐day
events, to be scheduled at either end of the conference week. Workshop proposals should be submitted to the Conference Chair.
The workshop organizer shall also commit to preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and providers of software products and
services should contact the Exhibition Chair for information and for allowing suitable planning of the exhibition.

Francisco de Goya

La pradera de San Isidro (1788)

Museo del Prado, Madrid

104 Press Release

Volume 35, Number 2, June 2014 Ada User Journal

FOR IMMEDIATE RELEASE

Ada 2012 Language Standard Published in Springer's LNCS and as
Free eBook Further Widen the Availability of Latest Language Revision

BRUSSELS, BELGIUM, May 12, 2014. Ada-Europe today announced the publication
in extra formats of the 2012 version of the Ada programming language standard, after
its formal approval by ISO/IEC JTC 1 in December 2012.

Since its standardization, the Ada 2012 standard has been available in HTML and
Adobe Acrobat format (PDF), from the download sites [1] and [2]. More recently, the
latest Ada language definition became also available as volume 8339 of Springer's
Lecture Notes in Computer Science series [3], as a companion to the Ada 2012
Rationale, published by Springer as LNCS 8338.

Moreover, with a view to exploring new media platforms to further widen the availability
of this important material, Ada-Europe has now produced a prototype eBook of the Ada
2012 Reference Manual, which can be downloaded from [1]. This eBook should be
regarded as a draft concept, proposed for the scrutiny of the Ada community at large,
for feedback on its perceived usefulness and suggestions for improvements. Returns
on this subject should be addressed to Ada-Europe at board@ada-europe.org.

[1] http://www.ada-europe.org/resources/online
[2] http://www.adaic.org/ada-resources/standards/ada12
[3] http://www.springer.com/computer/swe/book/978-3-642-45418-9

About Ada 2012

Ada 2012 brings significant enhancements to Ada, most notably in the area of
"contract-based programming." New features include the ability to specify preconditions
and postconditions for subprograms, and invariants for private (encapsulated) types.
These take the form of Boolean expressions that can be interpreted (under
programmer control) as run-time conditions to be checked. The contract-based
programming features fit in smoothly with Ada's Object-Oriented Programming model,
and support the type substitutability guidance supplied in the Object-Oriented
Technologies and Related Techniques Supplement (DO-332) to the new avionics
software safety standard DO-178C / ED-12C.

Press Release 105

Ada User Journal Volume 35, Number 2, June 2014

Other new features in Ada 2012 include enhancements to the containers library,
additional expressiveness through features such as conditional expressions and more
powerful iterators, and support for multicore platforms (task affinities, and the extension
of the Ravenscar profile - standardized in Ada 2005 as an efficient and predictable
tasking subset for high-integrity real-time systems - to multiprocessor and multicore
environments).

About Ada-Europe

Ada-Europe is the international non-profit organization that promotes the knowledge
and use of the Ada programming language in academia, research and industry in
Europe. Its flagship event is the annual international conference on reliable software
technologies, a high-quality technical and scientific event that has been successfully
running in the current format since 1996.

Ada-Europe has member organizations all over the continent, in Belgium, Denmark,
France, Germany, Spain, Sweden, and Switzerland, as well as individual members in
many other countries. For information about Ada-Europe, its charter, activities and
sponsors, please visit: www.ada-europe.org. Ada-Europe is headquartered in Brussels,
Belgium.

A PDF version of this press release is available at http://www.ada-europe.org/.

Organization Contact

Ada-Europe ivzw/aisbl
Tullio Vardanega, Ada-Europe President
president@ada-europe.org

Press Contact

Ada-Europe ivzw/aisbl
Dirk Craeynest, Ada-Europe Vice-president
c/o KU Leuven, Department of Computer Science
dirk.craeynest@cs.kuleuven.be
vice-president@ada-europe.org

 107

Ada User Journal Volume 35, Number 2, June 2014

Feature Model Extraction from Documented UML
Use Case Diagrams
Mariem Mefteh, Nadia Bouassida
Sfax University, Mir@cl Laboratory, Tunisia; email: Mariem.mefteh.ch@gmail.com,
Nadia.Bouassida@isimsf.rnu.tn

Hanêne Ben-Abdallah

King Abdulaziz University, Jeddah, KSA; email: HBenAbdallah@kau.edu.sa

Abstract

The development of a feature model for a software
product line requires a thorough domain analysis
which needs a high expertise. Indeed, analysts must
not only understand the requirements for one
particular application, but they must also identify
variable ways in which the requirements can be
combined in all applications in the domain. Such an
expertise being often hard to acquire, analysts need
approaches that provide assistance based on any
existing artefacts produced during the development of
applications in the domain of the product line. In this
paper, we present a fully automated approach that
assists domain analysts in specifying the feature
model of a software product line. Our approach
exploits the use case diagrams of existing applications
along with their textual documentation. Besides using
the natural language documentation of the
requirements, it has the merit of overcoming the
possible incompleteness of such documentation.

Keywords: Feature model, SPL, textual scenario,
UML use cases.

1 Introduction

Maximizing the reuse of existing products has long been
recognized as a means of cost reduction and quality
improvement of software development. In fact, several
reuse techniques have been proposed over the last decades
including libraries, design patterns, components,
frameworks, etc. Among the proposed techniques, we will
focus in this paper on software product lines (SPLs).

According to Clements et al. [4], an SPL is “a set of
software intensive systems sharing common, managed set
of features that satisfy specific needs of a particular market
segment and that are developed from a common set of core
assets in a prescribed way”. Software development based
on an SPL relies on assembling and configuring parts
(called features) designed to be reused across the product
line. While other reuse techniques support reuse by
collecting a library of generic components with reuse
potential, SPLs create reusable components needed in a
predictive way to develop software within a particular
product line. As such, this software development technique

promotes cost reduction, higher productivity, shorter time-
to-market and higher quality products.

The main differences between the development of a
conventional software and an SPL stem from the points of
variation that this later must contain. The variation points
represent the functional and behavioral differences among
all software in the product line. They are the means of
configuration of an SPL in order to derive a software from
it, i.e., to reuse it. Given their power to cover the whole
domain of the product line, the identification of the
variation points is the core of any development process of
SPLs. These processes generally start from a set of assets
pertinent to product variants in the product line and apply a
set of decision rules to identify the common and variation
points of the SPL, which are often modeled through a
feature model [6]. Depending on the type of assets they use
(source code or specification), the SPL development
process adopts either a bottom-up or a top-down approach.

In a bottom-up approach, the feature model is derived from
source code of product variants, whereas a top-down
approach relies on a domain analysis to extract the feature
model. Given the high expertise required in the second type
of approaches, most proposed SPL development processes
adopt a bottom-up approach. In addition, most existing
bottom-up feature model extraction methods start from the
source code of product variants (cf. [16], [20]). However,
they have some difficulties in identifying all types of
features and/or constraints related to the variation points.
This limit stems in part from the low level of abstraction
nature of the code. It can be overcome thanks to a thorough
analysis of the domain. Instead of starting from scratch,
which would require a high level of expertise, the domain
analysis can be assisted by the requirements specification
assets of existing product variants. Adopting this approach,
the few proposed methods (cf. [19], [10], [1]) use textual
documentation of product variants to derive feature models.
Besides imposing a specific documentation template,
similar to their bottom-up counterparts, these methods also
have difficulties in identifying all the features and their
variation constraints. Furthermore, they require an intense
intervention of the designer.

In this paper, we present a fully automated top-down
method that helps the experts in the domain analysis task in
order to construct feature models. Our method relies on

108 Feature Model Extract ion From Documented UML Use Case Diagrams

Volume 35, Number 2, June 2014 Ada User Journal

documented UML use case diagrams as assets. Indeed,
these are recently being explored as a way to model the
domain of SPLs (cf. [8], [9]). Compared to existing
methods, our approach is more applicable for two reasons:
UML being a de facto standard software modelling
language guarantees the availability of use case diagrams of
product variants; and the textual documentation of the use
cases describes interaction scenarios in a relatively standard
format. Nevertheless, our method needed to face two main
challenges: the possible incompleteness of use case
diagrams and their textual documentation, and the natural
language semantic ambiguities. To handle these challenges,
our method uses a Formal Concept Analysis (FCA) method
[3], the Semantic Model (SM) [17] and the trigger model
[15] to extract relevant features and derive their hierarchies.
In addition, the constraints among features are deduced by
using semantic criteria and exploiting the “includes”
relationships between pairs of use cases.

The remainder of this paper is organized as follows.
Section 2 presents some fundamental concepts used in later
sections. Section 3 overviews currently proposed
approaches for features and feature model extraction from
use case diagrams and/or textual descriptions. Section 4
presents our method and section 5 illustrates it through an
example from the field of mobile media. Finally, section 6
summarizes the paper and presents an overview of our
ongoing work.

2 Fundamentals

Before presenting our feature model extraction method, we
overview the concepts of feature model, use case
documentation, semantic model [17], and trigger model
[15].

2.1 Feature models
Among the most popular formalisms used to model and
reason about SPLs, feature models [6] are used to describe
common and variation points. A feature model (FM) is a
hierarchical graph where every node corresponds to a
feature and each arc represents feature variability.

Informally, a feature is a characteristic of a system relevant
for some stakeholder. It can be:

- “mandatory” (graphically represented as)
which means that its presence is compulsory in
every product configuration where its parent feature
is present; or

- “optional” (graphically represented as)which
means that its presence is not compulsory in every
product.

Feature nodes in a feature model can be related by the
following types of links:

 “OR” (graphically represented as): indicates that
at least one of the child features has to be selected
when deriving a specific product.

 “XOR” (graphically represented as): indicates
that exactly one of the child features should be selected
when deriving a specific product.

 “Require” (graphically represented as A B):
indicates that if the feature A is selected in a
configuration, then the feature B must be selected too.

 “AND” (graphically represented as): indicates
that two features must be selected together in the same
configuration.

 “Exclude” (graphically represented as A B):
indicates that the features A and B should not to be
part of the same configuration.

Any combination of features that does not violate the
constraints of the feature model corresponds to a specific
product [7].

2.2 Use case documentation
Developers resort to use cases (UC) as an intuitive means
to express user requirements and understand the application
domain. A use case instance can be expressed in terms of a
scenario written in natural language, which explains in
detail a specific way of using the system. In our work, we
adopt the scenario template of the Cockburn’s use case
taken from [5]. As explained in Table 1, the template is
relatively simple yet rich.	

Table 1 Cockburn’s use case template

Use case
name

< the name is the goal as a short active verb
phrase>

Goal in
context

<a longer statement of the goal in context if
needed>

Scope <what system is being considered black box
under design>

Level <one of : Summary, Primary Task,
Subfunction>

Preconditions <what we expect is already the state of the
world>

Success end
condition

<the state of the world upon successful
completion>

Failed end
condition

<the state of the world if goal abandoned>

Primary
actors

<a role name or description for the primary
actor>

Secondary
actors

<other systems relied upon to accomplish use
case>

Trigger <the action upon the system that starts the use
case>

Description Step Action
1 <The steps of the scenario from trigger

to goal delivery, and any clean up
after>

2 <...>
Extensions Step Branching Action

1a

<condition causing branching> :<action
or name of sub.use case>

Sub-
Variations

Step Branching Action
1 <list of variations>

M. Mefteh, N. Bouassida and H. Ben-Abdal lah 109

Ada User Journal Volume 35, Number 2, June 2014

The use case detailed scenarios accompany the UML use
case diagram as a documentation asset. In addition to the
use case names, the UML diagram represents the
preconditions and extensions of the use case scenarios
through the "includes" and "extends" relations among the
use case nodes. In the remainder of this paper, we call such
UML use case diagram a documented use case diagram.

2.3 Semantic model
The goal of the semantic model (SM) [17] is to address the
gap between how we think and how we shall resort to
operational details to explain the same ideas in a natural
language. It is based on a set of rules, called mapping rules,
that represent a text written in any natural language in a
formal and unique way, and that can be processed later to
deduce important information like the corresponding source
code [17].

For example, “a doctor is a person” (in English), “un
docteur est une personne” (in French), “ein Arzt ist eine
Person” (in German) have ultimately the same meaning.
They correspond to a hierarchy concept relation that
defines the two concepts “doctor” and “person”. The
corresponding mapping rule is the following:

(definition, hierarchy concept relation,
 (sub-concept, (doctor, (quantity, abstract))),

 (super-concept, (person, (quantity, abstract))))

where: definition means that the concepts are cited for the
first time; (doctor, (quantity, abstract)) and (person,
(quantity, abstract)) represent, respectively, the name of the
concept “doctor” with a semantic role sub-concept, and the
name of the concept “person” with a semantic role super-
concept; hierarchy concept relation corresponds to the type
of the current mapping rule. In our case, the hierarchy
concept relation is equivalent to the generalization in UML.

We will use the semantic model to detect, from the textual
description, use cases that are missing in some of the use
case diagrams of product variants. Detecting missing use
cases can be vital during the validation of the user
requirements.

2.4 Trigger model
The trigger model is a probabilistic model that was initially
proposed by Lau et al. [15]. It is used to represent pairs of
highly correlated words; that is, the occurrence of one of
the two words in the history increases the prediction of the
other. To determine the pairs of correlated words, the
mutual information between words is calculated to measure
the co-occurrence of words in a given context.

In our method, we use the trigger model for uses cases
instead of words. Thus, the mutual information measure
represents the co-occurrence of two use cases in the same
use case diagram. It is calculated as follows:

MI(i , j) =log

(,)i jP  

 (1)
()iP  x P()j

where i and j are use cases; (,)i jP   is the

probability of finding the use cases i and j in the

same use case diagram; and ()iP  and P()j are the

probability of the use cases i and j , respectively.

The retained pairs of use cases are those whose mutual
information exceeds a given threshold; they are considered
as triggers.

3 Related work

Acher et al. [1] proposed a semi-automated approach to
extract feature models from textual descriptions
documenting a set of products. Their approach supposes
that the documentation is organized in a tabular format
where each row corresponds to a product and each column
represents a product description. Similarly, Hartmann et al.
[13] defined an approach that takes as input products
documented as feature models or in a tabular format and
produces a Supplier Independent Feature Model (SIFM).
To be efficient, these two approaches require formal and
complete descriptions in the predefined tabular format,
which is not always the case. In addition, these approaches
require user (domain analyst) intervention. Our aim is to
overcome these two limits by automating the approach and
extending, if necessary, the documentation to ensure the
derivation of feature models from documented use case
diagrams.

Weston et al. [19] proposed a tool that creates feature
models from requirements specifications expressed in
natural language, using clustering methods. In this
approach, the variability information must be integrated
manually into the resulting feature models and it cannot be
synthesized automatically. Dumitru et al. [10] also used
clustering methods to identify features from publicly
available online specifications in any form. Their approach
can discover domain-specific features and generate a
probabilistic feature model as well as product specific
feature recommendations. Our approach uses a particular
kind of clustering technique through the Formal Concept
Analysis (FCA) [3], a method of data analysis that
describes relationships between a particular set of objects
and a particular set of attributes. These latter constitute the
input data of the FCA, represented in a tabular form, called
cross table; the objects and the attributes correspond,
respectively, to its rows and its columns. Formal concepts
are particular clusters in cross-tables, defined by means of
attribute sharing [3]. Their collection corresponds to a
concept lattice.

Also based on textual documentation, Davril et al. [7]
proposed an approach that generates automatically feature
models from a set of informal and incomplete product
descriptions. No one can deny that the work done in this
approach was a challenge since it extracts complete feature
models from informal and incomplete descriptions.
However, this approach does not handle all types of
variability constraints, namely the Require, AND and
Exclude constraints.

110 Feature Model Extract ion From Documented UML Use Case Diagrams

Volume 35, Number 2, June 2014 Ada User Journal

Besides tabular and textual descriptions as assets in the
derivation of feature models, use case diagrams have also
been explored by a few researchers. Griss et al. [12] relied
on the «includes» and «extends» relationships of the use
case diagram in order to deduce the structure of the feature
model. Likewise, Wang et al. [18] proposed a semi-
automatic approach that converts a set of use cases into a
Domain Feature Model. One main limit of these
approaches is that they only use the relationships between
the use cases to model the SPL. In particular, they do not
exploit the semantics in the derivation of the constraints
among the features. In addition to overcoming this limit,
our method has two additional challenges to face: it fully
automates the process; and it must be able to construct a
complete feature model from a set of possibly incomplete
use case diagrams and scenarios.

It is also worth noting that recent works propose to model
an SPL with some extensions of UML use case diagrams
along the feature models. For example, Gomaa [11]
proposed to model features as use case packages in order to
provide for the visualization of variants among use case
specifications derivable from the feature model; Alférez et
al. [2] proposed to specify the functional requirements with
a use case model and the SPL features and variability
information with a feature model. Hence, another
advantage of our approach for feature model construction
from documented use case diagrams is that it can produce a
documented use case diagram for the SPL along with the
feature model. The first model would be used for a better
comprehension of the domain while the second model
would be used for guiding the derivation of a particular
product.

4 Our approach

Our approach consists of two main phases, namely pre-
processing use cases and building the feature model (see
Fig. 1).

4.1 Use cases pre-processing

This first phase gets four possible kinds of product variant
assets: complete and documented use case diagrams,
incomplete but documented use case diagrams use case
diagrams with no scenarios, and/or just scenarios written in
natural language. We suppose that the documentation is
structured according to the use case template of Table 1.
The goal of this phase is to refine and complete the use case
diagrams based on their documentation. This phase is
composed of four main steps.

4.1.1 Use case diagram completion

This step aims to complete the product variants' use case
diagrams. It examines the textual scenarios, if there are any,
to identify use cases that are missing in some product
variants' use case diagrams. It relies on the field “Goal in
context” in the template documenting the use case
scenarios. This field is in fact a reference to use cases
included in product variant use case diagrams.

The identification of the missing use cases is done thanks to
the semantic model. More specifically, for each use case
scenario, first we apply the semantic model on its “Goal in
context” field to obtain the corresponding mapping rule.
The result of their treatment produces a list of use cases
that must be included in some variant use case diagrams.
All use cases in this list can be automatically added to the
product variants' use case diagrams.

4.1.2 Use case name unification

This step ensures that the use case collection has a unified
vocabulary. To do so, it uses an unsupervised classification
of the use cases based on the semantics of their names.

The classification of use case names starts with the
extraction of the grammatical units from each use case
name. This can be done automatically thanks to
wordnet::SenceRelate::Allword [21]. Once the grammatical
units are extracted, a similarity distance measure is
computed to decide on the semantic class of each use case.

Several similarity distance measures have been proposed in
the literature of information retrieval and classification. In
our context, we use the widely used cosine similarity, also
known as the TF/IDF (term frequency – inverse document
frequency) similarity, in order to assign a weight to a term i
in a document j as follows:

, , log()

()ij i j i j

m
tf idf tf

D i
     (2)

Where: ij is the weight of the word i in the document j
(corresponding to the use case name j); tfi,j is the frequency
of the word i in the document j; m is the total number of
documents in the collection; and D(i) is the number of
documents where the word i occurs.

Thus, we have to dispose of queries and documents. In our
case, a query will be made of units that compose a product
variant's use case and a document will be made of the
association of grammatical units that compose a product
variant use case, added to their synonyms extracted from
WordNet [22]. The computing of the terms weights should
be completed with the calculation of a similarity measure
which is the cosines, as follow:

   �  
2 2

cos(, q) 0,1, j

j j

ij qj
t T

i

qj ij
t T t T

i q dSim d

 

 


 



 




 
 

�
 (3)

Where di is the document i; q is the query (corresponding

the use case name candidate);
�(, q)id
 

 is the angle between

the vectors id


 and q


; ij is the weight of the term tj in di;

qj is the weight of the term tj in q; and T is the set of

terms contained in the documents. After performing this
calculation, the documents (i.e. the use cases) that are
similar to a query (i.e. having the highest value of

=

M. Mefteh, N. Bouassida and H. Ben-Abdal lah 111

Ada User Journal Volume 35, Number 2, June 2014

�cos(, q)id
 

) are grouped together and form one semantic

class. Then, to unify the UC names having the same
meaning, i.e. belonging to the same semantic class, we
select a name for each class from the use case names list
belonging to it.

4.1.3 Use case name refactoring

In this step, we introduce new names to the use cases of all
use case diagrams in order to unify them according to the
obtained names of classes.

4.1.4 Use case diagram refinement

The goal of this step is to find missing use cases which
were not shown in the variant use case diagrams. As a
consequence, we will detect them from incomplete corpus
of use case diagrams thanks to the use of a probabilistic
model, called the trigger model. Thus, we have to calculate
the matrix of mutual information between each pair of use
cases. Then, we deduce the couple of use cases that are
strongly correlated from this matrix. This means that the
apparition of one of them impacts the apparition of the
other one in the same use case diagram. Thus, we deduce
the missing use cases and their relationships with other
ones in the use case diagrams.

At this stage, we obtain a set of completed and refined use
case diagrams candidates.

4.2 Feature model construction

After refining and completing the collection of use case
diagrams of product variants, our method proceeds with the
construction of the feature model for the SPL. To do so,
first, each use case is admitted as a feature. Secondly, the
relationships and the constraints among these features are

identified through two main tasks: feature hierarchy
extraction followed by feature constraints extraction.

4.2.1. Feature hierarchy extraction

This first step applies the Formal Concept Analysis (FCA)
method [3] on the collection of features to obtain a lattice
of features from which the initial mandatory features are
automatically identified: they are at the top of the lattice.
The remaining features are considered as optional. Among
these latter, we can deduce other mandatory ones. In fact,
we use the "hypernymy" and the "synonymy" semantic
relationships between words to rearrange the cross-table: If
Y is a hypernym or synonym of X, then we can migrate the
column content of Y into those of X in the cross table
because the apparition of Y implies that of X. The
extraction of hypernyms can be done automatically through
the WordNet [22] ontology. Once the cross table is
rearranged, we apply the FCA another time on it and obtain
the remaining mandatory features on top of the new lattice.
The remaining features are all optional.

Along with the new mandatory features, we also identify
the parent/child relationship: Y is a hypernym of X implies
that X is the parent of Y. Up to this stage, we obtain a
feature model with a complete hierarchy but missing its
constraints.

4.2.2. Constraint extraction

This task uses the following four rules to identify relevant
constraints among the identified features:

 R1 [Constraint “OR”]: Using the “Meronymy”
relationship, we deduce the constraint “OR” between
features. If we have Meronyms(A,B) and
Meronyms(A,C), then there is an “OR” constraint
between the features B and C.

Use cases pre-processing FM construction

 Figure 1 Automated two phase process: use cases pre-processing and FM construction

112 Feature Model Extract ion From Documented UML Use Case Diagrams

Volume 35, Number 2, June 2014 Ada User Journal

 R2 [Constraint “XOR”]: Using the “Synonymy”
relationship, we deduce the constraint “XOR” between
features if these latter have the same parent. Suppose
that we have two features, A and B; if A and B are
synonyms and they have the same parent, then we have
an “XOR” relationship between them.

 R3 [Constraint “Exclude”]: Using the “Synonymy”
relationship, we deduce the constraint “exclude”
between features if these latter belong to two different
parents.

 R4 [Constraint “require”]: Using the “include”
between two use cases (equivalent to features), we
deduce the “require” relationship between them in the
feature model.

After the extraction of relevant constraints among features
thanks to the application of the previous rules, we obtain a
complete feature model.	

5 Case study

In this case study, we are interested in the construction of a
FM from incomplete use case diagrams in the field of
mobile media. We dispose initially of eight products that
belong to the mobile media field. Due to space limitations,
we will present only some of them (see Fig. 2).

(a) Product 1, 3 and 4 use

 case diagrams

 (b) Product 2 use case diagram

 (c) Product 6 use case diagram

Figure 2 Presentation of the initial collection of use case
diagrams belonging to 5 mobile media products

First of all, we complete the use case diagrams by the
missing use cases, taking their textual descriptions as input.
As presented in section 4.1.1, we rely on the field “Goal in
context” to deduce them. For an example, let us consider
the extract of the textual description of the use case
"manage album" from the products 1, 3 and 4 which is
shown in Table 2.

Table 2 An extract of the textual description of the use case
"manage album" from the products 1, 3 and 4

UC
name

manage album

Goal in
context

The user can consult, create, rename or
remove an album

…. ….

Applying the semantic model on its goal, we obtain the
following mapping rule:

(statement,
 (action, (adjunctive, consult, create, rename, remove)),
 (agent, (reference, explicit, user)),
 (object,
 (album, (quantity, abstract))))

This rule follows this syntax (cf. [17] for more details):
(statement,

(class, predicate),
{(semantic role, argument)})

Because the above rule contains a compression mechanism
(expressed by the word “adjunctive”) representing multiple
actions, we deduce that the use case "manage album" is
composed of the four sub-use cases, which are not
explicitly drawn in the use case diagram of products 1, 3
and 4: consult album, create album, rename album and
remove album. These missing use cases should be added to
the use case diagram of product 1, 3 and 4 to complete it.

After applying the same step on the other use cases, we
obtain all the missing use cases. By adding these use cases,
we obtain a complete set of product variant's use case
diagrams.

In the second step, we unify the use case names by
grouping them into semantic classes. Initially, we started
with the following use case names:

1. manage
album

2. consult
album

3. rename
album

4. manage
photo

5. capture
photo

6. view photo
7. remove

photo
8. delete

album
9. album

treatment

10. move
media

11. save
media

12. remove
media

13. consult
media

14. delete
video

15. remove
video

16. remove
sound

17. delete
sound

18. send
sound

19. remove
album

20. consult
photo

21. consult
sound

22. save
photo

23. capture
picture

24. record
audio

25. save
sound

26. delete
photo

27. send
photo

28. capture
video

29. send
media

30. play
media

31. play
video

32. view
picture

33. play
audio

34. manage
media

35. delete
media

36. look up
album

37. working on album
38. processing album
39. delete an existing

media

40. create new album
41. create new photo album

M. Mefteh, N. Bouassida and H. Ben-Abdal lah 113

Ada User Journal Volume 35, Number 2, June 2014

The classification starts by extracting the grammatical units
from each use case. For example, for the use case “manage
album”, we obtain the grammatical units “manage” and
“album”; for the use case “delete an existing media”, we
obtain the grammatical units “delete”, “existing” and
“media”. Afterwards, the TF/IDF similarity is computed
using: 41 queries each of which is composed of the
grammatical units extracted from one use case; and 41
documents each of which is composed of the grammatical
units extracted from one use case along with their
synonyms. As examples of queries, we have the following
ones:

q1 = "manage
album"

q2 = "manage
photo"

q3 = "remove
album"

And as example of documents, we haved1 is the union of
synonyms ("delete") and synonyms ("album"), that is d1= {
delete, cancel , remove, take, take away, withdraw, erase,
take out, edit, blue-pencil, censor, album, record album,
medium, book, volume }

To apply the TF/IDF similarity measure, we first need to
compute for each pair of document-query (d,q) the weights
of grammatical units of q in d according to equation (2).
Then, name classes are automatically identified. For
example, in the case of the pair (d1,q3), we get:
wdelete,d1=0,84509804 ; wremove,d1=0,62324929 ; wdelete,q3=0 ;
wremove,q3=1 ; etc.

from which we deduce according to equation (3) that:

Sim(q3,d1) ≈ cos(q3,d1) ≈ 0,24600316.

After finishing the calculation of the similarity measures
between all documents and queries, we obtain the set of
classes grouping similar use case names shown in Table 3.

Table 3 List of obtained semantic classes

C1:
play audio ;
consult sound

C2:
delete album ;
remove album

C3:
remove photo
; delete photo

C4:
record audio ;
save sound

C5:
send photo

C6:
 manage media

C7:
capture video

C8:
rename album

C9:
save media

C10:
 play media

C11:
consult media

C12:
play video

C13:
 create album ;
create new
photo album ;
create new
album

C14:
 remove media ;
delete media ;
delete an existing
media

C15:
view photo;
view picture ;
consult photo

C16:
manage photo

C17:
capture photo;
capture picture
;save photo

C18:
Manage album ;
Work on album ;
processing album
; album treatment

C19:
 remove video
; delete video

C20:
Remove sound
;Delete sound

C21:
send media

C22:
 send sound

C23:
move media

C24 :
consult album ;
look up album

Based on this list, we attribute a name for each class
reflecting its content. For example, we give the name
“Manage album” to the class C18. When browsing our
collection of use case diagrams, we rename every
occurrence of the use cases “Work on album”, “album

treatment” and “processing album” with the name
“Manage album”. Hence, our initial 41 use cases are
reduced to 24 use cases.

The next task consists on refining use case diagrams by
deducing probably remaining use cases thanks to the
identification of triggers. This is done by the calculation of
the MI matrix (see section 2.4). In our running example, we
deduced the list of triggers containing (manage album;
rename album), (manage album; consult album), (manage
album; create album) and (manage album; Remove album).
In each pair, the use cases have a high value of MI between
each other. In other words, the occurrence of one use case
of the trigger pair in a use case diagram increases the
prediction of the other use case. In the running example,
this leads us to deduce that the product 2 use case diagram,
for example, is refined (see Fig. 3 instead of Fig. 4)

Figure 3 Product 2 use case diagram after refinement

Figure 4 Product 2 use case diagram before refinement

After applying this step on our collection of products, we
obtain a set of completed and refined variant use case
diagrams.

To build the feature model, we begin by applying the FCA
on our collection (see Fig. 5). As we mentioned in section
4.2, every use case is considered as a feature. As a result,
we get a lattice showing the mandatory ones on the top of
the FCA lattice (see Fig. 6).

By examining the hypernyms of the remaining optional
features, we can deduce other mandatory features. For
instance, we have hypernyms(manage media, manage
photo). Because "media" is the hypernym of "photo", then
"manage media" is the parent of "manage photo"; in other
words, there is a hierarchical relationship between these
two features in the FM. This means that each time we find
"manage photo", we implicitly have "manage media". In
addition, we notice in the FCA cross-table that the feature
"manage photo" exists in the products 1, 2, 3 and 4, while
"manage media" exists only in the products 5, 6, 7 and 8.

114 Feature Model Extract ion From Documented UML Use Case Diagrams

Volume 35, Number 2, June 2014 Ada User Journal

Consequently, we deduce that we can migrate the columns
content corresponding to the feature "manage photo" to the
corresponding one in "manage media" (see Fig. 7). This
process is repeated for the other hypernyms.

After performing all the necessary migration operations, we
obtain a new cross-table with a new lattice showing the
appearance of new mandatory features (see Fig. 8). The
remaining features are considered as optional.

P
ro

d
u

ct
s

M
an

ag
e

al
bu

m

C
on

su
lt

al
bu

m

R
en

am
e

al
bu

m

C
re

at
e

al
bu

m

R
em

ov
e

al
bu

m

M
an

ag
e

ph
ot

o

C
ap

tu
re

 p
ho

to

V
ie

w
 p

ho
to

S
en

d
ph

ot
o

M
an

ag
e

m
ed

ia

S
av

e
m

ed
ia

R
em

ov
e

m
ed

ia

C
on

su
lt

m
ed

ia

M
ov

e
m

ed
ia

S
en

d
so

un
d

S
en

d
m

ed
ia

C
ap

tu
re

 v
id

eo

P
la

y
vi

de
o

P
la

y
au

di
o

R
ec

or
d

au
di

o

R
em

ov
e

ph
ot

o

P
la

y
m

ed
ia

R
em

ov
e

vi
de

o

R
em

ov
e

so
un

d

P1 X X X X X X X X X
P2 X X X X X X X X X
P3 X X X X X X X X X
P4 X X X X X X X X X
P5 X X X X X X X X X X X X X X X X X X
P6 X X X X X X X X X X X X X X X X
P7 X X X X X X X X X X X X X X X X
P8 X X X X X X X X X X X X X X X X X X X

Figure 5 The FCA cross-table

Figure 6 Lattice obtained after the first application of FCA on our collection

Figure 8 The lattice after the merging operations

M. Mefteh, N. Bouassida and H. Ben-Abdal lah 115

Ada User Journal Volume 35, Number 2, June 2014

P
ro

d
u

ct
s

M
an

ag
e

al
bu

m

C
on

su
lt

al
bu

m

R
en

am
e

al
bu

m

C
re

at
e

al
bu

m

R
em

ov
e

al
bu

m

M
an

ag
e

ph
ot

o

C
ap

tu
re

 p
ho

to

V
ie

w
 p

ho
to

S
en

d
ph

ot
o

M
an

ag
e

m
ed

ia

S
av

e
m

ed
ia

P1 X X X X X X X X X
P2 X X X X X X X X X
P3 X X X X X X X X X
P4 X X X X X X X X X
P5 X X X X X X X X X X
P6 X X X X X X X X X
P7 X X X X X X X X X
P8 X X X X X X X X X

Figure 7 The migration operation from the feature
“manage photo” to “manage media”

In the last step, we rely on the relations in the use case
diagrams and the hypernyms list to extract parent/child
relationships between features. We obtain a FM with a
complete hierarchy but missing constraints. In order to
deduce these latter, we have to apply the rules mentioned in
section 4.2.2. In the following, we will illustrate some
constraints extracted in our running example:

 We have the following meronyms: Meronyms(consult
media, view photo); Meronyms(consult media, play
audio) and Meronyms(consult media, play video).
Applying the rule R1, we deduce that we have the
constraint “OR” between the features “view photo”,
“play audio” and “play video”.

 The use case "manage photo" includes "manage
album" in the products 1, 2, 3 and 4. In addition, we
note that the use case "manage media" includes the use
case "manage album" in the products 5, 6, 7 and 8.
Furthermore, since hypernyms(manage media, manage
photo), we deduce that "manage media" includes
"manage album" in all products. Applying the rule R4,
we deduce that the feature "manage media" requires
the feature "manage album".

After the extraction of relevant constraints between
features, we obtain the complete FM shown in Fig. 9.

6 Conclusion

In this paper, we have presented a new top-down approach
for extracting the FMs of SPLs from possibly incomplete
descriptions. These latter are represented as UML use case
diagrams with documented with textual scenarios. Our
approach has the merit of using semantic information along
with the structural information from the use case diagrams
to produce automatically FMs. It uses various techniques in
natural language processing to overcome the possible
incompleteness of the textual description. In addition, it
generates FMs with well-defined feature hierarchies and
constraints.

We are in the process of developing the tool support for our
approach in order to conduct an evaluation on a larger set
of products. Another practical extension of the herein
presented work is the derivation of source code for the
features: We will explore the fact that textual scenarios
include complete execution paths of the system in order to
deduce a source code skeleton for each feature.

References

[1] M. Acher, M., A. Cleve, A., G. Perrouin, G., P.
Heymas, C. Vanbeneden, P. Collet, P. Lahire (2012),
On extracting feature models from product
descriptions, VaMoS'12 Proceedings of the Sixth
International Workshop on Variability Modeling of
Software-Intensive Systems, pp. 45-54.

[2] M. Alférez, U. Kulesza, A. Moreira, J. Araújo, V.
Amaral (2008), Tracing between Features and Use
Cases: A Model-Driven Approach, Proceedings of the
2nd International Workshop on Variability Modelling
of Software Intensive Systems (VAMOS), Essen,
Germany.

[3] R. Belohlavek (2008), Introduction to formal concept
analysis, Olomouc.

Figure 9 The resulting feature model

116 Feature Model Extract ion From Documented UML Use Case Diagrams

Volume 35, Number 2, June 2014 Ada User Journal

[4] P. Clements, L. Northropm (2001), Software Product
Lines: Practices and Patterns, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[5] A. Cockburn (2001), Writing Effective Use Cases,
Addison-Wesley, Reading, MA.

[6] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid,
A. Wasowski (2012), Cool features and tough
decisions: a comparison of variability modeling
approaches, Proceedings of VaMoS’12, pages 173–
182, New York, NY, USA.

[7] J. Davril, E. Delfosse, N. Hariri, M. Acher, J. Clelang-
Huang, P. Heymans (2013), Feature Model Extraction
from Large Collections of Informal Product
Descriptions, European Software Engineering
Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pp. 290-300.

[8] R. B. De Almeida (2010), Modeling Software Product
Line Variability in Use Case Scenarios _ An Approach
Based on Crosscutting Mechanisms.

[9] I. De Sousa Santos, R. M. de Castro Andrade, P. de
Alcântara dos Santos Neto (2013), A Use Case Textual
Description for Context Aware SPL Based on a
Controlled Experiment, CAiSE Forum, volume 998 of
CEUR Workshop Proceedings, CEUR-WS.org, pp.1-8.

[10] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang,
B. Mobasher, C. Castro-Herrera, M. Mirakhorli
(2011), On-demand feature recommendations derived
from mining public product descriptions, ICSE, ACM,
pp. 181-190.

[11] H. Gomaa (2004), Designing Software Product Lines
with UML – From Use Cases to Pattern-Based
Software Architectures, Addison-Wesley.

[12] M. L. Griss, J. Favaro, M. d'Alessandro (1998),
Integrating Feature Modeling with the RSEB, Fifth
International Conference on Software Reuse, Victoria,
Canada.

[13] H. Hartmann, T. Trew, A. Matsinger (2009), Supplier
independent feature modelling, SPLC'09, IEEE, pp.
191-200.

[14] C. W. Krueger (2006), Introduction to the Emerging
Practice of Software Product Line Development,
Methods & Tools, Fall issue,
http://www.methodsandtools.com/archive/archive.php?
id=45(2006).

[15] R. Lau, R. Rosenfeld, S. Roukos (1993), Trigger-
based language models: a maximum entropy
approach, Proc. ICASSP-93.

[16] J. Maazoun, N. Bouassida, H. Ben-Abdallah, A. Seriai
(2013), Feature model extraction from product source
codes based on the semantic aspect, ICSOFT'2013, 8th
International Conference on Software Paradigm
Trends, Islande.

[17] M. Mefteh, A. Ben Hamadou, R. Knöll (2012),
Ara_Pegasus: A new framework for programming
using the Arabic natural language, International
Conference on Computing and Information
Technology, pp. 468-473.

[18] B. Wang, W. Zhang, H. Zhao, Z. Jin, H. Mei (2009),
A Use Case Based Approach to Feature Models'
Construction, RE, IEEE Computer Society, pp. 121-
130

[19] N. Weston, R. Chitchyan, A. Rashid (2009), A
framework for constructing semantically composable
feature models from natural language requirements,
SPLC'09, volume 446 of ICPS, ACM, pp. 211-220 .

[20] T. Ziadi, L. Frias, M. A. A. da Silva, M. Ziane (2012),
Feature identification from the source code of product
variants, CSMR IEEE, pp. 417–422.

[21] http://maraca.d.umn.edu/allwords/allwords.html

[22] http://poets.notredame.ac.jp/cgi-bin/wn.

 117

Ada User Journal Volume 35, Number 2, June 2014

Proceedings

Workshop on Mixed Criticality for Industrial Systems

Ada‐Europe 2014
27 June 2014

Paris, France

Program

Keynote

“Correct‐by‐Construction Multiprocessor Programming: A Common Approach for Parallel and Mixed‐Critical System Design”
Albert Cohen, senior research scientist, PARKAS group, INRIA, France

Session 1

"PROXIMA: A Probabilistic Approach to the Timing Behaviour of Mixed‐Criticality Systems"
Robert Davis, Tullio Vardanega, Jan Andersson, Francis Vatrinet, Mark Pearce, Ian Broster, Mikel Azkarate‐Askasua, Franck
Wartel, Glenn Farral, Liliana Cucu‐Grosjean, Mathieu Patte and Francisco Cazorla

“Toolset for Mixed‐Criticality Partitioned Systems: Partitioning Algorithm and Extensibility Support"
Alejandro Alonso and Emilio Salazar

"RTFM‐lang Static Semantics for Systems with Mixed Criticality"
Per Lindgren, David Pereira, Johan Eriksson, Marcus Lindner and Luís Miguel Pinho

Session 2

"Handling Criticality Mode Change in Time‐Triggered Systems through Linear Programming"
Mathieu Jan, Lilia Zaourar, Vincent Legout and Laurent Pautet

"Mixed Criticality over Switched Ethernet Networks"
Olivier Cros, Frédéric Fauberteau, Laurent George and Xiaoting Li

"Mixed Criticality in Railway Systems: A Case Study on Signaling Application"
Albert Cohen, Valentin Perrelle, Dumitru Potop‐Butucaru, Elie Soubiran and Zhen Zhang

Organization

Chairs: Laurent George, Luis Miguel Pinho

Program Committee: Hakan Aydin, Sanjoy Baruah, Guillem Bernat, Alfons Crespo, Liliana Cucu‐Grosjean, Juan Antonio de la
Puente, Sebastien Faucou, Joel Goossens, Leandro Indrusiak, Mathieu Jean, Claire Maiza, Moritz Neukirchner, Laurent
Pautet, Zlatko Petrov, Eduardo Quinones, Yves Sorel, Benoit Triquet, Wang Yi

Sponsored by

118

Volume 35, Number 2, June 2014 Ada User Journal

PROXIMA: A Probabilistic Approach to the Timing
Behaviour of Mixed-Criticality Systems
Robert I Davis
Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK;
email: rob.davis@york.ac.uk

Tullio Vardanega
Department of Mathematics, University of Padova, Trieste 63, 35121 Padova, Italy;
email: tullio.vardanega@math.unipd.it

Jan Andersson
Aeroflex Gaisler AB, Kungsgatan, 12, 411 19 Göteborg, Sweden; email: jan@gaisler.com

Francis Vatrinet
Sysgo SAS, Route de Sartrouville 54, 78230 Le Pecq, France; email: fva@sysgo.com

Mark Pearce, Ian Broster
Rapita Systems Ltd., Atlas House, Osbaldwick Link Road, York YO10 3JB, UK;
email: {mpearce, ianb}@rapitasystems.com

Mikel Azkarate-Askasua
Ikerlan S.Coop. Paseo J. M. Arizmendiarrieta 2, 20500 Mondragon, Spain;
email: MAzkarateAskasua@ikerlan.es

Franck Wartel
Airbus Operations SAS Route de Bayonne 316, 31060 Toulouse, France; email: franck.wartel@airbus.com

Liliana Cucu-Grosjean
INRIA Paris-Rocquencourt, Domaine de Voluceau, BP 105 78153, Le Chesnay France;
email: liliana.cucu@inria.fr

Mathieu Patte
Astrium SAS, 31 rue des Cosmonautes – ZI du Palays 31402 Toulouse Cedex 4;
email: mathieu.patte@astrium.eads.ne

Glenn Farrall
Infineon Technologies UK Ltd, Infineon House, Great Western Court, Hunts Ground Road, Bristol, BS34
8HP,UK; email: glenn.farrall@infineon.com

Francisco J Cazorla
Barcelona Supercomputing Center and IIIA-CSIC, c/Jordi Girona, 29, Edificio Nexus II. 08034 Barcelona, Spain;
email: francisco.cazorla@bsc.es

Abstract

This position paper outlines the innovative
probabilistic approach being taken by the EU
Integrated Project PROXIMA to the analysis of the
timing behaviour of mixed criticality real-time
systems. PROXIMA supports multi-core and mixed
criticality systems timing analysis via the use of
probabilistic techniques and hardware/software
architectures that reduce dependencies which affect
timing. The approach is being applied to DO-178B/C
and ISO26262.

Keywords: mixed-criticality systems; probabilistic
real-time systems; WCET, software performance.

1 Introduction

EU industries developing Critical Real-Time Embedded
Systems (CRTES), such as Aerospace, Space, Automotive,
and Railways, face relentless demands for increased
processor performance to support advanced new
functionality. This demand is due to the ever-rising
proportion of system value that is now delivered in
software. For these industries, economic success depends
on the ability to design, implement, qualify and certify

R.I.Davis et a l . 119

Ada User Journal Volume 35, Number 2, June 2014

advanced real-time embedded systems within bounded
effort and costs as well as pre-deployment assurance.
Timing correctness as a means to guaranteed performance
is one of the key dimensions of interest to qualification and
certification for mission-, business- or safety-critical
systems alike. Strong by-design evidence is therefore
needed to build solid arguments of correctness that can
satisfy certification bodies.

Over the next decade, CRTES industries in Europe will
face a once-in-a-life-time disruptive challenge brought
about by the transition to multicore processors and the
architectural revolution that the advent of the manycore era
brings. This step change in both processing capability and
architecture (towards complex networked systems on a
single chip), provides the opportunity to integrate multiple
applications of mixed-criticality levels onto the same
hardware platform. This has the advantages of reducing
system size, weight and power consumption (SWaP),
through a reduction in the number of devices, subsystems,
and their cabling and connectors. Such integration has
benefits in terms of reduced procurement costs, assembly
costs, and improved reliability. However, the challenge also
brings a severe threat relating to a key problem of CRTES.
Unlike with conventional computing systems, developers
of CRTES must provably demonstrate the correctness of
the system in terms of both functional and timing/temporal
behaviour. Current generation CRTES, based on relatively
simple single-core processors, are already extremely
difficult to analyse in terms of their temporal behaviour,
resulting in incorrect operation that risks costing EU
industry in high post-deployment costs (including “no-
fault-found” and product recalls). The advent of multicore
and manycore platforms exacerbates this problem,
rendering timing analysis techniques unable to scale and
ineffectual, with potentially dire consequences for the
quality and reliability of future products. An innovative
new approach is needed.

The PROXIMA approach is to adopt probabilistic analysis
techniques to develop an efficient (tractable) and effective
(tight) analysis of the temporal behaviour of complex
mixed-criticality applications on novel and COTS
(commercial-off-the-shelf) multicore and manycore
platforms. Solid research results from the FP7 STREP
PROARTIS (www.proartis-project.eu) project [1] support this
approach. The concept is based on using probabilistic
analysis techniques [1, 2, 11, 12, 13] to derive tight bounds
on the software timing behaviour of applications, reflecting
requirements on failure rates commensurate with their
criticality. PROXIMA defines architectural paradigms,
usually based on the idea of randomizing the timing
behaviour of hardware components, e.g. random
replacement caches. These paradigms break the causal
dependence in the timing behaviour of execution
components at hardware and software level that can give
rise to pathological cases, and reduces that risk of timing
faults to quantifiably small levels. PROXIMA also supports
COTS hardware components via the use of higher level
(e.g., software-based) randomization paradigms [13] that

compensate for any probabilistic-analysis unfriendly
features in them.

2 PROXIMA concepts

PROXIMA aims to enable the CRTES industry to
successfully exploit the transition to multicore and
manycore processor technology with a development
approach that draws the most benefit and incurs the least
disruption from it. Benefit will come from the ability to
deploy more value-added, competitive-edge, heterogeneous
and mixed-criticality functionality in more heavily
integrated hardware platforms.

Containment of disruption will come from the ability to
develop, analyse, build, and qualify CRTES incrementally.
To meet that aim PROXIMA pursues an avenue of
innovation relating to composability in the time domain,
scalable across single-core, multicore and manycore
processor architectures, without resorting to static
partitioning and its intrinsic need for overprovisioning.
Hence PROXIMA will solve a key challenge with mixed-
criticality applications: the determination of trustworthy
and tight bounds on the timing behaviour of applications.
Thus low-criticality applications can be assured to not
adversely affect higher-criticality ones while allowing for
maximally efficient sharing of hardware and software
resources among them, without the resource wastage
inherent in fully deterministic approaches that use
partitioning at every level.

The challenge is addressed by the use of probabilistic
techniques, doing away with much of the need (and cost) of
the detailed design knowledge required to causally model
the timing behaviour of all system resources of interest.
When the resource latency can be accurately captured with
a probabilistic law and resource composition is designed to
avoid causal dependence, the intrinsic complexity of novel
multicore and manycore processor architectures naturally
becomes treatable by probabilistic timing analysis.

2.1 High-performance mixed-criticality systems
PROXIMA is developing and exploiting innovative
probabilistic analysis techniques and associated
technology, to replace deterministic approaches originally
designed for single-core processor systems that are
rendered unsuitable or ineffectual with the advent of
multicore and manycore architectures. This disruptive
change makes current industrial practice inadequate for the
development of the next-generation high-performance
CRTES. Selective transformations are necessary for the
development techniques and implementation technologies,
which however can only be sustained if they minimise the
cost of adoption. PROXIMA fosters that path of
transformation.

The precursor PROARTIS project [1, 2, 11, 12, 13] has
broken new ground in the domain of probabilistic timing
analysis and paved the way to its application on single-core
processors. In particular PROARTIS has shown that a wide
range of probabilistic analysis techniques exist (including
the theory of copulas, extreme value statistics, etc. [3]), that

120 A Probabi l is t ic Approach to the Timing Behaviour of Mixed-Cr i t ical i ty Systems

Volume 35, Number 2, June 2014 Ada User Journal

can be applied to the timing analysis of real-time systems
so long as certain assumptions apply, notably statistical
independence (e.g. times are not dependent on the previous
execution history) or some definitional dependence (times
are solely defined by the software/hardware, e.g. constant
time). It is important to note that these assumptions do not
apply in most hardware/software architectures because the
response time of resources (such as caches, pipelines) in
modern processors is a (complex) function of the past
history of use. Ironically, the fact that the behaviour of
those resources is fully deterministic is of no benefit for the
purposes of timing analysis. This is because the state space
behind it is too vast to be precisely computed for single-
core processors and is expected to be intractable for
multicore and manycore systems.

The breakthrough strategy envisaged by PROXIMA is to
introduce architectural design principles that result in
temporal behaviour for which the hypothesis of either
statistical independence or definitional dependence can be
made to hold and therefore enables a meaningful
application of probabilistic analysis. This fundamental
property is achieved by moving away from deterministic
behaviour to time randomised behaviour for jittery
execution resources (e.g., cache, network-on-chip, memory
allocation etc.) at both the hardware and software level
without causing disturbance to the local and global
functional behaviour affected by those resources.

2.1 CRTES criticality levels, probabilities, and
failure rates
The use of probabilistic bounds in systems that require high
assurance may seem counter-intuitive; however, the reality
is that probabilistic modelling is a close match to the
intrinsic nature of those systems. The mechanical parts of
those systems (for example in aircraft) are designed with a
failure rate in mind. This is so because effects such as
radiation, mechanical stress and extreme temperatures
induce a low, but non-zero and cumulative probability of
failure for those parts and thus for the computing hardware
itself. As a consequence, the system as a whole acquires a
distinct probability of failure in a given time interval. This
failure rate is measured in terms of the number of failures
per hour (or billion hours).

By analogy, deviations in timing behaviour such as, for
example the exceedance of given bounds in some execution
time duration, may be considered as another type of failure
that the system may experience. This reasoning should not
be misrepresented as a shift in intent from designing
software that meets its functional requirements to designing
software that may fail in some well-defined way. Instead, it
addresses the risk of execution time variability that
originates from outside of the software itself, and stems
from processor-level hardware resources whose innate
jittery timing behaviour cannot be restrained by design
other than at the cost of extreme overprovisioning.

The objective of probabilistic timing analysis is to provide
WCET (worst case execution time) estimations and end-to-
end worst-case response times (WCRT) that can be

determined to be “safe enough” with respect to application
time constraints, so that they keep the overall failure rate of
the application below the specific threshold of acceptability
(e.g. 10−9 per hour) for that application. Probabilistic and
statistical approaches are a natural fit to mixed-criticality
systems where applications at different criticality levels
have different, domain-specific requirements in terms of
acceptable timing failure rates, for example failure rates of
10-7 per hour for low criticality and 10-9 per hour for high
criticality applications.

Figure 1 Probability of timing failure per hour

Probabilistic timing analysis provides a continuum of
WCET bounds with associated probabilities of exceedance.
By way of example, an application may have a probability
of less than 10-9, 10-13 and 10-18 of exceeding an execution
time of 4.0ms, 4.1ms and 4.2ms, respectively, each time it
executes– see Figure 1. Assuming, as a simple exemplar,
that the execution time budget of the application is 4.1ms
(for which its WCET has an exceedance probability of 10-13
each time it executes), and that it executes at 50Hz (i.e. a
20ms period, or 180,000 times per hour) then its expected
timing failure rate, due to budget overruns, is less than 10-7
per hour, which may be acceptable for a low criticality
application.

From this line of reasoning a close relation can be drawn
with respect to criticality levels as defined, for example in
avionics and automotive standards (DO-178B, ISO-26262)
where a failure is defined as a deviation from a specified
behaviour, the possible consequences of which determine
its severity classification.

 In DO-178B, the Design Assurance level (DAL) is
determined from the safety assessment process and
hazard analysis by examining the effects of a failure
condition in the system. The failure conditions are
categorised by their effects on the aircraft, crew, and
passengers, with comprehensive analysis methods used
to establish the software level A-E: A Catastrophic, B
Hazardous, C Major, D Minor and E no failure. Here,
catastrophic failure must have a likelihood of occurring
that is Extremely Improbably (<10-9) – as defined by
FAA Advisory Circular AC-25-1309, whereas level B
corresponds to Extremely Remote (<10-7).

 In ISO-26262, each Automotive Safety Integrity Level
(ASIL) is associated with an observable incident rate.
Hence applications of ASIL D must have an
observable incidence rate lower than 1 every 109 hours,
i.e. 10-9 per hour. For ASIL C, B, and A the observable

1.0E-18

1.0E-16

1.0E-14

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

Execution time (ms)

E
x

c
e

e
d

a
n

c
e

 p
ro

b
a

b
ili

ty

R.I.Davis et a l . 121

Ada User Journal Volume 35, Number 2, June 2014

incidence rate must be lower than 10-8 per hour, 10-8
per hour and 10-7 per hour respectively.

The probabilistic approach of PROXIMA is a perfect match
with those approaches. For applications with high criticality
a probabilistic WCET (pWCET) estimate with a low
probability of failure is chosen. (In the case of automotive
this probability should be smaller than the incident rate in
time defined by ISO-26262 multiplied by the number of
times an application is executed per hour). In the case of
DAL we take the pWCET estimate of each application
based on its DAL. If a given application is DAL A, we
ensure that the probability of that application having a
failure in time is Extremely Improbably. Overall, the
objective of probabilistic timing analysis is to provide
WCET and end-to-end worst-case response time (WCRT)
estimates which are ‘safe enough’ for the application, the
meaning of which is determined by its criticality level.

As part of the PROXIMA project, a detailed analysis is
planned examining the possible integration of project
outcomes within certification standards and validation
processes, with a certification authority acting as an
external safety assessment reviewer.

3 Mixed criticality

Mixed-criticality CRTES bring a strong requirement to
isolate the behaviour of applications in both the functional
and time domains, otherwise the argument for integration is
undermined because low criticality applications could
impact those of high criticality to an unbounded extent,
requiring all to be developed to the same rigorous,
expensive and time consuming standard (appropriate for
high criticality). To deal with this issue, and not increase
verification and validation costs, industries from different
domains have developed standardised software frameworks
that provide elements of time isolation among software
components on single-core processors (e.g. IMA in the
avionics domain, and to some extent, AUTOSAR in the
automotive domain). Both approaches support a
hierarchical development process: the high level integration
of the system should be straightforward from the
composition of the timing behaviour of the software
components. To do so, the system must support the time
composability property: the worst-case timing behaviour of
a component must not change (or only change predictably)
when other components are integrated into the system. In
multicore and manycore processors, this time
composability property is not usually obtained because of
the dependences on the execution time introduced by
simultaneous access to shared resources. The execution
time may vary greatly depending on the software
components being run, i.e. depending on the system
integration. Researchers have proposed to upper bound the
maximum delay a software component can suffer due to
interference when accessing shared resources such as buses
[4, 5] or memory controllers [6]. For those resources where
considering the maximum delay would remove the benefit
of using them, e.g. cache, partitioning solutions have been
considered [4].

Much of the recent research into mixed-criticality systems
[10] owes its origins to the work of Vestal’s [7] which
introduced varying degrees of WCET assurance, with
larger WCET estimates obtained at higher levels of
assurance (criticality level). This research shows that with a
mixed-criticality system, simple reservation based policies
such as time partitioning (discussed above), or allocation to
processing cores based on criticality level can be
inefficient; requiring significantly more processing
resources than other appropriate scheduling approaches [8].

The alternative of using fixed priority scheduling (as used
in automotive i.e. AUTOSAR) and assigning priorities
based on criticality also results in severe resource under-
utilisation [7, 9]. There is scope therefore for more
sophisticated resource sharing policies and analyses to
address the overprovision.

4 Time isolation and composition

With the advent of multicore and manycore processors,
most complex CRTES are evolving into mixed-criticality
systems. A key research question in mixed-criticality
CRTES on these platforms is how to reconcile the
conflicting requirements of partitioning for assurance and
sharing for efficient resource usage [10].

PROXIMA addresses this question with respect to the twin
requirements of time isolation and time composition.
Asymmetric time isolation ensures that low criticality
applications cannot adversely affect the timing behaviour
of high criticality applications and hence do not need to be
developed or verified to the same rigorous standards. Time
composability ensures that the guaranteed timing behaviour
of an application is not affected by the actual timing
behaviour of other applications when the system is
integrated. Together, time isolation and composability
alleviate the effort and cost of system integration which is a
major contributor to overall development costs, by
permitting differential verification of software components
added to a verified system. To date, timing isolation is
normally accomplished via strict partitioning at all levels in
the HW/SW stack; however, this comes at a high cost in
terms of sizing for the worst case at every level, which
while tolerable for single-core will prove unworkable with
the transition to multicore and manycore.

The technology developed within the PROXIMA project
attacks the root of the time composability problem by
reducing, or even completely eliminating, the execution
time dependencies resulting from sharing processor
resources. As a result, the cost of acquiring the required
knowledge to model the timing behaviour of the system can
be reduced. In this way, software execution times are less
dependent on previous and simultaneous execution of other
software components and the system integration can be
easily achieved.

The use of probabilistic approaches will recover the time
composability property, avoiding the need to consider the
maximum delay when accessing shared resources, or using
time partitions. In the ideal case, if all the dependence on
execution history is eliminated, each individual resource

122 A Probabi l is t ic Approach to the Timing Behaviour of Mixed-Cr i t ical i ty Systems

Volume 35, Number 2, June 2014 Ada User Journal

will be time-composable, allowing software components to
be replaced without requiring that the timing behaviour of
other components is re-analysed.

PROXIMA technology also attacks the problem of
overprovision intrinsic in simple partitioning and resource
sharing approaches by providing hardware and software
mechanisms and policies for resource sharing (between
applications at the same and different criticality levels) that
promote strong asymmetric isolation. This will minimise
overprovision on two counts: firstly by enabling a
structured abandonment of low criticality applications
commensurate with their assurances and the rare need for
high criticality applications to exceed a low assurance
WCET budget defined for them. Secondly, by permitting
effective resource reclamation when high criticality
applications do not make use of their entire resource or
WCET budget, permitting where feasible limited overrun
capability for low criticality applications, improving their
actual failure rates and hence perceived system quality.

5 Conclusions

In this short positional paper, we have outlined the
innovative approach being taken by the PROXIMA project
towards the analysis of future mixed-criticality real-time
systems executing on multi- and many-core hardware
platforms. PROXIMA has identified timing correctness as
one of key dimensions of interest to qualification and
certification of these mission-, business-, or safety-critical
systems. The underlying concepts of PROXIMA involve
the replacement of existing deterministic analysis
techniques that are already reaching their limits on
relatively simple single-core processors with more capable
probabilistic analysis techniques. These techniques are
supported by both hardware and software randomization
that reduces the probability of pathological cases occurring
to quantifiably low levels, that are significantly below the
acceptable failure rates determined for the system.

Acknowledgments

This work has received funding from the European
Community's Seventh Framework Programme [FP7/2007-
2013] under the PROXIMA Project (www.proxima-
project.eu), grant agreement number 611085.

References

[1] F. Cazorla, E. Quinones, T. Vardanega, L. Cucu, B.
Triquet, G. Bernat, E. Berger, J. Abella, F. Wartel, M.
Houston, L. Santinelli, L. Kosmidis, C. Lo, and D.
Maxim (2013), PROARTIS: Probabilistically
analysable real-time systems, ACM Transactions on
Embedded Computing Systems.

[2] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T.
Vardanega, L. Kosmidis, J. Abella, E. Mezzeti, E.
Quinones, F. J. Cazorla (2012), Measurement-based
probabilistic timing analysis for multi-path programs,

In Proceedings of the Euromicro Conference on Real-
Time Systems (ECRTS).

[3] W. Feller (1996), An introduction to Probability
Theory and Its Applications, Wiley.

[4] M. Paolieri, E. Quinones, F.J. Cazorla, G. Bernat, M.
Valero (2009), Hardware Support for WCET Analysis
of Multicore Systems, In proceedings International
Symposium on Computer Architecture.

[5] J. Rosen, A. Andrei, P. Eles, Z. Peng (2007), Bus
access optimization for predictable implementation of
real-time applications on multiprocessor systems-on-
chip, In proceedings Real-Time Systems Symposium,
pp 49-60.

[6] B. Akesson, K. Goossens, M. Ringhofer (2007),
Predator: A predictable SDRAM memory controller,
CODESISSS.

[7] S. Vestal (2007), Preemptive scheduling of multi-
criticality systems with varying degrees of execution
time assurance, In proceedings of the Real-Time
Systems Symposium.

[8] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A.
Marchetti-Spaccamela, N. Megow, and L. Stougie
(2010), Scheduling real-time mixed-criticality jobs, In
Proceedings of the 35th International Symposium on
the Mathematical Foundations of Computer Science,
volume 6281 of Lecture Notes in Computer Science,
pp 90–101.

[9] S.K. Baruah, A. Burns, R.I. Davis (2011), Response
Time Analysis for Mixed Criticality Systems, In
proceedings of the Real-Time Systems Symposium
(RTSS), pp 34-43.

[10] A. Burns and R. I. Davis (2013), Mixed Criticality
Systems – A Review, Available from http://www-
users.cs.york.ac.uk/~burns/

[11] R.I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, L.
Cucu-Grosjean (2013), Analysis of Probabilistic Cache
Related Pre-emption Delays, In proceedings of the
Euromicro Conference on Real-Time Systems
(ECRTS), pp 168-179.

[12] L. Kosmidis, E. Quiñones, J. Abella, T. Vardanega,
F.J. Cazorla (2013), Achieving Timing Composability
with Measurement-Based Probabilistic Timing
Analysis, In proceedings International Symposium on
Object / component / service-oriented Real-time
distributed computing.

[13] L. Kosmidis, C. Curtsinger, E. Quinones, J. Abella, E.
Berger, F.J. Cazorla (2013), Probabilistic timing
analysis on conventional cache designs, In
Proceedings Design, Automation & Test in Europe
pp.603-606.

123

Toolset for Mixed-Criticality Partitioned Systems:
Partitioning Algorithm and Extensibility Support

Alejandro Alonso, Emilio Salazar
Departamento de Ingeniería de Sistemas Telemáticos, Universidad Politécnica de Madrid, Spain; email: {aalonso,
esalazar}@dit.upm.es

Abstract

The development of mixed-criticality virtualized multi-
core systems poses new challenges that are being subject
of active research work. There is an additional complex-
ity: it is now required to identify a set of partitions, and
allocate applications to partitions. In this job, a number
of issues have to be considered, such as the criticality
level of the application, security and dependability re-
quirements, operating system used by the application,
time requirements granularity, specific hardware needs,
etc. MultiPARTES [6] toolset relies on Model Driven
Engineering (MDE) [12], which is a suitable approach
in this setting. In this paper, it is described the support
provided for automatic system partitioning generation
and toolset extensibility.

Keywords: Real-time systems, Partitioned Systems,
Mixed Criticality, Model Driven Engineering.

1 Introduction

The increasing power of processing hardware makes it pos-
sible to integrate system functionality in just one processor,
instead of using several ones. Although this has a number
of advantages, it presents a major problem when developing
complex embedded systems. It is common that these systems
include applications with different criticality level. This type
of systems is called mixed-criticality. This approach presents
new challenges, as it is necessary to certify the whole system,
even though there are parts that are no critical.

A suitable approach is based on system virtualization. A virtu-
alization kernel or hypervisor allows the creation of partitions
that are isolated. Applications with different criticality level
are executed in different partitions in a safe way.

MultiPARTES is a FP7 project aimed at developing tools and
solutions for building trusted embedded systems with mixed
criticality components on multicore platforms. The approach
is based on an innovative open-source multicore-platform
virtualization layer based on the XtratuM hypervisor. A soft-
ware development methodology and an associated toolset will
be provided, in order to enable trusted real-time embedded
systems to be built as partitioned applications, in a timely and
cost-effective way.

XtratuM [10] [5] is based on para-virtualization, which means
that a given operating system has to be adapted for being able
to run on top of the hypervisor. This improves system per-
formance and predictability, making it suitable for real-time
systems. XtratuM has been designed for providing spatial
and space isolation. Partitions scheduling is based on a cyclic
policy, that it is statically generated, compliant with ARINC-
653 [2]. It precisely states when each partition has to be
executed. XtratuM also supports multi-core processors.

In this paper, some aspects of the MultiPARTES toolset [11]
[1] are presented. Its main goal is to support the develop-
ment of mixed-criticality multi-core partitioned systems. The
toolset integrates a number of tools for supporting activities
such as system modelling, system partitioning, validation,
and system building.

2 Toolset requirements

The development of the toolset has been driven by the re-
quirements specification in [7]. It was mainly defined by
the consortium, which is composed by academia, research
institutes, and industrial partners, from the automotive, rail-
way, space, video surveillance, and wind power domains.
This specification has been refined with the comments from
experts in the project Advisory Board. The most relevant
requirements are summarized below.

• Development of mixed-criticality systems: The toolset is
aimed at supporting the development of mixed-criticality
systems. This implies that the concept of criticality is
central in the whole development process. The criticality
level of each application has to be stated.

• System model: The toolset has to provide means for
modeling the whole system, which includes the appli-
cations, platform, and any other information that the
developer has to provide for performing the requested
functionality.

• Support for non-functional requirements: Non-
functional requirements are of great importance when
dealing with embedded systems. Time, safety, and se-
curity, are of non-functional requirements that will be
supported. The toolset has to provide means for specify-
ing them, and validating their fulfillment.

Ada User Jour na l Vo lume 35, Number 2, June 2014

124 Toolset for Mixed-Cr i t i ca l i ty Par t i t ioned Systems

• Support for partitioned systems: System partitioning
is a fundamental activity on the target type of systems.
However, there is little support in similar development
tools. This toolset should generate system partitioning
that has to be compliant with the system models and
non-functional requirements.

• Support for multi-core architectures: The execution plat-
form can be multi-core, as it is commonplace in current
industrial systems. The toolset shall support modeling
multi-core systems and assigning partitions to cores.

• Validation and consistency: The toolset performs a num-
ber of models transformations, and artefacts generation.
An aim of this work is to ensure that these outcomes
are valid with respect to the system requirements. These
objectives are considered in the implementation of the
transformers. In addition, the toolset allows the inte-
gration of validation tools for performing checks when
required.

• Support for legacy systems: It is common in industry to
have applications that have been developed in the past,
perhaps with different methods and tools. The toolset
will provide means for allowing the integration of this
type of applications in the development flow.

• Support system deployment: Deployment is the last step
required before running the system. When dealing with
partitioned embedded systems, this implies the genera-
tion of a bootable software image that includes the hy-
pervisor, the partitions, and their operating system and
applications. The toolset supports system deployment
by generating mechanisms for the automatic building
of the system. System deployment also requires the
configuration of XtratuM.

3 Toolset architecture
The main components of the toolset and data flows are de-
picted in figure 1. Their basic role is:

System modelling: It comprises the main input to the tool.
It is composed by three models for describing the execution
platforms, the applications, and the restrictions to be applied
in the partitioning.

Partitioning tool: It is in charge of generating a system parti-
tioning, that is described in the deployment model. It includes
system partitions, the assignment of applications to partitions,
and the characteristics of the partitions, including the operat-
ing system, processor time, memory, etc. The partitioning tool
takes as input the system model. It has to consider informa-
tion, such as the applications’ criticality level, their required
operating system and hardware devices, etc. Based on this
information it generates a deployment model that meets the
restrictions and some basic requirements.

Validation: Full correctness of a system partitioning may re-
quire complex checks that are difficult to integrate within a
single tool. In addition, it is desirable for the toolset to be ex-
tended for supporting additional non-functional requirements.
It is convenient to be able to use external validation tools that

System 
partitioning
 Partitioning

tool

Deployment model

Neutral model

Transformation to
neutral model

Source code

Transfor-
mation

XtratuM configuration
files

System building 
files

Validation

tool

Tool input model
 Transfor- 
mation

Tool output
model

Transfor- 
mation

Toolset 
result model

Validation

Final 
Artifacts

Generation

Applications model
Platform model

Partitioning
restrictions model

System model

Transfor- 
mation

Transfor-
mation

Transfor-
mation

Transfor-
mation

Documentation

Figure 1: Overall architecture

check the correctness of the system configuration with respect
to a given criteria.

Generation of final artefacts: when the system partitioning
is correct a number of transformation tools generates a set
of outcomes that are necessary for creating and building the
final system:

• XtratuM configuration files

• System building files.

• Source code skeletons.

This toolset is currently under development. There is a work-
ing version that is able to handle simple models. Complexity
is being added gradually. The toolset is being developed based
on the Eclipse Modelling Tools. Model to model transformers
are programmed in Query View Transformation Language
(QVT). Model to text generators are based on Acceleo MTL.
Metamodels are created using eCore.

4 Toolset extensibility
The MultiPARTES toolset has been designed for being easily
extended and evolved. This has been a driver in the design
of the architecture, shown in the previous section. There
are a number of ways of enriching the current functionali-
ties provided by the toolset, as adding support for additional
non-functional requirements, validation tools, or tools for
supporting system deployment.

The aim of this section is to describe the basic means for
performing toolset extensions, as those mentioned. In fact,
these facilities have been the basis for integrating in the core
toolset the contributions developed by the partners in the
project.

Toolset extension can be done at four main levels:

Volume 35, Number 2, June 2014 Ada User Jour na l

A. Alonso, E. Salazar 125

• System model level: to include in the model annotations
for different non-functional properties, or other system
aspects.

• Partitioning level: to convert annotations that have to do
with partitioning into partitioning constraints.

• Validation level: to use external tools, a deployment
model can be validated, according to the system model
semantics, as stated by non-functional requirements an-
notations.

• Generation level: to generate code compliant with non-
functional properties annotation or specific configuration
parameters for XtratuM.

4.1 Toolset extension at model level
System models can be annotated with information related
with non-functional requirements. This is the case with the
application model. Initially, all application models include
information for partitioning and artefacts generation, such as
criticality level or resources needed. Modelled applications
rely on the class model in UML2 [8] for its description. The
initial version of the toolset relies on the UML-MARTE [9]
profile for describing time and resource requirements. In
this case, it is possible to model real-time entities (tasks,
protected objects) and real-time requirements and parameters.
Application resource needs are derived from those of the
individual entities.

Following this basis, additional annotations with respect to
useful information for the developer can be added. If the
information is associated to the application as a whole, then it
can be enriched with annotations describing these new aspects.
For example, it could be possible to mark an application as
being of a specific type that requires specific handling by
other tools.

In other cases, the annotations have to be made at the level of
application components, such as classes, packages or threads.
This case is more demanding. It requires the definition of a
profile or metamodel, for defining the way and properties to
be specified. Once again, other tools will have access to this
information for performing their functions.

4.2 Toolset extension at partitioning level
The partitioning tool is in charge of generating a system par-
titioning that is consistent with the policies for the different
non-functional requirements. The proposed approach is to use
the partitioning restrictions model as the basis for the integra-
tion of policies of different nature. For each non-functional
property or developing aspect, a restrictions generator can
be provided. It takes as inputs the platform and applications
models, and generates a set of restrictions that ensures that
the final system partitioning will meet the constraints in the
policies. It is important to point out that the implementation
language of the generator is not defined. Anyone can be used,
provided that it generates valid restrictions, according to the
provided meta-model.

Once all the restrictions derived from the different non-
functional properties generators are available, the partitioning
tool produces a system partitioning (deployment model) that
is compliant with them, if one there exists.

4.3 Toolset extension at validation level

The toolset allows the integration of additional validation
tools. This can be required for supporting a new non-
functional requirement, or performing a specific validation
required in the development of a given system. The inputs to
a new validation tool are system and deployment models. The
outputs of the validation tool indicates to the partitioning tool
whether the proposed deployment model is valid, and a set
of new restrictions for driving its correct generation. It may
be necessary to include new transformers for generating the
validation tool input model or converting the corresponding
output, for its integration in the toolset.

4.4 Toolset extension at generation level

The aim is to allow the generation of additional artefacts
useful for the development team. As mentioned above, cur-
rently the toolset generates XtratuM configuration files, sys-
tem building files, and source code (Ada skeletons). However,
there are additional artefacts that may be generated automati-
cally, such as documentation or files for testing purposes.

Currently, the transformation components in the core toolset
take as input the neutral model, for simplification purposes.
However, new tools can access other models in the system,
such as the system model or deployment model. A new
transformation component can access this information for
generating the desired artefacts. It is needed to ensure that
the required information for this job is included in the models.
This integration has to be performed at system model level.
The toolset provides means for invoking them and their be-
haviour will be independent of other transformers, ensuring a
straightforward integration.

5 System partitioning

The purpose of this section is to describe the general algorithm
taken in the toolset for generating a feasible and automatic
system partitioning. This component takes as input the system
model: platform model, applications models, and partitioning
restrictions model. This one is of particular interest, as it
compiles restrictions that must be fulfilled by the resulting
partitioning. They can be grouped in two types:

• Explicit: The developers and system integrator define
this type of restrictions, which response to specific re-
quirements. As instance, they can define specific hard-
ware devices that must be used by an application, force
specific allocations of application into partitions defined
by the system integrator, etc.

• Implicit: They are automatically deduced from the sys-
tem model. As mentioned in section 4, these restrictions
are intended to ensure the fulfillment of non-functional
requirements specified in the model. As instance, two
applications with different criticality level cannot be in
the same partition.

Ada User Jour na l Vo lume 35, Number 2, June 2014

126 Toolset for Mixed-Cr i t i ca l i ty Par t i t ioned Systems

The output of this tool is a deployment model, which defines
the system partitioning. It includes the description of the
partitions. Each of them is characterized by the allocated ap-
plications, the used operating system, and required hardware
resources.

The global approach for system partitioning relies on the
divide and conquer principle. The complexity of this problem,
and the requirements for extensibility are additional reasons
for this approach. In consequence, the problem is broken
down into four stages:

• Allocation of applications into partitions: The aim is to
allocate all applications to partitions, trying to minimize
its number, while fulfilling the restrictions.

• Allocation of partitions on processor cores. The result
of this stage must meet the restrictions related with hard-
ware devices.

• Cyclic plan scheduling design: As mentioned above
XtratuM temporal isolation relies on a cyclic scheduling
policy that is statically defined. The aim of this stage is to
generate the cyclic plan, taking into account application
allocation to cores, and applications CPU needs. These
are defined in the applications model.

• Validation of the deployment model: Finally, it is pos-
sible to validate the resulting system partitioning with
respect to general or non-functional requirements. This
activity is performed by external tools that can be easily
integrated in the toolset. For instance, a response time
analysis tool is to be used [4]. Its aim is to ensure that
time requirements are met by the proposed partitioning
and scheduling plan.

The two initial stages are instances of the general allocation
problem. It is NP-Hard, which means that there is no known
algorithm that resolves it in polynomial time. This problem
has been soundly researched for a long time. After making an
analysis of some available options, the allocation problems
on the partitioning algorithm in this toolset are based on the
greedy algorithm of Iterated Register Coalescing (IRC) [3].

The IRC algorithm is based on colored graph theory. The
allocation problem is modeled in a graph, where nodes rep-
resents the entities to allocate, colors are the allocation re-
sources, and vertices represent restrictions. Originally, it was
intended to help in the allocation of variables into hardware
registers for code generation. There are a number of similar-
ities, such as the existence of a number of restrictions that
must be followed. This algorithm has been selected due to
its good balance between the quality of the results and the
implementation complexity.

The use of this approach for allocating applications on par-
titions required some adaptations. In the proposed solution,
nodes represent applications, colors stand for partitions, and
vertices are restrictions. The original IRC algorithm assumes
a fixed number of resources (registers). However, in this allo-
cation case, the number of resources (partitions) is not limited.
Then, the proposed algorithm generates new colors when the
allocation is not feasible or additional solutions are required.

The developed algorithm for the allocation of partitions to
cores has also been adapted. The aim has been to prioritize
solutions where the cores workload is balanced.

In addition, both algorithms have been improved with respect
to the original IRC, in order to generate alternative solutions.
A proposed system partitioning at this point may be invalid.
This can be caused by not being able of generating a feasi-
ble cyclic plan or by failing in the validation stage. Then
alternatives partitioning are generated, if it is feasible.

There is a working version of the two initial stages, which
has been successfully tested with a number of system mod-
els. Work is ongoing for performing a more exhaustive and
systematic test of these algorithms. There is a very simple
version of the cyclic scheduling plan generator, that has been
used in simple systems. A more advanced algorithm is cur-
rently under development.

6 Conclusions
This paper describes a toolset for supporting the development
of mixed-criticality multi-core embedded systems. It relies
on the XtratuM hypervisor that provides spatial and temporal
isolation, as well as a number of additional features suitable
for the development of this type of systems. The presented
toolset has been designed according to a set of requirements
produced by experts from academia and industry, with knowl-
edge on a number of application domains.

Currently, the toolset provides most of the mentioned func-
tionality, but for simple systems. Support for more complex
systems is gradually being included. Future work includes
the integration of improved support for time, safety and se-
curity, and improvements on the partitioning algorithm. The
toolset is being validated in three different use cases: a wind-
power turbine control system, the onboard software of the
UPMSAT2 satellite, and a video surveillance system.

Acknowledgment
The work in this paper is partially funded by FP7 STREP
MultiPARTES project, no 287702 (www.multipartes.eu). The
wish to thank the MultiPARTES consortium for its collabora-
tion and help.. The work in this paper has also been funded
by the Spanish Ministerio de Educación, Cultura y Deporte,
project HI-PARTES (High Integrity Partitioned embedded
systems), TIN2011- 28567-C03-01 in the Plan Nacional de
I+D+i.

References
[1] Alonso, A., Salazar, E., de Miguel, M.A. (2014), A

Toolset for the Development of Mixed-Criticality Parti-
tioned Systems, in 2nd Workshop on High-performance
and Real-time Embedded Systems, Vienna, Austria

[2] ARINC: Avionics Application Software Standard Inter-
face ARINC Specification 653-1 (2003)

[3] George, L., Appel, A.W. (1996), Iterated register coa-
lescing, TOPLAS 18(3), 300–324.

Volume 35, Number 2, June 2014 Ada User Jour na l

A. Alonso, E. Salazar 127

[4] González Harbour, M., Gutiérrez, J.J., Palencia, J.C.,
Drake, J.M. (2001), MAST modeling and analysis suite
for real time applications in Proceedings of 13th Euromi-
cro Conference on Real-Time Systems.

[5] M. Masmano, I. Ripoll, A. Crespo, S. Peiro (2010), Xtra-
tuM for LEON3: an OpenSource Hypervisor for High-
Integrity Systems, Embedded Real Time Software and
Systems (ERTS2 2010).

[6] MultiPARTES: Multi-cores Partitioning for Trusted Em-
bedded Systems, Available: www.multipartes.eu

[7] MultiPARTES project, "Requirements Platform
and Methodology Viewpoint", Deliverable D2.2,
http://www.multipartes.eu.

[8] OMG Unified Modeling Language (UML) (2011),
http://www.omg.org/spec/UML/2.4.1/, version 2.4.1

[9] OMG UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems (2011),
http://www.omg.org/spec/MARTE/, version 1.1

[10] S. Peiro, M. Masmano, I. Ripoll, and A. Crespo (2007),
PaRTiKle OS, a replacement of the core of RTLinux, in
Proc. of the Real-Time Linux Workshop.

[11] E. Salazar, A. Alonso, M.A. de Miguel, J.A. de la Puente
(2013), A Model-Based Framework for Developing Real-
Time Safety Ada Systems, In H.B. Keller, et al (eds.),
Reliable Software Technologies — Ada-Europe, LNCS
7896, pp. 126–141. Springer-Verlag.

[12] Schmidt, Douglas C. (2006), Guest editor’s introduc-
tion: Model-driven engineering, Computer 39.2 (2006):
0025-31.

Ada User Jour na l Vo lume 35, Number 2, June 2014

128

RTFM-lang Static Semantics for
Systems with Mixed Criticality

Per Lindgren, Johan Eriksson, Marcus Lindner
Luleå University of Technology, Sweden; email: {per.lindgren}@ltu.se

David Pereira, Luís Miguel Pinho
CISTER / INESC TEC, ISEP; email: {dmrpe,lmp}@isep.ipp.pt

Abstract

In an embedded system, functions often operate under
different requirements. In the extreme, a failing safety
critical function may cause collateral damage (and
hence consider to be a system failure) while non critical
functions affect only the quality of service. Approaches
by partitioning the system’s functions into sandboxes
require virtualization mechanisms by the underlying
platform and thus prohibit deployment to the bulk of
microcontroller based systems. In this paper we dis-
cuss an alternative approach based on static semantic
analysis performed directly on the system specification
expressed in the form of an object oriented (OO) model
in the experimental language RTFM-lang. This would
allow to (at compile time) to discriminate in between
critical and non-critical functions, and assign these (by
means of statically checkable typing rules) appropriate
access rights. In particular, one can imagine dynamic
memory allocations to be allowed only in non-critical
functions, while on the other hand, direct interaction
with the environment may be restricted to the critical
parts. With respect to scheduling, a static task and re-
source configuration allows e.g. Stack Resource Policy
(SRP) based approaches to be deployed. In this paper
we discuss how this can be achieved in a mixed critical
setting.

1 Introduction
The number of embedded systems is rapidly increasing (ac-
cording to the ARTEMIS SRA [1], we approach 40 billion
devices in 2020). A vast major of these systems are based on
small microcontrollers, providing limited CPU and memory
resources. This requires tedious work by the programmer to
household with the available resources where correctness is
often validated by test based verification, which by nature
is both time consuming and unsatisfactory with respect to
safety critical functions. However, in many cases, only parts
of the system’s functions are safety critical (e.g., background
functions such as monitoring, logging, etc. can be considered
as non-critical, and allowed to fail momentarily as long as
such failures do not (directly or indirectly) affect any critical
function.

Moreover, systems may have a partly dynamic behaviour, e.g.,
if implementing a server, the number of connected clients may
differ over time, and serving each client may require different
amounts of memory during each session. Limiting the system
to accommodate for the worst case behaviour in such a setting,
either would imply too high resource requirements (leading
to a costly, over dimensioned and potentially power hungry
system) or impose overly pessimistic configurations (leading
to bad performance/quality of service and poor utilisation of
available resources). By allowing memory to be dynamically
allocated, both utilisation and performance can be improved
over the worst case setting. Thus, in such cases, a best effort
approach is clearly preferable.

To this end, we have mainly two options: either we prevent
operations (e.g., memory allocations) from failing, or we al-
low failure under certain conditions. Both options can be
at least partially achieved in both a static, or a dynamic ap-
proach. Approaches (besides those of mere testing) such as
model checking, or theorem proving are usually the ones used
in a static setting, whereas runtime monitoring and runtime
verification are able to indentify, correct, or simply mini-
mize the effects that failures may exhibit upon execution. In
general, static verification is hard, and often requires expert
knowledge, thus is yet to reach into the mainstream of embed-
ded system design. The same goes for run-time verification,
witch in addition of adds both complexity and overhead to the
implementation.

That gives motivation to investigate alternative approaches.
In this paper, we claim that based on an appropriate language
design, sought properties can be proven directly on the sys-
tem model by means of (compile-time) analysis of its static
semantics discriminating in between critical and non-critical
functions. The compositional properties of RTFM-lang al-
lows us to ensure, at compile time, that failures will be con-
tained within the scope of non-critical functions. Such an
approach could largely simplify the task of static verification.

Additionally we discuss, how a static task and resource con-
figuration can be extracted from a mixed critical model in
RTFM-lang. The task and resource configuration can be
utilised for Stack Resource Policy based analysis and run-
time scheduling. We show that, under fixed priority (single
core) scheduling by the RTFM-kernel, response times for

Volume 35, Number 2, June 2014 Ada User Jour na l

P. L indgren, D. Pere i ra , J. Er iksson, M. L inder, L .M. Pinho 129

critical functions are robust to overload of non-critical func-
tions.

The presented approach is a work in progress. A subset of
the RTFM-lang has been captured in the K framework [2]
with the aim of providing a formal semantics for both static
(syntax and type system) as well as dynamic (run-time) be-
haviour of RTFM-lang programs. The K framework provides
a constructive approach to prototyping and development of
programming languages. From the syntax a parser is directly
obtained (giving immediate feedback on the specified gram-
mar allowing for rapid prototyping). The derived abstract
syntax trees can be processed by means of formally grounded
term-rewriting rules [3]. These can be devised for example
to reflect static semantics (well-formedness/type checking),
dynamic semantics (run-time behaviour), as well as trans-
formations into other models and languages. Each rule is
matched and applied as an atomic operation, while the set of
rules are applied non-deterministically. Using the K frame-
work one can model concurrent/parallel semantics, observe
potential traces of non-deterministic behaviour, and even rely
on the power of model checkers and/or automatic theorem
provers to check properties of interest.

2 RTFM-lang Static Semantics
The overall of goals of developing RTFM-lang can be sum-
marised as follows:

• An OO language with asynchronous and synchronous
communication;

• Static object and communication structure related to
critical functions;

• Dynamic object and communication structure related to
non-critical functions;

• Failure free critical functions;

• Failure contention within non-critical functions.

2.1 Static Semantics Approach

In this paper we sketch a syntactic approach under the K
framework. The generated parser is able to discriminates
in between critical and non-critical functionality and syn-
tactically enforce some of the above mentioned properties.
However, one can do ono so much at the level of parsing. To
enforce well-formedness (type checking etc.), compilation
techniques are of course mandatory. The syntactic approach,
should be seen just as a proof of concept: for the future,
we foresee to step away from the syntactic approach in or-
der to provide a much more clean and succinct grammar for
RTFM-lang. For instance, in the grammar (Figure 1) some
duplications are introduced to enforce syntactic discrimina-
tion.

The sketched grammar merely captures object creation and
communication aspects of the language, whereas actual com-
putations, OO features, etc. are left out. The grammar should
however be sufficient for the following discussion.

2.2 Static Object and Communication Structure
A distinct feature of the RTFM-lang is that a static (initial)
set of objects can be declaratively defined, and spanned at
compile time. Functions that are implemented solely in terms
of operations on/within this static set of objects can be con-
sidered safe (e.g., with respect to memory accesses). The
proposed language allows the programmer to explicitly state
which methods should be considered critical, whose safe na-
ture must be enforced/proved at compile time. This amounts
to (transitively) require critical functions to rely solely on
(other) critical functions. Since we assume that critical func-
tions are safe, the overall safety is given by induction on the
structure of the program and compositionality (this relates to
well known assumption/guarantee approaches used in con-
tract based program analysis [4]). Formalisation of contracts,
and their verification is a work in progress.

2.2.1 Example 1
The class definition specifies a provided and required inter-
face. The provided interface is the set of public methods,
while the required interface defines the type signature of in-
stantiation parameters and callbacks.

In Figure 2 we depict the definition of classes A and B.

The declaration of class A requires a callback method scb

as argument (specified in the ’<’ and ’>’ syntactic scope). The
signature indicates that the callback is:

• critical, hence it can be used internally within critical
functions;

• sync, meaning it is synchronous and returns a value);

• it takes an int argument and returns an int value.

class A provides a (implicitly public) method m with the
same signature as the callback method scb. The method will
return with the value of the synchronously executed scb(j),
where j was given on invocation. class A is also well-formed
since we can (syntactically) deduce that all references from
critical methods are to other critical methods (and the contract
holds).

Looking at the definition of class B we find that it creates two
instances A<a2.m> a1 and A<a1.m> a2 which are mutually de-
pendent. Given that class B is instantiated statically, a1 and
a2 are also static and their interdependency can be resolved
at compile time. The use of a1.m(1) within async trig()

is safe, since the contract requirement from a non-critical
method is weaker (that is, non-critical methods may safely
invoke methods from critical declarations). Moreover, this
example shows that we can statically determine both the ob-
ject structure (set of instances) as well as the communication
topology, allowing us in this way to statically verify contracts
for safe composition. The syntactic approach however, is
insufficient to verify the dereferencing of objects.

2.2.2 Example 2
In Figure 3 a new definition of class A presented, where ob-
jects are created dynamically (in a mixed critical setting). The
definition is well-formed as (potentially unsafe) memory allo-
cations are allowed in the non-critical context of createA().

Ada User Jour na l Vo lume 35, Number 2, June 2014

130 RTFM- lang Stat ic Semant ics for Systems wi th Mixed Cr i t ica l i ty

SYNTAX Prog ::= ClassDefs

SYNTAX ClassDefs ::= List{ClassDef, “”}

SYNTAX ClassDef ::= class Id < ClassArgs > {ClassVarDecls MethodDefs}

SYNTAX ClassArgs ::= List{ClassArg, “, ”}

SYNTAX ClassArg ::= Type Id
| MType Id(MethodSig)

SYNTAX MethodSig ::= List{PType, “, ”}

SYNTAX ClassVarDecls ::= List{ClassVarDecl, “”}

SYNTAX ClassVarDecl ::= PVarDecl
| OVarDecl

SYNTAX PVarDecl ::= PType Id ;

SYNTAX OVarDecl ::= Id < Exps > Id ;

SYNTAX MethodDefs ::= List{MethodDef, “”}

SYNTAX MethodDef ::= CMDef
| MDef

SYNTAX CMDef ::= critical MSyncAsync Id(CMArgs)CMBody

SYNTAX CMArgs ::= List{CMArg, “, ”}

SYNTAX CMArg ::= Type Id

SYNTAX MDef ::= MSyncAsync Id(MArgs)MBody

SYNTAX MArgs ::= List{MArg, “, ”}

SYNTAX MArg ::= PType Id

SYNTAX MType ::= MSyncAsync
| critical MSyncAsync

SYNTAX MSyncAsync ::= sync Type
| async
| async Int

SYNTAX Type ::= PType
| Id

SYNTAX PType ::= int
| bool
| char

SYNTAX MVarDecls ::= List{MVarDecl, “”}

SYNTAX MVarDecl ::= PVarDecl
| OVarDecl

SYNTAX Stmt ::= MBody
| Exp ;
| send Int Exp ;

SYNTAX Stmts ::= Stmt
| Stmts Stmts
| return Exp ;

SYNTAX MBody ::= {}
| {MVarDecls Stmts}

SYNTAX Exp ::= Int
| Id
| this
| Exp . Id
| Exp(Exps) [strict(2)]
| Exp = Exp [strict(2)]

SYNTAX Exps ::= List{Exp, “, ”} [strict]

SYNTAX CMVarDecls ::= List{CMVarDecl, “”}

SYNTAX CMVarDecl ::= PVarDecl

SYNTAX CStmt ::= CMBody
| CExp ;
| send Int CExp ;

SYNTAX CStmts ::= CStmt
| CStmts CStmts
| return CExp ;

SYNTAX CMBody ::= {}
| {CMVarDecls CStmts}

SYNTAX CExp ::= Int
| Id
| this
| CExp . Id
| CExp(CExps) [strict(2)]
| CExp = CExp [strict(2)]

SYNTAX CExps ::= List{CExp, “, ”} [strict]

Figure 1: Sketched grammar for a subset of RTFM-lang in K

1 class A <critical sync int scb(int)> {
2 critical sync int m (int j) {
3 return scb(j);
4 }
5 }
6
7 class B <> {
8 A<a2.m> a1;
9 A<a1.m> a2;

10
11 async trig() {
12 a1.m(1);
13 }
14 }

Figure 2: Definition of classes A and B

1 class A <critical sync int scb(int)> {
2 sync int createAs() {
3 A<a2.m> a1;
4 A<a1.m> a2;
5
6 return a1.m(29);
7 }
8
9 critical sync int m(int j) {

10 return scb(j);
11 }
12 }

Figure 3: Defintion of class A with mixed critical behavior.

2.2.3 Example 3

Figure 4 depicts an ill-formed definition of class A. It contain
two errors, however, the grammar specified in the K frame-
work is only able to report one of the those. The attempt
to create objects dynamically within the critical method
createAs can be directly spotted. This is detected by the
grammar through the rule

SYNTAX CMV arDecl ::= PV arDecl

which allows only primitive types to be locally allocated. The
other error is the attempt to synchronously invoke the callback
scb(j) (within the context of the critical method m) while it
has been declared as being non-critical in the last argument.
This goes beyond purely syntactic checking and requires type
lookup in the scope of declared identifiers. This is by no
means anything strange, and is target for ongoing work.

2.3 Safety and Robustness
In general, safety is about ensuring that nothing bad may
occur, while robustness is a matter of gracefully dealing with
the unexpected. To this end, memory management is a major
obstacle. Whereas manually managing memory is known to
be tedious and error prone, dynamic memory management
has still gained limited use in the context of safety critical
systems. Main challenges and obstacles to automatic meth-
ods are to bind overhead and prove memory sufficiency. By
the use of virtualisation techniques, separiation is possible
(sand boxing critical functions), and by the use of hypervi-
sor techniques resources (e.g., CPU) can be budgeted, such

Volume 35, Number 2, June 2014 Ada User Jour na l

P. L indgren, D. Pere i ra , J. Er iksson, M. L inder, L .M. Pinho 131

1 class A <sync int scb(int)> {
2 critical sync int createAs() {
3 A<a2.m> a1;
4 A<a1.m> a2;
5
6 return a1.m(29);
7 }
8
9 critical sync int m(int j) {

10 return scb(j);
11 }
12 }

Figure 4: Ill-formed definition of class A.

that critical parts are ensured to operate correctly. In such a
setting, critical partitions are typically static (or limited to a
set of modes of operation) with direct access to the environ-
ment, whereas non-critical partitions are allowed a dynamic
behaviour (e.g., allowing for dynamic memory management
and automatic garbage collection) with access to the environ-
ment only through the hypervisor and/or hosting operating
system.

Our approach, although sharing the same goal, is fundamen-
tally different. We approach the problem from a language
perspective, allowing the programmer to define applications
with mixed criticality. The language design allows us to pre-
cisely define the set of allowed operations for each partition,
and provides an outset for offline analysis. Given proper anal-
ysis and verified correctness of the tool-chain, separation can
be achieved without the need of costly virtualisation and hy-
pervisor techniques. Moreover, in our approach, interactions
in and across regions of the system is controlled by the lan-
guage semantics (amendable to analysis), free of references
to any external mechanisms.

Ultimately, this will allow safe deployment of systems with
mixed criticality even onto low-end microcontrollers such as
the ARM Cortex M0/M3 family. In the following we will
further discuss the outsets for this endeavour.

3 Dynamic Semantics of RTFM-lang
In this section we informally discuss the dynamics seman-
tics of RTFM-lang1. For the presentation we undertake the
common notions of tasks(jobs) and resources used e.g., [5].

We associate each object (instance) o to a single unit resource
r(o), which must be claimed for the execution of a method
o.m. Since the object state s(o) is completely encapsulated
in the object o (we do not expose state variables directly
in the interface, rather through set and get methods), the
associated resource r(o) will protect the state s(o) from race
conditions. Execution in the model is triggered by events
(messages) on the form o.m(...). Synchronous events are
executed directly on behalf of the sender, while asynchronous
events are dispatched by the run-time system. Asynchronous
events either stem from the environment (e.g., typically as

1As a work in progress formal semantics will be defined in the K frame-
work.

a result of an interrupt), or from within the model (the send

statement).

The static semantics ensures that the critical functions operate
on the static object structure, with a static communication
topology. This allows us to see execution in the system as a set
of tasks T , where each task t ∈ T is a chain of synchronous
events headed by a triggering asynchronous event. Looking at
the grammar presented in Figure 1, we can see that the send

statement takes an integer priority that is associated with the
corresponding asynchronous event.

3.1 Interfacing the Environment

Interfacing with the environment is not explicitly defined in
the presented grammar, but there are many options. One
approach is that a system model requires a Root object imple-
menting the set of interrupt handlers required by the underly-
ing hardware (and RTFM-kernel). Notice that a priority p is
associated with each interrupt handler.

1 class Root <> {
2 // LPC11U specific handlers
3 critical async 3 FLEX_INT0_IRQHandler() {
4 /* 0 - GPIO pin interrupt 0 */
5 }
6 critical async 2 FLEX_INT1_IRQHandler() {
7 /* 1 - GPIO pin interrupt 1 */
8 }
9 // ...

10 critical async 2 USBWakeup_IRQHandler() {
11 /* 30 - USB wake-up interrupt */
12 }
13 critical async 4 RTFM_Reset() {
14 /* Your program entry point */
15 }
16 }

Figure 5: Root class defintion.

3.2 SRP Analysis and the RTFM-kernel

We now have sufficient information to perform SRP based
analysis and scheduling of the static model. From the set
of task T and set of objects O, a set of resources R with
respective resource ceilings can be computed. This is suffi-
cient information to perform SRP based scheduling. To this
end, the RTFM-kernel has been developed to efficient exploit
the underlying interrupt hardware for making fixed priority
scheduling decisions under SRP.

Moreover, the task model forms an outset for further analyses
(e.g., response time, stack memory, and overall schedulabil-
ity). To this end, additional requirement on inter-arrival times,
WCETs, stack usage per task, etc. is of course required, and
out of scope for this presentation.

4 Robust Scheduling of Mixed Critical
Systems in RTFM-lang

Building from the discussion in SRP analysis and fixed pri-
ority scheduling by the RTFM-kernel, mixed critical models
in the RTFM-lang can be robustly scheduled. Intuitively,

Ada User Jour na l Vo lume 35, Number 2, June 2014

132 RTFM- lang Stat ic Semant ics for Systems wi th Mixed Cr i t ica l i ty

let critical functions (tasks) have priorities higher than non-
critical functions. In this context, garbage collection (if so
wished) can be added as a non-critical task. Under these con-
ditions non-critical functions (and side effects thereof) will
never preempt critical functions. This allows analysis (e.g.,
response time for critical functions) on the static model to
hold in a mixed critical setting. W.r.t. blocking, a well know
property of SRP is the bounded blocking to the single longest
critical section a resource at same or higher priority is occu-
pied. Remembering that resources are associated to an object
o, and that a resource r(o) is claimed only for the period
a o.m(...) is executing. Assuming that (subset) of methods
exposed to non-critical functions is defined, the worst case
blocking time (for each critical task) can be determined at
compile time.

In order to ensure that the set of critical tasks can be deter-
mined at compile time, we can impose the restriction that
non-critical tasks may never pend critical tasks. Instead,
the pending is delegated to a critical method (called syn-
chronously by the non-critical sender). This method takes the
responsibility to determine wether to issue, queue or simply
discard the job request. For the analysis to hold, the assumed
minimum inter-arrival time must be obeyed. Other criteria,
such as maximum queue length, message ageing, etc. can be
implemented in such a high-level scheduler.

5 Conclusions and Future Work
In the is paper we have discussed the static and dynamic se-
mantics of the experimental RTFM-language from the view-
point of systems with mixed criticality. We have highlighted
some outstanding features, such as the possibility to progra-
matically define and automatically verify critical functions
to be free of dependencies to non-critical functions. This de-
coupling allows us, e.g., to freely deploy (potentially failing)
dynamic memory allocations in non-critical functions, while
still preserving safe operation for the critical functions. More-
over we have discussed the mapping from RTFM-language
models to traditional notion of tasks and resources, and high-
light the potential to SRP based techniques. In particular,
fixed priority SRP scheduling under the RTFM-kernel would
allow robust scheduling even under overload of non-critical
functions.

Acknowledgments
This work was partially supported by National Funds through
FCT (Portuguese Foundation for Science and Technol-
ogy), and the EU ARTEMIS JU funding, within project
ARTEMIS/0001/2013, JU grant nr. 621429 (EMC2) and
VINNOVA (Swedish Governmental Agency for Innovation
Systems).

6 Disclaimers
The examples In Figures 1 to 3 given are only illustrative,
in fact the mutual dependencies introduced would deadlock
(and/or give rise to infinite execution). The Root example
assumes (in order to release the lock on the Root object) that
the handlers delegate work in terms asynchronous messages.
Another abstraction allowing external bindings from within
class definitions may prove a better approach, but out of scope
for this presentation.

References
[1] ARTEMIS: Advanced Research & Technol-

ogy for Embedded Intelligence and Sys-
tems, “Artemis strategic research agenda 2011.”
http://www.artemis-ia.eu/publication/
download/publication/541.

[2] T. F. Serbanuta, A. Arusoaie, D. Lazar, C. Ellison, D. Lu-
canu, and G. Rosu (2013), The k primer (version 3.3),
in Proceedings of International K Workshop (K’11),
ENTCS, Elsevier. To appear.

[3] G. Roşu (2014), Matching logic: A logic for structural
reasoning,’ Tech. Rep. http://hdl.handle.net/2142/47004,
University of Illinois.

[4] Q. Xu, W. P. de Roever, and J. He (1997), The rely-
guarantee method for verifying shared variable con-
current programs, Formal Asp. Comput., vol. 9, no. 2,
pp. 149–174.

[5] T. P. Baker (1990), A stack-based resource allocation
policy for realtime processes, in proceedings of the Real-
Time Systems Symposium, pp. 191–200, IEEE Computer
Society.

Volume 35, Number 2, June 2014 Ada User Jour na l

http://www.artemis-ia.eu/publication/download/publication/541
http://www.artemis-ia.eu/publication/download/publication/541

133

Handling Criticality Mode Change in
Time-Triggered Systems through Linear
Programming

Mathieu Jan, Lilia Zaourar
CEA, LIST, Embedded Real Time Systems Laboratory, F-91191 Gif-sur-Yvette, France; email: {Mathieu.Jan,
Lilia.Zaourar}@cea.fr

Vincent Legout
Virginia Tech, Blacksburg, Virginia, USA; email: vlegout@vt.edu

Laurent Pautet
Institut Telecom, Telecom ParisTech, LTCI - UMR 5141 Paris, France; email: Laurent.Pautet@telecom-paristech.fr

Abstract

Mixed Criticality helps reducing the impact of pes-
simistic evaluation of Worst Case Execution Time for
real-time systems. This is achieved by hosting low-
criticality tasks on a same hardware architecture in ad-
dition to the classical high-critical tasks, when consider-
ing two-criticality levels. The Time-Triggered paradigm
(TT) is a classical approach within industry to develop
high-criticality tasks. Extending TT systems in order
to integrate the support of MC scheduling therefore re-
quires the generation of two schedule tables, one for
each criticality level. However, a switch between the
schedule tables must not lead to an unschedulable sit-
uation for the high-criticality tasks. In this work, we
show how a linear programming approach can be used
to generate these schedule tables in a consistent way for
dual-critical problems on multiprocessor architectures.

Keywords: Real-time scheduling, Time-Triggered,
mixed-criticality.

1 Introduction
Industrial fields, such as automotive [1] or control automa-
ton [2], consider the Time-Triggered [3] (TT) paradigm as a
solution to build hard real-time systems. In the TT paradigm,
the tasks are triggered by the advancement of time. The
scheduling decisions are usually computed off-line and made
available to the Real-Time Operating System (RTOS) through
a schedule table. While the TT paradigm provides a pre-
dictable execution, the static scheduling approach is consid-
ered to lead to a poor resource utilization in the average case.
The design of TT systems and the associated schedulabil-
ity demonstrations must indeed be performed in the worst-
case situation. These unused processing capabilities motivate
the adding of Mixed-Criticality (MC) scheduling techniques
within TT systems [4].

The goal of MC scheduling is to increase the schedulability of
the low-criticality tasks, while still guaranteeing in the worst-
case scenario the schedulability of the high-criticality tasks.
In a previous work, we focused on the use of the elastic task
model to include MC scheduling within TT systems [5]. In
this work, we rely on the task model mainly used within the
MC scheduling community [6], called the Vestal task model.
This task model extends the classical periodic task model
with: 1) two Worst-Case Execution Time (WCET) values,
named Ci(LO) and Ci(HI), and 2) a criticality level χi,
which can be either LO or HI . Then, two execution modes
are assumed, namely HI and LO, and the system starts in the
LO mode. Ci(LO) is the maximum allowed execution time
for the task in the LO mode, while Ci(HI) is the maximum
allowed execution time for the task in the HI mode. For
the HI-criticality tasks we have Ci(LO) < Ci(HI) and for
the LO-criticality tasks Ci(LO) = Ci(HI). The rationale is
that the higher the criticality level is, the more conservative
the verification process is and hence the greater the WCET
value is. Whenever a HI-criticality task exceeds its assigned
Ci(LO) value, the system switches to the HI mode. In this
mode, only the schedulability of the HI-criticality tasks is
ensured, assuming Ci(HI) for the WCET values.

Extending TT systems to cope with MC scheduling requires
the definition of two schedules tables, named SLO and SHI .
SLO (resp. SHI) is used while the system is in the LO (resp.
HI) mode. [4] has stated the TT schedulability conditions that
apply on these schedules for dual-criticality MC instances of
task sets. The main issue is to guarantee that a mode change
from SLO to SHI cannot lead to an unfeasible schedule for the
HI-criticality tasks, i.e. the remaining time is not sufficient
to completely schedule all the HI-criticality tasks. SHI is
indeed concerned by the schedulability of the HI-criticality
tasks but should be built so that the schedulability of the LO-
criticality tasks is maximized in SLO. Building SLO and SHI

cannot therefore be made independently in order to improve
the resource utilization in the average case.

Ada User Jour na l Vo lume 35, Number 2, June 2014

134 Handl ing Cr i t ica l i ty Mode Change in T ime-Tr iggered Systems

We propose two approaches to build SLO and SHI for (dual-
criticality) instances of MC task sets. Both are based on
the use of a linear programming approach. The remainder
of this paper is as follows. Section 2 describes the related
work. Section 3 formulates our linear programs to handle the
criticality mode change in TT scheduling. Section 6 provides
a first analysis of our solutions and section 7 concludes.

2 Related work
Note that existing work focuses on finite set of jobs whose
exact arrival times are known a priori, as the results can be
easily extended in order to address TT systems. The proposed
algorithm must indeed only be applied over the hyper-period
of the periodic task set being considered.

The first work on using MC scheduling within TT systems [4]
studied how to generate SLO and SHI that can correctly
schedule a MC job set modeled using the Vestal task model.
It was inspired by the mode-change approach used to increase
the flexibility of the TT scheduling in [7]. As the TT schedu-
lability of MC tasks is NP-hard in the strong sense, they
propose a polynomial-time algorithm for building SLO and
SHI that is sufficient but not necessary. That is, the algorithm
can fail to generate such tables for schedulable MC job sets,
but if it succeeds then tables can correctly schedule them.
The algorithm first computes a total priority ordering of the
jobs using the Own-Criticality Based Priority (OBCP) algo-
rithm [8]. Based on this priority ordering, SLO is first built
assuming Ci(LO) for all the jobs. Then, SHI is generated
assuming this time Ci(HI) for all the jobs (we remind that
when χ = LO, Ci(LO) = Ci(HI)).

[9] introduces a much more elaborated algorithm to build
at the same time SLO and SHI assuming a slot scheduling
approach. HI-criticality jobs are first splitted into two jobs
noted JLO

i and J∆
i . JLO

i represents theCi(LO) of that job in
the LO mode, while J∆

i represents the additional WCET as-
sumed when in the HI mode (i.e. ∆i = Ci(HI)−Ci(LO)).
Release time and deadline of these sub-jobs are computed
so that each job has a maximum interval for its execution.
A precedence constraint between sub-jobs is added in order
to ensure a correct execution. Then, the proposed algorithm
uses an heuristic to explore the set of possible scheduling
decisions represented as a tree search. Based on the demand
of HI-criticality jobs, a backtracking heuristic is used to cut
from the tree search paths leading to unfeasible schedules.

[10] focuses on adding MC scheduling support within TT
legacy systems, where the existing schedule table is consid-
ered to be SHI . The proposed algorithm extends the slot-
shifting based scheduling [11] in order to keep track of the
spare capacities in each interval for both the HI and the
LO-criticality jobs (named scHI and scLO respectively). A
negative spare capacity means that some execution time must
be borrowed from the other slots. If scLO < 0 then a HI-
criticality job has exceeded its Ci(LO) value and therefore
only HI-criticality jobs must be executed. Finally, the legacy
TT schedule is used only when scHI = 0. Note that this
legacy TT schedule can prevent SLO to be build, while [9]
or [4] could produce a correct SLO. It is the price to pay

to avoid additional certification costs by keeping unchanged
SHI .

When considering TT systems, the previously introduced algo-
rithms are called Single Time Table per Mode (STTM). [12]
proves that the STTM approach dominates MC scheduling
algorithms that define the priorities of jobs depending on the
criticality mode (called FPM for Fixed Priority per Mode).
They propose an algorithm in order to transform a FPM prior-
ity assignment into a set of STTM tables.

In this paper, the objectives of our contributions aim at re-
visiting these approaches for TT MC systems using Linear
Programming (LP) techniques.

3 Problem Description using LP Ap-
proach

We first introduce the task model and notations we use in
the remainder of this paper, before presenting our two linear
programming approaches for building SLO and SHI .

As stated in the introduction, we rely on the Vestal task
model and consider only two criticality levels, a restriction
often assumed in MC scheduling [13]. We only state addi-
tional notations not introduced in the previous sections. Let
Γ = {τ1, τ2, ..., τn} be a set of n independent, synchronous,
preemptible and implicit deadline tasks. Tasks can migrate
from one processor to another. We let M denote the number
of processors. Each task τi ∈ Γ has the following tempo-
ral parameters τi = (χi, Pi, Ci(LO), Ci(HI)) with Pi the
period of the task. Let H be the hyper-period of the task
set. It is equal to the least common multiple of all periods
of tasks in Γ. As in [14], the hyper-period H is divided in
intervals, an interval being delimited by two task releases. We
let nHI denote the number of HI-criticality tasks and nLO

the number of LO-criticality tasks (thus nHI + nLO = n).

A job j can be present on several intervals and Ei is the set
gathering these intervals. We letwj,k denote the weight of job
j on interval k. We denote by I the set of intervals and |Ik|
the duration of the kth interval. Jk is the set of jobs within
interval k. The weight of each job is the amount of processor
necessary to execute job j on interval |Ik| only (it is not an
execution time but a fraction of it). JΓ is the job set of all
jobs of Γ scheduled during the hyper-period H .

A job jLO represents an instance of a LO-criticality task,
while jHI is an instance of a HI-criticality task. JLO and
JHI are the job sets of respectively all the LO and the HI-
criticality jobs from Γ. We let wLO

j,k denote the weight of job
j in interval k in SLO, while wHI

j,k is the weight of job j in
interval k in SHI . A RTOS is used to detect when a jHI , i.e.
HI-criticality job, exceeds its Ci(LO) value.

Finally, note that our approach to build SHI and SLO is based
on the use of LP to compute off-line the weights of each job
on all intervals. Then, within an interval either a dynamic
or static approach can be used to schedule jobs. As we are
considering the TT approach, in this work we assume that
the triggering of jobs is also computed off-line, for instance
by using McNaugthon’s algorithm [15]. These scheduling
decisions are also stored in SHI and SLO. In this paper, we
do not focus on this part of our scheduling approach.

Volume 35, Number 2, June 2014 Ada User Jour na l

M. Jan, L . Zaourar, V. Legout , L . Paute t 135

4 LP scheduling for HI-mode first:
LPMC-HI

In our first proposal, SHI and SLO are built in two separate
steps, although the objective used when building SHI pre-
pares the computation of SLO. We express this solution as
two linear programs, one for each table to build, and we name
it LPMC-HI for Linear Programming for Mixed-Criticality
HI-mode first. However, the constraints of the first linear pro-
gram are the schedulability of JHI tasks, while its objective
is to optimize the schedulability of JLO tasks in HI-mode.
This prepares the input, i.e. the wLO

j,k for the jobs from JHI ,
for the second linear programs dealing with the LO-mode.

First, we focus on building SHI . The classical temporal
schedulability constraints [14] are expressed to compute the
optimal job weights on each interval for all the jobs from
JΓ. First, the sum of all job weights on an interval must not
exceed the processor maximum capacity:∑

j∈Jk

wHI
j,k ≤M, ∀k ∈ I (1)

Then, the weight of each job must not exceed each processor
maximum capacity (no parallel jobs):

0 ≤ wHI
j,k ≤ 1,∀k ∈ I, ∀j ∈ JΓ. (2)

Finally, we express two different constraints for the comple-
tion of jobs from JLO and JHI . First, only the schedulability
of the jobs from JHI has to be ensured and therefore must be
completely executed:∑

k∈Ej

wHI
j,k × |Ik| = Ci(HI),∀j ∈ JHI . (3)

Second, the schedulability of the jobs from JLO may not be
ensured while in SHI . This means that some jobs from JLO

may not be completely executed:∑
k∈Ej

wHI
j,k × |Ik| ≤ Ci(LO),∀j ∈ JLO. (4)

As far as SHI is concerned, our objective is to prepare the
building of SLO in order to maximize the schedulability of
JLO, while still guaranteeing in the worst-case scenario the
schedulability of JHI . To this end, we introduce a decision
variable to account when a job from JLO has been completely
executed, i.e.

∑
k∈Ej

wHI
j,k × |Ik| = Ci(LO). Let Fj be

this decision variable that is equal to 1 if the job j from JLO

has been completely executed, and 0 otherwise. Then, our
objective function can be defined as follows:

Maximize
∑

j∈JLO

Fj (5)

This objective function computes the weights of a schedule in
which a maximum number of jobs from JLO are completely
executed, while ensuring the schedulability for jobs from
JHI .

We now focus on the LO-mode. For building SLO we have to
compute wLO

j,k for each job from JΓ assuming that its WCET

is equal to Ci(LO). That is the execution time of each job j
from JHI is reduced by ∆i (see section 2). For each job j in
JHI , wLO

j,k is equal to wHI
j,k till the Ci(LO) is not exceeded.

This differs from [4], where at a mode change, no scheduler
could have given more time to theHI-criticality jobs than the
proposed algorithm. In LPMC-HI, these jobs can be delayed
in order to completely execute, over a set of intervals, some
LO-criticality jobs.

Next, we have to compute wLO
j,k for all the jobs from JLO.

While SHI was generated with a maximum number of jobs
from JLO completely executed, our second linear program
could only compute the weights of the jobs from JLO that
have not yet been scheduled. However, we believe this re-
duces the search space when building SLO, as we remind
that only jobs from JHI must be scheduled in SHI . While
a reduced search space seems an interesting property, as it
decreases the execution time required for solving the linear
program, we believe it also reduces the schedulability bound
that can be achieved. To compute wLO

j,k for all the jobs from
JLO, the classical temporal constraints only have to be mod-
ified in order to use wLO

j,k for all the jobs from JHI as fixed
values and not as variables. In the next equation, the value of
a variable w is noted w′ to depict this point :∑

jLO∈Jk

wLO
j,k +

∑
jHI∈Jk

wLO′

j,k ≤M, ∀k ∈ I (6)

0 ≤ wLO
j,k ≤ 1,∀k ∈ I, ∀j ∈ JLO. (7)∑

k∈Ej

wLO
j,k × |Ik| = Ci(LO),∀j ∈ JLO. (8)

Note that this second LP has no objective function as any
feasible solution given by the solver generates a valid schedul-
ing.

LPMC-HI can lead to situations where SLO cannot be com-
puted. The jobs from JHI are indeed concentrated in some
particular intervals in SHI and then their total weights are sim-
ply reduced over these intervals to match their lower Ci(LO).
However, redistributing the weights of jobs from JHI while
computing SLO would increase the schedulability bound that
can be achieved for the jobs from JLO. Section 6 illustrates
this point using an example.

5 LP scheduling for both LO- and HI-
modes: LPMC-Both

In our second approach, we explore such an alternative strat-
egy for computing the weights in order to improve the success
ratio of the scheduling. We thus consider the generation of
SLO and SHI at the same time, i.e. within the same linear
program, and therefore name this approach LPMC-Both. We
split each HI-criticality job into two sub-jobs: jLO and j∆
and consider jLO as a LO-criticality job that we added in
JLO. A precedence constraint will be expressed later to en-
sure building correct schedules. LPMC-Both is similar to [9]
and we therefore use the same notations as in this work (see
sect. 2). Additionally, we let w∆

j,k denote the weight of a job
j∆.

Ada User Jour na l Vo lume 35, Number 2, June 2014

136 Handl ing Cr i t ica l i ty Mode Change in T ime-Tr iggered Systems

A first set of constraints must be expressed for SHI in order
to ensure the schedulability of all the jobs from JHI . This is
similar to the equations (1), (2) and (3). The only difference is
that now the weight of each job in SHI is defined as follows:

wHI
j,k = wLO

j,k + w∆
j,k,∀k ∈ I, ∀j ∈ JHI (9)

Precedence constraints are then required to ensure a correct
schedule of each job from JHI , that is the w∆

j,k must be null

till
∑k

m=1 w
LO
j,m × |Im| ≤ Ci(LO). This prevents sub-jobs

jLO and j∆ to be present in the same interval in SLO. Avoid-
ing this situation ensures that a criticality mode change from
SLO to SHI is possible, i.e. that it does not lead to an unfea-
sible schedule, at every point where all the jobs from JHI

can first exceed their Ci(LO) values. This corresponds to
the switch through property described in [7] for these points.
Note that this property is ensured in our first scheduling ap-
proach by how we compute wLO

j,k for each job j from JHI .
In the first interval k in which a job jHI exceeds its Ci(LO)
value, note that the two sub-jobs jLO and j∆ can be present.
However, as wHI

j,k cannot be higher than 1 (eq. 2), the weight
left to j∆ in interval k is constrained so that a schedule where
jLO and j∆ cannot be executed in parallel can be found (i.e
w∆

j,k + wLO
j,k ≤ |Ik|). Finally, in the other intervals the solver

has no constraint for computing w∆
j,k.

Then, a second set of constraints must be expressed for SLO

in order to ensure the schedulability of all the jobs from JLO.
These constraints are identical to the equations (7) and (8), in
addition to the following constraint:∑

j∈Jk

wLO
j,k ≤M,∀k ∈ I (10)

Finally, we use the same objective function as (5), that is
maximize the number of schedulable jobs from JLO. It there-
fore requires the same decision variable to account when a
job from JLO has been completely executed. In the end, if a
solution can be found, then the output of LPMC-Both is the
weights of each job to be used to build both SLO and SHI .

6 First analysis of LPMC-HI and LPMC-
Both

We first compare LPMC-HI and LPMC-Both in terms of
complexity. We first focus on LPMC-HI. The total number
of decision variables in the first LP of LPMC-HI is equal to
|I|×n for the weights of all jobs, plus |JLO| for the Fj . In the
second LP of LPMC-HI, this number is reduced to |I| × nLO

as only the weights of jobs from JLO are computed when
building SLO. In the first (resp. second) LP of LPMC-HI, the
number of constraints is equal to its number of variables plus
|I| + |JΓ| (resp. |I| + |JLO|) due to the equations (1), (3)
and (4) (resp. (6) and (8)). We now focus on LPMC-Both.
Compared to LPMC-HI, the total number of decision vari-
ables in LPMC-Both is increased by 2 × |I| × nHI . This
comes from additional weights introduced by the job split-
ting and for implementing the precedence constraints. The
number of constraints of LPMC-Both is equal to the sum of:
|I|×(n+1)+|JΓ| for computing SLO, |I|×(nHI+1)+|JHI |

χi Pi Ci(LO) Ci(HI)
τ1 LO 2 1.5 1.5
τ2 HI 4 2 3
τ3 HI 3 1 2

Table 1: Task set with τ1 a LO-criticality task.

for computing SHI and 2 × |I| × nHI for dealing with the
precedence constraints. The complexity of LPMC-Both is
therefore higher than the complexity of LPMC-HI. However,
the computational complexity of LPMC-HI and LPMC-Both
depends on the number of intervals, which is limited in indus-
trial configurations usually showing harmonic periods ([1,2]).

We now compare both approaches in terms of efficiency. Ta-
ble 1 depicts a task set running on a dual-core (M = 2) and
made of three tasks where τ1 is a LO-criticality task. Fig-
ure 1 shows SHI computed by LPMC-HI. The third and sixth
instances of τ1 cannot be completely executed in the intervals
I4 and I8, leading to F1 = 4 (out of 6). Note that the second
and fifth instances of τ1 span over 2 intervals, i.e. respectively
I2, I3 and I6, I7. The other instances require only 1 inter-
val. When trying to compute the corresponding SLO, wLO

3,4 is
equal to 0.5, as the Ci of the second instance of τ3 is reduced
by 1 unit of time in interval I4. However, the third instance
of τ1 cannot be scheduled as wLO

1,4 should be equal to 0.75 in
order to satisfy the equation (8). But then, the equation (6)
would not be satisfied as the utilization would be equal to
2.5 and hence higher than M . A valid SLO cannot therefore
computed. As shown by Figure 2, both SLO and SHI can be
computed using LPMC-Both thanks to its ability to distribute
the weights over all the intervals.

Figure 1: Possible SHI for the task set of table 1 computed by
the LPMC-HI leading to an unfeasible SLO .

Figure 2: Possible SHI (top) and SLO (bottom) for the task set
of table 1 computed by LPMC-Both.

Volume 35, Number 2, June 2014 Ada User Jour na l

M. Jan, L . Zaourar, V. Legout , L . Paute t 137

7 Conclusion
The Time-Triggered (TT) paradigm is one solution used
within industrial fields to design hard real-time systems sub-
ject to certification constraints. While the TT paradigm pro-
vides interesting properties, such as determinism, this comes
at the price of low resource utilization in the average case.
Mixed-Criticality (MC) scheduling aims at providing an effi-
cient use of the processing capabilities available in the average
case through the execution of low-criticality tasks, while en-
suring schedulability for the high-criticality in the worst-case.

TT relies on a off-line computation of scheduling decisions
made available at run-time through a schedule table. In this
work, we consider dual-critical problems requiring the con-
struction of two schedule tables. The main difficulty when
building them is to ensure that switching from the LO table to
theHI table is possible, i.e. does not lead to unfeasible sched-
ules when a HI criticality task exceeds its LO behaviour. We
propose two approaches, named LPMC-HI and LPMC-Both,
based on the use of linear programs to build these tables. We
are currently implementing them in order to evaluate their
success ratio in scheduling of job sets whose utilizations are
uniformly distributed, as in [9]. In future work, we plan to in-
tegrate additional constraints in the generation of TT schedule,
such as energy consumption as presented in [16].

References
[1] D. Chabrol, D. Roux, V. David, M. Jan, M. A. Hmid,

P. Oudin, and G. Zeppa (2013), Time- and angle-
triggered real-time kernel for powertrain applications,
in Proc. of the Design, Automation & Test in Europe
Conf. (DATE), (Grenoble, France), pp. 1060–1063.

[2] M. Jan, V. David, J. Lalande, and M. Pitel (2010), Us-
age of the safety-oriented real-time OASIS approach
to build deterministic protection relays, in Proc. of the
5th Intl. Symp. on Industrial Embedded Systems (SIES
2010), (Trento, Italy), pp. 128–135.

[3] H. Kopetz 1998, The time-triggered model of computa-
tion,’ in Proc. of the Real-Time Systems Symp. (RTSS),
(Madrid, Spain), pp. 168–177.

[4] S. Baruah and G. Fohler (2011), Certification-cognizant
time-triggered scheduling of mixed-criticality systems,
in Proc. of the 32nd Real-Time Systems Symp. (RTSS),
(Vienna, Austria), pp. 3–12.

[5] M. Jan, L. Zaourar, and M. Pitel (2013), Maximiz-
ing the execution rate of low-criticality tasks in mixed
criticality systems,’ in Proc. of the 1st Intl. Workshop
on Mixed Criticality Systems (WMC), (Vancouver,
Canada), pp. 43–48.

[6] S. Vestal (2007), Preemptive scheduling of multi-
criticality systems with varying degrees of execution
time assurance, in Proc. of the 28th Real-Time Systems
Symp. (RTSS), (Tucson, USA), pp. 239–243.

[7] G. Fohler (1993), Changing operational modes in the
contex of pre run-time scheduling, vol. E76-D, no. 11,
pp. 1333–1340.

[8] S. Baruah, H. Li, and L. Stougie (2010), Towards the de-
sign of certifiable mixed-criticality systems, in Proc. of
the 16th Intl. Conf. on Real-Time and Embedded Tech-
nology and Applications Symp. (RTAS), (Stockholm,
Sweden), pp. 13–22.

[9] J. Theis, G. Fohler, and S. Baruah (2013), Schedule
table generation from time-triggered mixed criticality
systems, in Proc. of the 1st Intl. Workshop on Mixed Crit-
icality Systems (WMC), (Vancouver, Canada), pp. 79–
84.

[10] J. Theis and G. Fohler (2013), Mixed criticality schedul-
ing in time-triggered legacy systems, in Proc. of the 1st
Intl. Workshop on Mixed Criticality Systems (WMC),
(Vancouver, Canada), pp. 73–78.

[11] G. Fohler (1995), Joint scheduling of distributed com-
plex periodic and hard aperiodic tasks in statically
scheduled systems, in Proc. of the 16th Real-Time Sys-
tems Symp. (RTSS), (Pisa, Italy), pp. 152–161.

[12] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga
(2013), Time-triggered mixed-critical scheduler, in
Proc. of the 1st Intl. Workshop on Mixed Criticality
Systems, (Vancouver, Canada), pp. 67–72.

[13] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li,
A. Marchetti-Spaccamela, N. Megow, and L. Stougie
(2012), Scheduling real-time mixed-criticality jobs
IEEE Trans. Computers, vol. 61, no. 8, pp. 1140–1152.

[14] M. Lemerre, V. David, C. Aussaguès, and G. Vidal-
Naquet (2008), Equivalence between schedule repre-
sentations: Theory and applications in Proc. of the
Real-Time and Embedded Technology and Applications
Symp., (St. Louis, USA), pp. 237–247.

[15] R. McNaugthon (1959), Scheduling with deadlines and
loss functions, Management Science, vol. 6, pp. 1–12.

[16] V. Legout, M. Jan, and L. Pautet (2013), Mixed-
criticality multiprocessor real-time systems: Energy
consumption vs deadline misses, in Proc. 1st workshop
on Real-Time Mixed Criticality Systems, (Taiwan).

Ada User Jour na l Vo lume 35, Number 2, June 2014

138

Mixed Criticality over Switched Ethernet
Networks

Olivier Cros, Frédéric Fauberteau, Xiaoting Li
ECE Paris, 37, quai de Grenelle, 75015 Paris, France; email: {cros, fauberte, xiali}@ece.fr

Laurent George
University of Paris-Est, LIGM, Cité Descartes, Bâtiment Copernic - 5, bd Descartes, 77454 Champs sur Marne,
France; email: lgeorge@ieee.org

Abstract

In this paper, we focus on real-time switched Ether-
net networks with mixed-criticality constraints. We are
interested in (i) exploiting IEEE 1588 Precision Time
Protocol (PTP) to implement criticality propagation
techniques in such networks and (ii) analyzing delay of
criticality switching. This work presents how to inte-
grate criticality concepts for messages sent on Ethernet
networks using PTP protocol. Concerning the delay
of criticality switching, we consider FIFO and Fixed-
Priority scheduling policies.

Keywords: Real-Time, Ethernet, IEEE 1588, scheduling,
mixed criticality.

1 Introduction

In recent years, a new development of real-time scheduling
theory has been proposed with the introduction of Mixed-
Criticality (MC) systems, in which a real-time system can
be certified with various levels of assurance function of the
criticality levels it may run. In this paper, we show that MC
can also be a useful paradigm in real-time systems for the
dimensioning of switched Ethernet networks where message
payload or message inter-arrival time can change according
to the criticality level of the system. This is of special interest
in intelligent transportation systems where different situations
can happen having different criticality levels. For examples, a
video surveillance system, installed on board a bus, will result
in longer frames been sent if a problem during transport is
detected, to send better image resolution. Another situation
could also happen where shorter message inter-arrival times
would be necessary to send more often a critical informa-
tion (for e.g. speeding, opened door, ...). The problem of
MCmanagement in network context lies on how to propagate
the information of criticality through the nodes. To solve
this problem, we propose to integrate criticality management
information into IEEE 1588 Precision Time Protocol (PTP)
clock synchronization protocol frames. We study the impact
of this integration in terms of delays and performance.

1.1 Related work
The concept of MC has been introduced by Vestal [1] in 2007
to tackle this problem. A system is said to be mixed-critical if
it has a number of functionalities with different criticalities. In
Vestal’s interpretation of MC, the correctness and timeliness
of tasks that are more critical must be guaranteed with a higher
degree of confidence than that of tasks that are less critical. To
achieve this varying level of confidence, the method used to
determine the worst case execution time (WCET) of a task can
vary according to the criticality level they are allowed to run
(we consider two criticality levels, LO and HI in this paper).
If the criticality level is HI, only highly critical tasks are
allowed to run. For tasks in HI mode, a very conservative tool
should be used to compute their pessimistic WCETs, to be
sure that no WCET overrun happens at run time. The reason
why higher WCETs are synonymous with higher confidence
is because the probability that during operation a program
will exceed its WCET is lower if the WCET is higher. This
important over-dimensioning is required for the certification
issues of Certification Authorities (CA), and is acceptable if
only limited to high critical tasks. When the system runs in
LO criticality mode, LO and HI tasks are allowed to run as
long as they do not execute for a duration higher than or equal
to their optimistic WCET defined in LO mode. For instance
a measurement based approach can be used to determine the
WCET of tasks in LO mode. This can lead at run time to
WCET overruns that must be handled by the system. A HI
task can run in both modes LO and HI, a LO task can only
execute in LO mode.

As shown in [2], the problem of MC scheduling is highly
intractable, even for level-two MC. Nevertheless, two tech-
niques for scheduling MC systems are proposed in [3]. Then,
the algorithm EDF-VD is introduced in [4] to address the
problem of MC with EDF scheduling for implicit deadlines.
This work has been extended in [5]. A response-time analysis
for MC systems has also been presented in [6]. EDF based
on virtual deadline has then been generalized by the Ekberg
and Yi’s method [7] for arbitrary deadlines.

Few work has been done in the context of networked systems.
In the context of CAN networks, the authors of [8] present
a MC protocol for CAN networks and provide a sufficient
response-time analysis and an optimal priority assignment. In

Volume 35, Number 2, June 2014 Ada User Jour na l

O. Cros, F. Fauber teau, L . George, X. L i 139

the context of FlexRay networks, a framework for automatic
schedule synthesis has been proposed [9]. The respect of
the timing requirements has been formulated as an Integer
Linear Programming. In the context of public transport, an
architecture to provide interoperability in the communication
systems of a bus has been proposed [10]. In order to adapt MC
systems in such an architecture, an adapted model has been
presented to take into account the non-preemptive network
flows. In the context of the Wireless Multimedia Sensor
Networks, a MC scheduling scheme has been proposed to
improve the transmission of image data stream over a WiFi
network [11].

The manufacturers are more and more interested in the MC
systems. For example, several companies as STMicroelec-
tronics, Thales or TTTech has joined the DREAMS European
project [12]. The objective of this project is to develop a cross-
domain architecture and design tools for networked complex
systems where application subsystems of different criticality,
executing on networked multi-core chips, are supported.

We use the trajectory approach to compute end-to-end delays
in a switched Ethernet network [13]. Although this approach
has been shown optimistic in some corner cases [14], a recent
work [15] provide a review of the identified problems and
propose corrections.

1.2 Addressed points

We organize the paper as follows: we introduce MC in
switched Ethernet networks by considering two main points.
The first one considers the concrete integration of MC
on a switched Ethernet network. We revisit PTP time-
synchronization protocol to answer our first question: How
to manage MC over a switched-Ethernet network?

The second point studies the time needed to switch from
one criticality level to another in a switched Ethernet net-
work. We consider the delay taken by a network to transmit
the criticality-level information and the criticality switch-
ing request to all of its nodes (starting from a given master
node). This allows us to answer to the second question: What
is the maximum time needed to change the criticality in
switched-Ethernet network?

2 Mixed criticality in a switched Ethernet
network

The point that is important to focus on in a network context is
the transmission delay of the information. Indeed, in classical
mono or multiprocessor, we can easily make the hypothesis
that transmitting a criticality information from one processor
to another is null in terms of delay. In a network context,
transmitting an information implies a latency, due to physical
link transmission time. In this paper, we consider two criti-
cality modes denoted LO and HI. The principles presented in
this paper can be extended to more than two criticality levels.
For the sake of simplicity, we only consider two criticality
levels.

2.1 Network model
We consider a network denoted N as a set of nodes consisting
of e End Systems (ES) and s Switches (S). The whole network
can be denoted N = ({ES1, . . . , ESe}, {S1, . . . , Ss}). We
represent in Figure 1 a example consisting of 6 ES connected
to 3 switches.

We consider the case of a statically defined Ethernet network
with a set of flows following a dedicated path of switches. We
consider a configuration similar to an AFDX network. We
will consider a more general network as a further work.

The inputs and outputs of the network are source nodes
(i.e. the ES). These ES are interconnected by a full duplex
switched Ethernet. Links between switches are full-duplex,
which guarantees no collisions on links. We consider a homo-
geneous single network.

Each source node sends a set of flows through an output
port with a buffer supporting First In First Out (FIFO) or
Fixed-Priority (FP) scheduling. A node can be connected to
only one port of a switch and each port of a switch can be
connected to at most one node. Each switch uses a store and
forward policy. In each Virtual-LAN (VLAN), there is one
buffer per output port which supports FIFO or FP scheduling
and receives frames from input ports and forwards them to
the corresponding output ports based on a static routing table.

There is a switching latency (technological latency) to deal
with the frame forwarding between an input port and an output
port of a given switch and it is upper bounded by a known
value sl.

An example of architecture that we consider is de-
picted in Figure 1. It includes six End Systems
ES1, ES2, ES3, ES4, ES5 andES6 interconnected by three
switches S1, S2 and S3 via full-duplex links andES6 is a sink
node.

Figure 1: Network architecture

A switch is supposed to be able to take into account HI
flow characteristics (Worst Case Transmission Time and inter-
arrival time). A static table associated to the HI flows sent by
a switch is stored in each switch. The criticality of a switch
can evolve (i) as a function of flow characteristics it receives
or (ii) when receiving specific PTP messages, modified to
support criticality propagation. The characterization of a PTP
frame is given in more details in Section 3.

In our work, we consider two kinds of switches following
the IEEE 1588 PTP protocol: (i) one master criticality-
management switch denoted SM and (ii) slave switches.
We denote Sk a switch of index k. The master criticality-
management switch SM is the last visited switch (switch S2

in figure 1). It is in charge of propagating criticality changes
to all ES and to all slave switches. This is done:

Ada User Jour na l Vo lume 35, Number 2, June 2014

140 Mixed Cr i t ica l i ty over Swi tched Ether net Networks

• from LO mode toHI: if at least on SM , one HI flow has
characteristics changing from LO to HI mode (WCTT
and inter-arrival time),

• from HI mode to LO: if all HI flows on SM have
characteristics changing from HI to LO mode.

2.2 Flow model
In order to understand mixed-criticality management in
switched Ethernet networks, we need to define a set of nota-
tions that will be used in the paper to describe a flow.

We consider a set of network flows that we denote τ =
{τ1, . . . , τn} a set of n network flows. The set τLO (respec-
tively τHI) denotes LO (respectively HI) flows in τ .

A flow τi ∈ τHI is characterized by: (i) a set of Worst-Case
Transmission Times (WCTT) denoted {CLOi , CHIi } and (ii)
a set of associated minimum inter-arrival times (or period)
denoted {TLOi , THIi } respectively in LO and HI criticality.

From this definition, no constraint is set on the values of
WCTT and inter-arrival times of HI flows in LO and HI
modes except that a switch should be able to detect HI flow
evolutions, i.e. we suppose that either CLOi 6= CHIi OR
TLOi 6= THIi .

A flow τi ∈ τLO is only defined by (CLOi , TLOi).

The path of a frame of a flow τi from a switch Sx to a switch
Sy is denoted Pixy. The path between a switch Sk and the
master switch SM is denoted PikM .

Changing the criticality level in the network is therefore based
on WCTT and/or worst case inter-arrival time flow observa-
tions.

If any switch in the network detects that a HI frame τi has a
configuration that changed from LO to HI values, the switch
changes its criticality level to HI. When a switch detects such
a change, it removes all pending frames belonging to τLO

(but keeps already received frames in τHI sent in LO mode).
All following switches in the path of τi will change their
criticality with the same principle (including the last node SM
in the path of τi). Due to non-preemptive transmissions, the
switch can have started the transmission of one message in
τLO when a criticality switch to HI mode occurs. This result
in a delay of transmission that must be taken into account in
the analysis of the worst case end-to-end response time of
flows in τHI in section 4. All other switches not in the path
of τi will be informed of a criticality change to HI mode when
receiving a specific PTP message sent by the master SM node.

Hence, on a given node, we consider that changing the current
criticality level from LO to HI is done in two situations:

• either a node (ES or switch) receives a frame τi ∈ τHI
having characteristics that changed from (CLOi , TLOi)
to (CHIi , THIi),

• or a node receives a PTP frame from the master node
that results in a criticality level change to HI mode.

The change from HI to LO mode in nodes (ES and switches)
is done when receiving a specific message from the master
switch to change the criticality to LO mode (in a PTP frame).

3 Integrating criticality management into
PTP

3.1 Clock synchronization
Now, we want to propose the integration of criticality man-
agement into the Precision Time Protocol (PTP) frames. To
do this, we first need to understand what PTP is and how it
works.

IEEE 1588 PTP is a clock synchronization protocol for
switched-Ethernet networks. The IEEE 1588 clock syn-
chronization protocol used by manufacturers like CISCO or
MOXA is implemented by the PTP daemon. We recall that
we assume a dedicated VLAN for PTP frames.

Clock synchronization through PTP is implemented on a
master-slave principle. A master clock node SM in the net-
work is node used to synchronize all other nodes, called slaves,
with it. Indeed, with time evolving, master and slave clocks
tends to desynchronize themselves. The clock synchroniza-
tion operates with the exchange of frames between the master
and its slaves.

First, the master sends a first synchronization message, con-
taining a timestamp. As we are in a dedicated vlan and full
duplex links, there’s no collision or delay generated by other
flows (for communications from the master to the slaves).
Once a slave gets this first synchronization messages, it an-
swers to the master with a timestamp set with its local clock.
Once the master gets this answer, it computes the correction
delay for the clock of the slave. Then, the master sends a third
message to the slave, containing this correction delay. Getting
this delay, the slave can update its local clock accordingly.

Considering this, the delay of flows sent from ES to SM in
the network should take into account the delay induced by
PTP frames sent by all End Systems.

We suppose that PTP synchronization frames are managed in
a dedicated VLAN having the highest priority. The maximum
delay induced by the PTP synchronization protocol on the
worst case end-to-end response time of any flow (LO or HI)
in the network for any flow path is denoted DSync.

3.2 Integrating mixed-criticality in PTP
There are two different solutions to integrate mixed-criticality
management into PTP. The first one is to build dedicated
frames in PTP protocol. They are in charge of sending the
request of changing criticality to a given node. This solution
implies to schedule messages of clock synchronization and
mixed-criticality management in the PTP protocol. So, it
implies a greater overhead in our network.

The second solution, which is the one we decided to choose,
is to modify the clock synchronization frames in order to
include criticality management in it. Then, the first PTP frame
contains criticality information: if the criticality received by a
node (slave switch or end system) changes, then the criticality
is set to the new criticality mode (either LO or HI).

This criticality management through PTP implies greater
length, so a greater WCTT in PTP frames. The PTP syn-
chronization frames have a specific header common to all

Volume 35, Number 2, June 2014 Ada User Jour na l

O. Cros, F. Fauber teau, L . George, X. L i 141

Figure 2: PTP frame format

frames (follow_up, delay_req and delay_resp). This PTP
frame is organized as follows in Figure 2)

The informations about current time needed to synchronize
clocks is stored in the PTP body. In order to add mixed-
criticality to PTP, we need to modify the structure of the PTP
frame. We propose to add 1 bytes to encode the value of the
criticality level (0 for LO and 1 for HI modes in our case).
This one byte information leaves open the possibility to take
into account more than two criticality levels.

To reduce the impact of flow set τ on the precision of syn-
chronization of clocks with PTP, we assume that a dedicated
VLAN with the highest priority (IEEE 802.1p) is used for
PTP messages.

We now consider the time needed to switch-criticality. This
delay depends on time needed for the master switch to be
informed of a criticality change (depending on the scheduling
policy of the network) and on the PTP propagation mechanism
from the master switch to all nodes.

4 Switch-criticality Delay Analysis
The goal of the switch-criticality delay analysis is to find
the maximum delay induced by a change of criticality level.
More precisely, we identify the maximum delay from the time
when a high-criticality frame enters the network running in
low-criticality till the time when the whole network is aware
of high-criticality. This maximum delay includes two parts.
The first one is the maximum delay of a high-criticality frame
which is generated at a slave node and transmitted to the mas-
ter node SM . The second part is the delay of frames sent by
the master node SM to inform the slave nodes of the high-
criticality change. In order to achieve the first part of delay,
we examine delay upper bounds of all the flows transmitted
towards SM by first adapting the trajectory approach intro-
duced in [16] for FIFO scheduling policy to the context of
mixed-criticality and then by extending the approach to Fixed
Priority (FP) scheduling policy. For the purpose of simplicity,
in this paper we do not take into account the serialization
effect.

The trajectory approach considers the worst-case scenario
encountered by a frame of a flow τi along its path Pi. A
frame of flow τi (τi ∈ τHI) can be delayed by:

• the frames of flows in τHI which cross the path of flow
τi,

• one frame of flows in τLO at each visited switch due to
non-preemptive, and

• the frames of synchronization sent by slave nodes to the
master node.

The delay upper bound of τi in the context of FIFO is denoted
DFIFO(τi) and can be split in four different parts:

• DHI(τi), the delay induced by all waiting high-
criticality frames,

• DLO(τi), the delay induced by a low-criticality frame
due to non-preemptive at each visited switch,

• DLat(τi), the switching latency of each visited switch
as well as a transition cost from one node to the next one
(more details can be found in [17]),

• DSync, the delay introduced by the synchronization
frames. In this paper, this delay is considered as a con-
stant delay.

We define τ(Sk) as the set of flows which go through the
switch Sk. For a frame of flow τi generated at time t, we
compute each part mentioned above by:

DHI(t) =
∑

τj∈τHI

Pi∩Pj 6=∅

(
1 +

⌊
t+Ai,j
THIj

⌋)
×max

(
CHIj , CLOj

)
(1)

where t+Ai,j corresponds to a time interval in which frames
from flow τj are likely to delay the studied frame of τi (see
[17] for more details).

DLO =
∑
Sk∈Pi

(
max

τj∈τLO∩τ(Sk)

(
CLOj

))
(2)

DLat =
∑
Sk∈Pi

(
max

τj∈τHI∩τ(Sk)

(
max

(
CHIj , CLOj

)))
+ (|Pi| − 1)× sl (3)

Hence, the delay upper bound of a high-criticality frame of
flow τi is computed by the following equation:

DFIFO(τi) = max
t≥0

(DHI(t) +DLO +DLat +DSync − t)
(4)

Since the master node SM is aware of the change of criticality
level after it has received a high-criticality frame, it sends
multi-cast frames to all the slave nodes in order to inform
the change of criticality level. These frames are the only
traffic transmitted in the direction from master node SM to
slave nodes, then the maximum delay is generated by the
longest path between a slave node and the master node. We
define the length of the longest path as |Pmax|, the worst
transmission time of each frame sent by the master node as
CInf as well as the corresponding maximum delay as DInf

which is computed by:

DInf = |Pmax| × (CInf + sl) (5)

Ada User Jour na l Vo lume 35, Number 2, June 2014

142 Mixed Cr i t ica l i ty over Swi tched Ether net Networks

Therefore, in the context of FIFO, the maximum delay in-
duced by the change of criticality level is obtained by:

DFIFO = max
τi∈τHI

DFIFO(τi) +DInf (6)

In order to extend this approach to FP scheduling policy, we
consider an assumption that all the flows in τHI have higher
priorities than the flows in τLO. In this case, the delay of a
frame of τi induced by other frames includes (i) the delay due
to the higher-priority flows which are also in the flow set τHI ,
(ii) the delay due to non-preemptive caused by lower-priority
flows in the flow set τHI and all the flows in the flow set τLO.

Therefore, for a flow τi, all the other flows can be classified
into two sets: higher-priority flows and lower-priority flows
no matter which criticality level the network is running. This
model corresponds the flow model in [18]. Hence, the delay
upper bound of a frame of flow τi, denoted DFP (τi), can
be calculated by the trajectory approach presented in [18]
integrating the constant delay DSync. The maximum delay
DInf of frames sent by the master node SM dose not change
since they are the only traffic in the direction master to slave.

Then in the context of mixed-criticality with FP scheduling
policy, the maximum delay introduced by a change of criti-
cality level is denoted DFP and computed by:

DFP = max
τi∈τHI

DFP (τi) +DInf (7)

5 Conclusion
To conclude, we show that mixed-criticality management
can be integrated to an existing protocol like PTP, just by
modifying its PTP frames. This way, we can combine criti-
cality switching and clock synchronization within switched-
Ethernet networks. A switch must also be aware of the criti-
cality of HI flows it sends in order to propose deterministic
networks with mixed-criticality infrastructures. We propose
a solution that does not require Vestal’s constraints on the
WCTT of frames. In future work, we intend to explore recent
schedulability analysis techniques for Earliest Deadline First
for mixed-criticality systems [19] in order to adapt them to
switched Ethernet networks.

References
[1] S. Vestal (2007), Preemptive scheduling of multi-

criticality systems with varying degrees of execution
time assurance, in Proceedings of the 28th IEEE Interna-
tional Real-Time Systems Symposium (RTSS), (Tucson,
Arizona, USA), pp. 239–243, IEEE Computer Society.

[2] S. K. Baruah, Mixed criticality scheduling is highly
intractable.

[3] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Li, Hao-
han Marchetti-Spaccamela, N. Megow, and L. Stougie
(2010), Scheduling real-time mixed-criticality jobs,
Mathematical Foundations of Computer Science,
vol. 6281, pp. 90–101.

[4] S. K. Baruah, V. Bonifaci, D. Gianlorenzo, A. Marchetti-
Spaccamela, S. Van Der Ster, and L. Stougie (2011),
Mixed-criticality scheduling of sporadic task systems in
Proceedings of the 19th Annual European Symposium
on Algorithms (ESA), (Saarbrücken, Germany), pp. 555–
566, Springer-Verlag.

[5] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li,
A. Marchetti-Spaccamela, S. Van Der Ster, and
L. Stougie (2012), The preemptive uniprocessor
scheduling of mixed-criticality implicit-deadline spo-
radic task systems, in Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS), (Pisa,
Italy), pp. 145–154, IEEE Computer Society Press.

[6] S. K. Baruah, A. Burns, and R. I. Davis (2011),
Response-time analysis for mixed criticality systems,
in Proceedings of the 32nd IEEE Real-Time Systems
Symposium (RTSS), (Vienna, Austria), pp. 34–43, IEEE
Computer Society.

[7] P. Ekberg and W. Yi (2012), Bounding and shaping the
demand of mixed-criticality sporadic tasks, in Proceed-
ings of the 24th Euromicro Conference on Real-Time
Systems (ECRTS), (Pisa, Italy), pp. 135–144, IEEE
Computer Society.

[8] R. I. Davis and A. Burns (2013), Mixed criticality
on controller area network, in Proceedings of the 25th
Euromicro Conference on Real-time Systems (ECRTS),
(Paris, France), pp. 125–134, IEEE Computer Society.

[9] D. Goswami, M. Lukasiewycz, R. Schneider, and
S. Chakraborty (2012), Time-triggered implementations
of mixed-criticality automotive software, in Proceedings
of the Conference on Design, Automation and Test in
Europe (DATE), (Dresden, Germany), pp. 1227–1232,
IEEE Computer Society.

[10] V. Sciandra, P. Courbin, and L. George (2012), Applica-
tion of mixed-criticality scheduling model to intelligent
transportation systems architectures, in ACM SIGBED
Review - Special Issue on the Work-in-Progress (WiP)
session of the 33rd IEEE Real-Time Systems Sympo-
sium (RTSS), vol. 10, (San Juan, Puerto Rico), p. 22,
ACM Press.

[11] A. Addisu, L. George, V. Sciandra, and M. Agueh
(2013), Mixed criticality scheduling applied to
jpeg2000 video streaming over wireless multimedia sen-
sor networks, in Proceedings of the 1st International
Workshop on Mixed Criticality Systems (WMCS), (Van-
couver, Canada), pp. 55–60.

[12] R. Obermaisser (2013), Distributed REal-time Archi-
tecture for Mixed criticality Systems (DREAMS), url:
http://www.uni-siegen.de/dreams/.

[13] S. Medlej, S. Martin, and J.-M. Cottin (2012), Identify-
ing source of pessimism in the trajectory approach with
fifo scheduling, in Proceedings of Embedded Real-Time
Software and Systems (ERTS2), (Toulouse, France).

Volume 35, Number 2, June 2014 Ada User Jour na l

O. Cros, F. Fauber teau, L . George, X. L i 143

[14] G. Kemayo, F. Ridouard, H. Bauer, and P. Richard
(2013), Optimistic problems in the trajectory approach
in fifo context, in Proceedings of the 18th IEEE Interna-
tional Conference on Emerging Technologies and Fac-
tory Automation (ETFA), (Cagliari, Italy), IEEE Com-
puter Society.

[15] X. Li, O. Cros, and L. George (2014), The trajectory
approach for afdx fifo networks revisited and corrected,
in Proceedings of the 20th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems
and Applications (RTCSA), (Chongqing, China), IEEE
Computer Society.

[16] S. Martin (2004), Maîtrise de la dimension temporelle
de la qualité de service dans les réseaux. PhD thesis,
Université Paris XII Val de Marne.

[17] S. Martin and P. Minet, “Schedulability analysis of flows
scheduled with fifo: application to the expedited for-
warding class,” in Proceedings of the 20th IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), (Rhodes Island, Greece), p. 8, IEEE Computer
Society, April 2006.

[18] S. Martin and P. Minet (2006), Worst case end-to-end
response times of flows scheduled with FP/FIFO, in
Proceeding of International Conference on Networking
(ICN), (Mauritius), pp. 54–60.

[19] P. Ekberg and W. Yi (2014), Bounding and shaping the
demand of generalized mixed-criticality sporadic task
systems, in Real-Time Systems, vol. 50, pp. 48–86.

Ada User Jour na l Vo lume 35, Number 2, June 2014

144

Mixed Criticality in Railway Systems:
A Case Study on Signalling Application

Albert Cohen, Dumitru Potop-Butucaru
INRIA, France; email: {albert.cohen, dumitru.potop_butucaru}@inria.fr

Valentin Perrelle, Zhen Zhang
Technological Research Institute SystemX; email: {valentin.perrelle, zhen.zang}@irt-systemx.fr

Elie Soubiran
Technological Research Institute SystemX, Alstom Transport; email: elie.soubiran@irt-systemx.fr,
elie.soubiran@transport.alstom.com

1 Introduction

Since the early 2000’s a growing number of new automated
metro projects makes use of a standardized railway signalling
system called Communication Based Train Control (CBTC)
(IEEE 1474) [1]. Previously to CBTC, conventional sig-
nalling train control systems were relying almost exclusively
on track circuits, wayside signals and operating procedures
to ensure train protection and operation. In order to ensure
better operational performance (e.g. effective utilization of
the transit infrastructure), CBTC systems rest on three pil-
lars: “Automatic train control (ATC) based on high-resolution
train location determination, independent of track circuits”;
“high-capacity and bidirectional train-to-wayside data com-
munications”; and “train-borne and wayside computing units
that execute vital functions”. Functions are classified within
three families that are: Automatic Train Protection (ATP),
Automatic Train Operation (ATO) and Automatic Train Su-
pervision (ATS). The level of criticality differs from a family
to another and without loss of generality, one can state that
ATP functions are mostly safety critical functions (SIL4 re-
garding CENELEC 50126), whereas ATO and ATS gather
functions of low criticality (from SIL0 to SIL2). As a matter
of fact, CBTC systems are in essence Mixed-critical systems.
Furthermore, the mainstream evolution of those systems tends
toward more functional integration on more powerful com-
puting units. ATP and ATO functions that were traditionally
distributed on different computing units (both on wayside and
train-borne) tends now to be deployed on the same computing
units and thus sharing resources.

FSF1 is an IRT SystemX project positioned on two topics,
the first one is about the conception of signalling applications
(typically ATO/ATP application) that contain both critical
and non-critical parts and the second one is on execution
platforms that execute those applications while offering high
guarantee of safety and availability. Industrial expectations
around the execution platform include the use of multi-core

1FSF is a French project name acronym standing for “safe and reliable
embedded systems”

COTS, the use of modern RTOS that offer spatial and tempo-
ral isolation, the use of safety and availability architectural
patterns (e.g. voting and redundancy), and the whole being
finally hidden behind a “system abstraction layer”. 2 On top
of this platform, a tooled framework is prototyped and allows
one to develop, verify and deploy component based appli-
cations where components may arbitrary contains both vital
(SIL4) and non-vital (SIL0) code. The project has started in
May 2013, the aim of this communication is to propose a first
return of experience and a positioning on how mixed critical
issues will be addressed in FSF.

Alstom Transport has defined an applicative case study that,
while being limited to one single ATC function, is repre-
sentative of the complexity in term of vital/non-vital code
interweaving, operational performance and availability con-
straints. The system function is called “Passenger Exchange”
(PE). This function takes control on the train when this one is
safely docked at a station; it organizes the exchange of passen-
gers (train and station doors opening/closing) while protecting
them from any untimely train movement or non-aligned doors
opening and finally gives the departure authorization when
all safety conditions are met. The functional specification
is made of more than 300 requirements (natural language +
SysML), and the functional structure is made of about twenty
sub functions.

PE is designed as a system component containing both vital
and non-vital parts. At this level a component is roughly a
packaging unit that exposes to the exterior world a set of ports
(in or out) and that is characterized by a set of behaviours that
depend on the operational environment. This component is
then broken down into a set of atomic software components
which are this time exclusively vital or non-vital. An impor-
tant remark is that there are no restrictive design constraints
on data dependency between the vital and non-vital atomic
components.

To illustrate this fact, let us consider a simplified example
from the case study, depicted in Fig. 1. The vital components,

2The execution platform is not yet prototyped and will not be described
in this communication.

Volume 35, Number 2, June 2014 Ada User Jour na l

A. Cohen, V. Pere l le, D. Potop-Butucaru, E. Soubi ran and Z. Zhang 145

Doors
command

Departure
authorization

Aligned &
enabled

doors

Doors
State

Train kinematic
state

Vital
Doors
cmd

P
ro

ce
ss

 in
p

u
ts

P
ro

ce
ss

 o
u

tp
u

ts

Enabled
doors

cmd

Dep
auth

Train &
doors
states

Figure 1: Simplified view of the component breakdown in PE.

in red, are in charge of controlling operations. This can be
summarized by computing which doors are safe to open (e.g.
because they are not aligned) and by preventing train depar-
ture if safety conditions are not met (e.g. the doors are open
or opening). The non-vital components are in charge of oper-
ating doors with respect to a mission protocol and a time table.
In this example we can identify two occurrences of vital to
non-vital communications. First, in order to ensure that doors
commands (non-vital) do not lead to an accident, they must
be checked against the enabled set of doors (vital). This is the
role of the “Process output” atomic component. Second, the
departure authorization (vital) must be computed regarding
door commands to ensure that no opening commands will be
executed after the authorization has been given.

This is a simplified example. Such communication patterns
are quite common in the complete case study.

2 Synchronous approaches
2.1 Synchronous languages
Data-flow synchronous languages, such as LUSTRE [2] or
SIGNAL [3] have been designed in the 80’s for program real-
time safety critical embedded systems. Since then, they have
been widely used in industrial applications [4]. These lan-
guages emphasize a correct-by-construction approach, ensur-
ing bounded memory and execution time. Moreover, they are
praised for their predictable behaviour and formally defined
semantics.

Recently, in 2012, the problem of scheduling multi-rate,
mixed-critical synchronous programs have been addressed, at
first for uni-processor [5] then for multi-processors [6]. Out-
side the scope of mixed-criticality there were also several at-
tempts to distribute synchronous data-flow languages [7, 8, 9].
Still in 2012, work have been done to develop these languages
to target multi-core platforms through the programming of
parallelism [10]. This work introduces futures in LUSTRE-
like languages giving the guarantee that the sequential seman-
tics is preserved.

2.2 Automatic allocation, partitioning, and
scheduling

Due to their use in the avionics industry, synchronous lan-
guages have been considered early on as an input formal-
ism for the automatic or semi-automatic synthesis of real-
time implementations. Most significant in this direction are

previous results by Sorel et al. [11] on the AAA/SynDEx
methodology and tool for distributed, but not time-triggered,
real-time implementation of multi-periodic synchronous spec-
ifications, previous work by Caspi et al. on the use of LUS-
TRE/SCADE in the real-time implementation of Simulink over
multi-processor platforms based on the time-triggered parti-
tioned bus TTA [12], and previous work by Forget et al. [13]
on the specification and implementation of multi-periodic
applications over a time-triggered platform using the Prelude
language.

But none of these approaches allow us to take into account
all the characteristics of our case study in order to allow auto-
matic mapping. In particular, none of them has support for
ensuring the time and space separation between application
parts with different criticalities.

This is why we considered in this project a new tool, named
LOPHT [14, 15], which allows the automatic mapping of
applications onto platforms following the ARINC 653 time
and space partitioning mechanisms. The LOPHT tool takes
as input deterministic functional specifications provided by
means of synchronous data-flow models with multiple modes
and multiple relative periods. (Cf. the LOPHT part of Fig. 2)
These specifications are extended to include a real-time char-
acterization defining task periods, release dates, and deadlines.
Task deadlines can be longer than the period to allow a faithful
representation of complex end-to-end flow requirements. The
specifications are also extended with allocation constraints
and partitioning information meant to represent the criticality
of the various tasks, as well as information on the preempt-
ability of the various tasks. Starting from such specifications,
the LOPHT tool performs a fully automatic allocation and
off-line scheduling onto partitioned time-triggered architec-
tures. Allocation of time slots/windows to partitions can be
fully or partially provided, or synthesized by LOPHT. The
mapping algorithms of LOPHT take into account the commu-
nication costs. The off-line mapping algorithms of LOPHT
use advanced mapping techniques such as software pipelining
and pre-computed preemption to improve schedulability and
minimize the number of context switches.

3 Case study
The PE case study has been implemented and a first demon-
strator has been produced. The challenge for this first demon-
strator was to propose a framework for on the one hand the
design and implementation of components and on the other
hand the design of signalling application its partitioning and
scheduling.

Choice of software modelling language. We chose to use
the language HEPTAGON, very similar to LUSTRE and featur-
ing novel constructions and novel optimizations. Two criteria
have influenced the choice of the language. First, the func-
tional specification defined at system level and allocated to
software components have been written in a reactive and
mostly equational way. It was thus very natural to implement
it in a synchronous data-flow language. Second, the normative
referential (CENELEC 50128) recommends the use of formal
methods for the development of vital software while making

Ada User Jour na l Vo lume 35, Number 2, June 2014

146 Mixed Cr i t ica l i ty in Rai lway Systems

no restrictive assumption on the language used for the non
vital part. Synchronous languages are a good trade-off since
they enable the use of formal methods (for instance model
checking or abstract interpretation) while providing a suffi-
cient power of expression to implement non-vital components.
Finally, having a single language to develop both vital and
non-vital components allows not only the early simulation of
functional behaviour without integration effort but also the
rationalization of competence in the software development
team.

Figure 2: The global flow of the use case.

Technical realization. We developed the Passenger Ex-
change sub-components following a five step process depicted
in Fig. 2:

1. In a SysML environment, we produced a component
design that realizes the Passenger Exchange function.
System requirements are traced and refined to define
atomic components that correspond to software compo-
nents and that are either vital or non-vital.

2. We mapped every atomic component to a HEPTAGON
node realizing its functional behaviour.

3. Depending on the SIL of the component, verification
activities have been conducted, but these are outside the
scope of this communication.

4. We built a small signalling application composing mul-
tiple components into a realistic full-system scenario.
These components include the PE itself, train/station
interfaces, and a simulation of other system functions
(such as train driving and passenger behavior). In HEP-
TAGON, the application is an assembly of nodes. At this
stage, a first executable code is produced to simulate the
application behaviour, however no insurance is given on
spatial isolation.

5. In LOPHT, the atomic components are allocated to three
partitions, which are “P0: vital”, “P1: non-vital” and
“P2: environment”. Meanwhile the execution durations
are given. Five windows are created. The scheduling
result, presented in the Fig. 3, is consistent with the block
diagram presented in Fig. 1. Using LOPHT, ARINC 653
dependent code is generated and linked to the component
code generated by HEPTAGON. The resulting application
is executed on POK OS [16].

 command

P2 / Dur8 P0 / Dur7 P1 / Dur4 P0 / Dur4 P2 / Dur18

Doors state

Train kinematic state
......

Vital doors cmd
......

− Train and platform

− Simulation

−

− Proc. inputs

− Doors aligned

−

−

− Dep authorization

−

− Display

−

Non−vital cmd
......

Enabled doors
.....

Dep auth

MTF = 40

− Proc. ouputs

 & enabled

− Non−vital door

Figure 3: The partitional scheduling result of LOPHT.

4 Conclusion
We presented the work conducted in the FSF project to handle
mixed criticality. We used a synchronous design framework
to implement a simplified signalling application and to deploy
it on a partitioned OS.

We are continuously working towards a better integration of
the tools composing the framework.

In the passenger exchange use case, mixed criticality resides
at the application level, or even at function level, rather than
the system level. On the other hand, the approach proposed
in IMA and ARINC meets the needs of a system integrator.
The main constraint highlighted by this case study is that
there may be, even within a single system function, many
communications between its vital and non-vital subcompo-
nents. When generalized to the whole set of system functions,
this pattern induces a large number of communications be-
tween the vital and non-vital parts. Furthermore, if we want
to preserve the synchronous semantics (e.g. no additional
delay) the number of windows may explode. The overall cost
of communications and context-switch become prohibitive
for systems global performance. Executing mixed-critical
signalling applications on the same platform remains a chal-
lenging problem considering the state of the art in real-time
operating systems.

Finally, the vital/non-vital dichotomy traditionally used in
signalling application proved to be insufficient with respect
to the operational availability of the system. It would be more
appropriate to consider at least three levels, safety-critical,
mission-critical, and non-critical, and to exploit this informa-
tion in the partitioning and scheduling.

Acknowledgment
This research work has been carried out under the leadership
of the Technological Research Institute SystemX, with partial
support from the French Program “Investissements d’Avenir”.

Volume 35, Number 2, June 2014 Ada User Jour na l

A. Cohen, V. Pere l le, D. Potop-Butucaru, E. Soubi ran and Z. Zhang 147

References
[1] UITP, “World Atlas Report,” UITP - Obser-

vatory of Automated Metros, Survey, 2013.
[Online]. Available: http://metroautomation.org/wp-
content/uploads/2013/09/Annual-World-Report-
2013.pdf

[2] P. Caspi, D. Pilaud, N. Halbwachs, and J. A.
Plaice (1987), Lustre: A declarative language for
real-time programming, in Proceedings of the 14th
ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, ser. POPL ’87. New York,
NY, USA: ACM, pp. 178–188. [Online]. Available:
http://doi.acm.org/10.1145/41625.41641

[3] A. Benveniste, P. Le Guernic, and C. Jacquemot
(1991), Synchronous programming with events and
relations: The signal language and its semantics,
Sci. Comput. Program., vol. 16, no. 2, pp. 103–149.
[Online]. Available: http://dx.doi.org/10.1016/0167-
6423(91)90001-E

[4] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs,
P. L. Guernic, Robert, and D. Simone (2003), The syn-
chronous languages 12 years later, in Proceedings of
The IEEE, pp. 64–83.

[5] S. Baruah (2012), Semantics-preserving implementation
of multirate mixed-criticality synchronous programs, in
Proceedings of the 20th International Conference on
Real-Time and Network Systems, ser. RTNS ’12. New
York, NY, USA: ACM, pp. 11–19. [Online]. Available:
http://doi.acm.org/10.1145/2392987.2392989

[6] E. Yip, M. M. Y. Kuo, P. S. Roop, and D. Broman (2014),
Relaxing the synchronous approach for mixed-criticality
systems, in Proceedings of the Work in Progress Session
of the 20th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’14 WiP). IEEE,
2014.

[7] P. Aubry and P. Le Guernic (1996), On the desyn-
chronization of synchronous applications, in 11th In-
ternational Conference on Systems Engineering, ICSE,
vol. 96. Citeseer.

[8] P. Caspi, A. Curic, A. Maignan, C. Sofronis,
S. Tripakis, and P. Niebert (2003), From simulink to
scade/lustre to tta: A layered approach for distributed
embedded applications, in Proceedings of the 2003

ACM SIGPLAN Conference on Language, Compiler,
and Tool for Embedded Systems, ser. LCTES ’03.
New York, NY, USA: ACM, pp. 153–162. [Online].
Available: http://doi.acm.org/10.1145/780732.780754

[9] G. Delaval, A. Girault, and M. Pouzet (2008), A type
system for the automatic distribution of higher-order
synchronous dataflow programs, in SIGPLAN Not.,
vol. 43, no. 7, pp. 101–110. [Online]. Available:
http://doi.acm.org/10.1145/1379023.1375672

[10] A. Cohen, L. Gérard, and M. Pouzet (2012),
Programming parallelism with futures in lustre , in
Proceedings of the Tenth ACM International Conference
on Embedded Software, ser. EMSOFT ’12. New York,
NY, USA: ACM, pp. 197–206. [Online]. Available:
http://doi.acm.org/10.1145/2380356.2380394

[11] M. Marouf, L. George, and Y. Sorel (2012), Schedu-
lability analysis for a combination of non-preemptive
strict periodic tasks and preemptive sporadic tasks, in
Proceedings ETFA’12, Kraków, Poland.

[12] P. Caspi, A. Curic, A. Magnan, C. Sofronis, S. Tripakis,
and P. Niebert (2003), From Simulink to SCADE/Lustre
to TTA: a layered approach for distributed embedded
applications, in Proceedings LCTES, San Diego, CA,
USA.

[13] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and
D. Lesens (2011),Multi-task implementation of multi-
periodic synchronous programs, in Discrete Event Dy-
namic Systems, vol. 21, no. 3, pp. 307–338.

[14] T. Carle, D. Potop-Butucaru, Y. Sorel, and D. Lesens
(2012), “From dataflow specification to multiprocessor
partitioned time-triggered real-time implementation,”
INRIA, Rapport de recherche RR-8109, Oct. 2012.
[Online]. Available: http://hal.inria.fr/hal-00742908

[15] T. Carle and D. Potop-Butucaru (2014), Predicate-
aware, makespan-preserving software pipelining of
scheduling tables, in ACM Trans. Archit. Code Optim.,
vol. 11, no. 1, pp. 12:1–12:26.

[16] J. Delange, L. Pautet, and P. Feiler (2009), Validating
safety and security requirements for partitioned archi-
tectures, in Proceedings of the 14th Ada-Europe Inter-
national Conference on Reliable Software Technologies,
ser. Ada-Europe ’09. Berlin, Heidelberg: Springer-
Verlag, pp. 30–43.

Ada User Jour na l Vo lume 35, Number 2, June 2014

148

Volume 35, Number 2, June 2014 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Press Release: Ada 2012 Language Standard Published in Springer's LNCS and as Free eBook
	Feature Model Extraction from Documented UML Use Case Diagrams
	Proceedings Workshop on Mixed Criticality for Industrial Systems
	PROXIMA: A Probabilistic Approach to the Timing Behaviour of Mixed-Criticality Systems
	Toolset for Mixed-Criticality Partitioned Systems: Partitioning Algorithm and Extensibility Support
	RTFM-lang Static Semantics for Systems with Mixed Criticality
	Handling Criticality Mode Change in Time-Triggered Systems through Linear Programming
	Mixed Criticality over Switched Ethernet Networks
	Mixed Criticality in Railway Systems: A Case Study on Signalling Application
	National Ada Organizations

