
     

Ada User Journal Volume 35, Number 3, September 2014 

ADA 
USER 
JOURNAL 

Volume 35 

Number 3 

September 2014 

 

Contents 
Page 

Editorial Policy for Ada User Journal 150 

Editorial 151 

Quarterly News Digest 152 

Conference Calendar 172 

Forthcoming Events 178  

Articles from the Industrial Track of Ada-Europe 2014 

 A. Rodríguez  
“Critical Software for the First European Rail Traffic Management System” 186 

Articles from the Experience Report Track of Ada-Europe 2014 

 J. S. Andersen  
 “Privacy Leaks in Java Classes” 191 

Articles 

 A. M. Pedro 
“Implementation of Task Types in AVR-Ada” 194 

SPARK 2014 Rationale: Data Dependencies and Information Flow 

 P. Efstathopoulos 204 

Ada-Europe Associate Members (National Ada Organizations) 208 

Ada-Europe Sponsors  Inside Back Cover 



150  

Volume 35, Number 3, September 2014 Ada User Journal 

Editorial Policy for Ada User Journal 
Publication 

Ada User Journal — The Journal for 
the international Ada Community — is 
published by Ada-Europe. It appears 
four times a year, on the last days of 
March, June, September and 
December. Copy date is the last day of 
the month of publication. 

Aims 

Ada User Journal aims to inform 
readers of developments in the Ada 
programming language and its use, 
general Ada-related software engine-
ering issues and Ada-related activities. 
The language of the journal is English. 

Although the title of the Journal refers 
to the Ada language, related topics, 
such as reliable software technologies, 
are welcome. More information on the 
scope of the Journal is available on its 
website at www.ada-europe.org/auj.  

The Journal publishes the following 
types of material: 

 Refereed original articles on 
technical matters concerning Ada 
and related topics. 

 Invited papers on Ada and the Ada 
standardization process.  

 Proceedings of workshops and 
panels on topics relevant to the 
Journal.  

 Reprints of articles published 
elsewhere that deserve a wider 
audience. 

 News and miscellany of interest to 
the Ada community. 

 Commentaries on matters relating 
to Ada and software engineering. 

 Announcements and reports of 
conferences and workshops. 

 Announcements regarding 
standards concerning Ada. 

 Reviews of publications in the 
field of software engineering. 

Further details on our approach to 
these are given below. More complete 
information is available in the website 
at www.ada-europe.org/auj. 

Original Papers 

Manuscripts should be submitted in 
accordance with the submission 
guidelines (below). 

All original technical contributions are 
submitted to refereeing by at least two 
people. Names of referees will be kept 
confidential, but their comments will 
be relayed to the authors at the 
discretion of the Editor. 

The first named author will receive a 
complimentary copy of the issue of the 
Journal in which their paper appears. 

By submitting a manuscript, authors 
grant Ada-Europe an unlimited license 
to publish (and, if appropriate, 
republish) it, if and when the article is 
accepted for publication. We do not 
require that authors assign copyright to 
the Journal. 

Unless the authors state explicitly 
otherwise, submission of an article is 
taken to imply that it represents 
original, unpublished work, not under 
consideration for publication else-
where. 

Proceedings and Special Issues  

The Ada User Journal is open to 
consider the publication of proceedings 
of workshops or panels related to the 
Journal's aims and scope, as well as 
Special Issues on relevant topics. 

Interested proponents are invited to 
contact the Editor-in-Chief. 

News and Product Announcements 

Ada User Journal is one of the ways in 
which people find out what is going on 
in the Ada community. Our readers 
need not surf the web or news groups 
to find out what is going on in the Ada 
world and in the neighbouring and/or 
competing communities. We will 
reprint or report on items that may be 
of interest to them. 

Reprinted Articles 

While original material is our first 
priority, we are willing to reprint (with 
the permission of the copyright holder) 
material previously submitted 
elsewhere if it is appropriate to give it 

a wider audience. This includes papers 
published in North America that are 
not easily available in Europe. 

We have a reciprocal approach in 
granting permission for other 
publications to reprint papers originally 
published in Ada User Journal. 

Commentaries 

We publish commentaries on Ada and 
software engineering topics. These 
may represent the views either of 
individuals or of organisations. Such 
articles can be of any length – 
inclusion is at the discretion of the 
Editor. 

Opinions expressed within the Ada 
User Journal do not necessarily 
represent the views of the Editor, Ada-
Europe or its directors. 

Announcements and Reports 

We are happy to publicise and report 
on events that may be of interest to our 
readers. 

Reviews 

Inclusion of any review in the Journal 
is at the discretion of the Editor. A 
reviewer will be selected by the Editor 
to review any book or other publication 
sent to us. We are also prepared to 
print reviews submitted from 
elsewhere at the discretion of the 
Editor. 

Submission Guidelines 

All material for publication should be 
sent electronically. Authors are invited 
to contact the Editor-in-Chief by 
electronic mail to determine the best 
format for submission. The language of 
the journal is English. 

Our refereeing process aims to be 
rapid. Currently, accepted papers 
submitted electronically are typically 
published 3-6 months after submission. 
Items of topical interest will normally 
appear in the next edition. There is no 
limitation on the length of papers, 
though a paper longer than 10,000 
words would be regarded as 
exceptional.



 151 

Ada User Journal Volume 35, Number 3, September 2014 

Editorial 
This September issue of the Ada User Journal continues the publication of contributions which originate from the Ada-
Europe 2014 conference. First, the reader will find a paper from the industrial track of the conference, authored by Ana 
Rodríguez from Silver Atena, Spain, and that discusses the development of critical software in the scope of the first European 
rail traffic management system. Afterwards, Jacob Sparre Andersen, from JSA Research & Innovation, Denmark, presents an 
experience report on when Java leaks privacy through the getter methods.  

The third technical contribution in this issue is a paper, by André Pedro, from the CISTER Research Centre, Portugal, that 
presents an ongoing work on supporting Ada Task types in the AVR-Ada compiler for 8-bit AVR platforms. The technical 
content of the issue finalizes with the continuation of the SPARK 2014 Rationale series. In this paper, Pavlos Efstathopoulos, 
of Altran, UK, presents two contributions on the topics of data dependencies and information flow.   

The reader will also find in this issue the usual News Digest, Calendar and Forthcoming Events sections, provided by the 
respective editors. In particular, the forthcoming events section provides information about the program of the upcoming 
SIGAda High Integrity Language Technology Conference, which will take place next October in Portland, Oregon, and call 
for contributions for ARCS 2015, the GI/ITG International Conference on Architecture of Computing Systems, which will 
take place in Porto, Portugal, March 2015; for IRTAW 2015, the International Real-Time Ada Workshop – a very welcomed 
return – which will be held in Vermont, USA, April 2015; and our flagship conference, Ada-Europe 2015, which will be 
hosted by the Universidad Politécnica de Madrid, Spain.  
 
 
 

  Luís Miguel Pinho 
Porto 

September 2014 
 Email: AUJ_Editor@Ada-Europe.org 
 
 



152   

Volume 35, Number 3, September 2014 Ada User Journal 

Quarterly News Digest 
Jacob Sparre Andersen 
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk 
 

Contents 
 
Ada-related Events 152 
Ada-related Resources 153 
Ada-related Tools 153 
Ada and Operating Systems 160 
References to Publications 161 
Ada Inside 162 
Ada in Context 164  

Ada-related Events 
 

[To give an idea about the many Ada-
related events organised by local groups, 
some information is included here. If you 
are organising such an event feel free to 
inform us as soon as possible. If you 
attended one please consider writing a 
small report for the Ada User Journal.  
—sparre] 

Ada-Belgium Spring Event 

From: Dirk Craeynest 
<dirk@cs.kuleuven.be> 

Date: Tue, 3 Jun 2014 22:34:58 +0000 
Subject: Ada-Belgium Spring 2014 Event, 

Sun 15 June 2014 
Newsgroups: comp.lang.ada, 

fr.comp.lang.ada, be.comp.programming 

--------------------------------------------------- 

      Ada-Belgium Spring 2014 Event 

  Sunday, June 15, 2014, 12:00-19:00 

Wavre area, south of Brussels, Belgium 

                 including at 15:00 

2014 Ada-Belgium General Assembly 

                     and at 16:00 

        Ada Round-Table Discussion 

     <http://www.cs.kuleuven.be/~dirk/ 
         ada-belgium/events/local.html> 

--------------------------------------------------- 

Announcement 

The next Ada-Belgium event will take 
place on Sunday, June 15, 2014 in the 
Wavre area, south of Brussels. 

For the 7th year in a row, Ada-Belgium 
decided to organize their "Spring Event", 
which starts at noon, runs until 7pm, and 
includes an informal lunch, a key signing 
party, the 21st General Assembly of the 
organization, and a round-table discussion 
on Ada-related topics the participants 
would like to bring up. Afterwards, those 

interested can once more get practical 
hands-on experience on packaging Ada 
software for Debian with Ludovic Brenta, 
principal maintainer of Ada in Debian. 

Schedule 

- 12:00 welcome and getting started 
(please be there!) 

- 12:15 informal lunch 

- 14:45 key signing party 

- 15:00 Ada-Belgium General Assembly 

- 16:00 Ada round-table + informal 
discussions 

- 19:00 end 

Participation 

Everyone interested (members and non-
members alike) is welcome at any or all 
parts of this event. 

For practical reasons registration is 
required. If you would like to attend, 
please send an email before Wednesday, 
June 11, 21:00, to Dirk Craeynest 
<Dirk.Craeynest@cs.kuleuven.be> with 
the subject "Ada-Belgium Spring 2014 
Event", so you can get precise directions 
to the place of the meeting. Even if you 
already responded to the preliminary 
announcement, please reconfirm your 
participation ASAP. 

If you are interested to become a new 
member, please register by filling out the 
2014 membership application form[1] and 
by paying the appropriate fee before the 
General Assembly. After payment you 
will receive a receipt from our treasurer 
and you are considered a member of the 
organization for the year 2014 with all 
member benefits[2]. Early renewal 
ensures you receive the full Ada-Belgium 
membership benefits (including the Ada-
Europe indirect membership benefits 
package). 

As mentioned at earlier occasions, we 
have a limited stock of documentation 
sets and Ada related CD-ROMs that were 
distributed at previous events, as well as 
back issues of the Ada User Journal[3]. 
These will be available on a first-come 
first-serve basis at the General Assembly 
for current and new members. (Please 
indicate in the above-mentioned 
registration e-mail that you're interested, 
so we can bring enough copies.) 

[1] http://www.cs.kuleuven.be/ 
~dirk/ada-belgium/forms/ 
member-form14.html 

[2] http://www.cs.kuleuven.be/~dirk/ 
ada-belgium/member-benefit.html 

[3] http://www.ada-europe.org/auj/home/ 

Informal lunch 

The organization will provide food and 
beverage to all Ada-Belgium members. 
Non-members who want to participate at 
the lunch are also welcome: they can 
choose to join the organization or pay the 
sum of 15 Euros per person to the 
Treasurer of the organization. 

General Assembly 

All Ada-Belgium members have a vote at 
the General Assembly, can add items to 
the agenda, and can be a candidate for a 
position on the Board[4]. See the separate 
official convocation[5] for all details. 

[4] http://www.cs.kuleuven.be/~dirk/ 
ada-belgium/board/ 

[5] http://www.cs.kuleuven.be/ 
~dirk/ada-belgium/events/14/ 
140615-abga-conv.html 

Key Signing Party 

Wouldn't it be nice if a majority of people 
used GPG to sign their email every day so 
that you could send all non-signed email 
into the spam bin? To make that dream 
come true, please join and expand the 
global Web of Trust[6]! 

What you should bring with you: 

- an official ID card issued by your 
national government; 

- your GPG key fingerprint (i.e. the output 
of gpg --fingerprint) on small paper slips; 
a dozen copies or so should be enough. 

What you will go home with: 

- signatures from all other participants; 

- automatic inclusion in the global Web of 
Trust; 

- the ability to digitally sign or encrypt 
anything you like. 

[6] http://en.wikipedia.org/wiki/ 
Web_of_Trust 

Ada Round-Table Discussion 

As last year, we plan to keep the technical 
part of the Spring event informal as well. 
We will have a round-table discussion on 
Ada-related topics the participants would 
like to bring up. We invite everyone to 
briefly mention how they are using Ada in 
their work or non-work environment, 
and/or what kind of Ada-related activities 
they would like to embark on. We hope 
this might spark some concrete ideas for 
new activities and collaborations. 



Ada-related Tools 153  

Ada User Journal Volume 35, Number 3, September 2014 

Afterwards, those interested can get 
practical information and hands-on 
experience on "Packaging Ada Software 
for Debian"[7][8]. 

[7] http://www.debian.org/ 

[8] http://people.debian.org/~lbrenta/ 
debian-ada-policy.html 

Directions 

To permit this more interactive and social 
format, the event takes place at private 
premises in the Wavre area, south of 
Brussels. As instructed above, please 
inform us by e-mail if you would like to 
attend, and we'll provide you precise 
directions to the place of the meeting. 
Obviously, the number of participants we 
can accommodate is not unlimited, so 
don't delay... 

Looking forward to meet many of you! 

Dirk Craeynest, President Ada-Belgium 

Dirk.Craeynest@cs.kuleuven.be 

--------------------------------------------------- 

                 Acknowledgements 

We would like to thank our sponsors for 
their continued support of our activities: 
AdaCore, Barco, Katholieke Universiteit 

Leuven (KU Leuven), and Université 
Libre de Bruxelles (U.L.B.). 

If you would also like to support  
Ada-Belgium, find out about the extra 

Ada-Belgium sponsorship benefits: 

http://www.cs.kuleuven.be/ 
~dirk/ada-belgium/ 

member-benefit.html#sponsor 

Ada-related Resources 

Pre-Ada Documents 

From: Pascal Obry <pascal@obry.net> 
Date: Fri, 23 May 2014 17:41:41 +0200 
Subject: Pre-Ada documents - Green 

Language 
Newsgroups: comp.lang.ada 

You may be interested by those PDF: 

http://pobry.blogspot.fr/2014/05/ 
pre-ada-documents.html 

From: Jeffrey R. Carter 
<jrcarter@acm.org> 

Date: Fri, 23 May 2014 16:51:47 -0700 
Subject: Re: Pre-Ada documents - Green 

Language 
Newsgroups: comp.lang.ada 

> [...] 

The Red RM is at 

http://www.iment.com/maida/computer/ 
redref/index.htm 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Fri, 23 May 2014 16:52:16 -0500 
Subject: Re: Pre-Ada documents - Green 

Language 
Newsgroups: comp.lang.ada 

> [...] I'd be very interested in Red and/or 
Blue if you happen to come across 
them. 

You have some aversion to Yellow? :-) 

(There were four original proposals. And 
I think they all were published in some 
ACM publication (SIGPlan Notices??) - I 
remember reading them back when I was 
still a student. There's only a detailed 
proposal for Red and Green, of course, 
Yellow and Blue were chopped early. 

From: Robert A Duff 
<bobduff@shell01.TheWorld.com> 

Date: Tue, 27 May 2014 16:06:02 -0400 
Subject: Re: Pre-Ada documents - Green 

Language 
Newsgroups: comp.lang.ada 

> [...] from what I heard [...] it was 
basically just Pascal with a few 
alterations/additions. 

All four were supposedly based on Pascal. 
I believe Yellow was closely based on 
Pascal, but still, more than "basically just 
Pascal with...", and the others were much 
more loosely based on Pascal. 

Ada (even Ada 83) is of course hugely 
different from Pascal. 

From: Luke A. Guest 
<laguest@archeia.com> 

Date: Tue, 27 May 2014 16:15:49 +0000 
Subject: Re: Pre-Ada documents - Green 

Language 
Newsgroups: comp.lang.ada 

I would like to see the blue one 
specifically as I hear it was particularly 
weird. 

Repositories of Open Source 
Software 

From: Jacob Sparre Andersen 
<jacob@jacob-sparre.dk> 

Date: Thu Jul 31 2014 
Subject: Repositories of Open Source 

software 

AdaForge: 8 repositories [1] 

Bitbucket: 109 repositories [2] 

                  16 developers   [2] 

Codelabs: 20+ repositories [3] 

GitHub: 581 repositories [4] 

              126 developers   [5] 

Rosetta Code: 604 examples   [6] 

                        28 developers [7] 

Sourceforge: 239 repositories [8] 

[1] http://forge.ada-ru.org/adaforge 

[2] http://edb.jacob-sparre.dk/ 
Ada/on_bitbucket 

[3] http://git.codelabs.ch/ 

[4] https://github.com/search?q=language 
%3AAda&type=Repositories 

[5] https://github.com/search?q=language 
%3AAda&type=Users 

[6] http://rosettacode.org/wiki/ 
Category:Ada 

[7] http://rosettacode.org/wiki/ 
Category:Ada_User 

[8] http://sourceforge.net/directory/ 
language%3Aada/ 

[See also “Repositories of Open Source 
Software”, AUJ 35-2, p. 74. —sparre] 

Ada-related Tools 

GWindows Setup 

From: Gautier de Montmollin 
<gautier.de.montmollin@gmail.com> 

Date: Wed, 9 Apr 2014 05:16:49 -0700 
Subject: Ann: GWindows Setup 5-Apr-2014 
Newsgroups: comp.lang.ada 

An update of the GWindows framework 
is packaged in a standalone installer.  

---> GWindows Setup 5-Apr-2014.exe 

It can be downloaded at 
http://sf.net/projects/gnavi/  

NB: the GNATCOM framework is 
included as well. 

Major changes in the framework since the 
last announce here - numbers below refer 
to svn repository revisions: 

228: Added GWindows.Menus. 
Immediate_Popup_Menu 

225: Added GWindows.Taskbar and 
Test_Taskbar 

216: Added GWindows.System_Tray and 
Test_System_Tray 

213: Added GWindows.Locales and 
Test_Locales 

206: GWindows.Common_Controls: 
added Item_At_Position method for 
Tree_View_Control_Type 

205: Beginning of a new tutorial #24 
about Drag & Drop 

[See also “GWindows Setup”, AUJ 34-1, 
p. 8. —sparre] 

AdaControl 

From: Jean-Pierre Rosen 
<rosen@adalog.fr> 

Date: Thu, 10 Apr 2014 17:11:45 +0200 
Subject: [Ann] AdaControl 1.16r10 released 
Newsgroups: comp.lang.ada 

Adalog is pleased to announce a new 
release of AdaControl, featuring 4 brand 
new rules and plenty of new subrules and 
improvements, for a whopping total of 
513 possible checks! 

As always, the latest version is available 
from 

http://www.adalog.fr/adacontrol2.htm  
or from Sourceforge. 

AdaControl is free software, and can be 
used and modified without restrictions. 



154  Ada-related Tools 

Volume 35, Number 3, September 2014 Ada User Journal 

Adalog provides commercial support for 
AdaControl, as well as consultancy in 
using the tool for special purposes and 
developing coding standards. 

From: Jean-Pierre Rosen 
<rosen@adalog.fr> 

Date: Thu, 05 Jun 2014 17:32:08 +0200 
Subject: Adacontrol 1.16r11 released 
Newsgroups: comp.lang.ada 

This release fixes a bug, cleans up minor 
things, but the main change is that the 
executable versions are now provided for 
GNAT-GPL-2014. 

From: Jean-Pierre Rosen 
<rosen@adalog.fr> 

Date: Mon, 16 Jun 2014 12:04:43 +0200 
Subject: Adacontrol: change of BT system 
Newsgroups: comp.lang.ada 

AdaControl now uses the normal "Ticket" 
system of SourceForge for improvement 
suggestions, bug reports, etc. Simply go 
to the Adalog page 
(http://sourceforge.net/projects/ 
adacontrol) and click on "Ticket". 

Submitting tickets does not require 
SourceForge identification, although our 
supported users are invited to use their 
AdaControl/SourceForge account for 
priority treatment of their requests. 

The old system (MantisBT) is being 
discontinued. 

[See also “AdaControl”, AUJ 34-3, p. 
140. —sparre] 

PragmAda Reusable 
Components 

From: PragmAda Software Engineering 
<pragmada@ 
pragmada.x10hosting.com> 

Date: Sat, 12 Apr 2014 10:14:02 -0700 
Subject: ANN: Beta PragmARCs for 

ISO/IEC 8652:2007 
Newsgroups: comp.lang.ada 

A new version of the beta release of the 
PragmAda Reusable Components for 
ISO/IEC 8652:2007 is available at 

http://pragmada.x10hosting.com/ 
pragmarc.htm 

This version includes an implementation 
of the Threefry random-number 
generator, an Unbounded_Integers 
package, and a Rational_Numbers 
package. 

Threefry is a fully CRUSH compliant 
random-number generator, and is claimed 
to be the fastest such generator. Threefry 
is an encryption-based generator, derived 
from the Threefish encryption scheme. 
This implementation assumes the 
existence of Interfaces.Unsigned_64. 

Unbounded_Integers implements integers 
bounded only by available memory. Many 
similar packages implement bounded 
integers, such as the package that is part 
of the Ada Crypto library. 

This implementation uses a standard 
container to avoid explicit access types 
and memory management. 

Rational_Numbers uses 
Unbounded_Integers to implement 
unbounded rational values. 

Error reports, comments, and suggestions 
are always welcome. 

[See also “PragmAda Reusable 
Components”, AUJ 34-2, p. 66. —sparre] 

GNAT Runtimes for 
Microprocessors 

From: Brian Drummond 
<brian@shapes.demon.co.uk> 

Date: Mon, 26 May 2014 08:26:20 GMT 
Subject: Re: Where to get Zero Footprint 

Profile? 
Newsgroups: comp.lang.ada 

> [...] 

There is a slightly more developed 
version for the AVR microprocessors, 
which appears to support a secondary 
stack [1]. 

I found it relatively easy to adapt for the 
TI MSP430 processors [2]. 

You may get some idea of what's 
involved by comparing these two, and 
adapting as required for your target 
processor. If so, please put your work out 
there so that someday, we may draw 
together all these disparate efforts into 
something more coherent... 

Another unrelated effort targeting ARM 
processors [exists, with the intent 
eventually to support the Ravenscar 
profile [3]. 

[1] http://sourceforge.net/projects/avr-ada/ 

[2] http://sourceforge.net/projects/ 
msp430ada/ 

[3] http://sourceforge.net/projects/ 
arm-ada/ 

Tables 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Mon, 2 Jun 2014 19:36:07 +0200 
Subject: Tables for Ada v1.12 
Newsgroups: comp.lang.ada 

The library provides tables searched using 
string keys. The binary search is used for 
names of known length. It is also possible 
to search a table for names of unknown 
length, i.e. to parse a string using the 
table. In this case the search time is near 
to logarithmic, but in the worst case can 
be linear (when the table contains tokens 
like "a", "aa", "aaa" and so on). 

   http://www.dmitry-kazakov.de/ 
ada/tables.htm 

The new version is compiled with GNAT 
4.9. 

Ada-Fuse 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Tue, 3 Jun 2014 12:00:08 +0200 
Subject: Ada-Fuse, status of 
Newsgroups: comp.lang.ada 

This one: 

https://github.com/RanaExMachina/ 
ada-fuse 

It looks quite interesting. What is the 
status of. Is it maintained? 

From: Stefan Lucks  
<stefan.lucks@uni-weimar.de> 

Date: Fri, 13 Jun 2014 12:31:23 +0200 
Subject: Re: Ada-Fuse, status of 
Newsgroups: comp.lang.ada 

> [...] 

It has been written by students of mine, 
who currently are not interested in 
maintaining it. 

Strings_Edit 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Wed, 4 Jun 2014 22:09:55 +0200 
Subject: ANN: Strings edit for Ada v 2.9 
Newsgroups: comp.lang.ada 

The package Strings_Edit provides I/O 
facilities. The following I/O items are 
supported by the package: 

- Generic axis scales support; 
- Integer numbers (generic, package 

Integer_Edit); 
- Integer sub- and superscript numbers; 
- Floating-point numbers (generic, 

package Float_Edit); 
- Roman numbers (the type Roman); 
- Strings; 
- Ada-style quoted strings; 
- UTF-8 encoded strings; 
- Unicode maps and sets; 
- Wildcard pattern matching.  
http://www.dmitry-kazakov.de/ada/ 
strings_edit.htm 

Changes to the version 2.8: 

- Added wildcard matching with character 
mapping equivalence; 

- The package Strings_Edit.UTF8. 
Wildcards.Case_Insensitive provides 
case-insensitive wildcard matching; 

- Compiled with GNAT 4.9. 

[See also “Strings_Edit library”, AUJ 33-
2, p. 77. —sparre] 

Simple Components 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Thu, 5 Jun 2014 18:39:50 +0200 
Subject: ANN: Simple components v 4.0 

released 
Newsgroups: comp.lang.ada 



Ada-related Tools 155  

Ada User Journal Volume 35, Number 3, September 2014 

The library provides implementations of 
smart pointers, directed graphs, sets, 
maps, B-trees, stacks, tables, string 
editing, unbounded arrays, expression 
analyzers, lock-free data structures, 
synchronization primitives (events, race 
condition free pulse events, arrays of 
events, reentrant mutexes, deadlock-free 
arrays of mutexes), pseudo-random non-
repeating numbers, symmetric encoding 
and decoding, IEEE 754 representations 
support, multiple connections server 
designing tools.  

http://www.dmitry-kazakov.de/ada/ 
components.htm 

Changes to the version 3.22: 

-  ODBC bindings bug causing a 
connection left opened despite object 
finalization was fixed; 

- Generic_Blackboard supports GCC 
platforms with no Pragma Atomic 
available for 64-bit integers; 

- SQLite3 bindings are switched to the 
amalgamation version 3080200; 

- Column_Type and Is_Valid functions 
added to the package SQLite; 

- HTTP SQLite3 database browser added; 

- Blocking file access support added; 

- Persistent memory pools added; 

- B-tree implementation added. 

[See also “Simple components”, AUJ 34-
2, p. 66. —sparre] 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sat, 26 Jul 2014 10:39:30 +0200 
Subject: ANN: Simple components for Ada 

v4.1 
Newsgroups: comp.lang.ada 

The current version provides 
implementations of smart pointers, 
directed graphs, sets, maps, B-trees, 
stacks, tables, string editing, unbounded 
arrays, expression analyzers, lock-free 
data structures, synchronization primitives 
(events, race condition free pulse events, 
arrays of events, reentrant mutexes, 
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers, 
symmetric encoding and decoding, IEEE 
754 representations support, multiple 
connections server designing tools. It 
grew out of needs and does not pretend to 
be universal.  

Tables management and strings editing 
are described in separate documents see 
Tables and Strings edit. The library is 
kept conform to the Ada 95, Ada 2005, 
Ada 2012 language standards. 

http://www.dmitry-kazakov.de/ada/ 
components.htm 

The release fixes some minor bugs. 

GtkAda Contributions 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sat, 7 Jun 2014 18:18:08 +0200 
Subject: ANN: GtkAda contributions v3.8 
Newsgroups: comp.lang.ada 

The library provides various additions to 
GtkAda bindings to GTK+. 

   http://www.dmitry-kazakov.de/ada/ 
gtkada_contributions.htm 

Changes to the version 2.14: 

- The library was adapted to the GtkAda 
3.x. Earlier versions are no more 
supported; 

- Only Ada 2005 and Ada 2012 are 
supported when GtkAda 3.x is used; 

- Null address exclusion is added where 
appropriate (since Ada 95 is no more 
supported); 

- Add_Class_Style, 
Add_Widget_Class_Style, 
Add_Widget_Name_Style removed 
from Gtk.Missed. The resource files are 
replaced with GTK+ style provider; 

- Set_Has_Tooltip is removed from 
Gtk.Missed. It is now provided by 
Gtk.Widget; 

- Has_Tooltip is removed from 
Gtk.Missed. It is now provided by 
Gtk.Widget as Get_Has_Tooltip; 

- The signature of Set_Tip from 
Gtk.Missed is changed. The first 
parameter is removed; 

- Get_Size is removed from Gtk.Missed. 
It is now provided by Gtk.Window; 

- Delete_Event_Handler and 
Destroy_Handler added to Gtk.Missed 
to ease designing GtkAda applications 
consisting of a single procedure; 

- Init of Gtk.Main.Router has additional 
parameter, the application window. The 
change is necessary because GTK+ 3.x 
does not offer hooks on main loop exit 
as GTK+ 2.x did; 

- Gtk.Object.Checked_Destroy is 
renamed to 
GLib.Object.Checked_Destroy; 

- Gtk.Generic_Style_Button handling 
tooltips is changed to the new interface; 

- Class_Find_Style_Property removed 
from Gtk.Widget.Styles. See 
Gtk.Widget.Find_Style_Property; 

- Get_Property for GFloat removed from 
Gtk.Missed as it now provided by the 
package GLib.Properties; 

- Class_Install_Property added to 
Gtk.Missed; 

- From_RGBA and To_RGBA added to 
Gtk.Missed; 

- Procedure Check and function 
To_String were added to Gtk.Missed; 

- Get_Screen_Position procedure added to 
Gtk.Missed; 

- Generic package 
Set_Column_Cell_Data added to 
Gtk.Missed (sets cell data function of a 
tree model column); 

- Set_Object removed from 
GLib.Values.Handling. This procedure 
is now provided in GLib.Values; 

- The package 
Gtk.Widget.Styles.CSS_Store added to 
enumerate and export widget style 
properties in the CSS format; 

- The package 
Gtk.Tooltips.Strong_References was 
removed; 

- The package 
Gtk.Cell_Renderer.Abstract_Renderer 
was adapted to new interface of cell 
renderer introduced by GTK+ 3.x; 

- The package 
Gtk.Tree_Model.Abstract_Store was 
adapted to new interface of cell renderer 
introduced by GTK+ 3.x; 

- Procedures Forward_Search and 
Backward_Search were removed from 
the package Gtk.Source_Buffer. This 
functionality is now provided by 
Gtk_Text_Iter; 

- Package Gtk.Source_Mark_Attributes 
added (new in GtkSourceView 3.x); 

- The procedures Get_Mark_Category_*, 
Set_Mark_Category_* were removed 
from the package Gtk.Source_View. 
This functionality is provided by 
Gtk.Source_Mark_Attributes in 
GtkSourceView 3.x; 

- Procedures Get_For_Screen, Get_Limit, 
Set_Limit were removed from 
Gtk.Recent_Manager_Alt, as they are no 
more present in GTK+ 3.x; 

- Package Gdk.Pixbuf.Image was added 
to provide memory-mapped images 
which pixels can be manipulated directly 
in the memory; 

- Get_Style_Fallback added to the 
package Gtk.Source_Language. 

[See also “GtkAda Contributions”, AUJ 
33-3, p. 145. —sparre] 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sun, 27 Jul 2014 09:41:49 +0200 
Subject: ANN: GtkAda contributions v3.9 

released 
Newsgroups: comp.lang.ada 

The library is a contribution to GtkAda, 
an Ada bindings to GTK+ toolkit. It deals 
with the following issues: tasking support; 
custom models for tree view widget; 
custom cell renderers for tree view 
widget; multi-columned derived model; 
an extension derived model (to add 
columns to an existing model); an abstract 
caching model for directory-like data; tree 
view and list view widgets for 
navigational browsing of abstract caching 



156  Ada-related Tools 

Volume 35, Number 3, September 2014 Ada User Journal 

models; file system navigation widgets 
with wildcard filtering; resource styles; 
capturing the resources of a widget; 
embeddable images; some missing sub-
programs and bugfixes; a measurement 
unit selection widget and dialogs; an 
improved hue-luminance-saturation color 
model; simplified image buttons and 
buttons customizable by style properties; 
controlled Ada types for GTK+ strong 
and weak references; and a simplified 
means to create lists of strings. 

http://www.dmitry-kazakov.de/ada/ 
gtkada_contributions.htm 

Changes to the previous version: 

- Minor bug fixes; 

- Fedora packages rely on the official 
GtkAda3 packages (released by Björn 
Persson). 

Units of Measurement 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Mon, 9 Jun 2014 17:16:59 +0200 
Subject: ANN: Units of measurement for 

Ada v 3.4 released 
Newsgroups: comp.lang.ada 

The library provides means to handle 
dimensioned values in Ada. It also 
includes GTK+ widgets and renderers for 
unit selection and rendering dimensioned 
values. 

http://www.dmitry-kazakov.de/ada/ 
units.htm 

Changes to the version 3.3: 

- The widgets and renderers are adapted 
for the GTK+ 3.x. GTK+ 2.x is no more 
supported; 

- Procedure Split is added to the package 
Units; 

- Only Ada 2005 and Ada 2012 are 
supported when widgets and renderers 
are used. The non-GUI parts of the 
software remain Ada 95 conform; 

- Bug fix in text conversion that led to 
false output of values with units like 
square meter; 

- Compiled with GNAT 4.9. 

[See also “Units of Measurement”, AUJ 
34-2, p. 68. —sparre] 

Wish-list 

From: Tero Koskinen 
<tero.koskinen@iki.fi> 

Date: Tue, 10 Jun 2014 22:34:12 +0300 
Subject: Re: a new language, designed for 

safety ! 
Newsgroups: comp.lang.ada 

I would like to have following non-GPL, 
preferably 100% Ada, libraries without 
GNAT specific dependencies: 

- GUI library 

- JSON library (well, I have written my 
own, but it isn't perfect yet) 

- Tiny-YAML library [1] 

- HTTP client library with SSL (using 
curl bindings for now) 

- Plain socket library with poll/epoll 
support 

- Some sort of easy interface to execute 
programs on *nix/Windows and capture 
the input/output/stderr/exit code[2] 

- Server side web framework which does 
not require the latest GNAT to work 
(=works with older GNAT releases and 
other compilers also) 

- At least semi-decent runtime/peripheral 
library for ARM Cortex-Mx 
processors[3] 

- Interface to sqlite databases (using my 
own partial bindings atm.) 

- reStructuredText to HTML formatter 

- Antlr4 runtime 

For many things bindings to existing C 
libraries would be fine, but usually 
authors select different licenses for Ada 
bindings than what the original C library 
has. Like why on earth use plain GPL or 
even GMGPL for bindings if original C 
library is distributed under public domain, 
MIT, or BSD license?! 

Of course, authors can do that, but it still 
baffles me and causes some extra 
headache when I need to decipher can I 
combine the licenses and the code with 
my own code. 

[1] http://search.cpan.org/dist/YAML-
Tiny/lib/YAML/Tiny.pm 

[2] *nix part is easy, but I have no idea 
how to do that on Windows :) 

[3] Like libopencm3, 
http://libopencm3.org, or 
http://mbed.org 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Wed, 11 Jun 2014 10:45:44 +0200 
Subject: Re: a new language, designed for 

safety ! 
Newsgroups: comp.lang.ada 

> [...] 

> - GUI library 

There is not much choice, since the C 
GUI libraries aren't GM GPL either.  

[...] 

> - Plain socket library with poll/epoll 
support 

Adasockets? I didn't use it for a long time, 
however. The last time I looked at, it had 
a makefile, which was a non-starter to me. 
But I think it is possible to make a decent 
portable high-level socket library for 
Windows/Linux/VxWorks, if there were 
interest. 

> - Some sort of easy interface to execute 
programs on *nix/Windows and capture 
the input/output/stderr/exit code[2] 

I am using it from GTK+. It does all that 
under both Windows and Linux, even 
capturing output into a text buffer: 

http://www.dmitry-kazakov.de/ada/ 
gtkada_contributions.htm#10 

The drawback is that you need GTK+ and 
GtkAda. 

> - Server side web framework which 
does not require the latest GNAT to 
work (=works with older GNAT 
releases and other compilers also) 

I have a HTTP server implementation. It 
is based on GNAT.Sockets though, and 
does not have any tools (I needed none for 
embeddable/disk-less servers where I 
used it). 

http://www.dmitry-kazakov.de/ada/ 
components.htm#HTTP_implementation 

If there were interest I could add an 
adasockets back-end. Provided adasockets 
support socket select. 

Simon Wright probably has a HTTP 
server:  
http://embed-web-srvr.sourceforge.net 

> - At least semi-decent 
runtime/peripheral library for ARM 
Cortex-Mx processors[3] 

Oh, yes. As well as a cross compiler. It is 
a torture to use the native GNAT.  

> - Interface to sqlite databases (using my 
own partial bindings atm.) 

I have GM GPL SQLite (no C library 
needed) here 

http://www.dmitry-kazakov.de/ada/ 
components.htm#SQLite 

> - reStructuredText to HTML formatter 

I did HTML output manually. 

[...] 

From: Simon Clubley 
<clubley@eisner.decus.org> 

Date: Wed, 11 Jun 2014 12:09:23 +0000 
Subject: Re: a new language, designed for 

safety ! 
Newsgroups: comp.lang.ada 

> [...] 

The C GTK+ libraries are LGPL which is 
pretty much the same thing. 

[...] 

> Hmm, I thought GM GPL is a least 
offensive license possible. 

Not the least, but amongst the least. The 
point about bindings using a more 
restrictive license than the underlying 
library is well taken. The example which 
comes to mind is GTK+; the underlying C 
library uses the LGPL license. The ACT 
Ada bindings now use the GPL license. 

From: Björn Lundin 
<b.f.lundin@gmail.com> 

Date: Wed, 11 Jun 2014 05:11:23 -0700 
Subject: Re: a new language, designed for 

safety ! 
Newsgroups: comp.lang.ada 



Ada-related Tools 157  

Ada User Journal Volume 35, Number 3, September 2014 

> [...] Some sort of easy interface to 
execute programs on *nix/Windows 
and capture the input/output/stderr/exit 
code[2] 

> [...] 

> [2] *nix part is easy, but I have no idea 
how to do that on Windows :) 

In GNAT for Windows, there's a file 
“adaint.c” in which there are functions: 

   static int  win32_wait (int *status) 

   static void win32_no_block_spawn 
(char *command, char *args[], HANDLE 
*h, int *pid) 

which perhaps are helpful in spawning an 
getting exitcodes, if combined. 

Ada Conformity Assessment 
Test Suite 

From: Ada Conformity Assessment 
Authority 

Date: Thu Jun 12 2014 
Subject: Ada Conformity Assessment Test 

Suite (ACATS) 
URL: http://www.ada-auth.org/acats.html 

[...] 

ACATS 4.0 is currently under 
development. ACATS 4.0 development 
snapshots are provided to give the Ada 
community an early look at the tests 
intended for inclusion in ACATS 4.0. 
They are formatted like an ACATS 
Modification List as a list of changes to 
be made to the existing ACATS 3.1, and 
an associated set of test files. This 
includes withdrawn (deleted) tests, 
modified (corrected) tests, and new tests. 
[...] 

Interval Arithmetic 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Thu, 12 Jun 2014 22:08:32 +0200 
Subject: ANN: Interval arithmetic for Ada 

v1.11 released 
Newsgroups: comp.lang.ada 

The library provides implementation of 
interval floating-point and integer 
arithmetic. 

http://www.dmitry-kazakov.de/ada/ 
intervals.htm 

[See also “Interval arithmetic v1.10”, 
AUJ 33-1, p. 8. —sparre] 

Industrial Control Widget 
Library 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sat, 14 Jun 2014 11:23:40 +0200 
Subject: ANN: Ada industrial control widget 

library v3.8 released 
Newsgroups: comp.lang.ada 

The library is intended for designing high-
quality industrial control widgets for Ada 
applications. The widgets are composed 

of transparent layers drawn by cairo. The 
widgets are fully scalable graphics. A 
time controlled refresh policy is supported 
for real-time and heavy-duty applications. 
The library supports caching graphical 
operations and stream I/O for serialization 
and deserialization. Ready-to-use gauge 
and meter widgets are provided as 
samples as well as an editor widget for 
WYSIWYG design of complex 
dashboards. The software is based on 
GtkAda and cairoada, the Ada bindings to 
GTK+ and cairo. 

http://www.dmitry-kazakov.de/ada 
aicwl.htm 

Changes to the version 2.14: 

- The library was adapted to the GtkAda 
3.x. Earlier versions are no more 
supported; 

- Only Ada 2005 and Ada 2012 are 
supported when GtkAda 3.x is used; 

- This version was switched to the native 
GtkAda's cairo bindings; 

- The type Interfaces.C.Double was 
replaced by GDouble as this is the type 
used in GtkAda's cairo; 

- The second parameter of the procedure 
Refresh of the package Gtk.Layered was 
replaced with Cairo_Context; 

- Functions Get_Time_Axis_Annotation, 
Get_Values_Axis_Annotation, 
Get_Values_Text_Angle, 
Get_Values_Text_Color, 
Get_Values_Text_Face, 
Get_Values_Text_Height, 
Get_Values_Text_Stretch, 
Set_Values_Text_Font were added to 
the package Gtk.Oscilloscope; 

- Annotation text interface and labels 
changed to support markup; 

- Compiled with GNAT 4.9. 

[See also “Industrial Control Widget 
Library”, AUJ 33-3, p. 145. —sparre] 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Mon, 28 Jul 2014 18:47:42 +0200 
Subject: ANN: Ada industrial control widget 

library v3.9 released 
Newsgroups: comp.lang.ada 

aicwl is an Ada library that is intended for 
designing high-quality industrial control 
widgets for Ada applications. The widgets 
are composed of transparent layers drawn 
by cairo. The widgets are fully scalable 
graphics. A time controlled refresh policy 
is supported for real-time and heavy-duty 
applications. The library supports caching 
graphical operations and stream I/O for 
serialization and deserialization. Ready-
to-use gauge and meter widgets are 
provided as samples as well as an editor 
widget for WYSIWYG design of complex 
dashboards. The software is based on 
GtkAda and cairoada, the Ada bindings to 
GTK+ and cairo. 

http://www.dmitry-kazakov.de/ada/ 
aicwl.htm 

Changes to the previous version: 

- Oscilloscope behavior on selection can 
be altered using Set_Selection_Mode; 

- Minor bug fixes; 

- Fedora packages rely on the official 
GtkAda3 packages (released by Björn 
Persson). 

Fuzzy Sets 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Wed, 18 Jun 2014 17:54:44 +0200 
Subject: ANN: Fuzzy sets for Ada v5.7 

released 
Newsgroups: comp.lang.ada 

Fuzzy sets for Ada is a library providing 
implementations of confidence factors 
with the operations not, and, or, xor, +, 
and *, classical fuzzy sets with the set-
theoretic operations and the operations of 
the possibility theory, intuitionistic fuzzy 
sets with the operations on them, fuzzy 
logic based on the intuitionistic fuzzy sets 
and the possibility theory; fuzzy numbers, 
both integer and floating-point with 
conventional arithmetical operations, and 
linguistic variables and sets of linguistic 
variables with operations on them. String-
oriented I/O is supported. A rich set of 
GTK+ GUI widgets is provided. 

http://www.dmitry-kazakov.de/ada/ 
fuzzy.htm 

Changes to the previous version: 

- The widgets and renderers are adapted 
to the GTK 3.x. 

- Gtk_Fuzzy_Linguistic_Set_Domain has 
new style property: line-color; 

- Compiled with GNAT 4.9. 

[See also “Fuzzy Sets”, AUJ 33-2, p. 78. 
—sparre] 

Zip-Ada 

From: Gautier de Montmollin 
<gautier.de.montmollin@gmail.com> 

Date: Sat, 28 Jun 2014 11:51:46 -0700 
Subject: Ann: Zip-Ada v.47 
Newsgroups: comp.lang.ada 

A new version of Zip-Ada is available [1]. 

The only, but, big news is that the LZMA 
"method" is available for decompression. 

More details: [2] 

[1] http://unzip-ada.sf.net/ 

[2] http://gautiersblog.blogspot.ch/ 
2014/06/zip-ada-v47-with-lzma-
decompression.html 

[See also “Excel Writer, GNAVI, 
Mathpaqs and Zip-Ada”, AUJ 34-4, p. 
200. —sparre] 



158  Ada-related Tools 

Volume 35, Number 3, September 2014 Ada User Journal 

SparForte 

From: Ken Burtch <koburtch@gmail.com> 
Date: Fri, 4 Jul 2014 03:40:44 -0700 
Subject: ANN: SparForte 1.5 
Newsgroups: comp.lang.ada 

SparForte is my Ada-based shell / web 
template / scripting language. 

This is SparForte's 14th year. 

Release highlights: 

- full exceptions 

- teamwork features 

- linked lists and hash tables packages 

- web templates repaired and enhanced 

- preliminary OpenGL support 

SparForte can be downloaded from: 

http://www.sparforte.com 

A summary of the new version can be 
found here: 

http://www.pegasoft.ca/coder/ 
coder_june_2014.html 

The change log found here: 

http://www.sparforte.com/news/ 
2014/news_sf15.html 

If you enjoy SparForte, please email me 
and I will add your company and 
testimonial to the website. 

[See also “SparForte”, AUJ 34-4, p. 206. 
—sparre] 

GNAT GPL for Bare Board 
ARM 

From: AdaCore Press Center 
Date: Thu Jul 24 2014 
Subject: AdaCore Releases GNAT GPL for 

Bare Board ARM 
URL: http://www.adacore.com/press/ 

gnat-gpl-for-bare-board-arm/ 

Freely available toolsuite brings power of 
Ada language to global ARM ecosystem 

NEW YORK and PARIS, (July 24, 2014)  

AdaCore today released a freely 
downloadable version of its GNAT GPL 
Ada cross-development environment for 
Bare Board ARM Cortex processors. 
Students, professors and other developers 
of non-proprietary software can now 
exploit Ada 2012’s reliability, safety and 
security benefits for ARM applications. 

GNAT GPL for Bare Board ARM Cortex 
processors provides a complete Ada 2012 
development environment, including a 
comprehensive tool-chain and GPS, 
AdaCore’s flagship Integrated 
Development Environment (IDE).  

It also includes a fully 
configurable/customizable run-time 
library consisting of the “Small Footprint” 
(SFP) and Ravenscar profiles that are 
particularly relevant to safety-critical 
systems.  

The SFP profile corresponds to a 
language subset with minimal GNAT run-
time routines, and the Ravenscar profile is 
a subset of the Ada concurrency features 
with an efficient, predictable, small-
footprint implementation. The resulting 
Ada subset has expressive power well 
beyond that of other languages used for 
ARM-based devices. 

“There are now billions of ARM 
processors in embedded systems, which 
has created a global ecosystem with many 
developers looking to take advantage of 
Ada’s strengths,” said Dr. Pat Rogers, 
AdaCore Bare Board product manager. 
“By making an Ada cross-development 
environment freely available to the 
academic and hobbyist communities, we 
are responding to this demand and see 
great potential for significantly increasing 
the overall usage of the Ada language. 
With powerful ARM-based boards 
currently available for under $20, this 
new GNAT GPL release becomes a cost-
effective development environment for 
everyone.” 

The release of GNAT GPL for Bare 
Board ARM is part of AdaCore’s ongoing 
commitment to the Ada community. Fully 
featured releases of the GNAT technology 
are already available for GNU Linux, 
Mac OS X, and Windows.  

"Finally, the substantial software 
engineering benefits of the Ada 2012 
language are available for the huge ARM 
microcontroller family,” said Mike Silva, 
Software Engineer at the 
www.embeddedrelated.com community. 
“This is a ground-breaking achievement 
for the embedded programming world, 
offering the promise of higher quality 
embedded software delivered on shorter 
schedules." 

“For our students, this is almost a game-
changing new option, providing an 
academia-affordable, hands-on, high-
integrity and fully real-world 
hardware/software environment for every 
individual student,” said Dr. rer. nat. Uwe 
R. Zimmer, Fellow at the Australian 
National University. “Tools which enable 
the combination of high-integrity, real-
time systems with concrete, real-world 
hardware will open doors to dependable, 
physical systems for many more 
students.” 

Availability 

GNAT GPL for Bare Board ARM is 
available now from libre.adacore.com. 
The package includes a tutorial and 
example project showing how to use Ada 
and GPS for the “STM32F4 Discovery” 
(Cortex-M4) evaluation kit from 
STMicroelectronics. Additional Ada 
tutorials can be accessed via AdaCore 
University. 

 

Qt5Ada 

From: Leonid Dulman 
<leonid.dulman@gmail.com> 

Date: Sat, 26 Jul 2014 08:22:39 -0700 
Subject: Announce : Qt5Ada version 5.3.1 

(372 packages) and VTKAda version 
6.1.0 (656 packages) release 26/07/2014 
free edition 

Newsgroups: comp.lang.ada 

Qt5Ada is Ada-2012 port to Qt5 
framework (based on Qt 5.3.1 final 
Qt5ada version 5.3.1 open source and 
qt5c.dll (libqt5c.so) built with Microsoft 
Visual Studio 2012 in Windows and gcc 
x86-64 in Linux. 

Package tested with the GNAT-GPL-2012 
Ada compiler in Windows 32- and 64-bit 
and Linux x86-64 Debian 7.3. 

It supports GUI, SQL, multimedia, web, 
network, touch devices, sensors and many 
others things. 

Added Geo Navigation support (GPS & 
GLONASS), new packages and demos. 

Qt5Ada for Windows and Linux (Unix) is 
available from: 
http://users1.jabry.com/adastudio/ 
index.html 

My configuration script to build Qt 5.3 is: 
configure -opensource -release -nomake 
tests -opengl desktop -qt-zlib -qt-libpng -
qt-libjpeg -openssl-linked 
OPENSSL_LIBS="-lssleay32 -llibeay32" 
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.3"  

The full list of released classes is in "Qt5 
classes to Qt5Ada packages relation 
table.pdf". 

I hope Qt5Ada and VTKAda will be 
useful for students, engineers, scientists 
and enthusiasts. 

If you have any problems or questions, 
please let me know. 

[See also “Qt5Ada”, AUJ 35-1, p. 7. 
 —sparre] 

Ada Web Application 

From: Stephane Carrez 
<Stephane.Carrez@gmail.com> 

Date: Sun, 27 Jul 2014 12:06:07 -0700 
Subject: ANN: Ada Web Application 1.0.0 
Newsgroups: comp.lang.ada 

I don't post very often so I'll make a 
multi-announce of the following Ada 
libraries and components: 

- Ada Utility Library: Version 1.7.1 

  Download: http://download.vacs.fr/ 
ada-util/ada-util-1.7.1.tar.gz 

- Ada EL: Version 1.5.1 

  Download: http://download.vacs.fr/ 
ada-el/ada-el-1.5.1.tar.gz 

- Ada Security: Version 1.1.1 

  Download: http://download.vacs.fr/ 
ada-security/ada-security-1.1.1.tar.gz 



Ada-related Tools 159  

Ada User Journal Volume 35, Number 3, September 2014 

- Ada Server Faces: Version 1.0.1 

  Download: http://download.vacs.fr/ 
ada-asf/ada-asf-1.0.1.tar.gz 

- Ada Database Objects: Version 1.0.1 

  Download: http://download.vacs.fr/ 
ada-ado/ada-ado-1.0.1.tar.gz 

- Dynamo: Version 0.7.1 

  Download: 
http://download.vacs.fr/dynamo/ 
dynamo-0.7.1.tar.gz 

Ada Web Application is a framework to 
build web applications on top of the 
above components as well as AWS. 

The new version of AWA provides: 

- New countries plugin to provide 
country/region/city data models 

- New settings plugin to control 
application user settings 

- New tags plugin to easily add tags in 
applications 

- New <awa:tagList> and 
<awa:tagCloud> components for tag 
display 

- Add tags to the question and blog 
plugins 

- Add comments to the blog post 

AWA can be downloaded at 
http://blog.vacs.fr/vacs/download.html 

A small tutorial explains how you can 
easily setup a project, design the UML 
model, and use the features provided by 
the Ada Web Application framework. 

See https://code.google.com/p/ 
ada-awa/wiki/Tutorial 

A live demonstration of various features 
provided by AWA is available at 
http://demo.vacs.fr/atlas 

[See also “Ada Web Application”, AUJ 
34-1, p. 11. —sparre] 

POSIX Ada API 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Sat, 26 Jul 2014 21:32:59 -0500 
Subject: Re: Semantics of POSIX Ada 

Binding 
Newsgroups: comp.lang.ada 

Natasha Porté wrote: 

> I have been using Florist 
implementation of POSIX bindings for 
a while, and been mostly happy with it. 
However the documentation of Florist 
is a bit... terse. As far as I can tell, it 
amounts to "see IEEE STD 1003.5x". 

> However, while both Ada and POSIX 
standards are freely available, it seems 
that versions of "IEEE STD 1003.5" are 
not. Or at least I have failed to find any. 

Right. So far as I know, there isn't one. 
[...] (Not surprisingly, Janus/Ada doesn't 
support a POSIX binding.) 

> Is there a documentation somewhere 
that I missed? Or are we left only with 
guesswork from public references? 

Guesswork is about it, I fear. Unless you 
want to buy a copy from IEEE. 

[...] don't use POSIX is the best solution. 
Since Ada.Directories was added to Ada, 
there's a lot less need to use POSIX 
(particularly if your implementation 
provides a useful 
Ada.Directories.Information). 

> [...] 

You're not alone, the problem has no 
solution other than to forget about using 
POSIX bindings. 

Visual Ada Developer 

From: Leonid Dulman 
<leonid.dulman@gmail.com> 

Date: Wed, 6 Aug 2014 22:35:30 -0700 
Subject: Announce: Visual Ada Developer 

(VAD) 7.7 
Newsgroups: comp.lang.ada 

VAD 7.7 Common description. 

1. VAD (Visual Ada Developer) is a 
Tcl/Tk oriented Ada-2012 (TCL) GUI 
builder portable to difference platforms, 
such as Windows NT/Vista/7, Unix 
(Linux), eComStation(Os/2) and Mac OS 
X. 

You may use it as IDE for any Ada (C, 
C++, TCL) project. 

VAD generated Ada sources, you may 
compile and build executable or generate 
TCL script to interpretate with Tcl/Tk 
VAD 7.7 was tested in Windows 
32bit/64bit and Linux x86-64 Debian 7.3 

2. Used software  

GNAT GPL 2013 Ada-12 compiler (or 
and others 95, 2005 or 2012 ) 

TCL/TK 8.5.x 
http://tcl.activestate.com/software/tcltk/ 

TCL/TK 8.6.x 
http://tcl.activestate.com/software/tcltk/  

You may choice needed version in link 
time. (I recommend to work with 8.6) 

- TASH 8.02 by Terry J. Westley 
http://tash.calspan.com/  

- IMG 1.3 package by Jan Nijtmans 
<Jan.Nijtmans@wxs.nl>.  

- Icons 1.2 by Adrian Davis 
(adrian@satisoft.com)  

- Help System ( Html browser from 
Editors and Parsers menu) by Andrei A. 
Gratchev <grand@midc.miem.edu.ru>  

- TkPaint - a simple Image Editor 
http://www.netanya.ac.il/~samy/tkpaint.
html with pdf and eps document formats 
support  

- RAPID-1 By Martin Carlisle  

 

- McListbox, mcombobox by Bryan 
Oakley <oakley@channelpoint.com> 
http://purl.oclc.org/net/oakley/tcl/ 
mclistbox/index.html  

- Toplevelmanager(window::or) by Mark 
G. Saye  

- Tktable by Jeff Hobs 
<jeff.hobbs@acm.org>  
http://www.hobbs.wservice.com/ 
tcl/capp/  

- FTP_library by Stefen Traeger 
<Steffen.Traeger@t-online.de> 
http://home.t-online.de/ 
home/Steffen.Traeger  

- Csh1.0 package by Mohamed Baccar 
http: //members.aol.com/~mbaccar/ 
pub/csh10.zip  

- Xterm button initialize xterminal  

- Snack 2.4 multimedia sound by Kare 
Sjolander 
http://www.speech.kth.se/snack/  

- BLT 3.0 ftp://ftp.tcltk.com/pub/blt  

- Itcl 4.0 
http://www.sensus.org/tcl/index.htm  

- Tix 8.5 Tix Tcl/Tk extension  

- QuickTimeTcl 3.0 multimedia movie 
(Quick Time for Windows and Mac) by 
Mats Bengtsson and Bruce O'Neel  

- Tclgtk Gtk widget collection on Tcl 
http://tcl-gtk.sourceforge.net.  

- Oratcl 4.4 Oracle connection (Oracle 
9i,Oracle 10i support) 
http://oratcl.sourceforge.net  

- Optcl 3.0 - conversion between Tcl 
objects and COM types by Farzad 
Pezeshkpour (Windows only)  

- OpenGL support packages: 

  - Tkogl OpenGL extension by Claudio 
Esperanca  
http://aquarius.lcg.ufrj.br/~esperanc/ 
tkogl.html  

  - tcl3d Tcl/Tk OpenGL Wrapper  

  - VTK 5.x,6.x OpenGL extension by 
Ken Martin, Will Schroeder, Bill 
Lorensen  
http://public.kitware.com/VTK/files  

  - vtkGUI 0.1 by Silvano Imboden  
http://visit.cineca.it/vtkGUI  

  - Tkhtml 3.0 package by Dan Kennedy  
(last alpha 16 version has problems in 
tcl/tk 8.6b2. Install it only after test 
hv3.tcl script works !!!). 

- Fve Free text editor by Kazuo Sasagawa  

- Hex A simple Hex Editor by George 
Peter Staplin  

- August Free HTML editor by Johan 
Bengtsson  

- ASED Tcl/Tk IDE by Andreas Sievers  

- Dom, TclXML XML parser 
http://www.zveno.com  

- Whiteboard 0.94.3 Image and Media 
Viewer by Mats Behgtsson 



160  Ada and Operat ing Systems 

Volume 35, Number 3, September 2014 Ada User Journal 

- TkMC File manager by Grigoriy 
Abramov  

- IDL_To_Ada_Translator by Scott R. 
Bennet http://www.mitre.org  

- TCL/TK XML intelligence Visual 
Editor by Alexander V.Dederer 
http://tkxmlive.sourceforge.net  

- TCL/TK InstallJammer Multiplatform 
Installer http://www.installjammer.com/  

VAD is available from 
http://users1.jabry.com/adastudio/ 
index.html  

GNAT GPL for Various 
STM32F4xx Boards 

From: Jerry Petrey 
<gpetrey@earthlink.net> 

Date: Sat, 16 Aug 2014 13:05:58 -0700 
Subject: Re: GNAT SPARK:Embedded ARM 

Ada Project doesn't run in STM32F429 
Discovery Board 

Newsgroups: comp.lang.ada 

> [...] 

1. I have it running on the STM407 
Discovery board and on the STM417 
Discovery Board but have not been able 
to get it on the STM429 board yet - that 
chip is a bit different. 

2. You have to look in the lib->gnat-
>arm-eabi->ravenscar-sfp-stm32f4 
directory for the startup files. In 
adainclude, the file setup_pll.adb will 
need some changes as well as s-
stm32f.ads, a-intnam.ads, handler.S, s-
bbbosu.adb, and s-bbpara.ads as far as I 
can tell. Also the linker script stm32f4-
rom.ld in the ada adalib directory will 
need a change due to the larger Flash 
memory. 

3. The clocks are setup in setup_pll.adb 

4. I think I am getting close to having it 
run on the 429 board but I am not there 
yet. On the other boards it is great. I 
have console I/O working, as well as 
USARTs, interrupts and DMA working. 

Ada and Operating 
Systems 

Mac OS X: GNAT 

From: Simon Wright 
<simon@pushface.org> 

Date: Sat, 24 May 2014 18:00:14 +0100 
Subject: ANN: GCC 4.9.0 (2014) for Max 

OS X Mavericks 
Newsgroups: comp.lang.ada 

GCC 4.9.0, with the GNAT GPL 2014 
tools, is available at 

https://sourceforge.net/projects/gnuada/ 
files/GNAT_GCC%20Mac%20OS%20X/
4.9.0-2014/ 

This is the README: 

This is GCC 4.9.0 built for Mac OS X 
Mavericks (10.9.2, Darwin 13.1.0), with 
Xcode 5.1.1 and  tools from GNAT GPL 
2014. 

gcc-4.9.0-x86_64-apple-darwin13-
2014.tar.bz2 

Compilers included: Ada, C, C++, 
Objective C, Objective C++, Fortran. 

Tools included: ASIS, AUnit, GDB, 
GNATColl, GPRbuild, and XMLAda 
from GNAT GPL 2014. 

Target: x86_64-apple-darwin13 

Configured with: ../gcc-4.9.0/configure \ 

  --prefix=/opt/gcc-4.9.0 \ 

  --disable-multilib \ 

  --disable-nls \ 

  --enable-languages=c,c++,ada,fortran, 
     objc,obj-c++ \ 

  --host=x86_64-apple-darwin13 \ 

  --target=x86_64-apple-darwin13 \ 

  --build=x86_64-apple-darwin13 

Thread model: posix 

gcc version 4.9.0 (GCC) 

MD5 (gcc-4.9.0-x86_64-apple-darwin13-
2014.tar.bz2) = 
4f8e94f0349757ecd417e97b604ce99e 

Install by 

$ cd / 

$ sudo tar jxvf ~/Downloads/gcc-4.9.0-
x86_64-apple-darwin13-2014.tar.bz2 

and put /opt/gcc-4.9.0/bin first on your 
PATH. 

Installing GDB 

gdb has to be 'code-signed' (unless you're 
willing to run it as root!) 

Instructions are at 

https://gcc.gnu.org/onlinedocs/ 
gnat_ugn_unw/ 
Codesigning-the-Debugger.html 

Notes 

The compiler is GPL version 3 with the 
Runtime Exception, so executables built 
with it can be released on proprietary 
terms PROVIDED THAT they make no 
use of the packages from GNAT GPL 
2014, which are full GPL. 

The command 'gnat', as originally built, 
failed with SIGSEGV. It was rebuilt on its 
own, using the project file gnatcmd.gpr, 
and no longer failed; the working version 
is provided. 

Changes made to GPRbuild GPL 2014 are 
in gprbuild-gpl-2014-src.diff. They: 

- remove the '-c' flag that is wrongly 
passed to ranlib (and isn't by gnatmake). 

- correct a problem when building static 
stand-alone libraries. 

- remove some restrictions not provided in 
FSF GCC yet: No_Fixed_IO, 

No_Long_Long_Integers, 
No_Multiple_Elaboration. 

- import the new library package 
GNAT.Rewrite_Data (used by 
gprslave). 

- retain the bug in gprinstall which installs 
executables with 'execute' access for the 
owner only rather than for all users (this 
is a problem if the installation is done by 
root). The change relies on a change in 
the RTS (adaint.c). 

- gprslave can't call 
Set_File_Last_Modify_Time_Stamp 
(adaint.c again). 

GNATColl GPL 2014 was configured as 
below, which is minimal apart from GNU 
Readline being enabled. Users may wish 
to reconfigure for their own requirements. 

  ./configure \ 

    --prefix=/opt/gcc-4.9.0 \ 

    --build=x86_64-apple-darwin13 \ 

    --enable-gpl 

resulting in 

  Shared libraries: yes (default: static) 

  Gtk+: no  
(requires pkg-config and gtkada.gpr) 

  Python: yes 
/System/Library/Frameworks/ 
Python.framework/Versions/2.7  
(see --with-python) 

  PyGtk: no (see --enable-pygtk) 

  PyGObject: no (see --enable-pygobject) 

  Syslog: yes (see --enable-syslog) 

  Readline (GPL license): yes  
(see --with-readline --enable-gpl) 

  Gmp: no (see --with-gmp) 

  PostgreSQL: no -L/usr/lib  
(see --with-postgresql) 

  Sqlite: embedded (see --with-sqlite) 

  Iconv: yes (see --with-iconv) 

  Projects: yes 

Changes to ASIS GPL 2014 are in asis-
gpl-2014-src.diff. Only changes necessary 
for the build are included. 

GDB GPL 2014 built without changes, 
but there are problems with 'catch 
exception'; one workround is to invoke 
GDB with the '-readnow' switch. See 
https://sourceware.org/bugzilla/show_bug
.cgi?id=11385 

In addition to the above, a new library 
gnat_util is required by ASIS and 
GNATColl. A Sourceforge project to 
provide this has been set up at 
https://sourceforge.net/projects/gnatutil/; 
release 4.9.0 is included here. This is the 
equivalent of the Debian libgnatvsn. 

From: Simon Wright 
<simon@pushface.org> 

Date: Sat, 31 May 2014 20:35:16 +0100 
Subject: Re: ANN: GCC 4.9.0 (2014) for 

Max OS X Mavericks 



References to Publ icat ions 161  

Ada User Journal Volume 35, Number 3, September 2014 

Newsgroups: comp.lang.ada 

> [...] 

The first release (gcc-4.9.0-x86_64-apple-
darwin13-2014.tar.bz2) contained an 
error: 'gnat list' didn't recognise library 
projects. This meant that Emacs ada-mode 
couldn't be used for library projects. 

gcc-4.9.0-x86_64-apple-darwin13-2014-
1.tar.bz2 is now available at the same 
place as above. 

Debian and Fedora: GtkAda 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sun, 1 Jun 2014 22:01:23 +0200 
Subject: GtkAda 3.8.2 binary packages 
Newsgroups: comp.lang.ada 

[...] Debian (deb) and Fedora (rpm) 
packages can be downloaded here: 

http://www.dmitry-kazakov.de/ada/ 
gtkada.htm 

Mac OS X: XAdaLib 

From: Pascal <p.p14@orange.fr> 
Date: Tue, 3 Jun 2014 20:40:27 +0200 
Subject: [ANN] XAdaLib 2014 binaries for 

MacOS 10.9 including GTKAda 3.8 and 
more. 

Newsgroups: gmane.comp.gnome.gtk+.ada 

This is XAdaLib 2014 built on MacOS X 
10.9 Mavericks for X11 including: 

- GTK Ada 3.8.2 with GTK+ 3.8.4 
complete, 

- Glade 3.10.2, 

- GnatColl GPL 2014, 

- Florist GPL 2014, 

- AdaCurses 20110404, 

- Gate 3-04-b 

to be installed for instance at /usr/local: 

$ cd /usr/local 

$ sudo tar xzf xadalib-gpl-2014-x11-
x86_64-apple-darwin13.2.0-bin.tgz 

Update your PATH to include gtkada-
config, glade, gate3.sh and other 
executables in it: 

$ PATH=/usr/local/ 
xadalib-2014/bin:$PATH 

Update your GPR_PROJECT_PATH to 
include gtkada.gpr, adacurses.gpr, 
florist.gpr, gnatcoll.gpr and other projects 
in it: 

$ export 
GPR_PROJECT_PATH=/usr/local/xadali
b-2014/lib/gnat:$GPR_PROJECT_PATH 

Then see documentation and examples in 
share directory and enjoy. 

Coming soon, the instructions which have 
produced the libraries on Blady web site: 

http://blady.pagesperso-orange.fr/ 
creations.html#gtkada 

And the Ada industrial control widget 
library from Dmitry Kazakov. 

XAdaLib binaries have been post on 
Source Forge: 

http://sourceforge.net/projects/gnuada/ 
files/GNAT_GPL%20Mac%20OS%20X/
2014-mavericks/ 

Feel free to send comments on the list. 

From: Pascal <p.p14@orange.fr> 
Date: Mon, 9 Jun 2014 10:50:33 +0200 
Subject: Re: [ANN] XAdaLib 2014 binaries 

for MacOS 10.9 including GTKAda 3.8 
and more. 

Newsgroups: gmane.comp.gnome.gtk+.ada 

Here are the instructions I used to build 
GTKAda on MacOS (in French): 

http://blady.pagesperso-orange.fr/ 
telechargements/gtkada/ 
Install-GTKAda-X11.pdf 

Here are the modifications I made: 

http://blady.pagesperso-orange.fr/ 
telechargements/gtkada/ 
xadalib-2014-diff.tgz 

I haven’t built icu4c, is it needed by 
gtkada? 

Debian: Transition to GNAT 
4.9 

From: Emilio Pozuelo Monfort 
<pochu@debian.org> 

Date: Sun, 10 Aug 2014 16:54:58 +0200 
Subject: Re: Bug#756078: transition: gnat 
To: 756078@bugs.debian.org,  

debian-ada@lists.debian.org,   
Reto Buerki <reet@codelabs.ch> 

> [...] 

The last blockers are #756081 and 
#755076. Can someone from debian-ada 
take a 

look at those? 

From: Nicolas Boulenguez 
<nicolas.boulenguez@free.fr> 

Date: Mon, 18 Aug 2014 02:40:19 +0200 
Subject: status update 
To: Ada in Debian mailing list  

<debian-ada@lists.debian.org> 

[...] 

Libgnatcoll is waiting for manual 
approval in the NEW queue. This may 
take a while because it is a new source 
package. Asis and libaws are ready and 
will follow quickly. 

It is now possible to work on adabrowse, 
adacontrol or libalog. Here are the steps to 
build the required libgnatcoll/asis/aws 
snapshots. 

You may either create an empty 
Monotone database 

# mtn -d $db db init 

or use an existing one. 

Download the packaging from the server 
to your database. The first time you 

contact this server, monotone will show 
its key. You should check that it matches 
f8a11727e8983cf9083c08c6a2acaa27e43
9dd39. 

# mtn -d $db pull mtn:// 
www.ada-france.org? 
org.debian.libgnatcoll 

Last steps depend on the package. 

# mtn -d $db cat debian/README.source 
| less 

Microsoft Windows: Dokan 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sat, 16 Aug 2014 18:12:12 +0200 
Subject: ANN: Dokan Ada bindings v 1.0 
Newsgroups: comp.lang.ada 

Dokan library for developing is user-
space file system for Windows. The Ada 
bindings are Ada 95 compliant. A sample 
implementation of a memory-resident file 
system is included. 

http://www.dmitry-kazakov.de/ 
ada/dokan.htm 

References to 
Publications 

HOLWG Submissions? 

From: J. Kimball <jkimball4@gmail.com> 
Date: Fri, 21 Mar 2014 11:04:25 -0500 
Subject: HOLWG submissions 
Newsgroups: comp.lang.ada 

Are there any digital copies of the Yellow 
or Blue manuals that were submitted to 
DoD? 

From: Nasser M. Abbasi 
<nma@12000.org> 

Date: Sun, 23 Mar 2014 03:14:48 -0500 
Subject: Re: HOLWG submissions 
Newsgroups: comp.lang.ada 

> [...] 

"Request for proposals were issued April 
1977; 17 proposals received. Four 
contractors were picked to produce 
prototype languages: 

- Cii Honeywell Bull led by Jean Ichbiah 
(green) 

- Intermetrics led by Benjamin M. 
Brosgol (red) 

- SofTech led by John Goodenough (blue) 

- SRI International led by Jay Spitzen 
(yellow)" 

So the names of the persons are above. 
May be this can help in googling them 
more? 

Here is info on the red one: 

http://henrylivingston.com/maida/ 
computer/redref/index.htm



162  Ada Inside 

Volume 35, Number 3, September 2014 Ada User Journal 

Carl Brandon Selected as 
Top Innovator 

From: Embedded Computing Design 
Date: Tue Jun 10 2014 
Subject: Embedded Computing Design 

selects Top Innovators, Most Influential 
Women for June issue 

URL: http://embedded-computing.com/ 
21408-embedded-computing-design-
selects-top-innovators-most-influential-
women-for-june-issue/ 

[...] 

Dr. Carl Brandon, Professor, Vermont 
Technical College 

Dr. Brandon worked for IBM for two 
years, designing their first memory chip 
with two colleagues. He has been 
teaching at Vermont Technical College 
since 1977, and while there has 
introduced Pascal and Ada programming 
courses, and helped set up the Computer 
Tech and Aeronautical Engineering 
Technology degrees. Starting in 2004, he 
started the CubeSat Lab, resulting in the 
launch of the first university CubeSat 
from a college in New England. 

[...] 

[Carl and his students used Ada and 
SPARK to program their CubeSat. --
sparre] 

Programming in Ada 2012 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Fri Jun 20 2014 
Subject: “Programming in Ada 2012″ is 

now available 
URL: http://www.adaic.org/2014/06/ 

programming-in-ada-2012/ 

“Programming in Ada 2012” by John 
Barnes is now available. This is the first 
book that we’re aware of that specifically 
covers Ada 2012. “Programming in Ada 
2012” is an update of John’s previous 
book, “Programming in Ada 2005”, 
which was an update of “Programming in 
Ada 95”, which was an update of 
“Programming in Ada”. What we can tell 
from this (besides the fact that John has 
been involved in Ada since the beginning) 
is that this is a useful and widely used 
book (of ever expanding size!) that has 
withstood the test of time. We expect that 
this new edition will be the same. 

The book can be ordered at Amazon [1] 
and presumably other booksellers. It also 
can be ordered directly from the publisher 
[2].  

[1] http://www.amazon.co.uk/ 
Programming-Ada-2012-John Barnes/ 
dp/110742481X 

[2] http://www.cambridge.org/dk/ 
academic/subjects/computer-science/ 
software-engineering-and-
development/programming-ada-2012 

alt.embedded on GNAT-
GPL for ARM Cortex-M4 

From: William Wong 
<bill.wong@penton.com> 

Date: Mon Jul 7 2014 
Subject: Running Ada 2012 On The Cortex-

M4 
URL: http://electronicdesign.com/blog/ 

running-ada-2012-cortex-m4 

I like to think I write good code, and I’ve 
used C and C++ almost since their 
inception. I admit to incorporating more 
than one unwanted bug into C 
applications that were eliminated after 
sometimes tedious diagnostic sessions. 
Almost every new microcontroller 
released has a free C/C++ compiler 
toolchain associated with it. 

Unfortunately, C is very unforgiving, and 
C++ is only a little better. But they are the 
mainstay for embedded programmers 
these days. That’s one reason why I have 
been waiting for AdaCore’s delivery of its 
Ada 2012 toolchain for Arm’s Cortex-M 
platform. It is a free download at 
libre.adacore.com. 

[...] 

Blog Entries on STM32F4 
Programming 

From: Mike Silva 
<embeddedrelatedmike@scriptoriumdes
igns.com> 

Date: Tue, 5 Aug 2014 19:29:06 -0700 
Subject: Finally, Ada on $15 hardware 
Newsgroups: comp.lang.ada 

As some may know, and others not, 
AdaCore has released a libre version of its 
ARM Cortex M3/M4 port (maybe other 
models too, I didn't look). Out of the box 
it runs on an STM32F4 board (the $15 
hardware referred to above). 

I've written a couple of tutorial blog 
entries on this: 

http://www.embeddedrelated.com/ 
showarticle/617.php 

I for one am quite delighted to finally 
have Ada on a excellent (and cheap!) 32-
bit microcontroller family. 

Ada Inside 

Hospital Information System 

From: AdaCore Press Center 
Date: Wed May 28 2014 
Subject: SmartWard Pty Ltd Selects 

AdaCore Tools for Hospital Information 
System Development 

URL: http://www.adacore.com/press/ 
smartward-hospital-information-system/ 

Ada chosen for benefits in reliability, 
safety, and security 

 

MELBOURNE, Australia, NEW YORK 
and PARIS – May 28, 2014 – Australian 
System Safety Conference – AdaCore 
today announced the adoption of its 
GNAT Pro Ada Development 
Environment and CodePeer static analysis 
tool by the Australian healthcare 
informatics company SmartWard Pty Ltd 
for use in implementing its state-of-the-art 
patient care management system. The 
SmartWard system needs to be highly 
reliable and secure from unauthorized 
access, it has to provide real-time 
response and 24x7 availability, and it also 
must be easy to use by hospital staff. 
After evaluating alternative potential 
approaches, the company selected the Ada 
language and AdaCore software 
development tools as the best solution for 
meeting these requirements. 

The SmartWard system replaces a paper-
based, manual approach that is time-
consuming and error prone. It runs on 
computers at each patient bedside and at 
all other points-of-care, providing up-to-
date information on scheduled activities, 
patient alerts and vital signs and allowing 
real time entry of treatment records. It 
presents patient histories in user-friendly 
charts with decision support data, and 
validates medication and patient identity 
automatically via smart sensors. 

With its long history of successful usage 
for many types of safety-critical and high-
security software, Ada was chosen as the 
implementation language for the 
SmartWard system. Many errors that 
would only be detected through 
significant debugging effort in other 
languages are caught at compile time in 
Ada, and features such as Ada 2012’s 
contract-based programming help embed 
low-level requirements into the source 
program as assertions that can be checked 
at run time or verified statically. 

AdaCore’s GNAT Pro development 
environment, along with several 
complementary tools, is being used to 
implement the SmartWard software. With 
its sophisticated data- and control-flow 
analysis, the CodePeer automated code 
review and validation tool helps in 
identifying potential logic errors, 
including “off by 1” bugs in loops and 
other more subtle problems. CodePeer’s 
static analysis can be conducted both 
during a system’s initial development, and 
also retrospectively to find potential 
vulnerabilities in existing code. Another 
AdaCore tool that is proving useful to 
SmartWard is the Ada Web Server 
(AWS). Its web-socket implementation is 
being used for communication between 
the SmartWard system’s front-end and 
back-end. 

“Different language technologies have 
different strengths,” said Cyrille Comar, 
AdaCore Managing Director. “Ada was 
specifically designed for systems where 
the concept of a ‘fatal error’ may be 



Ada Inside 163  

Ada User Journal Volume 35, Number 3, September 2014 

literally true, and we're pleased to see Ada 
adopted for medical applications such as 
SmartWard where reliability, safety and 
security are so critical.” 

“The use of Ada has helped us 
significantly in instilling a safety culture 
within our company,” said Dr. Malte 
Stien, CTO of SmartWard. “We see Ada 
as a competitive advantage in our market, 
and the use of the language is a selling 
point for our product.” 

[...] 

About SmartWard Pty Ltd 

SmartWard is an innovative health 
informatics company founded in 2009. It 
has worked closely with nurses and 
hospitals since then to develop a unique 
new system that delivers much-needed 
improvements in the efficiency of 
hospitals and aged care facilities, while 
improving quality-of-care. SmartWard is 
now commercializing this system. 

A clinical trial completed in 2013 has 
proven the SmartWard proposition. It 
showed that SmartWard allowed the 
nursing staff to double the amount of time 
they were able to spend with their 
patients, by completely replacing the 
paper-based system with digitized records 
and by moving the record access/update 
site from the nurses’ workstation to the 
patient’s bedside. SmartWard also 
reduced the time for the shift handover 
while improving the accuracy of the 
provided care. 

Wireless Temperature 
Sensor 

From: Tero Koskinen 
<tero.koskinen@iki.fi> 

Date: Fri, 27 Jun 2014 09:14:53 +0300 
Subject: Usage of AVR-Ada (Was: Lcd and 

arduino nano) 
To: avr-ada-devel@lists.sourceforge.net 

[...] I have now had AVR-Ada based 
wireless temperature sensor running on 
my balcony almost one month (the device 
is Olimexino-328 with custom XBee 
shield, powered by single 1000mAh lipo). 

I plan to write about it, but I am still 
waiting for the battery to run out - not 
sure how many weeks I need to wait. :) 

HTTP File Server 

From: Natasha Porté 
<lithiumcat@instinctive.eu> 

Date: Mon, 7 Jul 2014 20:43:27 +0000 
Subject: ANN: HTTP file server v1.0-beta1 
Newsgroups: comp.lang.ada 

I had stopped posting announcement 
about my personal projects here because it 
seemed useless and made me feel like a 
lunatic rambling in the desert about things 
completely disconnected from reality. But 
now I'm trying very hard to convince 

myself that there's a small possibility that 
somebody here might find it useful. 

So this is a program based on AWS, 
meant to solve the problem of transferring 
a file from one computer to another, when 
the most convenient way to do so is using 
an intermediary HTTP server (e.g. when 
both computer are deep behind NAT 
routers and/or stringent firewalls). That 
fact it happens so often is a testament to 
the sad state of IT nowadays. 

And it obviously requires the ability to 
run a custom HTTP server, which 
unfortunately restricts severely the 
potential audience. 

More specifically, it is designed for the 
following scenarios: 

 1. the service owner wants to make a file 
available to one or several people, sharing 
a download link, 

 2. anybody wants to send a file to the 
service owner while avoiding abuse, 
modelled as the following scenario: 

 3. somebody makes a file available to 
somebody else without knowledge or 
consent from the service owner. 

To achieve this, the uploader can only 
access a report page, to ensure the file has 
been correctly uploaded. To compute the 
download link, a server-wide secret is 
required, presumably only known by the 
service owner. 

More details are available on the full-
length project description page, on the 
official fossil repository page at [1] and 
on the GitHub mirror at [2]. 

This version is labelled "beta" because I 
have been running it in production for a 
while now, without finding any fault, but 
so far to the best of my knowledge 
nobody else has tried it, and the fact that 
by myself I haven't found any bug in my 
own code does not mean much. 

So if you're interested in the application, 
please let me know, I will gladly consider 
any bug report or feature request. 

If not, would please at least have a look at 
the documentation pages I linked above, 
and tell me whether it's clear and makes 
sense and allows someone to deploy it, or 
whether there are some parts obscure or 
missing. 

I would also gladly read any comments or 
reviews about my code or the concept, but 
that's much more than I dare hoping. 

[1] http://fossil.instinctive.fr/simple-
webapps/doc/tip/README.md 

[2] https://github.com/faelys/simple-
webapps 

 

 

6•10¹² m on 170k Lines of 
Ada 83 

From: Airbus Defence & Space 
Date: Wed Aug  6 2014 
Subject: Rosetta comet chaser reaches 

destination to decipher origins of solar 
system 4,6 billion years ago 

URL: http://airbusdefenceandspace.com/ 
rosetta-comet-chaser-reaches-destination-
to-decipher-origins-of-solar-system-46-
billion-years-ago/ 

Rosetta comet chaser reaches destination 
to decipher origins of solar system 4,6 
billion years ago 

- After a journey of six billion kilometres, 
satellite and lander embark on the search 
for primary matter 

- Mission confirms Airbus Defence and 
Space’s role as a key ESA partner in 
planetary research 

The Rosetta comet chaser developed and 
built by Airbus Defence and Space for the 
European Space Agency (ESA) has 
arrived at its destination after flying for 
more than 10 years and travelling more 
than six billion kilometres. It is now ready 
to swivel into an orbit around the comet 
called 67P/Churyumov-Gerasimenko. The 
mission assigned to Rosetta and to the 
Philae lander that it is carrying, is to 
examine primary material from the 
nursery of the solar system 4.6 billion 
years ago over the next one and a half 
years. 

At 11.30 CET, the ESA satellite control 
centre in Darmstadt, Germany, received 
news via radio signal that Rosetta had 
begun its approach. The space probe’s 
rendezvous with 67P took place some 400 
million kilometres away from Earth. 
Rosetta will now accompany the comet on 
its journey around the sun and back again 
into the depths of our solar system. The 
Philae lander is scheduled to touch down 
on the comet’s surface in November in 
order to carry out measurements there. 

[...] 

From: Andreas Jung and Jean-Loup 
Terraillon 

Date: Wed Dec 8 2010 
Subject: Faster, Later, Softer: COrDeT – an 

on-board software reference architecture 
URL: http://flightsoftware.jhuapl.edu/ 

files/2010/FSW10_Jung.pdf 

[...] 

Software size of the central computer's 
ESA missions is increasing... 

- Science satellites 

  - Exosat (launch 1983), RCA1802 – 8K 
memory, ASM 

  - SOHO (launch 1995), 2xMDC281 – 
2x64KB , Ada83 

  - Rosetta (launch 2004), 2xMA3-1750 – 
2x1MB, 170KLoc, Ada83 

[...]



164  Ada in Context 

Volume 35, Number 3, September 2014 Ada User Journal 

Ada in Context 

Ada 202X Wish List 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Wed, 26 Mar 2014 15:41:30 -0500 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

> [...] the [[wide_]wide_]string packages 
and the relationship to 
[[wide_]wide_]character -- it would be 
very nice (as well as aiding 
maintainability) to have the *_String 
[and character-handling] packages be 
generics instantiated on the proper 
Character type. 

I agree that this is an area that needs 
looking at, but I don't think using more 
generics will provide anything useable. 
The problem, as Dmitry likes to say, is 
that the representation and semantics of a 
string are intertwined, and those have to 
be separated in order to make a sensible 
string type system. 

I've played with some ideas based on an 
abstract Root_String'Class, and pretty 
much everything necessary can be done 
with existing Ada 2012 features, and the 
few things that can't have a fairly obvious 
language feature that could be defined to 
provide them (for instance, a mechanism 
to support string literals). 

I think the problem is mainly going to be 
political rather than technical. The 
solution requires defining a large set of 
new packages that echo functionality 
already in the language, and that would 
not be used by the sorts of safety-critical 
applications that the paying customers 
use. (They're not using Text_IO or 
Unbounded_Strings or Directories or ...). 
That's going to make changes in this area 
a tough sell, I fear. Hope I'm wrong. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Thu, 27 Mar 2014 16:50:20 -0500 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

> [...] Care to share your findings? 

Of course really. The rough sketch is in 
the !discussion of AI12-0021-1. Please 
note that we've never discussed this AI 
within the ARG, so I might be the only 
one interested in pursuing this idea. I've 
fleshed it out further mentally; in 
particular, one could imagine supporting 
conversions through a common type (in 
this case Wide_Wide_String). 

The primary "problem" is that in this 
model, most strings become tagged and 
communicate using 
Wide_Wide_Character and 
Wide_Wide_String. That probably seems 
more inefficient than it actually is (after 
all, Unbounded_Strings are already 
tagged -- controlled, actually -- and this 

couldn't be less efficient than that, so long 
as the language-defined types stick to 
single inheritance). For the characters, the 
representation doesn't matter much (and 
on a 32-bit machine, they're all the same 
performance anyway). So the main issue 
is the cost of converting to-from 
Wide_Wide_String. Perhaps there is some 
other way to ensure universal 
convertability which doesn't require 
performance-sapping multiple inheritance 
or multidispatching. 

After all, if storage space is not a concern, 
Wide_Wide_String is the most universal 
(and efficient) representation. It seems 
that it makes the most sense to do 
operations in terms of that type and 
convert for storage -- since that's what 
will happen naturally most of the time. 
(Presuming you're not so American-
centric that you don't care about anything 
beyond type String. :-) 

Anyway, lots more thought needed. 

From: Jeffrey R. Carter 
<jrcarter@acm.org> 

Date: Thu, 27 Mar 2014 18:54:39 -0700 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

> [...] 

I guess storage space is not a concern for 
Erlang. The string "ABC" is shorthand for 
the list [65, 66, 67], and apparently each 
"character" takes 8 bytes: 4 for the 
number, and 4 for the pointer to the next 
element in the list 

Using 4 bytes for the character is 
sometimes called support for Unicode. 

Why not define Character as 32 bits and 
get rid of the Wide_ guys? 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Fri, 28 Mar 2014 09:17:42 +0100 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

> [...] most strings become tagged and 
communicate using 
Wide_Wide_Character and 
Wide_Wide_String. 

In another model only 
Wide_Wide_String'Class would be 
tagged. 

Real issue: Classes of non-tagged types. 

> So the main issue is the cost of 
converting to-from Wide_Wide_String. 

You would not need conversions if the 
specific operations were provided rather 
than inherited (as they are provided 
presently). 

Real issue: Multi-methods (String vs 
String) and full multiple dispatch (String 
vs Character) 

To reiterate the point. The implementation 
of strings in Ada is all OK, it is the 
interface to this implementation which 
sucks. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Fri, 28 Mar 2014 16:27:09 -0500 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

> Real issue: Multi-methods (String vs 
String) and full multiple dispatch 
(String vs Character) 

That's an alternative, but the question is 
whether that can be implemented with 
less overhead than the scheme I 
suggested. I believe the answer is no, at 
least within generalized string packages 
(which hopefully will become the norm 
for new string operations in Ada). It's 
surely one of the questions to be 
considered - nothing I think on this topic 
(or any topic, for that matter) is likely to 
be the last word. 

> [...] implementation of strings in Ada is 
all OK, it is the interface to this 
implementation which sucks. 

Right, but that manifests itself in 
duplicated and overly restrictive 
packages, which would have to be 
reworked in order to use a more general 
interfaces. (Ada.Strings.Bounded and 
Ada.Strings.Unbounded in particular have 
overloaded operations that would make 
everything ambiguous if not eliminated.) 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Mon, 31 Mar 2014 18:55:07 -0500 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

[...] 

"Root_String_Type" would be abstract, 
and the other types would be derived from 
it. New types corresponding to each 
interesting representation would be 
defined. The existing types would still 
exist but be obsolescent. 

[...] 

> Whether Unbounded_String should 
become a member of this new hierarchy 
or be replaced there with a new type is 
another question. 

It's not a question. There's no way to do 
that because the operations already 
defined for Unbounded_String would 
make it ambiguous if given string literals 
(and all Root_String_Type'Class types 
would have string literals). It would be 
completely unusable. 

As such, all new types is the only 
possibility. That's what makes this idea 
politically messy. 

[...] 

 

The problem is that Unbounded_String 
defines operations like 

   function "&" (Left : Unbounded_String; 
                         Right : String)  
 return Unbounded_String; 



Ada in Context 165  

Ada User Journal Volume 35, Number 3, September 2014 

which would be ambiguous with the 
normal "&" if both String and 
Unbounded_String had string literals (as 
they must for Root_String_Type to work). 
Indeed, that's the only reason that Ada 
doesn't have a way to define string literals 
for a private type -- we talked about it 
years ago but determined that it cannot be 
used with any of the existing string 
packages. As such, it would have been a 
weird thing to define. 

We can't get rid of these problematical 
operations -- it would be way too 
incompatible. So new packages is the 
only way to go. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Wed, 26 Mar 2014 16:06:18 -0500 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

> [...] 

Commenting here is precisely the 
problem. Most of the user contacts that 
the ARG has is third-hand at best. 
(Combating that is one of the reasons I 
hang out here.) We really don't have the 
clear of an idea of what other Ada users 
want. I know I draw on my own 
experience far more than probably is 
healthy. 

Moreover, we've been asking for years for 
users to show us the problems that they 
cannot solve with Ada (now Ada 2012), 
so that we can look at possible solutions. 
That's one of the major purposes of the 
Ada-Comment mailing list. A few people 
do that, but it's not many. You don't have 
to be a language designer to do that; 
indeed, we'd rather you didn't try to invent 
language features to solve the problem, 
since those ideas often obscure the actual 
problem. Of course, we might determine 
that Ada 2012 already can solve the 
problem sensibly - or that we don't 
consider it important enough - but 
problems that we don't hear about have a 
near 100% chance of not being addressed. 

This is probably a good time to remind 
everyone that the Ada-Comment mailing 
list is open to everyone. It's for comments 
and discussion on the Ada language and 
it's Standard, not particular 
implementations of Ada. (Leave your 
gripes about AdaCore here, please. :-) 
You can find instructions about joining 
the list at: 

http://www.adaic.org/resources/ 
add_content/standards/articles/ 
comment.html 

Of course, that is not to say that 
discussion here isn't useful when one 
wants to know if they are alone with a 
concern or the like. But please don't 
assume that just because something is said 
here it is going to get back to the ARG 
and have an impact on future language 
standards. (Occasionally, someone has 
taken a discussion here back to Ada-
Comment, but no one ought to assume 

that will happen. If you really care, do it 
yourself!) 

From: Tero Koskinen 
<tero.koskinen@iki.fi> 

Date: Tue, 29 Apr 2014 17:26:19 +0300 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

Not sure have it been proposed anywhere, 
but a common ABI (application binary 
interface) for the most popular platforms 
(32-bit ARM Linux, 64-bit 
x86_64/amd64 Linux, 32-bit i386 
Windows, 64-bit x86_64/amd64 
Windows) would be nice. This way I 
could use binary libraries generated by 
one Ada compiler (version) with another 
Ada compiler (version) without providing 
full sources (or recompilation). 

Another thing is the lack of "modern" 
general purpose libraries for net/www 
stuff, embedded devices, various 
algorithms/data structures, etc. Those 
libraries won't necessarily need to be part 
of the standard. It is enough if they are 
just somehow freely available without 
extra cost. 

From: François Fabien 
<francois_fabien@hotmail.com> 

Date: Sun, 30 Mar 2014 05:28:05 -0700 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

One wish to ease I/O: To have some 
equivalent of this C pattern: 

  printf("%c %c %c %c %c \n %c %c %c    
             %c %c \n", 

From: Pascal Obry <pascal@obry.net> 
Date: Sun, 30 Mar 2014 21:02:00 +0200 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

> [...] 

Well, this is possible in Ada with some 
coding of a package, one could write 
something like (maybe already 
implemented by someone, I remember a 
simple_io package or something like 
that): 

   Formatted_Print  
        ("%c %c %c %c %c \n %c  
           %c %c %c %c \n" & Var1 & Var2                   
          & Var3 & Var4 & Var5 & Var6  
          & Var7 & Var8); 

You just have to code the Formatted_Print 
routine once for all. No big deal: 

   type Formatted_String is private; 
   
   Format_Error : exception; 
   
   function "&" (F : Formatted_String; 
                         V : Character)  
 return Formatted_String; 
   
   function "&" (F : Formatted_String; 
                         V : Integer)  
 return Formatted_String; 
   function "&" (F : Formatted_String; 
                         V : Float)  
 return Formatted_String; 

   ... 
 
   procedure Formatted_Print 
  (F : Formatted_String); 
 
   procedure Formatted_Print 
  (File : Text_IO.File_Type;  
                  F : Formatted_String); 

From: Britt <britt.snodgrass@gmail.com> 
Date: Wed, 2 Apr 2014 09:21:20 -0700 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

[...] 

Require basic support for 64-bit integer 
types: 

   Standard.Long_Long_Integer (I'm  
   currently missing this in ObjectAda) 

   Interfaces.Integer_64 

   Interfaces.Unsigned_64 

and corresponding support for C99's "long 
long", "int64_t" and "uint64_t" in 
Interfaces.C. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Wed, 2 Apr 2014 17:53:25 -0500 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

> [...] 

Even on 8-bit and 16-bit processors? 

(Note that no one should be depending on 
implementation-defined Standard types 
like Long_Long_Integer. These are 
considered implementation-defined by the 
profile No_Implementation_Extensions; 
they should be avoided in portable Ada 
code. Also see 3.5.4(28). I have more 
sympathy for requiring System.Max_Int 
to be at least 2**63-1 on appropriate 
machines (and the appropriate Interfaces 
types as well)) -- but what's an 
appropriate machine? Janus/Ada has 
never supported 64-bit integers, mainly 
because of the nasty effect on shared 
generics for formal integer and discrete 
types [it would force those to use all 64-
bit math, which would get pretty 
expensive for Text_IO.Integer_IO and 
similar generics]. We only support 32-bit 
machines, but of course modern Intel 
processors all have 64-bit "integers" via 
the floating point instruction set. I've 
never considered that real 64-bit support 
and ignored it, because of expense and 
precision concerns [along with 
complications supporting indexing and for 
loops] -- not worth the headache. A 64-bit 
target would be a different beast, of 
course.) 

From: Jeffrey R. Carter 
<jrcarter@acm.org> 

Date: Wed, 02 Apr 2014 17:01:15 -0700 
Subject: Re: Your wish list for Ada 202X 
Newsgroups: comp.lang.ada 

> [...] 

 



166  Ada in Context 

Volume 35, Number 3, September 2014 Ada User Journal 

I'd like the language to support any 
integer type declaration a user is willing 
to write, regardless of "efficiency". For 
some such declarations, the compiler can 
chain together multiple machine "words" 
as we used to do in the Good Old Days® 
to get 16-bit integers on 8-bit machines 
like the 6502. At some the point the 
compiler should be allowed to use the 
same representation as 
Unbounded_Integer, which would 
implement the unlimited-precision integer 
package the compiler writer has had to 
use to write the compiler (or a similar 
package for the target for cross 
compilers). 

Not going to happen, I know, but ... 

I'd also like a mode in which objects that 
don't fit on the stack would be 
automatically put on the heap. 

Portable Bindings to Opaque 
C Types 

From: Tero Koskinen 
<tero.koskinen@iki.fi> 

Date: Tue May 6 2014 
Subject: Easy way to create portable 

bindings to opaque C types 
URL: http://ada.tips/easy-way-to-create-

portable-bindings-to-opaque-c-
types.html 

Have you ever struggled to create 
bindings for C types like FILE or CURL? 
If yes, then you know how hard it can be, 
since the type might not be same on all 
platforms. 

An easy solution for these is to define a 
null record which represents the type and 
use only access types (pointers) when 
handling the type. 

For example: 

   type CURL_Type is null record; 
   type CURL_Access is access all 
 CURL_Type; 
 
   function curl_easy_init return 
 CURL_Access; 
   pragma Import (C, curl_easy_init, 
 "curl_easy_init"); 
 
   CURL_Obj : CURL_Access; 
   ... 
   CURL_Obj := curl_easy_init; 

This works on all platforms, all compilers, 
and all relatively recent Ada variants (95, 
2005, 2012 at least). 

Of course, if you need to change the 
internals of the C variables from Ada, this 
approach does not work. 

Termination of Tasks 
Waiting on a Protected 
Queue 

From: Natasha Porté 
<lithiumcat@instinctive.eu> 

Date: Sun, 18 May 2014 07:32:17 +0000 

Subject: Termination of tasks waiting on a 
protected queue 

Newsgroups: comp.lang.ada 

I have been having a task termination 
issue, and I'm wondering whether I got 
my design wrong or whether I'm missing 
something, so I ask you to help me on 
that. 

The basic need is delegating potentially 
long jobs to a dedicated task (or pool of 
tasks) so that the program flow generating 
the jobs and continue quickly. I 
furthermore assume that the jobs are "fire 
and forget", that there is no need to report 
anything about completion (or lack of 
thereof) to the code that generated the 
jobs (or more realistically, that reporting 
is performed through channels outside of 
the scope of the problem). 

So I went with the basic design below: 

   package Example is 
      type Job_Description is private; 
 
      function Create_Job (...)   
 return Job_Description; 
      procedure Enqueue_Job  
 (Job : in Job_Description); 
 
   private 
 
      package Job_Lists is new      
             Ada.Containers.Doubly_Linked_Lists 
         (Job_Description); 
 
      protected Queue is 
         procedure Append  
 (Job : in Job_Description); 
         entry Get_Next  
 (Job : out Job_Description); 
      private 
         List : Job_Lists.List; 
         Has_Job : Boolean := False; 
      end Queue; 
 
      task Worker is 
      end Worker; 
   end Example; 
 
   package body Example is 
      procedure Enqueue_Job  
 (Job : in Job_Description) is 
      begin 
         Queue.Append (Job); 
      end Enqueue_Job; 
 
      protected body Queue is 
         procedure Append  
 (Job : in Job_Description) is 
         begin 
            List.Append (Job); 
            Has_Job := True; 
         end Append; 
 
         entry Get_Next  
 (Job : out Job_Description) 
            when Has_Job is 
         begin 
            Job := List.First_Element; 
            List.Delete_First; 
            Has_Job := not List.Is_Empty; 

         end Get_Next; 
      end Queue; 
 
      task body Worker is 
         Job : Job_Description; 
      begin 
         loop 
            Queue.Get_Next (Job); 
           --  <actually to the job> 
         end loop; 
      end Worker; 
   end Example; 

As you might have guessed, I have 
recently read a lot of material about 
Ravenscar profile, and as far as I can tell 
this example does match the profile, even 
though the original need happens in a 
much more relaxed environment. 

For example, without Ravenscar 
restrictions, the Worker task could easily 
be turned into a task type, and use an 
array of them to implement a pool of 
workers. 

The problem is, how to terminate cleanly 
the worker tasks in a non-Ravenscar 
environment when the main application is 
completed? 

But then, how can a worker task entry be 
used to solve my problem? A protected 
operation cannot call a task entry, because 
it's potentially blocking. The job generator 
cannot call the entry directly, because it 
would block when the task is not ready, 
so I still need a queue between the 
generator and the worker task. 

Alternatively, I could use a special value 
for Job_Description (or a new out 
parameter) to make the worker exit its 
infinite loop, and somehow make the 
protect Queue object aware that the 
master is completed, so that it can signal 
the worker task(s) to complete. But how 
can this be implemented? Since the tasks 
block the finalization of the master, I can't 
rely on a Finalize procedure to notify the 
protected object. 

From: Brad Moore 
<brad.moore@shaw.ca> 

Date: Sun, 18 May 2014 17:05:59 -0600 
Subject: Re: Termination of tasks waiting on 

a protected queue 
Newsgroups: comp.lang.ada 

> [...] so I still need a queue between the 
generator and the worker task. 

A protected entry can however requeue to 
a task entry. 

I was faced with a similar problem in the 
non-Ravenscar task pools in Paraffin. 

I did not want the programmer to have to 
call some protected subprogram to trigger 
the task pool to terminate. I also did not 
want to have to wait for a timeout to 
expire before the application could exit. I 
wanted it to be immediate. 

So in your example, it might look 
something like; 

  



Ada in Context 167  

Ada User Journal Volume 35, Number 3, September 2014 

  package body Example is 
      function Create_Job  
 return Job_Description is 
         Result : Job_Description; 
      begin 
         return Result; 
      end Create_Job; 
 
      procedure Enqueue_Job   
 (Job : in Job_Description) is 
      begin 
         Queue.Append (Job); 
      end Enqueue_Job; 
 
      protected body Queue is 
         entry Append  
 (Job : in Job_Description) is 
         begin 
            if not Idle then 
               requeue Worker.Work_Queued; 
            else 
               List.Append (Job); 
            end if; 
         end Append; 
 
         procedure Get_Next 
  (Job : out Job_Description) is 
         begin 
            Job := List.First_Element; 
            List.Delete_First; 
         end Get_Next; 
 
         function Is_Empty return Boolean is 
         begin 
            return List.Is_Empty; 
         end Is_Empty; 
 
         procedure Worker_Idle is 
         begin 
            Idle := True; 
         end Worker_Idle; 
 
         function Worker_Is_Idle  
 return Boolean is 
         begin 
            return Idle; 
         end Worker_Is_Idle; 
      end Queue; 
 
      task body Worker is 
         Job : Job_Description; 
      begin 
         loop 
            begin 
 
               Queue.Worker_Idle; 
 
               if not Queue.Is_Empty then 
                  Queue.Get_Next (Job); 
               else 
                  select 
                     accept Work_Queued  
         (Next_Job : Job_Description)  
     do 
                        Job := Next_Job; 
                     end Work_Queued; 
                  or 
                     terminate; 
                  end select; 
               end if; 
 
               --  <actually to the job> 

            end; 
         end loop; 
      end Worker; 
   end Example; 

Representation Units? 

From: Georg Bauhaus 
<bauhaus@futureapps.de> 

Date: Wed, 21 May 2014 00:22:08 +0200 
Subject: spec/body/rep (Was: Compilation 

error (GNAT bug?)) 
Newsgroups: comp.lang.ada 

[...] 

What if the "external aspects" went 
elsewhere? For example, in a 
representation unit. (That's a name I 
remember). With representation units, the 
source text proper becomes more 
portable, and more configurable at the 
same time. There is no need to change 
aspects in the source text when switching 
environments or when changing the 
configuration (Linker_Options is one 
example). Just pick a suitable 
representation unit. Declarations also 
become more readable, insofar as they'd 
focus on just the logic, not link names and 
such. 

Representation units can provide an Ada 
version of dependency injection, even 
when injection happens at compile time. 

In fact, GNAT already supports 
"outsourcing" certain aspects with the 
help of project files. Do some of the other 
compilers do that, too? 

Since aspects are a fairly new addition to 
the language, chances are that 
representation units will not generate 
backwards compatibility issues. 

Would representation units help 
producing clear separation of concerns? 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Fri, 23 May 2014 16:21:21 -0500 
Subject: Re: spec/body/rep (Was: 

Compilation error (GNAT bug?)) 
Newsgroups: comp.lang.ada 

[...] 

Huh? A "representation unit" or whatever 
you call it is part of the "source text". You 
can't run the program without it. 

That's the problem with fancy project 
management (no matter how well-
designed) -- it's part of the program (you 
can't build it without it), but it's outside of 
the language definition. (And it would be 
impractical to add it to the language 
definition.) So it causes vendor lock-in. 

> [...] Would representation units help 
producing clear separation of concerns? 

I don't think so, mainly because you 
already have such a capability: constants! 
It's not the presence or absence of an 
aspect that changes, it's the value. So it 
might make sense to have a package 
specifically for the target-specific details 

(many systems do that, including the 
ACATS). 

For instance: 

   package Target_Specific is 
      -- Package for Windows. 
      pragma Linker_Options (...); 
 
      -- Data types: 
      type Largest_Integer is  
            range -2**31 .. 2**31 with Size => 32; 
      type Largest_Modular is  
           mod 2**32 with Size => 32; 
 
      -- Interfacing details for package Blarch: 
      Foo_External_Name :  
 constant String := "..."; 
      Bar_External_Name :  
 constant String := "..."; 
      ... 
   end Target_Specific; 

And then have separate versions of the 
package for the various targets supported. 
I don't see any benefit to creating a new 
kind of unit (with the massive costs that 
would have for compilation systems) just 
to reproduce capabilities that already 
exist. 

(For what's it's worth, I don't believe that 
it makes sense to separate representation 
from other aspects (pun intended) of a 
declaration. All of these things have 
fundamental impacts on the semantics of 
an entity, and trying to deny that (as the 
Ada 83 designers attempted to) just leads 
to a forest of odd restrictions and complex 
rules designed to keep a fiction going 
while still allowing a simple compiler 
design. [The majority of the freezing rules 
come about because of this desire, for 
instance.] And it isn't even a very useful 
fiction. See type Largest_Integer above; if 
we need to give that a different size on 
some other target, we need to change the 
range, too. That's pretty common when 
dealing with representation.[Disclaimer: 
My personal views here may not be held 
by others, even within the ARG.]) 

From: Jean-Pierre Rosen 
<rosen@adalog.fr> 

Date: Tue, 27 May 2014 07:16:56 +0200 
Subject: Re: spec/body/rep (Was: 

Compilation error (GNAT bug?)) 
Newsgroups: comp.lang.ada 

> [...] 

>  package Target_Specific is 

> [...] 

And to ease porting, have a package 
called Target_Specific_Windows, another 
one called Target_Specific_Linux. All the 
users do: 

   with Target_Specific; 

and have the following library-level 
renaming: 

   with Target_Specific_Windows; 
   package Target_Specific renames 
 Target_Specific_Windows; 



168  Ada in Context 

Volume 35, Number 3, September 2014 Ada User Journal 

From: Niklas Holsti 
<niklas.holsti@tidorum.fi> 

Date: Tue, 27 May 2014 09:22:16 +0300 
Subject: Re: spec/body/rep (Was: 

Compilation error (GNAT bug?)) 
Newsgroups: comp.lang.ada 

> [...] 

I don't see what advantage such as a 
library-level renaming gives. If one is 
developing for several platforms, say 
Windows and Linux, there will then be 
two library-level renamings somewhere, 
one as above and the other using 
Target_Specific_Linux, but some 
compiler-specific way is still needed to 
choose which of the library level 
renamings to include in the compilation. 
So one could just as well call both the 
target-specific packages Target_Specific, 
directly, and use the same compiler-
specific way to choose which one to 
compile. For example, I use GNAT's 
ADA_INCLUDE_PATH to choose the 
folder ("linux" or "windows") which 
contains the version of Target_Specific to 
be compiled. 

Would there be some sense in being able 
to specify such library-level renamings as 
configuration pragmas? This might give 
us a standard way to choose component 
versions depending on the configuration 
(leaving as compiler-specific the way to 
select which configuration is to be 
compiled... :-) 

From: Jean-Pierre Rosen 
<rosen@adalog.fr> 

Date: Tue, 27 May 2014 10:54:21 +0200 
Subject: Re: spec/body/rep (Was: 

Compilation error (GNAT bug?)) 
Newsgroups: comp.lang.ada 

> [...] 

The way I do it, both renamings are in the 
same file, one of them commented out. I 
just comment/uncomment the right one at 
the time of build. Not fully automated, but 
easy, and I argue (with the C people) that 
it is hardly more work than changing a 
global variable in a Makefile. 

The point is: one single simple change in 
one file, and your whole application 
switches OSes. The other benefit being 
that you see quite well which parameters 
are for which OS. 

But of course, it all depends on your build 
process, use case, and personal taste... 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Tue, 27 May 2014 10:55:39 +0200 
Subject: Re: spec/body/rep (Was: 

Compilation error (GNAT bug?)) 
Newsgroups: comp.lang.ada 

> [...] 

I have issues with this approach in 
general. The problem is that there is not 
any check that the interfaces of the target-
specific packages are same in the sense 

that all target-independent clients are 
compilable with any "implementation." 

In my projects I, of course, use neither 
pragmas nor renaming. It is too clumsy 
and unmaintainable. I simply put same 
named package into different target-
specific directories, e.g. x86/windows or 
i686/linux and switch them using gpr 
scenario. 

This does not solve the abovementioned 
problem, though. As a possible solution, 
without introducing some huge stuff of 
formal package interfaces, it would be 
enough to be able to switch only the 
private part of the specification and the 
package body, keeping the public part 
same. It would not work with target-
specific constants and conditionally with-
ed packages. 

[...] target-specific packages could be 
considered instances of some virtual 
generic package with target as an actual 
parameter. 

From: Georg Bauhaus 
<bauhaus@futureapps.de> 

Date: Tue, 27 May 2014 17:45:07 +0200 
Subject: Re: spec/body/rep (Was: 

Compilation error (GNAT bug?)) 
Newsgroups: comp.lang.ada 

[...] 

A configuration pragma seems to have the 
property that just one may cover many 
units, whereas library level renamings 
lack this formal connection, and there 
may be many. (Directories, or discipline, 
providing for a more or less formal mode 
of development.) 

When the compiler knows about 
"representation units" (I think Bob Duff 
once mentioned such a thing using this 
name), and the language ties them to (the 
private part of) a unit, then at least 
programmers will have something explicit 
and reliable, issues notwithstanding: 

> [...] The problem is that there is not any 
check that [...] all target-independent 
clients are compilable with any 
"implementation." 

Assuming that a universal expression of 
"compilability" in any configuration is 
nice, but likely impossible, [...] 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Tue, 27 May 2014 17:57:38 -0500 
Subject: Re: spec/body/rep (Was: 

Compilation error (GNAT bug?)) 
Newsgroups: comp.lang.ada 

"G.B." <rm-dash-bau-
haus@dash.futureapps.de> wrote in 
message  

news:5384b302$0$6663$9b4e6d93@new
sspool3.arcor-online.net... 

... 

> When the compiler knows about 
"representation units" [...] 

But this solves nothing. There has to be 
some implementation-defined (or project-
defined) way of selecting which 
"representation unit" is selected for a 
particular compilation. And that's the 
problem, with any of these solutions. (I 
agree with Dmitry about the problem of 
keeping the versions of the packages in 
sync. I believe this has to be solved by the 
version-control; one of the reasons that I 
find typical VCs useless is that they 
refuse to solve that problem and solve 
other unlikely problems instead.) 

In any case, adding a new kind of unit 
would require sweeping changes to the 
language standard and to 
implementations. It would require a pretty 
significant problem to even consider such 
a change. We did in fact consider that for 
the mutually-dependent package problem, 
but ultimately decided to avoid it in favor 
of the "virtual" limited view solution. If 
we're unwilling to use such a solution to 
solve a critical problem, I can hardly 
imagine using it to solve a problem that's 
not hard to solve with some tools (as with 
Dmitry's project manager solution) or 
discipline (as in J-P's comment in or out 
of a library-level renames). 

Style: Discriminants or 
Components? 

From: Edward R. Fish 
<onewingedshark@gmail.com> 

Date: Mon, 02 Jun 2014 20:44:24 -0600 
Subject: Style Question: normal record vs 

discriminated null-record. 
Newsgroups: comp.lang.ada 

Ok, given some sort of alert-system 
(meaning there shouldn't be any/much in 
the way of value manipulation of those 
objects) is it preferable to use a 
discriminated null-record or a record with 
normal components? 

   type Grievousness is (Warning, Error); 
   type Circumstance is (Expired_Data, 
 Bad_Request, Malformed_Data); 
 
   type Alert_1 (Severity  : Grievousness; 
                         Condition :  Circumstance) 
 is null record; 
 
   type Alert_2 is 
      record 
         Severity  : Grievousness; 
         Condition : Circumstance; 
      end record; 

From: Jean-Pierre Rosen 
<rosen@adalog.fr> 

Date: Tue, 03 Jun 2014 06:38:37 +0200 
Subject: Re: Style Question: normal record 

vs discriminated null-record. 
Newsgroups: comp.lang.ada 

> [...] 

Depends how you perceive your data. 
Discriminants are intended to define some 
kind of subclasses of your type, and can 
be used to parameterized inner 



Ada in Context 169  

Ada User Journal Volume 35, Number 3, September 2014 

components. Some criteria for you to 
chose: 

- You can define subtypes according to 
certain values of discriminants. 

- Discriminants are always initialized. 

- Discriminants cannot be changed after 
the declaration. 

- You can have a private type whose 
discriminants are visible (and 
components private) 

From: Edward R. Fish 
<onewingedshark@gmail.com> 

Date: Tue, 03 Jun 2014 00:20:04 -0600 
Subject: Re: Style Question: normal record 

vs discriminated null-record. 
Newsgroups: comp.lang.ada 

> Depends how you perceive your data. 
[...] 

Right -- the particular situation [alerts] 
seems like a good fit because of these 
qualities: 

(1) Subtypes for critical failures can be 
defines and quick/clear 
disambiguation/determination in 
handling [an unconstrained type] via in'. 

(2) Which means, ideally that the point 
that generates the alert always generates 
correctly. 

(3) That they cannot be altered means that 
to 'change' the message is to handle it 
and generate a new one -- kind of like 
"renaming"/re-raising exceptions. 

This is what makes it seem like a good fit, 
but I was still wondering what "normal 
Ada programmers" thought about it. 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Tue, 3 Jun 2014 09:19:42 +0200 
Subject: Re: Style Question: normal record 

vs discriminated null-record. 
Newsgroups: comp.lang.ada 

> [...] 

My rule of thumb - discriminants 
whenever possible, components as a 
fallback. 

I wish Ada allowed discriminants of any 
type. 

Identifying Solutions in 
Recursive Solvers 

From: Mike Hopkins <postmaster@ada-
augusta.demon.co.uk> 

Date: Thu, 5 Jun 2014 18:49:01 +0100 
Subject: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

Purely for my own amusement I have 
written a Sudoku puzzle solver. The 
program is written In Ada. However 
being in my ninth decade I am firmly 
stuck in an Ada95 time-warp. As a 
general rule, Sudoku puzzles rated as 
'gentle' or 'moderate' can be solved by 
systematic elimination of alternatives. But 
these relatively simple deterministic 

methods can be expected to fail when 
confronted by a puzzle rated as tough' or a 
'diabolical'. When this happens in my 
program, trial and error is invoked. It is 
rare that more than four or five trial and 
error passes are required. 

The enclosing subprogram is called 
recursively by the trial and error process. 
Each recursive call adds a pair of nodes 
onto an implicit but invisible binary tree 
(the run-time call stack). What I was 
hoping was that on detected that the 
solution has been found, it would be 
possible to return to, and exit from, the 
main program by simply exiting each 
recursive call in turn in order climb back 
up the recursion ladder. However, each 
step of that climb is a re-entry into the 
caller where there may be remaining 
unfinished business. The solution having 
been found, that unfinished business is 
now known to be no more than garbage. 
Nevertheless an elegant solution might be 
expected to clear garbage before that 
caller re-enters its own caller. 

The only solution that I can see is to jump 
straight out of the tree. But that seems to 
lack elegance. The jump is made by 
raising an exception which has been 
declared in, and is handled by, the 
enclosing subprogram. The exception is 
'silent' because the handler contains a null 
statement. 

I fear that perhaps I am missing 
something but have no idea what. 

From: Adam Beneschan 
<adam@irvine.com> 

Date: Thu, 5 Jun 2014 11:30:29 -0700 
Subject: Re: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

> [...] 

Without seeing an actual program or any 
code at all, I can't really tell, but ... when a 
caller calls itself recursively, isn't there 
either a function result or an OUT 
parameter that allows the callee to tell the 
caller whether it has succeeded? In which 
case the caller simply exits, and returns to 
*its* caller passing back the correct 
answer and if necessary a flag indicating 
that it's succeeded. I have no idea whether 
I've identified the problem correctly, but 
it's the best I can do without seeing any 
code. Anyway, I think that's the general 
approach to handling backtracking 
problems. 

From: Jean-Pierre Rosen 
<rosen@adalog.fr> 

Date: Thu, 05 Jun 2014 21:00:28 +0200 
Subject: Re: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

> [...] The jump is made by raising an 
exception which has been declared in, 
and is handled by, the enclosing 
subprogram. The exception is 'silent' 
because the handler contains a null 
statement. [...] 

[...] I think exceptions are perfectly 
appropriate for that: they allow to unwind 
the call stack directly up to the point 
where you want to catch it by providing a 
handler. 

I know that not everybody likes this idea, 
but to me exceptions are a powerful 
programming structure, not limited to 
handling errors. 

From: Jean-Pierre Rosen 
<rosen@adalog.fr> 

Date: Thu, 05 Jun 2014 21:43:07 +0200 
Subject: Re: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

> As the name indicates, exceptions are 
for exceptional situations. Finding a 
solution doesn't seem exceptional for a 
solver. 

It IS an exceptional condition! 

An exceptional condition is a condition 
that makes it impossible or unnecessary to 
continue with the normal algorithm, and 
requires suddenly a different behaviour. 
Finding the solution is precisely that. 
(although it is not an error or an abnormal 
condition, which is precisely the point I 
made). 

From: Robert A Duff 
<bobduff@shell01.TheWorld.com> 

Date: Thu, 05 Jun 2014 19:12:55 -0400 
Subject: Re: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

> [...] 

I'm with J-P here. There are cases where 
exceptions can reasonably be used for 
not-so-exceptional cases. Maybe the OP's 
Sudoku solver is one such -- I haven't 
seen the code, so I don't know. 

> I know that not everybody likes this 
idea, ... 

That's somewhat of an understatement; 
many people are quite passionate about it, 
and say things like "Never use exceptions 
for control flow". 

But exceptions ARE control flow. When 
an exception is raised, a transfer of 
control to the handler happens (or to the 
end of the program if unhandled). It is 
impossible to use exceptions other than 
for control flow! 

Others add the word "normal": "Don't use 
exceptions for normal control flow". 
Unfortunately, it's unclear what "normal" 
means. 

> ...but to me exceptions are a powerful 
programming structure, not limited to 
handling errors. 

I agree. IMHO, the purpose of exceptions 
is to deal with the case where one piece of 
code detects an error (or maybe just an 
unusual situation), and a different piece of 
code knows what to do about it (or even 
to decide it's not an error after all). 

"end of file" might be considered an error 
by the file-reading procedure, but might 
be considered perfectly normal by the 



170  Ada in Context 

Volume 35, Number 3, September 2014 Ada User Journal 

caller. So I don't think it makes sense to 
say "exceptions are ONLY for errors" -- 
different pieces of code have different 
views on whether it's an error. 

In any case, if you need to jump out of 
many layers of (recursive?) calls, an 
exception might well be the best way. 
Checking error codes at each level might 
be verbose and error prone. 

From: Adam Beneschan 
<adam@irvine.com> 

Date: Thu, 5 Jun 2014 16:39:47 -0700 
Subject: Re: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

> In any case, if you need to jump out of 
many layers of (recursive?) calls, an 
exception might well be the best way. 
Checking error codes at each level 
might be verbose and error prone. 

I don't like it. But if you do something 
like this, I'd suggest that this use be 
limited to an exception that you declare 
inside a subprogram, so that you raise and 
handle it only inside that subprogram or 
nested subprograms. Otherwise, someone 
could look at a subprogram that is called 
in between, and never guess that the 
subprogram might not complete normally 
(A calls B, B calls C, C raises an 
exception that gets passed over B's head 
back to A; a programmer trying to read B 
might not suspect that B may not 
complete in a non-error situation.) In 
other words, keep such usages as 
localized as possible. 

Another thing to keep in mind is that 
exceptions cause overhead. I've seen 
implementations that have to do some 
stuff any time a subprogram or a block 
with an exception handler is entered. I've 
seen other implementations that, in order 
to eliminate this overhead in "normal" 
(non-exception) cases, perform table 
lookups on each address in the stack until 
it finds a handler; this is a relatively 
expensive operation that those 
implementations have decided is justified 
because exceptions aren't supposed to 
happen in "normal" cases. Whether this 
overhead is less than the expense of going 
through a number of returns, I don't 
know--I'm sure it depends on various 
factors. But efficiency should not be a 
reason to use exceptions instead of 
straight returns, because it may well make 
things slower. 

From: Jean-Pierre Rosen 
<rosen@adalog.fr> 

Date: Sat, 07 Jun 2014 08:03:23 +0200 
Subject: Re: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

> [...] 

The whole thing boils down to the 
difference between "normal" and 
"exceptional". FWIW, here is how I 
explain it in my courses: 

A program is basically looping (if it were 
to do things just once, it would be faster 

by hand than writing a program). The 
loop is the general case, the "rule". 
Sometimes, you encounter a condition 
that cannot be handled by the normal 
"rule" and requires a different treatment: 
it is an "exception" to the rule. That's why 
it's called exception, and not trap, 
abnormality, failure... 

From: Brad Moore 
<brad.moore@shaw.ca> 

Date: Fri, 06 Jun 2014 08:13:30 -0600 
Subject: Re: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

> [...] efficiency should not be a reason to 
use exceptions instead of straight 
returns, [...] 

Another point to keep in mind is that 
although the exception mechanism may or 
may not be technically faster than the 
normal recursion exit, depending on 
implementation, it may not be noticeably 
faster. A guideline I try to follow 
generally is to write the code naturally 
and simply, and let the compiler worry 
about performance, and then only look at 
using different constructs if there is still a 
performance problem that needs to be 
addressed. 

I have actually written a Sudoku solver, 
that executes in Parallel. My approach 
was to just let the recursion unwind 
naturally. 

In my parallelism framework, workers 
tasks catch and handle exceptions, where 
if exceptions are raised in multiple worker 
threads, only one of those exceptions is 
saved, and gets reraised in the calling 
thread before returning from the parallel 
call. 

Here exceptions are generally used to 
report failures, but could probably be used 
to report a solution in this case. However 
if a different exception occurs in a worker 
thread (such as a constraint error), that 
may or may not be the exception that ends 
up getting reported. 

I suspect that trying to use exceptions to 
report solutions for Sudoku, would not 
noticeably improve performance, as most 
of the time is spent trying to find a 
solution, not report it. 

My Sudoku solver uses a brute force 
approach. (I was mostly interested in 
trying out the parallelism). I believe the 
performance could be improved 
significantly by updating local cells to 
maintain a list of possible values, thus 
ruling out trial values much more sooner. 
I would think such an approach would 
improve performance far more than using 
exceptions to exit recursion, so that would 
be where I would suggest programming 
effort be spent. 

I have several versions of the solver: 

- A sequential version, 

- A load balancing version, 

- A load balancing version that adds some 
stack safety (prevents stack overflow) 

[Source text for sequential Sudoku solver 
not included here. --sparre] 

From: Mike Hopkins <postmaster@ada-
augusta.demon.co.uk> 

Date: Thu, 5 Jun 2014 21:03:10 +0100 
Subject: Re: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

> [...] 

Thank you for giving me an alternative 
angle of view. 

The trial and error process is optimised by 
preselection of a matching pair of cells, 
they match in the sharing of a common 
pair of candidate solutions. By analogy, it 
is a choice of left or right. On average, 
50% of trials will have explored both 
possibilities in which the first will have 
been wrong and the second will have 
proved to be correct. In the other 50%, the 
first choice will have been correct so the 
second choice is left dangling and 
unvisited.. 

I chose, perhaps wrongly, that the 
complete grid of 81 cells is passed down 
the recursion tree (as IN OUT). At each 
level, the grid is further completed as the 
full gamut of deterministic algorithms is 
exercised before either a lack of further 
success prompts a further trial and error 
attempt or a positive failure forces a 
return of up the tree. Thus, a return of 
control to a caller is taken as a positive 
signal of failure. But, currently, there is 
no equivalent positive indicator of 
success. 

I am beginning to think that a three-state 
flag is required (NO, MAYBE, YES). 
YES is not known until the 81st cell is 
solved. The job is now complete and 
control must now be passed back up the 
tree. What is different is that a YES 
would be a tangible way of contradicting 
the previous assumption that a return of 
control means failure. 

From: Adam Beneschan 
<adam@irvine.com> 

Date: Thu, 5 Jun 2014 13:40:57 -0700 
Subject: Re: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

> [...] a return of control to a caller is 
taken as a positive signal of failure. [...] 

My own experience with problems of this 
sort has been that passing the entire 
problem-state to the next level as an IN 
OUT parameter (or the equivalent, in 
other languages) makes life more 
difficult. The callee needs to be able to 
make changes to the problem-state in 
order to try different possibilities; the 
caller needs the problem-state to stay the 
same, so that if the callee returns without 
finding a solution, the caller can try the 
next thing on the problem-state it was 
given as an input parameter. The last time 
I wrote a Sudoku solver, I therefore made 
sure the grid I passed to recursive calls 



Ada in Context 171  

Ada User Journal Volume 35, Number 3, September 2014 

was a (modified) copy of the input 
parameter, not a reference to the same 
parameter. For some kinds of problems, 
this might be unfeasible; but an array of 
81 integers is pretty easy to handle. By 
the way, the program found answers 
almost instantaneously, and it used only 
backtracking--no attempt to try to deal 
with simple cases the way I would 
approach it if solving by hand. So while it 
might be interesting (and instructive) to 
try to write a program that will work 
optimally, in practice it isn't necessary for 
this particular game. 

Good luck. Backtracking programs aren't 
easy to write correctly. 

From: Stefan Lucks 
 <stefan.lucks@uni-weimar.de> 

Date: Fri, 6 Jun 2014 11:10:43 +0200 
Subject: Re: OT: A bit of Sudoku 
Newsgroups: comp.lang.ada 

> My own experience with problems of 
this sort has been that passing the entire 
problem-state to the next level as an IN 
OUT parameter (or the equivalent, in 
other languages) makes life more 
difficult. 

It really depends on the problem you are 
trying to solve. 

> The callee needs to be able to make 
changes to the problem-state in order to 
try different possibilities; the caller 
needs the problem-state to stay the 
same, so that if the callee returns 
without finding a solution, the caller 
can try the next thing on the problem-
state it was given as an input parameter. 

Right. So the callee *must* undo the 
change(s) it made, before returning 
without a solution. If undoing is that 
trivial, then an in-out parameter (or 
"global" variable declared in some outer 
scope) for the state is reasonable. It may 
even be useful to transfer a solution found 
back to the callee (just don't undo the 
changes you made ...). 

As I understand for the Sudoku case, the 
entire change is to assign a digit to an 
empty cell, and undoing means to turn the 
cell's state back to empty. If I am right, 
undoing changes is very easy, indeed! 

> The last time I wrote a Sudoku solver, 

Well, I have never written a Sudoku 
solver, but I did apply the above approach 
to other backtracking problems, see, e.g., 
<http://rosettacode.org/wiki/Knight%27s_
tour#Ada>. 

BTW, a Sudoku-solver for Ada is still 
missing at Rosetta Code 
http://rosettacode.org/wiki/Sudoku. 

Self-referential Types 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Fri, 1 Aug 2014 14:44:57 -0500 
Subject: Re: We should introduce aliased 

types 
Newsgroups: comp.lang.ada 

> [...] Every value of an aliased type 
should be aliased [...] 

You do know that this is already true of 
almost all limited types (without any 
declaration)? 

I.e. 

    type T; 
    type Ptr_Holder (D : access T) is  
 limited null record; 
    type T is limited record 
       Ptr : Ptr_Holder (T'Access); 
    end record; 

is legal Ada. 

It's not allowed for non-limited types 
because assigning the object would break 
the self-referential link (it would point to 
the wrong object afterwards). 

And you can't directly declare a 
component as 

    Ptr : access T := T'Access; 

because of accessibility; the problem isn't 
whether T is aliased or not. “access T” is 
a library-level type, while T'Access might 
refer to a local object, so the access type 
could outlive the object (in particular, this 
component could be copied into an object 
of another library-level type), and that's 
not allowed. 

[...] 

Default Values 

From: Jacob Sparre Andersen 
<jacob@jacob-sparre.dk> 

Date: Sun, 03 Aug 2014 18:07:35 +0200 
Subject: Default values (Was: Quick 

question regarding limited type return 
syntax) 

Newsgroups: comp.lang.ada 

>> LRM 3.5(56.3/3) 

> It's only for scalar types though. 

That's because the one for arrays is named 
Default_Component_Value - and record 
components can have their default values 
declared without aspects. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Mon, 4 Aug 2014 16:29:39 -0500 
Subject: Re: Default values (Was: Quick 

question regarding limited type return 
syntax) 

Newsgroups: comp.lang.ada 

> [...] 

And access types are already default 
initialized to null, protected type 
components are like record components, 
and there's nothing visible in a task that 
needs initialization. 

It's not a perfect solution in that you can't 
change the default initialization of an 
access type nor of an array type with non-
scalar components, but it ensures that it is 
possible to provide (or have one by 
definition) a real default initialization for 
every type.



172   

Volume 35, Number 3, September 2014 Ada User Journal 

Conference Calendar 
Dirk Craeynest 
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be 
 

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on 
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific 
Ada focus. Items marked with  denote events with close relation to Ada. 

The information in this section is extracted from the on-line Conferences and events for the international Ada community at: 
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full 
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly. 

 

2014 
 

October 01-02 8th International Parallel Tools Workshop, Stuttgart, Germany. Topics include: tools for debugging 
and performance tuning of parallel applications. 

October 02-03 14th International Conference on Quality Software (QSIC'2014), Dallas, Texas, USA. Topics 
include: software testing, software quality (review, inspection and walkthrough, reliability, safety and 
security, ...), static and dynamic analysis, validation and verification, economics of software quality, 
formal methods, component software and reuse, component-based systems, cyber-physical systems, 
distributed systems, embedded systems, safety critical systems, etc. 

October 06-09 33rd International Symposium on Reliable Distributed Systems (SRDS'2014), Nara, Japan. Topics 
include: distributed objects and middleware systems, experimental or analytical evaluations of 
dependable distributed systems, formal methods and foundations for dependable distributed computing, 
high-assurance and safety-critical distributed system design and evaluation, secure and trusted 
distributed systems, etc. 

October 12-15 20th International Symposium on Distributed Computing (DISC'2014), Austin, Texas, USA. Topics 
include: theory, design, implementation, modeling, analysis, or application of distributed systems and 
networks; concurrency, synchronization; fault tolerance, reliability, availability; specification, 
verification, and testing: tools, methodologies; etc. 

October 12-16 9th International Conference on Software Engineering Advances (ICSEA'2014), Nice, France. 
Topics include: advances in fundamentals for software development; advanced mechanisms for 
software development; advanced design tools for developing software; software security, privacy, 
safeness; specialized software advanced applications; open source software; agile software techniques; 
software deployment and maintenance; software engineering techniques, metrics, and formalisms; 
software economics, adoption, and education; improving productivity in research on software 
engineering; etc. 

October 15-16 6th International Workshop on Software Engineering for Resilient Systems (SERENE'2014), 
Budapest, Hungary. Topics include: requirements engineering & re-engineering for resilience; 
frameworks, patterns and software architectures for resilience; verification, validation and evaluation of 
resilience; empirical studies in the domain of resilient systems; etc. 

 Oct 18-21 ACM SIGAda Annual International Conference on High Integrity Language 
Technology (HILT'2014), Portland, Oregon, USA. Sponsored by ACM SIGAda, in 
cooperation with Ada-Europe and the Ada Resource Association. Co-located with 
SPLASH 2014. 

 October 20-24 ACM Conference on Systems, Programming, Languages, and Applications: Software for 
Humanity (SPLASH'2014), Portland, Oregon, USA. Topics include: all aspects of software 
construction and delivery, at the intersection of programming, languages, and software engineering.

 



Conference Calendar 173  

Ada User Journal Volume 35, Number 3, September 2014 

October 20 21st International Workshop on Foundations of Object-Oriented Languages 
(FOOL'2014). Topics include: language semantics, type systems, program verification, 
concurrent and distributed languages, language-based security issues, etc. 

 October 20 5th Annual Workshop on Evaluation and Usability of Programming Languages and 
Tools (PLATEAU'2014). Topics include: methods, metrics and techniques for 
evaluating the usability of languages and language tools, such as empirical studies of 
programming languages, methodologies and philosophies behind language and tool 
evaluation, software design metrics and their relations to the underlying language, user 
studies of language features and software engineering tools, critical comparisons of 
programming paradigms, tools to support evaluating programming languages, etc. 

 October 20 1st Workshop on Software Engineering for Parallel Systems (SEPS'2014). Topics 
include: parallel design patterns, modeling techniques for parallel software, parallel 
programming models and paradigms, refactoring and reengineering for parallelism, 
testing and debugging of parallel applications, tools and environments for parallel 
software development, case studies and experience reports, etc. 

October 21-24 14th International Conference on Formal Methods in Computer-Aided Design (FMCAD'2014), 
Lausanne, Switzerland. Co-located with MEMOCODE'2014 and DIFTS'2014. Topics include: theory 
and application of formal methods in computer-aided design and verification of computer systems and 
related topics; synthesis and compilation for computer system descriptions, modeling, specification, and 
implementation languages; model-based design; correct-by-construction methods; experience with the 
application of formal and semi-formal methods to industrial-scale designs; etc. 

November 03-06 25th IEEE International Symposium on Software Reliability Engineering (ISSRE'2014), Naples, 
Italy. Topics include: reliability, availability, and safety of software systems; validation, verification, 
testing and dynamic analysis; software quality and productivity; software security; dependability, 
survivability, and resilience of software systems; open source software reliability engineering; 
supporting tools and automation; industry best practices; empirical studies; etc. 

November 03-07 16th International Conference on Formal Engineering Methods (ICFEM'2014), Luxembourg, 
Luxembourg. Topics include: abstraction and refinement; program analysis; software verification; 
formal methods for software safety, security, reliability and dependability; tool development, integration 
and experiments involving verified systems; formal methods used in certifying products under 
international standards; formal model-based development and code generation; etc. 

November 04-06 14th International Conference on Software Process Improvement and Capability dEtermination 
(SPICE'2014), Vilnius, Lithuania. Topics include: process assessment, improvement and risk 
determination in areas of application such as automotive systems and software, aerospace systems and 
software, medical device systems and software, safety-related systems and software, financial 
institutions and banks, small and very small enterprises, etc. 

November 16-21 27th International Conference for High Performance Computing, Networking, Storage and 
Analysis (SC'2014), New Orleans, Louisiana, USA. Topics include: parallel algorithms, applications, 
distributed computing, performance, programming systems, system software, state-of-the-practice, etc. 

November 16-22 22nd ACM SIGSOFT International Symposium on the Foundations of Software Engineering 
(FSE'2014), Hong Kong, China. Topics include: architecture and design; components, services, and 
middleware; distributed, parallel, and concurrent software; embedded and real-time software; formal 
methods; model-driven software engineering; program analysis; reverse engineering; safety-critical 
systems; scientific computing; software engineering education; software evolution and maintenance; 
software reliability and quality; specification and verification; tools and development environments; etc. 

 Nov 16-17 3rd International Conference on Multicore Software Engineering, Performance, and 
Tools (MUSEPAT'2014). Topics include: software engineering for multicore (CPU or 
GPU) and heterogeneous systems; specification, modeling and design of multicore 
systems; programming models, languages, compiler techniques and development tools 
for multicore; parallel and distributed testing and debugging (PADTAD); software 
maintenance and evolution of multicore systems; performance tuning and optimization 
of multicore; domain- and platform-specific multicore software issues in scientific 
computing, embedded and mobile systems. 



174  Conference Calendar 

Volume 35, Number 3, September 2014 Ada User Journal 

November 17-19 12th Asian Symposium on Programming Languages and Systems (APLAS'2014), Singapore. Topics 
include: foundational and practical issues in programming languages and systems, such as semantics, 
design of languages and type systems, domain-specific languages, compilers, interpreters, abstract 
machines, program analysis, verification, model-checking, software security, concurrency and 
parallelism, tools and environments for programming and implementation, etc. 

November 27-28 European Conference Software Engineering Education (ECSEE'2014), Seeon Monastery, Germany. 
Topics include: new methods, techniques, best practices, and experiences in SE education; illustrative 
examples to highlight SE topics in education; tools for SE education, both commercial and public 
domain; etc. 

December 01-04 21st Asia-Pacific Software Engineering Conference (APSEC'2014), Jeju Island, Korea. Topics 
include: embedded real-time systems; formal methods; SE environments and tools; security, reliability, 
and privacy; software engineering methods; software maintenance and evolution; software process and 
standards; testing, verification, and validation; etc. 

December 08-12 15th ACM/IFIP/USENIX International Middleware Conference (Middleware'2014), Bordeaux, 
France. Topics include: design, implementation, deployment, and evaluation of distributed system 
platforms and architectures for computing, storage, and communication environments, including 
reliability and fault-tolerance; scalability and performance; programming frameworks, parallel 
programming, and design methodologies for middleware; methodologies and tools for middleware 
design, implementation, verification, and evaluation; etc. 

 December 09-11 15th International Conference on Parallel and Distributed Computing, Applications, and 
Techniques (PDCAT'2014), Hong Kong. Topics include: all areas of parallel and distributed 
computing; reliability and fault-tolerance, formal methods and programming languages, software tools 
and environments, parallelizing compilers, component-based and OO technology, parallel/distributed 
algorithms, task mapping and job scheduling, high-performance scientific computing, etc. 

December 12 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day! 

December 10-12 15th International Conference on Product Focused Software Development and Process 
Improvement (PROFES'2014), Helsinki, Finland. Topics include: software engineering techniques, 
methods, and technologies for product-focused software development and process improvement as well 
as their practical application in an industrial setting. Deadline for submissions: November 3, 2014 
(posters). 

 December 16-19 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2014), Hsinchu, 
Taiwan. Topics include: parallel and distributed applications and algorithms, middleware, multi-core 
and multithreaded architectures, scheduling, security and privacy, dependable and trustworthy 
computing and systems, real-time systems, cyber-physical systems, embedded systems, etc. 

December 17-20 21st IEEE International Conference on High Performance Computing (HiPC'2014), Goa, India. 
Topics include: parallel and distributed algorithms/systems, parallel languages and programming 
environments, hybrid parallel programming with GPUs and accelerators, scheduling, resilient/fault-
tolerant algorithms and systems, scientific/engineering/commercial applications, compiler technologies 
for high-performance computing, software support, etc. Deadline for early registration: November 14, 
2014. 

2015 
 

January 04-06 14th International Conference on Software Reuse (ICSR'2015), Miami, Florida, USA. Topics 
include: domain-specific languages; COTS-based development and reuse of open source assets; 
software product line techniques; generative development, model-driven development; software 
composition and modularization; software evolution and reuse, and reengineering for reuse; quality 
assurance for software reuse, such as testing and verification; reuse of non-code artifacts (process, 
experience, etc.); transition to software reuse and industrial experience with reuse; etc. 

January 08-10 16th IEEE International Symposium on High Assurance Systems Engineering (HASE'2015), 
Daytona Beach, Florida, USA. Topics include: tools and techniques used to design and construct 
systems that, in addition to meeting their functional objectives, are safe, secure, and reliable. 



Conference Calendar 175  

Ada User Journal Volume 35, Number 3, September 2014 

January 13-14 POPL2015 - ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation 
(PEPM'2015), Mumbai, India. Topics include: program and model manipulation techniques (such as: 
partial evaluation, slicing, symbolic execution, refactoring, ...); program analysis techniques that are 
used to drive program/model manipulation (such as: abstract interpretation, termination checking, type 
systems, ...); techniques that treat programs/models as data objects (including: metaprogramming, 
generative programming, embedded domain-specific languages, model-driven program generation and 
transformation, ...); etc. Application of the above techniques including case studies of program 
manipulation in real-world (industrial, open-source) projects and software development processes, 
descriptions of robust tools capable of effectively handling realistic applications, benchmarking. 

January 19-21 10th International Conference on High Performance and Embedded Architectures and Compilers 
(HiPEAC'2015), Amsterdam, the Netherlands. Topics include: computer architecture, programming 
models, compilers and operating systems for embedded and general-purpose systems; parallel, multi-
core and heterogeneous systems; reliability and real-time support in processors, compilers and run-time 
systems; architectural and run-time support for programming languages; programming models, 
frameworks and environments for exploiting parallelism; compiler techniques; etc. 

March 04-06 7th International Symposium on Engineering Secure Software and Systems (ESSoS'2015), Milan, 
Italy. Topics include: automated techniques for vulnerability discovery and analysis; programming 
paradigms, models, and domain-specific languages for security; verification techniques for security 
properties; security by design; static and dynamic code analysis for security; processes for the 
development of secure software and systems; etc. 

March 04-06 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Computing 
(PDP'2015), Turku, Finland. Topics include: embedded parallel and distributed systems, multi- and 
many-core systems, programming languages and environments, runtime support systems, performance 
prediction and analysis, shared-memory and message-passing systems, dependability and survivability, 
real-time distributed applications, etc. 

March 09-13 Design, Automation and Test in Europe Conference (DATE'2015), Grenoble, France. Topics 
include: real-time programming languages and software; formal models for real-time systems; worst 
case execution time analysis; tools and design methods for real-time, networked and dependable 
systems; dependable systems including safety and criticality; software for safety critical systems; 
compilers for embedded multi-core, heterogeneous, GPU, reconfigurable, or FPGA platforms; certified 
compilers; verification techniques for embedded systems ranging from simulation, testing, model-
checking, SAT and SMT-based reasoning, compositional analysis and analytical methods; theories, 
languages and tools supporting model-based design flows covering software, control and physical 
components; modeling, design, architecture, optimization, and analysis of Cyber-Physical Systems 
(CPS); case studies in CPS ranging from automotive systems, and avionics, to smart buildings and smart 
grids; etc. 

March 16-19 14th International Conference on Modularity (Modularity'2015), Ft. Collins, Colorado, USA. Topics 
include: varieties of modularity (generative programming, aspect orientation, software product lines, 
components, ...); programming languages (support for modular abstraction in: language design; 
verification, specification, and static program analysis; compilation, interpretation, and runtime support; 
formal languages; ...); software design and engineering (evolution, empirical studies of existing 
software, testing and verification, composition, methodologies, ...); tools (refactoring; evolution and 
reverse engineering; support for new language constructs, ...); applications (distributed and concurrent 
systems; middleware; cyber-physical systems; ...); complex systems; composition; etc. Deadline for 
submissions: October 3, 2014 (Modularity Visions track abstracts), October 10, 2014 (research papers 
round 2, Modularity Visions track papers). 

 March 24-27 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS'2015), Porto, 
Portugal. Focus: "reconciling parallelism and predictability in mixed-critical systems". Topics include: 
models and tools for multi-/many-core systems including but not limited to programming models, 
runtime systems, middleware, and verification; design, methods, and hardware and software 
architectures for mixed-critical systems; architectures and design methods/tools for robust, fault-
tolerant, real-time embedded systems; etc. Deadline for submissions: October 6, 2014 (papers), 
November 3, 2014 (workshops, tutorials). 

April 11-18 18th European Joint Conferences on Theory and Practice of Software (ETAPS'2015), London, UK. 
Events include: CC (International Conference on Compiler Construction), ESOP (European Symposium 



176  Conference Calendar 

Volume 35, Number 3, September 2014 Ada User Journal 

on Programming), FASE (Fundamental Approaches to Software Engineering), FOSSACS (Foundations 
of Software Science and Computation Structures), POST (Principles of Security and Trust), TACAS 
(Tools and Algorithms for the Construction and Analysis of Systems). Deadline for submissions: 
October 10, 2014 (abstracts), October 17, 2014 (full papers). 

April 13-17 30th ACM Symposium on Applied Computing (SAC'2015), Salamanca, Spain. 

 April 13-17 Track on Programming Languages (PL'2015). Topics include: compiling techniques, 
domain-specific languages, formal semantics and syntax, garbage collection, language 
design and implementation, languages for modeling, model-driven development, new 
programming language ideas and concepts, practical experiences with programming 
languages, program analysis and verification, programming languages from all 
paradigms, etc. 

 April 13-17 Track on Object-Oriented Programming Languages and Systems (OOPS'2015). 
Topics include: aspects and components, code generation and optimization, distribution 
and concurrency, formal verification, integration with other paradigms, software 
evolution, language design and implementation, modular and generic programming, 
secure and dependable software, static analysis, testing and debugging, type systems, 
etc. 

 April 13-17 Track on Software Engineering (SE'2015). Topics include: software architecture, and 
software design patterns; maintenance and reverse engineering; quality assurance; 
verification, validation, testing, and analysis; formal methods and theories; component-
based development and reuse; safety, security, and risk management; dependability and 
reliability; empirical studies, and industrial best practices; applications and tools; etc. 

April 13-17 Track on Programming for Separation of Concerns (PSC'2015). Topics include: 
software reuse and evolution of legacy systems; consistency, integrity and security; 
generative approaches; language support for aspect-oriented and SoC systems; etc. 

April 13-17 8th IEEE International Conference on Software Testing, Verification and Validation (ICST'2015), 
Graz, Austria. Deadline for submissions: October 6, 2014 (workshops), October 24, 2014 (research 
papers), January 16, 2015 (Ph.D. Symposium), February 16, 2015 (Testing Tools track), February 23, 
2015 (Testing in Practice papers). 

 April 20-24 17th International Real-Time Ada Workshop (IRTAW'2015), Vermont, New York, 
USA. In cooperation with AdaCore and Ada-Europe. Deadline for submissions: 
February 4, 2015 (position papers). 

April 22-24 XVIII Iberoamerican Conference on Software Engineering (CIbSE'2015), Lima, Peru. Topics 
include: languages, methods, processes, and tools; reverse engineering and software system 
modernization; software evolution and maintenance; model-driven engineering; proof, verification, and 
validation; quality, measurement, and assessment of products and processes; formal methods applied to 
software engineering; software product families and variability; software reuse; reports on benefits 
derived from using specific software technologies; quality measurement; experience management; 
systematic reviews and evidence-based software engineering; industrial experience and case studies; etc. 
Deadline for submissions: December 8, 2014 (abstracts), December 15, 2014 (papers). 

April 27-29 7th NASA Formal Methods Symposium (NFM'2015), Pasadena, California, USA. Topics include: 
identifying challenges and providing solutions to achieving assurance in mission- and safety-critical 
systems, model checking, static analysis, modeling and specification formalisms, model-based 
development, applications of formal methods to aerospace systems and cyber-physical systems, etc. 
Deadline for submissions: November 10, 2014 (papers). 

April 29-30 10th International Conference on Evaluation of Novel Approaches to Software Engineering 
(ENASE'2015), Barcelona, Spain. Topics include: comparing novel approaches with established 
traditional practices and evaluating them against software quality criteria, software process 
improvement, model-driven engineering, application integration technologies, software quality 
management, software change and configuration management, geographically distributed software 
development environments, formal methods, component-based software engineering and commercial-
off-the-shelf (COTS) systems, software and systems development methodologies, etc. Deadline for 
submissions: November 19, 2014 (papers), January 9, 2015 (position papers). 



Conference Calendar 177  

Ada User Journal Volume 35, Number 3, September 2014 

 May 16-24 37th International Conference on Software Engineering (ICSE'2015), Firenze, Italy. Topics include: 
component-based software engineering; debugging, fault localization, and repair; dependability, safety, 
and reliability; embedded and cyber physical systems; formal methods, verification, and synthesis; 
middleware, frameworks, and APIs; model-driven engineering; parallel, distributed, and concurrent 
systems; performance; program analysis; programming, specification, and modeling languages; reverse 
engineering; security, privacy and trust; software architecture; software economics, management, and 
metrics; software evolution and maintenance; software modeling and design; software product lines; 
software reuse; tools and environments; etc. Deadline for submissions: October 10, 2014 (workshop 
proposals, technical briefings proposals), October 24, 2014 (Joint SE Education and Training - JSEET, 
Software Engineering In Practice - SEIP, Software Engineering in Society - SEIS), November 21, 2014 
(New Ideas and Emerging Results - NIER, doctoral symposium, ACM student research competition, 
demonstrations), November 30, 2014 (SCORE-it team registration), January 13, 2015 (posters), 
February 15, 2015 (SCORE-it deliverable submission). 

May 25-29 29th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2015), Hyderabad, 
India. Topics include: parallel and distributed algorithms, applications of parallel and distributed 
computing, parallel and distributed software, including parallel and multicore programming languages 
and compilers, runtime systems, parallel programming paradigms, programming environments and 
tools, etc. Deadline for submissions: October 10, 2014 (abstracts), October 17, 2014 (papers). 

 June 22-26 20th International Conference on Reliable Software Technologies - Ada-
Europe'2015, Madrid, Spain. Sponsored by Ada-Europe, in cooperation requested 
with ACM SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association (ARA). 
Deadline for submissions: January 11, 2015 (papers, tutorials, workshops), January 
25, 2015 (industrial presentations). 

June 22-26 20th International Symposium on Formal Methods (FM'2015), Oslo, Norway. Topics include: 
interdisciplinary formal methods (techniques, tools and experiences demonstrating formal methods in 
interdisciplinary frameworks); formal methods in practice (industrial applications of formal methods, 
experience with introducing formal methods in industry, tool usage reports, etc); tools for formal 
methods (advances in automated verification and model-checking, integration of tools, environments for 
formal methods, etc); role of formal methods in software and systems engineering (development 
processes with formal methods, usage guidelines for formal methods, method integration, qualitative or 
quantitative improvements); theoretical foundations (all aspects of theory related to specification, 
verification, refinement, and static and dynamic analysis). Deadline for submissions: October 30, 2013 
(hosting proposals), January 2, 2015 (abstracts), January 9, 2015 (full papers). 

 Sep 01-04 International Conference on Parallel Computing 2015 (ParCo'2015), Edinburgh, Scotland, UK. 
Topics include: all aspects of parallel computing, including applications, hardware and software 
technologies as well as languages and development environments, in particular parallel programming 
languages, compilers, and environments, tools and techniques for generating reliable and efficient 
parallel code, testing and debugging techniques and tools, best practices of parallel computing on 
multicore, manycore, and stream processors, etc. Deadline for submissions: February 28, 2015 
(extended abstracts), March 31, 2015 (mini-symposia). 

December 10 200th birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day! 

  



HILT 2014: HIGH INTEGRITY LANGUAGE TECHNOLOGY 
ACM SIGAda’s Annual International Conference 

Co-Located with OOPSLA/SPLASH 2014 
October 18 – 21, 2014 / Portland, Oregon / Advance Program

High integrity software must not only meet correctness and performance criteria but also satisfy  
stringent safety and/or security demands, typically entailing certification against a relevant standard. 

A significant factor affecting whether and how such requirements are met is the chosen language 
technology and its supporting tools: not just the programming language(s) but also languages for expressing 
specifications, program properties, domain models, and other attributes of the software or overall system.

HILT 2014 will provide a forum for experts from academia/research, industry, and government to present 
their latest findings in designing, implementing, and using language technology for high integrity software.

HILT attendees are invited to attend the SPLASH opening keynote address by Gary McGraw, CTO of 
Cigital, Inc. and author of Software Security.

Sponsored by SIGAda, ACM’s Special Interest Group on the Ada Programming Language, in cooperation with 
SIGAPP, SIGBED, SIGCAS, SIGCSE, SIGPLAN, SIGSOFT, Ada-Europe, and the Ada Resource Association.

FEATURED SPEAKERS

A Decade of Program  
Verification at Microsoft
TOM BALL 
Microsoft Research

From Ada 9X to Spaceport 
America: Going Where  
No One Has Gone Before
CHRISTINE ANDERSON 
Spaceport America

AADL and Model-Based 
Engineering
PETER FEILER 
Software Engineering Institute/ 
Carnegie Mellon University

PLATINUM LEVEL

GOLD LEVEL

SILVER LEVEL

CORPORATE SPONSORS



TECHNICAL PROGRAM / October 20 –21
MONDAY 

9:00 AM–10:30 AM
Greetings
SIGAda and Conference Officers

Keynote Address
Christine Anderson (Spaceport America)
From Ada 9X to Spaceport America:  
Going Where No One Has Gone Before

10:30 AM–11:00 AM Break / Exhibits

11:00 AM–12:30 PM
Enhancing and Evolving Embedded  
Systems Languages for Safety

J. Barnes and T. Taft
Ada83 to Ada 2012—Lessons Learned  
Over 30 Years of Language Design

D. Crocker
Can C++ Be Made as Safe as SPARK?

T. Szabo
mbeddr—Extensible Languages for  
Embedded Software Development

Sponsor Presentation

12:30 PM–2:00 PM Break / Exhibits

2:00 PM–3:30 PM
Model-Based Engineering

Invited Talk
Peter Feiler (SEI/CMU)
AADL and Model-Based Engineering

A. Gacek
Resolute: An Assurance Case Language  
for Architecture Models

3:30 PM–4:00 PM Break / Exhibits

4:00 PM–5:30 PM
Behavioral Modeling and  
Code Generation

E. Ahmad
Hybrid Annex: An AADL Extension for 
Continuous Behavior and Cyber-Physical 
Interaction Modeling

J. Hugues
Leveraging Ada 2012 and SPARK 2014 for  
Assessing Generated Code from AADL Models

Industrial Presentations

B. Larson
BLESS Assertion as Behavioral Interface 
Specification Language

E. Seidewitz
UML with Meaning: Executable Modeling 
in Foundational UML and the Alf Action 
Language

Panel: Executable and Behavioral 
Modeling Languages
E. Ahmad, J. Hugues, B. Larson,  
E. Seidewitz

7:00 PM–10:00 PM
Dinner and Social Event

TUESDAY 

8:30 AM–10:00 AM
Announcements
SIGAda Awards
Ricky E. Sward, Past SIGAda Chair

Keynote Address
Tom Ball (Microsoft Research)
A Decade of Program Verification  
at Microsoft

10:00 AM–10:30 AM Break / Exhibits

10:30 AM–12:30 PM 
Applying Formal Methods

W. Rathje
A Framework for Model Checking UDP 
Network Programs with Java Pathfinder

A. H. Bagge
Specification of Generic APIs—or: Why 
Algebraic May Be Better than Pre/Post

Panel: Practical Use of Assertions  
and Formal Methods in Industry
I. Ahmed, Formal Methods for Commercial 
Applications; A. H. Bagge, Algebraic API 
Specifications; R. A. Reyes, Knowledge Base 
for Use of Assertions

12:30 PM–2:00 PM Break / Exhibits

2:00 PM–3:30 PM
Safe Programming Languages  
for the Multicore Era (I)

T. Taft
Safe Parallel Programming in Ada  
with Language Extensions

R. Bocchino
Spot: A Programming Language  
for Verified Flight Software

N. Matsakis
The Rust Langauge

Sponsor Presentation

3:30 PM–4:00 PM Break / Exhibits

4:00 PM–5:30 PM 
Safe Programming Languages  
for the Multicore Era (II)

Panel: Finding Safety in Numbers—
New Languages for Safe Multicore 
Programming and Modeling
R. Bocchino, N. Matsakis, T. Taft,  
B. Larson, E. Seidewitz

5:30 PM–6:00 PM
HILT 2014 Conference Wrap-up
SIGAda and Conference Officers

PRE-CONFERENCE TUTORIALS / October 18 –19
Saturday Full Day / 9:00 AM–5:30 PM / SAT_FD_1
Ed Colbert (Absolute Software) / Object-Oriented Programming with Ada 2005 and Ada 2012

Saturday Full Day / 9:00 AM–5:30 PM / SAT_FD_2
Peter Chapin (Vermont Technical College) and John W. McCormick (University of Northern Iowa) / Introduction to SPARK 2014

Sunday Morning / 9:00 AM–12:30 PM / SUN_AM_1
Ben Brosgol (AdaCore) / High-Integrity Object-Oriented Programming with Ada 2012

Sunday Afternoon / 2:00 PM–5:30 PM / SUN_PM_1
Jérôme Hugues (Institute for Space and Aeronautics Engineering) and Frank Singhoff (Université de Bretagne Occidentale)
AADLv2, an Architecture Description Language for the Analysis and Generation of Embedded Systems

Sunday Afternoon / 2:00 PM–5:30 PM / SUN_PM_2
Niko Matsakis (Mozilla Research) / Rust—Zero-Cost Safety

SPLASH OPENING KEYNOTE ADDRESS / October 22
8:30 AM–10:00 AM 
HILT attendees are invited to attend the Wednesday morning SPLASH opening keynote address by Gary McGraw,  
CTO of Cigital, Inc. and author of Software Security

For more information and updates, 
visit www.sigada.org/conf/hilt2014



180  For thcoming Events 

Volume 35, Number 3, September 2014 Ada User Journal 

28TH GI/ITG International Conference on Architecture of Computing Systems 
Porto, Portugal 24-27 March 2015 

CALL FOR PAPERS 

THIS YEAR’S FOCUS: Reconciling Parallelism and Predictability in Mixed‐Critical Systems 
www.cister.isep.ipp.pt/arcs2015 

The ARCS series of conferences has over 30 years of tradition 
reporting  high  quality  results  in  computer  architecture  and 
operating  systems  research.  The  focus  of  the  2015 
conference  will  be  on  Reconciling  Parallelism  and 
Predictability  in  Mixed‐Critical  Systems.  Like  the  previous 
conferences  in  this  series,  it  continues  to  be  an  important 
forum for computer architecture research.  

The  proceedings  of  ARCS  2015  will  be  published  in  the 
Springer  Lecture Notes  on  Computer  Science  (LNCS)  series. 
After  the  conference,  authors  of  selected  papers  will  be 
invited  to  submit  an  extended  version  of  their  contribution 
for  publication  in  a  special  issue  of  the  Journal  of  Systems 
Architecture. Also, a best paper and best presentation award 
will be provided at the conference. 

Authors are invited to submit original, unpublished research 
papers on one of the following topics: 
 Multi‐/many‐core  architectures,  memory  systems,  and 

interconnection networks. 

 Models and tools for multi‐/many‐core systems including but 
not  limited  to  programming  models,  runtime  systems, 
middleware, and verification.  

 Design, methods, and hardware and  software architectures 
for mixed‐critical systems. 

 Architectures  and  design  methods/tools  for  robust,  fault‐
tolerant, real‐time embedded systems.  

 Generic  and  application‐specific  accelerators  in 
heterogeneous architectures.  

 Cyber‐physical  systems  and  distributed  computing 
architectures.  

 Adaptive  system  architectures  such  as  reconfigurable 
systems in hardware and software.  

 Organic  and  Autonomic  Computing  including  both 
theoretical  and  practical  results  on  self‐organization,  self‐
configuration,  self‐optimization,  self‐healing,  and  self‐
protection techniques.  

 Operating  Systems  including  but  not  limited  to  scheduling, 
memory management, power management, and RTOS.  

 Energy‐awareness and green computing.  

 System aspects of ubiquitous and pervasive computing such 
as  sensor  nodes,  novel  input/output  devices,  novel 
computing  platforms,  architecture  modeling,  and 
middleware.  

 Grid and cloud computing. 

Submissions 

Regular papers should be submitted via the link provided on 
the conference website, formatted according to the Springer 
LNCS style and not exceeding 12 pages. 

Workshop and Tutorial proposals within the technical scope 
of the conference are solicited. Those should be submitted by 
email directly to the corresponding chair (address at the 
website). 

Important Dates  

Paper submission deadline:   October 6, 2014  
Workshop/tutorial proposals:   November 3, 2014  
Notification of acceptance:  December 1, 2014 
Camera‐ready papers:  December 15, 2014 
 

Organizing Committee  

General Co‐Chairs  
Luís Miguel Pinho, CISTER/INESC‐TEC, ISEP, Portugal 
Wolfgang Karl, Karlsruhe Institute of Technology, 
Germany 

Program Co‐Chairs  
Albert Cohen, INRIA, France 
Uwe Brinkschulte, Universität Frankfurt, Germany 

Workshop and Tutorial Co‐Chair  
João Cardoso, FEUP/University of Porto, Portugal 

Industrial Liaison Co‐Chairs 
Sascha Uhrig, Technische Universität Dortmund, Germany
David Pereira, CISTER/INESC‐TEC, ISEP, Portugal 

Poster Co‐Chairs 
Kluge Florian, University of Augsburg, Germany 
Patrick Meumeu Yomsi, CISTER/INESC‐TEC, ISEP, Portugal 

Publicity Chair 
Vincent Nelis, CISTER, ISEP, Portugal 

Publication Chair 
Thilo Pionteck, Hamburg University of Technology, 
Germany 

Local Organization Chair 
Luis Ferreira, CISTER/INESC‐TEC, ISEP, Portugal  



Forthcoming Events 181  

Ada User Journal Volume 35, Number 3, September 2014 

       
 

 

17th International Real-Time Ada Workshop - 
IRTAW 2015 

in cooperation with AdaCore and Ada-Europe 
www.cs.york.ac.uk/~andy/IRTAW2015 

Vermont, USA 

Week of 20-24 April 2015 (actual dates TBD) 

Call for Papers 
Since the late Eighties the International Real-Time Ada Workshop series has provided a forum for 
identifying issues with real-time system support in Ada and for exploring possible approaches and 
solutions, and has attracted participation from key members of the research, user, and implementer 
communities worldwide. Recent IRTAW meetings have significantly contributed to the Ada 2005 and 
Ada 2012 standards, especially with respect to the tasking features, the real-time and high-integrity 
systems annexes, and the standardization of the Ravenscar profile. 

In keeping with this tradition, the goals of IRTAW-17 will be to: 

• review the current status of the Ada 2012 Issues that are related with the support of real-time 
systems; 

• examine experiences in using Ada for the development of real-time systems and applications, 
especially – but not exclusively – those using concrete implementation of the new Ada 2012 real-
time features; 

• report on or illustrate implementation approaches for the real-time features of Ada 2012; 
• consider the added value of developing other real-time Ada profiles in addition to the Ravenscar 

profile; 
• examine the implications to Ada of the growing use of multiprocessors in the development of 

real-time systems, particularly with regard to predictability, robustness, and other extra-
functional concerns; 

• examine and develop paradigms for using Ada for real-time distributed systems, with special 
emphasis on robustness as well as hard, flexible and application-defined scheduling; 

• consider the definition of specific patterns and libraries for real-time systems development in 
Ada; 

• identify how Ada relates to the certification of safety-critical and/or security-critical real-time 
systems; 
 



182  Forthcoming Events 

Volume 35, Number 3, September 2014 Ada User Journal 

• examine the status of the Real-Time Specification for Java and other languages for real-time 
systems development, and consider user experience with current implementations and with issues 
of interoperability with Ada in embedded real-time systems; 

• consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in 
actual real-time projects; 

• consider the language vulnerabilities of the Ravenscar and full language definitions; 
• consider testing for compliance with the Real-Time Annex. 

Participation at IRTAW-17 is by invitation following the submission of a position paper addressing one 
or more of the above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an 
invitation, but for one reason or another is unable to produce a position paper, may send in a one-page 
position statement indicating their interests. Priority will, however, be given to those submitting papers. 

Submission Requirements 
Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. 
All accepted papers will appear, in their final form, in the Workshop Proceedings, which will be 
published as a special issue of Ada Letters (ACM Press). Selected papers will also appear in the Ada 
User Journal. 

Authors with a relevant paper under consideration at Ada-Europe (deadline 11th January, 2015) may 
offer an extended abstract of the same material to IRTAW-17. 

Please submit position papers, in PDF, to the Program Chair by e-mail: andy.wellings@york.ac.uk 

Important Dates  
• Paper Submission: 4 February, 2015 
• Notification of Acceptance: 1 March, 2015 
• Confirmation of Attendance: 14 March, 2015 
• Final Paper Due: 1 April, 2015 
• Workshop: April TBD in week of 20-24, 2015 

Program Chair 
• Andy Wellings, University of York 

Workshop Chair 
• Robert Dewar, AdaCore 

Program Committee Members 
Mario Aldea Rivas, John Barnes, Ben Brosgol, Alan Burns, Michael Gonzàlez Harbour, José Javier 
Gutiérrez, Stephen Michell, Brad Moore, Luís Miguel Pinho, Juan Antonio de la Puente, Jorge Real, 
Jose F. Ruiz, Joyce Tokar, Tullio Vardanega, Andy Wellings and Rod White. 
 



Forthcoming Events 183  

Ada User Journal Volume 35, Number 3, September 2014 

 

Call  for Papers  

20th  International  Conference  on    
Reliable  Software  Technologies  –    

Ada‐Europe 2015 
22‐26  June  2015,  Madrid,  Spain  

               http://www.ada‐europe.org/conference2015

Conference Chair 

Alejandro Alonso 
ETSIT‐UPM  
alonso@dit.upm.es 

Program co‐Chairs 

Juan A. de la Puente 
ETSIT‐UPM 
jpuente@dit.upm.es 

Tullio Vardanega 
Università di Padova 
tullio.vardanega@unipd.it 

Tutorial Chair 

Jorge Real 
UPV 
jorge@disca.upv.es 

Exhibition Chair 

Santiago Urueña 
GMV 
suruena@gmv.com 

Industrial Chair 

Jørgen Bundgaard 
Rambøll Danmark A/S 
jogb@ramboll.dk 

Ana Rodríguez 
Silver Atena 
ana.rodriguez@silver‐atena.es 

Publicity Chair 

Dirk Craeynest 
Ada‐Belgium & KU Leuven 
Dirk.Craeynest@cs.kuleuven.be 

Local Chair 

Juan Zamorano 
ETSIINF‐UPM 
jzamora@fi.upm.es 

 
 

 
 

"In cooperation" requested 
with 

ACM SIGAda, SIGBED, 
SIGPLAN, and ARA 

 

 
 

Program Committee 

General Information 

The 20th International Conference on Reliable Software Technologies – Ada‐Europe 2015 will take 
place  in Madrid,  Spain.  Following  its  traditional  style,  the  conference  will  span  a  full  week, 
including a three‐day technical program and vendor exhibition from Tuesday to Thursday, along 
with parallel tutorials and workshops on Monday and Friday. 

Schedule 

Topics 

The  conference  has  over  the  years  become  a  leading  international  forum  for  providers, 
practitioners and researchers in reliable software technologies. The conference presentations will 
illustrate current work in the theory and practice of the design, development and maintenance of 
long‐lived,  high‐quality  software  systems  for  a  challenging  variety  of  application  domains.  The 
program will  allow  ample  time  for  keynotes, Q&A  sessions  and discussions,  and  social  events. 
Participants  include  practitioners  and  researchers  representing  industry,  academia  and 
government  organizations  active  in  the  promotion  and  development  of  reliable  software 
technologies.  

Topics of interest to this edition of the conference include but are not limited to: 

 Multicore and Manycore Programming: Predictable Programming Approaches for Multicore 
and Manycore Systems, Parallel Programming Models, Scheduling Analysis Techniques. 

 Real‐Time and Embedded Systems: Real‐Time Scheduling, Design Methods and Techniques, 
Architecture Modelling, HW/SW Co‐Design, Reliability and Performance Analysis. 

 Mixed‐Criticality  Systems:  Scheduling  methods,  Mixed‐Criticality  Architectures,  Design 
Methods, Analysis Methods. 

 Theory  and  Practice  of High‐Integrity  Systems: Medium  to  Large‐Scale Distribution,  Fault 
Tolerance, Security, Reliability, Trust and Safety, Languages Vulnerabilities. 

 Software Architectures: Design Patterns,  Frameworks, Architecture‐Centred Development, 
Component‐based Design and Development. 

 Methods  and  Techniques  for  Software  Development  and  Maintenance:  Requirements 
Engineering, Model‐driven  Architecture  and  Engineering,  Formal Methods,  Re‐engineering 
and Reverse Engineering, Reuse, Software Management Issues, Compilers, Libraries, Support 
Tools. 

 Software  Quality:  Quality  Management  and  Assurance,  Risk  Analysis,  Program  Analysis, 
Verification, Validation, Testing of Software Systems. 

 Mainstream  and  Emerging Applications: Manufacturing, Robotics, Avionics,  Space, Health 
Care, Transportation, Cloud Environments, Smart Energy systems, Serious Games, etc. 

 Experience  Reports  in  Reliable  System  Development:  Case  Studies  and  Comparative 
Assessments, Management Approaches, Qualitative and Quantitative Metrics. 

 Experiences  with  Ada  and  its  Future:  Reviews  of  the  Ada  2012  new  language  features, 
implementation and use  issues, positioning  in  the market and  in  the  software engineering 
curriculum,  lessons  learned on Ada Education and Training Activities with bearing on any of 
the conference topics. 

11 January 2015  Submission of regular papers, tutorial and workshop proposals 
25 January 2015  Submission of industrial presentation proposals 
1 March 2015  Notification of acceptance to all authors 

29 March 2015  Camera‐ready version of regular papers required 
12 April 2015
17 May 2015 

Industrial presentations abstracts required 
Tutorial and workshop materials required 



184  Forthcoming Events 

Volume 35, Number 3, September 2014 Ada User Journal 

Mario Aldea, Universidad de 
Cantabria, Spain 
Ted Baker, NSF, USA 
Johann Blieberger, Technische 
Universität Wien, Austria 
Bernd Burgstaller, Yonsei University, 
Korea 
Alan Burns, University of York, UK 
Maryline Chetto, University of Nantes, 
France 
Juan A. de la Puente, Universidad 
Politécnica de Madrid, Spain 
Laurent George, ECE Paris, France 
Michael González Harbour, 
Universidad de Cantabria, Spain 
J. Javier Gutiérrez, Universidad de 
Cantabria, Spain 
Jérôme Hugues, ISAE, France 
Hubert Keller, Institut für Angewandte 
Informatik, Germany 
Albert Llemosí, Universitat de les Illes 
Balears, Spain 
Franco Mazzanti, ISTI-CNR, Italy 
Stephen Michell, Maurya Software, 
Canada 
Jürgen Mottok, Regensburg University 
of Applied Sciences, Germany 
Laurent Pautet, Telecom ParisTech, 
France 
Luís Miguel Pinho, CISTER/ISEP, 
Portugal 
Erhard Plödereder, Universität 
Stuttgart, Germany 
Jorge Real, Universitat Politècnica de 
València, Spain 
José Ruiz, AdaCore, France 
Sergio Sáez, Universitat Politècnica de 
Valencia, Spain 
Amund Skavhaug, NTNU, Norway 
Tucker Taft, AdaCore, USA 
Theodor Tempelmeier, University of 
Applied Sciences Rosenheim, 
Germany 
Elena Troubitsyna, Åbo Akademi 
University, Finland 
Santiago Urueña, GMV, Spain 
Tullio Vardanega, Università di 
Padova, Italy 

Industrial Committee 

Jørgen Bundgaard, Rambøll Danmark 
A/S 
Ana Rodríguez, Silver Atena, Spain 
Dirk Craeynest, Ada-Europe & KU 

Leuven, Belgium 
Jacob Sparre Andersen, JSA 

Consulting, Denmark 
Jean-Loup Terraillon, ESA 
Paolo Panaroni, Intecs, Italy 
Paul Parkinson, Wind RIver, UK 
Peter Dencker, ETAS GmbH, Germany 
Rod White, MBDA, UK 
Steen Palm, Terma, Denmark 
Ahlan Marriott, White Elephant, 

Switzerland 
Ian Broster, Rapita Systems, UK 
Ismael Lafoz, Airbus Military, Spain 
Jean-Pierre Rosen, Adalog, France 
Robin Messer, Altran-Praxis, UK 
Roger Brandt, Telia, Sweden 
Claus Stellwag, Elektrobit AG, 

Germany 
Quentin Ochem, Ada Core, France 
Martyn Pike, Ada UK 

Call for Regular Papers 

Authors of regular papers which are to undergo peer review for acceptance are invited to submit 
original contributions. Paper submissions shall not exceed 14 LNCS‐style pages in length. Authors 
shall submit their work via EasyChair following the relevant link on the conference web site. The 
format for submission is solely PDF. 

Proceedings 

The conference proceedings will be published  in  the Lecture Notes  in Computer Science  (LNCS) 
series by Springer, and will be available at the start of the conference. The authors of accepted 
regular papers shall prepare camera‐ready submissions  in full conformance with the LNCS style, 
not exceeding 14 pages and strictly by March 29, 2015. For format and style guidelines authors 
should  refer  to  http://www.springer.de/comp/lncs/authors.html.  Failure  to  comply  and  to 
register for the conference by that date will prevent the paper from appearing in the proceedings.

The CiteSeerX Venue  Impact Factor has  the Conference  in  the  top quarter. Microsoft Academic 
Search has it in the top third for conferences on programming languages by number of citations in 
the  last  10  years.  The  conference  is  listed  in  DBLP,  SCOPUS  and Web  of  Science  Conference 
Proceedings Citation index, among others. 

Awards 

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation. 

Call for Industrial Presentations 

The conference seeks industrial presentations which deliver value and insight but may not fit the 
selection  process  for  regular  papers.  Authors  are  invited  to  submit  a  presentation  outline  of 
exactly 1 page  in  length by January 25, 2015. Submissions shall be made via EasyChair following 
the  relevant  link  on  the  conference  web  site.  The  Industrial  Committee  will  review  the 
submissions and make the selection. The authors of selected presentations shall prepare a final 
short abstract and submit it by April 12, 2015, aiming at a 20‐minute talk. The authors of accepted 
presentations will  be  invited  to  submit  corresponding  articles  for  publication  in  the  Ada User 
Journal  (http://www.ada‐europe.org/auj/),  which  will  host  the  proceedings  of  the  Industrial 
Program  of  the  Conference.  For  any  further  information  please  contact  the  Industrial  Chair 
directly. 

Call for Tutorials 

Tutorials  should  address  subjects  that  fall  within  the  scope  of  the  conference  and  may  be 
proposed  as  either  half‐  or  full‐day  events.  Proposals  should  include  a  title,  an  abstract,  a 
description of  the  topic, a detailed outline of  the presentation, a description of  the presenter's 
lecturing expertise  in general and with  the proposed  topic  in particular,  the proposed duration 
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced), 
the  recommended  audience  experience  and  background,  and  a  statement  of  the  reasons  for 
attending. Proposals should be submitted by e‐mail to the Tutorial Chair. The authors of accepted 
full‐day tutorials will receive a complimentary conference registration as well as a  fee  for every 
paying participant in excess of 5; for half‐day tutorials, these benefits will be accordingly halved. 
The Ada User Journal will offer space for the publication of summaries of the accepted tutorials. 

Call for Workshops 

Workshops on themes that fall within the conference scope may be proposed. Proposals may be 
submitted for half‐ or full‐day events, to be scheduled at either end of the conference. 

Call for Workshops 

Workshops on themes that fall within the conference scope may be proposed. Proposals may be 
submitted  for  half‐  or  full‐day  events,  to  be  scheduled  at  either  end  of  the  conference week. 
Workshop proposals should be submitted to the Conference Chair. The workshop organizer shall 
also commit to preparing proceedings for timely publication in the Ada User Journal. 

Call for Exhibitors 

The  commercial  exhibition  will  span  the  three  days  of  the  main  conference.  Vendors  and 
providers of software products and services should contact  the Exhibition Chair  for  information 
and for allowing suitable planning of the exhibition space and time. 

Grants for Reduced Student Fees 

A  limited number of sponsored grants  for reduced  fees  is expected to be available  for students 
who would like to attend the conference or tutorials. Contact the Conference Chair for details. 





186   

Volume 35, Number 3, September 2014 Ada User Journal 

Critical Software for the First European Rail Traffic 
Management System 
Ana Rodríguez 
SILVER ATENA Spain, Ronda de Poniente 5, 28760 Tres Cantos, Madrid, Tel: +34 608754488; email: 
ana.rodriguez@silver-atena.es  

 

Abstract 

SILVER ATENA participates in various projects on 
Advance Traffic Management & Control (ATMC) 
Systems which aim to develop a new generation of 
signalling and control systems, building on current 
European Rail Traffic Management System (ERTMS), 
to enable intelligent traffic management with 
automatically driven trains and optimise capacity, 
reliability and minimise life-cycle cost. 

The Radio Block Centre (RBC) of the ERTMS 
trackside sub-system is a computer-based system that 
elaborates messages to be sent to the train on basis of 
information received from external trackside systems 
and on basis of information exchanged with the on-
board sub-systems. The RBC software is implemented 
in Ada Language. 

Keywords: safety-critical, ERTMS, Railways Industry 

1   Introduction  

Harmonized Community transport policies are essential in 
a European union of 28 countries. The ability to circulate 
from one member state to other using interoperable driving 
systems has became a fundamental requirement. 

Achieving a single automatic driving system is crucial for 
the optimization of rail transport efficiency on a European 
scale. In order to produce such a system, it is necessary to 
establish common standards for on-board systems, the 
connection/communication interfaces between modules and 
the development of common procedures. In order to fulfil 
these requirements the ERTMS [1] has been developed and 
it is now being deployed across Europe. 

Since 2009, SILVER ATENA [2] collaborates with 
Siemens Rail Automation Division [3] (former Invensys 
Rail Dimetronic) in the development of the Radio Block 
Centre (RBC) that implements ERTMS interoperability 
requirements that are mainly related to the data exchange 
between the RBC and the on-board sub-system. SILVER 
ATENA also collaborates with Bombardier [4] on the 
improvement of Rio de Janeiro commuter lines that is the 
first ERTMS solution deployed in South America. 

The European Rail Industry is now doing an unprecedented 
joint effort to massively enhance the capacity of the 
European rail system in order to cope with increased 
passenger and freight demand as a result of societal 
pressures in support of green transport and elicit a step-

change in the reliability of next generation products and 
solutions while reducing their life cycle costs. It aims to 
attract passengers and businesses to rail transport and 
increase the competitiveness of the European rail industry 
vis-à-vis emerging Asian competition.  

2   The European Rail Traffic 
Management System 

The European Rail Traffic Management System/ European 
Train Control System (ERTMS/ETCS) is the European 
system for automatically controlling train movement and is 
the solution identified by Europe’s railways and industries 
for achieving rail interoperability. 

Following the decision taken by the transport ministers in 
December 1989 a group of railway experts began studying 
the fundamental requirements for a European interoperable 
system and defining the Project: the UIC-ERRI-S 1069 
Declaration elaborated by a study group from the Union 
Internationale des Chemins de Fer (UIC)/ the International 
Union of Railways [5]. 

In June 1991, the industry and the railways (UIC) agreed 
on the principles for pursuing collaboration to develop new 
equipment for the European control and command system 
based on the ERRI-UIC specifications. 

After the definition of the ERTMS/ETCS Master Plan by 
the Commission, in 1999, the French, German, Italian, 
Spanish, British and Dutch railways jointly started the 
European Economic Interest Group ERTMS/ETCS Users 
Group (EEIG-ERTMS/ETCS Users Group). 

Since then, the railway administrations and the industries 
worked together within AEIF (European Association for 
Railway Interoperability) to develop the essential 
requirements, the interoperability components and 
interfaces, the European procedures for evaluating 
conformity/suitability of use, the functional and technical 
specifications, and the migration strategy for 
interoperability. 

A great effort is currently being deployed to harmonise the 
overall migration plans of the European networks. "Core 
network corridors" were introduced to facilitate the 
coordinated implementation of the core network, also 
aiming at integrating rail freight corridors, promoting clean 
fuel and other innovative transport solutions, advancing 
Telematics applications for efficient infrastructure use, 
integrating urban areas into the TEN-T, enhancing safety. 



A. Rodríguez 187  

Ada User Journal Volume 35, Number 3, September 2014 

Nine core network corridors are identified in the annex to 
the CEF Regulation, which includes a list of projects pre-
identified for possible EU funding during the period 2014 – 
2020, based on their added value for TEN-T (EU funding 
during the period 2014 – 2020) development and their 
maturity status. 

A map of the corridors [6] recently agreed upon is shown 
below. 

  
Figure 1 European Commission – Trans-European Transport 

Network 

The specifications of ERTMS/ETCS requirements are 
public, and define the so-called kernel and its interfaces 
with the ground.  

SILVER ATENA is devoted to assist our clients in the 
development and prove of ERTMS/ETCS equipments, 
which is intended to achieve this interoperability with 
safety. 

3   Levels of application 

The ERTMS/ETCS system provides the driver, in a 
standard format, with all the information needed for 
optimum driving, constantly controlling the effect of every 
action taken in terms of train safety, and activating 
emergency braking should the train speed exceed the 
maximum safety limits 

There are three levels of application that define the ways in 
which the train can receive lineside information, as 
illustrated in the following figure.  

 
Figure 2 ERTNS/ETCS Levels of applications 

The Application level 2 uses a continuous type of 
communication system for the onboard transmission of 
lineside data through safe radio links between a Radio 
Block Centre (RBC) and the train. 

The information in the radio messages and their coding 
method and allocation in the telegram transmitted are 
standards defined in the ERTMS/ETCS specifications. 

Also for ERTMS/ETCS level 2, the position of the trains is 
determined by the conventional position detection systems 
(track circuits) while the onboard software manages the 
functionality using available ground-based data and train-
borne data. 

4   The Radio Block Center  

The ERTMS/ETCS level 2’s ground system comprises a 
RBC central unit, installed in specific central posts, from 
which railway circulation is managed and controlled 
through the System of Command and Control (SCC). 

4.1   ERTMS/ETCS level 2’s ground technology  
The RBC continuously transmits to every train, via GSM-R 
(Global System for Mobile Communications – Railway), 
the speed and the train distance to be observed depending 
on the position of all the trains present on the line (train 
distancing) and the constraints imposed by the track At the 
same time, the trains send out radio signals indicating their 
position to the central unit.  

At the same time, the trains send out radio signals 
indicating their position to the central unit (ERTMS 
Functional Specification [7] and [8]). On the basis of the 
state of the infrastructure (free line, routes in the stations, 
train speeds, slowdowns) and the position of the train, the 
RBC transmits “movement authority” data to the on-board 
unit, giving details of the free distance and the maximum 
permitted speed at the point. 

The environment of ERTMS/ETCS system (Figure 3) is 
composed of: 

 The train, which will then be considered in the train 
interface specification;  

 The driver, which will then be considered via the 
driver interface specification; 

 Other onboard interfaces, and 

 External trackside systems (interlocking, control 
centres, etc.), for which no interoperability requirement 
will be established. 

4.2   System Operation 
Commercial solutions for ERTMS/ETCS systems compete 
in providing optimal performance for system operation as 
well as enhanced maintenance features for the railways 
systems administration. 

The architecture of the RBC system includes all those 
elements that improve operability (safe and reliable 
functioning condition), modularity (that facilitates 
maintenance and improves reliability) and connectivity 
(thought standard interfaces) of a safety-critical system. 



188  Cr i t ical  Software for  the First  European Rai l  Traf f ic  Management System 

Volume 35, Number 3, September 2014 Ada User Journal 

 

  
Figure 3 ERTMS/ETCS System [8] 

The environment of RBC system (Figure 4) is composed 
of: 

 Adjacent RBC: bi-directional continuous information 
by GSM-R Euro-radio (EN 50129 SIL4 Ada Software) 

 ETCS on-board: bi-directional continuous information 
by GSM-R Euro-radio (EN 50129 SIL4 Ada Software)  

 CEC- Command and control of all the RBCs in a line 

 JRU – black-box unit 

 Maintenance Assistance Unit 

 I/C Control equipment 

 Local ERTMS Control, operator commands console 

SILVER ATENA had an important role in those system 
features concerning RAMS (Reliability, Availability, 
Maintainability and Safety). 

 

Figure 4 RBC System [9] 

4.3   Safety Integrity Requirements  
The Safety Integrity Level (SIL) is a widespread concept 
used all over the industries which deal with the 
development of safety-related systems. 

The EN 50126-1 standard [11], defines the term “Safety 
Integrity” as: “The likelihood of a system satisfactorily 
performing the required safety functions under all the stated 
conditions within a stated period of time”. This standard 
also defines the level of safety integrity as: “One of a 
number of defined discrete levels for specifying the safety 
integrity requirements of the safety functions to be 
allocated to the safety related systems”. 

The process for allocating a SIL to a safety function starts 
by performing a risk analysis, in order to identify and 
quantify the hazards that a failure of our system may cause. 
The risk analysis establishes the measures which shall be 
taken so that the risk can be reduced to an acceptable level.  

 

  
Figure 5 Risk Analysis 

As discussed in [10], the concept of SIL is essentially 
linked to the safety functions. Consequently, it is 
fundamental to carry out a risk analysis, which will enable 
us to obtain the safety functions of our system. Based on 
those safety functions, a SIL is allocated, considering also 
the risk reduction factor: the higher the risk, the higher the 
SIL. 

The RBC system must comply with a SIL 4 safety integrity 
level mainly linked to its messages generation function that 
must maintain and assure the accuracy, consistency and 
validity of data. 

The life-cycle of the RBC system must accomplish a strict 
life-cycle development to eliminate (minimize) threats to 
data integrity. Following UNE-EN 50129 [13] and IEC 
61508 [14] standards, the following four conditions shall be 
satisfied in order to comply with a given SIL:  

 Quality management 

 Safety management 

 Functional and technical safety 

 Quantified safety targets 

The normative also mandates independent development 
teams: Design& Development team, Verification and 
Validation (V&V) team and a safety auditor to provide an 
Independent Safety Assessment (ISA). 

 

 

(FIS) 

MMI

EURORADI

EURORADIOBTM LTM

Kernel 
Odometry 

TIU Jur. Recording 

GSM- 
Mobile 

GSM fixed 
network 

RBC 1 

RBC 2 

Key
Management

Centre

EUROBALISE EUROLOOP

Interlocking 

  and LEU 

STM 

FIS 
FFFIS 

FFFIS FFFIS 

FIS FIS FFFIS 

(FFFIS) 

FIS 

FFFIS 

(FFFIS) 

System Control 
Centre 

National 
System 

Driver Train 
Downloading 

tool 

ETCS

Onboard 

ETCS Trackside 

FIS 

FIS 

FIS 

FIS 

 
 

Radio 
infill 

EURO-
RADIO 



A. Rodríguez 189  

Ada User Journal Volume 35, Number 3, September 2014 

The RBC design methodologies conforms the European 
standards EN 50126-1 [11], EN 50128 [12] and EN 50129 
[13]. EN 50128 safety process is illustrated in the figure 
below. 

 
Figure 6 EN 50128 Safety Process 

The design of a safety critical system shall incorporate 
controls and fault-tolerance techniques to eliminate or 
reduce the probability or severity of each hazard, to lower 
the overall risk. The RBC system incorporates a two out of 
three voting system and their communication equipments 
are design in a hot stand-by configuration. 

4.4 Software Validation Development  
The RBC embedded software falls into the safety-critical 
category, i.e., software which can directly create or control 
a hazard and that provides information required for a 
safety-related decision falls into the safety-critical category 

One of the most important aspects of a software design for 
a safety-critical system is designing for minimum risk. This 
“minimum risk” includes hazard risk (likelihood and 
severity), risk of software defects, risk of human operator 
errors, and other types of risk (such as programmatic, cost, 
schedule, etc.).  

SILVER ATENA has significantly contributed to the 
design, specification and implementation of the RBC V&V 
Program with include the system functional testing and the 
integration and performance testing. The V&V program 
eventually has aimed to demonstrate that the verification 
and validation activities performed for critical software are 
appropriate and sufficient to fulfil the safety and 
effectiveness requirements for the system. 

5   Challenges and Opportunities 

Currently Spain has become the ERTMS/ETCS largest 
deployment in Europe, offering a significant profile of 
consolidated technologies and capacities. There are 
excellent opportunities for Spanish railways industry (e.g. 
AVE La Meca-Medina) and the market is expected to keep 
on growing at a healthy at ~7%. 

New challenges for industry are facing the deployment of 
ERTMS/ETCS level 2 and 3 and related regulations as well 
as measures aim to strength and improve safety.  

The introduction of satellite assets in conjunction with 
existing terrestrial railways /systems is an important 
challenge as well. Satellites increase the viability of 
ERTMS for low-traffic lines by avoiding the need for 
expensive track equipment and dedicated telecom 
networks. Virtual beacons could be used instead and the 
train’s position is fixed by Satellite Navigation (SatNav). 

Currently Industry demands improvements of the safety 
assurance processes, for both the deployment and the 
operations of the train lines. 

Although no programming language is guaranteed to 
produce safe software, Ada is widely used for railways 
critical developments (SIL4 and SIL3) because it enforces 
good programming practices, makes bugs easier for the 
compiler to find, and incorporates elements that make the 
software easier to verify.  

The “safeness” and reliability of a system depend on many 
factors: Humans are involved in all aspects of the process, 
quite capable of subverting even the “safest” of languages. 
The Santiago de Compostela (Spain) derailment occurred 
in July 2013, when a high-speed train travelling from 
Madrid, derailed at high speed on a curve, revealed that no 
ERTMS were installed at site. An expert report 
commissioned by the Spanish government (June 2014) 
conclude that the cause of the crash was “excess speed 
resulting from the driving personnel’s failure to comply 
with speed limit regulations. Recommendations claimed for 
improving the ERTMS signs warning drivers and security 
mechanisms to automatically slow down speeding trains, 
and a safer internal communications system.  

References 

[1] The European Rail Traffic Management System; 
http://www.ertms.net/  

[2] SILVER ATENA http://www.silver-atena.com  

[3] Siemens Rail Systems Division; 
http://www.siemens.com/about/en/businesses/infrastru
cture_and_cities/rail_systems.htm 

[4] Bombardier Transportation; 
http://www.bombardier.com/en/transportation.html 

[5] The International Union of Railways 
http://www.uic.org/  

[6] European Commission Mobility and Transport (2014) 
http://ec.europa.eu/transport/themes/infrastructure/ten-
t-guidelines/ 

[7] UNISIG (2007), FRS V5.00, Functional System 
Requirements Specification, ERTMS Users Group. 

[8] UNISIG (2010), SRS Subset026 V2.3.0, System 
Requirements Specification,  ERTMS Users Group. 

[9] Siemens (former Invensys) Rail Systems, ERTMS 
FUTUR 2500 - ERTMS Level 2, (2011). 

[10] SILVER ATENA (2013),  Newsletter White Paper: 
The controversial SIL.  



190  Cr i t ical  Software for  the First  European Rai l  Traf f ic  Management System 

Volume 35, Number 3, September 2014 Ada User Journal 

[11] UNE-EN 50126-1 (2005), Railway applications – The 
specification and demonstration of Reliability, 
Availability, Maintainability and Safety (RAMS),  
(Including CORR: 2006 y CORR: 2010). 

[12] UNE-EN 128 (2011), Railway Applications – 
Communications, signalling and processing systems – 
Software for Railway control and protection systems. 

[13] UNE-EN 50129 (2005), Railway Applications – 
Communications, signalling and processing systems - 
Safety related electronic systems for signalling, 
(Including CORR: 2010). 

[14] IEC 61508 (2008), Functional safety of electrical/ 
electronic/programmable electronic safety-related 
systems. 

  



191

Privacy Leaks in Java Classes
Jacob Sparre Andersen
JSA Research & Innovation, Jœgerparken 5, 2. th., 2970 Hørsholm, Denmark; Phone: +45 21 49 08 04; E-mail:
jacob@jacob-sparre.dk

Abstract

One of the changes from DO-178B to DO-178C is sup-
posedly to make it allowable to implement flight control
systems in the Java programming language [3]. This
makes it important to learn of the reliability deficiencies
of Java, and possibly how to avoid them.

This paper is focused on one particular class of program-
ming errors in Java; privacy leaks from encapsulated
data structures.

This mistake seems to be quite common. Even the “getter”
generator in the popular Java IDE Eclipse [2] makes the
mistake for the programmers. This motivated me to put
together a tool for identifying privacy leaking “getters”
in Java classes. The tool uses a Java decompiler to
generate a normalised form of the source code for the
Java classes, and then uses simple pattern matching
to identify uses of the simple type “getter” pattern for
composite, private attributes.

One of the five goals in the creation of the Java pro-
gramming language is that it should be “robust and
secure”. The extent of privacy leaks in real-life Java
classes indicates that there is still quite a way to that
goal.

1 Introduction
In Java assignment (=) works differently for simple and com-
posite types (classes); simple type objects are copied while
composite types have their reference copied.

One of the consequences of this design decision in Java is
that “getters” for composite type attributes have to be written
differently than those for simple type attributes. If one uses
the simple type “getter” pattern for a composite type attribute,
the result will be a privacy leak, where the user of the class
will have access to modify a private attribute of the class
directly – something which is in contrast with the whole idea
of private attributes.

As an external examinator for Danish software engineering
schools, I noticed that it seems to be difficult for students to
grasp the practical consequences of the different handling of
simple and composite types in Java. This has inspired me
to look into how widespread privacy leaks are in “industrial”
Java software, which again has lead to the development of the
tool presented in this paper.

This paper will

• discuss potential bugs derived from privacy leaks;

• show examples of safe and privacy leaking “getters”;

• document how Eclipse generates unsafe source code;

• show the pattern searched for by the privacy leak tracker;
and

• finally discuss why I don’t consider this a similarly seri-
ous issue in Ada.

2 Definition and consequences

First of all we need a precise definition of what a privacy
leak is. In general a privacy leak can be defined as:

When somebody “outside” gets a copy of an
object meant to be securely “inside”... [1]

This definition is rather broad. More specifically, we are
looking for cases where a client of a Java class can modify
the (referenced) value of a private attribute of the class,
because the class hands out references to its internal state 1.

When a class is implemented with private attributes, it can be
to:

• Enforce a consistent state inside an object of that class.

• Make objects of that class immutable.

A privacy leak will break these possible intended features of
making attributes private.

An “interesting” side-effect could for example be that a client
accidentally modifies encryption parameters for an encrypted
network connection, making the resulting encryption trivial
to break. In general the side-effect is that the class can end
up in an inconsistent state.

2.1 A safe “getter”

As an example, we write a class containing a counter with
methods for

• incrementing the counter, and

• reporting the current value of the counter to standard
output:

1The example in [1] goes the other way: A client passes a reference to an
object to the class, and the class stores the reference instead of copying the
object first.

Ada User Jour na l Vo lume 35, Number 3, September 2014



192 Pr ivacy Leaks in Java Classes

public class NonLeaking {
private Counter leakedCounter;

public NonLeaking() {
super();
leakedCounter = new Counter();

}

public void increment() {
this.leakedCounter.increment();

}

public void reportState() {
System.out.println("NonLeaking:");
this.leakedCounter.reportState();

}

We want to be able to access the counter from clients of the
class, so we introduce a “getter”:

/* Getter written by hand: */
public Counter getLeakedCounter() {

return new Counter(leakedCounter);
}

Here the new operator creates a new object of class Counter
as a copy of the private attribute leakedCounter.

2.2 Generating a “getter” in Eclipse

We make a copy of the NonLeaking class without the
getLeakedCounter method, and load it into Eclipse:

We ask Eclipse to generate a “getter” for leakedCounter:

The result is:

Notice how the “getter” generated by Eclipse simply returns a
copy of the reference to the private attribute; giving the client
access to modify the internal state of an object in the class
directly.

2.3 Run-time behaviour

Having the two classes with respectively a hand-written and
a generated “getter”, we test them using this program:

public class Demo {
public static void main(String[] args) {

Leaking leaking = new Leaking();
NonLeaking nonLeaking = new NonLeaking();

leaking.reportState();
leaking.increment(); // This should change

the internal state of leaking.
leaking.reportState();
leaking.getLeakedCounter().increment(); //

This shouldn’t change the internal state
of leaking.

leaking.reportState();

nonLeaking.reportState();
nonLeaking.increment(); // This should change

the internal state of leaking.
nonLeaking.reportState();
nonLeaking.getLeakedCounter().increment(); //

This shouldn’t change the internal state
of leaking.

nonLeaking.reportState();
}

}

Running the program gives this output:

Leaking:
Counter value: 0
Leaking:
Counter value: 1

Volume 35, Number 3, September 2014 Ada User Jour na l



J. S. Andersen 193

Leaking:
Counter value: 2
NonLeaking:
Counter value: 0
NonLeaking:
Counter value: 1
NonLeaking:
Counter value: 1

We can see how the Leaking class leaks the
leakedCounter allowing the client to increment
the internal value.

3 The pattern of a privacy leaking “get-
ter”

Step one is to identify private attributes. Only these are subject
to the kind of privacy leaks we are looking for.

In the normalised sources files we work on, this reduces to
identifying lines of the form:

[ “final” ] “private” type_identifier
attribute_identifier “;”

We are not interested in those of the private attributes, which
are immutable, or by-copy (i.e. simple) types. The attrib-
utes whose types are known to be immutable or by-copy are
removed from the list of found private attributes.

Step two is to identify cases where a method returns a simple
copy of an attribute. These are the source of the kind of
privacy leaks we are looking for.

In the normalised sources files we work on, this reduces to
identifying lines of the form:

“return this.”attribute_identifier “;”

where the attribute is on our list from step one.

In case step two finds matching lines (i.e. potentially leaking
“getters”), step three is to see if the class of the potentially
leaked attribute is actually immutable, as this makes a simple
“getter” safe.

If the class isn’t already known to be mutable, a manual
inspection of the class is required at this point.

Any “getters” which match after this check must be con-
sidered privacy leaking, and thus unsafe.

4 Conclusion
4.1 Tool results

The tool was tested on real-life Java classes used for high-
integrity, security critical tasks (as a stand-in for safety-critical
Java classes). The tool was able to identify cases of privacy-
leaks in the example classes, but definite security breaches
were not identified.

The Eclipse IDE generates unsafe “getters” for by-reference
types. Due to the internal structure of Eclipse, the generated
“getters” can not be controlled by the type of the attribute in
question. It might be worthwhile to substitute the templates in
Eclipse such that the default generated “getter” uses new, and
the programmer has to work to adapt the “getter” for by-copy
and immutable types.

4.2 Comparison with Ada

The most relevant difference between Ada and Java with
respect to the kind of privacy leaks presented here is:

• Assignment in Java works differently for simple and
composite objects (“classes”), whereas Ada has con-
sistent assignments (but requires the programmer worry
about object or reference to object).

This means that a superficially equivalent record type and
“getter” written in Ada will be safe with regard to privacy
leaking.

Ada does have to option of storing references to attributes – as
Java does it behind the scenes – but has to be done explicitly
by the programmer.

It is my impression that the explicitness required by Ada
is enough to make programmers aware of how the attribute
should be handled, but it is not something I have documenta-
tion for.

The full source code for the demonstration ex-
ample used in this paper can be downloaded from
http://repositories.jacob-sparre.dk/
privacy-leaks-examples/.

References
[1] CSE1030 – Introduction to Computer Science II – Lec-

ture #8 – Aggregation & Composition II (2012).

[2] Eclipse Foundation Inc. (2014), Eclipse - The Eclipse
Foundation open source community website.

[3] Guy L. Steele Jr. James Gosling, Bill Joy and Gilad Bra-
cha (2005), The Java Language Specification, Addison-
Wesley, 3rd edition.

Ada User Jour na l Vo lume 35, Number 3, September 2014



194

Implementation of Task Types in AVR-Ada
André de Matos Pedro
CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Portugal; anmap@isep.ipp.pt

Abstract

Ada contains a vast set of features, when supported in
the runtime system, allowing a great flexibility for sup-
porting memory management, exception handling, and
task assignment in operating systems. Nevertheless, for
embedded architectures many runtime features are not
officially supported, either due to difficulties in the port,
or due to the overheads generated by the runtime li-
brary. Therefore, the Zero Footprint approach is usually
adopted to constraint Ada into a restricted subset that
does not use any runtime feature, which precludes using
some of Ada advantages over other languages. This
work extends the current runtime library of AVR-Ada
to support Ada task types for the AVR platform as have
been done for other processor families, and describes
an example of its usage using the Arducc board.

Keywords: Coroutines, tasks, AVR, Ada.

1 Introduction
The AVR family [1,2] is well known for its very low cost 8-bit
and 32-bit micro-controller units (MCUs) widely used in a
variety of embedded systems, such as water heater controllers,
microwave and oven devices, brushless and brushed motor
controllers, and several aeromodel controlling devices. A
large number of open-hardware boards using AVRs such as
Arduino [3], Ardupilot [4], and Ardusat [5] became very
popular in the development of low-to-medium complexity
embedded products.

Although there is support for AVR development using Ada,
there is currently no runtime which supports the tasking model
of Ada. For development with Ada, there are some references
mainly for AVR32 micro-controllers [6]. For 8-bit AVR’s we
have a deterministic environment for Ada 2005, and methods
for developing systems targeting Arduino boards [7] using
the AVR-Ada cross compiler. Open-Source compiler options
for programming AVR micro-controllers in Ada are: AVR-
Ada [8] and GNAT AVR GPL [9]. To support development
in Ada, there are two main tools: Eclipse [10] and GPS [11].
The Eclipse plugin [12] contains support to automatically
upload and set different settings for AVR chips, while GPS
supports the setting of compile properties for several chips
using the GNAT project file.

In this paper we describe how to implement and use task
types in Ada for 8-bit AVR micro-controllers extending the
AVR-Ada runtime library. The tasks are coroutines [13] imple-
mented using a set of assembly instructions and supported by
8-bit AVR devices. Furthermore, we point some preliminary

DC-DC
LDO

DC-DC
SMPS

GSM
SIM900

MCU
Mega328p

CAN
MCP2515

GPS
Ublox

Neo-6m

Ultrasonic
Sensors

Relays

-

+

-

+

SERIAL

SPI

SPI

ADC-Pins

D-Pins
Low Power Mode

Figure 1: Arducc Architecture

results to support periodic hard real-time tasks as commonly
used in several RTOS.

Section 2 describes the used board, language, and tools. Sec-
tion 3 describes how the task expansion is done in Ada 2012
and its respective dependencies, how coroutines and scheduler
are related with task types, and how task types are mapped
into AVR-Ada. Section 4 describes an example using Ada
task types in AVR-Ada executing in our Arducc board. Lastly,
Section 5 draws some conclusions and address further work.

2 Platform and Programs
2.1 Arducc: An AVR-based machine for

lightweight automotive systems
Arducc [14] is an avr-based platform that is optimized for
automotive and industrial systems. It supports the CAN bus
protocol, includes a GSM modem for tracking purposes, a set
of relays for general purpose, a low quiescent current voltage
regulator for low current drain of MCU when battery powered,
and a switched mode power supply (SMPS) for modem. MCU
is an ATMega328P device with several capabilities such as
low power AVR 8-Bit micro-controller, three timers, six pulse
with modulation (PWM) channels, I2C and SPI bus, wake-up
interrupt to wake on CAN, and 8 analog digital converter
(ADC) channels.

A simplified architecture of the platform is shown in Figure 1.
It has a low consumption segment, and contains two different
power supplies allowing the board to have very low current
consumption. In this setting, the MCU is switched to power
down state, the CAN transceiver to sleep mode, and the SMPS
is disabled. The system wakes-up and turns-on the SMPS and
the remaining devices when one message is received from the
CAN channel. The board layout can be seen in the Figure 2.

Volume 35, Number 3, September 2014 Ada User Jour na l



A. M. Pedro 195

Figure 2: Arducc board layout without two relays

2.2 Tasks and Runtime Library in Ada

A considerable number of debates has been done amongst pro-
grammers, language designers and operating system design-
ers about operating-systems-defined versus language-defined
concurrency [15, p. 29]. The Ada language provides a built-
in concurrent model that can be used to discourage some
unpredictable behaviors through task types, protected types,
rendezvous, selective wait, and guards. Although the concur-
rent model is designed in Ada as tasks, these are commonly
implemented in the runtime library as thread primitives of
some operating system. Threads are commonly associated to
concurrent entities of operating systems that can run sequen-
tially or in parallel. According to Burns and Wellings [15] the
term coroutine appears more appropriate to language-defined
concurrency based on uni-processor systems (as the case of
this work that uses 8-bit AVR MCUs with one core [2]), tasks
to language-defined concurrency supporting multi-processor
systems, and threads to operating systems processes.

2.2.1 Task Types

Task types are expansions that are treated by the GNAT com-
piler and converted into a set of Ada primitives without task
types [16]. Ada has a proper syntax for task declaration as
shown in Listing 1, where AVR_Single is the name of the de-
clared task. The initialization of a task without a discriminant
is the same as declaring a variable, ’T: AVR_Single;’. Although
Ada does not have syntax for multiple entries and multiple
returns, the syntax is elegant and adequate to define and man-
age coroutines in AVR micro-controllers without excessive
overhead and memory footprint. Coroutines are primitives
useful for predictable context-switching programs.

2.2.2 Candidates for Task Types Primitives

The AVR Thread Library [17] is mainly designed in a mix
of C and assembly. The interrupt service routines (ISRs) are
implemented in AVR assembly language, and the remaining
functions are fully implemented in C. The interface between
both programs is given at linker level as well. avr_thread_init
is a function to initialize the structures for supporting task

task type AVR_Single is
−− <Declarations> of exported identifiers

end AVR_Single;

task body AVR_Single is
−− local <Declarations>

begin
−− <Task Statements>

end AVR_Single;

Listing 1: Template for a single task

context-switches, allowing the addition or removal of new
tasks to the context switch structure by the avr_thread_start
or avr_thread_stop functions. Changed the context-switch
structure, any task can be forced to context-switch with
avr_thread_sleep or avr_thread_yield. Each task is scheduled
by a Round Robin policy, and the scheduler is executed when
a tick is triggered by an hardware timer with a certain pe-
riod setting. avr_thread_isr_start and avr_thread_isr_end are ISRs
that will be used to execute the scheduler when the hardware
timer triggers. Thread synchronization and signaling is sup-
ported by this library as well. Mutexes are mutual exclusion
semaphores to guarantee that only one thread is executing a
particular piece of code at a time, and events provide the way
to signal to other threads that an event has occurred.

To support hard real-time tasks this thread library is not
enough. Chibios/RT RTOS [18] is an alternative to that
process but suffers significant overheads and memory foot-
print mainly due to the heavy data structures required by
the abstraction library (HAL). Our criteria is to take advan-
tage of both worlds and extend Ada tasks supporting timed
constraints (e.g., deadline and period) as well as temporal
constraints to ensure some type of temporal order. The hard
real-time scheduling uses a fixed-priority scheduler policy.

2.2.3 The AVR-Ada Runtime System

AVR-Ada is composed by an AVR support library, an Ada
runtime library, and several patches for the GCC based Ada
compiler (GNAT). The support library contains drivers for
external peripherals such as Dallas’ 1-Wire sensors and com-
ponents, Sensirion temperature and humidity sensors, LCDs
based on HD44780 controllers, SPI support for the MCP4922
DAC chip, and MIDI support for any byte stream. Other
pieces of code enable supporting FAT16/32 filesystems for
SD/MMC cards, the generation of CRC8 and CRC16 values,
and the support for the slip protocol that packets I/O over
streams as asynchronous serial links. The Ada runtime library
supports several ATMega devices such as the ATMega328p
that is the MCU used by the Arducc board and by the Arduino
boards and derivatives. GNAT is officially distributed as a
standalone package by the AdaCore company providing a full
compiler for AVR platforms with a zero-footprint runtime
library, and is also partially included in the official release of
GCC. A complement of such limiting profile is surpassed by
AVR-Ada patches that enables runtime features for AVR 8-bit
micro-controllers. Both AVR-Ada and AdaCore AVR com-
pilers do not support multi-task scheduling neither real-time
features such as timing events and execution time timers.

Ada User Jour na l Vo lume 35, Number 3, September 2014



196 Implementat ion of Task Types in AVR-Ada

GNARL.Enter_Master;
task type avr_single;
avr_singleE : aliased boolean := false ;
avr_singleZ: size_type := GNARL.Unspecified_Size;

type avr_singleV is limited record
_task_id : task_id;

end record;

procedure avr_singleB (_Task: access avr_singleV);

freeze avr_singleV [
procedure avr_singleVIP ( ... ) is
begin

GNARL.Create_Task ( ... );
end avr_singleVIP;

]

procedure avr_singleB (_task: access avr_singleV) is
procedure _Clean is
begin

GNARL.Abort_Defer;
GNARL.Complete_Task;
GNARL.Abort_Undefer;

end _Clean;
begin

GNARL.Abort_Undefer;
−− <Declarations>
GNATRL.Complete_Activation;
−− <Task Statements>
_Clean;

end AVR_SingleB;

Listing 2: Expansion of Task Type

3 Implementation

3.1 Expansion of Ada Task Types

Tasks are expanded by the compiler into a set of procedures
that have been deployed in the Ada runtime library. This
feature allows Ada to support a native concurrent model for
different architectures. For AVR, redesigning the task primi-
tives is essential to overcome the memory footprint.

The compiler for Ada expands task types without a discrimi-
nant into a set of primitive types and some procedures [16],
as shown in Listing 2. GNARL.Create_Task is the procedure
that adds the task into the available structures; _Clean is a pro-
cedure to instruct the scheduler that a task has been finished,
should be removed from support data structures, and does
not still awake; GNARL.Abort_Defer and GNARL.Abort_Undefer
instruct the deferral state; and GNARL.Complete_Activation con-
solidate the activation of a task, indicating that it is now ready
to run.

3.1.1 Dependencies

For our proposal of supporting tasks in AVR-Ada, we will
describe for each package its purpose. The packages that we
need to consider adding or modifying for AVR-Ada are, as
follows:

• System.Tasking.Initialization is a package that is required
for Init_RTS procedure, and to initialize the Ada records
required for task context-switches.

• System.Tasking provides type definitions for compiler
interface such as Task_States, Activation_Chain, and
Ada_Task_Control_Block.

• System.Tasking.Stages contains the procedures that the
compiler introduces after each task type extension, such
as Create_Task, Activate_Tasks, Complete_Activation, and
Complete_Task.

• System.Secondary_Stack contains the procedures to man-
age the secondary stack which is used when tasks are
allowed. It is capable to mark the stack with symbols for
management of sub-stacks.

• Ada.Real_Time is the most interesting package for real-
time programming. It is not only used by runtime library
but aids the developer in using the operation delay until
within tasks.

• Ada.Real_Time.Timing_Events is another interesting pack-
age that implements the software timers based on a main
periodic task.

• System.Soft_Links is a package containing several stack
pointer definitions. It contains also a set of subprogram
access variables that calls different primitives depending
whether tasking is involved or not.

• System.Stack_Checking is a package very useful in embed-
ded systems for counting the usage of the stack. It is
system-independent.

• System.Task_Info is used as a dummy package because
GNAT compiler requires such interface. It includes def-
initions and procedures for primitives that concurrent
model will use in the operating system.

• System.Multiprocessors is another dummy package. It is
required for multi-core systems but we only use it to sur-
pass the compiler dependencies of the GNARL.Create_Task
procedure arguments.

3.2 Coroutines and Scheduler
Coroutines are a generalization of subroutines containing mul-
tiple entry points and multiple return points that can progress
at same time but not on the same time instant. Basically, they
are a form of concurrent processing that is used in several
programming languages such as Python [19] and Lua [20] to
establish cooperative multitasking [21].

The scheduler for coroutines allows managing the execution
policy over a set of coroutines. It can be preemptive for real-
time applications containing a priority level system, or non
preemptive in the form of cooperative scheduling. The main
advantage of preemptive scheduling is the real-time response
on the task level, and with cooperative scheduling substan-
tially fewer uncontrollable switches are encountered than in
preemptive scheduling, because tasks cannot be preempted.

To subdivide the functionalities, we manage these terms into
two new packages:

• System.Coroutine provides the yield and resume of any
coroutine entity; and

• System.Scheduler provides the scheduler policies defini-
tion, the update state procedure, and several support
types and procedures for scheduling.

Volume 35, Number 3, September 2014 Ada User Jour na l



A. M. Pedro 197

procedure Context_Switch is
begin

Store_Context;
System.Scheduler.Update_State;
Restore_Context;

end Context_Switch;

Listing 3: Task Context-Switch Procedure

procedure Store_Context is
begin

−− push into stack r1−r31 registers
Asm ("push r1" & ASCII.LF & (....) "push r31",

Volatile => True);
−− push into stack SREG with global interrupts enabled
Asm ("in r26, __SREG__" & ASCII.LF &

"sbr r26, 128" & ASCII.LF &
"push r26",

Volatile => True);
−− save current Stack Pointer into variable Stack_Pointer
Asm ("in r26, __SP_L__" & ASCII.LF &

" in r27, __SP_H__" & ASCII.LF &
"std Y+0, r26" & ASCII.LF &
"std Y+1, r27",

Inputs => System.Address’Asm_Input (
"y" , Stack_Pointer’Address),

Volatile => True);
−− push SREG to be used after Update_State call [X]
Asm ("in __tmp_reg__, __SREG__" & ASCII.LF &

"push __tmp_reg__",
Volatile => True);

end Store_Context;

Listing 4: Procedure to store the context of a task

3.2.1 Context-switch

The context-switch procedure that is used to change con-
text from a set of coroutines is provided by the package
System.Coroutine and has the body as shown in Listing 3.
System.Scheduler.Update_State is an inline function to update
the state of the scheduler such as the tick variable, and the
other procedures store and restore the context. In addition,
the Context_Switch is implemented as a naked procedure using
the Machine_Code pragma that instruct the compiler to remove
any extra return code or context for registers.

The store procedure of the context is defined using a mix
of Ada and assembly code as shown in Listing 4. Un-
signed_8’Asm_Input is the type of the input, the string "z" estab-
lishes that the variable of the type Unsigned_8 is assigned to
the Z register [22], and the function Current_Coroutine returns
the address of the memory space to save the current stack
pointer. In sum, this block pushes into the stack all MCU
registers (r1 to r31) and the status register (SREG) with global
interrupts flag activated, and save the current address of the
stack pointer into the context structure.

The restore of the context for the new coroutine returned by
the function New_Coroutine is defined by a set of assembly
statements in Ada as shown in Listing 5. New_Coroutine func-
tion return the address of the new stack pointer. In short, this
block restores the new task to execute assigning the registers
that have been saved as the current registers as well as the
SREG.

procedure Restore_Context is
begin

−− restore SREG from previous push [X]
Asm ("pop __tmp_reg__" & ASCII.LF &

"out __SREG__, __tmp_reg__",
Volatile => True);

−− set the new stack pointer and status register
Asm ("ldd r26, Y+0" & ASCII.LF &

"ldd r27, Y+1" & ASCII.LF &
"out __SP_L__, r26" & ASCII.LF &
"out __SP_H__, r27" & ASCII.LF &
"pop __tmp_reg__" & ASCII.LF &
"out __SREG__, __tmp_reg__",

Inputs => System.Address’Asm_Input (
"y" , Stack_Pointer’Address),

Volatile => True);
−− push into stack r1−r31 registers
Asm ("pop r31" & ASCII.LF & (...) "pop r1",

Volatile => True);
−− return and set global interrupts on
Asm ("reti " ,

Volatile => True);
end Restore_Context;

Listing 5: Procedure to restore the context of a task

3.2.2 Scheduler Policies

Fixed-priority scheduling is considered by the real-time com-
munity more flexible than cyclic scheduling but more re-
stricted than dynamic scheduling [23, 24, 25]. This algorithm
ensure that at any given time instant the processor is executing
the highest priority task. To do that the scheduler is triggered
at a certain period, which is normally named as time slice or
quantum, by a timer interrupt routine. The interrupt is used
to run the scheduler periodically, and to execute a context-
switch from the current task to the new task when applicable.
Normally, the scheduler uses two queues: one ready queue
and one waiting queue. The ready queue contains the tasks
that are ready for execution while the waiting queue contains
the tasks that have been executed and now are awaiting their
execution. In short, the execution rules that are considered at
each time slice are:

• if a task from the waiting queue becomes ready for exe-
cution, then it is moved to the ready queue according to
its priority;

• if a task is running and one waiting action is triggered
the task is inserted in the waiting queue ordered by the
remaining time to execute;

• if the priority of the first task from the ready queue
becomes higher than the priority of the current task, then
a context switch is done.

Choosing the time slice parameter is critical for balancing the
system performance and the task responsiveness – choosing a
very short value can compromise the processing power of the
system, and a very huge value can overpass the deadlines of
periodic tasks.

This policy is implemented as an inline procedure that change
the state of the scheduler to be activated, and is defined in
the package System.Scheduler as shown in Listing 6. This
procedure assumes that the ready_queue is ordered by priority.

Ada User Jour na l Vo lume 35, Number 3, September 2014



198 Implementat ion of Task Types in AVR-Ada

Round-Robin scheduling is considered a form of cooperative
task model. It is well used in non real-time applications to
fairly share execution time between tasks. The rules of this
type of scheduler are simple. Basically, at each time slice
the system instead of triggering the higher priority task, only
triggers the next task to execute. The tasks form a chain that
is switched at each schedule tick. The order can be clockwise
or counterclockwise.

This policy is implemented as an inline procedure that change
the state of the scheduler to activate a context-switch, and is
defined in the package System.Scheduler as shown in Listing 7.

3.2.3 Interrupt Routine

Embedded systems make an intensive use of interrupts and
even more of the ones generated by hardware timers. AVR
architectures have few timers and then depending on the ap-
plication they need to be carefully managed. This limitation
can be bypassed by the tick method. It manages an enormous
amount of timers as required by real-time systems and sup-
ports the generation of software timers that are charged to
call a specified handler when they finish. The overhead is not
significant, and the precision is as good as the one given for
each tick. Tasks are scheduled using these software timers,
one for each task, and they are named timing events when
coupled with a handler.

For safety purposes, the nested interrupts need to be taking
into account and almost always predictable as well as the
conditions for context-switching. The author describes the
rules that can result in a change of context from a scheduler,
as follows:

• if the task is executing and some procedure is called to
suspend it until a certain amount of time, a new timing
event is created, the handler attached and triggered when
the timing event expires a certain amount of time, and
the task removed from the ready queue;

• if the task is executing and any procedure is called to
suspend the task within an undetermined amount of
time then no timing event triggers, and the task may
not wake-up anymore if the programmer does not insert
any method to do it explicitly;

• if no suspensions applied, only the handler can context-
switch tasks.

procedure FP_Policy is
begin

−− compare current task priority with the first task in
−− priority queue
if ready_queue.priority < current_task. priority

−− do nothing
State := True;

else
−− do the context switch
State := False;

end if ;

end FP_Policy;

Listing 6: Procedure to select the next task to execute using the
fixed-priority scheduling policy

procedure RR_Policy is
begin

−− always do the context switch
State := False;

end RR_Policy;

Listing 7: Procedure to select the next task to execute using the
Round-Robin scheduling policy

package Ada.Real_Time.Timing_Events is
type Timing_Event is tagged limited private;
type Timing_Event_Handler is access

procedure (Event : in out Timing_Event);
procedure Set_Handler (Event : in out Timing_Event;

At_Time : in Time;
Handler : in Timing_Event_Handler);

procedure Cancel_Handler (Event : in out Timing_Event;
Cancelled : out Boolean);

−− the new procedure to be called only from Runtime Library
procedure Do_Tick_and_Execute;

private
−− define the timing event record
type Timing_Event is limited record

Timeout : Time := Time_First;
Handler : Timing_Event_Handler;
Handler_Arg : System.Address;
Next : access Timing_Event := null;
Previous : access Timing_Event := null;

end record;
−− define a list of timing events for Do_Tick_and_Execute
Timing_Events_list : access Timing_Event;
Time : Time := 0;

end Ada.Real_Time.Timing_Events;

Listing 8: Timing Events

The implementation of timing events is part of the package
Ada.Real_Time.Timing_Events, and the specification is as shown
in the Listing 8. At scheduler level, the runtime library uses
the timing events that are responsible for coordinating real-
time tasks.

The scheduler handler is part of the package Sys-
tem.Scheduler.Timer_Handler, and a hardware timer provides
the interrupt routine to call it. Listing 9 shows the code to
define the settings for this interruption routine, where X is the
identifier of the interrupt vector that can be a number from
0 to 16 depending on the MCU, and __vector_X is the inter-
rupt vector to link with the handler. The tick respects some
precision, and the scheduler executes in this tick granularity
configured by one of the available timers, which are hardware
dependent.

Timer_Handler routine is as described in the Listing 10. It
executes an entirely isolated procedure, which means that ev-
ery context of the used registers are saved and replaced after
the execution, and takes a decision if any task can change
and when positive make the context-switch. For now, the
Isolated_Execution procedure only contains the call to the proce-
dure Do_Tick_and_Execute for timing events and the procedure
Policy. Do_Tick_and_Execute routine is capable to update every
event timer and execute their handles if remaining time have
been expired as shown in the Listing 11. The Handler is the
procedure that will put available the task into the ready queue.

Volume 35, Number 3, September 2014 Ada User Jour na l



A. M. Pedro 199

procedure Timer_Handler;
pragma Machine_Attribute (Entity => Timer_Handler,

Attribute_Name => "signal");
pragma Export (C, Timer_Handler, "__vector_X");

Listing 9: Interrupt handler definition

procedure Timer_Handler is
use System.Machine_Code;

begin
−− save and restore the registers used by it
Isolated_Execution;
−− disable interrupts enabled in the " reti " of the last
−− procedure
Asm ("cli " , Volatile => True);
−− make a decision to do the context switch
Asm ("push r26" & ASCII.LF &

" ld r26, Y" & ASCII.LF &
" tst r26" & ASCII.LF &
"brne .nn" & ASCII.LF &
"pop r26" & ASCII.LF &
" reti " & ASCII.LF &
" .nn:" & ASCII.LF &
"pop r26",

Inputs => System.Address’Asm_Input (
"y" , State’Address),

Volatile => True);

−− do the context−switch
Context_Switch;
−− part that is no longer achievable

end Timer_Handler;

Listing 10: Timer handler

3.3 Interconnection with AVR-Ada
3.3.1 Required Data Types

Data structures to save the context and the state of a task
are defined using the guidelines provided in the GNAT book
[16]. However, to reduce memory footprint and avoid safety
problems, all definitions for entries, activations, and dynamic
allocators have been disabled.

Tasks are coroutines containing a state variable to inform
the scheduler and a stack for saving the context of the tasks
including the outcomes from the push and pop instructions
made in the task body. Listing 12 describes these states. The
state Ready means that the task is waiting in the ready queue;
the state Runnable means that the task is currently executing;
the state Terminated means that the task cannot have more
executions, and the state Sleeping establishes that the task is
waiting from a delay statement. The stack pointer is saved in
the control block of the task as well as other fields such as,
the priority of the task for fixed-priority policies and a pointer
to the procedure expanded by the compiler from the task type.
This control block is denoted by Ada_Task_Control_Block as
shown in the Listing 13. State contains one of the available
task states; Parent contains the address of the task that elab-
orated the new task; Base_Priority contains the priority of the
task; Current_Priority contains the priority for the case of ceil-
ing locks can happen; Task_Arg contains an address for the
task arguments; Task_Entry_Point contains the address of the
task procedure, and the remaining attributes are to match the
links and interfaces provided by the GNAT compiler.

procedure Do_Tick_and_Execute is
Tmp : access Timing_Event := null;

begin
−− increment the time
Time := Time + 1;
if not Timing_Events_list = null

−− decrements all timers
Timing_Events_list.Timeout := Timing_Events_list.Timeout − 1;
while not Timing_Events_list.Next = null loop

Tmp := Timing_Events_list.Next;
Tmp.Timeout := Tmp.Timeout − 1;

end loop;
−− is zero
if Timing_Events_list.Timeout = 0

−− execute handler
Timing_Events_list.Handler;

end if ;
end if ;

end Do_Tick_and_Execute;

Listing 11: Do_Tick_and_Execute procedure

type Task_States is ( Ready, Runnable, Terminated, Sleeping );

Listing 12: Task states for AVR-Ada

3.3.2 Secondary Stack

The local stack for each task is assigned to a segment of
the secondary stack and is separated in memory by proper
symbols. The allocated space is not available anymore. This
constraint prevents the use of pooling methods for dynamic
memory allocation, reduces the significant memory footprints
for AVR architectures with tiny SDRAM, and increases the
predictability and the safety of the embedded systems. As
already referenced in the GNAT runtime library documenta-
tion [16], Task_Id is an access type to store the address of the
task control block. Usually, the control block is created us-
ing dynamic memory allocation and the static, limited record
provided by task expansion stores the address. In this work,
the task type contains the initial address provided by the sec-
ondary stack to store the control block. The new stack pointer
increases with the size of this block making the initial stack
segment used and avoiding task block overwrite. The state-
ment ’for Control_Block’Address use Local_Stack’Address;’ mod-
ifies the address of the control block, and the stack pointer
need to be shifted using an assembler instruction.

type Ada_Task_Control_Block is record
State : Task_States;
Parent : Task_ID;
Base_Priority : System.Any_Priority;
−− priority ceiling
Current_Priority : System.Any_Priority;
−− task arguments and task procedure access
Task_Arg : System.Address;
Task_Entry_Point : Task_Procedure_Access;
−− structure to store stack addresses
Compiler_Data : System.Soft_Links.TSD;
All_Tasks_Link : Task_ID;
Elaborated : Access_Boolean;

end record;

Listing 13: AVR-Ada task control block

Ada User Jour na l Vo lume 35, Number 3, September 2014



200 Implementat ion of Task Types in AVR-Ada

This remark intended to discourage programmers to use tasks
in AVR for running a dozen times due to the significant stack
footprint. It gives a burden for the programmer to chose how
to deal with aperiodic tasks.

3.3.3 Tasking Stages

Activate_Tasks and Complete_Ativation are declared as inline pro-
cedures that contains the instruction ’null;’. We do not need
these functions since we do not use any operating system, and
no synchronization need to be ensured between the elabora-
tion and the first execution of a task.

RTS_Lock and RTS_Unlock are procedures to activate or deacti-
vate tasks. As we know only an interrupt can context-switch
the current task to another task, and then we disable it for a
while. However, we need to take care about the usage of these
functions.

Create_Task is the procedure that calls another function de-
fined in the package System.Coroutines. A task is mapped to a
coroutine that have its proper stack allocated as a sub-stack of
the secondary stack. Terminate_Task is a null procedure since
we consider that any task does not ends due to the secondary
stack release constraint.

4 A Lightweight Control System
Arducc board is a platform designed explicitly for lightweight
automotive applications. The controller system that runs
on this platform composed by three tasks manages different
modules provided by the Arducc board such as CAN, GSM,
and GPS interfaces. The control system is purely reactive and
acts to state changes done by any task. The task that the paper
presents in detail is the CAN task that uses a specific library
to communicate via SPI bus with the MCP2515 transceiver.

4.1 Preliminary Definitions
The task type Can_Task is the CAN interface containing the
initialization of the CAN driver and the parsing of the CAN
messages that sets according to the CAN messages the re-
spective state change of the system. GSM_Task is used to
control the GSM module included in the Arducc board, and
Controller_Task is the main controller task to turn-on/-off the
monitor, computer, and other devices coupled to the Arducc
board. The state change modifies the state vector of size 4
bytes, as shown in the Listing 14. It initializes a predefined
setting saved in the EEPROM of the MCU. To ease the next
analysis, ε1 denotes the Can_Task, and ε2 the Controller_Task.

4.2 CAN Task
The messages produced by the vehicle and parsed in the
Can_Task uses the MCP2515 external library, as shown in the
Listing 15. This periodic task does the parsing by reading
a message buffered in an FIFO list provided by MCP2515
library. The library supports the poll method for high rat-
ing message monitoring and interrupt method for low rate
messages. In interrupt mode, the messages are filtered with
a certain mask id by the procedure Mcp2515.Set_Mask, and
the library statically allocates a buffer of ten messages to be
consumed by tasks. The standard CAN messages have an

type Controller_State_Type is (Sleep, Halt , Waiting_For_Halt,
Delay_By_Flag, Auto_Start_Up, Auto_Shutdown, Force_Shutdown);

for Controller_State_Type use (Sleep => 16#01#, Halt => 16#02#,
Waiting_For_Halt => 16#04#, Delay_By_Flag => 16#08#,
Auto_Start_Up => 16#10#, Auto_Shutdown => 16#20#,
Force_Shutdown => 16#40#);

type Relay_Block_State_Type is (Computer, Computer_Ready,
Monitor, Amplifier );

for Controller_State_Type use (Computer => 16#01#,
Computer_Ready => 16#02#, Monitor => 16#04#,
Amplifier => 16#08#);

type Can_Block_State_Type is (Can_Monitor);
for Can_Block_State_Type use (Can_Monitor => 16#01#);

type Vehicle_Block_State_Type is (Lights, Reverse_Gear, Engine,
Driver_Door, Ignition );

for Vehicle_Block_State_Type use (Lights => 16#01#,
Reverse_Gear => 16#02#, Engine => 16#04#,
Driver_Door => 16#08#, Ignition => 16#10#);

type States is record
Controller_State: Controller_State_Type;
Relay_Block_State: Relay_Block_State_Type;
Can_Block_State: Can_Block_State_Type;
Vehicle_Block_State: Vehicle_Block_State_Type;

end record;

Listing 14: A preliminary state version for Arducc board.

identification of 11bits, a maximum of 8 bytes for the mes-
sage, a CRC check code, and some acknowledgment bits [26].
The minimum size of the standard CAN messages is 44bits
and can be extended to 108bits to carry the message of 8
bytes.

The task begins by initializing the MCP2515 driver, sets filters
for two hexadecimal addresses 0x380 and 0x3A0, requests
the state of the FIFO list, and consumes it whether a list is
not empty. The period assigned for this consumption process
needs an optimization to avoid missing any message based
on the maximum message arrival rate. The case statement
matches the acquired message identification with a certain
state according to the message content. The mutual exclusion
approach used to ensure that any interrupt does not interfere
with getting a message requires taking into account the deac-
tivation of the interrupts, since the interrupts are unable for a
long time, a miss of the tick of the scheduler can occur. The
common and safe method is applying a mutex to a certain
variable, but currently this feature is not supported by AVR-
Ada. The other two tasks are not presented here but can be
found in the next release of Arducc firmware [14].

4.3 Interrupt Handling
The schedulability of the tasks depends on an interrupt that is
triggered by a hardware timer. As the hardware timers are de-
pendent of the MCU, an extra setup for each MCU provided
by Ada AVR library implements the periodic call of the sched-
uler handler in the runtime library. This extension provides
to AVR-Ada a configuration of the Timer1 in ATMega328 as
shown in the Listing 16. The procedure Timer1_Setup setups
the registers of the timer one to trigger an interrupt twenty
times per second. However, this approach is not fully imple-
mented to work with all AVR chips supported by AVR-Ada.

Volume 35, Number 3, September 2014 Ada User Jour na l



A. M. Pedro 201

task body Can_Task is
tmp_msg : Mcp2515.Message_Type;
Period : constant Ada.Real_Time.Time_Span :=

Ada.Real_Time.Milliseconds (40);
Next_Time : Ada.Real_Time.Time := Ada.Real_Time.Clock;

begin
Mcp2515.Init(Mcp2515.Baund_50kbs);
Mcp2515.Set_Mask(16#380#);
Mcp2515.Set_Mask(16#3A0#);

loop
Ada.Real_Time.Lock;
if not Mcp2515.Rx_Buffer.Empty then

tmp_msg := Mcp2515.Rx_Buffer.Get;
Ada.Real_Time.Unlock;
−− begin of CAN messages parser
case tmp_msg.id is

when 16#380# =>
−− dashboard system message
if tmp_msg.data (2) = 16#04# then

Marv.State.Vehicle_Block_State (Marv.
Vehicle_Block_State_Bit_Type.
Driver_Door) := True;

end if ;
when 16#3A0# =>
−− multimedia system message
if tmp_msg.data (1) = 16#16# then

Marv.State.Multimedia_Block_State (Marv.
Multimedia_Block_State_Bit_Type.
Next_Music) := True;

end if ;
end case;
−− end of parser

else
−− release the lock
Ada.Real_Time.Unlock;

end if ;
−− periodic delay
Next_Time := Next_Time + Period;
delay until Next_Time;

end loop;
end Can_Task;

Listing 15: Parsing CAN messages for Arducc board.

For users that do not use ATMega MCUs, a few lines of
code need to be added to activate one timer to trigger the
Time_Handler at certain period.

4.4 Concurrency Analysis

Consider a set of tasks {εil, ε1, ε2, ε3} with implicit deadline
containing the period value of dε1 = 14, dε2 = 20, and
dε3 = 27. For a scheduler using a fixed priority policy the
priorities are assigned with the following order pεil < pε3 <
pε2 < pε1 , as shown by the time sequence in the Figure 3. P is
the pattern where a task should be released, and T the trace
showing the sequential execution for some time instants. εil
describes that any task is not executing, and the system is in
idle mode. This task uses a very small stack allocated in the
beginning of the secondary stack, and the other tasks have
sub-stacks allocated in the secondary stack, as shown in the
Figure 4. The arrows identifies the four possible addresses
that can be assigned to the stack pointer in SDRAM, the
SDRAM on top shows the memory assignment without the
elaboration of the tasks, and the bottom SDRAM piece depicts
the memory assignment after the tasks elaboration. The .data
and .bss sections are defined as usual.

with AVR; use AVR;
with AVR.MCU;
procedure Timer1_Setup is
begin

MCU.TCCR1A := MCU.TCCR1B := MCU.TCNT1 := 0;
−− set the 256 prescaler
MCU.TCCR1B_Bits (CS12_Bit) := True;
−− 16MHz(clock)/256(prescaler)/20Hz(interrupt frequency)
−− (16_000_000/256)/20 = 3125
MCU.OCR1A := 3125;
MCU.TCCR1B_Bits (WGM12_Bit) := True; −− CTC mode
−− enable Timer1 compare interrupt
MCU.TIMSK1_Bits (OCIE1A_Bit) := True;

end Timer1_Setup;

Listing 16: Extra code for ATMega328 Timer1 setup.

P
ε1
ε3
ε2

ε1 ε2 ε3
ε1

ε1 ε2 ε3 ε1 ε3

εil

ε2 εil ε3

ε1

T

cs ε2 cs ε3

Figure 3: Illustration of the context-switches generated from a
set of tasks using a fixed-priority scheduler.

Focusing on the first three events of the trace, the reader can
realize that before each event a context switch is done by
the scheduler. This context-switch copy every register of
the MCU into the current stack pointer, and the current stack
pointer into the task control block. The behavior of the system
with these task settings is, as follows:

1. any task has an access of task control block as the task
identifier;

2. every task is initialized with 31 registers pushed into
stack with value 0 and SREG with the default value;

3. the current local stack pointer address is saved in the
task control block for each task;

4. the task ε1 starts the execution by context-switching the
registers and the stack pointer assigned in the initializa-
tion process;

5. the context from ε1 into ε2 pushes the current registers r1-
r31 and SREG into the local stack stack(ε1), saves the
current stack pointer into the task control block, updates
the scheduler state increasing the timers, and does the
restore context by popping all registers from local stack
of the task ε2;

Ada User Jour na l Vo lume 35, Number 3, September 2014



202 Implementat ion of Task Types in AVR-Ada

Stack (εid)

Secondary Stack

SDRAM

MCU State

R1
R2
...

R31

SREG

PC

SP

.data .bss

Stack (ε3)

Secondary Stack

Stack (ε2)
Stack (ε1)SDRAM

.data .bss unused

Figure 4: A picture of MCU and memory assignment including
four stacks.

6. the process continues with task ε2 into the step 4), where
at each cycle the task identifier is changing.

7. when no task have to be processed the system enters in
idle mode by continuously executing the idle task εil,
and when a task is ready continues to step 4).

The scheduler tick granularity may have tried several times
to perform some context switches during the execution of the
system, but the timer handler does not instruct the scheduler
to do it due to the priority of the task under execution.

5 Conclusion
This paper presented an extension of AVR-Ada for AVR 8-bit
microcontrollers, with support for task types, timing events,
and simple lock/unlock features. Accepted scheduling poli-
cies are Round-Robin and Fixed-Priority, but other policies
can be added easily to the runtime library of AVR-Ada by
changing the policy procedure. This work allows program-
mers to design efficient real-time Ada applications for MCUs
with subtle memory RAM as the case of AVR 8-bit microcon-
trollers. The major advantages of this extension are the design
of lightweight embedded systems with very low consumption
MCUs using a concurrent language, a small and static mem-
ory usage due to optimizations done inlining assembly code,
and the support for verification of embedded systems using
Ada 2012 contracts.

For future work, we address the extension of protected types
as concurrent monitors, the design of execution time timers,
and the introduction of the Ada 2012 contracts for embedded
systems design phase. Contracts should be checked dynami-
cally extending the runtime system and the compiler.

References
[1] Atmel R© AVR R© 8-bit/32-bit microcontrollers Fam-

ily. http://www.atmel.com/products/
microcontrollers/avr/ Accessed: 5/08/2014.

[2] Atmel R© AVR R© 8-bit microcontrollers Overview.
http://www.atmel.com/images/45058a_
about-avr_090913.pdf Accessed: 5/08/2014.

[3] Arduino: An opensource board based on Atmel R©
AVR R© 8-bit microcontrollers. http://www.
arduino.cc/ Accessed: 5/08/2014.

[4] Ardupilot: An opensource autopilot based on Ar-
duino project. http://www.ardupilot.com/
Accessed: 5/08/2014.

[5] Ardusat: The first opensource satellite based on a mesh
of Atmel R© AVR R© 8-bit microcontrollers. http://
www.ardusat.org/ Accessed: 5/08/2014.

[6] K. N. Gregertsen and A. Skavhaug (2010), Implement-
ing the New Ada 2005 Timing Event and Execution Time
Control Features on the AVR32 Architecture, J. Syst.
Archit., vol. 56, pp. 509–522.

[7] P. V. Rego (2012), Integrating 8-bit AVR Micro-
Controllers in Ada, Ada User Journal, vol. 33, pp. 301–
305.

[8] AVR-Ada: The Runtime Library for Atmel R© AVR R© 8-
bit microcontrollers. http://sourceforge.net/
projects/avr-ada/ Accessed: 5/08/2014.

[9] Ada Development Environment for the Atmel R© AVR R©
8-bit microcontroller – AdaCore. http://www.
adacore.com/gnatpro/embedded/avr/ Ac-
cessed: 5/08/2014.

[10] Eclipse: An integrated development environ-
ment. https://www.eclipse.org/ Accessed:
5/08/2014.

[11] GPS: The GNAT Programming Studio. http:
//libre.adacore.com/tools/gps/ Ac-
cessed: 5/08/2014.

[12] The AVR Eclipse Plugin. http://avr-eclipse.
sourceforge.net/ Accessed: 5/08/2014.

[13] C. Marlin (1980), Coroutines: A Programming Method-
ology, a Language Design and an Implementation, Lec-
ture Notes in Computer Science, Springer.

[14] Open Hardware Arducc Board Project. http:
//sourceforge.net/projects/arducc/ Ac-
cessed: 5/08/2014.

[15] A. Burns and A. Wellings (2007), Concurrent and Real-
Time Programming in Ada. New York, NY, USA, Cam-
bridge University Press, 3rev ed.

[16] AdaCore, GNAT: The GNU Ada Compiler Book.
www.adacore.com/gap-static/GNAT_
Book/gnat-book.pdf Accessed: 5/08/2014.

[17] AVR Threads Library. https://bitbucket.org/
dferreyra/avr-threads Accessed: 5/08/2014.

[18] ChibiOS/RT: An open source, compact and extremely
fast RTOS. http://www.chibios.org Accessed:
5/08/2014.

[19] M. Lutz (2003), Learning Python. Sebastopol, CA,
USA, O’Reilly & Associates, Inc., 2 ed.

[20] R. Ierusalimschy (2013), Programming in Lua, Third
Edition. Lua.Org, 3rd ed.

Volume 35, Number 3, September 2014 Ada User Jour na l



A. M. Pedro 203

[21] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and
J. R. Douceur (2002), Cooperative Task Management
Without Manual Stack Management, Proceedings of the
General Track of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’02, (Berkeley,
CA, USA), pp. 289–302, USENIX Association.

[22] Atmel R© AVR R© 8-bit RISC Instruction
Set. http://www.atmel.com/Images/
Atmel-0856-AVR-Instruction-Set-Manual.
pdf Accessed: 5/08/2014.

[23] C. D. Locke (1992), Software Architecture for Hard

Real-time Applications: Cyclic Executives vs. Fixed
Priority Executives, Real-Time Syst., vol. 4, pp. 37–53.

[24] G. C. Buttazzo (2005), Rate Monotonic vs. EDF: Judg-
ment Day, Real-Time Syst., vol. 29, pp. 5–26.

[25] P. A. Laplante and S. J. Ovaska (2011), Real-Time Sys-
tems Design and Analysis: Tools for the Practitioner.
Wiley-IEEE Press, 4th ed.

[26] Stand-Alone CAN Controller with SPI Interface
– Microchip. http://ww1.microchip.com/
downloads/en/DeviceDoc/21801d.pdf Ac-
cessed: 5/08/2014.

Ada User Jour na l Vo lume 35, Number 3, September 2014



204   

Volume 35, Number 3, September 2014 Ada User Journal 

SPARK 2014 Rationale: Data dependencies and 
Information Flow 
Pavlos Efstathopoulos  
Altran UK 

 

Abstract 

This paper continues the publication of the "SPARK 
2014 Rationale", which started in the December 2013 
issue of the Ada User Journal. In this instalment, we 
present two contributions regarding data 
dependencies and information flow in SPARK. 

1   Data dependencies 

Programs often use a few global variables. Global variables 
make passing common information between different parts 
of a program easier. By reading the specification of a 
subprogram we are able to see all of the parameters that the 
subprogram uses and, in Ada, we also get to know whether 
they are read, written or both. However, no information 
regarding the use of global variables is revealed by reading 
the specifications. In order to monitor and enforce which 
global variables a subprogram is allowed to use, SPARK 
2014 has introduced the Global aspect, which I describe in 
this post.  

I claim that aspect Global is extremely easy to use. In order 
to figure out whether I am right or wrong, lets conduct an 
experiment. Without having explained anything about how 
aspect Global works I will give you the specifications of 
three procedures and also the code of the Main that calls 
them. You will then have to guess if the Main will behave 
predictably or not. If you guess correctly, then my initial 
statement was correct (otherwise, ... oh well). So, here we 
go: 

package Guess_The_Order is 
   Global_Variable : Integer; 

   procedure Print with 
     Global => (Input  => Global_Variable); 

   procedure Sub (X, Y : in Integer) with 
     Global => (In_Out => Global_Variable); 

   procedure Add (X, Y : in Integer) with 
     Global => (Output => Global_Variable); 

end Guess_The_Order; 
 
with Guess_The_Order; 
procedure Main is 
begin 
   Sub (6, 1); 
   Add (2, 3); 
   Print; 
end Main; 

The main program will produce unpredictable results 
because procedure Sub tries to read Global_Var before it 
has been initialized! The correct order would be, call Add 
first, Sub second and Print last. The Global aspect on 
procedure Add says that Global_Variable will be set by the 
subprogram. Procedure Sub's contract says that 
Global_Variable will be both read (which is what causes 
the problem) and written. Procedure Print only reads 
Global_Variable and presumably does some kind of 
printing. 

Regardless of whether you guessed correctly or not, if you 
want to learn some more about how aspect Global works, 
read on!  

The Global aspect helps us in two different ways. It ensures 
that: 

 ALL global variables mentioned by the aspect, and 
ONLY them, will be used by the subprogram and 

 global variables that are meant as inputs are not 
updated and global variables that are meant as outputs 
are NOT read before they are set. 

The following four modes inform us of the way in which 
the subprogram interacts with its global variables: 

 Input: A global variable of this mode can NOT have its 
value updated. The global variable can and HAS TO be 
read. This means that there has to be at least one 
execution path of the subprogram where the global is 
read. In essence, if we say that something is an Input, 
then it is an Input! 

 Output: Global variables of this mode can NOT have 
their values read before the subprogram has set them. 
Furthermore, their values have to be set in ALL 
execution paths of the subprogram. This means that by 
the end of the subprogram the value of the global will 
always be set to something. 

 In_Out: There has to be at least one execution path that 
reads the initial value of the global variable and one 
path that updates it. 

 Proof_In: The value of the global variable can only be 
mentioned inside proof related annotations. 
Consequently, no outputs of the subprogram can ever 
be affected by a such a global variable. This mode 
allows us to use globals to check that certain properties 
are true for our subprogram but it also ensures that we 
did NOT accidentally affect the outputs of the 
subprogram while doing our checks. 



P. Efstathopoulos 205  

Ada User Journal Volume 35, Number 3, September 2014 

When a mode is not specified, the tools assume a default 
mode of "Input". Conceptually, the first 3 modes are very 
similar to modes "in", "out" and "in out" of formal 
parameters. 

Enforcing that NO global variables are used 
When a subprogram is annotated with a "Global => null" 
contract, the tools will ensure that NO global variables are 
used by the subprogram. Be careful, having no Global 
contract is not the same as having a null Global contract 
(i.e. Global => null). In the absence of a Global contract, 
the tools will generate an implicit Global contract based on 
the subprogram's body, they will assume that to be the 
correct contract and will propagate it to all callers of the 
subprogram. 

Correct Examples 
 
package Correct_Globals with SPARK_Mode 
is 
   Everything_OK : Boolean := True; 
   Global_Var : Natural := 1; 
   Backup_Global_Var : Natural := 1; 
 
   procedure Increase_1 (X : in out Natural) with 
     Global => (Input => Global_Var); 
   --  Same as: "with Global => Global_Var;" 
 
   procedure Increase_2 (X : in out Natural) with 
     Global => null; 
   --  Cannot use any global variables here. 
 
   procedure Increase_Global_Var (X : Natural) with 
     Global => (In_Out   => Global_Var, 
                       Output   => Backup_Global_Var, 
                       Proof_In => Everything_OK); 

       -- Everything_OK can only appear in  
       -- proof-related annotations. 

end Correct_Globals; 
 
package body Correct_Globals with SPARK_Mode 
is 
   procedure Increase_1 (X : in out Natural) is 
   begin 
      X := X + Global_Var; 
   end Increase_1; 
 
   procedure Increase_2 (X : in out Natural) is 
   begin 
      X := X + 1; 
   end Increase_2; 
 
   procedure Increase_Global_Var (X : Natural) is 
   begin 
      pragma Assert (Everything_OK);  
       --  Some assertion... 
      Backup_Global_Var := Global_Var; 
      Global_Var := Global_Var + X; 
   end Increase_Global_Var; 
end Correct_Globals; 

Incorrect Examples 
 
package Incorrect_Globals 
  with SPARK_Mode 
is 
   Global_Var : Integer; 
 
   procedure Read_Global_Variable  
 (X : out Integer) with 
     Global => Global_Var; 
 
   procedure Update_Global_Var   
 (X : Integer) with 
     Global => (Output => Global_Var); 
 
   function Increase (X : Integer) return Integer with 
     Global => null; 
end Incorrect_Globals; 
 
package body Incorrect_Globals 
  with SPARK_Mode 
is 
   procedure Read_Global_Variable (X : out Integer) is 
   begin 
      X := Global_Var; 
      Global_Var := Global_Var + 1;   
      --  Global_Var is of mode "Input" 
      --  The error message generated by the tools is: 
      --  "Global_Var" must be a global output of    
      --  "Read_Global_Variable" 
   end Read_Global_Variable; 
 
   procedure Update_Global_Var (X : Integer) is 
   begin 
      if X < 0 then 
         Global_Var := -1 * X; 
      elsif X > 0 then 
         Global_Var := X; 
      end if; 
      --  When X = 0, Global_Var is not being set. So it's      
      --  Global mode should have been In_Out. Another  
      --  way to look at it is as follows. 
      --  A mode of "Output" means that the global variable  
      --  is ALWAYS set while a mode of "In_Out" means  
      --  that the variable is set  SOMETIMES BUT NOT  
      --  ALWAYS. The warnigs printed by the tools here is: 
      --    warning: "Global_Var" might not be initialized 
   end Update_Global_Var; 

 

   function Increase (X : Integer) return Integer is 
      (if X < 0 
       then X + 1 
       else X + Global_Var); 
   --  The error message generated by the tools is: 
   --  "Global_Var" must be listed in the Global aspect  
  --   of "Increase" 
end Incorrect_Globals; 

 



206  SPARK 2014 Rat ionale:  Data dependencies and Informat ion Flow 

Volume 35, Number 3, September 2014 Ada User Journal 

Generated Globals 
When a user-provided contract is available, the tools will 
attempt to verify its validity and report back in case of a 
contradiction. As said before, in the absence of a user-
provided contract, the tools generate a contract based on the 
body of the subprogram, they then consider this to be the 
"correct" contract and use it to verify any user-provided 
contracts. 

package Generated_Globals with SPARK_Mode 
is 
   Global_Var : Integer := 1; 
 
   procedure Without_Contract (X : out Integer); 
   -- Based on the body, the tools will compute a global     
   -- contract that will say that Global_Var is a global 
   -- input 
 
   procedure With_Correct_Contract  
 (X : out Integer) with 
     Global => Global_Var; 
 
   procedure With_Incorrect_Contract  
 (X : out Integer) with 
     Global => null; 
end Generated_Globals; 
 
package body Generated_Globals with SPARK_Mode 
is 
   procedure Without_Contract (X : out Integer) is 
   begin 
      X := Global_Var; 
   end Without_Contract; 
 
   procedure With_Correct_Contract (X : out Integer) is 
   begin 
      Without_Contract (X); 
      --  The computed Global contract verifies the validity  
      --  of the user-provided contract of procedure  
      --  With_Contract. 
   end With_Correct_Contract; 
 
   procedure With_Incorrect_Contract (X : out Integer) is 
   begin 
      Without_Contract (X); 
      --  The computed Global contract contradicts the  
      --  user-provided contract  of procedure    
      --  With_Contract. Due to the mismatch, the following 
      --  error is generated: "Global_Var" must be listed in  
      --  the Global aspect of "With_Incorrect_Contract" 
   end With_Incorrect_Contract; 
end Generated_Globals; 

Conclusion 
In his book "Better Embedded Systems SW" Phil Koopman 
says: "The main problem with using global variables is that 
they create implicit couplings among various pieces of the 
program (various routines might set or modify a variable, 
while several more routines might read it). Those couplings 
are not well represented in the software design, and are not 

explicitly represented in the implementation language. This 
type of opaque data coupling among modules results in 
difficult to find and hard to understand bugs." We don't 
have this in SPARK, thanks to the Global aspect! 

2   Information Flow 

In a previous blog post we described how aspect Global can 
be used to designate the specific global variables that a 
subprogram has to read and write. So, by reading the 
specification of a subprogram that has been annotated with 
aspect Global we can see exactly which variables, both 
local and global, are read and/or written each time the 
subprogram is called. Based purely on the Global aspect, 
this pretty much summarizes the full extent of our 
knowledge about the flow of information in a subprogram. 
To be more precise, at this point, we know NOTHING 
about the interplay between the inputs and outputs of the 
subprogram. For all we know, all outputs could be 
randomly generated and the inputs might not contribute in 
the calculation of any of the outputs. To improve this 
situation, SPARK 2014 uses aspect Depends to capture the 
dependencies between a subprogram's outputs and inputs. 
This blog post demonstrates through some examples how 
aspect Depends can be used to facilitate correct flow of 
information through a subprogram.  

We will start off with a simple example. Lets assume that 
we want to write a procedure that doubles and then swaps 
variables X and Y. The final value of X should depend only 
on the original value of Y and the final value of Y should 
depend only on the original value of X. So now let's write 
some code and add the depends contract that we just 
mentioned on it. 

   procedure Double_And_SWAP (X, Y : in out Integer) 
     with Global  => null,  --  We use no global variables. 
          Depends => (X => Y,   
                                --  This reads as: "X depends on Y" 
                               Y => X)  
          --  This reads as: "Y depends on X" 
   is 
      Tmp : Integer; 
   begin 
      X := X * 2; 
      Y := Y * 2; 
      Tmp := X; 
      X := Y; 
      X := Tmp;   
      --  Oops, I mistyped... (should be "Y := Tmp;") 
   end Double_And_SWAP; 

When the tools analyze the above code, they complain that 
the depends annotation does not match the implementation. 
Both variables depend on themselves instead of each other. 
At this point, to make the error go away we have to either 
change the code, or change the dependency relation. In this 
particular example the problem lies with the code. 
However, this might not always be the case, it could very 
well be that our contracts/specifications were actually 
wrong because we failed to notice a dependency and 
consequently failed to capture it on the Depends aspect. 



P. Efstathopoulos 207  

Ada User Journal Volume 35, Number 3, September 2014 

Had we not added the dependency relation, it would have 
been easy to miss the typo and end up with an error in our 
code. Spotting the error was easy on this occasion but the 
more complicated the code the harder it gets. The tools 
make our life easier by highlighting the path in the code 
that leads to the discrepancy. 

The "Plan first, act later!" advice, seems to be applicable 
here since programmers should first formulate their 
Dependency relations and then proceed to the 
implementation. 

Lets now point out some key characteristics of aspect 
Depends. The Depends aspect tells us how the outputs of a 
subprogram relate to the inputs. Inputs always remain 
unchanged, so they cannot depend on anything. If an output 
'X' does not depend on any input, then we have to explicitly 
state this by writing "Depends => (X => null)". Similarly, if 
an input 'Y' of the subprogram is not used by any output, 
we have to state this by writing "Depends => (null => Y)". 

Suppose that we want to write a procedure that takes a 
single parameter 'Y' and then sleeps for 'Y' milliseconds. 
Since time is not modelled in SPARK, this procedure will 
appear to have no output and input 'Y' will appear to be 
doing nothing. The dependency relation of this Sleep 
procedure will look exactly as mentioned before "Depends 
=> (null => Y)". 

Lets now try to do the inverse. We will look at an 
unannotated piece of code and try to figure out what the 
corresponding Depends aspect should have been. 

  procedure No_Depends is 
  begin 
     if Condition then 
        X := Y; 
     end if; 
  end No_Depends; 

So let me think out loud... Since global variable Condition 
and global variable Y are only being read, they are inputs. 

Global variable X on the other hand is only ever written, so 
it has to just be an output. So the first Dependency relation 
that pops into mind is "Depends => (X => (Y, Condition))". 
Right? 

... 

WRONG ! When Condition is False, X remains exactly the 
way it was. So X depends on itself and is in fact also an 
input. It is as if we had written: 

  procedure No_Depends is 
  begin 
     if Condition then 
        X := Y; 
     else 
        X := X; 
     end if; 
  end No_Depends; 

The correct dependency for the code above would be 
"Depends => (X => (X, Y, Condition))". A shorthand for this 
is "Depends => (X =>+ (Y, Condition))". The '+' symbol 
means that variables on the left hand side also depend on 
themselves. So, the thing to remember here is that even 
though calculating the dependency relation of a 
subprogram is not too hard, there are some subtleties 
involved. 

Aspect Depends tells us how the outputs of a subprogram 
relate to its inputs. This improves readability and 
maintainability of the code by strengthening the interface 
specification of a subprogram. In certain contexts, such as 
the development of secure systems, this is a very powerful 
verification/assurance technique. Here, it is recommended 
that programmers provide dependency relations before they 
start writing the actual code so that the tools can verify the 
validity of the implementation against the annotations. If 
we all were to adopt this habit, higher quality code would 
be generated and the world would be a better and more 
secure place! 

 

  



208    

Volume 35, Number 3, September 2014 Ada User Journal 

National Ada Organizations 
 

Ada-Belgium 
attn. Dirk Craeynest 
c/o KU Leuven 
Dept. of Computer Science 
Celestijnenlaan 200-A 
B-3001 Leuven (Heverlee) 
Belgium 
Email: Dirk.Craeynest@cs.kuleuven.be 
URL: www.cs.kuleuven.be/~dirk/ada-belgium 

 

Ada in Denmark 
attn. Jørgen Bundgaard 
Email: Info@Ada-DK.org 
URL: Ada-DK.org 

 

Ada-Deutschland 
Dr. Hubert B. Keller 
Karlsruher Institut für Technologie (KIT)  
Institut für Angewandte Informatik (IAI) 
Campus Nord, Gebäude 445, Raum 243  
Postfach 3640 
76021 Karlsruhe 
Germany 
Email: Hubert.Keller@kit.edu 
URL: ada-deutschland.de 

 

Ada-France 
attn: J-P Rosen 
115, avenue du Maine 
75014 Paris 
France 
URL: www.ada-france.org 

 

Ada-Spain 
attn. Sergio Sáez 
DISCA-ETSINF-Edificio 1G 
Universitat Politècnica de València 
Camino de Vera s/n 
E46022 Valencia 
Spain 
Phone: +34-963-877-007, Ext. 75741 
Email: ssaez@disca.upv.es 
URL: www.adaspain.org 

 

Ada in Sweden 
attn. Rei Stråhle 
Rimbogatan 18 
SE-753 24 Uppsala 
Sweden 
Phone: +46 73 253 7998 
Email: rei@ada-sweden.org 
URL: www.ada-sweden.org 

 

Ada-Switzerland 
c/o Ahlan Marriott 
Altweg 5 
8450 Andelfingen 
Switzerland 
Phone: +41 52 624 2939 
e-mail: president@ada-switzerland.ch 
URL: www.ada-switzerland.ch 

 

 


	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Critical Software for the First European Rail Traffic Management System
	Privacy Leaks in Java Classes
	Implementation of Task Types in AVR-Ada
	SPARK 2014 Rationale: Data dependencies and Information Flow

