

Ada User Journal Volume 35, Number 4, December 2014

ADA
USER
JOURNAL

Volume 35

Number 4

December 2014

Contents
Page

Editorial Policy for Ada User Journal 210

Editorial 211

Quarterly News Digest 212

Conference Calendar 234

Forthcoming Events 240

Articles from the Industrial Track of Ada-Europe 2014

 R. Cholay
“AdDoc (beyond a document generator)” 246

Proceedings of the "Workshop on Challenges and New Approaches for Dependable and
 Cyber-Physical System Engineering" of Ada-Europe 2014 249

 D. Cancila and J-L. Gerstenmayer
“Editorial" 250

 K. Attwood, P. Conmy and T. Kelly
“The Use of Controlled Vocabularies and Structured Expressions in the Assurance of CPS” 251

 V. David, A. Barbot and D. Chabrol
“Dependable Real-Time System and Mixed Criticality: Seeking Safety, Flexibility and
Efficiency with Kron-OS” 259

 S. Nakajima and M. Toyoshima
“Behavioral Contracts for Energy Consumption” 266

 D. Cancila, E. Soubiran and R. Passerone
“Feasibility Study in the Use of Contract-Based Approaches to Deal with Safety-Related
Properties in CPS” 272

 D. Cancila, J-L. Gerstenmayer, C. Robinson and L. Rioux
“Round Table” 278

Ada-Europe Associate Members (National Ada Organizations) 280

Ada-Europe Sponsors Inside Back Cover

210

Volume 35, Number 4, December 2014 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 211

Ada User Journal Volume 35, Number 4, December 2014

Editorial

This last issue of 2014 publishes the Proceedings of the “Workshop on Challenges and New Approaches for Dependable and
Cyber-Physical System Engineering”, which took place June 23, co-located with Ada-Europe 2014. This workshop brought
together industry and research participants, for a full-day discussion on dependability and critical issues of Cyber-Physical
Systems (CPS), a good complement to the already rich program of the conference.

The workshop program included 2 technical sessions with papers from academia and industry, an invited speech by Charles
Robinson, of Thales, France, a focused session, and a roundtable discussion. The proceedings reflect part of this rich content,
starting with an Editorial by Daniela Cancila and Jean-Louis Gerstenmayer, from CEA LIST, France, followed by a set of
technical papers. The first workshop paper, from a group of authors from the University of York and Rapita Systems, UK,
which discusses the use of controlled vocabulary and structured expressions for CPS in the automotive domain, to improve
understanding between the different teams involved in the development process. The next paper, by authors from Krono-Safe,
France, presenting Kron-OS, a real-time kernel, and the associated set of tools, which targets the development of safe mixed-
criticality applications. Afterwards, authors from the National Institute of Informatics and DENSO Corporation, Japan, which
presents a formal model of energy consumption behavior in mobile platforms, which can be used form contract-based
analysis method to detect and remove energy-related bugs. Finally, the last workshop paper from authors from CEA LIST,
Technological Research Institute SystemX – Alstom Transport, France, and the University of Trento, Italy, presents a
feasibility study feasibility study on the use of contract-based approaches for enforcing safety-related properties in CPS. The
proceedings close with a report on the round-table discussion that took place at the workshop.

The issue also continues the publication of the contents of the industrial track of Ada-Europe 2014, with a paper by Robert
Cholay, describing the AdDoc tool, which was built both to generate documentation and also to check conformance to
commenting rules, and that also provides a good example of the use of ASIS.

Finally, and as usual, the issue provides the News Digest, Calendar and Forthcoming Events sections, provided by the News
and Events Editors, respectively Jacob Sparre Andersen and Dirk Craeynest. A special mention to the forthcoming events
section, with information about the Ada Developer Room at FOSDEM 2015, 31 January 2015, Brussels, Belgium (I take the
opportunity to congratulate Ada-Belgium for the important work on promoting Ada within the open source community), the
always important International Real-Time Ada Workshop (IRTAW 2015) which will be held in Vermont, USA, April 2015;
and obviously Ada-Europe 2015, which will take place at the Universidad Politécnica de Madrid, Spain, 22-26 June 2015: the
deadline for submissions is around the corner.

 Luís Miguel Pinho
Porto

December 2014
 Email: AUJ_Editor@Ada-Europe.org

212

Volume 35, Number 4, December 2014 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Organisations 212
Ada-related Events 212
Ada-related Resources 214
Ada-related Tools 215
Ada-related Products 221
Ada and Operating Systems 221
References to Publications 222
Ada Inside 223
Ada in Context 224

Ada-related
Organisations

Please Submit Contract
Assertion Tests to ACATS

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 13 May 2014 16:26:37 -0500
Subject: Re: Dynamic_Predicate failure ->

Assertion_Error?
Newsgroups: comp.lang.ada

[...]

Well, as this is a weird compiler bug and
not an outright mistake in the
implementation (since it depends solely
on the bounds of the loop - it works
properly when no loop is involved), it's
not a good candidate for the ACATS.
Especially as it seems to be more likely an
exception processing problem rather than
an assertion problem.

Moreover, AI12-0054-2 and AI12-0071-1
extensively changed the rules in this area
(they were much too loose for practical
usability). There will need to be tests for
those AIs, but they have to wait until
AI12-0071-1 is approved by WG 9
(expected in June).

That said, we'd love to have more tests for
Ada 2012's contract assertions. A variety
of programming styles helps the quality of
the ACATS. Contact me at agent@ada-
auth.org if you need more information, or
see Annex E in the ACATS
documentation (http://www.ada-
auth.org/acats-files/3.1/docs/UG-E.HTM).

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a

small report for the Ada User Journal.
—sparre]

Ada-Europe 2015

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Wed, 2 Jul 2014 21:41:26 +0000
Subject: CfP 20th Conf. Reliable Software

Technologies, Ada-Europe 2015
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Preliminary Call for Papers

20th International Conference on
Reliable Software Technologies

Ada-Europe 2015

22-26 June 2015, Madrid, Spain

http://www.ada-europe.org/
conference2015

Organized by Ada-Spain on behalf of
Ada-Europe, in cooperation (requests

pending) with ACM SIGAda, SIGBED,
SIGPLAN and the Ada Resource

Association (ARA)

*** CfP in HTML/PDF on web site ***

Ada-Europe organizes annual
international conferences since the early
80's. This is the 20th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13), and
Paris, France ('14).

General Information

The 20th International Conference on
Reliable Software Technologies - Ada-
Europe 2015 will take place in Madrid,
Spain. Following its traditional style, the
conference will span a full week,
including a three-day technical program
and vendor exhibition from Tuesday to
Thursday, along with parallel tutorials and
workshops on Monday and Friday.

Schedule

11 January 2015: Submission of regular
papers, tutorial and workshop proposals

25 January 2015: Submission of industrial
presentation proposals

1 March 2015: Notification of acceptance
to all authors

29 March 2015: Camera-ready version of
regular papers required

12 April 2015: Industrial presentation
abstracts required

17 May 2015: Tutorial and workshop
materials required

Topics

The conference has over the years become
a leading international forum for
providers, practitioners and researchers in
reliable software technologies. The
conference presentations will illustrate
current work in the theory and practice of
the design, development and maintenance
of long-lived, high-quality software
systems for a challenging variety of
application domains. The program will
allow ample time for keynotes, Q&A
sessions and discussions, and social
events. Participants include practitioners
and researchers representing industry,
academia and government organizations
active in the promotion and development
of reliable software technologies.

Topics of interest to this edition of the
conference include but are not limited to:

- Multicore and Manycore Programming:
Predictable Programming Approaches
for Multicore and Manycore Systems,
Parallel Programming Models,
Scheduling Analysis Techniques.

- Real-Time and Embedded Systems:
Real-Time Scheduling, Design Methods
and Techniques, Architecture
Modelling, HW/SW Co-Design,
Reliability and Performance Analysis.

- Mixed-Criticality Systems: Scheduling
methods, Mixed-Criticality
Architectures, Design Methods,
Analysis Methods.

- Theory and Practice of High-Integrity
Systems: Medium to Large-Scale
Distribution, Fault Tolerance, Security,
Reliability, Trust and Safety, Languages
Vulnerabilities.

- Software Architectures: Design Patterns,
Frameworks, Architecture-Centred
Development, Component-based Design
and Development.

- Methods and Techniques for Software
Development and Maintenance:
Requirements Engineering, Model-
driven Architecture and Engineering,

Ada-related Events 213

Ada User Journal Volume 35, Number 4, December 2014

Formal Methods, Re-engineering and
Reverse Engineering, Reuse, Software
Management Issues, Compilers,
Libraries, Support Tools.

- Software Quality: Quality Management
and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems.

- Mainstream and Emerging Applications:
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation,
Cloud Environments, Smart Energy
systems, Serious Games, etc.

- Experience Reports in Reliable System
Development: Case Studies and
Comparative Assessments, Management
Approaches, Qualitative and
Quantitative Metrics.

- Experiences with Ada and its Future:
Reviews of the Ada 2012 new language
features, implementation and use issues,
positioning in the market and in the
software engineering curriculum,
lessons learned on Ada Education and
Training Activities with bearing on any
of the conference topics.

Call for Regular Papers

Authors of regular papers which are to
undergo peer review for acceptance are
invited to submit original contributions.
Paper submissions shall not exceed 14
LNCS-style pages in length. Authors shall
submit their work via EasyChair
following the relevant link on the
conference web site. The format for
submission is solely PDF.

Proceedings

The conference proceedings will be
published in the Lecture Notes in
Computer Science (LNCS) series by
Springer, and will be available at the start
of the conference. The authors of
accepted regular papers shall prepare
camera-ready submissions in full
conformance with the LNCS style, not
exceeding 14 pages and strictly by March
29, 2015. For format and style guidelines
authors should refer to
http://www.springer.de/comp/lncs/authors
.html. Failure to comply and to register
for the conference by that date will
prevent the paper from appearing in the
proceedings.

The CiteSeerX Venue Impact Factor has
the Conference in the top quarter.
Microsoft Academic Search has it in the
top third for conferences on programming
languages by number of citations in the
last 10 years. The conference is listed in
DBLP, SCOPUS and Web of Science
Conference Proceedings Citation index,
among others.

Awards

Ada-Europe will offer honorary awards
for the best regular paper and the best
presentation.

Call for Industrial Presentations

The conference seeks industrial
presentations which deliver value and
insight but may not fit the selection
process for regular papers. Authors are
invited to submit a presentation outline of
exactly 1 page in length by January 25,
2015. Submissions shall be made via
EasyChair following the relevant link on
the conference web site. The Industrial
Committee will review the submissions
and make the selection. The authors of
selected presentations shall prepare a final
short abstract and submit it by April 12,
2015, aiming at a 20-minute talk. The
authors of accepted presentations will be
invited to submit corresponding articles
for publication in the Ada User Journal
(http://www.ada-europe.org/auj/), which
will host the proceedings of the Industrial
Program of the Conference. For any
further information please contact the
Industrial Chair directly.

Call for Tutorials

Tutorials should address subjects that fall
within the scope of the conference and
may be proposed as either half- or full-
day events. Proposals should include a
title, an abstract, a description of the
topic, a detailed outline of the
presentation, a description of the
presenter's lecturing expertise in general
and with the proposed topic in particular,
the proposed duration (half day or full
day), the intended level of the tutorial
(introductory, intermediate, or advanced),
the recommended audience experience
and background, and a statement of the
reasons for attending. Proposals should be
submitted by e-mail to the Tutorial Chair.
The authors of accepted full-day tutorials
will receive a complimentary conference
registration as well as a fee for every
paying participant in excess of 5; for half-
day tutorials, these benefits will be
accordingly halved. The Ada User Journal
will offer space for the publication of
summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the
conference scope may be proposed.
Proposals may be submitted for half- or
full-day events, to be scheduled at either
end of the conference week. Workshop
proposals should be submitted to the
Conference Chair. The workshop
organizer shall also commit to preparing
proceedings for timely publication in the
Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair for information and for
allowing suitable planning of the
exhibition space and time

Grants for Reduced Student Fees

A limited number of sponsored grants for
reduced fees is expected to be available
for students who would like to attend the
conference or tutorials. Contact the
Conference Chair for details.

Organizing Committee

See CFP in Forthcoming Events section
(pg. 243).

Enabling Safety
Certification in ARM-based
Systems

URL: https://event.on24.com
/eventRegistration/EventLobbyServlet?
target=registration.jsp&eventid=846366
&sessionid=1&key=818DF79D54BFD1
A3F14610A7B20BF1C8&partnerref=ad
acore

Enabling Safety Certification in ARM-
based Systems

October 8, 2014 2:00 PM EDT

Processor technology from ARM has
become a game changer for multiple
industries, delivering high-performance-
per-watt processing and high levels of
integration to enable system on a chip
(SoC) capability in a low-power device.
This combination has been ideal for small
form factor systems in avionics,
automotive, and medical applications.
Now embedded designers in these
markets are looking at ways to take
advantage of ARM technology to enable
safety certification via standards such as
FAA DO-178C for avionics systems and
MISRA for automotive systems. This
webcast of industry experts will look at
how ARM-based solutions can not only
reduce power but easily utilize the
integrated peripherals in safety
certification solutions across different
industries.

Sponsors:

AdaCore, DDC-I

Moderator:

John McHale, OpenSystems Media

Linux Day 2014 in Cagliari

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri, 24 Oct 2014 17:55:07 +0200
Subject: Ada 2012 talk in Cagliari

tomorrow
Newsgroups: comp.lang.ada

The Linux user group in Cagliari
(GULCh) has invited me to give a talk on
contract-based programming at the
"Linux Day" conference tomorrow
(http://linuxday.gulch.it/2014/).

I have promised to make the talk
accessible to anybody with programming
experience, but the examples and practical
possibilities I will discuss are all based on

214 Ada-related Resources

Volume 35, Number 4, December 2014 Ada User Journal

Ada 2012 (with a single SPARK 2014
exception ;-).

Everybody are welcome!

From: Martyn Pike
<usenet@embeddedconsultinguk.com>

Date: Sun, 26 Oct 2014 11:31:12 +0000
Subject: Re: Ada 2012 talk in Cagliari

tomorrow
Newsgroups: comp.lang.ada

> [...]

How many people attended this talk that
you gave ?

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sun, 26 Oct 2014 18:21:54 +0100
Subject: Re: Ada 2012 talk in Cagliari

tomorrow
Newsgroups: comp.lang.ada

> [...]

I think it was somewhere between 30 and
40 people. [Confirmed by the organisers.
—sparre]

I've definitely had a more crowded
auditorium for an Ada talk in Cagliari, but
that was ten years ago, and a possibly
more attractive subject (GUI
programming).

FOSDEM 2015

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sun, 2 Nov 2014 11:13:21 +0000
Subject: CfP - Ada Developer Room at

FOSDEM 2015, Brussels, Belgium
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

Call for Presentations

6th Ada Developer Room
at FOSDEM 2015

Saturday 31 January 2015,
Brussels, Belgium

http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/15/150131-fosdem.html

Organized in cooperation with
Ada-Europe

Ada-Belgium [1] is pleased to announce
that there will be a one-day Ada
Developer Room on Saturday 31 January
2015 at FOSDEM 2015 in Brussels,
Belgium. This Ada DevRoom is once
more organized in cooperation with Ada-
Europe [2].

General Information

FOSDEM [3], the Free and Open source
Software Developers' European Meeting,
is a free and non-commercial two-day
weekend event organized early each year
in Brussels, Belgium. It is highly
developer-oriented and brings together
5000+ participants from all over the
world. No registration is necessary.

The goal is to provide open source
developers and communities a place to
meet with other developers and projects,
to be informed about the latest
developments in the open source world, to
attend interesting talks and presentations
on various topics by open source project
leaders and committers, and to promote
the development and the benefits of open
source solutions.

Ada Developer Room

At previous FOSDEM events, Ada-
Belgium has organized very well attended
Ada Developer Rooms, offering a full day
program in 2006 [4], a two-day program
in 2009 [5], and full day programs in
2012 [6], 2013 [7] and 2014 [8]. An
important goal is to present exciting Ada
technology and projects also to people
outside the traditional Ada community.

Our proposal for another dedicated Ada
DevRoom was accepted, and now work
continues to prepare the detailed program.
We most probably will have a total of 8
schedulable hours between 10:00 and
18:00 in a room which holds some 60
participants. More information will be
posted on the dedicated web-page on the
Ada-Belgium site [9], and final
announcements will of course also be sent
to various forums, lists and newsgroups.

Call for Presentations

Ada-Belgium calls on you to:

- inform us at ada-belgium-
board@cs.kuleuven.be about specific
presentations you would like to see in
this Ada DevRoom;

- for bonus points, subscribe to the Ada-
FOSDEM mailing list [9] to discuss and
help organize the details;

- for more bonus points, be a speaker: the
Ada-FOSDEM mailing list is the place
to be!

Do you have a talk you want to give?

Do you have a project you would like to
present?

Would you like to get more people
involved with your project? We're
inviting proposals that are related to Ada
software development, and include a
technical oriented discussion. You're not
limited to slide presentations, of course.
Be creative. Propose something fun to
share with people so they might feel some
of your enthusiasm for Ada!

Speaking slots are 25 or 50 minutes,
including Q&A. Depending on interest,
we might also have a session with
lightning presentations (e.g. 5 minutes
each).

We'd like to put together a draft schedule
early December. So, please act ASAP,
and definitely by November 30, 2014 at
the latest.

We look forward to lots of feedback and
proposals!

Dirk Craeynest, FOSDEM Team of Ada-
Belgium

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/-Europe/SIGAda/WG9 mail).

[1] http://www.cs.kuleuven.be/~dirk/ada-
belgium

[2] http://www.ada-europe.org

[3] https://fosdem.org

[4] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/06/060226-fosdem.html

[5] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/09/090207-fosdem.html

[6] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/12/120204-fosdem.html

[7] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/13/130203-fosdem.html

[8] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/14/140201-fosdem.html

[9] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/15/150131-fosdem.html

[10] http://listserv.cc.kuleuven.be/
archives/adafosdem.html

Ada-related Resources

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon Nov 3 2014
Subject: Repositories of Open Source

software

AdaForge: 8 repositories [1]

Bitbucket: 109 repositories [2]

 16 developers [2]

Codelabs: 20+ repositories [3]

GitHub: 654 repositories [4]

 126 developers [5]

Rosetta Code: 606 examples [6]

 28 developers [7]

Sourceforge: 241 repositories [8]

[1] http://forge.ada-ru.org/adaforge

[2] http://edb.jacob-
sparre.dk/Ada/on_bitbucket

[3] http://git.codelabs.ch/

[4] https://github.com/search?q=language
%3AAda&type=Repositories

[5] https://github.com/search?q=language
%3AAda&type=Users

[6] http://rosettacode.org/wiki/
Category:Ada

[7] http://rosettacode.org/wiki/
Category:Ada_User

[8] http://sourceforge.net/directory/
language%3Aada/

[See also “Repositories of Open Source
Software”, AUJ 35-3, p. 153. —sparre]

Ada-related Tools 215

Ada User Journal Volume 35, Number 4, December 2014

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed Nov 5 2014
Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn[1]: 2_052 members

- Reddit[2]: 726 readers

- Google+[3]: 348 members

- StackOverflow[4]: 264 followers

- Twitter[5]:1 twitter

[1] http://www.linkedin.com/groups?
gid=114211

[2] http://www.reddit.com/r/ada/

[3] https://plus.google.com/communities/
102688015980369378804

[4] http://stackoverflow.com/questions/
tagged/ada

[5] https://twitter.com/search?f=realtime
&q=%23AdaProgramming

[See also “Social Media Sites”, AUJ 34-2,
p. 64. —sparre]

Open Source Build Server
Status

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Thu Nov 6 2014
Subject: Jenkins
URL: http://build.ada-language.com/

[Builds: —sparre]

- Ahven - Debian 7.0 - GNAT 4.6

- Ahven_JNT

- Ahven_Win7_GNAT2013

- Ahven_Win7_ICCAda

- JD_JNT

- Jdaughter - Debian 7.0 - GNAT 4.6

- Jdaughter_Win7_ICCAda

- Lace_Win7_ICCAda

[Fails to build: —sparre]

- AVR-Ada_Debian_7

- Strings_Edit_ICCAda

- UnzipAda_Win7_GNAT2013

- UnzipAda_Win7_ICCAda

[See also “Experimental Continuous
Integration System for Open Source
Projects”, AUJ 35-1, p. 6. —sparre]

Ada-related Tools

Statistics Libraries

From: Poul-Erik Andreasen
<poulerik69@gmail.com>

Date: Mon, 07 Apr 2014 16:34:27 +0200
Subject: Statistics
Newsgroups: comp.lang.ada

What do people here use when they need
statistics. I am specially interested in
Probability Kernel Density functions.

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 8 Apr 2014 14:34:55 -0700
Subject: Re: Statistics
Newsgroups: comp.lang.ada

> [...]

You may want to have a look at
MathPaqs:

 http://sf.net/projects/mathpaqs/

there is a "samples" packages in the stats
subdirectory. No KDE so far, though, just
plain histograms. There are also some
random simulation tools.

[See also “Excel Writer, GNAVI,
Mathpaqs and Zip-Ada”, AUJ 34-4, p.
200. —sparre]

From: Poul-Erik Andreasen
<poulerik69@gmail.com>

Date: Wed, 09 Apr 2014 02:24:54 +0200
Subject: Re: Statistics
Newsgroups: comp.lang.ada

> [...]

That may be just what I need. I have
decided to make the KDE myself. The
math is not that awful. The formulas are
on Wikipedia and most of what I need is
in Ada.Numerics. I will take look at
Mathpags to see if there is some useful
stuff for me there.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 09 Apr 2014 07:37:30 +0100
Subject: Re: Statistics
Newsgroups: comp.lang.ada

> [...]

If you need asymmetric matrices, you
might find Ada 2005 Math Extensions
useful.

http://sourceforge.net/projects/
gnat-math-extn/

[See also “Ada 2005 Math Extensions”,
AUJ 34-3, p. 138. —sparre]

From: Poul-Erik Andreasen
<poulerik69@gmail.com>

Date: Wed, 09 Apr 2014 23:58:32 +0200
Subject: Re: Statistics
Newsgroups: comp.lang.ada

> [...]

I will take a look at it. The vector types
may be useful.

[See also “Mathematics and Statistics”,
AUJ 34-4, p. 203. —sparre]

PDF Writer

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 10 Apr 2014 22:33:00 +0200
Subject: Re: Writing PDF files
Newsgroups: comp.lang.ada

> [...]

Gtk supports PDF surfaces in Cairo. For
example:

http://www.dmitry-kazakov.de/
ada/aicwl.htm#12.6

does plotting, in particular, into PDF.

In general, whatever output generated by
Cairo (Cairo is vector graphics library
used in Gtk), it can be rendered on a PDF
surface, i.e. in a PDF file.

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Thu, 10 Apr 2014 22:47:05 +0100
Subject: Re: Writing PDF files
Newsgroups: comp.lang.ada

> [...]

I gave up on PDF and implemented a very
small subset of Encapsulated PostScript
that was good enough for my very simple
requirements (emulating a Calcomp
plotter of the early 19060s).

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sun, 13 Apr 2014 01:46:59 -0700
Subject: Re: Writing PDF files
Newsgroups: comp.lang.ada

> soon a PDF with "hello world"...

http://sf.net/p/apdf/code/HEAD/tree/

More soon (or not soon)...

LZMA

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Mon, 30 Jun 2014 07:43:21 -0700
Subject: Re: Q: LZMA in Ada ?
Newsgroups: comp.lang.ada

Just to answer my own question ;-) : there
are now *two* implementations for
decoding LZMA. In chronological order,
in the following libraries:

- Matreshka: http://forge.ada-ru.org/
matreshka/browser/trunk/design/filters

 [See also “Matreshka”, AUJ 35-1, p. 8.
—sparre]

- Zip-Ada: http://unzip-ada.sf.net

 [See also “Zip-Ada”, AUJ 35-3, p. 157.
—sparre]

STM32F4 Discovery

From: Roy Emmerich
<roy.emmerich@gmail.com>

Date: Tue, 26 Aug 2014 15:38:33 -0700
Subject: STM32F4 Discovery,

communication and libraries
Newsgroups: comp.lang.ada

I discovered Ada 2 days ago, so stick with
me.

I am starting a business which will focus
on creating a cheap, modular, open source
data logger/controller usable across
multiple domains. At the moment I am in
the prototyping stage, using the following
hardware:

1. STM32F4 Discovery board

216 Ada-related Tools

Volume 35, Number 4, December 2014 Ada User Journal

2. MikroElektronika STM32F4 Discovery
shield (http://www.mikroe.com/stm32/
stm32f4-discovery-shield/)

3. Various MikroElektronika click boards
(http://www.mikroe.com/click/):

 * GPS click board (ublox LEA-6S
receiver)

 * microSD

 * RS485

 * RS232

 * Ethernet

I don't have experience in C/C++ but I do
have a lot of experience in Java, python,
structured text (read PLCs) and a few
other bits and pieces. I REALLY don't
want to develop in C. From what I can
make out it looks like a nightmare once
the code reaches any substantial size,
which mine will. I've started quite a few
beginner C books and never got very far
before throwing in the towel. However
what I've read about Ada has certainly
caused me to sit up!

So far I have investigated the following
high level language alternatives:

1. www.espruino.com (JavaScript)

2. www.micropython.org

3. www.eluaproject.net

At the moment I am forging ahead with
Espruino because:

1. it is quick to get code on the processor
as it is interpreted

2. interfacing with external hardware via
SPI/I2C/UART is easy...except when
you want to access on-chip functionality
that isn't yet supported by the Espruino
interpreter (which is aimed at STM32F1
powered Espruino board, partially
ported to the STM32F4).

3. www.npmjs.org has so many libraries
and examples of how to get things done
(e.g. MODBUS RTU library...done)
which translates to many willing
hands/minds.

but I see dragons on the horizon. Here are
a few:

1. It is not hard real-time

2. Although you can minify the code, I am
uncertain whether everything will fit on
when the code base grows.

3. JavaScript on microcontrollers has no
track record.

In short, nice for tinkering/prototyping but
probably not a wise choice for the long
run.

Today I started chatting to Mike Silva
over at EmbeddedRelated:

http://www.embeddedrelated.com/
showarticle/617.php

For Ada to be a viable option for my
project, this is what I think I need [with
Mike's comments]:

1. [IN PROGRESS] Easy communication:
SPI, I2C, Serial, Ethernet,

 [Mike] I know that AdaCore is working
on comms libraries for the ARM Cortex
M parts, but I don't know anything about
the projected availability.

 [Roy] If they want adopters then they'd
better get a move on!

2. [UNSOLVED?] Libraries/examples:
MODBUS RTU/Eth at the very least

 I have yet to find a repository of
libraries covering the major protocols
(e.g. MODBUS, CAN, one-wire). There
are quite a few in C. Would it be viable
to just wrap these in Ada? It seems like a
great short term solution but if we are
using Ada to make things more stable, it
hardly makes sense to use it merely to
wrap (flakey) C libraries ;)

 [Mike] It is also true that you can link to
C code in Ada with either thin or thick
wrappers. A thin wrapper just converts
each C function to an equivalent Ada
subprogram, while a thick wrapper adds
one or more higher-level layers on top of
the basic subprograms.

3. [SOLVED] Direct access to chip
functionality: STM32F4 RTC, Precision
Time Protocol capabilities on chip, etc. I
read that binding in C code is fairly
easy? That would allow me to directly
call the STM32 C drivers provided by
STM?

 [Mike] In any case, you will have no
problem accessing the chip hardware in
Ada.

4. [SOLVED] Someone hosts an open
forum to encourage the exchange of
ideas, providing an alternative to the
normally clandestine military/large
corporate approach to code
development. If Ada is going to grow
then it needs to open up to your average
Joe like me.

 [Mike] comp.lang.ada!

I'd appreciate any further feedback from
members of this list.

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 27 Aug 2014 02:40:48 +0000
Subject: Re: STM32F4 Discovery,

communication and libraries
Newsgroups: comp.lang.ada

You might be interested in
<https://github.com/rowsail/
AdaForMicrocontrollers> which is being
discussed between some of us on
LinkedIn in the Ada for micro controllers
group.

From: Mike Silva
<embeddedrelatedmike@scriptoriumdes
igns.com>

Date: Wed, 27 Aug 2014 09:17:24 -0700
Subject: Re: STM32F4 Discovery,

communication and libraries
Newsgroups: comp.lang.ada

The problem with reuse is that it is hardly
ever as clean and simple as one would
hope. In my experience, by the time you
find some code, determine if it meets your
needs, identify the areas that will need to
be changed, and figure out how to bind to
it if in C, it would have been quicker to
write the code from scratch (perhaps
using the code you found as a general
guide). I don't claim that's a universal, just
my experience.

For example, on the MODBUS drivers,
I've used such code in the past, and even
though our company paid for custom
drivers, we spent a lot of time fixing and
adjusting them. I doubt we gained
anything over writing from scratch (using
whatever code we could have found as a
guide).

Speaking of reuse, since you're just
discovering Ada, you should read about
the Ariane 5 reuse fiasco (which some
people foolishly tried to blame on the use
of Ada, but which is really about the
perils of reuse of perfectly good code).

From: Jonathan
<johnscpg@googlemail.com>

Date: Fri, 29 Aug 2014 12:36:09 -0700
Subject: Re: STM32F4 Discovery,

communication and libraries
Newsgroups: comp.lang.ada

[GNATColl contains Ravenscar support
packages.]

The code itself looks intimidating, but
most of the .ads files have sample code
that shows how to use them. Here's the
list:

gnatcoll-ravenscar-utils.ads

gnatcoll-ravenscar-utils.adb

gnatcoll-ravenscar-timers-
one_shot_timer.ads

gnatcoll-ravenscar-timers-
one_shot_timer.adb

gnatcoll-ravenscar-timers.ads

gnatcoll-ravenscar-
timed_out_sporadic_server.ads

gnatcoll-ravenscar-
timed_out_sporadic_server.adb

gnatcoll-ravenscar-
sporadic_server_with_callback.ads

gnatcoll-ravenscar-
sporadic_server_with_callback.adb

gnatcoll-ravenscar-sporadic_server.ads

gnatcoll-ravenscar-sporadic_server.adb

gnatcoll-ravenscar-
simple_sporadic_task.ads

gnatcoll-ravenscar-
simple_sporadic_task.adb

gnatcoll-ravenscar-simple_cyclic_task.ads

gnatcoll-ravenscar-
simple_cyclic_task.adb

gnatcoll-ravenscar-
multiple_queue_sporadic_server.ads

Ada-related Tools 217

Ada User Journal Volume 35, Number 4, December 2014

gnatcoll-ravenscar-
multiple_queue_sporadic_server.adb

gnatcoll-ravenscar-
multiple_queue_cyclic_server.ads

gnatcoll-ravenscar-
multiple_queue_cyclic_server.adb

gnatcoll-ravenscar.ads

Also <http://www.adacore.com/
adaanswers/gems/gem-89-code-
archetypes-for-real-time-programming-
part-1/> might help.

Deepend

From: Brad Moore
<brad.moore@shaw.ca>

Date: Sun, 07 Sep 2014 19:27:26 -0600
Subject: ANN: Deepend 3.4 Storage Pools
Newsgroups: comp.lang.ada

I am pleased to announce the availability
of Deepend version 3.4.

Deepend is a suite of dynamic storage
pools with subpool capabilities for Ada
95, Ada 2005, and Ada 2012. Bounded
and unbounded storage pools types are
provided. Storage pools with subpool
capabilities allow all objects in a subpool
to be reclaimed all at once, instead of
requiring each object to be individually
reclaimed one at a time. Deepend storage
pools provides a more efficient and safer
scheme for storage management than
relying on the standard storage pool, and
user calls to Unchecked_Deallocation. In
fact, Deepend can eliminate the need for
Unchecked_Deallocations. A Dynamic
Pool may have any number of subpools.

Deepend can be downloaded from;

https://sourceforge.net/projects/
deepend/files/

Differences since last release include;

This is technically the first version of
Deepend that compiles for Ada 2012 and
the GNAT GPL 2014 version of the
compiler. In particular,

- The Pool parameter of the
System.Storage_Pools.Subpools.Default
_Subpool_For_Pool function was
finalized to be an in out parameter for
the Ada 2012 standard. This requires
changes to the Deepend pools, since
they override this function. In addition,
the Ada 2005 and Ada 95 versions of
Deepend also were modified to reflect
this change. In Ada 95 and Ada 2005,
functions cannot have in out parameters,
so instead, the parameters were changed
to be access parameters, so that the Ada
95 and Ada 2005 version more closely
matches the Ada 2012 version.

- In the Ada 2012 version, there were
static_predicates defined for private
declarations, which in fact needed to be
dynamic_predicates. Since these were
private declarations, the predicates were
removed, since they weren't very useful
since they were private declarations, and

the need for dynamic checks for this was
deemed as worthwhile.

- Removed workarounds for GNAT
compiler bugs that were fixed in the
GNAT GPL 2014 version of the
compiler. In particular, the storage pools
have default discriminants which now
can be left unspecified to use the
defaults.

[See also “Deepend”, AUJ 35-1, p. 7.
 —sparre]

GNAT for More ARM
Variants

From: gnlnops@gmail.com
Date: Mon, 8 Sep 2014 14:25:29 -0700
Subject: Re: GNAT SPARK:Embedded ARM

Ada Project doesn't run in STM32F429
Discovery Board

Newsgroups: comp.lang.ada

If you are interested I perform the port of
Ada runtime library and the demo_leds
example. As Jerry wrote the RCC module
is a little bit different on the STM32F42x
and the origin of the problem came from
the voltage scaling operation during
initialization.

The main modifications were:

- PLL configuration,

- Add of the 9 new interrupt sources,

- Link command files,

- USART1 configuration update (from
GPIOB to GPIOA).

For recall the pins are:

- LED3: PG13,

- LED4: PG14,

- USART1_TX: PA9,

- USART2_RX: PA10.

The LEDs and user button work correctly
but I do not test the USART1 yet because
I have no TTL<->RS232 converter.

The files are available on GitHub:

https://github.com/gnlnops/gnat-
stm32f429i-disco

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Sat, 11 Oct 2014 10:53:49 GMT
Subject: Re: Newcomers to comp.lang.ada:

welcome and how did you end up here ?
Newsgroups: comp.lang.ada

[...]

One piece of possibly good news: There's
a LinkedIn thread where - just possibly - a
critical mass of developers are getting
together. Including Luke and others with
some serious interest and past track
record.

On this group, see the threads "Group
development and porting of the RTS
using GNAT GPL for ARM" and
"http://www.AdaForMicrocontrollers.com
now "Live".

https://www.linkedin.com/groups?home=
&gid=2188035&trk=anet_ug_hm

They reference a currently not-very-lively
forum:

 https://www.adaformicrocontrollers.com/

and a Github repo:

https://github.com/rowsail/
AdaForMicrocontrollers

[See also “Blog Entries on STM32F4
Programming”, AUJ 35-3, p. 162.
—sparre]

Simple Components

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 16 Sep 2014 22:08:21 +0200
Subject: ANN: Simple Components for Ada

v4.2
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, multiple
connections server designing tools. It
grew out of needs and does not pretend to
be universal. Tables management and
strings editing are described in separate
documents see Tables and Strings edit.
The library is kept conform to the Ada 95,
Ada 2005, Ada 2012 language standards.

http://www.dmitry-kazakov.de/
ada/components.htm

Changes to the previous version:

- Transactional block files provided by the
package
Persistent.Blocking_Files.Transactional;

- Persistent.Memory_Pool provides task-
safe access to the underlying container
file;

- Persistent.Memory_Pool.
Generic_External_B_Tree is changed to
support multiple trees on the same pool;

- Various bug fixes and code cleanup.

[See also “Simple Components”, AUJ 35-
3, p. 154. —sparre]

Persistent Memory Pools

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 17 Sep 2014 18:51:21 +0200
Subject: Ada vs SQLite3 benchmark
Newsgroups: comp.lang.ada

I posted benchmark of Ada persistent B-
tree vs. SQLite3 at Ada Programming
blog:

218 Ada-related Tools

Volume 35, Number 4, December 2014 Ada User Journal

http://ada-programming.blogspot.de/
2014/09

The implementation of B-tree is based on
Ada.Direct_IO with a transaction layer,
e.g. for safety against system failure.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 18 Sep 2014 01:08:46 -0700
Subject: Re: Ada vs SQLite3 benchmark
Newsgroups: comp.lang.ada

Why did you run the benchmarks without
optimization? That seems inconsistent. If
you are measuring performance, you
should run with full optimization on I
think.

Also, it would be interesting to use the
following pragmas (combined or not) in
SQLite, since they can impact
performance significantly:

 pragma journal_mode=WAL;

 pragma synchronous=OFF;

(unless the Ada code is also running
fsync() regularly)

I think the latter in particular will
significantly change the time measured
for SQLite.

But I agree with your conclusion that Ada
is a viable alternative here, thanks for the
experiment!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 18 Sep 2014 22:08:50 +0200
Subject: Re: Ada vs SQLite3 benchmark
Newsgroups: comp.lang.ada

> Why did you run the benchmarks
without optimization? [...]

Optimization could remove or rearrange
parts of code which would not happen in a
real-life case. For example doing
something like

 for I in 1..1000 loop
 N := I;
 end loop;

could be optimized to N := 1000.

IMO, not optimized code is a better
measure for algorithmic complexity.

> [...]

> pragma journal_mode=WAL;

> pragma synchronous=OFF;

> [...]

Thanks for pointing this out.

Regarding Ada, it was strictly
Ada.Direct_IO, nothing else.
Ada.Direct_IO does not have Flush[*]. As
far as I can tell GNAT's implementation
of Ada.Direct_IO.Write is fwrite not
followed by fsync. So forcing SQLite to
sync might be unfair. However, the
intended use surely must sync upon
commit.

[*] Maybe it is worth an AI to add Flush
to Direct_IO.

Data-structure Benchmark

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Wed, 17 Sep 2014 18:15:15 -0700
Subject: B-Tree v Skip-List Insertion

Benchmark
Newsgroups: comp.lang.ada

I ran a quick comparison of the insertion
times for Kazakov's Generic_B_Tree pkg
against
PragmARC.Skip_List_Unbounded from
the PragmAda Reusable Components.

Both data structures are used for similar
purposes, allowing O(log N) look-up
times. Insertion and deletion are
expensive operations on balanced trees
due to re-balancing, and one reason skip
lists were invented was to have fast
insertion and deletion times compared to
balanced trees. I had never actually
compared times, and Kazakov's recent
post comparing DB times got me thinking
about it.

A typical run inserting the same 1,000
items into both structures gives times of

1.484 ms for the B tree

0.709 ms for the skip list

(Divide by 1,000 for average per-insertion
times.)

The trade off is similar to using heap sort
or quick sort. Both are O(N log N), with
quick sort usually being faster. Heap sort
is always O(N log N), but in rare cases,
however, quick sort has worst-case
performance of O(N**2).

A skip list is probabilistically balanced,
and has a worst-case search time of O(N)
in very rare circumstances, almost always
for small N (< 256).

[See also “PragmAda Reusable
Components”, AUJ 35-3, p. 154.
—sparre]

Gnoga

From: David Botton <david@botton.com>
Date: Tue, 23 Sep 2014 11:20:39 -0700
Subject: Gnoga - The GNU Omnificent GUI

for Ada
Newsgroups: comp.lang.ada

This is not an announcement of a 1.0 yet,
but a progress report. It helps me stay
focused and motivated along with a
source for ideas and inspiration to post
things, so here we go.

BTW, you can play the snake game
running in Ada now over the internet,
http://www.gnoga.com - NO JS and
HTML that is done with Gnoga bindings
to the Canvas and DOM.

I am busy working on the code at the
moment so the documentation is mainly
in the specs and samples for the moment
and I have not had time to make a nice
website for it yet, however

http://www.gnoga.com is there and a link
to the sourceforge site.

An introduction to what it is:

1. First and foremost the project goal is a
cross platform GUI toolkit. but Instead
of targeting Windows, X, Gtk or Qt, it
targets the HTML5 browser. No not
HTML or JS, the "browser". It acts like
a "terminal" for Gnoga to render its
magic. If you try and do a view source
on the browser all you will get is the
websocket code used to set up the
communications. Long term you will be
able to package a native app (.exe, .app,
etc.)

2. Because the "browser" is the target it
means that Gnoga applications can run
local or remote. If you can get AWS
running on your "board" you can use
Gnoga for the front end. Yes you could
write HTML and respond to HTTP
requests etc using AWS, but with Gnoga
your app is always connected and live in
the browser back to the server. You can
be showing real time stats, no Ajax,
JSON, etc to worry about, oh yes and all
of it is in Ada you don't have to touch
those sick little braces { } pocked with
;;;;

3. It just happens to be that Gnoga can
also create great websites with dynamic
content using HTML, CSS and Ada
(that's right not JS)... It's a nice bonus.

4. In fact Gnoga comes already with a
number of Ada on Rails like features.
Including Active Record support with
bindings to MySQL and SQLite and can
easily be expanded to other SQL
engines.

5. There is a whole lot there already but..
there is still a lot more to go. Don't pass
judgment till at least all the components
are in, 6-8 weeks.

6. With this you will get things like
OpenGL programming via WebGL
(coming), it already has a full canvas 2d
binding, and any other techi goodness
thrown at the web.

7. Multimedia bindings are not far behind
for video, audio, etc.

8. You will get access to client side
HTML5 goodness like local storage on
the client browser, etc. it's all coming.

9. Gnoga can easily use now or be
extended later to bind anything that can
run in a browser, JS GUI toolkits, XUL
for direct native apps, etc. etc.

10. While most of the world is fighting to
get JS and HTML to run and do
anything, Ada get's to sit back and enjoy
the ride to every new tech as it comes
and still have a solid language and the
ability to create secure Web apps and
services dispatched from solid systems.

It's tough to get the full vision in words
and there are not too many pictures to see,
but if I get you excited about Ada for

Ada-related Tools 219

Ada User Journal Volume 35, Number 4, December 2014

application development, well than I'm
getting somewhere and we will both
arrive soon enough at the goal :)

From: David Botton <david@botton.com>
Date: Sun, 28 Sep 2014 19:42:28 -0700
Subject: Re: Gnoga - The GNU Omnificent

GUI for Ada
Newsgroups: comp.lang.ada

Today's update:

1) I have made numerous fixes to make
sure the Ada code is compliant with my
Ada coding standards.

2) I've made a number of bug fixes

3) I added a Console like View type with
auto scrolling as elements added to
bottom

4) I've added the first 2 tutorials on how
to code in Gnoga:
http://sourceforge.net/p/gnoga/code/ci/m
aster/tree/tutorial/

5) I've made the audio and video types
functional, although they need some
more specific events and properties.

6) I added local client side storage support
and session support based on
sessionStorage.

From: David Botton <david@botton.com>
Date: Mon, 29 Sep 2014 20:31:35 -0700
Subject: Re: Gnoga - The GNU Omnificent

GUI for Ada
Newsgroups: comp.lang.ada

Today's Updates :)

1) 2 more Tutorials

2) Views will now deallocate dynamically
created child objects on finalization

3) Moved Gnoga.Application.Multiuser to
Gnoga.Application.Multi_Connect

4) Modified how app data is set for
connections to now use the
Main_Window, it will also deallocate it
if dynamically created on finalization.

5) It is no longer necessary to use
Connection.Hold unless desired for
clean up on connection events.

In general as I am writing the tutorials I
am doing as much as possible to simplify
the API and make coding easier in Gnoga.

Here are a list of planned tutorials so far
(the first 4 are now done and in the repo)

Tutorial-01 - Introduction to Gnoga
applications

Tutorial-02 - Introduction to Event
Handlers

Tutorial-03 - Introduction to Multi-
Connection Apps

Tutorial-04 - Tasking and Gnoga

Tutorial-05 - Using the Canvas Control

Tutorial-06 - Popups windows, iFrames,
and custom boot files with Gnoga

Tutorial-07 - Forms and Gnoga

Tutorial-08 - Database bindings and
Schema Migrations using Gnoga

Tutorial-09 - Active Record - Data
modeling in Gnoga

Tutorial-10 - Creating MVC apps and
Sessions management in Gnoga

In each tutorial directory there is a
README that summarizes additional
aspects of Gnoga learned in that tutorial.
It is worth reading through the
READMEs and sources in each tutorial in
order as they build on each other. They
also teach far more than just their subject
line about things you can do with Gnoga.

From: David Botton <david@botton.com>
Date: Tue, 30 Sep 2014 17:22:27 -0700
Subject: Re: Gnoga - The GNU Omnificent

GUI for Ada
Newsgroups: comp.lang.ada

So far for today added:

1) Ability to remove event handlers by
setting to null

2) Corrected some bugs

3) Added Tutorial 05 - A quick little
canvas drawing application to
demonstrate the canvas and mouse
events.

From: David Botton <david@botton.com>
Date: Sun, 12 Oct 2014 23:05:36 -0700
Subject: Re: Gnoga Latest Updates
Newsgroups: comp.lang.ada

Tutorial 09 Added

Learn about:

1) Interactive Forms

2) Tabs and the Card View

3) Using the Docker view for layout

From: David Botton <david@botton.com>
Date: Sat, 18 Oct 2014 21:40:02 -0700
Subject: Re: Gnoga Latest Updates
Newsgroups: comp.lang.ada

Tutorial 10 added

Illustrates:

1) Database bindings in Gnoga

2) Use of database migrations

From: David Botton <david@botton.com>
Date: Sun, 19 Oct 2014 16:02:39 -0700
Subject: Re: Gnoga Latest Updates
Newsgroups: comp.lang.ada

As of this last update:

1) I have added a simple all Ada template
parser (so now possible to use PHP,
Python or a simple token replace for text
parsing)

2) It is no long required that you cd in to
the bin directory to execute a gnoga
application

3) The executable can be in a bin
subdirectory or at the application root
directory

4) Any missing sub directories (/js, /img,
/css) are assumed to be in /html, if /html
is also missing all files are assumed to
be in the applications root directory.
(e.g. you could place the snake

executable and boot.html in the same
directory and snake will run with no
issue now)

From: David Botton <david@botton.com>
Date: Sun, 19 Oct 2014 21:36:02 -0700
Subject: New Gnoga Tool - gnoga_make
Newsgroups: comp.lang.ada

It's now even easier to write Gnoga apps
with a new tool that is part of Gnoga -
gnoga_make

Gnoga_Make works on Mac, Linux and
Windows.

Gnoga_Make currently creates only one
type of scaffolding for Gnoga apps a
multi_connect app. There will be many
more added before 1.0 in the next few
weeks. (BTW, these scaffold apps also
demonstrate good methods for developing
Gnoga apps)

Example use:

Install Gnoga:

 git clone
 git://git.code.sf.net/p/gnoga/code
 gnoga-code

 cd gnoga-code

 make install

(if on Mac / Unix and needed sudo make
install)

This will build and install Gnoga as a
standard gnat package and install
gnoga_make in gnat/bin

With gnat/bin on your command line:

 gnoga_make new My_New_App
 multi_connect

This will create a directory called
my_new_app and create all the need files
for a gnoga multi_connect application
including makefiles, project files, etc.

 cd my_new_app

 make

 bin/my_new_app

From: David Botton <david@botton.com>
Date: Thu, 23 Oct 2014 23:07:31 -0700
Subject: Cairo Bindings now added to

Gnoga
Newsgroups: comp.lang.ada

I've adopted the Cairo bindings from
GtkAda for Gnoga.

This adds in a quick instant tons of
functionality for vector graphics. This of
course is a great fit since Cairo will
produce SVG in addition to PNG and
PDFs so a really great fit.

I'll be adding a thicker layer to it for
easier use in general and for Gnoga.

Cairo libs are usually installed already on
Linux, for Mac I use home brew - brew
install cairo and brew install libsvg-cairo
for Windows install GtkAda even though
not dependant on it, it installs all the
needed libs for cairo.

220 Ada-related Tools

Volume 35, Number 4, December 2014 Ada User Journal

Permutation Generators

From: jpwoodruff@gmail.com
Date: Fri, 3 Oct 2014 11:50:30 -0700
Subject: Re: Permutation generator in ada

library
Newsgroups: comp.lang.ada

> Does Ada have a built-in function that
given an integer N creates all possible
permutations.

> I found this
<http://rosettacode.org/wiki/Permutatio
ns#The_generic_package_Generic_Per
m>, but was wondering if I can just call
a built-in function?

I can address the original issue about
permutation-generating Ada.

One is contained in the library Charles
built by Matthew Heany:
http://home.earthlink.net/
~matthewjheaney/charles/index.html

His last update was in 2004. The materials
are at: http://charles.tigris.org/source/
browse/charles/src/

The second is by Mats Weber. My copy
carries dates to 1990. Mats Weber's Ada
Component Library, version 2.0:
http://mats.weber.org/ada/
mw_components.html

His document says:

 Copyright (c) 1999 Mats Weber, Ch. du
Grillon 10, 1007 Lausanne, Switzerland.
These components were originally
developed by Mats Weber at EPFL (Swiss
Federal Institute of Technology,
Computer Science Theory Laboratory and
Software Engineering Laboratory) from
1985 to 1990

They carry the GNU General Public
License.

My oldest holding is an archeological
remnant from Simtel 20, built by Doug
Bryan.

"This software is released to the Public
Domain" but I don't know where there is a
public copy. I'd be happy to share with
anyone interested.

-- Unit name : Permutations_Class
-- Version : 1.0
-- Author : Doug Bryan
-- : Computer Systems Lab
-- : Stanford University
-- : Stanford CA, 94305
-- DDN Address : bryan@su-sierra
-- Copyright : (c) -none-
-- Date created : 15 April 1985
-- Release date : 15 April 1985
-- Last update : 15 April 1985
-- Machine/System Compiled/Run on :
-- DG MV/10000 ADE 2.2

generic
 type Item_Type is private;
 type Index_Type is (<>);
 type List_Type is array
 (Index_Type range <>) of Item_Type;

package Permutations_Class is

 generic
 with procedure Process
 (A_Permutation : List_Type);
 procedure Iterate_Through_Length_
 Factorial_Permutations
 (Of_Items : List_Type);

 -- For an actual parameter for Of_Items
 -- of length n, n! (n factorial)
 -- permutations will be produced.
 -- The procedure permutes the elements
 -- in the array ITEMS.
 -- actually it permutes their indicies and
 -- re-arranges the items within the list.
 -- The procedure does not care of any or all
 -- of the items in the list are equal
 -- (the same).

end Permutations_Class;

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sat, 4 Oct 2014 18:06:58 +0000
Subject: Re: Permutation generator in ada

library
Newsgroups: comp.lang.ada

The code by Doug Bryan, that John
mentions at the end of his posting, was
included in the "Ada and Software
Engineering Library Version 2 (ASE2)".

Numerous versions of the ASE library
were put together by Richard Conn, the
last one in October 2000. They were
typically distributed on CDROM at the
time, among others at various Ada events
such as ACM SIGAda and Ada-Belgium
conferences.

The last ASE2 version is still available on
the Ada-Belgium site:
ftp://ftp.cs.kuleuven.be/pub/Ada-
Belgium/ase/index.htmThe s.c. "asset"
that includes the Permutations_Class
package is at: ftp://ftp.cs.kuleuven.be/pub/
Ada-Belgium/ase/support/cardcatx/
csparts.htm

The relevant source code is included in
the files CSPARTS.SRC and
CSPARTB2.SRC in the csparts.zip
archive, retrievable via the above URL.

JSON Serialisation

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Fri, 24 Oct 2014 05:27:53 -0700
Subject: ANN: Serialization Ada objects

into/from JSON
Newsgroups: comp.lang.ada

Now Matreshka provides support for
serialization Ada objects into/from JSON
format using 'Read/'Write attributes.

No magic involved. Conversion routines
are provided by user with help of handy
framework.

See an example http://forge.ada-ru.org/
matreshka/wiki/League/JSON/Streams

[See also “Matreshka”, AUJ 35-1, p. 8.
—sparre]

SparForte

From: Ken Burtch <koburtch@gmail.com>
Date: Fri, 24 Oct 2014 04:18:42 -0700
Subject: ANN: Sparforte 1.5.1
Newsgroups: comp.lang.ada

This version fixes the fatal exception
when loading include files ("with
separate").

The source code is available on the
website at

http://www.sparforte.com

[See also “SparForte”, AUJ 35-3, p. 158.
—sparre]

Request: GNAT for
OpenVMS/Alpha

From: Eugen Wintersberger
<eugen.wintersberger@gmail.com>

Date: Sat, 25 Oct 2014 09:35:32 -0700
Subject: Ada on openvms for Alpha
Newsgroups: comp.lang.ada

I have a rather unusual problem: I am
looking for an Ada compiler for
OpenVMS for Alpha. GNAT no longer
supports OpenVMS for Alpha (a decision
I Can entirely understand from an
economical point of view). However, I
Have a couple of Alpha boxes running
OpenVMS and I would love to see them
running Ada code.

Does anyone of you own a GNAT license
for OpenVMS Alpha or knows someone
who does and would be willing to give
away this license or sell it to me?

Thanks in advance and best regards

AVR-Ada

From: Rolf Ebert <rolf.ebert.gcc@gmx.de>
Date: Sun, 26 Oct 2014 10:17:29 +0100
Subject: open issues for V1.3
Newsgroups: gmane.comp.hardware.

avr.ada
[Preparations for AVR-Ada 1.3 release.
—sparre]

I'd also like to include AvrX in a V1.3 and
drop avr-threads, but I don't know when
AvrX will be ready for AVR-Ada.

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Fri, 31 Oct 2014 22:11:15 +0200
Subject: Re: open issues for V1.3
Newsgroups: gmane.comp.hardware

.avr.ada
[...]

My very unofficial build service seems to
be able to build the repository now:

http://build.ada-language.com/job/
AVR-Ada_Debian_7/

[See also “AVR-Ada”, AUJ 34-2, p. 66.
—sparre]

Ada and Operat ing Systems 221

Ada User Journal Volume 35, Number 4, December 2014

Ada-related Products

Status of Ada 2012
Implementations

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 14 May 2014 16:37:39 -0500
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

> Who else besides AdaCore is doing an
Ada 2012 implementation?

Sadly, don't know of any. I've added a
tiny amount of Ada 2012 stuff to
Janus/Ada, but it will be a long time
before much significant gets there.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 14 May 2014 17:56:33 -0400
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

> [...]

I'd bet Atego and ICSC are working on it.

CodePeer Earns
Qualification for Software
Verification in Avionics and
Railway

From: AdaCore Press Center
Date: Thu Oct 23 2014
Subject: AdaCore’s CodePeer Static

Analysis Tool Earns Qualification for
Software Verification in Avionics,
Railway

URL: http://www.adacore.com/press/
codepeer-earns-qualification/

Automatic code review and validation
tool meets rigorous industry software
verification standards; provides trusted
reliability for Ada developers in safety-
critical applications

NEW YORK, PARIS and BRISTOL,
October 23, 2014, High Integrity
Software Conference, Bristol, UK --
AdaCore today announced that its
CodePeer advanced static analysis tool for
the automated review and validation of
Ada source code has been qualified as a
software verification tool for developers
in both avionics and railway industries.

CodePeer assesses the program before
execution to find errors efficiently and
early in the development life cycle. Using
advanced mathematics, CodePeer
analyzes every line of software,
considering every possible input and
every path through the program. It
performs impact and vulnerability
analysis when existing code is modified,
and, using control-flow, data-flow and
other advanced static analysis techniques,

it detects problems that would otherwise
require labor-intensive debugging.

“In safety-critical domains, developers
need very strong assurances that the tool
they’re using to assess their code is
reliable, can be trusted, and will
substantially reduce the need for manual
code review,” says Arnaud Charlet,
CodePeer Product Manager and Technical
Director at AdaCore. “CodePeer has been
through rigorous industry-specific tests
for avionics and railway that fully affirm
its value and reliability in these and other
safety-critical development
environments.”

Avionics Qualification

CodePeer has been qualified as a
verification tool for DO-178B, the
software safety standard for commercial
airborne systems. Certification authorities
such as the FAA in the U.S. and EASA in
Europe apply DO-178B to provide
confidence that the software will meet its
requirements.

Vulnerabilities detected by CodePeer
analysis for avionics include following:

- Overflow on integer and floating point
types

- Range violations on integer and floating
point types

- Index violations on array operations

- Division by zero on integer and floating
point types

- Uninitialized variables

- Underflow on floating point types

Where no potential error is reported,
CodePeer guarantees that the code is
exempt from these vulnerabilities

Railway Qualification

For railway applications, CodePeer has
been used to verify code certified in
accordance with CENELEC EN
50128:2011 SIL 4 --the highest safety
integrity level.

In this context, CodePeer has been used
for the following activities:

- Boundary value analysis: it detects
attempts to dereference a pointer that
could be null, to read values outside the
bounds of an Ada type or subtype, and
also detects buffer overflows, numeric
overflow or wraparound, and division by
zero.

- Control flow analysis: it detects
suspicious and potentially incorrect
control flows, such as unreachable code,
redundant conditionals, loops that either
run forever or fail to terminate normally,
and subprograms that never return.

- Data flow analysis: it detects suspicious
and potentially incorrect data flows,
such as variables read before they are
written (uninitialized variables),
variables written more than once without

being read (redundant assignments),
variables that are written but never read,
and parameters with an incorrect mode
(unread parameter, unassigned
parameter).

CodePeer can be used in conjunction with
AdaCore’s GNAT Pro development
environment where it is tightly integrated
into AdaCore’s GPS (GNAT
Programming Studio) and GNATbench
IDEs, or as a standalone product. It comes
with a number of complementary static
analysis tools common to the technology:
a coding standard verification tool
(GNATcheck), a source code metric
generator (GNATmetric), a semantic
analyzer and a document generator.

A demo highlighting the new features
introduced in the latest version of
CodePeer can be viewed at the following
url: http://www.adacore.com/codepeer-2-
3-demo/

[See also “CodePeer”, AUJ 35-1, p. 10.
—sparre]

Ada and Operating
Systems

Fedora: GtkAda

From: Björn Persson
 <bjorn@xn--rombobjrn-67a.se>

Date: Thu, 24 Jul 2014 10:38:44 +0200
Subject: GTKada 3 is in Fedora
Newsgroups: gmane.comp.gnome.gtk+.ada
To: gtkada@lists.adacore.com

For anyone who is interested: GTKada
3.8.2 is now packaged in Fedora. The
package is named "GtkAda3".

Version 2.24.2 is still available as
"GtkAda". The binary libraries are
parallel-installable, so programs using
GTKada 3 can coexist with programs
using GTKada 2. The -devel packages
conflict though, because they use the
same filename in several cases, so you
can develop for GTKada 2 or for GTKada
3, but not both simultaneously.

MacOS X: XNAdaLib

From: Pascal Pignard <p.p11@orange.fr>
Date: Mon, 08 Sep 2014 18:17:12 +0200
Subject: [ANN] XNAdaLib 2014 binaries for

MacOS 10.9 including GTKAda 3.8 and
more.

Newsgroups: comp.lang.ada

This is XNAdaLib 2014 built on MacOS
X 10.9 Mavericks for Native Quartz
including:

- GTK Ada 3.8.2 with GTK+ 3.10.7
complete for Quartz backend,

- Glade 3.16.1,

- GnatColl GPL 2014,

- Florist GPL 2014,

222 References to Publ icat ions

Volume 35, Number 4, December 2014 Ada User Journal

- AdaCurses 20110404 (http://invisible-
island.net/ncurses/ncurses-Ada95.html),

- Gate 3-04-b
(http://sourceforge.net/projects/lorenz),

- AICWL 3.9 (http://www.dmitry-
kazakov.de/ada/aicwl.htm with
Components 4.1 and gtksourceview
3.10.1),

to be installed (mandatory) at /usr/local:

 $ cd /usr/local

 $ sudo tar xzf xnadalib-gpl-2014-quartz-
x86_64-apple-darwin13.3.0-bin.tgz

Update your PATH to include gtkada-
config, glade, gate3.sh and other
executables in it:

 $ PATH=/usr/local/xnadalib-
2014/bin:$PATH

Update your GPR_PROJECT_PATH to
include gtkada.gpr, adacurses.gpr,
florist.gpr, gnatcoll.gpr, gtkada_aicwl.gpr
and other projects in it:

 $ export
GPR_PROJECT_PATH=/usr/local/xnadal
ib-2014/lib/gnat:$GPR_PROJECT_PATH

Set XDG_DATA_DIRS for GNOME
apps:

 $ export
XDG_DATA_DIRS=/usr/local/xnadalib-
2014/share

Glade and GPS applications in apps
directory must stay in this directory unless
you modify the script inside apps.

Then see READMEs, documentation and
examples in share directory and enjoy.

XNAdaLib binaries have been post on
Source Forge:

http://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2014-mavericks/

The instructions for building XNAdaLib
are here:

(French language)

http://blady.pagesperso-orange.fr/
telechargements/gtkada/
Install-GTKAda-Quartz.pdf

Feel free to send comments.

Debian: SQLite Interface

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Tue, 07 Oct 2014 01:35:07 +0200
Subject: Re: Which database document for

wheezy?
Newsgroups: gmane.linux.debian.

packages.ada

> [...]

Yes, there is GNADE, the ancestor of
gnatcoll for SQLite connectivity.

aptitude install libgnadesqlite3-2-dev

I'm afraid there is no textbook on how to
use GNADE, you'll have to read the Ada
specs.

Debian/Windows: GNAT

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Thu, 09 Oct 2014 18:04:30 GMT
Subject: Re: Newcomers to comp.lang.ada:

welcome and how did you end up here ?
Newsgroups: comp.lang.ada

> [...]

On the subject of mingw, I don't know
how many people know of this option, but
I was a little surprised to see mingw
packages, including FSF GNAT, available
on Debian.

Turns out it's a cross-compiler. So having
developed an Ada app on Debian, I can
invoke the mingw crosscompiler and
build a Windows executable. So far these
have worked flawlessly, including
interfacing between Ada and a C library
talking to a USB device.

The executable is larger - typically 800k
instead of 150k for native Linux
executables. Haven't investigated why but
I assume it's statically linked to eliminate
dependencies, and I haven't had to install
anything other than the exe on Windows
machines so far.

One more option and probably the
simplest way to use FSF GCC targetting
Windows machines...

Raspbian: Gnoga

From: Tony G. <tonythegair@gmail.com>
Date: Wed, 22 Oct 2014 09:24:07 -0700
Subject: Gnoga, raspbian jessie and the PI
Newsgroups: comp.lang.ada

I don't know if anyone else has tried, but I
have just successfully built GNOGA and
the tutorials successfully on a Raspberry
Pi with the standard issued Debian
packages AWS 3.2 and gnat (don't know
the version).

Raspbian version is Jessie.

Mac OS X: GCC

From: Simon Wright
<simon@pushface.org>

Date: Sat, 25 Oct 2014 20:30:07 +0100
Subject: ANN: GCC 4.9.1 for Mac OS X

Mavericks and Yosemite
Newsgroups: gmane.comp.lang.ada.macosx

It occurs to me that I should probably
have been making these announcements
here as well as in c.l.a. Apologies to those
of you who’re already aware.

GCC 4.9.1 is available at https://source
forge.net/projects/gnuada/files/
GNAT_GCC%20Mac%20OS%20X/4.9.1

It was built on Mavericks and is
compatible with Yosemite.

The README:

This is GCC 4.9.1 built for Mac OS X
Mavericks (10.9.5, Darwin 13.5.0), with
Xcode 6.0.1.

gcc-4.9.1-x86_64-apple-darwin13.tar.bz2

Compilers included: Ada, C, C++,
Objective C, Objective C++, Fortran.

Tools included:

Full GPL: ASIS, AUnit, GDB,
GNATColl, and GPRbuild from GNAT
GPL 2014.

GPL with Runtime Library Exception[1]:

- XMLAda from the public SVN
repository[2] at revision 233185
(XMLAda-SVN for short).

- AWS from the public git repository[3] at
commit e0d260e2d5dbbd935779493079
35848de2390818 (AWS-git for short).

Target: x86_64-apple-darwin13

Configured with: ../gcc-4.9.1/configure \

 --prefix=/opt/gcc-4.9.1 \

 --disable-multilib \ --disable-nls \

 --enable-languages=
c,c++,ada,fortran,objc,obj-c++ \

 --host=x86_64-apple-darwin13 \

 --target=x86_64-apple-darwin13 \

 --build=x86_64-apple-darwin13 \

 --with-host-libstdcxx=-lstdc++

Thread model: posix

gcc version 4.9.1 (GCC)

MD5 (gcc-4.9.1-x86_
64-apple-darwin13.tar.bz2) =
f04d5d773174a4a58cdd2dd4871785a4

[1] http://www.gnu.org/licenses/gcc-
exception-faq.html

[2] http://svn.eu.adacore.com/anonsvn/
Dev/trunk/xmlada

[3] http://forge.open-do.org/
anonscm/git/aws/aws.git

Debian: Adabrowse

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Mon, 27 Oct 2014 00:32:30 +0100
Subject: Re: Upload of adabrowse
Newsgroups: gmane.linux.debian.

packages.ada

> [...]

OK, uploaded to unstable.

References to
Publications

20 Years of Industrial
Theorem Proving with
SPARK

From: Roderick Chapman and Florian
Schanda

Date: Tue Jul 15 2014
Subject: Are We There Yet? 20 Years of

Industrial Theorem Proving with SPARK
URL: http://proteancode.com/keynote.pdf

Ada Inside 223

Ada User Journal Volume 35, Number 4, December 2014

This paper presents a retrospective of our
experiences with applying theorem
proving to the verification of SPARK
programs, both in terms of projects and
the technical evolution of the language
and tools over the years.

[...]

Ichbiah's Resignation Letter

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Fri, 24 Oct 2014 11:47:08 -0700
Subject: Re: Ichbiah's Letter
Newsgroups: comp.lang.ada

> [...]

It is at

https://duckduckgo.com/l/?kh=-1&
uddg=http%3A%2F%2Fweb.elastic.org%
2F~fche%2Fmirrors%2Fold-usenet
%2Fada-with-null

Ada Inside

Drop-in Ada (SPARK)
Components

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Tue, 22 Apr 2014 14:18:44 +0200
Subject: Re: OpenSSL development

(Heartbleed)
Newsgroups: comp.lang.ada

Alan Browne wrote:

> Is it possible to identify a particular
client side layer item (app, transport,
internet or link) that is relatively small
that could be designed and written in
Ada and that could "drop in" as a
replacement?

> Obviously it would have to hook up and
down in the system and 'look' for all
intents and purposes like its C
predecessor?

One such example is the Ironsides DNS
server, I think,

http://ironsides.martincarlisle.com/

I guess the program may well be a target
for appraisal. In any case, since this can
replace one layer item, it is proof of
concept.

Would people at Cisco take note of the
possibilities of "language advantages",
and S/E? (If they are "allowed" to make
their devices more secure, which I do not
know.)

http://tools.cisco.com/security/center/
content/CiscoSecurityAdvisory/
cisco-sa-20140409-heartbleed

Another hint is found in the use of Ada
when cracking the Lorenz code.
According to the winner, the
cryptographic algorithms were expressed
more clearly, and, quoting, *concisely*!

http://www.drdobbs.com/parallel/
tunny-colossus-and-ada-keeping-an-open/
207800151

[See also “Authoritative DNS Server”,
AUJ 34-3, p. 146. —sparre]

AVR-Ada in Hobby Projects

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Fri, 27 Jun 2014 09:14:53 +0300
Subject: Usage of AVR-Ada (Was: Lcd and

arduino nano)
Newsgroups: gmane.comp.hardware.

avr.ada

Rolf Ebert wrote:

> Nice to see that someone still uses
AVR-Ada.

Almost every month someone emails me
(or communicates via some other
channel) and tells that they are using
AVR-Ada and happy to read my Arduino
blog (arduino.ada-language.com). So
there are users, they are just little bit shy
and don't discuss in public.

Personally, I have been busy with other
projects, so I haven't had time to commit
anything to AVR-Ada repo lately, but I
am also using it.

For example, I have had AVR-Ada based
wireless temperature sensor running on
my balcony almost one month (the device
is Olimexino-328 with custom XBee
shield, powered by single 1000mAh lipo).

I plan to write about it, but I am still
waiting for the battery to run out - not
sure how many weeks I need to wait. :)

From: Jerry Petrey
<gpetrey@earthlink.net>

Date: Fri, 27 Jun 2014 09:09:50 -0700
Subject: Usage of AVR-Ada (Was: Lcd and

arduino nano)
Newsgroups:

gmane.comp.hardware.avr.ada

Rolf and Tero,

I too am a happy user of AVR-Ada. As a
long time Ada programmer in my
professional career, I am very pleased to
have Ada available on micros like the
AVR for my hobby projects. You guys
have done a great job and I hope you can
continue to support it. More people need
to discover the beauty of Ada for
environments like these.

Thanks again for your efforts. I look
forward to more great things from you.

New Spanish Satellite
Project

From: AdaCore Press Center
Date: Thu Oct 23 2014
Subject: AdaCore Development

Environment Selected for New Spanish
Satellite Project

URL: http://www.adacore.com/press/
spanish-satellite-project/

NEW YORK, PARIS and BRISTOL,
October 23, 2014, High Integrity
Software Conference, Bristol, UK –
AdaCore today announced that its GNAT
Pro cross-development environment has
been selected by the Polytechnic
University of Madrid (Universidad
Politécnica de Madrid / UPM), for the
UPMSat-2 UNION satellite project’s real-
time on-board and ground control
software. The 50kg micro-satellite,
scheduled to be launched in Q4 2015, will
provide a technology demonstration
platform for the university from a sun-
synchronous orbit nearly 600 km above
Earth.

The software component of the project is
being led by UPM’s Real-Time Systems
and Telematic Services Engineering
Research Group (Grupo de Sistemas de
Tiempo Real e Ingeniería de Servicios
Telemáticos / STRAST), with coding and
testing scheduled to be completed by the
end of 2014. The development
environment is GNAT Pro for 32-bit
Linux, targeted to the LEON3 processor.

UPM STRAST selected Ada for its
combination of high reliability, speed of
development, and ease of verification and
validation. The team has extensive
experience using Ada on previous high-
integrity embedded system projects, and
has collaborated with AdaCore on a
number of these.

The STRAST team is using the GNAT
technology to program the control
software of the satellite’s on-board
LEON3 processor, which is expected to
reach 20,000 lines of code. UPM
STRAST is using its own Open
Ravenscar Real-Time Kernel (ORK),
along with the Ada code generator from
the TASTE toolset (The ASSERT Set of
Tools for Engineering). AdaCore
verification and validation tools will be
used to ensure code integrity, using an
approach based on the ECCS-ST-E40
standard.

"Controlling a satellite’s operation
requires software that meets the highest
levels of reliability and integrity,” said
Professor Juan Antonio de la Puente,
Universidad Politécnica de Madrid. “Ada
was the obvious choice, and the
combination of GNAT Pro and model-
based code generation has proved to be a
very fast way of developing reliable
software for this project. UPMSat-2
provides the perfect platform for our
students to develop their skills, and for
STRAST to demonstrate its capabilities in
real-time embedded systems to potential
commercial partners.”

The UPMSat-2 hardware platform’s on-
board computer is an ACTEL FPGA
board developed by TECNOBIT, with
UPM responsible for synthesizing the
System On Chip (SOC) from the Gaisler
GRLIB IP Library for LEON3 processors.

224 Ada in Context

Volume 35, Number 4, December 2014 Ada User Journal

“We have collaborated with the team at
UPM STRAST for 20 years across a
number of projects,” said Cyrille Comar,
AdaCore Managing Director. “This
ambitious satellite project demonstrates
all the advantages of Ada as a language,
requiring reliable, real-time software that
will need to operate in the toughest
conditions. We look forward to the
successful completion of the satellite and
its launch in 2015.”

Ada in Context

Wish-list: Huge Integer
Literals

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 4 Apr 2014 15:53:44 -0500
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

>> I : Unbounded_Integer := +1E1000;

> I would like to see the definition of "+".

I missed that someone wrote a literal
that's insanely large. They should simply
have written:

 I : Unbounded_Integer :=
 (raise Storage_Error);

because that's what will happen. I was
thinking about more realistic cases:

 Thousand : Unbounded_Integer := +1000;

But anyway, what works today for this
exact literal (and not the more realistic
cases I was thinking about):

 Really_Large : Unbounded_Integer
 := +10**1000;

alternatively:

 Really_Large : Unbounded_Integer
 := Value ("1E1000");

[since you're going to have Image and
Value routines anyway].

"+" looks like:

 type Largest_Int is range
 System.Min_Int .. System.Max_Int;
 function "+" (Right : Largest_Int)
 return Unbounded_String;

I have an 64-bit math package for
Janus/Ada that works exactly this way
(need to it deal with some returns from
OS operations), and it works well. Most
of the literals that are needed are small (0,
1, 2, 10) and it's much preferable to write
them using "+" rather than some unwieldy
function name (To_Huge_Integer?).

One could do something similar with
Value if large literals were really
common, but I doubt that they'll appear in
expressions very often.

Wish-list: Unary Type
Conversion Operator

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 4 Apr 2014 15:43:17 -0500
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

J. Kimball wrote:

> On the other hand, using "+" operators
in these ways obscures it's real meaning
to people and often the compiler. In
using a system that combines renames
of language-defined and Templates
Parser-defined conversion functions
things can get rather hairy. Object
names usually indicate what's being
described, but rarely what type it is. A
rich use of the type system makes using
"+" boorish.

I find this attitude infurating. (And it's
wrong, too; literals provide no useful type
information and adding "+" to the front
does not change that situation. Taken
literally and to the extreme, your thinking
implies that all overloading of operators is
a bad thing because it obscures the types
involved. But let's stick with the
infurating part). Let me give you a bit of
history:

Very early in the design of Ada, there was
a proposal to add a unary operator symbol
specifically for the purpose converting
between types. Ichbiah and his team
rejected the proposal as "+" already exists
and has no other useful purpose. They
said that "+" should be used for this
purpose.

The idea to add a unary operator symbol
resurfaces periodically, but it always gets
shot down because "+" works for that
purpose.

OTOH, attempts to actually *use* "+" in
that way in the language-defined libraries
also have always gotten shot down
because there is a group which cannot
stomach using it for non-numeric
purposes. For instance, we had proposed
to add:

 function "+" (A : String)
 return Unbounded_String
 renames To_Unbounded_String;

to the Unbounded_String package
because the conversion here is way too
wordy. (Most of my packages that use
unbounded string start with this
declaration. The real problem is getting
too many such declarations colliding.)

The net effect is that Ada has neither an
explicit conversion operator nor the balls
to use "+" as intended. Which makes
using language-defined packages a wordy
mess to the point that I try pretty hard to
avoid them. That's not how that's
supposed to work!

Attitudes such as yours prevent using the
language as it was (and is) intended. And

similar attitudes (on the other side of the
debate) prevent changing it to make that
less controversial. It leaves most people
thinking the language has no way to do
things when in fact the solutions have
been there ever since the beginning of
Ada.

As for the difficulty of figuring out errors
in complex expressions -- remember two
things: (1) quality of error handling is not
something that the standard can changes;
and (2) qualified expressions and prefix
notation are your friend. Compilation is
quick enough these days that there is no
real problem sticking in some
qualifications and/or prefix calls to
narrow down problems in complicated
expressions. (And why are you writing
complicated expressions in the first place?
Use some expression functions to break
those up.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 8 Apr 2014 18:44:12 -0500
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

J. Kimball wrote:

> Maybe they could agree on a new
unused operator being added.

Did you read my original message? That's
been suggested for many years. There is a
camp that thinks "+" is good enough for
that, and thus blocks any attempts to add
another such operator. (There's a lot of
people in that camp.)

The other group hates the idea of using
"+" for that purpose, and blocks any use
of that as a conversion in the language.
(There's a lot of people in this group, too -
- some are in both groups.)

The ARG operates by consensus. We
have no consensus on either point, thus
nothing gets done at all. (Luckily, this
dynamic doesn't happen very often.)

> [...]

If it was up to me, '@' or '#' or '$' or '~'
would have been used for this long ago.

> [...]

Probably any choice will annoy someone.
I think that's the primary argument of the
"+" backers -- no other solution is really
obviously better, so let's not clutter the
language further. It's hard to argue with
that.

Fun With Specifications for
Main Procedures

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Fri, 04 Apr 2014 15:58:05 -0700
Subject: Re: gnatmake error I don't

understand
Newsgroups: comp.lang.ada

> Sure the ".ads" file may be extraneous,
but won't hurt anything to my
knowledge.

Ada in Context 225

Ada User Journal Volume 35, Number 4, December 2014

It might help. There's a little trick some
colleagues played on people who left their
workstations unlocked. Let us say Bob is
working on a program called Alice and
has the main subprogram in the file
Alice.adb:

 procedure Alice is
 ...
 end Alice;

He has it to the point that he can run it,
though some essential functionality is
missing. We come along and create
Foo.ads:

 package Foo is
 pragma Elaborate_Body;

 exception Bar;
 end Foo;

Foo.adb:

 package body Foo is
 -- Nothum, eh?
 begin -- Foo
 raise Bar;
 end Foo;

and Alice.ads:

 with Foo;
 procedure Alice;

Now when he tests Alice, she raises
Foo.Bar! People can spend a lot of time
trying to figure that out.

Finding Unneeded “with”
and “use” Clauses

From: Frank <dontspam365@gmail.com>
Date: Sun, 6 Apr 2014 13:56:31 -0700
Subject: Remove un-necessary “with” and

“use”
Newsgroups: comp.lang.ada

Is there a way to remove/get warning
about “with” and possibly “use” that are
not “contributing to the executable”, via
GPS 5.2.1 or possibly some of the GNAT
tools?

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Mon, 07 Apr 2014 06:51:52 +0200
Subject: Re: Remove un-necessary “with”

and “use”
Newsgroups: comp.lang.ada

> [...]

With AdaControl:

 check unnecessary_use_clause;
 check with_clauses (reduceable);

From: Simon Wright
<simon@pushface.org>

Date: Mon, 07 Apr 2014 07:21:39 +0100
Subject: Re: Remove un-necessary “with”

and “use”
Newsgroups: comp.lang.ada

> [...]

If you want to get the warning so that you
can remove (or move) the “with”s, then -
gnatwu will do the trick.

If you want most standard warnings, -
gnatwa does it. If you want most standard
warnings but not unused “withs”, use -
gnatwaU.

Or you could say

 pragma Warnings (Off);
 with Unused_Package;
 pragma Warnings (On);

in the source text.

A Language for Engineers

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 18 Apr 2014 19:30:00 +0200
Subject: Re: Heartbleed
Newsgroups: comp.lang.ada

> [...]

<rant>

The cause of Ada not being popular is that
it has been designed to force people to
THINK and do things cleanly. People
prefer wild hacking and long debugging
sessions to sitting back in one's chair and
analyzing the problem.

</rant>

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Fri, 18 Apr 2014 11:04:26 -0700
Subject: Re: Heartbleed
Newsgroups: comp.lang.ada

> [...]

Yes. Or as I like to put it, Ada is a
software-engineering language, and only
2% (in my experience) of developers are
software engineers. The remaining 98%
are not going to like Ada; they like hack-
away languages like C.

Implementation Languages
for Compilers

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 18 Apr 2014 12:42:34 +0200
Subject: Re: Heartbleed
Newsgroups: comp.lang.ada

Yannick Duchêne wrote:

> I personally see no requirement for an
Ada compiler to be written in Ada. A
statically typed and modular
sufficiently high level language may be
as much fine as Ada. There is no
requirement of course, but some good
reasons to write a compiler in its own
language:

1) There is in general a commonality
between a language, its representation,
and the structures it handles best.
Representing the language with its own
structures is generally appropriate.

2) It makes porting the compiler to other
machines easier (description of why is to
be found in any good book about
compilation)

3) Compiling the compiler with itself is
an excellent test: the 2nd compilation
should be identical to the third
compilation, or there is something
wrong...

The Strenghts of Ada

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Sat, 19 Apr 2014 13:50:11 +0200
Subject: Re: Oberon and Wirthian

languages (was: Heartbleed)
Newsgroups: comp.lang.ada

> [...]

The problem I have with Oberon and its
descendants is that they removed the
subrange types from Modula-2 (they are
similar to Ada's subtypes of numeric
types). Also, TTBOMK, no Wirthian
language allows the programmer to define
new numeric types from scratch and make
them incompatible at compile-time (i.e.
requiring explicit type conversion).

According to John McCormick's famous
research paper[1], the most desirable
features of a programming language are,
in order of importance:

- Modeling of scalar objects.

 + Strong typing.

 + Range constraints.

 + Enumeration types.

- Parameter modes that reflect the
problem rather than the mechanism.

- Named parameter association.

- Arrays whose indices do not have to
begin at zero.

- Representation clauses for device
registers (record field selection rather
than bit masks).

- Higher level of abstraction for tasking
(rendezvous rather than semaphores).

- Exception handling.

And personally, I share his opinion :)

So, Oberon-14 or whatever its name is
should not only reinstate subranges but
also allow the definition of incompatible
scalar types. If it did support all of the
desirable features above then it would
effectively almost become Ada :)

Notable features absent from that list
include generics, type extension, dynamic
dispatching, subtypes of non-scalar types,
nested subprograms and overloading. A
subset of Ada omitting these features
would require a compiler and run-time
system much simpler than full Ada and
still bring huge benefits to the safety of
programming. Access types are required
no matter what :/

[1] http://archive.adaic.com/projects/
atwork/trains.html

226 Ada in Context

Volume 35, Number 4, December 2014 Ada User Journal

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Sat, 19 Apr 2014 14:46:50 +0200
Subject: Re: Oberon and Wirthian

languages
Newsgroups: comp.lang.ada

Ludovic Brenta wrote:

> Access types are required no matter
what :/

Parasail[1] (and some other experimental
languages, I think) seem to tackle
pointing with the help of components
marked "optional", accompanied by
specially designed definitions for
copying, moving, and swapping. This
combination is said to prevent the dangers
of pointers.

[1] http://parasail-programming-
language.blogspot.de/2012/08/a-pointer-
free-path-to-object-oriented.html

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Sat, 19 Apr 2014 18:53:48 +0200
Subject: Re: Oberon and Wirthian

languages
Newsgroups: comp.lang.ada

Ludovic Brenta wrote:

> [...] And personally, I share his
opinion:)

The most important finding that
McCormick's list represents is that they
are *not* an opinion! The evidence is one
rare exception in that its production
exhibits many traits of valid data.

The type system *is* actually better that
that against which it has been compared.
It is not just opined to be better.

Object'Image

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Wed, 23 Apr 2014 05:55:00 -0700
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

> I wonder what is high on your list of
wishes for Ada 202X?

I'd like V'Img to be standard ada like
T'Image(V);

As in the gnat implementation

 type T is some_discrete_type
 V : T;
 Put_Line(V'Img);

Also, I'd like to be able to define the
string function for a record type to be
used for the 'image attribute.

 type T2 is record
 A : T;
 B : T;
 end record;

 function F_T2_Image(O : T2)
 return String is
 begin
 return O.A'Img & " " O.B'Img;
 end F_T2_Image;

 for T2'Image use F_T2_Image

 V2 : T2;
 ...
 Put_Line(V2'Img);

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Wed, 23 Apr 2014 09:31:29 -0700
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

> Ah! Another case of "I don't want to use
the use clause, give me something else
that avoids writing these damn long
names".

No. using the 'use' is certainly something
one can have different opinions on. But I
like to avoid these kind of errors

 SET_ERROR_MODE(NO_ERROR,
CRANE_TYPES.ASSIGNMENT_TIME
OUT, FALSE); |

>>> error: "NO_ERROR" is not visible

>>> error: multiple use clauses cause
hiding

>>> error: hidden declaration at
crane_types.ads:113

 >>> error: hidden declaration at
siemens_interface.ads:374

 >>> error: hidden declaration at
core_types.ads:71

One of the best thing with Ada05 was the
approval of object.verb notation. Even if i
get to use it seldom at work, I do in hobby
projects, just for this reason. The
variable/object knows where it belongs,
no need to use 'use' everywhere.

This is the basic idea for my 'img
proposal. The variable knows its type. No
need to have long package names or risk
hidden declarations.

By the way, the above hidden situation
was because of adding a constant
'NO_ERROR' in siemens_interface.ads

The other two was a constant and a coded
value. No hiding before that.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 23 Apr 2014 18:42:55 +0200
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

> [...]

I would tend to say that the "use" has the
benefit to show you that you used the
same name in various contexts with
various meanings, and that a bit of
reengineering might be in order...

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Wed, 23 Apr 2014 10:51:03 -0700
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

> [...]

Yes. It might. Or not.

The code is written by several
programmers during different times. I
think each of them had good reasons to
declare a constant NO_ERROR, when
communicating with different devices,
like PLCs. Either in a conveyor sub
system or in a crane sub system. Calling
them SIEMENS_S5_NO_ERROR or
CRANE_NO_ERROR would put the
ambiguity away, but the code would look
awful.

The clash was recent, due to ever
evolving changes - new demands from
customers. New demands lead me to
define yet another NO_ERROR constant,
for a new subsystem, Siemens s7.

But reengineer a running project due to I
cannot use 'use' in this context. Well, yes,
if the customer pays for that. Otherwise,
they are happy with me qualifying
NO_ERROR with correct package name.

So, In a technical sense I agree. Re-
engineer. But in a practical sense I do not.
Cost way too much, and gains too little.

While my suggestions about 'Img may not
gain very much, it would help at least me.
And it would probably not cost very
much.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 23 Apr 2014 15:14:11 -0500
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

Jeffrey Carter wrote:

> [...] desiring V'Image rather than
T'Image (V) may not be entirely about
saving keystrokes.

It's not, it's mainly about wanting to avoid
the effort to look up the exact subtype of
an object before writing 'Image. That
wastes far more time than the few
keystrokes ever would take. (Which is
redoubled if one has to find out whether
Image exists or some function has to be
used instead.)

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Thu, 24 Apr 2014 02:16:32 -0700
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

> [...]

I agree. It is not just to save keystrokes, it
is to simplify work. And no-one here uses
a debugger, so examining log-files is the
way to find errors (around here anyway).
Debugging does not help when you want
to examine why something happened or
did not happen at a running site.

Logfiles do. If they contain the correct
amount of logging.

'Img or 'Image would encourage more
people to log stuff they perhaps do not
know that they need to log. And it is a
pain if you want to log a record, with
many separate types, where the types are
defined in several separate files.

Ada in Context 227

Ada User Journal Volume 35, Number 4, December 2014

Variable'Img or Variable'Image would
make life easier for me.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 23 Oct 2014 21:45:23 -0500
Subject: Re: Assembling Complex Strings

Containing Carriage Returns Prior to
Using Ada.Text_IO.Put?

Newsgroups: comp.lang.ada

> [...]

Ah, but Ada 2012.5 :-) will have
Object'Image as a language-defined
attribute. AI12-0124-1 was approved for
inclusion in the upcoming Corrigendum at
the recent Portland ARG meeting.

This is a case where we (the ARG)
decided that including existing practice in
the Standard made sense. (Note that we
used 'Image for this purpose; AdaCore
couldn't do that because extending
language-defined attributes is prohibited,
but the ARG has no such problems.)

When to Use “use” Clauses

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 23 Apr 2014 15:11:40 -0500
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

Jean-Pierre Rosen wrote:

> I would tend to say that the "use" has
the benefit to show you that you used
the same name in various contexts with
various meanings, and that a bit of
reengineering might be in order...

That's baloney. For instance, if we were to
add an exception to Claw, it might very
well have the same name as some
exception the client (or even another third
party) declared somewhere. Why do you
think this is a problem? The teams
maintaining the subsystems no contact
and only happen to be both included in
some client program. Our maintenance,
however, could break the client program
even though there is no intended use of
the new entity. That's just wrong.

I've come to realize that the problem isn't
use-clauses per-se, it's use clauses of
things that maintenance can change
(specifically when changes to non-
overloadable entities can happen). As
such, package use clause is acceptable on
language-defined packages that don't
allow implementation-defined identifiers,
but that's it. In contrast, "use all type"
(and the more limited "use type") are
acceptable anywhere, as their
maintenance hazard is much more limited,
mostly to things for which having the
same name and type profile is dubious
anyway.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 23 Apr 2014 15:03:26 -0500
Subject: Re: Your wish list for Ada 202X
Newsgroups: comp.lang.ada

Björn Lundin wrote:

> One of the best thing with Ada05 was
the approval of object.verb notation.

Ada 2012 adds "use all type" with
essentially the same semantics as
object.verb notation. If you have untagged
types, especially enumerations, I strongly
suggest using that. (Since it only makes
overloadable entities visible, it doesn't
have the maintenance hazard unless the
profiles match -- in which case you have a
design problem.)

Late Declaration of Names
Used in Aspects?

From: Simon Wright
<simon@pushface.org>

Date: Thu, 24 Apr 2014 11:12:55 +0100
Subject: Declaration of function in

precondition
Newsgroups: comp.lang.ada

I proposed this in answer to a question[1]
on StackOverflow:

 package Ring_Buffer is

 function Is_Full return Boolean;
 procedure Push (Value : T)
 with Pre => not Is_Full;
 function Pop return T;

 private
 Buffer : array (0 .. Size) of T;
 Read_At : Integer := 0;
 Write_At : Integer := 1;

 function Is_Full return Boolean
 is (Read_At = Write_At);
 end Ring_Buffer;

and it turns out that GNAT (GPL 2013,
4.9-20140119) is happy if I put the spec
of Is_Full after its use (but still in the
visible part):

 procedure Push(value: T)
 with Pre => not Is_Full;
 function Is_Full return Boolean;

I can't see where in the ARM this is
legalised?

[1] http://stackoverflow.com/questions/
23203022/ada-aspects-which-are-
private-to-a-package

From: Adam Beneschan
<adam@irvine.com>

Date: Thu, 24 Apr 2014 08:22:55 -0700
Subject: Re: Declaration of function in

precondition
Newsgroups: comp.lang.ada

> [...]

13.1.1(11), I think. But I'm not sure.

"The usage names in an aspect_definition
are not resolved at the point of the
associated declaration, but rather are
resolved at the end of the immediately
enclosing declaration list."

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 24 Apr 2014 20:45:48 -0500
Subject: Re: Declaration of function in

precondition
Newsgroups: comp.lang.ada

> [...]

Correct. In this case, aspect specifications
are resolved at "private", so you can use
anything in the visible part in them.

This property is necessary for some type-
related aspects, else they would be
useless:

 type Priv is private
 with Read => Read,
 Write => Write,
 Type_Invariant => Is_Valid (Priv);

Since all of these need access to
subprograms that have parameters of type
Priv, and those *have* to follow the type
declaration of Priv, none of these things
could have been specified as aspects
without this (admittedly strange) rule.

Most aspects are evaluated at the first
freezing point of the associated entity
(type in this case), so oddities are
possible. There are some rules to prevent
the worst ones -- but it's very unlikely that
you'll ever run into them. After all, "the
first freezing point" is something you
worry about only if the compiler
complains, and I recommend the same
approach here. (Coincidentally, I was
working on objectives and ACATS tests
for those rules yesterday, so I'm more
aware than usual about them.)

Safe Use of Mutexes

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 4 May 2014 21:34:22 +0200
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

[...] Mutex should always be handled by a
controlled "holder" object:

 declare
 Lock : Holder (Resource'Access);
 -- Seize the resource
 begin
 Map.Find("Something");
 end; -- Release the resource

This guaranties that the resource will be
released even upon an exception
propagation.

Regarding containers it is recommended
to use reentrant mutexes if operations will
be extended or if you fancy re-
dispatching. An implementation of
reentrant mutex can be found here:

http://www.dmitry-kazakov.de/ada/
components.htm#Mutexes

228 Ada in Context

Volume 35, Number 4, December 2014 Ada User Journal

Task Safety of “constant”
Objects?

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sun, 04 May 2014 11:55:49 -0700
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

Natacha Porté wrote:

> I have some shared resources indexed
by a string, described in a file, and
considered as constant throughout the
lifetime of the program (with the
standard scheme "restart for changes to
take effect").

>

> When I have whatever indexed by a
string, I immediately think Maps, and
usually go for Ordered_Maps because
they are easier to understand.

>

> Since the map is semantically constant,
I use the magic word constant, with a
function to load from file at
elaboration, and everything seems to
work fine.

So, you have

 M : constant Map := F;

and you're concerned about concurrent
calls to

 M.Element (Key)

The reserved word constant means that
you can't assign to the object or pass it as
an [in] out parameter. It certainly says
nothing about what can happen to things
designated by an access component of the
object, and unbounded containers should
be expected to have access components.

 type AI is access Integer;
 C : constant AI := new Integer'(1);
 V : AI := new Integer'(2);
 C := V; -- illegal
 C.all := 42; -- No problem

As you've noted, the ARM says nothing
about task safety for containers in general,
maps in general, or ordered maps in
specific, so you can't rely on this being
task safe. And since you have the source
to GNAT's ordered map package, you can
look at it and see that this specific
implementation is not task safe.

As you note, the standard allows for
simultaneous calls to protected functions,
so in general putting the map in a
protected object and allowing access
through a protected function doesn't gain
you anything. Accessing it through a
protected procedure, however, does
guarantee non-concurrent access.

Since you have access to the source of
GNAT, you can see that it locks a PO
even for function calls, so with GNAT a
protected function shouldn't be a problem.

I've worked on a project that used GNAT
and AWS and had many tasks accessing
hashed maps in protected objects without
problem.

If you're interested in a solution that is not
GNAT-specific, the skip-list
implementation in the PragmAda
Reusable Components has a Search
operation that is task safe. It's easy
enough to use a skip list as an ordered
map. You'd have to use a[n]
[Un]Bounded_String for the key, but that
shouldn't be too much of a problem.

The PragmARCs are available from

http://pragmada.x10hosting.com/
pragmarc.htm

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 7 May 2014 22:19:12 -0500
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

> [...]

Ada really doesn't have any such thing as
constant objects for many types. The
majority of "constants" of composite
types are actually variables during some
part of their lifetime (and because that
variable view can be saved and used later,
they can never be assumed to be
constant). That specifically applies to
anything with a controlled part and
anything with an immutably limited part.

As a client, since you shouldn't be looking
through private types, you have to assume
that there is a controlled component
somewhere and thus you should never
assume *anything* is constant of a private
type.

Ergo the question is meaningless for the
vast majority of constant composite
objects; they exist in name only.

“Task_Safe” and
“Potentially_Blocking”

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 6 May 2014 21:07:34 +0200
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

> What exactly do you mean by "task
safe", [...]

It means, in my interpretation, that the
post-condition of the operation [and the
object's invariant] is true for any number
of tasks Wi calling the operation
independently at any point Ti of real-time.

> If both Element and Replace_Element
are task safe, does that mean calls to
Element and Replace_Element are
atomic; i.e. if one task calls Element,
and another calls Replace_Element,
those two calls are serialized?

No. It could be atomic in order to ensure
the post-condition.

> Why primitive subprograms? What
about class-wide subprograms declared
in the same package?

That was my question too. Presumably,
primitive operations were considered
building blocks for class-wide operations,
which, under this assumption, would be
safe per design for some, rather, weak [as
you pointed below] post-conditions.

> Does task safety imply absence of
deadlock?

Pragmatically, the answer could be no, if
more than one object involved. Yes, for
single object.

Safety of any subset of a set of objects is
stronger than safety of individual objects.

[...]

From: Brad Moore
<brad.moore@shaw.ca>

Date: Wed, 07 May 2014 23:03:21 -0600
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

> [...] the post-condition of the operation
[and the object's invariant] is true for
any number of tasks Wi calling the
operation independently at any point Ti
of real-time.

That's a nice definition. It does cover a
broad set of cases including pure
functions, protected operations, sets of
function calls whose parameters do not
conflict, mutex guarded calls, etc.

>> [...] What about class-wide
subprograms declared in the same
package?

As explained in another email, I was
worried about non-tagged types. eg.

 type T is record ... end record with
 Task_Safe => True;
 type U is record ... end record with
 Task_Safe => False;

 function Bar (X1 : T; X2 : U)
 return Integer;

It might be confusing or onerous for the
reader to determine if Bar is task safe or
not, particularly if there is a long list of
parameters.

I think Class-wide subprograms declared
in the same package however could
probably be lumped in with the primitive
functions, and the aspect could apply to
those as well..

>> Does task safety imply absence of
deadlock?

It would be nice if it could imply the
absence of deadlock, but I think that
might be too lofty a goal.

> [...]

Ada in Context 229

Ada User Journal Volume 35, Number 4, December 2014

Even without a formal definition of task
safety, the compiler could check that a
task safe subprogram only calls other task
safe subprograms. (Subprograms that
have been explicitly marked by the
subprogrammer as being task safe). That'd
be a good start actually.

But I think it would be better if the
compiler could provide more safety.

A task safe call should probably not be a
potentially blocking call, I think.

A task safe subprogram should also not
modify global variables that aren't
protected, or atomic.

This would add quite a bit of safety, I
think but maybe there are other
restrictions that could be added also.

From: Brad Moore
<brad.moore@shaw.ca>

Date: Thu, 08 May 2014 06:03:38 -0600
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

> [...]

Actually, I have second thoughts about
disallowing calls to entries from a
"task_safe" subprogram. It should be
allowed, as the rules about potentially
blocking operations would help prevent
calling an entry from another entry.

But I think the idea could be carried
further. Another property of a subprogram
that is important to know is whether it is a
potentially blocking call or not. That is
another attribute that would be nice to
capture in the contract. I think it would be
useful to have a Potentially_Blocking
aspect that could be similarly applied to a
subprogram specification.

I see it working something like the
following;

- A Potentially_Blocking call is viewed
conceptually as being a Task Safe call
(as it should). It is a more specific kind
of a task safe call.

- The Potentially_Blocking aspect may be
optionally applied to any subprogram,
whether it is potentially blocking or not.
If the subprogram is not potentially
blocking, it might mean that the
programmer is reserving the right to
make it a potentially blocking call in the
future, or that other implementations of
the specification might be potentially
blocking.

- If a subprogram directly has task or
protected object entry calls, then it
cannot be explicitly specified as having
the Task_Safe aspect. It must instead be
specified as having the
Potentially_Blocking aspect.
(Alternatively the subprogram can be
left without any aspect specification. It
is only used if the programmer wants to
capture these details in the contract of
the subprogram, but then the

subprogram is not Task Safe, i.e. the
Task_Safe aspect is false)

- A Task Safe program can only call other
Task_Safe subprograms or
Potentially_Blocking subprograms. If
the Task_Safe subprogram calls a
Potentially_Blocking Subprogram, then
it cannot be explicitly specified as
having the Task_Safe aspect. It must
instead have the Potentially_Blocking
Aspect specified. (or no aspect
specification, or specified as false
meaning that the subprogram is not Task
Safe, i.e. the Task_Safe aspect is false)

Examples:

 function Foo return Integer with
 Potentially_Blocking;
 function Bar return Integer with
 Task_Safe;

Bar cannot call Foo, unless the
specification is modified to either;

 function Bar return Integer with
 Potentially_Blocking
or

 function Bar return Integer with
 Task_Safe => False;
(or)

 function Bar return Integer;

From: Brad Moore
<brad.moore@shaw.ca>

Date: Sat, 10 May 2014 06:30:14 -0600
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

> [...] I prefer old -- -style comments.

It'd be far, far better than a comment, in
my mind. A comment doesn't cause
compilations to fail. A comment does not
improve the safety of a program, only the
quality of the code in the sense that
uncommented code tends to be harder to
read and understand.

While it goes too far to say that the
Task_Safe aspect would prove task safety,
it would prove that the subprogram does
not refer to any unprotected, non-atomic
variables in a global scope. It also proves
that the subprogram does not call any
other subprograms that do the same. That
goes a long way on the task safe spectrum

If Foo calls Bar, and both Foo and Bar
have the Task_Safe aspect, but some time
later the maintainer of Bar decides to
change its implementation to refer to
some global variable or call some other
subprogram that doesn't have the
Task_Safe aspect, the compiler would
force the programmer to remove the
Task_Safe aspect from Bar. This would
have a ripple effect, so that a program that
calls Foo would fail compilation, and
force the maintainer of Foo to remove the
Task_Safe aspect on that subprogram.
The maintainer of Bar would realize that
he is breaking its contract, and might
decide to revert his change, or choose a

different implementation that allows him
to leave Bar's contract intact. With
comments, this would have been a
maintenance hazard. It's not always
obvious to a programmer when such a
change is made, that it breaks such
assumptions in the client usage of the
subprogram. It's also error prone to expect
the programmer to exhaustively examine
all client usage of that subprogram to
check for such assumptions that might
have been broken.

The maintainer of Bar might also not be
aware that some of the subprograms that
Bar calls have dependencies on global
variables. The maintainer of Bar should
not have to recursively look at the
implementation of every subprogram it
calls, and every subprogram those
subprograms call to see if there are unsafe
dependencies on unprotected global
variables.

Further, these aspects (Task_Safe, and
Potentially_Blocking) would improve the
safety of other parts of the standard.

The compiler could be used in a stricter
rules checking mode that forbids
protected subprograms or entries from
calling subprograms that are not
Task_Safe, or that are
Potentially_Blocking. (At the very least,
the compiler could issue warnings.)

Rather than only relying on a run time
check to raise an exception when a
protected subprogram or entry calls a
subprogram that blocks (possibly only in
rare circumstances that might be missed
during testing), it is much more likely that
the problem would have been caught
during compile time.

Also, since the compiler cannot prove that
calls to other languages such as C are not
referring to variables unsafely, the
Task_Safe aspect would likely forbid
calls to other languages. A Task_Safe
subprogram is one written in pure Ada.
Some would argue that that alone says a
lot about the safety quality of the
subprogram.

From: Brad Moore
<brad.moore@shaw.ca>

Date: Sun, 11 May 2014 00:56:18 -0600
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

[...]

> Compare it with protected actions. It is
safe to call an operation which itself is
not protected from a protected
operation on the context of a protected
action.

But that's only true if the operation is only
ever called from within that same instance
of the protected object (Something that
could be difficult to know without the
aspect), and that there is only one instance
of that protected type of the protected

230 Ada in Context

Volume 35, Number 4, December 2014 Ada User Journal

object. Otherwise it's not safe to call from
a protected operation as there could be
other concurrent calls calling the unsafe
operation.

The following program illustrates this. If
you run the program with a small value of
N (specified on the command line), say
100, then chances are the program
executes correctly to completion.
However if you use a larger value of N
(say 1_000_000, the default), then the
program fails, due to the use of global
variables. In Test1, the Unsafe function is
called directly from multiple tasks.

In Test2, the same Unsafe function is only
called from protected functions, but it still
fails.

In both tests, the failures are due to
function Unsafe failing its Postcondition.

If the Task_Safe attribute existed, the
compiler could have issued a warning at
compile time that the tasks were calling
subprograms that weren't Task_Safe, and
the problems could have been avoided.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Exceptions; use Ada;
with Ada.Command_Line;

procedure Test_Task_Safety is

 -- Defaults to 1_000_000, but can be
 -- specified on command line
 N : constant Natural := (if
 Command_Line.Argument_Count >= 1
 then Natural'Value
 (Command_Line.Argument (1))
 else 1_000_000);
 Global_Data : Integer := 0;
 function Unsafe (X : Natural)
 return Natural
 with Post => Unsafe'Result = X + 1 --,
 -- Task_Safe => False
 ;
 function Unsafe (X : Natural)
 return Natural is
 begin
 Global_Data := X;
 Global_Data := Global_Data + 1;
 return Global_Data;
 end Unsafe;

begin

 New_Line;
 Put_Line ("******************************** ");
 Put_Line ("**** Test1 : Unsafe calls ***** ");
 Put_Line ("******************************** ");
 New_Line;

 Test1 : declare

 task type T1 is
 end T1;

 task body T1 is
 Result : Natural := 0;
 begin
 for I in 1 .. N loop
 Result := Unsafe (Result);
 end loop;

 Put_Line ("Result =" &
 Natural'Image (Result));
 exception
 when E : others =>
 Put_Line ("Task_Died" &
 Ada.Exceptions.Exception_Information(E));
 end T1;
 Workers : array (1 .. 10) of T1;
 begin
 null;
 end Test1;

 New_Line;
 Put_Line
("***");
 Put_Line ("**** Test2 : Unsafe calls from
 protected objects ***** ");
 Put_Line
("***");
 New_Line;

 Test2 : declare

 protected PO1 is
 function Foo (X : Natural)
 return Natural;
 end PO1;

 protected PO2 is
 function Bar (X : Natural)
 return Natural;
 end PO2;

 protected body PO1 is
 function Foo (X : Natural)
 return Natural is
 begin
 return Unsafe (X);
 end Foo;
 end PO1;
 protected body PO2 is
 function Bar (X : Natural)
 return Natural is
 begin
 return Unsafe (X);
 end Bar;
 end PO2;

 task type T1 is
 end T1;

 task body T1 is
 Result : Natural := 0;
 begin
 for I in 1 .. N loop
 Result := PO1.Foo(Result);
 end loop;
 Put_Line ("Result =" &
 Natural'Image (Result));
 exception
 when E : others =>
 Put_Line ("Task_Died" &
 Ada.Exceptions.Exception_Information(E));
 end T1;

 task type T2 is
 end T2;

 task body T2 is
 Result : Natural := 0;
 begin
 for I in 1 .. N

 Result := PO2.Bar (Result);
 end loop;
 Put_Line ("Result =" &
 Natural'Image (Result));
 exception
 when E : others =>
 Put_Line ("Task_Died" &
 Ada.Exceptions.Exception_Information(E));
 end T2;

 Foo_Workers : array (1 .. 10) of T1;
 Bar_Workers : array (1 .. 10) of T2;

 begin
 null;
 end Test2;

 null;
end Test_Task_Safety;

Output:

**** Test1 : Unsafe calls *****

Task_DiedException name:
SYSTEM.ASSERTIONS.ASSERT_FAILURE
Message: failed postcondition from
test_task_safety.adb:15

[7 identical messages omitted. —sparre]

Task_DiedException name:
SYSTEM.ASSERTIONS.ASSERT_FAILURE
Message: failed postcondition from
test_task_safety.adb:15
Result = 1000000
**
**** Test2 : Unsafe calls from
 protected objects ****

Task_DiedException name:
SYSTEM.ASSERTIONS.ASSERT_FAILURE
Message: failed postcondition from
test_task_safety.adb:15

[17 identical messages omitted. —sparre]

Task_DiedException name:
SYSTEM.ASSERTIONS.ASSERT_FAILURE
Message: failed postcondition from
test_task_safety.adb:15

Result = 1000000

From: Brad Moore
<brad.moore@shaw.ca>

Date: Sun, 11 May 2014 12:01:20 -0600
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

> [...]

A couple more thoughts and refinements
to throw in, for consideration.

This got me thinking about what could be
done to be able to say with more
confidence that a Task_Safe subprogram
is in fact task safe (i.e. Safe to call
concurrently).

What if we threw in a couple more
restrictions.

Ada in Context 231

Ada User Journal Volume 35, Number 4, December 2014

- A Task_Safe subprogram does not
contain any backwards jumping goto
statements, nor does it contain while
loops. (Or at least while loops that
cannot be easily proven to be guaranteed
to exit. For loops however are OK, since
they are guaranteed to exit.)

- A subprogram that does contain
backwards jumping goto statements or
while loops are considered to be
potentially blocking, for the purpose of
the Potentially_Blocking aspect, so
applying the Potentially_Blocking
aspect to such a subprogram would be
allowed.

It would be OK for the main body of a
task to have while loops of course. The
compiler would just statically warn about
calling subprograms that have while
loops.

Now it seems to me that when we say
Task_Safe, it is more than just
documenting the intent of the
programmer, it is provable.

Such a subprogram for example could not
deadlock because it does not contain any
endless loops, and does not call anything
that blocks. It also does not refer to any
global variables.

With such restrictions, can you provide
any example that you would consider
unsafe? I am having difficulty coming up
with one.

Keep in mind also that Task_Safe is not a
term defined in the RM. We can pretty
much define it to mean whatever we want,
including something that is provable.

From: Brad Moore
<brad.moore@shaw.ca>

Date: Tue, 13 May 2014 09:01:44 -0600
Subject: Re: Safety of unprotected

concurrent operations on constant
objects

Newsgroups: comp.lang.ada

[...]

The goal is to be able to say that a
subprogram can be called safely, without
erroneousness with other concurrent calls.

Atomicity plays a part of it, but
subprograms such as pure functions that
don't modify state also fall under the
umbrella.

Using discriminated records
to return variable amount of
data from function

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue Aug 12 2014
Subject: Using discriminated records to

return variable amount of data from
function

URL: http://ada.tips/using-discriminated-
records-to-return-variable-amount-of-
data-from-function.html

Sometimes, you want to return different
data from a function depending on the
given parameters and the program state.
For example, when searching a container
for a certain element, you either want to
return "NOT_FOUND" information or the
actual element.

One way to do this is to use discriminated
(or variant) records

 type Search_Result (Found : Boolean) is
 record
 case Found is
 when True =>
 Value : Integer;
 when False =>
 null;
 end case;
 end record;

If 'Found' parameter is True, you also
have 'Value' component in the record.
And if 'Found' is 'False', you have nothing
extra.

The search function itself could be

 function Search_Numbers (Key : Integer)
 return Search_Result is
 begin
 if Key = 99 then
 return Search_Result'
 (Found => True, Value => 101);
 else
 return Search_Result'
 (Found => False);
 end if;
 end Search_Numbers;

And it can be used like this:

 procedure Main is
 Res : Search_Result :=
 Search_Numbers (99);
 begin
 if Res.Found then
 Put_Line ("Found: " &
 Integer'Image (Res.Value));
 else
 Put_Line ("Not found");
 end if;
 end Main;

If you try to access 'Value' component of
the 'Res' variable when 'Found' is False,
an exception is raised during runtime.

I/O Request Queueing for
Ravenscar

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Fri, 29 Aug 2014 00:17:12 +0300
Subject: Re: STM32F4 Discovery,

communication and libraries
Newsgroups: comp.lang.ada

> [...] You could not implement an
equivalent of I/O queueing under the
Ravenscar constraints.

It is certainly possible to implement an
I/O request queue in Ravenscar; I have
done so for the platform SW on ESA's
GOCE satellite. Multiple client tasks, one
server (interface driver) task. An I/O

request contains (or is, or refers to) a
client-specific protected object (PO) with
an "I/O completed" entry, on which the
client task waits after enqueueing the I/O
request. The server task processes
submitted I/O requests in any order and
concurrency it chooses; when an I/O
request is done, the server task calls an
operation on the request's PO, which
unblocks the entry, resuming the client
task.

Optimisation

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 11 Sep 2014 15:34:41 +0200
Subject: Re: Assuming optimization? What

is best of these code alternatives?
Newsgroups: comp.lang.ada

[...]

FWIW, here is my favorite collection of
quotes about optimization:

Kernighan & Plauger, 1974. Elements of
Programming Style:

- Make it right before you make it faster.

- Keep it right when you make it faster.

- Make it clear before you make it faster.

- Don't sacrifice clarity for small gains in
"efficiency."

- Let your compiler do the simple
optimizations.

- Keep it simple to make it faster.

- Don't diddle code to make it faster - find
a better algorithm.

- Instrument your programs. Measure
before making "efficiency" changes.

Ledgard, Nagin, Hueras, 1979. Pascal
with Style: Programming Proverbs:

Shortening the code, running the program
faster, or using fewer variables are all
popular pastimes. Not mentioning ... the
extra testing time needed to check the
new and often subtle boundary conditions,
are you sure that fewer machine
instructions or faster machine execution is
likely?

M.A. Jackson, Rules of Optimization:

- Rule 1: Don't do it.

- Rule 2 (for experts only): Don't do it yet.

W.A. Wulf

"More computing sins are committed in
the name of efficiency (without
necessarily achieving it) than for any
other single reason - including blind
stupidity."

Donald Knuth

"We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root of all
evil."

232 Ada in Context

Volume 35, Number 4, December 2014 Ada User Journal

Concurrent Programming
Patterns for I/O

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 26 Sep 2014 09:58:44 +0200
Subject: Re: can someone help me with this

code (explanation)
Newsgroups: comp.lang.ada

Björn Lundin wrote: [About managing
output from multiple tasks. —sparre]

> Or by using a protected object as a
semaphore.

But why? It's so simpler with a task:

 task Printer is
 entry Print (Mess : String);
 end Printer;

 task body Printer is
 use Text_IO;
 begin
 loop
 select
 accept Print (Mess : String) do
 Put_Line (Mess);
 end Print;
 or terminate;
 end select;
 end loop;
 end Printer;

From: Brad Moore
<brad.moore@shaw.ca>

Date: Mon, 29 Sep 2014 22:22:17 -0600
Subject: Re: can someone help me with this

code (explanation)
Newsgroups: comp.lang.ada

> Task switches, or tasks in the first place,
are, apparently, heavy weight. That's by
comparing two Ada programs:

> http://benchmarksgame.alioth.
debian.org/u64q/program.php?test=thre
adring&lang=gnat&id=2

> http://benchmarksgame.alioth.
debian.org/u64q/program.php?test=thre
adring&lang=gnat&id=4

Apparently the heaviness of tasks is
dependent on usage.

I just submitted another version that was
accepted today, which moves Ada up the
ladder a bit.

http://benchmarksgame.alioth.debian.org/
u64q/performance.php?test=threadring

In fact, only the Go and the Haskell
entries are consistently ahead of this latest
version for all 4 processor configurations.
The Ada version has 503 tasks executing
with calls on a protected entry (where
each task maps to an OS thread in
GNAT). Looking at the Go example, I'm
guessing that the 503 lightweight threads
are being executed by a single OS thread,
likely under a work-stealing scheduler,
where the work never gets stolen by other
cores, since this benchmark mostly
involves a sequential handoff of a token
to the next thread. It that's what's

happening, then it might explain why the
Go version is still quite a bit faster, since
executing the problem on the same core
doesn't require as much overhead and
locking to do the handoff.

> and then both of them to the "different
kind" of parallelism exhibited by the
leading entries. The leading entries are
faster by an orders of magnitude, even
though the faster Ada program uses just
semaphores.

>

> It might be better for Ada if at least the
parallel loop initiatives announced in
Ada Letters are getting somewhere. I'm
just guessing at the effectiveness WRT
async little things, though.

The proposals are gathering steam. We
have moved the design of our proposal
along quite a bit since the earlier papers,
and even quite a bit since our most recent
paper. In fact, our latest paper is being
presented at HILT 2014 in Portland next
month. The syntax has been revamped
and simplified, while providing better
information to the compiler so that the
compiler may verify if the parallelism can
occur while also allowing the compiler to
do more implicit parallelism.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 8 Oct 2014 21:45:01 -0500
Subject: Re: can someone help me with this

code (explanation)
Newsgroups: comp.lang.ada

> The semaphore solution lets one group
related output lines together; the
task+entry (in the above form) can
interleave output lines from different
tasks, perhaps making output harder to
read. Whether this matters depends on
what one needs.

Right. Note that the semaphore ought to
be wrapped in a Limited_Controlled
object so that it gets unlocked if the scope
is exited by an exception. That's
especially important for protecting I/O,
since I/O routines have a tendency to
propagate an exception because of full
disks, permissions errors, etc. Without
such protection, an exception would leave
the semaphore locked and you'll end up
with deadlock as no task can do any I/O.
(The task version probably ought to be
protected from exceptions as well, I'll
leave that as an exercise for the reader.)

Task Allocation?

From: Riccardo Bernardini
<framefritti@gmail.com>

Date: Thu, 16 Oct 2014 11:18:40 -0700
Subject: Re: dynamic vs static tasks

allocation
Newsgroups: comp.lang.ada

> If you know ahead of time how many
tasks will be needed is it better to create

tasks dynamically with new operator or
just statically?

> Which is way is recommended and why
even bother allocating dynamically?

Nice question... I guess that the answer is
a definitive "it depends."

Just my 2.0e-2...

As a general rule, I always prefer to avoid
dynamic allocation, so I prefer to allocate
the task statically. BTW, please note that
if you do something like:

 task type Foo;
 declare
 Worker : Foo; -- Worker starts here
 begin
 -- Worker is running
 ... do something ...
 end;

task Worker is started "dynamically"
when the execution reaches the "declare"
block, without using "new." I do not know
if your idea of "dynamically" includes this
example or not. Also note that in this
case:

 procedure Bar(N: Positive) is
 Workers : array (1..N) of Foo;
 begin
 -- N workers running
 ... do something;
 end Bar;

The number of tasks is determined
dynamically at runtime.

Another reason for having static tasks is
(in general) efficiency. The typical
example is a web server that waits for
connections on the port 80 and every time
a connection arrives, it hands the new
connection to a sub-server that takes care
of all the dialogue with the client. In this
case you have two possible macro-
approaches: create the sub-server task at
runtime with "new" or keep a "pool" of
static sub-servers that serve the requests,
then go back to sleep, waiting for a new
request. I expect the second solution to be
more efficient (in terms of time required
to reply to the client) since you avoid the
overhead related with task creation. (We
are on the border of the sin of "preventive
optimization" here, a more precise
analysis should be done on a case-by-case
basis).

Moreover, if I remember correctly, there
are some "profiles" that do not allow for
the dynamic creation of tasks, so all your
tasks must be "static."

Finally, why using "new" for creating new
tasks? Well, once I needed to keep a task
"inside" a record, but if you declare a
component of task type the record will be
limited (it does not make any sense to
copy a record). Since having the record
limited was a problem, I used an access to
task and this required to have the task
created dynamically. (Sorry, I do not
remember the details, it was too much
time ago).

Ada in Context 233

Ada User Journal Volume 35, Number 4, December 2014

From: Adam Beneschan
<adam@irvine.com>

Date: Thu, 16 Oct 2014 11:41:51 -0700
Subject: Re: dynamic vs static tasks

allocation
Newsgroups: comp.lang.ada

> [...]

> declare

> Worker : Foo; -- Worker starts here

> [...]

> procedure Bar(N: Positive) is

> Workers : array (1..N) of Foo;

> [...]

Also note that in the above examples, the
block which declares the task (in the first
example) or the procedure Bar (second
example) will not be allowed to exit until
the task(s) are done (technically, until
they are "terminated"). If the block or Bar
uses "new" to start the task, the block or
Bar can complete while the task is still
running, as long as the access type used
for "new" is not declared inside the block
or Bar (technically, the ultimate ancestor
of the access type). That may be another
reason to use "new" to create a task.

Open Question: Generic
Formals and Aspects?

From: Simon Wright
<simon@pushface.org>

Date: Fri, 17 Oct 2014 14:17:35 +0100
Subject: Generic formals and Aspects
Newsgroups: comp.lang.ada

Recently on StackOverflow there was a
question[1] about clamping a value to a
range.

The answer, so far, suggests a generic:

 generic
 type Source_Type is range <>;
 type Destination_Type is range <>;
 function Saturate (X : Source_Type)
 return Destination_Type;

With discussion about what happens if
Destination_Type'Range is not a subset of
Source_Type'Range. I see in AARM
13.1.1(4.b)[2] that a
formal_type_declaration is allowed to
include an aspect specification, so tried:

 generic
 type Source_Type is range <>
 with Static_Predicate =>
 Long_Long_Integer
 (Destination_Type'First)
 >= Long_Long_Integer
 (Source_Type'First)
 and Long_Long_Integer
 (Destination_Type'Last)
 <= Long_Long_Integer
 (Source_Type'Last);

 type Destination_Type is range <>;
 function Saturate (X : Source_Type)
 return Destination_Type;

But GNAT (4.9.1, GPL 2014) said that
Static_Predicate wasn't allowed (nor was
Dynamic_Predicate).

(GNAT specific?) Predicate was allowed,
but had no effect: I was able to instantiate
with:

 type Source is new Integer range 10 .. 20;
 type Destination is new Integer
 range 30 .. 40;

(a) What aspects are/should be allowed in
a formal_type_declaration?

(b) How to write the generic to prevent
this sort of mistake at compile time? (It
is easy enough to get a runtime
Constraint_Error.)

[1] http://stackoverflow.com/questions/
26390135/can-i-clamp-a-value-into-a-
range-in-ada

[2] http://www.ada-auth.org/standards/
12aarm/html/AA-13-1-1.html#p4.b

 “raise” in Aspects

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 22 Oct 2014 13:08:09 -0500
Subject: Re: 'raise' in aspects?
Newsgroups: comp.lang.ada

> [...]

For the record:

AI12-0022 adds "raise_expression" to the
"relation" syntax. It's a binding
interpretation on Ada 2012:

http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ai12s/
ai12-0022-1.txt?rev=1.13

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 23 Oct 2014 17:42:08 -0500
Subject: Re: 'raise' in aspects?
Newsgroups: comp.lang.ada

> [...]

Right, "raise_expression" can be used in
any expression, not just aspects. Indeed,
we immediately noticed that it fixed one
long-standing problem in Ada (the need to
have a return statement in every function).
You can write

 return raise Program_Error with
 "Not yet implemented";

in any function (since a raise expression
matches any type), and you don't have to
dream up a useless dummy return value to
do so.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 24 Oct 2014 08:20:13 +0100
Subject: Re: 'raise' in aspects?
Newsgroups: comp.lang.ada

[...]

I liked (but haven't had reason to try; I
had already spent far too long generating
"useless dummy return values") Bob
Duuff's recursive solution:

 function F return Boolean is
 begin
 raise Program_Error with
 "Not yet implemented";
 return F;
 end F;

Ada-rebirth – The Ada
Mascot Competition

From: David Botton <david@botton.com>
Date: Mon, 10 Nov 2014 04:16:04 -0700
Subject: Ada-rebirth – The Ada Mascot

Competition
Newsgroups: comp.lang.ada

[...] a single, modern, slick Ada mascot
[...]
Rules:
1. All submissions must be original and
you agree are public domain on
submission
2. It must be a "being", man, animal,
machine or other
3. Ideally have some story to go with the
Ada language, but not a requirement to be
considered. (Wikipedia Augusta Ada
King, Countess of Lovelace and the Ada
Language would be places for ideas)
4. It should be "vector art" or something
that can be traced (and so pixel dense
enough) for vectors later to be used in
various media formats.
5. Not a requirement, but line art is
always positive or something that can
easily be used with many color schemes.
6. Deadline - Feb 14, 2015 - Valentines
Day in honor of the Lady Lovelace
7. Winner to be announced on Friday, Feb
27 2015
8. A panel of judges will be selected and
announced and submissios will be posted
for public comments from Feb 15-27 at
http://www.gnoga.com/rebirth.html
(No one that submits an entry will be a
judge, nor will I be a judge. All donors
that have not submitted entries will be
judges and requests are in to Ada
Advocacy groups to participate as judges
as well.)
9. Send submissions by e-mail to
david@botton.com

[see http://www.gnoga.com/#rebirth
—sparre]

234

Volume 35, Number 4, December 2014 Ada User Journal

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2015

January 04-20 14th International Conference on Software Reuse (ICSR'2015), Miami, Florida, USA. Topics
include: domain-specific languages; COTS-based development and reuse of open source assets;
software product line techniques; generative development, model-driven development; software
composition and modularization; software evolution and reuse, and reengineering for reuse; quality
assurance for software reuse, such as testing and verification; reuse of non-code artifacts (process,
experience, etc.); transition to software reuse and industrial experience with reuse; etc.

January 08-10 16th IEEE International Symposium on High Assurance Systems Engineering (HASE'2015),
Daytona Beach, Florida, USA. Topics include: tools and techniques used to design and construct
systems that, in addition to meeting their functional objectives, are safe, secure, and reliable.

January 13-14 POPL2015 - ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM'2015), Mumbai, India. Topics include: program and model manipulation techniques (such as:
partial evaluation, slicing, symbolic execution, refactoring, ...); program analysis techniques that are
used to drive program/model manipulation (such as: abstract interpretation, termination checking, type
systems, ...); techniques that treat programs/models as data objects (including: metaprogramming,
generative programming, embedded domain-specific languages, model-driven program generation and
transformation, ...); etc. Application of the above techniques including case studies of program
manipulation in real-world (industrial, open-source) projects and software development processes,
descriptions of robust tools capable of effectively handling realistic applications, benchmarking.

January 19-21 10th International Conference on High Performance and Embedded Architectures and Compilers
(HiPEAC'2015), Amsterdam, the Netherlands. Topics include: computer architecture, programming
models, compilers and operating systems for embedded and general-purpose systems; parallel, multi-
core and heterogeneous systems; reliability and real-time support in processors, compilers and run-time
systems; architectural and run-time support for programming languages; programming models,
frameworks and environments for exploiting parallelism; compiler techniques; etc.

 January 21 HiPEAC2015 - 3rd Workshop on High-performance and Real-time Embedded
Systems (HiRES'2015). Topics include: runtimes and operating systems combining
high-performance and predictability requirements; programming models and compiler
support for providing real-time capabilities to multi- and many-core architectures;
models and tools for code generation, system verification and validation, etc.

January 21-23 9th International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS'2015), Hildesheim, Germany. Topics include: variability across the software life cycle,
separation of concerns and modularity, adaptivity at runtime and development time, programming
languages and tool support, case studies and empirical studies, etc. Deadline for early registration:
January 5, 2015.

January 27-30 13th Australasian Symposium on Parallel and Distributed Computing (AusPDC'2015), Sydney,
Australia. Topics include: multicore systems; GPUs and other forms of special purpose processors;
middleware and tools; parallel programming models, languages and compilers; runtime systems;
reliability, security, privacy and dependability; applications; etc.

Conference Calendar 235

Ada User Journal Volume 35, Number 4, December 2014

 January 31 Ada Developer Room at FOSDEM 2015, Brussels, Belgium. FOSDEM 2015 is a
two-day event (Sat 31 Jan - Sun 01 Feb). This years' edition includes once more a
full-day Ada Developer Room, organized by Ada-Belgium in cooperation with Ada-
Europe, which will be held on Saturday 31 January.

 February 07-11 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP'2015), San Francisco Bay Area, USA.

 Feb 07-11 PPoPP2015 - International Workshop on Programming Models and Applications
for Multicores and Manycores (PMAM'2015). Topics include: programming models
and systems for multicore, manycore, and clusters of multicore/manycore; multicore and
manycore software engineering; automated parallelization and compilation techniques;
debugging and performance autotuning tools and techniques for multicore/manycore
applications; etc.

February 18-20 8th India Software Engineering Conference (ISEC'2015), Bangalore, India. Topics include: software
architecture and design, development paradigms, component based software engineering, case studies
and industrial experience, software engineering education, static analysis, specification and verification,
model driven software engineering, tools and environments, maintenance and evolution, object-oriented
analysis and design, distributed software development, etc.

March 02-06 22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER'2015), Montréal, Canada. Topics include: all areas of software analysis, evolution, reverse-
engineering, and reengineering; empirical studies in reverse engineering; program analysis and slicing;
re-documenting legacy systems; reengineering patterns; program transformation and refactoring; mining
software repositories for software analysis; software architecture recovery; program comprehension;
preprocessing, parsing and fact extraction; reverse engineering tool support; education in reverse
engineering; software quality; etc.

March 04-06 7th International Symposium on Engineering Secure Software and Systems (ESSoS'2015), Milan,
Italy. Topics include: automated techniques for vulnerability discovery and analysis; programming
paradigms, models, and domain-specific languages for security; verification techniques for security
properties; security by design; static and dynamic code analysis for security; processes for the
development of secure software and systems; etc.

March 04-06 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Computing
(PDP'2015), Turku, Finland. Topics include: embedded parallel and distributed systems, multi- and
many-core systems, programming languages and environments, runtime support systems, performance
prediction and analysis, shared-memory and message-passing systems, dependability and survivability,
real-time distributed applications, etc.

March 09-13 Design, Automation and Test in Europe Conference (DATE'2015), Grenoble, France. Topics
include: real-time programming languages and software; formal models for real-time systems; worst
case execution time analysis; tools and design methods for real-time, networked and dependable
systems; dependable systems including safety and criticality; software for safety critical systems;
compilers for embedded multi-core, heterogeneous, GPU, reconfigurable, or FPGA platforms; certified
compilers; verification techniques for embedded systems ranging from simulation, testing, model-
checking, SAT and SMT-based reasoning, compositional analysis and analytical methods; theories,
languages and tools supporting model-based design flows covering software, control and physical
components; modeling, design, architecture, optimization, and analysis of Cyber-Physical Systems
(CPS); case studies in CPS ranging from automotive systems, and avionics, to smart buildings and smart
grids; etc.

March 16-19 14th International Conference on Modularity (Modularity'2015), Ft. Collins, Colorado, USA. Topics
include: varieties of modularity (generative programming, aspect orientation, software product lines,
components, ...); programming languages (support for modular abstraction in: language design;
verification, specification, and static program analysis; compilation, interpretation, and runtime support;
formal languages; ...); software design and engineering (evolution, empirical studies of existing
software, testing and verification, composition, methodologies, ...); tools (refactoring; evolution and
reverse engineering; support for new language constructs, ...); applications (distributed and concurrent
systems; middleware; cyber-physical systems; ...); complex systems; composition; etc. Deadline for
submissions: January 12, 2015 (workshop papers).

236 Conference Calendar

Volume 35, Number 4, December 2014 Ada User Journal

 March 24-27 28th International Conference on Architecture of Computing Systems (ARCS'2015), Porto,
Portugal. Focus: "reconciling parallelism and predictability in mixed-critical systems". Topics include:
models and tools for multi-/many-core systems including but not limited to programming models,
runtime systems, middleware, and verification; design, methods, and hardware and software
architectures for mixed-critical systems; architectures and design methods/tools for robust, fault-
tolerant, real-time embedded systems; etc.

April 11-18 18th European Joint Conferences on Theory and Practice of Software (ETAPS'2015), London, UK.
Events include: CC (International Conference on Compiler Construction), ESOP (European Symposium
on Programming), FASE (Fundamental Approaches to Software Engineering), FOSSACS (Foundations
of Software Science and Computation Structures), POST (Principles of Security and Trust), TACAS
(Tools and Algorithms for the Construction and Analysis of Systems).

April 12 12th International Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA'2015). Topics include: modelling formalisms,
temporal properties and their formal verification, interface compliance and contractual
use of components, static and dynamic analysis, industrial case studies and experience
reports, etc.

April 12-15 23rd High Performance Computing Symposium (HPC'2015), Alexandria, VA, USA. Topics include:
high performance/large scale application case studies, multicore and many-core computing, distributed
computing, tools and environments for coupling parallel codes, high performance software tools, etc.

 April 13-17 18th IEEE International Symposium On Real-Time Computing (ISORC'2015), Auckland, New
Zealand. Topics include: Programming and system engineering (ORC paradigms, languages, model-
driven development of high integrity applications, specification, design, verification, validation, testing,
maintenance, ...); System software (real-time kernels, middleware support for ORC, extensibility,
synchronization, scheduling, fault tolerance, security, ...); Applications (embedded systems (automotive,
avionics, consumer electronics, ...), real-time object-oriented simulations, ...); System evaluation
(timeliness, worst-case execution time, dependability, end-to-end QoS, fault detection and recovery
time. ...); etc. Topics include: object/component/service-oriented real-time distributed computing (ORC)
technology; programming and system engineering (ORC paradigms, languages, model-driven
development, specification, design, verification, validation, maintenance, time-predictable systems, ...);
system software (real-time kernels, middleware support for ORC, extensibility, synchronization,
scheduling, fault tolerance, security, ...); applications (embedded systems, real-time object-oriented
simulations, ...); system evaluation (timing, dependability, fault detection and recovery time, ...); etc.

April 13-17 30th ACM Symposium on Applied Computing (SAC'2015), Salamanca, Spain.

 April 13-17 Track on Programming Languages (PL'2015). Topics include: compiling techniques,
domain-specific languages, formal semantics and syntax, garbage collection, language
design and implementation, languages for modeling, model-driven development, new
programming language ideas and concepts, practical experiences with programming
languages, program analysis and verification, programming languages from all
paradigms, etc.

 April 13-17 Track on Object-Oriented Programming Languages and Systems (OOPS'2015).
Topics include: aspects and components, code generation and optimization, distribution
and concurrency, formal verification, integration with other paradigms, software
evolution, language design and implementation, modular and generic programming,
secure and dependable software, static analysis, testing and debugging, type systems,
etc.

 April 13-17 Track on Software Engineering (SE'2015). Topics include: software architecture, and
software design patterns; maintenance and reverse engineering; quality assurance;
verification, validation, testing, and analysis; formal methods and theories; component-
based development and reuse; safety, security, and risk management; dependability and
reliability; empirical studies, and industrial best practices; applications and tools; etc.

April 13-17 Track on Programming for Separation of Concerns (PSC'2015). Topics include:
software reuse and evolution of legacy systems; consistency, integrity and security;
generative approaches; language support for aspect-oriented and SoC systems; etc.

April 13-17 Track on Software Verification and Testing (SVT'2015). Topics include: new results
in formal verification and testing, technologies to improve the usability of formal

Conference Calendar 237

Ada User Journal Volume 35, Number 4, December 2014

methods in software engineering, applications of mechanical verification to large scale
software, etc.

April 13-17 8th IEEE International Conference on Software Testing, Verification and Validation (ICST'2015),
Graz, Austria. Deadline for submissions: January 16, 2015 (Ph.D. Symposium), February 16, 2015
(Testing Tools track), February 23, 2015 (Testing in Practice papers).

 April 20-24 17th International Real-Time Ada Workshop (IRTAW'2015), Vermont, New York,
USA. In cooperation with AdaCore and Ada-Europe. Deadline for submissions:
February 4, 2015 (position papers).

April 22-24 XVIII Iberoamerican Conference on Software Engineering (CIbSE'2015), Lima, Peru. Topics
include: languages, methods, processes, and tools; reverse engineering and software system
modernization; software evolution and maintenance; model-driven engineering; proof, verification, and
validation; quality, measurement, and assessment of products and processes; formal methods applied to
software engineering; software product families and variability; software reuse; reports on benefits
derived from using specific software technologies; quality measurement; experience management;
systematic reviews and evidence-based software engineering; industrial experience and case studies; etc.

April 27-29 7th NASA Formal Methods Symposium (NFM'2015), Pasadena, California, USA. Topics include:
identifying challenges and providing solutions to achieving assurance in mission- and safety-critical
systems, model checking, static analysis, modeling and specification formalisms, model-based
development, applications of formal methods to aerospace systems and cyber-physical systems, etc.

April 29-30 10th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE'2015), Barcelona, Spain. Topics include: comparing novel approaches with established
traditional practices and evaluating them against software quality criteria, software process
improvement, model-driven engineering, application integration technologies, software quality
management, software change and configuration management, geographically distributed software
development environments, formal methods, component-based software engineering and commercial-
off-the-shelf (COTS) systems, software and systems development methodologies, etc. Deadline for
submissions: January 9, 2015 (position papers).

 May 16-24 37th International Conference on Software Engineering (ICSE'2015), Firenze, Italy. Topics include:
component-based software engineering; debugging, fault localization, and repair; dependability, safety,
and reliability; embedded and cyber physical systems; formal methods, verification, and synthesis;
middleware, frameworks, and APIs; model-driven engineering; parallel, distributed, and concurrent
systems; performance; program analysis; programming, specification, and modeling languages; reverse
engineering; security, privacy and trust; software architecture; software economics, management, and
metrics; software evolution and maintenance; software modeling and design; software product lines;
software reuse; tools and environments; etc. Deadline for submissions: January 13, 2015 (posters),
January 23, 2015 (workshop papers, student volunteers), February 15, 2015 (SCORE-it deliverable
submission).

May 16-24 Software Engineering Education and Training (SEET'2015). Topics include:
software and system development; new best practices for SEET; innovative curriculum
or course formats; blending software engineering and other engineering disciplines, such
as electrical engineering and bioengineering; cooperation in education between industry
and academia; continuous education to cope with technological change; etc.

May 16-24 Track on New Ideas and Emerging Results (NIER'2015). Topics include: startling
results that call into question current research directions, bold arguments on current
research directions that may be somehow misguided, etc.

May 25-29 29th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2015), Hyderabad,
India. Topics include: parallel and distributed algorithms, applications of parallel and distributed
computing, parallel and distributed software, including parallel and multicore programming languages
and compilers, runtime systems, parallel programming paradigms, programming environments and
tools, etc.

June 13-17 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2015),
Portland, Oregon, USA. Topics include: programming language research, including the design,
implementation, theory, and efficient use of languages; innovative and creative approaches to compile-
time and runtime technology, novel language designs and features, and results from implementations;

238 Conference Calendar

Volume 35, Number 4, December 2014 Ada User Journal

language designs and extensions; static and dynamic analysis of programs; domain-specific languages
and tools; type systems and program logics; checking or improving the security or correctness of
programs; memory management; parallelism, both implicit and explicit; debugging techniques and
tools; etc.

 June 22-26 20th International Conference on Reliable Software Technologies - Ada-
Europe'2015, Madrid, Spain. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association (ARA). Deadline for
submissions: January 11, 2015 (papers, tutorials, workshops), January 25, 2015
(industrial presentations).

June 22-26 20th International Symposium on Formal Methods (FM'2015), Oslo, Norway. Topics include:
interdisciplinary formal methods (techniques, tools and experiences demonstrating formal methods in
interdisciplinary frameworks); formal methods in practice (industrial applications of formal methods,
experience with introducing formal methods in industry, tool usage reports, etc); tools for formal
methods (advances in automated verification and model-checking, integration of tools, environments for
formal methods, etc); role of formal methods in software and systems engineering (development
processes with formal methods, usage guidelines for formal methods, method integration, qualitative or
quantitative improvements); theoretical foundations (all aspects of theory related to specification,
verification, refinement, and static and dynamic analysis). Deadline for submissions: January 2, 2015
(abstracts), January 9, 2015 (full papers), February 2, 2015 (industry track papers).

Jun 29 - Jul 01 12th International Conference on Mathematics of Program Construction (MPC'2015),
Königswinter, Germany. Topics of interest range from algorithmics to support for program construction
in programming languages and systems, such as type systems, program analysis and transformation,
programming-language semantics, security, etc. Deadline for submissions: January 26, 2015 (abstracts),
February 2, 2015 (full papers).

 Jun 29 - Jul 02 14th International Symposium on Parallel and Distributed Computing (ISPDC'2015), Limassol,
Cyprus. Topics include: multi-cores, methods and tools for parallel and distributed programming, tools
and environments for parallel program design/analysis, parallel programming paradigms and APIs,
distributed software components, parallel embedded systems programming, scheduling, security and
dependability, real-time distributed and parallel systems, etc. Deadline for submissions: January 15,
2015 (full papers). Deadline for early registration: May 6, 2015.

July 01-05 39th Annual IEEE International Computer Software and Applications Conference
(COMPSAC'2015), Taichung, Taiwan. Event includes: symposium on Embedded & Cyber-Physical
Environments; symposium on Software Engineering Technologies & Applications; symposium on
Security, Privacy and Trust Computing; symposium on Novel Applications and Technology Advances
in Computing; symposium on Computer Education and Learning Technologies; etc. Deadline for
submissions: January 17, 2015 (papers).

July 06-07 20th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2015), Vilnius, Lithuania.

 July 06-10 29th European Conference on Object-Oriented Programming (ECOOP'2015), Prague, Czech
Republic. Topics include: all areas of object technology and related software development technologies,
such as concurrent and parallel systems, distributed computing, programming environments, versioning,
refactoring, software evolution, language definition and design, language implementation, compiler
construction, design methods, design patterns, aspects, components, modularity, type systems, program
analysis, specification, verification, security, real-time systems, etc. Deadline for submissions: January
16, 2015 (workshops).

July 13-16 10th IEEE International Conference on Global Software Engineering (ICGSE'2015), Ciudad Real,
Spain. Theme: "Solutions for distributed product development and maintenance" Topics include:
software design and architecture for distributed development, strategic issues in distributed
development, industrial offshoring and outsourcing experiences, tools and infrastructure support for
distributed teams, methods and processes for global organizations, etc. Deadline for submissions:
February 1, 2015 (paper abstracts, workshops), February 8, 2015 (papers), March 1, 2015 (tutorials),
March 8, 2015 (students events), May 1, 2015 (industrial abstracts).

Conference Calendar 239

Ada User Journal Volume 35, Number 4, December 2014

July 18-24 27th International Conference on Computer Aided Verification (CAV'2015), San Francisco,
California, USA. Topics include: theory and practice of computer-aided formal analysis methods for
hardware and software systems, algorithms and tools for verifying models and implementations,
program analysis and software verification, verification methods for parallel and concurrent
hardware/software systems, testing and run-time analysis based on verification technology, applications
and case studies in verification, verification in industrial practice, verification techniques for security,
etc. Deadline for submissions: January 30, 2015 (abstracts), February 6, 2015 (papers).

July 20-24 Software Technologies: Applications and Foundations (STAF'2015), L'Aquila, Italy.

July 20-24 9th International Conference on Tests And Proofs (TAP'2015). Topics include: the
synergy of proofs and tests, to the application of techniques from both sides and their
combination for the advancement of software quality; transfer of concepts from testing
to proving (e.g., coverage criteria) and from proving to testing; program proving with
the aid of testing techniques; verification and testing techniques combining proofs and
tests; generation of test data, oracles, or preambles by deductive techniques; automatic
bug finding; case studies combining tests and proofs; formal frameworks; tool
descriptions and experience reports; etc. Deadline for submissions: February 13, 2015
(abstracts), February 20, 2015 (papers).

July 21-23 34th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2015), Donostia-San Sebastián, Spain.

 Aug 20-22 13th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2015), Helsinki, Finland. Topics include: parallel and distributed algorithms; tools/environments
for parallel/distributed software development; novel parallel programming paradigms; code generation
and optimization; compilers for parallel computers; middleware and tools; scheduling and resource
management; reliability, fault tolerance, dependability, and security; parallel and distributed systems and
architectures; applications of parallel and distributed processing; high-performance scientific and
engineering computing; etc. Deadline for submissions: February 1, 2015 (workshops), March 31, 2015
(papers).

 Sep 01-04 International Conference on Parallel Computing 2015 (ParCo'2015), Edinburgh, Scotland, UK.
Topics include: all aspects of parallel computing, including applications, hardware and software
technologies as well as languages and development environments, in particular parallel programming
languages, compilers, and environments, tools and techniques for generating reliable and efficient
parallel code, testing and debugging techniques and tools, best practices of parallel computing on
multicore, manycore, and stream processors, etc. Deadline for submissions: February 28, 2015
(extended abstracts), March 31, 2015 (mini-symposia).

 Sep 01-04 44th Annual International Conference on Parallel Processing (ICPP'2015), Beijing, China. Topics
include: all aspects of parallel and distributed computing.

September 13-16 Federated Conference on Computer Science and Information Systems (FedCSIS'2015), Warsaw,
Poland.

September 22-25 15th International Conference on Runtime Verification (RV'2015), Vienna, Austria. Topics include:
monitoring and analysis of software and hardware system executions. Application areas include:
safety/mission-critical systems, enterprise and systems software, autonomous and reactive control
systems, health management and diagnosis systems, and system security and privacy. Deadline for
submissions: April 12, 2015 (abstracts), April 19, 2015 (full papers).

December 10 200th birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

240 For thcoming Events

Volume 35, Number 4, December 2014 Ada User Journal

Preliminary Call for Participation
Ada Developer Room at FOSDEM 2015

31 January 2015, Brussels, Belgium

Organized by Ada-Belgium
in cooperation with Ada-Europe

FOSDEM1, the Free and Open source Software Developers' European Meeting, is a free and non-
commercial two-day weekend event organized early each year in Brussels, Belgium. It is highly
developer-oriented and brings together 5000+ participants from all over the world. The 2015 edition
takes place on Saturday 31 January and Sunday 1 February. No registration is necessary.

For the 6th time, Ada-Belgium2 organizes a series of presentations related to Ada and Free or Open
Software in a s.c. Developer Room. The “Ada DevRoom” at FOSDEM 2015 is held on the first day of
the event, i.e. on Saturday 31 January. The program offers introductory presentations on the Ada
programming language, including features of the new Ada 2012 standard, as well as more specialised
presentations on focused topics. An important goal is to present exciting Ada technology and projects
also to people outside the traditional Ada community. We provide time for discussion and interaction,
and organize the by now famous “Adaists dinner” on Saturday evening...

More details are available on the Ada at FOSDEM 2015 web-page, such as the full list with abstracts of
presentations, biographies of speakers, and the concrete schedule. For the latest information at any time,
contact <Dirk.Craeynest@cs.kuleuven.be>, or see:

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/15/150131-fosdem.html

1https://fosdem.org/2015
2http://www.cs.kuleuven.be/~dirk/ada-belgium

Forthcoming Events 241

Ada User Journal Volume 35, Number 4, December 2014

17th International Real-Time Ada Workshop -
IRTAW 2015

in cooperation with AdaCore and Ada-Europe
www.cs.york.ac.uk/~andy/IRTAW2015

Vermont, USA

Week of 20-24 April 2015 (actual dates TBD)

Call for Papers
Since the late Eighties the International Real-Time Ada Workshop series has provided a forum for
identifying issues with real-time system support in Ada and for exploring possible approaches and
solutions, and has attracted participation from key members of the research, user, and implementer
communities worldwide. Recent IRTAW meetings have significantly contributed to the Ada 2005 and
Ada 2012 standards, especially with respect to the tasking features, the real-time and high-integrity
systems annexes, and the standardization of the Ravenscar profile.

In keeping with this tradition, the goals of IRTAW-17 will be to:

• review the current status of the Ada 2012 Issues that are related with the support of real-time
systems;

• examine experiences in using Ada for the development of real-time systems and applications,
especially – but not exclusively – those using concrete implementation of the new Ada 2012 real-
time features;

• report on or illustrate implementation approaches for the real-time features of Ada 2012;
• consider the added value of developing other real-time Ada profiles in addition to the Ravenscar

profile;
• examine the implications to Ada of the growing use of multiprocessors in the development of

real-time systems, particularly with regard to predictability, robustness, and other extra-
functional concerns;

• examine and develop paradigms for using Ada for real-time distributed systems, with special
emphasis on robustness as well as hard, flexible and application-defined scheduling;

• consider the definition of specific patterns and libraries for real-time systems development in
Ada;

• identify how Ada relates to the certification of safety-critical and/or security-critical real-time
systems;

242 Forthcoming Events

Volume 35, Number 4, December 2014 Ada User Journal

• examine the status of the Real-Time Specification for Java and other languages for real-time
systems development, and consider user experience with current implementations and with issues
of interoperability with Ada in embedded real-time systems;

• consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in
actual real-time projects;

• consider the language vulnerabilities of the Ravenscar and full language definitions;
• consider testing for compliance with the Real-Time Annex.

Participation at IRTAW-17 is by invitation following the submission of a position paper addressing one
or more of the above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an
invitation, but for one reason or another is unable to produce a position paper, may send in a one-page
position statement indicating their interests. Priority will, however, be given to those submitting papers.

Submission Requirements
Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts.
All accepted papers will appear, in their final form, in the Workshop Proceedings, which will be
published as a special issue of Ada Letters (ACM Press). Selected papers will also appear in the Ada
User Journal.

Authors with a relevant paper under consideration at Ada-Europe (deadline 11th January, 2015) may
offer an extended abstract of the same material to IRTAW-17.

Please submit position papers, in PDF, to the Program Chair by e-mail: andy.wellings@york.ac.uk

Important Dates
• Paper Submission: 4 February, 2015
• Notification of Acceptance: 1 March, 2015
• Confirmation of Attendance: 14 March, 2015
• Final Paper Due: 1 April, 2015
• Workshop: April TBD in week of 20-24, 2015

Program Chair
• Andy Wellings, University of York

Workshop Chair
• Robert Dewar, AdaCore

Program Committee Members
Mario Aldea Rivas, John Barnes, Ben Brosgol, Alan Burns, Michael Gonzàlez Harbour, José Javier
Gutiérrez, Stephen Michell, Brad Moore, Luís Miguel Pinho, Juan Antonio de la Puente, Jorge Real,
Jose F. Ruiz, Joyce Tokar, Tullio Vardanega, Andy Wellings and Rod White.

Forthcoming Events 243

Ada User Journal Volume 35, Number 4, December 2014

Call for Papers

20th International Conference on
Reliable Software Technologies –

Ada-Europe 2015
22-26 June 2015, Madrid, Spain

 http://www.ada-europe.org/conference2015

Conference Chair

Alejandro Alonso
Universidad Politécnica de
Madrid
alonso@dit.upm.es

Program co‐Chairs

Juan A. de la Puente
Universidad Politécnica de
Madrid
jpuente@dit.upm.es

Tullio Vardanega
Università di Padova
tullio.vardanega@unipd.it

Tutorial Chair

Jorge Real
Universitat Politècnica de
València
jorge@disca.upv.es

Exhibition Chair

Santiago Urueña
GMV, Spain
suruena@gmv.com

Industrial co‐Chairs

Jørgen Bundgaard
Rambøll Danmark A/S
jogb@ramboll.dk

Ana Rodríguez
Silver Atena Spain
ana.rodriguez@silver‐atena.es

Publicity Chair

Dirk Craeynest
Ada‐Belgium & KU Leuven
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Juan Zamorano
Universidad Politécnica de
Madrid
jzamora@fi.upm.es

"In cooperation" with ACM
SIGAda, SIGBED, SIGPLAN, and

with ARA

General Information

The 20th International Conference on Reliable Software Technologies – Ada‐Europe 2015 will take
place in Madrid, Spain. Following its traditional style, the conference will span a full week,
including a three‐day technical program and vendor exhibition from Tuesday to Thursday, along
with parallel tutorials and workshops on Monday and Friday.

Schedule

Topics

The conference has over the years become a leading international forum for providers,
practitioners and researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and maintenance of
long‐lived, high‐quality software systems for a challenging variety of application domains. The
program will allow ample time for keynotes, Q&A sessions and discussions, and social events.
Participants include practitioners and researchers representing industry, academia and
government organizations active in the promotion and development of reliable software
technologies.

Topics of interest to this edition of the conference include but are not limited to:

 Multicore and Manycore Programming: Predictable Programming Approaches for Multicore
and Manycore Systems, Parallel Programming Models, Scheduling Analysis Techniques.

 Real‐Time and Embedded Systems: Real‐Time Scheduling, Design Methods and Techniques,
Architecture Modelling, HW/SW Co‐Design, Reliability and Performance Analysis.

 Mixed‐Criticality Systems: Scheduling methods, Mixed‐Criticality Architectures, Design
Methods, Analysis Methods.

 Theory and Practice of High‐Integrity Systems: Medium to Large‐Scale Distribution, Fault
Tolerance, Security, Reliability, Trust and Safety, Languages Vulnerabilities.

 Software Architectures: Design Patterns, Frameworks, Architecture‐Centred Development,
Component‐based Design and Development.

 Methods and Techniques for Software Development and Maintenance: Requirements
Engineering, Model‐driven Architecture and Engineering, Formal Methods, Re‐engineering
and Reverse Engineering, Reuse, Software Management Issues, Compilers, Libraries, Support
Tools.

 Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

 Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health
Care, Transportation, Cloud Environments, Smart Energy systems, Serious Games, etc.

 Experience Reports in Reliable System Development: Case Studies and Comparative
Assessments, Management Approaches, Qualitative and Quantitative Metrics.

 Experiences with Ada and its Future: Reviews of the Ada 2012 new language features,
implementation and use issues, positioning in the market and in the software engineering
curriculum, lessons learned on Ada Education and Training Activities with bearing on any of
the conference topics.

11 January 2015 Submission of regular papers, tutorial and workshop proposals
25 January 2015 Submission of industrial presentation proposals
1 March 2015 Notification of acceptance to all authors

29 March 2015 Camera‐ready version of regular papers required
12 April 2015
17 May 2015

Industrial presentations abstracts required
Tutorial and workshop materials required

244 Forthcoming Events

Volume 35, Number 4, December 2014 Ada User Journal

Program Committee

Mario Aldea, Universidad de
Cantabria, Spain
Ted Baker, NSF, USA
Johann Blieberger, Technische
Universität Wien, Austria
Bernd Burgstaller, Yonsei University,
Korea
Alan Burns, University of York, UK
Maryline Chetto, University of Nantes,
France
Juan A. de la Puente, Universidad
Politécnica de Madrid, Spain
Laurent George, ECE Paris, France
Michael González Harbour,
Universidad de Cantabria, Spain
J. Javier Gutiérrez, Universidad de
Cantabria, Spain
Jérôme Hugues, ISAE, France
Hubert Keller, Institut für Angewandte
Informatik, Germany
Albert Llemosí, Universitat de les Illes
Balears, Spain
Franco Mazzanti, ISTI-CNR, Italy
Stephen Michell, Maurya Software,
Canada
Jürgen Mottok, Regensburg University
of Applied Sciences, Germany
Laurent Pautet, Telecom ParisTech,
France
Luís Miguel Pinho, CISTER/ISEP,
Portugal
Erhard Plödereder, Universität
Stuttgart, Germany
Jorge Real, Universitat Politècnica de
València, Spain
José Ruiz, AdaCore, France
Sergio Sáez, Universitat Politècnica de
Valencia, Spain
Amund Skavhaug, NTNU, Norway
Tucker Taft, AdaCore, USA
Theodor Tempelmeier, University of
Applied Sciences Rosenheim,
Germany
Elena Troubitsyna, Åbo Akademi
University, Finland
Santiago Urueña, GMV, Spain
Tullio Vardanega, Università di
Padova, Italy

Industrial Committee

Roger Brandt, Roger Brand IT
Konsult AB, Sweden

Ian Broster, Rapita Systems, UK
Jørgen Bundgaard, Rambøll
Danmark A/S
Dirk Craeynest, Ada-Europe &

KU Leuven, Belgium
Peter Dencker, ETAS GmbH, Germany
Ismael Lafoz, Airbus Military, Spain
Ahlan Marriott, White Elephant,

Switzerland
Steen Palm, Terma, Denmark
Paolo Panaroni, Intecs, Italy
Paul Parkinson, Wind RIver, UK
Eric Perlade, AdaCore, France
Martyn Pike, Embedded Consulting UK

Ltd, UK
Ana Rodríguez, Silver Atena, Spain
Jean-Pierre Rosen, Adalog, France
Florian Schanda, Altran UK, UK
Jacob Sparre Andersen, JSA

Consulting, Denmark
Claus Stellwag, Elektrobit AG,

Germany
Jean-Loup Terraillon, European Space

Agency, the Netherlands
Rod White, MBDA, UK

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to submit
original contributions. Paper submissions shall not exceed 14 LNCS‐style pages in length. Authors
shall submit their work via EasyChair following the link https://easychair.org/conferences/
?conf=adaeurope2015 on the conference web site. The format for submission is solely PDF.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS)
series by Springer, and will be available at the start of the conference. The authors of accepted
regular papers shall prepare camera‐ready submissions in full conformance with the LNCS style,
not exceeding 14 pages and strictly by March 29, 2015. For format and style guidelines authors
should refer to http://www.springer.de/comp/lncs/authors.html. Failure to comply and to
register for the conference by that date will prevent the paper from appearing in the proceedings.

The CiteSeerX Venue Impact Factor has the Conference in the top quarter. Microsoft Academic
Search has it in the top third for conferences on programming languages by number of citations in
the last 10 years. The conference is listed in DBLP, SCOPUS and Web of Science Conference
Proceedings Citation index, among others.

Awards

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference seeks industrial presentations which deliver value and insight but may not fit the
selection process for regular papers. Authors are invited to submit a presentation outline of
exactly 1 page in length by January 25, 2015. Submissions shall be made via EasyChair following
the link https://easychair.org/conferences/?conf=adaeurope2015. The format for submission is
solely PDF.

The Industrial Committee will review the submissions and make the selection. The authors of
selected presentations shall prepare a final short abstract and submit it by April 12, 2015, aiming
at a 20‐minute talk. The authors of accepted presentations will be invited to submit
corresponding articles for publication in the Ada User Journal (http://www.ada‐europe.org/auj/)
host the proceedings of the Industrial Program of the Conference. For any further information
please contact the Industrial Chair directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be
proposed as either half‐ or full‐day events. Proposals should include a title, an abstract, a
description of the topic, a detailed outline of the presentation, a description of the presenter's
lecturing expertise in general and with the proposed topic in particular, the proposed duration
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced),
the recommended audience experience and background, and a statement of the reasons for
attending. Proposals should be submitted by e‐mail to the Tutorial Chair. The authors of accepted
full‐day tutorials will receive a complimentary conference registration as well as a fee for every
paying participant in excess of 5; for half‐day tutorials, these benefits will be accordingly halved.
The Ada User Journal (http://www.ada‐europe.org/auj/) will offer space for the publication of
summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half‐ or full‐day events, to be scheduled at either end of the conference week.
Workshop proposals should be submitted to the Conference Chair. The workshop organizer shall
also commit to preparing proceedings for timely publication in the Ada User Journal
(http://www.ada‐europe.org/auj/).

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and
providers of software products and services should contact the Exhibition Chair for information
and for allowing suitable planning of the exhibition space and time.

Grants for Reduced Student Fees

A limited number of sponsored grants for reduced fees is expected to be available for students
who would like to attend the conference or tutorials. Contact the Conference Chair for details.

246

Volume 35, Number 4, December 2014 Ada User Journal

AdDoc (beyond a document generator)
Robert CHOLAY
email: robert.cholay@systerel.fr

Abstract

Code without documentation is generally useless.
Moreover, all safety standards require that
documentation to be consistent with the actual code.
AdDoc automates the generation of documentation
from the source code and therefore helps ensuring
that the documentation is always up to date.

Keywords: ASIS, EN50128:2011, document
generator.

1 Introduction

For the development of its new generation of Railway
Control System, Alstom Transportation has decided to
improve the features of the tools involved in the
development process of safety critical applications. The
produced software must conform at least with the
EN50128:2011 standard (this includes the produced
software and its documentation).

The concerned application is ~450 KLOC Ada2005 with a
Software Safety Integrity Level of 4 (the highest).

For this application, Alstom has decided to use a tool able
to produce the design documentation in an automatic
manner from Ada source files.

2 Method

To avoid wasting energy or resources in "reinventing the
wheel", a study of existing tools has been done to find
which one could "make the job" with a minimum of effort.
Even if there are already very efficient tools, the effort to
adapt them to the specific features wanted by Alstom (see
below) was judged too important. Thus, Alstom has
decided to develop its own tool named AdDoc (Ada
Document generator). This study also convinced Alstom
that the only reliable implementation solution should be
based on the ASIS technology. But why use such a
powerful technology as ASIS for documentation purpose
only? It was therefore also decided to add some new
features to the tool in order to improve the quality of the
documentation and of the source code.

3 Tool’s behaviours

The current AdDoc tool:

 Checks the completeness of comments and their
consistency with the code (based on dedicated rules:
all units and subprograms must have an overall
description comment and a design description
comment, all sort of formal parameters, variables and
types must be described throughout a dedicated

comment, the structure of composite types must also
be documented in a transitive way,…) this
behaviour forces the developer to comment his code,

 Checks some coding rules in order to emphasize
source readability (no default in mode parameters, no
identifiers factorisation, specification required for
subprograms, …) this behaviour improves source
readability,

 Gives the possibility (through configuration files and
flags) to:

- define rules to map a set of Ada units with
modules (the tool generates one PDF document
per module),

- ignore a set of compilations units or directories,

- ignore unit bodies,

- use the tool with a cross compiler,

- raise warnings regarding the use of certain
predefined Tags,

Figure 1 Module configuration

R. Cholay 247

Ada User Journal Volume 35, Number 4, December 2014

4 Link with the EN50128:2011

As required by the EN50128:2011[3] standard, the design
documentation shall address:

1. Identification of all lowest level software units
(e.g. subroutines, methods, procedures) traced
back to the upper level,

2. Their detailed interfaces with the environment and
other components with detailed inputs and
outputs,

3. Their safety integrity level without any further
apportionment within the component itself,

4. Detailed algorithms and data structures.

The documentation produced by AdDoc has been
considered to satisfy points 1), 2), and 3). Regarding the
last one, the expected information is available in a
document that was already present in Alstom’s referential.
AdDoc is a tool categorized into the class T1: "generates no
outputs which can directly or indirectly contribute to the
executable code (including data) of the Software".

5 Under the hood

AdDoc is an Ada2005 ASIS application of ~5KLOC that
has been specified, developed and validated in
approximately two man-months.

Specifying and developing this kind of application in such
a short time implied to make some "short cuts" using
specific GNAT [1] implementation facilities and also some
ASIS extensions [2].

Figure 2 Under AdDoc’s hood

One of the difficulties was to access the comment of a
syntactic element.

Therefore, the root package AdDoc.Comments has been
developed to provide this functionality in a convenient
way.

package AdDoc.Comments is
 type Comments_T is tagged private;
 No_Comments : constant Comments_T;
 function Read(Element : in Asis.Element) return
 Comments_T;
 ...
private
 ... -- the private part
end AdDoc.Comments;

The figure below presents two cases of comments
extraction within a syntactic structure which is here a
record with a discriminant.

AdDoc is able to treat all kinds of Ada 2005 Asis.Element
if a rule has been explicitly defined regarding the way of
using comments and the information they should provide.

Figure 3 Comments extraction

6 Brief example

As explained above, the document generation process
guarantees:

 Consistency of source code formatting,

 Completeness and consistency of comments.

For example the following code is not correct for AdDoc
because:

 Param1 and Param2 are not commented (AdDoc found
Param and Param3 which does not exist).

 Param3 is not commented (AdDoc found Param which
does not exist).

 The default in mode of Param2 is missing.

--! generic sub-program description.
--! @gen_param Param description of Param1
--! @gen_param Param3 description of Param2
--! @gen_param Proc description of Proc
--! @gen_param Func description of Func
--! @gen_param Pkg description of Pkg

248 AdDoc (beyond a document generator)

Volume 35, Number 4, December 2014 Ada User Journal

--! @param Input1 description of Input1
--! @param Input2 description of Input2
--! @return return function description
generic
type Param1 is (<>);
Param2 : Integer;
with procedure Proc (A : in Integer);
with function Func (B : in Integer) return Boolean;
with package Pkg is new Ada.Text_Io.Integer_Io(<>);
function Generic_Image (Input1: in Integer;
 Input2 : in Integer) return Integer;

If no error is detected, AdDoc generates one or several PDF
documents with the expected formatting.

7 Future tool improvements

AdDoc is a tool working on both Windows and Linux with
some improvements already planned such as:

 Having a full requirements tag extraction in order to
capture and to follow them throughout the source code,

 Providing a more convenient way to define document
templates,

 Generating indexes and cross reference tables,

 Having a full integration into GPS (+ documentation),

 Minimising (or removing?) implementation
dependences,

 Using Ada2012 facilities for the implementation,

 Supporting Ada2012 constructs,

 Having more coding rules and providing a more
convenient way to add them,

 Adding some specific tags for a better LaTeX output
(bold, italic, underline,...).

Results and conclusion

AdDoc has now been successfully deployed and integrated
in the development process of safety critical application
projects.

To be efficient, it should be used at the beginning of the
development phase.

Contrary to what was expected, the difficulty was not ASIS
but it was the specification of AdDoc:

 Define the rules to apply to comments,

 Identify all the possible syntactic constructions and the
comments to apply on.

AdDoc is another example that the strength of the Ada
language is not only based on its own quality but also on its
ability to promote efficient and powerful technology like
ASIS.

References

[1] AdaCore, http://www.adacore.com/

[2] ASIS, http://docs.adacore.com/asis-docs/asis_rm.htm.

[3] Railway applications - Communication, signalling and
processing systems - Software for railway control and
protection systems; BS EN 50128:2011.

 249

Ada User Journal Volume 35, Number 4, December 2014

Proceedings

Workshop

Challenges and New Approaches for Dependable and Cyber‐
Physical System Engineering (De‐CPS 2014)

Ada‐Europe 2014
23 June 2014

Paris, France

Program

Safety Session

"Three Theses for Complex Model Engineering"
 Antoine B. Rauzy (Chaire Chair Blériot‐Fabre ‐ Centrale‐Supélec, Safran)

"The Use of Controlled Vocabularies and Structured Expressions in the Assurance of CPS"
 Katrina Attwood, Philippa Conmy and Tim Kelly (Rapita System and University of York)

Industrial Session

"Dependable Real‐Time System and Mixed‐Criticality: Seeking Safety, Flexibility and Efficiency with KRON‐OS"
 Vincent David, Adrien Barbot and Damien Chabrol (Krono‐Safe)

"Behavioral Contracts for Energy Consumption"
Shin Nakajima and Masumi Toyoshima (National Institute of Informatics, Tokyo, and DENSO)

"Feasibility Study in the use of contract‐based approaches to deal with safety‐related properties in CPS"
Daniela Cancila, Elie Soubiran and Roberto Passerone (CEA, Alstom and University of Trento)

Invited Speaker

Charles Robinson (Thales) project manager of ITEA MERGE safety & security project

IMDEA Session

"Formal Verification in Model‐based Design of Cyber‐Physical Systems"
Pavithra Prabhakar (IMDEA)

Closing Session

"The OMG standard MARTE : feedback and industrialization"
Laurent Rioux (Thales)

Roundtable

Organizing and Program Committee

Organizers: Daniela Cancila, Laurent Rioux

Steering Committee: Antoine B. Rauzy

Program Committee: Katrina Attwood, Benoit Caillaud, Philippa Conmy, Vincent David, Huascar Espinoza, Ali Koudri,
Pavithra Prabhakar, Roberto Passerone, Alejandra Ruiz, Bran Selic, Safouan Taha, Masumi Toyoshima.

Publicity Chair: Karima Nahhal, Jean‐Louis Gerstenmayer

250

Challenges and New Approaches for Dependable
and Cyber-Physical System Engineering
(De-CPS), Ada-Europe 2014

Daniela Cancila, Jean-Louis Gerstenmayer
CEA, LIST, CEA Saclay - F91191 Gif-sur-Yvette Cedex; email: {firstname.name}@cea.fr

The scientific view underlying De-CPS
In June 2014, we have organized in the ECE campus 1 (Paris)
the workshop ’Challenges and new Approaches for depend-
able and Cyber-Physical Systems engineering’ (De-CPS) 2,
as satellite event of the 19th International Conference on
Reliable Software Technologies – Ada-Europe 2014.

In recent years, we have witness a crescendo of industrial
and research interest in Cyber-Physical Systems (CPS). One
distinguishing trait of CPS is that they integrate software con-
trol and decision making with signals from and sensing of
an uncertain and dynamic environment. CPS often involve
heterogeneous systems, and their design makes extensive use
of (tools, systems, languages) interfaces and models. The
Horizon 2020 program framework of the European Union
devote considerable attention to various aspects of the CPS
challenges. A similar trend exists in the EIT ICT Labs 3, a
Knowledge and Innovation Communities set up by the Euro-
pean Institute of Innovation and Technology to drive Euro-
pean leadership in ICT innovation for economic growth and
quality of life.

The inherent complex and heterogeneous nature of Cyber-
Physical Systems impacts the usual methodologies and tech-
niques for critical and real-time embedded systems concep-
tion (multiplied interfaces, massive connectivity, dynamical
aspects, mix-critical paths of information/causality chain..).

Thereafter, these coming issues were constituting the corner-
stone of the workshop :

• how to increase guarantees, according to the dependabil-
ity objectives for the CPS ;

• how to maintain a high level of control, according to the
expected real-time and performance properties ;

• how to better perform, regarding their intrinsic mix-
criticality; and finally

• how are evolving the energy consumption issues.

Without the intend to settle the mentioned arguments, the
workshop gathers industrial practitioners and research actors
to address dependability and, more in general, critical features
in CPS.

1Ecole d’Ingénieurs http://www.ece.fr/
2http://www.ada-europe2014.org/De-CPS.html
3http://www.eitictlabs.eu/about-us/strategy/

Figure 1: Program

The De-CPS organization has deliberately left the freedom to
the authors to publish their contribution in this special issue
or to publish their presentation on the ECE web site.

The total number of attendees to the workshop has been four-
teen, in equal part from academics and industries. Most of
them come from European, by exception of a Japanese dele-
gation (National Institute of Informatics and DENSO). The
eight contributions to De-CPS come from:

• three large industrial groups (Thales, Alstom and
DENSO);

• two SME (Krono-Safe and Rapita System);

• six centers of research and academics (Supelec, CEA,
IMDEA, university of Trento, University of York, Na-
tional Institute of Informatics).

Figure 1 is a screen-shot of the companies and research cen-
ters, which have contributed to the success of the workshop.

Sponsor

The workshop has been partially founded by Krono-Safe, a
French and a promising young SME that work on real-time.

ECE has provided the locals for the workshop and Ada-
Europe the overall organization.

Volume 35, Number 4, December 2014 Ada User Jour na l

 251

Ada User Journal Volume 35, Number 4, December 2014

The Use of Controlled Vocabularies and Structured
Expressions in the Assurance of CPS
Katrina Attwood1, Philippa Conmy2 and Tim Kelly1

1 Department of Computer Science, University of York, Deramore Lane, YORK YO10 5GH, United Kingdom; Tel
+44 1904 325460; email: {katrina.attwood/tim.kelly}@york.ac.uk
2 Rapita Systems Ltd, Atlas House, Osbaldwick Link Road, YORK YO10 3JB, United Kingdom; Tel +44 1904
413945; email: pconmy@rapitasystems.com

Abstract

To date, work on the development of assurance cases
has largely been concerned with the broad structure
and content of arguments to contextualise the data.
However, at a more detailed level, use of natural
language in an argument can lead to conflicting
terminology, to difficulties in understanding the
nature of the claims being made or to logical
inferences which are obscure to the readers of the
argument. This problem has become increasingly
complex as more and more suppliers are involved in
the development chain, making it more difficult to
evaluate the strengths and weaknesses of assurance
data or to re-use it. This paper explores the
development of controlled vocabulary and structured
expressions for CPS in the automotive domain, using
the Semantics of Business Vocabulary and Business
Rules (SBVR) to improve communication and to
provide presents some formal consistency checking of
content. We highlight the challenges this work has
exposed.

Keywords: safety, assurance, controlled language,
SBVR, automotive.

1 Introduction

The presentation of assurance cases is now standard
practice in a number of safety-critical domains and is
mandatory in several. Assurance cases typically comprise
both reasoned arguments justifying claims relating to the
safety, integrity and/or dependability of CPS and a variety
of supporting evidence – analysis and test data, design
information and process documentation. Although a
considerable body of literature regarding safety-case praxis
has been produced, the primary focus to date has been to
provide guidance on the structure and content of the
arguments, with relatively little attention paid to the
language used to convey them. Graphical notations
developed for the safety assurance domains (for example,
the Goal Structuring Notation (GSN) [1] and the Claims-
Argument-Evidence method [2]) inevitably foreground –
and simplify – issues of logical flow and the overall
readability of the argument, but provide limited guidance
on how assertions and supporting statements should be
phrased to ensure that the argument is correctly conveyed

to a reader or assessor. In the GSN Community Standard
[1], for example, less than 10% of the document is devoted
to language issues as opposed to the definition, graphical
representation, construction and review of argument
structures. In practice, many assurance cases are not
documented using graphical notations, but use either
natural language alone or a combination of natural
language and graphical notation for summary purposes.

Imprecise phrasing in assurance cases can lead to a number
of problems, including:

 Inconsistency – terms may be used with different
meanings at different points across an argument. This
may lead to uncertainties in interpretation, particularly
in the subjects of claims and assertions and the scope
within which they are valid.

 Vagueness – without a precise definition of
terminology, the author’s intended meaning may not
be properly conveyed to the audience, whether because
there is no shared understanding of the terms used or
because there is a failure to ‘pin things down’
adequately.

 Lack of focus in claims – in freeform text, it can be
difficult to ‘unravel’ sentence structure so as to
establish the scope of terms, i.e. how they influence
other terms beyond the single phrasal structure in
which they occur [3]. It can therefore be difficult to
identify the claims the argument is making, since the
relationships between the elements under discussion
may not be made clear.

CPS are increasingly assembled by integrator
organisations, using multiple components from a diffuse,
multinational supply-chain [4]. Compositional approaches
to certification mean that assurance data relating to discrete
components need to be collected and matched to form an
integrated system argument. There is a clear need for
consistent usage of domain- and system-specific
terminology throughout the supply-chain, and for a shared
understanding of the nature and limitations of the claims
and evidence being presented in the argument, and of the
assumptions made about the operational context in which
component behaviour is guaranteed.

252 Use of Control led Vocabular ies and Structured Expressions in the Assurance of CPS

Volume 35, Number 4, December 2014 Ada User Journal

We believe there is scope to use controlled language to
provide more rigorous rhetorical structure in assurance
cases for CPS. We propose a dual approach to address the
problems of inconsistency and imprecision outlined above.
First, we address semantic aspects by developing a domain
dictionary, which provides unambiguous definitions of
relevant concepts in the domain over which the argument
ranges. Secondly, syntactic aspects are addressed by these
definitions to specify claim types in the form of structured
expressions to clarify the argument logic. The OMG’s
Semantics of Business Vocabulary and Business Rules
(SBVR) specification [5] offers one means to implement
this approach. SBVR provides for the formalized definition
of domain concepts, together with the rules and
assumptions which define the relationships between them.
It contains an explicit model of formal logic, and thus
provides a means for the capture of natural language
expressions in a formal structure, suitable for machine-
processing.

Two of the elements defined in SBVR are of particular
significance for our approach: ‘concepts’ and ‘fact types’.
These form the basis for the development of the controlled
lexicon and claim typology described in the two following
sections.

2 Argument semantics: development of a
controlled lexicon for safety assurance

In SBVR, a ‘concept’ is defined as “a unit of knowledge
created by a unique combination of characteristics” [5].
Generally, this equates to a noun, or a noun-phrase (also
referred to as a ‘term’). In SBVR, concepts can be defined
formally or informally. In a formal definition, each of the
concepts referred to must be defined elsewhere in the
vocabulary, thus making for a closed lexicon. Reserved
terms to represent logical relationships between concepts
are defined in [5]. The “General Concept” and “Concept
Type” attributes can be used to specify hierarchical type-
relationships between concepts. This is especially useful in
the disambiguation of terminological mismatches in cross-
domain “translation” scenarios, such as the comparison of
concepts across different safety standards.

Our work in the OPENCOSS project [6] defined a
preliminary SBVR vocabulary of concepts for assurance
arguments. As in the SBVR specification [5], a graphical
summary of concept relationships is provided for ease of
reference (for human readers). The vocabulary provides a
controlled language definition of concepts, artefacts and
processes used in the domains of interest of OPENCOSS
(railway, avionics and automotive), and thus provides a
basis for comparison of usage between the domains. We do
not seek to develop a unified, universal lexicon for
assurance to be used across the target domains. Such an
enterprise is fraught with difficulty, since the certification
approaches differ fundamentally. As an illustration,
consider the difficulties for a manufacturer seeking to reuse
software developed according to IEC 61508 [7] in an
avionics context, where certification to DO-178B is
required [8]. An assurance argument in the original context

– here expressed using SBVR, for clarity – might assert
that “software module Y is developed to safety integrity
level SIL 4”. In the avionics context, the manufacturer may
wish to make a similar claim: “software component Y is
developed to design assurance level DAL A”. Since both
the safety integrity level and the design assurance level are
instantiations of the generic SBVR concept “Criticality
Level” defined by OPENCOSS, it might be assumed that a
direct ‘translation’ between the claims is possible.
Examination of the diagrams summarizing the concept
relationships for system and software architectures
extracted from the SBVR vocabulary we have developed
for the relevant standards, however, reveals that the
situation is more complicated.

Figure 1 IEC 61508 software concept relationships

Figure 2 DO-178B software concept relationships

In IEC 61508, a SIL is directly attached to a (software)
safety function which is modelled at system level. In DO-
178B, however, the DAL is associated with a software
system or component, and does not address the “function”
concept at all. This implies that direct ‘translation’ of the
claim cannot be made – it is not possible to convert a SIL
directly into a DAL without considering the extra process-
related concepts that arise because of the focus in DO-178B
on the design of the system, rather than merely its
functionality. Although a clear understanding of the
terminology can be helpful in addressing this difficulty,
what is required is not a definition of individual concepts in
isolation, but an appreciation of the interrelationships
between the concepts, since these provide constraints on
reuse of the claim – and associated assurance data – here.

Safety-
Related
System

Software

Software
Safety

Function

*1

SIL

1

1

Software
Safety

Requirement

*1

Non Safety-
Related

Function

*

1

Software
Requirement

Subsystem
Attribute
Attribute

Component

Module

*1

System

System
Architecture

System
Functional

RequirementFunctionSoftware

Software
Component

Level

System
Safety

Assessment
Process

DAL

*

1

K. Attwood, P. Conmy and T. Kel ly 253

Ada User Journal Volume 35, Number 4, December 2014

Use of a closed SBVR vocabulary will ensure that these
interrelationships are correctly identified. We should
therefore consider there to be either a “partial map” or a
“no map” relation between the concepts, and a full
explanation of the discrepancies between the conceptual
structure of the standards is required in order for an
engineer to make informed decisions about the feasibility
of or limitations on reuse, and on what extra assurance data
may need to be provided in the DO-178B context.

A primary concern for the OPENCOSS project is to
support reasoning about whether certification artefacts,
such as analysis results, can be reused across domains and
from one development project to another. In order to
support this, the OPENCOSS vocabulary defines
terminology at three levels of abstraction: we define
vocabulary models to capture the generic vocabulary of
safety standards relevant to the domains, organisation-
specific terminology and project-specific terminology.
Mapping relationships between concepts are used to
capture traceability relationships between generic and
system-specific concepts (e.g. the fact that a project-
specific test plan is an instance of the test plan defined in
the organisational model) and also to indicate the degree of
“mapping” between concepts at the various levels (e.g. the
degree to which the organisational definition of a test plan
matches the characteristics of the generic artefact defined in
the standard model and relating to a requirement of the
standard).

The demonstration of assurance is a much wider and more
complex concern than simply establishing conformance to
a standard; and an argument is much more than a
compliance checklist of processes and artefacts. Having
clear definitions of terminology in which concepts are
related both vertically by type and sub-type relations and
horizontally by being defined in terms of one another in a
closed lexicon can help in ensuring consistency of
reference across assurance case modules. In particular, the
terminology can be used to characterise the interfaces and
interdependencies between argument modules, and to
ensure that the terms of reference here are consistently
understood. The layered vocabulary defined for the
OPENCOSS project allows us to clarify the relationships
between standards, industrial praxis and development
projects, using the “mapping” relationships between
concepts at the various levels of abstraction to make any
gaps between standards’ requirements and projects’
actualities clear.

3 Argument semantics: structured claim
types

One important means of maintaining consistency in the
natural language used to convey the reasoning in an
assurance argument is to specify types of claims. A
taxonomy of claims can be superimposed on the general
concerns of an argument structure identified in the
literature (e.g. [9]) and can then be used to refine the
logical structures provided in the argument fragment
templates captured in GSN patterns such as those presented

in [10]. The claim types characterise the types of concepts
which are discussed in a particular part of the argument,
and the features which are asserted in claims. We have
identified several generic claim types for assurance
arguments, as summarised in Table 1:

Claim Type Definition

Activity-Artefact Claim

Claim relating to the production of
particular artefacts as a result of particular
safety analysis or development activities.

Artefact Compliance
Claim

Claim relating to the presentation of a
particular artefact necessary for
compliance.

Artefact Adequacy Claim

Claim relating to the adequacy and
appropriateness of a particular artefact, i.e.
moving beyond compliance to a
justification of the evidence artefacts
provided. E.g., the adequacy of a fault tree

Activity Compliance
Claim

Claim relating to the presence and features
of features of a safety analysis or
development activity necessary for
compliance

Activity Adequcy Claim
Claim relating to the adequacy and
appropriateness of a particular safety
analysis or development activity

Component Development
Claim

Claim relating to the adequacy and
acceptability of the process by which a
component has been developed

Fault Accommodation
Claim

Claim relating to the accommodation or
elimination of a fault

Hazard Mitigation Claim
Claim relating to the adequacy of hazard
mitigation achieved by safety measures in
the design

Table 1: Generic claim types for assurance

We can exploit the layered structure of the OPENCOSS
vocabulary – where concepts are defined and “mapped” at
the level of the standard, the industry model and the project
– by defining domain-specific versions of these claim types
in parameterised phrases used to populate the GSN
argument patterns. These phrases can then be instantiated
in component- or system-specific arguments using
vocabulary relevant to that component derived from the
project vocabulary model. The “Concept Type” mechanism
in SBVR allows for the presentation of a series of potential
instantiations of a given parameter from which the user can
choose. In some cases, the “fact Type” mechanism in
SBVR allows to generate the domain-specific claim type
directly from the standard or industry vocabulary model.

The “Fact Type” in SBVR [5] is used to capture
relationships between concepts defined in the vocabulary.
A fact type is defined in [5] as “the meaning of a verb
phrase that involves one or more nouns, whose instances
are all actualities”. A fact type thus equates to a proposition
ranging over the concepts represented by the nouns or
noun-phrases, a statement of some relationship which can
be evaluated logically as having a truth value. As with
concepts, fact types can be defined formally – by means of
a closed expression in which every term is defined
elsewhere in the SBVR model – or informally, using
terminology which is not controlled.

In some cases, the “fact type” mechanism in SBVR allows
us to generate the domain-specific claim type, and the
mapping between the standard (or industry) vocabulary and

254 Use of Control led Vocabular ies and Structured Expressions in the Assurance of CPS

Volume 35, Number 4, December 2014 Ada User Journal

the project vocabulary provides possible terms with which
the template phrase can be instantiated. For claims of the
Activity-Artefact type, for example, the SBVR vocabulary
derived from the terminology used in the safety standard
should identify the types of concept over which the claim
might range, by identifying relationships between particular
activities and the artefacts they generate. A generic fact
type of the sort artefact is generated by activity, for
example, can be instantiated by traversing the SBVR
“Concept Type” and “General Concept” fields in the
standard-level vocabulary to identify a series of individual
concepts of type “artefact” and type “activity”/ The list of
possible concepts might be further reduced by pre- and
post-conditions relating to the individual “artefact” and
“activity” concepts identified in the project-level model, to
present the argument developer with a list of candidate
terms with which to instantiate the fact types reflecting the
practice of the project. More complex fact types might be
devised – around the basic claim structures – to reflect
complex dependencies between activities.

4 Example

In this section, we present a simple example to illustrate the
ways in which structured expressions using controlled
vocabulary can be exploited to instantiate claims in an
assurance argument. The example is based on a simplified,
fictitious automotive anti-lock braking system (ABS),
which is developed to ISO 26262 [11]. Correct operation of
the ABS allows the wheels to maintain contact with the
road surface during hard braking, preventing the wheels
from locking and avoiding an uncontrolled skid. The
system comprises a software controller, four wheel sensors
(one for each wheel) and two hydraulic valves (one for
each axel). The system has two basic operational scenarios.
The software constantly monitors the speed at which the
wheels rotate, measures via the wheel sensors. If it detects
that one wheel is rotating at a slower speed than the others,
the controller actuates the hydraulic valves to reduce
hydraulic pressure to the brake, thus reducing braking force
on that wheel and allowing it to turn faster. Alternatively, if
the software detects that one wheel is turning significantly
faster than the others, the valves are operated to increase
hydraulic pressure to that wheel, thus increasing braking
force to that wheel and slowing down its rotation. The
software controller contains a critical function to calculate
the hydraulic pressure demand value from the wheel speed
sensor inputs. Failure of this function results in the
incorrect braking force being applied to the wheel, which
could result in a skid.

The assurance argument for the ABS software controller
clearly needs to address the issue of potential faults in the
hydraulic pressure demand calculation function. In this
example, that issue will be addressed as part of a top-down
argument concerning the mitigation of the “uncontrolled
skid” hazard by the software. An argument of this type can
be structured using the approach suggested in the high-level
software safety argument pattern in [10], which is
presented in Figure 3, using the GSN [1]:

Figure 3 High-Level software safety argument pattern (from

[10])

In the diagram, the rectangular boxes represent claims
made about the software (these are called “Goals” in GSN).
The top-level goal (Goal: SWSystemSafe) contains an
overall claim that the software is acceptably safe to operate
within the system in which it is located ({system Z}). The
rounded rectangles attached by hollow arrows to this goal
contain contextual statements required to further explain
and validate the goal. Here, they refer to supporting
documentation which provides descriptions of relevant
aspects of the software design and the design and
operational environment of {system Z}. The triangles
underneath items indicate that textual information within
curly braces requires instantiation in an argument relating
to a real system. Goal:SWSystemSafe is refines into a
lower-level claim (captured in Goal: swContributionAcc),
which indicates that the argument will be made by
considering the possible contributions that {software Y}
could make to system-level hazards. The oval
(Ass:hazards) represents an assumption on which this
argument relies: in this case, that all of the system hazards
have been identified correctly. The parallelogram
(Strat:swContributionAcc) represents the strategy used to
break down this general claim into more detailed ones.
Here, the argument is structured by taking each of the
system-level hazards to which the software may contribute
in turn, and arguing that the software contribution to each
has been managed. This strategy is realised in the statement

K. Attwood, P. Conmy and T. Kel ly 255

Ada User Journal Volume 35, Number 4, December 2014

of Goal:Hazard, which makes the claim that the software’s
contribution to a particular hazard ({Hazard}) is acceptably
mitigated. An enumeration of the relevant hazards is
provided as context to this argument, and is referred to in
the GSN Context (Con:hazards). The solid circle on the
decomposition arrow between Strat:swContributionAcc and
Goal:Hazard indicates that Goal:Hazard and the subsequent
argument is iterated for each of the hazards to which the
software might contribute. Where a safety requirement
exists which relates to the software’s role in {Hazard}, this
is explicitly stated, and referred to in the context
Con:safetyRqt. Since software might contribute to the
occurrence and effects of hazards in a number of different
ways (depending on the nature of the hazard, the software
and the system context), a further strategy (Strat:contMit) is
applied, by which the claim concerning the safe
management of these software contributions (captured in
Goal:swContribution) is made and argued through for each
potential contribution. This line of argument is made in the
context of an enumeration of the potential contributions the
software could make to the hazard (referred to in
Con:contributions). Further confidence in the adequacy of
the argument at this point is provided in a backing
argument, which supports a claim that the list of potential
software contributions to the hazard is complete and
correct. This argument is made in a separate GSN module
(contident), the structure of which is not outlined in full
here. Goal:contident_contident provides a reference to the
topmost claim in that backing argument, and serves to
direct the reader’s attention to the argument and evidence
provided in the contident module.

Our discussion of the use of the SBVR vocabulary and
claim types to develop and instantiate an argument draws
on the lower part of the pattern in Figure 3, the claim in
Goal:Hazard that the software’s contribution to a particular
Hazard is adequately managed and the subsequent
argument addressing each potential way in which the
software could contribute to the hazard.

The example requires two distinct SBVR vocabularies.
Firstly, the ABS system is represented in a vocabulary,
terms in which are drawn from the organisational
vocabulary for the system as a whole. Concepts in this
vocabulary serve to define concepts in the deployment
context of the ABS software. The ABS software is also
represented by a dedicated, project-level, vocabulary.

Figure 4 contains a restatement of the argument structure,
which represents a partial instantiation of the template
pattern presented in Figure 3, as an assurance argument for
the ABS software. Here, Goal G1 represents an
instantiation of Goal:Hazard in Fig. 3. Contexts C1 and C2
and G:backing_top are also instantiations of the parallel
elements in the GSN pattern. The underlined terms here
(“ABS software”, “uncontrolled skid hazard”, “safety
requirement 123”, “fault tree analysis”) are instances of the
more generic concept types used in Fig. 3, and are taken
from the SBVR vocabulary for the ABS system (populated
from project documents at the system level, such as system

descriptions, requirements documents, system safety
analysis).

Figure 4 Restatement of lower portion of software safety

argument pattern, indicating claim types

The claims captured in the statements in Goals G2, G3 and
G4 represent standard-level representations of the generic
claim types “Fault Accommodation Claim” and “Hazard
Mitigation Claim” identified in Table 1 above. Here, they
are parameterized with generic noun types drawn from the
SBVR vocabulary for ISO 26262. These claims have an
underlying conceptual model, which derives from ISO
26262, and relates a typology of faults to fault mitigation
measures and characterises the relationship between faults
and hazards3. This model, and the SBVR definitions for the
concepts it identifies, are presented in Figure 5:

SBVR Concept Definitions

3 Note that ISO 26262 [11] identifies an additional subtype of fault, the
concept “permanent fault”. This concept requires a claim of a different
type from those used to handle the other fault types, and it will be more
difficult to make those claims generic. In order to simplify the discussion
here and focus on the use of SBVR to populate generic claims, we have
excluded “permanent fault” from the illustrative example here.

fault

permanent
fault

intermittent
fault

systematic
fault

transient fault

failure behaviourcomponent

systematic failure

random
hardware failure

hazard

may cause

exhibits

may lead
to

safety measure

mitigates

256 Use of Control led Vocabular ies and Structured Expressions in the Assurance of CPS

Volume 35, Number 4, December 2014 Ada User Journal

fault
Definition: abnormal condition that can cause failure of an
element or an item
Dictionary Basis: ISO 26262 Part 1,§1.42 (adapted)
Possibility: fault causes at least one failure

permanent fault
Definition: fault which occurs and then stays until removed or
repaired
Dictionary Basis: ISO 26262 Part 1,§1.88
General Concept: fault

intermittent fault
Definition: a fault which occurs repeatedly and then disappears
Source: ISO 26262 Part 1,§1.42
Dictionary Basis: ISO 26262 Part 1,§1.42 note 2
General Concept: fault

systematic fault
Definition: fault which causes a failure which is manifested in a
deterministic way and which can only be prevented by applying
process or design measures
Source : ISO 26262 Part 1,§1.42 (adapted)
Dictionary Basis: : ISO 26262 Part 1,§1.131 (adapted)
General Concept: fault

safety measure
Definition: activity or technical solution put in place to avoid or
control systematic failures and to detect or control random
hardware failures or to mitigate effects of such failures which
may lead to harm
Dictionary Basis: ISO 26262 Part 1 §1.110
Necessity: safety measure includes safety mechanism

safety measure is specified in functional safety
requirement

Example: definition of software without the use of global
variables
Synonym: means; control

failure behaviour
Definition: termination of an element’s ability to perform a
function as required or intended
Dictionary Basis: ISO 26262 Part 1,§1.39 (adapted)

systematic failure
Definition: failure which can be attributed deterministically to a
certain cause, and which can be eliminated only by a change to
the design or manufacturing process, to operational procedures,
to documentation or to organisational factors
Dictionary Basis: ISO 26262 Part 1,§1.130 (adapted)
General Concept: failure
Necessity: systematic failure is caused by systematic fault

random hardware failure
Definition: failure that may occur unpredictably during the
lifetime of a hardware element, according to some probability
distribution
Dictionary Basis: ISO 26262 Part 1,§1.92
General Concept: failure
Necessity: random hardware failure has probability

component

Definition: element defined at an abstraction level below that
of “the system”, that is logically and technically separable and
is comprised of more than one hardware part or of one or more
software units
Source: ISO 26262 Part 3, §1
Dictionary Basis: ISO 26262 Part 1,§1.15
General Concept: element
Necessity: a component must contain at least one hardware
part or a component must contain at least one software unit

hazard
Definition: potential source of harm caused by malfunctioning
behaviour
 of an item
Dictionary Basis: ISO 26262 Part 1,§1.56

Fact Types
fault causes at least one failure behaviour

failure behaviour may lead to hazard

systematic fault may cause systematic failure

safety measure mitigates fault

systematic failure is caused by systematic fault

random hardware failure has probability

component exhibits failure behaviour

hazard has cause

hazard may be caused by failure behaviour which is exhibited
by component

hazard has effect

Figure 5: Conceptual model and SBVR definitions underlying
the claim types defined in Figure 4

It will be clear that the first part of the claims in Goals G2,
G3 and G4 have been derived straightforwardly from the
conceptual model – they assert the relationship which is
modelled between the “fault” and “safety measure”
concepts, captured in the fact type safety measure mitigates
fault. Note, however, that the claim generation is not
automatic – understanding of the concepts of assurance and
argumentation are required to lead to the concept of
adequacy in association with fault mitigation, and thus to
make the claim subjective (as the argument requires). The
second part of the claim is not generated directly from a
fact type or relationship, since there is no direct link in the
conceptual model between the concepts of fault mitigation
and the hazard. Instead, the relationship is obtained by
traversing the contextual relationships between “fault”,
“failure behaviour” and “hazard”. In order to produce an
argument for a specific ABS system, the claim types
captured in goals G2, G3 and G4 are instantiated by
populating the parameterized noun phrases with concepts
of appropriate types from the SBVR vocabulary defined for
the specific ABS system – the project-level model. Figure 6
presents a partial instantiation of Goal G2:

Figure 6 Partial instantiation of claim type, using project-
specific vocabulary

Here, Goal G2 from Figure 4 has been instantiated twice,
populated using instances of the “systematic fault” and
“fault mitigation measures’ (a synonym for “safety

K. Attwood, P. Conmy and T. Kel ly 257

Ada User Journal Volume 35, Number 4, December 2014

measure”) from the SBVR vocabulary for the actual ABS
system (the project-level model). Note that the intention
here is to show the population of the generic claim type
using concrete instances from the vocabulary, rather than to
present a complete argument. As it stands, the GSN
fragment presented in Figure 6 suggests that the two goals
G5 and G6, taken together, provide a sufficient argument
that G1 holds in the context. Given the richness of the
argument structure provided in Figure 4, this is clearly
untrue: further instantiation of Goals G2, G3 and G4 are
required to ensure adequate coverage of Goal G1. For
simplicity, these additional goals (which can be instantiated
from the SBVR vocabulary for the ABS system as G2 has
been here) are not shown.

5 Related Work

There is only a limited amount of research which directly
addresses the integration of controlled language approaches
in the field of assurance argumentation. A methodology for
argument development is presented in [12], which exploits
the structural patterns presented in [10]. Generic patterns to
help form software assurance arguments are also provided
in, for example, [13], [14], [15] and [16]. Such patterns
focus on the structure of the arguments and the issues they
should address, rather than their phraseology or rhetoric
and since they are by definition generic, it can be difficult
to achieve consistency and completeness in the resulting
argument instantiations. In none of these cases is explicit
attention paid to the possible application of controlled
natural language to enforce the patterns and assist the
argument developer in making the reasoning clearer. The
standard industry guidance on the development of GSN
arguments [1] contains some general advice about sentence
structure and a discussion of common language-based
errors. These errors are identified at the level of the whole
claim, rather than individual terms or phrases.

The OMG’s Structured Assurance Case Metamodel [17]
provides a metamodel of argumentation, including
language aspects, and a discussion of the use of SBVR to
realise assurance arguments. The technique described is,
however, overly simplistic and is not fully realised in [17]:
the present paper should be seen as part of an ongoing
debate as to the utility of SBVR in the assurance
argumentation field.

The authors of [18] define a restricted language to describe
rely-guarantee conditions between software applications
and computer hardware. Although this language can be
used in the automated generation of a limited set of
arguments concerning compositional behaviour of software
elements, including failure behaviour, it is very limited in
scope, and does not capture additional required information
such as data concerning evidence supporting rely-guarantee
claims or the degree of confidence which can be placed in
them.

The OPENCOSS project [19] aims to develop technologies
to support the cost-effective reuse of assurance information
within and between safety-critical domains. Assurance
arguments are used as the basis for communication of this

information, and to support certification. This approach
relies on the ability to communicate and compare relevant
concepts across and within organisations and domains.
However, there is no consistent conceptualisation and
terminology to describe and manage assurance, let alone a
“common certification approach” recognised by system
integrators, the supply chain and assessors. OPENCOSS
seeks to provide a basis for communication by developing a
pragmatic approach, which identifies commonality and
differences between the ways in which safety, assurance
and certification are conceived, and provides means to
compare them. The project has developed models of
assurance assets, information, processes and concepts in
safety standards, organisational practices and individual
projects, using a generic metamodel of relevant concepts
for safety assurance [6]. These models are supported by
domain- and company-specific vocabularies which provide
clear, controlled definitions of concepts which need to be
addressed in safety arguments. A mapping technique is
used to define relationships between concepts in both the
models and the vocabulary at varying degrees of exactness,
and tool support is provided to support engineers in making
explicit the significant differences which need to be
discussed in a justification of reuse.

Structured approaches to language are widely used in the
requirements engineering domain. For example, the
Attempto Controlled English (ACE) defines a structured
natural language to support engineers in writing precise
specifications which can be translated into semi-formal
representations suitable for machine-checking [20].
Similarly, Denger et al [21] have identified natural
language patterns to specify functional requirements for
embedded systems. The CIRCE project [22] adopted
model-based techniques to support the validation of natural
language requirements, based on a lightweight formal
model. In the safety-critical domain, the CLEAR
methodology developed by the Dependability Research
group at the University of Virginia uses insights from
linguistics and cognitive psychology concerning the nature
of linguistic error and presents a pattern-based technique to
minimise miscommunication in requirements [23]. None of
these methods explicitly address the issues relating to
structured argumentation for assurance – for example,
inherent subjectivity in claims -, although the relationship
between requirements and argument claims appears to
provide an interesting avenue for future research.

6 Conclusion

This paper has demonstrated the potential use of SBVR
concept definitions and fact types to add rigour to the
language used to convey assurance arguments for safety-
critical CPS. We have described the use of a layered
vocabulary and “mapping” to capture traceability
relationships between concepts defined in safety standards,
in organisation-specific practices and conventions and in
individual projects, and have indicated how the mapping
notion can be used to provide informed guidance on the
transferability of concepts and the reusability of assurance
assets between projects and across domains. Furthermore,

258 Use of Control led Vocabular ies and Structured Expressions in the Assurance of CPS

Volume 35, Number 4, December 2014 Ada User Journal

we have provided an initial taxonomy of structured claim
types, partially derivable from SBVR fact types, and have
demonstrated how they can be used to constrain the
language and focus of assurance arguments. Work to
develop this method and to provide tooling is currently at
an early stage. Theoretical work remains to be done to
expand the taxonomy of claim types and refine their
phrasing. There is also a need to explore the relationship
between declarative fact types, requirements and argument
claims more fully, in particular to find ways to address the
subjective elements of claims in a formal or semi-formal
lexicon for argumentation.

Acknowledgement
The work presented here was carried out as part of the
OPENCOSS Project, No: 289011, funded by the European
Commission under the FP7-ICR Framework. For further
details, see the Project website: http://www.opencoss-
project.eu.

References

[1] Goal Structuring Notation Community Standard, Issue
1 (November 2011), Available for download from
http://www.goalstructuringnotation.info.

[2] http://www.adelard.com/asce/choosing-asce/cae.html.

[3] E. Lapore (2009), Meaning and Argument: an
introduction to logic through language, Second
Edition (First Edition 2000), John Wiley and Sons.

[4] K. Attwood and P. Conmy (2013), Nuanced term-
matching to assist in compositional safety assurance,
First International Workshop on Assurance Cases for
Software-Intensive Systems (ASSURE 2013).

[5] Object Modelling Group (2008), Semantics of Business
Vocabulary and Business Rules, Version 1. Available
for download at http://www.omg.org/spec/SBVR/1.0/.

[6] OPENCOSS Consortium (2013), Common
Certification Language: Conceptual Model (Version
1), Project deliverable D4.4. Available for download at
http://www.opencoss-project.eu.

[7] IEC (2009), IEC 61508: International Standard –
Functional safety of electrical/ electronic/
programmable electronic safety-related systems.

[8] RTCA (1992), RTCA/DO-178B: Software
considerations in airborne systems and equipment
certification.

[9] R. Hawkins, T. Kelly, J. Knight and P. Graydon
(2011), A new approach for creating clear safety
arguments, in C. Dale and T. Anderson (eds) Advances
in Systems Safety: Safety-Critical Systems Symposium
(SSS 11), Springer-Verlag, pp 3-24.

[10] R. Hawkins and T. Kelly (2013), A Software Safety
Argument Pattern Catalogue, University of York
Department of Computer Science Report YCS-2013-
482. Available for download at

ftp://ftp.cs.york.ac.uk/reports/2013/YCS/482/YCS-2013-
482.pdf.

[11] ISO/FDIS (2011), ISO/FDIS 26262 International
Standard – Road Vehicles, Functional Safety.

[12] R. Hawkins and T. Kelly (2010), A systematic
approach to developing software safety cases, Journal
of System Safety, vol 46 no. 4, pp 25-33.

[13] T. P. Kelly (1998), Arguing safety – a systematic
approach to managing safety cases, D.Phil Thesis,
University of York.

[14] R. A. Weaver (2003), The safety of software –
constructing and assuring arguments, PhD Thesis,
University of York.

[15] W. Wu (2007), Architectural reasoning for safety-
critical software applications, PhD Thesis, University
of York.

[16] Industrial Avionics Working Group (2012), Modular
Software Safety Case Process Description. Available
for download at https://www.amsderisc.com/p-
content/uploads/2013/01/MSSC_201_Issue_01_PD_20
12_11_17.pdf.

[17] Object Modelling Group (2013), Structured Assurance
Case metamodel (SACM), Version 1. Available for
download at http://www.ormg.org/spec/SACM/.

[18] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger and
M. Trapp (2001), Vertical safety interfaces –
improving the efficiency of modular certification, in U.
Voges (ed), Computer Safety, Reliability and Security
SAFECOMP 2001, LNCS 2187, Springer-Verlag, pp
29-42.

[19] http://www.opencoss-project.eu.

[20] N. E. Fuchs, U. Schwertel and R. Schwitter (1999),
Attempto Controlled English – not just another logic
specification language in P. Flener (ed) (1999), 8th
International Workshop on Logic-Based Program
Synthesis and Transformation 1999, LNCS 1559,
Springer-Verlag, pp 1-20.

[21] C. Denger, D. Berry and E. Kamsties (2003), Higher-
quality requirements specifications through natural
language patterns, IEEE Conference on Software:
Science, Technology and Engineering, pp 80-90.

[22] V. Abriola and V. Gervasi (2006), On the systematic
analysis of natural language requirements with
CIRCE, Automated Software Engineering, vol 13 no 1,
pp 107-167.

[23] K. S. Hanks, J. C. Knight, E. A. Strunk and S. R.
Travis (2003), Tools supporting the clear
communication of critical application domain
knowledge in high-consequence systems development,
in S. Anderson, M. Felici, B. Littlewood (eds),
Computer Safety, Reliability and Security SAFECOMP
2003, LNCS 2788, Springer-Verlag, pp 317-330.

 259

Ada User Journal Volume 35, Number 4, December 2014

Dependable Real-Time System and Mixed
Criticality: Seeking Safety, Flexibility and
Efficiency with Kron-OS
Vincent DAVID, Adrien BARBOT, Damien CHABROL
Krono-Safe, 86 rue de Paris, 91400 Orsay, France; Tel: +33 1 77 93 21 59; email: contact@krono-safe.com

Abstract

Embedded real-time systems integrate more and more
real-time application functions on the same execution
unit with heterogeneous real-time requirements but
also dissimilar safety requirements. It is not realistic
to apply the highest safety level to all functions, which
leads to the problem of mixed-criticality. Hypervisors
seem to have become a popular solution, but they
consider real-time features as a secondary issue.
Their main drawback is the difficulty (or
impossibility) to manage different time-scales and
jitters as a real-time operating system is supposed to.
To cope with this problem, we propose an approach
that we briefly introduce in this article. Kron-OS is a
software suite to design, implement and execute real-
time solutions mixing strong real-time requirements
along with low-criticality features.
It also provides a set of automatic code generation
tools and a safety-oriented real-time kernel that
includes temporal and spatial partitioning
methodology and mechanisms.

Keywords: dependability, mixed-criticality, safety,
scheduling, real-time, design methodology.

1 Introduction

Industrial companies want to mix functions with various
requirements concerning real-time features but also
different levels of criticality [4]. A better integration of
tightly coupled functions can offer a better flexibility in
development and a reduction in hardware costs. It should
also ease the implementation of efficient communication
and synchronization, but it also increases the number of
potential malfunctions on the same execution unit, with the
possibility to have a global impact on the system (e.g.
complete shutdown). Of course, this hazard must be
avoided.

Safety levels are classified depending on the considered
industrial domain (Safety Integrity Levels, Design
Assurance Levels, etc.), but a classification is not enough
when some hardware resources are shared: the highest
safety level is always the one that has to be applied because
it is not acceptable that a lower-level function would have
an impact on a higher-level one. In most cases, the majority
of functions in a system are not safety related and as such
are often called “best effort”; only a minority of functions

is classified as “safety functions”. Nevertheless, the term
“best effort” is sometimes misunderstood: the real-time
requirements of the different functions are not so different
in nature (after all, real-time is real-time) whatever their
level of safety is, but the level of guarantee about the real-
time behavior is different. The term “best effort” only
means that we accept in advance that sometimes, some
real-time constraints could be relaxed. But it does not mean
that things may run out of control: on the contrary, the
system design must be prepared to manage hazardous
situations and always recover to a safe state. And this point
underlines one of the typical requirement of a mixed-
criticality system: if the whole system is not correctly sized,
the critical functions shall always be able to use their
required resources, whereas the non-critical functions may
suffer of a lack of resources. In both cases, the real issue is
real-time. If there is no real-time constraint, any system
with partitioning mechanisms could be an acceptable
solution.

Thereby, an execution platform shall provide spatial and
temporal partitioning mechanisms, but it should also
provide abilities to manage real-time in a formal way
(multiple timescales and jitters). As said by Edward A. Lee
[5] and many others, current asynchronous kernel
technologies are inappropriate to manage the system
increased complexity. Because of non-determinism and
uncontrolled temporal behaviors, current systems have a
low level of testability that leads to many long tests
campaigns, which completeness is complex (almost
impossible in practice) to achieve and to demonstrate.
Moreover, spatial and temporal partitioning mechanisms
are often based on a poor confinement granularity, which
leads to late error detections. Non-interference is complex
to ensure without degrading performance or usage
flexibility. Hypervisors enforce the spatial and temporal
segregation between partitions [6], with many variants and
trade-offs depending on the level of interference that is
acceptable, but this approach introduces two or more
hierarchical scheduling levels, with prohibitive costs and
poor real-time performance for the vast majority of real-
time systems.

This article focuses on the temporal and spatial partitioning
principles of the Krono-Safe technology. This technology
addresses the issue of determinism in real-time and mix-
criticality systems.

260 Seeking Safety, Flexibi l i ty and Eff ic iency wi th Kron-OS

Volume 35, Number 4, December 2014 Ada User Journal

2 Historical approaches

In the aeronautical domain, following the application of
DO-178A standard [7] and its Design Assurance Levels in
the eighties, the system suppliers, the aircraft
manufacturers and the certification authorities had to agree
upon the safety levels for each function of the system.
Since the quantity of activities (tests, demonstrations, with
or without independence) to perform in order to reach a
DAL level is very different when the function is at level A
(highest) or at level D (lowest for embedded software),
both system suppliers and the aircraft manufacturers had in
mind to lower the level as much as possible thanks to the
system architecture (redundancy, votes, etc.). However, the
system architecture could not lower the level of all
functions on the aircraft, so some remain at a high level
(e.g. control loops at level A or B), when other could be at
lower level (e.g. maintenance functions at level C). Then
the system suppliers had a choice between developing a
single hardware with all software components at the highest
DAL or developing several hardware with a dedicated
software on each one.

For most system suppliers and in particular for small
aircrafts, developing everything at the highest DAL was
acceptable as long as the system were not very complex.
However, because of the competition between aircraft
manufacturers, it became necessary to include more and
more “comfort” functions in the systems (auto-brake, fuel
consumption improvements, etc.) which come in addition
to the core functions.

In the nineties, the aeronautical industry decided to address
this problem of mixed-criticality by developing the
Integrated Modular Avionics concept. The idea was to rely
on standardized platforms called “modules” (hardware and
operating system) developed at the highest level of safety,
and these modules would propose spatial and time
partitioning mechanisms that guarantee the non-
interference of application functions. This approach led
also to the standardization of communication buses
between the modules and the API of the operating systems.
Several ARINC standards were defined at that time,
including the ARINC 653 for the operating system [8].

The ARINC 653 addresses several problems behind the
mixed-criticality issue: the incremental certification (being
able to certify part of the application functions), the
definition of roles for an industrial breakdown structure that
corresponds to the aeronautical industry (manufacturer,
system supplier and function suppliers) and the way to
actually mix the functions of different DAL on the same
hardware.

In the ARINC 653 approach, a “module integrator” is
responsible for the allocation of resources on each module
of the system. This includes both spatial (ROM and RAM)
and timing (periodicity of treatments, budget allocations for
each partition) aspects. Usually, the module integrator
defines the allocation based on the needs expressed by the
system suppliers and the resources available on the
hardware. In most cases, this allocation is manual, meaning

that the system suppliers provide their needs as they can
(e.g. “5ms of CPU time every 40ms, 600KB of RAM”),
and the module integrator needs to find a way to answer the
needs of all the partitions on the module (“two slots of
2.5ms in 40ms, RAM between 0xFF000000 and
0xFF96000”). When the requirements cannot be met, a
trade-off is required to reach a compromise on the module
so that every partition has enough resources. We insist on
the fact that, up to this day, this often remains a manual
activity.

This is very time consuming (it may take up to 6 months to
reach this compromise on a single module in a big aircraft
program), and it has to be performed for every software
version of every function on the module, because the needs
may change in time (addition or removal of a function).
The safety of the whole system and the ability of a module
to perform a safety function (and all other functions for that
matter) rely entirely on this allocation, and since they are
manual and based on non-formal requirements, the process
is prone to errors.

Around the same time, the French Atomic Energy
Commission (Commissariat à l'énergie atomique - CEA),
being aware of the work of the ARINC consortium and
facing the same challenges in the nuclear industry, decided
to propose another approach, which is the ancestor of the
Krono-Safe technology. The idea was to create a semi-
formal language to express the timing constraints, and that
the allocation would be automatically computed based on
these constraints. The same principles would be applied on
the spatial requirements based on the actual needs of the
software (by analyzing the compiled binary) and allocating
automatically the resources in ROM and RAM, and
configuring automatically the hardware mechanisms
needed to ensure the safety of the system (e.g. MPU
configuration). These principles were industrialized in
OASIS for the nuclear industry [10], and developed as a
proof of concept in the automotive industry under the name
“PharOS”. Kron-OS, developed by Krono-Safe, is based on
the same principles as the OASIS technology.

3 Non-interference

Once the partitioning system is implemented, the real
problem begins: how to guarantee the non-interference of
functions, for space (no data or code access between
partitions) and time.

For space partitioning, there are only two solutions: to use a
hardware device for protection (Memory Management
Units or Memory Protection Units), or to catch every single
access to the memory by software. We exclude the formal
proof of software because it is only limited to simple and
small source code at the time of writing of this article.

The software solution is applied in hypervisors, often
relying also on hardware for address translation to speed up
the process, and by construction it leads to slow access
times (more instructions to execute for the same access).
This requires a lot of computing power, and can seriously
be considered only for high-end CPUs.

V. David, A. Barbot and D. Chabrol 261

Ada User Journal Volume 35, Number 4, December 2014

The full-hardware solution is used for safety-related
systems because of its speed and its independence from the
compiler which eases the safety demonstrations; however
the hardware configuration can be complex and not
optimal: e.g. with most MPU’s the memory is divided into
“pages”, and sometimes these pages must be aligned on
sizes that are powers of 2, leading to unused holes in the
memory.

Moreover, to protect certain particular areas, such as the
execution stacks, the neighbors of a given page must
comply with additional constraints (e.g. data of a partition
cannot be located next to the stack of this partition to
enable the detection of stack overflow).

Obviously, a human being with a lot of spare time can find
a solution (maybe not optimal, but it will work); but this is
not realistic for industrial applications: every time the
memory requirements changes, the whole allocation has to
be done from scratch.

The topic of non-interference for time is more complex
because of the languages used for real-time programming,
mainly: assembly, C and Ada. Behind non-interference for
timing aspects, Krono-Safe addresses also the following
issues:

 The determination of budgets of time for each
function on the system, in particular with an
incremental process where each partition is
estimated alone on the hardware and then
integrated with all other partitions with the same
properties;

 The allocation of slots of CPU time that take into
account error behaviors in any function without
impact on any other software component on the
same hardware;

 The ability to determine which task has exceeded
its allocated budget, and the ability to give it some
additional time if there is some left on the module
without any interference with other partitions.

The determination of the time budgets required by a task in
a real-time system has always been a problem, and neither
C nor Ada have solved the issue in the programming
language. In fact, the problem cannot be solved at that level
because the transformation from a high-level language to
binary instructions is very complex, and because the
hardware itself may have non-deterministic behaviors in its
treatments (one of the reasons why offline CPU execution
estimations tools work so badly, with often 3 to 5 times
overestimations).

For example, depending on the preemption point in a
partition, the next partition in the scheduling plan will start
with its cache in any state. The duration of partition which
is preempted is therefore longer than it would be without a
preemption point (see Figure 1).

partition 2

split => agent 1 will take
longer (cache flush)

no split => no margin

partition 2
requirements

scheduling
margin

partition 1
requirements

deadline
partition 1

deadline

Figure 1. Impact of a split on the execution time

The easiest solution is to flush all cache lines at each
preemption, but this has a major impact on performance as
modern CPUs rely heavily on cache to maintain the speed
of execution when the memory buses are two or more times
slower than the cores.

Provided enough project time and resources are available,
the manual activities may eventually work. They have been
applied successfully for some aircrafts in the past 20 years.
Krono-Safe thinks that the development costs may be
reduced and the hardware optimized with adequate
automatic tools, and we will show this in a later paragraph.
The next problem however cannot be addressed with
offline scheduling policies: non-interference of error
treatments.

During the execution of some source code, every single
instruction could lead to an error (division by zero, memory
access violation, corruption of code or data, etc.). This
means that for every single instruction in the software,
additional time has to be considered to deal with the error
and to take an appropriate action.

In the ARINC 653 approach, the standards states that
“Temporal partitioning is influenced by the O/S overhead.
Inter-module communications acknowledgements and
time-outs may interrupt one partition even though the
events relate to a different partition. As a result, the time
duration allocated for use by an application may be
impacted” (from [265]). So it is up to the module integrator
to put some spare time slots between partitions so that if a
partition has an error at the end of its allocated slice, it does
not delay the start of the next partition.

When the module integrator does not plan for these slots
(or does not have spare time for the module), then a jitter
has to be considered, sometimes called “slice-out time”,
which corresponds to the duration of the longest non-
interruptible service in the system that will be executed on
error. This jitter applies to the next partition in the
scheduling plan, which means that non-interference is
absolutely not enforced in this kind of technology.

262 Seeking Safety, Flexibi l i ty and Eff ic iency wi th Kron-OS

Volume 35, Number 4, December 2014 Ada User Journal

partition 2
scheduling

plan

actual
scheduling

planned starting point for partition 2

partition 1

actual start of partition 2

slice out

error occurs
Figure 2. Slice out impact on scheduling

In Figure 2, if an error occurs in partition 1 near the end of
its allocated time window, the operating system enters a
non-interruptible service to deal with the error (also called
“critical section”), therefore delaying the start of partition
2. This delay has to be taken into account in the allocated
time window of partition 2 so that it does not propagate
further than this windows. The usual way to deal with this
issue is to add a margin to the required time of partition 2,
which means that partition 1 (or in fact, the scheduling
policy) has an impact on partition 2.

When spare time slots are allocated so that the error
management treatment of one partition does not impact the
next one in the scheduling plan, the main issue is that these
slots are lost in the nominal case when everything is normal
on the computer. This leads to oversized hardware, used
only at 50% or less as long as nothing goes wrong. Again,
Krono-Safe thinks that this approach is not acceptable in
the long-term (additional constraints to the scheduling plan
which is already complex to build) and that the spare
resources should be used as long as the non-interference
principles are enforced (especially in industrial domains
where cost reductions lead to small CPU’s).

This leads to the last point addressed by Kron-OS that is
not covered by any technology on the market today: the
ability to give some additional time to a partition while
preserving non-interference with other partitions execution.
In a static approach like ARINC 653, where a module
integrator manually allocates resources to the partitions and
all demonstrations are made from this scheduling plan, it is
not possible to decide anything during the execution of the
plan. This means that if a slot is reserved for idle time
(margin), it cannot be used to give some extra time to one
of the partitions (e.g. if the allocated budget was
underestimated) as it would break all demonstrations of
non-interference.

On all these points, for both space and time partitioning, the
Krono-Safe technology proposes innovative concepts that
are automated, keeping in mind that every step needs to be
qualified in the scope of industrial standards.

The main advantages of the Kron-OS approach are:

 The formal specification of both spatial and timing
requirements, which are not subject to interpretation by
a human;

 The automatic generation of scheduling and memory
tables that answer the requirements (correct by
construction) so that there is no additional

development cost when the specifications are modified
during the development;

 A simple real-time scheduler that can take fast
decisions and determine the agent at fault so that other
agents are not impacted (for both time and space)
without requiring an oversized hardware module.

4 The Kron-OS Safety Approach

In all industrial domains, designing a “safe” system means
reaching an acceptable level of confidence in the functions
performed by the system. To this end, a safe system must
be proved by construction and a software safety
demonstration must rely on:

 A design approach based on a multitasking
programming model which enables demonstration (e.g.
temporal behavior, communication, synchronization)
and

 Controls performed at runtime in order to guarantee an
execution in conformance with design and safety
requirements (e.g. spatial and temporal partitioning).

In Kron-OS, the first item is covered by a formal design
methodology for real-time systems that is supported by a
semi-formal programming language created by CEA and
improved by Krono-Safe, the Psy language (Parallel
SYnchronous language), and a complete tool chain that
includes a compiler and an automatic code generator. For
historical reasons, the first implementation of the Psy
language had been based on the C language, called PsyC.
The PsyC relies only on the control statements of the
underlying language (if, for, while, etc.), so it can be easily
adapted to Ada or any other language, and this has been
demonstrated successfully in a mock-up as a proof-of-
concept on Adacore compiler GNAT.

In PsyC, the main parallel executable entity is called
“agent”. It has its own execution context: time (deadlines
for treatments, allocated budget times) and space (ROM
and RAM allocation). It is possible to specify the agents’
real-time behaviors with timing and dataflow descriptions,
even with a mix of periodic and aperiodic activities, as
briefly illustrated in the Figure 3:

0 1 2

ticks

function1()

advance (1)

function2()

3

advance (2)

agent agent1 (uses realtime, defaultclock clk1)
{
 body start
 {
 function1();
 advance 1;
 function2();
 advance 2;
 }
}

function2 can be performed anytime during this
temporal window

function1 can be
performed anytime
during this temporal

window
Figure 3. Example of timing design with Kron-OS

V. David, A. Barbot and D. Chabrol 263

Ada User Journal Volume 35, Number 4, December 2014

The main benefits of this approach are:

 Safety: dataflow consistency is guaranteed thanks to a
specific communication mechanism; the application
behavior is predictable and reproducible, and freedom
from interference is guaranteed even in case of failure;

 Flexibility: the timing design issue is disconnected
from the scheduling and optimization issues, so the
side effects of a timing change at high level are
bounded, the system can use periodic/aperiodic
treatments, and it can use both time-triggered and
external-triggered sources [11];

 Efficiency: preemptions points and interruptions are
reduced to a minimum thanks to a specific scheduling
strategy (frames scheduled by a tick from an internal or
external source, which is a significant improvement of
[12]), end-to-end constraints and jitters are guaranteed
by construction, buffers and stacks sizes are statically
defined, and the scheduling is locally optimal.

To specify the temporal behavior of the agents, time is
manipulated in PsyC as “clocks”, which are sets of formal
instants in time, called “ticks”. Agents are then divided into
elementary actions cadenced by these ticks: a treatment in
PsyC has an earliest start date (the treatment can start no
sooner than a certain tick) and a deadline (the treatment
cannot continue after another tick). Within the time slots
defined by this points in time, Kron-OS is free to organize
the agents as long as the constraints are enforced.

This level of abstraction enables the user to specify the
needs in a formal way, independently from the final
hardware or the environment. Then, the Kron-OS tool chain
can compute a scheduling plan in line with all the
constraints and needs expressed in PsyC.

When the user wants to execute the code on a real target,
s/he has to specify the needs in terms of time budgets.
These budgets can be estimated in a number of ways:
Worst-Case Execution Times (WCET), engineers’
estimates, lessons learnt from past project, etc. They
depend on the CPU power, so the user expresses separately
his needs in terms of cadence and in terms of execution.
This means also that changing the hardware, even if it is
late in the development, consists only in providing new
budgets for the same agents cadence and producing a new
scheduling plan with these values.

The user’s needs are not always periodical, e.g. the
partition may be in a functional “active” mode with a
period of 5 ms and in a “passive” mode with a period of 1
second. In PsyC, the timing constraints can be conditional,
based on the C language for expressing these conditions (if,
for, while). Krono-Safe has patented a computation process
to produce Repetitive Sequences of “Frames” (time
intervals for each agent), or “RSF”, from any cadence of
agents. The main advantage is that however complex the
cadence is, the resulting sequence is always finite and
bounded (see Figure 4).

xT Interval

frame agent 1

frame agent 2

empty (idle)

repetitive sequence of frames

0 +10 +3 +7 +15

Figure 4. Repetitive Sequence of Frames (RSF)

The embedded scheduler is then responsible for following
the RSF, with many benefits: no dynamic scheduling, better
control of margins than EDF (Earliest Deadline First), less
preemptions than EDF, optimal CPU load smoothing with
multiple tasks and multiple rhythms and time-scales.

It should be noted that RSF can use time-triggered (internal
periodical time-based ticks) or external-triggered sources
(acquired physical signal, arrival of a frame on a network,
etc.) [7]. It should be noted also that since time is
manipulated as an abstraction at PsyC level, it is possible to
simulate the behavior of all agents on a computer for early
design validation. This simulation is fully representative of
the temporal behavior on the final hardware (as long as the
hardware is powerful enough to execute the instructions).

5 Multi-RSF Mechanisms for Mixed-
Critical Functions

As we briefly introduced above, Kron-OS tool chain is able
to generate automatically the configuration tables that
describe the temporal and spatial partitioning used by the
Kron-OS kernel: a strict spatial access policy has been
defined and implemented in conformance with MILS
architecture in order to isolate precisely each component
and to design a deterministic multitask system. This
protection is implemented with a memory protection unit,
and thanks to a specific binary segmentation, each task
accesses only to memory areas with its sufficient and
necessary rights.

The method used to compute the RSF leads to the
identification and the optimal division of residual margins.
For example, this feature can be used to enable error
recovery (and more generally health monitoring) within a
deterministic framework in real-time and without
interference with other tasks. This improves the robustness
of multitasking real-time systems and reduces drastically
residual errors due to execution budgets overrun.

This method is also useful to segregate critical and non-
critical tasks because a RSF may be (and actually is) built
incrementally: two (or more) RSF can be combined in
order to produce a “single” RSF that merges all frames of
all tasks, in compliance with real-time requirements. This
idea is simple but powerful: the RSF structure guarantees
the non-interference between agents, thanks to the temporal
and spatial segregation of each frame, whatever a frame is:
a slice of a critical task or a slice of non-critical task.
Scheduling is achieved at the frame level to satisfy highly
constrained real-time systems (and not with two
hierarchical scheduling levels such as partitions and
processes inside partitions).

264 Seeking Safety, Flexibi l i ty and Eff ic iency wi th Kron-OS

Volume 35, Number 4, December 2014 Ada User Journal

Understanding that point, it becomes easy to design a
whole RSF as the compound of two RSF optimally
interweaved, one for the subset of critical tasks and the
other one for the subset of non-critical tasks. Then, the only
difference in the tasks’ management will be the strategy for
error recovery. For the non-critical part, a.k.a. “best-effort
tasks”, in case of a possible overload, a treatment can be
postponed to the next available frame in the set of non-
critical tasks: the time will just shift but the order in the
sequence will be the same. Budgets are still ensured for the
critical part because of the guarantee of scheduling
correctness, as a result of configuration table and the
guarantee of freedom from interference thanks to the
independence of timing. For the non-critical part, the time-
shift is monitored by the Kron-OS kernel and is limited to a
known bound, which is dependent on the application.

For multi-core applications, one or more RSF are produced
by core, and the Kron-OS kernel is responsible for the
communication between the cores. It should be noted that
no core synchronization is required, and only time causality
has to be enforced: one agent can only access data
produced before its earliest start date, and cannot produce
data for other agents before its deadline. In this approach,
there is no need to dedicate one core to safety functions and
another one to less critical tasks.

From a performance standpoint, the main advantage of the
RSF is that the preemption points are known in advance,
even when the agent’s cadence is not periodical. This
means that it is possible to add a “preemption margin” to
the time budget expressed by the user each time the
treatment can actually be preempted.

agent 1

agent 2

1 – no cache flush

3 – margin can be used

2 – possible cache miss

4 – no impact on next frame

Figure 5. No useless cache flush

In the Figure 5, there is no need to flush the cache at the
end of the agent 1 frame (1) because even if agent 2 takes
longer than budgeted (cache miss in 2), there are some
margins for that in the RSF (3) that can be used to provide
some additional time to the frame of agent 2. Then the next
frame starts on time (4), as planned.

This is different from the ARINC 653 approach where the
scheduling is computed manually based on the user’s
budgets expressed in a non-formal way, in which case it is
up to the user to add some margins (without any knowledge
about the final scheduling plan), leading to very pessimistic
budgets requirements.

Krono-Safe approach consists in a practical approach to a
very common issue in real-time programming: expressing
timing constraints independently from the hardware, and
then configuring this hardware in accordance with all these
constraints. With the increasing complexity of embedded

systems, these activities can no longer be performed by
humans alone: they must be assisted with tools that enables
them to focus on the problem, not on solving a very
complex constrained problem.

6 Implementation

The Krono-Safe tool suite is currently under development,
but it already successfully demonstrated the principles and
the gains expected with the technology. The suite itself,
called KRONO-SUITE (temporary name), is composed of:

 An IDE for PsyC source code writing and the PsyC
compiler; the PsyC compiler translates the PsyC code
into C, which in turn is compiled and linked with a
target or host compiler/linker;

 A simulator on host with a trace system, which enables
the user to see on chronograms the timing behavior of
his agents;

 An embedded kernel which implements an RSF
scheduler and all protection mechanisms to reach the
functional safety.

The tools proposed by Krono-Safe can be adapted to any
hardware and any compiler on the market as long as it
proposes a set of minimal features (memory protection
hardware, real-time timers, ability to control the linking
process in particular).

The kernel has successfully be ported on several targets,
including an ARMv7 (8MHz, 96KB ROM and 16KB
RAM) and an Infineon TriCore CPU with 3 cores
(200MHz, 4MB ROM and 120KB RAM).

On the ARM CPU, a scheduler with two RSF’s has been
implemented: one for the critical agents (meaning that the
timing aspects have to be strictly enforced) and another one
for the non-critical agents (“best-effort” agents for display).
The critical RSF is cadenced by an external trigger, an
ASIC dedicated to providing a time source for the CPU; the
non-critical RSF is based on time and is executed only
when the critical one is idle.

The kernel can take several actions when the non-critical
RSF does not enforce its deadlines: as long as the delay is
acceptable (configurable by the user), the kernel continues
to execute the agent; then when the delay is above the
thresholds, a recovery action is applied (e.g. stop the RSF).

We see on the following screenshot that the non-critical
RSF is slowed down when the CPU load is too high:

nominal
time

overload
time

n
o
n
‐c
ri
ti
ca
l R
SF

cr
it
ic
al
 R
SF

Figure 6. Critical/Non-critical RSF mix

V. David, A. Barbot and D. Chabrol 265

Ada User Journal Volume 35, Number 4, December 2014

For information, on this ARM (again, at 8MHz), the critical
RSF is executed with a period of 5ms, interrupted every
130µs by an interrupt coming from the external ASIC, and
the non-critical RSF is executed with a period of 10ms.
This port of Krono-Safe includes the protection
mechanisms for both time and space (using the MPU).

On the TriCore CPU with 3 execution cores, since the
hardware implements a data cache, it has been possible to
assess the impact of RSF re-organization according to
criteria defined by the user. For example, by putting in
sequence the frames allocated to the same agent, it is
possible to gain up to 3% on the cache misses. Krono-Safe
is investigating other leads for the optimizations, such as:

 To remove useless pre-emptions: the mechanism,
called “anticipation”, consists in executing in sequence
two frames without pre-emption as long as there is no
deadline on this point;

 To increase of idle time to improve the power saving
features of the CPU;

 To adjust memory protection areas (groups of agents
protected as a whole) so that the memory protection
configuration is not changed at each agent.

The implementations of the kernel and the tool chain are
still being optimized for the targets; however the results are
promising and the ability to manipulate the RSF according
to user’s criteria (more idle time, more cache optimization,
etc.) is a powerful tool to optimize the use of the hardware.

7 Conclusion

The method briefly introduced in this article is dedicated to
the design of real-time system with mix-criticality
functions with the benefits of safety, flexibility and
efficiency. All these mechanisms are integrated in Kron-
OS, a complete software suite including a kernel running
on single-core and multi-core architectures, and associated
support tools providing the breakthrough to organize the
runtime with RSF, compared to traditional approaches
(asynchronous kernel, and/or hypervisor). The provided
protection mechanisms ensure early errors detection and
confinement at task level. Thus, it is possible to define
failure management strategies in order to improve
availability and real-time performance without degrading
safety. These works have been validated on several
industrial use-cases, Kron-OS being currently industrialized
by Krono-Safe.

The possibility to have a better integration of functions on
the same core is an opportunity to decrease the number of

hardware modules in a system and as a consequence also
the overall system power consumption. Thanks to a
combination of a kernel and an automatic code generation
tool, Krono-Safe offers an innovative and complete product
suite dedicated to the development of safe applications in
time-to-market constraints, and is offering new
perspectives for cyber-physical system/real-time systems.

References

[4] Report from the Workshop on Mixed Criticality
Systems, cordis.europa.eu/fp7/ict/embedded-systems-
engineering/documents/sra-mixed-criticality-
systems.pdf

[5] Edward A. Lee (2009), Computing Needs Time,
Technical Report No. UCB/EECS-2009-30,
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-30.html

[6] Alan Burns and Rob Davis, Mixed Criticality Systems -
A Review, Department of Computer Science,
University of York, York, UK, www-
users.cs.york.ac.uk/~burns/review.pdf

[7] RTCA (1985), DO-178A Software Considerations in
Airborne Systems and Equipment Certification.

[8] ARINC (1996), ARINC Specification 653, Avionics
Application Software Standard Interface.

[9] ARINC Specification 653, Avionics Application
Software Standard Interface Part 1 – Required
Services, A653P1-3, November 15, 2010, ARINC.

[10] V. David, C. Aussaguès, S. Louise, P. Hilsenkopf, B.
Ortolo, and C. Hessler (2004), The OASIS Based
Qualified Display System, in 4th American Nuclear
Society Int. Topical Meeting on Nuclear Plant
Instrumentation, Controls and Human-Machine
Interface Technologies (NPIC&HMIT), Columbus,
Ohio, USA.

[11] D. Chabrol, V. David, P. Oudin, G. Zeppa and M. Jan
(2014), Freedom from interference among time-
triggered and angle-triggered tasks: a powertrain case
study, ERTS² 2014, Toulouse, France.

[12] C. Aussaguès and V. David (1998), Guaranteeing
Timeliness in Safety-Critical Real-Time Systems, IFAC
15th Workshop on Distributed Computer Control
Systems (DCCS’98).

266

Behavioral Contracts for Energy Consumption

S. Nakajima
National Institute of Informatics, Tokyo 101-8430; Tel: +81 3 4212 2507; email: nkjm@nii.ac.jp
M. Toyoshima
DENSO CORPORATION, Aichi 448-8661; Tel: +81 566 61 4770; email: MASUMI_TOYOSHIMA@denso.co.jp

Abstract

The energy consumption is one of the major non-
functional concerns for systems with limited battery
capacity. An application program, although function-
ally correct, may suffer from unexpected energy con-
sumption. Such energy bugs (ebugs) are detected at
runtime. Some ebugs, however, are desirable to remove
at early stages of the software system development be-
cause they are design faults. This paper studies the
energy consumption problem in the Android applica-
tions of smartphones or tablets, and presents a formal
model of the energy consumption behavior that can be
a basis of model-based analysis methods.

Keywords: Energy Bugs, Smartphones, DVFS, Hybrid
Automata.

1 Introduction
The capacity of battery in smartphones or tablets is lim-
ited and the energy consumption is one of the major non-
functional concerns to be carefully examined at early stages
of software system development. An application program,
even if functionally correct, may suffer from unexpected en-
ergy consumption, which is called energy bugs (ebugs) [11].
Although the hardware components are direct consumers of
the battery, the application program using these platform com-
ponents should be responsible for the ebugs. Faults caused
by such ebugs are, in practice, checked up running programs
by energy profilers (cf. [12] [14]). The approach, however,
has several drawbacks; (a) checks are conducted by running
programs although some root causes are originated from de-
sign flaws, and (b) the coverage is limited by the supplied test
execution data or test environment setup.

A model-based method for examining the energy consump-
tion phenomena is desirable to counter the disadvantages of
the profiler-based method, and an appropriate abstract model
plays a key role. One such formal model was proposed in [8]
to account for the energy consumption behavior. The model,
power consumption automaton (PCA), is defined as a sub-
class of linear hybrid automaton [5]. It is, however, not clear
how the PCA incorporates platform-dependent aspects. Since
hardware components are direct consumers of the battery
power, the energy consumption of application programs can-
not be platform-independent. As such a platform-dependent
aspect, this paper studies the effects of power-saving proces-
sors, the dynamic voltage-frequency scaling (DVFS) [7]. A

LCD CPU (DVFS) Network Peripheral

Ba!ery

App Service

Android Framework / Linux

Figure 1: Android Architecture

recent paper [6] reported that the total energy consumption of
smartphones could be reduced by choosing an optimum opera-
tion frequency. This observation showed that the energy issue
was platform-dependent. The definition of the PCA in [8]
may be changed accordingly, and quantitative arguments are
important to examine such an extended PCA model.

The contributions of this paper are as follows. (a) We obtained
some quantitative results of the platform-dependent effects on
the energy consumption. (b) We introduce a probabilistic vari-
ant of the PCA to take into account the platform-dependent
aspects. Furthermore, we show how the model-based and
profiler-based methods are complementary in the problem of
detecting energy bugs although it is rather our conjecture than
a definitive answer.

2 Energy Consumption Issues in Android
Figure 1 illustrates an abstract view of the Android-based
architecture [1]. It focuses on the components that are related
to the battery power consumption. Application processes,
either App or service, use devices such as networks or periph-
erals. These hardware components are direct consumers of
the battery power1.

The Android framework encapsulates the underlying com-
ponents and provides appropriate abstractions for program-
mers. The multi-layered hierarchical architecture makes it
difficult to understand the energy consumption behavior pre-
cisely. While hardware components are direct consumers of
the battery power, the consumption is attributed to applica-
tion programs. The programs invoke methods to control the
usage of hardware components such as Wi-Fi or GPS. These

1A docking station is a supplier connected to the external power source.
This paper considers the consumers of the battery.

Volume 35, Number 4, December 2014 Ada User Jour na l

S. Nakaj ima, M. Toyosh ima 267

Deep
Sleep

Light
Sleep

Idle Listen

High Power

beacon
[TIM]

beacon
[not TIM]

expire inac!vity !mer

Associa!on
Authen!ca!on

Data transfer
[(not more) and (not locked)]
/ reset inac!vity !mer

beacon
[not TIM]

Beacon
[TIM]

Data transfer
[more]

beacon
[(not TIM)
and (not locked)]

Data transfer
[(not more)
and locked]

beacon
[not TIM
and locked]

beacon
[TIM]

Figure 2: PCA of WiFi Client with WifiLock Control

components may result in tail-state energy consumption in
which case finding root causes in a program is difficult.

Although several techniques are devised, such as the system
call tracing [10] or taint analysis [14], debugging ebugs of
Android application programs is hard just by using runtime
profilers. An alternative method to use abstract models of
energy consumption is desirable to complement the profiler-
based method.

3 Power Consumption Automaton
We recall here the power consumption automaton (PCA) in-
troduced in [8]. A simple example is shown in Figure 2, a dia-
grammatic form of a PCA for a WiFi client with a WiFiLock.
It is a state-transition system, in which each state is called
power state to consume energy at a particular rate, and state-
transitions include timer timeout.

The power consumption automaton (PCA) is a 6-tuple. The
definition follows the presentation in [5] so as to make it easy
to compare with the linear hybrid automata (LHA). A PCA
is, indeed, a strict subclass of LHA.

〈 Loc, V ar, Lab,Edg,Act, Inv 〉

The components are explained below.

1. Loc is a finite set of locations to represent the power
states.

2. V ar is a finite set of real-valued variables. A valuation
v for the variables is a function to assign a real-value
v(x)∈R to each variable x∈V ar. V represents the set
of valuations (v∈V).

3. Lab is a finite set of synchronization labels that contains
the stutter label τ∈Lab.

4. Edg is a finite set of transitions. Each transition e is a
tuple 〈l, a, µ, l′〉 where l∈ Loc and l′∈Loc are a source
and a target locations, a∈Lab is a synchronization label,
and µ is an action defined by a guarded set of assign-
ments (updates), ψ⇒ { x := αx | x∈V ar }. where the
guard ψ is a linear formula over the variables, and αx is
also a linear term.

5. Act is a mapping from locations in Loc to a set of ac-
tivities to represent the flow dynamics. Act(l) is a dif-
ferential equation of the form dP/dt = K where P is
a real-valued variable, P∈V ar. K is Cl for the case of
energy consumption and 1 for a clock such as an inac-
tivity timer (dP/dt = 1). Cl is an energy consumption
rate at a location l.

6. Inv is a mapping from locations in Loc to invariants
Inv(l)⊆V . Inv(l) is defined by a linear formula φ over
V ar.

A PCA generates a timed-sequence 〈lj , vj , τj〉 where lj , vj
and τj refer to a location, a valuation and a time point respec-
tively. If P denotes a real-valued variable to account for the
consumed energy, the total amount of energy is

∑
i vi(P), in

which vi(P) = Cli×(τi+1 − τi).

4 Platform-Dependent Effects on Analysis
As one of the most significant platform-dependent aspects,
we measured quantitative effects of power-saving processors
on the energy consumption. Then, we discuss extensions of
the PCA to take into account such effects.

4.1 Power-Saving CPU

Mobile devices, such as Android smartphones, are equipped
with ARM core processors [2] to allow the dynamic voltage-
frequency scaling (DVFS) technique. The dynamic power
is proportional to both the square of the operation voltage
(voltage2) and the frequency switched [7]. Changing voltage
and frequency, however, has an impact on the execution time
of an application program and thus on the energy consumption
of hardware components used by the program.

The DVFS governor of the Android framework is a variant
of the ondemand governor [9] supported by the Linux kernel.
The governor cooperates with the Linux process scheduler.
Depending on the CPU load, the governor controls the sup-
plied voltage and CPU operation frequency. When the load
is small, low voltage and low frequency are chosen. As the
CPU load becomes large, the governor adjusts the voltage and
frequency to be higher than before.

The physical execution time of a program is longer in such
a low power mode than the case with the full powered CPU.
It is problematic in hard-realtime systems, but is not a big
issue in smartphones or tablets. The major concerns here
are the interactions with human users, which is considered
soft-realtime. Reducing the energy consumption is a higher
priority issue than the potentially long physical execution
time.

While the energy consumed by CPU can be reduced, the effect
of the DVFS governor may increase the total energy consump-
tion especially when the application program has ebugs in it.
If the execution time is longer, the Wi-Fi subsystem, for ex-
ample, may consume more battery power because its energy
consumption is dependent on the physical time. Therefore,
the energy profile is affected indirectly by the DVFS governor.

Ada User Jour na l Vo lume 35, Number 4, December 2014

268 Behav iora l Cont rac ts for Energy Consumpt ion

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

5000.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(a) Average of Workload Threads (b) A WiFi Client Application

Figure 3: Execution Times

Note that some processors such as Tegra3 [4] used in Nexus7
(2012 model) [3] are more complicated than what was men-
tioned above. It is because Tegra3 is a multi-core processor
to contain five ARM cores in itself. The details is explained
in Appendix A.

4.2 Summary of Measurement Results

4.2.1 Switching Frequencies

First, we conducted the measurements to observe the Tegra3
scenario of Appendix A. We used the experimental setup of
Appendix B and confirmed that the changes in the number of
operating CPU cores and the frequency certainly reproduced
the scenario.

4.2.2 Workloads

Figure 3(a) plots the average execution time of the workload
threads. The y-axis shows the time in seconds needed for the
threads to complete a predefined number of iterations. The
values are not significant, but the graph as a whole implies an
interesting tendency.

From one to three threads, the values are almost constant.
They drop a little to be a minimum at four threads; the pro-
gram runs fastest at four workload threads. Then, the values
increase gently from five to fourteen, which is followed by a
continuing steep increase.

The execution time does not vary so much from one to four-
teen threads and thus is considered almost constant. It shows
that the DVFS governor accomplishes a good balance be-
tween the execution speed and energy consumption. The
steep increase in the graph shows that the realtime response
becomes bad. It is because the workload is larger than what
the high-performance cores can support even at their highest
frequency.

4.2.3 WiFi Client Application

Since it is always the case that the response time becomes
worse as the workload increases, we decided to measure the
execution time of a specific application in moderate workload
environments. The numbers of the workload threads were
changed from zero to seventeen. The result is shown in Figure
3(b), which is the execution time of this particular application

program. In contrast, Figure 3(a) depicts the average behavior
of many workload threads.

In the graph, the y-axis depicts the time measured in msec.
The execution time is mostly constant around 3.8 seconds;
the average (µ) is 3.8 seconds with the standard deviation
(σ) of 0.6 seconds. The total relative error is, thus, about
30% (2×σ/µ = 1.2/3.8). Such deviations may come from
uncontrollable operating conditions to include changes in the
WiFi signal strength. The variations in the execution time are
considered as the statistical fluctuations.

4.3 Possible Extensions of PCA

As the DVFS governor has an impact on the physical exe-
cution time of application programs and thus may affect the
energy consumption behavior, the dynamics of the PCA must
include such effects.

4.3.1 Physical Execution Time

First, we review how the execution time of an application pro-
gram is affected when the operation frequencies of processor
are changed.

In processors, the number of clocks F in a time interval
is dependent on the switching frequency f , and is, in the
most general case, considered as a monotonically increas-
ing linear function of f . We assume here that the function
F(f) is linear with respect to frequencies f . If the maxi-
mum frequency of the processor (f0) is chosen as a refer-
ence, the execution time (τ0) of an application program is
Ap/F(f0) where Ap number of clocks are needed to fin-
ish the application. Then, Ap = F(f0)×τ0. Let τ be the
execution time of a processor at the frequency f . For this
particular application program, Ap is a constant, and the
relationships hold; Ap = F(f0)×τ0 = F(f)×τ . Then,
τ = (F(f0)/F(f))×τ0. Because of F(f0) ≥ F(f) due the
monotonicity of F(f), τ ≥ τ0 holds, which shows that phys-
ical execution time at a low frequency f is longer than the
case with f0.

Volume 35, Number 4, December 2014 Ada User Jour na l

S. Nakaj ima, M. Toyosh ima 269

4.3.2 Linear Hybrid Automaton

If the value of the function F is minimum at a frequency
fα, the relation 1 ≤ α holds for a constant α to satisfy that
α = F(f0)/F(fα). The fα is the smallest since F is mono-
tonically increasing. Then, dynamics of the PCA satisfies the
inequalities,

C ≤ dP/dt ≤ α×C

where C represents a constant value to denote the rate of
energy consumption at the maximum operation frequency
f0. dP/dt may take a large value by a factor of α when the
frequency is the smallest. This variant of the PCA is strictly
the same as the LHA [5]. The formal analysis is conducted
in which the value of dP/dt is chosen non-deterministically
from the interval.

In Tegra3, the high performance core operates at 1200MHz
as the maximum (f0) and 340MHz as the minimum (fα)
frequencies. If we simply assume that F(f) is proportional
to f (written F(f)∝f), α = 1200/340 = 3.5. We must,
however, consider measurement results of the execution time
of programs. Figure 3(a) shows that the ratio α is about 2,
which is taken from the ratio of the worst execution time to
the best during the workloads of one to twenty five threads.
Although this measured ratio is smaller than 3.5, a larger
value must be chosen so that the analysis method does not
miss any possible variations even when the workload is large.
Therefore, if formal analyses, such as the reachability, are
conducted for this PCA extension, the results will be over-
approximations. There are high chances to produce spurious
alarms, and thus the model may not be appropriate.

4.3.3 Probabilistic Hybrid Automaton

The function F can be studied a bit in detail for the case of
the control method used in Variable SMP of NVIDIA [4]
(see Appendix A). A simple relationship is assumed so that
F(f) = f×M×u, where M is the number of operating
cores, and u (0<u≤1) is a kind of utilization factor for appli-
cation programs to run on the processors. The value of F is
maximum, denoted by F0, when all the processor cores are
operating at the maximum frequency f0 and the utilization is
100%. Then, it becomes F0(f0)/F(f) ∝ 1/(f×M×u).

The utilization factor and operation frequencies vary and thus
are not known beforehand. They are supposed to follow a
certain probabilistic distribution. A possible extension of the
PCA may show stochastic behavior due to such probabilistic
distributions.

A probabilistic variable Ri is introduced to follow a distribu-
tion function g(R), namely Ri ∼ g(R). A function r(R)
to take probabilistic values is introduced that 1 ≤ r and
r(R) ∝ 1/(f×M×u).

dP/dt = r(Ri)×C

The PCA is now a subclass of LHA, but shows probabilis-
tic behavior, namely a probabilistic LHA. Statistical model-
checking methods [13] will be employed for the formal analy-
sis of this extension of the PCA. The probabilistic distribution
function g(R) may be a Poisson distribution in which the

relative error (σ/µ) is around 15% if we follow the statistical
behavior that Figure 3(b) shows.

This probabilistic extension of the PCA is considered more
faithful than the LHA-equivalent. The probabilistic PCA
includes uncontrollable effects on the energy consumption
behavior of target application, which are represented in the
dynamics.

5 Discussions

Figure 3 indicates that the execution time varies about 30%
because of uncontrollable operation conditions. Runtime pro-
filers may always have such an amount of statistical errors
in the measurement. If the extra energy consumption due to
ebugs results in an increase of less than 30%, the profiler does
not distinguish the outcome of the ebugs from the measure-
ment errors. As Figure 3(a) suggests, the variations will be
larger as the workloads become higher. It implies that the
effects of ebugs are hidden in the large variations due to the
measurement errors. Model-based methods are needed that
do not rely on monitoring program executions.

As Figure 3 (b) suggests, the execution time of the target
application program is almost constant from zero to seventeen
worker threads. If we consider that the formal analysis of
the energy consumption behavior is conducted under these
moderate workloads, it need not take into account the impact
of the DVFS processors. Therefore, the basic PCA model
with its dynamics dP/dt = Cl (Section 3) can be taken as an
appropriate model for the application behavior.

We now consider how the two PCA models are linked. The
basic PCA extracts the energy consumption behavior of ap-
plication programs without taking into account of any effects
from the execution environments. The analysis results with
this basic PCA provide a piece of qualitative information to
be used in finding ebugs. They are not what can be used for
predicting a quantitative amount of the energy consumption.

The probabilistic PCA introduces a probabilistic component
taking a form of r(R). The model-based method with the
probabilistic extension is similar to the profiler-based method
in the sense that they calculate the amount of the energy con-
sumption under uncontrollable operating conditions. There-
fore, their numerical results could be compared.

As for the relationship between the basic PCA and probabilis-
tic PCA, we elaborate the basic model into a probabilistic one.
This elaboration may be compared with the notion of usual
refinement, where non-deterministic behavior is refined into
a concrete deterministic one.

Last, for the case of non-functional concerns such as energy
consumption, we summarize our conjecture that behavioral
models are essential and that the deterministic behavior is
elaborated into the probabilistic one so as to compare the
model (model-based) and implementation (profiler-based).

Ada User Jour na l Vo lume 35, Number 4, December 2014

270 Behav iora l Cont rac ts for Energy Consumpt ion

6 Related Work
A. Pathak et al recognized the importance of eliminating en-
ergy bugs in smartphones, which they called ebugs [11]. They
also proposed to use state-transition systems [10] for mod-
eling the asynchronicity of the energy consumption, where
the model was presented informally. Based on the state trac-
ing techniques, Eprof [12] is an energy profiler to monitor
the program execution at runtime to detect potential ebugs.
ADEL [14] is a runtime profiler to employ a taint-tracking
method to detect asynchronous energy leaks.

S. Nakajima [8] proposed the idea of the PCA. The PCA
model was inspired by [10], but was the first formal model to
make explicit the relationship with LHA. This paper, based
on the basic PCA, studied the impacts of the DVFS governor
by using the measurement experiments, and pointed out the
importance of the probabilistic extension of the PCA.

7 Conclusion
Since energy consumption is a physical phenomenon, a right
abstract model in model-based analysis methods must take
into account of experimental measurement results. Although
the model-based method looks at the problem in a viewpoint
different from the profiler-based one, a probabilistic model
may link between them. The probabilistic model was intro-
duced as a consequence of analyzing the measurement results.

References
[1] Android. http://developer.android.com.

[2] ARM Limited (2005), IEM Software, Technical
Overview .

[3] ASUS (2012) Nexus7.

[4] NVIDIA (2011), Variable SMP – A Multi-Core CPU
Architecture for Low Power and High Performanc3.

[5] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine (1995), The Algorithmic Analysis of Hybrid
Systems, Theor, Comp. Sci., No.138, pp.3-24.

[6] P. Bezzera, L. Araujo, G. Ribeiro, A. Neto, A. Silva-
Filho, C. Siebra, F.Q.B. da Silva, A. Santos, A. Mascaro,
and P. Costa (2013), Dynamic Frequency Scaling on
Android Platforms for Energy Consumption Reduction,
In Proc. PM2HW2N’13, pp.189-196.

[7] J.L. Hennessy and D.A. Patterson (2011), Computer
Architecture : A Quantitative Approach (5ed.), Morgan
Kaufmann.

[8] S. Nakajima (2013), Model-based Power Consumption
Analysis of Smartphone Applications, In Proc. ACES-
MB’13.

[9] V. Palipadi and A. Starikovskiy (2006), The Ondemand
Governor, In Proc. Linux Symp. 2006.

[10] A. Pathak, Y.C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang
(2011), Fine-Grained Power Modeling for Smartphones
Using System Call Tracing, In Proc. EuroSys’11.

[11] A. Pathak, Y.C. Hu, and M. Zhang (2011), Bootstrap-
ping Energy Debugging on Smartphones: A First Look
at Energy Bugs in Mobile Devices, In Proc. Hotnets’11.

[12] A. Pathak, Y.C. Hu, and M. Zhang (2012), Fine Grained
Energy Accoutning on Smartphones with Eprof: Where
is the energy spent inside my app?, In Proc. EuroSys’12.

[13] H.L.S. Younes, M. Kwiatkowska, G. Norman, and D.
Parker (2006), Numerical vs. Statistical Probablistic
Model Checking, J. STTT, 8(3), pp.216-228.

[14] L. Zhang, M.S. Gordon, R.P. Dick, Z.M. Mao, P. Dinda,
and L. Yang (2012), ADEL : An Automatic Detector
of Engery Leaks for Smartphone Applications, In Proc.
CODES+ISSS’12.

A Energy Management in Nexus7
Nexus7 (2012 model) [3] employs NVIDIA Tegra3. It is
a multi-core processor, and takes a form of "4+1" to have
four high-performance cores and a single low power core,
all of which have an identical ARM architecture. ARM core
comes with Intelligent Energy Manager (IEM) [2], a low-
level driver program to change the frequencies of the core
dynamically. The IEM is provided for Linux and used by the
power management driver (CPUFreq) and DVFS governor.
Linux, furthermore, has a driver program (CPUHotplug) to
manage the multi-cores by dynamically changing the number
of cores to operate.

Tegra3 adapts the Variable SMP architecture [4], and assumes
the following usage scenario. It manages the dynamic power
consumption by changing both the frequencies and the voltage
power to drive the ARM core circuits by adjusting the number
of cores to operate.

1. The low power core is used when the CPU load is low.

2. CPUFreq, under control of a DVFS governor, increases
dynamic frequencies of the running ARM core as the
CPU load becomes large.

3. When the frequency reaches a pre-defined threshold,
CPUHotplug chooses one of the high-performance
cores to operate at a pre-determined start-up frequency.
The low power core stops at this moment.

4. The frequency is increased in the same manner as in 2)
to catch up the increase in the CPU load.

5. When the frequency is increased to reach a pre-
defined threshold, CPUHotplug chooses another high-
performance core to operate. CPUFreq makes all the
chosen cores to operate at a same start-up frequency.

6. The frequency is increased in the same manner as in 2).
Note that all the cores operate at the same frequency.

7. If the CPU load further becomes high, CPUFreq and
CPUHotplug controls Tegra3 as in 4) and 5).

8. If the CPU load becomes low, CPUFreq lowers the
dynamic frequency. Furthermore, CPUHotplug stops
a core when the frequency is decreased to reach the low
threshold.

Volume 35, Number 4, December 2014 Ada User Jour na l

S. Nakaj ima, M. Toyosh ima 271

B Experimental Setup
B.1 Basic Approach

The experiment is conducted to use Nexus7 (2012 model),
and measures how the operation frequencies and number of
running cores are changed when the workload is increased
monotonically. First, we confirm that such changes follow
the scenario for Tegra3 explained in Appendix A. Second,
we study how the changes in workload have impacts on the
execution time of programs. In the measurements, the tablet
is set in the in-flight mode, and the applications or services
are stopped as much as possible.

The experiment method is solely based on the Android/Linux
features that are transparent to application programs to make
the measurement method portable. We do not employ any
method to use external hardware nor to introduce modifica-
tions in the kernel codes.

B.2 Switching Frequencies

The dynamic switching frequencies of the processor cores
are obtained from Linux pseudo files. The files record the

percentage of a particular frequency chosen in a particular du-
ration. The values can be obtained by monitoring periodically
the files cpu?/cpufreq/stats/time_in_state un-
der the folder /sys/services/systems/cpu/. The
file under cpu0 records either the low power core or a high
performance core chosen first. The files under cpu{1-3}
exist only when the corresponding core is in operation; the
file does not exist when the core is not operating.

B.3 Workloads

A simple application program is developed for affecting the
CPU load. It is multi-threaded and the load changes are
made easy by increasing the number of threads. The program
iterates its body of computation, which makes it easy to know
how much computation is done.

B.4 WiFi Client

An application program to use WiFi communication is also
developed to control the WiFi behavior using WiFiLock
methods. The execution history of such method calls are
recorded by the Android; its data format is defined in class
android.os.BatteryStats.

Ada User Jour na l Vo lume 35, Number 4, December 2014

272

Feasibility Study in the Use of Contract-Based
Approaches to Deal with Safety-Related
Properties in CPS

Daniela Cancila
CEA, LIST, CEA Saclay - F91191 Gif-sur-Yvette Cedex; email: daniela.cancila@cea.fr
Elie Soubiran
Technological Research Institute SystemX - Alstom
Transport; email: elie.soubiran@{irt-systemx.fr,transport.alstom.com}
Roberto Passerone
Dipartimanto di Ingegneria e Scienza dell’Informazione - University of Trento,
Italy; email: roberto.passerone@unitn.it

Abstract

This work concerns a feasibility study on the use of
contract-based approaches as a means of reasoning and
understanding a cyber-physical system (CPS) which
should meet safety properties. We show the problems,
the analysis methodology and the results on a railway
industrial system case study. Our results suggest that
contract-based design provides a rigorous approach for
reasoning at the interaction of safety-related properties
in CPS.

Keywords: contract-based approach, CPS, Railway sys-
tem, mixed-critical and safety-related properties.

1 Introduction
In the last decade, Cyber-Physical Systems (CPS) have as-
sumed an increasingly significant role in a number of disci-
plines, especially in Computer Science, and form one of the
cornerstones of the study of dynamical and heterogeneous sys-
tems. CPS combine signals from physical components with
(embedded) software components and integrated circuits.

Historically, the term ‘cyber-physical systems’ was first in-
troduced by H. Gill to broadly capture a similar meaning of
the term ‘cyberspace’ and ‘cybernetics’ [1]. Since then, the
term CPS has been widely adopted by the scientific commu-
nity and, today, it appears as one of the main topics of the
European projects (e.g., H2020, EIT ICT Labs).

Contract-based approaches are considered as a promising
means to deal with CPS [2, 3, 4, 5, 6, 7, 8]. A contract is a pair
(assumption, guarantee), where the guarantee specifies the
functionality provided by a component to the environment;
and the assumption sets forth the conditions required from
the environment in order for the component to accomplish
its guarantee [5]. The contracts, which are specifications on
both physical and computational components, help us identify
precisely the conditions for a correct interaction.

Figure 1: Image extracted from ‘Metropolis And Metro Train
Solution’ by Alstom [11]

This position paper arises from the FSF project (Fiabilité et
Surêté de Fonctionnement Reliability and Safety) [9]. The
bulk of the FSF project deals with safety-related properties
of a railway system that involves components, which have
an inherent different nature and, to complicate the scenario
further, combine different safety integrity levels (SIL) [10].
This work is a feasibility and preliminary study that explores
a contract-based approach to deal with a seamless guarantee
of safety-related properties from CPS design to execution
platform. We feel that this approach can provide a simple, but
firm, foundation to a rigorous approach for reasoning about
the interaction of safety-related properties in CPS.

2 Case Study
Figure 1 shows both the mechanical part and the cybernetic
part (i.e., command, control and supervision) of a railway
system. A first command and control loop takes place within
train units, where embedded software subsystems ensure au-
tomatic train driving and protection. These subsystems are
mostly safety critical and shall furthermore consider real-time
constraints. A second loop takes place at the line level, and is
concerned with line supervision (train-traffic, timetable, etc.)
and focuses on operational performance.

Volume 35, Number 4, December 2014 Ada User Jour na l

D. Canc i la , E. Soubi ran, R. Passerone 273

Figure 2: On the right, automatic opened doors, on the left,
the platform doors are automatically closing (images extracted
from youtube)

The case study considered in this paper is in the scope of the
Communication Based Train Control (CBTC) system [12],
and considers more precisely a subset of the Automatic Train
Control subsystem (ATC). The associated operational sce-
nario is the following: a train stops at a station that is equipped
with a physical barrier and automatic doors, whose purpose is
to protect passengers from the moving train (see Figure 2). In
order to be able to operate train and platform doors, the doors
of the train and the doors of the platform need to be aligned.
At that point, both of them are automatically opened - thus
allowing the passengers to get on and off the train. We will
refer to this phase with the technical term passenger exchange
in the rest of the paper. Finally, the train is authorized to move
on if and only if both platform and train doors are closed.

The function passenger exchange is an important functionality
of the CBTC, and this case study is obviously representative
of CPS. Indeed, it integrates not only computational and
physical processes with feedback loops, but also the human
factor. This function takes control of platform and train doors
when the train is safely docked at a station; then it organizes
the exchange of passengers (e.g. manage train and station
doors opening/closing and doors blocking by passengers)
while protecting them from any untimely train movement
or non-aligned doors opening. It finally gives the departure
authorization when all safety conditions are met.

In this CPS we find different levels that co-exist, each of them
with its own needs, requirements, guarantees. For example
(list non-exhaustive):

• the door presence sensor, which ensures that no passen-
ger is blocked between doors;

• acoustic and visual signalization, placed both on the
platform and train side, which warn about the closing
and opening doors.

The operational phase linked to this case study is critical since
doors are open and passenger can move freely between the
train and the station. Thus, it is relevant to focus the study on
safety related properties that may be expressed and refined
through contract-based analysis. To do so, we propose to
start from identified hazards that cause accidents and/or near-
miss accidents, then to establish contracts between the system
components to define the necessary conditions that ensure
safety, and then to refine those contracts down to software

components and their associated computation unit. Beyond
characterizing functional behaviours that would ensure safety
invariant, the goal of contracts here will also be in a near
future to support non-functional properties refinement and
analysis with for instance SIL allocation, failure rate and so
on.

3 Methodology

The CPS is initially modeled in SysML in the Papyrus tool
- thus providing a holistic view of the whole system. For
the sake of industrial adherence and industrial transfer of
our work, we exploit the Alstom methodology to develop
the model [13, 14]. The next paragraph reports the main
principles of the quoted methodology, freely extracted from
the Alstom documents [13].

In the last years, Alstom has developed the Advanced System
Architect Program methodology, known as ASAP methodol-
ogy, to increase quality of the system specification. In the
methodology, textual requirements are initially deployed on
model elements and are then further specified and refined.
The modelling approach is threefold:

• operational vision, which deals with objectives and mis-
sions (why);

• functional vision, which concerns the strategy to perform
missions (what);

• constructional vision, which addresses elements required
to perform functions (how).

Alstom adopts the standard SysML language to implement the
ASAP methodology. This latter has been tested on the Rolling
Stock railway system, from Customer requirements/needs to
product solution [13]. Some interesting industrial feedback on
the use of SysML is provided by M. Ferrogalini and J. Le Bas-
tard [14].

As firstly introduced, the ASAP methodology allows us to
deal with physical signals, business needs, system specifica-
tion and requirements. Therefore, we strategically adopt the
ASAP methodology to specify the SysML model at an early
stage of the development phase of our use case. When we re-
fine the model further, however, we should be able to capture
some details and then a component-based system engineer-
ing (CBSE) methodology seems to fit this scope better. In
that context, a functional architecture is designed within the
functional viewpoint, then resulting functions are allocated
to components which belong to the constructional viewpoint.
Following the SysML language primitives, components are
represented by blocks, data by types and data transmission by
port and connectors.

Our work strengthen the ASAP and the CBSE methodologies
with a contract-based design approach.

Ada User Jour na l Vo lume 35, Number 4, December 2014

274 Contrac t -Based Approaches for CPS

3.1 Contract Specification

We adopt a textual format to introduce contracts at the CPS
level. This approach fits better with high-level requirements,
which are usually expressed in natural language. Our no-
tion of contracts is based on previous work [5, 6, 7]. To the
best of our knowledge, the ASSERT FP6 European project
was the first to structurally establish the deployment of con-
tracts on UML ports (and its profiles such as SysML or
MARTE) [5, 15]. After that, several European research
projects have widely adopted the relationship contracts - UML
(and profiles) ports and successfully converged on it (see, for
instance, the CHESS Artemis project [16]).

An intriguing use of contracts as a means to establish a firm
relationship between software and control in CPS design
has been recently introduced in the literature by Derler et
al. [7]. There, functionality and timing are correlated in each
of four types of contract to design effective control loops.
This approach leads precision as well as abstraction - thus
being easily applied to our use case.

Moreover, contracts are on one hand a means to prove cor-
rectness of heterogeneous components (through the notion
of composability [17]), and, on the other hand, to prove the
faithful refinement between two abstraction levels of a de-
sign [6]. In order to ensure continuous and automatic verifica-
tion throughout the specification, the design and implementa-
tion phases, we are forced to eventually specify contracts by
a formal, and non ambiguous, language. At this step of the
development, we envisage adopting a similar language to that
introduced in the literature [18] and, more recently, adopted
by the Autosar consortium [19].

When we refine the system further, we follow the Platform-
Based Design approach (PBD) [20, 21, 22]. This approach
has been widely adopted by the scientific and industrial com-
munity, albeit not without difficulties and following several
approaches [23]. Nonetheless, PBD allows us to introduce
a common semantic domain between different abstraction
levels as well as different views of a design, which help to
maintain a consistent view of the system.

3.2 HMI and contract visualization

From a visualization point of view, 2D or 3D representations
could help the designers have a better grasp of their systems.
More in particular, a 3D representation could help us (and
final costumers) reason about the physical aspects of CPS.
It would provide a mean to simulate the CPS regarding dif-
ferent operational scenario and their respective impact on
contracts. However, when we deal with automatic verifica-
tion, we consider SysML UML supporting 2D tools, such
as Papyrus, Obeo Designer, IBM or Atego, which are easily
customizable.

3.3 Safety and Certification

Safety issues have a prominent role, especially in those CPS
which ought to entail a certification process. This is exactly
the case of some functionality and mechanical components

of our use case. For example the Passenger exchange func-
tionality and the mechanical signalling components involve
the highest safety integrity level.

Each company has its own savoir-faire to identify and analyze
the safety properties. Usually, Safety engineer teams identify
and deeply study accident scenarios and identify barriers that
mitigate the risk to an acceptable level. For instance, in the
case study, an accident could result from a train that departs
when the door are not yet properly closed. A functional barrier
is then identified and provides a safe departure authorization
to the train.

The performed analysis should be compliant to the related
safety norms and validated by an independent certification
entity. In many cases, the results of that analysis take the
form of requirements, which identify safety barriers, such as
preventive and palliative ones (non-exhaustive list).

Safety requirements should be adequately taken into consid-
eration in all development phases of the system: from the
specification to maintenance. As a result, their traceability
is a key component of methodologies oriented towards the
development of critical systems.

4 Application to the Case Study
In many cases, current industrial processes provide a list of
requirements in a textual format. Not only are these latter ex-
ploited/improved during all development phases, but they are
also used during the certification/qualification phase: the val-
idator checks that (textual) code is compliant with all (textual)
requirements.

The companies, which base industrial systems specification
and analysis on component-based approaches, often adopt a
bidirectional tool from textual requirements space to design
modeling space. Then, they deploy requirements to model
elements.

Like the industrial practice, in our approach a requirement is
initially imported by a textual document.

[Req.] The Passenger exchange train control function shall
determine which train and platform doors are enabled for
opening, based on vital localization (with regards to the track
platforms) and kinematic conditions.

The quoted requirement addresses the train control function-
ality that allows the system to automatically open/close both
the train and platform doors, under certain conditions (e.g.,
vital localization, kinematic conditions).

Then, the requirement is further specified by adopting a
contract-based approach. We firstly identify the assumptions
from the original text:

a1 Valid and defined kinematic conditions;

a2 Valid and defined vital train localization;

a3 List of platforms described by their position on track,
and the position of each platform door.

Volume 35, Number 4, December 2014 Ada User Jour na l

D. Canc i la , E. Soubi ran, R. Passerone 275

Figure 3: Contract-based approach to Model-Based system engineering

Moreover, we identify the guarantees. For the sake of brevity,
we intentionally combine functional with non-functional prop-
erties in the guarantees specification. However, to properly
deal with non-functional properties, two types of contracts
and views are needed. We omit further details because they
are out of the scope of this work.

In Guarantee g1 and Guarantee g2, timing specifies the maxi-
mum value of timing for which a datum remains valid. After
the deadline, validity of the datum is no longer ensured; for
safety reasons, it should re-calculated and required again.

g1 Determine which train doors are enabled for opening.
The validity duration of this value is set to 1200 msec.
Undefined values shall be interpreted as not enabled;

g2 Determine which platform doors are enabled for open-
ing. The validity duration of this value is set to
1200 msec. Undefined values shall be interpreted as
not enabled.

Finally, we introduced two contracts:

C1 = {a1, a2, a4; g1} and C2 = {a1, a2, a3; g2}.

We model contracts in a SysML environment as follows. We
deploy guarantees and assumptions to the ports of a compo-
nent and contracts to the element (Figure 3). Moreover, we
identify the ‘constraint’ UML model element to specify guar-
antee, assumption and contracts. Our choice is founded on
two principles: to be able to deploy more than one guarantee
(resp. assumption) on the same model element, and to easily
access them, using the graphical facilities of the Papyrus tool.

We specify the remaining requirements via a contract-based
design. We discover that some requirements are not directly
refined from the top-level requirement; instead, they derive
from the safety analysis (Preliminary Safety Analysis and
System Hazard Analysis) and they are introduced to mitigate,
or avoid, possible accidents. We trace them with suitable
contracts.

Figure 3 traces two types of contracts:

• Functional contracts (graphically the blue boxes, which
are highlighted with numbers from 1 to 6), which de-
scribe the functional behavior; and

• Safety contract (graphically the red boxes, which are
highlighted with numbers from 7 to 9) which represents
safety barriers.

Our investigation shows that functional contracts are directly
derived from the top-level requirement [Req], previously
quoted. However, this is not the case of safety contracts.
Although this latter specifies [Req] further, it is not directly
derived from [Req]. It refines a safety requirement, which has
been firstly identified, secondly studied and analyzed, and,
then, required to be introduced in the design specification, by
the safety engineer teams to ensure the safety integrity level
entailed by the CPS.

The (red and Number 8) contract has a means to highlight
traceability of safety requirements, which are previously cap-
tured by the safety engineers teams during the Hazard Analy-
sis at the early stage of the system development.

At the meta-modeling level, we then introduce Stereotype
‘MitigationContrats’ that has the primary role to trace the link

Ada User Jour na l Vo lume 35, Number 4, December 2014

276 Contrac t -Based Approaches for CPS

Figure 4: Contract-based approach to Model-Based system en-
gineering

between a contract at design space and the original specifica-
tion at safety space.

Figure 4 shows a comparison between requirements specified
via contract-based approaches, and requirements specified
with a textual flat language. We intentionally adopt the same
formal language: the international OMG standard ‘Object
Constraint Language’ (OCL) [24], which is compliant with
SysML and hence the two standards can be easily applied
together to the same model. OCL is a formal language that
allows engineers to specify requirements or more in gen-
eral constraints, thanks to the help of a formal syntax, in a
model previously specified (for example by UML, SysML,
MARTE).

Figure 4 shows two contracts: they have the same guarantee,
but differ from the assumptions. The assumptions and guar-
antee are clearly deployed on the related model elements and
are correlated via a contract.

The block includes an OCL constraint, specified in the usual
manner. The constraint has the following form A ∨ B →
C, where A and B correspond to the previous assumptions
and C to the guarantee. However, such a flat formulation
does not clearly highlight the association between the atomic
formula (A, B or C) and the model element; the only way we
have to recognize such a correspondence is by the name (for
example, Whole_train_location.isUndefined() in the formula
corresponds to the Port with name Whole_train_location).

An advantage in the use of contract-based approaches is to
structure the link between an OCL atomic formula and the
corresponding model element.

4.1 Preliminary Feedback

During this work, we have been able to compare CBSE with
the textual requirements approach and CBSE with the textual
contracts approach. Even if the expressive power remains
equivalent, contracts have the advantage to drive the compo-
nent breakdown structure analysis and design by facilitating
the allocation and refinement of functional and safety be-
haviours on sub-components. It seems also a promising mean
for structuring verification and validation activities. Finally,
thanks to their inherent ability for traceability, contracts are
good candidates to strengthen a development process compli-
ant with CENELEC norms.

5 Conclusion and On-Going Work
In this position paper, we introduce the overall view we pursue
to deal with seamless guarantee of safety-related properties
from CPS design to execution platform in the FSF project [9].
The vision outlined exploits contracts as a means to identify
precisely the conditions for a correct interaction of compo-
nents as well as to specify which assumption a functional
level (code) should require to a hardware level to ensure the
acceptable threshold of SIL. Although our work is at an early
stage of development, we feel that this approach can pro-
vide a simple, but firm, foundation to a rigorous approach for
reasoning on the interaction of safety-related properties in
CPS.

6 Acknowledgment
This research work has been carried out under the leadership
of the Technological Research Institute SystemX [25], and
therefore granted with public funds within the scope of the
French Program ‘Investissements d’Avenir’. This work was
also supported in part by the CyPhERS FP7 project, grant
agreement no. 611430.

References
[1] C. Ptolemaeus (2014), ed., System Design, Modeling,

and Simulation using Ptolemy II, Ptolemy.org.

[2] L. de Alfaro and T. A. Henzinger (2001), Interface au-
tomata, in Proceedings of the Ninth Annual Symposium
on Foundations of Software Engineering, pp. 109–120,
ACM Press.

[3] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi,
R. Passerone, and C. Sofronis (2008), A contract-based
formalism for the specification of heterogeneous sys-
tems, in Proceedings of the Forum on Specification,
Verification and Design Languages, FDL08, (Stuttgart,
Germany), pp. 142–147, September 23–25.

[4] R. Passerone, I. B. Hafaiedh, S. Graf, A. Benveniste,
D. Cancila, A. Cuccuru, S. Gérard, F. Terrier, W. Damm,
A. Ferrari, L. Mangeruca, B. Josko, T. Peikenkamp, and
A. Sangiovanni-Vincentelli (2009), Metamodels in Eu-
rope: Languages, tools, and applications, IEEE Design
and Test of Computers, vol. 26, pp. 38–53.

[5] D. Cancila, R. Passerone, T. Vardanega, and M. Panun-
zio (2010), Toward Correctness in the Specification and
Handling of Non-Functional Attributes of High-Integrity
Real-Time Embedded Systems, in IEEE Transactions on
Industrial Informatics.

[6] A. Sangiovanni-Vincentelli, W. Damm, and
R. Passerone (2012), Taming Dr. Frankenstein:
Contract-Based Design for Cyber-Physical Systems, in
European Journal of Control, vol. 3, pp. 217–238.

[7] P. Derler, E. A. Lee, M. Torngren, and S. Tripakis (2013),
Cyber-physical system design contracts, in International
Conference on Cyber-Physical Systems (ICCPS 2013),
(Philadelphia , USA).

Volume 35, Number 4, December 2014 Ada User Jour na l

D. Canc i la , E. Soubi ran, R. Passerone 277

[8] CyPhERS FP7 Project, Cyber-Physical European
Roadmap and Strategy. http://cyphers.eu/.

[9] FSF IRT SystemX Project, Fiabilité et
Surêté de Fonctionnement (Reliability and
Safety). http://www.irt-systemx.
fr/wp-content/uploads/2013/03/
FiabiliteetSuretedeFonctionnement.
pdf.

[10] CENELEC (2012), Railway applications - The Spec-
ification and Demonstration of Reliability, Availabil-
ity, Maintainability and Safety (RAMS) - Part 2: Sys-
tems approach to safety, CENELEC standard http:
//www.cenelec.eu/.

[11] ALSTOM, Metropolis And Metro Train Solution, http:
//www.alstom.com/.

[12] IEEE (1999), IEEE Standard for Communication
Based Train Control Performance Requirements and
Functional Requirements, IEEE standard. http://
standards.ieee.org/.

[13] ALSTOM, Alstom ASAP methodology: Ad-
vanced System Architect Program OMG
http://www.omgwiki.org/MBSE/doku.
php?id=mbse:alstomasap.

[14] Marco Ferrogalini, Jean Le Bastard, Return of
experience on the implementation of the System
Engineering approach in Alstom OMG http://www.
omgwiki.org/MBSE/lib/exe/fetch.php?
media=mbse:rex_on_se_approach\
_implementation_in_alstom.pdf.

[15] ASSERT FP6 Project, Automated proof-based Sys-
tem and Software Engineering for Real-Time systems
project.http://www.assert-project.net.

[16] CHESS Project, Composition with Guarantees for High-
Integrity Embedded Software Components Assembly.
http://www.chess-project.org.

[17] J. Sifakis (2005), Embedded Systems - Challenges and
Work Directions, in Principles of Distributed Systems,
(LNCS, ed.), vol. 3544.

[18] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and
I. Stierand (2011), Using Contract-based Component
Specifications for Virtual Integration Testing and Ar-
chitecture Design, in Proceedings of DATE conference,
pp. 109–120.

[19] AUTOSAR, Automotive Open System Architecture.
www.autosar.org.

[20] A. Pinto, A. Bonivento, A. L. Sangiovanni-Vincentelli,
R. Passerone, and M. Sgroi (2006), System level design
paradigms: Platform-based design and communication
synthesis, ACM Transactions on Design Automation of
Electronic Systems, vol. 11, pp. 537–563.

[21] A. L. Sangiovanni-Vincentelli (2007), Quo Vadis, SLD?
Reasoning About the Trends and Challenges of System
Level Design, Proceedings of the IEEE, vol. 95, pp. 467–
506.

[22] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L.
Sangiovanni-Vincentelli, A. Simalatsar, and Q. Zhu
(2013), METROII: A design environment for cyber-
physical systems, ACM Transactions on Embedded
Computing Systems, vol. 12, pp. 49:1–49:31.

[23] D. Densmore, R. Passerone, and A. L. Sangiovanni-
Vincentelli (2006), A platform-based taxonomy for ESL
design, IEEE Design and Test of Computers, vol. 23,
pp. 359–374.

[24] OMG, Object Constraint Language (OCL). OMG
standard.http://www.omg.org/spec/OCL/.

[25] IRT, Institut de Recherche Technologique
(Technological Research Institute). http:
//www.irt-systemx.fr/.

Ada User Jour na l Vo lume 35, Number 4, December 2014

278

RoundTable on “Challenges and New Approaches
for Dependable and Cyber-Physical System
Engineering (De-CPS)”, Ada-Europe 2014

Daniela Cancila∗ Jean-Louis Gerstenmayer
CEA, LIST, CEA Saclay - F91191 Gif-sur-Yvette Cedex - France; email: {firstname.name}@cea.fr
Charles Robinson Laurent Rioux∗
THALES R&T, 1 Av. Augustin Fresnel 91767 Palaiseau Cedex - France; email: {firstname.name}@thalesgroup.com

1 Main Axes
In this article a synthesis is provided of the discussion that
took place following the presentations from invited speak-
ers. The topics presented ranged across modeling of criti-
cal cyber-physical systems, contracts-based engineering, co-
engineering methods, standardization and formal methods.
There were participants at the workshop from academia and
different sectors of industry such as automotive, railway and
SMEs. The international presence from Japan provided inter-
esting perspectives.

The roundtable, led by J.L. Gerstenmayer, highlighted four
main challenges (from Section 1.1 to Section 1.4) .

1.1 Handling the impact in the separation of func-
tional and non-functional attributes to meet
correctness-by-construction methodology

The separation of functional and non-functional attributes
has been strongly promoted by the academic and industrial
communities to improve reuse of components. In many in-
dustrial systems, this separation is a refined practice for the
engineering of industrial systems. The ever increasing com-
plexity of systems and materials, which require more and
more performance, suggests first to deploy functionality with
different levels of heterogeneity (for example in safety levels
or temporal attributes) on the same material, and, secondly,
to exploit material mechanisms to ensure safety and security
properties. The control of a system’s behavior to activate
the appropriate safety measures/mechanisms in the event of
errors occurring involves the verification and the control of
non-functional attributes, including the real-time-related ones.
It is a particular necessity for cyber-physical systems which
involve critical aspects.

The scientific and industrial community agrees with the fol-
lowing sentence: the more we anticipate the verification that a
system meets its temporal constraints, the more we reduce the
risk to find errors late in the design and development process.
In other words, the control of real-time properties is a corner-
stone to achieve the correctness-by-construction approach to
design.

* De-CPS organisers

During the workshop, some represented industries promoted
and highlighted the critical importance to specify real-time
properties early in the design phase. However, despite com-
pulsory acceptability thresholds for non-functional properties,
at the early stage of the design process in many industrial
systems, the specification of a system deals with functional
properties only. Preliminary analysis of safety concerns and
the introduction of safety mechanisms can reduce the risk of
an accident. Although real-time parameters play an impor-
tant role in correctness-by-construction methodologies, they
are often specified and analyzed later in the design phase.
The main reason is that they are related to the adopted mate-
rial. Is it realistic to expect changes in existing specification
process for industrial systems, that work well, by highlight-
ing real-time attributes at an early stage in the development
phase? How much does this operation cost in terms of human
resources, effort and money?

However, if the material changes, by virtue of the use of
new technologies, the real-time and effective behavior of
the material has a direct impact on the safety analysis and
certification of the system.

This complex, and often contradictory industrial context (cost
vs novelty) provides the core of the workshop discussions
of the this first issue. Without the ambition to settling the
issue during the workshop-day, we agreed with the impor-
tance to address the following challenges and directions in the
comming years: to devote effort in structuring the relation-
ship between software and material requirements, between
software and material technical mechanisms to ensure safety
properties, and finally between software and material teams,
which usually are not the same.

1.2 Choosing which formal methods are suitable
to deal with dependability in industrial appli-
cations

Critical CPS must properly deal with mixed-criticality and
heterogeneity (tools, languages, components, teams). The
workshops discussion debated reinforcing safety and, more
generally, dependability, and which techniques were suitable
to being adopted in industrial applications.

Volume 35, Number 4, December 2014 Ada User Jour na l

D. Canc i la , L . R ioux and al l 279

The blanket hypothesis we assumed is a component-based
design, largely used in academia and at varying degrees in
the industry. Dependability techniques ought to be combined
with component-based design.

In this direction, a point first discussed is the achievement
of pre-certification of components via modular certification.
This later entails the reuse of a component (with its safety
analysis and documentation) in another system in the same
application domain, or reuse of a component (and its safety
analysis) in other application domains. The discussion was
based on the results and difficulties encountered by the ambi-
tious FP7 OPENCOSS project. The main difficulty concerns
the inconsistency and imprecision in the use of natural lan-
guage in assurance arguments. To overcome it, the suggested
strategy is based on the separation between semantics and
syntax features.

The second point entailed an open and rigorous debate in the
workshop roundtable: Do Petri Nets still provide a suitable
formal method to deal with safety analysis?

The state explosion during the analysis is one factor restrain-
ing use of this technique in industrial domains. The other dis-
cussion points considered how many industries were known
to adopt Petri Nets and what have been their industrial appli-
cations.

The large part of the attendees do not adopt, or do not appear
to have adopted Petri Nets techniques in industrial projects.
Although we have witnessed an increase in the hardware
performance, the state explosion during the analysis remains
too significant to realistically think that we will be able to
one day fix it. This consideration suggests to us that one
should adopt probabilistic analysis. Some EU projects seem
to confirm the use of probabilistic analysis. For example, the
PROXIMA FP7 project addresses timing analysis (included
worst-case execution time) by adopting probabilistic analysis
techniques for many-core to massive multi-core critical real-
time embedded systems.

Finally, we briefly discussed the contract-based approach and
technique as a means to deal with dependability in critical
CPS. This approach is a suitable means to deal with hetero-
geneity; it raises from several USA and European research
projects. The first industrial research validation is starting to
be available and is promising.

1.3 Reconciling differences in the semantic inter-
pretations of the same diagram

The question how to maintain a high level of control of the
development process of the system, according to the expected
real-time and performance properties has been heatedly de-
bated.

About ten years ago, the OMG (Object Management Group),
an international community that sets standards, launched
MARTE (Modeling and Analysis of Real-Time and Embed-
ded Systems) which is compatible with a SysML/UML design
of a system. MARTE is a set of stereotypes that allows en-
gineers to specify time constraints and visualize them via
diagrams. In many cases, the analyzer tool, which verifies
that the system specification meets the time constraints, is

implemented by the open-source and free tools MAST and
TimeSquare.

The huge complexity of the standard forced the industrial
communities to tailor the original version with non-functional
properties, for example, GRM, Generic Component Model;
HRM, Hardware Resource Modeling; and VSL, Value Speci-
fication Language.

The interpretation of diagrams and model elements is an
important issue in the use of MARTE for industrial projects.
One astonishing piece of feedback is that engineers haven’t
the same interpretation of a diagram and model elements
especially for real-time features. In many cases, it depends
on the background of the engineer. A deep knowledge of the
UML standard and the confidence with logic are the most
diffuse discriminants that lead to a different interpretation.
So, the best lesson learnt from the usage of MARTE in an
industrial environment was to specify a clear semantic of each
MARTE concept used in practice. Based on these shared and
clear semantics, it was easier to interpret the design model
done by real-time engineers and to analyze them in available
analysis tools.

As described in Section 1.2, the use of natural language for
certification is also subject to different interpretations in dif-
ferent application domains - or even the same application
domain. The difference in the semantics interpretation was
then identified as a common problem.

1.4 Facing the heterogeneity of languages, tools,
teams and knowledge

Most of the attendees agreed with the theses provided by
Antoine B. Rauzy that facing the diverging nature of engineer-
ing solutions could be identified as challenges in the coming
years.

Analysis of industrial practice tell us that different teams are
involved in the design and in the development of a system’s ar-
chitecture, and that happens ‘at the same time’. In many cases,
the synchronization between teams and systems’ architecture
occurs via version-based techniques. This practice ought to
- as A. Rauzy said - “accept to live with many models, writ-
ten in different formalisms, assessed in different ways, with
different tools”. Obviously, although critical CPS naturally
entail heterogeneous environments (languages, tool, studied
properties), “it does not mean - continued A. Rauzy - that
they have nothing in common”.

The conclusion is then: to improve the effort in the way
forward to a correct combination and ‘coordination’, to in-
vestigate in the common mechanisms and common notions
underlying this heterogeneity.

Acknowledgments
We thank all participants of the workshop that have fruitfully
contributed to the discussion.

Follow-up Workshop
The success of the workshop and the industrial feedback
suggest consideration for a follow-up workshop for 2015.

Ada User Jour na l Vo lume 35, Number 4, December 2014

280

Volume 35, Number 4, December 2014 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	AdDoc (beyond a document generator)
	Workshop Challenges and New Approaches for Dependable and Cyber‐Physical System Engineering (De‐CPS 2014)
	Editorial
	The Use of Controlled Vocabularies and Structured Expressions in the Assurance of CPS
	Dependable Real-Time System and Mixed Criticality: Seeking Safety, Flexibility and Efficiency with Kron-OS
	Behavioral Contracts for Energy Consumption
	Feasibility Study in the Use of Contract-Based Approaches to Deal with Safety-Related Properties in CPS
	Round Table

