

Ada User Journal Volume 36, Number 1, March 2015

ADA
USER
JOURNAL

Volume 36

Number 1

March 2015

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 24

Forthcoming Events 32

Bicentennial Ada Lovelace Articles

 S. Charman-Anderson
“Ada Lovelace: Victorian Computing Visionary” 35

Articles from the Advances on Methods Special Session of Ada-Europe 2015

 J. Sparre Andersen
"Persistent Containers with Ada 2012" 43

 F. Sánchez-Ledesma, J. Pastor, D. Alonso and B. Álvarez
"A Task-Based Concurrency Scheme for Executing Component-Based Applications" 49

Ada-Europe Associate Members (National Ada Organizations) 56

Ada-Europe Sponsors Inside Back Cover

2

Volume 36, Number 1, March 2015 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volume 36, Number 1, March 2015

Editorial
The year 2015 is for sure a special year, with the celebration of the 200th anniversary of Ada Lovelace, the 19th century
mathematician from whom the language takes the name. In this special year, it is important that we look back to analyze how
much we know about Ada’s life and work. Ada undoubtedly deserves a place in the computing history, being a model for all
of us (whatever the gender), both due to her achievements as well as the difficulties she faced. In that context, the Ada User
Journal will join the celebrations, and will feature during the year, articles on Ada the person, in parallel with Ada, the
language. We hope that the reader will both enjoy and learn a little more (on both subjects).

The year thus starts with an article by Suw Charman-Anderson, journalist and social technologist, and the founder of Ada
Lovelace Day. In the article, “Ada Lovelace: Victorian computing visionary”, Suw gives a perspective on Ada’s life and
achievements, and presents why Ada is the perfect person to be the model for women in technology. I would like to
acknowledge Suw for the work on clarifying many of the misconceptions and disputes on Ada’s work.

I would like also to note our readers to stay tuned to the forthcoming Ada-Europe conference. The 20th International
Conference on Reliable Software Technologies – Ada-Europe 2015, will take place 22-26 of June 2015 in Madrid, Spain. The
advance program of the conference, which can be found in the forthcoming events section of the issue, illustrates that it will
be a remarkable event, due to its rich program.

On the program of the conference, I would like to highlight the sessions of technical papers and industrial presentations, as
well as the special featured keynote talks by Jon Pérez, on certification of mixed-criticality systems based on multicore and
partitioning in EC-61508, by Javier Rodríguez on Software Development of Safety-Critical Railway Systems and Andras
Balazs on the on-board computer of the Philae lander in the context of the Rosetta space mission.

The conference week will also encompass nine tutorials (with topics including parallel programming, memory management,
coding standards, timing analysis, Ada 2012 in practice, Ada and Python, software measures and design concepts and real-
time and embedded programming), and two workshops on “Challenges and new Approaches for Dependable and Cyber-
Physical Systems Engineering” and “Architecture Centric Virtual Integration”. A special note, on this special year, to the
Steering Committee of the first workshop, which intends to promote women engaged in science, in both industry and
academia.

The program of the week also includes space for networking and interaction, both during the day as well as in the featured
social events. And, closing the circle, for sure Ada Lovelace will be remembered during the week.

The technical part of this issue of the Journal also provides a rich set of contents. It provides an article by Jacob Sparre-
Andersen, from JSA Research and Innovation, Denmark, on Implementing Ada 2012 Persistent Containers with Memory-
Mapping, and a paper by a group of authors from Universidad Politécnica de Cartagena, Spain, which presents a task-based
concurrency scheme to support component–based applications with real–time requirements

 Luís Miguel Pinho
Porto

March 2015
 Email: AUJ_Editor@Ada-Europe.org

4

Volume 36, Number 1, March 2015 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Events 4
Ada Semantic Interface

Specification 8
Ada-related Resources 8
Ada-related Tools 10
Ada-related Products 17
Ada and Operating Systems 17
References to Publications 19
Ada Inside 19
Ada in Context 19

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Ada-Europe 2015: Call for
Papers

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Mon, 24 Nov 2014 23:37:29 +0000
Subject: 2nd CfP Ada-Europe 2015

Conference, Madrid, Spain
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

2nd Call for Papers

20th International Conference on
Reliable Software Technologies -

Ada-Europe 2015

22-26 June 2015, Madrid, Spain

http://www.ada-europe.org/
conference2015

Organised by Ada-Spain on behalf of
Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN and the

Ada Resource Association (ARA)

*** DEADLINE 11 JANUARY 2015 ***

 *** Web submission site open ***

Ada-Europe organises annual
international conferences since the early
80's. This is the 20th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,

Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13), and
Paris, France ('14).

General Information

The 20th International Conference on
Reliable Software Technologies - Ada-
Europe 2015 will take place in Madrid,
Spain. Following its traditional style, the
conference will span a full week,
including a three-day technical program
and vendor exhibition from Tuesday to
Thursday, along with parallel tutorials and
workshops on Monday and Friday.

Schedule

11 January 2015: Submission of regular
papers, tutorial and workshop proposals

25 January 2015: Submission of industrial
presentation proposals

1 March 2015: Notification of acceptance
to all authors

29 March 2015: Camera-ready version of
regular papers required

12 April 2015: Industrial presentation
abstracts required

17 May 2015: Tutorial and workshop
materials required

Topics

The conference has over the years become
a leading international forum for
providers, practitioners and researchers in
reliable software technologies. The
conference presentations will illustrate
current work in the theory and practice of
the design, development and maintenance
of long-lived, high-quality software
systems for a challenging variety of
application domains. The program will
allow ample time for keynotes, Q&A
sessions and discussions, and social
events. Participants include practitioners
and researchers representing industry,
academia and government organisations
active in the promotion and development
of reliable software technologies.

Topics of interest to this edition of the
conference include but are not limited to:

- Multicore and Manycore Programming:
Predictable Programming Approaches
for Multicore and Manycore Systems,
Parallel Programming Models,
Scheduling Analysis Techniques.

- Real-Time and Embedded Systems:
Real-Time Scheduling, Design Methods
and Techniques, Architecture
Modelling, HW/SW Co-Design,
Reliability and Performance Analysis.

- Mixed-Criticality Systems: Scheduling
methods, Mixed-Criticality
Architectures, Design Methods,
Analysis Methods.

- Theory and Practice of High-Integrity
Systems: Medium to Large-Scale
Distribution, Fault Tolerance, Security,
Reliability, Trust and Safety, Languages
Vulnerabilities.

- Software Architectures: Design Patterns,
Frameworks, Architecture- Centered
Development, Component-based Design
and Development.

- Methods and Techniques for Software
Development and Maintenance:
Requirements Engineering, Model-
driven Architecture and Engineering,
Formal Methods, Re-engineering and
Reverse Engineering, Reuse, Software
Management Issues, Compilers,
Libraries, Support Tools.

- Software Quality: Quality Management
and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems.

- Mainstream and Emerging Applications:
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation,
Cloud Environments, Smart Energy
systems, Serious Games, etc.

- Experience Reports in Reliable System
Development: Case Studies and
Comparative Assessments, Management
Approaches, Qualitative and
Quantitative Metrics.

- Experiences with Ada and its Future:
Reviews of the Ada 2012 new language
features, implementation and use issues,
positioning in the market and in the
software engineering curriculum,
lessons learned on Ada Education and
Training Activities with bearing on any
of the conference topics.

Call for Regular Papers

Authors of regular papers which are to
undergo peer review for acceptance are
invited to submit original contributions.
Paper submissions shall not exceed 14
LNCS-style pages in length. Authors shall
submit their work via EasyChair
following the relevant link
https://easychair.org/conferences/?conf=a
daeurope2015. The format for submission
is solely PDF.

Ada-related Events 5

Ada User Journal Volume 36, Number 1, March 2015

Proceedings

The conference proceedings will be
published in the Lecture Notes in
Computer Science (LNCS) series by
Springer, and will be available at the start
of the conference. The authors of
accepted regular papers shall prepare
camera-ready submissions in full
conformance with the LNCS style, not
exceeding 14 pages and strictly by March
29, 2015. For format and style guidelines
authors should refer to
http://www.springer.de/comp/lncs/
authors.html.

Failure to comply and to register for the
conference by that date will prevent the
paper from appearing in the proceedings.

The CiteSeerX Venue Impact Factor has
the Conference in the top quarter.
Microsoft Academic Search has it in the
top third for conferences on programming
languages by number of citations in the
last 10 years. The conference is listed in
DBLP, SCOPUS and Web of Science
Conference Proceedings Citation index,
among others.

Awards

Ada-Europe will offer honorary awards
for the best regular paper and the best
presentation.

Call for Industrial Presentations

The conference seeks industrial
presentations which deliver value and
insight but may not fit the selection
process for regular papers. Authors are
invited to submit a presentation outline of
exactly 1 page in length by January 25,
2015. Submissions shall be made via
EasyChair following the link
https://easychair.org/conferences/?conf=a
daeurope2015. The format for submission
is solely PDF.

The Industrial Committee will review the
submissions and make the selection. The
authors of selected presentations shall
prepare a final short abstract and submit it
by April 12, 2015, aiming at a 20-minute
talk. The authors of accepted
presentations will be invited to submit
corresponding articles for publication in
the Ada User Journal (http://www.ada-
europe.org/auj/), which will host the
proceedings of the Industrial Program of
the Conference. For any further
information please contact the Industrial
co-Chairs directly.

Call for Tutorials

Tutorials should address subjects that fall
within the scope of the conference and
may be proposed as either half- or full-
day events. Proposals should include a
title, an abstract, a description of the
topic, a detailed outline of the
presentation, a description of the
presenter's lecturing expertise in general
and with the proposed topic in particular,
the proposed duration (half day or full
day), the intended level of the tutorial

(introductory, intermediate, or advanced),
the recommended audience experience
and background, and a statement of the
reasons for attending. Proposals should be
submitted by e-mail to the Tutorial Chair.

The authors of accepted full-day tutorials
will receive a complimentary conference
registration as well as a fee for every
paying participant in excess of 5; for half-
day tutorials, these benefits will be
accordingly halved. The Ada User Journal
will offer space for the publication of
summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the
conference scope may be proposed.
Proposals may be submitted for half- or
full-day events, to be scheduled at either
end of the conference week. Workshop
proposals should be submitted to the
Conference Chair. The workshop
organizer shall also commit to preparing
proceedings for timely publication in the
Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair for information and for
allowing suitable planning of the
exhibition space and time.

Grants for Reduced Student Fees

A limited number of sponsored grants for
reduced fees is expected to be available
for students who would like to attend the
conference or tutorials. Contact the
Conference Chair for details.

Organizing Committee

Conference Chair

Alejandro Alonso, Universidad
Politécnica de Madrid, Spain,
aalonso@dit.upm.es

Program co-Chairs

Juan A. de la Puente, Universidad
Politécnica de Madrid, Spain,
jpuente@dit.upm.es

Tullio Vardanega, Universita di Padova,
Italy, tullio.vardanega@unipd.it

Tutorial Chair

Jorge Real, Universitat Politècnica de
València, Spain, jorge@disca.upv.es

Exhibition Chair

Santiago Urueña, GMV, Spain,
suruena@gmv.com

Industrial co-Chairs

Jorgen Bundgaard, Ramboll, Denmark,
jogb@ramboll.dk

Ana Rodríguez, Silver Atena, Spain,
ana.rodriguez@silver-atena.es

Publicity Chair

Dirk Craeynest, Ada-Belgium & KU
Leuven, Dirk.Craeynest@cs.kuleuven.be

Local Chair

Juan Zamorano, Universidad Politécnica
de Madrid, Spain, jzamora@fi.upm.es

Program Committee

- Mario Aldea, Universidad de Cantabria,
Spain

- Ted Baker, NSF, USA

- Johann Blieberger, Technische
Universität Wien, Austria

- Bernd Burgstaller, Yonsei University,
Korea

- Alan Burns, University of York, UK

- Maryline Chetto, University of Nantes,
France

- Juan A. de la Puente, Universidad
Politécnica de Madrid, Spain

- Laurent George, ECE Paris, France

- Michael González Harbour, Universidad
de Cantabria, Spain

- J. Javier Gutiérrez, Universidad de
Cantabria, Spain

- Jérôme Hugues, ISAE, France

- Hubert Keller, Institut für Angewandte
Informatik, Germany

- Albert Llemosí, Universitat de les Illes
Balears, Spain

- Franco Mazzanti, ISTI-CNR, Italy

- Stephen Michell, Maurya Software,
Canada

- Jürgen Mottok, Regensburg University
of Applied Sciences, Germany

- Laurent Pautet, Telecom ParisTech,
France

- Luís Miguel Pinho, CISTER/ISEP,
Portugal

- Erhard Plödereder, Universität Stuttgart,
Germany

- Jorge Real, Universitat Politècnica de
València, Spain

- José Ruiz, AdaCore, France

- Sergio Sáez, Universitat Politècnica de
Valencia, Spain

- Amund Skavhaug, NTNU, Norway

- Tucker Taft, AdaCore, USA

- Theodor Tempelmeier, University of
Applied Sciences Rosenheim, Germany

- Elena Troubitsyna, Åbo Akademi
University, Finland

- Santiago Urueña, GMV, Spain

- Tullio Vardanega, Università di Padova,
Italy

Industrial Committee

- Roger Brandt, Roger Brandt IT Konsult
AB, Sweden

- Ian Broster, Rapita Systems, UK

- Jørgen Bundgaard, Rambøll Denmark
A/S

6 Ada-related Events

Volume 36, Number 1, March 2015 Ada User Journal

- Dirk Craeynest, Ada-Belgium & KU
Leuven, Belgium

- Peter Dencker, ETAS GmbH (retired),
Germany

- Ismael Lafoz, Airbus Defence and
Space, Spain

- Ahlan Marriott, White Elephant,
Switzerland

- Steen Palm, Terma, Denmark

- Paolo Panaroni, Intecs, Italy

- Paul Parkinson, Wind River, UK

- Eric Perlade, AdaCore, France

- Martyn Pike, Embedded Consulting UK
Ltd, UK

- Ana Rodríguez, Silver-Atena, Spain

- Jean-Pierre Rosen, Adalog, France

- Florian Schanda, Altran UK, UK

- Jacob Sparre Andersen, JSA Consulting,
Denmark

- Claus Stellwag, Elektrobit AG,
Germany

- Jean-Loup Terraillon, European Space
Agency, the Netherlands

- Rod White, MBDA, UK

FOSDEM 2015

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sat, 29 Nov 2014 20:42:19 +0000
Subject: Ada Developer Room at FOSDEM

2015 - deadline Sun 14 Dec 2014
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

Call for Presentations

6th Ada Developer Room at
FOSDEM 2015

Saturday 31 January 2015, Brussels,
Belgium

http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/15/150131-fosdem.html

Organised in cooperation with
Ada-Europe

Deadline Sunday 14 December 2014

--

The 6th Ada Developer Room will take
place on Saturday 31 January at
FOSDEM 2015 in Brussels, Belgium.

The Call for Presentations is still open:
the extended deadline is Sunday 14
December 2014.

Do you have a talk you want to give?

Do you have a project you would like to
present?

Would you like to get more people
involved with your project?

We're inviting proposals that are related to
Ada software development, and include a
technical oriented discussion. You're not

limited to slide presentations, of course.
Be creative. Propose something fun to
share with people so they might feel some
of your enthusiasm for Ada!

Speaking slots are 25 or 50 minutes,
including Q&A. Depending on interest,
we might also organise a session with
lightning presentations (e.g. 5 minutes
each).

Please provide a proposed title, the
preferred length, plus an abstract and a
short bio similar in style as on the
program for previous Ada DevRooms, see
for example [1]. We need that to put the
draft program together mid December.

Please react ASAP, and submit proposals
by December 14, 2014 at the latest.

We're looking forward to more proposals!

Dirk Craeynest, FOSDEM Team of Ada-
Belgium

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/-Europe/SIGAda/WG9 mail)

PS: The full Call for Presentations is
posted on the dedicated web-page on the
Ada-Belgium site [2].

[1] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/14/140201-fosdem.html

[2] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/15/150131-fosdem.html

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Wed, 14 Jan 2015 21:36:30 +0000
Subject: FOSDEM 2015 - Ada Developer

Room - Sat 31 Jan 2015 - Brussels
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Ada-Belgium is pleased to announce its

Ada Developer Room at FOSDEM 2015

(Ada at the Free and Open source
Software Developers' European Meeting)

Saturday 31 January 2015

Université Libre de Bruxelles (U.L.B.),
Solbosch Campus, Room S.AW1.124

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organised in cooperation with
Ada-Europe

http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/15/150131-fosdem.html

http://fosdem.org/2015/schedule/track/ada

The Free and Open source Software
Developers' European Meeting
(FOSDEM) is an annual event held in
Brussels, Belgium, around early February.
The 2015 edition takes place on Saturday
the 31st of January and Sunday the 1st of
February. Ada-Belgium has organised a
series of presentations related to Ada, to
be held in a dedicated Developer Room,
on the first day of the event.

[...]

This DevRoom aims to present the
capabilities offered by the Ada language
(object-oriented, multicore, embedded
programming) as well as some of the
many exciting tools and projects using
Ada.

Ada Developer Room Presentations
(S.AW1.124, 59 seats)

The Ada DevRoom program starts after
the opening FOSDEM keynote, runs from
11:00 to 19:00, and consists of 7 hours
with 9 talks/demos by 8 presenters from 5
different countries, plus 2 half-hour
breaks with informal discussions.

10:30-11:00 - Arrival & Informal
Discussions

 Feel free to arrive early, to start the day
with some informal discussions while
the set-up of the DevRoom is finished.

11:00-11:05 - Welcome

 by Dirk Craeynest - Ada-Belgium

 Welcome to the Ada Developer Room at
FOSDEM 2015, which is organised by
Ada-Belgium in cooperation with Ada-
Europe. Ada-Belgium and Ada-Europe
are non-profit organisations set up to
promote the use of the Ada
programming language and related
technology, and to disseminate
knowledge and experience into
academia, research and industry in
Belgium and Europe, resp. Ada-Europe
has member-organisations, such as Ada-
Belgium, in various countries. More
information on this DevRoom is
available on the Ada-Belgium web-site
(see URL above).

11:05-11:55 - Ada, an Introduction

 by Jérémy Rosen - Open Wide

 This talk will introduce the Ada
programming language to people used to
more classical, weak-typed languages.
We will focus on how Ada uses its
strong typing basis to prevent the most
common programming errors at the
language level, allowing the compiler to
check them before they cause problems.

12:00-12:50 - Building a GUI for an Ada
Application with GtkAda

 by Serge Vanschoenwinkel - Eurocontrol

 GTK+ is an open-source library that
allows to quickly and easily build a
graphical user interface, using standard
widgets like buttons, combo boxes, text
and tree views, scroll bars, etc. Even
though GTK+ is written in C, it can be
used from an Ada application thanks to
GtkAda, an object-oriented Ada/C
binding. Illustrated by a poker game
application, this presentation will
explain the essential concepts of
GtkAda. It will show how to create the
most common widgets and how to
interact with the user.

Ada-related Events 7

Ada User Journal Volume 36, Number 1, March 2015

13:00-13:25 - Opening the Development
of PHCpack

 by Jan Verschelde - University of Illinois
at Chicago

 PHCpack originated from bundling
programs to solve polynomial systems
with symbolic-numeric and polyhedral
methods. The core of PHCpack consists
mainly of Ada code, with interfaces to C
and Python. Its blackbox solver is
accessible from various scientific
software packages such as Macaulay2,
Maple, MATLAB, Octave, and Sage.
The goal of the talk is to explain the
application of software engineering
principles and the role of Ada in the
development of PHCpack.

13:30-14:00 - Informal Discussions

 A half-hour slot has been reserved for
much needed interaction and informal
discussion among Ada DevRoom
participants and anyone potentially
interested in Ada.

14:00-14:50 - Contract-based
Programming - A Route to Finding Bugs
Earlier

 by Jacob Sparre Andersen - JSA
Research & Innovation

 Contract-based programming is a
software development technique, which
is used to find programming errors
earlier in the development process.
"Contract" refers to formal declarations
of how types and subprograms
("functions and methods" if you aren't
an Ada programmer already) behave. In
the strictest form, the contracts are
checked as a part of the compilation
process, and only a program which can
be proven to conform with the contracts
will compile. In a less strict form, it is
more similar to "preventive debugging",
where the contracts are inserted as run-
time checks, which makes it more likely
to identify errors during testing. Ada
provides a quite extensive support for
contract-based programming. The
checks are specified as a mix of
compile-time checks, obligatory run-
time checks, and optional run-time
checks. In addition to that, SPARK
defines a subset of Ada with full
compile-time checks.

 The presentation will introduce the Ada
features related to contract-based
programming, and provide suggestions
for how to make use of the features in
practice. It is organised in three main
sections: type/object invariants; pre- and
postconditions for operations; making
the contracts for entire packages
consistent. If there is time, the
presentation will close with a live test of
the guidelines on an example problem
selected by the audience. The intended
audience is anybody with enough
programming experience to know
concepts like types, encapsulation and
packages. Having seen source text in

Pascal-like programming languages will
be a benefit.

15:00-15:50 - Ada for ARM Bare Board

 by Tristan Gingold - AdaCore

 In 2014, AdaCore has released two new
components in the GNAT GPL Edition:
GNAT GPL for ARM Bare Board and
SPARK 2014. I present the content of
GNAT GPL for ARM, its Ravenscar
runtime, how to build and deploy an
embedded application in Ada and how it
was used to teach Ada. Two different
demos will be presented: a Tetris game
and a train signalling system. Both are
fully written in Ada, with some parts
written and proven with SPARK 2014.

16:00-16:50 - Multithreading Made Easy,
part 3

 - Bounded Work Queues

 by Ludovic Brenta - Debian Project

 Ada is one of very few programming
languages that support multithreading as
part of the language, as opposed to
libraries. In the previous two episodes,
we showed how Ada makes it easy to
turn a single-threaded program into a
multi-threaded program. We ended up
with ten thousand threads working
concurrently then introduced a task pool
and work queue wherein a small number
of threads (one per processor core)
process thousands of small work units.
But the work queue could become very
big. In this third and last episode, we
show how to restrict the size of the work
queue to a fixed limit, thereby
preventing denial-of-service attacks.

 This presentation will feature live editing
of source code, compilation and
debugging. Questions from beginners
are encouraged. It is not necessary to
have attended the first installments. The
sources of our example program will be
provided to those who want to tinker
with them.

17:00-17:50 - 2D Drawing with Ada and
Cairo

 by Serge Vanschoenwinkel - Eurocontrol

 Cairo is a 2D graphics library with
support for multiple output devices. It is
designed to produce consistent output on
all output media while taking advantage
of display hardware acceleration when
available. The Cairo API provides
operations similar to the drawing
operators of PostScript and PDF.
Operations in Cairo including stroking
and filling cubic Bézier splines,
transforming and compositing
translucent images, and antialiased text
rendering. All drawing operations can be
transformed by any affine
transformation (scale, rotation, shear,
etc.). Illustrated by a poker game
application, this presentation will show
you how to do nice drawings with Cairo,
still programming with your preferred

language: Ada!

18:00-18:25 - Building Economic
Simulations in Ada

 by Graham Stark - Virtual Worlds
Research

 Virtual Worlds Research has been using
Ada to build large scale economic
simulations for 10 years now. These
simulations have been used by
Governments and others to model the
effects of, amongst other things,
changing Legal Aid and reforming
Social Care funding - many billions of
pounds of annual spending. Here, I
discuss our experiences, good and bad,
with the Ada language, and provide a
live demonstration of the most recent
model. I'll also discuss work in progress
to build a new forecasting model in
association with the University of
Southampton.

18:30-19:00 - Informal Discussions &
Closing

 Informal discussion on ideas and
proposals for future events.

More information on Ada DevRoom

Speakers bios, pointers to relevant
information, links to the FOSDEM site,
etc., are available on the Ada-Belgium
site at http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/15/
150131-fosdem.html

We invite you to attend some or all of the
presentations: they will be given in
English. Everybody interested can attend
FOSDEM 2015; no registration is
necessary.

We hope to see many of you there!

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Tue, 3 Feb 2015 21:55:51 +0000
Subject: FOSDEM 2015 - Presentations

Ada Developer Room on-line
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

--
** All presentations available on-line **

Ada Developer Room at FOSDEM 2015

(Ada at the Free and Open source
Software Developers' European Meeting)

Saturday 31 January 2015

Université Libre de Bruxelles (U.L.B.),
Solbosch Campus, Room S.AW1.124

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organised in cooperation with
Ada-Europe

http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/15/150131-fosdem.html

All presentations from our 6th Ada
Developer Room, held at FOSDEM 2015

8 Ada-related Resources

Volume 36, Number 1, March 2015 Ada User Journal

in Brussels recently, are available on the
Ada-Belgium web site now.

- "Welcome"

 by Dirk Craeynest - Ada-Belgium

- "Ada, an Introduction"

 by Jérémy Rosen - Open Wide

- "Building a GUI for an Ada Application
with GtkAda"

 by Serge Vanschoenwinkel - Eurocontrol

- "Opening the Development of
PHCpack"

 by Jan Verschelde - University of Illinois
at Chicago

- "Contract-based Programming - A Route
to Finding Bugs Earlier"

 by Jacob Sparre Andersen - JSA
Research & Innovation

- "Ada for ARM Bare Board"

 by Tristan Gingold - AdaCore

- "Multithreading Made Easy, part 3 -
Bounded Work Queues"

 by Ludovic Brenta - Debian Project

- "2D Drawing with Ada and Cairo"

 by Serge Vanschoenwinkel - Eurocontrol

- "Building Economic Simulations in
Ada"

 by Graham Stark - Virtual Worlds
Research

Presentation abstracts, copies of slides,
speakers bios, pointers to relevant
information, links to other sites, etc., are
all available on the Ada-Belgium site at:

http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/15/
150131-fosdem.html

Shortly, some pictures and video
recordings will be posted as well. If you
have additional pictures or other material
you would like to share, or know someone
who does, then please contact me.

Finally, thanks once more to all presenters
and helpers for their work and
collaboration, thanks to the many
participants for their interest, and thanks
to everyone for another nice experience!

[See also “FOSDEM 2015”, AUJ 35-4, p.
212. —sparre]

Happy Birthday

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Wed, 10 Dec 2014 06:48:34 +0000
Subject: Happy Birthday Ada Lovelace
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

Happy Birthday Ada Lovelace

Today, December 10 2014, is the 199th
birthday of Augusta Ada Byron, aka Lady
Ada Lovelace, recognised by many as the
first programmer.

The programming language Ada was
named in her honour.

I'd like to remind everyone that a
promotional image combining the
historical figure of Ada Lovelace and the
programming language Ada is available at
[1].

Useful to know is that an "Ada Mascot
Competition" [2] is ongoing. It would be
particularly fitting if some of the
proposals would be based on a
modernised Ada Lovelace image. Not
many programming languages have the
name of the first female programmer... ;-)

Finally, remember that deadlines for
submissions to several Ada events are
upcoming: the Ada Developers Room [3]
at FOSDEM 2015 in Brussels, and the
Ada-Europe 2015 conference [4] in
Madrid, Spain. Share your experience at
an Ada event in 2015, the 200th
anniversary year of Ada Lovelace!

Happy birthday, Lady Ada!

Dirk Craeynest

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

[1] http://www.cs.kuleuven.be/~dirk/
ada-belgium/pictures/ada-strong.html

[2] http://www.gnoga.com/rebirth.html

[3] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/15/
150131-fosdem.html

[4] http://www.ada-europe.org/
conference2015

Mascot Competition

From: David Botton <david@botton.com>
Date: Thu, 29 Jan 2015 19:57:50 -0800
Subject: Ada Mascot Contest - Deadline

moved to March 13
Newsgroups: comp.lang.ada

The Ada Mascot competition deadline has
been moved to March 13 a month later to
accommodate FOSDEM entries.

http://gnoga.com/mascot.html

Let your artistic friends know! Prize is at
$600 currently.

[Later updated to 700 USD. —sparre]

[See also “Ada-rebirth — The Ada
Mascot Competition”, AUJ 35-4, p. 233.
—sparre]

Ada Semantic Interface
Specification (ASIS)

The State of ASIS

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 2 Jul 2014 17:06:28 -0500
Subject: Re: a new language, designed for

safety !
Newsgroups: comp.lang.ada

> [...]

Since the vendors were ignoring what the
ARG was trying to do, and there is very
little use of "standard" ASIS anyway
(most applications only work with one
implementation -- we really only need a
standard for applications that will be
ported from one implementation to
another), it isn't worth anyone's effort to
make a standard. Vendors claim that their
customers don't care about a standard for
ASIS. If ASIS customers were to demand
that their vendors supported a standard,
then things would be different, but there is
no evidence of that (beyond Mr. Rosen --
which is surely not enough).

The ASIS 95 standard is quite a mess; it
wouldn't be possible to create an ASIS
implementation just from reading the
standard. One would have to see what
other implementations do. (That's true to
some extent for all standards, but the
ASIS standard is worse. And, at least for
the Ada standard we have the ACATS to
provide some additional insight into what
a correct implementation needs to do.)

Ada-related Resources

Inspiration for the Mascot
Competition

From: Vincent Diemunsch
<vincent.diemunsch@gmail.com>

Date: Sat, 15 Nov 2014 01:22:54 -0800
Subject: Re: The Owl - My Idea for the Ada

mascot
Newsgroups: comp.lang.ada

[...]

For an Ada mascot, I like the idea of a
bird, for the same kind of reasons you
gave. But as others said, the owl sounds
quite a nasty and disturbing bird, even if
the ancient Greeks took them for a
symbol of wisdom : "their eyes are
directed forward like those of human
beings" and "Most of them utter a hooting
cry like a groan, and as they inhabit ruins,
they sound as though mourning over the
devastation, and hence symbolise in the
Bible destruction and desolation"...

Therefore, even if the owl is tempting, a
mascot related to "Destruction and
Desolation" is not possible for Ada which
is already associated with DoD and
fighter...

I don't really like the Aardvark, sort of pig
which lives from bugs. Sounds geek,
clumsy, harmless but dirty... Definitely
Not Ada (or maybe for Ada 95 perhaps....
:-)).

My proposal : a small, nice, gentle, little
bird called ... Ada in French !!!

http://fr.wikipedia.org/wiki/Ada_(oiseau)

It is light, swift, nice, harmless, precise,
poetic.

Ada-related Resources 9

Ada User Journal Volume 36, Number 1, March 2015

- Light: because Ada, as Ichbiah said,
must stay a simple language, with fast
and inexpensive compilers, enabling
cost effective developments.

- Swift: because it must have good
runtime performances.

- Nice: necessary for a Mascot!

- Harmless: not related to war.

- Precise: it's a bird, not a pig.

- Poetic: Ada was the daughter of Lord
Byron, a poet. A small bird is a poetic
character: it relates to freedom and art.

It is also GREEN (in the sense of
environment friendly) for it is a real bird!

And finally the image of a bird for a
programming language is fashionable:
Apple has taken a bird for the logo of its
new language: Swift:
https://developer.apple.com/swift/

Now I let someone gifted in drawing,
create a logo and submit it for the contest.

From: Vincent Diemunsch
<vincent.diemunsch@gmail.com>

Date: Sat, 15 Nov 2014 01:36:26 -0800
Subject: Re: The Owl - My Idea for the Ada

mascot
Newsgroups: comp.lang.ada

To add to my previous message on an
Ada Mascot idea, here is a view of the
"Ada à bec bleu" or Blue-billed Black
Tyrant in English, an American bird:

http://en.wikipedia.org/wiki/Blue-
billed_black_tyrant#mediaviewer/
File:Knipolegus_cyanirostris_-
Reserva_Guainumbi,_Sao_Luis_do_Parai
tinga,_Sao_Paulo,_Brasil-8.jpg

From: David Botton <david@botton.com>
Date: Sat, 15 Nov 2014 18:46:18 -0800
Subject: Re: The Owl - My Idea for the Ada

mascot
Newsgroups: comp.lang.ada

> [...]

Hmmm, I like the idea. The Rush Tyrant -
http://www.pinterest.com/pin/282741682
827752439 even meets the cuddly cute
idea many have for a mascot.

Even though the contest will hopefully get
us a nice general mascot various plays on
it for emblems, logos etc. are possible and
the "Ada" (Tyrant) has a lot of variety.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sat, 15 Nov 2014 19:19:42 +0200
Subject: Re: The Owl - My Idea for the Ada

mascot
Newsgroups: comp.lang.ada

> [...]

For an Ada emblem, I suggest a twig of a
wine, with some green wine leaves and a
bunch of grapes.

Connections to Ada:

- Green

- Long-lived, portable, international

- Produces good, enjoyable things (=
grapes and wine)

- Originates from embedded systems (=
roots)

- Cluster of grapes = parallel tasks

- Developed (= cultured and selected)
with care and intelligence

- Strong quality control and verification

- The Beaujolais Connection

- Runs on sunlight, as many Ada
programs do.

From: Natasha Porté
<lithiumcat@instinctive.eu>

Date: Sat, 22 Nov 2014 10:02:04 +0000
Subject: Re: The Owl - My Idea for the Ada

mascot
Newsgroups: comp.lang.ada

> Call me a pessimist, but any animal
would be a bad representation for Ada;
they evolve, much like C programs,
over the course of many years by hasty
and unplanned enhancements, included
in a reactionary and haphazard manner
based solely on what caused the
previous one to fail.

What about a robot then? Cold like proper
engineering, unforgiving like an Ada
compiler, durable like well-engineered
constructs (though it could still be made
cute, like Wall-E).

From: Jerry van Dijk
<jdijk59@hotmail.com>

Date: Sat, 22 Nov 2014 13:36:25 +0100
Subject: Re: The Owl - My Idea for the Ada

mascot
Newsgroups: comp.lang.ada

> [...]

Durable like Marvin ? :-)

Anyway I find it hard to come up with
anything as the first thing that comes to
my mind if you mention Ada is 'Solid'.

Maybe simply something like a big strong
hammer? I'm sure someone can create a
cute fluffy version too...

New Ada motto: to Ada all programming
problems ARE nails :-)

Ok, ok, I'm going to get my coffee now...

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Tue, 02 Dec 2014 07:00:55 +0100
Subject: Re: The Owl - My Idea for the Ada

mascot
Newsgroups: comp.lang.ada

Eryndlia Mavourneen wrote:

> ... Could have a little hammer in its
hand. lol

... or rather multiple arms (like Shiva),
each holding a different tool (we don't
have only one tool)

From: David Botton <david@botton.com>
Date: Fri, 21 Nov 2014 10:23:25 -0800
Subject: Lady Ada Statue
Newsgroups: comp.lang.ada

I came across this looking for ideas for
Mascot and another site I am working on
(You will see it soon ;)

Statue of Lady Ada

http://www.tracyhsugg.com/commission/
ada.php

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Fri, 21 Nov 2014 13:57:03 -0700
Subject: Re: Lady Ada Statue
Newsgroups: comp.lang.ada

> [...]

Also the SIGAda award statuette:

http://www.sigada.org/exec/awards/
awards.html

From: Tom Moran <tmoran@acm.org>
Date: Sat, 22 Nov 2014 05:49:26 +0000
Subject: Ada Lovelace doll
Newsgroups: comp.lang.ada

I see Miss Possible on Indiegogo has an
Ada Lovelace doll. (They focus on female
role model dolls.)

GetAdaNow.com

From: David Botton <david@botton.com>
Date: Sat, 22 Nov 2014 21:30:43 -0800
Subject: GetAdaNow.com
Newsgroups: comp.lang.ada

As part of the effort to start advocating
Ada to the applications space, I've set up a
new website:

http://GetAdaNow.com

It is designed to make it as easy as
currently possible to get new developers
set up to use Ada and pointed to some
updated resources.

If you have any suggestions please let me
know.

Please add links from your sites to
http://GetAdaNow.com to help people use
your projects.

AdaPower will be redone soon and have a
way for you to maintain your own listings
of projects, articles, etc. and will have
multiple maintainers so it can stay up to
date and not depend on any one person.

Posters from SIGAda

From: Michael Feldman
<mfeldman@gwu.edu>

Date: Fri, 05 Dec 2014 15:29:01 -0800
Subject: Re: Ada/SPARK in railway

signalling
Newsgroups: comp.lang.ada

> [...]

Have a look at that home page now.
Posters are up for Victoria Line and Paris
Line 1. Also in the full gallery at:

http://sigada.org/awareness/
ada-posters-gallery/index.html

Just click on a thumbprint to get a full
resizable printable poster.

10 Ada-related Tools

Volume 36, Number 1, March 2015 Ada User Journal

Getting Started with Ada

From: David Botton <david@botton.com>
Date: Mon, 8 Dec 2014 16:13:28 -0500
Subject: Documentation
Newsgroups: gmane.comp.lang.ada.gnoga

Slowly but surely working on
documentation...

I've checked in my start of "Getting
Started with Ada" at docs/learn_ada.md
[In the Gnoga source text repository.
—sparre]

It is intended to be a quick and dirty intro
to Ada for someone with some
programming experience. When done a
programmer won't know all of Ada but
should know enough to write basic Ada
apps, i.e. work with Gnoga to do what
most people do in VB or Delphi.

My goal is to just make Ada easy enough
to take away a bit the fear factor of
considering Gnoga for someone's next
project instead of say Node.js, PHP or
Ruby, etc.

If someone has a few minutes here or
there and can comment appreciated. In
particular if they think it is short enough
but enough for some Web developer they
may know to get enough of an idea of
Ada to try it.

Analytical Engine Emulator

From: Brad Moore
<brad.moore@shaw.ca>

Date: Wed, 10 Dec 2014 15:04:56 -0700
Subject: Re: Happy Birthday Ada Lovelace
Newsgroups: comp.lang.ada,
fr.comp.lang.ada

[On the 199th birthday of Augusta Ada
Byron.]

> Has anyone ever attempted to create a
software simulation of the Analytical
Engine? It would be great if we could
actually execute the Lady Lovelace's
programs, even if only in a virtual
machine. Why do I have the feeling she
would have appreciated the elegance of
that?

There is an online java applet you can try
here....

https://www.fourmilab.ch/babbage/
applet.html

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 10 Dec 2014 14:14:00 +0100
Subject: Re: Happy Birthday Ada Lovelace
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

> [...]

There is an attempt to create a real
Analytical Engine, see

 http://plan28.org

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Wed, 10 Dec 2014 13:52:53 -0500
Subject: Re: Happy Birthday Ada Lovelace
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

> [...]

Cool! Now we need an Ada compiler that
targets the Analytical Engine.

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue Feb 24 2015
Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn[1]: 2_168 members

- Reddit[2]: 770 readers

- Google+[3]: 439 members

- StackOverflow[4]: 268 followers

- Twitter[5]: 4 tweeters

[1] http://www.linkedin.com/
groups?gid=114211

[2] http://www.reddit.com/r/ada/

[3] https://plus.google.com/communities/
102688015980369378804

[4] http://stackoverflow.com/questions/
tagged/ada

[5] https://twitter.com/search?f=realtime
&q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
35-4, p. 215. —sparre]

Open Source Build Server
Status

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue Feb 24 2015
Subject: Jenkins
URL: http://build.ada-language.com/

[Builds: —sparre]

- Ahven_JNT

- Ahven_Win7_GNAT2013

- Ahven_Win7_ICCAda

- JD_JNT

- Jdaughter - Debian 7.0 - GNAT 4.6

- Jdaughter_Win7_ICCAda

- Lace_Win7_ICCAda

 [Fails to build: —sparre]

- Ahven - Debian 7.0 - GNAT 4.6

- AVR-Ada_Debian_7

- Strings_Edit_ICCAda

- UnzipAda_Win7_GNAT2013

- UnzipAda_Win7_ICCAda

[See also “Open Source Build Server
Status”, AUJ 35-4, p. 215. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue Feb 24 2015
Subject: Repositories of Open Source

software
AdaForge: 8 repositories [1]

Bitbucket: 109 repositories [2]

 16 developers [2]

BlackDuck OpenHUB: 208 projects [3]

Codelabs: 20+ repositories [4]

GitHub: 749 repositories [5]

 179 developers [6]

OpenDO Forge: 24 projects [7]

 424 developers [7]

Rosetta Code: 612 examples [8]

 28 developers [9]

Sourceforge: 243 repositories [10]

[1] http://forge.ada-ru.org/adaforge

[2] http://edb.jacob-sparre.dk/Ada/
on_bitbucket

[3] https://www.openhub.net/tags/ada

[4] http://git.codelabs.ch/

[5] https://github.com/search?q=language
%3AAda&type=Repositories

[6] https://github.com/search?q=language
%3AAda&type=Users

[7] https://forge.open-do.org/

[8] http://rosettacode.org/wiki/
Category:Ada

[9] http://rosettacode.org/wiki/
Category:Ada_User

[10] http://sourceforge.net/directory/
language%3Aada/

[See also “Repositories of Open Source
Software”, AUJ 35-4, p. 214. —sparre]

Ada-related Tools

GNAT

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 14 May 2014 16:48:19 -0500
Subject: Re: Bug or feature?
Newsgroups: comp.lang.ada

> [...]

To get what the Ada Standard calls
"standard mode" for Ada with GNAT,
you need to compile with a bunch of
options. The default behaviour of GNAT
is NOT standard mode as described in the
RM.

To compile ACATS tests in GNAT, I
have to use a small boatload of options:

 gnatmake C457003.adb -eS -gnat12 -O0
-gnatE -gnato -gnatv -gnatws -gnatd7 -
bargs - T0

Ada-related Tools 11

Ada User Journal Volume 36, Number 1, March 2015

Some of these are about warnings and
disabling of optimisations, and of course
"-gnat12" sets Ada 2012 mode (which I
think is the default these days). [B-Tests
also need -gnatf and -gnatq, but that's not
important to most since they're not
worried about

I use that set of options anytime I'm
compiling test programs from GNAT
(including the ones that appear here),
because several of them are needed to get
standard behaviour. GNAT's default
behaviour might be "better" in some
ways, but it's confusing because it doesn't
necessarily do what you'll find in an Ada
book.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 14 May 2014 18:35:05 -0400
Subject: Re: Bug or feature?
Newsgroups: comp.lang.ada

> [...]

Of those, only "-gnatE", "-gnato", and "-
bargs -T0" are needed for standards
conformance. And as I said, "-gnato" is no
longer, or soon will no longer be needed.

The above options are definitely not what
the OP should be using. For example,
don't use -gnatE unless you are porting a
large program to GNAT and it won't work
otherwise.

> [...]

Right, Ada 2012 is now the default.

[...]

From: Simon Wright
<simon@pushface.org>

Date: Thu, 15 May 2014 09:23:04 +0100
Subject: Re: Bug or feature?
Newsgroups: comp.lang.ada

> [...]

-gnato isn't the default for GNAT GPL
2014 or FSF GCC 4.9.0.

Add -fstack-check ?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 15 May 2014 13:21:27 -0500
Subject: Re: Bug or feature?
Newsgroups: comp.lang.ada>

 [...]

> Add -fstack-check ?

That's probably a good idea for real
programs. The ACATS doesn't need it as
the tests that used to attempt to exhaust
memory have been reigned in. (They had
nasty effects on targets supporting virtual
memory. I remember the first time we ran
the ACATS on Windows NT, one of
those tests allocated an insane amount of
swap space and then essentially ran from
the disk drive. It would have taken
months to complete. I had to artificially
bound the heap size on NT in order to
eliminate that problem; that's the sort of
counterproductive thing that one would
hope the ACATS is not requiring.) The

tests now allocate a few megabytes and
then give up - thus on virtual memory
hosts they don't try to test for
Storage_Error.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Thu, 15 May 2014 10:58:02 +0200
Subject: Re: Bug or feature?
Newsgroups: comp.lang.ada

On 14/05/14 23:48, Randy Brukardt
wrote:

> To compile ACATS tests in GNAT, I
have to use a small boatload of options:

>

> gnatmake

> C457003.adb -eS -gnat12 -O0 -gnatE -
gnato -gnatv -gnatws -gnatd7 -bargs - T0

Would it be meaningful when testing any
compiler, to include

the optimisers typically used when
translating production code?

-O2 seems commonly used with GNAT.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 15 May 2014 13:30:41 -0500
Subject: Re: Bug or feature?
Newsgroups: comp.lang.ada

> [...]

I picked these options originally because
they were the ones used during the latest
formal conformity assessment of GNAT.
(I've since modified them a bit on the
advice of the AdaCore ACATS test
person.) That's the only set of options that
anyone ever guaranteed actually met the
Standard.

One would expect that internally,
AdaCore tests other sets of options as
well. Optimisation is sometimes a
problem, as really powerful optimisers
can sometimes eliminate or invalidate
ACATS tests. ACATS tests have been
repaired to avoid optimisation effects, but
it's a never-ending game of whack-a-
mole. (As optimisers get better, new
problems emerge, which require still more
test repairs, etc.) In addition, some
optimisation modes probably aren't
standards-conformant. (For instance,
Janus/Ada has a mode where all objects
are assumed to be in range. This matches
our Ada 83 compiler, but it's not correct
for Ada 95 and later.)

For Janus/Ada, I run 3 different sets of
optimisation options, combined with 3
different language settings. But that's for
in-house use only; a formal conformity
assessment would be done with the
optimisation off. The in-house goal is to
minimise failures with the optimiser on
but there are a few failures that are
effectively unfixable, so I doubt it would
ever be perfect.

From: David Botton <david@botton.com>
Date: Wed, 12 Nov 2014 06:33:42 -0800
Subject: Re: What exactly is the licensing

situation with GNAT?
Newsgroups: comp.lang.ada

[Janus/Ada and CLAW]

However, GWindows and GNATCOM
(http://sourceforge.net/projects/gnavi/) are
more capable, very well maintained, open
source, and easier to use and they work
well with the windows FSF version of
GNAT that comes with MinGW. You can
use Ada 2005 and Ada 2012 with them as
a result too.

Despite the lack of PR (not sure why they
are not listed in the AdaIC.org list of
packages for example. It is probably the
largest Ada framework used outside of
those distributed today by AdaCore in the
world.

When I created them they were placed
under the GMGPL so you can enjoy using
them in commercial products and I have
and hundreds others do.

When I abandoned public Ada projects
and advocacy ten years ago, _because_
those libraries are open source people like
Gautier de Montmollin and others were
willing to get involved and are even
running the show on them now. So Open
Source is a critical part of success today.
You just have to be creative to know how
to monetise it.

For application development MinGW is
absolutely usable for professional
development.

Same goes for other platform GNAT's and
you should have no qualms of using it for
non-safety critical work.

Request: Compiler for
XMOS Controllers

From: Erlo
Date: Sun, 09 Nov 2014 16:26:37 +0100
Subject: Ada for XMOS?
Newsgroups: comp.lang.ada

Anybody working on a Ada-compiler for
XMOS controllers? (www.xmos.com)

NC_Socket

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 14 Nov 2014 16:29:59 -0600
Subject: Re: What exactly is the licensing

situation with GNAT?
Newsgroups: comp.lang.ada

[...]

I've been using Claw.Sockets for so long
that I don't know what the underlying
implementation is. So I don't know what
"select" is used for or whether it's
implemented in NC_Sockets.
Claw.Sockets has a server type that's used
for implemented servers (like web and
mail servers).

12 Ada-related Tools

Volume 36, Number 1, March 2015 Ada User Journal

As to the platforms, Linux 64-bit (tested
under GNAT) and Windows 32-bit (tested
under GNAT and Janus/Ada) are what I
have in hand. I suspect that Linux 32-bit
would be easy to create based on the 64-
bit version, but I've had no need to do so.

I'll be posting a NC_Sockets package
fairly soon, once I get the last few spec
updates finished and correct the test
programs. (And I have to figure out error
handling in the Linux version, I don't
think it works right, and that's a big deal
to my servers of course.) My best guess is
that I'll get this done in January or so
(have some ARG and ACATS tasks to do
first).

Request: Video Decoding
Library

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sun, 16 Nov 2014 16:12:51 +0100
Subject: Video decoding library?
Newsgroups: comp.lang.ada

Are there any Ada libraries for decoding
(compressed) video files? At the moment
I'm not particular about which formats
should be supported.

Ada bindings to libraries written in other
languages are also of interest, even if I
would like a pure Ada solution.

I'm aware of "ada-ffmpeg"[1], but it looks
like an extremely thin binding to a C
library. The Ada binding to "OpenCV"[2]
seems to include a partial "ffmpeg"
binding as well, but it doesn't look
significantly more elegant at a first
glance.

[1] https://github.com/xlq/ada-ffmpeg

[2] https://code.google.com/p/opencvada/

Gnoga

From: David Botton <david@botton.com>
Date: Sun, 16 Nov 2014 20:02:21 -0500
Subject: Source Code View for Gnoga

Website
Newsgroups: gmane.comp.lang.ada.gnoga

If you go to:

http://www.gnoga.com/source

You can see the source code for snake and
the website.

From: David Botton <david@botton.com>
Date: Tue, 25 Nov 2014 23:12:51 -0500
Subject: Working alternative to AWS
Newsgroups: gmane.comp.lang.ada.gnoga

I have a working version now of Gnoga
using Dmitry Kazakov's simple
components instead of AWS. I still have a
bit of polish to do, but it looks like a
winner.

This means AWS not required at all (nor
any of its many dependencies), a simple
checkout of Gnoga will include all needed
and should compile on even older
versions of GNAT (although still needs a

few 2012 features currently). In theory I
could probably backport Gnoga to 2005
or even Ada 95 at this point.

My goal is for Gnoga to work with the
current release version of MinGW on
Windows and Debian Squeeze. So if I
manage that I'll be super happy.

I'll post when I've got everything tested
and have pushed this in to Git. It may
have to wait until tomorrow though.

[See also “Simple Components”, AUJ 35-
4, p. 217. —sparre]

From: David Botton <david@botton.com>
Date: Thu, 27 Nov 2014 10:18:11 -0500
Subject: In Git - New Gnoga using

Simple_Components HTTP and
Websockets

Newsgroups: gmane.comp.lang.ada.gnoga

I have committed the work I've done to
move Gnoga to Dmitry's
Simple_Components. The Gnoga website
and snake example are also now using it.

There have been numerous other
improvements to the communication
infrastructure as part of this as well.

In some ways the entire system is far
more robust than before and continuing to
harden on the other hand this is a brand
new implementation of WebSockets and
we are the first ones using it. (I am much
impressed with Dmitry's creating the
entire WebSockets code from specs and
almost no testing, etc.)

Given that and that this is a lower level
API than AWS there are occasionally
some issues that come up and am working
through them. Please report and issues
you have. If possible also copy me on
what it says in the JavaScript console of
the browser.

The only thing "missing" functionality at
the moment is Form PUT support (GET
works) and File Upload. I will get those
both working soon as well.

From: David Botton <david@botton.com>
Date: Mon, 29 Dec 2014 19:03:50 -0800
Subject: ANN: Gnoga v1.0 - The GNU

Omnificent GUI for Ada
Newsgroups: comp.lang.ada

Introduction

http://gnoga.com

Gnoga is an Open Source development
platform for the creation of mission
critical and enterprise applications that
can be deployed to the cloud, desktop or
mobile devices.

Gnoga applications are written using the
Open Source Gnoga framework licensed
under the GPLv3 with Runtime
Exceptions for creating free or proprietary
software and Ada 2012, the time-tested,
safe and secure programming language
used for long-lived critical application
development.

This releases contains the Gnoga 1.0
Framework, future releases will include

additional platform tools including a full
IDE and visual development environment.

Ada compilers are available for most
platforms - see http://GetAdaNow.com

For more information: http://gnoga.com

Download Gnoga 1.0 at
http://gnoga.com/gnoga.1.0.zip or clone
the latest at:

 git clone
git://git.code.sf.net/p/gnoga/code gnoga

The Gnoga user guide is available at:
http://www.gnoga.com/user_guide.html

Join the Gnoga E-Mail Support List:
https://lists.sourceforge.net/lists/listinfo/g
noga-list

Gnoga Features

- Real-time live server push web-app
technology for the web

- Native Gtk Front end for the desktop

- Native Mac OS X desktop applications
that can be submitted to the App Store

- Write complex web-apps or desktop
apps with no HTML or JS

- The same code base can deploy as a
web-app, desktop or mobile app

- Server side and client side development
is in same code base and all in Ada

- Gnoga applications are clear and easy to
read and write

- Extensive concurrency support

- Integrates easily with C/C++, Python or
any other server side language or library

- Bind any JavaScript based client
libraries to take advantage of existing UI
developments

Gnoga Platforms

- GNU/Linux

- Apple Macintosh OS X

- Microsoft Windows

- Raspberry Pi

- And any other GCC/Ada platform
supporting GNAT.Sockets

Gnoga Framework Overview

1. The communication platform between
the Ada code and the browser / native

 - Gnoga.Server.Connection

2. Binding to the HTML5 DOM and
Browser

 - Gnoga.Gui.Base (Not per se a binding
of Node but takes its place)

 - Gnoga.Gui.Element,
Gnoga.Gui.Element.* (HTML
Elements)

 - Gnoga.Gui.Element.Canvas - HTML 5
Canvas bindings

 - Gnoga.Gui.Element.SVG - HTML
SVG vector graphics

Ada-related Tools 13

Ada User Journal Volume 36, Number 1, March 2015

 - Gnoga.Gui.Element.Multimedia -
HTML 5 Audio and Video

 - Gnoga.Gui.Element.Style - CSS Style
blocks

 - Gnoga.Gui.Window,
Gnoga.Gui.Navigator,
Gnoga.Gui.Screen,

 - Gnoga.Gui.Location

 - Gnoga.Gui.Document

3. Application start up services

 - Gnoga.Server.Application.Singleton -
Desktop apps

 - Gnoga.Server.Application.
Multi_Connect - Multi user / Web apps

4. Gnoga higher level containers and GUI
widgets

 - Gnoga.Gui.Views.* - Auto layout of
child elements and basis for custom
Gnoga Ada only widgets

 - Gnoga.Gui.Views.Docker - Dock child
views to view sides

 - Gnoga.Gui.Views.Card - Stacks of
views

5. Gnoga client side application APIs

 - Gnoga.Client.Storage - local persistent
and session storage on browser

 - Gnoga.Client.Bind_Page - Bind to all
elements on pre-made HTML5 pages

6. Gnoga database bindings and server
side APIs

 - Gnoga.Server.Database - support for
MySQL and SQLite 3 (for ODBC
bindings see deps/simple_components)

 - Gnoga.Server.Model - Active Data
models like in Rails

 - Gnoga.Server.Migrations - Rails like
database schema migrations

 - Gnoga.Server.Template_Parser - Parse
files with tokens or Python 2.7

7. Gnoga development tools

 - tool/gnoga_make - Generate
application scaffolds

8. Plugin bindings to existing JavaScript
libraries

 - Gnoga.Gui.Plugin.Ace_Editor - Full
editor with Ada syntax highlighting

 - Gnoga.Gui.Plugin.Bootstrap - The
Bootstrap framework

 - Gnoga.Gui.Plugin.jQuery - jQuery
support to access non-Gnoga Elements

 - Gnoga.Gui.Plugin.jQueryUI - all the
jQueryUI Interactions and Effects

 - Gnoga.Gui.Plugin.jQueryUI.Widgets -
the jQueryUI Widgets

9. Native Desktop and Mobile
Application Support coming:

 - Gnoga.Server.Application.
Gtk_Window - Native GTK front end

 - Gnoga.Gui.Plugin.MacGap - Native
Mac OSX features

From: David Botton <david@botton.com>
Date: Tue, 13 Jan 2015 20:31:47 -0500
Subject: Full SSL support now implemented

and ready to run
Newsgroups: gmane.comp.lang.ada.gnoga

It couldn't be easier to add full direct SSL
support. I have setup Jeff's Chattanooga
demo in git to listen on both secure and
insecure ports. I have also removed the
need for a special secure boot file and
now boot.js detects if connection is http or
https and automatically switches the
websocket protocol.

I added the following line to the gpr file:

with "../../ssl/gnoga_secure.gpr";

Then I added the following to
chattanooga-ui.adb:

 Gnoga.Server.Connection.Secure.
 Register_Secure_Server(
 Certificate_File =>"/home/dbotton/
 workspace/ssl/star_gnoga_com.crt",
 Key_File => "/home/dbotton/
 workspace/ssl/star_gnoga_com.key",
 Port => 8443,
 Disable_Insecure => False);
 Gnoga.Application.Multi_Connect.
 Initialize (Port => 8082);

That's it :)

This will allow you to reach the demo at
http://chat.gnoga.com:8082 or at
https://chat.gnoga.com:8443

I also setup on the server (as before) an
ssl proxy to the non-SSL port 8082 so that
you can access the demo chat at
https://chat.gnoga.com

The Apache config looks like this:

<VirtualHost *:443>

 ServerName chat.gnoga.com

 ServerAdmin david-
daM41vM3II/QT0dZR+AlfA@public.gm
ane.org

 SSLEngine on

 SSLCertificateFile
/home/dbotton/workspace/ssl/star_gnoga_
com.crt

 SSLCertificateKeyFile
/home/dbotton/workspace/ssl/star_gnoga_
com.key

 ProxyPass /gnoga
ws://127.0.0.1:8082/gnoga

 ProxyPass / http://127.0.0.1:8082/

 ProxyPassReverse /
http://127.0.0.1:8082/

 ErrorLog
${APACHE_LOG_DIR}/gnoga.err.log

 CustomLog
${APACHE_LOG_DIR}/gnoga.log
common

</VirtualHost>

This gives you a complete example of
SSL with Gnoga, both direct and proxy
methods.

See the FAQ for how to create fake ssl
certs and some tips if purchasing an SSL
certificate and how to add the
intermediate certificates.

From: David Botton <david@botton.com>
Date: Wed, 4 Feb 2015 21:25:30 -0500
Subject: New Feature :) - Gnoga via http

long polling and AJAX - no WebSockets
Newsgroups: gmane.comp.lang.ada.gnoga

It is now possible to use http "long
polling" and AJAX as an alternative to
WebSockets.

Mine Detector using Ajax:

http://gnoga.com:8081/ajax.html

Snake using Ajax (works but not smooth
enough to play):

http://gnoga.com:8080/ajax.html

Chattanooga using Ajax over https:

https://chat.gnoga.com/ajax.html

(The gnoga.com site needs some more
changes first, but coming due to the way I
use the '#' tags)

To make AJAX the default method use:

Add to your initialise the parameter boot
=> "ajax.html" to do so.

Note you will need to copy ajax.js to your
js directory and ajax.html to your html
directory of your project.

All modern browsers support
WebSockets, however older corporate
firewalls do not.

I do not recommend using this method for
most application development as it is
slightly less responsive and leaves your
browser's loading icon spinning which
may annoy some users. It is intended as a
fallback method or to use for website
development using a method somewhat
like the AdaBlog demo where you use a
more traditional web paradigm of
stateless connectivity using local storage
or other techniques to maintain state
between pages. I will document more of
that as we get closer to 1.1 in the coming
weeks.

With this addition and a few other small
additions, this will make Gnoga not only
the best UI for most modern Ada
applications, it also makes it the best
choice for developing websites using Ada.

[See also “Gnoga”, AUJ 35-4, p. 218.
—sparre]

AdaControl

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 19 Nov 2014 11:22:59 +0100
Subject: Re: What is your opinion on Global

Objects?
Newsgroups: comp.lang.ada

[global variables]

Note that AdaControl (rule
Directly_Accessed_Globals) can enforce

14 Ada-related Tools

Volume 36, Number 1, March 2015 Ada User Journal

that this pattern is used safely. From the
User's Guide:

"this rule enforces that all global variables
are accessed by dedicated access
subprograms, and that only those
subprograms access the variables directly.
If given with the keyword “protected”
and/or “accept”, it enforces that global
variables are accessed only by dedicated
protected subprograms or tasks, ensuring
that no race condition is possible"

Strings Edit

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 22 Nov 2014 17:16:44 +0100
Subject: ANN: Strings edit for Ada 3.1

released
Newsgroups: comp.lang.ada

The software provides I/O facilities. The
following I/O items are supported by the
package:

- Generic axis scales support;

- Integer numbers (generic, package
Integer_Edit);

- Integer sub- and superscript numbers;

- Floating-point numbers (generic,
package Float_Edit);

- Roman numbers (the type Roman);

- Strings;

- Ada-style quoted strings;

- UTF-8 encoded strings;

- Unicode maps and sets;

- Wildcard pattern matching.

http://www.dmitry-kazakov.de/
ada/strings_edit.htm

Changes to the previous version:

- Added packages for portable stream
encoding of signed and modular integer
types;

- Base64 string encoding supported.

[See also “Strings_Edit”, AUJ 35-3, p.
154. —sparre]

Simple Components

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 23 Nov 2014 11:20:01 +0100
Subject: ANN: Simple components v.4.3

released
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analysers, lock-free
data structures, synchronisation primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE

754 representations support, multiple
connections server designing tools.

http://www.dmitry-kazakov.de/
ada/components.htm

Changes to the previous version:

- Persistent B-tree with keys and values
allocated externally

- Persistent tables searchable by multiple
keys with multiple values (columns).
This can be used to design a light-weight
100% Ada equivalent of a relational DB
table with several keys.

- WebSockets integrated into the HTTP
server. Both half-duplex and full-duplex
operating modes are supported.

From: David Botton <david@botton.com>
Date: Thu, 27 Nov 2014 07:25:47 -0800
Subject: Re: ANN: Simple components v.4.3

released
Newsgroups: comp.lang.ada

> - WebSockets integrated into the HTTP
server

I am happy to announce that the latest
version of Gnoga is now using Dmitry's
HTTP and WebSockets components
instead of AWS. In addition to being a
very complete HTTP and WebSockets
implementation it is lightweight and since
Ada 95 it should allow Gnoga to compile
on much older versions of Gnat as found
currently in most distributions.

The Gnoga website
http://www.gnoga.com and the snake
example http://snake.gnoga.com are both
running on Gnoga using the new
components.

Thanks!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 20 Dec 2014 13:05:05 +0100
Subject: ANN: Simple components for Ada

v4.4. released
Newsgroups: comp.lang.ada

[...]

Changes to the previous version:

- URI scheme recognition added;

- Get_Server_Address added to the
connections server to allow limiting the
addresses being listened;

- Socket send events are blocked when the
server has no data to sent;

- Get_IO_Timeout is added to control
waiting for socket events;

- Get_Polling_Timeout is added to control
maximal time socket send polling
remain stopped;

- Trace_Sending is added to trace socket
polling events;

- Documentation improved;

- Bug fixes.

P.S. Thanks to David Botton for testing,
submitting bug reports and features

requests. Gnoga's use case was a quite
hard test.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 17 Jan 2015 21:04:43 +0100
Subject: ANN: Simple Components for Ada

v4.5 released
Newsgroups: comp.lang.ada

[...]

The new version provides bindings to
GNUTLS and an implementation of
SSL/TLS servers, HTTP included.

Changes to the previous version:

- Dynamically allocated terminated
strings added in the package
GNAT.Sockets.Connection_State_Mach
ine.Terminated_Strings;

- Input buffer size discriminant added to
HTTP_Client connection object;

- Tracing primitive operation extended for
encoded/ciphered content;

- GNUTLS bindings added;

- Secure SSL/TLS multiple-connections
servers added. The implementation is
based on GNUTLS;

- Secure HTTP implementation added.

[See also “Simple Components”, AUJ 35-
4, p. 217. —sparre]

AVR-Ada

From: Rolf Ebert <rolf.ebert.gcc@gmx.de>
Date: Mon, 24 Nov 2014 17:43:31 +0100
Subject: patches for gcc 4.9.2 updated
To: AVR-Ada <avr-ada-
devel@lists.sourceforge.net>

Yesterday I pushed my patches for
building the AVR-Ada cross compiler to
the SF git repository. The patches are
relative to gcc-4.9.2. Most are pure copies
from older versions.

The patch 72-gcc-4.9-ada-timebase is
necessary for correct translation of time
literals in delay statements to the actual
time base in AVR.Real_Time.Clock and
AVR.Real_Time.Delays. I forgot that one
in the previous patch sets.

From: Rolf Ebert <rolf.ebert.gcc@gmx.de>
Date: Tue, 25 Nov 2014 21:51:17 +0100
Subject: Default_Bit_Order in AVR-Ada
To: AVR-Ada <avr-ada-
devel@lists.sourceforge.net>

I'm really not sure what to do here.

We have a bug report [1] that the
Default_Bit_Order changed in AVR-Ada.
That is true. Previously we had the
Default_Bit_Order = Low_Order_First,
we now have High_Order_First. As far as
I remember that was for conformance to
the AdaCore's AVR compiler. I actually
never thought about it.

If I read the wikibook entry [2], the bug
report seems correct. But I doubt that
AdaCore might be incorrect in their
system.ads.

Ada-related Tools 15

Ada User Journal Volume 36, Number 1, March 2015

Suggestions welcome

[1] http://sourceforge.net/p/
avr-ada/bugs/32/

[2] http://en.wikibooks.org/wiki/
Ada_Programming/Attributes/%27Bit_
Order

[See also “AVR-Ada”, AUJ 35-4, p. 220.
—sparre]

Open Ravenscar Kernel

From: Vincent Diemunsch
<vincent.diemunsch@gmail.com>

Date: Wed, 26 Nov 2014 14:06:54 -0800
Subject: Open Ravenscar Kernel
Newsgroups: comp.lang.ada

I can't find the source code of the Open
Ravenscar Kernel. The
OpenRavenscar.org website is closed and
I get redirected to :
http://www.dit.upm.es/~ork/index.html/.
Then it downloaded the GNATforLeon
source package, but I couldn't find the
packages implementing the ORK in Ada.

Does anybody knows where I could find
them?

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Thu, 27 Nov 2014 11:34:44 +0000
Subject: Re: Open Ravenscar Kernel
Newsgroups: comp.lang.ada

> [...]

I think you'll find they are in the gcc/ada
folder, not clearly separated out from the
rest of the Ada compiler sources. Takes
some digging to separate them out into a
separate project.

Emacs Ada Mode

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Tue, 02 Dec 2014 07:09:49 -0600
Subject: ada-mode 5.1.7 now in Gnu ELPA
Newsgroups: comp.lang.ada

ada-mode 5.1.7 is now available in Gnu
ELPA; mostly bug fixes. See
http://stephe-leake.org/emacs/ada-
mode/emacs-ada-mode.html for more
info.

[See also “Emacs Ada Mode”, AUJ 35-2,
p. 75. —sparre]

STM32F4 GNAT Run Time
Systems

From: Simon Wright
<simon@pushface.org>

Date: Sun, 07 Dec 2014 15:48:35 +0000
Subject: ANN: STM32F4 GNAT Run Time

Systems 20141207
Newsgroups: comp.lang.ada

I've been working on a GNAT RTS with
the GCC Runtime Library exception for
STM32F4 boards, and this is the first
release; offered for criticism, suggestions
etc ...

(a) The RTS produced by AdaCore works
to the bare metal when dealing with the
board hardware. This seems to me to be a
lot more work than necessary, given that
the manufacturer provides a free-to-use
BSP.

(b) I've included minimal interfaces to the
board hardware: clock, buttons, LEDs.
Given that the Ada RTS is minimal, these
could have been put in their own library,
not part of the RTS; but I was concerned
that the board requires clock initialisation
before the other hardware can be used,
and the Ada RTS will require clock
initialisation .. will probably revisit this
decision.

(c) For tasking, I'm going to investigate
FreeRTOS, which STMicroelectronics
provide a copy of with their BSP. Does
anyone know whether this is a completely
stupid idea?

The release is at [1]: from the README,

This is an Ada Runtime System (RTS) for
the GCC Ada compiler (GNAT), targeted
to the STMicroelectronics STM32F429I
Discovery board (see
http://www.st.com/).

The RTS is a true zero-footprint system.
Package System contains the following
restrictions:

 pragma Restrictions (No_Allocators);
 pragma Restrictions (No_Delay);
 pragma Restrictions (No_Dispatch);
 pragma Restrictions
 (No_Enumeration_Maps);
 pragma Restrictions
 (No_Exception_Propagation);
 pragma Restrictions (No_Finalization);
 pragma Restrictions
 (No_Implicit_Dynamic_Code);
 pragma Restrictions (No_Protected_Types);
 pragma Restrictions (No_Recursion);
 pragma Restrictions
 (No_Secondary_Stack);
 pragma Restrictions (No_Tasking);

The RTS contains object code for all the
relevant drivers from STMicroelectronics'
STM32Cube_FW_F4_V1.3.0 package,
but not the source code. Makefile.inc
(altered as necessary to match the place
where you have installed the STM32Cube
package) can be included in your own
Makefiles to provide access to the drivers'
header and source files; see the
demonstration's Makefile.

The RTS has been built with no
optimisation (-O0) and for debugging (-
g), using GNAT GPL 2014 for arm-eabi-
darwin-bin on Mac OS X (it should work
out of the box with a Linux-hosted cross-
compiler). Ada, C and C++ demo
programs are included.

The RTS is intended to support
commercial binary distributions[2]. The
Ada source code has either been derived
from FSF GCC (4.9.1) or written for this
work; see the files COPYING3 and

COPYING.RUNTIME. The C source has
either been derived from STMCube or
written for this work: see the file
COPYING.STMicroelectronics.

[1] https://sourceforge.net/projects/
stm32f4-gnat-rts/files/20141207/

From: Simon Wright
<simon@pushface.org>

Date: Thu, 05 Feb 2015 11:26:44 +0000
Subject: ANN: STM32F4 GNAT Run Time

Systems 20150204
Newsgroups: comp.lang.ada

This is the third release of a GNAT RTS
with the GCC Runtime Library exception
for STM32F4 boards.

(a) Tasking is implemented using
FreeRTOS[3], which STMicroelectronics
provide a copy of with their BSP.

(b) I've included minimal interfaces to the
board hardware: clock, buttons, LEDs.
Given that the Ada RTS is minimal, these
could have been put in their own library,
not part of the RTS; but I was concerned
that the board requires clock initialisation
before the other hardware can be used,
and the Ada RTS requires clock
initialisation .. will probably revisit this
decision.

The release is at [4]: it contains two
RTSs, one (in stm32f429i-disco-bsp;
demonstrators in demo-stm32f429i-disco-
bsp) has the barest minimum for Ada
support, while the more interesting one
(in stm32f429i-disco-rtos; demonstrators
in demo-stm32f429i-disco-rtos) supports
Ravenscar tasking, allocators, tagged
types, and the secondary stack. From its
README:

This is an Ada Runtime System (RTS) for
the GCC Ada compiler (GNAT), targeted
to the STMicroelectronics STM32F429I
Discovery board (see
http://www.st.com/).

The RTS supports Ravenscar tasking.
Package System contains the following
additional restrictions:

 pragma Restrictions
 (No_Enumeration_Maps);
 pragma Restrictions
 (No_Exception_Propagation);
 pragma Restrictions (No_Finalization);
 pragma Restrictions (No_Recursion);

The RTS contains object code for all the
relevant drivers from STMicroelectronics'
STM32Cube_FW_F4_V1.3.0 package,
but not the source code. Makefile.inc
(altered as necessary to match the place
where you have installed the STM32Cube
package) can be included in your own
Makefiles to provide access to the drivers'
header and source files; see the
demonstration's Makefile.

The RTS has been built with no
optimisation (-O0) and for debugging (-
g), using GCC 4.9.1 for arm-eabi-
darwin13-bin[1] on Mac OS X (it should
work out of the box (but after

16 Ada-related Tools

Volume 36, Number 1, March 2015 Ada User Journal

recompilation!) with a Linux-hosted
cross-compiler.

The RTS is intended to support
commercial binary distributions[2]. The
Ada source code has either been derived
from FSF GCC (4.9.1) or written for this
work; see the files COPYING3 and
COPYING.RUNTIME. The C source has
either been derived from STMCube or
written for this work: see the file
COPYING.STMicroelectronics.

The RTS is based on FreeRTOS[3], as
customised by STMicroelectronics in the
STM32Cube package. See
COPYING.FreeRTOS.

The following non-original files don't
form part of a binary deliverable, so don't
affect the status of the binary:

- build_runtime.gpr and runtime.xml
originated in AdaCore's GNAT GPL
2014 arm-eabi distribution (for Linux).

- The linker script stm32f429i-flash.ld is
under an MIT licence: see
COPYING.MIT.

[1] https://sourceforge.net/projects/
gnuada/files/GNAT_GCC%20Mac%20
OS%20X/4.9.1bis/arm-eabi/

[2] STMicroelectronics' evaluation
product licence agreement at
www.st.com/epla forbids the sale of
products including this board, so this
work would have to be reconfigured for
a different board anyway.

[3] http://www.freertos.org

[4] https://sourceforge.net/projects/
stm32f4-gnat-rts/files/20150204/

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Thu, 05 Feb 2015 18:06:45 +0200
Subject: Re: ANN: STM32F4 GNAT Run

Time Systems 20150204
Newsgroups: comp.lang.ada

> [...]

Nice to see people working actively on
this area.

> [...]

Personally I would prefer BSD/ISC/MIT
for all possible parts, like you have done
for the linker script.

For example, see my STM32F4 package:

https://bitbucket.org/tkoskine/
gnat-arm-app-skeleton/src/
ab141a07860925a7c19d333c30b6084a04
1d9325/stm32f4.ads?at=default

> [...]

If someone has time,
Ubuntu/Debian/Fedora packages would
be nice. :)

For AVR-Ada, I have tried to provide
unofficial packages[1,2] which can be
installed with apt-get/yum and then hello
world project works out of the box:

 apt-get install avr-ada

 cd hello-avr-ada

 avr-gnatmake -XBOARD=arduino_uno
hello

Similar procedure for ARM/STM32F4
should be doable (although takes some
time).

> [2] STMicroelectronics' evaluation
product licence agreement at
www.st.com/epla forbids the sale of
products including this board, so this
work would have to be reconfigured for
a different board anyway.

Olimex sells many different STM32Fx
boards which don't have this restriction. I
have used[3] STM32-P405 and STM32-
E407[4] boards.

[1] http://ubuntu.ada-language.com/

[2] http://fedora.ada-language.com/

[3] http://tero.stronglytyped.org/
running-ada-2012-on-olimex-stm32-
e407-arm-cortex-m4-stm32f4.html

[4] https://www.olimex.com/Products/
ARM/ST/STM32-E407/

Request: Virtual Analytical
Engine

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Wed, 10 Dec 2014 07:33:04 -0500
Subject: Re: Happy Birthday Ada Lovelace
Newsgroups: comp.lang.ada,
fr.comp.lang.ada

> [...]

Has anyone ever attempted to create a
software simulation of the Analytical
Engine? It would be great if we could
actually execute the Lady Lovelace's
programs, even if only in a virtual
machine. Why do I have the feeling she
would have appreciated the elegance of
that?

P.S. Of course the Analytical Engine
simulation should be written in Ada!

Qt5Ada

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Wed, 10 Dec 2014 20:36:15 -0800
Subject: Announce : Qt5Ada version 5.4.0

(387 packages) and VTKAda version
6.1.0 (656 packages) release 10/12/2014
free edition

Newsgroups: comp.lang.ada

Qt5Ada is an Ada 2012 binding to the Qt5
(5.4.0-final) framework. The C binaries
were built with Microsoft Visual Studio
2012 on Windows and with GCC x86-64
on Linux and Mac OS X.

The package was tested with GNAT-
GPL-2012 on 32 and 64 bit Windows, on
Debian/Linux x86-64 (7.3) and Mac OS
X (10.8.5).

It supports GUI, SQL, multimedia, web,
network, touch devices, sensors and many
others things.

Added QtOpenGL support
(QtOpenGLWindow, QtOpenGLWidget,
QtOpenGLFunction and others), new
packages and demos.

Qt5Ada for Windows and Linux (Unix) is
available from

http://users1.jabry.com/adastudio/
index.html

My configuration script to build Qt 5.4 is:
configure -opensource -release -nomake
tests -opengl desktop -qt-zlib -qt-libpng -
qt-libjpeg -openssl-linked
OPENSSL_LIBS="-lssleay32 -llibeay32"
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.3"

The full list of released classes is in "Qt5
classes to Qt5Ada packages relation
table.pdf"

I do this work on my own risk (after 9-12
hours at the factory) and I hope Qt5Ada
and VTKAda will be useful for students,
engineers, scientists and enthusiasts.

With Qt5Ada you can build any
applications and solve any problems easy
and quickly.

If you have any problems or questions,
please let me know.

[See also “Qt5Ada”, AUJ 35-3, p. 158.
—sparre]

Muen Separation Kernel

From: Adrian-Ken Rueegsegger
<ken@codelabs.ch>

Date: Mon, 12 Jan 2015 20:34:21 +0100
Subject: [ANN] Muen development version

0.6 released
URL: https://groups.google.com/forum/
#!topic/muen-dev/_HM6w9toM-Y

We are proud to announce the availability
of Muen version 0.6, which marks the
first official development release.

The following major features and
improvements have been implemented
since the last announcement:

- Migration of Muen to SPARK 2014

 The kernel code has been migrated from
SPARK 2005 to SPARK 2014 [1].
Absence of runtime errors is now verified
using the GNATprove tool. Switching to
SPARK 2014 enables the use of a larger
Ada language subset and contracts are
expressed as Ada 2012 aspects. Replacing
the SPARK 2005 annotations with Ada
2012 contracts made the code much
cleaner.

- PCI device passthrough using Intel VT-d
(DMAR and IR)

 Hardware passthrough is realised using
Intel's VT-d DMA and interrupt
remapping technology. This enables the
secure assignment of PCI devices to
subjects.

Ada and Operat ing Systems 17

Ada User Journal Volume 36, Number 1, March 2015

- XML policy abstraction and enhanced
tool support

 The XML system description has been
modularised and additional abstractions
have been added to the policy. This
enables users to integrate complex
component-based systems running on top
of the Muen kernel.

Further changes and improvements
include:

- Support for Intel Haswell architecture

- Lightweight subject timer mechanism

- Scheduler improvements (minor frame
synchronisation)

- Subject Monitor migrated to SPARK
2014

- Debug server subject

Despite the addition of all these new
features the kernel has retained its small
size. Some numbers regarding the size of
Muen: the kernel including the minimal
zero-footprint runtime consists of a total
of 5308 source lines of code
(SPARK/Ada: 4979, Assembly: 329, as
reported by SLOCCount version 2.26).

A high-level document describing the
process of configuring and building a
component-based system running on the
Muen Separation Kernel is available on
the project website [2].

We would also like to mention that we
gave a talk about Muen at the High
Integrity Software conference HIS 2014
[3] in Bristol. The slides are available
online at [4].

Further information is available on the
project website [5] and the git repository
is at [6].

Please feel free to give the development
version of Muen a try. Feedback is much
appreciated!

[1] http://spark-2014.org/

[2] http://muen.codelabs.ch/muen-
toolchain.pdf

[3] http://www.his-2014.co.uk/

[4] http://www.slideshare.net/AdaCore/
slides-his-2014secunethsr

[5] http://muen.codelabs.ch/

[6] http://git.codelabs.ch/?p=muen.git

[See also “Muen Separation Kernel”, AUJ
35-1, p. 14. —sparre]

Ada-related Products

Janus/Ada

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 12 Nov 2014 16:47:21 -0600
Subject: Re: What exactly is the licensing

situation with GNAT?
Newsgroups: comp.lang.ada

> [...]

You could of course use a different,
commercial Ada compiler, rather than
insisting on GNAT. At least Janus/Ada
still costs $195 for the personal version
and $500 for the professional version. See
www.rrsoftware.com. (Disclaimer for
new people here, I'm a co-founder and
primary author of Janus/Ada, so I'm a bit
biased. :-)

> [...] what is missing is some sort of
intermediate license for people who just
want to write small scale applications and
don't have the security requirements of
big projects and thus don't need the
support that AdaCore offers. Something
like Turbo Pascal in the past or maybe
even Visual Studio in the Personal Edition
or so.

Aonix used to have an ObjectAda version
like that, but I heard that they got rid of it
as they couldn't afford to support it.
Janus/Ada is in that price range as well,
but I have to admit the same is true --
there isn't enough business to justify
working on it full-time. I have to do
standardisation stuff and ACATS stuff to
make ends meet.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 12 Nov 2014 20:10:39 -0600
Subject: Re: What exactly is the licensing

situation with GNAT?
Newsgroups: comp.lang.ada

> [...]

I've been holding off on updating the
website until all of the Windows 7 issues
are cleared.

> What is the status of Janus Ada and
CLAW with regard to Windows 7 & 8?

Windows 8 == Vista to me; I'm waiting
for Windows 10 as a system that tried to
make the desktop a second-class citizen is
near-worthless for programming. So no
testing there. (Tom Moran reported that
everything works the same there as it does
on Windows 7; I don't think there are any
additional issues, but as I said, I didn't try
them.)

As far as Windows 7 goes, there are a few
minor problems that have so far kept the
compiler in beta. The main one is that the
uninstaller doesn't work (I can't seem to
convince Windows that it should have the
permissions to uninstall, even when run
explicitly as an administrator). The minor
one (considering that it is obsolete even if
it works) is that the GUI programming
environment doesn't work at all; you'd
have to use some other editor. (Most
people prefer to do that anyway, but it
really ought to work; to do that, it will
have to be totally replaced, something I
don't have time for right now.)

The Claw binding and Claw programs
work on Windows 7, so far as I can tell
via testing. The Claw Builder comes up
with a white screen for some reason on

Windows 7, so it isn't usable right now on
that system. (I'm guessing that there is a
deadlock situation in the way Claw writes
the overlay, but it will take some intensive
testing to figure out the cause.) A more
minor problem is that the help files have
to be found manually every time you open
them, for some reason Windows 7 can't
remember where they are.

Anyway, the beta works on Windows 7,
with some glitches. Once the glitches are
gone, I'll update the web site, too.

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Thu, 13 Nov 2014 18:51:32 +0200
Subject: Re: What exactly is the licensing

situation with GNAT?
Newsgroups: comp.lang.ada

> [...]

Janus/Ada works on 64-bit Windows 8.1.
There are some quirks with filenames
(they seem to be partially case sensitive),
but otherwise everything is ok. (I
regularly test my Ada software on
Windows 8.1 with Janus/Ada.)

On 64-bit Windows 7 everything works
fine.

http://build.ada-language.com/view/
JanusAda/ provides build logs for some of
my Ada packages compiled on Windows
7.

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Sun, 23 Nov 2014 18:33:09 +0200
Subject: Re: What is the situation with

Janus Ada?
Newsgroups: comp.lang.ada

> [...]

Using Janus/Ada with WINE works. I
semi-regularly test my Ahven library with
Janus/Ada and WINE on Fedora Linux
20.

Mingw is not required, but Microsoft
Windows SDK is (the one which contains
the linker and some libraries).

I am currently using Janus/Ada on 32-bit
Windows XP, 64-bit Windows 7, and 64-
bit Windows 8.1. (WINE is set to use 32-
bit mode.)

Ada and Operating
Systems

Mac OS X: GNAT GPL
2014 for ARM-EABI

From: Simon Wright
<simon@pushface.org>

Date: Wed, 19 Nov 2014 09:54:06 +0000
Subject: ANN: GNAT GPL 2014 for arm-

eabi on Darwin
Newsgroups: comp.lang.ada

Find this at:
https://sourceforge.net/projects/gnuada/fil

18 Ada and Operat ing Systems

Volume 36, Number 1, March 2015 Ada User Journal

es/GNAT_GPL%20Mac%20OS%20X/20
14-arm-eabi-darwin-bin/

This is GNAT GPL 2014, rebuilt as a
cross-compiler from Mac OS X to arm-
eabi. Runtimes for two STM32F4 boards,
and examples, are included:

- STM32F4 Discovery

- STM32F429I Discovery

The compiler is known to run on
Mavericks and Yosemite.

For installation, untar gnat-gpl-2014-arm-
eabi-darwin-bin.tar.gz, enter gnat-gpl-
2014-arm-eabi-darwin-bin/ (there is a
README) and run doinstall. Note that
you must have a working host compiler; if
using Mavericks, this should be GNAT
GPL 2014, but if using Yosemite (at the
time of writing, 17.xi.2014, on which
GNAT GPL 2014 compilations fail) you
can use a compiler with an equivalent set
of tools, say FSF GCC 4.9.1 from [1].

Additionally, stlink-darwin-bin.zip
contains a .tar.gz file with the stlink
utilities used to communicate with the
boards over USB, and a README which
details installation.

Usage notes are in the AdaCore "GNAT
Pro User's Guide Supplement for Cross
Platforms"[2], specifically in section
K.2[3]. Note however that that document
is a work-in-progresss and discusses
features that didn't make it into the GNAT
GPL 2014 release:

 o gprbuild doesn't support the Project
attribute Runtime: instead, in package
Builder, Default_Switches ("Ada") should
include "--RTS={runtime}".

[1] https://sourceforge.net/projects/
gnuada/

[2] http://docs.adacore.com/
gnat_ugx-docs/html/gnat_ugx.html

[3] http://docs.adacore.com/
gnat_ugx-docs/html/
gnat_ugx_14.html#SEC204

[See also “GNAT for More ARM
Variants”, AUJ 35-4, p. 217. —sparre]

Windows: Gnoga

From: David Botton <david@botton.com>
Date: Thu, 27 Nov 2014 20:56:37 -0800
Subject: Gnoga on MinGW 32 and 64bits
Newsgroups: comp.lang.ada

It is now possible to build and use the
current distros of MinGW (gcc 4.8.1) 32
and 64 bits for building and using Gnoga
since AWS is no longer required. So it is
now possible to build unencumbered (i.e.
no GPL virus) versions of Gnoga apps on
Windows 32 and 64.

Since MinGW does not include gprtools I
have added make.bat and clean.bat which
use gnatmake -P instead.

If you use MinGW under Cygwin you
will need to change from gnatmake to

x86_64-mingw32-gnatmake (for 64bits)
or i686-w64-ming32-gnatmake (for
32bits)

Mac OS X: Native GUIs
with Gnoga

From: David Botton <david@botton.com>
Date: Thu, 18 Dec 2014 11:11:36 -0500
Subject: Gnoga native Mac OS X

application support added
Newsgroups: gmane.comp.lang.ada.macosx

To: GNAT-OSX-
dhAwdhUhaNgMT+7pcfOT8A@public.g
mane.org

http://www.gnoga.com

See docs/native_mac_apps.md for more
information, but here is a summary:

1. Create a singleton app using Gnoga

2. Make native support for Mac using:

 make native_osx

3. Copy your project's individual bin, js,
etc. directories to deps/MacGap2/public

4. Modify the index.html file in
deps/MacGap2/public to contain the
following lines:

 <script type="text/javascript"
 charset="utf-8">

 var p = MacGap.resourcePath +
"/public/bin/YOUR_GNOGA_APP_NA
ME";

 MacGap.launch (p);

 window.open("http://127.0.0.1:8080","_
self")

 </script>

 Note: The index.html page can be used to
display some sort of "loading" message
if desired.

5. From the deps directory run - open
MacGap2/MG.xcodeproj/

6. Build as you would any native Mac OS
X application for XCode.

Windows: ObjectAda
Special Edition

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Fri, 23 Jan 2015 02:37:07 -0800
Subject: Re: Free Downloadable Ada95

Compilers
Newsgroups: comp.lang.ada

> Are there any free downloadable Ada95
compiler except the GNAT one? [...]

Here, the ObjectAda 7.2.2 Special Edition

http://www.ada-deutschland.de/sites/
default/files/AdaTourCD/
AdaTourCD2004/entwicklungsumgebung
/Software/ObjectAda7.22/zip.zip

(from the page:
http://www.ada-deutschland.de/sites/
default/files/AdaTourCD/
AdaTourCD2004/index_tools.html)

Mac OS X: GNAT

From: Simon Wright
<simon@pushface.org>

Date: Sun, 25 Jan 2015 16:41:43 +0000
Subject: ANN: gcc 4.9.1bis for Darwin
Newsgroups: comp.lang.ada

This is to announce two GCC 4.9.1
compilers, one a Darwin native compiler
(the same as previously uploaded, but can
be installed in a place of your choice) and
one a cross-compiler to arm-eabi, aka
arm-none-eabi, as found on the
STMicroelectronics[1] STM32F4 series.

Both compilers work on Mavericks and
Yosemite.

The compilers are at the usual place[2].
They each have a similar installation
mechanism as that in the GNAT-GPL
series, so you can choose where to install
them (the default is /opt/gcc-4.9.1, but
/usr/local/gcc-4.9.1 works too; there may
be problems with longer paths). You can
install the cross compiler on top of the
native one.

The cross-compiler comes without an
RTS. You can find suitable RTS at [3],
together with a compiled copy of stlink
(the tools that enable download to the
board and debug). The 20150124 version
comes in two variants: one that just
supports the STCube BSP, and - more
interestingly - one that additionally
supports Ravenscar tasking via
FreeRTOS[4].

The tasking RTS has the following
restrictions (aside from pragma Profile
(Ravenscar)):

 pragma Restrictions (No_Allocators);
 pragma Restrictions (No_Dispatch);
 pragma Restrictions
 (No_Enumeration_Maps);
 pragma Restrictions
 (No_Exception_Propagation);
 pragma Restrictions (No_Finalization);
 pragma Restrictions (No_Recursion);
 pragma Restrictions
 (No_Secondary_Stack);

and the following bugs/features (see the
Tickets tab at [3]):

- You have to start tasking by calling
FreeRTOS.Tasks.Start_Scheduler from
your main program (it doesn't return
unless something is horribly wrong).

- Ada.Real_Time.Clock is only valid for
50 days (and has a tick of 1 ms).

- The Interrupt_Priority aspect on a PO
doesn't affect the actual interrupt's
priority (it does affect the PO's ceiling
priority).

- Some weird interaction between the
compiler and the RTS code means that a
protected spec hides package Interfaces.
You can 'use Interfaces;' before the
protected spec, though.

[1] http://www.st.com

Ada in Context 19

Ada User Journal Volume 36, Number 1, March 2015

[2] http://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20
X/4.9.1bis/

[3] http://sourceforge.net/projects/
stm32f4-gnat-rts/files/

[4] http://www.freertos.org

[See also “Mac OS X: GNAT”, AUJ 35-
3, p. 160. —sparre]

References to
Publications

Tutorial: Arduino Due
(ARM Cortex-Mx)

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Thu, 29 Jan 2015 15:16:01 -0800
Subject: Ada on Cortex-M: tutorial for

Arduino Due
Newsgroups: comp.lang.ada

I am pleased to announce the new tutorial
for Ada on ARM Cortex-Mx, with
examples for the Arduino Due board:

http://www.inspirel.com/articles/
Ada_On_Cortex.html

This tutorial is intended for Ada
beginners, but at the same time tries to
present the bare-metal approach to
embedded programming. It is not based
on the existing STM32FxDiscovery
packages and so is likely to propose some
alternative ideas.

The tutorial is a work in progress and is
intended to evolve with time. Your
comments, including critical ones, are
highly welcome.

Ada Inside

Rosetta/Philae

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 12 Nov 2014 17:36:38 +0100
Subject: PR while it's hot: Rosetta/Philae is

in Ada
Newsgroups: comp.lang.ada

An extraordinary result of the Ada/HOOD
combination! For the justification of this
choice, see:

http://adsabs.harvard.edu/full/1997ESASP
.409..133D

And tell your friends (an enemies too! ;-)

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 13 Nov 2014 12:23:02 +0100
Subject: Re: PR while it's hot:

Rosetta/Philae is in Ada
Newsgroups: comp.lang.ada

> Is there any Ada using Hood tutorial or
website.

You can start with http://en.wikipedia.org/
wiki/HOOD_method

There is also the "HOOD book":
http://www.adalog.fr/hoodbook.htm

There is also some information about
HOOD on the ESA site.

For products supporting HOOD, see
STOOD and CP-Hood on Ellidiss site
(http://www.ellidiss.com)

Vermont CubeSat

From: Jonathan
<johnscpg@googlemail.com>

Date: Wed, 12 Nov 2014 10:49:06 -0800
Subject: Re: PR while it's hot:

Rosetta/Philae is in Ada
Newsgroups: comp.lang.ada

While we're at it, we should congratulate
Peter Chapin and company for a
successful CubeSat mission. I notice that
the Wikipedia article says:

"Vermont Lunar is the only non
NASA/Air Force CubeSat from this
ELaNa IV launch that is fully working.
Eight were never heard from at all."

http://en.wikipedia.org/wiki/
Vermont_Lunar_CubeSat

http://embedded-computing.com/
articles/2014-vermont-technical-college/#

http://www.cubesatlab.org/

Mine Detector

From: David Botton <david@botton.com>
Date: Thu, 4 Dec 2014 23:54:05 -0500
Subject: New Gnoga Demo
Newsgroups: gmane.comp.lang.ada.gnoga

Jeff Carter has sent me a copy of his Mine
Detector game using Gnoga that is now
multi connect. I've put it up as a demo at
http://gnoga.com:8081

Web Chat with Gnoga

From: David Botton <david@botton.com>
Date: Fri, 9 Jan 2015 11:11:23 -0500
Subject: Gnoga Chat Demo from Jeff Carter
Newsgroups: gmane.comp.lang.ada.gnoga

To: Gnoga support list <Gnoga-list-
5NWGOfrQmneRv+LV9MX5uipxlwaO
VQ5f@public.gmane.org>

I put up a new demo from Jeff Carter (and
it is also in git at demo/ chattanooga) on
the Gnoga website, a chat app. I put it
under https (although certificate is a test
one) at:

 https://chat.gnoga.com

Ada in Context

Machine_Overflows

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 23 May 2014 16:39:54 -0500
Subject: Re: How to check a Float for NaN
Newsgroups: comp.lang.ada

> [...]

[...] I have no idea what's supposed to
happen if Machine_Overflows is False.
To the point that Janus/Ada simply
doesn't use it; Machine_Overflows is True
and we check after every group of
operations to ensure that's true. So it's not
possible to generate a NaN in Janus/Ada.
I understand that the other semantics
exists, but it's a mess by any standard and
I'd need a lot more convincing ($$$$) to
support something else. [That is, I see no
sensible reason for NaNs or infinities --
they're just ways of deferring detection of
bugs. I would have hoped that Ada's
moved beyond that, just like it has for
integers.]

From: Maurizio Tomasi
<ziotom78@gmail.com>

Date: Tue, 27 May 2014 05:35:26 -0700
Subject: Re: How to check a Float for NaN
Newsgroups: comp.lang.ada

> [...] I see no sensible reason for NaNs or
infinities -- they're just ways of deferring
detection of bugs. [...]

Being a scientist working with large
chunks of data, I find NaNs useful in a
number of situations. I work in a domain
(observational cosmology) where we need
to deal with sky maps containing ~10^7
pixels (you can think of a "map" as a 1D
vector where pixels on the sky sphere are
ordered according to some rule). Not
every sky direction can be sampled,
because of a number of problems (in the
instrument, in the observational strategy,
in the data reduction pipeline, etc.)

Therefore, in my Python+NumPy codes I
always mark such directions using "quiet
NaNs". If I have to combine two maps in
order e.g. to take their average, the usual
rules for combining NaNs are be exactly
what I want. Writing in Ada what I
actually write in Python:

 for I in Map1'Range loop
 Average_Map (I) :=
 0.5 * (Map1 (I) + Map2 (I));
 end loop;

If either Map1(I) or Map2(I) (or both) are
NaN, then Average_Map(I) will be a NaN
too, which is correct from the point of
view of the meaning of the measurement.
But without proper treatment of NaNs,
one should write:

 for I in Map1'Range loop
 if Is_NaN (Map1 (I)) or Is_NaN (Map2 (I))
 then
 Set_To_NaN (Average_Map (I));
 else
 Average_Map (I) :=
 0.5 * (Map1 (I) + Map2 (I));
 end if;
 end loop;

If one has to run many calculations on
such maps (which is indeed always the
case) instead of just a plain average, the
code can get quite complex. And I do not
think one gets more safety from such

20 Ada in Context

Volume 36, Number 1, March 2015 Ada User Journal

verbosity, as what a scientist expects from
a NaN number is actually what the usual
rules for NaN give.

I am not an Ada expert, so these are just
my two cents.

From: Adam Beneschan
<adam@irvine.com>

Date: Tue, 27 May 2014 08:53:00 -0700
Subject: Re: How to check a Float for NaN
Newsgroups: comp.lang.ada

[...]

But you don't need NaN's built into the
language in order to get that sort of
functionality. In Ada (or C++ or any other
language that supports operator
overloading), it's simple enough to define
an "optional floating-point" record type
consisting of a float and a Boolean, where
the Boolean indicates "missing data", and
define operators that produce "missing
data" if either operand is missing. So you
could still write mostly the same code,
except that converting to or from a float,
or from a floating-point literal, takes a
little extra code.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 27 May 2014 17:35:48 -0500
Subject: Re: How to check a Float for NaN
Newsgroups: comp.lang.ada

> [...]

If one has

 function "+" (Right : Float) return
 Optional_Float;

then the "extra code" is just preceeding
the float value with a "+". Hardly earth-
shaking. (And the usual complaint about
using "+" as a conversion operator is a
non-problem here as these are numeric
types).

I much prefer this sort of solution (where
the missing values are explicitly treated)
rather than using some sort of magic
number (a NaN being an extreme version
of that). The name alone tells you that it
doesn't belong in a numeric type -- since
when is something that is "not a number"
belong in a type defining numbers?

As usual, this is mainly a case of
premature optimisation (perverting the
hardware to handle something that's a rare
need -- I wonder how much faster float
hardware could be if it didn't have to mess
with NaNs? I know that they impacted
our software floating point quite a bit
even though I made no attempt to actually
do anything useful with them.)

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Tue, 27 May 2014 15:59:07 -0700
Subject: Re: How to check a Float for NaN
Newsgroups: comp.lang.ada

> [...] using some sort of magic number (a
NaN being an extreme version of that)
[...]

It's a clear violation of the software-
engineering principle that a value has only
a single meaning. (Of course, returning
zero from Ada.Strings.Fixed.Index is the
same error.)

Termination of Periodic
Tasks

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Tue, 17 Jun 2014 16:51:07 +0200
Subject: Re: Termination of periodic tasks
Newsgroups: comp.lang.ada

> The RM is silent about the order in
which tasks are awaited. [...]

There is no order, because all tasks
terminate together (9.3 (6..9)).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 17 Jun 2014 15:00:52 -0500
Subject: Re: Termination of periodic tasks
Newsgroups: comp.lang.ada

> Thus per design there is no way to make
a non-trivial library-level task to
complete without means outside the
library level. [...]

Actually, there is a way, at least if you
want to ensure that the program cleans
itself up properly. We invented it for
Claw, and I put it into the ACATS so it's
pretty certain that all compilers support it.

The trick is to use
Ada.Task_Identification to find out
whether the environment task is trying to
exit.

 if not Is_Callable (Environment_Task) then
 return; -- Exit this task.
 end if;

Is_Callable will only be False for the
environment task if the main subprogram
has exited and we're waiting for library-
level tasks to complete. In that case, we
want to kill off this task. (Note: Not all
Ada 95 compilers did this at the time,
some always returned true from it no
matter what. But that would fail ACATS
test CXC7004 in modern compilers, so it's
unlikely that many get this wrong. One
might want to look at that ACATS test for
a complete example of the method.)

It can be clunky to get this into the task
somewhere; it works best if the task is
actively polling (as the message loop task
in Claw is always doing).

Note: function Environment_Task was
added to the package in Ada 2012. For
earlier Ada, one needs to have the
elaboration of the package containing the
task squirrel away the task id:

 Environment_Task_Id : constant Task_Id :=
 Current_Task;
From: Charles H. Sampson

<csampson@inetworld.net>
Date: Tue, 17 Jun 2014 13:14:23 -0700
Subject: Re: Termination of periodic tasks
Newsgroups: comp.lang.ada

> > Why not have a "stop" entry called by
the main program when it terminates
(possibly through an exported
subprogram if you don't want to have
the task public)?

> Mostly because I believe this to be too
heavy for a burden for the client, and
somewhat of an abstraction leak.

I'm having trouble understanding how this
is too heavy. In most programs I've
written, there's a possibility of stopping.
Usually the need to stop is detected by or,
most commonly, propagated to the main
program. The main program then signals
all of its library packages to do whatever
is necessary for stopping. An exported
Stop subprogram seems a quite natural
way to do that.

I've even used implementations that have
exported Stop subprograms in all library
packages, some of them null. That
enforces the abstractions in that the main
program doesn't need to know which
library packages need to be wrapped up.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 18 Jun 2014 09:32:23 +0200
Subject: Re: Termination of periodic tasks
Newsgroups: comp.lang.ada

[...]

> I've even used implementations that
have exported Stop subprograms in all
library packages, some of them null.
[...]

I prefer a stateless design of packages
with explicit objects maintaining the state,
created by the client. That eliminates the
problem of task termination too.

Parsing Ada Source Text

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Thu, 19 Jun 2014 17:13:19 -0400
Subject: Re: Ada platforms and pricing,

was: Re: a new language, designed for
safety !

Newsgroups: comp.lang.ada

> My understand is that parsing Ada
requires name resolution to resolve
syntactic ambiguities.

Yes. The syntax rules given in the RM are
ambiguous. For example, in a context
expecting an expression, "X(Y)" could be
a function_call, type_conversion,
indexed_component, or slice. (Did I
forget any?) Likewise, in statement
context, that same text could be a
procedure_call or an entry_call.

The "X" in "X.Y" could be a name or an
implicit_dereference.

But...

>...This means symbol table management
and dealing with Ada's visibility rules
has to be done while parsing is taking
place.

Ada in Context 21

Ada User Journal Volume 36, Number 1, March 2015

But no, it doesn't mean that, and in fact
mixing semantic analysis with parsing is
highly undesirable. The parser should
build a tree, and not any "symbol table"
kinds of things. The output of the parser
should depend ONLY on the contents of a
single source file; it shouldn't need to
know about separate compilation.

Semantic analysis then walks the tree
built by the parser.

The way to deal with an expression
"X(Y)" is for the parser to build a tree
node that represents "something that looks
like a call or a type_conv or ...". That is,
"a name followed by a parenthesized,
comma-separated sequence of
expressions". That has been called an
"Apply" node in some compilers.

Basically, you need to write a grammar
for Ada that is unambiguous, and that
allows a superset of what the RM
grammar allows.

When semantic analysis sees an Apply
node for X(Y), it looks up X and Y. It
might find X denotes a type, or denotes
one or more functions, or ...

I've done serious work on about 7 or 8
Ada compilers, and this is how ALL of
them worked. (Here, I'm counting
independently designed compiler front
ends, not different host/target platforms.
That is, GNAT counts as "1 Ada
Compiler" I've worked on, even though it
supports many platforms.)

[...]

C compilers typically work the other way
(mixing parsing with semantic analysis),
to solve syntactic ambiguities related to
"typedef". IMHO any language that forces
that design on a compiler is broken. I'm
not sure C forces that design; maybe the
typedef problem could be solved
differently, but it doesn't look easy to me.

The Main Features of Ada

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Mon, 23 Jun 2014 09:18:11 +0300
Subject: Re: Ada platforms and pricing,

was: Re: a new language, designed for
safety !

Newsgroups: comp.lang.ada

> [...]

While I would like to have the standard
Ada tasking, timing, and exception
support, I would most definitely prefer an
Ada subset without them, over C. As I
remember, prof. McCormick's experience
from the model-railway exercise (where
his students failed when they used C, but
succeeded with Ada) identified Ada's
advantage over C to be in the better scalar
typing, not in the features that require a
full RTL (but I don't remember if
exceptions were a factor in McCormick's
experience).

I am currently working on an Ada project
with a null run-time and a proprietary
small multi-threading kernel. But I still
feel I am "doing Ada", although with a
different syntax for tasking. All the
advantages of the type and package
system are still there, and they are, to me,
the main feature of Ada (in this
application domain, at least).

Avoiding Exceptions

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 25 Nov 2014 16:12:07 -0600
Subject: Re: How to get nice with GNAT?
Newsgroups: comp.lang.ada

Åke Ragnar Dahlgren wrote:

> Of course I always listen seriously to
Jeff Carter but it's not obvious to me
that doing "C in Ada" is bad.

It's bad. :-)

> If I remember correctly Google
employees are recommended to avoid
using exceptions when doing C++. The
designers of Google Go has gone great
lengths to avoid the exception concept as
much as possible.

Very bad advice, IMHO. With one
exception (pun intended):

> In addition SPARK forbids usage of
exceptions.

While I think SPARK would be better
served with limited exception support, at
least they require a proof that no
exceptions can be raised.

The reason I feel so strongly about this is
that exceptions (especially
Constraint_Error and Program_Error)
point out bugs in your code. Whenever
you "eat" an exception (turning it into an
error code, or simply ignoring it), you've
put an opportunity to ignore a bug into
your code. With all of the potential
problems that entails.

To take a concrete example. My web
server runs with all exceptions enabled,
and there is very little handling of
exceptions (there are a few cases where
expected exceptions are handled, as when
a TCP/IP connection is unexpectedly
dropped). Mainly, the worker tasks handle
any surprise exceptions, log them, and
reset everything in that task to a fresh
state. Doing this prevents most bugs from
causing security problems -- while a
crafted input might cause one worker to
fail, that only causes the sender to get no
response. Other connections (workers) are
unaffected, and there is almost no chance
of a detected bug from overwriting
memory or disk or any of the other things
that cause security problems.

Exceptions surely aren't enough to
prevent all security issues, but they can
help avoid a substantial number of them.

(As previously noted, if you could prove
that no exceptions are possible - meaning
that no low-level bugs are possible - that
would be better than having to figure out
last-chance handlers and the like, but
that's still beyond the state of the art for
general purpose code. When that changes,
I'll reconsider my stance on exceptions,
but not until then.)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 26 Nov 2014 14:06:24 +0100
Subject: Re: How to get nice with GNAT?
Newsgroups: comp.lang.ada

> [...]

If exceptions were under a contract, the
list of possible exceptions to catch would
be definite and quite small in most cases.
So, actually, we could disallow "when
others" for all subprograms having an
exception contract and calling only such
subprograms (statically).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 26 Nov 2014 15:27:35 -0600
Subject: Re: How to get nice with GNAT?
Newsgroups: comp.lang.ada

> [...]

The practical problem with exception
contracts is that they encourage people
(especially coders rather than engineers)
to "eat" exceptions rather than to figure
out what ought to be done with them (or
better yet, redoing the
code/preconditions/predicates so they
can't arise). That's the practical experience
with them in Java, and that has caused
some ARG members to be rather strongly
against them. (Which is why they didn't
make it into Ada 2012.)

I personally find that misguided (because
Ada is for engineers, not coders), and I'll
try again with them the next Ada
amendment.

BTW, that's a problem with all statically
categorisation contracts. We're looking at
a potentially blocking categorisation as
part of the parallelisation effort. What
happens there is that calling any routine
that is potentially blocking is illegal inside
of a routine that is declared as non-
blocking. (And unlike exception
contracts, there's no workaround). The
effect is that one has to change the status
of lots of routines in order to use the
categorisation. (At least for this particular
categorisation, Ada already says which
language-defined routines are potentially
blocking, so it's just a matter of putting
that into aspects and pragmas as needed -
no arguments about whether Sin should
be potentially blocking :-)

Even so, I think statically checked
contracts and categorisations are going to
be important, because they eliminate bugs
at the source (and thus eliminate the need
to worry about how to handle a
substantial proportion of errors).

22 Ada in Context

Volume 36, Number 1, March 2015 Ada User Journal

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 27 Nov 2014 09:52:36 +0100
Subject: Re: How to get nice with GNAT?
Newsgroups: comp.lang.ada

> [...] (Which is why they didn't make it
into Ada 2012.)

Right, but only if you require all
subprograms to have contracts. Why
should we? We couldn't anyway because
it would break backward compatibility.
Thus, IMO, there is nothing to worry
about here.

> [...] I'll try again with them the next Ada
amendment.

Good

> [...] The effect is that one has to change
the status of lots of routines in order to
use the categorisation.

Which is desired, isn't it?

> [...]

Conditionally blocking? Some predicates
could depend (statically) on expressions.
This is important for exceptions as well:

 generic
 with procedure Visitor (E : Element);
 procedure Iterate (X : Container);

If Visitor is not contracted and Iterate is,
then the contract of Iterate should be "I
raise, what Visitor does".

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 1 Dec 2014 16:25:28 -0600
Subject: Re: How to get nice with GNAT?
Newsgroups: comp.lang.ada

Dmitry A. Kazakov wrote:

> The idea that all/most/some bugs should
somehow manifest their wrong
behaviour in exceptions is dubious.

Fascinating. I'd say the reverse: that
almost all bugs quickly manifest
themselves in an exception (at least in
well-designed Ada code). For instance, I
tend to make off-by-one errors in index
calculations. Such errors almost always
result in a Constraint_Error when the
index is used. Similarly, in Janus/Ada,
we've sometimes passed the wrong entity
to a subprogram; that almost always
shows up as a Constraint_Error detecting
the use of a non-existent variant. (If a
routine expects a symbol table pointer to
an object, and gets a package, the
components it needs aren't going to be
there.)

Indeed, the recent history of Ada includes
more and more ways to specify what is
expected/needed for a
parameter/object/component. Null
exclusions (Ada 2005), preconditions, and
predicates (Ada 2012) are all ways to
more closely tell the compiler what is
intended.

The next step, IMHO, is to include
exception contracts that effectively

require exceptions not to occur. If they in
fact do occur, then the program is wrong
and will be rejected by the compiler. That
means that "unexpected"
Constraint_Errors will be detected
statically and thus the manifestation of
many bugs can be detected -- thus
eliminating the bugs at the source.

Of course, once that next step is taken
(and I mean in the context of the full Ada
language, not just some simple subset like
SPARK), then you'll probably be right.
But that's still some distance in the future.

Subprograms outside
packages?

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Sun, 11 Jan 2015 14:51:24 -0500
Subject: Re: Multiple procedures in the

same adb file?
Newsgroups: comp.lang.ada

[...] It is unwise to have procedures
outside of packages [...]

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sun, 11 Jan 2015 23:38:34 +0200
Subject: Re: Multiple procedures in the

same adb file?
Newsgroups: comp.lang.ada

> [...]

Why "unwise"? I agree it is unusual, but I
find it is sometimes useful, in particular to
have subprograms which are children of
packages but are their own compilation
units. In a layered architecture, such
subprograms are sort of in a layer
between the higher layer that contains the
declaration of the parent package, and the
lower layer that contains the body of that
package.

In language-lawyer terms, perhaps such
subprograms are not really "outside of
packages", because child units are in
some sense "inside" their parents, but the
child subprograms are not "inside" any
package in terms of source-code files.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Sun, 11 Jan 2015 19:53:17 -0500
Subject: Re: Multiple procedures in the

same adb file?
Newsgroups: comp.lang.ada

> Why "unwise"?

Because sometimes you need to add new
stuff (another related procedure, for
example), and then there's no good place
to put it. If the existing procedure is in a
package, then that's where you put it.

This happened to me: Existing code:

 function Some_Root_Package.
 Some_Function (...) return String;

Now I happen to know that it always
returns String (1..20). And returning
known-length strings is more efficient,

and this one is a bottleneck, so it's worth
changing to something like:

 subtype String_20 is String (1 .. 20);
 function Some_Function (...)
 return String_20;

But that doesn't work without adding a
new package, which breaks compatibility.
And this was a widely-used library, so I
couldn't do that. And String_20 really
doesn't belong in Some_Root_Package,
nor anywhere else than the package that
Some_Function is (directly) in (which
didn't exist!).

If the original programmer had put
Some_Function in a child package
Some_Root_Package.Some_Package in
the first place, then I wouldn't have had
these problems.

I admit: these concerns are only
significant for widely-used libraries. If I
had been working on a program instead of
a library, I would have just moved
Some_Function into a package, and
modified all the call sites. But it's
probably a good idea to get in the habit of
using "library-programming" style even
when doing "program-programming", if
it's not too much trouble.

Besides, it complicates the language quite
a bit to have misc stuff allowed as
compilation units (e.g. task body
subunits). I would prefer that the only unit
of separate compilation be the package
(and maybe generic package).

> ... I agree it is unusual, but I find it is
sometimes useful, in particular to have
subprograms which are children of
packages but are their own compilation
units. In a layered architecture, such
subprograms are sort of in a layer
between the higher layer that contains
the declaration of the parent package,
and the lower layer that contains the
body of that package.

Sure, but you can do that with another
package just as well as with a procedure.

> In language-lawyer terms, perhaps such
subprograms are not really "outside of
packages", [...]

Yes, you're right. In fact, everything is
logically nested within package Standard,
so everything is in a package. But I meant
that everything should be
physically/textually nested within a
package, and packages (and generic
packages) should be the only separately-
compiled things. And main procedures
should be (textually) in packages, instead
of as standalone procedures (and that part
is not Ada -- just my preference for how it
ought to be!).

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Mon, 12 Jan 2015 10:01:28 +0100
Subject: Re: Multiple procedures in the

same adb file?
Newsgroups: comp.lang.ada

Ada in Context 23

Ada User Journal Volume 36, Number 1, March 2015

> This happened to me: [...]

Put the function in a package, and declare
Some_Function as:

 function Some_Function (...) renames
 New_Package.Some_Function;

(For compatibility, new programs would
use directly the function in the package.)

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Mon, 12 Jan 2015 09:57:58 -0500
Subject: Re: Multiple procedures in the

same adb file?
Newsgroups: comp.lang.ada

> [...]

I started to reply, "Good idea", but then I
remembered it doesn't work. A library

unit can only rename another library unit.
If it did work, I'd still prefer to use
packages from the start.

I see AARM-10.1.1(14.a) explains why
we have this restriction, in part "because
they wouldn't be particularly useful".
Probably written by somebody who
doesn't like library subprograms. ;-).

24

Volume 36, Number 1, March 2015 Ada User Journal

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with  denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2015

April 11-18 18th European Joint Conferences on Theory and Practice of Software (ETAPS'2015), London, UK.
Events include: CC (International Conference on Compiler Construction), ESOP (European Symposium
on Programming), FASE (Fundamental Approaches to Software Engineering), FOSSACS (Foundations
of Software Science and Computation Structures), POST (Principles of Security and Trust), TACAS
(Tools and Algorithms for the Construction and Analysis of Systems).

April 12 12th International Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA'2015). Topics include: modelling formalisms,
temporal properties and their formal verification, interface compliance and contractual
use of components, static and dynamic analysis, industrial case studies and experience
reports, etc.

April 12-15 23rd High Performance Computing Symposium (HPC'2015), Alexandria, VA, USA. Topics include:
high performance/large scale application case studies, multicore and many-core computing, distributed
computing, tools and environments for coupling parallel codes, high performance software tools, etc.

 April 13-17 18th IEEE International Symposium On Real-Time Computing (ISORC'2015), Auckland, New
Zealand. Topics include: object/component/service-oriented real-time distributed computing (ORC)
technology; programming and system engineering (ORC paradigms, languages, model-driven
development, specification, design, verification, validation, maintenance, time-predictable systems, ...);
system software (real-time kernels, middleware support for ORC, extensibility, synchronization,
scheduling, fault tolerance, security, ...); applications (embedded systems, real-time object-oriented
simulations, ...); system evaluation (timing, dependability, fault detection and recovery time, ...); etc.

April 13-17 30th ACM Symposium on Applied Computing (SAC'2015), Salamanca, Spain.

 April 13-17 Track on Programming Languages (PL'2015). Topics include: compiling techniques,
domain-specific languages, formal semantics and syntax, garbage collection, language
design and implementation, languages for modeling, model-driven development, new
programming language ideas and concepts, practical experiences with programming
languages, program analysis and verification, programming languages from all
paradigms, etc.

 April 13-17 Track on Object-Oriented Programming Languages and Systems (OOPS'2015).
Topics include: aspects and components, code generation and optimization, distribution
and concurrency, formal verification, integration with other paradigms, software
evolution, language design and implementation, modular and generic programming,
secure and dependable software, static analysis, testing and debugging, type systems,
etc.

 April 13-17 Track on Software Engineering (SE'2015). Topics include: software architecture, and
software design patterns; maintenance and reverse engineering; quality assurance;
verification, validation, testing, and analysis; formal methods and theories; component-
based development and reuse; safety, security, and risk management; dependability and
reliability; empirical studies, and industrial best practices; applications and tools; etc.

Conference Calendar 25

Ada User Journal Volume 36, Number 1, March 2015

April 13-17 Track on Programming for Separation of Concerns (PSC'2015). Topics include:
software reuse and evolution of legacy systems; consistency, integrity and security;
generative approaches; language support for aspect-oriented and SoC systems; etc.

April 13-17 Track on Software Verification and Testing (SVT'2015). Topics include: new results
in formal verification and testing, technologies to improve the usability of formal
methods in software engineering, applications of mechanical verification to large scale
software, etc.

April 20-22 17th International Real-Time Ada Workshop (IRTAW'2015), Vermont, New York,
USA. In cooperation with AdaCore and Ada-Europe.

April 27-29 7th NASA Formal Methods Symposium (NFM'2015), Pasadena, California, USA. Topics include:
identifying challenges and providing solutions to achieving assurance in mission- and safety-critical
systems, model checking, static analysis, modeling and specification formalisms, model-based
development, applications of formal methods to aerospace systems and cyber-physical systems, etc.

April 29-30 10th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE'2015), Barcelona, Spain. Topics include: comparing novel approaches with established
traditional practices and evaluating them against software quality criteria, software process
improvement, model-driven engineering, application integration technologies, software quality
management, software change and configuration management, geographically distributed software
development environments, formal methods, component-based software engineering and commercial-
off-the-shelf (COTS) systems, software and systems development methodologies, etc.

 May 16-24 37th International Conference on Software Engineering (ICSE'2015), Firenze, Italy. Topics include:
component-based software engineering; debugging, fault localization, and repair; dependability, safety,
and reliability; embedded and cyber physical systems; formal methods, verification, and synthesis;
middleware, frameworks, and APIs; model-driven engineering; parallel, distributed, and concurrent
systems; performance; program analysis; programming, specification, and modeling languages; reverse
engineering; security, privacy and trust; software architecture; software economics, management, and
metrics; software evolution and maintenance; software modeling and design; software product lines;
software reuse; tools and environments; etc.

May 16-24 Software Engineering Education and Training (SEET'2015). Topics include:
software and system development; new best practices for SEET; innovative curriculum
or course formats; blending software engineering and other engineering disciplines, such
as electrical engineering and bioengineering; cooperation in education between industry
and academia; continuous education to cope with technological change; etc.

May 16-24 Track on New Ideas and Emerging Results (NIER'2015). Topics include: startling
results that call into question current research directions, bold arguments on current
research directions that may be somehow misguided, etc.

May 18 3rd FME Workshop on Formal Methods in Software Engineering (FormaliSE'2015).
Topics include: integration of FMs in the software development life cycle, ability of
formal methods to handle real-world problems, formal methods in a certification
context, "lightweight" or usable FMs, application experiences, formal approaches to
safety and security related issues, scalability of FM applications, rigorous software
engineering approaches and their tool support, case studies developed/analyzed with
formal approaches, etc.

May 23 Workshop on COmplex faUlts and Failures in LargE Software Systems
(COUFLESS'2015). Topics include: applications of software maintenance technologies,
reliable software architectures and software engineering techniques, formal aspects
(semantics, reasoning, verification), evolution and reverse engineering, refactoring to
improve software reliability, software fault location, industrial points of view
(experiences, applications, open issues), etc.

May 25-29 29th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2015), Hyderabad,
India. Topics include: parallel and distributed algorithms, applications of parallel and distributed
computing, parallel and distributed software, including parallel and multicore programming languages
and compilers, runtime systems, parallel programming paradigms, programming environments and
tools, etc.

26 Conference Calendar

Volume 36, Number 1, March 2015 Ada User Journal

 May 25 Workshop on Programming Models, Languages and Compilers for Manycore and
Heterogeneous Architectures (PLC'2015). Topics include: programming models
(thread and task based models, data parallel models, stream programming),
programming environments for heterogeneous systems, compiler optimizations, runtime
systems for multicore processors, application and benchmarks, etc.

May 25 5th NSF/TCPP Workshop on Parallel and Distributed Computing Education
(EduPar-15). Topics include: novel approaches to incorporating Parallel and Distributed
Computing (PDC) topics into undergraduate core courses that are taken by the majority
of students in a program; pedagogical tools, programming environments, and languages
for PDC; etc.

 May 25 20th International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS'2015). Topics include: the areas of parallel
applications, language design, compilers, runtime systems, and programming tools; the
areas of emerging programming models for large-scale parallel systems and many-core
architectures; new programming languages and constructs for exploiting parallelism and
locality; experience with and improvements for existing parallel languages and run-time
environments; parallel compilers, programming tools, and environments; programming
environments for heterogeneous multicore systems; etc.

June 13-17 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2015),
Portland, Oregon, USA. Topics include: programming language research, including the design,
implementation, theory, and efficient use of languages; innovative and creative approaches to compile-
time and runtime technology, novel language designs and features, and results from implementations;
language designs and extensions; static and dynamic analysis of programs; domain-specific languages
and tools; type systems and program logics; checking or improving the security or correctness of
programs; memory management; parallelism, both implicit and explicit; debugging techniques and
tools; etc.

 June 18-19 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES'2015), Portland, Oregon, USA. Topics include: features to exploit multicore, reconfigurable,
and other emerging architectures; features for distributed, adaptive, and real-time control embedded
systems; language capabilities for specification, composition, and construction of embedded systems;
language features and techniques to enhance reliability, verifiability, and security; concurrency; memory
management; support for enhanced programmer productivity; support for enhanced debugging,
profiling, and exception/interrupt handling; tools for analysis, specification, design, and implementation;
system integration and testing; run-time system support for embedded systems; support for system
security and system-level reliability; validation and verification, in particular of concurrent and
distributed systems; formal foundations of model-based design as basis for code generation, analysis,
and verification; etc.

 June 22-23 20th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2015),
Oslo, Norway. Topics include: design, specification, code generation and testing based on formal
methods; methods, techniques and tools to support automated analysis, certification, debugging,
learning, optimization and transformation of complex, distributed, real-time systems and embedded
systems; verification and validation methods that address shortcomings of existing methods with respect
to their industrial applicability (e.g., scalability and usability issues); tools for the development of formal
design descriptions; case studies and experience reports on industrial applications of formal methods,
focusing on lessons learned or identification of new research directions; impact of the adoption of
formal methods on the development process and associated costs; application of formal methods in
standardization and industrial forums.

 June 22-26 20th International Conference on Reliable Software Technologies - Ada-
Europe'2015, Madrid, Spain. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association (ARA).

 June 22 Workshop on Challenges and New Approaches for Dependable and Cyber-
Physical System Engineering (De-CPS 2015). Topics include: Industrial challenges
and experience reports on co-engineering for multiple dependability concerns in CPS
engineering; Modeling and analysis of Cyber-Physical Systems (CPS) via contract-
based approaches; Tools and methodologies to guarantee safety-related properties,
including real-time and mixed-criticality cohabitation; Challenges posed for CPS design

Conference Calendar 27

Ada User Journal Volume 36, Number 1, March 2015

and safety verification by multi-core processors. Deadline for submissions: April 20,
2015.

 June 26 Workshop on Architecture Centric Virtual Integration (ACVI 2015). Topics
include: Architecture Analysis and Design Language; model-driven approaches;
distributed, real-time and embedded systems. Deadline for submissions: April 19, 2015.

June 22-26 20th International Symposium on Formal Methods (FM'2015), Oslo, Norway. Topics include:
interdisciplinary formal methods (techniques, tools and experiences demonstrating formal methods in
interdisciplinary frameworks); formal methods in practice (industrial applications of formal methods,
experience with introducing formal methods in industry, tool usage reports, etc); tools for formal
methods (advances in automated verification and model-checking, integration of tools, environments for
formal methods, etc); role of formal methods in software and systems engineering (development
processes with formal methods, usage guidelines for formal methods, method integration, qualitative or
quantitative improvements); theoretical foundations (all aspects of theory related to specification,
verification, refinement, and static and dynamic analysis).

 June 22 2nd International Workshop on Safety and Formal Methods (SaFoMe'2015). Topics
include: formal languages and verification techniques for: design, validation, and
verification of safety-critical component-based systems; design and verification of real-
time, embedded safety-critical systems; formal methods for safety and security;
contract-based design and verification of safety-critical embedded systems; formal
methods in the certification of safety-critical systems; formal methods applied in the
context of industrial safety-critical case studies; experience reports of using formal
methods for certification (e.g., DO 178C); etc.

June 22 4th International Workshop on Engineering Safety and Security Systems
(ESSS'2015). Theme: "Methods and techniques for constructing large reliable and
secure systems". Topics include: methods, techniques and tools for system safety and
security; methods, techniques and tools for analysis, certification, and debugging of
complex safety and security systems; case studies and experience reports on the use of
formal methods for analyzing safety and security systems; etc.

June 23 1st Formal Methods in Software Engineering Education and Training Workshop
(FMSEET'2015). Topics include: best practices in formal methods education, languages
and tools for formal methods education, formal engineering methods versus formal
methods, continuous education to cope with technological change, etc.

Jun 29 - Jul 01 12th International Conference on Mathematics of Program Construction (MPC'2015),
Königswinter, Germany. Topics of interest range from algorithmics to support for program construction
in programming languages and systems, such as type systems, program analysis and transformation,
programming-language semantics, security, etc.

 Jun 29 - Jul 02 14th International Symposium on Parallel and Distributed Computing (ISPDC'2015), Limassol,
Cyprus. Topics include: multi-cores, methods and tools for parallel and distributed programming, tools
and environments for parallel program design/analysis, parallel programming paradigms and APIs,
distributed software components, parallel embedded systems programming, scheduling, security and
dependability, real-time distributed and parallel systems, etc. Deadline for early registration: May 6,
2015.

Jun 29 - Jul 03 9th ACM International Conference on Distributed Event-Based Systems (DEBS'2015), Oslo,
Norway. Topics include: software systems, distributed systems, dependability, programming languages,
security, software engineering, real-time analytics, embedded systems, enterprise application
integration, etc. Deadline for submissions: April 30, 2015 (Doctoral Symposium papers, posters,
demos).

July 01-05 39th Annual IEEE International Computer Software and Applications Conference
(COMPSAC'2015), Taichung, Taiwan. Event includes: symposium on Embedded & Cyber-Physical
Environments; symposium on Software Engineering Technologies & Applications; symposium on
Security, Privacy and Trust Computing; symposium on Novel Applications and Technology Advances
in Computing; symposium on Computer Education and Learning Technologies; etc.

July 06-07 20th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2015), Vilnius, Lithuania.

28 Conference Calendar

Volume 36, Number 1, March 2015 Ada User Journal

 July 06-10 29th European Conference on Object-Oriented Programming (ECOOP'2015), Prague, Czech
Republic. Topics include: all areas of object technology and related software development technologies,
such as concurrent and parallel systems, distributed computing, programming environments, versioning,
refactoring, software evolution, language definition and design, language implementation, compiler
construction, design methods, design patterns, aspects, components, modularity, type systems, program
analysis, specification, verification, security, real-time systems, etc.

 July 07-10 27th Euromicro Conference on Real-Time Systems (ECRTS 2015), Lund, Sweden. Topics include:
Embedded/RT Systems Design; Scheduling Design and Analysis; WCET Analysis, Power, Energy
and/or Thermal Aware RTS; RT operating Systems and Middlewares; Network/System-on-Chips;
Mixed Criticality Design & Assurance; (Wireless) Sensor networks; RT Applications; Tools and
Compilers for embedded systems. Deadline for submissions (workshops): April 24, 2015.

July 07 6th International Real-Time Scheduling Open Problems Seminar (RTSOPS 2015).
Topics include: Single-, Multi- and Many-core scheduling; New models for real-time
systems; Scheduling in cyber-physical systems; Mixed-criticality scheduling;
Interactions between WCET (worst-case execution time) analysis and scheduling.

July 07 15th International Workshop on Worst-Case Execution Time Analysis (WCET
2015). Topics include: WCET/ETB analysis for multi- and many-core systems;
WCET/ETB analysis for COTS processors; Case studies, and industrial experience of
WCET/ETB analysis; Timing Analysis and safety standards; Probabilistic timing
analysis; Methods and benchmarks for timing analysis evaluation; etc..

July 07 11th International Workshop on Operating Systems Platforms for Embedded Real-
Time Applications (OSPERT 2015). Topics include: Certification and verification of
RTOSs and middleware; Operating system standards (e.g., AUTOSAR, ARINC,
POSIX, etc.); Real-time virtualization and hypervisors; Support for (embedded)
multiprocessor architectures; Support for component-based development; etc.

July 07 6th International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS 2015). Topics include: Tools and methods for the
analysis of real-time systems; Realistic case studies and reusable data sets; Modelling,
analysis and simulation of, possibly mixed-criticality, real-time, distributed, and
embedded systems running on multi-core, many-core, massively parallel, or distributed
systems; etc.

July 13-16 10th IEEE International Conference on Global Software Engineering (ICGSE'2015), Ciudad Real,
Spain. Theme: "Solutions for distributed product development and maintenance" Topics include:
software design and architecture for distributed development, strategic issues in distributed
development, industrial offshoring and outsourcing experiences, tools and infrastructure support for
distributed teams, methods and processes for global organizations, etc. Deadline for submissions: May
1, 2015 (industrial abstracts).

July 18-24 27th International Conference on Computer Aided Verification (CAV'2015), San Francisco,
California, USA. Topics include: theory and practice of computer-aided formal analysis methods for
hardware and software systems, algorithms and tools for verifying models and implementations,
program analysis and software verification, verification methods for parallel and concurrent
hardware/software systems, testing and run-time analysis based on verification technology, applications
and case studies in verification, verification in industrial practice, verification techniques for security,
etc.

July 20-24 Software Technologies: Applications and Foundations (STAF'2015), L'Aquila, Italy. Successor of
the TOOLS federated event. Topics include: practical and foundational advances in software
technology, from object-oriented design, testing, mathematical approaches to modelling and
verification, transformation, model-driven engineering, aspect-oriented techniques, and tools.

July 20-24 9th International Conference on Tests And Proofs (TAP'2015). Topics include: the
synergy of proofs and tests, to the application of techniques from both sides and their
combination for the advancement of software quality; transfer of concepts from testing
to proving (e.g., coverage criteria) and from proving to testing; program proving with
the aid of testing techniques; verification and testing techniques combining proofs and
tests; generation of test data, oracles, or preambles by deductive techniques; automatic

Conference Calendar 29

Ada User Journal Volume 36, Number 1, March 2015

bug finding; case studies combining tests and proofs; formal frameworks; tool
descriptions and experience reports; etc.

July 21-23 34th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2015), Donostia-San Sebastián, Spain.

August 03-05 IEEE International Conference on Software Quality, Reliability and Security (QRS'2015),
Vancouver, Canada. Merger of SERE conference (International Conference on Software Security and
Reliability) and QSIC conference (International Conference on Quality Software). Topics include:
reliability, security, availability, and safety of software systems; software testing, verification and
validation; software vulnerabilities; formal methods; benchmark, tools, and empirical studies; etc.
Deadline for submissions: April 15, 2015 (workshop papers, Student Doctoral Program papers), May 1,
2015 (fast abstracts).

 August 20-22 13th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2015), Helsinki, Finland. Topics include: parallel and distributed algorithms; tools/environments
for parallel/distributed software development; novel parallel programming paradigms; code generation
and optimization; compilers for parallel computers; middleware and tools; scheduling and resource
management; reliability, fault tolerance, dependability, and security; parallel and distributed systems and
architectures; applications of parallel and distributed processing; high-performance scientific and
engineering computing; etc.

 August 24-28 21st International European Conference on Parallel Computing (Euro-Par'2015), Vienna, Austria.
Topics include: all aspects of parallel and distributed processing, such as support tools and
environments, scheduling, compilers, distributed systems and algorithms, parallel and distributed
programming and languages, multicore and manycore programming, theory and algorithms for parallel
computation, etc. Deadline for submissions: May 22, 2015 (workshop papers).

August 26-28 41st Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2015),
Madeira, Portugal. Topics include: information technology for software-intensive systems; model-based
development, components and services (MOCS); software process and product improvement (SPPI);
embedded software engineering (ESE); cyber-physical systems (CPS); etc.

Aug 31- Sep 04 10th Joint European Meeting of the Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE'2015), Bergamo, Italy. Topics
include: components and middleware, development environments and tools, distributed software,
embedded and real-time software, maintenance and evolution, model-driven software engineering,
parallel and concurrent software, reverse- and re-engineering, software architecture, software
economics, validation, verification, and testing, etc. Deadline for applications: April 15, 2015 (tutorials),
June 1, 2015 (Doctoral Symposium, industrial track), June 7, 2015 (New Ideas track, tool
demonstrations, replication packages).

 Sep 01-04 International Conference on Parallel Computing 2015 (ParCo'2015), Edinburgh, Scotland, UK.
Topics include: all aspects of parallel computing, including applications, hardware and software
technologies as well as languages and development environments, in particular parallel programming
languages, compilers, and environments, tools and techniques for generating reliable and efficient
parallel code, testing and debugging techniques and tools, best practices of parallel computing on
multicore, manycore, and stream processors, etc.

 Sep 01-04 44th Annual International Conference on Parallel Processing (ICPP'2015), Beijing, China. Topics
include: all aspects of parallel and distributed computing, such as applications, architectures, compilers,
programming models, etc.

 Sep 01-04 International Workshop on Embedded Multicore Systems (EMS'2015). Topics
include: programming models for embedded multicore systems; software for multicore,
GPU, and embedded architectures; real-time system designs for embedded multicore
environments; applications for automobile electronics of multicore designs; compiler for
worst-case execution time analysis; formal method for embedded systems; etc. Deadline
for submissions: May 1, 2015.

September 01-04 15th Workshop on Automated Verification of Critical Systems (AVoCS'2015), Edinburgh, Scotland,
UK. Topics include: model checking, specification and refinement, verification of software and
hardware, specification and verification of fault tolerance and resilience, real-time systems, dependable
systems, verified system development, industrial applications, etc. Deadline for submissions: June 5,

30 Conference Calendar

Volume 36, Number 1, March 2015 Ada User Journal

2015 (abstracts), June 12, 2015 (full papers), August 7, 2015 (research ideas). Deadline for early
registration: August 18, 2015.

September 06-09 11th International Conference on Parallel Processing and Applied Mathematics (PPAM'2015),
Krakow, Poland. Topics include: multi-core and many-core parallel computing; parallel/distributed
algorithms (numerical and non-numerical); scheduling, mapping, load balancing; parallel/distributed
programming; tools and environments for parallel/distributed computing; security and dependability in
parallel/distributed environments; applications of parallel/distributed computing; etc. Deadline for
submissions: April 26, 2015 (papers).

 Sep 06-09 6th Workshop on Language-Based Parallel Programming Models (WLPP'2015).
Topics include: language and library implementations; proposals for, and evaluation of,
language extensions; applications development experiences; comparisons between
programming models; compiler implementation and optimization; etc. Deadline for
submissions: April 26, 2015.

September 07-08 7th International Workshop on Software Engineering for Resilient Systems (SERENE'2015), Paris,
France. Topics include: requirements engineering & re-engineering for resilience; frameworks, patterns
and software architectures for resilience; design of trustworthy systems; verification, validation and
evaluation of resilience; empirical studies in the domain of resilient systems; methodologies adopted in
industrial contexts; etc. Deadline for submissions: April 24, 2015.

September 07-11 13th International Conference on Software Engineering and Formal Methods (SEFM'2015), York,
UK. Topics include: abstraction and refinement; programming languages, program analysis and type
theory; formal methods for real-time, hybrid and embedded/cyber-physical systems; formal methods for
safety-critical, fault-tolerant and secure systems; software verification and validation; formal aspects of
software evolution and maintenance; light-weight and scalable formal methods; tool integration;
applications of formal methods, industrial case studies and technology transfer; education and formal
methods; etc. Deadline for submissions: May 22, 2015 (workshop papers).

September 13-16 Federated Conference on Computer Science and Information Systems (FedCSIS'2015), Lodz,
Poland. Deadline for submissions: April 24, 2015 (papers), June 1, 2015 (position papers).

 Sep 13-16 5th Workshop on Advances in Programming Languages (WAPL'2015). Topics
include: compiling techniques; domain-specific languages; generative and generic
programming; languages and tools for trustworthy computing; language concepts,
design and implementation; model-driven engineering languages and systems; practical
experiences with programming languages; program analysis, optimization and
verification; programming tools and environments; specification languages; type
systems; etc. Deadline for submissions: April 24, 2015 (papers), June 1, 2015 (position
papers). Deadline for early registration: July 1, 2015.

Sep 13-16 8th Workshop on Computer Aspects of Numerical Algorithms (CANA'2015). Topics
include: parallel numerical algorithms; libraries for numerical computations; languages,
tools and environments for programming numerical algorithms; paradigms of
programming numerical algorithms; etc. Deadline for submissions: April 24, 2015
(papers), June 1, 2015 (position papers).

September 22-25 15th International Conference on Runtime Verification (RV'2015), Vienna, Austria. Topics include:
monitoring and analysis of software and hardware system executions. Application areas include:
safety/mission-critical systems, enterprise and systems software, autonomous and reactive control
systems, health management and diagnosis systems, and system security and privacy. Deadline for
submissions: April 12, 2015 (abstracts), April 19, 2015 (full papers).

Sep 28 - Oct 01 34th International Symposium on Reliable Distributed Systems (SRDS'2015), Montreal, Canada.
Topics include: distributed objects and middleware systems, experimental or analytical evaluations of
dependable distributed systems, formal methods and foundations for dependable distributed computing,
high-assurance and safety-critical distributed system design and evaluation, secure and trusted
distributed systems, dependability in cyberphysical systems, etc.

October 18-21 24th International Conference on Parallel Architectures and Compilation Techniques
(PACT'2015), San Francisco, California, USA. Topics include: parallel architectures and computational
models; compilers and tools for parallel computer systems; middleware and run time system support for
parallel computing; support for correctness in concurrent hardware and software; parallel programming

Conference Calendar 31

Ada User Journal Volume 36, Number 1, March 2015

languages, algorithms and applications; applications and experimental systems studies; etc. Deadline for
submissions: August 10, 2015 (ACM Student Research Competition).

October 25-27 ACM SIGPLAN 8th International Conference on Software Language Engineering (SLE'2015),
Pittsburgh, Pennsylvania, USA. Topics include: techniques for software language reuse, evolution and
management of variations (syntactic/semantic) within language families; applications of DSLs for
different purposes (incl. modeling, simulating, generation, description, checking); novel applications
and/or empirical studies on any aspect of SLE (development, use, deployment, and maintenance of
software languages); etc. Deadline for submissions: June 1, 2015 (abstracts), June 15, 2015 (full papers).

 October 25-30 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2015), Pittsburgh, Pennsylvania, USA. Topics include: all aspects of software
construction and delivery, at the intersection of programming, languages, and software engineering.
Deadline for submissions: June 7, 2015 (Dynamic Languages Symposium), June 30, 2015 (workshops
late phase). Deadline for early registration: September 25, 2015.

November 03-06 17th International Conference on Formal Engineering Methods (ICFEM'2015), Paris, France.
Topics include: abstraction and refinement; program analysis; software verification; software model
checking; formal methods for object and component systems, concurrent and real-time systems, cyber-
physical systems, for software safety, security, reliability and dependability; tool development,
integration and experiments involving verified systems; formal methods used in certifying products
under international standards; formal model-based development and code generation; etc. Deadline for
submissions: April 19, 2015 (abstracts), April 26, 2015 (full papers).

December 08-11 16th ACM/IFIP/USENIX International Middleware Conference (Middleware'2015), Vancouver,
Canada. Topics include: design, implementation, deployment, and evaluation of distributed system
platforms and architectures for computing, storage, and communication environments; reliability and
fault-tolerance; real-time solutions; scalability and performance; programming frameworks, parallel
programming, and design methodologies for middleware; methodologies and tools for middleware
design, implementation, verification, and evaluation; retrospective reviews of middleware paradigms;
etc. Deadline for submissions: May 15, 2015 (abstracts), May 20, 2015 (papers).

December 10 200th birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

The 20th International Conference on Reliable Software Technologies – Ada-Europe 2015 will take place in
Madrid, Spain. As per its traditional style, the conference will span a full week, including, from Tuesday to
Thursday, three days of scientific, technical and industrial programs, along with tutorials and workshops on
Monday and Friday.

The conference will be hosted by ETSIT-UPM, a leading engineering school covering teaching and research in
all fields related to Information and Communications Technology, located in Ciudad Universitaria, the main
University campus in Madrid near the area of Moncloa.

Overview of the week

For full details and up-to-date information see the conference web site:

http://www.ada-europe.org/conference2015

Keynote talks
On the three central days of the conference week, a keynote will be delivered as the opening event to address
hot topics of relevance in the conference scope. The keynote speakers include Jon Pérez, head of embedded
systems research at IKERLAN, who will present his work on EC-61508 Certification of Mixed-Criticality Systems
Based on Multicore and Partitioning; Javier Rodríguez, from Siemens Rail Automation, who will talk on his
experience in Software Development of Safety-Critical Railway Systems; and Andras Balasz, to talk on The
Central On-board Computer of the Philae Lander in the Context of the Rosetta Space Mission, based on his long
experience in the Rosetta-Philae and other space projects.

Exhibition
From Tuesday until Thursday the coffee break area will feature exhibitor booths, project posters, reserved
vendor tables, and general networking options. If interested, contact the exhibition chair (see website).

Monday Tuesday Wednesday Thursday Friday

Tutorials
&

DeCPS Workshop

Keynote talk Keynote talk Keynote talk

Tutorials
&

ACVI Workshop

Regular session
Language technology

Industrial session
Critical systems

Regular session
Critical systems

Vendor session
Regular session

Real-time
applications

Industrial session
Tools at work

Industrial session
Ada applications

Special session
Advances on methods

Regular session
Multicore &

distributed systems

Ada-Europe General
Assembly

Welcome cocktail

Conference banquet
Best paper award

Ada Lovelace
Celebration

Best presentation
award

Closing session

20th International Conference on Reliable Software Technologies

Ada-Europe 2015
22–26 June 2015, Madrid, Spain

http://www.ada-europe.org/conference2015

Tutorials

Workshops
Two major workshops are taking place in connection with the conference.

• Monday 22 June: Challenges and new Approaches for Dependable and Cyber-Physical Systems Engineering.

• Friday 26 June: Architecture Centric Virtual Integration.

Social program
A welcome cocktail will be served at the conference location on Tuesday evening, followed by a bus transport
to central Madrid. The participants will then be let free to have dinner in the city, where there are plenty of
tapas bars and traditional restaurants within reach.
The conference banquet will take place on Wednesday evening at Club de Campo Villa de Madrid, a country
club located at the outskirts of the city, with magnificent views. Superb dinner will be served, and we will give
the award for best paper as usual.

Further information
The conference web site gives full and up to date details of the program and the venue, including travel
advice, maps and hotels close by. A limited number of rooms have been blocked for the conference in the Exe
Moncloa hotel in Moncloa, but please be prompt in booking your accommodation since the demand is high in
Madrid for the conference dates. Online registration is open, with reduced fees until June 7.

Ada 2015 sponsors
(preliminary list)

Monday 22 June

Morning T1 - J.P. Rosen

Access types and Memory
Management in Ada 2012

T3 - B. Moore, S.Michell

Parallelism in Ada, Today
and Tomorrow

T4 - F. Cazorla,  
T. Vardanega, J. Abella,
M. Pearce

Probabilistic Timing Analysis Afternoon T2 - J.P. Rosen

Designing and Checking
Coding Standards for Ada

Friday 26 June

Morning T5 - J. Sparre-Andersen

Ada 2012 (Sub)Types and
Subprogram Contracts in
Practice

T7 - W. Bail

Software Measures for
Dependable Software
Systems T9 - P. Rogers

Real-Time/Embedded
Programming with Ada
2012Afternoon T6- E. Briot, B. Brosgol

When Ada Meets Python:
Extensibility through
Scripting

T8- W. Bail

Software Design Concepts
and Pitfalls

http://www.ada-europe.org/conference2015

34

Volume 36, Number 1, March 2015 Ada User Journal

An Invitation to Join Ada-Europe

What is Ada-Europe?

Ada-Europe is an international organization, set up to promote
the use of Ada. It aims to spread the use and the knowledge of
Ada and to promote its introduction into academic and research
establishments. Above all, Ada-Europe intends to represent
European interests in Ada and Ada-related matters.

In its current form, Ada-Europe was established in 1988. As there
is no European legal framework to govern such organizations, it
was established according to Belgian Law. Currently, the member
organizations are: Ada-Belgium, Ada in Denmark, Ada-
Deutschland, Ada-France, Ada-Spain, Ada in Sweden and Ada-
Switzerland. Individual members of these organizations can
become indirect members of Ada-Europe. Direct membership is
available to individuals in countries without national member
organization.

What does Ada-Europe do?

The best-known of Ada-Europe's activities is its annual
conference. These conferences usually attract around 100
participants. They involve three days of lectures and
presentations, and provide the perfect opportunity to discuss new
information and exchange experiences with fellow Ada users. As
well as the usual conference features, you have the opportunity to
attend an additional two days of tutorials dealing with specialist
Ada matters. The conference also hosts an exhibition, where Ada-
related products are presented.

Ada-Europe offers a framework for setting up working groups
and task groups to discuss and investigate technical aspects of
using Ada on a European basis. It provides grants for Ada-related
conferences and activities.

The members of Ada-Europe also receive the quarterly Ada User
Journal, produced by Ada-Europe. This journal contains Ada-
related papers, experience reports, details of past, present and
future Ada events and activities, and reviews of new publications
and products. The journal is usually distributed via the national
member organizations, but can also be mailed directly at
additional postage costs.

A reduced registration fee at the annual Ada-Europe conference
is an additional benefit to direct and indirect members registered
with Ada-Europe by their national organizations. On a semi-
regular basis, Ada-Europe "surprises" its individual members
with useful material: for example, in 2006 the offer of the Ada
2005 Reference Manual, or more recently, the discounted price
for the Ada 2012 Reference Manual and for the Programming in
Ada 2012 book.

How to become a member of Ada-Europe?

Individuals

If you want to become a member of Ada-Europe, please join your
national Ada organisation and become an indirect member of
Ada-Europe. In some countries, indirect membership in Ada-
Europe is automatically part of your national membership; in
other countries, it is an optional element of your national
membership.

As benefits you will:

 receive a free copy of the quarterly Ada User Journal,
distributed via the national Ada organisations

 have a reduced registration fee at the annual Ada-Europe
conference (exceeding the cost of your indirect
membership)

 access free or discounted books and other resources

 participate in both technical inititativaes as well as
community building actions.

Your benefits run from April to March of the following year.

If your country does not have a national Ada organisation, you
can contact the Secretary of Ada-Europe to become a direct
member of Ada-Europe. Your benefits are the same as for
indirect members, except that the Journal is shipped directly to
you.

Institutions

National Ada organisations are the primary promoters of
corporate memberships. In case a national Ada organisation
exists in your country, it can offer its corporate members to
designate individuals as indirect members of Ada-Europe at the
Ada-Europe individual indirect membership fee (plus any fees
that your national organization charges).

In case no national organisation exists in your country, corporate
membership may be established directly with Ada-Europe.

Further information

For further information please refer to Ada-Europe’s website at
http://www.ada-europe.org, or contact the General Secretary of
Ada-Europe.

National organizations contacts are available on the last page.

 35

Ada User Journal Volume 36, Number 1, March 2015

Ada Lovelace: Victorian Computing Visionary
Suw Charman-Anderson

Abstract

This year is the 200th anniversary of Ada Lovelace’s
birth, a woman whose achievements lay unrecognised
for more than a hundred years, and who even now is
not the household name she ought to be.

Back in 2009, I was searching for a name for a day of
blogging about women in tech that I was planning,
and a friend suggested that Ada Lovelace would be
the perfect candidate. I had never heard of her, but
the more that I read about her, the more I realised
that she would was the perfect tech heroine: Not only
did she write the first computer program, it was for a
mechanical computing machine - Charles Babbage’s
Analytical Engine - which was not and never would
be built.

But Ada did more than write a program to calculate
Bernoulli numbers, she also realised that the
Analytical Engine was much more than just a
glorified calculator. She saw that it could do very
human things, like make music or graphics, given the
right inputs and algorithms. She foresaw what we now
call computer science but, like many women in that
field, her legacy is questioned, her capabilities
disparaged, and her accomplishments belittled. There
could not be a better figurehead for modern women in
technology than Ada Lovelace.

1 Introduction

The idea that the 1840s saw the birth of computer science
as we know it today may seem like a preposterous one, but
long before the Bombe, the Colossus or the Harvard Mark
I, long before any computer was actually built, came a
remarkable woman whose understanding of computing
remained unparalleled and unappreciated for 100 years.
Brought up in an era when women were routinely denied
education, she saw further into the future than any of her
male counterparts, and her work influenced the thinking of
one of World War II’s greatest minds.

Born The Honourable Augusta Ada Byron, the woman we
know of today as Ada Lovelace began her life in a
turbulent household. She was the only legitimate daughter
of George Gordon Byron, 6th Baron Byron and Anne
Isabella Milbanke, 11th Baroness Wentworth, or Annabella
as she called herself. Their short marriage imploded just a
month after Ada was born.

Annabella was an incredibly intelligent woman who was
educated by former Cambridge University professors in
classical literature, philosophy, science and maths. She
particularly enjoyed maths and Byron called her his
“princess of parallelograms”. But Annabella was also a

stiff, religious woman with strict morals, and was
sometimes described as cold and prim.

Byron, on the other hand, was the original cad. He was
“mad, bad and dangerous to know” according to Lady
Caroline Lamb, Annabella’s cousin, who had an affair with
Byron before his marriage. Annabella probably should have
taken this as the warning it was — Lamb never really got
over her break-up with Byron — but perhaps she instead
took it as a challenge. Maybe she saw Byron as a soul that
needed saving from his lascivious and immoral ways.
Whatever her motivations, Annabella and Byron wed in
January 1815 and Ada was born on December 10 that same
year.

The marriage, however, wasn’t a happy one. Byron was
moody, drank too much and behaved erratically, having at
least one affair with a London chorus girl called Susan
Boyce. There were rumours of violence and abuse. And
then the financial troubles hit. Byron suggested that
Annabella remove herself to her parents’ estate at Kirkby
Mallory, and take Ada with her, whilst he sorted things out.

Worried that he had succumbed to madness, Annabella
engaged a physician to visit the family and secretly assess
Byron’s state of mind. The physician recommended that
she do as Byron wished, and in January 1816 the couple
separated. Although their separation began amicably
enough, it soon turned acrimonious and Byron left England
for Italy to escape a burgeoning sexual scandal. Ada never
met her father, and he died when she was eight years old.

2 Young Ada

Parenting styles were different in the early 19th century,
and Annabella wasn’t the doting mother that we might
these days assume she should be. Indeed, Ada was brought
up mostly by her grandmother, Judith, The Honourable
Lady Milbanke. Annabella didn’t seem to show much
affection for her daughter, referring to Ada as ‘it’ in one
letter to her mother:

“I talk to it for your satisfaction, not my own, and shall be
very glad when you have it under your own.”

Judith died when Ada was six, and the young girl was then
looked after by a series of nannies, a common practice at
the time, and educated by tutors that her mother appointed.

Ada loved machines. She spent hours poring over diagrams
of new inventions and eagerly devouring any new
periodical journals she could get her hands on. She began
to design boats and steam-powered flying machines for her
own amusement.

This unusual preoccupation was encouraged by Annabella,
who ensured that Ada was taught by some of the very finest
minds in England. Having enjoyed a first class education

36 Ada Lovelace: Victor ian Comput ing Vis ionary

Volume 36, Number 1, March 2015 Ada User Journal

herself, Annabella was determined that Ada should have
the same, arranging for a series of teachers to give Ada a
solid grounding in science and mathematics.

Her motivation wasn’t entirely focused on expanding Ada’s
mind, however: Annabella was terrified that Ada might
have inherited the madness of her father. She saw the close
study of mathematics and science as a way to instil some
mental discipline and, hopefully, drive out any demons that
might otherwise plague Ada.

Indeed, in later life, Ada herself said that her study of
mathematics helped with the mental instabilities that she
does indeed seem to have inherited from her father. She
wrote to her husband that “nothing but a very close and
intense application to subjects of a scientific nature now
seems at all to keep my imagination from running wild, or
to stop the void which seems to be left in my mind.”
However, Ada also wrote to her tutor De Morgan’s wife
that she had determined that “too much mathematics” had
caused her to have a breakdown, so her internal jury was
obviously out on maths’ effectiveness for the control of her
mental problems.

That tutor, Augustus De Morgan, was one of Ada’s most
important teachers. He was a mathematician at the forefront
of the emerging field of symbolic logic. It was, without
doubt, De Morgan who encouraged Ada to further study
mathematics, and she impressed him mightily with her
capabilities. Had Ada been a man, he said, she would have
had the potential to become “an original mathematical
investigator, perhaps of first-rate eminence”.

But De Morgan worried that her focus on maths was
damaging her health. Ada had been a sickly child, suffering
headaches that affected her vision from around age eight.
Then in 1829, when she was 13, she caught the measles
which left her paralysed and confined to bed for a year. She
did recover, but it was a slow, arduous journey to the point
where, in 1831, she could walk again, on crutches.

De Morgan worried that her health would suffer further if
she studied too hard. He said of her maths problems that,
“the very great tension of mind which they require is
beyond the strength of a woman’s physical power of
application.”

But Ada did apply herself and she did conquer her maths
problems.

Another of Ada’s tutors was Mary Somerville, the Scottish
astronomer and mathematician. Mary had become famous
in 1831 when she published The Mechanism of the
Heavens, a translation of the five volume Mécanique
Céleste by Pierre-Simon Laplace. Her translation was
published by the wonderfully named Society for the
Diffusion of Useful Knowledge and soon Somerville was a
household name, yet she was a modest woman who said
only that she had “translated Laplace’s work from algebra
into common language”.

In 1833 Mary introduced Ada to another mathematician,
Charles Babbage. Ada was 18 and Babbage was 42. It was
a friendship that would change Ada’s life.

3 Big tables of numbers

Charles Babbage was an inventor and mechanical engineer;
given Ada’s fascination for machines, it was only natural
that the two become fast friends. Ada was captivated by
Babbage’s inventions and he was impressed by her
intellect, analytical skills and mathematical ability.

Babbage was working on a mechanical adding machine that
he called the Difference Engine. At the time, any maths that
required logarithmic or trigonometric functions forced the
mathematician to refer to large tables of numbers that had
been worked out by hand. Unfortunately, these tables were
prone to error and if an incorrect value was used in the
calculations the mathematician’s result would also be
incorrect. It was Babbage’s mission to use the Difference
Engine to calculate these tables flawlessly.

The British Government was most interested in such a
machine — or rather they were most interested in error-free
log and trig tables that could be relied upon to give the
correct answer. They invested some £17,000 — now
equivalent to about £1.7 million — in the Difference
Engine, hoping that Babbage would build it and start
producing these vital tables.

Babbage, however, had other ideas. He gave up on the
Difference Engine before it was finished and started work
on a more complex machine, the Analytical Engine. The
British Government was unimpressed and refused to fund
Babbage’s new project, much to his disgust. It seems
Babbage never quite grasped the idea that his funding was
dependent on the production of those perfect tables of
numbers, tables which never came to exist. Had he
delivered, perhaps he would have found it easier to
continue raising money.

The Analytical Engine was, however, a major leap forward,
so it’s easy to understand why Babbage might have
abandoned the Difference Engine in the light of this new,
more powerful machine. It was a general purpose
computing machine that had all the elements of a modern
computer, including an arithmetical unit, conditional
branching and loops, and integrated memory.

It could also be programmed to do complex computations
using punched cards, just like the Jacquard loom and the
early modern computers built in the 1940s such as the
Harvard Mark I. Babbage even designed a printer to go
with it.

But, like its predecessor, the Analytical Engine was never
built. In fact, Babbage never quite finished the design,
tinkering with it throughout his life.

4 Marriage and family life

On 8 July 1835, aged just 19, Ada became Baroness King
when she married William King, the 8th Baron King. King
was ten years her senior, and over the next four years, the
couple had three children: Byron, born May 1836; Anne
Isabella, born September 1837; and Ralph Gordon, born
July 1839. After the birth of Anne Isabelle, also called

S. Charman-Anderson 37

Ada User Journal Volume 36, Number 1, March 2015

Annabella like her grandmother, Ada fell ill again for
several months.

In 1838, King was created 1st Earl of Lovelace, and Ada
became the Right Honourable the Countess of Lovelace. In
correspondence she signed herself Augusta Ada Lovelace,
or AAL, and we know her today simply as Ada Lovelace.

Her marriage to King was, in some ways, a mirror image of
her parents’ marriage, but with their roles reversed. King
was a bit humourless, possibly even abusive and was
described at the time as a “figure more of fear than
affection”. Lovelace was an unconventional woman,
fiercely intelligent and independent. She became a
materialist and, in her later years, an atheist, which was
quite in opposition to the strict Christianity of her mother
and husband.

She also found it very easy to strike up friendships and
often found herself the object of men’s affections. When
she was a teenager, she had had an affair with a tutor, with
whom she had attempted to elope. But his relatives had
recognised her — she was a well-known society figure
because of her father and station — and her mother had
covered up the scandal.

Later in life her children’s tutor, William Benjamin
Carpenter, attempted to coax her into another affair. Once
she realised what was going on, she ended her association
with him. However, her easy-going, charming nature and
willingness to converse and correspond with members of
the opposite sex meant that there were often rumours of
affairs in amongst the court gossip. The fact that she was
Byron’s daughter cannot have helped matters either.

5 The Menabrea paper

Despite any differences in personality and outlook, King
did support Ada’s work and ambitions, much more so than
many men would have at the time. Throughout this period
Lovelace and Babbage’s friendship flourished and she
studied his plans for the Analytical Engine in depth,
becoming an expert on its workings.

In 1842, Babbage gave a lecture about the Analytical
Engine at the University of Turin. In the audience was an
Italian engineer, Luigi Menabrea whose notes were
eventually published in the Bibliothèque Universelle de
Genève. Babbage’s friend Charles Wheatstone then
commissioned Lovelace to translate the paper, which had
been written in French, which she did. Babbage then asked
Lovelace to expand on the original, “as she understood the
machine so well”. Lovelace set to work, adding individual
notes, each labelled with a letter. When she was done, she
had tripled the original paper’s length.

In her notes, Lovelace suggests that symbolic logic, which
she’d learnt about from De Morgan, could be applied to the
Analytical Engine. And in Note G, the final note, she
described a number of what we would now call programs to
enable the Analytical Engine to do computations without
the answers having been calculated by human hand first.

At the time, machines such as the automata which
mimicked humans and animals using clockwork were well
known at court. In the middle of the 18th Century,
Frenchman Pierre Jaquet-Droz had masterminded the
creation of three automata: the musician, the draughtsman
and the writer. All three, which still exist and still work,
can carry out the tasks for which they are named, but in a
limited way. A complex series of cams — shaped, rotating
disks — control the automata, allowing them to act out a
pre-determined series of movements which results in
music, drawings and writing. Lovelace would have at the
very least seen the Silver Lady, a female automaton which
could “bow and put up her eyeglass at intervals, as if to
passing acquaintances” which Babbage had bought.

This is conjecture, but perhaps Lovelace was keen to stress
that the Analytical Engine produced results without human
interference not just to draw a distinction between it and the
earlier Difference Engine, but also automata. The
Difference Engine had never been built, but automata were
a relatively common court spectacle and might have been
the first point of comparison for people unfamiliar with
Babbage’s work. Whatever her motivation, Lovelace was
right: The Analytical Engine really was in a league of its
own.

“The bounds of arithmetic were however outstepped the
moment the idea of applying the cards had occurred;” she
wrote, “and the Analytical Engine does not occupy
common ground with mere ‘calculating machines.’ It holds
a position wholly its own; and the considerations it
suggests are most interesting in their nature. In enabling
mechanism to combine together general symbols in
successions of unlimited variety and extent, a uniting link is
established between the operations of matter and the
abstract mental processes of the most abstract branch of
mathematical science.”

One set of numbers that Lovelace focused on were
Bernoulli Numbers, as suggested to her by Babbage. These
are a complex numerical system first described by the
Swiss mathematician Jakob Bernoulli, who died in 1705.
But really, she could have chosen any complex series —
the point of the exercise was not to find out what the
Bernoulli Numbers were, but to show that they could be
calculated by the machine, on its own, from first principles.

Note G described how to break down the algebra into
simple formulae, and then how to code those formulae as
instructions for the Analytical Engine. Although there were
earlier sketches for programs that had been prepared by
Babbage, Lovelace’s were the most elaborate and
complete, and they were the first to be published.

It is for this achievement that Lovelace is known as the first
computer programmer: She was the first person to write
and publish a full set of instructions that a computing
device could use to reach an end result that had not been
calculated in advance.

38 Ada Lovelace: Victor ian Comput ing Vis ionary

Volume 36, Number 1, March 2015 Ada User Journal

6 A bigger vision

Lovelace’s understanding of Babbage’s Analytical Engine
was so deep that it surpassed that of Babbage himself. She
looked beyond those huge tables of perfect numbers that
Babbage wanted the machine to calculate and saw its full
potential.

It could, Lovelace suggested, create music or graphics,
were it to be given the right inputs. The Analytical Engine,
she wrote, “weaves algebraic patterns just as the Jacquard
loom weaves flowers and leaves.”

This idea of a general computer, more than Note G, was a
groundbreaking one. It is clear from her notes that this was
not just a random flight of fancy, it was a concept she had
thought hard about and she had a solid grasp on the theory
behind it. She wrote:

“[The Analytical Engine] might act upon other things
besides number, were objects found whose mutual
fundamental relations could be expressed by those of the
abstract science of operations, and which should be also
susceptible of adaptations to the action of the operating
notation and mechanism of the engine. Supposing, for
instance, that the fundamental relations of pitched sounds
in the science of harmony and of musical composition were
susceptible of such expression and adaptations, the engine
might compose elaborate and scientific pieces of music of
any degree of complexity or extent.”

Of course, neither Lovelace nor Babbage had the benefit of
our modern terminology, and Lovelace had to define her
concepts carefully so that her intent remained clear. For
example:

“It may be desirable to explain, that by the word operation,
we mean any process which alters the mutual relation of
two or more things, be this relation of what kind it may.
This is the most general definition, and would include all
subjects in the universe.”

The concept of a general computer that could do anything,
given the right program and inputs, was an extraordinary
leap for Lovelace to make and one that many of her male
peers struggled to understand. It is no exaggeration to say
that she was 100 years ahead of her time.

7 Faraday

Even after Lovelace had made this huge conceptual leap,
essentially describing much of what we consider
fundamental to modern computer science, she continued to
expand on the education her mother had arranged for her.
Her personality and desire for knowledge is nowhere
epitomised more than in a letter to Michael Faraday that
she wrote in 1844, aged 28.

Faraday, one of the most influential scientists in history
especially in the field of electricity, was a devout Christian
and a Sandemanian, a denomination of the Church of
Scotland. He was a humble but self-disciplined man, as
well as an eloquent and passionate public speaker.

Ada was keen to become his pupil. In fact, ‘keen’ might
have been an understatement. She was, in modern terms, a
bit of a fangirl, saying in a letter to him that she
“entertain[ed] an esteem little short of reverence” for him.
In another letter, dated 1844 — thus making her 28 at the
time and him 53 — she wrote (emphasis as per original):

Dear Mr Faraday,

I am exceedingly tickled with your comparison of yourself
to a tortoise. It has excited all my fun (& I assure you I
have no little of that in me).

I am also struck with the forcible truth of your designation
of my character of mind:

“elasticity of intellect“.

It is indeed the very truth, most happily put into language.

You have excited in my mind a ridiculous, but not
ungraceful, allegorical picture, viz:

that of a quiet demure plodding tortoise, with a beautiful
fairy gambolling round it in a thousand radiant & varying
hues; the tortoise crying out, “Fairy, fairy, I am not like
you. I cannot at pleasure assume a thousand aerial shapes
& expand myself over the face of the universe. Fairy, fairy,
have mercy on me, & remember I am but a tortoise“.

Babbage, for his part, tried to put in a good word for
Lovelace with Faraday, calling her the “Enchanted Maths
Fairy”, and writing:

My dear Faraday,

I am not quite sure whether I thanked you for a kind note
imputing to me unmeritedly the merit of a present you
received I conjecture from Lady Lovelace.

I now send you what out to have accompanied that
Translation.

So you will now have to write another note so that
Enchantress who has thrown her magical spell around the
most abstract of Sciences and has grasped it with a force
which few masculine intellects (in our own country at least)
could have exerted over it. I remember well your first
interview with the youthfull fairy which she herself has not
forgotten and I am gratefull to you both for making my
drawings rooms the Chateau D’Eu of Science.

No amount of fairies or enchantresses could change
Faraday’s mind, however, and he never did acquiesce to
her request to tutor her.

8 Early to rise, early to bed

Lovelace’s brilliance had become obvious very early on in
her life but, however strong the powers of her mind, she
couldn’t prevent her body’s frailty from betraying her. She
had suffered and recovered from cholera, but now she
developed uterine cancer, an illness from which she would
never recover.

Annabella sat constantly beside Ada’s bedside as her
condition deteriorated, and — perhaps out of concern for
her daughter’s immortal soul — did all that she could to

S. Charman-Anderson 39

Ada User Journal Volume 36, Number 1, March 2015

force her to convert to Christianity. She even went so far as
to withhold her morphine, the painkiller that would have
made Ada’s suffering a little more bearable. It is said that
Ada did indeed convert, but how much stock can be put in
a deathbed conversion under the duress of an agonising
death we cannot say.

Ada died on 27 November 1852 at just 36 years old, the
same age as her father.

Although Annabella had forbidden Ada from seeing a
portrait of Byron until she was 20, Ada had come to know
him, as much as she could given that she had been so
young when he died. She had read his poetry, though she
cared little for it, saying “I shall be a better analyst
[mathematician] than my father ever was a poet!”

The older Ada got, the more she identified with her father,
writing once that she understood his impulses as she too
hated any kind of restraint. In the end, she chose to be
buried next to him at the Church of St. Mary Magdalene in
Hucknall, Nottingham.

9 A computing legacy

It’s fair to say that Babbage’s Analytical Engine was a
computing evolutionary cul-de-sac. It was never built.
Lovelace never had the opportunity to test her program on
it. And Babbage never produced those large, error-free
tables of numbers that the British Government so desired.

But Lovelace’s ideas found their way into modern
computing via Alan Turing. During WWII, as he was
working at Bletchley Park on decoding German
communications, Turing discovered Lovelace’s Menabrea
translation and its attendant notes. They were critical
documents that helped to shape his thinking.

Indeed, in his seminal paper Computing Machinery and
Intelligence Turing explored the question “Can machines
think?”, promptly launching the field of artificial
intelligence. He also listed “contrary views” on his position
that machines could at least imitate thinking, and discusses
what he calls Lady Lovelace’s Objection.

Lovelace had written, “The Analytical Engine has no
pretensions to originate anything. It can do whatever we
know how to order it to perform”, which might be taken to
mean that her position was that machines could not learn,
or create anything original. However, Turing points out that
“the evidence available to Lady Lovelace did not encourage
her to believe” that machines could be so capable.

He goes on to say, “The Analytical Engine was a universal
digital computer, so that, if its storage capacity and speed
were adequate, it could by suitable programming be made
to mimic the machine in question. Probably this argument
did not occur to the Countess or to Babbage. In any case
there was no obligation on them to claim all that could be
claimed.”

Turing, of course, was working a century after Lovelace
and could benefit not just from all of the technological
developments and advances in scientific knowledge that

had occurred in that time, but also from the different
culture that he inhabited.

Lovelace’s culture, remember, still hadn’t developed a
concept of machine much beyond the automaton, the
clockwork ensemble that mimicked life, but could never
create new behaviour. The Writer could write only what it
was told to write. The Analytical Engine, on the other hand,
could produce an answer that it had worked out for itself
based on its inputs and programming.

It is reasonable to argue, however, that it was not just that
Lovelace had seen no evidence that machines could act as
originators, but that those machines which had appeared to
act thus had been frauds. One automaton, in particular, had
appeared capable of replicating human thought: The
Mechanical Turk was a machine that could not only play
chess, but could also reliably win against grandmasters. It
toured Europe from 1770 until 1854 and won nearly every
match it played. The Mechanical Turk even won a match
with Babbage, who said he was sure it was a trick, but he
couldn’t see how.

About a decade or so before Lovelace published her
translation and notes on the Analytical Engine, the Turk
was exposed as a hoax. It was not, in fact, an automaton at
all, but a machine driven by a human sitting, probably very
uncomfortably, in the box at its base. One can’t help but
wonder if Lovelace’s assertion that the Analytical Engine
could not originate was as much based on a desire to
differentiate it from automata, real or hoaxed, as a belief
that it was not possible.

10 Modern objections

Like many woman who have contributed greatly to the
fields of science, technology, engineering and maths
through the centuries, Lovelace’s achievements have often
been either downplayed or rejected by modern voices.
There are two main objections. Firstly, it is said that
Lovelace didn’t understand calculus and thus, the logic
goes, could not have had the capacity to prepare the
Bernoulli program.

It is true that Lovelace struggled with calculus. She wrote
to De Morgan in some frustration about the chapter on
“notation of functions” that she was studying.

“I do not know when I have been so tantalised by
anything,” she said, “and should be ashamed to say how
much time I have spent up on it, in vain. These functional
equations are complete will-o’-the-wisps to me. The
moment I fancy I have really at last got hold of something
tangible and substantial, it all recedes further and further &
vanishes again into thin air.”

But calculus caused a lot of trouble for even seasoned
mathematicians. Charles Dodgson, better known as the
author Lewis Carroll, studied maths for four years at
Oxford University, came top of his class and went on to
lecture maths there. Dodgson said of the subject, “Talked
over the Calculus of Variations with Price today; I see no
prospect of understanding the subject at all.”

40 Ada Lovelace: Victor ian Comput ing Vis ionary

Volume 36, Number 1, March 2015 Ada User Journal

It feels a little harsh to criticise Lovelace for finding
calculus tricky when Dodgson, who had the benefit of a
formal education at one of the best universities in the
world, also found it problematic. Indeed, biographer Dr
Betty Alexandra Toole, author of Ada: the Enchantress of
Numbers, told me that she showed the De Morgan
correspondence to the late Dr Steven Deliberto, then Vice
Chairman of the Mathematics department at Berkeley, who
stated that Ada was studying what was then considered the
forefront of calculus. The fact that we teach calculus at
school now should not influence our assessment of the
position and understanding of calculus in the 19th century.

A second, and more damning, objection to calling Lovelace
the First Computer Programmer comes from the idea that
she did not actually write the Bernoulli program. This is a
theory that has been put forward by historians, and even by
some of her biographers.

Historian Bruce Collier wrote in his 1990 book, The Little
Engine That Could’ve:

It would be only a slight exaggeration to say that Babbage
wrote the Notes to Menabrea’s paper, but for reasons of his
own encouraged the illusion in the minds of Ada and the
public that they were authored by her. It is no exaggeration
to say that she was a manic depressive with the most
amazing delusions about her own talents, and a rather
shallow understanding of both Charles Babbage and the
Analytical Engine… To me, [correspondence between Ada
and Babbage] seems to make obvious once again that Ada
was as mad as a hatter, and contributed little more to the
Notes than trouble.

Collier isn’t alone in his assertion. Allan G. Bromley and
Doron Swade both claimed that Babbage did the work in
the years before the 1842 publication of Lovelace’s
translation. Benjamin Woolley says that Lovelace made
just “some contribution”.

It may be that the confusion, which we’ll generously call it,
comes from Babbage’s own autobiography which he wrote
when he was nearly 80. In it, he said (emphasis mine):

The elementary principles on which the Analytical Engine
rests were thus in the first instance brought before the
public by General Menabrea.

Some time after the appearance of his memoir on the
subject in the “Bibliothèque Universelle de Genève,” the
late Countess of Lovelace informed me that she had
translated the memoir of Menabrea. I asked why she had
not herself written an original paper on a subject with
which she was so intimately acquainted? To this Lady
Lovelace replied that the thought had not occurred to her. I
then suggested that she should add some notes to
Menabrea’s memoir; an idea which was immediately
adopted.

We discussed together the various illustrations that might
be introduced: I suggested several, but the selection was
entirely her own. So also was the algebraic working out of
the different problems, except, indeed, that relating to the
numbers of Bernoulli, which I had offered to do to save

Lady Lovelace the trouble. This she sent back to me for an
amendment, having detected a grave mistake which I had
made in the process.

The notes of the Countess of Lovelace extend to about
three times the length of the original memoir. Their author
has entered fully into almost all the very difficult and
abstract questions connected with the subject.

We have to ask what Babbage meant by “algebraic working
out”. The Bernoulli note is made of up equations, and a
table and diagram which describes how the punch cards
should be prepared for the programming of the Engine. It is
the table and diagram that are the program, not the
equations. So even though Babbage worked on the
equations — and he did so to save Lovelace time, not
because she couldn’t do them herself — that doesn’t mean
Lovelace didn’t write what we now consider to be the
program.

Their correspondence illuminates the matter further.
Lovelace had herself written, “I want to put in something
about Bernoulli’s Number, in one of my Notes, as an
example of how an explicit function may be worked out by
the engine, without having been worked out by human head
and hands first.”

She wrote Note G and sent it to Babbage for his feedback.
Babbage, sadly, lost it and had to ask Lovelace to have
another go, to which she replied, “I suppose I must set to
work to write something better, if I can, as a substitute, the
same precisely I could not recall.”

Babbage responded to this new version, “I like very much
the improved form of the Bernoulli Note but can judge of it
better when I have the Diagram and Notation.”

It would have been a most peculiar exchange were the
assertion that Babbage wrote the program to be true. Who
would say that they would be able to judge something
better once they’d been given more information by
someone else if they had written it themselves?

A more realistic interpretation is that Babbage and
Lovelace collaborated closely, discussing and refining their
ideas, Babbage working on some parts, Lovelace on others.
That does not detract from her achievements, nor does it
lend weight to the claim that Babbage alone wrote the
Bernoulli program.

11 The perfect figurehead for women in
STEM

In 2009, when Ada Lovelace was first suggested to me as a
figurehead for a day celebrating the achievements of
women in technology, she seemed like a great choice. Here
was the first ever computer programmer. Not the first
woman, the first person. How perfect!

It was only as I discovered more about her story and
especially the way in which many modern voices, even
including some of her biographers, have downplayed or
denied her achievements that I realised what an appropriate
choice I had made. Although much has changed in the last

S. Charman-Anderson 41

Ada User Journal Volume 36, Number 1, March 2015

two hundred years, many women still find that their
contributions to our understanding of the world are either
ignored or the accolades go to their male colleagues.

Were Ada alive today, I think she would recognise the
problems faced by her female peers. But she’d also
recognise our modern computing machines as the very
embodiment of her ideas, and she’d immediately set about
learning how they worked and how to program them. She
didn’t let the conventions of her day slow her down, and
she certainly wouldn’t let modern prejudices get in the way
either.

This is an extract from the ebook A Passion for Science:
Stories of Discovery and Invention.

About the Author

Suw Charman-Anderson is the founder of Ada Lovelace
Day, an international celebration of the achievements of

women in science, technology, engineering and maths.
Each year, ALD hosts flagship science cabaret event in
London, whilst around the world independent groups put
on their own events. Last year, Ada Lovelace Day Live!
itself was hosted by the venerable Royal Institution, and
there were over 65 grassroots events in 13 different
countries on five continents.

Suw is a social technologist and, as one of the UK’s social
media pioneers, has worked with clients worldwide. A
freelance journalist, she has written about social media,
technology and publishing for The Guardian, CIO
Magazine and Forbes. She also co-founded the Open
Rights Group in 2005.

Learn more about Ada Lovelace Day at
www.findingada.com.

43

Persistent Containers with Ada 2012
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation, Jœgerparken 5, 2. th., 2970 Hørsholm, Danmark

Abstract

Persistent objects form a general and very useful method
for storing internal program data between executions
of a program. And as [1] points out, Ada is an excel-
lent language for implementing persistent objects. This
paper introduces Ada 2012 [2] style containers with
a memory mapped file as the backing. The persistent
containers allow an application programmer to make
objects stored in a container persistent with only small
modifications to the source text of the application. The
performance and reliability of the implementation is
compared with serialisation and with persistent storage
pools [3].

1 Introduction
This paper is the result of a review of my paper on persistent
storage pools [3] with two things in mind: Benefitting from
new features of Ada 2012, and avoiding the conflict with
address space layout randomisation inherent in [3]. There are
two basic ideas behind this paper. The one is that memory-
mapping is an extremely efficient I/O method. The other is
that Ada 2012 style containers is a much more programmer-
friendly way of storing objects than explicitly allocating them
on a storage pool.

These two ideas combined allow us to create a container,
which allocates space for its contents in a part of virtual
memory which is mapped to a file, and thus automatically
stored. Using a persistent container or one of the containers
declared under Ada.Containers only differs in the call
to bind the container to its backing file, making this technique
very easy to use.

In section 2 the interface to and use of persistent containers
is presented. Section 3 describes the actual implementation.
In section 4 a comparison to other techniques for implement-
ing persistence, including an experimental comparison with
serialisation, is presented. Finally, in sections 5 and 6, we
summarise, conclude and indicate how persistent containers
can be enhanced compared with this technique covered in
this paper. The full source code of the system, as well as
demonstration programs are available from http://www.
jacob-sparre.dk/persistent-containers.

2 An interface for persistent objects
The concept of persistent objects is about maintaining a collec-
tion of objects created by an application from one execution
of the application to the next. Two of the techniques devised
for this purpose are serialisation, where the objects are written
to a file represented as a stream, and storage in a database,

where the objects in the process memory are simply buffers
for data stored in a relational database.

The reader is pointed to [4] for a general and thorough present-
ation of persistent objects in relation to Ada. The ideal for
persistence implementations is generally that it is “transparent”
(or “orthogonal”). I.e. the programming environment/com-
piler does all the work of saving and loading the full program
state between executions.

The interface presented here is not quite that easy to use,
but it has the benefit of allowing the programmer to control
which parts of the program state is persistent; objects stored in
persistent containers are persistent, while all other objects
are not. The persistent containers have to be bound to a file,
but once that is done, the container library and the operating
system takes care of maintaining a persistent copy of the
objects stored in the persistent containers. The Ada 2012
aspect “Implicit_Dereference” allows containers to
give users safe, direct access to objects stored in them (without
having to copy the objects out of the containers first), thus
letting the program work directly on the persistent version of
an object.

There are no special requirements on the types of objects
made persistent, except that system addresses, access types
and objects related to tasking and synchronisation should not
be stored in persistent containers.

At the time of writing, the library of persistent containers is
limited to a linked list container proof-of-concept.

2.1 Package specification

The generic package “Persistent_Containers.Linked_List” de-
clares a persistent linked list container. Comparing it with
“Ada.Containers.Doubly_Linked_List”, the main difference1

is the procedure used to bind a list to the file used to persist
the container contents:

procedure Open_Or_Create (Container : in out
Instance;

Name : in String;
Minimum_Size : in Positive);

Although the container contents are copied automatically to
disk, and the associated file is closed on finalisation, the
package still provides a Close procedure and a Is_Open
function to inspect the state of the container. If the container
is closed (i.e. not associated with a file), all operations but
Open_Or_Create will raise an exception.

inc
1Besides the author being too lazy to make the list doubly linked from

the outset.

Ada User Jour na l Vo lume 36, Number 1, Mach 2015

44 Pers is tent Conta iners wi th Ada 2012

2.2 Use

A package from the persistent container library is implemen-
ted just like one of the containers in the standard library:

with Persistent_Containers.Linked_List;

package Character_List is
new Persistent_Containers.Linked_List (

Element_Type => Character);

Using the list type declared through the instantiation above,
we first declare a container object (List) and associate it
with a file:

List : Character_List.Instance;
begin

List.Open_Or_Create (Name => Name,
Minimum_Size => Minimum_Size);

Then we can check if the list is empty:

if List.Is_Empty then

And append objects if it is:

Insert_Test_Data :
for C of Test_Data loop

List.Append (New_Item => C);
end loop Insert_Test_Data;

We can manipulate the objects contained in the list:

ASCII_Caesar_Code :
for C of List loop

C := Character’Succ (Character’Succ (
Character’Succ (C)));

end loop ASCII_Caesar_Code;

If we print the contents of the list after updating them;

Iterate :
for C of List loop

Ada.Text_IO.Put (C);
end loop Iterate;

then the output will be different (shifted three character val-
ues) every time we run the program:

% ./bin/example
Ghfhpehu#43wk#4;48
% ./bin/example
Jkikshkx&76zn&7>7;
% ./bin/example
Mnlnvkn{):9}q):A:>

The program does not have to do anything to persist the
container before it stops.

The full source text of the example described in this section
can be found in appendix A.

3 Implementation using memory-mapped
files

3.1 Memory-mapped files

To understand memory mapped files, we can start with a quote
from the POSIX specification of the function “mmap” [5]:

The mmap() function shall establish a mapping
between a process’ address space and a file. . .

The actual copying of data between disk and RAM is handled
by the operating system. Essentially the mapped file is as-
signed as swap space to its part of the process’ address space.
This gives us the possibility of saving some copying between
disk and RAM; if the operating system for example already
has “swapped” the file to disk, saving the data has zero cost –
they are already in the file.

The big value of using memory mapping is this saving in
physical copying of data between disk and RAM.

The cost of using memory mapping is that we can’t handle
objects containing absolute memory addresses (such as
System.Address and access types). Other persistent im-
plementations have the option of “flattening” structures of
objects using access types for inter-object reference.

The POSIX specification of “mmap” gives us an implicit
guarantee that the mapped file will contain an exact copy of
the process memory once “unmap” has been called (or the
program has stopped).

Although this implementation is using the Ada POSIX API,
it is likely that memory mapping implementations in non-
POSIX operating systems will work equally well. According
to [6] “Most modern operating systems or runtime environ-
ments support some form of memory-mapped file access”,
so even if your target platform isn’t POSIX compatible, it
is likely that the technique can be used without too many
modifications.

3.2 Relatively addressed, persistent heap

Between the memory mapped files and the persistent contain-
ers, there is a persistent heap addressed with relative addresses
such that it does not matter where in the virtual memory the
backing file is mapped to.

The Persistent_Heap package interfaces with the
POSIX API to map and unmap the backing file. It contains
a genering package, parametrised with an Element_Type
for allocating objects on the heap, accessing the “root object”
on the heap, and turning relative heap addresses into Ada 2012
style reference objects with an Implicit_Dereference
aspect.

The details of the interfacing with the POSIX API are equival-
ent to the description in [3], with the major difference being
that we don’t ask to have the file mapped to a specific address.

Volume 36, Number 1, Mach 2015 Ada User Jour na l

J. S. Andersen 45

3.3 Persistent containers
The demonstration implementation of a persistent linked
list container primarily differes from any other linked list
implementation written in Ada in how new, .all, access and
’Access have been substituted with the equivalent oper-
ations and types from the Persistent_Heap package;
Operations.Allocate, Operations.Element,
Operations.Reference_Type.

As an example, we can look at the Prepend procedure:
procedure Prepend (Container : in out Instance;

New_Item : in Element_Type) is
begin

if Container.Heap.Is_Open then
declare

New_Node : constant Node_Operations.
Reference_Type

:= Node_Operations.Allocate (Container.
Heap);

begin
New_Node := Node_Type’(Element =>

New_Item,
Next => Header (

Container).First);
Header (Container).First := New_Node.

Address;
Header (Container).Length := Header (

Container).Length + 1;
end;

else
raise Constraint_Error with "Prepend:

Container has no file backing.";
end if;

end Prepend;

New_Node is a Node_Operations.Reference_Type,
which is equivalent to an access Node_Type type.

Node_Operations.Allocate allocates a
Node_Type object on the indicated persistent heap.

New_Node.Address returns the heap-relative address of
New_Node, as we can’t just store the absolute address stored
in the reference type.

The observant reader will have noticed that the implementa-
tion not yet includes the locking required to ensure safe use
of the containers.

4 Comparison with other techniques
4.1 Speed
To test the actual impact of this technique, two test programs
have been made. Both of them create or load a linked list
of characters, and then manipulate it. The only difference
between the two programs is which persistence implementa-
tion they use.

As a baseline I use the GNAT implementation of
Ada.Containers.Doubly_ Linked_Lists, with a
manual persistence implementation using Ada.Streams.
Stream_IO and the ’Read and ’Write attributes of the
list implementation.

The baseline is compared with the described
Persistent_Containers. Linked_List im-
plementation.

Three timing experiments have been performed:

Experiment Baseline Persistent containers
I +M +W 0.685 1.000

L+W 0.376 0.004
L+M +W 0.705 0.390

M = (L+M +W)− (L+W) 0.329 0.386

Table 1: Wall clock execution times. Each experiment is per-
formed ten times, and the lowest and highest value is removed
before an averaged is calculated. Finally the values are normal-
ised so the highest value is 1.

I+M+W Insert test data into a linked list, modify it and write it to
persistent storage.

L+W Load an existing linked list from persistent storage (disk)
and write it again.

L+M+W Load an existing linked list from persistent storage (disk),
modify it and write back to persistent storage.

The results from the experiments are summarised in table 1.

The first observation we can make is that neither of the imple-
mentations is consistently faster.

In pure, measured input+output performance the persistent
containers win by an incredible margin. This is because
of how the operating system implements memory mapping.
The actual copying of data from disk to RAM only happens
once the application attempts to access the mapped memory
area. Similarly data are only copied from RAM to disk if
the application has written to the mapped memory area, and
even then only in case of swapping or once the program
stops. One way of demonstrating this (see figure 1 for actual
measurements) is to run the “L+W” example with larger
persistent data sets. The baseline timing will scale linearly
with the size of the data set, while the persistent containers
timing will be constant.

The calculated times for modifying the linked list (the Caesar
code operation shown in section 2.2) are roughly equivalent,
with the persistent containers being slightly slower. I expect
that the difference would be even larger, if the persistent con-
tainers included all the same checks as the baseline container.
Considering that the persistent containers are using relative
addresses, it is not at all unreasonable that they are a bit slower
executing in-memory operations.

It looks like the implementation for inserting objects into
the persistent container is unreasonably slow. It may be be-
cause of the number of operations on relative addresses, or
because the implementation has been written without special
considerations for performance.

The performance balance between stream-based and memory
map-based persistence lies in the cost of reading and writing
the whole container versus the relative addressing cost of each
operation on the container. If an application is to run for a
long enough time, the per-operation cost will out-weigh the
input-output cost, making a persistence implementation based
on streams preferable.

Ada User Jour na l Vo lume 36, Number 1, Mach 2015

46 Pers is tent Conta iners wi th Ada 2012

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

20 40 60 80 100 120 140 160 180 200

Ti
m

e
to

lo
ad

an
d

sa
ve

a
co

nt
ai

ne
r[

s]

Container size [k elements]

Memory-mapped
Stream

Figure 1: Measured time to load and save the contents of a container depending on the size of the data set and the persistence
implementation.

4.2 Persistence manager
Using memory maps to implement persistence moves a bit
of the responsibility from the application to the operating
system.

One could claim that this reduces the risk of loosing data,
since the operating system will take care of saving the per-
sistent objects, if the application dies2. The down-side of this
is that the application may die while the persistent data are
in an inconsistent state, leaving the data inconsistent for the
next time the application is executed. A safe implementation
should therefore either maintain the persistent data constantly
in a consistent state, or maintain a persistent flag, which in-
dicates if the data are consistent or not.

4.3 Shared data
Memory maps can be shared between several processes, such
that several instances of the same program can operate on the
same persistent data structure. Although this requires that
the programmer implements the appropriate locking using
primitives supplied by the operating system3, it is still an
improvement over stream-based and other load-work-store
type persistence implementations.

4.4 System calls
System calls have a large impact on the performance of ap-
plications on practically all architectures, since the CPU has
to switch from the application/user context to an operating
system context.

2The guarantee that the mapped file will contain an exact copy of the
process memory once “unmap” has been called (i.e. once the program has
stopped) is only implicit in the POSIX specification of “mmap” [5].

3Ada protected objects cannot be shared in this way, if one wants their
semantics to be preserved.

Using memory maps reduces the number of system calls
needed to implement persistence to a fixed number per exe-
cution of the application, no matter how much data is being
stored4.

Implementing persistence using serialisation (streams) will
result in a number of system calls which will scale linearly
with the number of objects being stored. Inserting a buffering
stream between the serialisation routine and the operating
system, will reduce the number of system calls. With a care-
ful implementation a buffering stream may even use as few
system calls as using memory-mapped files.

4.5 Virtual memory

To understand the performance of I/O implementations on a
modern operating system, it is necessary to remember that
modern operating systems work with the concept of virtual
memory. Virtual memory is not the same as RAM. Virtual
memory should rather be seen as a unified address space,
where the operating system freely moves the actual data
around between disk (swap), RAM and CPU caches. At
the same time, the operating system maintains RAM caches
with parts of files. Each process has its own virtual memory,
and when data are copied from an operating system controlled
resource, such as a disk, to a process, there is a performance
cost since the operation requires both a context switch and
moving data around.

Virtual memory, disk based swap space, and RAM cached
files make it hard to make an exact estimate of how large
a volume of data is copied between disk and RAM. What
we can do is estimate the minimal volume of data copied
around. For a traditional persistence implementation it is

4Extending the persistent storage will require some system calls.

Volume 36, Number 1, Mach 2015 Ada User Jour na l

J. S. Andersen 47

O(N) whereas the implementation presented here is O(1),
since the only data the operating system is required to copy
is the fixed size head of the persistent storage pool file. In
practise we will of course expect the process to access some
of the objects in the persistent storage pool, and then they will
have to be copied as well. But since we use a memory map,
the whole process of managing which parts of the persistent
storage pool are in RAM, and which are on disk is handled by
the operating system – which has algorithms tuned through
long experience to do this as efficiently as possible.

4.6 Storage format stability

When a program is recompiled, the layout of data types, type
tags, etc. may change. Since Ada uses name based type
equivalence, this makes sense. Unfortunately this (and name
based type equivalence) will make a persistent storage pool
from one version of a program unusable for another version
of the program, such that programs cannot rely on this tech-
nique for long-term storage. For long-term storage – i.e.
data which should persist beyond the life-time of a specific
version of a program – it is still necessary to use a docu-
mented, implementation-independent storage format. The
Persistent_Heap package, and thus also the persistent
containers built on top of it, has checks to ensure that the
source text version of the library using a persistent heap/con-
tainer matches the version which created it.

Implementing persistence using serialisation and streams,
does not automatically solve the problem of saving in an
implementation-independent file format, but it is probably
easier to implement that way than when mapping objects
directly into memory-mapped files.

5 Summary

We have demonstrated a technique for implementing persist-
ent objects using Ada 2012 style containers and memory-
mapped files. The technique has been tested on Linux, but is
expected to work on any Unix system without modifications.
Use of the implementation on a Microsoft Windows system re-
quires an extension of the (currently incomplete) Ada POSIX
API, wPOSIX, to include memory mapping, but except for
that, the implementation is expected to work unchanged.

We have shown how little a change to an application source
text it is to make objects stored in a specific container persist-
ent.

It is not safe to make access types and System.Address
objects persistent using this technique.

The existing library requires an implementation of the POSIX
Ada API to work, but this can be substituted with an explicit
binding to the appropriate operating system calls.

Comparing with serialisation
Comparing the technique presented here with using serialisa-
tion to persist objects:

• The present technique handles data loading and storage
significantly faster.

• The increased load/store speed comes at a cost when
accessing the persistent objects.

• Serialisation can in some cases persist objects using
access types, while that is never the case with the present
technique.

• Serialisation requires only the standard library to work.

Comparing with persistent storage pools
Comparing the technique presented here with using persistent
storage pools [3]:

• The present technique avoids the explicit use of pool
allocation to make objects persistent.

• The present technique avoids the conflict with address
space layout randomisation which is inherent in the use
of absolute addresses in persistent storage pools.

• The present technique is slower, as it has to dereference
relative addresses.

6 Conclusion and future work
Although the presented technique may be interesting in some
cases, it looks like it – in its current form – has too many
drawbacks to be generally usable as it is.

There are two obvious steps, which together will improve the
benefit of using the presented technique in the areas of safety,
reliability and portability:

• Substitute the POSIX.Memory_Mapping backing
with a Ada.Streams. Stream_IO backing in
the persistent container library, using Ada.Finali-
zation to ensure that the container contents are stored
when a persistent container goes out of scope.

• Extend AdaControl with rules to check if access types,
System.Address objects, or objects related to task-
ing and synchronisation are written to a stream.

References
[1] Card, M.P. (1997), Why Ada is the right choice for object

databases, CrossTalk 9–13

[2] ISO/IEC JTC 1/SC 22/WG 9 Ada Rapporteur Group:
Ada Reference Manual – ISO/IEC 8652:2012(E).
http://www.adaic.org/ada-resources/
standards/ada12/ (December 2012)

[3] Andersen, J.S. (2010), An Efficient Implementation of
Persistent Objects, In: Reliable Software Technologiey –
Ada-Europe 2010. Volume 6106/2010 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg 265–275

[4] Crawley, S., Oudshoorn, M. In: Orthogonal persistence
and Ada

[5] The Open Group (2004), MMAP(2). Issue 6 edn.

[6] Wikipedia (2014), Memory-mapped file — wikipedia, the
free encyclopedia [Online; accessed 16-January-2015].

Ada User Jour na l Vo lume 36, Number 1, Mach 2015

48 Pers is tent Conta iners wi th Ada 2012

A Example source text
The full source text of the example used in section 2.2:
with Ada.Text_IO;

with Character_List;

procedure Example is
Name : constant String := "iterate.list";
Test_Data : constant String := "December 10th

1815";
Minimum_Size : constant := Test_Data’Length;

List : Character_List.Instance;
begin

List.Open_Or_Create (Name => Name,
Minimum_Size => Minimum_Size);

if List.Is_Empty then

Insert_Test_Data :
for C of Test_Data loop

List.Append (New_Item => C);
end loop Insert_Test_Data;

end if;

ASCII_Caesar_Code :
for C of List loop

C := Character’Succ (Character’Succ (
Character’Succ (C)));

end loop ASCII_Caesar_Code;

Iterate :
for C of List loop

Ada.Text_IO.Put (C);
end loop Iterate;

end Example;

Volume 36, Number 1, Mach 2015 Ada User Jour na l

49

A Task-Based Concurrency Scheme for Executing
Component-Based Applications

Francisco Sánchez-Ledesma, Juan Pastor, Diego Alonso and Bárbara Álvarez
Division of Systems and Electronic Engineering (DSIE). Universidad Politécnica de Cartagena, Campus Muralla del
Mar, E-30202, Spain; email: juanangel.pastor@upct.es

Abstract

This paper describes a flexible development approach
for component–based applications with real–time re-
quirements, which enables the performance of schedula-
bility analysis of the resulting application. The work de-
scribed in this paper is part of a more general approach,
and as such it focuses on the design of a concrete part
of the approach. Specifically, we describe a task-based
concurrency scheme for executing component-based ap-
plications, the deployment model that enables us to
configure the application execution as well as some
examples of the performance of schedulability analy-
sis of the resulting application. The aforementioned
deployment model provides the approach with great flex-
ibility, since it enables developers to generate and test
different deployments of the same architecture, without
modifying it, while at the same time it enables us, as
the designers of the approach, to have better control
over the resources and facilities required to execute the
application, which is mandatory in embedded systems.

1 Introduction

Real-time (RT) systems possess specific characteristics that
make them particularly sensitive to the architectural decisions
made in the course of their construction. Concurrency design,
task scheduling, distributed communication, etc. need to be
addressed as soon as possible. However, it is not always possi-
ble to test them in the early development stages. Particularly,
RT scheduling analysis cannot be performed until the final
code is nearly finished and the execution platform has been
selected. In case the application does not meet its timing
requirements, it can be necessary to re-implement it, thereby
increasing the development time and cost. Concurrent pro-
gramming concepts such as thread, mutex, message, etc. are
the common design units in RT systems, since they are also
the analysis units. Despite being suitable for performing tem-
poral analysis, they cannot be easily combined or composed
in order to build new applications, since usually thread code
and thread interaction are application specific.

Architectural software components [?] are self-contained
units that encapsulate their state and behaviour, that com-
municate by sending messages through their ports, and that
have only explicit context dependencies. They are normally

used as the building blocks to model the application architec-
ture, since the abstractions they provide are better suited for
this purpose than those provided by concurrency. However,
the design concepts that make components very suitable for
application construction and code reuse, hinder the perfor-
mance of schedulability analysis, since there is not a clear
mapping between those concepts (i.e. port, interface, service,
etc.) and concurrency concepts (i.e. thread, mutex, message,
etc.). Typical examples of such mappings are:

• Component models that directly translate components
into processes and that use a middleware for message ex-
change among them. These models provide developers
with great flexibility at design time, but penalizes system
performance because of the overhead introduced by the
middleware. Schedulability analysis is hard to perform,
since the developer must know both the threads that are
created inside each process (component) and used by the
middleware, as well as their timing properties.

• Component models where components are purely pas-
sive entities that are invoked sequentially by a single-
threaded run-time suffer from “scant concurrency”, since
the application is normally executed by a cyclic execu-
tive. Despite being absolutely predictable they are very
fragile in the sense that if the system needs to be mod-
ified, a task that before would fit in the slot, may now
exceed it [1].

On the other hand, current object-oriented languages and
frameworks provide mechanisms and libraries to flexibly
manage concurrency in applications, like java.util.concurrent,
std::async in C++ 11, or android.os.AsyncTask. In these models,
the programmer enqueues the code he wants to be executed,
while a pool of worker threads is in charge of dequeuing and
executing them concurrently, returning the computed values
by means of future objects. This is a very powerful, expres-
sive, flexible, and easy to use model for concurrent execution.
But this model has two main drawbacks from our point of
view: it has a lower abstraction level for system modelling
than architectural components, and its behaviour is not pre-
dictable, because worker threads dequeue and execute the
activities as soon as there is one available activity and one
idle thread. Therefore, it cannot be directly used in RT sys-
tems, but instead it must be slightly modified in order to make
it more predictable.

The work described in this paper is part of a more general
approach, entitled C-Forge [2], where programmers model

Ada User Jour na l Vo lume 36, Number 1, March 2015

50 A Task-Based Concurrency Scheme for Execut ing Component -Based Appl ica t ions

applications using architectural components whose behaviour
is defined by means of state-machines with orthogonal re-
gions. An object-oriented framework, FraCC [3, 4], provides
the execution environment for the resulting application. The
execution model is based on a modification of the task model
just mentioned, so that schedulability analysis can be per-
formed. In addition, FraCC provides a deployment facility
that separates application architecture from its deployment
in nodes, processes and threads. This separation allows de-
velopers to generate and test different deployments of the
same architecture, without modifying it, while at the same
time it enables us to have better control over the resources
required to execute the application. Given the differences
existing between the concepts of each domain (components
and concurrency), C-Forge uses the Model-Driven Software
Development paradigm [5] and its associated technologies
to support the whole process. An example of the usage of
C-Forge applied to underwater vehicles and the results of the
schedulability analysis is described in [6].

This paper describes the task-based concurrency scheme we
have developed for executing component-based applications,
the deployment model that enables us to configure the applica-
tion execution as well as some examples of the performance
of schedulability analysis of the resulting application. The
rest of the paper is organized as follows. Section 2 compares
the described approach with other similar approaches. Sec-
tion 3 briefly describes the task-based concurrency scheme
and its main properties. Section 4 illustrates the flexibility of
the approach by defining and testing some examples, while
section 5 outlines the conclusions and future research lines.

2 Related work
Given the number of available component models [7], we
will focus the rest of the discussion on those aimed to design
software for RT systems, their concurrency capabilities and
schedulability analysis.

ProCom [8] is the successor of SaveCCM. ProCom is inte-
grated in an MDSD toolchain, which provides C++ source code
generator and analysis capabilities, like worst-case execution
time. ProCom defines two layers: the upper and the lower
layer. The former allows developers to define large-grained
components, i.e. subsystems, which are active and which
communicate using message passing. The latter consists of
basic functional components, which are interconnected in-
side subsystem, and which are passive and only activated by
some external entity. Thus, components are active or passive
depending on their size, but smaller components are always
passive, independently of their complexity. In C-Forge, all
components are active, but this does not mean that they re-
quire their own thread.

The Architecture Analysis & Design Language (AADL) [9]
focuses on the modelling and analysis of the application archi-
tecture, both on the software and hardware platform. AADL
defines components as the kind of elements that can be used
to compose the software and the hardware. AADL does not
support the notion of software component, as stated in the
introduction, or changing the concurrency of the application,

though it does support many analysis types, including schedu-
lability analysis. There are several generators of Ada/C/C++

source code for implementing the application.

RUBUS [10] is a component model for RT systems that sup-
ports expressing timing requirements and properties on the
architectural level, so that they can be later analysed. It pro-
vides schedulability analysis, distributed end-to-end response
times, and overall stack analyse of the shared stacks, among
others. It does not however model component behaviour, but
it is added by the programmer. The execution semantics of
software components (implemented as functions) is started
based on an input-trigger, then read data on data in-ports, then
execute the function, afterwards write data on out-ports, and
finally activate the output trigger that will turn on the next
connected components. RUBUS does not support concurrent
execution.

The CHESS project [11] developed a MDSD toolchain for
cross-domain modelling of RT embedded systems, that allo-
cates distinct concerns to distinct views. It has been defined
as a UML profile, including tailored MARTE profile and
others OMG standards. Component behaviour can be de-
fined with state-machines, other standard UML diagrams, as
well as the Action Language for Foundational UML (ALF,
http://www.omg.org/spec/ALF/). The Deployment view mod-
els the target execution platform, and software to hardware
components allocations. The Analysis view supports Fail-
ure Mode Effects & Criticality (FMECA), Failure Mode
and Effect Analysis (FMEA), Fault Tree Analysis (FTA),
as well as schedulability analysis. CHESS also has generator
to Ada/C/C++ /Java source code. Among the reviewed compo-
nent models, CHESS is perhaps the most similar approach to
C-Forge. C-Forge focus on a single way to model component
behaviour and manage concurrency, which makes it easier to
generate and compose code.

The Real-time Container Component Model (RT-CCM) [12]
proposes a methodology for the design of component-based
applications with hard real-time requirements. RT-CCM is
a aimed at making the timing behaviour of applications pre-
dictable, and is inspired in the Lightweight CCM specification
with some extensions. The added mechanisms also enable
the application designer to configure this scheduling without
interfering with the opacity typically required in component
management. From the analysis of this model the application
designer obtains the configuration values that must be applied
to the component instances and the elements of the framework
in order to make the application fulfil its timing requirements.
However, RT-CCM considers components as black-boxes,
while our proposal considers them as white-boxes, with their
behaviour modelled by means of state-machines.

Summarizing, our approach revolves around the following
reasons. Firstly, it is mandatory that the number of threads
that execute the application, as well as their timing proper-
ties (mainly, computational load and period), are known in
order to be able to perform a schedulability analysis. Sec-
ondly, in order to maintain the coherence between the design
model (i.e., the components that define the application ar-
chitecture) and the concurrency model, this data must be

Volume 36, Number 1, March 2015 Ada User Jour na l

F. Sánchez-Ledesma, J. Pastor, D. A lonso and B. Álvarez 51

somehow present in the former, so that the latter can be par-
tially derived from it, and then completed by the developer if
needed. These two reasons imply that component models that
are purely structural, that is, that only provide primitives for
defining the external component shell and its ports, cannot
be used for this purpose. There are two viable alternatives to
overcome this limitation: (i) to enhance a purely structural
component model with the meta–data required to partially
derive concurrency characteristics, or (ii) to enable the de-
veloper to define component behaviour together with timing
requirements. The most important drawback of the first ap-
proach is that it is very difficult to assert that the component
implementation is coherent with the meta–data that describes
its concurrency characteristics and timing properties. We
decided to follow the second approach.

3 Task-based concurrency scheme
As said in the introduction, he work described in this paper
is part of a more general approach [2], where programmers
model applications using architectural components whose be-
haviour is defined by means of state-machines with orthogo-
nal regions. State-machines do not only model the lifecycle of
components, but also enable modelling how components react
to messages it receives from other components, to the results
of internal computations, as well as to the passage of time.
Communication among components only takes place through
their ports, and is message-based, asynchronous without re-
sponse. This mechanism does not only makes it possible to
implement any other communication scheme as required, but
also decouples component communication, since it does not
allow blocking calls. As a good consequence, synchroniza-
tion and message dependencies must be explicitly modelled
in state-machines, which facilitates reviewing and reasoning
about the component behaviour.

Regions constitute a very appropriate link between the archi-
tecture and concurrency domains. On the component domain,
a region defines a part of the whole component behaviour,
while on the concurrency domain, a region is assigned to
the thread that will execute it. On the component domain,
the states contained in a region have been enriched with
properties that allow developers to define their timing con-
straints (mainly execution time, and period or inter-arrival
time), while on the concurrency domain the thread’s timing
properties are derived from those of the states contained in the
regions assigned to it. Regions represent computational units
of work, since they contain the activities that encapsulate the
code that must be executed by the component depending on
its internal state. Though a region can contain many activities,
only the activity associated to the active state can be executed.

The concurrency model we have developed in order to orga-
nize and control region execution in threads is based on a
modification of the task-based scheme used in systems like
java.util.concurrent, std::async in C++ 11, Grand Central Dis-
patch in iOS, or android.os.AsyncTask, to mention a few. In
this model, the main thread enqueues the activities it wants to
be asynchronously performed, while a pool of worker threads
is in charge of dequeuing and executing them concurrently,

returning the computed values by means of future objects.
This is a very powerful, expressive, flexible, and easy to use
model for concurrent execution, but its behaviour is not pre-
dictable, because worker threads dequeue and execute the
activities as soon as there is one available activity and one
idle thread. As such, it cannot be directly used in RT systems,
but instead it must be slightly modified in order to make it
more predictable:

• Make the computational load of worker threads static,
decided by the user at development time instead of by
the system at execution time.

• Convert the main thread into a “normal”, worker thread,
since there is not such a thing as “a main component” in
C-Forge.

• Let the developer decide how many (worker) threads
execute the application.

• Create a cyclic executive inside each thread in order to
schedule region execution.

The proposed task-based concurrency scheme for executing
component-based applications start by characterizing states.
States that contain one activity also define its period, deadline,
worst case execution time, and activation pattern (periodic
or sporadic): Sti = (T i

act,WCET i
act); data that is obtained

from the application requirements. We assume that period
equals deadline, and that period also model the minimum
inter-arrival time in the case of sporadic activities. Starting
from this data it is possible to calculate the timing properties
of the regions of all components by applying equations 1 and
2. This is a pessimistic estimation, since we assume the region
will be always executing the activity with the largest execution
time, but it is needed in order to perform the schedulability
analysis.

T i
reg = gcd(Tact ∈ Ri) (1)

WCET i
reg = max(WCETact ∈ Ri) (2)

On the other hand, the application can be executed in a set of
nodes, which represent computational units. They contain a
finite set of processes, which represent the unit of resource
management. Processes contain a finite set of threads, which
represent the unit of concurrent execution. Components are
assigned to processes and the regions of a given component
can be assigned to any of the threads of the process that
contains such component. This is a flexible scheme, which
enables threads to execute regions contained in different com-
ponents, but which does not force to assign all the regions of
a component to the same thread.

Threads can be characterized by their period and their worst
case execution time: Thi = (T i

th,WCET i
th), which can be

derived from the assigned regions by applying equations 3
and 4.

T i
th = gcd(Treg ∈ Thi) (3)

WCET i
th =

∑
(WCET i

reg ∈ Thi) (4)

Ada User Jour na l Vo lume 36, Number 1, March 2015

52 A Task-Based Concurrency Scheme for Execut ing Component -Based Appl ica t ions

A cyclic executive scheduler is created inside each thread in
order to control the execution of the regions assigned to it.
Given that the assignment of regions to threads is static and
is made at design time, it is possible to automatically calcu-
late the parameters needed by the cyclic executive, primary
cycle (H) and secondary cycle (Ts), and build the execution
table from such assignment. The primary cycle (H) can be
calculated by means of equation 5, while the secondary cy-
cle coincides with the thread period, calculated by means of
equation 3.

Hi = lcm(Treg ∈ Thi) (5)

It should be highlighted that FraCC does not give any guid-
ance as to the number of threads that have to be created or
how regions should be assigned to them, but rather it provides
the necessary mechanisms to enable developers to choose the
appropriate heuristic methods, like the ones defined in [13],
for instance. Both the number of threads as well as the allo-
cation of regions to them can be done arbitrary, but the main
objective should be to “ensure application schedulability”.
Two heuristics we normally use are to assign to the same
thread regions that have similar periods, or that have states
which activities communicate with each other.

3.1 Schedulability Analysis

A deployment model in C-Forge enables developers to set the
application distribution in computational nodes, as well as
the number of processes and threads in which the application
will be run, as described previously. This organization makes
it possible to perform schedulability analysis of a given ap-
plication deployment. The deployment model provides great
flexibility, since it does not impose a fixed relationship be-
tween component and processes/threads, but rather allows
developers to define it, within certain limits. It also enables
us to better control the resources and facilities needed by the
platform in order to execute the application, and use only the
necessary ones, as well as the performance of RT schedulabil-
ity analysis. For instance, if all the application components
run in the same node, no middleware is really needed, and
thus lighter mechanisms, like shared memory, can be used
instead for message exchange.

Cheddar [14] is a RT scheduling tool, designed for checking
task temporal constraints of a RT system. In order to perform
the schedulability analysis, Cheddar requires the number of
tasks, their timing properties (mainly wcet and period) and
the number of shared resources of the application. Threads of
the deployment model are directly transformed into Cheddar
tasks, but shared resources must be derived from the deploy-
ment model, according to the buffer structures implemented
in FraCC, as described in [3]. It must be highlighted that
shared resources do not use synchronization primitives, only
mutual exclusion, due to the fact that communication among
components is only asynchronous. This makes it possible to
bound blocking times.

According to the memory structure, only the buffers are can-
didates to be structures shared among threads. Among the

Table 1: Regions’ calculated timing properties

Region Period (ms) WCET (ms)
R1 10 0.5
R2 20 1
R3 2 0.5
R4 40 0.8
R5 20 1
R6 2 1

generated buffers, only those that hold messages sent or pro-
cessed by activities contained in regions assigned to different
threads need to be protected from concurrent access. Buffers
that hold messages produced or consumed by activities con-
tained in regions assigned to the same thread need not be
protected, since they will be accessed sequentially by activi-
ties. These shared buffers use the immediate ceiling priority
protocol. It must also be noted that there is only one active
state per region, and thus only one activity per region will ac-
cess these buffers. All the needed information can be derived
from the architectural and deployment models.

In case the schedulability analysis concludes that the appli-
cation is not schedulable, the developer can first generate
new deployment models, mainly by changing the number
of threads and the assignment of regions to threads. If the
applications continues to be not schedulable, he/she has to
start modifying the architecture, mainly by changing the algo-
rithms used in the activities to faster ones, or by relaxing the
timing constraints of the states. The last option if none of the
previous generates a schedulable application is to change the
components themselves, and thus the application architecture.

4 Sample Application

In order to illustrate the system and execution models de-
scribed in the previous section, as well as the schedulability
analysis, the sample application shown in figure 1 will be
used. As can be seen, it comprises three components and
six regions, which timing properties are also depicted in the
figure. We assume that the application will run in one node
and one process.

4.0.1 Region characterization.

The timing properties of the regions are derived from their
activities by applying equations 1 and 2 as shown in Table 1.

4.0.2 Region to threads assignment.

Regions can be assigned to threads in an arbitrary way. A
possible thread scheme considers four threads to execute the
application, with the following assignment: Th1 = {R2},
Th2 = {R1, R4, R5}, Th3 = {R3}, and Th4 = {R6}.
The following subsection will present some deployment ex-
amples in which we change this assignment and the results of
the Cheddar analysis.

Volume 36, Number 1, March 2015 Ada User Jour na l

F. Sánchez-Ledesma, J. Pastor, D. A lonso and B. Álvarez 53

<<component>>
K2

<<component>>
K1

<<component>>
K3

St3 St4

St1 St2

St6

St7 St8

St10St9

St5

Figure 1: Sample application architecture with timing properties.

Table 2: Threads’ calculated timing properties

Thread Region/s Period (ms) WCET (ms) Priority
Th1 R2 20 1 4
Th2 R1, R4, R5 10 2.3 3
Th3 R3 2 0.5 2
Th4 R6 2 1 1

4.0.3 Threads characterization.

Given this assignment, the timing properties of the thread
can be calculated by applying equations 3 and 4, as shown in
Table 2. The rate monotonic algorithm is used to calculate the
concrete priority level. The lower the priority number (Pr),
the higher the thread priority.

4.0.4 Scheduling regions inside threads.

Threads Th1, Th3, and Th4 do not need to schedule the
regions inside them because they only have one region each,
but thread Th2 does need to schedule regions R1, R4, and R5.
To schedule these regions we need to calculate the primary
and secondary cycles, as well as to build the scheduling table.
Primary cycle is calculated by applying equation 3: H2 =
lcm(TR1, TR4, TR5) = lcm(10ms, 40ms, 20ms) = 40ms,
while the secondary cycle coincides with the thread period,
Ts2 = 10ms. Thus, the scheduling table will have four
secondary cycles of 10ms each:

t = 0ms Executes R1, R4 and R5
t = 10ms Executes R1
t = 20ms Executes R1 and R5

t = 30ms Executes R1

4.1 Deployment Examples
Table 3 shows the results of the Cheddar analysis for the sam-
ple deployments we describe below. The default deployment
model created by the tool, deployment 1, defines one node
with a single process hosting just one thread. All components
are assigned to this process, while all regions of the com-
ponents are assigned to such thread. Given the periods and
worst execution times of the components regions, it is clear

that the application resulting from the default deployment is
not schedulable.

In deployment 2 the developer has defined three threads, one
for executing each component. At a glance, it is possible
to determine that the application is again not schedulable.
Note that the period of thread 3 is lesser than its WCET. The
developer can change the regions assignment, as it is shown
in deployment 3, in order to reduce the WCET of thread 3.
This new deployment is now schedulable. Deployment 4
shows the case where all the components’ regions have been
assigned to different threads, resulting, for this example, in
the best of the four deployments from the point of view of
processor usage.

5 Conclusions
This paper describes a flexible development approach for
component–based applications with real–time requirements,
which provides developers with enough control over the con-
currency characteristics of the application execution so that
schedulability analysis can be performed. These objectives
have been achieved by means of (i) defining a component
model that includes structure and behaviour; (ii) establish-
ing a clear separation between these concerns, decoupling
the structural elements from the behavioural and the algo-
rithmic ones; (iii) defining a clear and consistent association
between the elements of the system and execution models
through a deployment model. The approach is supported by a
model-driven toolchain developed in Eclipse (C-Forge).

The explicit modelling of component behaviour by means of
state-machines with orthogonal regions offers several advan-
tages, namely it enables developers to describe the temporal
requirements at the architectural level; orthogonal regions
explicitly reflect the concurrent nature of the component be-
haviour; regions have proven to be an excellent way to link
the architecture and concurrency domains, since on the com-
ponent domain regions define a part of the whole component
behaviour, while on the concurrency domain they define the
unit of computational work assigned to a thread. The concur-
rency scheme we developed in order to organize and control

Ada User Jour na l Vo lume 36, Number 1, March 2015

54 A Task-Based Concurrency Scheme for Execut ing Component -Based Appl ica t ions

Table 3: Summary of the four considered deployments and the results of the Cheddar schedulability analysis

Deployment	
 1	
 (T,	
 WCET)	
 Deployment	
 2	
 Deployment	
 3	
 Deployment	
 4	

Thread1	
 (T=2,	
 WCET=4.8)	

	
 Reg1	
 (10,	
 0.5)	

	
 Reg2	
 (20,	
 1.0)	

	
 Reg3	
 (2,	
 0,5)	

	
 Reg4	
 (40,	
 0.8)	

	
 Reg5	
 (20,	
 1.0)	

	
 Reg6	
 (2,	
 1.0)	

Thread1	
 (T=10,	
 WCET=1.5)	

	
 Reg1	
 (10,	
 0.5)	

	
 Reg2	
 (20,	
 1.0)	

Thread2	
 (T=2,	
 WCET=1)	

	
 Reg6	
 (2,	
 1.0)	

Thread3	
 (T=2,	
 WCET=2.3)	

	
 Reg3	
 (2,	
 0,5)	

	
 Reg4	
 (40,	
 0.8)	

	
 Reg5	
 (20,	
 1.0)	

Thread1	
 (T=10,	
 WCET=1.5)	

	
 Reg1	
 (10,	
 0.5)	

	
 Reg2	
 (20,	
 1.0)	

Thread2	
 (T=20,	
 WCET=1.8)	

	
 Reg4	
 (40,	
 0.8)	

	
 Reg5	
 (20,	
 1.0)	

Thread3	
 (T=2,	
 WCET=1.5)	

	
 Reg3	
 (2,	
 0,5)	

	
 Reg6	
 (2,	
 1.0)	

Thread1	
 (T=10,	
 WCET=0.5)	

	
 Reg1	
 (10,	
 0.5)	

Thread2	
 (T=20,	
 WCET=1.0)	

	
 Reg2	
 (20,	
 1.0)	

Thread3	
 (T=2,	
 WCET=0.5)	

	
 Reg3	
 (2,	
 0,5)	

Thread4	
 (T=40,	
 WCET=0.8)	

	
 Reg4	
 (40,	
 0.8)	

Thread5	
 (T=20,	
 WCET=1.0)	

	
 Reg5	
 (20,	
 1.0)	

Thread6	
 (T=2,	
 WCET=1.0)	

	
 Reg6	
 (2,	
 1.0)	

Cheddar	
 analysis	
 results:	

Feasibility	
 test	
 based	
 on	
 the	

processor	
 utilization	
 factor:	
 	

– Processor	
 utilization	
 factor	

with	
 deadline	
 is	
 2.4	
 	

– In	
 the	
 pre-­‐emptive	
 case,	
 with	

RM,	
 cannot	
 prove	
 that	
 the	

task	
 set	
 is	
 schedulable:	

processor	
 utilization	
 factor	
 is	

more	
 than	
 1.0	

Feasibility	
 test	
 based	
 on	
 worst	

case	
 task	
 response	
 time:	
 	

Processor	
 utilization	

exceeded:	
 cannot	
 compute	

bound	
 on	
 the	
 response	
 time	

with	
 this	
 task	
 set.	

	

Cheddar	
 analysis	
 results:	

Feasibility	
 test	
 based	
 on	
 the	

processor	
 utilization	
 factor:	
 	

– Processor	
 utilization	
 factor	

with	
 deadline	
 is	
 1.52	
 	

– In	
 the	
 pre-­‐emptive	
 case,	
 with	

RM,	
 cannot	
 prove	
 that	
 the	

task	
 set	
 is	
 schedulable:	

processor	
 utilization	
 factor	
 is	

more	
 than	
 1.0	

Feasibility	
 test	
 based	
 on	
 worst	

case	
 task	
 response	
 time:	
 	

Processor	
 utilization	

exceeded:	
 cannot	
 compute	

bound	
 on	
 the	
 response	
 time	

with	
 this	
 task	
 set.	

Cheddar	
 analysis	
 results:	

Feasibility	
 test	
 based	
 on	
 the	

processor	
 utilization	
 factor:	
 	

– Processor	
 utilization	
 factor	

with	
 period	
 is	
 0.99	
 	

– 200	
 µs	
 are	
 unused	
 in	
 the	
 base	

period.	
 	
 	

– In	
 the	
 pre-­‐emptive	
 case,	
 with	

RM,	
 the	
 task	
 set	
 is	

schedulable.	

Feasibility	
 test	
 based	
 on	
 worst	

case	
 task	
 response	
 time:	
 	

Bound	
 task	
 response	
 time:	

	
 	
 	
 	
 	
 Thread2	
 ⇒	
 19800	
 µs	

	
 	
 	
 	
 	
 Thread1	
 ⇒	
 6000	
 µs	

	
 	
 	
 	
 	
 Thread3	
 ⇒	
 1500	
 µs	

Cheddar	
 analysis	
 results:	

Feasibility	
 test	
 based	
 on	
 the	

processor	
 utilization	
 factor:	
 	

– Processor	
 utilization	
 factor	

with	
 period	
 is	
 0.92	
 	

– 3200	
 µs	
 are	
 unused	
 in	
 the	

base	
 period.	
 	
 	
 	

– In	
 the	
 pre-­‐emptive	
 case,	
 with	

RM,	
 the	
 task	
 set	
 is	

schedulable.	

Feasibility	
 test	
 based	
 on	
 worst	

case	
 task	
 response	
 time:	
 	

Bound	
 task	
 response	
 time:	
 	

	
 	
 	
 	
 	
 Thread4	
 ⇒	
 15800	
 µs	

	
 	
 	
 	
 	
 Thread2	
 ⇒	
 10000	
 µs	

	
 	
 	
 	
 	
 Thread5	
 ⇒	
 6000	
 µs	

	
 	
 	
 	
 	
 Thread1	
 ⇒	
 2000	
 µs	

	
 	
 	
 	
 	
 Thread3	
 ⇒	
 1500	
 µs	

	
 	
 	
 	
 	
 Thread6	
 ⇒	
 1000	
 µs	
 	

	

	

	

	
 	

region execution in threads revolves around a modification of
the thread-pool design, where regions are the units of work;
developers define at design time both the number of threads
that execute the application, as well as their computational
load, by assigning the regions they will execute; and a cyclic
executive inside each threads manages region execution. The
regularity of this scheme enables the performance of schedu-
lability analysis, and thus its use in applications with timing
requirements.

The deployment model has also proven to be essential in
the approach, since it separates application architecture from
its deployment in terms of nodes, processes and threads, en-
abling the separation of roles in the development team, as
well as the rapid testing of different deployment scenarios.
This model also enables us to determine the computational
resources required by the application, as well as to estimate
memory consumption, which is very important in embedded
systems. Unlike other reviewed component models, C-Forge
does not enforce a rigid association between components and
processes/threads, but it can be easily configured thanks to
the deployment model. It also means that C-Forge compo-
nents are not forced to use a communication software for
message exchange in all scenarios, but only on those where
the application is distributed in more than one node.

Regarding future works, we are currently enhancing the de-
ployment model for supporting multi-core systems, and end-
to-end transactions specification, as well as automatically gen-
erating and testing different deployments, in order to find an
optimum one. We are also interested in generating a less pes-
simistic analysis file, since we now assume that components

are always executing the states with the longest computation,
which cannot be possible in some cases. A more exhaustive
analysis of the state-machines will enable us to make less
pessimistic analysis.

References
[1] M. Ben-Ari (2006), Principles of Concurrent and Dis-

tributed Programming, Addison-Wesley.

[2] D. Alonso, F. Sánchez-Ledesma, P. Sanchez, J. A. Pas-
tor, and B. Álvarez (2014), Models and frameworks: a
synergistic association for developing component-based
applications, The Scientific World Journal, pp. 1–17.

[3] D. Alonso, F. Sánchez-Ledesma, P. Sánchez and B. Ál-
varez (2014), Embedded and Real Time System Devel-
opment: A Software Engineering Perspective, A flexi-
ble framework for Component based Application with
Real-Time Requirements and its Supporting Execution
Framework, pp. 3–22, Springer-Verlag.

[4] J. A. Pastor, D. Alonso, P. Sanchez and B. Álvarez.,
Towards the definition of a pattern sequence for real-
time applications using a model-driven engineering ap-
proach, The Scientific World Journal, pp. 1–17.

[5] J. Bezivin (2005), On the unification power of models,
Journal of Systems and Software, pp. 171–188.

[6] F. J. Ortiz, C. Insaurralde, D. Alonso, F. Sanchez and
Y. Petillot (2014), Model-driven analysis and design
for software development of autonomous underwater
vehicles, Robotica, pp. 1–20.

Volume 36, Number 1, March 2015 Ada User Jour na l

F. Sánchez-Ledesma, J. Pastor, D. A lonso and B. Álvarez 55

[7] I. Crnkovic, S. Sentilles, A. Vulgarakis and M. R. V.
Chaudron (2011), A classification framework for soft-
ware component models, IEEE Trans. Software Eng.,
pp. 37(5):593–615.

[8] A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu
and P. Pettersson (2009), Formal semantics of the pro-
com real-time component model, Proc. of the 35th Eu-
romicro Conference on Software Engineering and Ad-
vanced Applications, pp. 478–485, IEEE.

[9] P. Feiler and D. Gluch (2012), Model-Based Engineer-
ing with AADL: An Introduction to the SAE Architecture
Analysis & Design Languages, Addison Wesley Profes-
sional.

[10] K. Hanninen et al (2008), The rubus component model
for resource constrained real-time, International Sym-
posium on Industrial Embedded Systems, pp. 177–183,
IEEE.

[11] A. Cicchetti et al (2012), Chess: a model-driven engi-
neering tool environment for aiding the development
of complex industrial systems, in Proc. of the 27th

IEEE/ACM International Conference on Automated
Software Engineering, pp. 362–365, ACM Press.

[12] Patricia López Martínez, L. Barros and J. M. Drake
(2013), Design of component-based real-time applica-
tions, Journal of Systems and Software, pp. 86(2):449–
467.

[13] P. Feiler and D. Gluch (2000), Designing Concurrent,
Distributed, and Real-Time Applications with UML, Ob-
ject Technology, Addison-Wesley.

[14] F. Singhoff, A. Plantec, P. Dissaux and J. Legrand
(2009), Investigating the usability of real-time schedul-
ing theory with the cheddar project, Journal of Real
Time Systems, pp. 43(3):259–295.

Ada User Jour na l Vo lume 36, Number 1, March 2015

56

Volume 36, Number 1, March 2015 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	An Invitation to Join Ada-Europe
	Ada Lovelace: Victorian Computing Visionary
	Persistent Containers with Ada 2012
	A Task-Based Concurrency Scheme for Executing Component-Based Applications

