

Ada User Journal Volume 36, Number 3, September 2015

ADA
USER
JOURNAL

Volume 36

Number 3

September 2015

Contents
Page

Editorial Policy for Ada User Journal 118

Editorial 119

Quarterly News Digest 120

Conference Calendar 141

Forthcoming Events 146

Bicentennial Ada Lovelace Articles

 A. A. Lovelace
“1842 Notes to the translation of the Sketch of The Analytical Engine” 152

Article from the Advances on Methods session of Ada-Europe 2015

 S. Law, M. Bennett, S. Hutchesson, I. Ellis, G. Bernat, A. Colin and A. Coombes
“Effective Worst-Case Execution Time Analysis of DO178C Level A Software” 182

Articles from the Architecture Centric Virtual Integration Workshop of Ada-Europe 2015

 R. Hawkins, I. Habli and T. Kelly
“The Need for a Weaving Model in Assurance Case Automation” 187

 P. H. Feiler
“Architecture-led Requirements and Safety Analysis of an Aircraft Survivability Situational
Awareness System” 192

Ada-Europe Associate Members (National Ada Organizations) 196

Ada-Europe Sponsors Inside Back Cover

118

Volume 36, Number 3, September 2015 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 119

Ada User Journal Volume 36, Number 3, September 2015

Editorial

As the reader is aware, the 2015 volume of the Ada User Journal is celebrating the bicentennial of Ada Lovelace with a set of
non-technical articles about Ada herself and her relation with Babbage. In this issue we will make an exception, and celebrate
the bicentennial with one technical article, which was written in 1843: the notes to the English translation of the description
of Babbage’s Analytical Engine. The notes, and their creation, have since then been the subject of several analysis; this issue
provides them for the analysis of the reader.

The 1843 notes article provides the description of the analytical engine, which is an interesting read, the notes with Ada’s
explanations of the workings of the engine (actually describing what a computer does) and Ada’s reasoning of what the
engine could eventually be. Can you imagine 170 years ago projecting that it could create music? I particularly encourage the
reader to take a journey back in time, and attentively read the writings of Ada.

I would like to thank John Fuegi and Jo Francis for pointing out the sources we have used to reproduce this article, as well as
Patricia López for the huge effort in editing them in the Journal.

In parallel to the celebration articles, the Journal continues the task of promoting and disseminating technical articles
concerning the Ada language in particular and reliable software in general. The issue follows with an article worst-case
execution time analysis of DO-178 Level A software, by a group of authors from Rolls-Royce Controls & Data Services and
Rapita Systems, from the UK. This article concludes the publication of the Advances on Methods session of Ada-Europe
2015 (previous articles of the session were published in the March 2015 issue).

Afterwards, it provides the best papers from the Architecture Centric Virtual Integration Workshop, also an event associated
with the Ada-Europe 2015 conference. In the first article, authors from the University of York, UK, explain how model
weaving allows for modelling correspondences between models and how to apply it for assurance cases. Then, Peter Feiler,
from the Software Engineering Institute, USA, describes an approach for the specification of verifiable requirements and for
system safety analysis.

In parallel to the technical contents of the Journal, I would like also to note the featured forthcoming events.

Although not first in chronological order, and bracketed by two technical events, I would like to start with the Ada Lovelace
Symposium, which will take place at the Mathematics Institute, University of Oxford on 9th and 10th December 2015. The
symposium will be one of the main bicentennial celebrating events, featuring reputed speakers (among them John Barnes),
discussing Ada’s life and work.

Going back to chronological order, first we have the announcement of the 2nd UK conference on High Integrity Software
taking place in Bristol, UK, on November 5, 2015, an event about challenges and solutions in the domain of trustworthy
software engineering. Then the announcement of the 2016 International Real-Time Ada Workshop, which will take place in
Benicássim, near Valencia, Spain, April 11-13 2016. An important event for the advancement of Ada technology and use in
one very important domain.

To conclude, also a special note to the Ada-Europe 2016 conference, which will take place in Pisa, Italy, in the week of 13-17
June, 2016. The opportunity for Ada and Reliable Software practitioners and enthusiasts to present their work and for the
community to connect in an enjoyable scenario. Recognizing the importance of parallelism, and its impact on future reliable
systems, the conference includes a Special Session on Safe, Predictable Parallel Software Technologies.

The Ada-Europe conference is an outcome of contributions from the community; I encourage, and insist in asking for, your
contribution!

 Luís Miguel Pinho
Porto

September 2015
 Email: AUJ_Editor@Ada-Europe.org

120

Volume 36, Number 3, September 2015 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Events 120
Ada-related Resources 121
Ada-related Tools 121
Ada-related Products 125
Ada and Operating Systems 126
References to Publications 128
Ada Inside 129
Ada in Context 130

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Mascot Competition Result

From: David Botton <david@botton.com>
Date: Tue, 5 May 2015 12:25:54 -0700
Subject: New Ada Mascot Image - Lady Ada

with Lady Fairy
Newsgroups: comp.lang.ada

Here is the new image I hired Leah to
create with the Ada Mascot and Lady Ada
together :)

 http://getadanow.com/img/
lady_fairy_sm.png

I have also added the new image to the
Mascot Store (no profits generated):

 http://www.cafepress.com/adamascot

Mascot files:

 http://getadanow.com/mascot.html

[See also “Mascot Competition Result”,
AUJ 36-2, p. 60. —sparre]

Ada-Belgium Spring Event

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Tue, 2 Jun 2015 21:02:24 +0000
Subject: Ada-Belgium Spring 2015 Event,

Sat 13 June 2015
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, be.comp.programming

Ada-Belgium Spring 2015 Event

Saturday, June 13, 2015, 12:00-19:00

Leuven, Belgium

including at 15:00

2015 Ada-Belgium General Assembly

and at 16:00

Ada Round-Table Discussion

<http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/local.html>

--

Announcement

The next Ada-Belgium event will take
place on Saturday, June 13, 2015 in
Leuven.

For the 8th year in a row, Ada-Belgium
decided to organize their "Spring Event",
which starts at noon, runs until 7pm, and
includes an informal lunch, the 22nd
General Assembly of the organization,
and a round-table discussion on Ada-
related topics the participants would like
to bring up.

Schedule

- 12:00 welcome and getting started
(please be there!)

- 12:15 informal lunch

- 15:00 Ada-Belgium General Assembly

- 16:00 Ada round-table + informal
discussions

- 19:00 end

Participation

Everyone interested (members and non-
members alike) is welcome at any or all
parts of this event.

For practical reasons registration is
required. If you would like to attend,
please send an email before Wednesday,
June 10, 21:00, to Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> with
the subject "Ada-Belgium Spring 2015
Event", so you can get precise directions
to the place of the meeting. Even if you
already responded to the preliminary
announcement, please reconfirm your
participation ASAP.

If you are interested to become a new
member, please register by filling out the
2015 membership application form[1] and
by paying the appropriate fee before the
General Assembly. After payment you
will receive a receipt from our treasurer
and you are considered a member of the
organization for the year 2015 with all
member benefits[2]. Early renewal
ensures you receive the full Ada-Belgium
membership benefits (including the Ada-
Europe indirect membership benefits
package).

As mentioned at earlier occasions, we
have a limited stock of documentation
sets and Ada related CD-ROMs that were
distributed at previous events, as well as
back issues of the Ada User Journal[3].
These will be available on a first-come
first-serve basis at the General Assembly
for current and new members. (Please
indicate in the above-mentioned
registration e-mail that you're interested,
so we can bring enough copies.)

[1] http://www.cs.kuleuven.be/~dirk/ada-
belgium/forms/member-form15.html

[2] http://www.cs.kuleuven.be/~dirk/ada-
belgium/member-benefit.html

[3] http://www.ada-europe.org/auj/home/

Informal lunch

The organization will provide food and
beverage to all Ada-Belgium members.
Non-members who want to participate at
the lunch are also welcome: they can
choose to join the organization or pay the
sum of 15 Euros per person to the
Treasurer of the organization.

General Assembly

All Ada-Belgium members have a vote at
the General Assembly, can add items to
the agenda, and can be a candidate for a
position on the Board[4]. See the separate
official convocation for all details.

[4] http://www.cs.kuleuven.be/~dirk/ada-
belgium/board/

[5] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/15/150613-abga-
conv.html

Ada Round-Table Discussion

As in recent years, we plan to keep the
technical part of the Spring event informal
as well. We will have a round-table
discussion on Ada-related topics the
participants would like to bring up. We
invite everyone to briefly mention how
they are using Ada in their work or non-
work environment, and/or what kind of
Ada-related activities they would like to
embark on. We hope this might spark
some concrete ideas for new activities and
collaborations.

Directions

To permit this more interactive and social
format, the event takes place at private
premises in Leuven. As instructed above,
please inform us by e-mail if you would
like to attend, and we'll provide you
precise directions to the place of the
meeting. Obviously, the number of

Ada-related Tools 121

Ada User Journal Volume 36, Number 3, September 2015

participants we can accommodate is not
unlimited, so don't delay...

Looking forward to meet many of you!

Dirk Craeynest, President Ada-Belgium

Dirk.Craeynest@cs.kuleuven.be

Acknowledgements

We would like to thank our sponsors for
their continued support of our activities:
AdaCore, Barco, Katholieke Universiteit

Leuven (KU Leuven), and Université
Libre de Bruxelles (U.L.B.).

If you would also like to support
Ada-Belgium, find out about the extra

Ada-Belgium sponsorship benefits:

http://www.cs.kuleuven.be/~dirk/ada-
belgium/member-benefit.html#sponsor

[I've heard from Dirk that they had a very
pleasant afternoon. —sparre]

Survey: Programmers'
Impressions of Ada

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Mon, 27 Jul 2015 18:16:54 -0700
Subject: Survey of Programmers'

Impressions of the Ada Language
Newsgroups: comp.lang.ada

https://docs.google.com/forms/d/15mmK_
qV8P9DKEhHUnIb1RFElQFTjVTZHH0
S6pO1iWrQ/viewform?usp=send_form

I posted this on reddit, but thought I'd be
thorough and post it here as well --
although I certainly want input from
people who aren't versed in Ada.

Ada-related Resources

Join Ada Now

From: David Botton <david@botton.com>
Date: Wed, 24 Jun 2015 15:18:45 -0700
Subject: JoinAdaNow.com and the Ada

Mascot in the Wild Project
Newsgroups: comp.lang.ada

I have started a new site in the AdaNow
series - http://joinadanow.com

Do you have an active Ada project and
looking for developers? Looking to start
one? Let me know and I'll list it under
Join a Group

In addition the Ada Mascot original
images for use and modification and a
new project "Ada Mascot in the Wild" for
Ada Mascot Sightings is hosted there:

http://joinadanow.com/#mascot

Are you using the Ada Mascot (it is
completely free for any Ada use)? Have
you seen it in use somewhere let me know
so it can be listed.

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon Aug 24 2015
Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn[1]: 2_305 members

- Reddit[2]: 820 readers

- Google+[3]: 522 members

- StackOverflow[4]: 291 followers

- Twitter[5]: 4 tweeters

[1] http://www.linkedin.com/
groups?gid=114211

[2] http://www.reddit.com/r/ada/

[3] https://plus.google.com/communities/
102688015980369378804

[4] http://stackoverflow.com/questions/
tagged/ada

[5] https://twitter.com/search?f=realtime&
q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
36-2, p. 62. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon Aug 24 2015
Subject: Repositories of Open Source

software

GitHub: 835 repositories [1]

 257 developers [1]

Rosetta Code: 620 examples [2]

 30 developers [3]

Sourceforge: 245 repositories [4]

BlackDuck OpenHUB: 211 projects [5]

Bitbucket: 110 repositories [6]

 17 developers [6]

OpenDO Forge: 23 projects [7]

 445 developers [7]

Codelabs: 20+ repositories [8]

AdaForge: 8 repositories [9]

[1] https://github.com/search?q=language
%3AAda&type=Repositories

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] http://sourceforge.net/directory/
language%3Aada/

[5] https://www.openhub.net/
tags?names=ada

[6] http://edb.jacob-sparre.dk/Ada/
on_bitbucket

[7] https://forge.open-do.org/

[8] http://git.codelabs.ch/

[9] http://forge.ada-ru.org/adaforge

[See also “Repositories of Open Source
Software”, AUJ 36-2, p. 62. —sparre]

Ada-related Tools

OpenToken

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Tue, 12 May 2015 08:09:12 -0500
Subject: opentoken 6.0b released
Newsgroups: comp.lang.ada

opentoken 6.0b is available at

 http://stephe-leake.org/ada/
opentoken.html

This fixes the bugs reported since 6.0a
was released.

[See also “OpenToken”, AUJ 36-2, p. 65.
—sparre]

Sending E-Mail

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 15 May 2015 23:21:48 +0200
Subject: Re: Email from and Ada program
Newsgroups: comp.lang.ada

> [...]

Look at AWS. It has an SMTP package.

Use as:

 SMTP.Client.Send (
 Server => SMTP_Server,
 From => SMTP.E_Mail ("Sender
 Name", Sender_Email_Address),
 To => Receivers,
 Subject => Subject,
 Message => Msg,
 Status => Status);

Mathpaqs

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 2 Jun 2015 05:27:46 -0700
Subject: Mathpaqs release 30-May-2015
Newsgroups: comp.lang.ada

Two additions in the latest release:

- Formulas, a generic formula package
with parsing, evaluation and
simplification

- Contours, a generic contour plot
package

[See also “Excel Writer, GNAVI,
Mathpaqs and Zip-Ada”, AUJ 34-4, p.
200. —sparre]

Multiprecision Integers

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Wed, 03 Jun 2015 11:09:17 -0700
Subject: Re: Mathpaqs release 30-May-

2015
Newsgroups: comp.lang.ada

122 Ada-related Tools

Volume 36, Number 3, September 2015 Ada User Journal

> I am really interested by your
multiprecision integers. I am happy to
see that they are implemented in Ada.

The trouble with his multiprecision
integers is that, for each variable, you
have to specify the number of "digits" it
can hold. You can sometimes get around
this by using the result of an expression as
the initialization of an object. But
sometimes it is difficult, especially if you
want to write portable code, since the size
of a "digit" is determined by a constant
from System.

The alternative to this is to have
unbounded integers, with the number of
"digits" determined by the value. This is
generally implemented using access
types, allocation, and deallocation, which
can be difficult to get right.

However, in the beta version of the
PragmAda Reusable Components for
ISO/IEC 8652:2007, there is an
Unbounded_Integers pkg that does not
(explicitly) use access types. The division
algorithm might be a bit slow.

> I used to write a binding to GMP and
MPFR but I only considered
"Unbounded Integers", implemented as
controlled types, just like
unbounded_strings are implemented.
Do you know how fast is your Library
compared to GMP?

Advantages to a binding to something like
GMP is that it is well tested and fast. The
disadvantage is that it is a binding to
something written in not-Ada. Also, a
decent binding might use 3 subprogram
calls where a native pkg would only use 1
(your code calls the thick binding, which
calls the thin binding, which calls the
imported code), and convert types, which
might be enough to make up for the speed
difference. The PragmARCs are at

https://pragmada.x10hosting.com/
pragmarc.htm

Mosquitto

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Mon, 08 Jun 2015 20:10:37 +0200
Subject: ANN: mosquitto-ada-1.0.0
Newsgroups: comp.lang.ada

mosquitto-ada is an Ada-interface to the
MQTT it depends on the mosquitto client
library.

Website: https://github.com/persan/
mosquitto-ada/Per

[See also “Mosquitto”, AUJ 36-2, p. 65.
—sparre]

Simple Components

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 14 Jun 2015 10:38:29 +0200
Subject: ANN: Simple Components v4.7
Newsgroups: comp.lang.ada

The new version provides
implementations of HTTP, HTTPS and
MODBUS clients. The intended use is for
several clients to share single Ada task,
which may be important for embedded
and heavy-duty targets. Traditional
synchronous operating mode is supported
as well.

 http://www.dmitry-kazakov.de/ada/
components.htm

[See also “Simple Components”, AUJ 36-
1, p. 14. —sparre]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 1 Jul 2015 21:39:11 +0200
Subject: ANN: GNAT GPL 2015 updates
Newsgroups: comp.lang.ada

The following packages are updated to
support GNAT GPL 2015 and GtkAda
3.8.3. Minor issues related to the new
compiler version and GtkAda are fixed.

Ada industrial control widget library

 http://www.dmitry-kazakov.de/ada/
aicwl.htm

[See also “Industrial Control Widget
Library”, AUJ 35-3, p. 157. —sparre]

Simple Components for Ada

 http://www.dmitry-kazakov.de/ada/
components.htm

GtkAda contributions

 http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm

[See also “GtkAda Contributions”, AUJ
35-3, p. 155. —sparre]

Units of measurement for Ada

 http://www.dmitry-kazakov.de/ada/
units.htm

[See also “Units of Measurement”, AUJ
35-3, p. 156. —sparre]

Fuzzy sets for Ada

 http://www.dmitry-kazakov.de/ada/
fuzzy.htm

[See also “Fuzzy Sets”, AUJ 35-3, p. 157.
—sparre]

Fuzzy machine learning

 http://www.dmitry-kazakov.de/ada/
fuzzy_ml.htm

[See also “Fuzzy machine learning
framework”, AUJ 33-3, p. 143. —sparre]

P.S. Note that this compiler version
introduces 64-bit Stream_Offset even if
the target is 32-bit. The project scenario
controlling atomic access must be set on
GCC-long-offsets.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 22 Aug 2015 08:39:21 +0200
Subject: ANN: Simple Components v4.9

released
Newsgroups: comp.lang.ada

The new version provides an
implementation of ELV/eQ-3 MAX! cube
protocol.

http://www.dmitry-kazakov.de/ada/
components.htm

GNAT

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Mon, 15 Jun 2015 08:39:19 -0700
Subject: GNAT GPL 2015
Newsgroups: comp.lang.ada

I happened to check
http://libre.adacore.com/. Voila, GNAT
GPL 2015 is available. I am anxious to
download it after getting from my current
vacation.

Gnoga

From: David Botton <david@botton.com>
Date: Wed, 1 Jul 2015 07:43:49 -0700
Subject: GNOGA v1.1 Released - Ada Cloud

Desktop and Mobile Development
Newsgroups: comp.lang.ada

GNOGA v1.1 for Ada is now available
from http://gnoga.com or via git from
http://sourceforge.net/projects/gnoga

V1.1 in addition to bug fixes and vastly
increased stability adds:

- Completed multimedia bindings

- Easier boot file creation by just
including boot.js in any html file

- Direct HTTPS and Secure Websockets

- HTTP polling with Ajax including
fallback support (using auto.html
bootfile)

[See also “Gnoga”, AUJ 36-2, p. 63.
 —sparre]

Qt5Ada

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Thu, 2 Jul 2015 20:51:34 -0700
Subject: Announce : Qt5Ada version 5.5.0

(432 packages) and VTKAda version
6.2.0 (656 packages) release 02/07/2015
free edition

Newsgroups: comp.lang.ada

Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.5.0 final).

Qt5ada version 5.5.0 open source and
qt5c.dll, libqt5c.so(x32 and x64),
libqt5c.dylib built with Microsoft Visual
Studio 2012 in Windows, gcc x86-64
(x86-32) in Linux and Mac OSX.

Package tested with GNAT GPL Ada
compiler in Windows 32bit and 64bit,
Linux x86, Linux x86-64, Debian 7.3 and
Mac OSX 10.8.5.

It supports GUI, SQL, multimedia, web,
network, touch devices, sensors,
navigation and many others things.

Added QtLocation support, new packages
and demos.

Ada-related Tools 123

Ada User Journal Volume 36, Number 3, September 2015

Qt5Ada for Windows, Linux (Unix) and
Mac (OSX) is available from
https://drive.google.com/
folderview?id=0B2QuZLoe-
yiPbmNQRl83M1dTRVE&usp=sharing
(google drive. It can be mounted as virtual
drive or directory or viewed with Web
Browser) or download from
http://ul.to/3u8uz26c

My configuration script to build Qt 5.5 is:
configure -opensource -release -nomake
tests -opengl dynamic -qt-zlib -qt-libpng -
qt-libjpeg -openssl-linked
OPENSSL_LIBS="-lssleay32 -llibeay32"
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.5"

The full list of released classes is in "Qt5
classes to Qt5Ada packages relation
table.pdf"

I do this work on my own risk and I hope
Qt5Ada and VTKAda will be useful for
students, engineers, scientists and
enthusiasts. With Qt5Ada you can build
any applications and solve any problems
easy and quickly.

If you have any problems or questions,
please let me know.

[See also “Qt5Ada”, AUJ 36-1, p. 16.
—sparre]

SDLAda

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 12 Jul 2015 07:25:36 -0700
Subject: ANN: First official release of

SDLAda
Newsgroups: comp.lang.ada

After much stagnation, I have finally
tagged a v1.0.0 release of my SDL 2.0.3
bindings (http://libsdl.org/).

There's still a lot missing, but most of the
functionality to get something working is
in there.

You can get it and test it from GitHub:

https://github.com/Lucretia/sdlada/
tree/v1.0.0

GNAT for Atmel SAM4S

From: Patrick Noffke
<patrick.noffke@gmail.com>

Date: Tue, 28 Jul 2015 13:08:03 -0700
Subject: ANN: GNAT GPL 2015 Atmel

SAM4S Ravenscar patches
Newsgroups: comp.lang.ada

A makefile and patches be found here:

https://github.com/patricknoffke/ada-mcu

I have added runtime support for various
peripherals, with BSD 3-Clause license.

Gnoga as a Web Platform?

From: David Botton <david@botton.com>
Date: Thu, 06 Aug 2015 18:33:36 +0000
Subject: Gnoga as a Web platform
Newsgroups: gmane.comp.lang.ada.gnoga

While I am continuing towards more
development of Gnoga for "native" use on
local devices. It is of course an excellent
platform for web development.

I think that it affords us an interesting
opportunity for Ada. To provide a full
contact management / web site
environment in a compiled application.
This of course is more secure than using
typical scripting based systems like
Drupal, Joomla, Wordpress, etc. They are
often hacked and easily modified once in.
Is anyone interested in being part of a
project to create a CMS / web site system
using Gnoga?

Cortex GNAT Run Time
Systems

From: Simon Wright
<simon@pushface.org>

Date: Sun, 09 Aug 2015 22:10:32 +0100
Subject: STM32F4 GNAT Run Time Systems

project renamed
Newsgroups: comp.lang.ada

The project previously known as
STM32F4 GNAT Run Time Systems is
renamed to Cortex GNAT Run Time
Systems, at

https://sourceforge.net/projects/
cortex-gnat-rts/

I'll soon be updating with the Arduino
Due version.

[See also “STM32F4 GNAT Run Time
Systems”, AUJ 36-2, p. 64. —sparre]

From: Simon Wright
<simon@pushface.org>

Date: Wed, 12 Aug 2015 12:07:06 +0100
Subject: ANN: Cortex GNAT Run Time

Systems release 20150810
Newsgroups: comp.lang.ada

Now available, for STM32F429I-DISCO
and Arduino Due. No change to RTS
facilities in this release.

https://sourceforge.net/projects/
cortex-gnat-rts/files/20150810/

Choosing a GUI Library

From: Trish Cayetano
<trishacayetano@gmail.com>

Date: Mon, 10 Aug 2015 03:24:35 -0700
Subject: GUI for Ada (GPS with GtkAda or

GtkGlade GUI Builder)
Newsgroups: comp.lang.ada

I am done with the functionality of my
Ada program (using GPS) and next is to
make it pretty by having a GUI instead of
a text based.

Please advise what shall I use to build the
GUI...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 10 Aug 2015 14:17:01 +0200
Subject: Re: GUI for Ada (GPS with GtkAda

or GtkGlade GUI Builder)
Newsgroups: comp.lang.ada

> [...]

Two major contenders are GTK and Qt.

GTK has the problem that the developer
team does everything possible to keep in
backward incompatible and going on
removing functionalities without any
replacement. Another problem is that
GtkAda is kept well behind, being
released only once in a year. Binary
distribution of GTK for Windows is
almost not maintained. Building it from
sources under Windows practically
impossible so presently you have to keep
it working form 3.8 and 3.10 which (see
above) is not trivial at best. The main
advantage is that GtkAda is AdaCore.

Qt has the problem of multiple Ada
bindings of uncertain quality and
maintenance. I didn't use Qt so I cannot
say anything regarding Qt itself.

To put things clear:

GPS is an IDE designed in GtkAda. It
does not limit you to use any other GUI
framework or same version of GTK (GPS
is 3.8.2, I believe) Actual GTK for
GtkAda is 3.8.3. Actual GTK is 3.10 or
higher. The latest official binary GTK for
Windows is 3.6.something.

GLADE is a GUI builder for Gtk. There
are different opinions on it, mine is (I am
doing a lot of stuff in GtkAda) never
touch it if you want to design something
beyond simple input forms.

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Mon, 10 Aug 2015 07:36:18 -0700
Subject: Re: GUI for Ada (GPS with GtkAda

or GtkGlade GUI Builder)
Newsgroups: comp.lang.ada

> [...]

Considering the fact that the functionality
is already done and therefore it will *not*
be put in the GUI layer, you are free to
choose the technology that is optimal for
GUI. This need not be the same that you
have used to implement the functional
parts.

I'm playing the devil's advocate now, but
really - different languages have different
strengths and while eye-candy-oriented
languages are not optimal for
implementing critical functionality, Ada
is not the sharpest knife in the GUI
drawer, either.

Personally, I would limit my choices to
HTML vs. C++/Qt, depending on what
this GUI is going to do. Both options are
known to be portable and offer modern or
even spectacular results with a lot of
know-how ready to be reused from the
web.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 13 Aug 2015 13:59:46 +0200
Subject: Re: GUI for Ada (GPS with GtkAda

or GtkGlade GUI Builder)
Newsgroups: comp.lang.ada

124 Ada-related Tools

Volume 36, Number 3, September 2015 Ada User Journal

> Does it make sense to write
application's "business-logic" (back-
end) in higher-level and type-safe
language like Ada and then write front-
end in e.g. PyQt and call Ada code in
the form of Python's extension module?

No. Because GUI code is usually bigger
and messier than the application code. It
is more fragile and requires much more
maintenance. Furthermore it is the only
thing the customer sees and actually pays
attention.

> Is it "best of both worlds" - having logic
written in type-safe language and GUI
in productive environment like e.g.
PyQt or it is actually "the worst of the
two" by losing type-safety since
extension module should use C
convention and possibly one will also
lose advantage of using Python?

No. Maintenance costs are 10 times of
developing costs. For GUI code it is even
more than that, because once deployed,
the customer starts requiring
modifications. Whatever mythical
productivity it does not matter in the end
anyway.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 13 Aug 2015 14:50:12 +0200
Subject: Re: GUI for Ada (GPS with GtkAda

or GtkGlade GUI Builder)
Newsgroups: comp.lang.ada

> [...] So, what is the solution?

>

> Writing everything in Python :-)

[...]

> Or, do you suggest writing everything
in e.g. C++?

I suggest writing everything in Ada.

From: David Botton <david@botton.com>
Date: Wed, 19 Aug 2015 07:36:10 -0700
Subject: Re: GUI for Ada (GPS with GtkAda

or GtkGlade GUI Builder)
Newsgroups: comp.lang.ada

> GUI's with Ada are my biggest
complaint with Ada. There seems to be
no good, easy to use options.

I can only assume you mean GUI builders
based on the rest of your post. Ada has
(sadly license encumbered of all things on
the Ada side...) versions of Gtk and Qt
(same for any platform) and has
GWindows which is superior to any
Windows framework I've used on any
platform and Gnoga which is already top
notch for web apps and not bad for
Desktop UIs but improving daily.

> There are several other options that are
out there (GNOGA? GNAVI? some
others) they seem like much more
"demo" than anything else.

Gnavi the Ada Delphi clone sits on top of
GWindows, in theory if someone wanted
could get Gnavi up and running again,

was fully functional but I never packaged
it. GWindows has been used for countless
professional projects and looks as good as
any windows app will and is easier to
develop in then other frameworks. So as I
said I assume you are thinking GUI dev
tools not frameworks.

> I could never get it to work properly at
all, clearly not polished, at the very
least, not documented well enough.

Not sure which you are talking about, but
there is descent community support for
GWindows and Gnoga on their lists. If
you use the Sourceforge versions of either
you will have no issues getting them to
work and both are very polished in terms
of build and have decent examples and
tutorials. Of course you could contribute
funds for a pro documentation writer for
less than most pay tools cost and get
exactly what you ask for :)

> Lazarus for FreePascal is very nice

Sadly, Gnavi was already complete before
Lazarus started and could easily be way
beyond it today, but there was a long
period when there was no real true free
Ada compiler and I had already stopped
using native Windows as a dev platform.

> I guess there are not enough Ada
experts out there that care enough to
have free GUI tools...

Not just those that did got turned off by
licensing issues when it would have made
a difference. Of course today FSF GNAT
is in good shape and so some like myself
have returned and started work on new
tools like Gnoga in the hopes that FSF
GNAT and more community supported
tools will come along since corporate
visions are too short sited to value
community and its contributions.

> Yes I do embedded work, so I don't
always need a GUI. But I create stuff
for my colleagues & customers as well
and nobody will put up with a CLI
application nowadays.

You would find Gnoga ideal in that
situation. You can easily use existing
HTML layout tools (I've posted some
examples using web based ones on the
Gnoga list) and in a few lines of code
have that up and useful.

>> Please advise what shall I use to build
the GUI...

Today I would only recommend Gnoga
because of the flexibility for remote GUI
use, cross platform completely to desktop,
mobile and cloud.

If your app needed intense GUI use on
desktop can even combine GTK (for the
intense real time graphics) and Gnoga
(forms, general use etc). (See the Gtk
native doc in the docs dir).

Command Line Parser
Generator

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Thu, 20 Aug 2015 15:15:33 +0200
Subject: ANN: Command Line Parser

Generator
Newsgroups: comp.lang.ada

I would like to announce that I have
brought my command line parser
generator[1] to (what I assume is) a
usable state.

Instead of manually implementing
command line parsing using some library,
you can collect all the ways your program
can be called as procedures in a package.

A simple example:

 package Filter is
 procedure Show_Help (Help : Boolean);
 -- Shows the usage instructions (no
 -- matter the value of 'Help').

 procedure Process (
 Source_File : String := "";
 Target_File : String := "");
 -- Empty file names are mapped to
 -- respectively 'Standard_Input'
 -- and 'Standard_Output'.
 end Filter;

Running (yes, I need a shorter name for
it):

 command_line_parser_generator-run Filter

in the directory containing 'filter.ads'
generates 'generated/filter-driver.adb',
which when compiled transforms
command line arguments into procedure
calls like this:

 --help -> Filter.Show_Help (Help => True);
 --source_file=data -> Filter.Process
 (Source_File => "data");
 --target_file=out -> Filter.Process
 (Target_File => "out");
 --source_file=data --target_file=out
 -> Filter.Process (Source_File => "data",
 Target_File => "out");

There are currently two known issues
with the tool [2]:

a) The tool assumes that all non-String
types have a 'Value attribute, without
checking if this is the case.

b) The tool doesn't check if the type of a
formal parameter has a primitive Value
function (which should override the
'Value attribute).

Enjoy!

[1] http://repositories.jacob-sparre.dk/
command-line-parser-generator/
wiki/Home

[2] http://repositories.jacob-sparre.dk/
command-line-parser-generator/
issues?status=new&status=open

Ada-related Products 125

Ada User Journal Volume 36, Number 3, September 2015

GtkAda Contributions

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 22 Aug 2015 22:14:03 +0200
Subject: ANN: GtkAda contributions v3.13

released
Newsgroups: comp.lang.ada

The library deals with the following
issues:

- Tasking support;

- Custom models for tree view widget;

- Custom cell renderers for tree view
widget;

- Multi-columned derived model;

- Extension derived model (to add
columns to an existing model);

- Abstract caching model for directory-
like data;

- Tree view and list view widgets for
navigational browsing of abstract
caching models;

- File system navigation widgets with
wildcard filtering;

- Resource styles;

- Capturing resources of a widget;

- Embeddable images;

- Some missing subprograms and bug
fixes;

- Measurement unit selection widget and
dialogs;

- Improved hue-luminance-saturation
color model;

- Simplified image buttons and buttons
customizable by style properties;

- Controlled Ada types for GTK+ strong
and weak references;

- Simplified means to create lists of
strings;

- Spawning processes synchronously and
asynchronously with pipes;

- Capturing asynchronous process
standard I/O by Ada tasks and by text
buffers;

 - Source view widget support.

http://www.dmitry-kazakov.de/
ada/gtkada_contributions.htm

The release is focused on working around
incompatibilities introduced with newer
versions of GTK.

- Added workaround get/set string
operations for tree model, store and list
store (Gtk.Missed). The standard
versions have critical bug;

- Messages filter added to
Gtk.Main.Router.GNAT_Stack;

- Add_Button_From_Stock added to
Gtk.Missed to work around
Gtk.Dialog.Add_Button. (Add_Button
generates warnings about
GtkButton:use-stock being deprecated);

- Add_Named and Add_Stock_Attribute
added to Gtk.Messed to work around
deprecated "stock-id" property of
GtkCellRendererPixbuf;

- Say procedures in Gtk.Main.Router and
in Gtk.Main.Router.GNAT_Stack
changed in order to be independent on
GtkAda.Dialogs (for the same reason);

- Bug fixes.

[See also “GtkAda Contributions”, AUJ
35-3, p. 155. —sparre]

Ada-related Products

CodePeer

From: AdaCore Press Center
Date: Wed May 6 2015
Subject: AdaCore Releases CodePeer 3.0
URL: http://www.adacore.com/press/

codepeer-3-0/

Advanced static analysis tool for Ada has
been qualified under DO-178B and
EN50128, adds support for IEEE 754
floating point semantics and enhances
support for project files

Boston, Mass. – Embedded Systems
Conference, NEW YORK and PARIS,
May 6, 2015 – AdaCore, a leading
provider of development and verification
tools for critical software, today released
CodePeer 3.0, a major new version of its
advanced static analysis tool for the
automated review and validation of Ada
source code. CodePeer 3.0 includes a
variety of enhancements that help
developers detect potential run-time and
logic errors early in the software life
cycle, and its deep analysis can directly
support formal certification against
industry-specific safety standards.

Among the new benefits of CodePeer 3.0,
tool qualification material for both the
avionics and railway domains is available
as a product option.

“With CodePeer 3.0, our customers can
take advantage of the tool’s more robust
capabilities for automated code review,”
said Arnaud Charlet, CodePeer Product
Manager at AdaCore. “By meeting
stringent industry standards for tool usage
in the aviation and rail industries,
CodePeer has a proven track record in the
most demanding systems and can help
customers in any application domain. The
tool simplifies the verification effort by
detecting subtle bugs in both new code
that is being developed, and in existing
code bases that need to be analyzed for
vulnerabilities.”

For avionics applications CodePeer has
been qualified as a Software Verification
Tool under DO-178B, a standard that is
required by certification authorities such
as the FAA in the U.S. In particular,
CodePeer automates a number of
verification activities defined in paragraph
6.3.4f (“Accuracy and consistency”) of

the DO-178B standard. These activities
include detecting errors such as values
outside the bounds of an Ada type or
subtype, buffer overflows, integer
overflow or wraparound, division by zero,
use of uninitialized variables, and floating
point underflow. The DO-178B
qualification material available as an
option with CodePeer 3.0 demonstrates
that the tool performs these activities.

CodePeer has also been qualified for
EN50128, the highest international
standard for safety integrity concerning
software for railway control and
protection, including communications,
signaling and processing systems. The
EN50128 qualification material addresses
the following:

- Boundary value analysis to detect
attempts to dereference a pointer that
could be null, values outside the bounds
of an Ada type or subtype, buffer
overflows, integer overflow or
wraparound, and division by zero.

- Control flow analysis to detect
suspicious and potentially incorrect
control flows, such as unreachable code,
redundant conditionals, loops that either
run forever or fail to terminate normally,
and subprograms that never return.

- Data flow analysis to detect suspicious
and potentially incorrect data flows, such
as variables that are read before they are
written (uninitialized variables), variables
written more than once without being read
(redundant assignments), variables that
are written but never read, and parameters
with an incorrect mode (unread “in”
parameter, unassigned “out” parameter).

CodePeer 3.0 also adds many new
features, including support for precise
IEEE 754 floating point semantics, added
flexibility in analyzing complex projects,
improved support for legacy Ada
compilers, more precise diagnostic
messages, and a new check on parameter
aliasing.

CodePeer is fully integrated into
Adacore’s GNAT Pro development
environment and comes with a number of
complementary static analysis tools
common to the technology – a coding
standard verification tool (GNATcheck),
a source code metric generator
(GNATmetric) and a document generator.

A demo of the tool highlighting the new
features introduced in CodePeer 3.0 will
be available soon; for a demo of the
previous version of the product please
visit
http://www.adacore.com/knowledge/dem
os/codepeer-2-3/

[...]

[See also “CodePeer”, AUJ 35-1, p. 10.
—sparre]

126 Ada and Operat ing Systems

Volume 36, Number 3, September 2015 Ada User Journal

VectorCAST Integration
with CodePeer

From: Vector Software
Date: Tue Jul 14 2015
Subject: Vector Software Announces

Integration with AdaCore’s CodePeer
3.0 Static Analysis Tool

URL: https://www.vectorcast.com/news/
vector-software-press-releases/2015/
vector-software-announces-integration-
adacores-codepeer-30

Latest VectorCAST integration provides
Ada developers with powerful tools for
automated code review and validation

July 14, 2015

Providence, RI – 7/14/2015 - Vector
Software, the world’s leading provider of
innovative software solutions for robust
embedded software quality, announced
today an integration of the VectorCAST
test automation platform with CodePeer
3.0 - AdaCore’s advanced static code
analysis tool for Ada, including version
2012.

VectorCAST and CodePeer now provide
Development and QA teams with the
ability to focus test efforts in areas most
susceptible to errors. An additional
capability allows developers of legacy
applications the ability to augment code
covered during unit/integration and
system test with code considered “clean”
by CodePeer. Clean code can be imported
into the VectorCAST/CBA (Covered by
Analysis) facility to increase coverage
levels. Code considered “not clean”
would be designated for additional testing
with VectorCAST.

AdaCore’s CodePeer 3.0 Advanced Static
Analysis tool detects possible run-time
errors including: IEEE 754 Floating Point
semantics, buffer overflows, integer
overflow or wraparound, division by zero,
index/range checks, uninitialized
variables, unused assignments, redundant
and invariant constructs, infinite loops,
race conditions, and suspicious implicit
contracts in source code.

This latest integration benefits all
customers working with Ada but has
some additional certification advantages
for those working protection and control
systems for Avionics or Railway, where
software quality and certification are
mandated such as: RTCA D-178B/C,
EUROCAE ED-12B/C, or CENELEC,
EN 50128.

“Providing combined views of the static
and dynamic analysis results offers novel
capabilities in terms of efficient
verification for high-assurance systems”,
said Cyrille Comar, AdaCore President.
“The VectorCAST environment allows
our customers to get the best of CodePeer
static analysis by helping them to
concentrate on the parts of the application
that are less well covered by dynamic
tests.“

“With AdaCore’s CodePeer 3.0 advanced
static analysis and the VectorCAST Test
Automation Platform’s newly engineered
features, such as Covered by Analysis, we
are able to provide new and legacy Ada
developed projects with tools to focus test
efforts in areas that will provide the best
return on investment”, said William
McCaffrey, Chief Operating Officer at
Vector Software.

[...]

GNAT Pro for VxWorks

From: AdaCore Press Center
Date: Tue Jul 21 2015
Subject: AdaCore’s GNAT Pro Available for

Wind River VxWorks 7
URL: http://www.adacore.com/press/gnat-

pro-available-for-wind-river-vxworks-7/

Offers Full Ada, Support for the Latest
Wind River RTOS, More Seamless
Integration with Workbench

SANTA CLARA, CA – Embedded
Systems Conference, NEW YORK and
PARIS, July 21, 2015 – AdaCore today
announced the continuing extension of its
Wind River® VxWorks® real-time
operating system (RTOS) support, with
the implementation of the GNAT Pro
development environment on VxWorks 7.

AdaCore engineers worked closely with
Wind River on this new product, ensuring
that it would support both single- and
multi-core systems, as well as other
architectures. Enhancements over
previous versions include a completely
reengineered open source debugger
protocol and more seamless integration
with Wind River Workbench, and the
development environment handles both
all-Ada and multi-language applications.

“Wind River provides proven, reliable
and stable solutions,” said Jerome
Guitton, AdaCore’s VxWorks product
manager. “With VxWorks 7, the company
has elevated its technology to entirely
new heights, moving to a much broader
integration of embedded solutions and big
data. These are important attributes in
helping us provide market-leading
solutions for our joint customers, and the
AdaCore plug-in for Wind River
Workbench will dramatically improve
their experience.”

GNAT Pro for VxWorks 7 offers a
variety of benefits:

- Implementation of all editions of the
Ada language standard, including the
latest version Ada 2012

- Support for VxWorks 7 kernel modules
and real-time processes

- Continued support for PowerPC, Intel
and ARM instruction sets

- Mixed-language support, allowing
applications consisting of Ada, C and
C++

- SMP support

- Extensive GNAT library

- Ada unit testing framework (AUnit)

- Dependable “front-line” support from
AdaCore

“AdaCore’s GNAT Pro is well
established among users of Wind River
platforms, especially in the aerospace and
defense market,” said Prashant Dubal,
director of VxWorks product management
at Wind River. “This new version of
GNAT Pro for VxWorks 7 is the latest
step in the long and successful strategic
partnership between AdaCore and Wind
River.”

[...]

Ada and Operating
Systems

Mac OS X: GNAT for ARM-
EABI

From: Simon Wright
<simon@pushface.org>

Date: Sun, 21 Jun 2015 17:25:51 +0100
Subject: ANN: GNAT GPL 2015 arm-eabi

for Darwin
Newsgroups: comp.lang.ada

Released at

https://sourceforge.net/projects/gnuada/fil
es/GNAT_GPL%20Mac%20OS%20X/20
15-arm-eabi-darwin-bin/

README:

This is GNAT GPL 2015, rebuilt as a
cross-compiler from Mac OS X to arm-
eabi. Two runtimes (full Ravenscar, and
small-footprint Ravenscar, respectively
ravenscar-full-stm32f4 and ravenscar-sfp-
stm32f4) are supplied, configurable for
three STM32F boards (STM32F4-
DISCO, STM32F429-DISCO, and
STM32F7-EVAL). Examples are
included.

The compiler is known to run on
Mavericks and Yosemite.

For installation, untar gnat-gpl-2015-arm-
eabi-darwin-bin.tar.bz2, enter gnat-gpl-
2015-arm-eabi-darwin-bin/ (there is a
README) and run doinstall (sudo
doinstall). Note that you must have a
working host compiler (the official
GNAT GPL 2015 from [1]), and this
compiler must be installed on top of it.

Additionally, stlink-darwin-bin.zip
contains a .tar.gz file with the stlink
utilities used to communicate with the
boards over USB, and a README which
details installation.

Usage notes are in the AdaCore "GNAT
Pro User's Guide Supplement for Cross
Platforms"[2], specifically in section
K.2[3].

[1] http://libre.adacore.com

Ada and Operat ing Systems 127

Ada User Journal Volume 36, Number 3, September 2015

[2] http://docs.adacore.com/gnat_ugx-
docs/html/gnat_ugx.html

[3] http://docs.adacore.com/gnat_ugx-
docs/html/gnat_ugx_14.html#SEC204

[See also “Mac OS X: GCC for ARM-
EABI”, AUJ 36-2, p. 68. —sparre]

From: Simon Wright
<simon@pushface.org>

Date: Thu, 06 Aug 2015 18:19:03 +0100
Subject: New Mac OS X GNAT/GCC arm-

eabi compiler releases
Newsgroups: comp.lang.ada

I've rebuilt both GCC 5.1.0 and GNAT
GPL 2015 for arm-eabi to support Cortex-
M3 as in the Arduino Due, Cortex-M4,
and Cortex-M4F as in the STM32F4
boards.

GCC 5.1.0 at

https://sourceforge.net/projects/gnuada/fil
es/GNAT_GCC%20Mac%20OS%20X/5.
1.0/arm-eabi-bis/

GNAT GPL 2015 at

https://sourceforge.net/projects/gnuada/fil
es/GNAT_GPL%20Mac%20OS%20X/20
15-arm-eabi-darwin-bin-bis/

Fedora on ARM: Gprbuild

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 28 Jun 2015 20:09:05 +0200
Subject: Re: gprbuild fun
Newsgroups: comp.lang.ada

> [...]

Under Fedora ARM gprbuild is broken
(wrong target). The fix is to rename it to
/usr/bin/gprbuild.old and use

 #!/bin/sh
 gprbuild.old --target=armv7hl-redhat-linux-
 gnueabi $*

instead. It is a pity that gnatmake is going
to be ditched.

Mac OS X: GCC

From: Simon Wright
<simon@pushface.org>

Date: Mon, 29 Jun 2015 16:40:42 +0100
Subject: ANN: GCC 5.1.0 for Mac OS X

with GNAT GPL 2015 tools
Newsgroups: comp.lang.ada

See

https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
5.1.0/

(in the native-2015 directory).

Much as before! Changes:

- Tools from GNAT GPL 2015.

- Should be possible to install anywhere
you prefer.

[See also “Mac OS X: GCC”, AUJ 36-2,
p. 68. —sparre]

Windows: GNAT

From: David Botton <david@botton.com>
Date: Mon, 29 Jun 2015 12:36:50 -0700
Subject: 32 and 64 bit Gnat for Windows

updated
Newsgroups: comp.lang.ada

The FSF GNAT distro I use for Windows
testing TDM-GCC has been updated to
5.1.0

http://tdm-gcc.tdragon.net/

For other FSF GNAT version see -
http://GetAdaNow.com

Debian and Fedora: GtkAda

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 30 Jun 2015 22:04:04 +0200
Subject: ANN: GtkAda 3.8.3 packaged
Newsgroups: comp.lang.ada

GtkAda 3.8.3 from GNAT GPL 2015 is
packaged for Debian and Fedora:

 http://www.dmitry-kazakov.de/ada/
gtkada.htm

Supported are x86 32/64-bits and ARM

[See also “Debian: GtkAda for ARMv7”,
AUJ 36-2, p. 67. —sparre]

Fedora: Gprbuild,
XML/Ada and AWS

From: Pavel Y. Zhukov
<pavel.y.zhukov@gmail.com>

Date: Wed, 1 Jul 2015 12:03:20 -0700
Subject: ANN gprbuild/xmlada/aws 2015 in

Fedora. Arm is supported
Newsgroups: comp.lang.ada

Xmlada gprbuild, aunit and aws were
updated to latest 2015 release. All of them
will be released with Fedora 23. Finally
we've got these packages built for ARM
architecture.

Archlinux

From: Rod Kay
<rodakay@internode.on.net>

Date: Tue, 28 Jul 2015 07:11:18 -0700
Subject: Ann: Ada packages on Archlinux

updated to GPL15.
Newsgroups: comp.lang.ada

The new packages are on AUR4. If
anyone would care to try these packages
then any feedback would be welcome.

Thanks again to John Marino for paving
the way with the equivalent BSD
packages.

From: Rod Kay
<rodakay@internode.on.net>

Date: Tue, 28 Jul 2015 11:16:26 -0700
Subject: Re: Ann: Ada packages on

Archlinux updated to GPL15.
Newsgroups: comp.lang.ada

[...]

 https://aur4.archlinux.org/packages/
ada-web-server/

https://aur4.archlinux.org/packages/ahven

https://aur4.archlinux.org/packages/asis

https://aur4.archlinux.org/packages/florist

https://aur4.archlinux.org/packages/
gnat_util/

https://aur4.archlinux.org/packages/
gprbuild/

https://aur4.archlinux.org/packages/
gtkada/

https://aur4.archlinux.org/packages/
polyorb/

https://aur4.archlinux.org/packages/
prepare_gnat_util/

https://aur4.archlinux.org/packages/
sphinxcontrib-adadomain/

https://aur4.archlinux.org/packages/
xmlada/

GPS should only be a day or so away.

From: Rod Kay
<rodakay@internode.on.net>

Date: Fri, 31 Jul 2015 01:36:46 -0700
Subject: Re: Ann: Ada packages on

Archlinux updated to GPL15.
Newsgroups: comp.lang.ada

> GPS is now available.

 https://aur4.archlinux.org/packages/
gnat-gps

Windows 10: Gnoga

From: David Botton <david@botton.com>
Date: Sat, 1 Aug 2015 20:04:28 -0700
Subject: Gnoga on Windows 10
Newsgroups: comp.lang.ada

I've tested windows 10 using TDM-GCC
5.1 (64 bit windows) and msysgit shell as
well as the built in command prompt, in
both cases all built and ran properly (less
the sql examples and python 2.7 examples
since I don't have build for those windows
lib around). In both cases build time was
much faster on Windows 10 then 8 (using
same gcc version) and in fact was
outpacing the linux builds on the same
machine for the first time ever.

My tests ran without issue.

Of course Gnoga runs without issue on
any platform that supports FSF GNAT 4.7
(and also has run time support for gnat
sockets) and above including Raspberry
Pi, Linux, *BSD, Windows 32 and 64
bits, Mac OSX, etc.

From: David Botton <david@botton.com>
Date: Sat, 1 Aug 2015 22:12:55 -0700
Subject: Re: Gnoga on Windows 10
Newsgroups: comp.lang.ada

I've modified the Gnoga Makefile to now
build a static libsqlite3.a as part of its
build, so now that is available with
Windows as well out of the box and
works well.

128 References to Publ icat ions

Volume 36, Number 3, September 2015 Ada User Journal

References to
Publications

Shared Resource Design
Patterns

From: Jim Rogers
Date: Mon May 25 2015
Subject: Shared Resource Design Patterns
URL: http://sworthodoxy.blogspot.dk/2015/

05/shared-resource-design-patterns.html

Summary

 Many applications are constructed of
groups of cooperating threads of
execution. Historically this has frequently
been accomplished by creating a group of
cooperating processes. Those processes
would cooperate by sharing data. At first,
only files were used to share data. File
sharing presents some interesting
problems. If one process is writing to the
file while another process reads from the
file you will frequently encounter data
corruption because the reading process
may attempt to read data before the
writing process has completely written the
information. The solution used for this
was to create file locks, so that only one
process at a time could open the file. Unix
introduced the concept of a Pipe, which is
effectively a queue of data. One process
can write to a pipe while another reads
from the pipe. The operating system treats
data in a pipe as a series of bytes. It does
not let the reading process access a
particular byte of data until the writing
process has completed its operation on the
data.

Various operating systems also introduced
other mechanisms allowing processes to
share data. Examples include message
queues, sockets, and shared memory.
There were also special features to help
programmers control access to data, such
as semaphores. When operating systems
introduced the ability for a single process
to operate multiple threads of execution,
also known as lightweight threads, or just
threads, they also had to provide
corresponding locking mechanisms for
shared data.

Experience shows that, while the variety
of possible designs for shared data is quite
large, there are a few very common
design patterns that frequently emerge.
Specifically, there are a few variations on
a lock or semaphore, as well as a few
variations on data buffering. This paper
explores the locking and buffering design
patterns for threads in the context of a
monitor. Although monitors can be
implemented in many languages, all
examples in this paper are presented using
Ada protected types. Ada protected types
are a very thorough implementation of a
monitor.

[...]

SPARK 2014 Makes Formal
Verification Easier

From: Yannick Moy
Date: Mon Jun 1 2015
Subject: SPARKSkein: From tour-de-force

to run-of-the-mill Formal Verification
URL: http://www.spark-2014.org/entries/

detail/sparkskein-from-tour-de-force-to-
run-of-the-mill-formal-verification

Subject: SPARKSkein: From tour-de-
force to run-of-the-mill Formal
Verification

From: Yannick Moy
Date: Mon Jun 1 2015
URL: http://www.spark-2014.org/entries/

detail/sparkskein-from-tour-de-force-to-
run-of-the-mill-formal-verification

In 2010, Rod Chapman, then technical
leader of the SPARK team at Altran,
released an implementation in SPARK of
the Skein cryptographic hash algorithm.
Using the previous version of the SPARK
technology, Rod proved that his
implementation was free of run-time
errors (even found a subtle corne-case bug
in the C reference implementation), but
that was no trivial task, as he explained
later in a paper surveying past projects in
SPARK:

 “The proofs of type safety turned out to
be quite tricky. Firstly, finding the correct
loop invariants proved difficult, and this
was compounded by the plethora of
modular types and non-linear arithmetic
in the VC structures. Of the 367 VCs, 23
required use of the Checker to complete
the proof - not bad but these still required
a substantial effort to complete.”

Considering that Rod is a leading expert
in the technology, that assessment alone
could deter non-expert users from ever
attempting a similar project!

Now comes SPARK 2014 and the new
version of the SPARK technology. We
have recently translated the code of
SPARKSkein from SPARK 2005 to
SPARK 2014, and used GNATprove to
prove absence of run-time errors in the
translated program. The difference
between the two technologies is striking.
The heroic effort that Rod put in the
formal verification of the initial version of
SPARKSkein could now be duplicated
with modest effort and modest knowledge
of the technology [...]

Book: Ada and SPARK on
ARM Cortex-M

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Sat, 13 Jun 2015 14:18:22 -0700
Subject: New book: Ada and SPARK on

ARM Cortex-M
Newsgroups: comp.arch.embedded

I am pleased to announce that the tutorial
titled "Ada on ARM Cortex-M", which

was announced here in its early stages,
evolved and finally became a regular
printed book:

 http://www.lulu.com/shop/maciej-
sobczak/ada-and-spark-on-arm-cortex-
m/paperback/product-22195745.html

The complete book content is still
available on-line here:

 http://inspirel.com/articles/
Ada_On_Cortex.html

This book is intended as an introduction
for Ada beginners and covers also the
basic concepts of SPARK that allows to
write programs that can be statically
proven to be free from runtime errors,
which a very efficient approach for
embedded systems.

The Arduino Due board was used as a
base for practical examples, but the book
is intended to highlight the exploration
process from the very fundamental basics
and as such can be used with other boards
and other Cortex-M microcontrollers.

[See also “Tutorial: ARM Cortex-Mx”,
AUJ 36-2, p. 69. —sparre]

From: Jerry Petrey
<gpetrey@earthlink.net>

Date: Thu, 25 Jun 2015 16:54:30 -0700
Subject: Re: New paper book: Ada on ARM

Cortex-M
Newsgroups: comp.lang.ada

[...] Nice work. I am having a lot of fun
getting GNAT Ada running on a lot of
ARM boards, creating support for the
ARM on-chip peripherals and creating
drivers for common external sensors,
displays, etc. It is great that others are
seeing the power of Ada on these
powerful platforms. I am not that happy
with the 2015 GNAT ARM release - it
doesn't seem to work correctly, doesn't
have some of the support it promises and
has changed a lot from the initial release
making a lot of work for me to port what I
have already done. I think I will mostly
stick with the 2014 release for now.

Video: Case Statements

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sat Aug 1 2015
Subject: Case statements in Ada (video)
URL: http://ada.tips/case-statements-in-

ada-video.html

About case statements in Ada and how
they are a bit special, compared to in
many other languages.

The presentation also mentions subtypes
(subsets). Some Ada 2012 features are
used.

 http://www.jacob-sparre.dk/ada/videos/
case-statements.mp4

 http://www.jacob-sparre.dk/ada/videos/
case-statements.ogv

[One of the submissions for the “Learn
Ada Now” competition. —sparre]

Ada Inside 129

Ada User Journal Volume 36, Number 3, September 2015

Coding Standards

From: Markus Schöpflin
Date: Thu, 06 Aug 2015 11:29:23 +0200
Subject: Looking for Ada Coding Standard

from GSFC
Newsgroups: comp.lang.ada

The Ada Programming Wiki book refers
to a number of coding guidelines[1].

Most of the links have been dead, but I
could find working links for both the
mentioned ISO standard and the ESA
standard.

The GSFC Ada coding standard (Stephen
Leake, NASA Flight Software Branch —
Ada Coding Standard) seems only to be
available at [2]. Does anyone still have an
official link to which I can point the
Wiki? Is this document hosted anywhere
else?

[1] https://en.wikibooks.org/w/
index.php?title=Ada_Programming/Cod
ing_standards&
stable=0#Coding_guidelines

[2] https://web.archive.org/web/
20100527142102/
http://software.gsfc.nasa.gov/
AssetsApproved/PA2.4.1.1.1.pdf

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Thu, 6 Aug 2015 07:44:24 -0700
Subject: Re: Looking for Ada Coding

Standard from GSFC
Newsgroups: comp.lang.ada

> [...]

There is a similar standard at

https://gds.gsfc.nasa.gov/
code_standards_ada.pdf

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 07 Aug 2015 08:57:45 -0500
Subject: Re: Looking for Ada Coding

Standard from GSFC
Newsgroups: comp.lang.ada

>> https://gds.gsfc.nasa.gov/
code_standards_ada.pdf

> Thank you very much. The latter seems
basically an updated and extended
version of the former,

Yes; that is the version the GDS team
actively used (at least, while I was there).

> so I could point the Wiki book directly
at this version.

I've retired from NASA, and the GDS
team may not be around much longer, so
this site may disappear as well.

I have the LaTeX source, if anyone is
interested.

Gnoga Tutorials

From: Pascal Pignard <p.p11@orange.fr>
Date: Sun, 16 Aug 2015 09:06:15 +0200
Subject: Re: tabs and cards
Newsgroups: gmane.comp.lang.ada.gnoga

Though in French language, you have this
tutorial with all views described and an
example:

 http://blady.pagesperso-orange.fr/
telechargements/gnoga/gnoga_wf.pdf

 http://blady.pagesperso-orange.fr/
telechargements/gnoga/hello4.adb.pdf

Ada Distilled 2012

From: Richard Riehle <rriehle@itu.edu>
Date: Wed, 19 Aug 2015 14:21:27 -0700
Subject: Ada Distilled 2012
Newsgroups: comp.lang.ada

I talked with Ed yesterday. He is working
on the update. He is also including some
new, fully coded and working, examples
of the new Ada features. Some odd them
will be in the new Appendix to the book.

Ed has created some new examples to
highlight the significant changes in the
language.

It might be ready in a few months,
depending on how the testing of the new
examples proceeds. Yes, we have had a
long standing policy of ensuring the
coded examples compile and execute as
intended.

Meanwhile, I am thinking about teaching
an on-line, for credit, graduate level (MS)
course in Ada under the umbrella of the
school where I am currently an adjunct
faculty, International Technological
University (www.itu.edu) in San Jose,
CA. ITU is a non-profit school focused on
engineering, IT, software engineering,
and computer science.

If there is sufficient interest from the Ada
community, including contractors and
others, I may be able to persuade the
school to let me teach this class on-line
across international borders. You may
send me an email at rriehle@itu.edu, if
you have some people who would want to
enroll in such a course.

Ada Inside

Job: SPARK for Mobile
Payment Services

From: Springboard Worldwide
Date: Wed May 13 2015
Subject: High Integrity Software Developer

Ada - SPARK
URL: http://springboardww.com/index.php/

recruitment/current-vacancies/high-
integrity-software-developer-ada-spark

Our client delivers true innovation in the
mobile payment / mCommerce space –
levering advantages from its core IP to
create unique-to-market products and
services that deliver secure mobile
payments direct to bank accounts,
eliminating several barriers to growth in
the sector. This is an unrivalled
opportunity for a talented software

developer with Ada/SPARK experience to
join their development team based in
Newcastle.

Main responsibilities:

- Work within expanding multi-skilled
Agile delivery team to design, architect
and develop innovative products

- Apply your take on Agile Delivery,
adopting SCRUM techniques to develop
great products

- Work to a Waterfall methodology when
Agile is not appropriate

- Contribute to estimates, be involved in
planning phase for sprints and to put self
forward to take ownership of tasks,
rather than await allocation of said tasks

- Manage own workload and be able to
progress tasks, use initiative, be pro
active and to report on progress of tasks
in daily SCRUM

- Unit test own and peer development

- Understand full product portfolio rather
than limit knowledge to
products/modules you are working on

[...]

MAT - the Memory Analysis
Tool

From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: Mon May 25 2015
Subject: Using MAT the Memory Analysis

Tool
URL: http://blog.vacs.fr/vacs/blogs/

post.html?post=2015/05/15/
Using-MAT-the-Memory-Analysis-Tool

MAT is a memory analysis tool that
monitors calls to malloc, realloc and free
calls. It works with a small shared library
libmat.so that is loaded into the program
with the LD_PRELOAD dynamic linker
feature (See the ld.so(8) man page). The
library overrides the malloc, realloc and
free function to monitor calls to these
functions. It then writes or sends probe
events which contain enough information
for MAT to tell what, when, where and by
whom the memory allocation was done.

MAT will assign a unique number to each
event that is collected. The tool will
reconcile the events to find those that are
related based on the allocation address so
that it becomes possible to find forward
and backward who allocates or releases
the memory. When started, the tool
provides a set of interactive commands
that you can enter with the readline
editing capabilities.

[...]

Gnoga Demo: Connect Four

From: David Botton <david@botton.com>
Date: Sun, 14 Jun 2015 05:22:35 -0700
Subject: New Gnoga demo
Newsgroups: comp.lang.ada

130 Ada in Context

Volume 36, Number 3, September 2015 Ada User Journal

Pascal Pignard (now also one of the
maintainers of Gnoga) has added a new
demo app, Connect Four.

Originally developed for GNAT_JVM by
Barry Fagin and Martin Carlisle, US Air
Force Academy. Pascal adapted it to
GNOGA and left the original
GNAT_JVM code in place as comments,
for comparison.

 http://gnoga.com:8083

Examples of Using Ada for
Prototypes

From: Simon Wright
<simon@pushface.org>

Date: Wed, 29 Jul 2015 09:55:07 +0100
Subject: Re: If not Ada, what else...
Newsgroups: comp.lang.ada

> At the moment I'm working on a
prototype where the production version
most likely will be written in assembly
or some highly processor specific
language by the customer. But Ada is
very practical for writing algorithms in
a readable form.

I designed a Mascot[1] kernel for a dual-
processor F2420 machine[2] in Ada in
about 1985. There was a small part
(context switching) where "at this point, a
miracle occurs". The implementation (in
assembler) had one error on delivery and
was in service (I believe) up to 2011.

This led to unfounded rumours that we
had an Ada compiler for the machine!

Interestingly, Ravenscar has some
commonality with Mascot's approach.

[1] http://async.org.uk/Hugo.Simpson/
MASCOT-3.1-Manual-June-1987.pdf

[2] http://www.cbronline.com/news/
ferranti_offers_f2420_at_five_times_po
wer_of_fm1600e

Cubesat to the Moon

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Wed, 19 Aug 2015 21:08:10 -0400
Subject: Re: If not Ada, what else...
Newsgroups: comp.lang.ada

> [...]

I am involved with this project at
Vermont Technical College where I am
working with a small group of students on
the flight control software. We have a
web page here:
 http://www.cubesatlab.org/

and a blog here:
 http://cubesatlab.blogspot.com/

Both are a bit sketchy at this time but we
hope to enhance them in the coming
months. The project is looking at a 2018
launch on SLS with spacecraft delivery in
the second half of 2017. We are in the
early stages of development... in fact we
are still gathering basic requirements. It
should be fun!

Ada in Context

Preconditions,
Postconditions and Side
Effects

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 6 May 2015 16:07:17 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> Therefore, I don't think that it is the
right choice for a language that is
mainly used in safety critical systems.

If that's all Ada is going to be used for, it's
completely irrelevant what features it has.
I would never have used Ada personally if
that was the case. Ada (IMHO) is a
language to write (more) correct
programs, no matter what kind of
programs you write.

The basic idea behind the preconditions in
Ada 2012 is to give a way for people (and
implementations and tools as well) to ease
into using additional checking and proof.
Almost no one is willing to submit to the
horrors of complete description of entities
as required by SPARK. But (almost?)
everyone using Ada would be interested
in improving the correctness of their
programs, one assertion at a time.

After all, consider how you likely learned
the value of ranges and strong types and
subtypes. Most everyone started out using
mostly type Integer for everything. But
one quickly notices that those cases where
separate types were used get more errors
detected at compile time and at runtime --
eliminating what usually are long and
painful debugging sessions. This positive
feedback loop quickly turns most Ada
programmers into advocates and heavy
users of the simple tools available in Ada.

By extending those mechanisms (via
predicates and preconditions) to arbitrary
expressions, we allow much more such
error detection to occur.

There's also a performance benefit. In my
experience, 10-20% of Ada code is
checking code correctness (such is that a
container routine is not passed a null
cursor). By making these sort of rules
preconditions or (better) predicates, we
increase the chances that errors are
detected immediately so no debugging is
needed.

I don't believe that checks in Ada (of any
kind) should ever be turned off. It's much
better to let the compiler eliminate those
that aren't needed (which is most of them,
if your program is written correctly). The
same will happen for predicates and
preconditions and so on.

I also don't believe in separate proof tools.
That's something that should be a basic
part of the compiler (it has to be to do

optimization, check elimination, and the
like anyway). The difficult question is
how to feed information about those
things (particular checks known to fail)
back to the programmer (as optimization
phases tend to run without messages, and
the messages that they do give are rather
non-specific). In order for proof to be part
of the compiler, the proof language has to
be part of the language.

Lastly, fancy proof languages tend to be
beyond the skill level of ordinary (and
some not so ordinary) programmers.
Despite, 6 years of University education,
a masters degree, and 30 years of real-
world experience, I had to have both the
meaning of the implication operator and a
"universally quantified predicate"
explained to me. As it turns out, I had run
into both in the past, but not under those
names. Moreover, the programming
language semantics is already complete --
why invent a new syntax just to confuse
people? (I know from the early days when
the compiler was written in Pascal how
hard it is to switch between two similar
languages used in similar contexts. That
would be a permanent rather than
transient problem.)

As I noted before, Ada (prior to 2012)
uses exceptions to describe both
requirements on callers and error
conditions in a routine. It's much better to
separate these, because the former can be
eliminated by proof techniques and the
latter cannot (no proof technique can tell
you that a file will exist when it is initially
opened). Ada 2012 preconditions allow
one to do this without having to change
the defined semantics of a routine
(meaning that they can be profitably used
on existing code).

The idea that proof has any value by itself
is the real problem here. At best it is a
tool to reduce the needed checking in a
program, and a way to detect problems at
compile-time (in this later use, it's only
really of value as part of the compiler --
most programmers will not screw around
with extra tools that have to be configured
and managed and slow down the
development process even more). Once
you over-rely on proof, all you've done is
forced your code into a new kind of
specification, one that will have at least as
many errors as the original. There's little
value in that (especially in larger
programs).

Anyway, more than enough ranting on
this topic. IMHO, Ada 2012 gets it right,
and building SPARK on top of it makes it
more accessible to more programmers.
That seems like a good idea, even if
SPARK itself remains misguided.

From: Stefan Lucks <stefan.lucks@uni-
weimar.de>

Date: Thu, 7 May 2015 12:06:29 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

Ada in Context 131

Ada User Journal Volume 36, Number 3, September 2015

[...]

> Almost no one is willing to submit to
the horrors of complete description of
entities as required by SPARK.

Actually, you don't need *complete*
descriptions for SPARK. Often, verifying
incomplete descriptions can be useful. Of
course, the static verification will only
verify the properties you describe.

[...]

> I don't believe that checks in Ada (of
any kind) should ever be turned off.

Here, I heavily disagree. Often, checking
relevant properties is much too expensive
to perform the checks them in production
code.

A simple example is binary search over a
sorted array. The precondition requires
the array to be sorted. If the compiler
succeeds in optimising the test away, it is
equivalent to a static program verifier
proving the precondition holds when the
binary search is called. If the compiler
fails to optimise the check away, the
execution time goes up from logarithmic
to linear. If you can live with that, you
don't need binary search!

Actually, one thing I am missing from
Ada 2012 is a convenient and fine-grained
way to tell the compiler which pre- and
postconditions and invariants are to be
checked, and which checks are to be
skipped.

Most urgently, I would expect an option
to skip checking ordinary pre- and
postconditions, without skipping those
that explicitly raise some exceptions. The
point is, these two forms of precondition
are semantically totally different:

[...]

Maybe, Ada 202X could include
something like

 with Pre => ... -- plain precondition, can
 -- be turned off

 Pre'Check => ... -- must be checked at run
 -- time

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 7 May 2015 14:16:54 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

[...]

> A simple example is binary search over
a sorted array. The precondition
requires the array to be sorted.

And what does it mean for the behavior?
If unsorted input is *valid* and *must*
raise exception (contracted behavior) then
you cannot remove code *implementing*
this behavior.

Consider this client program:

 declare
 X : Element;
 begin

 X := Search (Data, Key);
 begin
 null;
 exception
 when Not_Sorted_Error =>
 X := Search (Sort (Data), Key);
 end;
 end;

Is this code correct?

[...]

From: Stefan Lucks <stefan.lucks@uni-
weimar.de>

Date: Thu, 7 May 2015 20:00:54 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

[...]

> Consider this client program:

[...] I'll slightly rewrite your client
program -- I believe, the exception
handler was at the wrong place.

 declare
 X : Extended_Index_Type;
 begin
 X := Search (Data, Key);
 exception
 when Not_Sorted_Error |
 Assertion_Error =>
 X := Search (Sort (Data), Key);
 end;

> Is this code correct?

It depends on the specification of "Sort".

Specification 1:

 function Search(Data: Array_Type;
 Key: Value_Type)
 return Extended_Index_Type
with
 pre => Sorted(Data),
 post => (if Data(Search'Result) in
 Data'Range
 then Data(Search'Result)=Value
 else Search'Result = No_Index
 and then
 (for all I in Data'Range =>
 Data(I) /= Key));

The expression "Sorted(Data)" is a
precondition. Every client which can
possibly violate the precondition is buggy.
Thus, the above code is buggy. (Or
otherwise, the exception handler is dead
code.)

One property of a proper precondition (or
postcondition or ...) is that disabling the
check does not change the functional
behaviour of correct programs.

Specification 2:

 function Search(Data: Array_Type;
 Key: Value_Type)
 return Extended_Index_Type
with
 pre => (Sorted(Data) or else
 raise Not_Sorted_Error),
 post => (if Data(Search'Result) in
 A'Range
 then Data(Search'Result)=Value

 else Search'Result = No_Index
 and then
 (for all I in Data'Range =>
 Data(I) /= Key));

The expression following "pre" is
"contracted behaviour" as you put it. The
code above is correct, and disabling the
check must be prohibited, because it
would break correct programs. Which is
why I wrote the following:

>> [...]

In other words, I want to be able to switch
of proper preconditions (and
postconditions, whatever) without
affecting contracted behaviour.

I depreciate the usage of the word
"precondition" for the expression
following "pre" in spec 2. But I will not
fight about names.

Furthermore, I am quite happy with Ada
allowing to specify contracted behaviour,
even I would have preferred use an aspect
of its own for contracted behaviour. The
"pre" aspect should better be have been
reserved for proper preconditions. But this
appears too late now. On the other hand, it
would not be too late to support disabling
proper preconditions without changing
contracted behaviour.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 7 May 2015 14:01:34 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> One property of a proper precondition
(or postcondition or ...) is that disabling
the check does not change the
functional behaviour of correct
programs.

Sure, but this is irrelevant. There are no
"correct" programs (in all possible
senses). How do you know that you have
a correct program? If you use some
prover program, it too may have bugs. Or
there might be bad data (cosmic rays?) Or
the specification might be incomplete.
Consider the latest Dreamliner issue; that
probably wouldn't have been caught by a
prover simply because no one would have
included an appropriate assertion.

Ergo, I don't believe that "proper
preconditions" really exist. And in the
rare cases that they do (perhaps because
of an immediately preceding
postcondition), a compiler would have
eliminated them anyway, so you're not
paying anything for the supposed runtime
check. (After all, Ada compilers have
been aggressively removing checks since
1983; that's nothing new to an Ada
compiler writer.)

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Thu, 07 May 2015 22:29:00 +0300
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

132 Ada in Context

Volume 36, Number 3, September 2015 Ada User Journal

> [...] There are no "correct" programs (in
all possible senses). [...]

Those are practical problems, not
problems of principle. If you would take
the same attitude to mathematics, you
would claim that there are no correct
theorems. So I disagree with you.

> [...] Consider the latest Dreamliner
issue; [...]

If it was an overflow problem (and not
wrap-around of a modular type) CodePeer
would probably have complained that it
could not prove absence of overflow. That
is, many failures result from violations of
general assertions that one does not have
to write explicitly.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 8 May 2015 18:16:27 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...]

All programming is practical. We do not
care about theorems, only that the current
program is correct in the current
environment. Everything has to be
reproved when anything changes (another
good reason for putting it into the
compiler, as skipping the step isn't
possible, and thus problems like the
Ariene 5 don't happen).

It seems that most of you here are infected
with the "theory" disease. I want to make
practical programming better, and I don't
give a damn about any stupid theories.
Maybe I'm just getting crazy in my late
middle age. :-)

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sat, 09 May 2015 08:18:37 +0300
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...]

It is true that an optimizing and run-time-
check-removing compiler has to make the
same kind of analyses and have the same
kind of understanding of the program's
semantics as a program-proving tool. But
constructing a proof from scratch is
expensive, unpredictably expensive, and
possibly non-terminating, while
compilation of source code into machine
code should take a time that is reasonable,
and reasonably predictable.

Hitherto, compilers have been expected to
remove run-time checks that the compiler
can prove to itself are redundant, but not
to remove *all* redundant run-time
checks. If the latter is required,
compilation time becomes unlimited -- a
practical problem, no?

To make proof a routine part of
compilation, it has IMO to be reduced to
proof checking. Checking a proof is
fast and terminating.

To integrate proof-checking with
compilation, the programming language
has to be able to express the proof
(axioms, lemmas, individual proof steps)
interwined with the expression of the
computation that is to be proved. And this
has to be so easy that it tempts the
programmer to write the proof -- or at
least enough of the proof to guide the
compiler -- as a routine part of creating
the program. (Echoes here of proof-
carrying code,
http://en.wikipedia.org/wiki/
Proof-carrying_code.)

Ada has always had such features --
principally types, subtypes, ranges -- and
Ada 2012 has added more -- pre/post-
conds and invariants. However, I'm not
sure if the features are yet sufficient to let
us require, in the Ada standard, that an
Ada compiler should be able to prove
(rather, to check) exception-freeness, or
termination, just to give two examples.

I believe it is a good goal for evolving
Ada, but of course not the only goal.

By the way, if exception contracts are
added to Ada, termination contracts
should be considered, too.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 11 May 2015 19:15:27 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

[...]

> [...] constructing a proof from scratch is
expensive, unpredictably expensive,
and possibly non-terminating, while
compilation of source code into
machine code should take a time that is
reasonable, and reasonably predictable.

I don't see that either is a given.
Janus/Ada would run approximately
forever if we didn't artificially bound the
optimization time, and it still can take a
long time to produce code. If we ever
built the link-time code generation
version, that time would go up by a lot.

As with everything, one can make bad
code quickly, or take longer to make good
code.

Similarly, I don't see any reason that
proper proofs should take forever, as it is
approximately the same problem as
optimization and code generation. At
some point, you give up and decide that
something is unprovable. No big deal.

> [...]

If you want truly good code, compilation
time should be nearly unlimited. But I
agree that there is a practical limit, but the
same limit applies to a proof tool (if you
can wait 12 hours for a proof tool, you
can wait 12 hours for a compilation, too,
especially if one can turn that mode off or
down, just like optimizers).

> [...] I'm not sure if the features are yet
sufficient to let us require, in the Ada
standard, that an Ada compiler should
be able to prove (rather, to check)
exception-freeness, or termination, just
to give two examples.

Certainly not yet. One needs exception
contracts at a minimum, as otherwise one
cannot tell between exceptions raised as
part of the behavior of a subprogram and
those which represent bugs.

> [...]

I doubt that there is an "only goal",
because lots of people have input. I
happen to think it is the only goal that
ultimately matters, as much of the other
ideas don't really move the needle in any
significant way.

> [...]

[...] I don't quite see the point of
termination contracts, a non-terminating
subprogram is wrong 99.9% of the time.
Maybe a "non-termination" contract
would make some sense?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 7 May 2015 13:52:25 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] If the compiler succeeds in
optimising the test away, it is
equivalent to a static program verifier
proving the precondition holds when
the binary search is called.

Exactly! That's the entire idea; the
compiler *should* be doing these
optimizations, indeed one major branch of
static program verification comes from
enhancing compiler optimizer technology
(CodePeer is an example of that). I think
that technology should simply have
stayed in the compiler.

> [...]

If the compiler fails to optimize the check
away, your program is wrong in some
sense, and you should have gotten an
error or warning (depending on the
compiler mode and exception contracts)
to that effect. You ought to fix your
program (probably by adding an
appropriate predicate) so that the check
can be eliminated (or pushed to
somewhere where the cost is irrelevant).

[...]

Anyway, the Assertion_Policy can be
changed locally, and the policy in effect at
the point of the declaration determines
what policy is used for calls. Plus the
policy can be set separately for different
kinds of assertions. Thus, you can get the
effect you want with the existing policies,
so long as you don't try to write two
different kinds of assertions on the same
subprogram.

Note that there is some debate about the
value of the fine-grained policy setting,

Ada in Context 133

Ada User Journal Volume 36, Number 3, September 2015

it's unclear that GNAT implements it
correctly. If some of their customers
showed concern about the correct
implementation of those rules, that
certainly would change.

From: Stefan Lucks <stefan.lucks@uni-
weimar.de>

Date: Thu, 7 May 2015 21:40:27 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> If the compiler fails to optimize the
check away, your program is wrong in
some sense, [...]

I am a big fan of correctness proofs,
where they are applicable. But logically,

 Not(Proven_Correct) /=
 Proven(Incorrect)

Furthermore, automatic theorem proving
can only go so far. I may actually know
my program to be correct -- and maybe I
can even prove it manually. Why should
the compiler reject my program, or insert
useless checks, just because it fails to find
the proof?

Warning or not I would consider a
compiler (or a language) which generates
linear-time code for binary search badly
broken. Rejecting the program would be
the lesser evil. Which would turn Ada into
a new SPARK.

But then, the Ada standard would have to
define the underlying theorem prover, for
compatibility reasons. Else, the same
program may be proven correct by one
prover, where another prover fails.

> You ought to fix your program [...]

Why do I need to fix the program, if I
know it is correct? Just because the
compiler isn't good enough at theorem
proving?

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 8 May 2015 17:58:54 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...]

It's certainly true that there is a potential
portability problem here, but I think we
have no choice but to allow it. Otherwise,
we have to force these sorts of things into
warnings, which means that they have no
real force and worse that the Standard
cannot talk about them. In such a case,
programming will never get better.

> [...]

No, the problem is in portability. The
standard cannot get involved in what can
and cannot be proven (other, perhaps than
setting some minimum requirements).
Beyond that, through, it has to be
implementation-defined. So the question
boils down to do we allow one compiler
to reject a program because it can't be

proved that it does not raise an exception
(for example) while another compiler
allows it because it can prove that? I think
we HAVE to allow that sort of non-
portability; for one thing, it gives vendors
a serious incentive to improve their
compilers. On top of which, it is idiocy to
require a compiler to reject something that
it can tell is not a problem. (Particularly,
something optional like exception
contracts.)

I expect this to be the defining question of
Ada 202x; we can't have exception
contracts without deciding this question
somehow, and I don't see much possible
advancement for Ada without those
contracts.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 11 May 2015 19:28:32 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] Don't you write tests?

Outside of the ACATS (which is a
product unto itself), not often. Sometimes
I rewrite other people's tests to generalize
them or to simplify them.

Most of my programs are tested in-situ,
either with live data (as in the web
server/mail server) or by using
constructed data. (The ACATS essentially
falls into this category, from the
perspective of a compiler.)

I definitely don't write or use unit tests in
the majority of cases. It's easier to use live
data than to figure out some way of
getting that data correctly initialized in
order to do a unit test. (Consider
operations on a compiler symbol table. In
order to unit test those, you have to
construct a symbol table for them to work
on, and that symbol table has to be
constructed exactly as the compiler will
do it - otherwise you end up testing the
unit test more than anything useful. Since
the compiler already knows how to do
that, we let the compiler do the setup and
then debug in place.)

Since testing proves almost nothing about
a program's quality, I prefer to avoid them
(and it) as much as possible. [Probably
too much. :-)] I want my compiler to
detect all of my mistakes before I run
anything. That's the whole reason I started
to use Ada and continue to use Ada. (Plus
testing and debugging of tests is
incredibly frustrating.)

> Most interesting programs cannot be
debugged. It is quite strange, you don't
believe correct program exist, but trust
"debugged" programs do! (:-))

Now, Ada does my debugging. When
there's a problem that actually requires
debugging, it takes forever for it to get
fixed. (Sorry, Tero. ;-) My point as just
that a fielded program already has some
amount of testing and fixing done to it

(we hope), and once that happens, leave it
alone until/unless there is a problem.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Thu, 07 May 2015 23:29:03 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> If the compiler fails to optimize the
check away, your program is wrong in
some sense, [...]

With respect, this attitude towards
manipulating a program's meaning during
translation makes a compiler assume
responsibility where it really is the
programmers' responsibilities (as per
contract), as expressed in clauses like Pre
and Post.

Why then is the *program* somehow
buggy, as you say, because some
compiler's optimizers can't follow the
math that has been done already, and
expressed as a truth in Pre?

As Stefan Lucks explains in his reply,
why would a compiler override what the
programmer has stated as a proven truth?
That's not Ada. That's more like a
compiler getting in the way.

I think that

 Pre'__unchecked__ =>

might be in order, then, with the
understanding that it's not real, but
conveying the idea.

Thus, if the compiler puts checks where
the programmer has shown they are
superfluous, that's not Ada. At least it
used not to be like that.

 "Design your program by obeying our
optimizer, be defensive, don't bother with
logic and proofs! We'll take care. Doing
so prevents bugs (if possible)."

That's not Ada. That's another sales
strategy.

Are we supposed to forget such contracts
entirely because this kind of formally
proven programming is, as you say, not
meant by Ada's new "contracts"?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 8 May 2015 18:11:16 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...]

There is no "truth" in Pre; it's just part of
the description of the meaning of the
program. It's madness to assume anything
more, you WILL be burned.

And there is little value (IMHO) to
separate proofs. At best, you're proving
what the separate tool *thinks* the
semantics should be. Whereas the
compiler actually *knows* what the
semantics are.

134 Ada in Context

Volume 36, Number 3, September 2015 Ada User Journal

Separate tools like SPARK have value
today because compilers (and most
languages!) aren't smart enough to be able
to apply proving technology to the
generation of programs. (Mostly because
of performance concerns.) But that should
change over time, and there shouldn't be
any reason to keep them separate.

It's possible of course that I've reached my
expiration date in terms of where Ada
(and programming languages in general)
need to go. Especially as most code is
mashed-up today and as such is barely
functional -- correctness is irrelevant
when it barely meets any need. But then I
(and most of us, in fact) have no future
(and I worry about the future of humanity
as a whole).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 8 May 2015 17:52:15 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] Why do I need to fix the program, if
I know it is correct? Just because the
compiler isn't good enough at theorem
proving?

Because there is no such thing. There is
no real way for you to know that it is
correct. I have plenty of examples of
supposedly correct programs that turned
out to have serious bugs.

The only way for a program to be
"correct" is for it to be proven that way by
the compiler. (And even then, the
compiler algorithm might have problems.)
Because if any other tool does it, the
compiler might disagree (because either
tool has bugs), and thus the actual code
might still in fact be incorrect.

>*IF* there is a problem at all.

See above. There is *always* a problem;
the only question is whether you are
willing to defend against it or not.

For example, in this "Is_Sorted" example,
if you are assuming that some object is
sorted, then it should have a predicate to
that effect. In such a case, the compiler
would be able to eliminate all of the
precondition checks on calls, the only
time the predicate would be checked is
when the object is initially created (which
certainly should not be on any critical
path), or if it is modified by a routine that
doesn't include Is_Sorted in its
postcondition (which is clearly the source
of potential bugs as well).

In the absence of those sorts of things,
you are just hiding potential flaws.

From: Stefan Lucks <stefan.lucks@uni-
weimar.de>

Date: Mon, 11 May 2015 12:35:47 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] There is *always* a problem; the
only question is whether you are
willing to defend against it or not.

Yes, and no. Having worked a bit with
SPARK, my experience is mixed. When
the tool fails to verify my program, the
investigation sometimes actually reveal a
subtle bug, and I am happy to have used
the tool. But quite as often, the verifier
just fails at some simple and indisputable
facts, such as proving that ((p-1) + 1) mod
p is zero. [...]

So the ability of any of the tools we have
now (and, I would argue, in the
foreseeable future) to prove program
correctness is very limited. If a compiler
with such limited abilities turns my
logarithmic-time search routine into a
linear-time routine, just because it
couldn't prove that the input to the routine
is always sorted, then the compiler is
broken.

Proving program properties (apparently
you don't like the word "correctness" in
that context) is a *tool* for the
programmer. If properly used, it can be an
extremely useful tool, especially for
medium- and high-assurance software.
But doing foolish things if the proof fails,
or strictly requiring all relevant properties
must actually be proven would turn this
tool from something useful into a terrible
burden.

[...]

[Primes:] In practice, people usually call
the Miller_Rabin primality test:

 function MR_Is_Prime (N : Num;
 Repetitions : Natural := 500)
return Boolean
 with Post => Miller_Rabin_Prime'Result =
 Is_Prime (N);

As a specification, the postcondition is
useful. For testing with tiny numbers, it
might be OK. But for testing with
realistically-sized N, or for production
code, this test *must* be deactivated. The
user cannot wait for Is_Prime to
terminate.

By your logic, disabling the test would be
bad. Thus, the compiler would eventually
have to prove the fact that the Miller-
Rabin test is mathematically correct, and
always gives the proper result, right?

But proving such properties is
mathematically deep, and way beyond the
abilities of the theorem provers we
actually have. (And I would not hold my
breath to wait for this to change.)

Even worse, the Miller-Rabin test is a
probabilistic test. There is some chance
that a composed number actually passes
the test. The chance is very small -- for
the default Repetitions, the chance is
below 2^{-1000}, so neglecting this risk
is perfectly OK. But usual tools for
program correctness (or for program
properties) are not able to deal with
probabilistic results.

> In the absence of those sorts of things,
you are just hiding potential flaws.

Agreed! But at some point, someone
(some human, not the compiler!) has to
make the choice how to proceed, if a
relevant property has not been formally
proven. Neither simply rejecting the
program, nor inserting a potentially huge
ballast of additional test, is always an
option.

The language, the compiler, and other
tools, may support you to write good
software, especially medium- and high-
assurance software. Ada has been a great
tool for that purpose from its very
beginning, and Ada 2012 has made a
significant step forward in that direction.
But expecting too much from the tools
them will very quickly get into your way,
and eventually also destroy the support
for the tools.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 11 May 2015 20:03:52 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...]

That's the value of those tools: to prove
that something is not correct. It's just like
testing in that way; you can't really prove
that the program is correct, but you surely
can prove that it is not correct.

> But quite as often, the verifier just fails
at some simple and indisputable facts,
[...]

These sorts of problems would come up
in proving postconditions, but I don't see
that happening for preconditions.

> If a compiler [...] turns my logarithmic-
time search routine into a linear-time
routine, [...] then the compiler is
broken.

No, I'd still argue your code is broken. If
you know that some object is always
sorted, then *you* should tell the
compiler that with an appropriate
predicate:

 subtype Sorted_Array is Some_Array
 with Dynamic_Predicate => Is_Sorted
 (Sorted_Array);
 My_Array : Sorted_Array := ...;

Now, whenever My_Array is assigned (as
a whole) or passed as a parameter, it will
be checked for whether it is sorted. That
pushes the check to whenever the array is
created/initialized/modified, which is not
going to have any effect on your sort
routine.

On top of which, the routines that do the
creation/initialization/modification
probably ought to have postconditions
that the array is sorted as well. In which
case, the object also will have been
previously checked, so the cost will be at
the end of those routines. And possibly
(although unlikely in the particular case),

Ada in Context 135

Ada User Journal Volume 36, Number 3, September 2015

that check could be proved away there as
well.

> [...] But doing foolish things if the proof
fails, or strictly requiring all relevant
properties must actually be proven
would turn this tool from something
useful into a terrible burden.

No real burden, IMHO. The sorts of
properties that should be involved should
be relatively simple to express and thus
prove, and not that expensive to check.
Much like null pointer checks or variant
checks in Ada. Turning these sorts of
things off is silly.

I can see that are some cases where the
properties are too expensive to verify at
runtime. It would be nice if there was a
way to turn off those (AND ONLY
THOSE) properties. But Ada doesn't have
that sort of granularity, so I wouldn't
bother writing them in the first place. (At
least not as preconditions; most of my
programs have extensive tracing/self-
checking modes that can be enabled unit-
by-unit; that's the place for such
expensive things.)

[Primes:] If it hurts, don't write that. :-) I
don't begin to believe that all program
properties can be proved. Indeed, there is
a major problem in that there is no good
way to specify which properties that a
subprogram does *not* affect. There is an
infinite number of such properties, so
specifying them one by one in the
postcondition:

 Is_Sorted (Arr) = Is_Sorted (Arr)'Old and ...

is madness. (And even in a small system,
there are a lot of properties. Consider just
the interesting properties of a Vector
container. The length, capacity, and
tampering state all immediately come to
mind, and most routines change none of
them. How to communicate that?)

[...] I think any useful postcondition has to
be reasonably executable. Else there is no
difference from a comment, and you
would be better served using a comment
as won't throw out all of the easy checks
with this silly one.

[...] *writing* a test that you can't actually
execute is bad, as it tells no one anything
useful.

[...]

If you can't execute it, and you can't prove
it, what exact good is it over having a
comment

 -- Returns True if N is prime.

???

I can't think of any.

[...]

I don't think anyone would ever want a
system that *required* proving
everything. The important thing IMHO is
that you can find out what wasn't proven
so you can determine whether to fix it (via
additional specifications) or whether to

ignore it (the obvious case being that the
unproven case is on a non-executable
path).

> [...] But expecting too much from the
tools them will very quickly get into
your way, and eventually also destroy
the support for the tools.

True enough. Expecting proof to be
anything more than another way to
determine errors early is the root of the
problem. It's useful to know what the
compiler doesn't prove in order that one
can decide to ignore it, but clearly
ignoring it is the default (just as it is for
regular Ada runtime checks). No one
should ever be forced to change any code
unless a proof determines that a check
will fail (or there is a possibility of
raising an uncontracted exception -- but
no one would ever be required to use an
exception contract).

I want to bring this tool to people that
would not go out of their way to use it.
(I.e., me. :-) That means it has to be in the
compiler so that they get the benefits
automatically, because there is no way I'm
going out and buying (plus learning) a
separate tool to do those things. I suspect
that many (perhaps most) programmers
are like me. Like everyone, I want it all,
for free, right now. :-) Only Ada comes
close, and I just want to make it closer.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue, 19 May 2015 09:46:07 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> (for all I in 2 .. N-1 => (N mod I) /= 0)

>

> You don't need a profiler to figure out
that this is prohibitively slow for largish
N, do you?

I don't need a profiler to estimate that it
takes long time to execute, but I need a
profiler to see where the compiler can't
eliminate it from a critical path through
static analysis.

>> I am aware that we currently don't
have as fine-grained control of
assertions as that would require to work
well, but I assume that this is something
that can be discussed with the ARG and
the compiler vendors.

>

> This is precisely my point!

Good. I noticed an interesting proposal
for an extension to the assertion policy
control in one of the posts in this thread. I
suppose we should push to have the ARG
accept this (or something similar).

From: Bob Duff <bobduff@theworld.com>
Date: Tue, 12 May 2015 10:21:41 -0400
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] It would be nice if there was a way
to turn off those (AND ONLY THOSE)
properties. But Ada doesn't have that
sort of granularity,

Sure it does. If Is_Sorted is too slow for
production use, you can say:

 ... with Predicate => (if Slow_Mode then
 Is_Sorted(...))

and set the Slow_Mode flag to True for
testing. Also set it to True when running
proof tools.

Alternatively, you can say something like:

 function Sort (X : My_Array) return
 My_Array
 with Post => (if X'Length <= 20 then
 Is_Sorted (Sort'Result));

Now calls to Sort can be O(log N) instead
of O(N). And if Sort doesn't do anything
special for arrays longer than 20, the
postcondition is likely to catch any bugs
in Sort.

> [...] I don't begin to believe that all
program properties can be proved.

Yes, that's obviously true. Here's a
property of GNAT:

 Compared to most compilers (for any
language), GNAT usually gives better
error messages.

Anybody who has used GNAT and a lot
of other compilers knows that property is
true. But nobody can prove it in a
mathematical sense, because there's no
way to formalize it.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 12 May 2015 17:37:49 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...]

Of course. That's essentially what I've
("we've", really, Isaac created a lot of the
tracing stuff in Janus/Ada) been doing for
years. I just hadn't thought of trying to use
it directly in the assertions. We'd use a
function call, though, rather than a
constant:

 ... with Dynamic_Predicate =>
 (if JTrace.Trace (Current_Unit)
 then Is_Sorted (...))

When compiled for testing, JTrace.Trace
is a function call which returns true or
false based on the selections from a
tracing menu that pops up when the
tracing options are used. When compiled
for production use, Trace is an array with
all of the elements set to False. (At least
that was the idea, I don't think we ever
used it that way.)

The downside here is a bit more noise, but
the upsides are obvious (Stefan explained
them in gory detail). One probably could
design something shorter with the same
effect (that would cut the noise).

136 Ada in Context

Volume 36, Number 3, September 2015 Ada User Journal

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Wed, 13 May 2015 08:58:19 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...]

>

> ... with Dynamic_Predicate => (if
JTrace.Trace (Current_Unit) then
Is_Sorted (...))

Given this fine-grained run-time
configuration (another IF and then a little
something like a debugging thing from an
implementation), is the condition in the
same category of expressions as
Is_Sorted?

The second, Is_Sorted, is strictly about
the parameters, contractual, so to speak.
The first looks rather different and
distracting to me.

But in any case, then, maybe having a
way of influencing the selection of checks
could be expressed as

 pragma Assertion_Policy (Post => Check
 and not MR_Is_Prime'Post);

Stipulating that policy_identifier in
Assertion_Policy becomes just a little
more flexible by turning the conditional
into a portable feature specifiable outside
the contracts, but near them:

 pragma Assertion_Policy (
 assertion_aspect_mark =>
 policy_setting
 {, assertion_aspect_mark =>
 policy_setting});

 policy_setting ::= policy_identifier { and
 mute_list }
 mute_list ::= not
 defining_identifier'matching_mark
 {, not
 defining_identifier'matching_mark

An Element of a Coding
Standard

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 7 May 2015 14:09:31 -0500
Subject: Re: Polymorphism
Newsgroups: comp.lang.ada

[Public or private overriding operations.]

> Moreover, it probably would make
sense to move all declarations of
overriding into private

This is my coding standard. I only put
new stuff into the visible part.

[...]

> because the fact of overriding is mere
an implementation detail, since the
primitive subroutine is there anyway no
matter what.

Correct; that's why I put them into the
private part.

Time to Start Over?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 28 May 2015 17:46:26 -0500
Subject: Re: Build language with weak

typing, then add scaffolding later to
strengthen it?

Newsgroups: comp.lang.ada

> [...]

Uh-huh. Janus/Ada 83 fit on and ran on
floppies. (Heck, there wasn't anything else
available on early MS-DOS.) Even the
relatively tiny 5 1/4" floppies. It still
would if you could find a machine that
has floppies. The bloat is in GCC, not
necessarily in Ada.

The bloat in the Standard (such as it is)
came from adding lots of stuff that people
thought was necessary (but arguably
isn't): tagged types and dispatching,
interfaces, prefix calls, assertions, and
(especially) containers.

> So please explain to me why on earth I
or DoD or ISO or anybody else needs
all the bloat to confuse us.

We don't. As with all old languages, it's
political. We can't remove old features (as
that would break existing programs), so
the only possibility is for the Standard to
get bigger. It's also getting bigger because
we've (me in particular) have been
insisting on adding wording to fill holes,
rather than just ignoring them. Based on
my experience, I think a language
standard with 17 pages is about 90% hole
(unless, of course, the language doesn't
actually do anything).

I'd think it's getting close to time to start
over with Ada, not because of any major
problem, but simply the accumulation of
cruft. The problem is that if you think it's
hard to convince people to use Ada with
all of its track record, try doing that with a
new language with no record. So I don't
think there would be much of a market for
that.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri, 29 May 2015 11:31:31 +0200
Subject: Re: Build language with weak

typing, then add scaffolding later to
strengthen it?

Newsgroups: comp.lang.ada

> [...]

But aren't the existing programs being
compiled with compilers for the
appropriate (old) versions of the
language?

How large is the actual benefit of
maintaining practically full backwards
compatibility?

Isn't it more a matter of not being able to
agree on what is important to keep, and
what isn't?

> [...] accumulation of cruft. [...]

Isn't that in itself an argument for letting
Ada 2020 be a major change, where
backwards compatibility isn't as important
as using our current knowledge to
improve the language? I wouldn't want an
Ada 2012 program to be accepted by an
Ada 2020 compiler with a different
meaning, but I wouldn't mind it if the Ada
2020 compiler told me that I have to do
things differently in Ada 2020.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 29 May 2015 12:56:06 +0200
Subject: Re: Build language with weak

typing, then add scaffolding later to
strengthen it?

Newsgroups: comp.lang.ada

> But aren't the existing programs being
compiled with compilers for the
appropriate (old) versions of the
language?

Not necessarily.

Our system often has a life expectancy of
15 +- 5 years.

But the os/database/other tools does not.

Once say Oracle say - no support
available - which they do relatively fast -
most customers wants a platform upgrade.

That is - make the same system run on a
newer os/db/whatever.

And that includes a new Ada compiler.

Ans one really nice thing about Ada is
that is usually compiles and works right
away.

If compiler-vendor-change took place,
some fiddling is usually present, but
upgrading a system from one GNAT
version to another is painless.

You get tons of more warnings - and that
is it.

Another scenario is when a customer
wants some 'newer' technology, like
webbish stuff.

To add AWS a relatively new compiler is
needed.

And that should compile that rest of the
system too - even if old.

> How large is the actual benefit of
maintaining practically full backwards
compatibility?

To us - very large.

> [...]

If you ask around enough, you will likely
get answers that wants to keep 'odd'
features. I - for example - love the
separate construct. we use it a lot. But I
think not too many use it.

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Fri, 29 May 2015 08:03:08 -0400
Subject: Re: Build language with weak

typing, then add scaffolding later to
strengthen it?

Newsgroups: comp.lang.ada

Ada in Context 137

Ada User Journal Volume 36, Number 3, September 2015

> [...]

I also like using subunits now and then. It
seems like a good fit when I have a
package with one unusually large
subprogram that dominates the package's
physical content, but is just not important
enough, or logically distinct enough, to
make into its own unit.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 29 May 2015 16:45:58 -0500
Subject: Re: Build language with weak

typing, then add scaffolding later to
strengthen it?

Newsgroups: comp.lang.ada

> But aren't the existing programs being
compiled with compilers for the
appropriate (old) versions of the
language?

Until they need some part upgraded. For
example, I'm (slowly) moving my web
and mail servers from Janus/Ada on a
W2K machine to GNAT on a new Linux
machine. It's likely that I'll want/need to
use some new capabilities when that's
done. Changing lots of code because
someone didn't like some existing feature
is unappealing.

Similarly, I know that pretty much any
Ada code that I have will still work if I
need it in some program. Reuse is a
valuable benefit of Ada, and that cuts
across time as well as projects.

> How large is the actual benefit of
maintaining practically full backwards
compatibility?

It's hard to say. Some people (Robert
Dewar in particular) think we abandon
compatibility far too easily in the ARG as
it is. And we don't do that lightly as it is.
He claims that compatibility issues
discouraged many from using Ada 2005;
the aspects and preconditions in Ada 2012
were enough to break through that barrier,
but it would be easy for Ada 202y to fall
into a similar trap (not enough important
to make up for incompatibilities).

> Isn't it more a matter of not being able
to agree on what is important to keep,
and what isn't?

No. There definitely is a group that think
that almost any incompatibility is
unacceptable. And someone is using
every core feature (even stuff like generic
formal in out parameters); how do you
decide who's code is not important
enough to support.

> [...]

Sure, it's an argument. But what's
typically happened when languages made
big breaks is that the new version is much
less used than the original. That goes all
the way back to Algol 60 vs. Algol 68. I
doubt Ada could survive a much less used
version.

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Fri, 29 May 2015 19:12:09 -0400
Subject: Re: Build language with weak

typing, then add scaffolding later to
strengthen it?

Newsgroups: comp.lang.ada

> [...] I doubt Ada could survive a much
less used version.

I'd hold up Python as an example of how
things don't work well when you make
too many breaking changes. Python 3 is
incompatible with Python 2, yet after 6.5
years there are still (many? most?)
projects out there that require Python 2. I
don't follow the Python community that
closely but my impression is that the plan
to entice everyone over to Python 3 failed.
Now they are stuck with maintaining two
incompatible versions of the language
into the arbitrary future.

[The answer is “No”, it appears. —sparre]

Evaluation Order and
Functions with “out”
Parameters

From: David Botton <david@botton.com>
Date: Fri, 12 Jun 2015 08:56:23 -0700
Subject: Is this a bug in my code or the

compiler?
Newsgroups: comp.lang.ada

Given:

 function Token_Start (Source : in out
 Awesome.Source.Source_Type'Class)
 return Character;
 function Token_End (Source : in out
 Awesome.Source.Source_Type'Class)
 return String;

The following works:

 function Get_Token_Text (Source : in out
 Awesome.Source.Source_Type'Class)
 return String is
 N : Character := Token_Start (Source);
 begin
 return N & Token_End (Source);
 end Get_Token_Text;

The following does not work:

 function Get_Token_Text (Source : in out
 Awesome.Source.Source_Type'Class)
 return String is
 begin
 return Token_Start (Source) &
 Token_End (Source);
 end Get_Token_Text;

Token_End is never called and only the
value of Token_Start.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Fri, 12 Jun 2015 09:48:56 -0700
Subject: Re: Is this a bug in my code or the

compiler?
Newsgroups: comp.lang.ada

> [...]

Given that the Source parameters to both
Token_Start and Token_End are mode “in
out”, I presume that both functions
modify Source and therefore, Token_Start
must be called before Token_End. Your
1st version ensures this order; your 2nd
does not. You are presuming an order of
evaluation of the parameters to "&" that is
not guaranteed.

What happens if Token_End is called 1st?

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sat, 13 Jun 2015 18:43:18 +0200
Subject: Re: Is this a bug in my code or the

compiler?
Newsgroups: comp.lang.ada

>> Maybe there is an AdaControl rule to
detect this kind of problem.

> Of course. It's called
Parameter_Aliasing :-)

I tried it without luck on this test case:

% cat bad_style_2.adb

with Ada.Integer_Text_IO,
 Ada.Text_IO;

procedure Bad_Style_2 is
 function F (I : in out Integer) return
 Character;
 function G (I : in out Integer) return
 String;

 function F (I : in out Integer) return
 Character is
 begin
 return R : Character do
 if I < 0 then
 R := '-';
 else
 R := '+';
 end if;
 I := 2 * I;
 end return;
 end F;

 function G (I : in out Integer)
 return String is
 begin
 return R : constant String :=
 Integer'Image (I) do
 I := I - 1;
 end return;
 end G;

 C : Integer := 3;
begin
 Ada.Text_IO.Put_Line (F (C) & G (C));
 Ada.Integer_Text_IO.Put (C);
end Bad_Style_2;

% adactl -l 'check parameter_aliasing'
bad_style_2.adb

%

I.e. no detection of “expression parameter
aliasing” (or what we should call it). I
think it is only slightly harder to detect
than plain parameter aliasing, but I'm not
yet quite proficient enough in ASIS to
promise to contribute a new rule to
AdaControl.

138 Ada in Context

Volume 36, Number 3, September 2015 Ada User Journal

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Sat, 13 Jun 2015 22:50:05 +0200
Subject: Re: Is this a bug in my code or the

compiler?
Newsgroups: comp.lang.ada

[...]

Yes, it works on procedure and entry
calls, I didn't put (yet) the case of function
calls... Added to my todo list for the next
version.

From: Brad Moore
<brad.moore@shaw.ca>

Date: Sat, 13 Jun 2015 13:42:10 -0600
Subject: Re: Is this a bug in my code or the

compiler?
Newsgroups: comp.lang.ada

>> [...]

> Parallel evaluation of arguments.

In the above case with regard to implicit
parallelism, the compiler should be able
to determine that the two calls both
involve modifications the same storage,
which would be a data race, and then rule
out parallelism and thus generate
sequential code. So the issue here is not
about parallelism, but about ordering of
evaluation for the sequential case.

For the sequential case, I would think that
a good compiler could also detect that an
expression with multiple calls with in out
parameters to the same storage is likely a
problem with evaluation order, and
generate a warning to the programmer,
which could be averted by coding with
"and then" for force evaluation order. If
your compiler does not generate such a
warning, it might be good to ask your
vendor to provide such a warning.

Or a programmer could adopt a
programming style to use "and then" for
the general case, which I believe could be
checked by a tool such as AdaControl.

This should work for the case Boolean
sub expressions, but doesn't help in the
case of concatenation operations.
Hopefully, the compiler could at least
generate warnings for this case, then the
programmer can decide how best to
address the warning.

[...]

>> Moreover, if B and A become pointing
to the same object,

>>

>> Foo (A) and Foo (B) -- Legal,
same effects

>>

>> Can a compiler detect this?

In Ada 2012, we have the attributes
'Has_Same_Storage and
'Overlaps_Storage.

These were introduced to facilitate
writing preconditions for a subprogram.
One would think that if these are available
for checking multiple parameters of a

subprogram, the compiler could also do
similar checks for the parameters of
subprograms that are part of the same
expression. In some cases, this could be a
compile time check, but in others, it may
need to be a run-time check, that possibly
could be enabled/disabled via compiler
options.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 13 Jun 2015 22:21:46 -0500
Subject: Re: Is this a bug in my code or the

compiler?
Newsgroups: comp.lang.ada

> A programmer having to worry about
order of operation in a concatenation
operation is a language flaw in my
opinion. I can accept the issue in
evaluation order of Boolean
expressions or numerics (and knew of
that), but not in non numeric types.

Lots of people would agree with you, but
neither J. Ichbiah or STT would, so Ada
doesn't define the order of evaluation of
almost anything: parameters (not just
concat, but in all subprogram calls),
aggregate components, and many more
things. It would be way too disruptive to
try to introduce any such rules now,
especially as there are legal dispatching
calls that cannot be evaluated left-to-right.

The rules in 6.4.1 are supposed to prevent
the worst problems, but of course they
only work if correctly implemented.

I'd suggest submitting one or more
ACATS tests. :-)

Contributing Ada Sources to
a C++ and CMake Project

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Thu, 2 Jul 2015 03:44:12 -0700
Subject: Re: C++/cmake project, injecting

Ada...
Newsgroups: comp.lang.ada

[...]

To summarize, the challenge was to
contribute Ada code to a C/C++ project
using the CMake build environment and
with minimal disruption for all parts
involved.

What I've found is that CMake 2.8 adds
an "external project" build command that
enables calling gprbuild with ease. If
you're in a debian-based distro which
packages gnat, the other contributors that
are interested in compiling your Ada part
just need to install a package. To me that
qualifies as minimal disruption :)

Advantages to each side:

1) The Ada contributor can keep using the
wonderful Ada built-in dependency
management. If he wants to share a
library, an appropriately crafted gpr file
will expose the code to the C/C++ side in
the usual way. If the result is a mere
executable things are even simpler.

2) The C/C++ side just keeps working as
usual, enabling the Ada parts if needed.

I've prepared a couple of CMake helper
macros that give the basic idea and can be
enhanced for more involved actions (like
installing the Ada library, etc). It is here
[1]. Basically, you issue an
add_ada_library() and that's it for the
CMake side.

Incidentally, I saw another effort to
integrate gnat and CMake, but it seems it
is going the full CMake way: adding Ada
support so source files are recognized and
compiled individually and so on. I'm not
sure how the binding stage is managed
there, but for interested people here it is
too [2].

[1] https://github.com/mosteo/ada4cmake

[2] https://github.com/offa/cmake-ada

Setting an Address in a Pure
Package?

From: Simon Wright
<simon@pushface.org>

Date: Fri, 10 Jul 2015 12:48:29 +0100
Subject: Q: setting an address with pure?
Newsgroups: comp.lang.ada

I need to specify the address at which a
hardware object appears.

This works:

 PIOA : PIO
 with
 Import,
 Convention => Ada,
 Address =>
 System.Storage_Elements.
 To_Address (16#400E0E00#);

but means that I can't declare the package
Pure (or even Preelaborate).

Is anyone aware of any GNAT feature
that would allow such a package to be
Pure? There are similar things in their
package Standard, for example
Standard'Address_Size.

I tried

 PIOG : PIO with Import, Convention =>
 Ada;
 for PIOG use at 16#400E1800#;

but, besides warning me that 'use at' is
obsolescent, GNAT still expects
System.Address not universal integer.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 10 Jul 2015 17:37:23 -0500
Subject: Re: setting an address with pure?
Newsgroups: comp.lang.ada

> [...]

You can't have a variable at library level
in a Pure package (there shall be no state),
so it makes no sense at all for such a
package to contain any hardware objects.

I don't see any reason why this can't be
Preelaborated (System.Storage_Elements
is Pure, after all); that depends on the

Ada in Context 139

Ada User Journal Volume 36, Number 3, September 2015

initialization of the type PIO (it needs to
have "preelaborable_initialization"; use
the pragma if in doubt).

From: Rasika Srinivasan
<RasikaSrinivasan@gmail.com>

Date: Mon, 13 Jul 2015 16:41:44 -0700
Subject: Re: setting an address with pure?
Newsgroups: comp.lang.ada

Does it have to be pure?

I use

 pragma Restrictions
(No_Elaboration_Code);

then:

 DACMAP : DAC_CR_Type
 with Volatile,
 Address => System'To_Address
 (16#NNNN_NNNN#);

I am not sure if this is what you are
aiming for but appears to work so for.
NNNN_NNNN above is the base address
of the DAC map as provided by the
STM32 Ref Manual.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 14 Jul 2015 08:38:36 +0100
Subject: Re: setting an address with pure?
Newsgroups: comp.lang.ada

> Does it have to be pure?

I don't have any objection to elaboration
code per se, I just wanted to get as near to
Pure as I could.

I did use that restriction for a Cortex
Reset_Handler, which is called by the
hardware before any elaboration occurs at
all.

> [...] Address => System'To_Address
(16#NNNN_NNNN#); [...]

This was just what I wanted, thanks very
much!

This is actually in the secret
documentation. [...]

http://docs.adacore.com/gnat_rm-docs/
html/gnat_rm/gnat_rm/
implementation_defined_attributes.html#
attribute-to-address

From: Simon Wright
<simon@pushface.org>

Date: Mon, 13 Jul 2015 20:50:49 +0100
Subject: Re: Q: setting an address with

pure?
Newsgroups: comp.lang.ada

> [...]

> for PIOG'Address use
System.Storage_Elements.To_Address(
16#400E1C00#);

>

> Since System.Storage_Elements is Pure,
that should work fine here. You seemed
to indicate that it did not. What's the
error message for that?

non-static call not allowed in
preelaborated unit

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 13 Jul 2015 14:10:07 -0500
Subject: Re: setting an address with pure?
Newsgroups: comp.lang.ada

> GNAT says that the call to
System.Storage_Elements.To_Address
is invalid because "non-static call not
allowed in preelaborated unit", whether
Preelaborable_Initialization is applied
or not. I take it that To_Address isn't
static because its result type isn't
scalar? (4.9(19))

To_Address is a function, not an operator.
4.9(19) does not apply (it only applies to
predefined operators, and To_Address is
neither an operator nor predefined
[language-defined /= predefined]). There
is no way to have a static function in Ada
to date. (We've been talking about adding
an aspect on expression functions to allow
that.)

This seems like a bug in Ada to me, it's a
consequence of making Address a private
type (it's not private in Janus/Ada because
we didn't want the incompatibility that
would have resulted, so I've never seen
this before). It certainly seems wrong that
an address clause for a hardware entity
can't be used in a preelaborated unit.

> I think this may be a failure in a GNAT
extension; To_Address has pragma
Pure_Function applied to it, and[2]

>

> "It specifies that the function Entity is
to be considered pure for the purposes
of code generation. This means that the
compiler can assume that there are no
side effects, and in particular that two
calls with identical arguments produce
the same result. It also means that the
function can be used in an address
clause."

>

> [1] http://www.ada-auth.org/standards/
12rm/html/RM-4-9.html#p19

> [2] https://gcc.gnu.org/onlinedocs/
gnat_rm/Pragma-
Pure_005fFunction.html

Possibly. In "pedantic" mode, the function
would have to be an error because
implementation-defined stuff shouldn't be
changing basic properties (like staticness)
of language-defined subprograms. But it
certainly makes sense to work-around this
language design flaw.

I'd encourage you to post this problem on
Ada-Comment, so that it gets on the ARG
agenda. (If we end up with a static
function aspect, it would make sense to
apply it to To_Address.)

From: Mark Lorenzen
<mark.lorenzen@gmail.com>

Date: Tue, 14 Jul 2015 02:36:03 -0700
Subject: Re: setting an address with pure?
Newsgroups: comp.lang.ada

> It certainly seems wrong that an address
clause for a hardware entity can't be
used in a preelaborated unit.

I have been bitten by this restriction
several times and it's a real pain.

> I'd encourage you to post this problem
on Ada-Comment, so that it gets on the
ARG agenda. (If we end up with a
static function aspect, it would make
sense to apply it to To_Address.)

Yes please - the current restriction
prevents many low-level I/O packages
from having preelaborable elaboration,
which transitively prevents a whole I/O
library from having preelaborable
elaboration.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 16 Jul 2015 14:14:29 -0500
Subject: Re: Q: setting an address with

pure?
Newsgroups: comp.lang.ada

>> I made the type System.Address
globally visible as a 32-bit unsigned.
That's why the above statements work
in AVR-Ada and probably in MSP-
Ada.

> Ah! Well if that is permitted by the
LRM (and obviously, only for targets
where it is valid) it certainly makes life
easier!

It's permitted by the RM. There is
Implementation Advice that
System.Address be a private type, but of
course the reason that it is advice is that it
might not be appropriate to all
implementations. In this particular case,
though, its advice mainly because it
would have been incompatible on some
implementations to make it private
(Janus/Ada is in that category); I think the
feeling was that new implementations
should have it private. (But we now know
that's clearly wrong if preelaboration is
going to be used with hardware access.)

Hopefully, Ada 202x will find a solution
to this problem (and maybe even in the
2018 update), so it's fixed for good rather
than depending on the goodness of your
RTS implementer (many who are likely to
be unaware of this problem).

From: Simon Wright
<simon@pushface.org>

Date: Thu, 16 Jul 2015 19:54:54 +0100
Subject: Re: Q: setting an address with

pure?
Newsgroups: comp.lang.ada

[...]

See also pragma
Allow_Integer_Address[1] - not sure
whether it's reached publicly accessible
compilers yet.

[1] http://docs.adacore.com/
gnat_rm-docs/html/gnat_rm/gnat_rm/
implementation_defined_pragmas.html#p
ragma-allow-integer-address

140 Ada in Context

Volume 36, Number 3, September 2015 Ada User Journal

Promoting Ada

From: Richard Riehle <rriehle@itu.edu>
Date: Wed, 19 Aug 2015 15:19:43 -0700
Subject: Re: If not Ada, what else...
Newsgroups: comp.lang.ada

As to your comment about books, that is
why I wrote Ada Distilled, to provide
simple, fully coded, tested examples with
line-by-line comments. Although the Ada
2012 version is not quite ready (Ed
Colbert of Absolute Software is updating
it), many people still seem to find the Ada
95 version (which includes some 2005
examples) useful as a place to get started.

You are correct about other things.
Greedy compiler and tool vendors (with
the exception of Meridian and RR
Software) were overpricing the product so
few hobbyists or start-ups could afford to
choose Ada. Only Meridian provided a
fully functional Ada compiler for
Windows at a reasonable price. Janus was
a really good compiler, but did not have
easy support for Windows programming.
Alsys was huge, cumbersome, too
expensive, and not suitable for any small
organisation. The Alsys compiler did
generate some pretty good code, but no
one was concerned about that. There
weren't many other options.

So, community colleges continued to
prefer Turbo-Pascal, a product that
wowed everyone at the time. I talked with
Phillipe Kahn about Ada. He would have
loved to have had an opportunity to create
a Turbo-Ada, but the timing was wrong,

and the opportunity was lost. The one
(and perhaps, only) good thing Reifer did
when he was in charge at AJPO was fund
the initial work on GNAT. Once he left
AJPO, he began to publicly disparage
Ada, and that did not help at all.

The poorly worded letter from Emmett
Page set the stage for Ada's quick demise
within the DoD. Now, there is no
mandate, and most of the people I know
in the DoD software community have
interpreted that letter as, not simply
cancelling the mandate, but cancelling
Ada in favour of anything but Ada. The
cancellation of the mandate was a
premature and devastating event,
occurring exactly at the moment when
Ada, as a language design (Ads 95) was
poised for extraordinary success.

Ada, as a programming language, is still
one of the very best for real engineering
of software solutions (not so good for
Q&D or hacking), but we have very few
engineers in software practice. We have
lots of talented programmers, but few of
them have any engineering background or
understanding of engineering. An
interesting outcome of learning Ada, for
many of them, was a better understanding
of what we really meant by the term,
software engineering.

We, the past and present devotees of Ada,
have made a lot of mistakes. It is not clear
that we can recover from the bad
impression so many of our software
developer colleagues have regarding Ada.
However, the new standard includes some

advanced computer science and software
engineering features not present in other,
if any, software engineering languages:
axiomatic program design (Hoare,
Dijkstra), predicate calculus expressions,
and much more.

We can, perhaps, rescue Ada's reputation,
by reaching out beyond our own narrow
community with information about these
powerful capabilities. That can include
more academic papers that use Ada, more
articles in places that programmers read,
offering to teach an Ada class at local
colleges, and using Ada for more
applications that real people use.

I am now old, soon to enjoy my 80th
birthday. My time as an advocate will
soon have passed. Perhaps some of you
who are younger can find the course and
energy to do something to promote real
software engineering using the one
language designed to support an
engineering approach to software
development: Ada. It is, in my view, still
Ada. It is certainly not C++. Never has
been. Why would anyone choose a
language that is inherently error-prone
and expect a result that is error-free?

 141

Ada User Journal Volume 36, Number 3, September 2015

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2015

October 08 5th International Workshop on Design, Modeling and Evaluation of Cyber Physical Systems

(CyPhy'2015), Amsterdam, the Netherlands. Topics include: development of industrial or research-
oriented cyber-physical systems in domains such as robotics, smart systems (homes, vehicles,
buildings), medical and healthcare devices, future generation networks; comparisons of state of the art
tools in industrial practice; etc.

October 12-14 17th International System and Design Languages Forum (SDL'2015), Berlin, Germany. Topics
include: industrial application reports (industrial usage reports, standardization activities, tool support
and frameworks, domain-specific applicability such as telecommunications, aerospace, automotive,
control, ...), model-driven development, evolution of development languages (domain-specific language
profiles especially for dependability, modular language design, semantics and evaluation, methodology
for application, ...), etc.

 October 12-15 13th International Symposium on Automated Technology for Verification and Analysis
(ATVA'2015), Shanghai, China. Topics include: program analysis and software verification; analytical
techniques for safety, security, and dependability; testing and runtime analysis based on verification
technology; analysis and verification of parallel and concurrent hardware/software systems; verification
in industrial practice; applications and case studies; etc.

October 12-15 27th Annual IEEE Software Technology Conference (STC'2015), Long Beach, California, USA.
Topics include: critical infrastructure challenges, agile/lean development, affordability, open source,
systems engineering challenges for software-intensive systems, etc.

 October 13-14 11th European Computer Science Summit (ECSS'2015), Vienna, Austria. Includes: Public Lecture
"Ada Countess of Lovelace - A One-Person Opera, and The Role of Women in Computing".

 October 18-21 24th International Conference on Parallel Architectures and Compilation Techniques
(PACT'2015), San Francisco, California, USA. Topics include: parallel architectures and computational
models; compilers and tools for parallel computer systems; middleware and run time system support for
parallel computing; support for correctness in concurrent hardware and software; parallel programming
languages, algorithms and applications; applications and experimental systems studies; etc.

October 21-23 18th IEEE International Conference on Computational Science and Engineering (CSE'2015), Porto,
Portugal. Includes tracks on: scientific and engineering computing; CSE education; embedded and
ubiquitous computing; security, privacy and trust; distributed and parallel computing; dependable,
reliable and autonomic computing; etc.

 2015/10/21 Workshop on Exascale Multi/many Core Computing Systems (MuCoCoS'2015).
Topics include: methods and tools for preparing applications for Exascale; programming
models, languages, libraries and compilation techniques; run-time systems; etc.

October 22-23 9th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2015), Beijing, China. Topics include: industrial experience and case studies, qualitative
methods, replication of empirical studies, empirically-based decision making, evaluation and
comparison of techniques and models, quality measurement and assurance, measurement and process

142 Conference Calendar

Volume 36, Number 3, September 2015 Ada User Journal

improvement programs, reports on the benefits / costs associated with using certain technologies,
software project experience and knowledge management, etc.

October 25-27 ACM SIGPLAN 8th International Conference on Software Language Engineering (SLE'2015),
Pittsburgh, Pennsylvania, USA. Topics include: techniques for software language reuse, evolution and
management of variations (syntactic/semantic) within language families; applications of DSLs for
different purposes (incl. modeling, simulating, generation, description, checking); novel applications
and/or empirical studies on any aspect of SLE (development, use, deployment, and maintenance of
software languages); etc.

 October 25-30 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2015), Pittsburgh, Pennsylvania, USA. Topics include: all aspects of software
construction and delivery, at the intersection of programming, languages, and software engineering.

 October 26 6th Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU'2015). Topics include: methods, metrics and techniques for evaluating the
usability of languages and language tools; making programs easier to read, write, and
maintain; allowing programmers to write more flexible and powerful programs;
restricting programs to make them more safe and secure; empirical studies of
programming languages; methodologies and philosophies behind language and tool
evaluation; software design metrics and their relations to the underlying language; user
studies of language features and software engineering tools; critical comparisons of
programming paradigms; tools to support evaluating programming languages; etc.

October 29-31 12th International Colloquium on Theoretical Aspects of Computing (ICTAC'2015), Cali,
Colombia. Topics include: principles and semantics of programming languages; relationship between
software requirements, models and code; program static and dynamic analysis and verification; software
specification, refinement, verification and testing; model checking and theorem proving; integration of
theories, formal methods and tools for engineering computing systems; models of concurrency, security,
and mobility; real-time, embedded, hybrid and cyber-physical systems; etc.

November 02-05 26th IEEE International Symposium on Software Reliability Engineering (ISSRE'2015),
Washington DC, USA. Topics include: reliability, availability, and safety of software systems;
verification and validation; software quality; software security; dependability, fault tolerance,
survivability, and resilience of software systems; systems (hardware + software) reliability engineering;
etc.

November 03-06 17th International Conference on Formal Engineering Methods (ICFEM'2015), Paris, France.
Topics include: abstraction and refinement; program analysis; software verification; software model
checking; formal methods for object and component systems, concurrent and real-time systems, cyber-
physical systems, for software safety, security, reliability and dependability; tool development,
integration and experiments involving verified systems; formal methods used in certifying products
under international standards; formal model-based development and code generation; etc.

November 04-06 Symposium on Dependable Software Engineering: Theories, Tools and Applications
(SETTA'2015), Nanjing, China. Topics include: formalisms for modeling, design and implementation;
model checking, theorem proving, and decision procedures; scalable approaches to formal system
analysis; integration of formal methods into software engineering practice; contract-based engineering
of components, systems, and systems of systems; formal and engineering aspects of software evolution
and maintenance; parallel and multicore programming; embedded, real-time, hybrid, and cyber-physical
systems; mixed-critical applications and systems; safety, reliability, robustness, and fault-tolerance;
applications and industrial experience reports; tool integration; etc.

 November 05 High Integrity Software 2015 (HIS'2015), Bristol, UK. Sponsored by AdaCore and
Altran.

November 09-13 30th IEEE/ACM International Conference on Automated Software Engineering (ASE'2015),
Lincoln, Nebraska, USA. Topics include: foundations, techniques and tools for automating the analysis,
design, implementation, testing, and maintenance of large software systems, such as open systems
development, component-based systems, product line methods, re-engineering, specification languages,
maintenance and evolution, software architecture and design, testing, verification, and validation,
model-based software development, model transformation, modeling language semantics, etc.

Conference Calendar 143

Ada User Journal Volume 36, Number 3, September 2015

 November 15-20 10th International Conference on Software Engineering Advances (ICSEA'2015), Barcelona, Spain.
Topics include: advances in fundamentals for software development; advanced mechanisms for software
development; advanced design tools for developing software; software security, privacy, safeness;
specialized software advanced applications; open source software; agile software techniques; software
deployment and maintenance; software engineering techniques, metrics, and formalisms; software
economics, adoption, and education; improving productivity in research on software engineering; etc.

November 15-20 28th International Conference for High Performance Computing, Networking, Storage and
Analysis (SC'2015), Austin, Texas, USA.

November 18-20 21st IEEE Pacific Rim International Symposium on Dependable Computing (PRDC'2015),
Zhangjiajie, China. Topics include: software and hardware reliability, testing, verification, and
validation; dependability measurement, modeling, evaluation, and tools; software aging and
rejuvenation; safety-critical systems and software; dependability issues in distributed and parallel
systems, in real-time systems, in aerospace and embedded systems, in cyber-physical systems, ...; etc.

Nov 30 - Dec 02 13th Asian Symposium on Programming Languages and Systems (APLAS'2015), Pohang, Korea.
Topics include: foundational and practical issues in programming languages and systems, such as
semantics, design of languages and type systems, domain-specific languages, compilers, interpreters,
abstract machines, program analysis, verification, model-checking, software security, concurrency and
parallelism, tools and environments for programming and implementation, etc.

December 01-04 22nd Asia-Pacific Software Engineering Conference (APSEC'2015), New Delhi, India. Theme:
"Software Process and Product Engineering". Topics include: embedded real-time systems; formal
methods; product-line software engineering; SE environments and tools; security, reliability, and
privacy; software architecture and design; software engineering methods; software maintenance and
evolution; software process and standards; testing, verification, and validation; etc.

December 02-04 16th International Conference on Product Focused Software Process Improvement
(PROFES'2015), Bolzano-Bozen, Italy. Topics include: software engineering techniques, methods, and
technologies for product-focused software development and process improvement as well as their
practical application in industrial settings.

December 08-11 16th ACM/IFIP/USENIX International Middleware Conference (Middleware'2015), Vancouver,
Canada. Topics include: design, implementation, deployment, and evaluation of distributed system
platforms and architectures for computing, storage, and communication environments; reliability and
fault-tolerance; real-time solutions; scalability and performance; programming frameworks, parallel
programming, and design methodologies for middleware; methodologies and tools for middleware
design, implementation, verification, and evaluation; retrospective reviews of middleware paradigms;
etc.

 Dec 09-10 Ada Lovelace 200 Symposium: celebrating the life and legacy of Ada
Lovelace. Oxford, UK.

December 09-12 20th International Conference on Engineering of Complex Computer Systems (ICECCS'2015),
Gold Coast, Australia. Topics include: verification and validation, security and privacy of complex
systems, model-driven development, reverse engineering and refactoring, design by contract, agile
methods, safety-critical & fault-tolerant architectures, real-time and embedded systems, cyber-physical
systems, tools and tool integration, past reflections and future outlooks, industrial case studies, etc.

December 10 200th birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 12-14 7th International Symposium on Parallel Architectures, Algorithms and Programming
(PAAP'2015), Nanjing, China. Topics include: multi/many-core programming, formal methods and
verification, parallel programming languages, parallel compilers and runtime systems, task mapping and
job scheduling, secure distributed computing, resource allocation and management, software
engineering for parallel/distributed systems, etc.

 December 14-17 21st IEEE International Conference on Parallel and Distributed Systems (ICPADS'2015),
Melbourne, Australia.

144 Conference Calendar

Volume 36, Number 3, September 2015 Ada User Journal

2016

 January 07-09 17th IEEE International Symposium on High Assurance Systems Engineering (HASE'2016),
Orlando, Florida, USA. Topics include: tools and techniques used to design and construct systems that,
in addition to meeting their functional objectives, are safe, secure, and reliable.

 January 18-22 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2016),
St. Petersburg, Florida, USA.

January 19-22 8th Software Quality Days Conference (SWQD'2016), Vienna, Austria. Theme: "The Future of
Systems and Software Development: Build in Quality & Efficiency right from the Start". Topics
include: improvement of software development methods and processes; testing and quality assurance of
software and software-intensive systems; domain specific quality issues such as embedded, medical,
automotive systems; novel trends in software quality; etc.

February 17-19 24th Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP'2016), Heraklion, Crete, Greece. Topics include: embedded parallel and distributed systems;
multi- and many-core systems; programming languages and environments; runtime support systems;
performance prediction and analysis; shared-memory and message-passing systems; dependability and
survivability; real-time distributed applications; formal approaches to parallel and distributed systems;
security in parallel, distributed and network-based computing; multi-core and many-core systems for
embedded computing; etc.

February 19-21 4th International Conference on Model-Driven Engineering and Software Development
(MODELSWARD'2016), Rome, Italy. Topics include: domain-specific modeling, general-purpose
modeling languages and standards, syntax and semantics of modeling languages, model-based testing
and validation, model execution and simulation, model quality assurance techniques, component-based
software engineering, software factories and software product lines, etc. Deadline for submissions:
October 14, 2015 (tutorials, demos, panels), October 29, 2015 (position papers), December 3, 2015
(doctoral consortium).

March 14-17 15th International Conference on Modularity (Modularity'2016), Málaga, Spain. Topics include: new
modularity mechanisms in programming, modeling, and domain-specific languages; evaluation of
modularity mechanisms in case studies; role of modularity in the evolution of software systems;
modular re-engineering of legacy code; module (feature) interactions; novel module verification and
testing techniques; modularity supported by tools, such as view extraction, visualization,
recommendation, and refactoring tools; etc. Deadline for submissions: October 30, 2015 (abstracts,
workshops), November 6, 2015 (Research Results papers, Modularity Visions papers), December 5,
2015 (workshop papers).

March 17-18 25th International Conference on Compiler Construction (CC'2016), Barcelona, Spain. Topics
include: work on processing programs in the most general sense, such as, compilation and interpretation
techniques, run-time techniques (memory management, virtual machines, ...), programming tools
(refactoring editors, checkers, verifiers, compilers, debuggers, and profilers), techniques for specific
domains (secure, parallel, distributed, embedded, ... environments), design and implementation of novel
language constructs and programming models. Deadline for submissions: November 13, 2015
(abstracts), November 20, 2015 (papers).

April 02-08 19th European Joint Conferences on Theory and Practice of Software (ETAPS'2016), Eindhoven,
the Netherlands. Events include: ESOP (European Symposium on Programming), FASE, Fundamental
Approaches to Software Engineering), FOSSACS (Foundations of Software Science and Computation
Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the
Construction and Analysis of Systems). Deadline for submissions: October 9, 2015 (abstracts), October
16, 2015 (full papers).

April 04-08 31st ACM Symposium on Applied Computing (SAC'2016), Pisa, Italy.

 April 04-08 Track on Programming Languages (PL'2016). Topics include: compiling techniques,
domain-specific languages, garbage collection, language design and implementation,
languages for modeling, model-driven development, new programming language ideas

Conference Calendar 145

Ada User Journal Volume 36, Number 3, September 2015

and concepts, practical experiences with programming languages, program analysis and
verification, programming languages from all paradigms, etc.

 April 04-08 Track on Multicore Software Engineering, Performance, Applications and Tools
(MUSEPAT'2016). Topics include: software engineering for multicore (CPU or GPU);
specification and modeling of multicore systems; programming models, languages,
compiler techniques and development tools for multicore; parallel and distributed
testing and debugging; evolving sequential software to leverage multicore and manycore
hardware; performance and optimization of multicore software; domain- and platform-
specific multicore software issues (e.g., issues in scientific computing); etc.

 April 04-08 Track on Object-Oriented Programming Languages and Systems (OOPS'2016).
Topics include: aspects and components; code generation and optimization; distribution
and concurrency; formal verification; integration with other paradigms; interoperability,
versioning and software evolution and adaptation; language design and implementation;
modular and generic programming; runtime verification; secure and dependable
software; static analysis; testing and debugging; type systems; etc.

 April 11-13 18th International Real-Time Ada Workshop (IRTAW'2016), Benicàssim, Spain.
In cooperation with Ada-Europe. Deadline for submissions: January 22, 2016 (position
papers).

April 27-28 11th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE'2016), Rome, Italy. Topics include: comparing novel approaches with established traditional
practices and evaluating them against software quality criteria, software and systems development
methodologies, software process improvement, software product line engineering, architectural design
and frameworks, software quality management, software change and configuration management,
application integration technologies, geographically distributed software engineering, formal methods,
model-driven engineering, etc. Deadline for submissions: October 30, 2015 (papers), November 13,
2015 (workshops), November 24, 2015 (special sessions), December 18, 2015 (tutorials, demos,
panels), January 5, 2016 (position papers).

 May14-22 38th International Conference on Software Engineering (ICSE'2016), Austin, Texas, USA. Deadline
for submissions: October 10, 2015 (workshop proposals), October 23, 2015 (Software Engineering in
Practice papers, Software Engineering Education and Training papers, Software Engineering in Society
papers, Visions of 2025 and Beyond papers), November 20, 2015 (technical briefings proposals,
Doctoral Symposium proposals, ACM Student Research Competition, demonstrations proposals),
January 13, 2016 (posters proposals), January 22, 2016 (workshop papers).

June 01-05 12th International Conference on integrated Formal Methods (iFM'2016), Reykjavík, Iceland.
Topics include: hybrid approaches to formal modelling and analysis; i.e., the combination of (formal
and semi-formal) methods for system development, regarding modelling and analysis, and covering all
aspects from language design through verification and analysis techniques to tools and their integration
into software engineering practice.

June 13-17 21st International Conference on Reliable Software Technologies - Ada-
Europe'2016 Pisa, Italy. Sponsored by Ada-Europe, in cooperation (pending) with
ACM SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association (ARA). Deadline
for submissions: January 17, 2016 (papers, tutorials, workshops, industrial
presentations).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

146

Volume 36, Number 3, September 2015 Ada User Journal

The second UK conference on High Integrity Software will take place in Bristol, UK, on 5th November

2015. This one‐day event offers the UK’s foremost opportunity for engineers to share information

about challenges and solutions in the domain of trustworthy software engineering for safety,

security and business‐critical applications.

This year’s conference will feature three keynote speakers. Prof. Ian Phillips, Principal Staff Engineer

at ARM, will talk about the role of software in overall system integrity. Prof. Phil Koopman, CMU, will

present a study of the Unintended Acceleration (UA) of Toyota vehicles and related software safety

issues based on his role as an expert witness. Prof. Mark Little, Vice President Red Hat and CTO of

JBoss, will talk about the success of open source software in mission‐critical environments and its

future role in innovative areas including the Internet of Things.

The programme will also feature technical sessions on software safety, tools & architectures, and

threats & security. More details are available on the conference website.

The event includes an exhibition at which vendors will be presenting their tools and services offer for

the high integrity software domain. The exhibition will be open during the morning and afternoon

breaks, during lunchtime and also during the networking “cocktail hour” at the end of the day.

Attendance at HIS 2015 will cost £175 per delegate, which covers all aspects of this event (breaks,

lunches, sessions, exhibition and networking drinks afterwards). Further information and instructions

on how to register can be found on the conference website.

www.his‐2015.co.uk
 SPONSORED BY

 147

Ada User Journal Volume 36, Number 3, September 2015

Ada Lovelace
Celebrating 200 years of a computer visionary

Ada Lovelace Symposium, Oxford, 2015

An interdisciplinary Symposium celebrating the life and legacy of Ada Lovelace, 1815-1852, will take
place at Mathematics Institute, University of Oxford on 9th and 10th December 2015. Ada Lovelace is
best known for a remarkable article about Charles Babbage’s unbuilt computer, the Analytical Engine,
and the symposium will present Lovelace’s life and work, in the context of nineteenth century
mathematics, science and culture, and present-day thinking on computing and artificial intelligence.

Speakers include: computer scientists John Barnes, Adrian Johnstone, Ursula Martin, Bernard Sufrin
and Moshe Vardi; historians of computing and mathematics, June Barrow Green, Elizabeth Bruton,
Judith Grabiner, Christopher Hollings and Doron Swade; Lovelace scholars Imogen Forbes-Macphail,
Julia Markus and Betty Toole; historian and biographer Richard Holmes; and graphic artist Sydney
Padua. Participants in a panel on female icons include computer scientists Valerie Barr and Muffy
Calder, founder of Ada Lovelace Day Suw Charman-Anderson, mathematician Cheryl Praeger, and
cultural historian Murray Pittock.

A reception and dinner in Balliol College on 9th December includes a pre-dinner address by
Lovelace’s descendant the Earl of Lytton, and an after dinner speech by philanthropist Dame Stephanie
Shirley.

Registration for the symposium is £40, or £90 including the symposium dinner. Some sponsored places
are available. For further information and registration see https://blogs.bodleian.ox.ac.uk/adalovelace/

A display at Oxford’s Bodleian Library, 13th October – 18th December, includes Lovelace’s
exercise books, childhood letters, correspondence with Charles Babbage, a newly found daguerreotype,
and a new archive discovery showing computational thinking in action –Lovelace, Babbage, magic
squares and networks.

Sponsors This event has been made possible thanks to generous sponsorship from ACM, AHRC, British
Computer Society, Clay Mathematics Institute, EPSRC, google, IMA, London Mathematical Society,
and Queen Mary University of London’s cs4fn project.

Professor Ursula Martin CBE
Chair, Ada Lovelace Celebration 2015

University of Oxford
Ursula.Martin@cs.ox.ac.uk

18th International Real-Time Ada Workshop – IRTAW 2016

Hotel Voramar, Benicàssim, Spain
11-13th April 2016

http://www.ada-europe.org/irtaw2016

Call for Papers
The International Real-Time Ada Workshop series has provided a forum for identifying issues with real-time system
support in Ada and for exploring possible approaches and solutions, and has attracted participation from key members
of the research, user, and implementer communities worldwide. Recent International Real-Time Ada Workshop
meetings contributed to the Ada 2005/Ada 2012 standards, especially with respect to the tasking features, the real-time
and high-integrity systems annexes, and the standardization of the Ravenscar Tasking Profile.

In keeping with this tradition, the goals of IRTAW-18 will be to:

• Review Ada 2012 Issues vis-a-vis real-time systems;
• Examine experiences in the use of Ada 2012 for real-time systems and applications;
• Implementation approaches for Ada 2012 real-time features;
• Consider developing other real-time Ada profiles in addition to the Ravenscar profile;
• Analyze the implications to Ada with multiprocessors in development of real-time systems;
• Investigate paradigms for using Ada for real-time distributed systems, with special emphasis on robustness as

well as hard, flexible and application-defined scheduling;
• Analyse specific patterns and libraries for real-time systems development in Ada;
• Evaluate Ada in context of the certification of safety-critical and/or security-critical real-time systems;
• Examine the Real-Time Specification for Java and other languages for real-time systems development, their

current implementations and their interoperability with Ada in embedded real-time systems;
• Investigate industrial experience with Ada and the Ravenscar Profile in real-time projects;
• Consider the language vulnerabilities of the Ravenscar and full language definitions;
• Consider testing for compliance with the Real-Time Annex.

Participation at IRTAW-18 is by invitation following the submission of a position paper addressing one or more of the
above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an invitation, but for one reason
or another is unable to produce a position paper, may send in a one-page position statement indicating their interests.
Priority will be given to submitted papers.

Submission Requirements
Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. All accepted
papers will appear, in their final form, in the Workshop Proceedings, which will be published as a special issue of Ada
Letters (ACM Press). Selected papers will also appear in the Ada User Journal. Authors with a relevant paper submitted
to the 21st International Conference on Reliable Software Technologies – Ada-Europe 2016 (deadline 17 January, 2016)
may offer an extended abstract of the same material to IRTAW 18. Please submit position papers, in PDF format, to the
Program Chair by e-mail: stephen.michell@maurya.on.ca

Important Dates
Paper Submission: 22 January, 2016

Notification of Acceptance: 19 February, 2016
Confirmation of Attendance: 4 March, 2016

Final Paper Due: 25 March, 2016
Workshop: April 11-13, 2016

Program Chair Workshop Chair
Stephen Michell, Maurya Software Inc, Canada Jorge Real, Universitat Politècnica de València

Conference Chair

Giorgio Buttazzo
Scuola Superiore Sant’Anna

Program Co-Chairs

Marko Bertogna
Univ. of Modena and Reggio Emilia

Luís Miguel Pinho
CISTER Research Centre/ISEP

Special Session Chair

Eduardo Quiñones
Barcelona Supercomputing Center

Tutorial and Workshop Chair

Jorge Real
Universitat Politècnica de València

Industrial Co-Chairs

Marco Di Natale
Scuola Superiore Sant’Anna

Tullio Vardanega
Università di Padova

Publication Chair

Geoffrey Nelissen
CISTER Research Centre/ISEP

Exhibition Co-Chairs

Paolo Gai
Evidence Srl

Ahlan Marriot
White Elephant GmbH

Publicity Co-Chairs

Mauro Marinoni
Scuola Superiore Sant’Anna

Dirk Craeynest
Ada-Belgium & KU Leuven

Local Chair

Ettore Ricciardi
ISTI-CNR, Pisa

General Information

The 21st International Conference on Reliable Software Technologies – Ada-
Europe 2016 will take place in Pisa, Italy. Following its traditional style, the
conference will span a full week, including a three-day technical program and
vendor exhibition from Tuesday to Thursday, along with parallel tutorials and
workshops on Monday and Friday.

Schedule

Topics

The conference has over the years become a leading international forum for
providers, practitioners and researchers in reliable software technologies. The
conference presentations will illustrate current work in the theory and practice of
the design, development and maintenance of long-lived, high-quality software
systems for a challenging variety of application domains. The program will allow
ample time for keynotes, Q&A sessions and discussions, and social events.
Participants include practitioners and researchers representing industry, academia
and government organizations active in the promotion and development of reliable
software technologies.

This edition of Ada-Europe features a focused Special Session on Safe, Predictable
Parallel Software Technologies. Following the increasing trend of usage of
Multi-/Many-core systems, it is more and more important to assess how reliable
software technologies need to adapt to these complex platforms, as well as how
parallel models need to adapt to domains in which safety and predictability is a
must. Topics include (but are not limited to): Predictable Parallel Programming
Models, Compiler Support for Parallel Execution, Parallel Runtimes, Automatic
Parallelization, Safety Issues and Reliability Mechanisms for Parallel Execution,
Software Modelling and Design Approaches.

For the general track of the conference, topics of interest include but are not
limited to (full list on the website): Real-Time and Embedded Systems, Mixed-
Criticality Systems, Theory and Practice of High-Integrity Systems, Software
Architectures, Methods and Techniques for Software Development and
Maintenance, Software Quality, Mainstream and Emerging Applications, Experience
Reports in Reliable System Development, Experiences with Ada.

17 January 2016 Submission of papers, industrial presentation, tutorial and
workshop proposals.

10 March 2016 Notification of acceptance to all authors
24 March 2016 Camera-ready version of papers required

2 May 2016 Industrial presentations, tutorial and workshop material required

http://www.ada-europe.org/conference2016

Call for Regular and Special Session Papers

Authors of papers which are to undergo peer review for acceptance are invited to submit original contributions by 17 January 2016.
Paper submissions shall not exceed 14 LNCS-style pages in length. Authors for both the general track and the special session shall
submit their work via EasyChair at https://easychair.org/conferences/?conf=adaeurope2016. The format for submission is solely PDF.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS) series by Springer, and will be available
at the conference. The authors of accepted regular and special session papers shall prepare camera-ready submissions in full
conformance with the LNCS style, not exceeding 14 pages and strictly by 24 March 2016. For format and style guidelines authors should
refer to http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register for the conference by that date will prevent
the paper from appearing in the proceedings.

The International Conference on Reliable Software Technologies is ranked class A in the CORE ranking and Microsoft Academic Search
has it in the top third for conferences on programming languages. The conference is listed in DBLP, SCOPUS and Web of Science
Conference Proceedings Citation index, among others.

Awards

Ada-Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference seeks industrial presentations which deliver value and insight but may not fit the selection process for regular papers.
Authors are invited to submit a presentation outline of exactly 1 page in length by 17 January 2016. Submissions shall be made via
EasyChair following the link https://easychair.org/conferences/?conf=adaeurope2016. The format for submission is solely PDF.

The Industrial Committee will review the submissions and make the selection. The authors of selected presentations shall prepare a
final short abstract and submit it by 2 May 2016, aiming at a 20-minute talk. The authors of accepted presentations will be invited to
submit corresponding articles for publication in the Ada User Journal (http://www.ada-europe.org/auj/), which will host the
proceedings of the Industrial Program of the Conference. For any further information please contact the Industrial Co-chairs directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be proposed as either half- or full-day events.
Proposals should include a title, an abstract, a description of the topic, a detailed outline of the presentation, a description of the
presenter's lecturing expertise in general and with the proposed topic in particular, the proposed duration (half day or full day), the
intended level of the tutorial (introductory, intermediate, or advanced), the recommended audience experience and background, and
a statement of the reasons for attending. Proposals should be submitted by e-mail to the Tutorial Chair. The authors of accepted full-
day tutorials will receive a complimentary conference registration as well as a fee for every paying participant in excess of 5; for half-
day tutorials, these benefits will be accordingly halved. The Ada User Journal (http://www.ada-europe.org/auj/) will offer space for the
publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half- or full-day events,
to be scheduled at either end of the conference week. Workshop proposals should be submitted to the Tutorial and Workshop Chair.
The workshop organizer shall also commit to preparing proceedings for timely publication in the Ada User Journal (http://www.ada-
europe.org/auj/).

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and providers of software products and services
should contact the Exhibition Chair for information and for allowing suitable planning of the exhibition space and time.

Grants for Reduced Student Fees

A limited number of sponsored grants for reduced fees is expected to be available for students who would like to attend the conference

or tutorials. Contact the Conference Chair for details.

Venue

The conference will take place at Scuola Superiore Sant’Anna (left images, including the aula magna where the main conference

sessions will take place), in the heart of Pisa, Italy. June is full of events in Pisa, including in the conference week the Saint Patron's

festivities (San Ranieri) with the Luminara on the night of June 16 (thousands of candles burn and reflect on the river – image on the

right). Plan in advance! It is absolutely worth it!

https://easychair.org/conferences/?conf=adaeurope2016
http://www.springer.de/comp/lncs/authors.html
https://easychair.org/conferences/?conf=adaeurope2016
http://www.ada-europe.org/auj/
http://www.ada-europe.org/auj/
http://www.ada-europe.org/auj/
http://www.ada-europe.org/auj/

152

Volume 36, Number 3, September 2015 Ada User Journal

1842 Notes to the translation of the Sketch of the
Analytical Engine
A. A. Lovelace

Editor note: This article presents the 1842 Notes by
Ada Lovelace to the English translation of the article
“Sketch of the Analytical Engine invented by Charles
Babbage” by L. F. Menabrea, Bibliothèque
Universelle de Génève, Nº 82, October 1842 1. The
translation and the notes were published in “Taylor's
Scientific Memoirs”, London, vol. III, 1843, pp. 666-
731 2. As the article focuses on the notes themselves,
they are all presented separated from the analytical
engine description, which is nevertheless provided in
preamble for context.
1 The translation and notes are from the online copy at
http://www.fourmilab.ch/babbage/sketch.html. Last accessed
September 2015.
2 The reader may find an online digitalized copy of this volume of
the “Taylor's Scientific Memoirs”, in Google Books at
https://books.google.pt/books?id=qsY-AAAAYAAJ. Last accessed
September 2015.

Preamble - Sketch of the Analytical Engine Invented by
Charles Babbage, by L. F. Menabrea, translation by
A. A. Lovelace.

Those labours which belong to the various branches of the
mathematical sciences, although on first consideration they seem
to be the exclusive province of intellect, may, nevertheless, be
divided into two distinct sections; one of which may be called the
mechanical, because it is subjected to precise and invariable laws,
that are capable of being expressed by means of the operations of
matter; while the other, demanding the intervention of reasoning,
belongs more specially to the domain of the understanding. This
admitted, we may propose to execute, by means of machinery, the
mechanical branch of these labours, reserving for pure intellect
that which depends on the reasoning faculties. Thus the rigid
exactness of those laws which regulate numerical calculations
must frequently have suggested the employment of material
instruments, either for executing the whole of such calculations or
for abridging them; and thence have arisen several inventions
having this object in view, but which have in general but partially
attained it. For instance, the much-admired machine of Pascal is
now simply an object of curiosity, which, whilst it displays the
powerful intellect of its inventor, is yet of little utility in itself. Its
powers extended no further than the execution of the first four1

1 This remark seems to require further comment, since it is in some degree
calculated to strike the mind as being at variance with the subsequent
passage, where it is explained that an engine which can effect these four
operations can in fact effect every species of calculation. The apparent
discrepancy is stronger too in the translation than in the original, owing to
its being impossible to render precisely into the English tongue all the
niceties of distinction which the French idiom happens to admit of in the
phrases used for the two passages we refer to. The explanation lies in this:

operations of arithmetic, and indeed were in reality confined to
that of the first two, since multiplication and division were the
result of a series of additions and subtractions. The chief
drawback hitherto on most of such machines is, that they require
the continual intervention of a human agent to regulate their
movements, and thence arises a source of errors; so that, if their
use has not become general for large numerical calculations, it is
because they have not in fact resolved the double problem which
the question presents, that of correctness in the results, united with
economy of time.

Struck with similar reflections, Mr. Babbage has devoted some
years to the realization of a gigantic idea. He proposed to himself
nothing less than the construction of a machine capable of
executing not merely arithmetical calculations, but even all those
of analysis, if their laws are known. The imagination is at first
astounded at the idea of such an undertaking; but the more calm
reflection we bestow on it, the less impossible does success
appear, and it is felt that it may depend on the discovery of some
principle so general, that, if applied to machinery, the latter may
be capable of mechanically translating the operations which may
be indicated to it by algebraical notation. The illustrious inventor
having been kind enough to communicate to me some of his
views on this subject during a visit he made at Turin, I have, with
his approbation, thrown together the impressions they have left on
my mind. But the reader must not expect to find a description of
Mr. Babbage's engine; the comprehension of this would entail
studies of much length; and I shall endeavour merely to give an
insight into the end proposed, and to develop the principles on
which its attainment depends.

I must first premise that this engine is entirely different from that
of which there is a notice in the ‘Treatise on the Economy of
Machinery,’ by the same author. But as the latter gave rise2 to the

that in the one case the execution of these four operations is the
fundamental starting-point, and the object proposed for attainment by the
machine is the subsequent combination of these in every possible variety;
whereas in the other case the execution of some one of these four
operations, selected at pleasure, is the ultimatum, the sole and utmost
result that can be proposed for attainment by the machine referred to, and
which result it cannot any further combine or work upon. The one begins
where the other ends. Should this distinction not now appear perfectly
clear, it will become so on perusing the rest of the Memoir, and the Notes
that are appended to it. —NOTE BY TRANSLATOR.

2The idea that the one engine is the offspring and has grown out of the
other, is an exceedingly natural and plausible supposition, until reflection
reminds us that no necessary sequence and connexion need exist between
two such inventions, and that they may be wholly independent. M.
Menabrea has shared this idea in common with persons who have not his
profound and accurate insight into the nature of either engine. In Note A.
(see the Notes at the end of the Memoir) it will be found sufficiently
explained, however, that this supposition is unfounded. M. Menabrea's

A. A. Lovelace 153

Ada User Journal Volume 36, Number 3, September 2015

idea of the engine in question, I consider it will be a useful
preliminary briefly to recall what were Mr. Babbage's first essays,
and also the circumstances in which they originated.

It is well known that the French government, wishing to promote
the extension of the decimal system, had ordered the construction
of logarithmical and trigonometrical tables of enormous extent.
M. de Prony, who had been entrusted with the direction of this
undertaking, divided it into three sections, to each of which was
appointed a special class of persons. In the first section the
formulæ were so combined as to render them subservient to the
purposes of numerical calculation; in the second, these same
formulæ were calculated for values of the variable, selected at
certain successive distances; and under the third section,
comprising about eighty individuals, who were most of them only
acquainted with the first two rules of arithmetic, the values which
were intermediate to those calculated by the second section were
interpolated by means of simple additions and subtractions.

An undertaking similar to that just mentioned having been entered
upon in England, Mr. Babbage conceived that the operations
performed under the third section might be executed by a
machine; and this idea he realized by means of mechanism, which
has been in part put together, and to which the name Difference
Engine is applicable, on account of the principle upon which its
construction is founded. To give some notion of this, it will
suffice to consider the series of whole square numbers, 1, 4, 9, 16,
25, 36, 49, 64, &c. By subtracting each of these from the
succeeding one, we obtain a new series, which we will name the
Series of First Differences, consisting of the numbers 3, 5, 7, 9,
11, 13, 15, &c. On subtracting from each of these the preceding
one, we obtain the Second Differences, which are all constant and
equal to 2. We may represent this succession of operations, and
their results, in table I.

From the mode in which the last two columns B and C have been
formed, it is easy to see, that if, for instance, we desire to pass
from the number 5 to the succeeding one 7, we must add to the
former the constant difference 2; similarly, if from the square
number 9 we would pass to the following one 16, we must add to
the former the difference 7, which difference is in other words the
preceding difference 5, plus the constant difference 2; or again,

opportunities were by no means such as could be adequate to afford him
information on a point like this, which would be naturally and almost
unconsciously assumed, and would scarcely suggest any inquiry with
reference to it.—NOTE BY TRANSLATOR.

which comes to the same thing, to obtain 16 we have only to add
together the three numbers 2, 5, 9, placed obliquely in the
direction ab. Similarly, we obtain the number 25 by summing up
the three numbers placed in the oblique direction dc: commencing
by the addition 2+7, we have the first difference 9 consecutively
to 7; adding 16 to the 9 we have the square 25. We see then that
the three numbers 2, 5, 9 being given, the whole series of
successive square numbers, and that of their first differences
likewise may be obtained by means of simple additions.

Now, to conceive how these operations may be reproduced by a
machine, suppose the latter to have three dials, designated as A,
B, C, on each of which are traced, say a thousand divisions, by
way of example, over which a needle shall pass. The two dials, C,
B, shall have in addition a registering hammer, which is to give a
number of strokes equal to that of the divisions indicated by the
needle. For each stroke of the registering hammer of the dial C,
the needle B shall advance one division; similarly, the needle A
shall advance one division for every stroke of the registering
hammer of the dial B. Such is the general disposition of the
mechanism.

This being understood, let us, at the beginning of the series of
operations we wish to execute, place the needle C on the division
2, the needle B on the division 5, and the needle A on the division
9. Let us allow the hammer of the dial C to strike; it will strike
twice, and at the same time the needle B will pass over two
divisions. The latter will then indicate the number 7, which
succeeds the number 5 in the column of first differences. If we
now permit the hammer of the dial B to strike in its turn, it will
strike seven times, during which the needle A will advance seven
divisions; these added to the nine already marked by it will give
the number 16, which is the square number consecutive to 9. If we
now recommence these operations, beginning with the needle C,
which is always to be left on the division 2, we shall perceive that
by repeating them indefinitely, we may successively reproduce
the series of whole square numbers by means of a very simple
mechanism.

The theorem on which is based the construction of the machine
we have just been describing, is a particular case of the following
more general theorem: that if in any polynomial whatever, the
highest power of whose variable is m, this same variable be
increased by equal degrees; the corresponding values of the
polynomial then calculated, and the first, second, third, &c.
differences of these be taken (as for the preceding series of
squares); the mth differences will all be equal to each other. So
that, in order to reproduce the series of values of the polynomial
by means of a machine analogous to the one above described, it is
sufficient that there be (m+1) dials, having the mutual relations we
have indicated. As the differences may be either positive or
negative, the machine will have a contrivance for either advancing
or retrograding each needle, according as the number to be
algebraically added may have the sign plus or minus.

If from a polynomial we pass to a series having an infinite number
of terms, arranged according to the ascending powers of the
variable, it would at first appear, that in order to apply the
machine to the calculation of the function represented by such a
series, the mechanism must include an infinite number of dials,
which would in fact render the thing impossible. But in many
cases the difficulty will disappear, if we observe that for a great

Table I

154 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

number of functions the series which represent them may be
rendered convergent; so that, according to the degree of
approximation desired, we may limit ourselves to the calculation
of a certain number of terms of the series, neglecting the rest. By
this method the question is reduced to the primitive case of a finite
polynomial. It is thus that we can calculate the succession of the
logarithms of numbers. But since, in this particular instance, the
terms which had been originally neglected receive increments in a
ratio so continually increasing for equal increments of the
variable, that the degree of approximation required would
ultimately be affected, it is necessary, at certain intervals, to
calculate the value of the function by different methods, and then
respectively to use the results thus obtained, as data whence to
deduce, by means of the machine, the other intermediate values.
We see that the machine here performs the office of the third
section of calculators mentioned in describing the tables computed
by order of the French government, and that the end originally
proposed is thus fulfilled by it.

Such is the nature of the first machine which Mr. Babbage
conceived. We see that its use is confined to cases where the
numbers required are such as can be obtained by means of simple
additions or subtractions; that the machine is, so to speak, merely
the expression of one particular theorem 3of analysis; and that, in
short, its operations cannot be extended so as to embrace the
solution of an infinity of other questions included within the
domain of mathematical analysis. It was while contemplating the
vast field which yet remained to be traversed, that Mr. Babbage,
renouncing his original essays, conceived the plan of another
system of mechanism whose operations should themselves
possess all the generality of algebraical notation, and which, on
this account, he denominates the Analytical Engine.

Having now explained the state of the question, it is time for me
to develop the principle on which is based the construction of this
latter machine. When analysis is employed for the solution of any
problem, there are usually two classes of operations to execute:
first, the numerical calculation of the various coefficients; and
secondly, their distribution in relation to the quantities affected by
them. If, for example, we have to obtain the product of two
binomials (a+bx) (m+nx), the result will be represented by am +
(an + bm) x + bnx2, in which expression we must first calculate
am, an, bm, bn; then take the sum of an + bm; and lastly,
respectively distribute the coefficients thus obtained amongst the
powers of the variable. In order to reproduce these operations by
means of a machine, the latter must therefore possess two distinct
sets of powers: first, that of executing numerical calculations;
secondly, that of rightly distributing the values so obtained.

But if human intervention were necessary for directing each of
these partial operations, nothing would be gained under the heads
of correctness and economy of time; the machine must therefore
have the additional requisite of executing by itself all the
successive operations required for the solution of a problem
proposed to it, when once the primitive numerical data for this
same problem have been introduced. Therefore, since, from the
moment that the nature of the calculation to be executed or of the

3 See Note A in "Notes by the Translator" section

problem to be resolved have been indicated to it, the machine is,
by its own intrinsic power, of itself to go through all the
intermediate operations which lead to the proposed result, it must
exclude all methods of trial and guess-work, and can only admit
the direct processes of calculation4.

It is necessarily thus; for the machine is not a thinking being, but
simply an automaton which acts according to the laws imposed
upon it. This being fundamental, one of the earliest researches its
author had to undertake, was that of finding means for effecting
the division of one number by another without using the method
of guessing indicated by the usual rules of arithmetic. The
difficulties of effecting this combination were far from being
among the least; but upon it depended the success of every other.
Under the impossibility of my here explaining the process through
which this end is attained, we must limit ourselves to admitting
that the first four operations of arithmetic, that is addition,
subtraction, multiplication and division, can be performed in a
direct manner through the intervention of the machine. This
granted, the machine is hence capable of performing every species
of numerical calculation, for all such calculations ultimately
resolve themselves into the four operations we have just named.
To conceive how the machine can now go through its functions
according to the laws laid down, we will begin by giving an idea
of the manner in which it materially represents numbers.

Let us conceive a pile or vertical column consisting of an
indefinite number of circular discs, all pierced through their
centres by a common axis, around which each of them can take an
independent rotatory movement. If round the edge of each of
these discs are written the ten figures which constitute our
numerical alphabet, we may then, by arranging a series of these
figures in the same vertical line, express in this manner any
number whatever. It is sufficient for this purpose that the first disc
represent units, the second tens, the third hundreds, and so on.
When two numbers have been thus written on two distinct
columns, we may propose to combine them arithmetically with
each other, and to obtain the result on a third column. In general,
if we have a series of columns5 consisting of discs, which columns
we will designate as V0, V1, V2, V3, V4, &c., we may require,
for instance, to divide the number written on the column V1 by
that on the column V4, and to obtain the result on the column V7.
To effect this operation, we must impart to the machine two
distinct arrangements; through the first it is prepared for executing
a division, and through the second the columns it is to operate on
are indicated to it, and also the column on which the result is to be
represented. If this division is to be followed, for example, by the
addition of two numbers taken on other columns, the two original
arrangements of the machine must be simultaneously altered. If,
on the contrary, a series of operations of the same nature is to be
gone through, then the first of the original arrangements will
remain, and the second alone must be altered. Therefore, the
arrangements that may be communicated to the various parts of
the machine may be distinguished into two principal classes:

4 This must not be understood in too unqualified a manner. The engine is
capable under certain circumstances, of feeling about to discover which of
two or more possible contingencies has occurred, and of then shaping its
future course accordingly. —NOTE BY TRANSLATOR.
5 See Note B in Section "Notes by the Translator"

A. A. Lovelace 155

Ada User Journal Volume 36, Number 3, September 2015

First, that relative to the Operations.
Secondly, that relative to the Variables.

By this latter we mean that which indicates the columns to be
operated on. As for the operations themselves, they are executed
by a special apparatus, which is designated by the name of mill,
and which itself contains a certain number of columns, similar to
those of the Variables. When two numbers are to be combined
together, the machine commences by effacing them from the
columns where they are written, that is, it places zero6 on every
disc of the two vertical lines on which the numbers were
represented; and it transfers the numbers to the mill. There, the
apparatus having been disposed suitably for the required
operation, this latter is effected, and, when completed, the result
itself is transferred to the column of Variables which shall have
been indicated. Thus the mill is that portion of the machine which
works, and the columns of Variables constitute that where the
results are represented and arranged. After the preceding
explanations, we may perceive that all fractional and irrational
results will be represented in decimal fractions. Supposing each
column to have forty discs, this extension will be sufficient for all
degrees of approximation generally required.

It will now be inquired how the machine can of itself, and without
having recourse to the hand of man, assume the successive
dispositions suited to the operations. The solution of this problem
has been taken from Jacquard's apparatus 7 , used for the
manufacture of brocaded stuffs, in the following manner.

Two species of threads are usually distinguished in woven stuffs;
one is the warp or longitudinal thread, the other the woof or
transverse thread, which is conveyed by the instrument called the
shuttle, and which crosses the longitudinal thread or warp. When a
brocaded stuff is required, it is necessary in turn to prevent certain
threads from crossing the woof, and this according to a succession
which is determined by the nature of the design that is to be
reproduced. Formerly this process was lengthy and difficult, and it
was requisite that the workman, by attending to the design which
he was to copy, should himself regulate the movements the
threads were to take. Thence arose the high price of this
description of stuffs, especially if threads of various colours
entered into the fabric. To simplify this manufacture, Jacquard
devised the plan of connecting each group of threads that were to
act together, with a distinct lever belonging exclusively to that
group. All these levers terminate in rods, which are united
together in one bundle, having usually the form of a
parallelopiped with a rectangular base. The rods are cylindrical,
and are separated from each other by small intervals. The process
of raising the threads is thus resolved into that of moving these
various lever-arms in the requisite order. To effect this, a
rectangular sheet of pasteboard is taken, somewhat larger in size
than a section of the bundle of lever-arms. If this sheet be applied
to the base of the bundle, and an advancing motion be then
communicated to the pasteboard, this latter will move with it all
the rods of the bundle, and consequently the threads that are

6 Zero is not always substituted when a number is transferred to the mill.
This is explained further on in the memoir, and still more fully in Note D.
—NOTE BY TRANSLATOR.

7 See Note C in Section "Notes by the Translator".

connected with each of them. But if the pasteboard, instead of
being plain, were pierced with holes corresponding to the
extremities of the levers which meet it, then, since each of the
levers would pass through the pasteboard during the motion of the
latter, they would all remain in their places. We thus see that it is
easy so to determine the position of the holes in the pasteboard,
that, at any given moment, there shall be a certain number of
levers, and consequently of parcels of threads, raised, while the
rest remain where they were. Supposing this process is
successively repeated according to a law indicated by the pattern
to be executed, we perceive that this pattern may be reproduced
on the stuff. For this purpose we need merely compose a series of
cards according to the law required, and arrange them in suitable
order one after the other; then, by causing them to pass over a
polygonal beam which is so connected as to turn a new face for
every stroke of the shuttle, which face shall then be impelled
parallelly to itself against the bundle of lever-arms, the operation
of raising the threads will be regularly performed. Thus we see
that brocaded tissues may be manufactured with a precision and
rapidity formerly difficult to obtain.

Arrangements analogous to those just described have been
introduced into the Analytical Engine. It contains two principal
species of cards: first, Operation cards, by means of which the
parts of the machine are so disposed as to execute any determinate
series of operations, such as additions, subtractions,
multiplications, and divisions; secondly, cards of the Variables,
which indicate to the machine the columns on which the results
are to be represented. The cards, when put in motion, successively
arrange the various portions of the machine according to the
nature of the processes that are to be effected, and the machine at
the same time executes these processes by means of the various
pieces of mechanism of which it is constituted.

In order more perfectly to conceive the thing, let us select as an
example the resolution of two equations of the first degree with
two unknown quantities. Let the following be the two equations,
in which x and y are the unknown quantities:

We deduce , and for y an analogous expression.
Let us continue to represent by V0, V1, V2, &c. the different
columns which contain the numbers, and let us suppose that the
first eight columns have been chosen for expressing on them the
numbers represented by m, n, d, m', n', d', n and n', which implies
that V0=m, V1=n, V2=d, V3=m', V4=n', V5=d', V6=n, V7=n'.

The series of operations commanded by the cards, and the results
obtained, may be represented in table II. Since the cards do
nothing but indicate in what manner and on what columns the
machine shall act, it is clear that we must still, in every particular
case, introduce the numerical data for the calculation. Thus, in the
example we have selected, we must previously inscribe the
numerical values of m, n, d, m', n', d', in the order and on the
columns indicated, after which the machine when put in action
will give the value of the unknown quantity x for this particular
case. To obtain the value of y, another series of operations
analogous to the preceding must be performed. But we see that
they will be only four in number, since the denominator of the
expression for y, excepting the sign, is the same as that for x, and

156 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

equal to n'm-nm'. In the preceding table it will be remarked that
the column for operations indicates four successive
multiplications, two subtractions, and one division. Therefore, if
desired, we need only use three operation-cards; to manage which,
it is sufficient to introduce into the machine an apparatus which
shall, after the first multiplication, for instance, retain the card
which relates to this operation, and not allow it to advance so as to
be replaced by another one, until after this same operation shall
have been four times repeated. In the preceding example we have
seen, that to find the value of x we must begin by writing the
coefficients m, n, d, m', n', d', upon eight columns, thus repeating
n and n' twice. According to the same method, if it were required
to calculate y likewise, these coefficients must be written on
twelve different columns. But it is possible to simplify this
process, and thus to diminish the chances of errors, which chances
are greater, the larger the number of the quantities that have to be
inscribed previous to setting the machine in action. To understand
this simplification, we must remember that every number written
on a column must, in order to be arithmetically combined with
another number, be effaced from the column on which it is, and
transferred to the mill. Thus, in the example we have discussed,
we will take the two coefficients m and n', which are each of them
to enter into two different products, that is m into mn' and md', n'
into mn' and n'd. These coefficients will be inscribed on the
columns V0 and V4. If we commence the series of operations by
the product of m into n', these numbers will be effaced from the
columns V0 and V4, that they may be transferred to the mill,
which will multiply them into each other, and will then command
the machine to represent the result, say on the column V6. But as
these numbers are each to be used again in another operation, they
must again be inscribed somewhere; therefore, while the mill is
working out their product, the machine will inscribe them anew
on any two columns that may be indicated to it through the cards;
and as, in the actual case, there is no reason why they should not
resume their former places, we will suppose them again inscribed
on V0 and V4, whence in short they would not finally disappear, to
be reproduced no more, until they should have gone through all
the combinations in which they might have to be used.

We see, then, that the whole assemblage of operations requisite
for resolving the two above equations8 of the first degree may be
definitely represented in table III.

In order to diminish to the utmost the chances of error in
inscribing the numerical data of the problem, they are
successively placed on one of the columns of the mill; then, by
means of cards arranged for this purpose, these same numbers are
caused to arrange themselves on the requisite columns, without
the operator having to give his attention to it; so that his undivided
mind may be applied to the simple inscription of these same
numbers. 8According to what has now been explained, we see that
the collection of columns of Variables may be regarded as a store
of numbers, accumulated there by the mill, and which, obeying
the orders transmitted to the machine by means of the cards, pass
alternately from the mill to the store and from the store to the mill,
that they may undergo the transformations demanded by the
nature of the calculation to be performed.
Hitherto no mention has been made of the signs in the results, and
the machine would be far from perfect were it incapable of
expressing and combining amongst each other positive and
negative quantities. To accomplish this end, there is, above every
column, both of the mill and of the store, a disc, similar to the
discs of which the columns themselves consist. According as the
digit on this disc is even or uneven, the number inscribed on the
corresponding column below it will be considered as positive or
negative. This granted, we may, in the following manner,
conceive how the signs can be algebraically combined in the
machine. When a number is to be transferred from the store to the
mill, and vice versâ, it will always be transferred with its sign,
which will effected by means of the cards, as has been explained
in what precedes. Let any two numbers then, on which we are to
operate arithmetically, be placed in the mill with their respective
signs. Suppose that we are first to add them together; the
operation-cards will command the addition: if the two numbers be
of the same sign, one of the two will be entirely effaced from
where it was inscribed, and will go to add itself on the column
which contains the other number; the machine will, during this
operation, be able, by means of a certain apparatus, to prevent any
movement in the disc of signs which belongs to the column on
which the addition is made, and thus the result will remain with
the sign which the two given numbers originally had. When two
numbers have two different signs, the addition commanded by the

8 See Note D in section "Notes by the translator"

Table II

A. A. Lovelace 157

Ada User Journal Volume 36, Number 3, September 2015

card will be changed into a subtraction through the intervention of
mechanisms which are brought into play by this very difference of
sign. Since the subtraction can only be effected on the larger of
the two numbers, it must be arranged that the disc of signs of the
larger number shall not move while the smaller of the two
numbers is being effaced from its column and subtracted from the
other, whence the result will have the sign of this latter, just as in
fact it ought to be. The combinations to which algebraical
subtraction give rise, are analogous to the preceding. Let us pass
on to multiplication. When two numbers to be multiplied are of
the same sign, the result is positive; if the signs are different, the
product must be negative. In order that the machine may act
conformably to this law, we have but to conceive that on the
column containing the product of the two given numbers, the digit
which indicates the sign of that product has been formed by the
mutual addition of the two digits that respectively indicated the
signs of the two given numbers; it is then obvious that if the digits
of the signs are both even, or both odd, their sum will be an even
number, and consequently will express a positive number; but that
if, on the contrary, the two digits of the signs are one even and the
other odd, their sum will be an odd number, and will consequently
express a negative number. In the case of division. instead of
adding the digits of the discs, they must be subtracted one from
the other, which will produce results analogous to the preceding;
that is to say, that if these figures are both even or both uneven,
the remainder of this subtraction will be even; and it will be
uneven in the contrary case. When I speak of mutually adding or
subtracting the numbers expressed by the digits of the signs, I
merely mean that one of the sign-discs is made to advance or
retrograde a number of divisions equal to that which is expressed

by the digit on the other sign-disc. We see, then, from the
preceding explanation, that it is possible mechanically to combine
the signs of quantities so as to obtain results conformable to those
indicated by algebra9.

The machine is not only capable of executing those numerical
calculations which depend on a given algebraical formula, but it is
also fitted for analytical calculations in which there are one or
several variables to be considered. It must be assumed that the
analytical expression to be operated on can be developed
according to powers of the variable, or according to determinate
functions of this same variable, such as circular functions, for
instance; and similarly for the result that is to be attained. If we
then suppose that above the columns of the store, we have
inscribed the powers or the functions of the variable, arranged
according to whatever is the prescribed law of development, the
coefficients of these several terms may be respectively placed on
the corresponding column below each. In this manner we shall
have a representation of an analytical development; and,
supposing the position of the several terms composing it to be
invariable, the problem will be reduced to that of calculating their
coefficients according to the laws demanded by the nature of the

9 Not having had leisure to discuss with Mr. Babbage the manner of
introducing into his machine the combination of algebraical signs, I do not
pretend here to expose the method he uses for this purpose; but I
considered that I ought myself to supply the deficiency, conceiving that
this paper would have been imperfect if I had omitted to point out one
means that might be employed for resolving this essential part of the
problem in question.

Table III

158 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

question. In order to make this more clear, we shall take the
following very simple example10, are to multiply (a + bx1) by (A +
B cos1 x). We shall begin by writing x0 , x1, cos0 x, cos1 x, above
the columns V0, V1, V2, V3; then since, from the form of the two
functions to be combined, the terms which are to compose the
products will be of the following nature, x0·cos0 x, x0·cos1 x,
x1·cos0 x, x1·cos1 x, these will be inscribed above the columns V4,
V5, V6, V7. The coefficients of x0, x1, cos0 x, cos1 x being given,
they will, by means of the mill, be passed to the columns V0, V1,
V2 and V3. Such are the primitive data of the problem. It is now
the business of the machine to work out its solution, that is, to find
the coefficients which are to be inscribed on V4, V5, V6, V7. To
attain this object, the law of formation of these same coefficients
being known, the machine will act through the intervention of the
cards, in the manner indicated by table IV11.

It will now be perceived that a general application may be made
of the principle developed in the preceding example, to every
species of process which it may be proposed to effect on series
submitted to calculation. It is sufficient that the law of formation
of the coefficients be known, and that this law be inscribed on the
cards of the machine, which will then of itself execute all the
calculations requisite for arriving at the proposed result. If, for
instance, a recurring series were proposed, the law of formation of
the coefficients being here uniform, the same operations which
must be performed for one of them will be repeated for all the
others; there will merely be a change in the locality of the
operation, that is, it will be performed with different columns.
Generally, since every analytical expression is susceptible of
being expressed in a series ordered according to certain functions
of the variable, we perceive that the machine will include all
analytical calculations which can be definitively reduced to the
formation of coefficients according to certain laws, and to the
distribution of these with respect to the variables.

We may deduce the following important consequence from these
explanations, viz. that since the cards only indicate the nature of
the operations to be performed, and the columns of Variables with

10 See Note E in section "Notes by the Translator"
11 For an explanation of the upper left-hand indices attached to the V's in
this and in the preceding Table, we must refer the reader to Note D,
amongst those appended to the memoir. —NOTE BY TRANSLATOR.

which they are to be executed, these cards will themselves possess
all the generality of analysis, of which they are in fact merely a
translation. We shall now further examine some of the difficulties
which the machine must surmount, if its assimilation to analysis is
to be complete. There are certain functions which necessarily
change in nature when they pass through zero or infinity, or
whose values cannot be admitted when they pass these limits.
When such cases present themselves, the machine is able, by
means of a bell, to give notice that the passage through zero or
infinity is taking place, and it then stops until the attendant has
again set it in action for whatever process it may next be desired
that it shall perform. If this process has been foreseen, then the
machine, instead of ringing, will so dispose itself as to present the
new cards which have relation to the operation that is to succeed
the passage through zero and infinity. These new cards may
follow the first, but may only come into play contingently upon
one or other of the two circumstances just mentioned taking place.

Let us consider a term of the form abn; since the cards are but a
translation of the analytical formula, their number in this
particular case must be the same, whatever be the value of n; that
is to say, whatever be the number of multiplications required for
elevating b to the nth power (we are supposing for the moment
that n is a whole number). Now, since the exponent n indicates
that b is to be multiplied n times by itself, and all these operations
are of the same nature, it will be sufficient to employ one single
operation-card, viz. that which orders the multiplication.

But when n is given for the particular case to be calculated, it will
be further requisite that the machine limit the number of its
multiplications according to the given values. The process may be
thus arranged. The three numbers a, b and n will be written on as
many distinct columns of the store; we shall designate them V0,
V1, V2; the result abn will place itself on the column V3. When the
number n has been introduced into the machine, a card will order
a certain registering-apparatus to mark (n-1), and will at the same
time execute the multiplication of b by b. When this is completed,
it will be found that the registering-apparatus has effaced a unit,
and that it only marks (n−2); while the machine will now again
order the number b written on the column V1 to multiply itself
with the product b2 written on the column V3, which will give b3.
Another unit is then effaced from the registering-apparatus, and
the same processes are continually repeated until it only marks
zero. Thus the number bn will be found inscribed on V3, when the

Table IV

A. A. Lovelace 159

Ada User Journal Volume 36, Number 3, September 2015

machine, pursuing its course of operations, will order the product
of bn by a; and the required calculation will have been completed
without there being any necessity that the number of operation-
cards used should vary with the value of n. If n were negative, the
cards, instead of ordering the multiplication of a by bn, would
order its division; this we can easily conceive, since every
number, being inscribed with its respective sign, is consequently
capable of reacting on the nature of the operations to be executed.
Finally, if n were fractional, of the form p/q, an additional column
would be used for the inscription of q, and the machine would
bring into action two sets of processes, one for raising b to the
power p, the other for extracting the qth root of the number so
obtained.

Again, it may be required, for example, to multiply an expression
of the form axm+bxn by another Axp+Bxq, and then to reduce the
product to the least number of terms, if any of the indices are
equal. The two factors being ordered with respect to x, the general
result of the multiplication would be Aaxm+p+Abxn+p+
Baxm+q+Bbxn+q. Up to this point the process presents no
difficulties; but suppose that we have m=p and n=q, and that we
wish to reduce the two middle terms to a single one (Ab+Ba)xm+q.
For this purpose, the cards may order m+q and n+p to be
transferred into the mill, and there subtracted one from the other;
if the remainder is nothing, as would be the case on the present
hypothesis, the mill will order other cards to bring to it the
coefficients Ab and Ba, that it may add them together and give
them in this state as a coefficient for the single term xn+p=xm+q.

This example illustrates how the cards are able to reproduce all
the operations which intellect performs in order to attain a
determinate result, if these operations are themselves capable of
being precisely defined.

Let us now examine the following expression:

which we know becomes equal to the ratio of the circumference to
the diameter, when n is infinite. We may require the machine not
only to perform the calculation of this fractional expression, but
further to give indication as soon as the value becomes identical
with that of the ratio of the circumference to the diameter when n
is infinite, a case in which the computation would be impossible.
Observe that we should thus require of the machine to interpret a
result not of itself evident, and that this is not amongst its
attributes, since it is no thinking being. Nevertheless, when the
cos of n=1/0 has been foreseen, a card may immediately order the
substitution of the value of (being the ratio of the
circumference to the diameter), without going through the series
of calculations indicated. This would merely require that the
machine contain a special card, whose office it should be to place
the number in a direct and independent manner on the column
indicated to it. And here we should introduce the mention of a
third species of cards, which may be called cards of numbers.
There are certain numbers, such as those expressing the ratio of
the circumference to the diameter, the Numbers of Bernoulli, &c.,
which frequently present themselves in calculations. To avoid the
necessity for computing them every time they have to be used,
certain cards may be combined specially in order to give these
numbers ready made into the mill, whence they afterwards go and

place themselves on those columns of the store that are destined
for them. Through this means the machine will be susceptible of
those simplifications afforded by the use of numerical tables. It
would be equally possible to introduce, by means of these cards,
the logarithms of numbers; but perhaps it might not be in this case
either the shortest or the most appropriate method; for the
machine might be able to perform the same calculations by other
more expeditious combinations, founded on the rapidity with
which it executes the first four operations of arithmetic. To give
an idea of this rapidity, we need only mention that Mr. Babbage
believes he can, by his engine, form the product of two numbers,
each containing twenty figures, in three minutes.

Perhaps the immense number of cards required for the solution of
any rather complicated problem may appear to be an obstacle; but
this does not seem to be the case. There is no limit to the number
of cards that can be used. Certain stuffs require for their
fabrication not less than twenty thousand cards, and we may
unquestionably far exceed even this quantity12.

Resuming what we have explained concerning the Analytical
Engine, we may conclude that it is based on two principles: the
first consisting in the fact that every arithmetical calculation
ultimately depends on four principal operations—addition,
subtraction, multiplication, and division; the second, in the
possibility of reducing every analytical calculation to that of the
coefficients for the several terms of a series. If this last principle
be true, all the operations of analysis come within the domain of
the engine. To take another point of view: the use of the cards
offers a generality equal to that of algebraical formulæ, since such
a formula simply indicates the nature and order of the operations
requisite for arriving at a certain definite result, and similarly the
cards merely command the engine to perform these same
operations; but in order that the mechanisms may be able to act to
any purpose, the numerical data of the problem must in every
particular case be introduced. Thus the same series of cards will
serve for all questions whose sameness of nature is such as to
require nothing altered excepting the numerical data. In this light
the cards are merely a translation of algebraical formulæ, or, to
express it better, another form of analytical notation.

Since the engine has a mode of acting peculiar to itself, it will in
every particular case be necessary to arrange the series of
calculations conformably to the means which the machine
possesses; for such or such a process which might be very easy for
a calculator may be long and complicated for the engine, and vice
versâ.

Considered under the most general point of view, the essential
object of the machine being to calculate, according to the laws
dictated to it, the values of numerical coefficients which it is then
to distribute appropriately on the columns which represent the
variables, it follows that the interpretation of formulæ and of
results is beyond its province, unless indeed this very
interpretation be itself susceptible of expression by means of the
symbols which the machine employs. Thus, although it is not
itself the being that reflects, it may yet be considered as the being

12 See Note F in section "Notes by the Translator"

160 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

which executes the conceptions of intelligence 13 . The cards
receive the impress of these conceptions, and transmit to the
various trains of mechanism composing the engine the orders
necessary for their action. When once the engine shall have been
constructed, the difficulty will be reduced to the making out of the
cards; but as these are merely the translation of algebraical
formulæ, it will, by means of some simple notations, be easy to
consign the execution of them to a workman. Thus the whole
intellectual labour will be limited to the preparation of the
formulæ, which must be adapted for calculation by the engine.

Now, admitting that such an engine can be constructed, it may be
inquired: what will be its utility? To recapitulate; it will afford the
following advantages:—First, rigid accuracy. We know that
numerical calculations are generally the stumbling-block to the
solution of problems, since errors easily creep into them, and it is
by no means always easy to detect these errors. Now the engine,
by the very nature of its mode of acting, which requires no human
intervention during the course of its operations, presents every
species of security under the head of correctness: besides, it
carries with it its own check; for at the end of every operation it
prints off, not only the results, but likewise the numerical data of
the question; so that it is easy to verify whether the question has
been correctly proposed. Secondly, economy of time: to convince
ourselves of this, we need only recollect that the multiplication of
two numbers, consisting each of twenty figures, requires at the
very utmost three minutes. Likewise, when a long series of
identical computations is to be performed, such as those required
for the formation of numerical tables, the machine can be brought
into play so as to give several results at the same time, which will
greatly abridge the whole amount of the processes. Thirdly,
economy of intelligence: a simple arithmetical computation
requires to be performed by a person possessing some capacity;
and when we pass to more complicated calculations, and wish to
use algebraical formulæ in particular cases, knowledge must be
possessed which presupposes preliminary mathematical studies of
some extent. Now the engine, from its capability of performing by
itself all these purely material operations, spares intellectual
labour, which may be more profitably employed. Thus the engine
may be considered as a real manufactory of figures, which will
lend its aid to those many useful sciences and arts that depend on
numbers. Again, who can foresee the consequences of such an
invention? In truth, how many precious observations remain
practically barren for the progress of the sciences, because there
are not powers sufficient for computing the results! And what
discouragement does the perspective of a long and arid
computation cast into the mind of a man of genius, who demands
time exclusively for meditation, and who beholds it snatched from
him by the material routine of operations! Yet it is by the
laborious route of analysis that he must reach truth; but he cannot
pursue this unless guided by numbers; for without numbers it is
not given us to raise the veil which envelopes the mysteries of
nature. Thus the idea of constructing an apparatus capable of
aiding human weakness in such researches, is a conception which,
being realized, would mark a glorious epoch in the history of the
sciences. The plans have been arranged for all the various parts,
and for all the wheel-work, which compose this immense

13 See Note G in section "Notes by the Translator"

apparatus, and their action studied; but these have not yet been
fully combined together in the drawings 14 and mechanical
notation15. The confidence which the genius of Mr. Babbage must
inspire, affords legitimate ground for hope that this enterprise will
be crowned with success; and while we render homage to the
intelligence which directs it, let us breathe aspirations for the
accomplishment of such an undertaking.

NOTES BY THE TRANSLATOR

Note A

The particular function whose integral the Difference Engine was
constructed to tabulate, is

The purpose which that engine has been specially intended and
adapted to fulfil, is the computation of nautical and astronomical
tables. The integral of

being uz = a+bx+cx2+dx3+ex4+fx5+gx6,

the constants a, b, c, &c. are represented on the seven columns of
discs, of which the engine consists. It can therefore tabulate
accurately and to an unlimited extent, all series whose general
term is comprised in the above formula; and it can also tabulate
approximatively between intervals of greater or less extent, all
other series which are capable of tabulation by the Method of
Differences.

The Analytical Engine, on the contrary, is not merely adapted for
tabulating the results of one particular function and of no other,
but for developing and tabulating any function whatever. In fact
the engine may be described as being the material expression of
any indefinite function of any degree of generality and
complexity, such as for instance,

F(x, y, z, log x, sin y, x p, &c.),

which is, it will be observed, a function of all other possible
functions of any number of quantities.

In this, which we may call the neutral or zero state of the engine,
it is ready to receive at any moment, by means of cards
constituting a portion of its mechanism (and applied on the
principle of those used in the Jacquard-loom), the impress of
whatever special function we may desire to develope or to
tabulate. These cards contain within themselves (in a manner
explained in the Memoir itself) the law of development of the
particular function that may be under consideration, and they
compel the mechanism to act accordingly in a certain
corresponding order. One of the simplest cases would be for
example, to suppose that

14 This sentence has been slightly altered in the translation in order to
express more exactly the present state of the engine. —NOTE BY
TRANSLATOR.
15 The notation here alluded to is a most interesting and important subject,
and would have well deserved a separate and detailed Note upon it
amongst those appended to the Memoir. It has, however, been impossible,
within the space allotted, even to touch upon so wide a field. —NOTE BY
TRANSLATOR.

A. A. Lovelace 161

Ada User Journal Volume 36, Number 3, September 2015

F(x, y, z, &c. &c.)

is the particular function

which the Difference Engine tabulates for values of n only up to
7. In this case the cards would order the mechanism to go through
that succession of operations which would tabulate

uz = a + bx + cx2 + ··· + mxn−1

where n might be any number whatever.

These cards, however, have nothing to do with the regulation of
the particular numerical data. They merely determine the
operations16 to be effected, which operations may of course be
performed on an infinite variety of particular numerical values,
and do not bring out any definite numerical results unless the
numerical data of the problem have been impressed on the
requisite portions of the train of mechanism. In the above
example, the first essential step towards an arithmetical result
would be the substitution of specific numbers for n, and for the
other primitive quantities which enter into the function.

Again, let us suppose that for F we put two complete equations of
the fourth degree between x and y. We must then express on the
cards the law of elimination for such equations. The engine would
follow out those laws, and would ultimately give the equation of
one variable which results from such elimination. Various modes
of elimination might be selected; and of course the cards must be
made out accordingly. The following is one mode that might be
adopted. The engine is able to multiply together any two functions
of the form

a + bx + cx2 + ··· + pxn.

This granted, the two equations may be arranged according to the
powers of y, and the coefficients of the powers of y may be
arranged according to powers of x. The elimination of y will result
from the successive multiplications and subtractions of several
such functions. In this, and in all other instances, as was explained
above, the particular numerical data and the numerical results are
determined by means and by portions of the mechanism which act
quite independently of those that regulate the operations.

In studying the action of the Analytical Engine, we find that the
peculiar and independent nature of the considerations which in all
mathematical analysis belong to operations, as distinguished from
the objects operated upon and from the results of the operations
performed upon those objects, is very strikingly defined and
separated.

It is well to draw attention to this point, not only because its full
appreciation is essential to the attainment of any very just and
adequate general comprehension of the powers and mode of
action of the Analytical Engine, but also because it is one which is

16 We do not mean to imply that the only use made of the Jacquard cards is
that of regulating the algebraical operations; but we mean to explain that
those cards and portions of mechanism which regulate these operations
are wholly independent of those which are used for other purposes. M.
Menabrea explains that there are three classes of cards used in the engine
for three distinct sets of objects, viz. Cards of the Operations, Cards of the
Variables, and certain Cards of Numbers.

perhaps too little kept in view in the study of mathematical
science in general. It is, however, impossible to confound it with
other considerations, either when we trace the manner in which
that engine attains its results, or when we prepare the data for its
attainment of those results. It were much to be desired, that when
mathematical processes pass through the human brain instead of
through the medium of inanimate mechanism, it were equally a
necessity of things that the reasonings connected with operations
should hold the same just place as a clear and well-defined branch
of the subject of analysis, a fundamental but yet independent
ingredient in the science, which they must do in studying the
engine. The confusion, the difficulties, the contradictions which,
in consequence of a want of accurate distinctions in this
particular, have up to even a recent period encumbered
mathematics in all those branches involving the consideration of
negative and impossible quantities, will at once occur to the
reader who is at all versed in this science, and would alone suffice
to justify dwelling somewhat on the point, in connexion with any
subject so peculiarly fitted to give forcible illustration of it as the
Analytical Engine. It may be desirable to explain, that by the word
operation, we mean any process which alters the mutual relation
of two or more things, be this relation of what kind it may. This is
the most general definition, and would include all subjects in the
universe. In abstract mathematics, of course operations alter those
particular relations which are involved in the considerations of
number and space, and the results of operations are those peculiar
results which correspond to the nature of the subjects of operation.
But the science of operations, as derived from mathematics more
especially, is a science of itself, and has its own abstract truth and
value; just as logic has its own peculiar truth and value,
independently of the subjects to which we may apply its
reasonings and processes. Those who are accustomed to some of
the more modern views of the above subject, will know that a few
fundamental relations being true, certain other combinations of
relations must of necessity follow; combinations unlimited in
variety and extent if the deductions from the primary relations be
carried on far enough. They will also be aware that one main
reason why the separate nature of the science of operations has
been little felt, and in general little dwelt on, is the shifting
meaning of many of the symbols used in mathematical notation.
First, the symbols of operation are frequently also the symbols of
the results of operations. We may say that these symbols are apt to
have both a retrospective and a prospective signification. They
may signify either relations that are the consequences of a series
of processes already performed, or relations that are yet to be
effected through certain processes. Secondly, figures, the symbols
of numerical magnitude, are frequently also the symbols of
operations, as when they are the indices of powers. Wherever
terms have a shifting meaning, independent sets of considerations
are liable to become complicated together, and reasonings and
results are frequently falsified. Now in the Analytical Engine, the
operations which come under the first of the above heads are
ordered and combined by means of a notation and of a train of
mechanism which belong exclusively to themselves; and with
respect to the second head, whenever numbers meaning
operations and not quantities (such as the indices of powers) are
inscribed on any column or set of columns, those columns
immediately act in a wholly separate and independent manner,
becoming connected with the operating mechanism exclusively,
and re-acting upon this. They never come into combination with

162 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

numbers upon any other columns meaning quantities; though, of
course, if there are numbers meaning operations upon n columns,
these may combine amongst each other, and will often be required
to do so, just as numbers meaning quantities combine with each
other in any variety. It might have been arranged that all numbers
meaning operations should have appeared on some separate
portion of the engine from that which presents numerical
quantities; but the present mode is in some cases more simple, and
offers in reality quite as much distinctness when understood.

The operating mechanism can even be thrown into action
independently of any object to operate upon (although of course
no result could then be developed). Again, it might act upon other
things besides number, were objects found whose mutual
fundamental relations could be expressed by those of the abstract
science of operations, and which should be also susceptible of
adaptations to the action of the operating notation and mechanism
of the engine. Supposing, for instance, that the fundamental
relations of pitched sounds in the science of harmony and of
musical composition were susceptible of such expression and
adaptations, the engine might compose elaborate and scientific
pieces of music of any degree of complexity or extent.

The Analytical Engine is an embodying of the science of
operations, constructed with peculiar reference to abstract number
as the subject of those operations. The Difference Engine is the
embodying of one particular and very limited set of operations,
which (see the notation used in Note B) may be expressed thus (+,
+, +, +, +, +), or thus, 6(+). Six repetitions of the one operation, +,
is, in fact, the whole sum and object of that engine. It has seven
columns, and a number on any column can add itself to a number
on the next column to its right-hand. So that, beginning with the
column furthest to the left, six additions can be effected, and the
result appears on the seventh column, which is the last on the
right-hand. The operating mechanism of this engine acts in as
separate and independent a manner as that of the Analytical
Engine; but being susceptible of only one unvarying and restricted
combination, it has little force or interest in illustration of the
distinct nature of the science of operations. The importance of
regarding the Analytical Engine under this point of view will, we
think, become more and more obvious as the reader proceeds with
M. Menabrea's clear and masterly article. The calculus of
operations is likewise in itself a topic of so much interest, and has
of late years been so much more written on and thought on than
formerly, that any bearing which that engine, from its mode of
constitution, may possess upon the illustration of this branch of
mathematical science should not be overlooked. Whether the
inventor of this engine had any such views in his mind while
working out the invention, or whether he may subsequently ever
have regarded it under this phase, we do not know; but it is one
that forcibly occurred to ourselves on becoming acquainted with
the means through which analytical combinations are actually
attained by the mechanism. We cannot forbear suggesting one
practical result which it appears to us must be greatly facilitated
by the independent manner in which the engine orders and
combines its operations: we allude to the attainment of those
combinations into which imaginary quantities enter. This is a
branch of its processes into which we have not had the
opportunity of inquiring, and our conjecture therefore as to the
principle on which we conceive the accomplishment of such
results may have been made to depend, is very probably not in

accordance with the fact, and less subservient for the purpose than
some other principles, or at least requiring the cooperation of
others. It seems to us obvious, however, that where operations are
so independent in their mode of acting, it must be easy, by means
of a few simple provisions, and additions in arranging the
mechanism, to bring out a double set of results, viz.—1st, the
numerical magnitudes which are the results of operations
performed on numerical data. (These results are the primary
object of the engine.) 2ndly, the symbolical results to be attached
to those numerical results, which symbolical results are not less
the necessary and logical consequences of operations performed
upon symbolical data, than are numerical results when the data
are numerical17.

If we compare together the powers and the principles of
construction of the Difference and of the Analytical Engines, we
shall perceive that the capabilities of the latter are immeasurably
more extensive than those of the former, and that they in fact hold
to each other the same relationship as that of analysis to
arithmetic. The Difference Engine can effect but one particular
series of operations, viz. that required for tabulating the integral of
the special function

and as it can only do this for values of n up to 718, it cannot be
considered as being the most general expression even of one
particular function, much less as being the expression of any and
all possible functions of all degrees of generality. The Difference
Engine can in reality (as has been already partly explained) do
nothing but add; and any other processes, not excepting those of
simple subtraction, multiplication and division, can be performed
by it only just to that extent in which it is possible, by judicious
mathematical arrangement and artifices, to reduce them to a series
of additions. The method of differences is, in fact, a method of
additions; and as it includes within its means a larger number of
results attainable by addition simply, than any other mathematical
principle, it was very appropriately selected as the basis on which
to construct an Adding Machine, so as to give to the powers of
such a machine the widest possible range. The Analytical Engine,
on the contrary, can either add, subtract, multiply or divide with
equal facility; and performs each of these four operations in a
direct manner, without the aid of any of the other three. This one

17 In fact, such an extension as we allude to would merely constitute a
further and more perfected development of any system introduced for
making the proper combinations of the signs plus and minus. How ably M.
Menabrea has touched on this restricted case is pointed out in Note B.

18 The machine might have been constructed so as to tabulate for a higher
value of n than seven. Since, however, every unit added to the value of n
increases the extent of the mechanism requisite, there would on this
account be a limit beyond which it could not be practically carried. Seven
is sufficiently high for the calculation of all ordinary tables.

The fact that, in the Analytical Engine, the same extent of mechanism
suffices for the solution of nuz= 0, hether n=7, n=100,000, or n=any
number whatever, at once suggests how entirely distinct must be the
nature of the principles through whose application matter has been enabled
to become the working agent of abstract mental operations in each of these
engines respectively, and it affords an equally obvious presumption, that
in the case of the Analytical Engine, not only are those principles in
themselves of a higher and more comprehensive description, but also such
as must vastly extend the practical value of the engine whose basis they
constitute.

A. A. Lovelace 163

Ada User Journal Volume 36, Number 3, September 2015

fact implies everything; and it is scarcely necessary to point out,
for instance, that while the Difference Engine can merely
tabulate, and is incapable of developing, the Analytical Engine
can either tabulate or develope.

The former engine is in its nature strictly arithmetical, and the
results it can arrive at lie within a very clearly defined and
restricted range, while there is no finite line of demarcation which
limits the powers of the Analytical Engine. These powers are co-
extensive with our knowledge of the laws of analysis itself, and
need be bounded only by our acquaintance with the latter. Indeed
we may consider the engine as the material and mechanical
representative of analysis, and that our actual working powers in
this department of human study will be enabled more effectually
than heretofore to keep pace with our theoretical knowledge of its
principles and laws, through the complete control which the
engine gives us over the executive manipulation of algebraical and
numerical symbols.

Those who view mathematical science, not merely as a vast body
of abstract and immutable truths, whose intrinsic beauty,
symmetry and logical completeness, when regarded in their
connexion together as a whole, entitle them to a prominent place
in the interest of all profound and logical minds, but as possessing
a yet deeper interest for the human race, when it is remembered
that this science constitutes the language through which alone we
can adequately express the great facts of the natural world, and
those unceasing changes of mutual relationship which, visibly or
invisibly, consciously or unconsciously to our immediate physical
perceptions, are interminably going on in the agencies of the
creation we live amidst: those who thus think on mathematical
truth as the instrument through which the weak mind of man can
most effectually read his Creator's works, will regard with
especial interest all that can tend to facilitate the translation of its
principles into explicit practical forms.

The distinctive characteristic of the Analytical Engine, and that
which has rendered it possible to endow mechanism with such
extensive faculties as bid fair to make this engine the executive
right-hand of abstract algebra, is the introduction into it of the
principle which Jacquard devised for regulating, by means of
punched cards, the most complicated patterns in the fabrication of
brocaded stuffs. It is in this that the distinction between the two
engines lies. Nothing of the sort exists in the Difference Engine.
We may say most aptly, that the Analytical Engine weaves
algebraical patterns just as the Jacquard-loom weaves flowers
and leaves. Here, it seems to us, resides much more of originality
than the Difference Engine can be fairly entitled to claim. We do
not wish to deny to this latter all such claims. We believe that it is
the only proposal or attempt ever made to construct a calculating
machine founded on the principle of successive orders of
differences, and capable of printing off its own results; and that
this engine surpasses its predecessors, both in the extent of the
calculations which it can perform, in the facility, certainty and
accuracy with which it can effect them, and in the absence of all
necessity for the intervention of human intelligence during the
performance of its calculations. Its nature is, however, limited to
the strictly arithmetical, and it is far from being the first or only
scheme for constructing arithmetical calculating machines with
more or less of success.

The bounds of arithmetic were however outstepped the moment
the idea of applying the cards had occurred; and the Analytical
Engine does not occupy common ground with mere “calculating
machines.” It holds a position wholly its own; and the
considerations it suggests are most interesting in their nature. In
enabling mechanism to combine together general symbols in
successions of unlimited variety and extent, a uniting link is
established between the operations of matter and the abstract
mental processes of the most abstract branch of mathematical
science. A new, a vast, and a powerful language is developed for
the future use of analysis, in which to wield its truths so that these
may become of more speedy and accurate practical application for
the purposes of mankind than the means hitherto in our possession
have rendered possible. Thus not only the mental and the material,
but the theoretical and the practical in the mathematical world, are
brought into more intimate and effective connexion with each
other. We are not aware of its being on record that anything
partaking in the nature of what is so well designated the
Analytical Engine has been hitherto proposed, or even thought of,
as a practical possibility, any more than the idea of a thinking or
of a reasoning machine.

We will touch on another point which constitutes an important
distinction in the modes of operating of the Difference and
Analytical Engines. In order to enable the former to do its
business, it is necessary to put into its columns the series of
numbers constituting the first terms of the several orders of
differences for whatever is the particular table under
consideration. The machine then works upon these as its data. But
these data must themselves have been already computed through a
series of calculations by a human head. Therefore that engine can
only produce results depending on data which have been arrived
at by the explicit and actual working out of processes that are in
their nature different from any that come within the sphere of its
own powers. In other words, an analysing process must have been
gone through by a human mind in order to obtain the data upon
which the engine then synthetically builds its results. The
Difference Engine is in its character exclusively synthetical, while
the Analytical Engine is equally capable of analysis or of
synthesis.

It is true that the Difference Engine can calculate to a much
greater extent with these few preliminary data, than the data
themselves required for their own determination. The table of
squares, for instance, can be calculated to any extent whatever,
when the numbers one and two are furnished; and a very few
differences computed at any part of a table of logarithms would
enable the engine to calculate many hundreds or even thousands
of logarithms. Still the circumstance of its requiring, as a previous
condition, that any function whatever shall have been numerically
worked out, makes it very inferior in its nature and advantages to
an engine which, like the Analytical Engine, requires merely that
we should know the succession and distribution of the operations
to be performed; without there being any occasion19, in order to
obtain data on which it can work, for our ever having gone
through either the same particular operations which it is itself to
effect, or any others. Numerical data must of course be given it,

19 This subject is further noticed in Note F.

164 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

but they are mere arbitrary ones; not data that could only be
arrived at through a systematic and necessary series of previous
numerical calculations, which is quite a different thing.

To this it may be replied, that an analysing process must equally
have been performed in order to furnish the Analytical Engine
with the necessary operative data; and that herein may also lie a
possible source of error. Granted that the actual mechanism is
unerring in its processes, the cards may give it wrong orders. This
is unquestionably the case; but there is much less chance of error,
and likewise far less expenditure of time and labour, where
operations only, and the distribution of these operations, have to
be made out, than where explicit numerical results are to be
attained. In the case of the Analytical Engine we have
undoubtedly to lay out a certain capital of analytical labour in one
particular line; but this is in order that the engine may bring us in
a much larger return in another line. It should be remembered also
that the cards, when once made out for any formula, have all the
generality of algebra, and include an infinite number of particular
cases.

We have dwelt considerably on the distinctive peculiarities of
each of these engines, because we think it essential to place their
respective attributes in strong relief before the apprehension of the
public; and to define with clearness and accuracy the wholly
different nature of the principles on which each is based, so as to
make it self-evident to the reader (the mathematical reader at
least) in what manner and degree the powers of the Analytical
Engine transcend those of an engine, which, like the Difference
Engine, can only work out such results as may be derived from
one restricted and particular series of processes, such as those
included in . We think this of importance, because we
know that there exists considerable vagueness and inaccuracy in
the mind of persons in general on the subject. There is a misty
notion amongst most of those who have attended at all to it, that
two “calculating machines” have been successively invented by
the same person within the last few years; while others again have
never heard but of the one original “calculating machine,” and are
not aware of there being any extension upon this. For either of
these two classes of persons the above considerations are
appropriate. While the latter require a knowledge of the fact that
there are two such inventions, the former are not less in want of
accurate and well-defined information on the subject. No very
clear or correct ideas prevail as to the characteristics of each
engine, or their respective advantages or disadvantages; and in
meeting with those incidental allusions, of a more or less direct
kind, which occur in so many publications of the day, to these
machines, it must frequently be matter of doubt which
“calculating machine” is referred to, or whether both are included
in the general allusion.

We are desirous likewise of removing two misapprehensions
which we know obtain, to some extent, respecting these engines.
In the first place it is very generally supposed that the Difference
Engine, after it had been completed up to a certain point,
suggested the idea of the Analytical Engine; and that the second is
in fact the improved offspring of the first, and grew out of the
existence of its predecessor, through some natural or else
accidental combination of ideas suggested by this one. Such a
supposition is in this instance contrary to the facts; although it
seems to be almost an obvious inference, wherever two

inventions, similar in their nature and objects, succeed each other
closely in order of time, and strikingly in order of value; more
especially when the same individual is the author of both.
Nevertheless the ideas which led to the Analytical Engine
occurred in a manner wholly independent of any that were
connected with the Difference Engine. These ideas are indeed in
their own intrinsic nature independent of the latter engine, and
might equally have occurred had it never existed nor been even
thought of at all.

The second of the misapprehensions above alluded to relates to
the well-known suspension, during some years past, of all
progress in the construction of the Difference Engine. Respecting
the circumstances which have interfered with the actual
completion of either invention, we offer no opinion; and in fact
are not possessed of the data for doing so, had we the inclination.
But we know that some persons suppose these obstacles (be they
what they may) to have arisen in consequence of the subsequent
invention of the Analytical Engine while the former was in
progress. We have ourselves heard it even lamented that an idea
should ever have occurred at all, which had turned out to be
merely the means of arresting what was already in a course of
successful execution, without substituting the superior invention
in its stead. This notion we can contradict in the most unqualified
manner. The progress of the Difference Engine had long been
suspended, before there were even the least crude glimmerings of
any invention superior to it. Such glimmerings, therefore, and
their subsequent development, were in no way the original cause
of that suspension; although, where difficulties of some kind or
other evidently already existed, it was not perhaps calculated to
remove or lessen them that an invention should have been
meanwhile thought of, which, while including all that the first was
capable of, possesses powers so extended as to eclipse it
altogether.

We leave it for the decision of each individual (after he has
possessed himself of competent information as to the
characteristics of each engine) to determine how far it ought to be
matter of regret that such an accession has been made to the
powers of human science, even if it has (which we greatly doubt)
increased to a certain limited extent some already existing
difficulties that had arisen in the way of completing a valuable but
lesser work. We leave it for each to satisfy himself as to the
wisdom of desiring the obliteration (were that now possible) of all
records of the more perfect invention, in order that the
comparatively limited one might be finished. The Difference
Engine would doubtless fulfil all those practical objects which it
was originally destined for. It would certainly calculate all the
tables that are more directly necessary for the physical purposes of
life, such as nautical and other computations. Those who incline
to very strictly utilitarian views may perhaps feel that the peculiar
powers of the Analytical Engine bear upon questions of abstract
and speculative science, rather than upon those involving every-
day and ordinary human interests. These persons being likely to
possess but little sympathy, or possibly acquaintance, with any
branches of science which they do not find to be useful (according
to their definition of that word), may conceive that the
undertaking of that engine, now that the other one is already in
progress, would be a barren and unproductive laying out of yet
more money and labour; in fact, a work of supererogation. Even
in the utilitarian aspect, however, we do not doubt that very

A. A. Lovelace 165

Ada User Journal Volume 36, Number 3, September 2015

valuable practical results would be developed by the extended
faculties of the Analytical Engine; some of which results we think
we could now hint at, had we the space; and others, which it may
not yet be possible to foresee, but which would be brought forth
by the daily increasing requirements of science, and by a more
intimate practical acquaintance with the powers of the engine,
were it in actual existence.

On general grounds, both of an a priori description as well as
those founded on the scientific history and experience of mankind,
we see strong presumptions that such would be the case.
Nevertheless all will probably concur in feeling that the
completion of the Difference Engine would be far preferable to
the non-completion of any calculating engine at all. With
whomsoever or wheresoever may rest the present causes of
difficulty that apparently exist towards either the completion of
the old engine, or the commencement of the new one, we trust
they will not ultimately result in this generation's being acquainted
with these inventions through the medium of pen, ink and paper
merely; and still more do we hope, that for the honour of our
country's reputation in the future pages of history, these causes
will not lead to the completion of the undertaking by some other
nation or government. This could not but be matter of just regret;
and equally so, whether the obstacles may have originated in
private interests and feelings, in considerations of a more public
description, or in causes combining the nature of both such
solutions.

We refer the reader to the ‘Edinburgh Review’ of July 1834, for a
very able account of the Difference Engine. The writer of the
article we allude to has selected as his prominent matter for
exposition, a wholly different view of the subject from that which
M. Menabrea has chosen. The former chiefly treats it under its
mechanical aspect, entering but slightly into the mathematical
principles of which that engine is the representative, but giving, in
considerable length, many details of the mechanism and
contrivances by means of which it tabulates the various orders of
differences. M. Menabrea, on the contrary, exclusively developes
the analytical view; taking it for granted that mechanism is able to
perform certain processes, but without attempting to explain how;
and devoting his whole attention to explanations and illustrations
of the manner in which analytical laws can be so arranged and
combined as to bring every branch of that vast subject within the
grasp of the assumed powers of mechanism. It is obvious that, in
the invention of a calculating engine, these two branches of the
subject are equally essential fields of investigation, and that on
their mutual adjustment, one to the other, must depend all success.
They must be made to meet each other, so that the weak points in
the powers of either department may be compensated by the
strong points in those of the other. They are indissolubly
connected, though so different in their intrinsic nature, that
perhaps the same mind might not be likely to prove equally
profound or successful in both. We know those who doubt
whether the powers of mechanism will in practice prove adequate
in all respects to the demands made upon them in the working of
such complicated trains of machinery as those of the above
engines, and who apprehend that unforeseen practical difficulties
and disturbances will arise in the way of accuracy and of facility
of operation. The Difference Engine, however, appears to us to be
in a great measure an answer to these doubts. It is complete as far
as it goes, and it does work with all the anticipated success. The

Analytical Engine, far from being more complicated, will in many
respects be of simpler construction; and it is a remarkable
circumstance attending it, that with very simplified means it is so
much more powerful.

The article in the ‘Edinburgh Review’ was written some time
previous to the occurrence of any ideas such as afterwards led to
the invention of the Analytical Engine; and in the nature of the
Difference Engine there is much less that would invite a writer to
take exclusively, or even prominently, the mathematical view of
it, than in that of the Analytical Engine; although mechanism has
undoubtedly gone much further to meet mathematics, in the case
of this engine, than of the former one. Some publication
embracing the mechanical view of the Analytical Engine is a
desideratum which we trust will be supplied before long.

Those who may have the patience to study a moderate quantity of
rather dry details will find ample compensation, after perusing the
article of 1834, in the clearness with which a succinct view will
have been attained of the various practical steps through which
mechanism can accomplish certain processes; and they will also
find themselves still further capable of appreciating M.
Menabrea's more comprehensive and generalized memoir. The
very difference in the style and object of these two articles makes
them peculiarly valuable to each other; at least for the purposes of
those who really desire something more than a merely superficial
and popular comprehension of the subject of calculating engines.

A. A. L.

Note B

That portion of the Analytical Engine here alluded to is called the
storehouse. It contains an indefinite number of the columns of
discs described by M. Menabrea. The reader may picture to
himself a pile of rather large draughtsmen heaped perpendicularly
one above another to a considerable height, each counter having
the digits from 0 to 9 inscribed on its edge at equal intervals; and
if he then conceives that the counters do not actually lie one upon
another so as to be in contact, but are fixed at small intervals of
vertical distance on a common axis which passes perpendicularly
through their centres, and around which each disc can revolve
horizontally so that any required digit amongst those inscribed on
its margin can be brought into view, he will have a good idea of
one of these columns. The lowest of the discs on any column
belongs to the units, the next above to the tens, the next above this
to the hundreds, and so on. Thus, if we wished to inscribe 1345 on
a column of the engine, it would stand thus:

1
3
4
5

In the Difference Engine there are seven of these columns placed
side by side in a row, and the working mechanism extends behind
them: the general form of the whole mass of machinery is that of a
quadrangular prism (more or less approaching to the cube); the
results always appearing on that perpendicular face of the engine
which contains the columns of discs, opposite to which face a
spectator may place himself. In the Analytical Engine there would
be many more of these columns, probably at least two hundred.
The precise form and arrangement which the whole mass of its
mechanism will assume is not yet finally determined.

166 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

We may conveniently represent the columns of discs on paper in a
diagram like the following:

The V's are for the purpose of convenient reference to any
column, either in writing or speaking, and are consequently
numbered. The reason why the letter V is chosen for the purpose
in preference to any other letter, is because these columns are
designated (as the reader will find in proceeding with the Memoir)
the Variables, and sometimes the Variable columns, or the
columns of Variables. The origin of this appellation is, that the
values on the columns are destined to change, that is to vary, in
every conceivable manner. But it is necessary to guard against the
natural misapprehension that the columns are only intended to
receive the values of the variables in an analytical formula, and
not of the constants. The columns are called Variables on a
ground wholly unconnected with the analytical distinction
between constants and variables. In order to prevent the
possibility of confusion, we have, both in the translation and in
the notes, written Variable with a capital letter when we use the
word to signify a column of the engine, and variable with a small
letter when we mean the variable of a formula. Similarly,
Variable-cards signify any cards that belong to a column of the
engine.

To return to the explanation of the diagram: each circle at the top
is intended to contain the algebraic sign + or −, either of which
can be substituted 20 for the other, according as the number
represented on the column below is positive or negative. In a
similar manner any other purely symbolical results of algebraical
processes might be made to appear in these circles. In Note A. the
practicability of developing symbolical with no less ease than
numerical results has been touched on. The zeros beneath the
symbolic circles represent each of them a disc, supposed to have
the digit 0 presented in front. Only four tiers of zeros have been
figured in the diagram, but these may be considered as
representing thirty or forty, or any number of tiers of discs that
may be required. Since each disc can present any digit, and each
circle any sign, the discs of every column may be so adjusted21 as
to express any positive or negative number whatever within the
limits of the machine; which limits depend on the perpendicular

20 A fuller account of the manner in which the signs are regulated is
given in M. Menabrea's Memoir. He himself expresses doubts (in a note
of his own) as to his having been likely to hit on the precise methods
really adopted; his explanation being merely a conjectural one. That it
does accord precisely with the fact is a remarkable circumstance, and
affords a convincing proof how completely M. Menabrea has been imbued
with the true spirit of the invention. Indeed the whole of the above Memoir
is a striking production, when we consider that M. Menabrea had had but
very slight means for obtaining any adequate ideas respecting the
Analytical Engine. It requires however a considerable acquaintance with
the abstruse and complicated nature of such a subject, in order fully to
appreciate the penetration of the writer who could take so just and
comprehensive a view of it upon such limited opportunity.

21 This adjustment is done by hand merely.

extent of the mechanism, that is, on the number of discs to a
column.

Each of the squares below the zeros is intended for the inscription
of any general symbol or combination of symbols we please; it
being understood that the number represented on the column
immediately above is the numerical value of that symbol, or
combination of symbols. Let us, for instance, represent the three
quantities a, n, x, and let us further suppose that a = 5, n = 7, x =
98. We should have22

We may now combine these symbols in a variety of ways, so as to
form any required function or functions of them, and we may then
inscribe each such function below brackets, every bracket uniting
together those quantities (and those only) which enter into the
function inscribed below it. We must also, when we have decided
on the particular function whose numerical value we desire to
calculate, assign another column to the right-hand for receiving
the results, and must inscribe the function in the square below this
column. In the above instance we might have any one of the
following functions:

Let us select the first. It would stand as follows, previous to
calculation:

The data being given, we must now put into the engine the cards
proper for directing the operations in the case of the particular
function chosen. These operations would in this instance be,

First, six multiplications in order to get xn (=987 for the above
particular data).

Secondly, one multiplication in order then to get a·xn (=5·987).

In all, seven multiplications to complete the whole process. We
may thus represent them:

(×, ×, ×, ×, ×, ×, ×), or 7 (×).

The multiplications would, however, at successive stages in the
solution of the problem, operate on pairs of numbers, derived
from different columns. In other words, the same operation would

22 It is convenient to omit the circles whenever the signs + or − can be
actually represented.

A. A. Lovelace 167

Ada User Journal Volume 36, Number 3, September 2015

be performed on different subjects of operation. And here again is
an illustration of the remarks made in the preceding Note23 on the
independent manner in which the engine directs its operations. In
determining the value of axn, the operations are homogeneous, but
are distributed amongst different subjects of operation, at
successive stages of the computation. It is by means of certain
punched cards, belonging to the Variables themselves, that the
action of the operations is so distributed as to suit each particular
function. The Operation-cards merely determine the succession of
operations in a general manner. They in fact throw all that portion
of the mechanism included in the mill into a series of different
states, which we may call the adding state, or the multiplying
state, &c. respectively. In each of these states the mechanism is
ready to act in the way peculiar to that state, on any pair of
numbers which may be permitted to come within its sphere of
action. Only one of these operating states of the mill can exist at a
time; and the nature of the mechanism is also such that only one
pair of numbers can be received and acted on at a time. Now, in
order to secure that the mill shall receive a constant supply of the
proper pairs of numbers in succession, and that it shall also rightly
locate the result of an operation performed upon any pair, each
Variable has cards of its own belonging to it. It has, first, a class
of cards whose business it is to allow the number on the Variable
to pass into the mill, there to be operated upon. These cards may
be called the Supplying-cards. They furnish the mill with its
proper food. Each Variable has, secondly, another class of cards,
whose office it is to allow the Variable to receive a number from
the mill. These cards may be called the Receiving-cards. They
regulate the location of results, whether temporary or ultimate
results. The Variable-cards in general (including both the
preceding classes) might, it appears to us, be even more
appropriately designated the Distributive-cards, since it is through
their means that the action of the operations, and the results of this
action, are rightly distributed.

There are two varieties of the Supplying Variable-cards,
respectively adapted for fulfilling two distinct subsidiary
purposes: but as these modifications do not bear upon the present
subject, we shall notice them in another place.

In the above case of axn, the Operation-cards merely order seven
multiplications, that is, they order the mill to be in the multiplying
state seven successive times (without any reference to the
particular columns whose numbers are to be acted upon). The
proper Distributive Variable-cards step in at each successive
multiplication, and cause the distributions requisite for the
particular case.

The engine might be made to calculate all these in succession.
Having completed axn, the function xan might be written under the
brackets instead of axn, and a new calculation commenced (the
appropriate Operation and Variable-cards for the new function of
course coming into play). The results would then appear on V5.

23 See Note A.

So on for any number of different functions of the quantities a, n,
x. Each result might either permanently remain on its column
during the succeeding calculations, so that when all the functions
had been computed, their values would simultaneously exist on
V4, V5, V6, &c.; or each result might (after being printed off, or
used in any specified manner) be effaced, to make way for its
successor. The square under V4 ought, for the latter arrangement,
to have the functions axn, xan, anx, &c. successively inscribed in it.

Let us now suppose that we have two expressions whose values
have been computed by the engine independently of each other
(each having its own group of columns for data and results). Let
them be axn, and bpy. They would then stand as follows on the
columns:

We may now desire to combine together these two results, in any
manner we please; in which case it would only be necessary to
have an additional card or cards, which should order the requisite
operations to be performed with the numbers on the two result-
columns V4 and V8, and the result of these further operations to
appear on a new column, V9. Say that we wish to divide axn by
bpy. The numerical value of this division would then appear on

the column V9, beneath which we have inscribed . The whole
series of operations from the beginning would be as follows (n
being = 7):

{7(×), 2(×), ÷}, or {9(×), ÷}.

This example is introduced merely to show that we may, if we
please, retain separately and permanently any intermediate results
(like axn, bpy) which occur in the course of processes having an
ulterior and more complicated result as their chief and final object

(like).

Any group of columns may be considered as representing a
general function, until a special one has been implicitly impressed
upon them through the introduction into the engine of the
Operation and Variable-cards made out for a particular function.
Thus, in the preceding example, V1, V2, V3, V5, V6, V7

represent the general function (a, n, b, p, x, y) until the function

has been determined on, and implicitly expressed by the
placing of the right cards in the engine. The actual working of the
mechanism, as regulated by these cards, then explicitly developes
the value of the function. The inscription of a function under the
brackets, and in the square under the result-column, in no way
influences the processes or the results, and is merely a
memorandum for the observer, to remind him of what is going on.
It is the Operation and the Variable-cards only which in reality
determine the function. Indeed it should be distinctly kept in
mind, that the inscriptions within any of the squares are quite
independent of the mechanism or workings of the engine, and are
nothing but arbitrary memorandums placed there at pleasure to
assist the spectator.

168 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

The further we analyse the manner in which such an engine
performs its processes and attains its results, the more we perceive
how distinctly it places in a true and just light the mutual relations
and connexion of the various steps of mathematical analysis; how
clearly it separates those things which are in reality distinct and
independent, and unites those which are mutually dependent.

A. A. L.

Note C

Those who may desire to study the principles of the Jacquard-
loom in the most effectual manner, viz. that of practical
observation, have only to step into the Adelaide Gallery or the
Polytechnic Institution. In each of these valuable repositories of
scientific illustration, a weaver is constantly working at a
Jacquard-loom, and is ready to give any information that may be
desired as to the construction and modes of acting of his
apparatus. The volume on the manufacture of silk, in Lardner's
Cyclopædia, contains a chapter on the Jacquard-loom, which may
also be consulted with advantage.

The mode of application of the cards, as hitherto used in the art of
weaving, was not found, however, to be sufficiently powerful for
all the simplifications which it was desirable to attain in such
varied and complicated processes as those required in order to
fulfil the purposes of an Analytical Engine. A method was devised
of what was technically designated backing the cards in certain
groups according to certain laws. The object of this extension is to
secure the possibility of bringing any particular card or set of
cards into use any number of times successively in the solution of
one problem. Whether this power shall be taken advantage of or
not, in each particular instance, will depend on the nature of the
operations which the problem under consideration may require.
The process is alluded to by M. Menabrea, and it is a very
important simplification. It has been proposed to use it for the
reciprocal benefit of that art, which, while it has itself no apparent

connexion with the domains of abstract science, has yet proved so
valuable to the latter, in suggesting the principles which, in their
new and singular field of application, seem likely to place
algebraical combinations not less completely within the province
of mechanism, than are all those varied intricacies of which
intersecting threads are susceptible. By the introduction of the
system of backing into the Jacquard-loom itself, patterns which
should possess symmetry, and follow regular laws of any extent,
might be woven by means of comparatively few cards.

Those who understand the mechanism of this loom will perceive
that the above improvement is easily effected in practice, by
causing the prism over which the train of pattern-cards is
suspended to revolve backwards instead of forwards, at pleasure,
under the requisite circumstances; until, by so doing, any
particular card, or set of cards, that has done duty once, and
passed on in the ordinary regular succession, is brought back to
the position it occupied just before it was used the preceding time.
The prism then resumes its forward rotation, and thus brings the
card or set of cards in question into play a second time. This
process may obviously be repeated any number of times.

A. A. L.

Note D

We have represented the solution of these two equations in Figure
1, with every detail, in a diagram similar to those used in Note B;
but additional explanations are requisite, partly in order to make
this more complicated case perfectly clear, and partly for the
comprehension of certain indications and notations not used in the
preceding diagrams. Those who may wish to understand Note G
completely, are recommended to pay particular attention to the
contents of the present Note, or they will not otherwise
comprehend the similar notation and indications when applied to a
much more complicated case.

Figure 1

A. A. Lovelace 169

Ada User Journal Volume 36, Number 3, September 2015

In all calculations, the columns of Variables used may be divided
into three classes:

 1st. Those on which the data are inscribed.

 2ndly. Those intended to receive the final results.

 3rdly. Those intended to receive such intermediate and
temporary combinations of the primitive data as are not to be
permanently retained, but are merely needed for working
with, in order to attain the ultimate results. Combinations of
this kind might properly be called secondary data. They are
in fact so many successive stages towards the final result.
The columns which receive them are rightly named Working-
Variables, for their office is in its nature purely subsidiary to
other purposes. They develope an intermediate and transient
class of results, which unite the original data with the final
results.

The Result-Variables sometimes partake of the nature of
Working-Variables. It frequently happens that a Variable destined
to receive a final result is the recipient of one or more
intermediate values successively, in the course of the processes.
Similarly, the Variables for data often become Working-
Variables, or Result-Variables, or even both in succession. It so
happens, however, that in the case of the present equations the
three sets of offices remain throughout perfectly separate and
independent.

It will be observed, that in the squares below the Working-
Variables nothing is inscribed. Any one of these Variables is in
many cases destined to pass through various values successively
during the performance of a calculation (although in these
particular equations no instance of this occurs) . Consequently no
one fixed symbol, or combination of symbols, should be
considered as properly belonging to a merely Working-Variable;
and as a general rule their squares are left blank. Of course in this,
as in all other cases where we mention a general rule, it is
understood that many particular exceptions may be expedient.

In order that all the indications contained in the diagram may be
completely understood, we shall now explain two or three points,
not hitherto touched on. When the value on any Variable is called
into use, one of two consequences may be made to result. Either
the value may return to the Variable after it has been used, in
which case it is ready for a second use if needed; or the Variable
may be made zero. (We are of course not considering a third case,
of not unfrequent occurrence, in which the same Variable is
destined to receive the result of the very operation which it has
just supplied with a number.) Now the ordinary rule is, that the
value returns to the Variable; unless it has been foreseen that no
use for that value can recur, in which case zero is substituted. At
the end of a calculation, therefore, every column ought as a
general rule to be zero, excepting those for results. Thus it will be
seen by the diagram, that when m, the value on V0, is used for the
second time by Operation 5, V0 becomes 0, since m is not again
needed; that similarly, when (mn' − m'n), on V12, is used for the
third time by Operation 11, V12 becomes zero, since (mn' − m'n)
is not again needed. In order to provide for the one or the other of
the courses above indicated, there are two varieties of the
Supplying Variable-cards. One of these varieties has provisions
which cause the number given off from any Variable to return to
that Variable after doing its duty in the mill. The other variety has

provisions which cause zero to be substituted on the Variable, for
the number given off. These two varieties are distinguished, when
needful, by the respective appellations of the Retaining Supply-
cards and the Zero Supply-cards. We see that the primary office
(see Note B.) of both these varieties of cards is the same; they
only differ in their secondary office.

Every Variable thus has belonging to it one class of Receiving
Variable-cards and two classes of Supplying Variable-cards. It is
plain however that only the one or the other of these two latter
classes can be used by any one Variable for one operation; never
both simultaneously, their respective functions being mutually
incompatible.

It should be understood that the Variable-cards are not placed in
immediate contiguity with the columns. Each card is connected by
means of wires with the column it is intended to act upon.

Our diagram ought in reality to be placed side by side with M.
Menabrea's corresponding table, so as to be compared with it, line
for line belonging to each operation. But it was unfortunately
inconvenient to print them in this desirable form. The diagram is,
in the main, merely another manner of indicating the various
relations denoted in M. Menabrea's table. Each mode has some
advantages and some disadvantages. Combined, they form a
complete and accurate method of registering every step and
sequence in all calculations performed by the engine.

No notice has yet been taken of the upper indices which are added
to the left of each V in the diagram; an addition which we have
also taken the liberty of making to the V's in M. Menabrea's tables
3 and 4, since it does not alter anything therein represented by
him, but merely adds something to the previous indications of
those tables. The lower indices are obviously indices of locality
only, and are wholly independent of the operations performed or
of the results obtained, their value continuing unchanged during
the performance of calculations. The upper indices, however, are
of a different nature. Their office is to indicate any alteration in
the value which a Variable represents; and they are of course
liable to changes during the processes of a calculation. Whenever
a Variable has only zeros upon it, it is called 0V; the moment a
value appears on it (whether that value be placed there arbitrarily,
or appears in the natural course of a calculation), it becomes 1V.
If this value gives place to another value, the Variable becomes
2V, and so forth. Whenever a value again gives place to zero, the
Variable again becomes 0V, even if it have been nV the moment
before. If a value then again be substituted, the Variable becomes
n+1V (as it would have done if it had not passed through the
intermediate 0V); &c. &c. Just before any calculation is
commenced, and after the data have been given, and everything
adjusted and prepared for setting the mechanism in action, the
upper indices of the Variables for data are all unity, and those for
the Working and Result-variables are all zero. In this state the
diagram represents them24.

24 We recommend the reader to trace the successive substitutions
backwards from (1) to (4), in M. Menabrea's Table. This he will easily do
by means of the upper and lower indices, and it is interesting to observe
how each V successively ramifies (so to speak) into two other V's in some
other column of the Table, until at length the V's of the original data are
arrived at.

170 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

There are several advantages in having a set of indices of this
nature; but these advantages are perhaps hardly of a kind to be
immediately perceived, unless by a mind somewhat accustomed
to trace the successive steps by means of which the engine
accomplishes its purposes. We have only space to mention in a
general way, that the whole notation of the tables is made more
consistent by these indices, for they are able to mark a difference
in certain cases, where there would otherwise be an apparent
identity confusing in its tendency. In such a case as Vn=Vp+Vn
there is more clearness and more consistency with the usual laws
of algebraical notation, in being able to write m+1Vn=qVp+mVn.
It is also obvious that the indices furnish a powerful means of
tracing back the derivation of any result; and of registering
various circumstances concerning that series of successive
substitutions, of which every result is in fact merely the final
consequence; circumstances that may in certain cases involve
relations which it is important to observe, either for purely
analytical reasons, or for practically adapting the workings of the
engine to their occurrence. The series of substitutions which lead
to the equations of the diagram are as follow:

There are three successive substitutions for each of these
equations. The formulæ (2.), (3.) and (4.) are implicitly contained
in (1.), which latter we may consider as being in fact the
condensed expression of any of the former. It will be observed
that every succeeding substitution must contain twice as many V's
as its predecessor. So that if a problem require n substitutions, the
successive series of numbers for the V's in the whole of them will
be 2, 4, 8, 16…2n.

The substitutions in the preceding equations happen to be of little
value towards illustrating the power and uses of the upper indices,
for, owing to the nature of these particular equations, the indices
are all unity throughout. We wish we had space to enter more
fully into the relations which these indices would in many cases
enable us to trace.

M. Menabrea incloses the three centre columns of his table under
the general title Variable-cards. The V's however in reality all
represent the actual Variable-columns of the engine, and not the
cards that belong to them. Still the title is a very just one, since it
is through the special action of certain Variable-cards (when
combined with the more generalized agency of the Operation-
cards) that every one of the particular relations he has indicated
under that title is brought about.

Suppose we wish to ascertain how often any one quantity, or
combination of quantities, is brought into use during a calculation.
We easily ascertain this, from the inspection of any vertical
column or columns of the diagram in which that quantity may
appear. Thus, in the present case, we see that all the data, and all
the intermediate results likewise, are used twice, excepting (mn' −
m'n), which is used three times.

The order in which it is possible to perform the operations for the
present example, enables us to effect all the eleven operations of
which it consists with only three Operation cards; because the

problem is of such a nature that it admits of each class of
operations being performed in a group together; all the
multiplications one after another, all the subtractions one after
another, &c. The operations are {6(×), 3(-), 2(÷)}.

Since the very definition of an operation implies that there must
be two numbers to act upon, there are of course two Supplying
Variable-cards necessarily brought into action for every operation,
in order to furnish the two proper numbers. (See Note B.) Also,
since every operation must produce a result, which must be placed
somewhere, each operation entails the action of a Receiving
Variable-card, to indicate the proper locality for the result.
Therefore, at least three times as many Variable-cards as there are
operations (not Operation-cards, for these, as we have just seen,
are by no means always as numerous as the operations) are
brought into use in every calculation. Indeed, under certain
contingencies, a still larger proportion is requisite; such, for
example, would probably be the case when the same result has to
appear on more than one Variable simultaneously (which is not
unfrequently a provision necessary for subsequent purposes in a
calculation), and in some other cases which we shall not here
specify. We see therefore that a great disproportion exists between
the amount of Variable and of Operation-cards requisite for the
working of even the simplest calculation.

All calculations do not admit, like this one, of the operations of the
same nature being performed in groups together. Probably very
few do so without exceptions occurring in one or other stage of
the progress; and some would not admit it at all. The order in
which the operations shall be performed in every particular case is
a very interesting and curious question, on which our space does
not permit us fully to enter. In almost every computation a great
variety of arrangements for the succession of the processes is
possible, and various considerations must influence the selection
amongst them for the purposes of a Calculating Engine. One
essential object is to choose that arrangement which shall tend to
reduce to a minimum the time necessary for completing the
calculation.

It must be evident how multifarious and how mutually
complicated are the considerations which the working of such an
engine involve. There are frequently several distinct sets of effects
going on simultaneously; all in a manner independent of each
other, and yet to a greater or less degree exercising a mutual
influence. To adjust each to every other, and indeed even to
perceive and trace them out with perfect correctness and success,
entails difficulties whose nature partakes to a certain extent of
those involved in every question where conditions are very
numerous and inter-complicated; such as for instance the
estimation of the mutual relations amongst statistical phænomena,
and of those involved in many other classes of facts.

A. A. L.

Note E

This example has evidently been chosen on account of its brevity
and simplicity, with a view merely to explain the manner in which
the engine would proceed in the case of an analytical calculation
containing variables, rather than to illustrate the extent of its
powers to solve cases of a difficult and complex nature. The
equations in first example in the Memoir are in fact a more
complicated problem than the present one.

A. A. Lovelace 171

Ada User Journal Volume 36, Number 3, September 2015

We have not subjoined any diagram of its development for this
new example, as we did for the former one, because this is
unnecessary after the full application already made of those
diagrams to the illustration of M. Menabrea's excellent tables.

It may be remarked that a slight discrepancy exists between the
formulæ

(a + bx1)
(A + B cos1 x)

given in the Memoir as the data for calculation, and the results of
the calculation as developed in the last division of the table which
accompanies it. To agree perfectly with this latter, the data should
have been given as

(ax0 + bx1)
(A cos0 x + B cos1 x)

The following is a more complicated example of the manner in
which the engine would compute a trigonometrical function
containing variables. To multiply

 A+A1cos + A2cos 2 + A3cos 3 + ···

by B + B1cos .

Let the resulting products be represented under the general form

C0 + C1cos + C2cos 2 + C3cos 3 + ··· (1.)

This trigonometrical series is not only in itself very appropriate
for illustrating the processes of the engine, but is likewise of much
practical interest from its frequent use in astronomical
computations. Before proceeding further with it, we shall point
out that there are three very distinct classes of ways in which it
may be desired to deduce numerical values from any analytical
formula.

First. We may wish to find the collective numerical value of the
whole formula, without any reference to the quantities of which
that formula is a function, or to the particular mode of their
combination and distribution, of which the formula is the result
and representative. Values of this kind are of a strictly
arithmetical nature in the most limited sense of the term, and
retain no trace whatever of the processes through which they have
been deduced. In fact, any one such numerical value may have
been attained from an infinite variety of data, or of problems. The
values for x and y in the two equations (see Note D.) come under
this class of numerical results.

Secondly. We may propose to compute the collective numerical
value of each term of a formula, or of a series, and to keep these
results separate. The engine must in such a case appropriate as
many columns to results as there are terms to compute.

Thirdly. It may be desired to compute the numerical value of
various subdivisions of each term, and to keep all these results
separate. It may be required, for instance, to compute each
coefficient separately from its variable, in which particular case
the engine must appropriate two result-columns to every term that
contains both a variable and coefficient.

There are many ways in which it may be desired in special cases
to distribute and keep separate the numerical values of different
parts of an algebraical formula; and the power of effecting such
distributions to any extent is essential to the algebraical character

of the Analytical Engine. Many persons who are not conversant
with mathematical studies, imagine that because the business of
the engine is to give its results in numerical notation, the nature of
its processes must consequently be arithmetical and numerical,
rather than algebraical and analytical. This is an error. The engine
can arrange and combine its numerical quantities exactly as if they
were letters or any other general symbols; and in fact it might
bring out its results in algebraical notation, were provisions made
accordingly. It might develope three sets of results
simultaneously, viz. symbolic results (as already alluded to in
Notes A. and B.), numerical results (its chief and primary object);
and algebraical results in literal notation. This latter however has
not been deemed a necessary or desirable addition to its powers,
partly because the necessary arrangements for effecting it would
increase the complexity and extent of the mechanism to a degree
that would not be commensurate with the advantages, where the
main object of the invention is to translate into numerical
language general formulæ of analysis already known to us, or
whose laws of formation are known to us. But it would be a
mistake to suppose that because its results are given in the
notation of a more restricted science, its processes are therefore
restricted to those of that science. The object of the engine is in
fact to give the utmost practical efficiency to the resources of
numerical interpretations of the higher science of analysis, while
it uses the processes and combinations of this latter.

To return to the trigonometrical series. We shall only consider the
first four terms of the factor (A + A1 cos + &c.), since this will
be sufficient to show the method. We propose to obtain separately
the numerical value of each coefficient C0, C1, &c. of (1.). The
direct multiplication of the two factors gives

(2)

a result which would stand thus on the engine:

The variable belonging to each coefficient is written below it, as
we have done in the diagram, by way of memorandum. The only
further reduction which is at first apparently possible in the
preceding result, would be the addition of V21 to V31 (in which
case B1A should be effaced from V31). The whole operations
from the beginning would then be

First Series of
Operations

Second Series of
Operations

Third Series, which
contains

only one (final) operation

1V10×
1V0 = 1V20

1V11×
1V0 = 1V31

1V21×
1V31 = 2V21, and

1V10×
1V1 = 1V21

1V11×
1V1 = 1V32 V31 becomes = 0.

1V10×
1V2 = 1V22

1V11×
1V2 = 1V33

1V10×
1V3 = 1V23

1V11×
1V3 = 1V34

172 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

We do not enter into the same detail of every step of the processes
as in the examples of Notes D. and G., thinking it unnecessary and
tedious to do so. The reader will remember the meaning and use
of the upper and lower indices, &c., as before explained.

To proceed: we know that

(3.)

Consequently, a slight examination of the second line of (2.) will
show that by making the proper substitutions, (2.) will become

These coefficients should respectively appear on

 V20 V21 V22 V23 V24

We shall perceive, if we inspect the particular arrangement of the
results in (2.) on the Result-columns as represented in the
diagram, that, in order to effect this transformation, each
successive coefficient upon V32, V33, &c. (beginning with V32),
must through means of proper cards be divided by two25; and that
one of the halves thus obtained must be added to the coefficient
on the Variable which precedes it by ten columns, and the other
half to the coefficient on the Variable which precedes it by twelve
columns; V32, V33, &c. themselves becoming zeros during the
process.

This series of operations may be thus expressed26:

Fourth Series

The calculation of the coefficients C0, C1, &c. of (1.) would now
be completed, and they would stand ranged in order on V20, V21,
&c. It will be remarked, that from the moment the fourth series of
operations is ordered, the Variables V31, V32, &c. cease to be
Result-Variables, and become mere Working-Variables.

The substitution made by the engine of the processes in the
second side of (3.) for those in the first side is an excellent
illustration of the manner in which we may arbitrarily order it to
substitute any function, number, or process, at pleasure, for any
other function, number or process, on the occurrence of a
specified contingency.

25 This division would be managed by ordering the number 2 to appear on
any separate new column which should be conveniently situated for the
purpose, and then directing this column (which is in the strictest sense a
Working-Variable) to divide itself successively with V32, V33, &c.

26 It should be observed, that were the rest of the factor (A + A cos +
&c.) taken into account, instead of four terms only, C3 would have the
additional term ½B1A4; and C4 the two additional terms, BA4, ½B1A5. This
would indeed have been the case had even six terms been multiplied.

We will now suppose that we desire to go a step further, and to
obtain the numerical value of each complete term of the product
(1.); that is, of each coefficient and variable united, which for the
(n + 1)th term would be .

We must for this purpose place the variables themselves on
another set of columns, V41, V42, &c., and then order their
successive multiplication by V21, V22, &c., each for each. There
would thus be a final series of operations as follows:

Fifth and Final Series of Operations
2V20 × 0V40 = 1V40
3V21 × 0V41 = 1V41
3V22 × 0V42 = 1V42
2V23 × 0V43 = 1V43
1V24 × 0V44 = 1V44

(N.B. that V40 being intended to receive the coefficient on V20
which has no variable, will only have cos 0 (=1) inscribed on it,
preparatory to commencing the fifth series of operations.)

From the moment that the fifth and final series of operations is
ordered, the Variables V20, V21, &c. then in their turn cease to be
Result-Variables and become mere Working-Variables; V40, V41,
&c. being now the recipients of the ultimate results.

We should observe, that if the variables cos , cos 2 , cos 3 ,
&c. are furnished, they would be placed directly upon V41, V42,
&c., like any other data. If not, a separate computation might be
entered upon in a separate part of the engine, in order to calculate
them, and place them on V41, &c.

We have now explained how the engine might compute (1.) in the
most direct manner, supposing we knew nothing about the general
term of the resulting series. But the engine would in reality set to
work very differently, whenever (as in this case) we do know the
law for the general term.

The first two terms of (1.) are

(4.)

and the general term for all after these is

(5.)

which is the coefficient of the (n+1)th term. The engine would
calculate the first two terms by means of a separate set of suitable
Operation-cards, and would then need another set for the third
term; which last set of Operation-cards would calculate all the
succeeding terms ad infinitum, merely requiring certain new
Variable-cards for each term to direct the operations to act on the
proper columns. The following would be the successive sets of
operations for computing the coefficients of n+2 terms:

(×, ×, ÷, +), (×, ×, ×, ÷, +, +), n(×, +, ×, ÷, +).

Or we might represent them as follows, according to the
numerical order of the operations:

(1, 2…4), (5, 6…10), n(11, 12…15).

The brackets, it should be understood, point out the relation in
which the operations may be grouped, while the comma marks
succession. The symbol + might be used for this latter purpose,
but this would be liable to produce confusion, as + is also

A. A. Lovelace 173

Ada User Journal Volume 36, Number 3, September 2015

necessarily used to represent one class of the actual operations
which are the subject of that succession. In accordance with this
meaning attached to the comma, care must be taken when any one
group of operations recurs more than once, as is represented
above by n(11…l5), not to insert a comma after the number or
letter prefixed to that group. n, (11…15) would stand for an
operation n, followed by the group of operations (11…15);
instead of denoting the number of groups which are to follow each
other.

Wherever a general term exists, there will be a recurring group of
operations, as in the above example. Both for brevity and for
distinctness, a recurring group is called a cycle. A cycle of
operations, then, must be understood to signify any set of
operations which is repeated more than once. It is equally a cycle,
whether it be repeated twice only, or an indefinite number of
times; for it is the fact of a repetition occurring at all that
constitutes it such. In many cases of analysis there is a recurring
group of one or more cycles; that is, a cycle of a cycle, or a cycle
of cycles. For instance: suppose we wish to divide a series by a
series,

(1.)

it being required that the result shall be developed, like the
dividend and the divisor, in successive powers of x. A little
consideration of (1.), and of the steps through which algebraical
division is effected, will show that (if the denominator be
supposed to consist of p terms) the first partial quotient will be
completed by the following operations:—

(2.) {(÷), p(×, −)} or {(1), p(2, 3)},

that the second partial quotient will be completed by an exactly
similar set of operations, which acts on the remainder obtained by
the first set, instead of on the original dividend. The whole of the
processes therefore that have been gone through, by the time the
second partial quotient has been obtained, will be,—

(3.) 2{(÷), p(× , −)} or 2{(1), p(2, 3)},

which is a cycle that includes a cycle, or a cycle of the second
order. The operations for the complete division, supposing we
propose to obtain n terms of the series constituting the quotient,
will be,—

(4.) n{(÷), p(× , −)} or n{(1), p(2, 3)},

It is of course to be remembered that the process of algebraical
division in reality continues ad infinitum, except in the few
exceptional cases which admit of an exact quotient being
obtained. The number n in the formula (4.) is always that of the
number of terms we propose to ourselves to obtain; and the nth
partial quotient is the coefficient of the (n-1)th power of x.

There are some cases which entail cycles of cycles of cycles, to an
indefinite extent. Such cases are usually very complicated, and
they are of extreme interest when considered with reference to the
engine. The algebraical development in a series of the nth
function of any given function is of this nature. Let it be proposed
to obtain the nth function of

(5.) (a, b, c, …, x), x being the variable.

We should premise, that we suppose the reader to understand
what is meant by an nth function. We suppose him likewise to
comprehend distinctly the difference between developing an nth
function algebraically, and merely calculating an nth function
arithmetically. If he does not, the following will be by no means
very intelligible; but we have not space to give any preliminary
explanations. To proceed: the law, according to which the
successive functions of (5.) are to be developed, must of course
first be fixed on. This law may be of very various kinds. We may
propose to obtain our results in successive powers of x, in which
case the general form would be

C + C1x + C2x
2 + &c.;

or in successive powers of n itself, the index of the function we
are ultimately to obtain, in which case the general form would be

C + C1n + C2n
2 + &c.;

and x would only enter in the coefficients. Again, other functions
of x or of n instead of powers might be selected. It might be in
addition proposed, that the coefficients themselves should be
arranged according to given functions of a certain quantity.
Another mode would be to make equations arbitrarily amongst the
coefficients only, in which case the several functions, according to
either of which it might be possible to develope the nth function
of (5.), would have to be determined from the combined
consideration of these equations and of (5.) itself.

The algebraical nature of the engine (so strongly insisted on in a
previous part of this Note) would enable it to follow out any of
these various modes indifferently; just as we recently showed that
it can distribute and separate the numerical results of any one
prescribed series of processes, in a perfectly arbitrary manner.
Were it otherwise, the engine could merely compute the
arithmetical nth function, a result which, like any other purely
arithmetical results, would be simply a collective number, bearing
no traces of the data or the processes which had led to it.

Secondly, the law of development for the nth function being
selected, the next step would obviously be to develope (5.) itself,
according to this law. This result would be the first function, and
would be obtained by a determinate series of processes. These in
most cases would include amongst them one or more cycles of
operations.

The third step (which would consist of the various processes
necessary for effecting the actual substitution of the series
constituting the first function, for the variable itself) might
proceed in either of two ways. It might make the substitution
either wherever x occurs in the original (5.), or it might similarly
make it wherever x occurs in the first function itself which is the
equivalent of (5.). In some cases the former mode might be best,
and in others the latter.

Whichever is adopted, it must be understood that the result is to
appear arranged in a series following the law originally prescribed
for the development of the nth function. This result constitutes the
second function; with which we are to proceed exactly as we did
with the first function, in order to obtain the third function, and so
on, n-1 times, to obtain the nth function. We easily perceive that
since every successive function is arranged in a series following
the same law, there would (after the first function is obtained) be a

174 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

cycle of a cycle of a cycle, &c. of operations27, one, two, three, up
to n-1 times, in order to get the nth function. We say, after the
first function is obtained, because (for reasons on which we
cannot here enter) the first function might in many cases be
developed through a set of processes peculiar to itself, and not
recurring for the remaining functions.

We have given but a very slight sketch of the principal general
steps which would be requisite for obtaining an nth function of
such a formula as (5.). The question is so exceedingly
complicated, that perhaps few persons can be expected to follow,
to their own satisfaction, so brief and general a statement as we
are here restricted to on this subject. Still it is a very important
case as regards the engine, and suggests ideas peculiar to itself,
which we should regret to pass wholly without allusion. Nothing
could be more interesting than to follow out, in every detail, the
solution by the engine of such a case as the above; but the time,
space and labour this would necessitate, could only suit a very
extensive work.

To return to the subject of cycles of operations: some of the
notation of the integral calculus lends itself very aptly to express
them: (2.) might be thus written:—

(6.)

where p stands for the variable; (+ 1)p for the function of the
variable, that is, for p; and the limits are from 1 to p, or from 0
to p-1, each increment being equal to unity. Similarly, (4.) would
be,

(7.)

the limits of n being from 1 to n, or from 0 to n-1,

(8.) or

Perhaps it may be thought that this notation is merely a circuitous
way of expressing what was more simply and as effectually
expressed before; and, in the above example, there may be some
truth in this. But there is another description of cycles which can
only effectually be expressed, in a condensed form, by the
preceding notation. We shall call them varying cycles. They are of
frequent occurrence, and include successive cycles of operations
of the following nature:—

(9.)

where each cycle contains the same group of operations, but in
which the number of repetitions of the group varies according to a
fixed rate, with every cycle. (9.) can be well expressed as
follows:—

(10.) , the limits of p being from p-n to p.

27 A cycle that includes n other cycles, successively contained one within
another, is called a cycle of the n+1th order. A cycle may simply include
many other cycles, and yet only be of the second order. If a series follows
a certain law for a certain number of terms, and then another law for
another number of terms, there will be a cycle of operations for every new
law; but these cycles will not be contained one within another,—they
merely follow each other. Therefore their number may be infinite without
influencing the order of a cycle that includes a repetition of such a series.

Independent of the intrinsic advantages which we thus perceive to
result in certain cases from this use of the notation of the integral
calculus, there are likewise considerations which make it
interesting, from the connections and relations involved in this
new application. It has been observed in some of the former
Notes, that the processes used in analysis form a logical system of
much higher generality than the applications to number merely.
Thus, when we read over any algebraical formula, considering it
exclusively with reference to the processes of the engine, and
putting aside for the moment its abstract signification as to the
relations of quantity, the symbols +, ×, &c. in reality represent (as
their immediate and proximate effect, when the formula is applied
to the engine) that a certain prism which is a part of the
mechanism (see Note C.) turns a new face, and thus presents a
new card to act on the bundles of levers of the engine; the new
card being perforated with holes, which are arranged according to
the peculiarities of the operation of addition, or of multiplication,
&c. Again, the numbers in the preceding formula (8.), each of
them really represents one of these very pieces of card that are
hung over the prism.

Now in the use made in the formulæ (7.), (8.) and (10.), of the
notation of the integral calculus, we have glimpses of a similar
new application of the language of the higher mathematics. , in
reality, here indicates that when a certain number of cards have
acted in succession, the prism over which they revolve must
rotate backwards, so as to bring those cards into their former
position; and the limits 1 to n, 1 to p, &c., regulate how often this
backward rotation is to be repeated.

A. A. L.

Note F

There is in existence a beautiful woven portrait of Jacquard, in the
fabrication of which 24,000 cards were required.

The power of repeating the cards, alluded to by M. Menabrea, and
more fully explained in Note C., reduces to an immense extent the
number of cards required. It is obvious that this mechanical
improvement is especially applicable wherever cycles occur in the
mathematical operations, and that, in preparing data for
calculations by the engine, it is desirable to arrange the order and
combination of the processes with a view to obtain them as much
as possible symmetrically and in cycles, in order that the
mechanical advantages of the backing system may be applied to
the utmost. It is here interesting to observe the manner in which
the value of an analytical resource is met and enhanced by an
ingenious mechanical contrivance. We see in it an instance of one
of those mutual adjustments between the purely mathematical and
the mechanical departments, mentioned in Note A. as being a
main and essential condition of success in the invention of a
calculating engine. The nature of the resources afforded by such
adjustments would be of two principal kinds. In some cases, a
difficulty (perhaps in itself insurmountable) in the one department
would be overcome by facilities in the other; and sometimes (as in
the present case) a strong point in the one would be rendered still
stronger and more available by combination with a corresponding
strong point in the other.

As a mere example of the degree to which the combined systems
of cycles and of backing can diminish the number of cards
requisite, we shall choose a case which places it in strong

A. A. Lovelace 175

Ada User Journal Volume 36, Number 3, September 2015

evidence, and which has likewise the advantage of being a
perfectly different kind of problem from those that are mentioned
in any of the other Notes. Suppose it be required to eliminate nine
variables from ten simple equations of the form—

ax0 + bx1 + cx2 + dx3 + ··· = p (1.)

a1x0 + b1x1 + c1x2 + d1x3 + ··· = p' (2.)

&c. &c. &c. &c.

We should explain, before proceeding, that it is not our object to
consider this problem with reference to the actual arrangement of
the data on the Variables of the engine, but simply as an abstract
question of the nature and number of the operations required to
be performed during its complete solution.

The first step would be the elimination of the first unknown
quantity x0 between the first two equations. This would be
obtained by the form

(a1a-aa1)x0 + (a1b-ab1)x1 + (a1c-ac1)x2 +
+ (a1d-ad1)x3 + ·= a1p-ap1,

for which the operations 10 (×, ×, −) would be needed. The
second step would be the elimination of x0 between the second
and third equations, for which the operations would be precisely
the same. We should then have had altogether the following
operations:—

10(×, ×, −), 10(×, ×, −) = 20(×, ×, −)

Continuing in the same manner, the total number of operations for
the complete elimination of x0 between all the successive pairs of
equations would be

9 · 10(×, ×, −) = 90(×, ×, −)

We should then be left with nine simple equations of nine
variables from which to eliminate the next variable x1, for which
the total of the processes would be

8 · 9(×, ×, −) = 72(×, ×, −)

We should then be left with eight simple equations of eight
variables from which to eliminate x2, for which the processes
would be—

7 · 8(×, ×, −) = 56(×, ×, −)

and so on. The total operations for the elimination of all the
variables would thus be—

9·10 + 8·9 + 7·8 + 6·7 + 5·6 + 4·5 + 3·4 + 2·3 + 1·2 = 330.

So that three Operation-cards would perform the office of 330
such cards.

If we take n simple equations containing n−1 variables, n being a
number unlimited in magnitude, the case becomes still more
obvious, as the same three cards might then take the place of
thousands or millions of cards.

We shall now draw further attention to the fact, already noticed,
of its being by no means necessary that a formula proposed for
solution should ever have been actually worked out, as a condition
for enabling the engine to solve it. Provided we know the series of
operations to be gone through, that is sufficient. In the foregoing
instance this will be obvious enough on a slight consideration.
And it is a circumstance which deserves particular notice, since
herein may reside a latent value of such an engine almost

incalculable in its possible ultimate results. We already know that
there are functions whose numerical value it is of importance for
the purposes both of abstract and of practical science to ascertain,
but whose determination requires processes so lengthy and so
complicated, that, although it is possible to arrive at them through
great expenditure of time, labour and money, it is yet on these
accounts practically almost unattainable; and we can conceive
there being some results which it may be absolutely impossible in
practice to attain with any accuracy, and whose precise
determination it may prove highly important for some of the
future wants of science, in its manifold, complicated and rapidly-
developing fields of inquiry, to arrive at.

Without, however, stepping into the region of conjecture, we will
mention a particular problem which occurs to us at this moment as
being an apt illustration of the use to which such an engine may
be turned for determining that which human brains find it difficult
or impossible to work out unerringly. In the solution of the
famous problem of the Three Bodies, there are, out of about 295
coefficients of lunar perturbations given by M. Clausen (Astroe.
Nachrichten, No. 406) as the result of the calculations by Burg, of
two by Damoiseau, and of one by Burckhardt, fourteen
coefficients that differ in the nature of their algebraic sign; and out
of the remainder there are only 101 (or about one-third) that agree
precisely both in signs and in amount. These discordances, which
are generally small in individual magnitude, may arise either from
an erroneous determination of the abstract coefficients in the
development of the problem, or from discrepancies in the data
deduced from observation, or from both causes combined. The
former is the most ordinary source of error in astronomical
computations, and this the engine would entirely obviate.

We might even invent laws for series or formulæ in an arbitrary
manner, and set the engine to work upon them, and thus deduce
numerical results which we might not otherwise have thought of
obtaining; but this would hardly perhaps in any instance be
productive of any great practical utility, or calculated to rank
higher than as a philosophical amusement.

A. A. L.

Note G

It is desirable to guard against the possibility of exaggerated ideas
that might arise as to the powers of the Analytical Engine. In
considering any new subject, there is frequently a tendency, first,
to overrate what we find to be already interesting or remarkable;
and, secondly, by a sort of natural reaction, to undervalue the true
state of the case, when we do discover that our notions have
surpassed those that were really tenable.

The Analytical Engine has no pretensions whatever to originate
anything. It can do whatever we know how to order it to perform.
It can follow analysis; but it has no power of anticipating any
analytical relations or truths. Its province is to assist us in making
available what we are already acquainted with. This it is
calculated to effect primarily and chiefly of course, through its
executive faculties; but it is likely to exert an indirect and
reciprocal influence on science itself in another manner. For, in so
distributing and combining the truths and the formulæ of analysis,
that they may become most easily and rapidly amenable to the
mechanical combinations of the engine, the relations and the
nature of many subjects in that science are necessarily thrown into

176 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

new lights, and more profoundly investigated. This is a decidedly
indirect, and a somewhat speculative, consequence of such an
invention. It is however pretty evident, on general principles, that
in devising for mathematical truths a new form in which to record
and throw themselves out for actual use, views are likely to be
induced, which should again react on the more theoretical phase
of the subject. There are in all extensions of human power, or
additions to human knowledge, various collateral influences,
besides the main and primary object attained.

To return to the executive faculties of this engine: the question
must arise in every mind, are they really even able to follow
analysis in its whole extent? No reply, entirely satisfactory to all
minds, can be given to this query, excepting the actual existence
of the engine, and actual experience of its practical results. We
will however sum up for each reader's consideration the chief
elements with which the engine works:

1. It performs the four operations of simple arithmetic upon any
numbers whatever.

2. By means of certain artifices and arrangements (upon which
we cannot enter within the restricted space which such a
publication as the present may admit of), there is no limit
either to the magnitude of the numbers used, or to the
number of quantities (either variables or constants) that may
be employed.

3. It can combine these numbers and these quantities either
algebraically or arithmetically, in relations unlimited as to
variety, extent, or complexity.

4. It uses algebraic signs according to their proper laws, and
developes the logical consequences of these laws.

5. It can arbitrarily substitute any formula for any other;
effacing the first from the columns on which it is
represented, and making the second appear in its stead.

6. It can provide for singular values. Its power of doing this is
referred to in M. Menabrea's memoir, where he mentions the
passage of values through zero and infinity. The
practicability of causing it arbitrarily to change its processes
at any moment, on the occurrence of any specified
contingency (of which its substitution of

for , explained in Note
E, is in some degree an illustration), at once secures this
point.

The subject of integration and of differentiation demands some
notice. The engine can effect these processes in either of two
ways:

First. We may order it, by means of the Operation and of the
Variable-cards, to go through the various steps by which the
required limit can be worked out for whatever function is under
consideration.

Secondly. It may (if we know the form of the limit for the
function in question) effect the integration or differentiation by
direct28 substitution. We remarked in Note B., that any set of

28 The engine cannot of course compute limits for perfectly simple and
uncompounded functions, except in this manner. It is obvious that it has no
power of representing or of manipulating with any but finite increments or

columns on which numbers are inscribed, represents merely a
general function of the several quantities, until the special
function have been impressed by means of the Operation and
Variable-cards. Consequently, if instead of requiring the value of
the function, we require that of its integral, or of its differential
coefficient, we have merely to order whatever particular
combination of the ingredient quantities may constitute that
integral or that coefficient. In axn, for instance, instead of the
quantities

being ordered to appear on V3 in the combination axn, they would
be ordered to appear in that of

anxn-1

They would then stand thus:

Similarly, we might have , the integral of axn.

An interesting example for following out the processes of the
engine would be such a form as

or any other cases of integration by successive reductions, where
an integral which contains an operation repeated n times can be
made to depend upon another which contains the same n-1 or n-2
times, and so on until by continued reduction we arrive at a
certain ultimate form, whose value has then to be determined.

The methods in Arbogast's Calcul des Dérivations are peculiarly
fitted for the notation and the processes of the engine. Likewise
the whole of the Combinatorial Analysis, which consists first in a
purely numerical calculation of indices, and secondly in the
distribution and combination of the quantities according to laws
prescribed by these indices.

We will terminate these Notes by following up in detail the steps
through which the engine could compute the Numbers of
Bernoulli, this being (in the form in which we shall deduce it) a
rather complicated example of its powers. The simplest manner of
computing these numbers would be from the direct expansion of

decrements, and consequently that wherever the computation of limits (or
of any other functions) depends upon the direct introduction of quantities
which either increase or decrease indefinitely, we are absolutely beyond
the sphere of its powers. Its nature and arrangements are remarkably
adapted for taking into account all finite increments or decrements
(however small or large), and for developing the true and logical
modifications of form or value dependent upon differences of this nature.
The engine may indeed be considered as including the whole Calculus of
Finite Differences; many of whose theorems would be especially and
beautifully fitted for development by its processes, and would offer
peculiarly interesting considerations. We may mention, as an example the
calculation of the Numbers of Bernoulli by means of the Differences of
Zero.

A. A. Lovelace 177

Ada User Journal Volume 36, Number 3, September 2015

(1.)

which is in fact a particular case of the development of

mentioned in Note E. Or again, we might compute them from the
well-known form

(2.)

or from the form

(3.)

or from many others. As however our object is not simplicity or
facility of computation, but the illustration of the powers of the
engine, we prefer selecting the formula below, marked (8.) This is
derived in the following manner.

If in the equation

(4.)

(in which B1, B3…, &c. are the Numbers of Bernoulli), we expand
the denominator of the first side in powers of x, and then divide
both numerator and denominator by x, we shall derive

(5.)

If this latter multiplication be actually performed, we shall have a
series of the general form

(6.)

in which we see, first, that all the coefficients of the powers of x
are severally equal to zero; and secondly, that the general form for
D2n, the coefficient of the 2n+1th term (that is of x2n any even
power of x), is the following:

(7.)

Multiplying every term by (2·3…2n) we have

(8.)

which it may be convenient to write under the general form:

(9.)

A1, A3, &c. being those functions of n which respectively belong
to B1, B3, &c.

We might have derived a form nearly similar to (8.), from D2n-1
the coefficient of any odd power of x in (6.); but the general form
is a little different for the coefficients of the odd powers, and not
quite so convenient.

On examining (7.) and (8.), we perceive that, when these formulæ
are isolated from (6.), whence they are derived, and considered in
themselves separately and independently, n may be any whole
number whatever; although when (7.) occurs as one of the D's in
(6.), it is obvious that n is then not arbitrary, but is always a
certain function of the distance of that D from the beginning. If
that distance be =d, then

It is with the independent formula (8.) that we have to do.
Therefore it must be remembered that the conditions for the value
of n are now modified, and that n is a perfectly arbitrary whole
number. This circumstance, combined with the fact (which we
may easily perceive) that whatever n is, every term of (8.) after
the (n+1)th is =0, and that the (n+1)th term itself is always

, enables us to find the value (either numerical
or algebraical) of any nth Number of Bernoulli B2n-1, in terms of
all the preceding ones, if we but know the values of B1, B3…B2n-3.
We append to this Note a Diagram and Table, containing the
details of the computation for B7 (B1, B3, B5 being supposed
given).

On attentively considering (8.), we shall likewise perceive that we
may derive from it the numerical value of every Number of
Bernoulli in succession, from the very beginning, ad infinitum, by
the following series of computations:

 1st Series.—Let n=1, and calculate (8.) for this value of n.
The result is B1.

 2nd Series.—Let n=2. Calculate (8.) for this value of n,
substituting the value of B1 just obtained. The result is B3.

 3rd Series.—Let n=3. Calculate (8.) for this value of n,
substituting the values of B1, B3 before obtained. The result
is B5. And so on, to any extent.

The diagram29 represents the columns of the engine when just
prepared for computing B2n-1 (in the case of n=4); while the table
beneath them presents a complete simultaneous view of all the
successive changes which these columns then severally pass
through in order to perform the computation. (The reader is
referred to Note D. for explanations respecting the nature and
notation of such tables.)

Six numerical data are in this case necessary for making the
requisite combinations. These data are 1, 2, n(=4), B1, B3, B5.
Were n=5, the additional datum B7 would be needed. Were n=6,
the datum B9 would be needed; and so on. Thus the actual
number of data needed will always be n+2, for n=n; and out of
these n+2 data, of them are successive Numbers of
Bernoulli. The reason why the Bernoulli Numbers used as data are
nevertheless placed on Result-columns in the diagram, is because
they may properly be supposed to have been previously computed
in succession by the engine itself; under which circumstances
each B will appear as a result, previous to being used as a datum
for computing the succeeding B. Here then is an instance (of the
kind alluded to in Note D.) of the same Variables filling more

29 The diagram of the computation of the Numbers of Bernoulli is very
large, so it is shown in a separate page at the end of paper.

178 1842 Notes to the translat ion of the Sketch of The Analyt ical Engine

Volume 36, Number 3, September 2015 Ada User Journal

than one office in turn. It is true that if we consider our
computation of B7 as a perfectly isolated calculation, we may
conclude B1, B3, B5 to have been arbitrarily placed on the
columns; and it would then perhaps be more consistent to put
them on V4, V5, V6 as data and not results. But we are not taking
this view. On the contrary, we suppose the engine to be in the
course of computing the Numbers to an indefinite extent, from the
very beginning; and that we merely single out, by way of
example, one amongst the successive but distinct series of
computations it is thus performing. Where the B's are fractional, it
must be understood that they are computed and appear in the
notation of decimal fractions. Indeed this is a circumstance that
should be noticed with reference to all calculations. In any of the
examples already given in the translation and in the Notes, some
of the data, or of the temporary or permanent results, might be
fractional, quite as probably as whole numbers. But the
arrangements are so made, that the nature of the processes would
be the same as for whole numbers.

In the above table and diagram we are not considering the signs of
any of the B's, merely their numerical magnitude. The engine
would bring out the sign for each of them correctly of course, but
we cannot enter on every additional detail of this kind as we might
wish to do. The circles for the signs are therefore intentionally left
blank in the diagram.

Operation-cards 1, 2, 3, 4, 5, 6 prepare . Thus, Card 1
multiplies two into n, and the three Receiving Variable-cards
belonging respectively to V4, V5, V6, allow the result 2n to be
placed on each of these latter columns (this being a case in which
a triple receipt of the result is needed for subsequent purposes);
we see that the upper indices of the two Variables used, during
Operation 1, remain unaltered.

We shall not go through the details of every operation singly,
since the table and diagram sufficiently indicate them; we shall
merely notice some few peculiar cases.

By Operation 6, a positive quantity is turned into a negative
quantity, by simply subtracting the quantity from a column which
has only zero upon it. (The sign at the top of V8 would become −
during this process.)

Operation 7 will be unintelligible, unless it be remembered that if
we were calculating for n = 1 instead of n = 4, Operation 6 would
have completed the computation of B1 itself, in which case the
engine instead of continuing its processes, would have to put B1
on V21; and then either to stop altogether, or to begin Operations
1, 2…7 all over again for value of n(=2), in order to enter on the
computation of B3; (having however taken care, previous to this
recommencement, to make the number on V3 equal to two, by the
addition of unity to the former n=1 on that column). Now
Operation 7 must either bring out a result equal to zero (if n=1); or
a result greater than zero, as in the present case; and the engine
follows the one or the other of the two courses just explained,
contingently on the one or the other result of Operation 7. In order
fully to perceive the necessity of this experimental operation, it is
important to keep in mind what was pointed out, that we are not
treating a perfectly isolated and independent computation, but one
out of a series of antecedent and prospective computations.

Cards 8, 9, 10 produce . In Operation 9 we see
an example of an upper index which again becomes a value after
having passed from preceding values to zero. V11 has successively
been 0V11,

1V11,
2V11,

0V11,
3V11; and, from the nature of the office

which V11 performs in the calculation, its index will continue to
go through further changes of the same description, which, if
examined, will be found to be regular and periodic.

Card 12 has to perform the same office as Card 7 did in the
preceding section; since, if n had been =2, the 11th operation
would have completed the computation of B3.

Cards 13 to 20 make A3. Since A2n-1 always consists of 2n-1
factors, A3 has three factors; and it will be seen that Cards 13, 14,
15, 16 make the second of these factors, and then multiply it with
the first; and that 17, 18, 19, 20 make the third factor, and then
multiply this with the product of the two former factors.

Card 23 has the office of Cards 11 and 7 to perform, since if n
were =3, the 21st and 22nd operations would complete the
computation of B5. As our case is B7, the computation will
continue one more stage; and we must now direct attention to the
fact, that in order to compute A7 it is merely necessary precisely
to repeat the group of Operations 13 to 20; and then, in order to
complete the computation of B7, to repeat Operations 21, 22.

It will be perceived that every unit added to n in B2n-1, entails an
additional repetition of operations (13…23) for the computation
of B2n-1. Not only are all the operations precisely the same
however for every such repetition, but they require to be
respectively supplied with numbers from the very same pairs of
columns; with only the one exception of Operation 21, which will
of course need B5 (from V23) instead of B3 (from V22). This
identity in the columns which supply the requisite numbers must
not be confounded with identity in the values those columns have
upon them and give out to the mill. Most of those values undergo
alterations during a performance of the operations (13…23), and
consequently the columns present a new set of values for the next
performance of (13…23) to work on.

At the termination of the repetition of operations (13…23) in
computing B7, the alterations in the values on the Variables are,
that

V6 = 2n-4 instead of 2n-2.

V7 = 6 4.

V10 = 0 1.

V13 = A0+A1B1+A3B3+A5B5 instead of A0+A1B1+A3B3.

In this state the only remaining processes are, first, to transfer the
value which is on V13 to V24; and secondly, to reduce V6, V7, V13
to zero, and to add one30 to V3, in order that the engine may be
ready to commence computing B9. Operations 24 and 25
accomplish these purposes. It may be thought anomalous that

30 It is interesting to observe, that so complicated a case as this calculation
of the Bernoullian Numbers nevertheless presents a remarkable simplicity
in one respect; viz. that during the processes for the computation of
millions of these Numbers, no other arbitrary modification would be
requisite in the arrangements, excepting the above simple and uniform
provision for causing one of the data periodically to receive the finite
increment unity.

A. A. Lovelace 179

Ada User Journal Volume 36, Number 3, September 2015

Operation 25 is represented as leaving the upper index of V3
still=unity; but it must be remembered that these indices always
begin anew for a separate calculation, and that Operation 25
places upon V3 the first value for the new calculation.

It should be remarked, that when the group (13…23) is repeated,
changes occur in some of the upper indices during the course of
the repetition: for example, 3V6 would become 4V6 and 5V6.

We thus see that when n=1, nine Operation-cards are used; that
when n=2, fourteen Operation-cards are used; and that when n>2,
twenty-five Operation-cards are used; but that no more are
needed, however great n may be; and not only this, but that these
same twenty-five cards suffice for the successive computation of
all the Numbers from B1 to B2n-1 inclusive. With respect to the
number of Variable-cards, it will be remembered, from the
explanations in previous Notes, that an average of three such
cards to each operation (not however to each Operation-card) is
the estimate. According to this, the computation of B1 will require
twenty-seven Variable-cards; B3 forty-two such cards; B5 seventy-
five; and for every succeeding B after B5, there would be thirty-
three additional Variable-cards (since each repetition of the group
(13…23) adds eleven to the number of operations required for
computing the previous B). But we must now explain, that
whenever there is a cycle of operations, and if these merely
require to be supplied with numbers from the same pairs of
columns, and likewise each operation to place its result on the
same column for every repetition of the whole group, the process
then admits of a cycle of Variable-cards for effecting its purposes.
There is obviously much more symmetry and simplicity in the
arrangements, when cases do admit of repeating the Variable as
well as the Operation-cards. Our present example is of this nature.
The only exception to a perfect identity in all the processes and
columns used, for every repetition of Operations (13…23), is, that
Operation 21 always requires one of its factors from a new
column, and Operation 24 always puts its result on a new column.
But as these variations follow the same law at each repetition
(Operation 21 always requiring its factor from a column one in
advance of that which it used the previous time, and Operation 24
always putting its result on the column one in advance of that
which received the previous result), they are easily provided for in
arranging the recurring group (or cycle) of Variable-cards.

We may here remark, that the average estimate of three Variable-
cards coming into use to each operation, is not to be taken as an
absolutely and literally correct amount for all cases and
circumstances. Many special circumstances, either in the nature of
a problem, or in the arrangements of the engine under certain
contingencies, influence and modify this average to a greater or
less extent; but it is a very safe and correct general rule to go
upon. In the preceding case it will give us seventy-five Variable-
cards as the total number which will be necessary for computing
any B after B3. This is very nearly the precise amount really used,
but we cannot here enter into the minutiæ of the few particular
circumstances which occur in this example (as indeed at some one
stage or other of probably most computations) to modify slightly
this number.

It will be obvious that the very same seventy-five Variable-cards
may be repeated for the computation of every succeeding
Number, just on the same principle as admits of the repetition of
the thirty-three Variable-cards of Operations (13…23) in the

computation of any one Number. Thus there will be a cycle of a
cycle of Variable-cards.

If we now apply the notation for cycles, as explained in Note E.,
we may express the operations for computing the Numbers of
Bernoulli in the following manner:

Again,

represents the total operations for computing every number in
succession, from B1 to B2n-1 inclusive.

In this formula we see a varying cycle of the first order, and an
ordinary cycle of the second order. The latter cycle in this case
includes in it the varying cycle.

On inspecting the ten Working-Variables of the diagram, it will be
perceived, that although the value on any one of them (excepting
V4 and V5) goes through a series of changes, the office which each
performs is in this calculation fixed and invariable. Thus V6
always prepares the numerators of the factors of any A; V7 the
denominators. V8 always receives the (2n-3)th factor of A2n-1, and
V9 the (2n-1)th. V10 always decides which of two courses the
succeeding processes are to follow, by feeling for the value of n
through means of a subtraction; and so on; but we shall not
enumerate further. It is desirable in all calculations so to arrange
the processes, that the offices performed by the Variables may be
as uniform and fixed as possible.

Supposing that it was desired not only to tabulate B1, B3, &c., but
A0, A1, &c.; we have only then to appoint another series of
Variables, V41, V42, &c., for receiving these latter results as they
are successively produced upon V11. Or again, we may, instead of
this, or in addition to this second series of results, wish to tabulate
the value of each successive total term of the series (8.), viz. A0,
A1B1, A3B3, &c. We have then merely to multiply each B with
each corresponding A, as produced, and to place these successive
products on Result-columns appointed for the purpose.

The formula (8.) is interesting in another point of view. It is one
particular case of the general Integral of the following Equation of
Mixed Differences:

for certain special suppositions respecting z, x and n.

The general integral itself is of the form,

and it is worthy of remark, that the engine might (in a manner
more or less similar to the preceding) calculate the value of this
formula upon most other hypotheses for the functions in the
integral with as much, or (in many cases) with more ease than it
can formula (8.).

A. A. L.

180 1842 Notes to the t rans la t ion of the Sketch of The Analy t ica l Eng ine

Figure 1: Diagram of the computation of the Numbers of Bernoulli

Volume 36, Number 3, September 2015 Ada User Jour na l

182

Effective Worst-Case Execution Time Analysis of
DO178C Level A Software

Stephen Law, Mike Bennett, Stuart Hutchesson, Ivan Ellis
Rolls-Royce Controls & Data Services Ltd, Birmingham,
UK; email: {stephen.law|mike.bennett|stuart.hutchesson|ivan.ellis}@controlsdata.com
Guillem Bernat, Antoine Colin, Andrew Coombes
Rapita Systems Ltd, Atlas House, Osbaldwick Link Road, York; email: {bernat|colin|acoombes}@rapitasystems.com

Abstract

This paper presents the industrial experience of apply-
ing an approach to Worst-Case Execution Time (WCET)
Analysis that combines analysis and measurement to
support a newly developed embedded microprocessor. It
outlines an effective method that provides robust results
to support certification requirements and offers addi-
tional business advantages. The approach outlined in
this paper is shown to have been made possible through
the use of a highly-structured software architecture,
reuse of existing test cases, careful hardware design
and use of a Commercial-Off-The-Shelf (COTS) toolset:
RapiTime provided by Rapita Systems Ltd.

1 Introduction
Determining the WCET of a program is a key component for
demonstrating correct operation of software; specifically as
input to schedulability analysis. Correct timing performance
is a critical characteristic of engine control systems and prob-
lems with timing can be the most difficult and costly to find
and fix. A safe, but not overly pessimistic, WCET is funda-
mental to understanding the system performance; getting it
wrong may result in a misunderstanding of overall system
behaviour. DO178C/ED-12C [1] recognises that the guidance
provided in DO178B/ED-12B [2] no longer reflects the com-
plexities of modern hardware and software engineering. It
states that a combination of reviews, analysis and testing may
be needed to provide adequate verification of the WCET of a
piece of software.

Rolls Royce Controls and Data Services (CDS) develops
DO178B/C Level A compliant software for a variety of air-
craft engine control applications with critical timing per-
formance requirements. Key to this process is the use of
a time analysable processor developed by CDS. The VI-
SIUMCORETM is the newest iteration of the CDS DO-254
Level A obsolescence-protected microprocessor which is
designed specifically for operation in harsh-environments.
Rapita Systems Ltd. provides solutions for software veri-
fication and more specifically, Worst-Case Execution Time
(WCET) Analysis.

This paper discusses an approach to WCET analysis that has
been applied to the CDS VISIUMCORETM processor. The

process builds upon an existing low level component testing
setup which obtains full MC/DC (Modified Condition/Deci-
sion Coverage) coverage through the system under test by
following a compartmentalised test strategy. The WCET of
individual components is computed by RapiTime separately
for each component and the overall WCET of the full pro-
gram is computed analytically by RapiTime by "rolling-up"
the timings of the individual components. The paper argues
that the proposed technique meets certification requirements
and offers advantages over alternate approaches. Section 1.1
provides a short recap of the WCET problem. Section 1.2
provides an overview of typical techniques used in industry to
solve the WCET problem. Section 2 introduces the new CDS
approach, finally, section 3 describes the results of the effec-
tiveness of RapiTime and the comparison with the previous
static analysis approach.

1.1 The Worst Case Execution Time Problem

Practical WCET analysis techniques can be thought of at-
tempting to solve two fundamental problems (see [3] for a
detailed survey of WCET methods and techniques).

The first is finding the worst-case path through the program
structure, or graph. This is non-trivial unless the software
architecture and design are constrained. For example, this
could be through the bounding of loops, or prevention of
recursion. Even if this is the case, there is often a complex
mapping between the various levels of program representation
(ie. model-level, source-code level or object-code level). For
example, compilers can apply complex optimizations that
create loop constructs to represent straight-line code. This
means that even if the engineer understands the worst-case
path in a high-level representation, this may not translate well
into an understanding of the object-code that executes on a
real computing platform.

The second problem is determining the length of time a path
of this software takes to execute on a real piece of computing
hardware. This is also non-trivial in modern, complex hard-
ware due to the consequences of processor features such as
out of order execution, or caches (particularly with respect to
timing anomalies [4]).

There are three key methods of WCET analysis: static analy-
sis, pure measurement and hybrid methods.

Volume 36, Number 3, September 2015 Ada User Jour na l

S. Law, M. Bennet t , S. Hutchesson, I . E l l i s , G. Ber nat , A. Col in , A. Coombes 183

Static analysis takes the source code or object code of the
System Under Test (SUT), analyses the possible paths through
the code, and by modelling the target hardware; calculates
which path through the SUT will produce the WCET. The
analysis is wholly reliant on the underlying model of the
target hardware, but gains from being able to fully examine
the full set of paths through the SUT. One of the primary
drawbacks of static analysis techniques is the technique’s
reliance on accurate processor models, as developers look to
use ever more complex processors the complexity of these
models increases accordingly, a secondary drawback is the
lack of information in the code to determine accurate loop
bounds and context dependent information. It has even been
suggested that static analysis techniques has already ‘hit the
complexity wall of today’s processors’ [5].

A large proportion of industry has followed traditionally a
"pure" measurement approach where the SUT is measured
end-to-end (see High-watermark below). Measurements have
the advantage of capturing what is really happening at the
processor level without having to make any assumption about
its behaviour, however, the main drawback is that there is, in
general, no guarantee that the worst path, or state within the
worst-path has been exercised.

The hybrid approach (used by RapiTime) combines the bene-
fits of both approaches. This is based on using measurements
of smalls sections of code, but also using structural static path
analysis techniques to combine the measurements of these
small sections of code into an overall WCET. An additional
advantage is that as part of the measurement process a com-
parison of the differences between end-to-end measurements
and static analysis can be performed. This provides further ev-
idence and confidence on how well tests drive the worst-case
path. Furthermore these time measurements can be derived
from the actual target hardware, with no reliance on complex
timing models. However the technique suffers from the fact
that the software must be executed on the target hardware to
a sufficient level to provide accurate results.

1.2 Typical Industrial Solutions

Typical approaches used within the aerospace industry use
one or more of the following techniques:

• High-water marking An end-to-end measurement on
the target processor is recorded when it exceeds a pre-
viously recorded value, for a given piece of software.
The benefit of this method is that it is simple to imple-
ment, accurate and scales well to large software. It can
be implemented on any microprocessor and can capture
results during all levels of end-to-end testing. However,
the disadvantage is that it is not possible, in general, to
identify the worst-case test vector that would lead to
the worst-case execution path and therefore can lead to
optimistic estimates unless it is combined with robust
(typically manual) analysis to show that the worst-case
path has been executed, if indeed such analysis is possi-
ble.

• Code Structure Analysis This technique supports the
alternative approach of analysis through extracting the
longest path from the source or object-code representa-
tion of the program. Typically this is supported by tool-
ing (but in some instances, only a manual approach is
possible) and may rely on annotating the code to provide
more information (eg. maximum loop counts). Object-
code analysis potentially provides more accurate anal-
ysis, compared to source-code analysis as it is able to
cater for the complex optimisations that may be intro-
duced during the compilation process. However, it is
less portable and may be more difficult for engineers to
apply.

• Processor Modelling or Simulation To obtain low-
level timings of software, a model or simulation of the
processor can be built that abstracts the operation of the
processor sufficiently, to make analysis tractable, whilst
giving providing results that are neither optimistic (ie.
invalid) or too pessimistic (and therefore not useful). As
already discussed, developing and verifying a model
of a processor can be a complex and time-consuming
task. This was the basis of the technique used within
CDS prior to the introduction of the latest generation of
VISIUMCORETM processor.

• Incorporation of Safety Margin Because it is difficult
to show that both modelling and measurement are not
optimistic, an additional safety margin may be added to
the calculated worst-case, or built into the overall pro-
cessor loading, that ensures that the processor remains
lightly loaded. This has the twin-issues of wastefulness
and potential inadequacy.

1.3 Rapita Systems RapiTime

RapiTime 1 is a tool developed by Rapita Systems for per-
forming timing analysis (including analytical WCET and
High-watermark) based on the hybrid static/measurement ap-
proach. The tool automatically instruments Ada, C and C++
and automatically analyses the structure of the code. When
the instrumented code runs on the target the instrumentation
produces a timing trace that is then analysed off-line and
together with a high-level structural analysis, WCET and
other timing analysis reports are produced and presented via a
GUI. The RapiTime tool is highly configurable and supports
a whole range of WCET analysis strategies.

2 Effective Worst-Case Execution Time
Analysis

2.1 Overview
CDS are currently developing an improved process to support
the VISIUMCORETM processor based on a combination of
measurement on target and source-code structure analysis.
The remainder of this section briefly introduces this and de-
tails the reasons why this is a valid approach. The approach
is summarised in Figure 2 which shows a simplified view of
the process.

1https://www.rapitasystems.com/products/rapitime

Ada User Jour na l Vo lume 36, Number 3, September 2015

184 Ef fec t ive Worst -Case Execut ion Time Analys is of DO178C Level A Sof tware

Figure 1: Overview of WCET Analysis Process

In A1 the SPARK Ada 95 source code is instrumented auto-
matically with timestamps that allows all paths in the compiler
provided Control Flow Graph (CFG) to be measured individu-
ally. This instrumented software is compiled within a harness
that allows units of the software to be tested in isolation on the
target processor. In steps M1 and M2 unit test scripts exercise
the code to achieve full coverage of the timestamps on the
VISIUMCORETM processor. The download and execution
process is fully automated and unit test results are able to be
captured at the same time. In step M3, the timestamped trace
is captured using a high-speed logic analyser and processed
into a form that can be read by the RapiTime toolset.

To complete the WCET calculation, step A2 analyses the pro-
gram graph to determine the feasible paths. The toolset allows
annotations to remove infeasible paths, if analysis is unduly
pessimistic. Step A3 then uses the timestamp measurements

to calculate the WCET of each module. In order to combine
the unit timings, the toolset aggregates the timings to provide
an overall end-to-end thread timing that is the primary input
for scheduability analysis. The advantage of this approach is
that WCET analysis is, in effect, performed as a side effect of
the module testing without the need to perform any system
level testing or any timing specific testing.

2.2 Detail
The process adopted by CDS has been made possible by a
number of factors. Some key ones are discussed below:

A software architecture and philosophy amenable to
analysis
The CDS engine control software architecture, based
on [6], is a layered architecture that provides standardized
interfaces between the hardware and the various application
layers. Functions are scheduled as threads that form the
architecture’s schedulable entities. These threads follow
a well-defined calling sequence. The scheduler used is
fixed-priority, non-preemptive. This means that WCET
analysis need not consider variation due to pre-emption.

A processing architecture that supports analysis and
provides accurate non-intrusive tracing and time-
stamping of software execution
The VISIUMCORETM is a packaged device that integrates a
core, memory, IO and tracepoint interfaces. Being targeted
at the safety-critical embedded sector, the device is DO-254
– Level A compliant. It has extensive Single-Event-Effect
(SEE) protection and is suitable for harsh environments.

The design of the core balances performance and support
for easing software certification. The latest version of the
VISIUMCORETM features a five-stage superscaler pipeline,
with multiple execution units allowing managed parallel ex-
ecution. The processor also implements simple static block
prediction logic. The processor does not incorporate a data or
instruction cache, and carefully managed memory devices to
remove the risk of memory bus contention.

The processor has been carefully designed to ensure that each
instruction’s execution is time-invariant; in other words each
instruction will take the same time to execute, regardless
of the data its operation is performed upon. These design
features ensure that previous processor state has no effect on
the current operation of the device.

To enable timing of functions, the processor provides facilities
to non-intrusively collect an entire instruction trace complete
with timestamps. The VISIUMCORETM has also been aug-
mented with functionality to output a user-specified value
and timestamp. Both the trace facility and the instruction are
low-overhead, incurring only a single instruction fetch.

The trace facility is an independent component within
the processor, separate to all peripherals. The output of
tracepoints is performed on a reserved interface, thus
allowing tracepoints to be safely, non-intrusively, kept in the
final software verified and delivered with no disturbance on
data buses.

Volume 36, Number 3, September 2015 Ada User Jour na l

S. Law, M. Bennet t , S. Hutchesson, I . E l l i s , G. Ber nat , A. Col in , A. Coombes 185

Extensive Coverage provided by low-level test sched-
ules

CDS utilise standard low-level test (LLT) tools to provide the
Modified Condition Decision Coverage (MC/DC) required to
meet DO178B/C objectives. Test schedules exist that are able
to provide coverage of the majority of the software as part of
the normal verification process. Where coverage is provided
through other verification vehicles, schedules must be created
to meet the coverage requirements, but they need not provide
MCDC coverage.

The use of LLT, or unit, testing allows detailed coverage to be
obtained at a small level, on a single processor. The technique
allows code to be verified and analysed at a time in the design
life-cycle when full system testing, on system hardware is
not yet possible. The tool used to facilitate this verification
allows lower level functions to be replaced with test code,
allowing the function under test to be easily manipulated.
These replaced functions are then tested using additional
component tests.

Each loop through the code is either tested to its maximum
number of iterations by each test script, or is annotated by
engineers at design time.

Comparison between code under test and code in the
final system

It is already established practice within CDS to automatically
compare the object code generated for the component
under test against the object code in the final executable
image. This provides evidence that both the functional and
timing tests are representative. The features of the software
and hardware designs mean that the context in which the
executable runs does not invalidate either the functional or
timing tests. For example, the test may execute at a dif-
ferent location in memory, but this has no effect on the timing.

Optimized queuing, running and collation of results
from target hardware

To facilitate timing the large amount of software within an
Electronic Engine Controller (EEC) or similar application,
a large number of test schedules must be executed. In each
case, the test must be uploaded to target, programmed in
non-volatile memory, executed and results downloaded. To
facilitate this, a large number of identical hardware units have
been built within a CDS designed test rack. The high-speed
logic analyser provided by Rapita Systems is used to collect
results.

Combining unit tests to provide a system level result

The final step in the analysis process is to combine the results
obtained through component testing, to provide a system
level result. To perform this a new RapiTime add-on tool was
developed. The tool analyses a full set of results files and
automatically extracts timing information for each function
in the system under test to produce a combined system level

result. The ability to produce a credible system level result
in this way is facilitated thanks to the architecture of the
VISIUMCORETM; as the previous processor state at entry
point to each function can be ignored.

The tool also provides the capability for regression testing,
where some components within a result can be replaced with
updated code, and results. The ability to manage the com-
bining of small components to form a system level result is
provided through robust configuration management which
ensures that only the applicable results for the current system
are utulised.

A process and toolset tailored to CDS requirements
Rapita Systems and CDS have worked closely to develop,
implement and validate the WCET process as part of a multi-
year project. Rapita Systems have supported the target inte-
gration with the VISIUMCORETM processor through on-site
and remote working with CDS equipment. The relationship
has been mutually beneficial, it has driven enhancements in
the Rapita Systems toolset to offer new capabilities. It has
also driven improvements to CDS coding standards to further
enhance the analysability of the code under test.

3 Status and Initial Results
In order to assess the suitability of RapiTime to CDS tools
and processes, an initial study was conducted on a previous
version of the CDS processor, this previous version of the
processor uses an in-house static analysis tool to perform
WCET analysis. This tool is built upon a cycle accurate
simulator and uses path analysis to identify a safe WCET
figure.

RapiTime was applied to this previous CDS processor, the
results obtained were then compared to the results obtained
through the use of the CDS static analysis tool, and timings
obtained through High-Water-Mark (HWM) testing of the
SUT.

The results obtained are shown in Table 1, where LOC rep-
resents the number of lines of code in the test code item.
The static, HWM and RapiTime results illustrate the results
produced through static analysis, test HWM figures, and
RapiTime calculated figures.

All RapiTime results provided WCET values higher than the
HWM observed through testing. An in depth analysis was
conducted into each item where the static time differed from
the RapiTime WCET. The majority of cases were due to
pessimistic loop count estimations on the part of the Static
tool, for instance this was observed with DP, DTC and DT.
In other cases the difference was due to pessimistic hardware
memory access times, this was particularly prevalent with the
I function, this pessimism was exacerbated due to the accesses
location within a loop. In the case of DE the static analysis
tool was proved to be pessimistic due to its inability to take
into account the calling context of a large child-function.

Following this initial analysis a full scale trial was conducted
using RapiTime targeting the VISIUMCORETM processor.
The tool was used to analyse two engine control system builds

Ada User Jour na l Vo lume 36, Number 3, September 2015

186 Ef fec t ive Worst -Case Execut ion Time Analys is of DO178C Level A Sof tware

Figure 2: Comparison Between Static, HWM and RapiTime WCET Figures for 25 Engine Controller Functions

Table 1

Test Item LOC Static HWM RapiTime
DFF 85 234 203 236
DHP 22 154 140 140
DH 167 409 379 403
DI 164 409 379 403
DL 164 409 375 406
DP 254 1740 702 731
DS 78 146 138 138

DTC 210 10337 7906 9045
DTA 27 174 160 160
DTR 180 466 419 446
DTS 189 501 449 467
DT 395 1356 985 1104
DE 108 882 506 508
I 578 28006 22056 22511

PI 33 966 926 926
PV 105 4794 4402 4454
PR 264 22580 9511 21774

targeting different production units. In total over 8000 com-
ponent test scripts were executed, with their results being
compared to HWM results obtained during testing. Additions,
or modifications, were required in less than 5% of test scripts,
and less than 1% of formal software components.

All 8000 tests produced results larger than the HWM results
observed during testing. The results were subsequently rolled
up to produce a system wide WCET, in total this encompassed
an analysis of over 400,000 blocks of code.

The tool has been integrated into CDS’ software build and
verification system, which utilises AdaCore GNATPro 7.2.7
2, and has been qualified according to DO-178C as a TQL5
verification tool.

4 Conclusion
This paper introduced the application of a hybrid, measure-
ment based WCET analysis tool to an industrial safety-critical

2http://www.adacore.com/gnatpro

system. An extensive study was performed on the tool to as-
sess its feasibility and suitability to the application. This study
included an assessment of the tool’s design and its integration
with the target processor architecture & target software archi-
tecture. This study was conducted using real engine control
application software. The WCET figures produced by the
tool have been verified against results calculated by a legacy,
qualified static analysis tool, and against end-to-end timing
measurements obtained through extensive testing. The study
proved the validity of the technique, and justified the tool’s
use in a DO-178B/C environment.

The tool is now being rolled out across multiple sites for use
by all CDS projects utilising the VISIUMCORETM processor.

References
[1] RTCA (2011), DO-178C - Software Considerations in

Airborne Systems and Equipment Certification.

[2] RTCA (1992), DO-178B - Software Considerations in
Airborne Systems and Equipment Certification.

[3] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenström (2008), The worst-case
execution-time problem—overview of methods and sur-
vey of tools, ACM Transactions on Embedded Computing
Systems, vol. 7, no. 3, p. 38.

[4] T. Lundqvist and P. Stenstrom (1999), Timing anoma-
lies in dynamically scheduled microprocessors, in Pro-
ceedings of The 20th Real-Time Systems Symposium,
pp. 12–21, IEEE.

[5] R. Kirner and P. Puschner (2008), Obstacles in worst-
case execution time analysis, in Proceedings of the 11th
International Symposium on Object Oriented Real-Time
Distributed Computing, pp. 333–339, IEEE.

[6] S. Hutchesson (2013), Trusted Product Lines. PhD thesis.

Volume 36, Number 3, September 2015 Ada User Jour na l

Ada User Journal Volume 36, Number 3, September 2015

The Need for a Weaving Model in Assurance Case
Automation
R. Hawkins, I. Habli, T. Kelly
The Department of Computer Science, The University of York, York, YO10 5GH. Tel: +44 1904 325463; email:
{richard.hawkins|ibrahim.habli|tim.kelly}@york.ac.uk

Abstract

In this paper we describe how the automated
instantiation of assurance case arguments will
require information to be extracted from multiple
models of a system and its environment and
engineering processes, e.g. safety and verification
processes. For this to be done successfully the
dependencies between the models must be explicitly,
completely and correctly captured. We describe how
a model-based approach, model weaving, provides an
excellent mechanism for modelling the
correspondences that exist between models and
discuss how model weaving can be applied in the
context of assurance cases.

1 Introduction

Assurance cases provide an explicit means for justifying
and assessing confidence in critical properties of interest
such as safety or security properties. An assurance case
should contain a reasoned and compelling argument,
supported by a body of evidence [1]. We are concerned
with the challenge of how to make it easier for system
developers to create valid and compelling arguments for
their systems. To help to guide assurance argument
development, the concept of providing reusable patterns of
argument and evidence was developed [2]. Assurance
argument patterns allow the desired structure of the
argument to be captured, whilst abstracting from the details
of a particular target system. An assurance argument can be
created for a system by instantiating the argument pattern
with information about the target system. Assurance
argument patterns have been shown to be useful in helping
developers create arguments [3]. However current practice
is mainly to instantiate argument patterns manually.

There are a number of advantages to be gained from
automating the generation of assurance arguments:

 Human error in instantiating patterns is
eliminated.

 The argument can be generated directly from, and
is therefore consistent with and traceable to, the
design and development models of the system
themselves.

 Instantiations can be produced quickly and easily
to reflect the current state of development.

 Change management of the argument becomes
automatic.

 Consistent, reusable instantiation rules can be
established, ensuring consistent and repeatable
pattern instantiation.

Any approach for automating assurance argument
generation requires as a minimum:

 model(s) of the required assurance argument
structure - for this we use the assurance argument
patterns;

 model(s) of the system - containing the
information necessary to instantiate the patterns,
often including models of the environment and
development processes

 transformation rules to generate the output model
(the assurance argument).

If we assume that we have available the required assurance
argument patterns, the challenge becomes one of
identifying the necessary system models, and defining a set
of transformation rules. These are the focus of this paper.
Section 2 discusses the system models that are required to
generate an assurance argument. Section 3 discusses an
approach to defining transformation rules – model weaving.
Section 4 describes how model weaving can be applied to
assurance cases. In section 5 we discuss related work and
describe our conclusions.

2 System Models for Assurance

Assurance argument patterns can be captured using the
graphical notation GSN [1]. Instantiation of assurance
argument patterns involves both instantiating ‘roles’ in the
argument patterns, and making instantiation choices. Roles
are instantiable entities within elements of the argument
pattern. They represent an abstract entity that needs to be
replaced with a concrete instance appropriate for the target
system. For example in Figure 1, the role within this
assurance claim, represented in curled braces is ‘Function’.
This entity must be replaced with the name of the relevant
function of the system. In addition, argument patterns will
often include multiplicity relations, where the number of
required argument elements must also be determined (e.g.
an entity created for each of the functions present in the
system design).

188 The Need for a Weaving Model in Assurance Case Automat ion

Volume 36, Number 3, September 2015 Ada User Journal

Figure 2. An example pattern for part of a D-MILS system assurance case

Assurance argument patterns will also often represent
choices for different argument approaches that may be
adopted. At instantiation, the assurance claims most
appropriate for the target system must be chosen from the
options provided in the pattern. A more detailed example of
an assurance argument pattern is provided in Figure 2.

Figure 1. A GSN Argument Element Requiring Instantiation

All of these instantiation decisions are made using
information about the system. The nature of the claims
made in an assurance case can vary enormously between
systems and domains, but in all cases there will be a
requirement to include two types of argument, technical
risk arguments and confidence arguments [4]. The technical
arguments reason about risk reduction and the mitigation of
system hazards. These will include consideration of
specific design features and properties of the system. The
technical argument requires consideration of design,
analysis and verification artefacts. Arguments of
confidence document the reasons for having confidence in
the technical argument. The confidence argument will in

general require consideration of the processes used to
generate the development artefacts.

In most cases it is not possible to acquire all the
information that is required for a complete and compelling
assurance case including both technical and confidence
arguments from a single model of the system. In work such
as [5] it is described how it is possible to extract a lot of
information required to create an assurance argument from
system specifications such as AADL models. However
such specifications would not contain all the information
required for the assurance case. For example, although
development artefacts themselves, such as safety analyses,
are often integrated into such system specifications (e.g. as
AADL error models), information to support a confidence
argument (about the way in which those artefacts were
generated) is not included (and it wouldn't be appropriate to
do so). Information regarding verification is also not
commonly included in such specifications. Clearly multiple
models will be required to generate a complete assurance
argument.

As an example we present in Figure 2 an example argument
pattern that we created to form part of the assurance
argument for a Distributed MILS (D-MILS) system [6].
There can be seen in this argument pattern to be a number

R. Hawkins, I . Habl i , T. Kel ly 189

Ada User Journal Volume 36, Number 3, September 2015

of roles that it was possible for us to instantiate using
information extracted from an extended MILS-AADL
model of the system, such as:

 formal properties (the properties to be
demonstrated);

 trusted software components

 assumed platform properties.

However there can also be seen to be other claims within
the argument where information will be required that is not
available from the MILS-AADL model. For example the
claim that the application of a particular technique to verify
a formal property is sufficiently trustworthy will require
information about the process for applying the technique,
and about the tools used (similarly for claims regarding the
translation from informal to formal representations). We
obtained this information from models produced of the
verification process and tool chain. Another example is the
formal verification results, which are not part of the MILS-
AADL model, but contained within a separate verification
model.

3 Model Transformation

In the previous section we described how the instantiation
of assurance argument patterns will normally require
information from multiple source models. There will be
(often complex) relationships between these models.
Relationships will exist both between the source
information models and the instantiable elements of the
argument pattern models, and also between elements of the
different source models. Successful pattern instantiation
requires that the relationships between model elements are
correctly specified.

Figure 3. The weaving metamodel

Model weaving, is described in [7] as “a method of
establishing correspondences with semantic meaning
between model elements”. The central concept is a weaving
model which is “a special kind of model used to save these
correspondences”. Like all other models the weaving
model must conform to a weaving metamodel. The basic
form of the weaving metamodel, taken from [8] is shown in
Figure 3. Weaving models can be created to define links
between model elements. The semantics of the link can be

defined for specific links in the weaving model. The
weaving metamodel also includes associations that can
define relationships between the links in the weaving
model. In Section 4 we describe how associations and links
may be used in a weaving model for an assurance case.

The weaving model that is created can then be used as the
specification for model transformations to generate the
output model or models from the set of source models.
Model weaving can bring a number of advantages when
compared with other approaches to model transformation.
The weaving model specification is independent of
implementation, which means that the same weaving model
can be used to create multiple transformations. The
semantics of the transformations in the weaving model are
defined by the user. This allows much greater flexibility
when applying the weaving model. In addition, as the
weaving model is itself a model, it allows a seamless
model-driven approach to be adopted for all aspects of the
assurance case process.

4 Applying Model Weaving to Assurance
Cases

In [9] we have described an approach that uses a weaving
model to create an assurance argument from assurance
argument pattern(s) and a set of system models. Figure 4
provides an overview of our current prototype tool that
implements this approach. Below we briefly describe each
of the elements.

Figure 4. An implementation of a model weaving approach for
assurance cases

1. The argument patterns must be provided in machine-
readable format. For this we have developed a graphical
editor that creates a model in an XML form from a
graphical representation of the argument pattern in GSN.
We refer to these files (that are compliant with the GSN
metamodel) as GSNML files.

2. Any system models that conform to a defined metamodel
may be taken as input.

3. The current version of the tool uses an interim solution
for creating weaving models that involves creating the
weaving models graphically and importing them to the tool

1. GSN Pattern
Models: gsnml

2. System
Models: xml

3. Weaving
Model:
graphML

4. MBAC
program: eol

Configuration

5. GSN
Argument

Model: gsnml

Metamodels: ecore

190 The Need for a Weaving Model in Assurance Case Automat ion

Volume 36, Number 3, September 2015 Ada User Journal

as graphML files. Future development of the tool will
include the creation of weaving models directly from the
metamodels, rather than graphically. The weaving model is
represented using typed nodes and edges with properties
declared to specify additional attributes such as the
metamodel element type or the name of the target model.
Figure 5 shows an example weaving model created in this
manner. The nodes on the left hand side represent roles
within the argument patterns whereas the nodes on the right
hand side are elements of the source metamodels. The
edges represent weaving links and associations.

Figure 5. An example weaving model for an assurance
argument pattern instantiation

Note that changes to the system models should not
normally require changes to the weaving model, so long as
no changes are made to the existing argument patterns and
only system models conforming to the same metamodels
are used. This means that changes to the system design can
be quickly reflected in the assurance case.

4. The MBAC (Model Based Assurance Case) program is
an Epsilon Object Language (eol) program [10] that runs
on the Eclipse platform. It takes the GSNML argument
pattern files, the system models and corresponding
metamodels, and the weaving model as inputs. The output
is a GSN argument model for the target system that has
been instantiated using information extracted from the
system models.

5. The argument model is generated as a GSNML file. This
GSNML file can then be used to present information to the
user in a number of ways. Firstly, the argument model can
be represented graphically as a GSN structure. Secondly,
the model can be queried in order to provide a particular
view on the assurance case. For example it is possible to
just select those argument elements that remain
undeveloped, requiring additional support from the system
developer. Finally an instantiation table can also be
generated that summarises how the pattern has been
instantiated in tabular form, rather than having to consult
the entire argument structure.

The GSN argument model can also be used as the basis for
performing verification of the assurance argument
structure, as well as validation of the argument with respect
to the system models. These verification and validation
activities are the subject of on-going research.

5 Conclusions

It is a shared goal of many researchers [11, 12, 13] to
increase automation in the generation and maintenance of
assurance arguments. Our approach complements these
approaches, but crucially, it does not depend on having to
extract and pre-process assembly and instantiation data. By
automatically extracting information directly from the
design and safety analysis models themselves, a model
weaving approach ensures traceability between the sources
of information, e.g. in design, process and analysis models,
and the assurance case. Automation in this way also has the
potential to support the coevolution of system design and
assurance cases.

The correct definition of the weaving model is of course
crucial to the success of this approach. Although our initial
work has demonstrated the feasibility of the approach,
further work is required to more fully understand and
model the relationships and constraints that exist between
system design models (such as AADL) and other models
required for the assurance case (such as process models).

Acknowledgements

This work was part funded by the European Union FP7 D-
MILS project (www.d-mils.org).

References
[1] GSN Community Standard Working Group (2011),

GSN Community Standard, Available at
www.goalstructuringnotation.info/.

[2] T. Kelly and J. McDermid (1997), Safety Case
Construction and Reuse Using Patterns, in proc.
Safecomp 97, pp 55-69, Springer.

[3] R. Hawkins et. al. (2011), Using a Software Safety
Argument Pattern Catalogue: Two Case Studies. In
proc. of Safecomp 11, Springer.

[4] R. Hawkins et. al. (2011), A New Approach to
Creating Clear Safety Arguments, In proc. of the
Nineteenth Safety-Critical Systems Symposium, pp 3-
23, Springer.

[5] A. Gacek et. al. (2014), Resolute: An Assurance Case
Language for Architecture Models, In proc. of the
2014 ACM SIGAda Annual Conference on High
Integrity Language Technology. pp 19-28

[6] J. Rushby (2008), Separation and Integration in MILS
(The MILS Constitution,. Technical Report, SRI
International

[7] M. Didonet et. al. (2005), Applying generic model
management to data mapping, in proc. Bases de
Données Avancées (BDA05).

[8] M. Didonet et. al. (2005), AMW: A generic model
weaver, in proc. 1ères Journées sur l’Ingénierie Dirigée
par les Modèles.

[9] R. Hawkins et. al. (2015), Weaving an Assurance
Case from Design: A Model-Based Approach, In proc.

R. Hawkins, I . Habl i , T. Kel ly 191

Ada User Journal Volume 36, Number 3, September 2015

of 16th IEEE International Symposium on High
Assurance Systems Engineering.

[10] D. Kolovos et. al. (2013), The Epsilon Book, available
at http://www.eclipse.org/epsilon/doc/book/.

[11] E. Denney et. al. (2012), Advocate: An Assurance
Case Automation Toolset, in  proc. Workshop on Next
Generation of System Assurance Approaches for
Safety Critical Systems, pp 8-21.

[12] Y. Matsuno and S. Yamamoto (2013), An
implementation of GSN community standard, In proc.
of Assurance Cases for Software-Intensive Systems
(ASSURE).

[13] J. Rushby (2013), Mechanized support for assurance
case argumentation, in proc. 1st International
Workshop on Argument for Agreement and Assurance
(AAA 2013), Springer LNCS.

192

Volume 36, Number 3, September 2015 Ada User Journal

Architecture-led Requirements and Safety Analysis
of an Aircraft Survivability Situational Awareness
System
Peter H. Feiler
Software Engineering Institute, Fifth Ave, Pittsburgh, PA 15213; Tel: +1 412 268 7790; email: phf@sei.cmu.edu

Abstract

Software cost in mission and safety-critical systems
has been escalating exponentially due to high
requirement error leakage into system integration.
Furthermore, system tests are designed against a
large percentage of ambiguous, missing, and
incomplete requirements. The Architecture Centric
Virtual Integration Process (ACVIP) is being
investigated by the US Army to address these
challenges. ACVIP is an adaptation of the System
Architecture Virtual System Integration (SAVI)
approach based on the SAE Architecture Analysis &
Design Language (AADL). This approach detects and
removes defects through virtual integration of system
models and their analysis. In this paper we describe
an approach to specification of verifiable
requirements and to system safety analysis that
utilizes architecture models. A primary objective of
this approach is to improve the quality of
requirements through increased requirement
coverage as well as coverage and mitigation of safety
hazards.

Keywords: Virtual System Integration, Architecture
Analysis & Design Language, Safety.

1 Introduction

The Software Engineering Institute® (SEI) performed an
architecture-led requirement specification and safety
analysis in a shadow project of the United States Army
Aviation Development Directorate (ADD) on the Joint
Multi Role (JMR) Technology Demonstrator effort’s Joint
Common Architecture Demonstration (JCA Demo) Project
[1] to investigate and mature the Architecture Centric
Virtual Integration Process (ACVIP). ACVIP is a DoD
process fashioned after System Architecture Virtual
Integration (SAVI) [2] performed by a consortium of
aerospace organizations. Like SAVI, the purpose of the
ACVIP is to address the affordability and associated risks
of developing complex software intensive systems through
early virtual integration and analysis before
implementation.

Architecture-led requirement specification (ALRS)
addresses the problem of a high percentage of ambiguous,
missing, and incomplete requirements found in textual
requirement documents that result in costly rework later in

development. It improves the quality of requirements by
assuring better coverage of requirements along two
dimensions: coverage of interactions and of quality
attributes. Architecture-led safety analysis (ALSA) assures
improved coverage of safety hazards through a fault
propagation ontology and allows for automation of
currently labor-intensive best safety analysis practices, e.g.,
SAE ARP4761.

2 Architecture Led Requirements
Specification

The ALRS process utilizes the AADL and encompasses the
eleven step process outlined in the Federal Aviation
Administration (FAA) Requirements Engineering
Management Handbook [3]. ALRS adapts the CPRET [4]
representation of a system defined by the Association
Française d'Ingénierie Système which is shown graphically
in Figure 1.

Figure 1 Elements of a System Specification

In the ALRS process a user models a system in its
operational context as an AADL model of interacting
systems. An explicit model of these interacting systems
guides the user to specifying requirements regarding each
of these system interactions in terms of input assumptions,
output guarantees, invariants on system state and behavior,
as well as assumptions about resources being utilized, and
interactions with supervisory capabilities.

When used in the context of an existing requirement
document, users map the requirements to an AADL model.
This mapping helps the user to quickly identify any gaps in
the set of requirements. It also lets the user see whether a
requirement section cover one or more system components.

ALRS utilizes utility trees from a Quality Attribute
Workshop (QAW) [5] or an Architecture Tradeoff Analysis

P. H. Fei ler 193

Ada User Journal Volume 36, Number 3, September 2015

Method (ATAM) [6] to provide a framework for achieving
coverage of non-functional properties, also known as
operational quality attributes. Prioritization of the utility
tree leafs driven by mission goals help the user ensure that
critical requirements are well-specified. Such a utility tree
is shown in Figure 2.

Figure 2 Quality Attribute Utility Tree

Early in the development process the SEI team captured
requirement information from the JCA Demo BAA and
Stakeholder and Systems Requirements documents of the
aircraft survivability situational awareness (ASSA) system
as well as UML models made available to suppliers of a
data correlation and fusion system. This analysis identified
shortcomings in the system-level and component-level
requirements. They included inconsistencies, and missing
requirement information in the original documents, as well
as defects related to safety, latency, and timing / resource
utilization. This was achieved by modeling the system in its
operational context as well as the functional and the system
architecture of the ASSA itself. The resultant architecture
model was generalized into an aircraft survivability
situational awareness (ASSA) system, creating a reusable
reference architecture for the domain of use.

Figure 3 Layered Architecture of ASSA System

This ASSA system incorporates several functional services.
Figure 3 shows the functional architecture of ASSA with a
clear delineations of its interface with the operational
environment. In addition it shows three infrastructure
services. Two services are provided in a layer below the

situational awareness system, i.e., the data conversion
service, and the data management service. The third
service, a health monitor, resides in a layer above the
situational awareness system to detect and report any
exceptional conditions in the operation.

The resultant functional architecture also became the basis
for quantitative analysis of the ASSA early in development,
e.g., pre-PDR. As Figure 3 shows, the model included end-
to-end flow specifications of a critical flow to represent
response time requirements. It also captures a UML
sequence diagram from the original documentation as an
analyzable interaction protocol across ARINC653
partitions. The latency analysis capability of OSATE2
informed us of the latency overhead contributed by this
protocol, and its effect on the critical flow, i.e., that in the
best circumstances the requirement can barely be met.

3 Architecture Led Safety Analysis

The ALSA process builds on the AADL created for the
ASSA during the requirement specification process. The
user annotates an AADL model with fault information
utilizing an error propagation ontology as illustrated
graphically in Figure 4. The error propagation ontology
addresses issues of service omission, commission, value,
timing, rate, sequence, replication, concurrency,
authorization, and authentication errors. Users can adapt
this ontology to commonly used hazard guide words, such
as loss of power. The propagation paths between system
components are derived from the architecture specification
itself.

Figure 4 Identification of Hazard Sources and Impact

This process leverages the AADL Error Model Version 2
(EMV2) Annex [7] to support SAE ARP-4761 [8] best
system safety analysis practices, such as an FHA, FMEA
and FTA. The analysis models, such as a fault tree, are
generated from the annotated AADL model, and then
processed by a FTA tool. In the case of FHA and FMEA
the respective reports are generated directly from the
annotated AADL model – as shown in Figure 5. In the
SAVI initiative the SEI recently demonstrated how the
SAE ARP-4761 process can be supported by an AADL
model annotated with fault information using the Error
Model Annex standard for AADL on an aircraft wheel
braking system. FHA, FMEA, and FTA reports as well
reliability/availability analysis reports have been generated
from safety analysis performed with such a model.

194 Archi tecture- led Requirements and Safety Analys is of an Aircraf t System

Volume 36, Number 3, September 2015 Ada User Journal

Figure 5 Safety Analyses from Annotated AADL Models

In the original safety analysis practice ASSA was assigned
a design assurance level E with respect to flight worthiness.
However, since aircraft does get lost due to enemy threats,
obstacles, and terrain variation, we considered it a critical
component that requires the attention of a safety analysis.
ALSA allowed us to identify the safety hazards of ASSA in
its operational context and systematically identify hazard
contributors. In addition to complete failure of providing
the ASSA service, the hazards considered included
providing false information such as false positives in the
form of alerting the pilot of threats and obstacles that do
not exist, false negatives such as not alerting the pilot when
these threats and obstacles exist. In addition the timeliness
of information was taken into account, i.e., how much
information delay is acceptable to the pilot. Subsequent to
citing the hazards, the potential error sources were
systematically identified that can propagate as one of the
identified hazard categories to the pilot. A fault ontology
provided as part of the AADL Standard Error Model annex
was used as a checklist of fault propagation categories to
consider in the process.

The insights from this analysis lead to a set of derived
safety requirements for the health monitoring system that
were lacking in the original System Requirement
document. The original requirement document discussed
detection of non-operational sensors and transitioning to
operational mode as long as one sensor is operational.
ALSA leads to a clear identification of all system
components being monitored and the appropriate health
status to be reported to the pilot, all derived requirement on
the health monitoring system.

4 JCA Demo ACVIP Analysis Findings
and Lessons Learned

Previous studies have shown that peer review is a very
cost-effective means of defect detection, partly because it
was the only traditional method that could be applied in
early development phases. The ACVIP researcher’s
experience is that many defects were detected during model
development even before analysis tools were applied. This
is achieved by mapping terms in the document into

concepts expressed by AADL. Users quickly realize
different terms used in different sections of the documents
for the same concepts, and conflicting statements about
specific attributes of model elements, e.g., two different
numbers for range of operation. Strong typing in AADL
ensures that interactions between virtually integrated
system components are consistent, e.g., that measurement
units and interchange protocols are used consistently. In
other words, the rigor of the AADL focuses attention on
ambiguous and incomplete elements of a natural language
document and eliminates potential system integration
problems early in the process. This is consistent with earlier
reports that a significant benefit of modeling is more
precise specification; many defects are found during the
model development phase [9].

Earlier studies showed that providing reviewers with
structured guidelines (often called reading guidelines or
techniques in the inspection literature) improved the quality
of reviews. In model-based engineering, the model
development task could be viewed as a particularly well-
structured review method [10].

The ACVIP related goals for JMR Mission Systems
Architecture Demonstrations (MSAD) such as the JCA
Demo are to identify, validate, mature and transition
methods and tools to support an architecture centric virtual
integration process. This exercise also generated new
modeling guidelines and tool requirements (as well as bug
reports for tool developers and errata for the AADL
standards committee).

The ACVIP researchers provided reports citing around 85
findings, 70 that were attributed to requirements analyses
and 15 to timing analyses that have been rolled up in the
JCA Demonstration Final Report and summarized in [11].
Some notable areas identified by the ACVIP team included:

 Lack of a specification of staleness for the data.

 No identification of end-to-end timing requirement for
specific types of threats and obstacles.

 Partition schedule not meeting ARINC 653 scheduling
rules.

 Non-clarity in pull protocol between data
correlation/fusion and SA Data Service.

 Impact of cross partition pull protocols on end-to-end
latency affects end-to-end timing requirements.

 Data storage requirement for the SA Data Service not
specified.

 Ambiguity on the Operational State under timeout
conditions.

 Lack of a requirement for the number of source tracks
the aircraft survivability sensor provides.

 Potential of data integrity issues in time-sensitive track
data that manifests itself as noisy data.

 Multiple sensor stream rates may have implications on
integration.

P. H. Fei ler 195

Ada User Journal Volume 36, Number 3, September 2015

 Inconsistency in the observation radius and alert
threshold for threats and obstacles.

 Potential memory leaks in SA Data Service.

 Ambiguity in the requirement to correlate 50 source
tracks within 1 second and concern over meeting the
requirement.

Some of these issues were also cited by the contractors
independent of the ACVIP researchers. The development
team was able to confirm several of these and other
findings by ACVIP during development and in integration
testing. The findings by the ACVIP team demonstrated that
in a real program that these issues would have been
identified and corrected even prior to solicitation which
could have led to a cost savings and / or development
schedule reduction.

Conclusion

ACVIP is an architectural centric model based approach
that will revolutionize the way in which we analyze our
systems. Results of the JCA Demo ACVIP Shadow effort
demonstrated that ACVIP has potential to provide strong
architectural analysis to identify and aid in the early
resolution of issues. AADL is being used in many company
and organization research efforts. ACVIP and its guidance,
tools, and processes are going through maturation and
require further refinements and maturation to be effective
for future DoD acquisition of aviation mission computing
systems. JMR Mission Systems Architecture
Demonstrations will continue to work with the ACVIP
researchers and ensure that the exercise, documentation and
lessons learned mature these processes and tools so that
they can effectively be used by avionics and systems
engineers in the future. Industry and Government need to
work together to improve ACVIP so that future
development / integration efforts can benefit from early
virtual integration, validation and verification.

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded
research and development center. This material has been
approved for public release and unlimited distribution.
Carnegie Mellon® is registered in the U.S. Patent and

Trademark Office by Carnegie Mellon University.
DM-0002390

References

[1] Department of the Army, Army Contracting Command
(2014), A Joint Multi-Role Technology Demonstrator
(JMR TD) Joint Common Architecture Demonstration
(JCA Demo) Broad Agency Announcement (BAA),
Location ACC-RSA-AATD-(SPS). Solicitation
Number W911W614R000002.

[2] Aerospace Vehicle Systems Institute.
http://savie.avsi.aero. [Online]

[3] DOT/FAA/AR-08/32 (2009), Requirements
Engineering Managmeent Handbook.

[4] Association Française d'Ingénierie Système. CPRET:
System Process as Constraints, Products, Resources,
input Elements and Transformations. [Online]
http://en.wikipedia.org/wiki/Process_%28engineering%29#C
PRET.

[5] CMU-SEI. Quality Attribute Workshop. [Online]
http://www.sei.cmu.edu/architecture/tools/establish/qaw.cfm.

[6] CMU SEI. Architecture Tradeoff Analysis Method
[Online]
http://www.sei.cmu.edu/architecture/tools/establish/atam.cfm

[7] SAE International, AS-2C (2015), Architecture
Analysis and Design Language (AADL) Annex Volume
1 Annex E: Error Model Annex, AS 5506/1A.

[8] SAE International, SAE ARP-4761 (1996), Guidelines
and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment.

[9] E. M. Clark, Jeannette M. Wing (1996), Formal
Methods: State of the Art and Future Directions, ACM
Computing Surveys.

[10] O. Laitenberger (2002), A Survey of Software
Inspection Technologies, Handbook on Software
Engineering and Knowledge Engineering.

[11] A. Boydston,, P. Feiler, S. Vestal, B. Lewis (2015),
Joint Common Architecture (JCA) Demonstration
Architecture Centric Virtual Integration Process
(ACVIP) Shadow Effort, AHS 71st Annual Forum,
Virginia Beach, Virginia, May 5–7.

196

Volume 36, Number 3, September 2015 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming events
	1842 Notes to the translation of the Sketch of the Analytical Engine
	Effective Worst-Case Execution Time Analysis of DO178C Level A Software
	The Need for a Weaving Model in Assurance Case Automation
	Architecture-led Requirements and Safety Analysis of an Aircraft Survivability Situational Awareness System
	National Ada Organizations

