

Ada User Journal Volume 37, Number 2, June 2016

ADA
USER
JOURNAL

Volume 37

Number 2

June 2016

Contents
Page

Editorial Policy for Ada User Journal 66

Editorial 67

Quarterly News Digest 68

Conference Calendar 86

Forthcoming Events 91

Articles from the Ada & Parallelism Special Session of Ada-Europe 2016

 P. Rogers

“Special Session Summary: Ada and Parallelism” 94

 T. Taft

“Ada Container Iterators for Parallelism and Map/Reduce” 95

 B. Moore

“Paraffin: a Parallelism API for Multiple Languages” 99

 B. Moore

“Parallel Reduction Lists” 110

Reports

 S. Michell and J. Real

“Summary of the 18th International Real-Time Ada Workshop” 117

Ada-Europe Associate Members (National Ada Organizations) 120

Ada-Europe Sponsors Inside Back Cover

66

Volume 37, Number 2, June 2016 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of

the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

· Refereed original articles on
technical matters concerning Ada
and related topics.

· Invited papers on Ada and the Ada
standardization process.

· Proceedings of workshops and
panels on topics relevant to the
Journal.

· Reprints of articles published
elsewhere that deserve a wider
audience.

· News and miscellany of interest to
the Ada community.

· Commentaries on matters relating
to Ada and software engineering.

· Announcements and reports of
conferences and workshops.

· Announcements regarding
standards concerning Ada.

· Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website

at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada

User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 67

Ada User Journal Volume 37, Number 2, June 2016

Editorial

This second issue of 2016 was finalized shortly after the 21st International Conference on Reliable Software Technologies –

Ada-Europe 2016, which took place in the beautiful scenario of the Scuola Superiore Sant’Anna, in Pisa, Italy. As usual, the

conference week provided a very successful program of technical presentations, as well as a fruitful networking environment.

I would like to point out not only the scientific program of the conference, as usual with a set of high-quality papers, but also

the industrial track of the conference, with a set of high quality presentations, the tutorials provided on Monday and Friday,

and the co-located DeCPS workshop also on Friday. The conference also featured three very interesting keynote talks, from

Alan Burns, Professor at the University of York, UK, on programming languages for future cyber physical systems; Guido

Ghisio, responsible for Automated Driving Technologies at Magneti Marelli, Italy, on challenges for the automotive platform

of the future; and Marc Duranton, senior member of CEA, France, on the HiPEAC (European Network on High Performance

and Embedded Architecture and Compilation) vision. A very successful exhibit during the central days of the conference

allowed participants to learn the most recent developments in the commercial tools for the development of reliable software.

An extra highlight of this year’s conference, was a Special Session on Ada and Parallelism. As put forward in the conference

program:

Ada has been a language which has always excelled with its advanced high-level concurrency support. In the last 20 years,

Ada has steadily extended its wealth of concurrency features and capabilities to a considerable extent, yet within the bounds

of a sequential task reasoning. With the advances in processor, and in particular the move into a parallel world, it is time to

discuss how Ada should be evolved into supporting in the language the notion of fine-grained parallelism.

The session included two presentations from Tucker Taft, of AdaCore, USA, and Brad Moore, of General Dynamics, Canada,

with insights on potential approaches to support fine-grained parallelism in Ada, and an open discussion moderated by Jeff

Cousins, of BAE Systems, UK and ARG rapporteur.

In this issue of the Journal we report on this session, starting with a summary of the discussion, by Pat Rogers, of AdaCore,

USA, followed by three papers related to the presentations. The first paper, by Tucker Taft, provides a proposal for container

iterators supporting parallelism, whilst in the second paper Brad Moore provides an approach based on the Paraffin library.

Finally, the last paper, also by Brad Moore, describes how parallel reductions are handled in Paraffin.

The issue also includes a report on the recent 18th International Real-Time Ada Workshop, which took place last April in the

beautiful scenario of Benicàssim, near Valencia, Spain. As usual, the workshop discussed proposals for real-time and high-

integrity systems support in Ada. In a forthcoming issue of the Journal we will provide the more detailed summaries of the

workshop sessions discussions.

Finally, the reader will find the News and Calendar and Events sections, by Jacob Sparre Anderson and Dirk Craeynest, their

respective editors. A special note to the preliminary call for papers for the 22nd International Conference on Reliable

Software Technologies – Ada-Europe 2017 that will take place June 2017 in Vienna, Austria.

 Luís Miguel Pinho

Porto

June 2016

 Email: AUJ_Editor@Ada-Europe.org

68

Volume 37, Number 2, June 2016 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Events 68
Ada-related Resources 70
Ada-related Tools 70
Ada-related Products 77
Ada and Operating Systems 77
References to Publications 78
Ada Inside 79
Ada in Context 79

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

CFP: SIGAda HILT 2016

From: S. Tucker Taft, AdaCore
Date: Mon, 9 May 2016 18:25:50 -0700
Subject: CFP: SIGAda HILT 2016

Workshop at ESWEEK on Models +
Contracts; due June 30

Newsgroups: comp.lang.ada
Subject: CFP: HILT 2016 Workshop at

ESWEEK on Models + Contracts; due
June 30

Call for papers and extended abstracts:

HILT 2016 Workshop on Model-Based
Development and Contract-Based

Programming

As part of ESWEEK, October 6 & 7,
2016, Pittsburgh, PA

Sponsored by ACM SIGAda

CFP:
http://www.sigada.org/conf/hilt2016/

HILT2016-CFP.pdf

Website: http://sigada.org/conf/hilt2016

ESWEEK: http://esweek.org

The High Integrity Language Technology
(HILT) 2016 Workshop is focused on the
synergy between Model-Based
Development and Contract-Based
Programming, producing a formal model-
driven approach to the development of
high-assurance software-intensive
systems.

Important Dates:

June 30: Papers or Extended abstracts due

July 31: Notification of submissions
accepted for presentation

Sep 15: Final submissions due

Oct 6&7: Workshop as part of ESWEEK

Keynote:

- Phil Koopman, CMU

We encourage papers and extended
abstracts relating to:

- Architecture-level and requirements-
oriented modeling with systems such as
AADL, SysML, and ArgoSim

- Component-level modeling with systems
such as UML/OCL, Simulink, and
SCADE

- Automated analysis and code generation
targeting verification-oriented tools
and/or programming language subsets
such as Coq, PVS, ACL2, Why,
SPARK/Ada, Frama C/ACSL, MISRA
C, JML, and CompCert C.

- Other contributions linking modeling
and contracts to the topics associated
with the co-located EMSOFT
conference:

 o Formal modeling and verification

 o Testing, validation, and certification

 o Model- and component-based software
design and analysis

 o Software technologies for safety-
critical and mixed-critical systems

 o Robust implementation of control
systems

 o Embedded software security

Workshop Co-Chairs

- Julien Delange, Software Engineering
Institute

- Tucker Taft, AdaCore, Inc

Ada-Europe 2016 in Pisa

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sun, 5 Jun 2016 20:46:39 -0000
Subject: Press Release - Reliable Software

Technologies, Ada-Europe 2016
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

--

FINAL Call for Participation

*** UPDATED Program Summary ***

21st International Conference on Reliable
Software Technologies

Ada-Europe 2016

13-17 June 2016, Pisa, Italy

http://www.ada-europe.org/
conference2016

** Check out tutorials and workshop! **

***Full Program available on conference
web site ***

* Printed proceedings available at event *

*** Register now! ***

Press release:

21st Ada-Europe Conference on Reliable
Software Technologies

International experts meet in Pisa

Pisa (6 June 2016) - Scuola Superiore
Sant'Anna and Ada-Europe organize from
13 to 17 June 2016 the "21st International
Conference on Reliable Software
Technologies - Ada-Europe 2016" in Pisa,
Italy. The event is organized in
cooperation with the Ada Resource
Association (ARA), and with ACM's
Special Interest Groups on Ada (SIGAda),
on Embedded Systems (SIGBED), and on
Programming Languages (SIGPLAN).

The Ada-Europe series of conferences has
over the years become a leading
international forum for providers,
practitioners and researchers in reliable
software technologies. These events
highlight the increased relevance of Ada
in general and in safety- and security-
critical systems in particular, and provide
a unique opportunity for interaction and
collaboration between academics and
industrial practitioners.

This year's conference offers two days of
parallel tutorials, a workshop, three
keynotes, a full technical program of
refereed papers and industrial
presentations, an industrial exhibition and
vendor presentations, and a social
program.

Eight excellent tutorials on Monday and
Friday cover a broad range of topics:
Embedded ARM Programming with Ada
2012; Parallelism in Ada, C, Java and C#,
Today and Tomorrow; A Semi-formal
Approach to Software Development;
Software Test and Verification
Techniques for Dependable Systems; Ada
2012 (Sub)types and Subprogram
Contracts in Practice; Towards Energy
Awareness and Predictability in the Linux
Kernel; Access Types and Memory
Management in Ada 2012; Using Gnoga
for Desktop/Mobile GUI and Web
development in Ada.

In addition, on Friday the conference
hosts for the 3rd consecutive year the
International Workshop on "Challenges
and new Approaches for Dependable and

Ada-re lated Events 69

Ada User Journal Volume 37, Number 2, June 2016

Cyber-Physical Systems Engineering"
(De-CPS 2016).

Three eminent keynote speakers have
been invited to open each day of the core
conference program. Alan Burns, in "Why
the Expressive Power of Languages such
as Ada is needed for Future Cyber
Physical Systems", shows how Ada
provides programming abstractions to
exploit the wealth of real-time scheduling
theory available to obtain efficient
resource utilization. Valerio Giorgetta, in
"Challenges for the Automotive Platform
of the Future", shows how cars will be
impacted by the various technologies
currently in development. Marc Duranton,
in "The HiPEAC Vision", presents the
roadmap of the European Network on
High Performance and Embedded
Architecture and Compilation to address
the upcoming challenges in computing
systems.

The technical program presents 12
refereed and carefully selected papers on
the latest research, new tools, applications
and industrial practice and experience, a
collection of 8 industrial presentations
reflecting current practice and challenges,
2 presentations and a discussion in a
special "Ada & Parallelism" session, a
project presentation and a poster session,
and vendor presentations. Springer Verlag
publishes keynote talks and all peer-
reviewed papers in the proceedings of the
conference, as LNCS Vol. 9695. The
remainder of the proceedings will be
published in the Ada User Journal, the
quarterly magazine of Ada-Europe.

The industrial exhibition opens Tuesday
morning and runs until the end of
Thursday afternoon. Exhibitors include
AdaCore, Ansys/Esterel, PTC Developer
Tools, Rapita Systems, Vector Software,
and Ada-Europe.

The social program includes a Welcome
Reception on Tuesday evening in the
garden of the Scuola Superiore Sant'Anna,
and on Wednesday evening the traditional
Ada-Europe Conference Banquet will be
held at the cloister of Santa Maria del
Carmine in the pedestrian area in the
center of Pisa close to the Arno river.
Each day, coffee breaks in the exhibition
area and sit-down lunches offer ample
time for interaction and networking.

The Best Paper Award will be presented
during the Conference Banquet, the Best
Presentation Award during the Closing
session.

The conference is hosted by the Scuola
Superiore Sant'Anna, an internationally
renowned university school located in the
heart of Pisa. The Scuola can be easily
reached from the Campo dei Miracoli
airport or the railway station.

The full program is available on the
conference web site.

Online registration is still possible.

Latest updates:

The "Final Program" is available at

http://www.ada-europe.org/
conference2016/
AE2016_final_program.pdf

Check out the 8 tutorials in the PDF
program, or in the schedule at

http://www.ada-europe.org/
conference2016/tutorials.

Registration fees are very reasonable and
the registration process is done on-line.
Don't delay! For all details, see

http://www.ada-europe.org/
conference2016/reg.

The proceedings, published by Springer
Verlag as Lecture Notes in Computer
Science Vol. 9695, are ready and will be
distributed at the conference. See
http://www.springer.com/gp/book/
9783319390826.

Help promote the conference by
advertising for it!

http://www.ada-europe.org/
conference2016/promo.

Recommended Twitter hashtags:
#AdaEurope and/or #AdaEurope2016.

The 16-page "Advance Program" is still
available for viewing at

http://www.ada-europe.org/
conference2016/
AE2016_advance_program_lq.pdf

and for printing at

http://www.ada-europe.org/
conference2016/
AE2016_advance_program.pdf

For the latest information consult the
conference web site

http://www.ada-europe.org/
conference2016.

 “Make with Ada”

Programming Competition

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Mon, 20 Jun 2016 10:45:19 -0700
Subject: AdaCore Launches “Make with

Ada” Programming Competition, with
€5000 Top Prize

Newsgroups: comp.lang.ada

AdaCore today announced the launch of
the “Make with Ada” programming
competition, a contest that aims to help
the embedded software community
improve the quality of their code by
encouraging the use of the Ada and
SPARK programming languages. The
competition will run from June 20 to
September 30, 2016 and offers over
€8000 in total prizes. Participants can
register for the competition at
www.makewithada.org.

Competition Rules

The competition is open to individuals

and to teams with up to four members.
The goal is to design and implement an
embedded software project for an ARM
Cortex M or R processor where Ada
and/or SPARK are the principal language
technologies. Entrants will need to
demonstrate that their system meets its
requirements and has been developed
using sound software engineering
practices. Submission deadline is
September 30, 2016. The award winners
will be announced in November 2016.

Prizes and Judging Criteria

Cash prizes will be awarded to the
projects that best meet the overall criteria
of software dependability, openness,
collaborativeness and inventiveness.

- Top Prize - 5000 Euros

- Second Prize – 2000 Euros

- Third Prize – 1000 Euros

Two special awards (nano-drones) will
also be offered: one for the project rated
best for dependability, and the other for
the project rated best for inventiveness.

Judges

The competition judges include embedded
systems experts Jack Ganssle, Principal
Consultant at The Ganssle Group; Dick
Selwood, Europe Editor at
TechfocusMedia; Bill Wong, Technical
Editor at Penton Media; and Cyrille
Comar, AdaCore President.

“Building an application in Ada on a
deeply-embedded microcontroller like the
Cortex M or R will be a ton of fun, and is
a great way to demonstrate how Ada leads
to great code,” said competition judge
Jack Ganssle.

“This is an exciting opportunity for
developers to try a new technology and
show their imagination and programming
talents,” said Fabien Chouteau, AdaCore
software engineer and author of the Make
With Ada blog post series. “Ada is most
known for its usage in large-scale long-
lived systems but it is also an excellent
tool even for the most humble embedded
project.”

The “Make with Ada” competition is part
of an overall AdaCore initiative to foster
the growth of Ada and SPARK for
developing embedded systems and more
generally for developing “software that
matters”. Other elements of this initiative
are the free on-line training available at
AdaCore U, and the various resources for
free software developers and
students/hobbyists at the github repository
and the libre site.

Further information about Ada and
SPARK, along with links to free resource
pages and instructions on how to get
started by downloading the GNAT GPL
edition for Bare Board ARM, are
available at makewithada.org/getting-
started.

70 Ada-re lated Tools

Volume 37, Number 2, June 2016 Ada User Journal

Ada-related Resources

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sun Jul 3 2016
Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn: 2_425 members [1]

- Reddit: 870 readers [2]

- Google+: 668 members [3]

- StackOverflow: 530 followers [4]

- Freenode: 78 participants [5]

- Twitter: 8 tweeters [6]

[1] https://www.linkedin.com/
groups?gid=114211

[2] http://www.reddit.com/r/ada/

[3] https://plus.google.com/communities/
102688015980369378804

[4] http://stackoverflow.com/questions/
tagged/ada

[5] #Ada on irc.freenode.net

[6] https://twitter.com/search?f=realtime
&q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
37-1, p. 6. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sun Jul 3 2016
Subject: Repositories of Open Source

software

GitHub: 1_277 repositories [1]

 332 developers [1]

 1_064 issues [1]

Rosetta Code: 626 examples [2]

 30 developers [3]

 0 issues [4]

Sourceforge: 247 repositories [5]

BlackDuck OpenHUB: 211 projects [6]

Bitbucket: 76 repositories [7]

OpenDO Forge: 24 projects [8]

 491 developers [8]

Codelabs: 14 repositories [9]

AdaForge: 8 repositories [10]

[1] https://github.com/search?q=language
%3AAda&type=Repositories

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] http://rosettacode.org/wiki/Category:
Ada_examples_needing_attention

[5] http://sourceforge.net/directory/
language%3Aada/

[6] https://www.openhub.net/tags?
names=ada

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://forge.open-do.org/

[9] http://git.codelabs.ch/

[10] http://forge.ada-ru.org/adaforge

[See also “Repositories of Open Source
Software”, AUJ 37-1, p. 6. —sparre]

Ada-related Tools

Reading Microsoft Excel
Files

From: Jean François Martinez
<darkquark99@gmail.com>

Date: Tue, 1 Mar 2016 02:42:38 -0800
Subject: Reading Excel 2010 files with Ada

on Linux
Newsgroups: comp.lang.ada

Anyone knows if there is an Ada package
for reading xlsx files? The program will
run on Linux so the package must not
depend on Microsoft libraries.

I have googled around but all what I have
found is a package for writing Excel files
not for reading them.

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 1 Mar 2016 06:42:54 -0800
Subject: Re: Reading Excel 2010 files with

Ada on Linux
Newsgroups: comp.lang.ada

An xlsx file is actually a Zip file
containing XML files.

The first step would be to open the file or
stream with Zip-Ada [1], then parse the
appropriate XML entry with XML/Ada
[2].

[1] http://unzip-ada.sf.net

[2] http://libre.adacore.com/tools/xmlada/

Simple Components

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 1 Mar 2016 22:48:02 +0100
Subject: ANN: Simple Components for Ada

v4.11 released
Newsgroups: comp.lang.ada

The library version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE

754 representations support, multiple
connections server/client designing tools.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- ELV/e-Q3 MAX! client protocol
implementation corrected;

- ELV/e-Q3 MAX! client supports
reading measured temperature from
radiator thermostats;

- ELV/e-Q3 MAX! client subprograms
Get_Error, Has_Device_Data,
Query_NTP_Servers, Reset_Devices,
Reset_Error, Set_NTP_Servers added;

- ELV/e-Q3 MAX! client messages and
commands A, F, N support added;

- GNUTLS bindings updated to the latest
version.

[See also “Simple Components”, AUJ 36-
4, p. 202. —sparre]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 12 Apr 2016 20:48:03 +0200
Subject: Simple Components 4.12 with

MQTT implementation released
Newsgroups: comp.lang.ada

[...]

This new version provides a full
implementation of MQTT protocol. The
implementation includes a raw MQTT
stack for custom clients/servers and a full
implementation of a broker with
persistent sessions support, retained topics
and bulk messages publishing. The broker
implementation also provides some
enhancements with regard of topic
publishing in order to alleviate the MQTT
protocol drawbacks. Stream interfaces to
the message content are supported as
well.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 30 May 2016 22:36:59 +0200
Subject: ANN: Simple Components v4.13

released
Newsgroups: comp.lang.ada

[...]

This version fixes bugs in the MQTT
broker.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 20 Jun 2016 19:14:40 +0200
Subject: ANN: Simple Components for Ada

v4.14 with SMTP client
Newsgroups: comp.lang.ada

The new version provides an
implementation of SMTP client. As other
protocols implementations provided by
the library, this one is driven by the
multiple-connections server so that a
single Ada task can handle multiple
connections and multiple protocols.

The implementation is asynchronous
capable to send more than one mail. A
simplified synchronous (blocking) variant

Ada-re lated Tools 71

Ada User Journal Volume 37, Number 2, June 2016

is provided as well. MIME/attachments
are supported. SSL/TLS is also possible
in both its variants: sessions encrypted
from the start and opportunistic TLS
sessions AKA STARTTLS. The TLS
support is based on GNUTLS.

http://www.dmitry-kazakov.de/ada/
components.htm

Bug reports and feature requests are
welcome.

GtkAda Contributions

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 3 Mar 2016 18:09:27 +0100
Subject: ANN: GtkAda contributions v3.15

released
Newsgroups: comp.lang.ada

The library extends GtkAda providing:

- Tasking support;

- Custom models for tree view widget;

- Custom cell renderers for tree view
widget;

- Multi-columned derived model;

- Extension derived model (to add
columns to an existing model);

- Abstract caching model for directory-
like data;

- Tree view and list view widgets for
navigational browsing of abstract
caching models;

- File system navigation widgets with
wildcard filtering;

- Resource styles;

- Capturing resources of a widget;

- Embeddable images;

- Some missing subprograms and bug
fixes;

- Measurement unit selection widget and
dialogs;

- Improved hue-luminance-saturation
color model;

- Simplified image buttons and buttons
customizable by style properties;

- Controlled Ada types for GTK+ strong
and weak references;

- Simplified means to create lists of
strings;

- Spawning processes synchronously and
asynchronously with pipes;

- Capturing asynchronous process
standard I/O by Ada tasks and by text
buffers;

- Source view widget support.

http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm

Changes to the previous version:

- Get_Clip_Rectangle procedure and
function added to Gtk.Missed;

- Freeze_Notify and Thaw_Notify added
to Gtk.Missed.

[See also “GtkAda Contributions”, AUJ
36-4, p. 202. —sparre]

Industrial Control Widget
Library

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 4 Mar 2016 17:29:06 +0100
Subject: ANN: Ada Industrial Control

Widget Library v3.13 released
Newsgroups: comp.lang.ada

The software is based on GtkAda, Ada
bindings to GTK+ and Cairo. The key
features of the library:

- Widgets composed of transparent layers
drawn by cairo;

- Fully scalable graphics;

- Support of time controlled refresh policy
for real-time and heavy-duty
applications;

- Caching graphical operations;

- Stream I/O support for serialization and
deserialization;

- Ready-to-use gauge, meter, oscilloscope
widgets;

- Editor widget for WYSIWYG design of
complex dashboards.

http://www.dmitry-kazakov.de/ada/
aicwl.htm

Changes to the previous version:

- Minor changes improving performance;

- Waveform sweeper interface is
enhanced to suppress the "draw" signal
flood when a sweeper is shared by
several independent widgets.

[See also “Industrial Control Widget
Library”, AUJ 36-4, p. 202. —sparre]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 13 Apr 2016 18:33:47 +0200
Subject: Ada industrial control widget

library 3.14 released
Newsgroups: comp.lang.ada

The library is provided for design high-
quality industrial control widgets for Ada
applications. The software is based on
GtkAda, Ada bindings to GTK+ and
cairo.

http://www.dmitry-kazakov.de/ada/
aicwl.htm

Changes to the previous version:

- In Gtk_Oscilloscope, when the selection
mode is set to None, the selection
highlighting on left button press is
turned off;

- The right button click drop-down
Gtk_Oscilloscope menu item Latest data
is shown only if at least one sweeper
does render time;

- Gtk_Oscilloscope drop-down menu
items can be individually enabled and
disabled;

- Add_Group of Gtk_Oscilloscope
accepts an amplifier object to use with
the group;

- Set_Renderer was added to
Gtk.Layered.Graph_Paper_Annotation;

- Get_Suffix and Set_Suffix were added
to
Gtk.Layered.Graph_Paper_Annotation;

- Get_Time_Tooltip_Suffix,
Get_Tooltip_Annotation,
Get_Values_Tooltip_Suffix,
Set_Time_Tooltip_Suffix,
Set_Tooltip_Annotation,
Set_Values_Tooltip_Suffix were added
to Gtk_Oscilloscope;

- Function Image was added to
Gtk.Layered.Graph_Paper_Annotation;

- Extrapolation left and right was added to
Gtk.Layered.Waveform and
Gtk.Oscilloscope;

- Get_Release_To_Latest and
Set_Release_To_Latest were added to
Gtk.Oscilloscope;

- Undo/redo stubs with pattern matched
names added to Gtk.Oscilloscope.

ZLib-Ada

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 8 Mar 2016 13:35:43 -0800
Subject: Poll for the users of ZLib-Ada
Newsgroups: comp.lang.ada

What is the lowest compression level that
you need usually ?

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Sat, 12 Mar 2016 21:37:45 +0100
Subject: Re: Poll for the users of ZLib-Ada
Newsgroups: comp.lang.ada

> [...]

I think we use whatever the default is.

We use it to zip logfiles after they grow
too large.

I guess we are happy with the level of
compression we get, I don't think there
has ever been a question raised addressing
the level.

Pretty-printing Tools

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sun, 13 Mar 2016 19:07:32 +0100
Subject: Pretty-printer? (Alternatives to

"gnatpp")
Newsgroups: comp.lang.ada

What pretty-printers are available for Ada
(83-2012)?

I'm already aware of "gnatpp", but it has a
disadvantage:

72 Ada-re lated Tools

Volume 37, Number 2, June 2016 Ada User Journal

 1) You have to have set up the
environment to compile the source file,
before you can pretty-print it.

What alternatives are there?

How do they fare compared to "gnatpp"?

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Sun, 13 Mar 2016 22:42:07 +0100
Subject: Re: Pretty-printer? (Alternatives to

"gnatpp")
Newsgroups: comp.lang.ada

The (new) Ada mode for Emacs can be
used as a pretty printer, for all versions of
Ada, and it supports automatic letter case.
The user may define a list of exceptions to
the casing rules that he prefers.

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Sun, 13 Mar 2016 17:58:13 -0700
Subject: Pretty-printer? (Alternatives to

"gnatpp")
Newsgroups: comp.lang.ada

Byron is at the lexing stage, it could
therefore be used as input to a pretty-
printer... or just add a "filter" function that
has a local dictionary w/ identifiers of the
casing you want and iterate over the
token-array with the following
conditional:

IF token is identifier THEN

 IF identifier not present THEN add
identifier to dictionary

 OTHERWISE replace identifier w/ one
of the found casing.

 END IF

END IF

https://github.com/OneWingedShark/
Byron

From: Britt <britt.snodgrass@gmail.com>
Date: Mon, 14 Mar 2016 17:15:44 -0700
Subject: Re: Pretty-printer? (Alternatives to

"gnatpp")
Newsgroups: comp.lang.ada

For formatting single files as you edit, I've
been happy enough with the formatting
capabilities build into GPS and
GNATbench. These don't require files to
be completely compilable.

Cortex GNAT Run Time
Systems

From: Simon Wright
<simon@pushface.org>

Date: Mon, 14 Mar 2016 17:42:22 +0000
Subject: ANN: Cortex GNAT RTS 20160314
Newsgroups: comp.lang.ada

At https://sourceforge.net/projects/cortex-
gnat-rts/files/20160314/.

This release includes

- an RTS for the Arduino Due, arduino-
due, and a minimal BSP, arduino-due-
bsp.

- an RTS for the STM32F429I-DISCO,
stm32f429i-disco-rtos, based on
STMicroelectronics' STM32Cube
package and FreeRTOS, and a
corresponding partial BSP, stm32f429i-
disco-bsp.

- an RTS for the STM32F429I-DISCO,
stm32f429i, based on FreeRTOS, with a
set of peripheral definition packages
created by SVD2Ada.

In this release,

- the Containers support generalized
iteration ("for all E of C loop"). Note,
this is achieved by removing tampering
checks. While tampering errors are rare,
it would be as well to check algorithms
using a fully-featured desktop compiler.

The standard packages included (there are
more, implementation-specific, ones) are:

- Ada

- Ada.Containers

- Ada.Containers.Bounded_Hashed_Maps

- Ada.Containers.Bounded_Vectors

- Ada.Exceptions

- Ada.IO_Exceptions

- Ada.Interrupts

- Ada.Interrupts.Names

- Ada.Iterator_Interfaces

- Ada.Real_Time

- Ada.Streams

- Ada.Synchronous_Task_Control

- Ada.Tags

- Ada.Task_Identification

- Interfaces

- Interfaces.C

- Interfaces.C.Strings

- System

- System.Assertions

- System.Address_To
_Access_Conversions

- System.Storage_Elements

[See also “Cortex GNAT Run Time
Systems”, AUJ 37-1, p. 15. —sparre]

From: Simon Wright
<simon@pushface.org>

Date: Sun, 22 May 2016 15:20:39 +0100
Subject: ANN: Cortex GNAT RTS 20160522
Newsgroups: comp.lang.ada

Available at

https://sourceforge.net/projects/
cortex-gnat-rts/files/20160522/

This release includes GNAT Ada Run
Time Systems (RTSs) based on
FreeRTOS (http://www.freertos.org) and
targeted at boards with Cortex-M3, -M4, -
M4F MCUs (Arduino Due from
http://www.arduino.org, the STM32F4-
series evaluation boards from
STMicroelectronics at
http://www.st.com).

In each case, the board support for the
RTS (configuration for size and location
of Flash, RAM; clock initialization;
interrupt naming) is in $RTS/adainclude.
Support for the on-chip peripherals is also
included, in Ada spec files generated by
SVD2Ada
(https://github.com/AdaCore/svd2ada).

The Ada source is either original or based
on FSF GCC (mainly 4.9.1, some later
releases too).

(1) arduino-due is a Ravenscar-style
RTOS based on FreeRTOS from
http://www.freertos.org for the Arduino
Due.
See arduino-due/COPYING* for
licensing terms.
On-chip peripheral support in
atsam3x8e/.
Tests in test-arduino-due/.

(2) stm32f4 is a Ravenscar-style RTOS
based on FreeRTOS from
http://www.freertos.org for the
STM32F4-DISC* board.
See stm32f4/COPYING* for licensing
terms.
On-chip peripheral support in
stm32f40x/.
Tests in test-stm32f4/.

(3) stm32f429i is a Ravenscar-style
RTOS based on FreeRTOS from
http://www.freertos.org for the
STM32F429I-DISC* board.
See stm32f429i/COPYING* for
licensing terms.
On-chip peripheral support in
stm32f429x/.
Tests in test-stm32f429i/.

In this release,

- There is no longer any dependence on
the STMicroelectronics' STM32Cube
package.

- The support for on-chip peripherals is
limited to the SVD2Ada-generated spec
files. The AdaCore 'bareboard' software
(currently
https://github.com/AdaCore/bareboard,
but a name change is under
consideration) supports the STM32 line.

- Tasking no longer requires an explicit
start (https://sourceforge.net/p/cortex-
gnat-rts/tickets/5/).

- Locking in interrupt-handling protected
objects no longer inhibits all interrupts,
only those of equal or lower priority
(https://sourceforge.net/p/cortex-gnat-
rts/tickets/18/).

[...]

MQTT

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 24 Mar 2016 20:15:21 +0100
Subject: MQTT native Ada implementation
Newsgroups: comp.lang.ada

Ada-re lated Tools 73

Ada User Journal Volume 37, Number 2, June 2016

The incoming version of Simple
Components will provide a native (not
bindings) implementation of the MQTT
3.1.1 stack and on top of it a full MQTT
messages broker.

In order to test the implementation I
would be thankful for MQTT test use
cases.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 26 Mar 2016 10:05:59 +0100
Subject: Re: MQTT native Ada

implementation
Newsgroups: comp.lang.ada

> Do you implement support for the TLS
transport as well?

Yes. The implementation is driven by a
connections server object. The
connections server may run several
protocols simultaneously. The server
itself has a number of implementations,
one of them is a secure server that uses
GNUTLS as the SSL/TLS layer. That
should do it, I think.

MQTT with TLS must be quite slow with
the QoS level 2, which deploys a lot of
small packets sent here and there. And in
general, MQTT design is not very
exciting, but it was easy to implement, so
I gave it a try.

[See also “Mosquitto”, AUJ 36-3, p. 122.
—sparre]

Zip-Ada

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Wed, 30 Mar 2016 23:30:12 -0700
Subject: Ann: Zip-Ada v.50
Newsgroups: comp.lang.ada

There is a new version of Zip-Ada @
http://unzip-ada.sf.net .

In a nutshell, there are now, finally, fast
and efficient compression methods
available.

* Changes in '50', 31-Mar-2016:

 - Zip.Compress.Shrink is slightly faster

 - Zip.Compress.Deflate has new
compression features:

 - Deflate_Fixed is much faster, with
slightly better compression

 - Deflate_1 was added: strength similar
to zlib, level 6

 - Deflate_2 was added: strength similar
to zlib, level 9

 - Deflate_3 was added: strength similar
to 7-Zip, method=deflate, level 5

As you perhaps know, the Deflate format
performs compression in two steps by
combining a LZ77 algorithm with
Huffman encoding.

In this edition, two known algorithms are
combined probably for the first time
within the same software.

Additionally, the determination of
compressed blocks' boundaries is done by
an original algorithm based on similarities
between Huffman code sets.

Zip-Ada is a library for dealing with the
Zip compressed archive file format. It
supplies:

- compression with the following sub-
formats ("methods"): Store, Reduce,
Shrink (LZW) and Deflate

- decompression for the following sub-
formats ("methods"): Store, Reduce,
Shrink (LZW), Implode, Deflate, BZip2
and LZMA

- encryption and decryption (portable Zip
2.0 encryption scheme)

- unconditional portability - within limits
of compiler's provided integer types and
target architecture capacity

- input (archive to decompress or data to
compress) can be any data stream

- output (archive to build or data to
extract) can be any data stream

- types Zip_info and Zip_Create_info to
handle archives quickly and easily

- cross format compatibility with the most
various tools and file formats based on
the Zip format: 7-zip, Info-Zip's Zip,
WinZip, PKZip, Java's JARs,
OpenDocument files, MS Office 2007+,
Nokia themes, and many others

- task safety: this library can be used ad
libitum in parallel processing

- endian-neutral I/O

 [See also “Zip-Ada”, AUJ 36-2, p. 63.
 —sparre]

Thin XCB Binding

From: Joakim Strandberg
<joakimds@kth.se>

Date: Sat, 16 Apr 2016 06:56:45 -0700
Subject: Announcing Ada binding to the

XCB library
Newsgroups: comp.lang.ada

This may be a bit premature since there
are a few functions from "the core library"
missing, but I would like to announce the
existence of an Ada binding to the XCB
library:

https://github.com/joakim-strandberg/
xcb_library_thin_ada_binding

Much of the code in the Ada binding is
auto-generated from a file called
xproto.xml. I have not (yet) uploaded the
application that does the parsing and
generates the Ada code, but I would like
to share with you that I did not base it
upon XMLAda, but wrote the XML
parsing code by hand (for fun!) and to do
the parsing of UTF8 characters I used the
code from Strings_Edit from Simple
Components written by Dmitry Kazakov.
And so, special thanks to him! (I am
going to update the README-file with
this information too).

Dequesterity

From: Brad Moore
<bmoore.ada@gmail.com>

Date: Thu, 21 Apr 2016 23:17:46 -0700
Subject: ANN: Dequesterity v1.5 (Buffers of

many shapes and sizes)
Newsgroups: comp.lang.ada

I am pleased to announce the availability
of Dequesterity, version 1.5

Dequesterity is a set of Ada 2005 generics
that provide various forms of general
purpose buffer containers. Buffers may be
used as deques, queues, ring buffers,
stacks, double ended stacks, vectors,
priority queues, and similar abstractions.

There are various concurrent buffers,
priority buffers, streaming buffers, remote
buffers. In fact there are now over 100
buffer packages to choose from.

This release mostly fixes some issues with
the streaming Ravenscar buffers.

Those examples were no longer
compiling with the GNAT GPL 2015
version of the compiler. The compilations
were failing due to violations of the
Ravenscar restrictions,
No_Protected_Type_Allocators and
No_Local_Protected_Objects.

I believe these are valid restrictions that
just were not being caught in earlier
versions of the compiler. The problem is
that the Stream Buffer has an internal
record component that is an internal
buffer implemented as a protected type.

To address these restrictions, I had to pull
out the internal buffer declaration, and
instead have the programmer declare this
separately, then on the Stream Buffer
declaration, have the programmer
reference the "internal" buffer via an
access discriminant.

This release and older releases may be
downloaded from;

https://sourceforge.net/projects/
dequesterity/files/

Thanks to Daniel for alerting me to the
fact that the Ravenscar examples were no
longer compiling.

[See also “Dequesterity”, AUJ 33-4, p.
237. —sparre]

Excel Writer

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Mon, 25 Apr 2016 06:04:42 -0700
Subject: Ann: Excel Writer v.15
Newsgroups: comp.lang.ada

A quick note to announce the latest
release of Excel Writer.

 http://excel-writer.sourceforge.net/

The changes since last note here are:

15: 23-Apr-2016:
- zoom factor for viewing / editing sheet

74 Ada-re lated Tools

Volume 37, Number 2, June 2016 Ada User Journal

- international code pages were added:
Thai, Japanese Shift-JIS, Chinese
Simplified GBK, Korean (Wansung),
Chinese Traditional BIG5, Latin II
(Central European), Cyrillic, Latin I,
Greek, Turkish, Hebrew, Arabic, Baltic,
Vietnamese, Korean (Johab).

14: 20-Jul-2014:

- cells "locked" (Excel's default, this
allows formula protection)

- Next, Next_Row admit zero as
parameter

[See also “ Excel Writer”, AUJ 35-2, p.
80. —sparre]

PDF_Out

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Mon, 25 Apr 2016 06:11:51 -0700
Subject: Ann: Ada PDF Writer v.002
Newsgroups: comp.lang.ada

Here is a note about the latest release of
Ada PDF Writer.

 http://apdf.sourceforge.net/

Latest changes are:

- ISO Latin-1 character support

- Image dimensions can be queried (useful
before inserting them!)

- Added tool: img2pdf

- Improved demo - vector graphics with
the Ada Mascot!

- Some fixes

[See also “ PDF_Out”, AUJ 37-1, p. 7.
—sparre]

PragmARC.Unbounded_
Integers

From: PragmAda Software Engineering
<pragmada@
pragmada.x10hosting.com>

Date: Fri, 29 Apr 2016 10:01:18 -0700
Subject: Modified Version of

Unbounded_Integers
Newsgroups: comp.lang.ada

Recent versions of GNAT, including GPL
2015 and gcc 6, have an error that
prevents them from compiling
PragmARC.Unbounded_Integers. There
is no telling when this error might be
corrected.

Also, some people have reported
confusion with having two procedures
with the same simple name and the same
parameter profile.

To accommodate both groups, the name
of one of these procedures has been
changed in the current version of the beta
PragmARCs. As this change is confined
to the package body, it will have no effect
on those who have used an earlier version
of the package.

The new version may be obtained from
the PragmAda web site or from the
Github repository.

[See also “ PragmAda Reusable
Components”, AUJ 37-1, p. 14. —sparre]

Imago

From: Tomasz “darkestkhan” Maluszycki
<darkestkhan@gmail.com>

Date: Sun, 1 May 2016 12:12:55 -0700
Subject: ANN: Imago 0.2 released.
Newsgroups: comp.lang.ada

https://github.com/darkestkhan/
imago/tree/0.2

Imago is a thin binding to DevIL -
Developers' Image Library (which is a
library that supports working with most
image formats). It closely follows original
API so for how information on how to use
it I recommend looking at original library
documentation and lazyfoo tutorials (and
just happens so that I have repository on
github with lazyfoo tutorials implemented
in Ada:
www.github.com/darkestkhan/lazyfoo)

AdaBase

From: John Marino
<dragonlace.cla@marino.st>

Date: Fri, 13 May 2016 13:37:15 -0700
Subject: ANN: Introducing AdaBase - Thick

database bindings for Ada
Newsgroups: comp.lang.ada

Hey guys, I know there are several
options for Ada to interface with
databases, but I wasn't happy with any of
them for various reasons and thus created
yet another option to scratch my itch. I
was aiming at a consistent interface to
which the various drivers adapt. With
some care, the database backends should
be interchangeable.

So far I've created drivers for MySQL and
SQLite and the driver for PostgreSQL is
next on my list. I'd like to eventually
support others such as Firebird, MSSQL,
Oracle, etc., but those will be very low
priority for me over the next year.
Contributions are welcome of course --
It's been released under the developer-
and commercial-friendly ISC license.

I've spent a lot of time documenting the
interface and providing a lot of real
examples. If you are at all looking for
something like this, I recommend that you
spend a few minutes going through the
descriptions and examples of all the
functions:

http://jrmarino.github.io/AdaBase/

It's been developed on DragonFly and
FreeBSD, and I haven't tested it on
Windows yet, but I will. it's already
available for BSD users, see:
http://www.freshports.org/databases/
adabase

I believe AdaBase is already mature for
MySQL and SQLite, but reports of issues
will be welcome. I'm active on github, so
issues and pull requests will be
dispositioned quickly if you wish to
leverage those tools.

Hopefully other people will find this
project useful!

From: John Marino
<dragonlace.cla@marino.st>

Date: Thu, 16 Jun 2016 13:33:05 -0700
Subject: ANN: AdaBase 3.1 - includes

Spatial data / Geographic object support
Newsgroups: comp.lang.ada

I had intended that release 3.1 of AdaBase
be a quick improvement that would add
three new native data types:

 1) Bit type (like bit flags)

 2) UTF8 encoded strings

 3) Spatial data types / OpenGIS
Geometry

The first two were relatively straight-
forward. Bits were sort of already
supported but inconsistently and
sometimes as strings. Now they are an
array of bits for easy manipulation.

AdaBase tries to be smart with regard to
encoding. It forces the server to send text
strings encoded as UTF8 and stores it
natively and decodes them to
strings/w/ws/ as necessary.

The support for MySQL spatial data types
and the PostGIS extension for
PostgreSQL took far longer than I
anticipated. The result is pretty good, I
think, it allows AdaBase to directly query
geometry fields without the use of
database server-side functions to convert
and extract. It reads the internal format of
MySQL and PostGIS directly and
converts them to Well Known Binary
(WKB) which can be used to construct
AdaBase Geometry objects and also into
Well Known Text. This eliminates a lot of
overhead as point data can be directly
used immediately after a simple query
that pulls raw column data.

I wrote a pretty log documentation[1]
page with two separate test cases to show
geometry data extraction and the
geometry data construction and insertion.
I don't know if anybody needs this
feature, but I have a feeling there aren't a
lot of database API packages that can
handle GIS data like this.

[1] https://jrmarino.github.io/AdaBase/
geometry.html

[2] https://github.com/jrmarino/AdaBase

Stream Tools

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Sat, 21 May 2016 13:38:25 +0200
Subject: [ANN] stream-tools 1.1.0
Newsgroups: comp.lang.ada

The suite now contains:

Ada-re lated Tools 75

Ada User Journal Volume 37, Number 2, June 2016

- A Stream implementing in-memory
pipes.

- Debug stream readers that prints to
standard output.

https://github.com/persan/
a-stream-tools/releases/tag/
1.1.0-2016-05-19

[See also “ Stream Tools”, AUJ 37-1,
p. 16. —sparre]

SymExpr

From: Riccardo Bernardini
<framefritti@gmail.com>

Date: Sun, 22 May 2016 08:46:46 -0700
Subject: ANN: SymExpr 1.1 (parsing and

manipulating expressions)
Newsgroups: comp.lang.ada

it seems that I never announced this
package that I wrote for the usual "itch of
mine." It is a small package that parses,
manipulates and evaluates basic
expressions (four operations, unary + and
-, function calls and variables). Maybe
later I'll extended it to be more general.

I wrote this piece of code because I
needed it for another program of mine.
After finishing writing the code, I
discovered that with minimal effort I
could have made it a stand-alone package,
and SymExpr was born.

If you want to know more, check out the
README of version 1.1 at

https://launchpadlibrarian.net/134442100/
README

If you want to try it,

https://launchpad.net/symexpr/+download

As with all this kind of projects, I wrote it
because I needed it; if it is useful to you,
you are welcome to use it. If you have
suggestions and/or requests, I am open to
them, although I cannot guarantee that I
will be able to satisfy them.

If you use it somewhere, it would improve
my self-esteem to know it :-) :-) :-)

Adequate

From: Rolf Ebert <rrr.eee.27@gmail.com>
Date: Tue, 31 May 2016 00:03:39 -0700
Subject: ANN: Adequate, MQTT broker and

client programs based on Kasakov's
Components

Newsgroups: comp.lang.ada

The Adequate project provides command
line clients for the MQTT protocol. All
the hard work is provided by Dmitry
Kazakov's Components. Among them is
an implementation of the MQTT protocol.

The Adequate project consists of three
programs

1. aq_broker, a MQTT broker or MQTT
server.

2. aq_pub, a MQTT client for publishing
single messages with a command line
interface.

3. aq_sub, a MQTT client for subscribing
to a topic (including wildcards). It also
only has a command line interface.

You can find the Github project here:

https://github.com/RREE/adequate

All programs are still in their infancy.
They should help you getting started with
Dmitry's code.

If you want to direct the future
development of Adequate I encourage
you to create Issues
(https://github.com/RREE/adequate/
issues). I also welcome adding and
extending the wiki pages
(https://github.com/RREE/adequate/wiki)
or Pull Requests.

GNAT GPL and SPARK
GPL

From: Nasser M. Abbasi
<nma@12000.org>

Date: Wed, 1 Jun 2016 08:33:56 -0500
Subject: fyi, GNAT and SPARK GPL 2016

are out
Newsgroups: comp.lang.ada

got this email from Ada core today:

Dear GNAT and SPARK GPL user,

We are pleased to announce the
availability of the GNAT and SPARK
GPL 2016 toolsets.

GNAT GPL 2016 incorporates upgraded
technology for the debugger (GDB 7.10)
along with support for the Windows 10
platform and many new features.

Ada runtime support has been extended
for the STM32f429-disco, STM32f469-
disco and STM32F7-disco development
boards based on the STM32 family of
microcontrollers.

- ravenscar sfp/full for the stm32f429-
disco board

- ravenscar sfp/full for the stm32f469-
disco board

- ravenscar sfp/full for the stm32f7-disco
board

SPARK GPL 2016 - the formal method
verification toolset - includes the
following new features:

- Support for concurrency with Ravenscar
and type predicates

- Generation of counterexamples for
unproved checks

- Better support of bitwise (modular)
operations in proof

- Generation of global summary table

You will find documentation about the
GNAT GPL 2016 and SPARK GPL 2016
toolset here:

http://libre.adacore.com/developers/
documentation

Both toolsets can be downloaded:

- from the "Download" section on GNAT
Tracker for GAP users
http://www.adacore.com/academia

- from libre site libre.adacore.com

GNATColl.JSON Support
Packages

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Thu, 2 Jun 2016 10:25:06 +0200
Subject: [ANN] gnatcoll-JSON-v0.0.6
Newsgroups: comp.lang.ada

Provides a set of support packages to for
JSON serialization/deserialization of to
Ada.Containers and some other types in
the "standard" packages.

This is the first release:

https://github.com/persan/
gnatcoll-json/releases/tag/
gnatcoll-JSON-v0.0.6

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Tue, 14 Jun 2016 20:35:43 +0200
Subject: [ANN] gnatcoll-JSON-v1.0.1
Newsgroups: comp.lang.ada

[...]

https://github.com/persan/
gnatcoll-json/releases/tag/
gnatcoll-JSON-v1.0.1

PragmARC.Text_IO

From: PragmAda Software Engineering
<pragmada@
pragmada.x10hosting.com>

Date: Fri, 3 Jun 2016 09:28:37 -0700
Subject: New Version of

PragmARC.Text_IO
Newsgroups: comp.lang.ada

There's a new version of package
PragmARC.Text_IO available. This
corrects an error in Skip_Line and
changes the line terminator used for
output from a single value used for all
files to a value per file, specified when the
file is opened or created.

The PragmAda Reusable Components are
available from the web site or from

https://github.com/jrcarter/PragmARC

[See also “PragmARC.Text_IO”,
AUJ 37-1, p. 15. —sparre]

I2C and SPI Support for
STM32F411RE Nucleo
Board

From: Sean Day
<seanjdayatd@gmail.com>

Date: Sun, 12 Jun 2016 23:48:26 -0700
Subject: STM32F411RE Nucleo Board
Newsgroups: comp.lang.ada

After a long break from Ada I have
attempted to get GNAT for bare-board
ARM running on an STM32F411RE
Nucleo board.

76 Ada-re lated Tools

Volume 37, Number 2, June 2016 Ada User Journal

I successfully got the Led_Demo running
and after some further investigation got
GNAT.IO working.

However, I have been unable to find
working examples of I2C or SPI sensors.

Any useful links?

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Mon, 13 Jun 2016 02:00:53 -0700
Subject: Re: STM32F411RE Nucleo Board
Newsgroups: comp.lang.ada

Have a look here: [1]. It's a library of
bare-metal drivers for Ada with an HAL
that allows portable sensor drivers over
I2C, SPI, UART, etc.

Contributions are welcome :)

[1] https://github.com/AdaCore/
Ada_Drivers_Library

From: Simon Wright
<simon@pushface.org>

Date: Mon, 13 Jun 2016 10:07:46 +0100
Subject: Re: STM32F411RE Nucleo Board
Newsgroups: comp.lang.ada

I did a little bit of unfinished work for I2C
here:

http://cloud.likeabird-group.eu:7990/
scm/~sjw/multiplexed-io.git

(subdirectory pcf8574a).

This was using SVD2Ada
(https://github.com/AdaCore/svd2ada).

GLOBE_3D

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Wed, 15 Jun 2016 04:22:19 -0700
Subject: Ann: GLOBE_3D Release 2016-06-

12 - Added multitexturing
Newsgroups: comp.lang.ada

A bit of progress - after a few years of
hibernation...

The news here are: multitexturing (so far,
diffuse + specular).

Surfaces reflect now light in a more
realistic way, provided specific textures
for specular reflection are provided.

GLOBE_3D is a GL Object Based 3D
engine realized with the Ada
programming language.

URL: http://globe3d.sf.net

First video captures published:

https://www.youtube.com/watch?
v=Bf7kyxVVIXs

https://www.youtube.com/watch?
v=_lEWKx2lZ88

PUGIXML_Ada

From: Warren Gay <ve3wwg@gmail.com>
Date: Tue, 14 Jun 2016 21:19:42 -0700
Subject: Announce: pugixml_ada -- pugixml

Thick Binding for Ada
Newsgroups: comp.lang.ada

This is a quick announcement of a new
thick Ada binding for pugixml. If you like
the simplicity and ease of use of
pugi::xml in C++, you may want to use
pugixml_ada in your Ada projects.

The github README shows a simple of a
XML config load. Demo program
pugidemo.adb also demonstrates the
creation of an XML config file.

See

 https://github.com/ve3wwg/pugixml_ada

The pugixml project is hosted here:

 http://pugixml.org/

XML Output

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 24 Jun 2016 07:44:54 -0700
Subject: generating an XML file using Ada

code
Newsgroups: comp.lang.ada

[...] I need to log all db operations to
either xml or json.

Using XMLAda, I don't see any way to
output a file; I searched for "Text_IO" in
the installed library code, and found only
input functions. One of the xml tutorials
mentions the C function
"xmlSaveFormatFile"; I can't find that in
the Ada code.

This question has been asked before on
this list, several years ago; I hope there is
a better answer now.

How can I create an XML file?

For JSON, there is the GNATColl.JSON
package, which provides a "Write"
function that serializes a JSON object to a
string. So I can use that, but I prefer XML
(it feels more Ada-like :).

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sat, 25 Jun 2016 08:32:57 +0300
Subject: Re: generating an XML file using

Ada code
Newsgroups: comp.lang.ada

> [...]

I have used XML EZ Out,
http://www.mckae.com/xmlEz.html, with
good results.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 25 Jun 2016 08:11:50 +0100
Subject: Re: generating an XML file using

Ada code
Newsgroups: comp.lang.ada

> How can I create an XML file?

In ASIS2XML[1] I say

 DOM.Core.Nodes.Print (Doc,

 Print_Comments => True,

 Print_XML_PI => True,

 EOL_Sequence => "");

This produces a single very long line of
XML; tidy will make a readable version.

Looking at DOM.Core.Nodes.Print,

 procedure Print

 (N : Node;

 Print_Comments : Boolean := False;

 Print_XML_PI : Boolean := False;

 With_URI : Boolean := False;

 EOL_Sequence : String :=

 Sax.Encodings.Lf_Sequence;

 Encoding : Unicode.Encodings.

 Unicode_Encoding :=

 Unicode.Encodings.Get_By_Name

 ("utf-8");

 Collapse_Empty_Nodes : Boolean :=

 False);

 -- For debugging purposes only!

 -- Same as Write, but the output is done on

 -- Stdout.

 -- Warning: the default values for the

 -- parameters are not the same as for

 -- write. For the latter, they are chosen so

 -- that by default the output is valid XML,

 -- whereas Print is mostly intended to be

 -- used for testsuite purposes, and the <

 -- default match that goal.

I see I should have used
DOM.Core.Nodes.Write! Another
example of scratch development code
making it into production.

[1] https://sourceforge.net/p/asis2xml/
code/ci/default/tree/asis2xml.adb

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Sat, 25 Jun 2016 16:14:31 +0200
Subject: Re: generating an XML file using

Ada code
Newsgroups: comp.lang.ada

> Using xmlada, I don't see any way to
output a file;

Maybe print a DOM like this?

http://docs.adacore.com/xmlada-docs/
dom.html#printing-dom-tress

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Sun, 26 Jun 2016 07:15:14 -0700
Subject: Re: generating an XML file using

Ada code
Newsgroups: comp.lang.ada

> How can I create an XML file?

You can use Matreshka's
XML.SAX.Pretty_Writers package to
generate XML text file and format it (if
necessary). It uses "SAX events" to
serialize data, thus you don't need to
construct whole XML DOM tree in
memory before writing to disk.

PragmAda Reusable
Components

From: PragmAda Software Engineering
<pragmada@
pragmada.x10hosting.com>

Date: Mon, 27 Jun 2016 15:36:53 -0700
Subject: New Version of PragmARCs for

ISO/IEC 8652:2007
Newsgroups: comp.lang.ada

Ada and Operat ing Systems 77

Ada User Journal Volume 37, Number 2, June 2016

There is a new version of the PragmAda
Reusable Components for compilers that
implement ISO/IEC 8652:2007 available.
It introduces a component for job pools
(PragmARC.Job_Pools) and contains
some improvements to
PragmARC.B_Strings.

The PragmARCS are available from the
web site or from the repository at

https://github.com/jrcarter/PragmARC

[See also “ PragmAda Reusable
Components”, AUJ 37-1, p. 14. —sparre]

Ada-related Products

Rapita Verification Suite

From: Rapita Systems
Date: Mon Jun 27 2016
Subject: Rapita launches RVS 3.5
URL: https://www.rapitasystems.com/news

/rapita-launches-rvs-35

Rapita Systems is proud to announce the
latest release of its on-target software
verification tool suite RVS, version 3.5.

Our team have worked tirelessly to make
this the highest quality release yet, with a
huge number of improvements and fixes
since 3.4.

We work with customers who are
developing to the highest standards of
safety and mission critical software. For
this reason, the quality of our tools is
paramount. With this release, we have
raised the bar higher still.

A quick summary of the improvements in
this version:

- New MC/DC optimization options

- Support for newer versions of GNAT
Pro

- Support for a number of new Ada
language features

- Qualification support for code masking

- Improved support for 16-bit DSP chips

- Many improvements to support qualified
use of options that reduce
instrumentation overheads

- Compiler wrappers can now be used in
qualified integrations

- Hundreds of minor bug fixes

Get in touch with us at
enquiries@rapitasystems.com for more
information on RVS. Registered users can
download the latest version through our
downloads manager.

What is RVS?

RVS (Rapita Verification Suite)
measures, optimizes and verifies the
timing performance and test effectiveness
of critical real-time embedded systems in
industries such as aerospace and
automotive. RVS enables aerospace and
automotive electronics engineers to tackle

the challenges of developing and
maintaining critical real-time embedded
systems. Qualification support is available
for both RapiTime and RapiCover within
projects requiring DO-178B/C or ISO
26262 certification.

RVS includes the following plugins:

- RapiTime™ – Performance
measurement and timing analysis,
including worst-case execution time
(WCET)

- RapiCover™ – Structural coverage
analysis, including MC/DC coverage

- RapiTask™ – Visualization of RTOS
scheduling and event tracing

[See also “ Rapita Verification Suite”,
AUJ 36-4, p. 204. —sparre]

Ada and Operating
Systems

FreeBSD: PragmAda
Reusable Components

From: John Marino
<dragonlace.cla@marino.st>

Date: Fri, 4 Mar 2016 07:05:44 -0800
Subject: Re: New Version of

PragmARC.Text_IO
Newsgroups: comp.lang.ada

Thanks for moving this to Github. It made
it easy for me to add PragmARCs to
FreeBSD ports:

http://www.freshports.org/devel/
pragmarcs/

[...]

FreeBSD: Simple
Components

From: John Marino
<dragonlace.cla@marino.st>

Date: Fri, 4 Mar 2016 05:50:02 -0800
Subject: Re: ANN: Simple Components for

Ada v4.11 released
Newsgroups: comp.lang.ada

I updated the FreeBSD port to the latest
version:

http://www.freshports.org/devel/
simple_components/

Mac OS X: GCC

From: Simon Wright
<simon@pushface.org>

Date: Sat, 07 May 2016 14:58:02 +0100
Subject: ANN: GCC 6.1.0 for OS X El

Capitan
Newsgroups: comp.lang.ada

This compiler is released in both native
and cross-compiler configurations at:

https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
6.1.0/

Compilers included: Ada, C, C++,
Objective C, Objective C++, Fortran.

Tools included:

Full GPL:

 ASIS, AUnit, GDB, and GNATColl from
GNAT GPL 2015.

GPL with Runtime Library Exception[1]:

- Gprbuild from the public Git
repository[2] at commit
11f9b58c0283586f4fb134ff8c022f1117b
58223

- XMLAda from the public Git
repository[3] at commit
8a9536bf161125cb1e12da376e8d7b51f1
b33677

(I would have included GNATColl here,
but it now relies on "libgpr"; waiting for
GNAT GPL 2016 to see what this means.)

[1] http://www.gnu.org/licenses/
gcc-exception-faq.html

[2] https://github.com/AdaCore/gprbuild

[3] https://github.com/AdaCore/xmlada

This is GCC 6.1.0, rebuilt as a cross-
compiler from Mac OS X to arm-eabi
(specifically, the Cortex-M3 as found on
the Arduino Due[1] and the Cortex-M4 as
found on the STMicroelectronics[2]
STM32F4 Discovery and STM32F429I
Discovery boards).

The compiler comes with no Ada
Runtime System (RTS). See the Cortex
GNAT Run Time Systems project[3] for
candidates.

[1] http://www.arduino.com

[2] http://www.st.com

[3] https://sourceforge.net/projects/
stm32f4-gnat-rts/

From: Simon Wright
<simon@pushface.org>

Date: Sun, 05 Jun 2016 11:04:58 +0100
Subject: Re: ANN: GCC 6.1.0 for OS X El

Capitan
Newsgroups: comp.lang.ada

It turns out that the native-2015
README makes a claim that I in fact
failed to fulfil. I've updated it and
uploaded a patch for manual application,
if needed; only if you're going to be
building a relocatable library (e.g. your
own version of GNATColl).

The relevant section of the updated
README says

Library names

The ld error "library not found for -lgnat-
6.1" will be encountered when using
gprbuild to link a relocatable library
(ordinary relocatable links should be OK).
The reason is that the GCC build process
only generates libgnat-6.dylib, libgnarl-
6.dylib, but gprbuild tries to link against
libgnat-6.1.dylib (why it wouldn't just link
against libgnat.dylib I don't know).

78 References to Publ icat ions

Volume 37, Number 2, June 2016 Ada User Journal

You can fix by either of

* installing the necessary symbolic links:
in $prefix/lib/gcc/x86-64-apple-
darwin15/6.1.0/adalib,
sudo ln -s libgnat-6.dylib libgnat-
6.1.dylib
sudo ln -s libgnarl-6.dylib libgnarl-
6.1.dylib

* patch gprbuild's database: download
share-gprconfig-compilers.xml.diff, then
in $prefix,
sudo patch -p1 <~/Downloads/share-
gprconfig-compilers.xml.diff

[See also “ Mac OS X: GCC”, AUJ 36-4,
p. 206. —sparre]

From: Simon Wright
<simon@pushface.org>

Date: Sun, 03 Jul 2016 18:07:05 +0100
Subject: ANN: GCC 6.1.0 for OS X El

Capitan, with GPL 2016 tools
Newsgroups: comp.lang.ada

At https://sourceforge.net/projects/
gnuada/files/GNAT_GCC%20Mac%20O
S%20X/6.1.0/native-2016/

This is GCC 6.1.0 built for Mac OS X El
Capitan (10.11.4, Darwin 15.4.0), with
the Command Line Tools for Xcode 7.

gcc-6.1.0-x86_64-apple-darwin15-2016-
bin.tar.bz2

Compilers included: Ada, C, C++,
Objective C, Objective C++, Fortran.

Tools included:

Full GPL:

- ASIS, AUnit, and GDB from GNAT
GPL 2016.

- Gprbuild from the public Git
repository[2] at commit c5c26c2683
fcdd9c1fc684274faaad1b30c762e1

GPL with Runtime Library Exception[1]:

- GNATCOLL from the public GIT
repository[3] at commit 719fae1d0b
60c31a9f7c0de8b0a143fa57449b47

- XMLAda from the public Git
repository[4] at commit a9536bf161125
cb1e12da376e8d7b51f1b33677

[1] http://www.gnu.org/licenses/
gcc-exception-faq.html

[2] https://github.com/AdaCore/gprbuild

[3] https://github.com/AdaCore/gnatcoll

[4] https://github.com/AdaCore/xmlada

Mac OS X: GCC for ARM-
EABI

From: Simon Wright
<simon@pushface.org>

Date: Mon, 23 May 2016 16:03:20 +0100
Subject: ANN: GCC 6.1.0 arm-eabi for OS

X El Capitan
Newsgroups: comp.lang.ada

This is available at [1].

This is GCC 6.1.0, rebuilt as a cross-
compiler from Mac OS X to arm-eabi

(specifically, the Cortex-M3 as found on
the Arduino Due[1] and the Cortex-M4 as
found on the STMicroelectronics[2]
STM32F4 Discovery and STM32F429I
Discovery boards).

The compiler comes with no Ada
Runtime System (RTS). See the Cortex
GNAT Run Time Systems project[3] for
candidates.

The compiler is known to run on El
Capitan; it may not run on earlier OS X
releases.

** FOR THE BENEFIT OF THE 15
PEOPLE WHO DOWNLOADED IT
ALREADY **

If you got it to work, congratulations!

Ticket 17[2] says

Because of a stupid PATH setting error
and not checking properly, the gcc-6.1.0-
arm-eabi-bin.tar.bz2 package with MD5
2c8cdc7b032c7305faa05ed8f84f9f20
won't run after installation (it's looking for
libstdc++.dylib somewhere it won't exist
on your machine, fails to find it, uses the
/usr/lib version, crashes out because of
missing symbol).

A corrected version is available, MD5
83eef4a5358d5764379e2c7a74f7f2a0.

[1] https://sourceforge.net/projects/
gnuada/files/GNAT_GCC%20Mac%20O
S%20X/6.1.0/arm-eabi/

[2] https://sourceforge.net/p/gnuada/
bugs/17/

[See also “ Mac OS X: GCC for ARM-
EABI”, AUJ 37-1, p. 18. —sparre]

Mac OS X: GNAT GPL for
ARM-EABI

From: Simon Wright
<simon@pushface.org>

Date: Mon, 06 Jun 2016 20:34:35 +0100
Subject: ANN: GNAT GPL 2016 arm-eabi

for OS X El Capitan
Newsgroups: comp.lang.ada

This release at [1].

This is GNAT GPL 2016, rebuilt as a
cross-compiler from Mac OS X to arm-
eabi. The CPUs supported include cortex-
m3, cortex-m4, cortex-r4.

The runtimes from the AdaCore gnat-gpl-
2016-arm-elf-linux-bin are included:

- ravenscar-full-stm32f4

- ravenscar-full-stm32f429disco

- ravenscar-full-stm32f469disco

- ravenscar-full-stm32f7disco

- ravenscar-full-tms570

- ravenscar-sfp-stm32f4

- ravenscar-sfp-stm32f429disco

- ravenscar-sfp-stm32f469disco

- ravenscar-sfp-stm32f7disco

- ravenscar-sfp-tms570

- zfp-lm3s

- zfp-stm32f4

- zfp-tms570

as are the examples in
share/examples/gnat-cross/.

[1] https://sourceforge.net/projects/
gnuada/files/GNAT_GPL%20Mac%20O
S%20X/2016-arm-eabi-darwin-bin/

[See also “ Mac OS X: GNAT for ARM-
EABI”, AUJ 36-3, p. 126. —sparre]

References to
Publications

Books

From: Michael Vinn
<ashos.owner@gmail.com>

Date: Thu, 10 Mar 2016 07:00:29 -0800
Subject: Looking for better Ada books
Newsgroups: comp.lang.ada

Are there any better books out there!

I have the following books.

+ Programming with ada by Peter Wegner

+ Programming in Ada by Barnes 3rd
edition

+ Programming in Ada 95 by John Barnes
2nd edition

+ Software Components with Ada by
Grady Booch

+ Reference Manual for the Ada
Programming Language 1983

+ Ada 95 Reference Manual

+ Ada 95 Rationale

+ Understanding Ada by Bray and
Pokrass

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Thu, 10 Mar 2016 08:59:40 -0800
Subject: Re: Looking for better Ada books
Newsgroups: comp.lang.ada

[...]

You are way behind technologies for sure.
I suggest that you move to the latest Ada,
ISO/IEC 8652:2012(E)
http://www.adaic.org/resources/
add_content/standards/12rm/html/
RM-TTL.html.

In addition, take a look at Ada 2012
Rationale
http://www.ada-auth.org/standards/12rat/
html/Rat12-TTL.html.

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Thu, 10 Mar 2016 09:35:17 -0800
Subject: Re: Looking for better Ada books
Newsgroups: comp.lang.ada

1. Ada for Software Engineers 2nd ed.
2009 Edition, ISBN-13: 978-
1848823136

Ada in Context 79

Ada User Journal Volume 37, Number 2, June 2016

2. Concurrent and Real-Time
Programming in Ada 3rd Edition, ISBN-
13: 978-0521866972

3. Programming in Ada 2012 1st Edition,
ISBN-13: 978-1107424814

... were excellent. (Have not finished 3.
yet, but amazing so far)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 10 Mar 2016 15:39:12 -0600
Subject: Re: Looking for better Ada books
Newsgroups: comp.lang.ada

> [...]

Sure seems like my library of dusty old
Ada books. Most of which I haven't
opened in decades... :-)

[...]

But it's silly these days to restrict oneself
to "books". There are a number of
electronic resources to use as well (Ada
Distilled - a PDF "book", and the Ada
wikibooks site come to mind) - which
have the distinct advantage of being free.

For a rather inclusive list of current Ada
learning materials, see

http://www.adaic.org/learn/materials/.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Fri, 11 Mar 2016 14:05:02 -0000
Subject: Re: Looking for better Ada books
Newsgroups: comp.lang.ada

> [...]

Building Parallel, Embedded and Real
Time Applications with Ada McCormick,
Singhoff and Hughes,

And at least one book covering SPARK.

John Barnes has one, "High Integrity
Software" is good but covers an older
version of SPARK (the book has been
updated, but I haven't seen the newer
version)

In my in-tray waiting is "Building High
Integrity Applications with SPARK"
(McCormick and Chapin).

[See also “Books for Learning Ada”, AUJ
35-2, p. 84. —sparre]

Book: Ada and SPARK on
ARM Cortex-M

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Wed, 30 Mar 2016 06:13:15 -0700
Subject: Ada on ARM Cortex-M
Newsgroups: comp.lang.ada

I'm pleased to announce that the tutorial
titled "Ada and SPARK on ARM Cortex-
M" got its second edition:

http://inspirel.com/articles/
Ada_On_Cortex.html

The tutorial was extended and now targets
four popular development boards:

- Arduino M0 (or Genuino Zero)

- Arduino Due

- STM32 Nucleo-32 (with F0 chip)

- STM32 Nucleo-144 (with F7 chip)

The tutorial explains how to write
Ada/SPARK programs with zero run-
time, without any underlying layers and
based solely on the information from chip
reference documentation.

Source code for all examples, for all of
these boards, is also available.

[See also “ Book: Ada and SPARK on
ARM Cortex-M”, AUJ 36-3, p. 128.
—sparre]

Ada Inside

Lisp Interpreter

From: Chris Moore
<zmower@ntlworld.com>

Date: Fri, 25 Mar 2016 20:33:32 +0000
Subject: Make A Lisp .. in Ada
Newsgroups: comp.lang.ada

There was a post on Hacker News (#1)
just over a year ago about Make A Lisp
(#2). They had implementations in many
languages but not for Ada so I've made
one (#3 on branch ada).

I'm pretty close to getting it accepted (put
in the pull request today). It's slower than
the C and C++ implementations. Seems to
spend a lot of time finalizing the smart
pointer according to gprof.

1) https://news.ycombinator.com/
item?id=9121448

2) https://github.com/kanaka/mal

3) https://github.com/kanaka/mal/
tree/master/ada

MAX! Home Automation

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 14 Apr 2016 18:53:37 +0200
Subject: MAX! home automation 1.3

released
Newsgroups: comp.lang.ada

MAX! home automation is a GTK+
application to manage ELV/eQ-3 MAX!
cubes. A cube is a gateway to a network
of radiator thermostats, shutter contacts
etc.

http://www.dmitry-kazakov.de/ada/
max_home_automation.htm

Changes to the previous version:

- MQTT server added;

- LAN discovery by default scans all
known interfaces;

- Settings page allows explicit setting of
the host address to scan or cube address
to connect.

[See also “ MAX! Home Automation”,
AUJ 36-4, p. 207. —sparre]

Mine Detector

From: PragmAda Software Engineering
<pragmada@
pragmada.x10hosting.com>

Date: Fri, 6 May 2016 16:19:21 -0700
Subject: Improved Mine Detector Available
Newsgroups: comp.lang.ada

Pascal Malaise has contributed a change
to the GTKAda versions of Mine Detector
to preserve the appearance of the mine
field when a game is not in progress. He
also helped identify an improvement that
makes the game significantly faster,
which also applies to the Gnoga version.
The new versions are available on the
PragmAda web site; the Gnoga version is
also available at

https://github.com/jrcarter

[See also “ Mine Detector”, AUJ 37-1, p.
18. —sparre]

Telesoft Telegen Expertise
Needed

From: Rick Cottle <rdc2732@gmail.com>
Date: Wed, 15 Jun 2016 14:12:55 -0700
Subject: Help Needed - Telesoft Telegen

3.2.5 expert VAX/VMS
Newsgroups: comp.lang.ada

We need to touch an old project and of
course there is very little documentation
available (or readily found) and previous
contributors move on a long time ago.

In short, the project is an embedded
system built with Mil-Std-1750 built with
ADA on a Vax. We have recreated the
project to the point of trying to link but do
not have a linker map to go the final step.

It would be awesome to find copies of the
subject manuals. Additionally someone
experienced in this environment for
consulting work. Phoenix AZ area.

Ada in Context

Uninitialized “out”

Parameters

From: Ahlan Marriott
<ahlan@marriott.org>

Date: Tue, 5 Apr 2016 05:02:49 -0700
Subject: Uninitialized out parameters.
Newsgroups: comp.lang.ada

Is this a GNAT (GPL-2015) bug or my
not understanding Ada?

I was surprised that I could compile:

 procedure Test (V : out Positive) is null;

And even more by the results of calling
the procedure:

 V : Positive;

begin

 Test (V);

 Ada.Text_IO.Put_Line ("V:" & V'img);

80 Ada in Context

Volume 37, Number 2, June 2016 Ada User Journal

The value zero is output, which because V
is positive should be impossible.

I would have thought that null procedures
without parameters would fail to compile.

Opinions anyone?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 6 Apr 2016 15:47:49 -0500
Subject: Re: Uninitialized out parameters.
Newsgroups: comp.lang.ada

> [...]

I agree with Georg here. It *seems* like
checks like the one Ahlan is suggesting
are a good idea, until you trip over one.
(The check in Ada that every function
have at least one return is a similar idea,
which causes no end of trouble.)

I can think of at least three reasons why
one might write a null procedure with an
out parameter:

(1) The null procedure body is a TBD
placeholder. It will be replaced with a
real body at some future point, but we
still want to compile.

(2) The out parameter isn't used for some
implementations. This often comes up
when there are multiple parameters. (We
ran into this commonly in Claw,
although we usually used in out
parameters in such cases to avoid de-
initializing objects.) The situation is that
some objects need additional return
information and others don't:

 procedure Do_Something (

 Obj : in out Object;

 Result : in out Result_Type;

 Extra_Info : out Natural);

 Extra_Info is only used if Result has a
particular value.

(3) The null procedure is used in an
interface. In that case, giving a body
isn't possible.

I think you could make a case that all of
these are better written some other way,
but that's irrelevant, in that each of these
could happen in real code, and making a
legality check would break that code.
(Thus, making it illegal would probably
be considered too incompatible for future
Ada, unless of course we discovered some
semantic problem that doing that would
fix.)

The Ada Standard has nothing to say
about warnings (other than for pragmas).
Perhaps some future version of Ada will
change that, but as of now, every warning
is implementation-defined, and thus it
they don't have anything to do with the
language. (That is, talk to your vendor
about warnings.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 6 Apr 2016 15:54:44 -0500
Subject: Re: Uninitialized out parameters.
Newsgroups: comp.lang.ada

[...]

The rules for whether an out parameter is
initialized (and if so, how) are
complicated - see 6.4.1(12-15). 6.4.1(15)
most likely applies in this case (assuming
no Default_Value aspect is involved), and
that says that the value is uninitialized.
And of course the value of an
uninitialized object can be anything.

Portable Lengths of
Standard.String

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 13 Apr 2016 16:29:27 -0500
Subject: Re: Substrings as argument to

procedures/functions
Newsgroups: comp.lang.ada

> [...]

Probably a better example is to remember
that the range of Positive is
implementation-defined, and that the
language only requires the upper bound to
be at least 32767. So if you need strings
that have potentially more characters than
that (to read an entire text file, for
instance), and you want the code to be
unconditionally portable (to steal
someone else's line), you need to declare a
type yourself (here, assuming that a
million characters are enough):

 type Big_Natural is range 0 .. 1_000_000;

 subtype Big_Positive is Big_Natural

 range 1 .. Big_Natural'Last;

 type Big_String is array (Big_Positive

 range <>) of Character;

You can do almost anything you can do
with a String with a Big_String (and you
can convert a Big_String to a String so
you can use Put_Line and the like), but
the index type is guaranteed to support up
to a million characters.

From: Robert I. Eachus
<rieachus@comcast.net>

Date: Mon, 25 Apr 2016 08:33:18 -0700
Subject: Re: Substrings as argument to

procedures/functions
Newsgroups: comp.lang.ada

Is it time to "fix" this? Or are there still
Ada compilers around that use 16-bit
String indexes by default? I remember
when (in the early days of Ada 83) the
question of whether String should use 16
or 32 bit indexes was a major
implementation decision. Today,
compilers that support hardware indexes
shorter than 32-bits are probably mapping
to some hardware defined offset field in
instructions. Using such indexes when the
subtype allows is obviously an
optimization worth supporting. But in
Ada defining "subtype Short_String is
String range (1..32767);" or whatever
allows using such a hardware type if
available. But there is no need to make
Short_String a type.

Yes, programs may have records with
character string fields limited such that
the index can fit into a 16-bit field in the

record. But I can't imagine doing that
without an explicit layout for the record
or at least a size for the index field. Back
to the original topic here, you want/need
sliding to work such that

 type Rec is

 Name_Length : Integer range 0..32_767;

 Name: String;

 end;

 for Rec use ...

 ...

 Name_Length := Param'Length;

 Name (1 .. Name_Length) := Param;

works as expected.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 25 Apr 2016 17:07:02 -0500
Subject: Re: Substrings as argument to

procedures/functions
Newsgroups: comp.lang.ada

> Is it time to "fix" this?

Use of predefined types is evil, so who
cares?

> Or are there still Ada compilers around
that use 16-bit String indexes by
default?

Janus/Ada for one.

All versions of Janus/Ada have had
Integer as 16-bit. Changing that would
destroy compatibility of binary files
(Sequential_IO, Direct_IO, Stream_IO)
and of course would have other effects as
well.

I've considered having some sort of
optional way to change the definition of
Integer (it's defined in a single place), but
the problem is that *everything* depends
upon that, so one would end up with two
different incompatible
compilers/runtimes. The maintenance
headaches would be immense (any mix-
up would cause bizarre internal errors).

Good code doesn't depend on predefined
types in the first place, so it's mainly a
problem dealing with the predefined
packages. (And that's mainly a problem
with the predefined packages depending
on type String.)

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Tue, 26 Apr 2016 08:12:46 +0200
Subject: Re: Substrings as argument to

procedures/functions
Newsgroups: comp.lang.ada

> Use of predefined types is evil, so who
cares?

Anyone coming from just about any other
language, since they have no idea that
there could be such a fine thing as user
defined fundamental types! ;-)

So, how does one introduce them to
programming in Ada without using
library types but still using strings, and
text I/O?

Ada in Context 81

Ada User Journal Volume 37, Number 2, June 2016

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 26 Apr 2016 13:41:53 -0500
Subject: Re: Substrings as argument to

procedures/functions
Newsgroups: comp.lang.ada

> So, how does one introduce them to
programming in Ada without using
library types but still using strings, and
text I/O?

Using Root_String'Class, of course.
Which Ada doesn't have, unfortunately.
I'd rather fix that rather than noddling
with Standard types - the
Wide_Wide_Unbounded_UTF8_String
nonsense doesn't make sense (but maybe
it's
UTF8_Unbounded_Wide_Wide_String?
Bah hambug.)

Task_Termination and
Tasks in the Compiler Run-
time

From: Per Dalgas Jakobsen
<pdj@knaldgas.dk>

Date: Thu, 21 Apr 2016 12:23:50 +0200
Subject: timer_server triggers

Task_Termination handler
Newsgroups: comp.lang.ada

Is it correct behaviour when tasks internal
to the GNAT run-time causes users
task_termination handlers to be called?

This behaviour is seen on:

 1) Debian Linux: gnat-5 (Ada 2005,
Ada 2012).

 2) AIX: GNAT Pro 6.1.0w (Ada 2005).

A simple demonstration of the issue:

with Ada.Text_IO;

with Log_Unhandled_Exceptions;

procedure Timer_Server_Noise is

begin

 Ada.Text_IO.Put_Line ("Start of main");

 select

 delay 0.5;

 then abort

 loop

 delay 0.1;

 end loop;

 end select;

 Ada.Text_IO.Put_Line ("End of main");

end Timer_Server_Noise;

with Ada.Exceptions;

with Ada.Task_Identification;

with Ada.Task_Termination;

package Log_Unhandled_Exceptions is

 pragma Elaborate_Body;

 use Ada.Task_Identification;

 use Ada.Task_Termination;

 use Ada.Exceptions;

 protected Last_Wishes is

 procedure Log_Any_Exit (Cause : in

 Cause_Of_Termination;

 T : in Task_Id;

 E : in Exception_Occurrence);

 end;

end Log_Unhandled_Exceptions;

with Ada.Text_IO;

package body Log_Unhandled_Exceptions

is

 -- Encapsulates the actual log call

 procedure Log (Text : in String) is

 begin

 Ada.Text_IO.Put_Line

 ("Log_Unhandled_Exceptions

 >> " & Text);

 end Log;

 protected body Last_Wishes is

 procedure Log_Any_Exit (Cause : in

 Cause_Of_Termination;

 T : in Task_Id;

 E : in Exception_Occurrence) is

 begin

 case Cause is

 when Normal =>

 Log ("Normal exit of task: " &

 Image (T));

 when Abnormal =>

 Log ("Abnormal exit of task: " &

 Image (T));

 when Unhandled_Exception =>

 Log ("Unhandled exception in task:

 " & Image (T));

 end case;

 end Log_Any_Exit;

 end Last_Wishes;

begin

 if Current_Task_Fallback_Handler = null

then

 Set_Dependents_Fallback_Handler

 (Last_Wishes.Log_Any_Exit'Access);

 else

 Log ("Fallback handler already set, will

 not set own handler.");

 end if;

 if Specific_Handler (Current_Task) = null

then

 Set_Specific_Handler (Current_Task,

 Last_Wishes.Log_Any_Exit'Access);

 else

 Log ("Specific handler already set, will

not set own handler.");

 end if;

end Log_Unhandled_Exceptions;

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 21 Apr 2016 16:13:45 -0500
Subject: Re: timer_server triggers

Task_Termination handler
Newsgroups: comp.lang.ada

> Is it correct behaviour when tasks
internal to the GNAT run-time causes

users task_termination handlers to be
called?

Sure, why not?

In your example, you set a handler for all
dependent tasks of the environment task
(that is, ALL tasks). C.7.3 doesn't specify
who wrote the task or for what purpose. If
it is a dependent of the environment task,
your handler will be called.

We've always encouraged implementers
to write some or all of their runtime in
Ada. It would increase the difficulty quite
a bit if one had to "cover up" the effects
of using Ada to write the code.

And I can't quite imagine what rule one
write to exclude tasks that happen to be in
library code. If one said to exclude tasks
only if they are in language-defined
packages, then you'll still get the tasks
that happen to occur in implementation-
defined stuff. And since that sort of stuff
underlies many language-defined
packages, and often is visible to the user
as well, how do you account for tasks in
such implementation-defined packages.
(Surely I hope it doesn't depend on how
the package is used!)

And what about tasks in third-party
libraries? Claw, for instance, includes a
hidden task. Should that be excluded?
Should it be excluded only in Janus/Ada
(where Claw is not a third-party library)
but included in GNAT (where Claw is
essentially user code)? That way seems to
lead to madness.

Rereading some of the mail on the
original AI, part of the intent was that one
could set a handler on ALL tasks,
including those not visible to the
programmer (hidden in package bodies).
If you can see the tasks and only want
specific tasks involved, specific handlers
make more sense. So in summary I
believe this is working the way it was
intended. Perhaps we should have put a
note in that "all descendent tasks" include
tasks that aren't visible to the programmer
(hidden in the runtime or third-party
packages), but clearly the idea was that
the handler would work on every task in
the partition, no matter what is its source.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 22 Apr 2016 07:41:23 +0200
Subject: Re: timer_server triggers

Task_Termination handler
Newsgroups: comp.lang.ada

> We've always encouraged implementers
to write some or all of their runtime in
Ada. It would increase the difficulty
quite a bit if one had to "cover up" the
effects of using Ada to write the code.

It could be considered user-friendly for
hidden tasks in reusable components to
specify a task specific handler, so that
they remain hidden if the user specifies a
general handler.

82 Ada in Context

Volume 37, Number 2, June 2016 Ada User Journal

But I agree that it would be difficult to
/require/ this in the ARM.-

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri, 22 Apr 2016 08:46:16 +0200
Subject: Re: timer_server triggers

Task_Termination handler
Newsgroups: comp.lang.ada

>> Is it correct behaviour when tasks
internal to the GNAT run-time causes
users task_termination handlers to be
called?

> Sure, why not?

Maybe because you end up having to
inspect the run-time library to figure out
why your application behaves like it
does?

Or because it makes the behaviour of your
program depend on which (correct) run-
time library you compile it with?

> And what about tasks in third-party
libraries?

In my opinion third-party libraries are a
different matter from the run-time
provided by the compiler.

I would definitely expect the handlers to
be called for any tasks declared outside
the run-time.

From: Robert A Duff
<bobduff@TheWorld.com>

Date: Thu, 21 Apr 2016 17:26:46 -0400
Subject: Re: timer_server triggers

Task_Termination handler
Newsgroups: comp.lang.ada

> Is it correct behaviour when tasks
internal to the GNAT run-time causes
users task_termination handlers to be
called?

No. Internal tasks are an implementation
detail, and should be invisible to Ada
programs.

I fixed this bug in GNAT recently.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 22 Apr 2016 17:35:06 -0500
Subject: Re: timer_server triggers

Task_Termination handler
Newsgroups: comp.lang.ada

> [...] Internal tasks are an
implementation detail, and should be
invisible to Ada programs.

Nice thought, but exactly the opposite to
some of opinions in the e-mail associated
with the design of the task termination
feature. They wanted to be notified if an
internal task failed (presumably to narrow
down the cause of the inevitable failure
cascade that follows).

Given the Ada definition, it is wrong to
hide an Ada task. Of course, there is no
reason to use Ada tasks in the runtime
(the runtime could be written C or Prolog
;-), so there is no truely wrong answer
here.

Broadcasting UDP

From: Ahlan Marriott
<ahlan@marriott.org>

Date: Sun, 24 Apr 2016 09:31:48 -0700
Subject: Broadcasting UDP
Newsgroups: comp.lang.ada

I asked this question sometime ago but I
can no longer find the post.

In any case it was never really resolved so
let me try again.

I am looking for a platform independent
Ada solution on how to broadcast a UDP
packet.

I would be satisfied with a GNAT only
solution, i.e. one that uses Gnat.Sockets
and/or Gnat specific libraries.

Attempting to broadcast to the limited
broadcast address 255.255.255.255 has no
effect (under Windows at least)

To successfully broadcast one needs to
use the subnet directed broadcast address.

As I want to support PCs that have
multiple ethernet adapters this means that
I must iterate over the ethernet adapters,
discover my ethernet address and subnet
for each adapter, calculate the broadcast
address and then send the UDP packet to
that address.

So far so good.

My problem is that I don't know how to
iterate over my adapters and obtain the
address and subnet mask for each adapter
using just Ada.

Can anyone tell me how I can do this
using Ada?

The solution I currently employ is to bind
to a windows API.

However this is obviously not target
independent.

If there is no Ada way of iterating over
the ethernet adapters then I will have to
do a separate implementation for each
platform.

In which case I would be grateful if
anyone could tell me how I can iterate my
adapters under Linux and OSX.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 24 Apr 2016 19:22:39 +0200
Subject: Re: Broadcasting UDP
Newsgroups: comp.lang.ada

> [...]

declare

 Host : Host_Entry_Type :=

 Get_Host_By_Name (Host_Name);

 Address : aliased Sock_Addr_Type;

begin

 for Index in 1..Addresses_Length (Host)

loop

 Address.Addr := Addresses (Host,

 Index)));

 Address.Port := <port>;

 declare

 Socket : Socket_Type := No_Socket;

 Pier : Sock_Addr_Type;

 begin

 Create_Socket (Socket, Family_Inet,

 Socket_Datagram);

 Set_Socket_Option (Socket,

 Socket_Level,

 (Reuse_Address, True));

 Set_Socket_Option (Socket,

 Socket_Level, (Broadcast, True));

 Set_Socket_Option (Socket,

 Socket_Level, (Receive_Timeout,

 <timeout>));

 Bind_Socket (Socket, Address);

 Address.Addr := Broadcast_Inet_Addr;

 Send_Socket (Socket, <request-

 packet>, Last, Address'Access);

 loop -- Collecting responses, time-

 limited <timeout>

 ...

 Receive_Socket (Socket, <response-

 packet>, Last, Pier);

 ...

 end loop;

 Close_Socket (Socket);

 end;

 end loop;

end;

> In which case I would be grateful if
anyone could tell me how I can iterate
my adapters under Linux

Under Linux it is through the proc file
system, if I remember correctly.

An Element of a Coding
Standard

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 28 Apr 2016 07:13:49 +0200
Subject: Re: Building an encapsulated

library that uses GNAT sockets under
Windows

Newsgroups: comp.lang.ada

[...]

when a coding standard says

 "X is forbidden",

it really means

 "X shall not be used, unless proper
justification is given and approved by
QA".

Or so should the coding standard say...

[See also “ An Element of a Coding
Standard”, AUJ 36-3, p. 136. —sparre]

Preelaboration

From: Simon Wright
<simon@pushface.org>

Date: Mon, 16 May 2016 17:26:58 +0100
Subject: Preelaboration
Newsgroups: comp.lang.ada

I (think I) need to eliminate elaboration
calls in parts of my Cortex GNAT
Runtime Systems project[1], and I'm left
with one that I can't understand.

Ada in Context 83

Ada User Journal Volume 37, Number 2, June 2016

(1) what does pragma Preelaborate
actually mean? I hoped it would mean
"you don't need to elaborate this
package".

(2) If you give Preelaborate, is it a
compiler error to generate elaboration
code? (the generated elaboration
procedure does nothing).

(3) I find ARM 10.2.1(10)[2] unclear (I
got here because the problematic
package body instantiates a generic).
Does it mean that the instantiation won't
be preelaborable unless all of 10.1 ..
10.4 are false? Or does it mean that the
compiler will make these assumptions
regardless of actuals?

And, looking at (10.1), would you expect

 generic

 type Item is private with

 Preelaborable_Initialization;

 package Generic_Queues is

to be legal? GNAT rejects it, 'aspect
"Preelaborable_Initialization" not allowed
for formal type declaration'.

[1] https://sourceforge.net/projects/
cortex-gnat-rts/

[2] http://www.ada-auth.org/
standards/rm12_w_tc1/html/
RM-10-2-1.html#p10

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Mon, 16 May 2016 11:22:29 -0700
Subject: Re: Preelaboration
Newsgroups: comp.lang.ada

> [...]

Preelaborable_Initialization is not listed
as a language-defined aspect in ARM K.1.
ARM 10.2.1 (11.8/2) says that pragma
Preelaborable_Initialization may appear
in a generic formal part, so if you replace
the aspect with the pragma it should be
legal.

From: Simon Wright
<simon@pushface.org>

Date: Mon, 16 May 2016 20:55:45 +0100
Subject: Re: Preelaboration
Newsgroups: comp.lang.ada

> [...]

Thanks! Solved the compilation issue, but
that wasn't the cause of the original
problem.

I guess the fact that
Preelaborable_Initialization isn't listed in
K.1 was an oversight.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 16 May 2016 15:28:55 -0500
Subject: Re: Preelaboration
Newsgroups: comp.lang.ada

> (1) what does pragma Preelaborate
actually mean? [...]

What it says in 10.2.1, no more and no
less. There is no required effect on code

generation (unless Annex C is supported,
and even then it is limited).

> (2) If you give Preelaborate, is it a
compiler error to generate elaboration
code? [...]

No, the only errors are those defined by
10.2.1.

C.4 says that a subset of preelaborable
packages should not generate any code.
Which only applies if Annex C is
implemented, and in any case is not a
testable requirement (the ACATS cannot
require code inspection, which is the only
way to determine if C.4 is followed).

C.4(12) supposedly requires
documentation of cases where code is
generated, but that sort of requirement is
widely ignored. (And would be useless,
I'd just write something like "Elaboration
of a preelaborable package may execute
code in all cases other than those required
by C.4 to not execute any code." It's way
too hard for an implementer to figure out
what will and will not do something.

(And this whole set of requirements is
silly anyway. What implementer executes
code if they don't have to?? So anything
that can be done without code is done that
way, and everything else executes some
code, regardless of any categorization
pragma.)

> (3) [...]

This means that the generic body would
be illegal if preelaborated, unless it means
the preelaboration requirements using
those assumptions. The instance can't be
preelaborable unless the body is.

> [...]

Preelaborable_Initialization is not an
aspect, as it is not the same for all views
of a type. We tried to come up with a
model to make it an aspect and failed to
come up with something that makes
sense.

In addition, formal types aren't allowed to
have language-defined aspects, as that
would add implicit contracts to the
specification (and notably, would need
rules for those contracts). pragma P_I isn't
allowed in a formal part, either.

To get a formal type that has P_I, you'd
need to use a generic derived type where
the ancestor has P_I. Probably not what
you want.

I would guess in this case that the instance
in a preelaborable package should make
the package illegal; the generic would
need to be Preelaborable, but then it most
likely would be illegal.

But this area is complicated (I might be
getting it all wrong) and it probably
doesn't do what you want anyway
(Pure/Preelaborable categorizations in
general were a failure, as they can't be
applied to the majority of packages). I

don't really have any advice, other than if
you really care, look up the old AIs on the
topic.

From: Simon Wright
<simon@pushface.org>

Date: Mon, 16 May 2016 22:03:47 +0100
Subject: Re: Preelaboration
Newsgroups: comp.lang.ada

[...]

Thanks for the advice. Things are clearer
now, I think; anyway, it turns out it was
indeed the generic that caused the
package it was instantiated in to require
elaboration. I expanded the generic (of
which this was the only instance, huh) by
hand in the caller, no more elaboration.

GNAT has a program-unit restriction
No_Elaboration_Code[1] which is a lot
closer to what I want. I can't remember
now how I got into the state where the
compiler told me I couldn't use it ...

[1] https://gcc.gnu.org/onlinedocs/
gnat_rm/No_005fElaboration_005fCode.
html

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 17 May 2016 18:25:47 -0500
Subject: Re: Preelaboration
Newsgroups: comp.lang.ada

> But 10.2.1(10.1), (11.2) explicitly
mention P_I in a formal part?

These are bug, IMHO, because there are
no matching rules for P_I. One could not
be allowed to instantiate a generic whose
formal has P_I with a type that does not
have P_I. Else the assumptions of the
body are violated.

Besides, 10.2.1(11.6/2) says that the
pragma has to appear in the visible part
of a package or generic package; the
formal part of a generic package is not
part of the visible part.

I suspect that there was an intent that this
would work, but there is a lot missing that
would make it work.

From: Robert A Duff
<bobduff@TheWorld.com>

Date: Tue, 17 May 2016 20:05:42 -0400
Subject: Re: Preelaboration
Newsgroups: comp.lang.ada

> Besides, 10.2.1(11.6/2) says that the
pragma has to appear in the visible part
of a package or generic package; the
formal part of a generic package is not
part of the visible part.

But 8.2(8) says otherwise. How else could
it be? The generic formals have to be
visible at the instantiation, so they can be
referred to in named-notation assocs.

I'm not sure how this affects the P_I
pragma, but for sure generic formals are
visible at the instantiation.

84 Ada in Context

Volume 37, Number 2, June 2016 Ada User Journal

Forced Compile-time
Warning (GNAT)

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sun, 3 Jul 2016 09:05:39 +0300
Subject: Re: GNAT equivalent to gcc's

#warning directive?
Newsgroups: comp.lang.ada

> I vaguely recall there was a gnat pragma
to cause the compiler to spit out a user
defined message. In C++ I often insert
a cpp #warning when I need to go back
and revisit some code. That way it nags
me every time I build the project, until
it gets addressed.

>

> I'm looking for something similar in
gnat. I thought it was pragma

Warnings(), but that appears to be for
known compiler warnings.

Compile_Time_Warning:

http://docs.adacore.com/gnat_rm-docs/
html/gnat_rm/gnat_rm/
implementation_defined_pragmas.html#
pragma-compile-time-warning

86

Volume 37, Number 2, June 2016 Ada User Journal

Conference Calendar
Dirk Craeynest

KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ¨ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with J denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2016

July 04-08 Software Technologies: Applications and Foundations (STAF'2016), Vienna, Austria. Successor of

the TOOLS federated event. Topics include: practical and foundational advances in software

technology, including formal foundations of software technology, testing and formal analysis, graph

transformations and model transformations, model driven engineering, and tools.

July 04-08 14th International Conference on Software Engineering and Formal Methods

(SEFM'2016). Topics include: real-time, hybrid and embedded systems; verification and

validation; light-weight and scalable formal methods; software evolution, maintenance

and reuse; application and technology transfer; case studies, best practices and

experience reports; tool integration; education; safety-critical, fault-tolerant and secure

systems; software certification; programming languages; type theory; abstraction and

refinement; etc.

July 05-07 10th International Conference on Tests And Proofs (TAP'2016). Topics include:

many aspects of verification technology, including foundational work, tool

development, and empirical research; the connection between proofs (and other static

techniques) and testing (and other dynamic techniques); verification and analysis

techniques combining proofs and tests; program proving with the aid of testing

techniques; deductive techniques to support testing: generating testing inputs and

oracles, supporting coverage criteria, and so on; program analysis techniques combining

static and dynamic analysis; testing and runtime analysis of formal specifications;

model-based testing and verification; using model checking to generate test cases;

testing of verification tools and environments; applications of testing and proving to new

domains, such as security, configuration management, and language-based techniques;

case studies, tool and framework descriptions, and experience reports about combining

tests and proofs; etc.

J July 06-08 28th Euromicro Conference on Real-Time Systems (ECRTS'2016), Toulouse, France.

July 05 12th Annual Workshop on Operating Systems Platforms for Embedded Real-Time

Applications (OSPERT'2016). Topics include: providing a reliable and efficient

operating environment for real-time and embedded applications, case studies and

experience reports, certification and verification of RTOSs and middleware, real-time

virtualization and hypervisors, RTOSs for manycore platforms, support for

multiprocessor architectures, support for component-based development, etc.

July 11-13 9th Seminar on Advanced Techniques & Tools for Software Evolution (SATToSE'2016), Bergen,

Norway. Topics include: all aspects of software and model evolution, practices and technologies;

supporting tools, processes, and models for managing software evolution; industrial needs, case studies

and experiences; empirical studies in evolution and maintenance; program transformation, refactoring,

renovation and migration; reliability and security aspects of software (co-)evolution; software ecosystem

evolution; etc.

July 17-19 10th International Symposium on Theoretical Aspects of Software Engineering (TASE'2016),

Shanghai, China. Topics include: theoretical aspects of software engineering, such as abstract

Conference Calendar 87

Ada User Journal Volume 37, Number 2, June 2016

 interpretation, component-based systems, cyber-physical systems, distributed and concurrent systems,

embedded and real-time systems, formal verification and program semantics, integration of formal

methods, language design, model checking and theorem proving, object-oriented systems, run-time

verification and monitoring, software architecture, software testing and quality assurance, software

security and reliability, static analysis of programs, type systems and behavioural typing, tools

exploiting theoretical results, etc.

J July 17-22 30th European Conference on Object-Oriented Programming (ECOOP'2016), Rome, Italy. Topics

include: theory, design, implementation, optimization, and analysis of programming languages that

enable or enforce abstractions across various programming styles, from object-orientation to reactivity

to spreadsheets; innovative and creative solutions to real problems; evaluations of existing solutions in

ways that shed new insights; etc.

J July 17 1st Workshop on Programming Models and Languages for Distributed Computing

(PMLDC'2016). Topics include: new approaches to distributed programming that

provide efficient execution and the elimination of accidental nondeterminism resulting

from concurrency and partial failure.

J July 18 11th Workshop on Implementation, Compilation, Optimization of OO Languages,

Programs and Systems (ICOOOLPS'2016). Topics include: techniques for the

implementation and optimization of a wide range of languages including but not limited

to object-oriented ones; implementation and optimization of fundamental languages

features (from automatic memory management to zero-overhead metaprogramming);

runtime systems technology; compilers (intermediate representations, offline and online

optimizations, ...); empirical studies on language usage; resource-sensitive systems (real-

time, low power, mobile, cloud); tooling support, debuggability and observability of

languages as well as their implementations; etc.

July 18 Workshop on Programming Experience (PX'2016). Topics include: exploratory

programming, navigation, modularity mechanisms, literacy, tool building, language

engineering, etc.

July 18 1st Workshop on Runtime Verification for Object-Oriented Languages, and

Systems (VORTEX'2016). Topics include: combination of static and dynamic analyses,

industrial applications, monitoring concurrent/distributed systems, RV for safety and

security, tool development, etc.

July 19 18th Workshop on Formal Techniques for Java-like Programs (FTfJP'2016). Topics

include: language semantics, specification techniques and languages, verification of

program properties, verification logics, dynamic program analysis, static program

analysis, type systems, security.

July 17-23 28th International Conference on Computer Aided Verification (CAV'2016), Toronto, Ontario,

Canada. Topics include: theory and practice of computer-aided formal analysis methods for hardware

and software systems, algorithms and tools for verifying models and implementations, program analysis

and software verification, verification methods for parallel and concurrent systems, testing and run-time

analysis based on verification technology, applications and case studies in verification, verification in

industrial practice, formal models and methods for security, etc.

July 24-26 11th International Joint Conference on Software Technologies (ICSOFT'2016), Lisbon, Portugal.

Topics include: all areas that are either related to new software paradigm trends or to mainstream

software engineering and applications, such as software metrics, agile methodologies, risk management,

quality control and assurance, software standards and certification, software and systems integration,

software testing and maintenance, model-driven engineering, software and systems quality, software and

information security, formal methods, programming languages, middleware technologies, parallel and

high performance computing, etc.

July 25-28 35th Annual ACM Symposium on Principles of Distributed Computing (PODC'2016), Chicago,

Illinois, USA.

August 01-03 IEEE International Conference on Software Quality, Reliability and Security (QRS'2016), Vienna,

Austria. Merger of SERE (International Conference on Software Security and Reliability) and QSIC

(International Conference on Quality Software) Topics include: reliability, security, availability, and

safety of software systems; software testing, verification and validation; metrics, measurements, and

analysis; software vulnerabilities; formal methods; benchmark, tools, and empirical studies; etc.

88 Conference Calendar

Volume 37, Number 2, June 2016 Ada User Journal

Includes IEEE International Workshop on Safety and Security in Cyber-Physical Systems (SSCPS), on

Trustworthy Computing (TC), etc.

August 02-05 11th IEEE International Conference on Global Software Engineering (ICGSE'2016), Orange

County, California, USA. Theme: "Software Bridging Distances Between People". Topics include:

industrial offshoring and outsourcing experiences, lean and agile development, methods and processes,

mining software repositories and software analytics, open source software communities, security and

privacy, software evolution and maintenance, strategic issues in distributed development, tools and

infrastructure support, etc.

Aug 31 - Sep 02 42nd Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2016),

Limassol, Cyprus. Topics include: information technology for software-intensive systems; embedded

software engineering (ESE); model-based development, components and services (MOCS); software

process and product improvement (SPPI); teaching, education and training for dependable embedded

and cyberphysical systems (TET-DEC); cyber-physical systems (CPS).

September 03-07 31st IEEE/ACM International Conference on Automated Software Engineering (ASE'2016),

Singapore. Topics include: foundations, techniques, and tools for automating the analysis, design,

implementation, testing, and maintenance of large software systems, such as component-based systems,

maintenance and evolution, model-driven development, model transformations, modeling language

semantics, open systems development, re-engineering, specification languages, software architecture

and design, software product line engineering, testing, verification, and validation, etc.

September 05-09 12th European Dependable Computing Conference (EDCC'2016), Gothenburg, Sweden. Topics

include: theory, techniques, systems, and tools for the design, validation, operation and evaluation of

dependable and secure computing systems, covering any fault model, from traditional hardware and

software faults to accidental and malicious human interactions; dependability in practice (industrial

applications, experience in introducing dependability in industry, use of new or mature dependability

approaches to new challenging problems or domains, ...); hardware and software architecture of

dependable systems; safety critical systems; embedded and real-time systems; cyber-physical systems;

testing and validation methods; security of systems and networks; etc.

September 05-06 8th International Workshop on Software Engineering for Resilient Systems (SERENE'2016).

Topics include: requirements engineering & re-engineering for resilience; frameworks, patterns and

software architectures for resilience; design of trustworthy systems; verification, validation and

evaluation of resilience; empirical studies in the domain of resilient systems; methodologies adopted in

industrial contexts; resilient cyber-physical systems; etc.

September 08-09 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement

(ESEM'2016), Ciudad Real, Spain. Topics include: strengths and weaknesses of software engineering

technologies and methods from a strong empirical viewpoint, including quantitative, qualitative, and

mixed studies; empirical studies using qualitative, quantitative, and mixed methods; case studies, action-

research, and field studies; replication of empirical studies and families of studies; empirically-based

decision making; mining software engineering repositories; assessing the benefits / costs associated with

using certain development technologies; industrial experience, software project experience, and

knowledge management; software technology transfer to the industry; etc.

September 11-14 Federated Conference on Computer Science and Information Systems (FedCSIS'2016), Gdansk,

Poland. Topics include: education, curricula & research methods; software systems development &

applications; etc.

September 12-14 15th International Conference on Intelligent Software Methodologies, Tools and Techniques

(SoMeT'2016), Larnaca, Cyprus. Topics include: state-of-art and new trends on software methodologies,

tools and techniques; software methodologies and tools for robust, reliable, non-fragile software design;

software development techniques for legacy systems; software evolution techniques; agile software and

lean methods; formal methods for software design; software maintenance; software security tools and

techniques; formal techniques for software representation, software testing and validation; object-

oriented, aspect-oriented, component-based and generic programming, multi-agent technology; Model

Driven Development (DVD), code centric to model centric software engineering; etc.

September 23-30 16th International Conference on Runtime Verification (RV'2016), Madrid, Spain. Topics include:

monitoring and analysis of software and hardware system executions. Application areas include: cyber-

Conference Calendar 89

Ada User Journal Volume 37, Number 2, June 2016

physical systems, safety/mission-critical systems, enterprise and systems software, autonomous and

reactive control systems, health management and diagnosis systems, and system security and privacy.

J September 26-29 21st International Workshop on Formal Methods for Industrial Critical Systems & 16th

International Workshop on Automated Verification of Critical Systems (FMICS-AVoCS'2016),

Pisa, Italy. Topics include: design, specification, refinement, code generation and testing of critical

systems based on formal methods; methods, techniques and tools to support automated analysis,

certification, debugging, learning, optimization and transformation of critical systems, in particular

distributed, real-time systems and embedded systems; automated verification (model checking, theorem

proving, SAT/SMT constraint solving, abstract interpretation, etc.) of critical systems; verification and

validation methods that address shortcomings of existing methods with respect to their industrial

applicability (e.g., scalability and usability issues); tools for the development of formal design

descriptions; case studies and experience reports on industrial applications of formal methods, focusing

on lessons learned or identification of new research directions; impact of the adoption of formal

methods on the development process and associated costs; application of formal methods in

standardization and industrial forums. Deadline for submissions: August 17, 2016 (research ideas).

September 26-29 35th International Symposium on Reliable Distributed Systems (SRDS'2016), Budapest, Hungary.

Topics include: dependability in cyber-physical systems, distributed objects and middleware systems,

experimental or analytical evaluations of dependable distributed systems, formal methods and

foundations for dependable distributed computing, high-assurance and safety-critical distributed system

design and evaluation, secure and trusted distributed systems, etc.

October 02-10 32nd International Conference on Software Maintenance and Evolution (ICSME'2016), Raleigh,

North Carolina, USA. Topics include: reverse engineering and re-engineering, software refactoring and

restructuring, software migration and renovation, software and system comprehension, software

repository analysis and mining, software testing, maintenance and evolution processes, software quality

assessment, continuous integration/deployment, etc. Deadline for early registration: August 10, 2016.

October 06 6th International Workshop on Design, Modeling and Evaluation of Cyber Physical Systems

(CyPhy'2016), Pittsburgh, Pennsylvania, USA. In conjunction with ESWEEK 2016. Topics include:

development of industrial or research oriented cyber-physical systems in domains such as robotics,

smart systems (homes, vehicles, buildings), medical and healthcare devices, future generation networks;

evaluation of novel research tools; comparisons of state of the art tools in industrial practice; etc.

Deadline for submissions: July 10, 2016.

J October 06-07 ACM SIGAda's High Integrity Language Technology International Workshop on Model-Based

Development and Contract-Based Programming (HILT'2016), Pittsburgh, Pennsylvania, USA.

Sponsored by ACM SIGAda. Co-located with EMSOFT 2016 (ACM SIGBED's International

Conference on Embedded Software), part of ESWeek 2016 (Embedded Systems Week). Topics include:

automated analysis and code generation targeting verification-oriented tools and/or programming

language subsets (such as SPARK/Ada, ...); contributions linking modeling and contracts to the topics

associated with the co-located EMSOFT conference (such as model- and component-based software

design and analysis, software technologies for safety-critical and mixed-critical systems, robust

implementation of control systems, ...); etc. Deadline for submissions: July 15, 2016 (papers, extended

abstracts).

J Oct 30 - Nov 11 ACM Conference on Systems, Programming, Languages, and Applications: Software for

Humanity (SPLASH'2016), Amsterdam, the Netherlands. Topics include: all aspects of software

construction, at the intersection of programming, languages, systems, and software engineering.

Deadline for submissions: July 8, 2016 (posters), August 15, 2016 (Student Research Competition).

J November 01 High Integrity Software Conference (HIS'2016), Bristol, UK.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2017

J January 18-20 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL'2017), Paris,

France. Topics include: all aspects of programming languages and programming systems. Deadline for

submissions: July 6, 2016 (papers).

90 Conference Calendar

Volume 37, Number 2, June 2016 Ada User Journal

February19-21 5th International Conference on Model-Driven Engineering and Software Development

(MODELSWARD'2017), Porto, Portugal. Topics include: domain-specific modeling, general-purpose

modeling languages and standards, syntax and semantics of modeling languages, model-based testing

and validation, model execution and simulation, model quality, component-based software engineering,

software factories and software product lines, etc. Deadline for submissions: October 7, 2016 (regular

papers), November 10, 2016 (workshops), November 11, 2016 (position papers), November 28, 2016

(special session), December 14, 2016 (doctoral consortium), January 3, 2017 (tutorials, demos, panels).

April 3-7 32nd ACM Symposium on Applied Computing (SAC'2017), Marrakech, Morocco.

J April 3-7 Track on Object-Oriented Programming Languages and Systems (OOPS'2017).

Topics include: aspects and components; code generation, and optimization; distribution

and concurrency; formal verification; integration with other paradigms; interoperability,

versioning and software evolution and adaptation; language design and implementation;

modular and generic programming; runtime verification; secure and dependable

software; static analysis; testing and debugging; type systems; Virtual machines; etc.

Deadline for submissions: September 15, 2016 (regular papers, Student Research

Competition abstracts).

J May 20-28 39th International Conference on Software Engineering (ICSE'2017), Buenos Aires, Argentina.

Deadline for submissions: August 26, 2016 (technical research papers); October 7, 2016 (workshop

proposals); October 26, 2016 (Software Engineering in Practice, Software Engineering Education &

Training, New Ideas and Emerging Results, Software Engineering in Society); November 18, 2016

(formal demonstrations, technical briefings, Doctoral Symposium); December 28, 2016 (Student

Research Competition); January 9, 2017 (posters).

¨ June 12-16 22nd International Conference on Reliable Software Technologies - Ada-
Europe'2017. Vienna, Austria. Sponsored by Ada-Europe. Deadline for submissions:
January 15, 2017 (papers, tutorials, workshops, industrial presentations).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

������������	
��

���������	�
���

�������������
�
��

���
�
������	
���

�������������
��

�����������������������

�������������
�
��

���������
������
���������
��������������� ����

���������	
��
�
���
�
��
��

�����
�����������	
��

!�
"�
�����

��
"�
�����
�������������

�������������
�
��

������
��
��������	����	
��

�����
�
���
�
�
���������
�����

��
����

��������
���	
��

������# �

������

��
$�����$����%
 �

���"

���
����
���
�
�����
����
����
��

��	��������	
��

������!�

����

��
����
 �!��"���
��#��

$����
%��&�
��
'�()�
�!��"���
��

�����������	
��

&�
"�'
��(��
�
&�
"�'
��(��
���
�"����������

��
 *��+�,�
�
-�
.�,����
*��+�,�

 ��
���	
��

!�
"�
�����

��
"�
�����
�������������

/�
0����
�
�,����

!����
��������
���

/��
""��� ������
���
� � ���������� � �� � #���
��� � ��$%
�� � ���	����
��� � & � '�
�

�������"()*
!���
�
��
&�
��
��
0����
�
�,����
#
1����!��+
���
��
�����
�
������
���

���2������
!���
 �&
�

 2,��
!����
 ����,���+

 ����� �
�
 �������
�
&��+�
�

��

������
 �3��(����
 2���
/,���
�
 ��
 /�,���
��

���+
!���
&
�
����
 �,����
��

��

!������&�
��
4���
�

��
1���
�#

��	�����

56
�
�,
��
7859 �,(�������
�2
&
&����
���,����
�
&������
����
�,����
�

��

!������&
&��&��
��#

7:
1�(�,
��
7859 ;��<�
���
�2

���&�
���
��

��

,�����

5=
4
���
7859 �
���
 ��
��
�������
�2
&
&���
��>,����

?8
�&���
7859 ���,����
�
&������
�����
�,����
��

��
!������&
�
����
�
��>,����

������

/��
 ���2������
 �
�
 ����
 ���
 ��
��
 (�����

 ��
���+
 ������
���
�
 2��,�
 2��

&���������
 &�
��������

��
 ����
������
 ��
 ����
(��
 ��@!
��
 ��������+���#
 /��

���2������
&������
����
!���
���,���
��
�,�����
!���
��
���
������

��
&�
����
�2

���
����+��
 ������&����

��
�
�����
���
�2
 ���+ ������
��+� >,
����
 ��@!
��

�������
2��

��
����+��+
�
�����
�2

&&���
���
���
���#
/��
&��+�
�
!���

���!

�&��
 ���
 2��
 ���������
 A��
 ��������

��
 ����,�������

��
 ����
�
 ������#

�
����&
���
����,��
&�
��������

��
����
������
��&�������+
���,�����

�
����

��
 +���������
 ��+
��"
����

����
 ��
 ���
 &�������

��
 ������&����
 �2

����
(��
��@!
��
��������+���#

/���
������
�2
��
 %,��&�
2�
�,���

2��,���
�����
�������������#���
����
����
��

#������#
1����!��+
���
�����
���+
�����
�2
��(���
�������
��
���,����
�

��
&,(���

������������
 ��
 ��
����

��
����
 ��&���
��
 ��

������
 ��@!
��
 �������
 ��

�������

,������,�
 ��������#
 /���
 �&���
�
 ��&��
 ����,����
 ���,��
 ��+
����+

��
����+��+
&��(����
 ��
 ���
<���
�2

,������,�
�
��+
���

��
������
 2,����#

/�&���
 ����,��
B(,�

��
���
 �������
��CD
+�
��%���� ������������, ���
����
�
��

���������������
,�
��%����
�������

����
�����
������
�����
����#

1��
���

����
� ���
����� ��	�������������
 ��&���
�2
 ��������
 ����,��
(,�

��
���

�������
 ��
 B2,��
 ����
 ��
 ���
!�(����CD
��
� /���

��
%�(�����
��������
4�3��

�����
����
 ��������
 /�����

��
 ��
����
 �2
)�+� ����+����
 ��������
 ��@!
��

���������,����
 4������

��
 /�����>,��
 2��
 ��@!
��
 ������&����

��

4
�����
����
1���
�
4�������
��

.
�+,
+�

��
/�������+����
��@!
��
A,
�����

4
������
�

��
%���+��+
�&&���
�����
 %3&�������
��&����
 ��
����
(��
 ������

������&�����
%3&��������
!���
��
#

����������	
�������
���	������	���������	��

���������	�
�
����
��������������������
���������
�	�������
��
��������
�������������������������� ������!�"#$%&������
������������������������	������������������������'����������
�����
������� � ����� � ������ � ����� �
��' � ��� �(���$���� � �� ����
�)**�������������*���	�������*+���	,�������
������ � -�� � 	����� � 	��
����������������������./�

-���0�������������$��	����������1��������%�	�
����-������������������'������������������$21(����'��������3������	����������
%����������������������
�������	������	�����������
����������������������-������	��������������������.4"�5�%$2�6%�����7��
�	�%�������$��	�������������������$������������ 5��������������

����		
��
�

$��	�������
�����������
�������
����������������"�������#��������$��
�����%�������8"#$%9�����������%
������5�����
������
��������������������	��������$�����&����������
����
�
�������������������������:�3����������8	�����������������������������
����������	�����������9��/�������������
�������������������	����������	��������������������
����
�����������
�
���	�����

������
�������
����������

�����������
����������	�	��������

-������	����������'�������������
�������������
���;����������������
�������	����������

�
�������������������������������������
���������������������	�� ��������
����������������������������������%����������������
������������(���$�����	����
�����������'����
�)**�������������*���	�������*+���	,�������
�������-���	������	�������������
�����������./�

-���0����������$���������
���������
�����������������������'�����������������-������������	����������
������������������

��
��� � � � ;��� � ����� � �������� � ��� � ������ � �� � �� � <� ��
��� � ����5 � ������ � �� � � � ��&������ � ���'� � -�� � ������� � �	 � ����
���

������������ �
��� � �� � ������� � �� � ������ � ������
������ ��������� � 	�� �
���������� � �� � ��� ��������� � 	
����
� � 8���
)**

����&
����
�����*��=*95�
�����
��� ����������
������������	�����0�������������������	�����$��	��������/�������	���������	��������

������������������0����������$���������������

����
�

���&(���
��
�����>�������������
�����	��������������������
�
����������������
������������

������������������

-���������������������������=����������	����
�������������
���	��������	������������������
��
������������������	&����	���&���
�����������
������������� ���������������5������������5���������
������	�������
��5���������������������	�����
�����������5��
������
������	�����
��������?�������������
����������������������
��������
��
�������
������
���������5�����
��
�������������
8���	��������	�������95���������������������	��������������8������������5�������������5������������95�������������������������
�
���������������'������5������������������	�������������	�����������������
������������������������������&�����������
-��������$������-������������	�����
����	���&��������������
�����������������
�������������	�����������������������
���������	��
	���������
������
������
�������� ������	��@�	������	&�������������5�����������;���
���������������������������-��� ��������
	
����
��8���
)**

����&����
�����*��=*9�
�����>����
����	�������
������������	������������	���������
��������������

������������������

7��'���
�����������������	����
�������������	����������
���������
��
���������
�����������������������	������	&����	���&���
������5��������������������������������	��������	�������
��'��7��'���
�
��
���������������������������������7��'���

$����� �-���
��'���
�������A�������� ����������������
��
������
�����������	����������
����������������� ���������� 	
����

8���
)**

����&����
�����*��=*9�

�������������������

-��������������� ���������
�����
�������������������	�������������	��������B�����������
����������	���	�
����
�����������
����������������������������(���������$�����	�����	�������������	�������
�������������
���������	������ ����������
�������
�����

������������	
��	
����
	��� 		�

������������������	��
���������������	�����������	��������
����������������������	������������
���
�������'���������������
���	���������������������$�����������$��	�������$�����	�����������

!	��	

-������	�������
������'��
���������������(����������8���������������
95���������������	�B�����5���������

94

Volume 37, Number 2, June 2016 Ada User Journal

Special Session Summary: Ada and Parallelism

Pat Rogers

AdaCore, USA

Abstract

This paper provides a summary of the “Special
Session on Ada and Parallelism” that took place at
the 21st International Conference on Reliable
Software Technologies – Ada-Europe 2016. The
session included position papers from Tucker Taft
and Brad Moore (published in this issue of the Ada
User Journal), followed by an open discussion. The
session was moderated by Jeff Cousins, ARG
Rapporteur.

1 Summary

Tucker opened the discussion with a brief presentation on

the work done by the “Gang of Four” (GoF), the small

working group exploring how best to provide parallelism

in Ada. He introduced the notion of “tasklets” in

particular, and the notion of additional syntax to express

parallelism. In particular he presented how to generalise

the existent proposal to Containers [1].

A listener asked whether tasklets run in parallel and

whether they are managed by the operating system.

Tucker answered that they do indeed run in parallel and

are managed at the user level.

A listener asked why not use a thread-pool instead of

tasklets or any new form of parallelism. Several people

answered that the overall idea is similar, but that tasklets

scale to machines having hundreds of processors, whereas

thread-pools do not. In addition, although a thread-pool

allows smoothing if the work is not evenly distributed,

tasklets do also, in that chunks of individual work can be

assigned accordingly.

Brad then presented library-based approaches [2,3]. He

showed a strict library-based approach (his Paraffin

library of generic units), another approach based on both

syntax and library calls using loops, and a Java 8 facility.

The Java approach uses parallel streams and pipes in a

fork/join framework, with lambdas to conveniently

express the intermediate operations (e.g., filters). Tucker

indicated that there has been much discussion about

lambdas in the ARG, but that careful use is required due

to their inherently dynamic nature and the resulting

danger of dangling references. Overall this approach was

thought to be possible technically, but it was not clear that

it is the right approach for Ada.

As an alternative, a listener mentioned that a common

approach is to use GPUs with languages such as OpenCL.

The reaction was that the resulting code is impenetrable,

and that this use is expected (hoped) to be nothing more

than a “phase.”

The presenters noted that, in the future, compilers should

be good enough at inserting parallelism during the source

transformation that programmers will likely not give it

explicit thought, any more than programmers now use the

“register” hint to C compilers.

The question was again asked as to whether Ada tasking

is not already sufficiently powerful to express parallelism,

assuming compiler transformations. The answer was,

again, that tasks do not scale up to machines having

hundreds of processors, and that in some contexts

(containers) the compiler cannot be expected to transform

task statements into parallel accesses.

A “straw poll” was then taken between the pure syntax

approach and the library-based approaches. The results

were as follows:

1) Pure syntax: approximately half voted for this approach

2) The pure library approach: no votes

3) The combined syntax-API approach: some, not many,

votes

4) The Java parallel streams approach: a small number of

votes

Essentially everyone present voted to do “something”

about parallelism.

The discussion continued with a question of whether

multicore machines of the future will be able to execute

heterogeneous code. The thought was that a degree of

heterogeneity would be available but that homogeneity

will always be present. One attendee asserted that

programmers will rely on the compiler to utilize the

machine well and will not focus on that aspect, but others

disagreed.

The final topic discussed was potential recursion under

the schemes presented. The presenters replied that the

various schemes should not present a problem in that

regard.

References

[1] Taft, S.T. (2016), Ada Container Iterators for

Parallelism and Map/Reduce, Ada User Journal,

Vol. 37, n.2.

[2] Moore, B. (2016), Paraffin: a Parallelism API for

Multiple Languages, Ada User Journal, Vol. 37, n.2.

[3] Moore, B. (2016), Parallel Reduction Lists: a Data

Structure and Algorithm for Non-commutative

Parallel Reduction with Bounded Storage, Ada User

Journal, Vol. 37, n.2.

 95

Ada User Journal Volume 37, Number 2, June 2016

Ada Container Iterators for Parallelism and

Map/Reduce

S. Tucker Taft

AdaCore, Inc., USA

Abstract

This paper presents a proposal for syntax extensions
for Ada to support parallel iterators over container
structures.

1 Generalized Parallel Iterators

As multicore processors have become the norm,

programming languages have begun to add syntactic,

library, or pragma-based support for utilizing fine-grained

parallelism (e.g. OpenMP [1], CPlex [2]). Many of these

additions focus on allowing loops over a data structure

(typically array or array-like) to be parallelized across

multiple cores, often in conjunction with a reduction

operation that is applied to some function of the elements

of the data structure. This combination of applying a

function to each element, and then combining the results,

has been dubbed a map/reduce operation, where map

relates to applying a function to each element, and reduce

relates to the operation used to combine two results into a

single result. This paper proposes syntax extensions for

Ada to support generalized parallel iterators over arbitrary

container structures, optionally with map/reduce

functionality, as an outgrowth of an earlier proposal for

parallel handling of arrays in Ada [3].

Ada 2012 [4] introduced syntactic sugar for iterating over

container types that provide cursors and

First/Next/Has_Element (and optionally

Last/Previous/Has_Element) operations:

for Elem of [reverse] Container loop

 … -- make some use of Elem

end loop;

This expands into operations involving a cursor initialized

to refer to the First (or Last) element of the Container, and

then a loop which continues as long as the Has_Element

function returns True, calling Next (or Previous) to

advance through the elements. In an earlier paper [3], a

syntax for doing parallel iteration over an array was

proposed, including the idea of chunked iteration and

parallel reduction arrays:

for I in parallel Arr’Range loop

 Partial_Result(<>) := Partial_Result(<>) + Arr(I)**2;

end loop;

Final_Result := Partial_Result’Reduced;

In this paper we will describe a combination of these

approaches, by adding a Split operation to a container,

which will initialize an array of cursors, with each cursor

value identifying the start of a chunk of the container. In

addition we will describe a generalization of the parallel

reduction array to a hyperobject, which can be used to

accumulate partial results and perform reduction over the

partial results in parallel with the iteration over the

container:

for Elem of parallel(Num_Chunks) Container loop

 Hyper_Obj(<>) := Hyper_Obj(<>) + Elem**2;

end loop;

Final_Result := Hyper_Obj.Reduced;

The parameter after parallel is optional, and indicates the

maximum number of chunks into which the container

should be split. In the absence of this, the compiler selects

a default based on the number of CPUs available for use.

This parameter is used to determine the length of the array

of cursors to be initialized by the Split operation, which

given the Container initializes the array with starting

cursors for each chunk. Each chunk of the container is

processed sequentially, starting at the corresponding

element of the cursor array, using Next to advance the

cursor until reaching the end of the container, or the start

of the following chunk.

2 Splitting Container Iteration into
Chunks

The proposed new form of parallel iteration relies on the

container being able to provide multiple starting points

within the iteration, so separate tasklets can concurrently

process separate parts of the container. The new proposed

operation is called Split, which initializes an array of

cursors as starting points. To go with this new operation,

there is a new interface, called a Parallel_Iterator, which

inherits First and Next operations from Forward_Iterator,

but also has the Split operation.

generic

 type Cursor_Array;

package Ada.Iterator_Interfaces.Parallel_Iterators is

 type Parallel_Iterator is limited interface and

 Forward_Iterator;

 procedure Split (Object : Parallel_Iterator;

 Cursors: out Cursor_Array);

end Ada.Iterator_Interfaces.Parallel_Iterators;

Given an iterator object that implements the

Parallel_Iterator interface, rather than starting from the

cursor returned by the First operation (and proceeding

until Has_Element returns False), the Split operation may

96 Ada Container I terators for Paral le l ism and Map/Reduce

Volume 37, Number 2, June 2016 Ada User Journal

be invoked on an array of cursors to get multiple starting

points. Then a separate tasklet may be spawned for each

element of the cursor array, to iterate from the

corresponding element of the cursor array until the cursor

equals the next element of the array (or No_Element, if

starting from the last cursor of the array). Hence, a loop of

the following form:

for Elem of parallel(Num_Chunks) Container loop

 Process (Elem);

end loop;

would expand into:

declare

 Iter : Parallel_Iterator’Class := Iterate(Container);

 Cursors : Cursor_Array(1..Num_Chunks);

begin

 Split (Iter, Cursors); -- Get starting points for each

 -- chunk

 for I in parallel Cursors’Range loop

 -- One tasklet per chunk

 declare

 Curs : Cursor := Cursors(I);

 End_Curs : constant Cursor :=

 (if I = Cursors’Last then No_Element else

 Cursors(I+1));

 begin

 while Curs /= End_Curs loop

 -- Process the chunk sequentially

 declare

 Elem : Elem_Type renames Container (Curs);

 begin

 Process (Elem);

 Curs := Iter.Next (Curs);

 end;

 end loop;

 end;

 end loop;

end;

The Split operation will choose the starting cursors for

each chunk by trying to distribute evenly the elements of

the container between the chunks, while not incurring

undue overhead in finding the intermediate cursor values.

For example, given a balanced tree structure, Split might

choose starting points by doing a walk of the tree down

enough levels to provide the appropriate number of

subtrees that cover the whole tree. Similarly, given a hash

table, it might divide the hash range by the number of

chunks, and start at the corresponding points in the hash

table “backbone.” Alternatively, the Split operation could

determine the total number of elements in the iteration,

and then use the Next operation the appropriate number of

times to locate evenly-separated starting points.

Presumably this latter approach would incur more

overhead, but would guarantee even distribution of

elements to chunks.

3 Supporting Map/Reduce over
Containers

Map/Reduce is a highly parallelizable approach to

summarizing information from a large set of elements.

The “Map” part refers to computing some function of

each element, while the “Reduce” part refers to

combining the results of these computations into a single

summary for the entire set of elements. This process is

parallelized by breaking the overall set into subsets (or

“chunks”), summarizing each subset in a separate thread

(task or tasklet [5]), and then combining the summaries

into a single summary using the reduction operation. We

would like to simplify the use of the Map/Reduce

approach in conjunction with the proposed chunked

parallel iteration over containers.

The “Map” part of Map/Reduce is defined by essentially

an arbitrary function, and this part is easily supported in

Ada without additional constructs. The “Reduce” part is a

bit more challenging, in that it requires having a separate

“accumulator” for each independent thread to avoid data

races, along with a mechanism for combining these

separate accumulators using the reduction operation,

preserving order in case the reduction operation is not

commutative (for example, the concatenate operation is a

non-commutative reduction operation).

To support Map/Reduce in the context of a chunked

parallel iterator, the main syntactic addition needed is

some way to get the index of the current chunk, suitable

for indexing into an array or indexable container whose

length is determined by the number of chunks. The

simplest proposal is to use a special symbol for this,

namely “<>”, which when used inside a chunked parallel

iterator will refer to the particular chunk being processed

by a given iteration. Hence, repeating the example in the

introductory section:

for Elem of parallel(Num_Chunks) Container loop

 Hyper_Obj(<>) := Hyper_Obj(<>) + Elem**2;

end loop;

Final_Result := Hyper_Obj.Reduced;

we see the use of “<>” as an index into the indexable

Hyper_Obj container. From the expansion of the chunked

parallel iterator example, we see the outer loop introduced

by “for I in Cursors’Range loop …” uses the variable “I”

as the chunk index, and hence the “<>” symbol would be

replaced by “I” in this expansion. Of course, we cannot

actually use a simple name like “I” in such an expansion,

as “I” might already be in use, so it would probably end

up being something like “_chunk_index_1” using a

syntax for the identifier that could not collide with any

user-declared entity.

As an alternative, we could allow the explicit declaration

of a chunk index, and thereby avoid the use of the “<>”

symbol, by borrowing the syntax used for an entry index

specification of an entry body:

T. Taf t 97

Ada User Journal Volume 37, Number 2, June 2016

for Elem of parallel(C in 1 .. Num_Chunks) Container

loop

 Hyper_Obj(C) := Hyper_Obj(C) + Elem**2;

 end loop;

 Final_Result := Hyper_Obj.Reduced;

This approach avoids the already heavily overloaded

symbol “<>” at the cost of a somewhat more verbose

syntax.

The final step is to provide a container for the

accumulators of partial results. In the above, we imagine a

“hyper-object” container type, which provides a vector of

accumulators indexable by the chunk index, and also

keeps track of the reduction operation so that it can

automatically perform the final reduction over the vector

of partial result accumulators. This could be provided by a

generic declared as follows:

generic

 type Element_Type is private;

 Identity : in Element_Type;

 with function Reducer (Left, Right : Element_Type)

 return Element_Type;

package Hyper_Objects is

 type Accumulator (Count : Positive) is tagged

 private with Variable_Indexing => Reference;

 procedure Update (Accums : in out Accumulator;

 Index : Positive;

 Next_Elem : Element_Type);

 -- Incorporate next element into accumulator with

 -- given index using Reducer function, where

 -- Next_Elem is the Right operand

 function Reduce (Accums : Accumulator) return

 Element_Type;

 -- Perform final reduction over vector of accumulators

 -- preserving left-to-right order

 type Reference_Type (Element : not null access

 Element_Type) is private

 with Implicit_Dereference => Element;

 function Reference (Accums: aliased in out

 Hyper_Object; Index : in Positive)

 return Reference_Type;

 -- Return reference to given element of vector

 -- of accumulators

 end Hyper_Objects;

The above presumes the Element_Type is a definite

subtype. We would need another generic if we wanted to

permit Element_Type to be indefinite (e.g. an

unconstrained array) indefinite types, such as an

unconstrained array:

generic

 type Element_Type(<>) is private;

 Identity : in Element_Type;

 with function Reducer (Left, Right : Element_Type)

 return Element_Type;

package Indefinite_Hyper_Objects is

 type Accumulator (Count : Positive) is tagged

 private

 with Variable_Indexing => Reference;

 procedure Update (Accum : in out Accumulator;

 Index : Positive;

 Element : Element_Type);

 -- Incorporate next element into accumulator with

 -- given index using Reducer function, where

 -- Element is the Right operand

 ... -- As above for definite Element_Type

end Indefinite_Hyper_Objects;

This generic package would be useful for a hyper-object

of, for example, Strings. The Update operation would be

more useful in this case than directly referencing a single

element of the accumulator vector, because the Update

procedure would take care of re-allocating space for the

result of reduction, as the accumulated result might

change in size after each reduction. Here is an example of

such a use:

declare

 package String_Hyp_Objs is new

 Indefinite_Hyper_Objects (String, Identity => “”,

 Reducer => “&”);

 String_Accum : String_Hyp_Objs.Accumulator

 (Count => Num_Chunks);

begin

 for Elem of parallel(C in 1 .. String_Accum.Count)

 My_Str_Vector loop

 String_Accum.Update (Index => C,

 Element => Elem);

 -- Concatenate Elem onto end of growing

 -- accumulated result

 end loop;

 Put_Line (String_Accum.Reduce);

 -- Put concatenation of all strings from My_Str_Vector

end;

There is nothing special about these “hyper-object”

generic packages, in that they could be implemented

directly in Ada by a user. Nevertheless, there would

probably be an advantage to providing something like

these “definite” and “indefinite” generic packages as

standard containers, to give a basic starting point for users

doing these sorts of parallel Map/Reduce operations.

Conclusions

We have shown that generalizing the past proposals for

chunked iteration over arrays to also support containers is

relatively straightforward, with the addition of a Split

operation to provide multiple starting points within a

container for concurrent iterators. We have also shown

that providing a way to refer to the chunk index allows for

parallelized Map/Reduce over containers. Hence, we

would recommend that when support for parallel iteration

and Map/Reduce is added to Ada, the constructs should

be general enough to support the parallel iteration and

reduction of data stored in containers as well.

98 Ada Container I terators for Paral le l ism and Map/Reduce

Volume 37, Number 2, June 2016 Ada User Journal

References

[1] OpenMP Architecture Review Board (2015),

OpenMP Application Program Interface, Version

4.5, available at http://www.openmp.org/

mp-documents/openmp-4.5.pdf, last accessed January

2016.

[2] Programming languages — C — Extensions for

parallel programming, N1966 (2015-09-14),

available at http://www.open-std.org/JTC1/SC22/

WG14/www/docs/n1966.pdf, last accessed January

2016.

[3] International Standards Organization (2012), ISO IEC

8652:2012. Programming Languages and their

Environments – Programming Language Ada.,

Geneva, Switzerland.

[4] S. T. Taft, B. Moore, L. M. Pinho, S. Michell (2014),

Safe Parallel Programming in Ada with Language

Extensions, Proceedings of the 2014 ACM SIGAda

annual conference on High integrity language

technology, ACM, NY, USA.

 http://dx.doi.org/10.1145/2663171.2663181.

[5] L. M. Pinho, B. Moore, S. Michell, S. T. Taft (2015),

An Execution Model for Fine-Grained Parallelism in

Ada, Proceedings of the 20th Ada-Europe

International Conference on Reliable Software

Technologies, Madrid Spain.

http://dx.doi.org/10.1007/978-3-319-19584-1_13.

 99

Ada User Journal Volume 37, Number 2, June 2016

Paraffin: a Parallelism API for Multiple Languages

Including Ada, C, C++, C#, Java, FORTRAN, Python, Rust

Brad Moore

General Dynamics, Canada, brad.moore@gdcanada.com

Abstract

This paper presents the Paraffin parallelism API that
is callable from various languages including Ada, C,
C++, C#, Java, FORTRAN, Python, and Rust. One of
the challenging areas that parallel frameworks must
consider is parallel loop reductions, which has led to
a diverse set of solutions across various languages
and frameworks, and to that end, this paper focuses
on problems associated with loop reduction. The
existing parallelism solutions tend to require
knowledge of the data types associated with the
reduction results, and thus tend to be language-
specific or framework-specific solutions. The
simplicity of the API allows for interoperability with
languages such as C, which in turn allows for
interoperability with languages that can inter-operate
with C. None of the other parallelism frameworks
surveyed were found to provide this level of inter-
language interoperability. Further, the libraries are
implemented in Ada, which can be compiled to Java
byte code, and CIL (.Net) byte-code, so the portability
of the library is extended to frameworks associated
with those environments. Although special syntax is
not needed to issue the calls to the library, this paper
considers how some possible syntax improvements to
Ada could further facilitate making such calls in a
manner more closely resembling the simple sequential
loop solution to the problem.

Finally, this paper presents some performance results
comparing variants of the Paraffin API calls,
including those that map to implementations of
OpenMP and Cilk.

1 Introduction

The need for parallel programming is becoming more

common due to the increasing prevalence of multicore

processors. Most common programming languages did not

initially have support for concurrency and parallelism, and

while Ada [1] has had such support from the beginning, it

is currently lacking standardized support for fine grained

parallelism [2 - 5]. With the advent of multicore processors,

languages are looking at standardizing parallelism features

[6], and language extensions and parallelism frameworks

have become available such as OpenMP [7] and Cilk [8]. In

addition, library based approaches are available such as

TBB [9], and Paraffin [10].

The advantage of a syntax based approach is that it

potentially allows an optimal ease of expression for the

programmer, at the expense of adding complexity to the

language definition. Conversely, the advantage of a library

based approach is that it can typically be easier to

implement for compiler writers, and easier to add to the

language standard, without adding any burden to the

language complexity both for the standard and from the

programmers’ perspective, at the possible expense of ease

of expression.

The goal of any framework is that it be easy to use and

understand for the programmer, while minimizing

complexity to the language definition, hence it is a trade-off

that must be weighed.

Arguably, the aspect of parallel programming where it is

the most difficult to satisfy these goals is in the area of

parallel reductions. One only has to look at the variety of

creative reduction capabilities in the existing frameworks,

to get a sense of the complexity of the problem space. A

desire for any framework is adoption, and to that end, it is

desirable if the framework can be made available in

different languages. OpenMP is an example of such a

framework, since it provides parallelism support for C,

C++, and FORTRAN, but it is a syntax based solution,

since it requires compiler support to provide the necessary

transformation to apply the parallelism pragmas to the

user’s code. Extending OpenMP to support other languages

is a possibility, but is a non-trivial exercise since adding

language extensions to a new language involves compiler

support, not to mention extending the OpenMP standard

itself to support the new language, and the resulting

extensions typically are considered to be outside the

language definition, and therefore non-portable. A much

easier path to a framework that has inter-language

interoperability is possible if the framework is a library

based approach, rather than a syntax based approach. Most

library based solutions (e.g. TBB [9], TPL [11], Java

Streams [12]) however, are still framework specific

because they use language specific syntax such as generics

or templates to allow the library to compute the results for

parallel reduction. Object oriented features such as class

hierarchies also tend to be non-portable between languages,

or at least make it difficult for multi-language use, since not

all languages support object oriented constructs, and those

that do may have unique, non-compatible approaches that

limit cross language portability.

100 Paraf f in: a Paral le l ism API for Mul t ip le Languages

Volume 37, Number 2, June 2016 Ada User Journal

This paper presents part of the Paraffin API, which is a

library based API written in Ada that is designed to be

callable from multiple languages including; Ada, C, C++,

C#, Java, Python, FORTRAN, and Rust.

The multi-language Paraffin API library calls do not

involve generics, template, or object oriented constructs,

and the reduction capabilities are completely decoupled

from the user data types associated with the reductions. All

reduction code involving user reduction data types is

managed by the client of the library. None of these library

calls accept parameters that designate reduction results.

This allows the library calls to be easily adaptable to being

called from multiple languages. The API is also easily

adaptable to providing an alternate interface to

implementations of other parallelism frameworks such as

the GOMP OpenMP ABI and the gcc Cilk ABI, allowing a

common API to be applied to implementations of these

other frameworks.

Java and C# are also options since there exists Ada

compilers that can generate CIL byte code for C#, or Java

byte code for Java. The advantage is that since it is a library

based approach, no special compiler support is needed.

The paper then goes on to describe how a library based

approach might be optionally enhanced for usability with

syntactic sugar, particularly in Ada to further facilitate

making such library calls. The overall idea is to explore

alternatives that might either complement or reduce the

need to add specialized parallelism syntax to the Ada

language. Ultimately it may make sense for Ada to add

special syntax support for fine-grained parallelism, but a

library approach may be of interest to those who need

specific behaviour or implementation transparency, that

might not be associated with any eventual syntax. For

instance, features of Paraffin such as no heap allocation, no

queueing of work items, bounded storage for reductions,

stack-safe parallel recursion, might be desired. A library

that can be called from other languages might also be of

interest to users of those other languages, particularly if

parallelism support is not already available in those

languages.

The areas of syntactic sugar improvements of interest

include some form of anonymous subprogram calls, and

usability improvements for thread local storage.

Anonymous subprograms would be a general feature that

could be applied to libraries with callbacks, not necessarily

restricted to parallelism calls. A secondary proposal is

presented to suggest a mechanism for making it easier to

use thread local storage in Ada. Currently,

Ada.Task_Attributes can be used for this purpose, but

requires generic instantiation, which is not as convenient as

mechanisms that can be found in other languages.

2 Infrastructure for a Common Parallel
Loop Reduction API

As stated above, in order for a library to be callable from a

wider variety of programming languages, it must not

present an API that utilizes language features that are not

commonly available. For instance, this rules out the use of

templates, generics, concurrency related features, and

object oriented constructs in the definition of the API call,

although note that it does not necessarily rule out the use of

these features in the user supplied callbacks associated with

the framework, since the user supplied callbacks are

unrestricted in the domain of the client. Ideally, the API

should not be required to interact with or be aware of any

user defined data types.

 It turns out that a relatively simple API is possible, but it

does require the support of a small set of language

capabilities. Either the language needs to be interoperable

with Java byte code, or dot net CIL byte code, or the

language as a bare minimum needs to support;

· Calling C functions,

· Passing native language callbacks as parameters to

C functions,

· Calling back into the native language from C from

external threads

Ideally, the language would support some form of thread

local storage (TLS), but this is not strictly necessary, since

the Paraffin libraries expose library routines that provide

this capability, that are callable from C.

Ideally also, the language would provide support for nested

closures such as nested subprograms in Ada, or lambdas in

C++. This allows callback routines to access variables in

enclosing but nested scopes, which typically is needed for

assignment of the final reduction results. This feature also

is not strictly necessary, because there are forms of the

library calls that accept a context parameter, which can be

used to pass references to variables of nested scope, which

is a technique commonly used in C.

3 Thread Local Storage (TLS)

Thread local storage provides a convenient mechanism for

the client to declare partial result variables that can be

accessed safely by parallel executors or worker threads,

without the need for locking or synchronization between

threads. A benefit of thread local storage variables is that

the parallelism libraries do not necessarily need to be aware

of these user defined partial result variables, if these

variables are only referenced in user specified callbacks. At

some point, these partial result variables may need to be

reduced into a single result variable stored in a global

scope, but if the reduction is also specified as a user

supplied callback, then the reduction can safely be used to

coordinate reductions between multiple threads of

execution, as will be shown below.

3.1 Thread Local Storage in C

The keyword ThreadLocal was added in C11 [13] to

specify thread local storage for variable declarations. The

header, <threads.h>, if supported, defines thread_local as a

synonym for that keyword.

#include <threads.h>

thread_local int partial_sum = 0;

B. Moore 101

Ada User Journal Volume 37, Number 2, June 2016

3.2 Thread Local Storage in C++

In C++11, the thread_local keyword was added for

Namespace level (global) variables, file static variables,

function static variables, and static member variables.

3.3 Thread Local Storage in C#

In C#, there are at least 3 options; one can apply the

ThreadStatic attribute to a static field. In .Net 4.0 or above,

one can use the System.Threading.ThreadLocal<T> class

which also provides lazy initialization, and is not limited to

static fields, or finally one can use Named Data Slots

capability if the other two options are not applicable.

e.g.,

 [ThreadStatic]

 private static int partial_sum;

or alternatively using the ThreadLocal class;

 ThreadLocal<int> PartialSum =

 new ThreadLocal<int>(() => {return 0;});

In this particular case, the constructor is using a

valueFactory anonymous lambda function to initialize the

thread local variable in each thread.

3.4 Thread Local Storage in Java

Java similarly provides a ThreadLocal class, where the

initial value can be specified by type derivation and

overriding the initialValue() member function. e.g.,

private static final ThreadLocal<Integer> PartialSum =

 new ThreadLocal<Integer>() {

 @Override protected Integer initialValue() {

 return 0;}

3.5 Thread Local Storage in Ada

Since Ada 95, Ada [1] has provided thread local storage in

the form of the Ada.Task_Attributes standard library.

Similar to Java and C#, this library is a generic package

that requires instantiation. e.g..

package Integer_Attributes is new

 Ada.Task_Attributes

 (Attribute => Integer, Initial_Value => 0);

Partial_Sum : Integer := Integer_Attributes.Value;

In addition, the GNAT compiler provides the non-standard

pragma, available on most common platforms called

Thread_Local_Storage, which may be applied to variable

declarations in library level packages. The pragma is more

efficient than the Task_Attributes package, although for the

purposes of this common parallelism API, the

task_attributes can be used in a manner such that its less

efficient implementation does not significantly affect the

parallelism performance results. The pragma however is

useful in other situations when interfacing with foreign

threads, for example.

3.6 Thread Local Storage in Other Languages

Not all languages support thread local storage. For those

that do not (e.g. FORTRAN, Python, Rust), Paraffin

provides library calls for elementary types such as 32 and

64 bit integers, and 64 and 128 bit floating point values.

Multiple values of any of these types may be stored in

thread local storage, as each value can be associated with a

unique numeric id lookup value.

For example, for the C long integer type, the following

package exists.

package Parallel.Task_Local.Long is

 ...

 function Get_Long

 (Id : Integer) return C.long

 with Export,

 Convention => C,

 External_Name =>

 "Paraffin_Task_Local_Get_Long";

 procedure Set_Long

 (Id : Integer;

 Val : C.long)

 with Export,

 Convention => C,

 External_Name =>

 "Paraffin_Task_Local_Set_Long";

end Parallel.Task_Local.Long;

4 Possible future improvements for Ada
with TLS

The Ada standard package, Ada.Task_Attributes turns out

to be useful for parallelism, since it allows one to place the

storage for variables within a task. For parallelism

however, use of this package with parallel executors

implies that the executors are implemented as Ada tasks,

which may not be the case.

The GNAT pragma Thread_Local_Storage might be better

suited for this purpose, because it can work with foreign

threads, but still there is the implication that OS threads are

being used, which might not necessarily be the case.

Furthermore, currently in Ada, there are significant

restrictions on where the Thread_Local_Storage pragma

can be placed, that are not as restricted in other languages.

It would be useful if the pragma could be placed on

variable declarations declared within nested scopes. The

idea being that the visibility of the variable is limited to the

same scope of visibility as other variables declared at the

same site.

Taking this idea one step further, it would be nice if the

thread local storage associated with a partial results

variable of a parallelism computation could be more closely

coupled to the final result variable. Rather than declare two

separate variables, an aspect could be defined, such as

Parallel, which could be applied to a variable declaration. A

new attribute 'Partial could also be defined and applied to a

parallel variable to distinguish between thread local usage

and the final result instance.

102 Paraf f in: a Paral le l ism API for Mul t ip le Languages

Volume 37, Number 2, June 2016 Ada User Journal

declare

 Sum : Natural with Parallel := 0;

begin

 ...

end;

The intent of the declaration of Sum above is that there is a

regular local variable called Sum, as well as “shadowing”

independent thread local versions of variables with the

same properties and initialization. To reference the local

variable, it can be named as per existing Ada syntax. To

reference the thread local version, one can use the 'Partial

attribute such as:

Sum'Partial := 10; -- Update the TLS Sum variable

5 Nested callback scope

When reductions are needed, it is quite typical that the

reduction result is declared in an enclosing but nested

scope.

E.g.,

declare

 Sum : Integer := 0;

begin

 for I in 1 .. 1000 loop

 Sum := Sum + Arr(I);

 end loop;

end;

For example, one could parallelise the above loop, by

replacing the loop with a call to a library subprogram,

where the library call breaks the loop iterations into chunks

allowing different executors to process different sets of

iterations of the loop in parallel. The Sum variable cannot

be safely updated by the executors however, as that would

be a data race, so typically each executor operates on a

thread local copy of the sum variable, and then during

reduction, as each chunk completes, or after all chunks are

complete, the partial results are combined into a single

result and stored in the Sum variable. The issue is that if the

library call involves a user supplied callback to execute the

loop, it presents a problem if the language in question does

not allow nested callbacks, because otherwise the callback

subprogram must then be declared at library level, and

would not have visibility to the nested Sum variable

declaration, which would need to be referenced in the

callback. Alternatively, the Sum variable could be moved

to a library level declaration, but that is generally

undesirable, since it breaks up the flow of the program

which affects readability, and limits the potential to use the

stack, which also can introduce data races if more than one

thread of execution needs to execute the loop concurrently.

Here we examine the nested callback capability across

several languages.

5.1 Nested callbacks in C

Currently the C standard does not support nested function

calls, nor is there a standard mechanism to access nested

global scope from within a callback function. One can

however, work around these limitations using a context

parameter, which is a void pointer that can be mapped to a

user defined data type.

void Callback (void *context)

{

 int i;

 int *sum = (int *) context;

 for (i = 0; i < 1000; i++)

 *sum += Arr[i];

}

int main()

{

 int sum = 0;

 CallCallback(&sum, &Callback);

 /* Sum address is passed as context */

}

The gcc C implementation does support nested

subprograms as a non-standard language extension, which

would allow one to write;

int main()

{

 int sum = 0;

 void Callback()

 {

 int i;

 for (i = 0; i < 1000; i++)

 sum += Arr[i]; /* Sum is visible */

 }

 CallCallback(&Callback);

}

The Paraffin libraries support both of these mechanisms for

C interoperability.

5.2 Nested callbacks in C++

None of the C based languages (C++, C#, Java) support

nested functions in their respective standards, and only the

gcc C implementation provides non-standard nested

function support. The other languages have various forms

of lambda function capabilities or anonymous classes

however, which provides a similar capability to allow

referencing variables from enclosing nested scopes, while

also allowing the callback to be written inline, which is a

more natural flow for the reader, and eliminates clutter by

eliminating the name associated with the callback function.

In C++, one can write;

{

 int sum = 0;

 callCallback([&sum]

 {

 for (int i=0; i < 1000; i++) {

 sum += arr[i];

 }

 });

}

B. Moore 103

Ada User Journal Volume 37, Number 2, June 2016

Note that the sum variable is mentioned at the start of the

lambda function enclosed in square brackets. This is called

a capture, which means that the variable from the enclosing

scope may be referenced from inside the lambda function.

The ampersand indicates that the variable is captured by

reference, which is needed if we want the sum variable

from the enclosing scope to be updated.

5.3 Nested callbacks in C#

int sum=0;

callCallback (callback: () =>

 {

 for (int i = 0; i < 1000; i++) {

 sum += arr[i];

 }

 });

The C# solution is very similar to the initial C++ solution,

except that all variables of the enclosing scope are

automatically captured and thus do not need to be

mentioned in capture syntax.

5.4 Nested callbacks in Java

While Java does have lambda expressions, these are

functions that return the result of an expression, which is

not what is needed for the parallelism API. For callbacks,

the closest equivalent of the lambda in C# or C++ is the

anonymous class.

private static int sum=0;

...

callCallback

 (new callback()

 {

 public void Invoke ()

 {

 for (int i = 0; i < 1000; i++) {

 sum += arr[i];

 }

 });

In this scenario, the callCallback function issues a call to

the Invoke method.

5.5 Nested callbacks in Ada

Ada has always supported nested subprograms, which

allows callbacks to be written that can access nested scope.

declare

 Sum : Integer := 0;

 procedure Callback is

 begin

 for I in 1 .. 1000 loop

 Sum := Sum + Arr (I);

 end loop;

 end Callback;

begin

 Call_Callback (Callback => Callback'Access);

end;

6 A possible future improvement for Ada
– Anonymous subprograms

While, the nested subprogram capability of Ada makes it

relatively easy to create callbacks that can reference

variables from an enclosing nested scope, it may be worth

considering whether it makes sense to add some form of

syntactic sugar to allow callbacks to be written inline as an

anonymous subprogram, similar to features that now exist

in many other languages. It can be argued that being able to

write subprograms inline improves readability by placing

the logic of the callback more closer to the natural flow of

the processing, and having to create names for subprograms

and their parameter profiles that are only called once adds

unnecessary clutter to the code. The physical separation

from the call site and the callback site also interferes with

the readability for linkage of the call parameters. An

additional benefit is that it eliminates a need for 'Access,

and having to work with access type pointers.

A possible syntax could be modelled after the approach

taken by the other languages, since the end result could

look very similar. Furthermore, implementation of the

feature should be eased since such calls could be

transformed to nested subprogram calls which exist in Ada

today. With such a capability, the above Ada example

might be rewritten as;

declare

 Sum : Integer := 0;

begin

 Call_Callback (

 <for I in 1 .. 1000 loop

 Sum := Sum + Arr (I);

 end loop>);

end;

The idea here is that procedural callback code is enclosed

by angle brackets, and functional expression callbacks are

enclosed by round brackets, similar to the syntax for Ada

2012 expression functions. For procedural callbacks, the

angle brackets syntax could be constrained to allow the

syntax to only directly enclose a single statement. If more

than one statement is needed, a group of statements could

be enclosed by a block statement inside the angle brackets.

In a manner similar to C++, C#, and Java, any parameters

needed for the call could also be supplied inline, enclosed

by parenthesis, as per the existing Ada syntax, except that

the types and parameter modes could optionally be

eliminated, since they could be inferred by the call [14].

Although other modern languages have added similar

anonymous subprogram capabilities, it does not necessarily

mean that the idea is a good fit for Ada.

The possibility of having statements embedded at a call site

might be seen as too much of a departure from the

language, particularly if the feature provides no new

capabilities other than readability enhancements. Whether

such features ever make it into the language standard

remains to be seen, but in the meantime, Ada's nested

subprogram capabilities work well with the Paraffin

104 Paraf f in: a Paral le l ism API for Mul t ip le Languages

Volume 37, Number 2, June 2016 Ada User Journal

libraries. The Ada examples in this paper will however, use

this proposed syntax, because it makes the examples more

concise and readable.

7 A Parallelism API callable from C,
C++, C#, Java, and Ada

Now that some useful infrastructure has been described, in

particular thread local storage, and callbacks that can

access enclosing nested scope, a multi-language API that

can be presented to perform parallel reductions associated

with parallel loops;

type Iteration_Index_Type is System.Min_Int ..

System.Max_Int;

procedure Parallel

 (From, To : Iteration_Index_Type;

 Context : System.Address;

 Reset : not null access procedure;

 Process : not null access

 procedure (Start, Finish : Iteration_Index_Type);

 Reduce : access

 procedure (Context : System.Address;

 Start, Finish : Iteration_Index_Type

 with Loop_Cursor));

For compilations to native languages such as C, C++, and

Ada, the subprograms are exported with the C calling

convention. To use this interface, the programmer declares

any partial result variables external to this call, using any

form of thread local storage supported by the calling

language.

7.1 Terminology: Chunks and Grains

Some basic terminology is needed prior to discussing this

API call. Using a divide and conquer approach, the parallel

processing of a loop can be broken down into two units of

work items: Chunks and Grains.

A Grain of processing is the smallest division of work.

Each grain consists of a subset of iterations of the loop,

where all iterations of the grain are executed by the same

executor. A grain cannot be subdivided into smaller units of

work. For load balancing strategies such as Work Stealing

[15] or Work Seeking [16], grains are the entities that can

be stolen from one executor and reassigned to an idle

executor. Only whole grains can be stolen, so once an

executor has started to execute a grain, it cannot be stolen

by another executor.

Chunks represent a consecutive sequence of grains that are

processed by a single executor. A chunk is essentially an

execution of grains, and the notion of a chunk is dynamic

and determined during the execution of the loop. If an idle

executor steals work from another executor, it typically

splits the chunk or remaining work of the busy executor

into two smaller chunks, and claims one of the chunks for

itself, the idle executor, which then becomes busy

processing the new chunk, while the original busy executor

continues to process what remains of its original chunk.

The distinction between chunks and grains disappears for

static work division, called Work Sharing with respect to

the Paraffin libraries. For this case, there is no dynamic

load balancing, so the original chunks never get split apart,

and can also be considered to be grains.

7.2 Dissecting the Parallel_Loop Call

The purpose of the Reset callback of the Parallel_Loop API

call presented above is to initialize and/or reset any such

thread local variables to an initial state. Executors call this

callback whenever a new chunk of work is assigned to an

idle executor. Each executor can process multiple

independent chunks, but before the processing for each

chunk is started, any thread local storage needs to be reset

to the initial state again, as the thread local partial results

for each chunk need to be isolated from the partial results

calculated for other chunks. Since the Reset callback is

intended to only affect thread local storage, it can be called

by multiple executors concurrently, without any need for

synchronization.

The purpose of the Process callback is to perform the main

processing of the loop. Usually this involves only access to

local variables and the thread local storage associated with

partial results. Otherwise, global variables may be

accessed, but then care must be taken to ensure that the

access to such variables is properly synchronized through

locks or protected objects, if the variables are updated from

within the loop. The Start and Finish parameters of the

Process callback identify a “grain” of iterations of the loop.

The Loop_Cursor aspect is intended to allow for special

proposed syntax that makes a library call to a subprogram

look more like a loop. If the call is written as a procedure

call however, then the aspect has no effect. For the time

being, the aspect can be ignored, as it will be described and

used in an example later below.

The purpose of the Reduce callback is to combine the

partial results in thread local storage for a particular

executors processing of a single chunk, with the final

result. This typically involves applying some operation to

combine the thread local storage variables with the final

result variables.

 Reductions are best applied once per chunk, rather than

once per grain. One reason for this, is that it reduces the

amount of synchronization needed to combine the partial

results in the final result, which can result in performance

gains.

The Reduce callback is called by the executor that stored

the partial result in thread local storage, so the callback has

access to the thread local storage of that executor. The

Reduce callback is called from a protected context, which

ensures that only one executor at a time can call Reduce.

This eliminates the need for any locking in the

programmer’s callback code, and global variables such as

the final result variables declared in an enclosing scope can

be updated and modified safely. For this callback, the Start

and Finish parameters here identify the “chunk” of

consecutive iterations that were processed by an Executor

rather than a grain as per the Progress callback. The Reduce

B. Moore 105

Ada User Journal Volume 37, Number 2, June 2016

callback is called before the idle Executor attempts to

acquire more work (e.g. by Work Stealing, or Work

Seeking). For most reduction problems these parameters

can be ignored as they are not used, but certain problem can

make use of these parameters, such as for storing partial

results in a sorted container, sorted by loop index.

The context parameter exists for languages that do not

support nested subprograms. For languages that support

nested subprograms, such as Ada, and the gcc version of

the C compiler, variants of the library calls exist where the

context parameters have been eliminated. For languages

such as standard C, the context parameter of the

Parallel_Loop call can be passed the address of a final

result variable from the enclosing scope. This address is in

turn passed back to the Reduce callback, which can be

typecasted to designate the final result variable which it

originally referenced. This allows the Reduce callback to

update the final result variable which otherwise would not

have been visible to a callback routine that is declared at

library level. If more than one reduction needs to be

generated by the loop, then the address of a composite

record structure can be passed instead that contains the

multiple reduction values.

As an example of usage for the API, reconsider the

problem of calculating the sum of an array of integers. Here

we show the example using the 'Partial attribute for

shadowing local variables with thread local storage,

described above. The example also utilizes anonymous

subprogram syntax presented above, mostly for brevity, to

illustrate how parameters to callbacks could work with the

syntax. Note that the example could be rewritten to use

Ada.Task_Attributes and nested subprograms instead

which are features available in Ada today.

Sum : Integer with Parallel := 0;

Parallel -- Loop

 (From => 1,

 To => 1000,

 Reset => <Sum'Partial := 0>,

 Process => (Start, Finish)

 <for I in Start .. Finish loop

 Sum'Partial := Sum'Partial + Arr (I);

 end loop>,

 Reduce => <Sum := Sum + Sum'Partial>);

or alternatively we can consider a syntax alternative that

strives to make the call to a library look more like a loop.

The first variant of this syntax could allow the parameters

of the loop Process callback to be mentioned where the

loop cursor iterator would normally be placed. This

parameter list would be enclosed in parenthesis and could

be referenced from inside the loop. The end result is a

nested loop structure, which conceptually makes sense

since the outer loop can be thought of as iterating through

chunks, while the inner loop is iterating through a specific

chunk.

Sum : Integer with Parallel := 0;

for (Start, Finish) of Parallel (From => 1, To => 1000,

 Reset => <Sum'Partial := 0>,

 Reduce => <Sum :=

 Sum+Sum'Partial> loop

 for I in Start .. Finish loop

 Sum'Partial := Sum'Partial + Arr (I);

 end loop;

end loop;

This is somewhat satisfying but what we would really like

to see here is a single non-nested loop. To get there,

another loop syntax variant is proposed which would

involve the Loop_Cursor aspect.

A callback that has parameters identified with the

Loop_Cursor aspect is allowed to be written as the body of

a loop, but the inner loop is implicitly written using the

Loop_Cursor parameters. Instead of a list of callback

parameters enclosed by parentheses, the programmer would

write a single loop cursor name without parentheses. This

form would be accepted by the compiler only if all

parameters of the callback can be implicitly converted by

the compiler to either reduction variable references or loop

cursor parameters.

In this situation, the programmer is indicating that the inner

loop should be implicitly generated. The current value of

the loop cursor is named by the loop cursor of the loop as

per existing for-loop syntax. This could allow for rewriting

the above library call to more resemble a single loop rather

than a nested loop, which would be mapped to the same

library subprogram call.

This could then be written as:

Sum : Integer with Parallel := 0;

for I of Parallel (From => 1, To => 10_000_000,

 Reset => <Sum'Partial := 0>,

 Reduce => <Sum := Sum + Sum'Partial>

loop

 Sum'Partial := Sum'Partial + Arr (I);

end loop;

Using this syntax increases the elegance of the solution, as

it brings the code back to look more like the original

version, which was a sequential for loop. The code is

concise and readable, yet gives the reader an understanding

that parallelism is involved, as well as an idea of how the

data races are avoided and how the parallelism takes place.

7.3 Paraffin Reductions from standard C

The following example illustrates how the previous

example might look, when called from C.

#include “paraffin.h”

static __thread int partialSum = 0;

void reset(int start) {partialSum = 0;}

void reduction(void *context, int start, int finish)

{

 int *sum = (int *) context;

 *sum += partialSum;

106 Paraf f in: a Paral le l ism API for Mul t ip le Languages

Volume 37, Number 2, June 2016 Ada User Journal

}

void compute(int start, int finish)

{

 int i;

 for (i = start; i <= finish; i++)

 partialSum += i;

}

void main (){

 int sum = 0;

 Parallel_Loop(1, 1000, &sum, &reset, &compute,

 &reduction);

}

7.4 Paraffin Reductions from C (gcc with nested
functions)

The following example illustrates how the previous

example might look, when called from C, using gcc's non-

standard nested functions.

#include “paraffin.h”

{

 static __thread int partialSum = 0;

 int sum = 0;

 void reset(int start) {partialSum = 0;}

 void reduction() {sum += partialSum;}

 void compute(int start, int finish)

 {

 int i;

 for (i = start; i <= finish; i++)

 partialSum += i;

 }

 Parallel_Loop (1, 200000000, &reset, &compute,

 &reduction);

}

7.5 Paraffin Reductions from C++

#include <functional>

#include "paraffin.h"

static __thread int partialSum = 0;

void resetPartial (int start) {partialSum = 0;}

void computeSum (int start, int finish)

{

 for (int i = start; i <= finish; i++)

 partialSum += i;

}

{

 int sum = 0;

 auto la_reduce = [&sum](void) { sum += partialSum; };

 static std::function< void(void) > static_reduce;

 static_reduce = la_reduce;

 void (*reduce)(void) = [] { static_reduce(); };

 Parallel_Loop (1, 200000000,

 &resetPartial, &computeSum, reduce);

}

Alternatively, the standard C version above could be used,

without having to use lambda functions.

7.6 Paraffin Reductions from C#

class test_paraffin_lib

{

 [ThreadStatic]

 private static int partial_sum;

 static void Main(string[] args)

 {

 int sum = 0;

 paraffin_pkg.Parallel_Loop

 (from: 1, to: 1000,

 reset: new Paraffin.partial_results_reset_callback

 ((int start) => { partial_sum = 0; }),

 process: new Paraffin.Parallel_Loop_Callback

 ((int start, int finish) =>

 {

 for (int i = start; i <= finish; i++) {

 partial_sum += i;

 }

 }),

 reduce: new paraffin.reduction_callback(() =>

 { sum += partial_sum; }));

 }

}

7.7 Non-Commutative Reductions

Most reductions operations such as integer addition, min,

max, etc, are both associative and commutative. However,

some operations, such as concatenation and chain

multiplication of matrices are only associative. This can

lead to incorrect results if partial results are combined in an

order that differs from the sequential ordering.

The multi-language API allows the programmer to specify

all the details of the reduction, and otherwise only provides

the necessary synchronization to prevent data races. As

such the notion of non-commutative reduction is not

directly supported by the API, but can be provided

relatively easy by the programmer, by using techniques

such as reducing to a sorted container type such as an

ordered set or ordered map container. Consider the problem

of concatenating all the letters of the alphabet in a parallel

loop. The following shows how the API can be used to

generate the correct results, while processing the loop in

parallel. Note, while the multi-language Paraffin API does

not directly manage non-commutative reduction except by

user control as in this example, there are Ada specific

generic Paraffin API calls that directly manage non-

commutative reduction within the library call without

having the programmer provide this management.

package Maps is new Containers.Ordered_Maps

(Key_Type => Natural,

 Element_Type =>

Strings.Unbounded.Unbounded_String);

Map : Maps.Map;

B. Moore 107

Ada User Journal Volume 37, Number 2, June 2016

Alphabet : Strings.Unbounded.Unbounded_String

 with Parallel;

for Letter in Parallel

 (From => Iteration_Index_Type (Character'Pos('A')),

 To => Iteration_Index_Type (Character'Pos ('Z')),

 Reset => <Alphabet'Partial :=

 Strings.Unbounded.Null_Unbounded_String>,

 Reduce => (Start, Finish : Iteration_Index_Type)

 <Map.Include (Key => Start,

 New_Item => Alphabet'Partial)>)

loop

 Strings.Unbounded.Append(Alphabet'Partial,

 Character'Val(Letter));

end loop;

One could now iterate through the ordered list to generate a

correct alphabet string result.

This particular problem may be better suited for one of the

generic, Ada-specific Paraffin calls, which does manage

non-commutative reduction.

generic

 type Loop_Index is range <>;

 type Result_Type is private;

 with function Reducer

 (Left, Right : Result_Type) return Result_Type;

 Identity_Value : Result_Type;

package Parallel.Generic_Loops is

 function Parallel

 (From : Loop_Index := Loop_Index'First;

 To : Loop_Index := Loop_Index'Last;

 Process : not null access

 procedure (From, To : Loop_Index

 with Loop_Cursor;

 Result : in out Result_Type

 with Partial);

) return Result_Type;

end Parallel.Generic_Loops;

An advantage of using a generic call is that the result type

and loop index type can exactly match the programmers

data types. Another difference is that thread local storage is

not needed. The partial result is passed as a callback

parameter. Also, the reduction works differently. The

reduction is specified as a function result of combining two

partial result values. Here, the Loop_Cursor works as

described above, but this introduces a new Aspect, Partial.

The prefix of 'Partial attribute reference must either match

a parallel variable with thread local storage as per the

previous examples, or alternatively in this case, it could

designate a callback parameter that has the partial aspect. If

the library call is a function, then the prefix of the 'Partial

attribute also denotes the name of the final result variable

where the function result is implicitly assigned. This should

allow us to rewrite the alphabet problem as follows:

package Letter_Loops is new

 Parallel.Generic_Loops

 (Loop_Index => Character,

 Result_Type =>

 Strings.Unbounded.Unbounded_String,

 Reducer => “&”,

 Identity_Value =>

 Strings.Unbounded.Null_Unbounded_String);

use Letter_Loops;

Alphabet : Strings.Unbounded.Unbounded_String;

for Letter of Parallel (From => 'A', To => 'Z') loop

 Strings.Unbounded.Append(Alphabet'Partial, Letter);

end loop;

Note that this version does not need a temporary ordered

map container to store the intermediate results, yet results

in a concise loop that closely approximates the sequential

version of the loop. Because the call involves Ada generics,

it unfortunately cannot be called from other languages
easily, but for use in Ada, it is well suited for the problem.

Using the same generic, the sum of an integer array

problem could be expressed as:

package Natural_Loops is new

 Parallel.Generic_Loops (Loop_Index => Natural,

 Result_Type => Natural,

 Reducer => “+”,

 Identity_Value => 0);

use Natural_Loops;

Sum : Natural := 0;

for I of Parallel (From => 1, To => 10_000_000) loop

 Sum'Partial := Sum'Partial + Arr(I);

end loop;

8 Performance Measurements

The Paraffin libraries include a series of tests for various

problems. To illustrate performance differences between

the multi-language (non-generic) Paraffin library calls

versus the generic Ada specific library calls, some tests

were performed on a Ubuntu desktop running an AMD

athlon processor. Three runs were conducted, one running

native executables, and the other running the dotnet version

of the executables running under the Mono CLS virtual

machine, and the final version running the java version of

the executables running as java byte code. The example

tested involves the calculation the sum of 64 bit integers

from 1 to 400_000_000.

All of the tests that specify Cilk or OpenMP involve

Paraffin API calls that map to the respective ABI's, but

where the management of the reduction is handled by the

Paraffin library rather than the OpenMP or Cilk libraries.

For example, there is no use of Cilk hyperobjects for the

reductions. OpenMP and Cilk just provide the executors,

though the loop body processing is also performed by the

respective executors of the ABI. The exception is where the

example was run in pure C++ for both OpenMP and Cilk

using the OpenMP pragmas and cilk_for syntax with hyper

objects. Those runs are identified with the “(Pure)” tag in

108 Paraf f in: a Paral le l ism API for Mul t ip le Languages

Volume 37, Number 2, June 2016 Ada User Journal

the listing. All other test results are for native Paraffin

libraries written entirely in Ada.

For some reason, the pure Cilk test with hyperobjects

performed poorly, and was considerably worse than the

sequential time. It may be that the Cilk hyperobjects in the

gcc implementation are not intended to be used for this sort

of problem with extremely large iteration count, but little

processing per iteration. It may also be that there is some

problem with the Cilk configuration, although the Cilk

results using the Paraffin API were much better, and within

the expected times. This suggests that there may be

overhead associated with hyper objects that is accentuated

by this particular problem.

From the results on the native target it appears there may be

a slight performance edge in running the generic library

calls over the multilanguage non-generic calls. More testing

would be needed to confirm this, though the difference

does not appear to be very significant. Under the Mono and

Java virtual machines, we see overall that the results

compare very well to running natively, however one of the

tests, (the work sharing tests) performed surprisingly better

than any of the others on all targets, which in turns

performs slightly worse than using the language specific

parallelism libraries. The reasons for this difference are

unexplainable at the time of writing, but may happen to be

tied to that particular test scenario. It appears that the Work

Sharing logic in Paraffin is similar to how Java and C#

implement their parallel loops, providing performance

results far better than one would expect for 4 cores. The

other approaches produce results more in line with what

one would expect for having 4 cores.

*********** Parallel Framework Test ***********
 Physical Processors= 4
 Executors = 4
 OS = LINUX
 Processor = AMD Athlon(tm) II X4 635 Processor

Integer Reduction of Sum from 1 to 400_000_000

Sequential: Elapsed = 00:00:01.11
OpenMP Sequential (Pure) Elapsed = 00:00:01.11
Work Sharing: Elapsed = 00:00:00.26
OpenMP (Pure) in C Elapsed = 00:00:00.32
OpenMP Static: Elapsed = 00:00:00.25
OpenMP Dynamic: Elapsed = 00:00:00.25
OpenMP Guided: Elapsed = 00:00:00.24
Cilk Work Stealing: Elapsed = 00:00:00.25
Cilk Work Stealing (Pure) Elapsed = 00:00:02.94
Work Seeking: Elapsed = 00:00:00.24
Work Stealing: Elapsed = 00:00:00.25
Work Sharing Blocks: Elapsed = 00:00:00.27
Work Seeking Blocks: Elapsed = 00:00:00.25
OpenMP Static Blocks: Elapsed = 00:00:00.27
OpenMP Dynamic Blocks: Elapsed = 00:00:00.25
OpenMP Guided Blocks: Elapsed = 00:00:00.24
Pooled Work Sharing: Elapsed = 00:00:00.26
Unbounded Pooled Work Sharing:
 Elapsed = 00:00:00.25
Ordered Unbounded Pooled Work Sharing:
 Elapsed = 00:00:00.25
Pooled Work Seeking: Elapsed = 00:00:00.23
Pooled Work Stealing: Elapsed = 00:00:00.32

Pooled Work Sharing Blocks: Elapsed = 00:00:00.30
Pooled Work Seeking Blocks: Elapsed = 00:00:00.25
Non Generic Work Sharing: Elapsed = 00:00:00.31
Non Generic OpenMP Static: Elapsed = 00:00:00.30
Non Generic OpenMP Dynamic: Elapsed = 00:00:00.29
Non Generic OpenMP Guided: Elapsed = 00:00:00.29
Non Generic Cilk W-Stealing: Elapsed = 00:00:00.35
Non Generic Work Seeking: Elapsed = 00:00:00.28
Non Generic Work Seeking: Elapsed = 00:00:00.27
Non Generic Work Stealing: Elapsed = 00:00:00.29
Non Generic Pooled Work Sharing:
 Elapsed = 00:00:00.30
Non Generic Pooled Work Seeking:
 Elapsed = 00:00:00.29
Non Generic Pooled Work Stealing:
 Elapsed = 00:00:00.29

*********** Parallel Framework Test ***********
 Physical Processors= 4
 Executors = 4
 Target = Java JVM
 OS = LINUX (Compiled on Windows)
 Processor = AMD Athlon(tm) II X4 635 Processor

Integer Reduction of Sum from 1 to 400_000_000

Sequential: Elapsed = 00:00:00.98
Work Sharing: Elapsed = 00:00:00.28
Work Seeking: Elapsed = 00:00:00.26
Work Stealing: Elapsed = 00:00:00.26
Work Sharing Blocks: Elapsed = 00:00:00.31
Work Seeking Blocks: Elapsed = 00:00:00.20
Non Generic Work Sharing: Elapsed = 00:00:00.10
Non Generic Work Seeking: Elapsed = 00:00:00.31
Non Generic Work Seeking: Elapsed = 00:00:00.32

********** Parallel Framework Test *************
 Physical Processors= 4
 Executors = 4
 Target = CIL (dotnet) byte code
 OS = Linux (Compiled on Windows)
 Processor = AMD Athlon(tm) II X4 635 Processor

Integer Reduction of Sum from 1 to 400_000_000

Sequential (Ada): Elapsed = 00:00:00.98
Sequential (C#): Elapsed = 00:00:00.93
C# Foreach loop: Elapsed = 00:00:00.09
Work Sharing: Elapsed = 00:00:00.28
Ordered Work Sharing: Elapsed = 00:00:00.27
Work Seeking: Elapsed = 00:00:00.26
Ordered Work Seeking: Elapsed = 00:00:00.27
Work Stealing: Elapsed = 00:00:00.27
Ordered Work Stealing: Elapsed = 00:00:00.28
Work Sharing Parallel Blocks:Elapsed = 00:00:00.32
Work Seeking Parallel Blocks:Elapsed = 00:00:00.20
Non Generic Work Sharing: Elapsed = 00:00:00.12
Non Generic Work Seeking: Elapsed = 00:00:00.39
Non Generic Work Stealing: Elapsed = 00:00:00.33

Conclusion

This paper presented a parallelism API that has been

implemented in Paraffin, and can be called from multiple

languages including C, C++, C#, Java, FORTRAN, Python,

Rust, and Ada. The paper also presents some possible

B. Moore 109

Ada User Journal Volume 37, Number 2, June 2016

extensions to Ada to make it easier to make library calls

that accept callback parameters, and to make it easier to use

thread local storage in Ada. Test results show that the

libraries perform well in both native environments, and

non-native environments such as the Mono/C# virtual

machine. The paper suggests that a relatively simple library

based approach is possible, and should be considered when

evaluating syntax based proposals for programming

languages, in that the ease and use of syntax should be an

improvement over library based approaches, to be

considered worthwhile.

References

[1] International Standards Organization (2012), ISO IEC

8652:2012. Programming Languages and their

Environments – Programming Language Ada.,
Geneva, Switzerland.

[2] S. Michell, B. Moore, L. M. Pinho (2013), Tasklettes –

a Fine Grained Parallelism for Ada on Multicores,
International Conference on Reliable Software
Technologies - Ada-Europe 2013, LNCS 7896,
Springer.

[3] L. M. Pinho, B. Moore, S. Michell (2014), Parallelism

in Ada: status and prospects, International Conference
on Reliable Software Technologies - Ada-Europe
2014, LNCS 8454, Springer.

[4] T. Taft, B. Moore, L. M. Pinho, S. Michell (2014),
Safe Parallel Programming in Ada with Language

Extensions, High-Integrity Language Technologies
conference (HILT 2014).

[5] B. Moore, S. Michell and L. M. Pinho (2013),
Parallelism in Ada: General Model and Ravenscar,

16th International Real-Time Ada Workshop, York,
UK.

[6] Working Draft, Technical Specification for C++

Extensions for Parallelism, available at
http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n3960.pdf

[7] OpenMP Architecture Review Board (2013), OpenMP

Application Program Interface, Version 4.0.

[8] Intel Corporation, Cilk Plus,
https://software.intel.com/en-us/intel-cilk-plus

[9] TBB, Threading Building Blocks, at
https://www.threadingbuildingblocks.org/

[10] Paraffin, Paraffin Parallelism Libraries, at
http://paraffin.sourceforge.net

[11] Microsoft Corporation, TPL,
https://msdn.microsoft.com/en-us/library/
dd460717(v=vs.110).aspx

[12] Oracle Corporation, Java Streams,
http://www.oracle.com/technetwork/articles/java/
ma14-java-se-8-streams-2177646.html

[13] C11 standard, http://www.open-std.org/jtc1/sc22/
wg14/www/docs/n1570.pdf

[14] AI12-0189-1 Loop Body as anonymous procedure, at
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/
ai12s/ai12-0189-1.txt?rev=1.

[15] R. D. Blumofe and C. E. Leiserson (1999), Scheduling

multithreaded computations by work stealing, J. ACM,
46:720-748.

[16] B. Moore (2010), Parallelism Generics For Ada 2005

and Beyond, ACM SigAda 2010.

110

Volume 37, Number 2, June 2016 Ada User Journal

Parallel Reduction Lists
A Data Structure and Algorithm for Non-commutative Parallel
Reduction with Bounded Storage
Brad Moore

General Dynamics, Canada, brad.moore@gdcanada.com

Abstract

This paper describes a generic data structure and
associated algorithm that can be used by a
parallelism framework to provide non-commutative
reduction. All parallel reductions must be associative
since the ordering of combination of results will need
to be different than the sequential case if parallelism
is to be achieved. Most parallel reductions however,
such as addition, are also commutative which
simplifies the reduction because results can be
combined in any order and still determine the same
result. There are a certain class of reduction
operations such as concatenation and matrix chain
multiplication, where the operation is not
commutative. This paper describes an approach that
allows the reduction to occur in parallel as part of the
initial parallel processing, while also limiting the
storage needed to be based on the number of
executors assigned to the parallelism, rather than the
number of reductions. As a result, the storage needed
is typically smaller, and can be bounded based on the
number of cores. Since the storage needed is small, it
can be implemented without memory allocation from
the heap. The algorithm and data structure can
accommodate load balancing approaches such as
Work Stealing, and Work Seeking, and has been
implemented in the generic Paraffin libraries for Ada.

1 Introduction

In the computing world today, various parallelism

frameworks exist [1 – 5], and a common need addressed by

these frameworks is to provide a means to combine results

from various parallel computations into a final result. An

example of such a computation would be to compute the

sum of integers from 1 to N. To provide parallelism, a

divide and conquer approach is applied where the overall

task is broken into several smaller ones working on

different parts of the computation. Each part of the

computation can be assigned to different executors which

can then execute the sub-task on a different core of a

multicore processor. An executor is conceptually a worker

thread, which can accept items of work from the

parallelism framework. Each executor has its own local

copy of a partial result, in this case, an integer sum which it

computes for its assigned sub-task. At some point, the

different executors need to combine their results to produce

the final sum. The simplest approach is to have the

executor apply the reduction operation, which in this case,

is addition, to the final result as soon as the executor

completes its assigned work.

This simple approach works well for reduction operations

such as addition, which are commutative operations,

because the ordering of the combination does not matter,

and will deterministically produce the same results each

time the computation is repeated, assuming arithmetic

overflow does not occur.

All reduction operations must be associative, if parallelism

is desired because in order to achieve parallelism, the

sequential ordering of combination must be altered to allow

a divide and conquer approach. Most parallel reduction

operations one typically encounters are also commutative

including, addition, multiplication, min, max, set union, set

intersection (and and or). There are some possible parallel

reductions however that are not commutative. Some

examples include concatenation and appending items to a

list, and chain multiplication of matrices. For such

problems, the approach described above will not work,

because to achieve a deterministic result, the partial results

need to be combined preserving the sequential ordering that

would have been the case for sequential processing.

 -- Concatenation example, a sorted result is desired

 for Letter in 'A' .. 'Z' loop

 Alphabet := Alphabet.Append(Letter);

 end loop;

To satisfy the need for non-commutative reductions, one

approach would be to assign an ordinal value to each

executor that reflects the ordering of the sequential

computation, and then sequentially combine those results

after the parallel processing is complete using the same

ordering.

e.g., assuming 4 executors, the partial results before

reduction might be:

 Executor1: Result1=”ABCDEF”

 Executor2: Result2=”GHIJLK”

 Executor3: Result3=”MNOPQRS”

 Executor4: Result4=”TUVWXYZ”

Final Result := Result1 || Result2 || Result3 || Result4

If the work is simply divided evenly between the cores,

then a bounded array can be used to store the results, but

the storage needs becomes more complex if more

sophisticated parallelism algorithms are applied, such as

load balancing strategies including Work Stealing [6], or

B. Moore 111

Ada User Journal Volume 37, Number 2, June 2016

Work Seeking [7]. In such strategies, a given executor may

get reused to offload work from other executors, once they

become idle after processing their work items. It becomes

apparent that in order to maintain the deterministic result,

the storage needed to store the partial results is based on the

number of reductions, not the number of executors, as each

partial result will need to be combined separately using the

sequential ordering.

One approach involves replacing the partial result array

from above, with a tree like data structure. Further, since

the number of reductions for a large number of loop

iterations might be relatively large, a dynamic, heap-based

tree structure might be needed to store these intermediate

partial results.

A second observation is that the reduction operation likely

occurs sequentially after the parallel processing. The

reduction of the tree might itself be performed as a parallel

operation, but that is an additional parallel operation which

implies addition parallelism overhead. Typically the

amount of processing needed for reduction is much less

than that needed for the initial parallel processing, and the

amount of processing to perform is not enough to overcome

the overhead of a second parallelism operation, so in many

cases, this reduction phase is best performed sequentially.

This paper describes an alternate approach where the

reduction operation is performed in parallel as part of the

initial parallel processing, without introducing the extra

parallelism overhead associated with a second parallel

operation. By the time the initial parallelism is complete,

the reduction is also complete, which may offer some

performance benefits over applying the reduction after the

initial parallelism processing. The approach also allows the

storage to be bounded based on the number of executors,

rather than the number of reductions so that the storage

requirements are typically much less than a tree based

approach, where a stack based storage scheme can more

readily be employed instead of a heap based one.

2 Reduction List – Data structure

The reduction list data structure is implemented as a

bounded array of elements where each element is a node of

a doubly linked list. It is a generic data structure where the

element of each node in the list contains a partial result

value of the reduction type that is associated with the

parallel computation.

The number of elements in the list is equal to the number of

executors + 1.

The number of executors typically equals the number of

cores or is at least based on the number of cores typically,

but it can be any number. The extra node in the list is used

to hold the final reduction result. The data structure also

maintains a free list which represents the executors that are

currently idle looking for work. The data structure can be

visualized from left to right where the leftmost node is

allocated to the final result, and the nodes to the right of

that node represent the executor whose ordinal number

matches the index of the array. The reduction values of

each element in the array is initialized to the identity value

for the reduction operation. The identity value of a

reduction operation is a value that when applied to an

existing value does not alter the result. For addition, the

identity value would be 0, since X + 0 = X. For

multiplication, the identity value is 1, since X * 1 = X. For

concatenation for a list, the identity value is an empty list,

since an empty list concatenated to another list does not

modify that other list.

Associated also with the list, is a reduction operation. This

is an operation of the form;

 X := Reduce(L, R);

where the reduction result X is computed based on two

inputs to be combined. If the result of interest to be

combined is to be supplied as the left argument to the

Reduce call, it is considered to be a “left” reduction,

whereas if the result of interest is to be supplied as the right

argument, it is considered to be a “right” reduction. For

commutative reduction operations this distinction is not

important, but for non-commutative reduction operations

care must be taken to ensure that the results to be combined

are passed in the proper order, in order to achieve the

correct, deterministic results.

The data structure algorithm maintains two separate lists.

One list is the doubly linked set of reduction values that

have been computed, and possibly only partially reduced,

and the other is a singly linked list of executors that are

currently idle.

For example, for 4 executors, for a quad-core processor, the

Reduction list data structure for the alphabet problem above

might initially look like:

 R 1 2 3 4

Idle list: 1 -> 2 -> 3 -> 4
Reduction list : R
Executor1 State: Idle
Executor2 State: Idle
Executor3 State: Idle
Executor4 State: Idle.

Where slot “R” represents the slot for the final result, and

slots 1 to 4 represent the result for executors 1 to 4. All

executors are initially idle and thus can be found in the free

list.

3 Reduction List - Algorithm

The algorithm can be broken down into two separate

operations.

1) Acquiring Work

2) Performing Reduction

3.1 Acquiring Work Operation

Initially the full workload to be processed is assigned to

some set of executors. It might be assigned to a single

executor as might be the case for certain work-stealing

112 Paral le l Reduct ion Lis ts

Volume 37, Number 2, June 2016 Ada User Journal

approaches, or it might initially be distributed evenly across

the executors, as is the case with Paraffin's work seeking

approach.

Once the initial work has been assigned, any subsequent

assignment of work works as follows:

1) The idle worker is removed from the free list and is

doubly linked into the reduction list after the element

from which it expects to acquire work.

2) The work from the element whose work is being

acquired is divided such that the first half of the work

remains in that same element, and the latter half is

given to the worker that was previously idle.

Performing Reduction Operation

Once an executor has completed its assigned work, the

processing is as follows:

1) The idle worker does a left reduction into its own

element of the list. The right value for the reduction is

the existing value associated with that element.

2) The idle worker then performs a right reduction using

the resulting value of the previous step into the element

to the left in the reduction list.

3) The idle worker then unlinks its list element from the

reduction list, and appends itself to the singly linked

idle list.

4) The idle worker then proceeds to search for or request

more work.

Determination of Done

Once the initial work has been assigned, the parallel

operation is complete when all executors are in the idle list.

At that point, the reduction list will only contain a single

element, the first element in the data structure array, which

holds the final reduction result.

4 Illustrating by example

To illustrate how this works, reconsider the alphabet

problem that was presented above. Initially it will be

assumed that the workload is more or less evenly

distributed amongst the executors. At this point, the state

might look like the following:

 R 1 2 3 4

Idle list: Empty
Reduction list: R <=> 1 <=> 2 <=> 3 <=> 4
Executor1 State: Work “ABCDEF”, Processing “ABCDEF”
Executor2 State: Work “GHIJKL”, Processing “GHIJKL”
Executor3 State: Work “MNOPQRS”,Processing
“MNOPQRS”
Executor4 State: Work “TUVWXYZ”,Processing
“TUVWXYZ”

Now let’s assume that executor 2 completes all of its

assigned work while the other executors have only

managed to process their first letter. Executor 2 first left

reduces its result into slot 2, then right reduces that result

into its left node which is slot 1. It then unlinks itself from

the reduction list and appends to the idle list. At this point,

the state would be:

 R 1 2 3 4

Idle list : 2
Reduction list : R <=> 1 <=> 3 <=> 4
Executor1 State: Work “ABCDEF”, Processing “BCDEF”
Executor2 State: Work “”, Processing “”
Executor3 State: Work “MNOPQRS”, Processing
“NOPQRS”
Executor4 State: Work “TUVWXYZ”, Processing “UVWXYZ”

Now let’s assume that worker 1 completes its work, while

workers 3 and 4 only manage to process a single letter. At

this point executor1 does a left reduction into its slot, and

then does a right reduction into the slot that is linked to the

left of itself, which in this case is the final result element.

It then unlinks itself from the reduction list and appends

itself to the idle list.

At this point, the state would be:

 R 1 2 3 4

Idle list : 2 -> 1
Reduction list : R <=> 3 <=> 4
Executor1 State: Work: “”, Processing “”
Executor2 State: Work: “”, Processing “”
Executor3 State: Work: “MNOPQRS”, Processing “OPQRS”
Executor4 State: Work: “TUVWXYZ”, Processing “VWXYZ”

Now let’s assume that worker 2 has determined that it can

acquire work from worker 3. First it removes itself from the

idle list, and then inserts itself into the doubly linked

reduction list after the executor 3. It then splits the

remaining work for executor 3 with itself, taking the second

half of the work. At this point, the state would be:

 R 1 2 3 4

Idle list: 1
Reduction list: R <=> 3 <=> 2 <=> 4
Executor1 State: Work: “”, Processing “”
Executor2 State: Work: “RS”, Processing “RS”
Executor3 State: Work: “MNOPQ”, Processing “OPQ”
Executor4 State: Work: “TUVWXYZ”, Processing “VWXYZ”

Now let’s assume worker 2 completes its work. It left

reduces into slot 2, then right reduces to the left element

which is executor 3 in slot 3, and then removes itself from

the reduction list and appends to the idle list. Now we have:

 R 1 2 3 4

 “GHIJKL”

“ABCDEFGHIJKL”

“ABCDEFGHIJKL”

“ABCDEFGHIJKL” “RS”

B. Moore 113

Ada User Journal Volume 37, Number 2, June 2016

Idle list : 1 -> 2
Reduction list : R <=> 3 <=> 4
Executor1 State: Work: “”, Processing “”
Executor2 State: Work: “”, Processing “”
Executor3 State: Work: “MNOPQ”, Processing “OPQ”
Executor4 State: Work: “TUVWXYZ”, Processing “VWXYZ”

Now let’s assume executor 1 acquires work from executor

3. That leaves:

 R 1 2 3 4

Idle list : 2
Reduction list : R <=> 3 <=> 4 <=> 1
Executor1 State: Work: “YZ”, Processing “YZ”
Executor2 State: Work: “”, Processing “”
Executor3 State: Work: “MNOPQ”, Processing “OPQ”
Executor4 State: Work: “TUVWX”, Processing “VWX”

Now let’s assume worker 4 finishes. Using the same

processing described above, this leaves;

 R 1 2 3 4

Idle list : 2 -> 4
Reduction list : R <=> 3 <=> 1
Executor1 State: Work: “YZ”, Processing “YZ”
Executor2 State: Work: “”, Processing “”
Executor3 State: Work: “MNOPQ”, Processing “OPQ”
Executor4 State: Work: “”, Processing “”

Now executor 3 finishes while executor 1 processes a letter

leaving:

 R 1 2 3 4

Idle list : 2 -> 4 -> 3
Reduction list : R <=> 1
Executor1 State: Work: “YZ”, Processing “Z”
Executor2 State: Work: “”, Processing “”
Executor3 State: Work: “”, Processing “”
Executor4 State: Work: “”, Processing “”

Now executor 1 completes which leaves the expected final

result:

 R 1 2 3 4

Idle list : 2 -> 4 -> 3 -> 1
Reduction list : R
Executor1 State: Work: “”, Processing “”
Executor2 State: Work: “”, Processing “”
Executor3 State: Work: “”, Processing “”
Executor4 State: Work: “”, Processing “”

At this point, all the executors are idle, the parallel

computation is complete, and the reduction is also complete

and can be extracted from the reduction list data structure.

5 Measurements

The Paraffin libraries include a series of tests for various

problems. To illustrate the performance overhead

associated with the use of the Reduction List, the example

of calculating the sum of 64 bit integers/ 128 bit floats from

1 to 400_000_000 was used. All the results that begin with

“Ordered” use the reduction list data structure, even though

its use is unnecessary for addition reductions, since

addition is a commutative operation. The other tests

involve comparable versions that do not use reduction lists.

Paraffin also has bindings to OpenMP (and Cilk) which

uses their respective runtimes to provide the executors, but

where Paraffin manages the reductions. Some results from

the Paraffin OpenMP bindings are included here, for

additional comparison. In these versions of the bindings,

there is no usage of the Reduction List data structures.

From these results, for this particular test, we see that there

does not appear to be any significant overhead with using

the reduction list, and in fact, in this particular run, some of

the best times come from the library calls that do use the

reduction lists, although there is variations in times over

subsequent runs, and the best performer for a given test is

not always the same library call. This is only a

representative run. Averaging over many runs might allow

one to draw further conclusions, but from numerous

executions, it can be seen that these results are typical

results.

Two test runs were collected, the first from a Ubuntu

desktop environment running on an AMD Athlon II X4 635

Processor, the second run is for a Raspbery pi 2, running

Raspbian.

*********** Parallel Framework Test ***********
 Physical Processors= 4
 Platform = Ubuntu Desktop
 Executors = 4
 OS = LINUX
 Processor = AMD Athlon(tm) II X4 635 Processor

Integer Reduction of Sum from 1 to 400_000_000

Sequential: Elapsed = 00:00:01.01
Work Sharing: Elapsed = 00:00:00.26
Ordered Work Sharing: Elapsed = 00:00:00.25
OpenMP Static: Elapsed = 00:00:00.27
OpenMP Dynamic: Elapsed = 00:00:00.25
OpenMP Guided: Elapsed = 00:00:00.24
Work Seeking: Elapsed = 00:00:00.23
Ordered Work Seeking: Elapsed = 00:00:00.24
Work Stealing: Elapsed = 00:00:00.25
Ordered Work Stealing: Elapsed = 00:00:00.25
Pooled Work Sharing: Elapsed = 00:00:00.27
Ordered Pooled Work Sharing: Elapsed = 00:00:00.25
Unbounded Pooled Work Sharing:
 Elapsed = 00:00:00.26
Ordered Unbounded Pooled Work Sharing:
 Elapsed = 00:00:00.25
Pooled Work Seeking: Elapsed = 00:00:00.24
Ordered Pooled Work Seeking: Elapsed = 00:00:00.24
Pooled Work Stealing: Elapsed = 00:00:00.27
Ordered Pooled Work Stealing:Elapsed = 00:00:00.26

“ABCDEFGHIJKL” “RS”

“ABCDEFGHIJKL” “RSTUVWX”

“ABCDEFGHIJKLMNOPQRSTUVWX”

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”

114 Paral le l Reduct ion Lis ts

Volume 37, Number 2, June 2016 Ada User Journal

*** Floating Point Addition Reduction Tests ***

Sequential Addition: Elapsed = 00:00:03.72
Work Sharing Addition: Elapsed = 00:00:00.97
Ordered Work Sharing: Elapsed = 00:00:00.99
OpenMP Static: Elapsed = 00:00:01.00
OpenMP Dynamic: Elapsed = 00:00:00.98
OpenMP Guided: Elapsed = 00:00:00.99
Work Seeking: Elapsed = 00:00:00.98
Ordered Work Seeking: Elapsed = 00:00:00.96
Work Stealing: Elapsed = 00:00:00.99
Ordered Work Stealing: Elapsed = 00:00:00.98
Pooled Work Sharing: Elapsed = 00:00:00.98
Ordered Pooled Work Sharing: Elapsed = 00:00:00.98
Pooled Work Seeking: Elapsed = 00:00:00.96
Ordered Pooled Work Seeking: Elapsed = 00:00:00.94
Pooled Work Stealing: Elapsed = 00:00:00.95
Ordered Pooled Work Stealing:Elapsed = 00:00:00.98

*********** Parallel Framework Test ***********
 Physical Processors= 4
 Executors = 4
 Platform = Raspbery pi 2
 OS = LINUX (Raspbian)
 Processor = ARMv7 Processor rev 5 (v7l)

Integer Reduction of Sum from 1 to 400_000_000

Sequential: Elapsed = 00:00:18.76
Work Sharing: Elapsed = 00:00:01.96
Ordered Work Sharing: Elapsed = 00:00:01.99
Work Seeking: Elapsed = 00:00:01.97
Ordered Work Seeking: Elapsed = 00:00:01.98
Work Stealing: Elapsed = 00:00:02.01
Ordered Work Stealing: Elapsed = 00:00:01.97
Pooled Work Sharing: Elapsed = 00:00:01.98
Ordered Pooled Work Sharing: Elapsed = 00:00:01.99
Unbounded Pooled Work Sharing:
 Elapsed = 00:00:02.02
Ordered Unbounded Pooled Work Sharing:
 Elapsed = 00:00:01.96
Pooled Work Seeking: Elapsed = 00:00:01.98
Ordered Pooled Work Seeking: Elapsed = 00:00:01.98
Pooled Work Stealing: Elapsed = 00:00:02.00
Ordered Pooled Work Stealing:Elapsed = 00:00:01.98

*** Floating Point Addition Reduction Tests ***

Sequential Addition: Elapsed = 00:00:37.94
Work Sharing Addition: Elapsed = 00:00:06.42
Ordered Work Sharing: Elapsed = 00:00:06.40
Work Seeking: Elapsed = 00:00:06.41
Ordered Work Seeking: Elapsed = 00:00:06.39
Work Stealing: Elapsed = 00:00:06.49
Ordered Work Stealing: Elapsed = 00:00:06.41
Pooled Work Sharing: Elapsed = 00:00:06.49
Ordered Pooled Work Sharing: Elapsed = 00:00:06.44
Pooled Work Seeking: Elapsed = 00:00:06.38
Ordered Pooled Work Seeking: Elapsed = 00:00:06.41
Pooled Work Stealing: Elapsed = 00:00:06.52
Ordered Pooled Work Stealing:Elapsed = 00:00:06.39

6 The Reduction List Ada package
specification

The following shows the structure for the data
structure and intended usage as realized in Paraffin
[2].

generic

 type Element_Type is private;

 -- The type of the reduction result

 with function Reducer

 (Left, Right : Element_Type)

 return Element_Type;

 Identity_Value : Element_Type;

package Parallel.Functional_Reducing_Linked_List is

 type List (Worker_Count : Positive_Worker_Count)

 is limited private;

 subtype Donor_Id is Worker_Count_Type;

 subtype Effective_Worker_Id is Donor_Id

 range 1 .. Donor_Id'Last;

 type Cursor is private;

 function Create

 (Worker_Count : Positive_Worker_Count)

 return List;

 -- Returns a list will all nodes pre-linked into

 -- the list. This is useful for iterative

 -- generics which start with all work initially

 -- assigned to workers. For recursive generics,

 -- where work is assigned to one worker and

 -- grows recursively it is better to start with

 -- an empty list, which is what you start with

 -- if you dont make this call.

 function To_Cursor

 (Worker : Donor_Id) return Cursor;

 procedure Reduce

 (Container : in out List;

 Item : Element_Type;

 Position : Cursor);

 -- Performs a reduction of the value of 'Item'

 -- into the workers node,

 -- as the left operand using the current value

 -- of the node as the right operand. If there is

 -- a node to the left of the workers node then

 -- the resulting value is then reduced into the

 -- node to the immediate left of the workers

 -- node as the left operand where the right

 -- operand is the current value of that node.

 -- The workers node is then unlinked from the

 -- list.

 procedure Insert_Right

 (Container : in out List;

 Item, Position : Cursor);

 -- Inserts a workers node (the 'Item') right of

 -- the specified position in the reduction list.

 -- This is a non-blocking call.

 function Value

 (Container : List;

B. Moore 115

Ada User Journal Volume 37, Number 2, June 2016

 Position : Cursor) return Element_Type;

 -- Returns the value of an element at a cursor

 procedure Result

 (Container : in out List;

 Reduction_Result : out Element_Type);

 -- Returns the final result of the reduction

 -- once all workers have reported their result.

 -- The call blocks until all the work is done.

 procedure Worker_Failed

 (Container : in out List);

private

 type Node_Type;

 type Node_Access is access all Node_Type;

 type Element_State is (Deleted, Available);

 type Node_Type is

 record

 Element : Element_Type;

 Next : Node_Access;

 Prev : Node_Access;

 State : Element_State;

 end record;

 type Element_Array is

 array (Worker_Count_Type range <>) of

 aliased Node_Type;

 protected type List

 (Worker_Count : Positive_Worker_Count) is

 procedure Reduce

 (Item : Element_Type;

 Source : Positive_Worker_Count);

 procedure Insert_Right

 (Item, Position : Positive_Worker_Count);

 procedure Setup_All_Reductions;

 -- Initializes the list with all workers

 -- having work assigned.

 -- This is useful for initializing the list

 -- for the iterative generics, where all

 -- workers are loaded with work up front.

 entry Result (Item : out Element_Type);

 function Value (Index : Worker_Count_Type)

 return Element_Type;

 procedure Worker_Failed;

 private

 Outstanding_Reductions : Worker_Count_Type

 := 0;

 Initialized : Boolean := False;

 Elements : Element_Array (0 .. Worker_Count)

 := (0 =>

 (Element => Identity_Value,

 Next => null,

 Prev => null,

 State => Available),

 others =>

 (Element => Identity_Value,

 Next => null,

 Prev => null,

 State => Deleted));

 end List;

 type Cursor is new Donor_Id;

 pragma Inline (To_Cursor);

end Parallel.Functional_Reducing_Linked_List;

Conclusion

This paper describes a data structure and algorithm that

allows a parallelism framework to compute reductions,

including non-commutative reductions in parallel during

the main parallel processing, while also requiring minimal

storage that may be suitable for placement on the stack,

without requiring any heap allocation. It has been used

successfully in Paraffin and has been shown to not

introduce significant overhead, compared to other libraries

of Paraffin that do not use the data structure, for reduction

operations that are commutative.

References
[1] TBB, Threading Building Blocks, at

https://www.threadingbuildingblocks.org/

[2] Paraffin, Paraffin Parallelism Libraries, at
http://paraffin.sourceforge.net

[3] Working Draft, Technical Specification for C++

Extensions for Parallelism, available at
http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf

[4] Intel Corporation, Cilk Plus,
https://software.intel.com/en-us/intel-cilk-plus

[5] OpenMP Architecture Review Board (2013), OpenMP

Application Program Interface, Version 4.0.

[6] B. Moore (2010), Parallelism Generics For Ada 2005

and Beyond, ACM SigAda 2010.

[7] R.D. Blumofe and C.E. Leiserson (1999), Scheduling

multithreaded computations by work stealing, J. ACM,
46:720-748.

Complete Ada Solutions for
Complex Mission-Critical Systems

Fast, efficient code generation

Native or embedded systems deployment

Support for leading real-time operating systems or

bare systems

Full Ada tasking or deterministic real-time execution

Learn more by visiting: www.ptc.com/developer-tools

 117

Ada User Journal Volume 37, Number 2, June 2016

Summary of the 18th International Real-Time Ada

Workshop

Stephen Michell *, Jorge Real §
* Maurya Software, Canada

§ Universitat Politècnica de València, Spain

Abstract

The 18th International Real-Time Ada Workshop was
held in Benicàssim, near Valencia, Spain. The main
focus was on developing proposals that relate to real-
time and high-integrity systems support in Ada. The
workshop was very successful both in refining existing
proposals and in identifying important new ones. The
delegates also had a thoroughly enjoyable time and
are very grateful to the organizers, for all their
efforts.

1 Introduction

The 2016 edition of the International Real-Time Ada

Workshop series was held in Benicàssim, Spain April 11-

13 2016. The workshop discussed topics of concern to the

real-time Ada community, in a relaxing and working

environment.

Fig 1 - Benicàssim

The workshop tackled six main topic areas:

1. Deadline floor protocol issues;

2. Parallel programming issues;

3. Language issues;

4. Experience;

5. Language profiles; and

6. Time-based language vulnerabilities.

The workshop was attended by participants from Canada,
Italy, Norway, Portugal, Spain, United Kingdom and
United States of America.

Fig 2 – Guess who’s who?

This paper provides a brief summary of the discussions and

decisions taken at the workshop. For further details on the

topics and discussions, the reader is referred to the

workshop proceedings, to be published in the August 2016

issue of the Ada Letters.1

2 Deadline Floor

This session examined issues associated with the deadline

floor protocol as first proposed at IRTAW 2013, and issues

identified at that workshop. The position paper considered

was Burns and Wellings, “The deadline floor protocol and

Ada” [1].

The workshop noted that the proposal would imply changes

to the current support for EDF scheduling in Ada, such as

the addition of explicit types and objects to represent

deadlines. The workshop preferred extending the current

package Ada.Dispatching.EDF.

The workshop also recommended the deprecation of the

Stack Resource Protocol and recommended support of a

deadline floor aspect for protected objects. It was believed

that the current task aspect Relative_Deadline could be

overloaded to support also protected objects.

3 Parallel Programming

The Multicore/Parallel Processing session examined issues

associated with the addition of syntax to Ada to effectively

1 Editor note: as usual the Ada User Journal will provide the
detailed session summaries of the workshop in a forthcoming
issue.

118 Summary of the 18th Internat ional Real -T ime Ada W orkshop

Volume 37, Number 2, June 2016 Ada User Journal

manage parallel computation on multicore processors. The

papers considered were: Michell, Pinho, Moore and Taft,

“Constraints on the Use of Executors in Real-time

Systems” [2], and Taft, Moore, Pinho and Michell,

“Reduction of parallel computation in the parallel model

for Ada” [3].

The majority of the effort was in solidifying constraints on

parallel processing in real-time systems. All systems are

concerned with the relative efficiency and correctness of

parallel computation vs. strictly sequential computation, but

real-time systems add dimensions of timing determinism,

overruns, and scheduling. The workshop determined that

· Priority changes should not be permitted within

parallelizable code. Any such operation should be

deferred;

· Timing events should not be called or serviced within

parallelizable code;

· Issues around the use of Set_CPU for tasks within

parallelizable code are complicated enough that a new

Set_CPU subprogram should be defined that permits

the allocation of a task to a single CPU and its tasklets

to a set of CPU’s;

· Work stealing or parent stealing leads to code that

cannot be statically analysed using current methods

and tools;

· Programmers should be able to specify the maximum

number of allowed executors and of active executors

for the execution of tasklets, but there should be no

mechanism to name or control executors;

· Tasklet control, in the sense of allocating “chunks” to

tasklets during parallel execution, is essential;

· At this time, lack of analysis of highly parallel systems

means that they should not be used in hard real-time

partitions.

Discussions were held on the reduction proposals from the

second paper [3]. There was general support for the notion

of syntax to specify and control parallelism in Ada (as

opposed to strictly library-based solutions). There was also

support for the programmer to control aspects in the “map”

and “reduce” aspects of parallelization.

4 Language Issues

The goal of this session was to discuss and, if appropriate,

generate Ada Interpretations for several language related

issues presented to the workshop [4]:

· Extension of Synchronous Task Control in order to

allow the use of Suspension Objects by concurrent

tasks.

· Inclusion of Synchronous Barriers in the Ravenscar

profile.

· Addition of execution time timers and group budget

support for interrupt handlers.

· Issues on High-Integrity Dynamic Memory Manage-

ment.

The issue of synchronous task control was based on the

expectation that multiple tasks co-ordinate access to a

suspension object. The workshop confirmed that only a

single task can suspend on a suspension object, and that it

should be a bounded error for more than one task to

suspend on a single object.

The workshop considered the inclusion of synchronous

barriers in the definition of Ravenscar. While there was a

general consensus that synchronous barriers may be useful

in Ravenscar systems, it was decided that more feedback is

needed from industrial use of Ravenscar on multiprocessor

systems before they could be included.

The workshop discussed a proposal by Kristoffer Nyborg

Gregertsen, “Revising the Ada timers and group budgets to

support execution time control for interrupt handling” [5].

The paper was concerned with potential overruns in a real-

time system due to interrupts and system level events. The

workshop agreed that library mechanisms could be

employed to cure this issue, but syntax-based solutions are

superior. There was insufficient support for the proposals to

recommend changes to the Ada language at this time.

During the discussions of dynamic memory allocation,

triggered by the paper by Wellings, Cholpanov and Burns,

“Implementing Safety-Critical Java Missions in Ada” [6],

significant issues were identified related to allocation,

management and deallocation of the memory allocated to

objects, such as accessed objects and task stacks. There

should be an AI raised on this topic.

5 Experience

The experience session considered the proposal from Real,

Sáez and Crespo, “Combined Scheduling of Time-

Triggered Plans and Priority Scheduled Task Sets” [7].

This paper proposed mechanisms to combine priority-based

and time-triggered scheduling. The approach was well

received. It grants minimum delays for selected tasks

(scheduled by a highest-priority time-triggered scheduler,

driven by timing events), while it also supports the

execution of priority-based tasks with less strict jitter

requirements. Several programming patterns were also

proposed, ranging from a simple time-triggered task to

more complex subtask decompositions typical of control

systems. Discussion led to the suggestion of additional

patterns, such as breaking a long-running TT task into

segments, and other subtask decompositions.

The workshop provided suggestions for further research,

such as exploring a Ravenscar implementation that would

ease certification; or considering the integration of this

approach in a more general real-time utilities framework,

such as the ones considered in previous editions of the

workshop.

6 Language Profiles

The “Profiles” session examined various Ada profiles, both

official and unofficial, that are being used in current

S. Michel l , J . Real 119

Ada User Journal Volume 37, Number 2, June 2016

practice. The goal was to determine the desirability of

formalizing language profiles, as was done with great

success for the Ravenscar Tasking Profile. The position

paper from Garrido, Lacruz, Zamorano and de La Puente,

“In Support of Extending the Ravenscar Profile” [8],

supported extensions to Ravenscar. The workshop

considered extensions to Ravenscar, as well as other

profiles that could be created for specialized programming

in Ada.

There was strong resistance to extending Ravenscar in

ways that would reduce determinism, such as permitting

multiple entries in a protected object or permitting multiple

tasks to queue on an entry queue. It was recognised that

there is a real demand to extend Ravenscar in order to

simplify the programming effort, and that there will be

vendor-specific profiles provided that essentially do this

extension.

It was strongly felt that, if a profile is developed that

includes “Ravenscar” in its name, the profile should not

remove any functionality of the “base” profile, and should

be essentially the same as the base profile. For example, the

addition of Earliest Deadline First scheduling to Ravenscar

should not qualify as an extension. Such a rule should

apply to any profiles developed and later extended.

7 Time Vulnerabilities

The “Time Vulnerabilities” session focussed on a paper

submitted by Stephen Michell, “Time Issues in Programs

Vulnerabilities for Programming Languages and Systems”

[9].

ISO’s WG 23 is amending TR 24772 “Guidance on

avoiding programming language vulnerabilities”. As part of

that process, WG 23 is identifying vulnerabilities that have

not been previously captured, either by WG 23, or by other

organizations such as CWE, CERT, or MISRA. While WG

23 identified some concurrency vulnerabilities in edition 2

of TR 24772, WG 23 had not considered any issues related

to the management or use of clocks and time in programs.

The document that initiated this session identified issues

associated with the use of different clocks or time bases in

a system; representation of time (including granularity and

fixed word sizes); perceptions of the passage of time;

missed deadlines due to timing errors; and time effects due

to virtualization.

The workshop identified three high-level vulnerabilities to

submit for the considerations of WG 23. At its

teleconference after the workshop, WG 23 decided to

incorporate these vulnerabilities, but to make them all

application vulnerabilities and not language-based

vulnerabilities.

References

[1] Burns, A., Wellings, A. (2016), The deadline floor

protocol and Ada, Proceedings of the 18th

International Real-Time Ada Workshop, Ada Letters,

August 2016, ACM New York.

[2] Michell S., Pinho L.M., Moore B., Taft S.T. (2016),

Constraints on the Use of Executors in Real-time

Systems, Proceedings of the 18th International Real-

Time Ada Workshop, Ada Letters, August 2016, ACM

New York.

[3] Taft S.T., Moore B., Pinho L.M., Michell S. (2016),

Reduction of Parallel Computation in the Parallel

Model for Ada, Proceedings of the 18th International

Real-Time Ada Workshop, Ada Letters, August 2016,

ACM New York.

[4] Burns, A., Wellings, A. (2016), Synchronous Task

Control and Synchronous Barriers, Proceedings of the

18th International Real-Time Ada Workshop, Ada

Letters, August 2016, ACM New York.

[5] Gregertsen, K.N. (2016), Revising the Ada timers and

group budgets to support execution time control for

interrupt handling, Proceedings of the 18th

International Real-Time Ada Workshop, Ada Letters,

August 2016, ACM New York.

[6] Wellings, A., Cholpanov, V., Burns, A. (2016),

Implementing Safety-Critical Java Missions in Ada,

Proceedings of the 18th International Real-Time Ada

Workshop, Ada Letters, August 2016, ACM New

York.

[7] Real, J., Sáez, S., Crespo, A. (2016), Combined

Scheduling of Time-Triggered Plans & Priority

Scheduled Task Sets, Proceedings of the 18th

International Real-Time Ada Workshop, Ada Letters,

August 2016, ACM New York.

[8] Garrido J., Lacruz B., Zamorano J., de La Puente J.A.

(2016), In Support of Extending the Ravenscar Profile,

Proceedings of the 18th International Real-Time Ada

Workshop, Ada Letters, August 2016, ACM New

York.

[9] Michell, S., Time Issues in Programs Vulnerabilities

for Programming Languages and Systems,

Proceedings of the 18th International Real-Time Ada

Workshop, Ada Letters, August 2016, ACM New

York 2016.

120

Volume 37, Number 2, June 2016 Ada User Journal

National Ada Organizations

Ada-Belgium

attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland

Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France

attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain

attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden

attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada-Switzerland

c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

