
     

Ada User Journal Volume 38, Number 1, March 2017 

ADA 
USER 
JOURNAL 

Volume 38 

Number 1 

March 2017 

 

Contents 
Page 

Editorial Policy for Ada User Journal 2 

Editorial 3 

Quarterly News Digest 4 

Conference Calendar 25 

Forthcoming Events 31 

Special Contribution 

 J. Cousins 
“ARG Work in Progress” 33 

Article 

 B. Wang, H. Gao and J. Cheng 
“Definition-Use Net and System Dependence Net Generators for Ada 2012 Programs and  
their Applications” 37 

SPARK 2014 Rationale: Type Predicates, Variables that are Constant, Support for Ravenscar and 
Support for Type Invariants 

 Y. Moy and C. Dross 57 

Ada-Europe Associate Members (National Ada Organizations) 64 

Ada-Europe Sponsors  Inside Back Cover 



2  

Volume 38, Number 1, March 2017 Ada User Journal 

Editorial Policy for Ada User Journal 
Publication 

Ada User Journal — The Journal for 
the international Ada Community — is 
published by Ada-Europe. It appears 
four times a year, on the last days of 
March, June, September and 
December. Copy date is the last day of 
the month of publication. 

Aims 

Ada User Journal aims to inform 
readers of developments in the Ada 
programming language and its use, 
general Ada-related software engine-
ering issues and Ada-related activities. 
The language of the journal is English. 

Although the title of the Journal refers 
to the Ada language, related topics, 
such as reliable software technologies, 
are welcome. More information on the 
scope of the Journal is available on its 
website at www.ada-europe.org/auj.  

The Journal publishes the following 
types of material: 

 Refereed original articles on 
technical matters concerning Ada 
and related topics. 

 Invited papers on Ada and the Ada 
standardization process.  

 Proceedings of workshops and 
panels on topics relevant to the 
Journal.  

 Reprints of articles published 
elsewhere that deserve a wider 
audience. 

 News and miscellany of interest to 
the Ada community. 

 Commentaries on matters relating 
to Ada and software engineering. 

 Announcements and reports of 
conferences and workshops. 

 Announcements regarding 
standards concerning Ada. 

 Reviews of publications in the 
field of software engineering. 

Further details on our approach to 
these are given below. More complete 
information is available in the website 
at www.ada-europe.org/auj. 

Original Papers 

Manuscripts should be submitted in 
accordance with the submission 
guidelines (below). 

All original technical contributions are 
submitted to refereeing by at least two 
people. Names of referees will be kept 
confidential, but their comments will 
be relayed to the authors at the 
discretion of the Editor. 

The first named author will receive a 
complimentary copy of the issue of the 
Journal in which their paper appears. 

By submitting a manuscript, authors 
grant Ada-Europe an unlimited license 
to publish (and, if appropriate, 
republish) it, if and when the article is 
accepted for publication. We do not 
require that authors assign copyright to 
the Journal. 

Unless the authors state explicitly 
otherwise, submission of an article is 
taken to imply that it represents 
original, unpublished work, not under 
consideration for publication else-
where. 

Proceedings and Special Issues  

The Ada User Journal is open to 
consider the publication of proceedings 
of workshops or panels related to the 
Journal's aims and scope, as well as 
Special Issues on relevant topics. 

Interested proponents are invited to 
contact the Editor-in-Chief. 

News and Product Announcements 

Ada User Journal is one of the ways in 
which people find out what is going on 
in the Ada community. Our readers 
need not surf the web or news groups 
to find out what is going on in the Ada 
world and in the neighbouring and/or 
competing communities. We will 
reprint or report on items that may be 
of interest to them. 

Reprinted Articles 

While original material is our first 
priority, we are willing to reprint (with 
the permission of the copyright holder) 
material previously submitted 
elsewhere if it is appropriate to give it 

a wider audience. This includes papers 
published in North America that are 
not easily available in Europe. 

We have a reciprocal approach in 
granting permission for other 
publications to reprint papers originally 
published in Ada User Journal. 

Commentaries 

We publish commentaries on Ada and 
software engineering topics. These 
may represent the views either of 
individuals or of organisations. Such 
articles can be of any length – 
inclusion is at the discretion of the 
Editor. 

Opinions expressed within the Ada 
User Journal do not necessarily 
represent the views of the Editor, Ada-
Europe or its directors. 

Announcements and Reports 

We are happy to publicise and report 
on events that may be of interest to our 
readers. 

Reviews 

Inclusion of any review in the Journal 
is at the discretion of the Editor. A 
reviewer will be selected by the Editor 
to review any book or other publication 
sent to us. We are also prepared to 
print reviews submitted from 
elsewhere at the discretion of the 
Editor. 

Submission Guidelines 

All material for publication should be 
sent electronically. Authors are invited 
to contact the Editor-in-Chief by 
electronic mail to determine the best 
format for submission. The language of 
the journal is English. 

Our refereeing process aims to be 
rapid. Currently, accepted papers 
submitted electronically are typically 
published 3-6 months after submission. 
Items of topical interest will normally 
appear in the next edition. There is no 
limitation on the length of papers, 
though a paper longer than 10,000 
words would be regarded as 
exceptional.



 3 

Ada User Journal Volume 38, Number 1, March 2017 

Editorial 
 

One year ago, in the editorial for the March issue of 2016, I pointed out to the readers the, at that time, recent update to the 
Ada 2012 standard. That issue of the journal included a special contribution which briefly described the main changes, 
clarifications and corrections in that update. Nevertheless, the work on the language never stops, and it is intention of the Ada 
User Journal to keep readers aware of the standardisation process, what is being considered and pipelined for future 
evolution.  

We are therefore very happy to be able to publish in this issue a paper on the work in progress in the Ada Rapporteur Group 
(ARG), the WG9 group responsible for the language interpretation and evolution, written by the Chair of the ARG, Jeff 
Cousins, from BAE Systems Surface Ships Limited, UK. This paper provides information on the Ada Issues which have been 
already addressed and approved this past year, but also some information on the work in the pipeline. An interesting read for 
sure.  

Continuing with the technical contributions, the issue then provides an extensive technical work from a group of authors of 
the Saitama University, Japan, updating previous work on definition-use and system dependence net graphs to consider new 
features of Ada 2012. Finally, a set of contributions from the SPARK 2014 Rationale, by Yannick Moy and Claire Dross, of 
AdaCore, France.  

As usual, the reader will find the valuable information of the News and Calendar sections, contributed by Jacob Sparre 
Andersen and Dirk Craeynest, their respective editors. I would also like to draw your attention to the Ada-Europe 2017 
conference, which, apart from the rich content of tutorials, exhibition and scientific and technical presentations will also 
provide a very rich networking environment. A particular highlight this year is the panel discussion on “The Future of Safety-
Minded Languages” – which will feature interesting and potential controversial discussions. I hope to see you there! 

 

 

 
 

  Luís Miguel Pinho 
Porto 

March 2017 
 Email: AUJ_Editor@Ada-Europe.org 
 
 

 



4   

Volume 38, Number 1, March 2017 Ada User Journal 

Quarterly News Digest 
Jacob Sparre Andersen 
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk 
 

Contents 
 
Ada-related Events 4 
Ada-related Tools 4 
Ada-related Products 7 
Ada and Operating Systems 8 
References to Publications 9 
Ada Inside 11 
Ada in Context 14 

Ada-related Events 
[To give an idea about the many Ada-
related events organised by local groups, 
some information is included here. If you 
are organising such an event feel free to 
inform us as soon as possible. If you 
attended one please consider writing a 
small report for the Ada User Journal.  
—sparre] 

“Make with Ada” Winners 

From: Olivier Henley 
<olivier.henley@gmail.com> 

Date: Fri, 2 Dec 2016 06:55:23 -0800  
Subject: Make with Ada winners 
Newsgroups: comp.lang.ada 

I don't know when results became public 
[...] but the winners of the Make with Ada 
are here: 

http://www.makewithada.org/ 

The winning project, by Stephane Carrez, 
looks really impressive and it looks like it 
is here: 
https://github.com/stcarrez/etherscope 

Anyways, congrats to everyone, IMO that 
initiative is great and I will kick myself to 
participate next time. 

[See also ““Make with Ada” 
Programming Competition”, AUJ 37-2, p. 
69. —sparre] 

Ada-Europe 2017 in Vienna 

From: Dirk Craeynest 
<dirk@cs.kuleuven.be> 

Date: Thu, 19 Jan 2017 21:47:34 -0000  
Subject: FINAL CfP Ada-Europe 2017, Sun 

22 Jan submission deadline 
Newsgroups: comp.lang.ada, 

fr.comp.lang.ada, comp.lang.misc 

FINAL Call for Papers 

22nd International Conference on 
Reliable Software Technologies - Ada-
Europe 2017 

12-16 June 2017, Vienna, Austria 

http://www.ada-europe.org/ 
conference2017 

Organized by TU Vienna on behalf of 
Ada-Europe, in cooperation with ACM 
SIGAda, SIGBED, SIGPLAN and the 
Ada Resource Association (ARA) 

The 22nd International Conference on 
Reliable Software Technologies - Ada-
Europe 2017 will take place in Vienna, 
Austria. Following its traditional style, the 
conference will span a full week, 
including a three-day technical program 
and vendor exhibition from Tuesday to 
Thursday, along with parallel tutorials and 
workshops on Monday and Friday. This 
edition features a focused Special Session 
on Reliable and Safe Robotics. 

*** DEADLINE Sunday 22 JANUARY 
2017 *** 

Regular & Special Session Papers + 
Industrial Presentations: submit via 
https://easychair.org/conferences/?conf=a
daeurope2017 

Tutorials & Workshops: submit to the 
Tutorial & Workshop Chair Ben Brosgol 
<brosgol at adacore.com> 

For more information please see the full 
Call for Contributions at  
http://www.ada-europe.org/ 
conference2017 

Frama-C and SPARK Day 
in Paris 

From: Claude Marché 
<Claude.Marche@inria.fr> 

Date: Thu, 26 Jan 2017 13:25:03 +0100 
Subject: [Spark2014-discuss] [Save the 

date] 2017/05/30 Frama-C & SPARK 
Day: Formal Analysis and Proof for 
Programs in C and Ada 

To: frama-c-discuss@lists.gforge.inria.fr, 
spark2014-discuss@lists.forge.open-
do.org, Why3 Club <why3-
club@lists.gforge.inria.fr> 

Date: Tuesday, May 30th, 2017 

Location: Paris (Université Paris-Diderot, 
Amphithéatre Buffon, 15 rue Hélène 
Brion) 

This one-day workshop aims at gathering 
both academic and industrial users of the 
environments Frama-C and SPARK, for 
sharing experiences and discussing 
perspectives. It is co-organized by CEA 
List (http://www-list.cea.fr/en/), AdaCore 
(http://www.adacore.com/), Inria joint lab 
`ProofInUse' (http://www.spark-
2014.org/proofinuse), and Université 
Paris-Diderot. 

This workshop will take place in the 
context of the event `Open Source 
Innovation Spring 2017' 
(http://www.open-source-innovation-
spring.org/) initiated by thematic group 
`Logiciel libre' of the cluster Systematic-
Paris-Region and IRILL (`Initiative de 
Recherche et Innovation sur le Logiciel 
Libre'). 

Claude Marché | tel: +33 1 69 15 66 08 

Ada-related Tools 

Bare Bones 

From: Luke A. Guest 
<laguest@archeia.com> 

Date: Thu, 17 Nov 2016 11:12:17 -0800  
Subject: Screenshot of bare bones 
Newsgroups: comp.lang.ada 

I've updated my bare bones OS project 
and it can now dump the location where a 
program crashed, using 
last_chance_handler. 

https://github.com/Lucretia/bare_bones 

https://snag.gy/JludRq.jpg 

[See also “Low-level Programming”, AUJ 
34-3, p. 155. —sparre] 

Simple Components 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sat, 19 Nov 2016 13:06:10 +0100 
Subject: ANN: Simple Components v4.17 

released 
Newsgroups: comp.lang.ada 

The current version provides 
implementations of smart pointers, 
directed graphs, sets, maps, B-trees, 
stacks, tables, string editing, unbounded 
arrays, expression analyzers, lock-free 
data structures, synchronization primitives 
(events, race condition free pulse events, 
arrays of events, reentrant mutexes, 
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers, 
symmetric encoding and decoding, IEEE 
754 representations support, multiple 
connections server/client designing tools. 

http://www.dmitry-kazakov.de/ada/ 
components.htm 

Changes the previous version: 

- Bug fix in GNAT.Sockets.Connection_ 
State_Machine.ELV_MAX_Cube_Client 
related to decoding valve position; 



Ada-related Tools 5  

Ada User Journal Volume 38, Number 1, March 2017 

- Set_Thermostat_Valve procedures were 
added to GNAT.Sockets.Connection_ 
State_Machine.ELV_MAX_Cube_Client; 

- Set_Thermostat_Parameters and 
Set_Thermostat_Schedule have the mode 
parameter added. 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sun, 5 Feb 2017 12:36:43 +0100 
Subject: ANN: Simple Components for Ada 

v4.18 
Newsgroups: comp.lang.ada 

[...] 

The new version provides an 
implementation DIGEST-MD5 
authentication method for SMTP clients 
and fixes some bugs. 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Mon, 20 Feb 2017 18:53:41 +0100 
Subject: ANN: Simple Components for Ada 

v4.19 
Newsgroups: comp.lang.ada 

[...] 

Changes to the previous version: 

- Set_Thermostat_Temperature and 
Set_Thermostat_Automatic procedures 
of GNAT.Sockets. 
Connection_State_Machine.ELV_MAX
_Cube_Client allow specifying the 
temperature even if the thermostat is in 
the automatic mode; 

- Downed primitive operations were 
added to GNAT.Sockets.Server 
package. 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sun, 12 Mar 2017 09:39:46 +0100 
Subject: ANN: Simple Components for Ada 

v4.20 
Newsgroups: comp.lang.ada 

[...] 

Changes to the previous version: 

- Modbus TCP client bug fixed. The bug 
prevented receiving large responses, 
more than 60 words, e.g. to FC3 (read 
holding registers). 

GtkAda Contributions 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sun, 20 Nov 2016 11:01:39 +0100 
Subject: ANN: GtkAda contributions v3.17 

released 
Newsgroups: comp.lang.ada 

The library deals with the following 
issues: 

- Tasking support; 

- Custom models for tree view widget; 

- Custom cell renderers for tree view 
widget; 

- Multi-columned derived model; 

- Extension derived model (to add 
columns to an existing model); 

- Abstract caching model for directory-
like data; 

- Tree view and list view widgets for 
navigational browsing of abstract 
caching models; 

- File system navigation widgets with 
wildcard filtering; 

- Resource styles; 

- Capturing resources of a widget; 

- Embeddable images; 

- Some missing subprograms and bug 
fixes; 

- Measurement unit selection widget and 
dialogs; 

- Improved hue-luminance-saturation 
color model; 

- Simplified image buttons and buttons 
customizable by style properties; 

- Controlled Ada types for GTK+ strong 
and weak references; 

- Simplified means to create lists of 
strings; 

- Spawning processes synchronously and 
asynchronously with pipes; 

- Capturing asynchronous process 
standard I/O by Ada tasks and by text 
buffers; 

- Source view widget support. 

http://www.dmitry-kazakov.de/ada/ 
gtkada_contributions.htm 

This version provides minor bugs fixes 
for the Gtk.Main.Router package. 

[See also “Simple Components (et al.)”, 
AUJ 37-3, p. 126. —sparre] 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Tue, 21 Feb 2017 23:06:12 +0100 
Subject: ANN: GtkAda contributions v3.18 
Newsgroups: comp.lang.ada 

[...] 

Changes to the previous version: 

- Gtk.Main.Router implementation of 
Send is changed so that when called on 
the main task context the callback is 
made at the loop end rather than 
immediately. 

IkaMo Bittorrent Library 

From: Edward R. Fish 
<onewingedshark@gmail.com> 

Date: Wed, 23 Nov 2016 17:01:32 -0800  
Subject: Re: There are some Ada lib for 

processing bittorrent bencoded files and 
streams ? 

Newsgroups: comp.lang.ada 

Well, here it is -- it and the 'shell' I was 
going to use for a torrent client. 

https://github.com/OneWingedShark/ 
IkaMo 

VTKAda 

From: Leonid Dulman 
<leonid.dulman@gmail.com> 

Date: Sun, 27 Nov 2016 08:41:58 -0800  
Subject: I'm pleased to announce VTKAda 

version 7.1.0 free edition release 
27/11/2016 

Newsgroups: comp.lang.ada 

VTKAda is Ada-2012 port to VTK 
(Visualization Toolkit by Kitware, Inc) 
and Qt5 application and UI framework by 
Nokia VTK version 7.1.0, Qt version 
5.7.0(5.8.0beta) open source and 
vtkc.dll,vtkc2.dll,qt5c.dll(libvtkc.so,libvtk
c2.so,libqt5c.so) were built with 
Microsoft Visual Studio 2015 in 
Windows (WIN32) and gcc in Linux x86-
64.  

Package was tested with gnat gpl 2012 
ada compiler in Windows 10 64bit, 
Debian 8.3 x86-64.  

As a role Ada is used in embedded 
systems, but with VTKAda(+QtAda) you 
can build any desktop applications with 
powerful 2D/3D rendering and imaging 
(games, animations, emulations) GUI, 
Database connection, server/client, 
Internet browsing and many others thinks. 

VTKAda you can be used without QtAda 
subsystem  

Qt5Ada and VTKAda for Windows, 
Linux (Unix) is available from 

https://drive.google.com/folderview?id=0
B2QuZLoe-yiPbmNQRl83M1dTRVE 
&usp=sharing (google drive. It can be 
mounted as virtual drive or directory or 
viewed with Web Browser)  

 [See also “VTKAda”, AUJ 35-1, p. 9.  
—sparre] 

YAMI4 

From: Maciej Sobczak 
<maciej@msobczak.com> 

Date: Thu, 8 Dec 2016 14:53:59 -0800  
Subject: YAMI4 1.10.2 released 
Newsgroups: comp.lang.ada 

I am pleased to announce that YAMI4 
1.10.2, which is a minor update, was just 
released: 

http://www.inspirel.com/yami4/ 

The update targets specifically newer 
versions of GNAT, which due to stricter 
handling of some language constructs[*] 
refused to compile the older code. The 
library should now work correctly with 
newest GNAT versions. 

[*] The actual language problem was 
occasionally discussed on comp.lang.ada, 
most recently in this thread: 

https://groups.google.com/forum/#!topic/c
omp.lang.ada/HNUxQAz4_FE/discussion 

[See also “YAMI4”, AUJ 34-4, p. 198.  
—sparre] 



6  Ada-related Tools 

Volume 38, Number 1, March 2017 Ada User Journal 

PragmAda Reusable 
Components 

From: PragmAda Software Engineering 
<pragmada@ 
pragmada.x10hosting.com> 

Date: Sat, 10 Dec 2016 13:15:42 -0700 
Subject: PragmAda Reusable Components 

Update 
Newsgroups: comp.lang.ada 

There's a new version of the PragmARCs 
for ISO/IEC 8652:2007 available. This 
has minor changes to eliminate duplicated 
code between the random-number pkgs. 
Those who have used functions to obtain 
values in a range, or to obtain real values 
from generators that return integer results, 
may have to make minor changes to their 
code. Threefry_Random now has a block 
of comments describing the concept and 
expected use of encryption-based 
(counter-based) RNGs, and has a new, 
pure function that returns a random value 
to fulfill the expectations of those who 
have read that counter-based RNGs can 
be accessed in parallel. 

[See also “PragmAda Reusable 
Components”, AUJ 37-3, p. 128.  
—sparre] 

Image Analysis Library? 

From: Luke A. Guest 
<laguest@archeia.com> 

Date: Wed, 25 Jan 2017 12:43:10 +0000 
Subject: Re: Any suggestion for an image 

analysis package for Ada? 
Newsgroups: comp.lang.ada 

> Has anybody a suggestion for an image 
analysis package for Ada?  

> Or Computer/Robot vision?  

>  

> Or any idea for an easy way to use for 
example OpenCV directly from Ada?  

Create bindings to OpenCV and don't 
stick a GPL license on them, use the same 
license as OpenCV, which is BSD. 

From: Björn Lundin 
<b.f.lundin@gmail.com> 

Date: Wed, 25 Jan 2017 14:55:54 +0100 
Subject: Re: Any suggestion image analysis 

package for Ada? 
Newsgroups: comp.lang.ada 

> [...]  

The only binding I've heard of is 
described at  
<http://mdh.diva-portal.org/smash/ 
get/diva2:425844/FULLTEXT01.pdf>, 
but I'm not sure where the actual code is.  

Googling gives some hints like 
<https://searchcode.com/codesearch/view/
13067579/#>, 
but I'm unsure if it is alive and maintained 

Qt5Ada 

From: Leonid Dulman 
<leonid.dulman@gmail.com> 

Date: Sat, 28 Jan 2017 22:21:07 -0800  
Subject: Announce: QtAda 5.8.0 
Newsgroups: comp.lang.ada 

Announce : Qt5Ada version 5.8.0 (539 
packages) release 01/02/2017 free edition 
Qt5Ada is Ada-2012 port to Qt5 
framework (based on Qt 5.8.0 final).  

Qt5ada version 5.8.0 open source and 
qt5c.dll,libqt5c.so(x64) built with 
Microsoft Visual Studio 2015 in 
Windows, gcc x86-64 in Linux.  

Package tested with gnat gpl 2012 ada 
compiler in Windows 32bit and 64bit , 
Linux x86,Linux x86-64 Debian 8.5. 

It supports GUI, SQL, Multimedia, Web, 
Network, Touch devices, 
Sensors,Bluetooth, Navigation and many 
others things. 

Changes for new Qt5Ada release : 

Added packages for modules 
QWinExtracs,QTextToSpeech,QGamepa
d,QHelp ,QScxml,QtChart modules 
support 

Added new demos. 

Added easy way to use Qt resource files 
(qrc). 

My configuration script to build Qt 5.8.0 
is: configure -opensource -release -
nomake tests -opengl dynamic -qt-zlib -
qt-libpng -qt-libjpeg -openssl-linked 
OPENSSL_LIBS="-lssleay32 -llibeay32" 
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.8".  

As a role ADA is used in embedded 
systems, but with QTADA(+VTKADA) 
you can build any desktop applications 
with powerful 2D/3D rendering and 
imaging (games, animations, emulations) 
GUI, Database connection, server/client, 
Internet browsing , Modbus control and 
many others things. 

Qt5Ada and VTKAda for Windows, 
Linux (Unix) is available from 

https://drive.google.com/folderview?id=0
B2QuZLoe-yiPbmNQRl83M1dTRVE 
&usp=sharing (google drive. It can be 
mounted as virtual drive or directory or 
viewed with Web Browser)  

The full list of released classes is in "Qt5 
classes to Qt5Ada packages relation 
table.docx". VTKAda version 7.1.0 is 
based on VTK 7.1.0 (OpenGL2) is fully 
compatible with Qt5Ada 5.8.0. 

I hope Qt5Ada and VTKAda will be 
useful for students, engineers, scientists 
and enthusiasts. With Qt5Ada you can 
build any applications and solve any 
problems easy and quickly. 

If you have any problems or questions, 
tell me know. 

[See also “Qt5Ada”, AUJ 36-3, p. 122.  
—sparre] 

Deepend 

From: Brad Moore 
<bmoore.ada@gmail.com> 

Date: Sun, 5 Feb 2017 20:25:15 -0800  
Subject: ANN: Deepend version 3.9 Release 
Newsgroups: comp.lang.ada 

It's been a while since a new release of 
Deepend has been announced, the last 
announced version being version 3.4, 
though there have been updates since 
then.  

Now that 3.9 has been posted, seems like 
a good time to mention the availability of 
new features and fixes. 

Deepend is a set of storage pools for Ada 
95, Ada 2005, and Ada 2012 that includes 
subpool capabilities. Groups of memory 
allocations from a storage pool can be 
assigned to specific subpools where 
groups of objects can be deallocated as a 
group by deallocating the subpool, rather 
than by individual deallocations of 
objects. 

Each subpool is "owned" by a specific 
task in Ada, allowing allocations and 
deallocations to be efficient, as well as 
being safer and less error prone. 

Since version 3.4, the most notable 
changes are; 

- Ada 2012 subpools were not working in 
version 3.4, but now work properly with 
the Ada 2012 subpool syntax. 

- It is now possible to set task ownership 
of the storage pool itself, as well as 
subpools. 

- Portability changes made to integrate 
with PTC's ObjectAda 64bit compiler 
for Ada 2005 and Ada 95 

- Portability changes made to integrate 
with RR Software's Janus Ada compiler 
for Ada 95 

- Memory allocations returned by the 
generic allocators were not initializing 
memory. This is important for types that 
have discriminants or tags. Now 
memory is initialised which is consistent 
with behaviour when one uses Ada's 
"new" keyword syntax to provide the 
allocations. 

- The generic allocator routines now 
support allocating unconstrained types, 
such as strings. 

There are 4 different storage pools to 
choose from; 

- Unbounded storage pool with subpool 
support 

- Bounded storage pool with subpool 
support 

- Unbounded storage pool without 
subpool support

 



Ada-related Products 7  

Ada User Journal Volume 38, Number 1, March 2017 

- Bounded storage pool without subpool 
support 

Deepend source code can be found at; 

https://sourceforge.net/projects/ 
deepend/files/ 

[See also “Deepend”, AUJ 37-4, p. 190. 
—sparre] 

Reference Manual in Info 
Format 

From: Stephen Leake 
<stephen_leake@stephe-leake.org> 

Date: Thu, 23 Feb 2017 03:42:35 -0800  
Subject: Ada Reference Manual 2012 with 

Technical Corrigendum 1 in info format 
available 

Newsgroups: comp.lang.ada 

The Ada Reference Manual 2012 with 
Technical Corrigendum 1 is now 
available in info format. 

See http://stephe-leake.org/ada/arm.html 

or update the Emacs package "Ada 
Reference Manual" 

Gnoga: PIXI Support with 
Sprites 

From: Pascal Pignard <p.p11@orange.fr> 
Date: Sat, 18 Mar 2017 19:57:45 +0100 
Subject: Rép : PIXI support with sprites. 
Newsgroups: gmane.comp.lang.ada.gnoga 

I've rewritten PIXI Graphics closer to 
PIXI API rather than Context 2D API. 

I've also added some PIXI Containers 
methods. 

I've pushed this on Gnoga dev_1.3 
branch. 

Feel free to send code review: 

https://sourceforge.net/p/gnoga/code/ci/ 
dev_1.3/tree/components/pixi/src/ 

One of my main concern is to define right 
Ada types while there are implicit in 
Javascript. 

Beyond that, I wonder about some new 
API: 

- Move_To: moves sprite to a specified 
location with a specified speed 

- On_Collision: send a Gnoga event when 
a collision of 2 sprites or near a location 

- Acceleration: add acceleration property 
(positive or negative) 

Any other ideas are welcome. 

Feel free to point out some API you want 
to be available. 

Take a look to "leaves" demo which 
brings a very promising beginning of 
what could be done with PIXI. 

Waiting for your feedbacks on PIXI 
support, I'll try to bring more support on 
mnmenu plugin. 

Ada-related Products 

Rapita Verification Suite 

From: Rapita Systems 
Date: Fri Dec 9 2016 
Subject: RVS 3.6 released 
URL: https://www.rapitasystems.com/news/ 

rvs-36-released 

Rapita Systems is proud to announce the 
latest release of its on-target software 
verification tool suite RVS, version 3.6.  

Over the last 6 months, we have been 
working tirelessly to make this our 
highest quality release to date.  

Testing processes in the development of 
software for critical real-time embedded 
systems are incredibly expensive, both in 
terms of the effort required to run tests 
and subsequent analysis effort. We 
believe that our verification tools should 
improve the efficiency of these testing 
processes, by being designed to work 
seamlessly through the development 
process.  

This is why we have been developing new 
features in RVS 3.6 that help direct the 
testing process, reducing the effort 
required to repeat tests and trace results to 
tests and requirements. These new 
features, as well as some of the other 
improvements made since RVS 3.5, are 
listed below: 

- The new Treemaps feature in RapiCover 
lets you visualize your coverage at a 
glance  

- New options for managing tests and 
subprograms allow you to filter 
coverage with fine granularity 

- Our new Optimal Dataset Calculator can 
determine the minimal set of tests you 
must run again when you change code 

- Our improved justification workflow 
gives you new options, such as including 
custom fields in templates  

- RVS now supports many new Ada 2012 
features, and recent GNAT compilers 

- Our coverage parsing tool now lets you 
process multiple tests in a single 
command-line 

- We have fixed over 150 bugs 

You can find more information on some 
of the new features available in RVS 3.6 
on our website.  

[...] 

[See also “Rapita Verification Suite”, 
AUJ 37-2, p. 77. —sparre] 

GNAT Pro, CodePeer, QGen 
and SPARK Pro 

From: AdaCore Press Center 
Date: Tue Mar 14 2017 

Subject: AdaCore Releases New Versions of 
GNAT Pro, CodePeer, QGen and 
SPARK Pro 

URL: http://www.adacore.com/press/ 
adacore-releases-v17/ 

Annual major release of flagship products 
brings new platform support, other 
enhancements  

NUREMBERG, Germany, Embedded 
World Conference, March 14, 2017. 
AdaCore today announced the release of 
the latest version of its four major 
products: 

- GNAT Pro 17.1, a development 
environment for Ada and C, on native 
and cross platforms; 

- CodePeer 17.1, a deep static analysis 
tool for Ada that can identify bugs and 
vulnerabilities both during development 
and retrospectively on existing code 
bases; 

- QGen 17.1, a model-based development 
and verification toolset for Simulink® 
and Stateflow® models, which generates 
code in MISRA-C or SPARK; and 

- SPARK Pro 17.1, a verification 
environment that brings mathematics-
based assurance to high-integrity 
software. 

“Developing and verifying critical 
systems is a challenging task, especially 
when certification against software 
standards such as DO-178C or EN 50128 
is required,” said Cyrille Comar, AdaCore 
President. “The latest version of our 
products will help organizations meet this 
challenge, through enhancements such as 
QGen’s model-level debugger and 
CodePeer’s detection of dangerous CWE 
weaknesses. Customers have long relied 
on AdaCore’s tools and services when 
producing safety-critical or high-security 
software, and our V17.1 product line 
marks a continuation of our 
commitment.” 

GNAT Pro includes a full-featured build 
toolset for Ada and C, Integrated 
Development Environments (the GNAT 
Programming Studio (GPS) and the 
Eclipse-based GNATbench), a 
comprehensive suite of tools (a visual 
debugger, a coding standard checker, 
etc.), and an extensive set of libraries and 
bindings. The GNAT Pro 17.1 release, 
based on GCC 6 and GDB 7.10, includes 
improved debugger support under GPS, a 
better algorithm for Ada elaboration 
order, enhancements to the GPRbuild 
multi-language build tool, better 
integration of GNATtest and 
GNATcoverage, an implementation of the 
extended Ravenscar profile on bare metal 
targets, and support for SMP on leon3. 
The supplemental GNATcoverage 
dynamic analysis tool has been upgraded 
with incremental coverage analysis, 
improved object code coverage, and 
support for ARM bare metal and native 
Windows (both 32- and 64-bit) platforms.



8  Ada and Operat ing Systems 

Volume 38, Number 1, March 2017 Ada User Journal 

CodePeer is an Ada source code analyzer 
that detects run-time and logic errors, 
including a number of weaknesses among 
the Common Weakness Enumeration 
(CWE) Top 25 Most Dangerous Software 
Errors. CodePeer 17.1 provides 
improvements in the handling of “false 
alarms”, more precise diagnostic 
messages, and a variety of user interface 
enhancements. The tool has been 
designated as “CWE Compatible” in the 
MITRE Corporation’s Common 
Weakness Enumeration Compatibility and 
Effectiveness Program. 

QGen is a qualifiable and tunable code 
generator and model verification toolsuite 
for a safe subset of Simulink® and 
Stateflow® models, particularly oriented 
towards real-time control software in 
safety-critical systems. QGen 17.1 
includes a model-level debugger that is 
unique in the industry, allowing 
synchronized views and execution control 
between the model and the generated 
code. QGen 17.1 also includes support for 
Processor-in-the-Loop (PIL) testing, an 
enhanced user interface, improved code 
generation, and the implementation of 
additional blocks. 

SPARK Pro is an integrated static 
analysis toolsuite for verifying high-
integrity software through formal 
methods. It supports the SPARK 2014 
language and can be used at various 
levels, for example to demonstrate the 
absence of run-time errors. SPARK uses 
the same contract-based programming 
syntax as Ada 2012, facilitating “hybrid 
verification” that combines traditional 
testing and formal methods. SPARK Pro 
17.1 brings improved proof automation 
and enhanced proof interaction (including 
the generation of counterexamples). 

[...] 

[See also “GNAT Pro”, AUJ 37-1, p. 16. 
—sparre] 

From: AdaCore Press Center 
Date: Tue Mar 21 2017 
Subject: AdaCore Releases GNAT Pro 17 

Development Environment for SYSGO’s 
PikeOS RTOS 

URL: http://www.adacore.com/press/ 
gnat-pro-17-sysgos-pikeos-rtos/ 

AdaCore/SYSGO Partnership Fosters 
Spread of Embedded Ada 

TOULOUSE, France, Certification 
Together International Conference, March 
21, 2017 - AdaCore today announced the 
release of its GNAT Pro 17.1 
development environment for SYSGO’s 
Real-Time Operating System PikeOS®. 
With GNAT Pro 17.1, Ada users targeting 
PikeOS® will see a number of product 
enhancements, including upgrades to the 
underlying code generator and debugger 
technologies (to GCC 6 and GDB 7.10, 
respectively), better elaboration order 
handling, improved stubbing in  

 

GNATtest, and enhanced debugger 
support in the GNAT Programming 
Studio (GPS) IDE. 

AdaCore and SYSGO are longtime 
partners in the embedded market, with 
Ada’s reliability benefits providing an 
excellent match for SYSGO’s safety-
critical PikeOS® RTOS. Over the past 
several years, the companies’ joint 
customers have developed certified Ada 
applications meeting the highest levels in 
software standards such as EN 50128 
(rail). 

GNAT Pro for PikeOS® is especially 
suited for high-assurance embedded 
applications, thanks to its configurable 
run-time capability and its high-integrity 
profiles. The Zero Footprint (ZFP) profile 
minimizes (and in fact generally 
eliminates completely) all code in the 
executable other than the compiler-
generated code for the application, and 
applications needing concurrency support 
can take advantage of both simple and 
extended versions of the Ravenscar 
tasking profile. 

“Supporting RTOSes that help our 
customers build software that matters is 
part of our core strategy at AdaCore,” said 
Jamie Ayre, Commercial Team Lead at 
AdaCore. “Over the years, customers 
have benefited from a close integration of 
our technologies and the common goal of 
providing a solid platform for building 
high-integrity software.” 

“For the past 10 years, SYSGO and 
AdaCore have enjoyed an effective and 
synergistic cooperation,” said Markus 
Jastroch, Director of Marketing at 
SYSGO AG. “Our shared experience and 
deep knowledge of safety-critical 
applications has benefited our customers, 
in one example helping a multicore 
project successfully achieve Safety 
Integrity Level SIL 4." 

Ada and Operating 
Systems 

Linux: Interfacing to 
External Hardware 

From: Patrick 
<patrick@spellingbeewinnars.org> 

Date: Sun, 1 Jan 2017 18:42:04 -0800  
Subject: Interfacing Ada With Full Runtime 

Directly to Electronic Chips 
Newsgroups: comp.lang.ada 

Ada-AVR is a neat project and I am not 
knocking it. It doesn't have tasking 
support yet but this is of course a huge 
job. 

If I want to connect any sort of computer 
running Linux directly to a circuit using 
"full Ada" with tasking support what are 
my options? 

By circuit, I mean a variety of electronic 
components and in this case with no 
microcontroller, an A/D chip is a simple 
example. 

I am thinking that single board computers 
like BeagleBone are my best bet, they 
have plenty of GPIO lines. 

Has anyone interfaced directly with chips 
via SPI or IC2 via a GPIO PCI card or 
GPIO-USB adapter? 

Are there any other options? 

From: Brian Drummond 
<brian@shapes.demon.co.uk> 

Date: Mon, 2 Jan 2017 14:02:36 -0000  
Subject: Re: Interfacing Ada With Full 

Runtime Directly to Electronic Chips 
Newsgroups: comp.lang.ada 

> [...] 

There are ARM-Cortex development 
boards with a bit more resources, and Ada 
support including (Ravenscar) tasking, 
either bare-bones or over a small RTOS. 

Look for work by Simon Wright in 
respect of these.  

Much simpler than Beaglebone, but not 
full Linux.  

Interfacing to hardware isn't difficult. 
Generally you abstract the hardware level 
into a package which knows where the 
register addresses are, and different 
(related) targets use different 
implementations of the packages. 

For full Linux, I'd look at the Raspberry 
Pi. But then you get involved in writing 
device drivers - there's a project on the 
first steps on writing Linux device drivers 
in Ada, but it's more complex, and not as 
well trodden as Linux device drivers in C. 

From: Simon Wright 
<simon@pushface.org> 

Date: Mon, 02 Jan 2017 16:25:23 +0000 
Subject: Re: Interfacing Ada With Full 

Runtime Directly to Electronic Chips 
Newsgroups: comp.lang.ada 

> [...] 

You can talk I2C from a Raspberry Pi; see 
[1], [2]. It was simple to install GNAT etc 
from libre.adacore.com, since Raspbian is 
a Debian offshoot. 

Beaglebone also supports Debian, see [3] 
for a report on this. 

Both of the above use OS device support 
via file read/write/ioctl. If you want to go 
bare(ish) metal, there is the AdaCore 
Ada_Drivers_Library at [4]. This uses 
cross-compilation for ARM Cortex 
MCUs, compilers from AdaCore (or [5], 
[6] for Mac), with runtimes for boards 
mostly from STMicroelectronics (e.g. 
[7]). 

The AdaCore runtimes support Ravenscar 
tasking[8] and come in two flavours, 
small footprint (-sfp-) and full (-full-). 
The -full- version supports exception 
handling and finalization and includes 



References to Publ icat ions 9  

Ada User Journal Volume 38, Number 1, March 2017 

Ada.Numerics. Neither support containers  
easy enough to copy into the -full- 
version, I expect). 

The Ada_Drivers_Library uses a BSD 
license. The AdaCore runtimes use a full-
GPL license. If this matters to you I have 
runtimes for Arduino Due and 
STM32F4[9] which are based on 
FreeRTOS and have the GCC Runtime 
Library Exception, allowing release of 
code on proprietary terms. 

Just to indicate the flavour of this bare-
metal code, I have some SPI code for an 
STM32F427, using interface code 
generated by AdaCore's SVD2Ada[10], at 
[11]. 

[1] https://sourceforge.net/projects/ 
raspi-i2c-ada/ 

[2] http://raspi-i2c-ada.sourceforge.net 

[3] https://groups.google.com/forum/ 
#!topic/beagleboard/O5AU2XL6NJ8 

[4] https://github.com/AdaCore/ 
Ada_Drivers_Library 

[5] https://sourceforge.net/projects/ 
gnuada/files/GNAT_GPL%20Mac%20
OS%20X/2016-arm-eabi-darwin-bin/ 

[6] https://sourceforge.net/projects/ 
gnuada/files/GNAT_GCC%20Mac%20
OS%20X/6.1.0/arm-eabi/ 

[7] http://uk.farnell.com/ 
stmicroelectronics/stm32f407g-
disc1/dev-board-foundation-line-
mcu/dp/2506840 

[8] https://en.wikipedia.org/wiki/ 
Ravenscar_profile 

[9] https://sourceforge.net/projects/ 
cortex-gnat-rts/ 

[10] https://github.com/AdaCore/svd2ada 

[11] https://github.com/simonjwright/ 
multiplexed-io/blob/master/drivers/spi1/ 
src/spi1-device.adb 

From: Philip Munts 
<philip.munts@gmail.com> 

Date: Mon, 2 Jan 2017 23:55:50 -0800  
Subject: Re: Interfacing Ada With Full 

Runtime Directly to Electronic Chips 
Newsgroups: comp.lang.ada 

> [...] 

I suggest my own Linux Simple I/O 
Library 
(http://git.munts.com/libsimpleio). It 
provides Pascal calling sequence 
wrappers around the Linux system calls 
for I2C, SPI, UART, and raw HID 
devices and includes some shim packages 
for GNAT. 

I have tested it with both native and cross 
compilers on the BeagleBones Black and 
Green and Raspberry Pi 2 and 3. I use it 
mostly with the Raspberry Pi 2 cross 
toolchain (which also works fine for the 
BeagleBone family) from AdaCore and 
targeted to my own embedded Linux 
distribution called MuntsOS 
(http://git.munts.com/arm-linux-mcu). 

I also have a collection of packages and 
example programs for various 
Mikroelektronika click boards and 
Raspberry Pi hats that are not published 
yet. I am in the middle of writing a paper 
about this very topic. 

FreeBSD/ARM64: GNAT 

From: John Marino 
<dragonlace.cla@marino.st> 

Date: Wed, 8 Feb 2017 07:30:35 -0800  
Subject: ANN: GNAT for FreeBSD/64 

available (two options) 
Newsgroups: comp.lang.ada 

If anybody is interested in Ada on the 64-
bit ARMv8 architecture, there are a 
couple more options available to you 
today. 

Last week I created a 
FreeBSD/DragonFly to FreeBSD64/ARM 
cross-compiler and placed it in ports: 
http://www.freshports.org/lang/ 
gnatcross-aarch64/ 

That compiler was based on previous 
GnatDroid work. 

Over the weekend, I used that cross-
compiler to fully bootstrap FSF GCC 
6.3.1 to FreeBSD/ARM64. Now the entire 
FreeBSD Ports Ada framework is 
available on this soon-to-be-tier-1 
platform. The existing gcc6-aux port 
(http://www.freshports.org/lang/gcc6-aux) 
was expanded to support aarch64. 

It passes the complete testsuite. That 
required providing a freebsd-specific 
signal frame unwinder which I'm passing 
back to GCC. 

results: http://www.dragonlace.net/ 
gnataux/freebsd_arm64/ 

I also mentioned this news on my mostly 
neglected website: 
http://www.dragonlace.net/ 

MacOS X: GDB on Sierra 

From: Simon Wright 
<simon@pushface.org> 

Date: Mon, 13 Feb 2017 22:09:41 +0000 
Subject: GDB vs macOS Sierra 
Newsgroups: gmane.comp.lang.ada.macosx 

To: GNAT-OSX-
dhAwdhUhaNgMT+7pcfOT8A@public.g
mane.org 

Apple's security enhancements in Sierra 
prevent the GDBs available on-line (in 
GNAT GPL 2016 from 
libre.adacore.com, FSF GCC 6.1.0 at 
Sourceforge) from working at all. 

Discussion on an updated version and 
how to install it at http://forward-in-
code.blogspot.co.uk/2017/02/gdb-vs-
macos-sierra.html. 

[...] 

Debian: GNAT 

From: Nicolas Boulenguez 
<nicolas.boulenguez@free.fr> 

Date: Sat, 18 Feb 2017 22:06:01 +0100 
Subject: some news 
Newsgroups: 

gmane.linux.debian.packages.ada 

The compiler for next release will be 
gnat-7, currently only in experimental. 

I suggest that we use this release to 
change the directory project in policy. 
Installing projects to 
/usr/share/ada/adainclude creates 
unmotivated divergence with upstream's 
/usr/share/gpr. 

Users of gprbuild will not notice, it 
already searches in both directories. 

Libxmlada compiles and the basic 
link/run test passes with this change, so I 
have good hope for gprbuild. Most other 
libraries rely on dh-ada-library and will be 
updated automatically during next build. 

OpenVMS: GNAT 

From: Gérard Calliet <gerard.calliet@pia-
sofer.fr> 

Date: Thu, 2 Mar 2017 13:37:12 +0100 
Subject: Gnat Ada on OpenVMS is back 
Newsgroups: comp.lang.ada 

The OpenVMS OS, after an announced 
death in 2013, is back with its primary 
engineering team, organized as a start-up 
(www.vmssoftware.com). 

In this context, we did a new build on 
OpenVMS / Itanium of the Gnat Ada 
compiler. We needed it for an industrial 
project (a port from OenVMS Alpha to 
OpenVMS Itanium, an urban 
transportation control software). The 
project is about to be run in production, 
with images compiled by our Gnat Ada 
compiler. 

We want to generalize this renewal of 
Ada on OpenVMS. We offer free of 
charge our compiler (with no support) to 
downloading. The portal (still in work) 
www.vmsadaall.org can be used to ask for 
a download. We wish it becomes a place 
for exchanges between all people that are 
interested by the initiative. 

If you are interested, please tell us, we 
need evaluations, advice, ideas. 

References to 
Publications 

Writing on Air 

From: Dirk Craeynest 
<dirk@feles.cs.kuleuven.be> 

Date: Mon Apr 03 2017 
Subject: Great "Ada Inside" demo - 

"Writing on Air" 
URL: http://blog.adacore.com/ 

writing-on-air 



10  References to Publ icat ions 

Volume 38, Number 1, March 2017 Ada User Journal 

 
[...] on AdaCore's blog there's a very nice 
article by Jorge Real from the Universitat 
Politècnica de València, describing a 
pendulum-like device that creates the 
illusion of text floating in the air! 

See: <http://blog.adacore.com/ 
writing-on-air>. 

See this device in action at the upcoming 
Ada-Europe 2017 conference, mid-June 
in Vienna, Austria! 

DIY Instant Camera 

From: Fabien Chouteau 
<fabien.chouteau@gmail.com> 

Date: Mon Dec 12 2016 
Subject: Make with Ada: DIY instant 

camera 
URL: http://blog.adacore.com/ 

make-with-ada-diy-instant-camera 

There are moments in life where you find 
yourself with an AdaFruit thermal printer 
in one hand, and an OpenMV camera in 
the other. You bought the former years 
ago, knowing that you would do 
something cool with it, and you are 
playing with the latter in the context of a 
Hackaday Prize project. When that 
moment comes — and you know it will 
come — it’s time to make a DIY instant 
camera. For me it was at the end of a 
warm Parisian summer day. The idea kept 
me awake until 5am, putting the pieces 
together in my head, designing an 
enclosure that would look like a camera. 
Here’s the result: 

[...] 

Introductory Ada 
Programming Book 

From: Andrew Shvets 
<andrew.shvets@gmail.com> 

Date: Sat, 31 Dec 2016 05:18:07 -0800  
Subject: Introductory Ada Programming 

Book 
Newsgroups: comp.lang.ada 

My name is Andrew Shvets. I've been 
learning how to program in Ada over the 
past few years. As someone that came 
from C/C++, Java and Python many of 
the concepts that were in Ada were not 
easy to digest at first. After spending a 
fair amount of time looking for a guide 
that would help me out (something that 
would guide me through much of the 
ideas in Ada in a gentle manner was 
strongly preferred and be focused on Ada 
2012), I couldn't find something like this 
(there is, on the other hand plenty of 
material that would explain more 
advanced concepts.) Having mastered 
many of the basic concepts in this 
wonderful language, I figured that having 
a guide for this would be very helpful and 
wrote one. Hence the book "Introductory 
Ada Programming Book: A Book for 
Beginner Programmers and Beginners to 

Ada". The goal was to create a roadmap 
for those new to Ada learn more quickly 
and gain a certain level of mastery. 

https://www.amazon.com/ 
Introductory-Ada-Programming-Book-
Programmers-ebook/dp/ 
B01N6D5TPE/ref=sr_1_1?ie=UTF8& 
qid=1483189391&sr=81& 
keywords=introductory+ada 

I'm open to sending PDFs as review 
copies, please send your requests to: 
introductory dot ada at gmail dot com 

Thank you for taking the time to read 
through this! Also, thank you for those -- 
on this newsgroup -- who have helped me 
better understand Ada! 

Looking forward to hearing from 
everyone! 

Very Simple Scheduler 

From: Maciej Sobczak 
<maciej@msobczak.com> 

Date: Tue, 24 Jan 2017 00:16:34 -0800  
Subject: Very Simple Ada Scheduler 
Newsgroups: comp.lang.ada 

http://inspirel.com/articles/ 
Ada_On_Cortex_Very_Simple_Scheduler
.html 

This article is an extension chapter for the 
Ada on ARM Cortex-M tutorial and 
presents a very simple, but yet 
surprisingly flexible scheduler for 
managing multiple tasks (well, finite state 
machines) in a single embedded system. 

The example program from this article 
deals with 3 independently blinking 
LEDs, but can be easily extended to more 
complex designs. 

Your comments are welcome, 

CAN Newsletter: Ada for 
Automation 

From: Stéphane Los 
<new.stephane.los@gmail.com> 

Date: Sun, 5 Mar 2017 12:32:51 -0800  
Subject: "Ada for Automation" in the CAN 

Newsletter magazine March 2017: 25th 
anniversary 

Newsgroups: comp.lang.ada 

I wanted to let you know about the "CAN 
Newsletter magazine March 2017: 25th 
anniversary" which features an article 
about "Ada for Automation". 

The magazine: 

https://can-newsletter.org/engineering/ 
engineering-miscellaneous/170224_can-
newsletter-magazine-march-2017 

Ada for Automation: Ada language for 
automation 

https://can-newsletter.org/uploads/ 
media/raw/1cb325a3453440e4ae703be8e
392b763.pdf 

Handbook on DO-178C/ED-
12C Guidance 

From: AdaCore Press Center 
Date: Tue Mar 21 2017 
Subject: AdaCore Publishes Handbook on 

DO-178C/ED-12C Guidance 
URL: http://www.adacore.com/press/ 

handbook-do-178c-ed-12c-guidance/ 

Free booklet shows how AdaCore 
qualified tools can reduce costs of 
certifying airborne software 

TOULOUSE, France, Certification 
Together International Conference, March 
21, 2017 – AdaCore today announced the 
publication and immediate availability of 
a free booklet, AdaCore Technologies for 
DO-178C / ED-12C, written by Quentin 
Ochem (AdaCore) and certification expert 
Frédéric Pothon. The booklet addresses 
the DO-178C / ED-12C standards suite – 
the “core” DO-178C / ED-12C standard 
and its technology supplements – and 
explains many of their more subtle 
aspects in the context of several different 
development scenarios. In so doing, the 
booklet provides insights into how the 
Ada and SPARK languages, combined 
with AdaCore’s products and services, 
can help customers develop and verify 
airborne software. Many of AdaCore’s 
tools have been qualified on safety-
critical projects and have qualification 
material available; using a qualified tool 
can save considerable effort in 
demonstrating that various objectives in 
the DO-178C / ED-12C standards suite 
have been met. 

“DO-178C is one of the most complex 
software safety standards in the industry,” 
said Quentin Ochem, lead of Business 
Development at AdaCore. “This booklet 
is aimed at software engineers and 
architects, to help them read between the 
lines of the standard and better understand 
the intent, using AdaCore’s technologies 
to illustrate how to meet the various 
requirements.” 

The booklet approaches its subject matter 
from several angles. One chapter 
summarizes the Ada and SPARK 
languages and describes various AdaCore 
tools, many of which have been qualified 
or are qualifiable for safety-critical 
systems: 

- The GNAT Pro Assurance development 
environment, including support for 
“sustained branches”, which allows 
customers to evolve their software on a 
stable but maintained version of the 
GNAT Pro environment; 

- The CodePeer advanced static analysis 
tool for Ada, which can find subtle bugs 
and vulnerabilities both during 
development and retrospectively on 
existing codebases; 

- Basic static analysis tools, including the 
GNATcheck code standard enforcer and 



Ada Inside 11  

Ada User Journal Volume 38, Number 1, March 2017 

the GNATstack tool for computing 
maximum stack usage; 

- Dynamic analysis tools: GNATtest (a 
test harness generator), GNATemulator 
(a target emulator), and GNATcoverage 
(a code coverage analyzer at both the 
object and source levels, handling 
statement coverage, decision coverage, 
and modified condition/decision 
coverage); 

- Integrated Development Environments: 
GNAT Programming Studio (GPS), 
GNAtbench, and GNATdashboard; and 

- The QGen model-based development 
and verification toolset, which includes 
a tunable and qualifiable code generator 
from a safe subset of Simulink® and 
Stateflow® models to SPARK or 
MISRA-C. 

A major section of the booklet is a chapter 
that shows how to exploit AdaCore’s 
technologies to comply with the guidance 
in the DO-178C / ED-12C suite, in the 
context of several development scenarios 
(use cases): 

- Coding with Ada 2012 without using 
Object-Oriented Technology (OOT). 
This use case shows how AdaCore’s 
products and services contribute to the 
activities in the core DO-178C / ED-12C 
standard. 

- Coding with Ada 2012 and using OOT. 
This use case takes into account the 
guidance in DO-332 / ED-217 (Object-
Oriented Technologies and Related 
Techniques), in particular the objective 
of Local Type Consistency. 

- Developing a design model and using a 
qualified code generator (QGen). This 
use case takes into account the guidance 
in DO-331 / ED-218 (Model-Based 
Development and Verification). 

- Using SPARK and formal analysis. This 
use case takes into account DO-333 / 
ED-216 (Formal Methods) and explains 
how to gain credit for formal proofs to 
reduce or eliminate testing activities. 

For each use case, the booklet explains 
which AdaCore technologies are 
applicable, and which activities in the 
DO-178C / ED-212 suite they contribute 
to. 

The booklet also includes a set of 
reference tables that summarize how the 
various AdaCore technologies help satisfy 
the specific objectives in the DO-178C / 
ED-12C suite. 

Availability 

The DO-178C booklet is available now, at 
no cost. To download a PDF version 
please visit www.adacore.com/tech-do-
178c. For a printed copy please contact 
info@adacore.com 

[...] 

Ada Inside 

SparForte 

From: Ken O. Burtch 
<koburtch@gmail.com> 

Date: Mon, 14 Nov 2016 06:32:27 -0800  
Subject: [ANN] SparForte 2.0 
Newsgroups: comp.lang.ada 

SparForte is a shell, scripting and web 
template language based on Ada. 

Version 2.0 was released on October 10, 
2016. 

Major new features include: 

- in out, out mode parameters on user 
functions 

- GNU readline is used for the command 
prompt 

- Berkeley DB support 

- Software architect policy blocks 

Also the database configuration issues 
should be resolved (thanks to volunteers). 

The SparForte home page is: 

http://www.sparforte.com 

A summary of the changes are found 
here: 

http://www.pegasoft.ca/coder/ 
coder_october_2016.html 

The full release notes are found here: 

http://www.sparforte.com/news/2016/ 
news_oct2016_2.html 

[See also “SparForte”, AUJ 37-3, p. 130. 
—sparre] 

From: Ken O. Burtch 
<koburtch@gmail.com> 

Date: Wed, 28 Dec 2016 11:34:00 -0800  
Subject: [ANN] SparForte 2.0.1 
Newsgroups: comp.lang.ada 

SparForte 2.0.1 is bug fix release of 
SparForte 2.0. 

SparForte is an open source shell, 
scripting and web template language 
loosely based on the Ada language. It runs 
on Linux and FreeBSD. It is maintained 
by myself and volunteers. 

There are 17 updates included in this 
release. The change log can be found 
here: 

http://www.sparforte.com/news/2016/ 
news_dec2016.html 

The language can be downloaded from 
the SparForte home page: 

http://www.sparforte.com/index.html 

From: Ken O. Burtch 
<koburtch@gmail.com> 

Date: Thu, 2 Feb 2017 10:10:05 -0800  
Subject: [ANN] SparForte 2.0.2 
Newsgroups: comp.lang.ada 

SparForte 2.0.2 contains follow-up bug 
fixes for SparForte 2.0. There are 19 

changes. A complete list of changes is 
located at: 

http://www.sparforte.com/news/2017/ 
news_feb2017.html 

The SparForte home page is 

 http://www.sparforte.com 

SparForte is my Ada-based shell, web 
template and scripting language. It is 
maintained by volunteers. 

MAX! Home Automation 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Mon, 21 Nov 2016 18:17:37 +0100 
Subject: MAX! home automation v1.6 

released 
Newsgroups: comp.lang.ada 

MAX! home automation is a GTK 
application used to control ELV/eQ3 
network of heating devices, like radiator 
thermostats, shutter contacts etc. 

http://www.dmitry-kazakov.de/ada/ 
max_home_automation.htm 

Changes to the previous version: 

- Monitoring radio band duty cycle was 
added; 

- Commands that control thermostats are 
serialized and monitored for failures; 

- Cube radiator thermostats configuration 
save and restore added; 

- Thermostat schedule and parameters 
upload diagnostics added; 

- Offset temperature can be set negative; 

- HTTP server request documentation get-
set_temperature changed to get-set-
temperature; 

- Save file dialogs changed to ask 
override confirmation; 

- Bug fix in HTTP server that prevented 
querying the thermostat's measured 
temperature; 

- Valve position is correctly reported; 

- Thermostat parameters and schedule 
optimized to minimize RF traffic; 

- Documentation extended with 
instructions how to run the application 
remotely or in the headless mode. 

[See also “MAX! Home Automation”, 
AUJ 37-2, p. 79. —sparre] 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Wed, 22 Feb 2017 18:07:19 +0100 
Subject: MAX! home automation v1.8 
Newsgroups: comp.lang.ada 

[...] 

Major changes in this version are E-mail 
reports when device batteries go low and 
ODBC or SQLite long term data logging. 



12  Ada Inside 

Volume 38, Number 1, March 2017 Ada User Journal 

Muen Separation Kernel 

From: Adrian-Ken Rueegsegger 
<ken@codelabs.ch> 

Date: Mon, 6 Feb 2017 19:30:05 +0100 
Subject: [ANN] Muen development version 

0.8 released 
Newsgroups: comp.lang.ada 

We are proud to announce the availability 
of Muen version 0.8. 

The following major features and 
improvements have been implemented 
since the last release: 

Subject Lifecycle 

With the implementation of a subject 
loader (SL) component it is now possible 
to reset and restart subjects at runtime 
with minimal support from the kernel. 

The new loader policy abstraction eases 
the specification of loader subjects which 
control the lifecycle of one or multiple 
subjects. Aside from the state, loaders 
have access to the entire address space of 
a managed subject in order to be able to 
set up the execution environment. 

The new SL component written in 
SPARK 2014 initializes/resets the 
writable memory regions of its associated 
subjects. To find the actual memory 
regions to process, the loader consults 
each monitored subject info region by 
querying it using the new subject info 
(sinfo) client library. Prior to starting 
execution of a monitored subject, integrity 
hashes of each memory region are 
calculated and compared to their 
reference value provided by the sinfo 
data. 

The demo system has been adapted to 
make use of this new functionality: the 
NIC Linux can be restarted by pressing 
the Right Control+F10 key combination. 

System reboot/shutdown 

The introduction of a new 'kernel' event 
mode and event actions for system reboot 
and poweroff enables policy writers to 
grant subjects the capability to initiate a 
system reboot or shutdown. If a subject 
triggers a reboot event, the kernel 
performs a power-cycle using the Reset 
Control Register (I/O port 0xcf9). The 
shutdown functionality is implemented by 
performing an ACPI shutdown using the 
poweroff port and the PM1A Control 
Sleep Type capability. 

As with the subject restart, the demo 
system has been extended to showcase the 
new feature: a system reboot can be 
triggered by pressing the Right 
Control+F11 keys while Right 
Control+F12 initiates a shutdown. 

Policy & Toolchain improvements 

The Muen policy has been extended with 
a config section which enables the 
parametrization of a system via the 
declaration of configuration values. 

Boolean expressions referencing existing 
config values can be used to formulate 
additional properties. The introduction of 
conditionals that reference config values 
or expressions selectively enable/disable 
parts of the policy which allows for 
flexible customization of a system at 
integration time. 

To increase the expressiveness of the 
policy and ease native component 
development, component descriptions 
have been extended with the library 
construct including dependency 
declaration. Additionally it is now 
possible to declare logical devices as well 
as memory and channel array resources. 
The new component spec generation tool 
reads the description of a given 
component and generates Ada/SPARK 
packages containing constants of the 
declared logical component resources. 
These generated specifications can be 
used in the component source code to 
access the declared resources. This 
ensures a consistent view of the system 
according to the policy. 

Physical memory regions can now 
optionally declare an integrity hash. The 
SHA-256 hash value can be used to verify 
the initial content of a given region at 
runtime. A tool has been implemented 
that calculates hashes for all physical 
regions with content (file or pattern). The 
region hashes are exported as part of the 
subject info data and used by the SL as 
described above. 

Kernel improvements 

To prevent potential issues related to Intel 
Hyper-Threading, e.g. side-channels, the 
kernel now only activates one thread per 
physical CPU core. CPUID leaf 11 
(Extended Topology Enumeration Leaf) is 
used to determine the SMT ID of each 
logical CPU and deactivate it if the ID is 
non-zero. This effectively disables HT 
even if no such option is present in the 
BIOS. 

Feature-wise, support for event actions 
has been added. The improved 
functionality increases the flexibility of 
the event mechanism and facilitates 
subject lifecycle management as well as 
system restart and shutdown. 

Many other improvements and 
stabilizations such as e.g. replacement of 
assembler code with SPARK and 
reduction of stack size to 4K have been 
implemented. 

Further changes 

Further changes and improvements 
include 

- Support for 32-bit Windows VMs using 
Genode/Virtualbox 

- Support for Intel Broadwell and Skylake 
microarchitecture 

- Support for PCI multi-function device 
pass-through 

- Implement tool to statically calculate 
worst-case stack usage 

- Implement tool to generate scheduling 
plans 

- Implement subject info client library in 
SPARK 2014 

- Update of Linux kernel to version 4.6 

- Add support for multiple initramfs per 
Linux subject 

With the advent of subject lifecycle 
management, system shutdown and 
reboot support and the numerous 
toolchain improvements, the Muen 
platform is getting more and more mature. 
The continuous enhancement and 
refinement of system policy abstractions, 
especially the components construct, 
further simplifies the system specification 
process and enables the description of 
complex systems composed of a large 
number of subjects. 

We are also thrilled that this release 
includes the previously announced [1] 
support for execution of hardware-
accelerated 32-bit Windows VMs on top 
of the Muen SK through the use of 
Genode/VirtualBox as a deprivileged 
VMM. A detailed description of the 
architecture and an account of how this 
feature came to be can be found in the 
Genode 16.08 release notes [2]. 

Last but not least we would like to thank 
Christiane Kuhn for her contribution of 
the scheduling plan generation tool [3] 
which she developed as part of a student 
project/internship. 

Further information about Muen is 
available on the project website [4] and 
the git repository can be found at [5]. 

Please feel free to give the latest 
development version of Muen a try. As 
always, feedback is very much 
appreciated! 

[1] https://groups.google.com/forum/ 
#!topic/muen-dev/ln7ZrIfDk8c 

[2] https://genode.org/documentation/ 
release-notes/16.08#VirtualBox_4_ 
on_top_of_the_Muen_separation_kernel 

[3] https://git.codelabs.ch/?p=muen/ 
mugenschedcfg.git 

[4] https://muen.codelabs.ch/ 

[5] https://git.codelabs.ch/?p=muen.git 

[See also “Muen Separation Kernel”, AUJ 
37-1, p. 18. —sparre] 

From: Adrian-Ken Rueegsegger 
<ken@codelabs.ch> 

Date: Mon, 13 Feb 2017 18:07:39 +0100 
Subject: Re: [ANN] Muen development 

version 0.8 released 
Newsgroups: comp.lang.ada 

[...] 

> 1. I understand that this separation 
Kernel is an hypervisor, but how does it 
compare to other hypervisor like for 
instance the one from Wind River? 



Ada Inside 13  

Ada User Journal Volume 38, Number 1, March 2017 

Does Muen allows hard Real Time 
software? What kind of scheduling 
does the Muen kernel? 

I am not sure how to best answer this 
question since I do not know the Wind 
River Hypervisor. Looking at the product 
information online some of the features 
are quite similar while in other areas there 
are differences. Since I am not in a 
position to make a meaningful 
comparison, let me instead list some of 
the features of Muen to give you a better 
picture: 

Static resource allocation 

One of the main design choices of the 
Muen Separation Kernel and systems 
build on top of it is, that all system 
resources such as memory, devices, CPU 
time etc are assigned to subjects via the 
system policy at integration time. As a 
consequence, systems have a static 
structure which does not change during 
runtime. This means that the SK does not 
perform any dynamic resource allocation 
at runtime, which greatly simplifies the 
kernel design and implementation. Note 
that Muen has support for Intel VT-d 
(DMA and Interrupt remapping) which 
facilitates PCI device pass-through. 

Multicore support 

All cores provided by a hardware 
platform can be used for subject 
execution. 

Scheduling 

Muen implements a fixed, cyclic 
scheduler. Execution order and time 
assignment of each subject is specified in 
the system policy. The kernel enforces the 
scheduling plan during runtime by 
executing each subject for the alloted time 
and then (preemptively) switching to the 
next one. 

Subject execution environment 

Since Muen employs Intel Virtualization 
Extensions (VT-x) incl. Unrestricted 
Guest Support and Nested 
Paging/Extended Page Tables (EPT) as a 
basic mechanism to execute and separate 
subjects, it can run many different types 
of subjects: 

- Native 64-bit Ada & SPARK 2014 
subjects. 

- Linux 32/64-bit VMs. 

- Genode x86_64 base-hw system. 

- Windows 32-bit VMs (by means of 
Genode/VirtualBox). 

A subject execution environment can be 
further customized in the system policy, 
e.g. allow access to the Timestamp 
Counter (TSC). 

Small size and low complexity 

During the development of Muen we took 
deliberate design choices to minimize the 
overall kernel complexity. The 

simplification drastically reduces code 
size which is illustrated by the current, 
tiny kernel size of ~5'500 sloc. This make 
the kernel suitable for formal verification. 
On the other hand, a consequence is that 
the supported feature set is smaller than 
what you get from a general 
purpose/dynamic hypervisor. Here are 
two examples of restrictions imposed by 
Muen: 

- Subjects are not allowed to migrate 
between CPU cores 

- Muen only runs on recent x86_64 
hardware with Intel VT-x and EPT 
support 

Aside from these features there are some 
additional points that we think are 
important. 

Availability of code & documentation 

Muen is an open source project and we 
publish all code and documentation. We 
think it is paramount for an SK to be 
independently inspectable since it is 
always part of the Trusted Computing 
Base (TCB) of any system built on top of 
Muen. The small size makes it 
realistically possible to read and 
understand the entire Muen kernel code. 

Formal Verification 

Since Muen is implemented in SPARK 
2014, we prove full absence of runtime 
errors at the source code level. Since we 
publish the entire source code and 
because the SPARK GPL toolchain by 
AdaCore is freely available, everybody 
can independently reproduce these proofs 
in their own environment. 

> 2. How does Muen compare to solutions 
like Linux KVM? How does it compare 
to Xen? 

Similar to the first question it is not so 
easy to compare Muen to a fully fledged 
hypervisor such as KVM and Xen since it 
is comparing apples with oranges. Xen 
and KVM are fully-fledged hypervisors 
which feature dynamic VM construction 
and deconstruction, live migration etc. 
With Muen systems you have to take 
more of an embedded system 
development approach, where you know 
your target hardware platform and system 
structure at integration time. 

I think in the end it comes down to this: 
since Muen is a Separation Kernel it 
(intentionally) does not address all use 
cases targeted by general purpose 
hypervisor. 

> 3. Will it be possible to use Muen with 
the future OpenVMS on x86-64? 

I have no prior experience with 
OpenVMS. Since there are no inherent 
restrictions imposed by Muen on the kind 
of subjects that can be executed it should 
in principle be possible. However, 
without more technical information and 
access to OpenVMS x86-64 there is no 

way for me to estimate the required 
porting effort. 

PS: If you have more questions regarding 
Muen there is also a project mailing list, 
see [1]. 

[1] https://muen.sk/#mailing-list 

From: Adrian-Ken Rueegsegger 
<ken@codelabs.ch> 

Date: Wed, 1 Mar 2017 22:39:24 +0100 
Subject: Re: Unikernel / Ada 
Newsgroups: comp.lang.ada 

> Some time ago I read some papers on 
the MirageOS (https://mirage.io/), a 
library operating system. The model 
works in short (simplified): The 
application sources (in case of Mirage 
in OCaml) are compiled / linked 
together with all its depending "library 
os" sources into one fully standalone 
binary (unikernal). This binary is then 
deployed directly f.e. on a Xen 
Hypervisor. No complex OS involved. 
small, efficient, more secure, fast to 
boot,  

> https://mirage.io/wiki/overview-of-
mirage 

>  

> I find this model interesting for GNAT. 
Maybe there are already some ideas 
around? 

Funny you should mention MirageOS 
specifically. I have been toying around 
with it over the past weekend and actually 
managed to run some example scenarios 
as subjects on the Muen Separation 
Kernel [1]. I posted a small teaser here 
[2]. 

Regarding Ada: we have published a few 
SPARK/Ada subjects that run natively on 
Muen. Currently we only provide a zero-
footprint runtime which obviously 
restricts the language features one can use 
to write native Ada/SPARK subjects. 
However, there is no inherent limitation, 
it is simply a matter of extending the 
runtime. 

Apropos of developing a TCP/IP stack 
from scratch: this might be of interest [3]. 

[1] https://muen.sk 

[2] https://twitter.com/Kensan42/status/ 
835941733359882240 

[3] https://github.com/AdaCore/ 
spark2014/tree/master/testsuite/gnatprove/
tests/ipstack 

Running Gnoga in Amazon 
Cloud 

From: Björn Lundin 
<b.f.lundin@gmail.com> 

Date: Mon, 20 Mar 2017 09:22:15 +0100 
Subject: Re: Experience with Amazon Web 

Services ? 
Newsgroups: gmane.comp.lang.ada.gnoga 

> Did anyone deploy a GNOGA app on 
Amazon Web Services (more precisely 



14  Ada in Context 

Volume 38, Number 1, March 2017 Ada User Journal 

   Amazon Cloud service, 
https://aws.amazon.com/ec2/ ) ? 

Yes, I did a year ago or so. 

It just worked - after my friend (the one 
with Apache know-how of us) had set it 
up. 

> Any advice, caveat, feedback ? 

http+https is redirected to the gnoga-
service for a certain path. 

There is also some stuff handling 
upgrading the connection to web sockets. 

[...] 

From: Björn Lundin 
<b.f.lundin@gmail.com> 

Date: Mon, 20 Mar 2017 13:59:48 +0100 
Subject: Re: Experience with Amazon Web 

Services ? 
Newsgroups: gmane.comp.lang.ada.gnoga 

Björn Lundin wrote: 

> http+https is redirected to the gnoga-
service for a certain path. 

> There is also some stuff handling 
upgrading the connection to web 
sockets. No there was not. I think now 
that was before we went through 
Apache. 

> [...] 

The gnoga part listen at 
http://localhost:9080 and all https stuff is 
via Apache2  

http is redirected to https some browser 
do not need to login, others do 

The machine is known to DNS servers 

This is on a 

uname -a 

Linux prod 3.2.0-4-amd64 #1 SMP 
Debian 3.2.68-1+deb7u2 x86_64 
GNU/Linux 

cat /etc/apache2/sites-enabled/030-
somesite.somewhere.com.conf 

<VirtualHost *:80> 
   ServerName somesite.somewhere.com    
   ServerAlias somesite2.somewhere.com    
   ServerAdmin    
      someone@somesite.somewhere   
   RewriteEngine  on 
   RewriteCond %{SERVER_PORT} 
 !^443$ 
   RewriteRule .*  https://% 
     {SERVER_NAME}% 
     {REQUEST_URI} [R,L] 
   LogLevel info 
  CustomLog ${APACHE_LOG_DIR}/ 
       log_80.nonobet.com_access.log     
       combined 
  ErrorLog ${APACHE_LOG_DIR}/ 
       log_80.nonobet.com_error.log 

</VirtualHost> 

<VirtualHost *:443> 

  ServerName somesite.somewhere.com 
  ServerAlias somesite2.somewhere.com 
  ServerAdmin 
 someone@somesite.somewher 

  RewriteEngine  on 
  RewriteCond %{HTTPS} =off 
  RewriteRule .* - [F,L] 
  SSLEngine on 
  SSLCertificateFile 
     /etc/apache2/sites-available/ 
    wildcard.somesite.com_cert.pem 
  SSLCertificateKeyFile 
    /etc/apache2/sites-available/ 
    somesite_common_server_key.pem 
  LogLevel info 
  CustomLog  ${APACHE_LOG_DIR}/ 
       log_443.nonobet.com_access.log     
       combined 
  ErrorLog ${APACHE_LOG_DIR}/ 
       log_443.nonobet.com_error.log 
  ProxyPass / http://127.0.0.1:9080/ 
  ProxyPassReverse /     
        http://127.0.0.1:9080/ 
  <Location "/"> 
    AuthName "Please login!" 
    AuthType Basic 
    AuthBasicProvider file 
    AuthUserFile /etc/apache2/ 
      sites-available/ 
       somesite.com_authentication 
     Require valid-user 

     SetEnvIfNoCase  ^User-Agent$ 
 .*Mobile ALLOW_IN     
     SetEnvIfNoCase  ^User-Agent$ 
 .*Epiphany ALLOW_IN 
    Order Deny,Allow  
    Deny from all 
    Allow from env=ALLOW_IN 
    Satisfy Any 
  </Location> 
</VirtualHost> 

Ada in Context 

Getting Started with Bare-
board Development 

From: Jeffrey R. Carter 
<jrcarter@acm.org> 

Date: Sat, 12 Nov 2016 21:01:36 -0700 
Subject: Re: Getting started with bare-

board development 
Newsgroups: comp.lang.ada 

Adam Jensen wrote: 

> How is it done in embedded software 
engineering? (Links and/or references 
are very welcome)! 

Typically embedded S/W has to interface 
to various H/W devices (sensors and 
actuators). Frequently such S/W is 
designed around the capabilities and 
features of the intended H/W. This is not 
a good idea. When the intended H/W 
changes (as it does frequently on the 
projects I've been involved in) the entire 
design has to be revised. 

What I have done when designing such 
S/W is to 1st design the core S/W without 
regard to the capabilities and features of 
the intended H/W. I create the simplest 
and clearest design, and this identifies the 
kind of information the S/W needs to 

obtain and the kind of external actions it 
needs to take. 

Next, for each piece of external 
information the S/W needs to obtain, I 
write a pkg spec for a S/W-leaning 
interface. This keeps the S/W simple and 
clear by providing just the kind of I/F it 
needs. 

Then, for each intended H/W device, I 
write a pkg spec for a H/W-leaning 
interface. This reflects the capabilities and 
features of the device. 

Then I write bodies for each of the S/W 
I/F pkgs that use the H/W I/F pkgs. 

Now comes the fun part. I write an 
environment pkg that simulates reality, 
and write simulation bodies for the H/W 
I/F pkgs that read or modify that 
simulated reality. The body can take do 
things to make its behavior realistic; for 
example, if a sensor is noisy, the body 
would add noise to the real value. 

This lets you play with your S/W and see 
if it behaves reasonably. 

When it's time to run the S/W on the real 
system, you eliminate the environment 
pkg and replace the H/W I/F bodies with 
ones that actually I/F with the H/W. Note 
that the only differences between the 
simulated and actual systems are those 
bodies. 

This approach has a number of benefits: 

- Changing a device only affects a S/W 
I/F body and a H/W I/F pkg. 

- Often the simplest and clearest design 
for the core S/W wants to access 
information or take action in a way the 
intended H/W doesn't support. The S/W 
I/F pkg provides a single place to 
convert between the 2 views, keeping 
the core S/W uncoupled. For example, 
in the ubiquitous cruise-control problem, 
the best approach for the core S/W 
might be for it to decide when it obtains 
the car's speed, but a common design for 
the speed sensor is something that 
generates an interrupt every time 
something rotates a certain amount. 

- While there is usually a 1:1 
correspondence between S/W and H/W 
I/F pkgs, there need not be. I've seen 
sensors that returned multiple, unrelated 
values. The design had multiple S/W I/F 
pkgs interacting with a single H/W I/F 
pkg. 

- I've worked on projects where the whole 
point was to create a simulation to see if 
the approach is viable, with no idea what 
the H/W devices would be like in a real 
system. By using this approach, when it 
was decided to go ahead with a real 
system, only the H/W I/F pkgs and the 
S/W I/F bodies had to be rewritten. 

When I present such a design, coders 
usually start whining about "efficiency". 
In my decades of experience, such a 
design has never been responsible for a 



Ada in Context 15  

Ada User Journal Volume 38, Number 1, March 2017 

system not meeting its timing 
requirements. 

From: Jeffrey R. Carter 
<jrcarter@acm.org> 

Date: Sun, 13 Nov 2016 14:04:59 -0700 
Subject: Re: Getting started with bare-

board development 
Newsgroups: comp.lang.ada 

Adam Jensen wrote: 

> When writing device drivers, how do 
you mock the memory map of the 
target hardware? 

> 

> In the mocked hardware, how is timing 
controlled? 

> 

> When extending and mapping run-time 
support to the mocked hardware, how 
does that fit into the run-time system 
for the native platform (your 
workstation)? 

You seem to be thinking at too low a 
level. There isn't any "mocked H/W", 
only mocked behavior. The H/W 
simulation bodies give the information or 
have the effect expected of the devices 
given the state of the reality modeled in 
the environment pkg, but they need have 
no similarity to the real bodies, and 
usually don't. The device may be memory 
mapped, but there's no reason for the 
simulation to be. If access the device 
takes appreciable time, that's usually 
simulated using a delay. There's usually 
no reason to limit these parts of the S/W 
to the constraints of the target run time. 

From: Adam Jensen <hanzer@riseup.net> 
Date: Sun, 13 Nov 2016 17:00:19 -0500 
Subject: Re: Getting started with bare-

board development 
Newsgroups: comp.lang.ada 

> [...] 

I suppose software developers might be 
accustomed to ignoring time, the Turing 
machine/model-of-computation having no 
explicit representation of time. But you 
are correct, I very much retain the 
perspective of an electrical engineer and I 
most definitely think about the machine as 
something that exists in time. 

Doesn't the Real Time Annex related parts 
of the run-time support system expect 
timing information from the hardware? (I 
am almost entirely guessing about this, I 
haven't yet finished reading the basic 
introductory materials on real-time 
programming). 

It would probably help a lot to see a very 
basic little ("Hello, Real-Time World") 
example of [your development approach 
to] real-time software with a mocked 
hardware interface that can be executed 
directly on a workstation. I suppose the 
hardware could be as simple as a clock 
and maybe a counter or two. Maybe there 
could be some interrupts and two or three 
tasks that do something very simple. And 

maybe all of this could take place under 
the Ravenscar profile. Would that be a lot 
of effort to write and post? 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Mon, 14 Nov 2016 10:04:26 +0100 
Subject: Re: Getting started with bare-

board development 
Newsgroups: comp.lang.ada 

> [...] 

I think you are confusing things a bit. If 
you have computing hardware mocked 
you are doing simulation and the time is 
simulation time. If the peripheral 
hardware is real or partially real it is 
hardware-in-the-loop simulation (HIL). 
HIL is usually real-time. What people are 
saying is that HIL is much more cost 
efficient developing platform than some 
embedded board. Furthermore Ada is 
ideal for HIL because Ada software is 
portable. So you can develop almost 
everything on the PC and test almost 
everything in the loop. Then if some 
hardware (except the board itself) is too 
expensive or difficult to use, it can be 
simulated (mocked) in turn. Which is 
especially important when you want to 
test some catastrophic or improbable 
scenarios. 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Tue, 15 Nov 2016 09:38:21 +0100 
Subject: Re: Getting started with bare-

board development 
Newsgroups: comp.lang.ada 

> [...] 

Typical developing process stages, at least 
in my area, is like this 

1. Workstation  Simulation time 

   Application 

   [HAL] 

   Mock actuators/sensors 

2. Workstation    Hardware-in-the-loop, 
real-time 

   Application 

   [HAL] 

   Real/Mock actuators/sensors 

3. Embedded       Target platform 

   Application 

   [HAL] 

   Real/Mock actuators/sensors 

Most of developing is done in #1 or #2. 
Most of testing in #2. #3 is limited to final 
integration tests. 

QEMU et al is not used, because it makes 
no sense to emulate computational 
hardware when you have Ada, unless you 
are an OS developer. So long the 
application is really an application you 
don't need that sort of emulators. 

Whatever OS/platform-dependent parts 
requiring test under an emulator, they are 

quite minuscule or non-existent if an OS 
is used. Which is also the reason why 
bare-board targets should be avoided 
where possible. 

From: Niklas Holsti 
<niklas.holsti@tidorum.fi> 

Date: Tue, 15 Nov 2016 11:58:58 +0200 
Subject: Re: Getting started with bare-

board development 
Newsgroups: comp.lang.ada 

> Most of developing is done in #1 or #2. 
Most of testing in #2. #3 is limited to 
final integration tests. 

In my domain (subcontractor for 
embedded SW in spacecraft) we typically 
use only one of the stages 1 and 2, not 
both. But otherwise our work is very 
similar. 

> QEMU et al is not used, [...] 

Or unless you worry about compiler bugs 
being different in the native and cross 
compilers, or about platform-
dependencies introduced by mistake in 
the Ada application. Endian-dependency 
is easily introduced by mistake if the 
application does a lot of communication 
with HW. Our targets are usually big-
endian SPARCs, but workstations are 
little-endian PCs. 

Typically we do the final unit-testing runs 
both on workstations and on a target 
emulator, to settle such worries. 

> Whatever OS/platform-dependent parts 
requiring test under an emulator, they 
are quite minuscule or non-existent if 
an OS is used. 

We rarely (well, never) use an OS in 
embedded systems. Ravenscar or bare-
board (zero runtime) is the norm for us. 
Though, there is a trend to have 
application-independent but domain-
specific "execution platform" SW 
components which are like domain-
specific OSs and can support various 
applications in this domain. 

From: Adam Jensen <hanzer@riseup.net> 
Date: Tue, 15 Nov 2016 12:32:55 -0500 
Subject: Re: Getting started with bare-

board development 
Newsgroups: comp.lang.ada 

> [...] 

"unless you are an OS developer" might 
be a key issue here. I have been thinking 
very much about device driver and run 
time kernel development for custom 
hardware. Ideally, what I am looking for 
(or trying to sort out) is a development 
methodology and tool-chain that fits into 
and extends the hardware development 
process. 

It still seems to me that the ability to 
compartmentalize the 
emulated/simulated/HIL environment 
from the workstation's environment 
would be helpful, if not essential, at 
various stages of development and 
verification. 



16  Ada in Context 

Volume 38, Number 1, March 2017 Ada User Journal 

Does this make sense or is my view still 
somewhat askew? 

> Whatever OS/platform-dependent parts 
requiring test under an emulator, [...] 

I can appreciate how it might be desirable 
for the workstation and the embedded 
target to provide the same OS/RTS 
environmental abstractions (for a software 
application developer's convenience), but 
the class of embedded software that I 
have in mind probably needs to have deep 
integration with the hardware, and the 
hardware definitely will have very deep 
traction with reality. 

From: Simon Wright 
<simon@pushface.org> 

Date: Mon, 14 Nov 2016 18:17:52 +0000 
Subject: Re: Getting started with bare-

board development 
Newsgroups: comp.lang.ada 

Adam Jensen wrote: 

> How does one develop and verify a 
Board Support Package (device drivers, 
bootloader, etc.)? 

The Cortex-M4 boards developed for 
e.g.PixRacer[1], based on STM32F427, 
support DFU[2] and JTAG. 

Starting from AdaCore's STM32F429 
offering, only a very few packages need 
to be modified for the BSP: setting up the 
board's clocks to use a 24 MHz crystal 
rather than 8 MHz, and terminal i/o via 
UART7 rather than USART1. 

[1] https://pixhawk.org/modules/pixracer 

[2] https://en.wikipedia.org/wiki/ 
USB#Device_Firmware_Upgrade 

> Do the various typical embedded 
platform profiles (e.g., Ravenscar) 
require any Run-Time System 
implementation or extension? 

Yes, indeed! you can see AdaCore's 
implementations at [3]. 

[3] https://github.com/AdaCore/ 
embedded-runtimes 

> Is the BSP and RTS the kind of 
software that might/should be 
implemented in SPARK? 

AdaCore have certainly added pre- and 
post-conditions on a couple of the tasking 
RTS components. My feeling is that it 
would be quite hard to retrofit SPARK to 
their RTS. This may be conditioned by 
trying to use SPARK to prove exception 
freedom for device drivers - but things 
like volatility, pointers and time would be 
much better addressed in a context that 
had budget for training and support. 

Tagged/untagged Generic 
Parameter 

From: Alejandro R. Mosteo 
<alejandro@mosteo.com> 

Date: Fri, 25 Nov 2016 18:36:24 +0100 
Subject: Generic private type declaration 
Newsgroups: comp.lang.ada 

I need some eyes on this error because I'm 
missing something basic. When 
compiling this code: 

    procedure B001_Tagged is 
       generic 
          type X is private; 
       package Untagged is 
          type Y is new X; 
       end Untagged; 
 
       package Ok is new Untagged (Integer); 
 
       type Void is tagged null record; 
 
       package Err is new Untagged (Void);  
       --  Error here 
 
    begin 
       null; 
    end B001_Tagged; 

I get in both GNAT 4.9.3 and GNAT GPL 
2016 the following error: 

b001_tagged.adb:15:04: instantiation error at 
line 7 
b001_tagged.adb:15:04: type derived from 
tagged type must have extension 
gnatmake: "b001_tagged.adb" compilation 
error 

I would expect that the view inside the 
generic package is untagged and so the 
type renaming in line 7 should be correct?  
Or I'm floundering with the generic 
parameter declaration? 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Mon, 28 Nov 2016 15:32:34 -0600 
Subject: Re: Generic private type 

declaration 
Newsgroups: comp.lang.ada 

[Janus/Ada accepts the test case.  
—sparre] 

For what it's worth, Janus/Ada is wrong 
here (it probably isn't making the recheck 
of the instance; all of those have to be 
manually programmed and we pretty 
much only implemented the checks that 
we've seen in ACATS tests or in our own 
examples). 

The issue in this case is that type Y is a 
visible, tagged type outside of the 
instance. In that case, we can't allow a 
derivation without an extension (both for 
consistency reasons and I believe there 
also are semantic differences between 
tagged and untagged types). 

But this is the one rule that we 
intentionally do not use the standard 
boilerplate about the legality rule also 
applying in the private part. Therefore, 
your example is legal so long as the 
derived type is not visible outside of the 
generic. Specifically, I think (I didn't try 
it) that: 

    generic 
       type X is private; 
    package Untagged is 
   

  private 
       type Y is new X; 

    end Untagged; 

In this case, there is no place where Y 
would ever be a tagged type, and thus it 
isn't a problem for this to be legal. 

The general principle is that all Ada 
legality rules are rechecked in the 
specification of an instance, using the 
properties of the actual parameters. In 
most cases (for most rules), this doesn't 
matter (nothing changes), but there are 
cases where it matters and those are 
potentially contract-breaking. That's 
annoying, but it is an integral part of the 
Ada model for generics (the alternative 
would have been to use assume-the-worst 
rules in generic specifications, as is done 
in bodies, but that would make generics 
almost useless for tagged types -- no 
extensions could be done in generic specs 
under such a rule -- in particular, a mix-in 
generic would not be possible. So, yes, 
Dmitry, the language could strengthen 
contracts this way -- if one didn't care 
about usability [or compatibility]). 

Variants of Subtype 
Constraints 

From: Edward R. Fish 
<onewingedshark@gmail.com> 

Date: Mon, 28 Nov 2016 15:49:36 -0800  
Subject: Ada 2012 Constraints (WRT an 

Ada IR) 
Newsgroups: comp.lang.ada 

So, with Ada 2012 we gained some really 
nice possibilities with the way to express 
constraints, the downside is that there's 
now a fairly wide range of ways to 
express constraints on types. Obviously 
these differences must be accounted for, 
but they are functionally equivalent, for 
example: 

   subtype P0 is Natural range            
        Natural'Succ(Natural'First)..Natural'Last; 
    subtype P1 is Integer range      
        1..Integer'Last; 
    subtype P2 is Integer with   
        Static_Predicate => P2 in  
 1..Integer'Last or else 
           raise Constraint_Error; 
    subtype P3 is Integer with        
          Static_Predicate  => P3 in  
 1..Integer'Last, 
          Predicate_Failure =>  
  raise Constraint_Error; 

Now, these should be generally the same 
way of writing the same thing (ie 
"Positive") -- though I'm not completely 
certain that this is the case in terms of 
subtle semantics (am I missing 
something?) -- it certainly would be 
convenient if they were as then we could 
have an IR wherein the general form of a 
type-constraint is uniformly handled. 

Comments? Insights? 



Ada in Context 17  

Ada User Journal Volume 38, Number 1, March 2017 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Tue, 29 Nov 2016 17:52:18 -0600 
Subject: Re: Ada 2012 Constraints (WRT an 

Ada IR) 
Newsgroups: comp.lang.ada 

> [...] 

P2 is different than the others when used 
in a membership: 

    Obj in P2 

would raise Constraint_Error rather than 
return False (like the others) if Obj has the 
value 0. It's not recommended. 

P0 and P1 are more likely to be optimized 
by a compiler (just because of the many 
years of history). Perhaps P3 will catch 
up, but I wouldn't hold my breath on that. 

Byte Swapping 

From: Jeffrey R. Carter 
<jrcarter@acm.org> 

Date: Fri, 2 Dec 2016 09:23:32 -0700 
Subject: Byte Swapping 
Newsgroups: comp.lang.ada 

Recently on Ada-Comment there was a 
discussion of a GNAT aspect that changes 
the byte order of scalars. Brukardt said, 
"In the past, we have not be willing to 
require compilers to be able to generate 
byte swapping code." However, I think 
the standard has required compilers to 
generate byte-swapping code since Ada 
83. 

On a little-endian, twos-complement, 
byte-addressable machine, such as x86, 
we could say 

   Byte_Size : constant := 8; 
   Word_Size : constant := 2 * Byte_Size; 
 
   type Byte is range -(2 ** (Byte_Size - 1) ) .. 
 2 ** (Byte_Size - 1) - 1; 
   for Byte'Size use Byte_Size; 
   type Word is range -(2 ** (Word_Size - 1) ) 
 .. 2 ** (Word_Size - 1) - 1; 
   for Word'Size use Word_Size; 
   -- Signed types for Ada-83 compatibility 
 
   type Unswapped_Bytes is record 
      MSB : Byte; 
      LSB : Byte; 
   end record; 
 
   for Unswapped_Bytes use record 
      MSB at 1 range 0 .. 7; 
      LSB at 0 range 0 .. 7; 
   end record; 
  
   for Unswapped_Bytes'Size use 
 Word_Size; 
   -- Default LE byte order: LSB  
   -- at offset 0, MSB at offset 1 
 
   type Swapped_Bytes is new 
 Unswapped_Bytes; 
 
   
 
 

 for Swapped_Bytes use record 
      MSB at 0 range 0 .. 7; 
      LSB at 1 range 0 .. 7; 
   end record; 
   for Swapped_Bytes'Size use Word_Size; 
   -- BE byte order: MSB at offset 0,  
   -- LSB at offset 1 

IIUC, type conversion between these two 
record types performs byte swapping.  So, 
with 

   function To_Unswapped is 
     new Unchecked_Conversion  
 (Source => Word, 
                 Target => Unswapped_Bytes); 
   function To_Word is 
     new Unchecked_Conversion  
 (Source => Swapped_Bytes, 
                  Target => Word); 
 
   W : Word; 
   To_Word (Swapped_Bytes 
 (To_Unswapped (W) ) ) 

produces a Word with the bytes of W 
swapped. Barring any errors I've injected, 
this should be valid Ada 83 and all later 
version of the language. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Fri, 2 Dec 2016 13:28:04 -0600 
Subject: Re: Byte Swapping 
Newsgroups: comp.lang.ada 

> [...] 

Sure, but that's typically implemented by 
doing a component-by-component 
assignment into a temporary (and the rep. 
clause is illegal for any by-reference 
type). That code is very slow, but that's 
OK because type conversions like this are 
rare in the language and occur rarely even 
when they are used. 

The suggested aspect would require the 
compiler to be able to generate byte 
swapping code for a component reference. 
While that wouldn't be commonly used, 
when it is used, the code would have to be 
as efficient as possible as it would 
probably occur a lot. So the degree of 
effort is quite different. 

To put it another way, a value type 
conversion "feels" expensive (one tries to 
avoid them), while a component access 
"feels" cheap (one does not try to avoid 
them), and the generated code needs to 
reflect that. 

This is the crux of my (mild) objection to 
this idea: it makes component access for 
some record types quite expensive, and I 
doubt that most users would want to pay 
that cost regularly. The proper way to deal 
with data in the wrong byte-sex is to swap 
it as soon as possible and then process it 
in the native byte-sex. That means that the 
programmer has to be aware of it; trying 
to make a truly machine-independent 
format is somewhat of a mistake, as the 
code would be very slow on some targets. 
Don't see how that helps anything. 

Comparing SPARK 2014 
with Ada 2012 

From: pault.eg@googlemail.com 
Date: Mon, 5 Dec 2016 12:36:18 -0800  
Subject: Ada features supported by SPARK 

2014 
Newsgroups: comp.lang.ada 

I'm thinking about learning Ada or 
SPARK. It's only for hobby use, not for 
work. 

I've been looking for an overview of 
SPARK, in relation to the features of Ada, 
but haven't found too much on the 
internet. 

Wikipedia says SPARK 2014 is a well 
defined subset of Ada. It would be nice to 
get a feel for how much of Ada is in 
SPARK, what are the main aspects of Ada 
not supported by SPARK, and what are 
SPARK's main limitations compared to 
Ada. 

Any good links would be appreciated, 
before I go and buy a book on Ada and/or 
SPARK. 

From: Jacob Sparre Andersen 
<jacob@jacob-sparre.dk> 

Date: Wed, 07 Dec 2016 19:09:07 +0100 
Subject: Re: Ada features supported by 

SPARK 2014 
Newsgroups: comp.lang.ada 

Edward R. Fish wrote: 

> One of the nice things is that SPARK 
2014 is a true subset of Ada 2012 

This is unfortunately wrong. 

An Ada 2012 compiler, which doesn't 
know SPARK 2014 has to reject 
practically any SPARK 2014 program, as 
Ada 2012 compilers aren't allowed to 
ignore unknown aspects. 

From: Georg Bauhaus 
<bauhaus@futureapps.de> 

Date: Mon, 5 Dec 2016 22:48:42 +0100 
Subject: Re: Ada features supported by 

SPARK 2014 
Newsgroups: comp.lang.ada 

> [...] 

http://www.adacore.com/sparkpro/tokene
er/discovery/ 

It might use the original SPARK syntax 
which had formalized comments, but is 
otherwise compatible with the current 
Ada syntax of contracts. 

My impression (largely based on the 
original SPARK language) was that it 
makes you say everything you know, in 
source text. Nothing is implicit. Little can 
be deferred to run-time. 

Every subtype and every object created 
must have bounds known to the proof 
machinery. 

No access types, or pointers. 

Tasks, if any, must be declared at the 
library level, i.e. not nested in 



18  Ada in Context 

Volume 38, Number 1, March 2017 Ada User Journal 

subprograms or in other tasks; Ada profile 
Ravenscar is in effect. 

https://www.testandverification.com/files/
Multicore_challenge_sept_2010/Rod_Cha
pman_Altran_Praxis.pdf 

There was/is no/limited support for 
generic units. 

From: Daniel King 
<damaki.gh@gmail.com> 

Date: Mon, 5 Dec 2016 14:19:31 -0800  
Subject: Re: Ada features supported by 

SPARK 2014 
Newsgroups: comp.lang.ada 

> There was/is no/limited support for 
generic units. 

To clarify, SPARK language versions 83, 
95, and 2005 had no support for generic 
units at all (as far as I know), but the 
latest version of SPARK has full support 
for generic units (as long as they don't use 
any Ada language features that are not 
allowed in SPARK). 

One consequence of this is that you can't 
actually run the proof tools on a generic 
unit directly, since it's not known if it's in 
SPARK or not until the unit is instantiated 
(for example, what if one of the generic 
parameters is an access type, which is not 
allowed in SPARK). So the proof tools 
are run on each *instantiation* of a 
generic unit. 

I've used generics heavily in one of my 
SPARK projects - a SHA-3 hashing 
library: 
https://github.com/damaki/libkeccak 

From: Daniel King 
<damaki.gh@gmail.com> 

Date: Mon, 5 Dec 2016 14:01:43 -0800  
Subject: Re: Ada features supported by 

SPARK 2014 
Newsgroups: comp.lang.ada 

> [...]  

The SPARK User's Guide has a list of 
excluded Ada features that you should 
find useful for comparing SPARK and 
Ada capabilities:  

http://docs.adacore.com/spark2014docs/ 
html/ug/source/language_restrictions.html
#excluded-ada-features 

In addition, for tasking features, SPARK 
is limited to the "Ravenscar profile", 
which is basically a set of restrictions on 
Ada's tasking features, to permit static 
analysis for formal verification. 

A couple of links for SPARK that I find 
useful are the language reference manual 
(LRM) and user's guide: 

- LRM: http://docs.adacore.com/ 
spark2014-docs/html/lrm/ 

- User's guide: http://docs.adacore.com/ 
spark2014-docs/html/ug/index.html 

 
 
 

From: Simon Wright 
<simon@pushface.org> 

Date: Tue, 06 Dec 2016 09:17:57 +0000 
Subject: Re: Ada features supported by 

SPARK 2014 
Newsgroups: comp.lang.ada 

> [...] 

I found that - as soon as there's anything 
involving time - I couldn't work out how 
to specify flow (when I "fixed" one 
problem, another would pop up 
somewhere else; if I "fixed" that, the first 
would pop up again). So I left it up to the 
tool to infer flow for itself according to 
whatever arcane rules it wanted to (not 
really a satisfactory state of affairs for 
something that's supposed to increase my 
confidence in the code). 

Putting Contracts in the 
Standard Library 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Tue, 6 Dec 2016 17:09:28 -0600 
Subject: Re: Ada 2012 Constraints (WRT an 

Ada IR) 
Newsgroups: comp.lang.ada 

Dmitry A. Kazakov wrote: 

> Not at all. Constraint_Error is defined 
and *desired* behavior. Exceptions 
from pre-/post-conditions is undefined 
behavior. 

Why? 

Consider (part of) the procedure Delete in 
the Map container: 

   procedure Delete (Container : in out Map; 
                     Position  : in out Cursor); 
       -- If Position equals No_Element,  
       -- then Constraint_Error is propagated. 

As you say, this is defined and desired 
behavior. 

Now, consider a better (IMHO) definition 
of this definition: 

   procedure Delete (Container : in out Map; 
                     Position  : in out Cursor) 
     with Pre => (if not Has_Element   
         (Position) then raise Constraint_Error); 

Here, instead of using an English 
comment to define this behavior, we've 
used an Ada precondition. So what's 
undefined about this? It's exactly the same 
semantics, and indeed my hope is that we 
update the RM to do this for all of the 
container routines in Ada 202x. (That 
makes the description of the primary 
function of the routine much easier to 
find, because it gets rid of all of the 
special conditions that start most of those 
descriptions. And it should make static 
analysis easier as well.) 

IMHO, this is the only sensible use of a 
precondition (that is, it is some function 
of the parameters of the routine); it surely 
looks as defined as any if statement 

(which is what it would have to be written 
as in pre-Ada 2012). 

When and How to Report 
(Assertion) Errors 

From: Robert I. Eachus 
<rieachus@comcast.net> 

Date: Fri, 9 Dec 2016 01:12:15 -0800  
Subject: Re: Ada 2012 Constraints (WRT an 

Ada IR) 
Newsgroups: comp.lang.ada 

Robert Eachus wrote: 

> I would consider it a major bug to have 
a pragma Assert that could fail at run-
time absent a hardware failure or some 
such. (Even though it would be turned 
off in production code.) 

Simon Wright wrote: 

> Yes. Though it's really up to the system 
engineers to decide on system behavior 
in the presence of software failure. 

I picked this since it quotes me, rather 
than to pick on Simon. The important 
thing that is getting missed in this 
discussion is that there are lots of uses for 
software. I spent most of my career 
working on software for radars, planes, 
and missiles, where production software 
means the stuff that flies--or gets installed 
on a mountain with no software or system 
engineer in easy reach. 

Sometimes that means that crashing the 
software (well a controlled crash that 
turns off the radar then restarts from the 
beginning) is the right safety feature. But 
in an aircraft you leave it to the pilot to 
shut the engines down. Yes, the engine 
might be about to tear itself into little 
pieces in five minutes--but this may be 
the only working engine that will get you 
to the airport. I remember one incident 
where the mechanic didn't put the o-rings 
on the (new) oil plugs. The pilot shut 
down the center engine for low oil 
pressure, and headed back to Palm Beach. 
Then the other two engines had oil 
pressure warnings. He ran them as long as 
possible, glided until just above the 
waves--and restarted the center engine. 
Safe landing, barely. 

But notice that the cockpit crew should 
never end up fighting the software 
warning system. If it doesn't help, cut the 
warning. Read about what happened to 
the Quantas A380, when an engine failed 
and cut some of the wires in the wing. 
Telling the cockpit crew IN THE AIR that 
thus and so is not reporting every few 
seconds is NOT helpful. On the ground? 
Fine, if it is a deadline issue. (Hmm. Not 
clock deadlines, deadlines as in the plane 
won't fly.) 

Why do I remember such incidents? And 
why did I consider it important for me to 
know about them. It all comes back to this 
issue. Who are your diagnostics and 
exceptions expected to help? 



Ada in Context 19  

Ada User Journal Volume 38, Number 1, March 2017 

To bring it back here, as far as I am 
concerned, the Assert feature makes it 
easier to ensure that debug only code does 
not end up causing real accidents. 
Exceptions often need to be handled in 
production code, but such exceptions 
should usually be wrapped closely in 
specific handlers. 

Oh, and that handler around one line 
might as well say "when others." There 
may be some code you don't see that 
could result in an unexpected exception, 
say "Device_Error" not "Use_Error" 
when reading from a file, but the behavior 
to deal with it is the same. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Mon, 5 Dec 2016 16:06:29 -0600 
Subject: Re: Ada 2012 Constraints (WRT an 

Ada IR) 
Newsgroups: comp.lang.ada 

Stefan Lucks wrote: 

> On the other hand, there are systems, 
where a malfunction is worse than no 
function (e.g., a secure router -- better 
no communication than allowing 
attackers to pass through the security 
perimeter). In such cases, it may be 
wise do perform Assert-checking even 
in production executables. 

My opinion is that the vast majority of 
systems are in this category, especially if 
one considers each task (here using "task" 
in its English meaning as a block of work) 
separately. Every system that I've 
personally worked on has been in this 
category (anti-spam filter - a bug causes a 
message to be quarantined, which 
provides a path to reproducing the bug; 
web server - a bug causes nothing useful 
to be returned, better than allowing a 
security hole and returning, say, a 
password file; Ada compiler - a bug 
usually causes the compiler to crash rather 
than producing incorrect code that might 
cause problems; Claw Builder - a bug 
usually causes buggy generated code, 
which breaks the contract with the user). 

Most such systems need an "others" 
handler to ensure that one failing task 
(again, English meaning) doesn't cause 
the entire system to fail. Such handlers 
need some sort of reporting system so 
they're not silently covering bugs. 

I also tend to disagree about 
suppressing/ignoring checks and 
predicates. In my experience, if a check or 
predicate or assertion is too expensive to 
run in the production system, it's also too 
expensive to run in testing. Simple checks 
should never be turned off -- a visible bug 
is always better than an invisible bug. 
(Moreover, compilers are always getting 
better about eliminating such checks, in 
which case many checks aren't made at 
all.) Expensive checks, if one has to have 
them at all, need to be managed separately 
from assertions/constraints/predicates -- 
one would only want to turn them on if all 

else has failed, and that clearly needs to 
be separate from the suppress/ignore 
mechanism. (Most of the systems I've 
worked on have a runtime management 
setup for tracing/assertions, where they 
get managed by functional areas as 
needed for figuring out the problem at 
hand.) 

Default Initialization 

From: Simon Wright 
<simon@pushface.org> 

Date: Sun, 25 Dec 2016 09:23:14 +0000 
Subject: Default values 
Newsgroups: comp.lang.ada 

Given 

   with Ada.Real_Time; 
 
   package Sbus.IMU is 
 
      subtype Radians_Per_Second is Float; 
      subtype Acceleration is Float; 
      subtype Milligauss is Float; 
 
      type Update 
 (Magnetometer_Data_Present :  
 Boolean := False) is record 
         Time_Valid : Ada.Real_Time.Time; 
 
         Gx, Gy, Gz : Radians_Per_Second; 
         Ax, Ay, Az : Acceleration; 
 
         case Magnetometer_Data_Present is 
            when True => 
               Mx, My, Mz : Milligauss; 
            when False => 
               null; 
         end case; 
      end record; 
      protected Updater is 
         procedure Put_New_Data  
 (Data : Update); 
         entry Get_New_Data  
 (Data : out Update); 
         procedure Get_Latest_Data  
 (Data : out Update); 
      private 
         New_Data_Present : Boolean := False; 
         Latest_Data : Update := (others => <>); 
      end Updater; 
 
   end Sbus.IMU; 
 
is the line 

   Latest_Data : Update := (others => <>); 

legal?  If so, what does it mean?  (I've 
looked at the ARM for Record 
Aggregates, 4.3.1, and Record Types. 3.8, 
and am no wiser). 

I do realise that I need to put some default 
initializations in (or else supply a proper 
initialization for Latest_Data!) 

From: Jeffrey R. Carter 
<jrcarter@acm.org> 

Date: Sun, 25 Dec 2016 12:53:41 +0100 
Subject: Re: Default values 
Newsgroups: comp.lang.ada 

> [...] 

Yes, it's legal. It means the same thing as 

   Latest_Data : Update; 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Tue, 27 Dec 2016 17:32:57 -0600 
Subject: Re: Default values 
Newsgroups: comp.lang.ada 

> [...] 

Right.  Each component is "initialized by 
default", which for Float and subtypes 
thereof means that they're uninitialized. 
Probably not what you want, but well-
defined. 

Object Renaming: Copy or 
Reference? 

From: Georg Bauhaus 
<bauhaus@futureapps.de> 

Date: Sun, 22 Jan 2017 09:27:44 +0100 
Subject: Does object renaming allow the 

view to be a copy? 
Newsgroups: comp.lang.ada 

A SO answer (41746244) has given rise 
to the question of whether or not a 
compiler implementer may make a 
renamed object a copy of the original. 
(Layman's assumptions from LRM 3.1(7), 
8.5.1), 

So, is the following program, modifying 
components of and array, ever allowed to 
raise Renaming_Is_Copying? 

   with System; 
   procedure Renaming is 
      Renaming_Is_Copying : exception; 
 
     type R is record 
         A, B : Integer; 
      end record; 
 
      type List is array (Natural range <>)  
 of R; 
      Stuff : List := (10 .. 20 => R'(A => 2,  
 B => 3)); 
   begin 
      for K in Stuff'Range loop 
         declare 
             -- 
             --  Does Ada allow a compiler to  
             --  make X be a copy? 
             -- 
             X : R renames Stuff (K); 
             use type System.Address; 
         begin 
            if X'Address = Stuff (K)'Address then 
               X.A := X.B; 
            else 
               raise Renaming_Is_Copying; 
            end if; 
         end; 
      end loop; 
   end Renaming; 

From: Christoph Karl Walter Grein 
<christ-usch.grein@t-online.de> 

Date: Sun, 22 Jan 2017 08:26:39 -0800  
Subject: Re: Does object renaming allow the 

view to be a copy? 
Newsgroups: comp.lang.ada 



20  Ada in Context 

Volume 38, Number 1, March 2017 Ada User Journal 

> [...] 

3.1(7) ...a renaming_declaration is an 
example of a declaration that does not 
define a new entity, but instead defines a 
view of an existing entity (see 8.5)... 

So how can you think a compiler may 
create a copy? 

8.5(3) The elaboration of a 
renaming_declaration evaluates the name 
that follows the reserved word renames 
and thereby determines the view and 
entity denoted by this name (the renamed 
view and renamed entity). 

[A name that denotes the 
renaming_declaration denotes (a new 
view of) the renamed entity.] 

Same here. You get a new view of the 
entity. 

BTW: A renaming is not a macro. Thus 
the following fragment does not change 
X: 

   X : T renames Y (I); 
   I := I + 1; 

From: Simon Wright 
<simon@pushface.org> 

Date: Sun, 22 Jan 2017 17:37:10 +0000 
Subject: Re: Does object renaming allow the 

view to be a copy? 
Newsgroups: comp.lang.ada 

> [...] 

I did suggest that it would have to be a 
crazy implementer who did this. 

> [...] So how can you think a compiler 
may create a copy? 

I think that if the object isn't limited and 
the operations done on it don't alter its 
contents you'd be hard put to it to tell the 
difference, that's all. 

But like I said, crazy. Under the hood, any 
sensible person would have a reference to 
the original object. 

From: Christoph Karl Walter Grein 
<christ-usch.grein@t-online.de> 

Date: Mon, 23 Jan 2017 02:49:04 -0800  
Subject: Re: Does object renaming allow the 

view to be a copy? 
Newsgroups: comp.lang.ada 

> Some packed Boolean, not at the 
storage element margin? 

Of course not in cases like that: 

  type Set is array (Index) of Boolean  
 with Packed; 
   My_Set : Set; 
 
   My_Element_Presence: Boolean  
 renames My_Set (I); 
 
   My_Set (I) := not My_Set (I); 
   My_Element_Presence := not 
 My_Element_Presence; 

Under the hood, the same packing and 
unpacking has to be performed. A simple 
reference is impossible in this case. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Mon, 23 Jan 2017 14:40:08 -0600 
Subject: Re: Does object renaming allow the 

view to be a copy? 
Newsgroups: comp.lang.ada 

> [...] 

Logically, the item is not a copy. How the 
compiler implements that, however, is its 
business. 

> [...] So, is the following program, 
modifying components of and array, 
ever allowed to raise 
Renaming_Is_Copying? 

Of course. The program has nothing to do 
with copying that I can see. 

 

>     if X'Address = Stuff (K)'Address then 

The meaning of X'Address is 
implementation-defined (as someone said, 
consider what happens if X is allocated in 
a register). It's best if its use is limited to 
the sort of low-level purposes for which it 
was defined (that is, handling memory-
mapped hardware). Note in particular 
13.3(16): if the objects in question aren't 
"aliased", the result of 'Address may not 
be "useful". 

If the objects are aliased, then you don't 
need to use 'Address to get the answer to 
your question: 

  if X'Access = Stuff (K)'Access then 

would answer your question (but you 
might need to declare an appropriate 
access type somewhere). Note that the 
compiler would strip off any funny 
business for this latter case. 

IMHO, 'Address should only appear in a 
program that is interfacing to some 
memory-mapped entity; else use some 
form of 'Access (or 'Unchecked_Access). 

From: Robert I. Eachus 
<rieachus@comcast.net> 

Date: Tue, 24 Jan 2017 08:06:40 -0800  
Subject: Re: Does object renaming allow the 

view to be a copy? 
Newsgroups: comp.lang.ada 

> IMHO, 'Address should only appear in 
a program that is interfacing to some 
memory-mapped entity; else use some 
form of 'Access (or 
'Unchecked_Access). 

Hmm. My code has cases of: 

  for X'Address use at mod 4; 

I've also broken abstractions by using 
'Address to obtain access to the details of 
an otherwise private type--those are old, 
and can be updated to use child packages. 

I also seem to recall that a lot of the 
NUMWG work uses address clauses 
when pulling floating point numbers 
apart--and putting them back together. 

And I also have some mixed Fortran and 
Ada that uses at Foo'Address + 24 or the 

like to deal with Fortran common blocks 
that are really overlays. (For example, one 
declaration has the common block as an 
array, another converts it to a vector.) 

Are all of these deprecated now? 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Tue, 24 Jan 2017 15:08:27 -0600 
Subject: Re: Does object renaming allow the 

view to be a copy? 
Newsgroups: comp.lang.ada 

> for X'Address use at mod 4; 

Looks like you are trying to set 
Alignment which Ada 83 didn't have. Set 
alignment directly, so your reader knows 
what you're doing. 

> I also seem to recall that a lot of the 
NUMWG work uses address clauses 
when pulling floating point numbers 
apart--and putting them back together. 

Ada 95 says that Unchecked_Conversion 
can be by-reference, so the performance 
reason for not using UC in this case 
doesn't exist (assuming a friendly 
implementer). UC also doesn't force a 
compiler to abandon many useful 
optimizations (or do horrible analysis 
before allowing it). 

> and I also have some mixed Fortran and 
Ada that uses at Foo'Address + 24 [...] 

This falls under "interfacing to some 
memory-mapped entity"; I purposely 
didn't say "hardware" because sometimes 
software needs it too. 

> Are all of these deprecated now? 

All but the last can be done better with 
other constructs, IMHO. For the last, it's 
case-by-case what the best approach 
would be: you might need 'Address. 

Implementing a Dynamic 
Type System 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Tue, 24 Jan 2017 15:21:41 -0600 
Subject: Re: Dynamic type system for Ada 
Newsgroups: comp.lang.ada 

Victor Porton wrote: 

> All I ask is just an Ada type which 
would be so flexible that could store 
any kind of a value (just like as a 
variable in a dynamic language). 

I'd suggest that it be defined as an abstract 
tagged type, with each of the other kinds 
of things as a derived tagged type (one for 
holding integers, one for holding floats, 
etc.). Then one could get a "variable that 
could hold anything" by instantiating the 
Unbounded_Holder container (and that 
would open uses of the other kinds of 
containers as well). That way, the package 
wouldn't have to reinvent all of the 
memory management stuff that's already 
in the containers. Plus, if one organized 
the hierarchy similar to the chart in 



Ada in Context 21  

Ada User Journal Volume 38, Number 1, March 2017 

3.2(12) [http://www.ada-
auth.org/standards/2xrm/html/RM-3-
2.html#p12], you could define shared 
operations at the appropriate levels to 
have some use beyond just plain storage. 
(For instance, all of the numeric types 
would have math this way.) 

I do wonder how useful such a hierarchy 
would be, but I suppose someone would 
have to build it to find out. 

From: Jean-Pierre Rosen 
<rosen@adalog.fr> 

Date: Tue, 24 Jan 2017 23:01:55 +0100 
Subject: Re: Dynamic type system for Ada 
Newsgroups: comp.lang.ada 

> I do wonder how useful such a 
hierarchy would be 

Presumably, you'll need that if you write 
an interpreter for a dynamically typed 
language in Ada... 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Wed, 25 Jan 2017 09:23:24 +0100 
Subject: Re: Dynamic type system for Ada 
Newsgroups: comp.lang.ada 

> I do wonder how useful such a 
hierarchy would be, but I suppose 
someone would have to build it to find 
out. 

Not much. I did exactly this before. 

The problem is that you get the "god-
class" in the end. In order to be able to re-
interpret the value as a given scalar type 
you have to add a primitive operation to 
the abstract base. E.g. 

    
    function As_Unsigned_32 (Value : 
 Abstract_Variable) 
      return Unsigned_32 is abstract; 
         -- Raises Type_Error if not of the type 

And so for each scalar type. And for 
arrays and records. 

Otherwise you have to explicitly convert 
(upcast) to specific instance derived from 
Abstract_Variable which is much worse. 

P.S. I intended to use that on top of a 
stream exchange, but the interface is so 
heavy that it adds no advantage to direct 
reading the target object from the stream. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Wed, 25 Jan 2017 15:55:45 -0600 
Subject: Re: Dynamic type system for Ada 
Newsgroups: comp.lang.ada 

> [...] In order to be able to re-interpret 
the value as a given scalar type you 
have to add a primitive operation to the 
abstract base. E.g. 

> 

>  function As_Unsigned_32 (Value : 
Abstract_Variable) return Unsigned_32 
is abstract; -- Raises Type_Error if not 
of the type 

I'd probably put such routines higher in 
the hierarchy (the above would appear 

under "Root_Numeric", for instance), but 
you are correct that they are needed (and 
the reverse as well, to give a way to 
import values, esp. literals). 

And I have no idea how to deal with most 
user-defined types (enumerations, 
records, tasks, etc.) in such a scheme. 
(The interface of arrays is simple enough 
that I can imagine some mechanism to 
deal with a subset of them.) 

> Otherwise you have to explicitly 
convert (upcast) to specific instance 
derived from Abstract_Variable which 
is much worse. 

That's how all of my hierarchies work. I 
doubt that I'd call it "much worse"; it 
avoids "god-classes" and allows most of 
the checks to be made statically (you can't 
use operations of the wrong type). It's 
often easy to apply those upconverts when 
parameter passing, so they don't end up 
that wide-spread. 

But I definitely agree that this is a case 
where there is always going to be a 
"bump under the carpet" (as Tucker Taft 
liked to say during Ada 9x) [you can 
move the bump to different places under 
the carpet, but you can't get rid of it (at 
least without total carpet replacement, 
which is where this analogy breaks down 
- but I digress)]. There isn't going to be a 
totally clean solution. 

> P.S. I intended to use that on top of a 
stream exchange, but the interface is so 
heavy that it adds no advantage to 
direct reading the target object from the 
stream. 

I suspect this sort of thing would work 
pretty well for a hierarchy of numeric 
types, not so well if other kinds of types 
are included. There's just not enough 
overlap of operations for it to make much 
sense in the general case. 

Explicitly Distinguishing 
Between Static and Dynamic 
Predicates 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Wed, 8 Feb 2017 17:37:04 -0600 
Subject: Re: I am not understanding user 

defined exceptions 
Newsgroups: comp.lang.ada 

Simon Wright wrote: 

> [...] I have to say that the GNAT 
approach (just Predicate, the compiler 
knows which one to choose) seems the 
right one to me! 

The GNAT approach causes a very 
significant maintenance hazard: if you 
depend on the static properties of a 
predicate, a seemingly innocuous change 
can break a lot of code. (And that code 
may not even be yours, if the predicate is 
in a specification of a shared library. 
Imagine someone changing a predicate in 
the specifications of GDKAda that 

changes it from static to dynamic; a lot of 
other people's code would break and 
they'd have no understanding of why (or 
any hope of fixing it). By declaring your 
intent as static or dynamic, clients can 
properly use the predicate subtype and 
you as the maintainer can't break their 
expectations without at least realizing that 
there is a potential problem. 

This is especially true as many 
expressions that *seem* simple aren't 
allowed as static predicates (simple math 
operators aren't allowed, for instance). 
After all, a static predicate is a (bizarre) 
way to describe a set constraint, whereas a 
dynamic predicate is an implicitly 
inserted assertion. Quite different 
semantically. 

From: Robert A Duff 
<bobduff@TheWorld.com> 

Subject: Re: I am not understanding user 
defined exceptions 

Newsgroups: comp.lang.ada 

Date: Thu, 09 Feb 2017 14:08:11 -0500 

Organization: The World Public Access 
UNIX, Brookline, MA 

> The GNAT approach causes a very 
significant maintenance hazard: [...] 

I don't buy it (as you may remember, 
because I said so in an ARG meeting). 
The reason is that all these horrible things 
you mention can happen when you 
change a static predicate to a different 
static predicate. E.g.: 

  subtype S is Integer with Static_Predicate 
 => S >= 0; 

If you change it to: 

  subtype S is Integer with Static_Predicate 
 => S >= 1; 

client code is just as likely to break as if 
you changed it to a dynamic predicate. So 
what? Any time you change the visible 
part of a widely used library unit, you 
have to be careful about breaking clients. 

Note that the first S above is exactly the 
same as: 

   subtype S is Integer range 0 .. 
 Integer'Last; 

And we don't bother to mark that as a 
static range. You could change it to "0 .. 
Dynamic_Value", and break clients. 

> ...and they'd have no understanding of 
why (or any hope of fixing it). 

Now that's REALLY overstating the case. 
Anybody who can read Ada code can 
understand why (and hope to fix it). 

> ... By declaring your intent as static or 
dynamic, clients can properly use the 
predicate subtype and you as the 
maintainer can't break their 
expectations without at least realizing 
that there is a potential problem. 

The above argument proves that to be 
wrong -- the maintainer CAN break 



22  Ada in Context 

Volume 38, Number 1, March 2017 Ada User Journal 

clients DESPITE the fact that the 
predicate is marked Static_. 

> This is especially true as many 
expressions that *seem* simple aren't 
allowed as static predicates [...] 

In the same sense that a static constant is 
quite different from a dynamic one. For 
example you can say "when X =>" in a 
case statement if X is static. And if 
somebody changes X to a different static 
value, or to a dynamic value, the case 
statement will become illegal. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Subject: Re: I am not understanding user 
defined exceptions 

Date: Thu, 9 Feb 2017 15:47:49 -0600 
Newsgroups: comp.lang.ada 

Organization: JSA Research & Innovation 

> [...] 

It's surely possible to have client code 
break, but it is far less likely if the client 
used the abstraction as intended. 

When one goes from a static to a dynamic 
predicate, all client code using for loops 
and case statements will fail. Period. 

When one changes the details of a static 
predicate, the only code that might fail 
(statically) is use in a case statement. And 
such problems generally point out issues 
with the use of the abstraction (presuming 
of course that the abstraction was sensibly 
defined in the first place). 

For instance, if one had used static 
predicates to partition a type: 

  
  subtype Part1 is Integer with 
 Static_Predicate => Part1 >= 0; 
  subtype Part2 is Integer with 
 Static_Predicate => Part2 < 0; 

then a case statement using the partitions 
would continue to work if what exactly is 
in each partition is changed. 

If, on the other hand, a case statement 
assumed which partition a particular value 
belongs, then it might fail if that is 
changed down the road. But that clearly 
broke the abstraction, so the failure seems 
like a good thing in such a case. 

Clearly, there are far fewer possibilities of 
failure when one changes a values in a 
static predicate than when one changes 
from a static predicate to a dynamic one. 
So that argument does not hold much 
water. 

> So what? Any time you change the 
visible part of a widely used library 
unit, you have to be careful about 
breaking clients. 

The more help that we can give the 
maintainer to prevent such problems, the 
better. This is an area where Ada does not 
do very well, as things that usually don't 
matter (parameter subtypes, for instance) 
come into play in some obscure rules and 
thus virtually any change to a 

specification will break some code. This 
is a serious problem; once a library gets 
into wide use its specification is 
effectively encased in amber. You have to 
start over to make any significant 
changes. 

I don't see any point in making new 
features be even worse for that than the 
existing ones. Luckily, the ARG agreed. 

> Note that the first S above is exactly the 
same as: 

> 

>    subtype S is Integer range 0 .. 
Integer'Last; 

> 

> And we don't bother to mark that as a 
static range.  You could change it to "0 
.. Dynamic_Value", and break clients. 

Right.  And I as I mentioned elsewhere, 
we should have done that. (Actually, what 
we should have done is required one to 
mark dynamic subtypes, as they're not 
very likely. Definitely too late for that, 
though.) 

> [...] 

It's a bit of an overstatement, but it's 
close: "no understanding why" => there's 
no indication in the source code (if you 
use GNAT's evil "predicate") and the 
rules for when it is static are not intuitive. 
There's almost no chance that I would 
think of such a predicate change when I 
first saw such a problem, I would waste a 
lot of time looking elsewhere first. 

And there's no hope of fixing it because it 
happened in reusable code that they have 
no control over. They've unintentionally 
depended on a property that the library 
did not intend to make stable. The only 
fix is to totally replace the failing 
constructs with different ones (and in the 
case case :-) losing the completeness 
checks at the same time. 

> [...] 

Only clients that misused the abstraction 
in case statements. (For loops won't break, 
at least not statically -- and if the loop 
depends on the exact values that it iterates 
over, they've again missed the point of the 
abstraction.) I'm definitely less concerned 
about breakage in iffy code than I am 
about breakage that occurs in perfect 
code. 

Being forced to replace: 

    case Something is 
        when Part1 => ... 
        when Part2 => ... 
    end case; 

with a less safe if statement just because 
someone screwed up seems horrible to 
me. 

> [...] In the same sense that a static 
constant is quite different from a 
dynamic one. [...] 

Right, and I view this as a significant flaw 
in Ada. If I was designing a language 
from scratch, these would clearly be 
marked as different things. Most likely: 

     X : Integer := ...; -- Static constant 
     X : constant Integer := ...;  
 -- Non-static constant 
     X : variable Integer := ...; -- Variable. 

Since the default should be the safest 
thing. (Note that an initializer would be 
required for all of these; <> could be used 
to explicitly mark it as default-initialized.) 
The same with subtypes (anything that 
has a name). 

We can't make this change to Ada for 
obvious reasons, but surely two wrongs 
do not make a right. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Subject: Re: I am not understanding user 
defined exceptions 

Date: Fri, 10 Feb 2017 15:09:34 -0600 
Newsgroups: comp.lang.ada 

Robert A Duff wrote: 

> Well, at least we agree on one thing. It's 
odd that Ada got it right for parameters 
('in' is the default), but got it wrong for 
object declarations (variable is the 
default). 

> 

> I'd be happy with: 

> 

>    X : Integer := ...; -- constant 

>     X : var Integer := ...; -- variable 

(1) Ada doesn't generally use 
abbreviations, thus "var" isn't a likely 
keyword. 

(2) It's important that all properties that 
clients can depend upon are declarable, so 
clients aren't depending on accidental 
properties. (That's the whole principle 
behind private types.) Static is such a 
property, so it should be declarable (not 
necessarily have to be declared in all 
cases). [Indeed, it should be possible to 
declare static private types - a whole 
different kettle of fish.] Similarly, it 
would be nice if there was a way to 
prevent people from depending upon the 
subtype profile of a subprogram (so that it 
can later be changed if necessary). There's 
probably other such properties (one would 
like to include formal parameter names in 
this sort of restriction, but that would 
prevent named calls which would be evil.) 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Subject: Re: I am not understanding user 
defined exceptions 

Date: Mon, 13 Feb 2017 17:20:44 -0600 
Newsgroups: comp.lang.ada 

Dmitry A. Kazakov wrote: 

> Why is static a property? [...] 

It's a property because the language 
design depends on it so heavily. Perhaps 



Ada in Context 23  

Ada User Journal Volume 38, Number 1, March 2017 

one could design a language that enforced 
Legality Rules without having some 
property that controls whether that is 
possible or not, but I can't quite imagine 
how. (Only a language that enforced no 
rules until runtime could work that way, 
IMHO, and that eliminates most of the 
benefits of strong typing and early error 
detection.) 

If static was a declarable property, I'd also 
make it possible to declare user-defined 
static things, and apply that to all types. 
For instance, it should be possible to have 
static System.Address values, static 
Complex values, and the like. It wouldn't 
be limited to just whatever the language 
designers could define. 

From: Robert A Duff 
<bobduff@TheWorld.com> 

Subject: Re: I am not understanding user 
defined exceptions 

Date: Thu, 09 Feb 2017 14:15:10 -0500 
Newsgroups: comp.lang.ada 

Organization: The World Public Access 
UNIX, Brookline, MA 

Simon Wright wrote: 

> Good, but I have to admit the strength 
of Randy's point re: maintainability. 

I don't share Randy's concerns about 
maintainability. 

> ... Would it be possible for GNAT have 
a diagnostic option to state whether 
explicit Static_Predicate would be OK? 

Sure, but I'm not likely to implement any 
such thing, given my opinion expressed 
above. I recommend you use "Predicate 
=>" unless you want to be portable to 
non-GNAT compilers (or request the 
other compilers to mimic GNAT). 

To convince me otherwise, you'll have to 
explain why we don't say: 

   X : static constant Integer := 100; 
   static subtype S is Integer range 1..100; 

> ...(you could tell me to just try 
Static_Predicate first!) 

Sure, you can do that if you like. To me, 
"Static_" is just noise (or necessary for 
portability). This kind of inconsistency is 
a flaw in the design of Ada. 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Subject: Re: I am not understanding user 
defined exceptions 

Date: Thu, 9 Feb 2017 15:06:56 -0600 
Newsgroups: comp.lang.ada 

Organization: JSA Research & Innovation 

> To convince me otherwise, you'll have 
to explain why we don't say: [...] static 
constant [...] static subtype [...] 

We've had this discussion before: 

(1) We don't have it because Ichibiah left 
it out. I think that was a mistake. 

(2) For the constant, you can declare it to 
be static and I usually do: 

   X : constant := 100; 

It's unfortunate that you can declare an 
object to be static or give it a type, but not 
both. This kind of inconsistency is a flaw 
in the design of Ada. ;-) 

(3) Ada really does need such a 
capability. Staticness determines many 
Legality Rules and it can be a critical 
property when exposed in a reusable 
library. Unintentionally eliminating it can 
be disastrous for clients. I'd definitely be 
in favor of adding the "static" keyword as 
you have it above. (It would have to be 
optional, sadly, but of course a restriction 
could "fix" that.) 

But arguably it is much less likely to be 
changed by accident (although it has 

happened to me repeatedly) -- almost 
every operation that you'd expect to be 
static can be static (the main exception 
being representation attributes like Size). 
That's definitely not the case with 
Static_Predicates. 

(4) <rant> GNAT effectively nullifying a 
carefully considered and heavily debated 
decision in the ARG because a couple of 
people didn't like it is about the most evil 
behavior that an implementer could take. 
It's the sort of thing that makes me 
wonder why AdaCore is so invested in the 
Standards process if it just going to ignore 
the result when convenient. </rant> 

> [...] To me, "Static_" is just noise (or 
necessary for portability). This kind of 
inconsistency is 

> a flaw in the design of Ada. 

You're just plain wrong, considering that 
we discussed this extensively in the ARG 
and the "maintenance is important" 
position carried the day. The flaw is that 
you can't declare most things static to 
avoid future problems. 

P.S. Side note: as with "constant", "static" 
probably should have been the default. It 
really should be necessary to declare 
something non-static or variable. That 
would be possible in a totally brand-new 
language, but sadly not in Ada or even an 
improved Ada-like language. 

 

 

 

 

 

 



Complete Ada Solutions for 
Complex Mission-Critical Systems
•  Fast, efficient code generation

•  Native or embedded systems deployment

•  Support for leading real-time operating systems or bare systems

•  Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools



 25  

Ada User Journal Volume 38, Number 1, March 2017 

Conference Calendar 
Dirk Craeynest 
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be 
 

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on 
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific 
Ada focus. Items marked with  denote events with close relation to Ada. 

The information in this section is extracted from the on-line Conferences and events for the international Ada community at: 
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full 
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly. 

 

2017 
 
 April 03-06 The Art, Science, and Engineering of Programming Conference (Programming'2017), Brussels, 

Belgium. A new conference, with an associated gold open access journal, created with the goal of 
placing the art of programming in the map of scholarly works. Topics include: The Art (knowledge and 
technical skills acquired through practice and personal experiences; examples include libraries, 
frameworks, languages, APIs, programming models and styles, programming pearls, and essays about 
programming); Science - empirical (knowledge and technical skills acquired through experiments and 
systematic observations; examples include user studies and programming-related data mining); Science 
- theoretical (knowledge and technical skills acquired through mathematical formalisms; examples 
include formal programming models and proofs); Engineering (knowledge and technical skills acquired 
through designing and building large systems and through calculated application of principles in 
building those systems; examples include measurements of artifacts' properties, development processes 
and tools, and quality assurance methods). Areas include: general-purpose programming, distributed 
systems programming, parallel and multi-core programming, security programming, interpreters, virtual 
machines and compilers, modeling and modularity, testing and debugging, program verification, 
programming education, programming environments, etc. 

April 03 1st International Workshop on Programming Technology for the Future Web 
(ProWeb'2017). Topics include: programming technology (i.e., frameworks, libraries, 
programming languages, program analyses and development tools) for implementing 
web applications and for maintaining their quality over time, as well as experience 
reports about the use of state-of-the-art programming technology. 

April 03-07 32nd ACM Symposium on Applied Computing (SAC'2017), Marrakech, Morocco. 

 April 03-07 Track on Object-Oriented Programming Languages and Systems (OOPS'2017). 
Topics include: aspects and components; code generation, and optimization; distribution 
and concurrency; formal verification; integration with other paradigms; interoperability, 
versioning and software evolution and adaptation; language design and implementation; 
modular and generic programming; runtime verification; secure and dependable 
software; static analysis; testing and debugging; type systems; virtual machines; etc. 

 April 03-07 Track on Programming Languages (PL'2017). Topics include: compiling techniques, 
domain-specific languages, garbage collection, language design and implementation, 
languages for modeling, model-driven development, new programming language ideas 
and concepts, practical experiences with programming languages, program analysis and 
verification, programming languages from all paradigms, etc. 

April 03-07 Track on Software Verification and Testing (SVT'2017). Topics include: new results 
in formal verification and testing, technologies to improve the usability of formal 
methods in software engineering, applications of mechanical verification to large scale 
software, model checking, correct by construction development, static and run-time 
analysis, analysis methods for dependable systems, software certification and proof 
carrying code, real world applications and case studies applying software verification, 
etc.



26 Conference Calendar  

Volume 38, Number 1, March 2017 Ada User Journal 

April 03-07 12th Track on Dependable and Adaptive Distributed Systems (DADS'2017). Topics 
include: Dependable, Adaptive, and trustworthy Distributed Systems (DADS); 
middleware for DADS; modeling, design, and engineering of DADS; foundations and 
formal methods for DADS; etc. 

April 05-07 1st IEEE International Conference on Software Architecture (ICSA'2017), Gothenburg, Sweden. 
Topics include: model driven engineering for continuous architecting; component based software 
engineering and architecture design; re-factoring and evolving architecture design decisions and 
solutions; architecture frameworks and architecture description languages; preserving architecture 
quality throughout the system lifetime; software architecture for legacy systems and systems integration; 
architecting families of products; software architects roles and responsibilities; training, education, and 
certification of software architects; industrial experiments and case studies; etc. 

April 18-21 23rd IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'2017), 
Pittsburgh, PA, USA. In conjunction with CPSWeek'2017. Topics include: applications, tools, and run-
time software for real-time systems; basic methodologies, algorithms, and analyses that are applied to 
real systems to solve specific problems; hardware/software co-design, integration methodologies, 
design-time tools and architectures for modern embedded systems for real-time applications; etc. 

April 18-21 8th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS'2017), Pittsburgh, PA, 
USA. In conjunction with CPSWeek'2017. Topics include: security of cyber-physical systems (CPS), 
mechanism design for CPS, model-based design and verification of CPS, etc. 

April 22-26 8th ACM/SPEC International Conference on Performance Engineering (ICPE'2017), L'Aquila, 
Italy. 

April 22-29 20th European Joint Conferences on Theory and Practice of Software (ETAPS'2017), Uppsala, 
Sweden. Events include: ESOP (European Symposium on Programming), FASE (Fundamental 
Approaches to Software Engineering), FOSSACS (Foundations of Software Science and Computation 
Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the 
Construction and Analysis of Systems), SV-COMP (Competition on Software Verification). 

April 22 14th International Workshop on Formal Engineering approaches to Software 
Components and Architectures (FESCA'2017). Topics include: (semi-)formal 
techniques and their application that aid analysis, design and implementation of software 
applications; formal modelling of component-based, timed and hybrid systems; temporal 
properties and their formal verification; interface compliance and contractual use of 
components; static and dynamic analysis; industrial case studies and experience reports; 
etc. 

 April 29 10th Workshop on Programming Language Approaches to Concurrency and communication-
cEntric Software (PLACES'2017). Topics include: the general area of programming language 
approaches to concurrency, communication and distribution, such as design and implementation of 
programming languages with first class support for concurrency and communication; concurrent data 
types, objects and actors; verification and program analysis methods for concurrent and distributed 
software; high-level programming abstractions addressing security concerns in concurrent and 
distributed programming; multi- and many-core programming models, including methods for harnessing 
GPUs and other accelerators; integration of sequential and concurrent programming techniques; 
programming language approaches to web services; etc. 

April 26-28 7th International Conference on Fundamentals of Software Engineering (FSEN'2017), Tehran, Iran. 
Topics include: all aspects of formal methods, especially those related to advancing the application of 
formal methods in the software industry and promoting their integration with practical engineering 
techniques; software specification, validation, and verification; software architectures and their 
description languages; integration of formal and informal methods; component-based software systems; 
model checking; software verification; CASE tools and tool integration; industrial applications; etc. 

April 28-29 12th International Conference on Evaluation of Novel Approaches to Software Engineering 
(ENASE'2017), Porto, Portugal. Topics include: application integration technologies, architectural 
design and frameworks, component-based software engineering, formal methods, model-driven 
engineering, reverse software engineering, software and system complexity, software and systems 
development methodologies, software and system quality management, software patterns and 
refactoring, software product line engineering, software process improvement, etc. 



Conference Calendar 27  

Ada User Journal Volume 38, Number 1, March 2017 

 May 16-18 20th IEEE International Symposium On Real-Time Computing (ISORC'2017), Toronto, Canada. 
Topics include: object/component/service-oriented real-time distributed computing (ORC) technology, 
programming and system engineering (real-time programming challenges, ORC paradigms, languages, 
...), trusted and dependable systems, system software (real-time kernels, middleware support for ORC, 
extensibility, synchronization, scheduling, fault tolerance, security, ...), applications (medical devices, 
intelligent transportation systems, industrial automation systems, Internet of Things, embedded systems, 
...), system evaluation (performance analysis, monitoring & timing, dependability, ...), cyber-physical, 
etc. 

May 16-18 9th NASA Formal Methods Symposium (NFM'2017), Moffett Field, California, USA. Topics include: 
identify challenges and provide solutions for achieving assurance for critical systems; model checking; 
static analysis; model-based development; software and system testing; safety assurance; fault tolerance; 
compositional verification; design for verification and correct-by-design techniques; applications of 
formal methods in the development of autonomous systems, cyber-physical, embedded, and hybrid 
systems, ...; use of formal methods in assurance cases, automated testing and verification, ...; etc. 

 May 20-28 39th International Conference on Software Engineering (ICSE'2017), Buenos Aires, Argentina. 

May 27 5th FME Workshop on Formal Methods in Software Engineering (FormaliSE'2017). 
Topics include: integration of FMs in the software development life cycle, ability of 
FMs to handle real-world problems, scalability of FM applications, FMs in a 
certification context, "lightweight" or usable FMs, rigorous software engineering 
approaches and their tool support, case studies, formal approaches in the development of 
cyber-physical systems, etc. 

May 22-23 20th Ibero-American Conference on Software Engineering (CIbSE'2017), Buenos Aires, Argentina. 
Event includes Software Engineering Track (SET). 

May 22-23 12th IEEE International Conference on Global Software Engineering (ICGSE'2017), Buenos Aires, 
Argentina. Topics include: strategic issues in distributed development, tools and infrastructure support, 
software architecture and design, security and privacy, lean and agile development, etc. 

May 22-26 18th International Conference on Agile Software Development (XP'2017), Cologne, Germany. 
Theme: "Uncovering better ways of developing software". Topics include: tools and techniques for agile 
development, empirical studies and evaluations, adopting and adapting agile and lean in large projects 
and organizations, etc. Event includes workshops on Agile Development of Safety-Critical Software 
(ASCS'2017), on Managing Technical Debt (MTD'2017), etc. 

May 29-31 16th International Conference on Software Reuse (ICSR'2017), Salvador, Brazil. 

May 29 - Jun 02 31st IEEE International Parallel and Distributed Processing Symposium (IPDPS'2017), Orlando, 
Florida, USA. 

 June 12-16 22nd International Conference on Reliable Software Technologies - Ada-
Europe'2017. Vienna, Austria. Sponsored by Ada-Europe, in cooperation with ACM 
SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association (ARA). 

June 12-16 29th International Conference on Advanced Information Systems Engineering (CAiSE'2017), 
Essen, Germany. Theme: "Digital Connected World - Informed, Disruptive Business Transformation". 
Topics include: methods, models, techniques, architectures and platforms for supporting the engineering 
and evolution of information systems and organizations in the digital connected world. 

June 15-16 21st International Conference on Evaluation and Assessment in Software Engineering 
(EASE'2017), Karlskrona, Sweden. 

 June 18-23 31st European Conference on Object-Oriented Programming (ECOOP'2017), Barcelona, Spain. 
Topics include: theory, design, implementation, optimization, and analysis of programs and 
programming languages; innovative and creative solutions to real problems, and evaluations of existing 
solutions in ways that shed new insights; etc. Deadline for submissions: April 15, 2017 (student 
volunteers), April 20, 2017 (workshop papers). 

June 19-23 11th ACM International Conference on Distributed Event-Based Systems (DEBS'2017), Barcelona, 
Spain. Co-located with PLDI and ECOOP'2017. Topics include: real-time analytics, security, reliability 
and resilience, embedded systems, enterprise application integration, distributed programming, 



28 Conference Calendar  

Volume 38, Number 1, March 2017 Ada User Journal 

availability, scalability, etc. Deadline for submissions: April 7, 2017 (Grand Challenge solutions), April 
29, 2017 (posters, demos, Doctoral Workshop papers). 

June 27-30 29th Euromicro Conference on Real-Time Systems (ECRTS'2017), Dubrovnik, Croatia. Topics 
include: scheduling design and analysis, real-time operating systems, hypervisors and middlewares, 
virtualization and timing isolation, contention-aware scheduling of multi-core systems, heterogeneous 
real-time systems, mixed-criticality design & assurance, WCET analysis, real-time networks and 
predictable communication protocols, realistic power/energy/thermal models and algorithms, 
network/system-on-chips and massively parallel devices, modelling and/or formal methods, industrial 
use-cases and RT applications, tools, compilers and benchmarks for embedded systems. Deadline for 
submissions: April 28, 2017 (Work-in-Progress papers). 

July 04-08 41st Annual IEEE Conference on Computers, Software and Applications (COMPSAC'2017), Turin, 
Italy. Event includes symposiums on Computer Education & Learning Technologies (CELT), Emerging 
Advances in Technology & Applications (EATA), IT in Practice (ITiP), Security, Privacy, & Trust 
(SEPT), Software Engineering Technology & Applications (SETA), etc. Deadline for submissions: 
April 10, 2017 (workshop papers). 

July 05-07 International Conference on Software and Systems Process (ICSSP'2017), Paris, France. Topics 
include: mining software/business process repositories (including code, bug trackers, etc.) to improve 
processes; empirical evidence of the effectiveness of agile/lean practices and approaches in software 
systems development and evolution; process issues in developing evolving software systems; processes 
for cutting-edge software technologies, including (but not limited to) multi-core technologies; empirical 
studies and experience reports, encompassing complete or parts of software and systems development 
lifecycle; etc. 

July 17-21 Software Technologies: Applications and Foundations (STAF'2017), Marburg, Germany. Successor 
of the TOOLS federated event. Topics include: practical and foundational advances in software 
technology. Deadline for submissions: April 21, 2017 (workshop papers), May 22, 2017 (doctoral 
symposium). 

July 19-20 11th International Conference on Tests And Proofs (TAP'2017). Topics include: 
many aspects of verification technology, including foundational work, tool 
development, and empirical research; the connection between proofs (and other static 
techniques) and testing (and other dynamic techniques); verification and analysis 
techniques combining proofs and tests; program proving with the aid of testing 
techniques; deductive techniques to support testing: generating testing inputs and 
oracles, supporting coverage criteria, and so on; program analysis techniques combining 
static and dynamic analysis; testing and runtime analysis of formal specifications; 
model-based testing and verification; using model checking to generate test cases; 
testing of verification tools and environments; applications of testing and proving to new 
domains, such as security, configuration management, and language-based techniques; 
case studies, tool and framework descriptions, and experience reports about combining 
tests and proofs; etc. 

July 22-28 29th International Conference on Computer-Aided Verification (CAV'2017), Heidelberg, Germany. 
Topics include: theory and practice of computer-aided formal analysis and synthesis methods for 
hardware and software systems, algorithms and tools for verifying models and implementations, 
specifications and correctness criteria for programs and systems, deductive verification using proof 
assistants, program analysis and software verification, verification methods for parallel and concurrent 
systems, testing and run-time analysis based on verification technology, applications and case studies in 
verification and synthesis, verification in industrial practice, formal models and methods for security, 
etc. 

July 26-28 IEEE International Conference on Software Quality, Reliability and Security (QRS'2017), Prague, 
Czech Republic. Since 2015, merger of SERE (International Conference on Software Security and 
Reliability) and QSIC (International Conference on Quality Software). Topics include: reliability, 
security, availability, and safety of software systems; software testing, verification and validation; 
program debugging and comprehension; fault tolerance for software reliability improvement; modeling, 
prediction, simulation, and evaluation; metrics, measurements, and analysis; software vulnerabilities; 
formal methods; benchmark, tools, and empirical studies; etc. Deadline for submissions: April 1, 2017 
(workshop papers, Student Doctoral Program, fast abstract track). 



Conference Calendar 29  

Ada User Journal Volume 38, Number 1, March 2017 

 August 16-18 23th IEEE International Conference on Embedded and Real-Time Computing Systems and 
Applications (RTCSA'2017), Hsinchu, Taiwan. Topics include: multi-core embedded systems; 
operating systems and scheduling; embedded software and compilers; fault tolerance and security; 
embedded systems and design methods for cyber-physical systems; real-time operating systems; real-
time scheduling; timing analysis; programming languages and run-time systems; middleware systems; 
design and analysis tools; applications and case studies of IoT and CPS; cyber-physical co-design; etc. 
Deadline for submissions: April 14, 2017 (papers). 

Aug 30 - Sep 01 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2017), 
Vienna, Austria. Topics include: information technology for software-intensive systems; main tracks on 
Embedded Software Engineering (ESE), Model-based Development, Components and Services 
(MOCS), Software Process and Product Improvement (SPPI), Software Product Lines and Software 
Ecosystems (SPLSeco), etc.; special sessions on Teaching, Education and Training for Dependable 
Embedded and Cyber-Physical Systems (TET-DEC), Cyber-Physical Systems (CPS), Software 
Engineering and Technical Debt (SEaTeD), etc. 

September 03-06 Federated Conference on Computer Science and Information Systems (FedCSIS'2017), Prague, 
Czech Republic. Event includes: 2nd International Workshop on Language Technologies and 
Applications (LTA), 6th Workshop on Advances in Programming Languages (WAPL), 4th International 
Workshop on Cyber-Physical Systems (IWCPS), 37th IEEE Software Engineering Workshop (SEW), 
etc. Deadline for submissions: May 10, 2017 (papers). 

September 04-08 11th Joint European Meeting of the Software Engineering Conference and the ACM SIGSOFT 
Symposium on the Foundations of Software Engineering (ESEC/FSE'2017), Paderborn, Germany. 
Topics include: API usage and design; debugging, fault localization, and repair; dependability, safety, 
and reliability; development environments and tools; empirical studies; formal methods and verification; 
model-driven software engineering; parallel, distributed, and concurrent systems; performance and 
scalability; program analysis; refactoring, reengineering, and migration; security and privacy; software 
architecture; software economics; software evolution and maintenance; software processes and project 
organization; software testing; variability management and software product lines; etc. Deadline for 
submissions: May 12, 2017 (industry papers, Doctoral Symposium), June 1, 2017 (student volunteers), 
June 9, 2017 (Student Research Competition, tool demonstrations, artifact evaluation). Deadline for 
early registration: July 19, 2017. 

September 06-10 15th International Conference on Software Engineering and Formal Methods (SEFM'2017), 
Trento, Italy. Deadline for submissions: June 1, 2017 (workshop papers). 

 September 12-15 International Conference on Parallel Computing 2017 (ParCo'2017), Bologna, Italy. Topics include: 
all aspects of parallel computing, including applications, hardware and software technologies as well as 
languages and development environments; new concepts for parallel computing architectures for all 
levels of parallelism (multicore and manycore systems, accelerators, including GPUs, FPGAs, ...); 
software engineering methodologies, methods and tools for developing and maintaining parallel 
software; parallel programming languages, compilers, libraries and environments; testing and debugging 
techniques and tools; best practices of parallel computing on multicore, manycore and stream 
processors; the application of parallel computing to solve all types of business, industrial, scientific and 
engineering problems using high-performance computing technologies; etc. Deadline for submissions: 
July 31, 2017 (full papers). 

September 13-15 11th International Symposium on Theoretical Aspects of Software Engineering (TASE'2017), Nice, 
France. Topics include: theoretical aspects of software engineering, such as abstract interpretation, 
component-based systems, cyber-physical systems, distributed and concurrent systems, embedded and 
real-time systems, formal verification and program semantics, integration of formal methods, language 
design, model checking and theorem proving, object-oriented systems, run-time verification and 
monitoring, software architecture, software testing and quality assurance, software security and 
reliability, static analysis of programs, type systems and behavioural typing, tools exploiting theoretical 
results, etc. 

September 13-16 17th International Conference on Runtime Verification (RV'2017), Seattle, Washington, USA. 
Topics include: monitoring and analysis of the runtime behaviour of software and hardware systems. 
Application areas include cyber-physical systems, safety/mission-critical systems, enterprise and 
systems software, autonomous and reactive control systems, health management and diagnosis systems, 



30 Conference Calendar  

Volume 38, Number 1, March 2017 Ada User Journal 

and system security and privacy. Deadline for submissions: April 24, 2017 (paper and tutorial abstracts), 
May 1, 2017 (papers, tutorials). 

September 20-22 13th International Conference on integrated Formal Methods (iFM'2017), Turin, Italy. Topics 
include: hybrid approaches to formal modeling and analysis; i.e., the combination of (formal and semi-
formal) methods for system development, regarding both modeling and analysis, and covering all 
aspects from language design through verification and analysis techniques to tools and their integration 
into software engineering practice. Deadline for submissions: April 4, 2017 (papers). 

October 15-20 ACM SIGBED International Conference on Embedded Software (EMSOFT'2017), Seoul, South 
Korea. Part of ESWEEK, EMSOFT brings together researchers and developers from academia, industry, 
and government to advance the science, engineering, and technology of embedded software 
development. EMSOFT is a venue for cutting-edge research in the design and analysis of software that 
interacts with physical processes, with a long-standing tradition for results on cyber-physical systems, 
which compose computation, networking, and physical dynamics. Deadline for submissions: April 7, 
2017 (full papers). 

October 15-20 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems 
(CASES'2017), Seoul, South Korea. Part of ESWEEK, CASES is a forum where researchers, developers 
and practitioners exchange information on the latest advances in compiler and architectures for high-
performance, low-power embedded systems. The conference has a long tradition of showcasing leading 
edge research in embedded processor, memory, interconnect, storage architectures and related compiler 
techniques targeting performance, power, predictability, security, reliability issues for both traditional 
and emerging application domains. In addition, we invite innovative papers that address design, 
synthesis, and optimization challenges in heterogeneous and accelerator-rich architectures. Deadline for 
submissions: April 7, 2017 (full papers), June 2, 2017 (Work-in-Progress papers). 

 October 22-27 ACM Conference on Systems, Programming, Languages, and Applications: Software for 
Humanity (SPLASH'2017), Vancouver, Canada. Topics include: all aspects of software construction, at 
the intersection of programming, languages, systems, and software engineering. Deadline for 
submissions: April 13, 2017 (OOPSLA abstracts), April 17, 2017 (OOPSLA submissions), April 21, 
2017 (Onward! papers, Onward! essays), May 26, 2017 (DLS abstracts - Dynamic Languages 
Symposium), June 2, 2017 (DLS - Dynamic Languages Symposium (DLS)), June 25, 2017 (GPCE 
abstracts - Generative Programming: Concepts & Experiences), June 2, 2017 (SLE abstracts - Software 
Language Engineering), June 9, 2017 (SLE - Software Language Engineering), June 29, 2017 
(SPLASH-E), June 30, 2017 (Doctoral Symposium), July 2, 2017 (GPCE - Generative Programming: 
Concepts & Experiences), July 15, 2017 (posters), July 17, 2017 (Student Research Competition). 
Deadline for early registration: September 30, 2017. 

October 23-27 14th International Colloquium on Theoretical Aspects of Computing (ICTAC'2017), Hanoi, 
Vietnam. 

November 07-09 30th IEEE Conference on Software Engineering Education and Training (CSEET'2017), Savannah, 
USA. 

 December 05-08 38th IEEE Real-Time Systems Symposium (RTSS'2017), Paris, France. Topics include: all aspects of 
real-time systems theory, design, analysis, implementation, evaluation, and experiences. Deadline for 
submissions: May 1, 2017 (papers), June 9, 2017 (workshops), September 15, 2017 (workshop papers). 

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day! 

 

  



Conference Calendar 31  

Ada User Journal Volume 38, Number 1, March 2017 

 
 
 
 
 
 
 
 
 
 

 

 

Advance Information 
The 22nd International Conference on Reliable Software Technologies (Ada‐Europe 2017) will take place in Vienna, Austria. 
This conference is the latest in a series of annual international conferences started in the early 80's, under the auspices of, 
and organization by, Ada‐Europe, the international organization that promotes the knowledge and use of Ada and Reliable 
Software in general into academia, research and industry.  

Ada‐Europe  2017  provides  a  unique  opportunity  for  dialogue  and  collaboration  between  academics  and  industrial 
practitioners interesting in reliable software. 

The conference will span a full week, including tutorials and a central three‐day technical program with the latest advances 
in reliable software technologies and Ada. The core program features 3 keynote talks, 16 refereed scientific papers, and 9 
industrial  presentations.  Co‐located  with  the  conference  is  the  DeCPS  workshop  on  “Focus  on  Transportation  of  the 
Future”. Half‐day and full‐day tutorials will be provided on Monday and Friday.  

Week Overview 

Monday  Tuesday  Wednesday  Thursday  Friday 

Tutorials 

Keynote Talk 

G. B. Gallus 

Keynote Talk 

T. Henzinger 

Keynote Talk 

K. Römer 

Tutorials 
& 

Workshop 

Regular session 
Runtimes 

Regular session 
Safety & Security 

Regular session 
Timing 

Verification 

Industrial session 
Exploratory Uses 

of Ada 

Industrial session
Verification 

Regular session 
Mixed Criticality 

Regular session 
Programming 

Models 

Panel 
The Future of 
Safety‐Minded 
Languages 

Industrial session 
Large Industrial 
Applications 

Ada‐Europe 
General Assembly 
Welcome cocktail 

Conference 
“Heuriger” 

Best paper award 

Best presentation 
award 

Closing session 

       
  



32 Forthcoming Events  

Volume 38, Number 1, March 2017 Ada User Journal 

 

Keynote talks 
Each day of the core program will be opened a keynote talk delivered by one the following eminent speakers:  

 Giovanni Battista Gallus, Array, Italy, “The laws of robotics and autonomous vehicles may be much more than three, 
but don't panic... yet.” 

 Thomas Henzinger, IST, Austria, “Behavioral Software Metrics” 

 Kay Römer, TU Graz, Austria, “Dependable Internet of Things” 

Tutorials 
Bracketing the conference on Monday and Tuesday, the program includes eight tutorials: 

 Introduction to SPARK 2014, Peter Chapin, Monday full day. 

 Ada on ARM Cortex‐M, a zero‐run‐time approach, Maciej Sobczak, Monday morning. 

 Software Measurement for Dependable Software Systems, William Bail, Monday afternoon. 

 Real‐Time Parallel Programming with the UpScale SDK, L. M. Pinho and E. Quinones, Monday afternoon. 

 Using Gnoga for Desktop/Mobile GUI and Web development in Ada, JP Rosen, Friday morning. 

 Frama‐C, a Collaborative Framework for C Code Verification, Julien Signoles, Friday morning. 

 On beyond ASCII: Characters, Strings, and Ada 2012, JP Rosen, Friday afternoon.. 

 Modular Open System Architecture for Critical Systems, William Bail, Friday afternoon 

 
Co‐Located Workshop 

The conference week  features the  fourth  International Workshop on Challenges and new Approaches  for Dependable and 
Cyber‐Physical  Systems  Engineering  (De‐CPS  2017),  following  the  success  of  the  inaugural workshop  in  2014,  its  second 
edition in Madrid in 2015, and its third edition in Pisa in 2016.  
The workshop will take place Friday, June 16th, from 09:30 to 17:30. 
 

About the Venue 

The  conference will  take  place  at  Vienna,  Austria.  The  conference 
venue,  the  Palais  Eschenbach  was  built  in  Palladian  Style.  It  was 
inaugurated in 1872 by the Austrian Emperor Franz Joseph I. The so‐
called "golden ballroom" with  its  impressive coffered ceiling, arcade 
arches  and  a  number  of marble  pilasters mirrors  the  great  era  of 
Vienna. The palais is located near the center of Vienna and can easily 
be accessed by metro lines U1, U2, and U4. 

 

Sponsors 

 

 

 

The conference is supported  
and sponsored by  

 
In Cooperation with: 

 
Ada Resource Association 

 

 



 33  

Ada User Journal Volume 22, Number 1, March 2001 

ARG Work in Progress 
Jeff Cousins CEng FIET 
Chair of the Ada Rapporteur Group 
BAE Systems Surface Ships Limited KT3 4LH; Tel: +44 3300 466346; email: jeff.cousins@baesystems.com, 
jeffrey.cousins@btinternet.com 

 

Abstract 

Where is Ada going next? After the exciting additions of 
Ada 2012, in particular contracts and aspects, Ada should 
be entering a quieter period. Small but interesting new 
features include array aggregate initialisation and a 
short-hand for the left-hand side of an assignment 
statement. 

1   Introduction 

2016 saw the publication of Technical Corrigendum 1 to 
the Ada 2012 standard, at the end of January. With that 
out of the way, the Ada Rapporteur Group (ARG) was 
able to start considering the Ada Issues (AIs) proposing 
various amendments to the language, not just those 
dealing with corrections to and clarifications of the 
existing language. We are unlikely to publish a new 
edition until we have some major (and exciting!) features 
ready, and these are still in the pipeline, but a number of 
smaller features have already been approved. This paper 
gives an overview of the more interesting of these 
changes, and a glimpse of what is still to come. 

Readers will recall that Ada Issues are first worked on and 
approved by the ARG. They are then passed to WG 9 (the 
ISO/IEC Working Group responsible for Ada) for 
consideration and approval before eventually being 
consolidated and sent to ISO for formal processing to 
create a revised international standard. 

2   WG 9 approved 

This section describes some of the more important 
changes to the language that have been approved by WG 
9. 

2.1   Index parameters in array aggregates (AI12-
0061) 
Consider: 

subtype Index is Positive range 1 .. 10; 
type Array_Type is array (Index) of Positive; 
Squares_Array : Array_Type := (for I in Index => I * I); 

This provides a means of creating an aggregate when the 
element type is limited, provides a better means of 
initialising an array with a type invariant, and should be 
useful for everyday programming. 

2.2   Object Size attribute (AI12-0059) 
Users have been after this since 1983! S'Object_Size 
denotes the size of an object of subtype S. It can be 
specified, but must be specified to a value that the 

compiler is able to allocate (usually an entire storage unit 
for most implementations). 

S'Object_Size is an improvement on S'Size (which cannot 
be redefined without breaking existing code). Reading 
'Size is not terribly useful as it just gives the theoretical 
minimum number of bits required for a value of a given 
range, not the number of bits that the compiler is actually 
going to allocate to an object of the type. Specifying 
S'Size just gives a minimum, the compiler may allocate 
more. 

2.3   Aggregates and variant parts (AI12-0086) 
A discriminant that controls a variant can now be non-
static if the subtype of the discriminant is static and all 
values belonging to that subtype select the same variant. 
For example: 

type Enum is (Aa, Bb, Cc, ..., Zz); 
subtype S is Enum range Dd .. Hh; 
type Rec (D : Enum) is record 
  case D is 
    when S => Foo, Bar : Integer; 
    when others => null; 
  end case; 
end record; 
 
function Make (D : S) return Rec is 
begin 
  return (D => Dd, Foo => 123, Bar => 456); 
end; 

2.4   Use subtype_indication in generalized 
iterators (AI12-0156) 

Ada 2012 added the ability to simplify 

Vec : Int_Vectors.Vector; 
... 
for I in Vec.Iterate loop 
   Vec(I) := Vec(I) + 1; 
end loop; 

to 

Vec : Int_Vectors.Vector; 
... 
for E : T of Vec loop 
    E := E + 1; 
end loop; 

where the optional “: T” acts as a comment to the reader 
that the subtype of element E is T (and the compiler 
verifies this comment). An optional subtype indication – 



34  ARG Work in Progress 

Volume 38, Number 1, March 2017 Ada User Journal 

though of the cursor not the element – can now also be 
given for the original “in” form of the loop, i.e.: 

for I : Index in Vec.Iterate loop 
   Vec(I) := Vec(I) + 1; 
end loop; 

where Index is the subtype of the loop variable. 

2.5   Preelaborable packages with address clauses 
(AI12-0175) 
Packages with aspect Preelaborate can now contain 
certain simple functions known to the compiler, i.e. an 
instance of Unchecked_Conversion, a function declared in 
System.Storage_Element, or the functions To_Pointer and 
To_Address declared in an instance of 
System.Address_to_Access_Conversions. This allows the 
declaring of objects with an address clause within a 
preelaborable package, which can be very useful for small 
embedded systems. 

2.6   Access to parts of composite atomic objects 
(AI12-0128) 
Memory accesses to subcomponents of an atomic 
composite object must read or write the entire object. For 
example: 

type Status is record 
   Ready : Boolean; 
   Length : Integer range 0 .. 15; 
end record; 
for Status use record 
   Ready at 0 range 0 .. 0; 
   Length at 0 range 1 .. 5; 
end record; 
Status_Register : Status 
   with Address => ..., 
        Size => 32, 
        Atomic => True; 
if Status_Register.Ready then -- Reads entire register 
   null; 
end if; 
Status_Register.Length := 10; -- Prereads entire   
             -- register, then writes 
             -- entire register. 

This is useful for controlling accesses to memory mapped 
device registers, which often require reads or writes to be 
to the entire register. 

2.7   Aggregates of Unchecked_Unions using 
named notation (AI12-0174) 
Given that it is generally regarded as good practice to use 
named notation rather than positional notation, it was 
somewhat bizarre that Unchecked_Unions only allowed 
the latter. Both are now allowed. For example: 

type Data_Kind is (C_int, C_char); 
type C_Variant (Format : Data_Kind := C_int) is record 
      case Format is 
         when C_int => 
            int_Val : C.int; 
         when C_char => 

            char_Val : C.char; 
      end case; 
end record with Unchecked_Union, Convention => C; 
Int1 : C_Variant := (C_int, 12); -- Always OK 
Int2 : C_Variant := (Format => C_int, int_Val => 12); 
                  -- Was illegal, now OK 

3   In the pipeline 

These have been approved by the ARG but have yet to be 
approved by WG 9. 

3.1   Add @ as an abbreviation for the LHS of an 
assignment (AI12-0125-3) 
This proposal, which has proven rather controversial with 
those who are used to Ada being verbose, uses a single 
character placeholder for the left hand side of an 
assignment. 

My_Package.My_Array(I).Field := 
   My_Package.My_Array(I).Field + 1; 

could be shortened to: 

My_Package.My_Array(I).Field := @ + 1; 

The above is similar in function to the += of the C family 
of languages. The proposal for Ada is more powerful 
though, being able to handle expressions such as series 
expansions. Here are a couple of examples: 

My_Package.My_Array(I).Field := 
   My_Package.My_Array(I).Field ** 3 + 
   My_Package.My_Array(I).Field ** 2 + 
   My_Package.My_Array(I).Field; 

could be shortened to: 

My_Package.My_Array(I).Field := @ ** 3 + @ ** 2 + @; 

and: 

My_Package.My_Array(I).Field := 
   Natural'Min (My_Package.My_Array(I).Field, 1000); 

could be shortened to: 

My_Package.My_Array(I).Field := Natural'Min  
   (@, 1000); 

3.2   Update to the Fortran Annex (AI12-0058) 
The Fortran Annex will be updated to support Fortran 
2008, in particular better support for double precision 
complex arithmetic. Permissions corresponding to non-
standard extensions, or implementation advice that is now 
considered to be bad practice, will be removed. 

4   The Future 

4.1  Support for Static Analysis 
Global aspects (AI12-0079) extend the contract features 
provided by Ada 2012, and are used to specify which 
global objects a subprogram may access, and in which 
mode. For example (for a board game): 

procedure Include_Piece_In_Board 
  with Global => (Input => Cur_Piece, 
                            In_Out => Cur_Board); 



J. Cousins 35  

Ada User Journal Volume 38, Number 1, March 2017 

For backward compatibility reasons, if the global aspect is 
not specified, then the subprogram is presumed to read 
and write an unspecified set of global variables (or none if 
the subprogram is in a pure package). 

The new pragma Loop_Invariant allows some property to 
be checked each time around a loop. For example: 

for ... loop 
   Some_Complex_Calculation; 
   pragma Loop_Invariant (Calculation_Is_Converging); 
end loop; 

where Calculation_Is_Converging is a Boolean 
expression. 

The above are already provided by GNAT to support 
SPARK 2014. This does not mean that it will be trivial to 
add them to the main language though, as these features 
have to be generalised to cover the whole language, not 
just the SPARK subset. 

The following features are likely to prove useful to 
analysis tools such as SPARK. 

The new aspect Nonblocking (AI12-0064) turns the 
bounded error of 9.5.1 (or the runtime check of pragma 
Detect_Blocking) into a compile-time check. When used, 
it means that one cannot call a potentially blocking 
operation by mistake and cause a problem down the road. 
Although we cannot make it the default for compatibility 
reasons, one hopes that most new code will make using it 
the norm. 

The new aspect Stable_Properties (AI12-0187) simplifies 
the description of properties of an abstract data type 
(ADT), by making it easy to specify properties that are 
usually unchanged by most of the operations of the ADT. 
The classic example is the Mode of a file, which is 
unchanged by all of the operations other than 
Create/Open/Close/Reset (and Set_Mode for streams). 
The stable properties are automatically included in the 
postconditions of all of the primitive operations of the 

ADT, decreasing clutter and increasing the information 
that provers can use. 

4.2 Parallelism (AI12-0119) 
As Ada provided tasking from the outset, migrating to 
multi-core processors with a small number of cores was 
relatively easy. But as the number of cores increases, finer 
grained control of parallelism will be required. OpenMP 
already provides facilities for C, C++ and Fortran. 

A sub-group, led by Canada, is considering various ideas 
for supporting parallel blocks and loops. The compiler 
would determine how much parallelism (how many 
“tasklets”, in the terminology of one of the proposals) is 
used to implement these constructs (possibly based on the 
number of cores on the target machine). 

4.3 Others 
Investigations continue into providing more variants of 
the Containers, e.g. with faster access or including mutual 
exclusion, and improving iteration over Containers and 
other structures, though if every proposal were to be 
accepted there would be a combinatorial explosion in the 
number of permutations of the Containers. 

AdaCore presentations have suggested the following 
extensions: 

 Generators/co-routines (AI12-0197); 

 Lambda functions (AI12-0190); 

 Function decorators; 

 Declare variable in expression constructs. 

So far only the first two have been raised as AIs, and even 
then only recently. 

5   Conclusions 

The balancing act continues, between keeping the 
language stable and backwardly compatible and adding 
new features to move with the times. When the parallel 
processing proposals mature or SPARK is ready to be 
standardised, no doubt Ada will rise to the occasion. 

  





37

Definition-Use Net and System Dependence Net
Generators for Ada 2012 Programs and their
Applications

Bo Wang, Hongbiao Gao, Jingde Cheng
Department of Information and Computer Sciences, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama,
338-8570, Japan; Tel: +81 48 858 3785; email: {wangbo,gaohongbiao,cheng}@aise.ics.saitama-u.ac.jp

Abstract

Both Definition-Use Net (DUN) and System Dependence
Net (SDN) are formal graph-theoretical representation
models for concurrent programs. Both models are very
helpful in software development activities such as pro-
gram slicing, testing, debugging, and complexity mea-
suring. Ada 2012, which is the new generation of the
world’s premier programming language for engineering
safe, secure and reliable software, has many changes
and extensions from Ada 2005. Until now, however,
there has been no investigation on the DUN of Ada 2012
programs and its automated generation method, and al-
though some new program dependences and one new
interprocedural relation have been found in Ada 2012
programs, there is no report about definitions of the new
program dependences and interprocedural relations of
an SDN, and even their automated generation methods.
For capturing Definition-Use Nets and System Depen-
dence Nets of Ada 2012 programs automatically, we
developed an ASIS-based DUN generator, and an SDN
generator. This paper introduces DUNs of Ada 2012
programs, presents definitions of new types of program
dependences and SDNs in Ada 2012 programs, shows
example SDNs including new types of program depen-
dences in Ada 2012 programs, presents the methods of
constructing DUNs and SDNs of Ada 2012 programs,
and shows various applications of DUNs and SDNs.

Keywords: Ada 2012, concurrent programs, definition-
use nets, program dependences, system dependence nets,
interprocedural relations.

1 Introduction
Concurrent systems are more and more important in the con-
temporary society. We use concurrent systems to manipulate
large-scale devices applied in various areas, such as aerospace,
aircraft, high-speed railway, avionics system, military, traffic
and air control, vehicle control system, securities exchange
system, banking system, and so on. These concurrent systems
are not allowed any malfunction. Otherwise personal safety
and assets might suffer catastrophic consequences. Thus, soft-
ware engineering must make sure these software systems safe

and secure, so that software programs do not even have a
fault.

It is quite difficult to design, understand, test, debug, and
maintain concurrent programs. The reason is that multiple
control flows and data flows can exist simultaneously in con-
current systems, and their behaviors are non-deterministic.
Therefore, their development needs effective supporting tools.

A statement in a program cannot exist independently, but is
dependent on others. Program dependences [1, 2] are depen-
dences holding between statements in a program and they are
determined by control flows and data flows in the program.
A subprogram in a program also depends on other subpro-
grams. Moreover, a process in a concurrent program is also
dependent on other processes.

Program dependences analysis has been proven the corner-
stone for various of software engineering activities [3]. Pro-
gram Dependence Graph (PDG) [1, 2] is very useful for soft-
ware engineering applications, such as testing [4], debug-
ging [5, 6], maintenance [7], identifying similar code [8],
refactoring [9], probabilistic noninterference analysis [10],
and exploring and enforcing security guarantees [11].

Cheng has proposed Nondeterministic Parallel Control Flow
Net (CFN), and Nondeterministic Parallel Definition-Use Net
(DUN) [12]; which are both arc-classified digraphs, in order
to represent concurrent and/or distributed programs. The CFN
represents multiple control flows in a concurrent program as
well as the single control flow in a sequential program. The
DUN is an extension of CFN, such that it represents multiple
control flows, definitions and uses of variables, inter-process
synchronization and communication in a concurrent program.
Moreover, based on the CFN and DUN of a concurrent pro-
gram, Cheng has further proposed Process Dependence Net
(PDN) [13,14], which is an arc-classified digraph to represent
various program dependences in concurrent programs explic-
itly. Task Dependence Net (TDN) [13, 15, 16] is a version for
the PDN of Ada programs. System Dependence Net [17] is
a formal model which can present the program dependences
and interprocedural relations in a concurrent program with
multiple procedures, such that it is extended from PDN.

There are many useful applications of DUNs and SDNs.
DUNs can provide a clear and precise basis for definitions
of notions, descriptions of methods, and developments of

Ada User Jour na l Vo lume 38, Number 1, March 2017



38 Def in i t ion-Use Net and System Dependence Net Generators for Ada 2012

tools in software engineering. We can use them as program
representation and understanding tools in the software design
and specifications. DUNs also provide a basis for defining the
software test coverage criteria and generating the software test
data [12]. Meanwhile, SDNs are important to software engi-
neering activities such as program slicing, testing, debugging,
and complexity measuring [18, 19].

Furthermore, the programming language Ada, the new gen-
eration of the world’s premier programming language for
engineering safe, secure, and reliable software, has evolved
to Ada 2012, i.e., the latest version of the Ada language stan-
dard [20]. It is designed for large and long-lived systems,
and widely used in the worlds of high-integrity, high-security,
which are closely related to commercial, military airborne
avionics, air traffic control, railroad systems, and medical
equipment [21, 22, 23]. Ada 2012 has many changes and
extensions from the previous version Ada 2005, including
a seismic shift for supporting contract-based programming
explicitly, which effectively improves the reliability of a pro-
gram [20, 24, 25].

Until now, for previous versions of Ada 2012, program depen-
dences have been proposed [12,15,16,17,26], such as control
dependence, data dependence, selection dependence, synchro-
nization dependence, communication dependence. Mean-
while some interprocedural relations have already been pro-
posed, such as call-relation, parameter-in-relation, returned-
value-relation, parameter-out relation. Moreover, some new
types of program dependences have been found in Ada 2012
programs, such as precondition dependence, postcondition
dependence, predicate dependence, expression dependence,
and task-barriers dependence [27].

Although Ada 2012 has many changes and extensions from
Ada 2005, there is no report about DUNs of Ada 2012 pro-
grams. And despite the fact that we have found these new
types of program dependences in Ada 2012 programs men-
tioned above, there is no report of representing definitions of
new types of program dependences and approach of generat-
ing them. Furthermore, the SDNs of Ada 2012 programs have
not been defined. In this paper, we introduce DUNs of Ada
2012 programs, present definitions of new types of program
dependences in Ada 2012 programs, SDNs of Ada 2012 pro-
grams, show example SDNs including new types of program
dependences in Ada 2012 programs, present the method of
constructing DUNs and SDNs of Ada 2012 programs, elabo-
rate our approach to generate DUNs and SDNs of Ada 2012
programs automatically, show various applications of DUNs
and SDNs.

The rest of this paper is organized as follows: Section 2 con-
structs definition-use nets for Ada 2012 programs; Section 3
defines new types of program dependences in an Ada 2012
program based on its DUNs; Section 4 introduces and illus-
trates the method of constructing system dependence nets
of Ada 2012 programs; Section 5 presents the approach to
generate DUNs of Ada 2012 programs automatically; Sec-
tion 6 presents the approach to generate SDNs of Ada 2012
programs automatically; Section 7 shows some applications
of DUNs and SDNs; Some concluding remarks are given in
Section 8.

2 Definition-Use Nets of Ada 2012 Pro-
grams

2.1 An Overview
With the purpose of constructing SDNs for Ada 2012 pro-
grams, we have to recognize, judge, define, and analyze
various program dependences and interprocedural relations,
which are determined by multiple control flow and data flow
implicitly.

Definition-Use Net is a graph-theoretical concurrent program
representation. It is an arc-classified digraph, which has ver-
tices representing program statements with information about
definitions and/or uses of the values of variables, formal pa-
rameters of the subprograms, returned values from functions,
actual parameters of subprogram call, and inter-process syn-
chronization and communication, and arcs representing deter-
ministic or non-deterministic control flow between vertices.
By exploiting it, we can acquire an explicit representation of
control flow and data flow.

Therefore, it is indispensable to model DUNs of Ada 2012 pro-
grams at first, to emerge from multiple control flow and data
flow in an Ada 2012 program, we must convert mathematical
symbols [12] to actual graphics for Ada 2012 programs.

Here, we illustrate how to represent Ada 2012 programs by
Definition-Use Nets as definitions [12], such that convert
mathematical symbols to actual graphics. DUNs of Ada
2012 programs consist of vertices, types of vertices, labels of
vertices, and arcs. We map all kinds of statements concerned
with DUNs to vertices in Table 1, and then illustrate every
representation of the vertex corresponding to the term Num
of examples in Table 2.

2.2 Vertices of DUNs of Ada 2012 Programs
A vertex of definition-use nets of an Ada 2012 program
may represent either a declaration, or a definition, or a con-
trol predicate corresponding to an expression, or a state-
ment [20, 24, 25, 28], respectively. Every representation has
some subordinates as the following Table 1. Every vertex
takes one type and one label on account of Table 1.

2.3 Types of Vertices of DUNs of Ada 2012 Pro-
grams

As above representations, there are five types of special ver-
tices as nondeterministic selection vertex Ns, parallel execu-
tion fork vertex PF , parallel execution join vertex PJ , start
vertex Start, termination vertex Termination, and an ordinary
type of others, as the term Type in Table 1.

In Ada 2012, the nondeterministic selection vertex just ap-
pears as a select accept statement, or a conditional entry call
statement, or a timed entry call statement, or a requeue state-
ment with abort as the Num A-19, M-1, N-1, P-1 in Table 2,
respectively.

The parallel execution fork vertex represents a parallel exe-
cution branch starting vertex. For Ada 2012 programs, sub-
program and task units may be arranged in hierarchies of
parent and child units giving fine control over visibility of the

Volume 38, Number 1, March 2017 Ada User Jour na l



B. Wang, H. Gao, J. Cheng 39

Table 1: Vertices of DUNs of Ada 2012 Programs

Representation Subordinate Type Label Example

Declaration

variable declaration Ordinary D(v) A-2

procedure body declaration

Pf n/a A-29
Pj n/a A-31
S n/a A-1
T n/a A-31

task body declaration
Ordinary S(v) A-9,14,18
Ordinary R(v) A-30

Definition aspect specification Ordinary U(v) B-2

Control predicate

function call
Ordinary U(v) C-1
Ordinary U(v) D-1

in membership test Ordinary U(v) E-1
not in membership test Ordinary U(v) F-1

case expression Ordinary U(v) G-1
if expression Ordinary U(v) G-4

for all quantified expression Ordinary U(v) H-1
for some quantified expression Ordinary U(v) I-1

Statement

assignment statement
Ordinary D(v) A-21
Ordinary U(v) A-21

while loop statement Ordinary U(v) J-1
for loop statement Ordinary D(v) K-1

procedure call statement Ordinary U(v) L-1

entry call statement

Ns n/a M-1
Ns n/a N-1

Ordinary D(v) A-15
Ordinary U(v) A-10
Ordinary S(v) A-10,15
Ordinary R(v) A-11,15

extend return statement Ordinary D(v) O-1

accept statement

Ns n/a A-19
Ordinary D(v) A-20
Ordinary U(v) A-26
Ordinary R(v) A-20,24
Ordinary S(v) A-22,26

requeue statement
Ns n/a P-1

Ordinary D(v) Q-1
Ordinary U(v) R-1

Ada User Jour na l Vo lume 38, Number 1, March 2017



40 Def in i t ion-Use Net and System Dependence Net Generators for Ada 2012

Table 2: Examples of DUNs of Ada 2012 Programs

Num Example Type/Label
A-1 procedure Parent is Start
A-2 X,Y:Integer :=1; D(2)={X,Y}
A-3 task T0 is
A-4 entry E1(I : in Integer);
A-5 entry E2(O : out Integer);
A-6 end T0;
A-7 task T1; task T2;
A-8 task body T1 is
A-9 begin S(9)={Parent}
A-10 T0.E1(Y); U(10)={Y},S(10)={T0.E1}
A-11 Put_Line("This is Child T1."); R(11)=T0.E1.END!
A-12 end T1;
A-13 task body T2 is
A-14 begin S(14)={Parent}
A-15 T0.E2(X); D(15)={X},S(15)={T0.E1}
A-16 end T2; R(16)={T0.E2.END!}
A-17 task body T0 is
A-18 begin S(18)={Parent}
A-19 select Ns

A-20 accept E1(I : in Integer) do D(20)={I},R(20)={T0.E1}
A-21 Y:=I*I; D(21)={Y},U(21)={I}
A-22 end E1; S(22)={T0.E1.END!}
A-23 or
A-24 accept E2(O : out Integer) do R(24)={T0.E2}
A-25 O:=X; U(26)={O}
A-26 end E2; S(26)={T0.E2.END!}
A-27 end select;
A-28 end T0;
A-29 begin Pf

A-30 Put_Line("This is Parent."); R(30)={Parent}
A-31 end Parent; Pj , Termination

Volume 38, Number 1, March 2017 Ada User Jour na l



B. Wang, H. Gao, J. Cheng 41

Table 3: Examples of DUNs of Ada 2012 Programs (Continued)

Num Example Type/Label
B-1 function Sqrt (I : Integer) return Integer
B-2 with Precondition => I = 0; U(2)={I}
C-1 Function_Name(X); U(1)={X}
D-1 if N = 1 and Y < 1 then U(1)={N,Y}
E-1 if X in 0.5 .. Z | 2.0*Z .. 10.0 then U(1)={X,Z}
F-1 if M not in Mon .. Fri then U(1)={M}
G-1 Trans_fares :=(case Transport is U(1)={Transport}
G-2 when Train | Metro => 140),
G-3 when Bus => (if Mile <= 100 then
G-4 (if Mile > 70 then 220 else 180); U(4)={Mile}
H-1 B :=(for all I in M’Range => M(I)=’C’); U(1) = {I}
I-1 B :=(for some I in K’Range => K(I)=10); U(1) = {I}
J-1 while X < 10 loop U(1)={X}
K-1 for I in Integer range 100 .. 200 loop D(1)={I}
L-1 Procedure_Name(X); U(1) = {X}
M-1 select Ns

M-2 C.Rendezvous
M-3 else
M-4 Put_Line("Else");
M-5 end select;
N-1 select Ns

N-2 C.Rendezvous
N-3 or
N-4 delay 5.0;
N-5 end select;
O-1 return R: Integer do D(1)={R}
P-1 requeue Entry1 with abort; Ns

Q-1 requeue E(O: out Integer); D(1)={O}
R-1 requeue E(I: in Integer); U(1)={I}

Ada User Jour na l Vo lume 38, Number 1, March 2017



42 Def in i t ion-Use Net and System Dependence Net Generators for Ada 2012

logical properties and their detailed implementation. If there
are some tasks declared in a subprogram, the subprogram is
called these tasks’ parent. They are parent-child relation. Af-
ter elaborating the declarative_part of the parent subprogram,
the tasks start to be activated. The initial part of the execution
of the task body is referred to as the activation of the task,
which consists of the elaboration of the declarative_part of
the task body [20, 29, 30, 31]. Therefore, a parallel execu-
tion branch starting vertex always represents the statement
immediately following the declaration part of the parent sub-
program, such that it is the reserved word begin of the parent
subprogram body. For example, the parallel execution branch
starting vertex appears on line A-29 in the Parent example
program of Table 2.

The parallel execution joins vertex represents a parallel ex-
ecution branch confluence vertex. In Ada 2012 programs,
after all statements of the task body are completed, the parent
subprogram frees up the space of local variables and then
exits. Even all the statements of the parent subprogram body
are earlier completed, it must wait for the completion of all
the statements of the task body. In such a case, the task body
is dependent on the parent subprogram [20,29,30,31]. Hence,
a parallel execution branch join vertex always represents the
statement immediately following the last statement of the
parent subprogram body, such that it is the statement with
the reserved word end of the parent subprogram, like the line
A-31 of the above example program Parent.

The start vertex of DUNs for Ada 2012 programs represents
the program unique start vertex, that is, it is always the start
vertex of the outermost parent subprogram. In Ada 2012
programs, it appears as the first statement of a procedure
body, or a package body, for example, the line A-1 of the
example program Parent.

Similarly, the termination vertex of DUNs for Ada 2012 pro-
grams represents the program unique termination vertex, that
is, it is always the termination vertex of the outermost parent
subprogram. In Ada 2012 programs, it appears as the last
statement of a procedure body declaration, or a package body
declaration, i.e., it has the reserved word end. Note that some-
times the termination vertex and the parallel execution join
vertex is the same vertex, but still unique vertex, for instance,
the line A-31 of the example program Parent is also a termi-
nation vertex, moreover it is the unique termination vertex of
the program.

2.4 Types of Labels of Vertices of DUNs of Ada
2012 Programs

The vertices of the DUNs are labeled with information about
definitions and/or uses of the values of variables and inter-
process synchronizations and communications as above defi-
nitions [15, 20, 26, 29, 30, 31].

D(v) is the set of all variables defined at v. In Ada 2012 pro-
grams, the set of variables defined representations as follows:

• a variable that appears on the left of an assignment state-
ment, such as A-21 of Table 2

• a variable that is declared by a declaration statement
excluding a constant declaration statement, such as A-2

• a variable that is actually referred to a formal parameter
with in mode, or in out mode in an accept statement,
such as A-20

• a variable that is actually referred to an actual parameter
with out mode, or in out mode in an entry call statement
without protected, such as A-15

• a variable that is actually referred to a loop parameter in
a for loop statement, such as K-1

• a variable that is actually referred to a formal parameter
with out mode, or in out mode in a requeue statement,
such as Q-1

• a variable that appears in an extended return statement,
such as O-1

U(v) is the set of all variables used at v. In Ada 2012 pro-
grams, the set of variables used representations as follows:

• a variable that appears on the right of an assignment
statement, such as A-21 in Table 2

• a variable that appears in a function call expression, such
as C-1

• a variable that appears in a procedure call expression
without containing any parameters, such as L-1

• a variable appears in the control predicate of conditional
branches, such as D-1

• a variable that is actually referred to a formal parameter
with out mode, or in out mode, appears on the last
statement to represent the end of an accept statement,
such as A-26

• a variable that is actually referred to an actual parameter
with in mode, or in out mode in an entry call statement
without protected, such as A-10

• a variable that is actually referred to a formal parameter
with in mode, or in out mode in a requeue statement,
such as R-1

• a variable appears on the right of a Boolean expression,
such that it appears on the right of the symbol => of an
aspect specification, such as Precondition, Postcondition,
Type_Invariant, Static_Predicate, Dynamic_Predicate,
even Dispatching_Domain, such as B-2

• a variable appears in some expressions, such as a mem-
bership test expression, a case expression, an if expres-
sion, a for all quantified expression, a for some quantified
expression, such as E-1, F-1, G-1, G-4, H-1, and I-1 in
Table 2

S(v) is the set of symbols of the sending message functions
at v.

R(v) is the set of symbols of the receiving message functions
at v.

In Ada 2012 programs, after the activation of the task is
completed, the statements of the parent subprogram begin to

Volume 38, Number 1, March 2017 Ada User Jour na l



B. Wang, H. Gao, J. Cheng 43

execute. Therefore, the statement immediately following the
declarative_part of the task body, i.e., a vertex representing
the reserved word begin of the task body, is labeled with the
sending message function S(v), such as A-9, A-14, A-18
in Table 2, while the first statement of the parent subpro-
gram, i.e., the first statement under the begin of the parent
subprogram, such as A-30, is labeled with receiving message
functionR(v), which is meaning that the child tasks complete
the activations. The name of the symbol is the same as the
parent subprogram name.

Also, if there is an entry call to another task, the entry call
statement is labeled with S(v) representing the sending mes-
sage function, such as A-10, A-15 in Table 2, the accept
statement corresponding to the entry call statement is labeled
with R(v) representing receiving message function, such as
A-20 and A-24. Whereas, the vertex that represents end of the
accept statement is labeled with S(v) as the sending message
function, such as A-22 and A-26, to the next statement of the
entry call statement, which is labeled with receiving message
function R(v), such as A-11 and A-16. The symbol’s name
is the name of the entry call, representing that the rendezvous
of this entry call is ending. The next statement can execute.

Furthermore, if an Ada 2012 program has some subprogram
calls, i.e., function calls or procedure calls [20], we should
extend the DUN with labels, such as:

• Ain represents the set of all parameters with the mode
in at v that is the subprogram call statement.

• Aout represents the set of all parameters with the mode
out or in out at v that is the subprogram call statement.

• Fin represents the set of all parameters with the mode in
at v that is the start vertex of the subprogram, i.e., callee
function or procedure.

• Fout represents the set of all parameters with the mode
out or in out at v that is the start vertex of the subpro-
gram, i.e., a callee function or procedure.

2.5 Arcs of DUNs of Ada 2012 Programs

In DUNs for Ada 2012 programs, the arcs represent several
types of possible transfers of control between vertices. The
two vertices have one or more types of transfers of control.

2.6 Types of Arcs of DUNs of Ada 2012 Programs

As definitions given [12], there are three types of arcs, sequen-
tial control arcs, nondeterministic selection arcs, and parallel
execution arcs.

The sequential control arc (AC) represents that the control is
transferred sequentially between a sequence of statements in
a subprogram, or a task, or a procedure.

The nondeterministic selection arc (ANs
), always directs from

the nondeterministic selection vertex to every select alterna-
tives. There are at least two select alternatives corresponding
to the selective statement, such that a nondeterministic selec-
tion vertex has at least two nondeterministic selection arcs
adjacent to the select alternatives.

The parallel execution arc represents a control thread diverges
from a parallel execution fork vertex to the vertices represent-
ing other blocks start, i.e., APF

; Or represents several control
threads are confluence to a parallel execution join vertex, i.e.,
APJ

.

Especially, synchronization channels represent a channel of
S(v) sending message function to R(v) receiving message
function. Though in essence they do not belong to control
transfers, we still use arcs to depict them to express synchro-
nization between vertices.

Also, for the scenario that there are some subprogram calls
in an Ada 2012 program, the DUN should represent the in-
terprocedural relationships between call sites and callee sites.
The call arc ACA

is connected from a function call statemen-
t/procedure call statement to the start statement of function
body corresponding to its call/the start statement of procedure
corresponding to its call.

Here, we will illustrate how to represent Ada 2012 programs
by Definition-Use Nets as above definitions. There has been
given an example of an Ada 2012 program in the following
program Example, and its DUN is depicted in Figure 1. Pro-
gram Example is a representative Ada 2012 program. The
vertex number represents the line number of the actual pro-
gram corresponding to the statement. The number following
a variable expresses the number of the variable in a compi-
lation unit (The text of a program can be submitted to the
compiler in one or more compilations. Each compilation is a
succession of compilation units. A compilation unit contains
either the declaration, the body, or a renaming of a program
unit [25]). The same variable uses the same number. In this
Example, procedure Example is the parent of task T1 and T2,
and it has two subprograms, i.e., function Add and function
expression ExpA. Line 67 is fork vertex to the vertices line
45 and line 61 corresponding to the beginning of the activa-
tion of task body T1 and T2 respectively. Both are labeling
parallel execution arc. After the activation of task body T1
and T2, the vertex line 46 and 63 are sending a message to the
vertex line 68 of the execution of the beginning of the parent,
labeling synchronization channel, respectively. The vertices
line 59 and line 65 are labeled with Join, expressing that con-
trol threads are confluence to the termination of the parent.
For task T1, task T2, procedure Example, and subprogram
function Add, control flow is just sequential transfers, such
that they are labeled with sequential control arc in their own
internal.

In addition, there are two entry calls in the procedure Example,
such as Start and Quit. The entry call statements 74 and 76,
both are labeled with S(v) representing to send messages, and
the two accept statements corresponding to the two entry calls
statement respectively, are labeled with R(v) representing
to receive messages, such as line 50 and line 53 in the task
body T1. Whereas, the vertex that represents the finish of
the accept statement is labeled with S(v) representing the
sending messages, such as line 51 and line 54, to the next
statement of the entry call statement, which is labeled with
the receiving message function R(v), such as line 75 and
line 77. The symbol’s name is the name of the entry call,

Ada User Jour na l Vo lume 38, Number 1, March 2017



44 Def in i t ion-Use Net and System Dependence Net Generators for Ada 2012

representing that the rendezvous of this entry call is ending.
The next statement can execute.

Listing 1: Example of an Ada 2012 Program

1 with Ada.Text_IO;
2 use Ada.Text_IO;
3 with Ada.Integer_Text_IO;
4 use Ada.Integer_Text_IO;
5 with Ada.Synchronous_Barriers;
6 use Ada.Synchronous_Barriers;
7
8 Procedure Example is
9
10 NT : constant :=2;
11 SB : Synchronous_Barrier (NT);
12 Notified : Boolean := False ;
13
14 subtype Single is Integer range 1..50;
15
16 subtype Double is Integer
17 with Dynamic_Predicate =>
18 Double mod 3 =0
19 and then
20 Double / 2 in Single ;
21
22 function Add(Arg : in Double) return Integer
23 with Pre => Arg >=10,
24 Post => Add’Result <=100;
25
26 function Add(Arg : in Double) return Integer is
27 begin
28 return Arg+10;
29 end Add;
30
31 function ExpA(I: Integer ) return Integer is
32 ( if I = 0 then 1 else ExpA(I−1)∗2);
33
34 X, Y: Integer ;
35 Z: Integer :=0;
36 Bool :Boolean := False ;
37
38 task T1 is
39 entry Start ;
40 entry Quit ;
41 end T1;
42
43 task T2;
44
45 task body T1 is
46 begin
47 while not Bool loop
48 Wait_For_Release(SB, Notified );
49 select
50 accept Start ;
51 Put_Line("Y+Z=" & Integer’Image(Y+Z));
52 or
53 accept Quit ;
54 Bool :=True;
55 or
56 terminate;
57 end select ;
58 end loop;
59 end T1;
60
61 task body T2 is
62 K:Integer :=5;
63 begin
64 Z:=ExpA(K);
65 end T2;
66
67 begin
68 loop
69 Wait_For_Release(SB, Notified );
70 Get(X);
71 exit when X>100;
72 delay 0.5;
73 Y:=Add(X);
74 T1. Start ;
75 end loop;
76 T1.Quit;
77 end Example;

3 Program Dependences and Interproce-
dural Relations

3.1 An Overview

By means of constructing formal representation of DUNs
of Ada 2012 programs, we can analyze, identify, and define
various types of primary program dependences and interpro-
cedural relations in the program [14]. In this section, based
on concurrent Ada 2012 programs, we define five primary
program dependences, such as control dependence, data de-
pendence, selection dependence, communication dependence,
and synchronization dependence, present four types of in-
terprocedural relations, and then based on primary program
dependences, we give definitions of new types of program
dependences in Ada 2012 programs.

3.2 Program Dependences

Definition 1. Let (V , Ns, PF , PJ , Ain, Aout, Fin, Fout,
AC , ANs , APF

, APJ
, ACA

, s, t) be the CFN of a concurrent
program, and u ∈ V , v ∈ (V − (Ns ∪ PF ∪ PJ ∪ Fin ∪
Fout)) be any two vertices of the net. u is directly strongly
control dependent on v iff there exists a path P = (v1 =
v, v2), (v2, v3), . . . , (vn−1, vn = u) from v to u such that P
does not contain the immediate forward dominator of v and
there exists no vertex v′ in P such that the path from v′ to
u does not contain the immediate forward dominator of v′.
u is directly weakly control dependent on v iff v has two
successors v′ and v′′ such that there exists a path P = (v1 =
v, v2), (v2, v3), . . . , (vn−1, vn = u) from v to u and vertex
vi(1 < i ≤ n) in P strongly forward dominates v′ but does
not strongly forward dominate v′′.

Not that according to the above definition, if u is directly
strongly control dependent on v, then u is also directly weakly
control dependent on v, but the converse is not necessarily
true.

Informally, if u is directly strongly control dependent on v,
then v must have at least two successors v′ and v′′ such that if
the branch from v to v′ is executed then u must be executed,
while if the branch from v to v′′ is executed then u may not
be executed. If u is directly weakly control dependent on v,
then v must have two successors v′ and v′′ such that if the
branch from v to v′ is executed then u is necessarily executed
within a fixed number of steps, while if the branch from v to
v′′ is executed then u may not be executed or the execution
of u may be delayed indefinitely. The difference between
strong and weak control dependences is that the latter reflects
a dependence between an exit condition of a loop and a state-
ment outside the loop that may be executed after the loop
is exited, but the former does not. For example, in Figure
1, vertices 47, 48, 49, and 58 are directly strongly (weakly)
control dependent on vertex 47; vertex 59 is directly weakly
control dependent on vertex 47 but not directly strongly con-
trol dependent on 47; vertices 68, 69, 70, 71, 72, 73, 74, and
75 are directly strongly (weakly) control dependent on vertex
71; vertices 76 and 77 are directly weakly control dependent
on vertex 71 but not directly strongly control dependent on
71.

Volume 38, Number 1, March 2017 Ada User Jour na l



B. Wang, H. Gao, J. Cheng 45

77

8

11

12

36

76

35

34

67

74

73

72

71

70

69

68

75

45

50

49

48

47

46

51

53

54

58

59

64

63

62

61

65

Sequential control arc
Nondeterministic selection arc
Parallel execution arc
Synchronization channel arc

31

Subprogram call arc

28

27

26

Start

D(11)={SB-1}

D(12)={Notified-2}

D(34)={X-3,Y-4}

D(35)={Z-5}

D(36)={Bool-6}

U(47)={Bool-6}

D(48)={SB-1,Notified-2}

U(48)={SB-1}

U(51)={Y-4,Z-5}

D(62)={K-7}

D(64)={Z-5}

A-in(64)={K-7}
D(69)={SB-1,Notified-2}

U(69)={SB-1}

D(70)={X-3}

U(71)={X-3}

D(73)={Y-4}

A-in(73)={X-3}

F-in(26)={Arg}

U(28)={Arg}

F-in(31)={I}

U(31)={I}

Fork

S(46)={Example}

R(47)={Example.T1} S(63)={Example}

R(68)={Example}

Join

Join

Termination

R(64)={Example.T2}

S(69)={Example.Wait_For_Release!END}

R(49)={Example.

Wait_For_Release

!END}

S(48)={T1.Wait_For_Release

            !END}

R(70)={T1.Wait_For_Release!END}

S(74)={T1.Start}

R(50)={T1.Start}

S(76)={T1.Quit}

R(53)={T1.Quit}

D(54)={Bool-6}

S(51)={T1.Start!END}

R(75)={T1.Start!END}

S(54)={T1.Quit!END}

R(77)={T1.Quit!END}

23

24

U(23)={Arg}

Figure 1: The DUN of the program Example

Definition 2. Let (V , Ns, PF , PJ , Ain, Aout, Fin, Fout,
AC , ANs , APF

, APJ
, ACA

, s, t) be the CFN of a concurrent
program, and u ∈ V , v ∈ Ns be any two vertices of the net.
u is directly selection dependent on v iff (1) there exists a
path P = (v1 = v, v2), (v2, v3), . . . , (vn−1, vn = u) from
v to u such that P does not contain the immediate forward
dominator of v, and (2) there exists no vertex vi(1 < i < n)
in P such that the path from vi to u does not contain the
immediate forward dominator of vi.

Informally, if u is directly selection dependent on v, then v
must have some successors such that if the branch from v to
one of the successors is executed then u must be executed,
while if another branch is executed then u may not be exe-
cuted. For example, in Figure 1, vertices 50, 51, 53, and 54
are directly selection dependent on vertex 49.

The difference between the direct (strong or weak) control
dependence and the direct selection dependence is that the for-
mer defines a kind of program dependence holding between
the control predicate of a conditional branch statement and
a statement whether it is executed is determined by the truth
value of the control predicate, but the latter defines a kind
of program dependence holding between a nondeterministic
selection statement and a statement whether it is executed is
determined by the nondeterministic selection.

Definition 3. Let (NC ,ΣV , D, U,ΣC , S,R) be the DUN of

a concurrent program, where NC is the CFN (V , Ns, PF ,
PJ , Ain, Aout, Fin, Fout, AC , ANs , APF

, APJ
, ACA

, s,
t) of the program, and u and v be any two vertices of the
net. u is directly data dependent on v iff there is a path
P = (v1 = v, v2), (v2, v3), . . . , (vn−1, vn = u) from v to
u such that (D(v) ∪ U(u)) − D(P ′) 6= φ where D(P ′) =
D(v2) ∪ · · · ∪D(vn−1).

Informally, if u is directly data dependent on v, then the
value of a variable computed at v has direct influence on the
value of a variable computed at u. For example, in Figure 1,
vertices 47 is directly data dependent on both vertices 36 and
54; vertices 48 and 69 are directly data dependent on vertex
11; vertex 64 is directly data dependent on vertex 62; vertices
71 and 73 are directly data dependent on vertex 70; vertex 51
is directly data dependent on vertex 35.

Definition 4. Let (NC ,ΣV , D, U,ΣC , S,R) be the DUN of
a concurrent program, where NC is the CFN (V , Ns, PF ,
PJ , Ain, Aout, Fin, Fout, AC , ANs , APF

, APJ
, ACA

, s, t)
of the program, and u and v be any two vertices of the net.
u is directly synchronization dependent on v iff any of the
following conditions holds:

(1) (v, u) ∈ APF
∪ APJ

, i.e., (v, u) is a parallel execution
arc,

(2) S(v) = R(u), or

Ada User Jour na l Vo lume 38, Number 1, March 2017



46 Def in i t ion-Use Net and System Dependence Net Generators for Ada 2012

(3) there exists a vertex v′ such that v′ directly synchroniza-
tion dependent on v, u is the last continuous forward domi-
nator of v′, and S(v′′) = φ and R(v′′) = φ for any vertex v′′

(excluding v′) in the path from v′ to u.

Informally, if u is directly synchronization dependent on v,
then the start and/or termination of execution of v directly
determines whether or not the execution of u starts and/or
terminates. For example, in Figure 1, vertices 45, 61, 62
are directly synchronization dependent on vertex 67; vertex
68 is directly synchronization dependent on both vertices 46
and 63; vertex 70 is directly synchronization dependent on
vertex 48; vertex 49 is directly synchronization dependent on
69; vertex 53 is directly synchronization dependent on 76;
vertex 50 is directly synchronization dependent on 74; vertex
75 is directly synchronization dependent on 51; vertex 77 is
directly synchronization dependent on vertices 54, 59, and
65.

The difference between the direct (strong or weak) control
dependence and the direct synchronization dependence is that
the former is irrelevant to the execution timing of a program
but the latter is intrinsically relevant to the execution timing.

Definition 5. Let (NC ,ΣV , D, U,ΣC , S,R) be the DUN of
a concurrent program, where NC is the CFN (V , Ns, PF , PJ ,
Ain, Aout, Fin, Fout, AC , ANs , APF

, APJ
, ACA

, s, t) of
the program, and u and v be any two vertices of the net. u
is directly communication dependent on v iff there exist two
vertices v′ and v′′ such that u is directly data dependent on
v′, R(v′) = S(v′′), and v′′ is directly data dependent on v.

Informally, if u is direct communication dependent on v, then
the value of a variable computed at v has direct influence
on the value of a variable computed at u by an inter-process
communication. For example, in Figure 1, vertex 51 is direct
communication dependent on vertices 64 and 73.

The difference between the direct data dependence and the
direct communication dependence is that the direct data de-
pendence is irrelevant to communication channels of a pro-
gram but the direct communication dependence is intrinsically
relevant to the channels.

3.3 Interprocedural Relations

To handle interprocedure calling and parameter passing issues,
Horwitz et al. modeled System Dependence Graph (SDG)
[32]. In Ada programs, there are four types of interprocedural
relations [17, 26]:

• if statement v is calling a subprogram, the start statement
u of the subprogram is said to be call-related with v. For
example, in Figure 1, vertex 31 is call-relation with
vertices 64 and 31; vertex 26 is call-relation with vertex
73

• the formal parameter u labeled with Fin, is said to be
parameter-in-related with the actual parameter v corre-
sponding to u. For example, in Figure 1, vertex 31 is
also parameter-in-related with vertices 64 and 31; vertex
26 is call-relation with 73

• the actual parameter u is said to be parameter-out-related
with the formal parameter v labeled with Fout corre-
sponding to u

• the parameter/statement u is said to be returned-value-
related with a return statement v corresponding to the
function call, such that a returned value from v directly
affects the variables assigned at u. For example, in
Figure 1, vertex 64 is also returned-value-related with
vertex 31; vertex 73 is returned-value-related with vertex
24

3.4 New Types of Program Dependences in Ada
2012 Programs

On account of changes and extensions introduced by Ada
2012, some new types of program dependences have been
found in [27], such as precondition dependence, postcondition
dependence, predicate dependence, expression dependence,
task-barriers dependence.

• Precondition dependence, postcondition dependence,
and predicate dependence comes from extensions of
“contract-based programming” [20,24,25]. In Ada 2012,
a precondition is an obligation on the caller to ensure
that it is true when the subprogram is called and it is a
guarantee to the implementer of the body that it can be
relied upon on entry to the body [24]. A postcondition is
an obligation on the implementer of the body to ensure
that it is true on return from the subprogram and it is
a guarantee to the caller that it can be relied upon on
return [24]. Similarly, Ada 2012 introduced assertions
for types and subtypes with predicates.

• Expression dependence originates from expression func-
tions, which can parameterize an expression without the
formality of providing a function body. In this way, we
can express an if, case, quantification expression, even a
function in one statement that is an expression.

• Task-barriers dependence is considered from a package
of Ada.Synchronous_barriers to make the tasks given to
be waited for by using a discriminant and to be released
together [20]

However, there are no definitions about the new program de-
pendences in the paper [27], whereby predicate dependences
are relevant to types and belong to dependent types [33], and
thus they cannot be defined by control flow or data flow, such
that there is no predicate dependence in any DUNs. Here, we
will give formal definitions of the other four types.

Definition 6. Let (NC ,ΣV , D, U,ΣC , S,R) be the DUN of
a concurrent program, where NC is the CFN (V , Ns, PF , PJ ,
Ain, Aout, Fin, Fout, AC , ANs

, APF
, APJ

, ACA
, s, t) of

the program, and u and v be any two vertices of the net. u
is directly precondition dependent on v iff (1) there exists a
path P = (v1 = Fin, v2), . . . , (vn−1, vn = Ain), (2) v in P
is the immediate forward dominator of v1, and the t of the net
is the immediate forward dominator of v, and (3) vertex u in
P is directly strongly control dependent on v.

Informally, if u is directly precondition dependent on v, then
v must have two successors such that if the branch from v to

Volume 38, Number 1, March 2017 Ada User Jour na l



B. Wang, H. Gao, J. Cheng 47

one of the successors is executed then u must be executed,
that is meaning that the requirement of precondition meets,
which is true on entry, whereas, on the other branch, v raises
a program exception on precondition, the control flow is
running to termination, u is never executed. For example, in
Figure 1, vertices 27, 28, 24, and 73 are directly precondition
dependent on vertex 23.

The differences between the direct (strong or weak) control
dependence and the direct precondition dependence is that
the former is irrelevant to runtime checks, and must appear in
the control flow but the latter is intrinsically relevant to the
runtime checks optionally by means of a switch.

Definition 7. Let (NC ,ΣV , D, U,ΣC , S,R) be the DUN of
a concurrent program, where NC is the CFN (V , Ns, PF , PJ ,
Ain, Aout, Fin, Fout, AC , ANs , APF

, APJ
, ACA

, s, t) of
the program, and u and v be any two vertices of the net. u
is directly postcondition dependent on v iff (1) there exists a
path P = (v1 = u, v2), . . . , (vn−1, vn = v), u = Ain, and
(2) u is the immediate forward dominator of v, and the t of
the net is the immediate forward dominator of v.

Informally, if u is directly postcondition dependent on v, then
v must have two successors such that if the branch from v to
one of the successors is executed then u must be executed,
that is meaning that the requirement of postcondition meets,
which is true on return, whereas, on the other branch, v raises
a program exception on postcondition, the control flow is
running to termination, u is never executed. For example, in
Figure 1, vertex 73 is directly postcondition dependent on
vertex 24.

The differences between the direct precondition dependence
and the direct postcondition dependence is that the former is
an obligation on the caller to ensure that it is true when the
subprogram is called and it is a guarantee to the implementer
of the body that it can be relied upon on entry to the body,
while the latter is an obligation on the implementer of the
body to ensure that it is true on return from the subprogram
and it is a guarantee to the caller that it can be relied upon on
return. And furthermore, there exit three vertices v′, u and
v in a path P = (v1, v2), . . . , (vn−1, vn) of the DUN, if v′

is precondition dependent on v and postcondition dependent
on u, then u is directly precondition on v and u is a forward
dominator of v.

Definition 8. Let (NC ,ΣV , D, U,ΣC , S,R) be the DUN of
a concurrent program, where NC is the CFN (V , Ns, PF ,
PJ , Ain, Aout, Fin, Fout, AC , ANs , APF

, APJ
, ACA

, s, t)
of the program, and v be a vertex of the net. v is directly
expression dependent on itself v iff (1) there exists a vertex
v, (2) Fin(v) = U(v), and (3) (v, v) ∈ ACA

, i.e., (v, v) is a
subprogram call arc.

Informally, if v is directly expression dependent on itself v,
then v must be an expression function with some control
predicates, to process some recursive loop operations. For ex-
ample, in Figure 1, vertex 31 is directly expression dependent
on itself.

Definition 9. Let (NC ,ΣV , D, U,ΣC , S,R) be the DUN of
a concurrent program, where NC is the CFN (V , Ns, PF , PJ ,

Ain, Aout, Fin, Fout, AC , ANs , APF
, APJ

, ACA
, s, t) of

the program, and u and v be any two vertices of the net. u is
directly task-barriers dependent on v iff (1) there exist two
different paths P1 and P2, and three different vertices u′, w,
and w′, (2) u is the immediate forward dominator of u′ in
P1 and w is the immediate forward dominator of w′ in P2,
(3) u′ and w′ are directly data dependent on v, and (4) u is
directly synchronization dependent on w′ and w is directly
synchronization dependent on u′.

Informally, if u is direct task-barriers dependent on v, then
v must define a specified count value. After the number of
blocked tasks gets to the value, synchronously release a group
of tasks. Each call to Wait_For_Release blocks the calling
task until the number of blocked tasks associated with the
Synchronous Barrier Object is equal to Release Threshold, at
which time all blocked tasks are released. For example, in
Figure 1, vertices 49 and 70 are direct task-barriers dependent
on vertex 11, representing that line 49 and line 70 can be
executed when the number of synchronous barrier object is
equal to Release Threshold defined on line 11.

In Ada 2012 programs, after the activation of the task is com-
pleted, the statements of the parent block begin to execute.
Therefore, the statement immediately following the declar-
ative_part of the task body, i.e., a vertex representing the
reserved word begin of the task body, is labeled with send
message function S(v), such as A-9, A-14, A-18 in Table
2, while the first statement of the parent block, i.e., the first
statement under the begin of the parent block, such as A-30,
is labeled with the receiving message function R(v), which
is meaning that the child tasks complete the activations. The
name of the symbol is the same as the parent block name.

4 System Dependence Nets of Ada 2012
Programs

As above, based on graph-theoretical, when we present the
definitions of various types of program dependences and inter-
procedural relations, we can construct a formal model (SDN)
to depict dependence-based program representation explicitly.

The SDN of a concurrent Ada 2012 program is a kind of
arc-classified digraph to represent program dependences and
interprocedural relations, such that each type of arc explicitly
denotes a type of program dependence or interprocedural
relation, as well as each node indicates a statement at both
ends of the arc.

In Ada 2012 programs, the SDN is defined as an arc-classified
digraph, as (VDUN , Con, Dat, Sel, Syn, Com, Pre, Pos,
Exp, Tas, Cal, Pin, Pout, Ret), where

• VDUN ∈ (V ∩ Ain ∩ Aout ∩ Fin ∩ Fout) to represent
the node set of DUN

• Con is the set of control dependence arcs such that any
2-tuple (u, v) ∈ Con if and only if u is directly control
dependent on v

• Dat is the set of data dependence arcs such that any
2-tuple (u, v) ∈ Dat if and only if u is directly data
dependent on v

Ada User Jour na l Vo lume 38, Number 1, March 2017



48 Def in i t ion-Use Net and System Dependence Net Generators for Ada 2012

• Sel is the set of selection dependence arcs such that any
2-tuple (u, v) ∈ Sel if and only if u is directly selection
dependent on v

• Syn is the set of synchronization dependence arcs such
that any 2-tuple (u, v) ∈ Syn if and only if u is directly
synchronization dependent on v

• Com is the set of communication dependence arcs such
that any 2-tuple (u, v) ∈ Com if and only if u is directly
communication dependent on v

• Pre is the set of precondition dependence arcs such that
any 2-tuple (u, v) ∈ Pre if and only if u is directly
precondition dependent on v

• Pos is the set of postcondition dependence arcs such
that any 2-tuple (u, v) ∈ Pos if and only if u is directly
postcondition dependent on v

• Exp is the set of expression dependence arcs such that
any 2-tuple (u, v) ∈ Exp if and only if u is directly
expression dependent on v

• Tas is the set of task-barriers dependence arcs such that
any 2-tuple (u, v) ∈ Tas if and only if u is directly
task-barriers dependent on v

• Cal is the set of call relation arcs such that any 2-tuple
(u, v) ∈ Cal if and only if u is call related with v

• Pin is the set of parameter-in relation arcs such that any
2-tuple (u, v) ∈ Pin if and only if u is parameter-in-
related with v

• Pout is the set of parameter-out relation arcs such that
any 2-tuple (u, v) ∈ Pout if and only if u is parameter-
out-related with v

• Ret is the set of returned-value relation arcs such that
any 2-tuple (u, v) ∈ Ret if and only if u is returned-
value-related with v

As thus, by using various types of arcs, the SDN of an Ada
2012 program can explicitly represent control dependence,
data dependence, selection dependence, synchronization de-
pendence, communication dependence, precondition depen-
dence, postcondition dependence, expression dependence,
task-barriers, call-relation, parameter-in-relation, parameter-
out-relation, and returned-value-relation, respectively. Figure
2 shows the SDN of the Ada 2012 program Example, corre-
sponding to its DUN in Figure 1.

5 Method of Generating DUNs for Ada
2012 Programs

5.1 Requirements Analysis of DUNs of Ada 2012
Programs

In order to generate a DUN for an Ada 2012 program auto-
matically, we compute vertices, labels, and arcs as described
in Section 2, such that they are regarded as the output of the
DUN generator. For vertices, we just need to judge what
statement the line number is. A DUN generator should satisfy
the following requirements.

R1 The DUN generator should judge what statement every
line represents in an Ada 2012 programs, as Table 1. A
program consists of various statements. Each of them
represents a declaration, or a definition, or a control pred-
icate, or a parameter, or an execution statement, or an
exception handler, or a path, as mentioned in section 2.2.
This demands the DUN generator has to distinguish what
every line represents, i.e., what every vertex represents.

R2 The DUN generator should find five types of special ver-
tices, if any, that is, nondeterministic selection vertices,
parallel execution fork vertices, parallel execution fork
vertices, parallel execution join vertices, start vertex, and
termination vertex, as described in section 2.3.

R3 The DUN generator should distinguish types of labels of
vertices as the same as that section 2.4 described, to get
information about the set of variables defined at a vertex
D(v), the set of variables used at the vertex U(v), the
set of the symbols of the send messages function S(v),
and the set of symbols of the receive messages function
R(v).

R4 The DUN generator should depict transfers of control
between vertices, i.e., getting information about control
flows, which are the ends of the arc.

R5 The DUN generator should distinguish types of arcs
of DUNs as section 2.6 mentioned, such as sequential
control arcs, nondeterministic selection arcs, parallel
execution arcs, and even synchronization channels.

R6 The DUN generator should judge parent-child relation-
ships among tasks.

5.2 Algorithms of Generating DUNs for Ada 2012
Programs

Algorithm 1 Compute labels
Input vertices
Output labels of vertices
for every vertex v do

if v has variables then
if the variables in D(v) then

label D(v)=the variables’ names
end if

if the variables in U(v) then
label U(v)=the variables’ names

end if
end if

end for

For the sequential arcs, they just appear in every task, block,
procedure, such that they are identical with those in a sequen-
tial program, i.e., control flow graph. We design algorithms
to compute labels and other three types of arcs of DUNs in
the following Algorithm 1, Algorithm 2, and Algorithm 3.

Algorithm 1 shows an algorithm to compute labels of vertices.
Input is each of vertices, that is, every statement in an Ada
2012 programs. Algorithm 2 shows an algorithm to compute
nondeterministic selection arcs. Algorithm 3 shows an algo-
rithm to compute synchronization channel arcs. The input of
Algorithm 2 and Algorithm 3 is a compilation unit. The text
of a program can be submitted to the compiler in one or more

Volume 38, Number 1, March 2017 Ada User Jour na l



B. Wang, H. Gao, J. Cheng 49

77

11

36

76

35

67

74

73

72

71

70

69

68

75

45

50

49

48

47

46

51

53

54

58

59

64

63

62

61

65

Control dependence arc
Selection dependence arc
Synchronization dependence arc

31Call/Returned-value/Parameter-in/

Parameter-out relation arc 

28

23

26

Data dependence arc

Communication dependence arc

27

24

Precondition dependence arc

Postcondition dependence arc
Expression dependence arc
Task-barriers dependence arc

Figure 2: The SDN for the program Example

Algorithm 2 Compute nondeterministic selection arcs
Input compilation units
Output nondeterministic selection arcs
for every task/block/procedure T do

if T has select statements then
for every vertex v as every select statement of T do

connect a nondeterministic selection arc to from v to the first statement
of every select alternative corresponding to v

end for
end if

if T has requeue with abort then
for every vertex v as every a requeue with queue of T do

connect a nondeterministic selection arc from v to the entry call state-
ment corresponding to v {requeue to the corresponding entry call}
connect a nondeterministic selection arc from v to v itself {abort due to
an abort or the expiration of a delay of the entry call}

end for
end if

end for

compilations. Each compilation is a succession of compila-
tion units. A compilation unit contains either a declaration, a
body, or a renaming of a program unit [25]. A program unit is
either a package, a task unit, a protected unit, a protected en-
try, a generic unit, or an explicitly declared subprogram other
than an enumeration literal. Certain kinds of program units
can be separately compiled. Alternatively, they can appear
physically nested within other program units [25]. Here, we
should traverse every task/block/procedure to compute arcs.

5.3 Implementation of a DUN Generator for Ada
2012 Programs

The Ada Semantic Interface Specification (ASIS) [28] is an
ISO standard that defines an interface between Ada environ-
ments. We developed an ASIS-based tool to cope with syntax
and semantics of Ada 2012. The tool can get considerable
information through the ASIS interface, which is installed as
an Ada library. The functions of the DUN generator are to
generate DUNs of compilation units in the Ada environment.
Figure 3 shows a generation flow of DUNs for Ada 2012
programs.

In order to generate DUNs from Ada 2012 programs, there
are six functional components in a definition-use generator.
The core component, called Ada2DUN, is invoking other five
components, DUN_Handler, Gela_Ids, Stacks, V_Strings,
and Id_List.

The component Ada2DUN can traverse a target Ada 2012
program to generate a DUN.

Component DUN_Handler encapsulates 77 functions and
procedures to handle DUNs as definitions and requirements.

The Gela_Ids [34] encapsulates a set of operations and queries
that implement the ASIS Id abstraction. An Id is a way of
identifying a particular Element, from a particular Compila-
tion_Unit, from a particular Context. Ids can be written to
files. Ids can be read from files and converted into an Element

Ada User Jour na l Vo lume 38, Number 1, March 2017



50 Def in i t ion-Use Net and System Dependence Net Generators for Ada 2012

Algorithm 3 Compute synchronization channel arcs
Input compilation units
Output synchronization channel arcs
for every task/block/procedure T do

if T has child then
connect a synchronization channel arc from begin of T to the first statement
of T’s each child {FORK}
label S(v) and R(v) to both ends of the arc, respectively
connect the last statement of T’s each child to the last statement of T {JOIN}
label S(v) and R(v) to both ends of the arc, respectively

end if

if T has entry call to another task/block/procedure then
for every vertex v as every entry call statement of T do

connect a synchronization channel arc from v to accept statement corre-
sponding to v
label S(v) and R(v) to both ends of the arc, respectively
connect a synchronization channel arc from the last statement of accept
statement corresponding to v to next statement of v
label S(v) and R(v) to both ends of the arc, respectively

end for
end if

if T has queues then
for every vertex v as every enqueue statement of a queue do

connect a synchronization channel arc from v to next statement of the
same queue’s the dequeue in another task/block/procedure correspond-
ing to v
label S(v) and R(v) to both ends of the arc, respectively

end for
for every vertex v as every dequeue statement of the queue do

connect a synchronization channel arc from v to next statement of the
same queue’s the enqueue in another task/block/procedure correspond-
ing to v
label S(v) and R(v) to both ends of the arc, respectively

end for
end if

if T has Barriers then
for every vertex v as every wait_for_release statement of a barrier do

connect a synchronization channel arc from v to next statement of the
same barrier’s the wait_for_release in another task/block/procedure cor-
responding to v
label S(v) and R(v) to both ends of the arc, respectively

end for
end if

end for

value with the use of a suitable open Context. By using Id,
the Gela_Ids uses hash of an element concatenated with unit
unique name.

Also, the Stacks encapsulates a generic stack handler package.
The V_Strings encapsulates some strings handler functions.
Finally, the Id_List supports some functions for handling a
list of Ids.

The generator of DUNs contains the following processes, i.e.,
an ASIS application must use the following steps [35]:

S1 Asis.Implementation.Initialize (...); −− Initialize ASIS.

S2 Asis.Ada_Environments.Associate (...); −− Associate
ASIS.

S3 Asis.Ada_Environments.Open (...); −− Open a context.

S4 Get the name of the target unit for the user, and get a
compilation unit of the name.

S5 Process elements contained in each compilation unit and
generate DUN.

S6 Asis.Environments.Close (...); −− Close the context.

S7 Asis.Environments.Dissociate (...); −− Process the
whole DUN.

Target Program

Ada compiler

Ada environment

A Definition-Use Net Generator 

Definition-Use Net

Dun_Handler

Id_List

StacksGela_Ids

V_Strings

Ada2DUN

Compilation Unit

Asis

Asis.Environments

Asis.Elements

Asis.Errors

Asis.Expressions Asis.Statements

Asis.Iterator

Asis.Text

Asis.Implementation

Asis.Definitions

Asis.Declarations

Asis.Compilation_Units

Asis.Exceptions

Data flow

Input and Output

Figure 3: A generation flow of DUNs for Ada 2012 programs

S8 Asis.Implementation.Finalize (...); −− Finalize ASIS.

S9 Output the DUN as the text file.

We give an output of this generator for the example program
of Figure 1. The elapsed time is Clock 58156.807824882—
58158.226458761 on Windows 7 with Intel Core i7-860 Pro-
cessor (2.8 GHz, 4 cores, 8 threads), and 4 Gbyte memory.

A text output List 2 of this generator for the example program
of Figure 1 as follows.

Listing 2: A text output of the DUN generator for Example

1: <line> b−8 <connect> 2
2: <line> b−11 <connect> 3 <def> Synchronous_Barrier,
MAIN.Example5.SB−1
3: <line> b−12 <connect> 4 <def> Boolean,
MAIN.Example5.Notified−2
4: <line> b−35 <connect> 5 <def> Integer ,
MAIN.Example5.Y−4 Integer,MAIN.Example5.X−3
5: <line> b−36 <connect> 6 <def> Integer ,
MAIN.Example5.Z−5
6: <line> b−37 <connect> 7 <def> Boolean,
MAIN.Example5.Bool−6
7: <line> b−68 <connect> 8 <fork> 32 21
8: <line> b−17 <receive> MAIN.Example5
9: <line> b−23 <Pre−connect> 11
10: <line> b−24 <Post−connect> 42
37: <line> b−69 <connect> 38
38: <line> b−70 <connect> 39
39: <line> b−71 <connect> 40
40: <line> b−72 <connect> 41 45
41: <line> b−73 <connect> 42
42: <line> b−74 <connect> 43 <use> Integer,
MAIN.Example5.Add−7 <call> 9 <a−in>
43: <line> b−75 <connect> 44 <send> MAIN.Example5.T1.Start
44: <line> b−76 <connect> 37

Volume 38, Number 1, March 2017 Ada User Jour na l



B. Wang, H. Gao, J. Cheng 51

45: <line> b−77 <connect> 46 <send> MAIN.Example5.T1.Quit
46: <line> b−78

11: <line> b−26 <connect> 12 <f−in> Double,
MAIN.Example5.Add.Arg−8
12: <line> b−27 <connect> 13
13: <line> b−28 <connect> 14 <receive> MAIN.Example5.Add
14: <line> b−28 <connect> 15 <return> Integer,
MAIN.Example5.Add−7
15: <line> b−29

16: <line> b−31 <connect> 17 <f−in> Integer,
MAIN.Example5.ExpA.I−10
17: <line> b−32 <connect> 18
18: <line> b−33 <connect> 19 <receive> MAIN.Example5.ExpA
<call> 16 <a−in>
19: <line> b−33 <connect> 20 <use> Integer,
MAIN.Example5.ExpA.ExpA−9 <return> Integer,
MAIN.Example5.ExpA.ExpA−9
20: <line> b−34

21: <line> b−46 <connect> 22
22: <line> b−47 <connect> 23 <send> MAIN.Example5
23: <line> b−48 <connect> 24 31 <receive> MAIN.Example5.T1
24: <line> b−49 <connect> 25
25: <line> b−50 <s−connect> 26 28 31
26: <line> b−51 <connect> 27 <receive>
MAIN.Example5.T1.Start
27: <line> b−52 <connect> 30
28: <line> b−54 <connect> 29 <receive>
MAIN.Example5.T1.Quit
29: <line> b−55 <connect> 30
30: <line> b−59 <connect> 23
31: <line> b−60 <join> 46

32: <line> b−62 <connect> 33
33: <line> b−63 <connect> 34 <def> Integer ,
MAIN.Example5.T2.K−11
34: <line> b−64 <connect> 35 <send> MAIN.Example5
35: <line> b−65 <connect> 36 <use> Integer,
MAIN.Example5.ExpA.ExpA−9 <receive>
MAIN.Example5.T2 <call> 16 <a−in>
36: <line> b−66 <join> 46

Here, we input an open source of Ada 2012 programs. Ada
Web Server (AWS) is an Ada-based web server, which can be
embedded allowing your application to talk with all modern
web browsers [36]. We chose Ada Web Server to evaluate the
DUN generator, because Ada Web Server is an open source
and includes all features of Ada 2012 programs. We input 234
source files (167 specification ads files and 67 adb body files)
of AWS as the target program. The DUN generator outputted
144 adt tree files, 83 DUN files, and 4328 vertices.

6 Method of Generating SDNs for Ada
2012 Programs

We can capture various program dependences in Figure 4,
representing a data flow for generating program dependences
from the DUN in Ada 2012 programs.

By means of inputing DUNs of target programs, we can get
various types of program dependences. We propose algo-
rithms to compute forward-dominator tree, control depen-
dence, data dependence, synchronization dependence, com-
munication dependence, selection dependence, precondition
dependence, postcondition dependence, and expression de-
pendence for Ada 2012 programs.

Target Program

Ada compiler

Ada environment

Compilation unit

   ASIS

Interface

The parser for Ada source program

Lexical analysis Syntax analysis

Definition-Use Net

Data flow 

Input and Output

call-relation, 

parameter-in-relation, 

parameter-out-relation

returned-value-relation

Compute 

multiprocessor 

Dispatching 

 Definition and use of

aspect cpu and priority

Summarize

System Dependece Net

Control,

data

dependence

Symbol table of select,

communication, task-barriers,

synchronization dependence

Compute select,

communication, task-barriers,

synchronization dependence

select, communication,

synchronization

dependence

Precondition,

postcondition,

predicate,

expression 

dependence

Compute

interprocedural

relations

Compute 

control, data 

dependence
Generation of 

Task 

Dependence Net

Figure 4: A data flow for generating program dependences
from the DUN in Ada 2012

Algorithm 4 Compute forward-dominator tree
Input definition-use net
Output forward-dominator tree
if vertex v only has one successor then

the forward-dominator of v is the successor
else

find all the passes from v to the end vertex
find the common path of all the passes from v to the end vertex
the first vertex of the common path is the forward-dominator of v

end if

Algorithm 5 Compute control dependence
Input definition-use net
Output control dependence arcs
Make the forward-dominator tree
for each vertex in the DUN do

if the control flow begin from the vertex v is at least two then
make the parent list of the vertex v based on the forward dominator
for each vertex u in the branch of the vertex do

make the parent list of the vertex u based on the forward dominator
end for
if the vertex v is in the parent list of vertex u or the any parent of vertex v
is in the parent list of vertex u then

vertex u is control dependent on (vertex u + parent list of vertex v -
parent list of vertex v)

end if
end if

end for

Ada User Jour na l Vo lume 38, Number 1, March 2017



52 Def in i t ion-Use Net and System Dependence Net Generators for Ada 2012

Algorithm 6 Compute data dependence
Input definition-use net
Output data dependence arcs
repeat

for each vertex v and its successor u do
if the variable x is defined in v then

push v into chain[u][x]
else

push chain[v][x] into chain[u][x]
end if

end for
until the array chain is changed during the block above
for each vertex w do

for each vertex y used in w do
draw the arc from y to chain[y][w] to show the data dependence

end for
end for

Algorithm 7 Compute synchronization dependence
Input definition-use net, control dependence arcs
Output synchronization dependence arcs
for each vertex v contains fork/join arc(s) in DUN do

for each vertex u of the successor of the fork/join arcs do
use connectsync (u, v) to draw synchronization dependences

end for
end for

for each vertex v contains the set of sending do
for each node u that has the same channel in their receiving do

if the set of sending of v equals the set of receiving of u then
use connectsync (u, v) to draw synchronization dependences

end if
end for

end for

connectsync (u, v)
draw the arc that shows u synchronization depends on v
while u has only one successor do

u′ = the successor of u
if u has the set of sending or receiving then

break
end if
draw the arc that u′ depends on v

end while

Algorithm 8 Compute communication dependence
Input definition-use net, control dependence arcs
Output communication dependence arcs
for each vertex v that has set of sending do

for each vertex u that the set of receiving equals to the set of sending of v do
for each vertex start node that v depends on do

for each vertex end node that depends on u do
draw the arcs that show end node depends on start node

end for
end for

end for
end for

Algorithm 9 Compute selection dependence
Input definition-use net, control dependence arcs
Output selection dependence arcs
for each nondeterministic vertex v do

for each vertex u that control depends on v do
add the arc that shows u selection depends on v
delete the arc that shows u control depends on v

end for
end for

Algorithm 10 Compute precondition dependence
Input definition-use net, control dependence arcs
Output precondition dependence arcs
for each vertex v in the DUN do

if v is the immediate forward dominator of a vertex Fin and t is the immediate
forward dominator of v then

if u strong control depends on v then
add the arc that shows u precondition depends on v
delete the arc that shows u control depends on v

end if
end if

end for

Algorithm 11 Compute postcondition dependence
Input definition-use net, control dependence arcs
Output postcondition dependence arcs
for each vertex labeled with Ain(u) do

if u is the immediate forward dominator of v then
if t is the immediate forward dominator of v then

add the arc that shows u postcondition depends on v
end if

end if
end for

Algorithm 12 Compute expression dependence

Input definition-use net
Output Expression dependence arcs
for each vertex v do

if Fin(v) = U(v) then
if (v, v) ∈ ACA

then
add the arc that shows v expression depends on v

end if
end if

end for

Here, we show a text output List 3 of the SDN generator cor-
responding to the input file of the DUN of Example program
of Figure 1.

Listing 3: A text output of the SDN generator for Example

1: <line> b−8
2: <line> b−11
3: <line> b−12
4: <line> b−35
5: <line> b−36
6: <line> b−37
7: <line> b−68
8: <line> b−17 <sync> 22 34
9: <line> b−23 <call> 42
10: <line> b−24
11: <line> b−26 <pre> 9
12: <line> b−27 <pre> 9
13: <line> b−28 <pre> 9
14: <line> b−28 <pre> 9
15: <line> b−29 <pre> 9
16: <line> b−31 <call> 18 35
17: <line> b−32
18: <line> b−33 <param−out> 19
19: <line> b−33
20: <line> b−34
21: <line> b−46 <sync> 7
22: <line> b−47
23: <line> b−48 <control> 40 <sele> 25
24: <line> b−49 <control> 25 40 <sele> 25
25: <line> b−50 <control> 25 40 <sele> 25
26: <line> b−51 <control> 40 <sele> 25 <sync> 43
27: <line> b−52 <control> 40 <sele> 25 <sync> 43
28: <line> b−54 <control> 40 <sele> 25 <sync> 45
29: <line> b−55 <control> 40 <sele> 25 <sync> 45

Volume 38, Number 1, March 2017 Ada User Jour na l



B. Wang, H. Gao, J. Cheng 53

30: <line> b−59 <control> 40 <sele> 25 <sync> 43 45
31: <line> b−60
32: <line> b−62 <sync> 7
33: <line> b−63 <sync> 7
34: <line> b−64
35: <line> b−65 <param−out> 19
36: <line> b−66
37: <line> b−69 <control> 40
38: <line> b−70 <control> 40
39: <line> b−71 <control> 40
40: <line> b−72 <control> 40
41: <line> b−73 <control> 40
42: <line> b−74 <control> 40 <post> 10
43: <line> b−75 <control> 40
44: <line> b−76 <control> 40
45: <line> b−77
46: <line> b−78 <sync> 31 36
47: <line> b−31 <control> 16 <param−in> 48 49
48: <line> b−33 <control> 18
49: <line> b−65 <control> 35
50: <line> b−74 <control> 42

Also, we could output the result on demand with some
switches on the console, such as “-c”, “-d”, “-syn”, “-com”,
“-sel”, “-pre”, “-post”, “-exp”, “-pout”, “-pin”, “-call” corre-
sponding to separately outputting control dependence, data
dependence, synchronization dependence, communication
dependence, selection dependence, precondition dependence,
postcondition dependence, expression dependence, parameter-
out-relation, parameter-in-relation, call-relation, if any.

7 Applications of DUNs and SDNs
7.1 Applications of DUNs

The DUN of a concurrent program can provide a clear and
precise basis for definitions of notions, descriptions of meth-
ods, and developments of tools in software engineering. Some
applications dependent on the DUN are as follows.

First, the DUN provides a basis for defining software test
coverage criteria and generating software test data.

Second, having the DUN as representations of concurrent
programs, many well-know complexity metrics of sequential
programs can be redefined for concurrent programs based on
the representation [18].

Third, the DUN can be used as program understanding tools
in software maintenance and re-engineering.

7.2 Applications of SDNs

7.2.1 Slicing

The most direct and important use of SDNs will be program
slicing. The explicit representation of the various program de-
pendences in programs makes SDN ideal for program slicing.

Program slicing was first proposed by Weiser [5, 37]. It is a
method for automatically decomposing programs. It provides
a reduced program by erasing irrelevant statements in the
original program based on certain statements and a set of vari-
ables, called the “criterion”. The reduced program is called
a “slice” based on the criterion. He claimed that experienced
programmers always create a “slice” in their mind to find the
suspect which causes the error. And with program slicing
technology, creating the “slice” based on certain criterion

can be done automatically and helps programmers by narrow-
ing down the possible scope of the cause of error. During
about 30 years’ researches, the most popular approach [19] to
process program slices are based on SDNs. Program slicing
based on SDN will be simplified as a reachability problem on
a digraph.

7.2.2 Testing

Testing is the process that executes the program with the
intention of finding errors. Since SDNs can represent the data
flow properties of the program, the dependence-coverage of
programs can be found by using SDN.

7.2.3 Understanding and Maintenance

To understand a program, we always intent to find which
variable in which statement might affect a variable of interest.
With a certain slice of the program, the set of the statements
and the variables which affect the variable of interest can be
easily found. As we mentioned above, to create the slice, we
have to build the SDN of the program.

In program maintenance, the problem which is called “ripple
effect” [38] is well-known as: whether changing a code in a
program will affect the behavior of other codes of the program,
which may cause new error(s). With the slice of the changing
code, we can find all the codes in the program that might be
affected. It is obviously useful in program maintenance to
build slices. As we mentioned above, to build slices, the SDN
will come in handy.

7.2.4 Complexity Measurement

Software metrics have many uses in software engineering,
such as program understanding, debugging, testing, analysis,
maintenance, and so on [18]. Based on SDN, we can define
a set of metrics for measuring the complexity of programs
from several viewpoints. For example, the metric defined
by the sum of all program dependences between statements
can be used to measure the complexity of corresponding pro-
gram. The metric defined by the sum of communication
dependences can be used to measure the complexity of con-
currency in corresponding program. And the proportion of
the communication dependences in a program can be used to
measure the degree of concurrency in corresponding program.

8 Concluding Remarks
This paper presented how to construct and generate DUNs
and SDNs of Ada 2012 programs. Based on graph theory, we
modeled a complete representations of DUNs and SDNs of
Ada 2012 programs including new types of program depen-
dences and proposed methods to generate DUNs and SDNs of
Ada 2012 programs. We developed a definition-use net gen-
erator and a system dependence net generator for Ada 2012
programs, which could compute control flow and data flow,
and all types of program dependences and interprocedural
relations of SDNs of Ada 2012 programs, respectively.

There are three limitations of the DUN generator. First, it
is about Exception handler. The DUN generator ignores
exceptions, if any. Because as a static tool, it cannot model

Ada User Jour na l Vo lume 38, Number 1, March 2017



54 Def in i t ion-Use Net and System Dependence Net Generators for Ada 2012

an exception raised and exception propagation raised at run-
time, and we would like to process it like SPARK (subset of
Ada) [39] programming language without exception handlers.
Second, it cannot process task types, because of dynamic
task creation with allocators, which need dynamic running
history method. Finally, it is about tagged types. A tagged
type provides support for dynamic polymorphism and type
extension. Because of hidden tag, a tagged type identifies the
type at run-time, therefore, it is dependent on type dependence
and none of DUN.

References
[1] K. Ottenstein and L. Ottenstein (1984), The program

dependence graph in a software development environ-
ment, ACM Transaction on Programming Languages
and Systems, vol. 19, no. 5, pp. 177–184.

[2] J. Ferrante, K. Ottenstein, and J. Warren (1987), The
program dependence graph and its use in optimization,
ACM Transaction on Programming Languages and Sys-
tems, vol. 9, no. 3, pp. 319–349.

[3] D. Binkley, M. Harman, Y. Hassoun, S. Islam, and Z. Li
(2010), Assessing the impact of global variables on
program dependence and dependence clusters, Journal
of Systems and Software, vol. 83, no. 1, pp. 96–107.

[4] S. Bates and S. Horwitz (1993), Incremental program
testing using program dependence graphs,in Proceed-
ings of the 20th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 384–396,
ACM.

[5] M. Weiser (1981), Program slicing, in Proceedings of
the 5th International Conference on Software Engineer-
ing, pp. 439–449, IEEE Press.

[6] A. Podgurski and L. Clarke (1990), A formal model of
program dependences and its implications for software
testing, debugging, and maintenance, IEEE Transac-
tions on Software Engineering, vol. 16, no. 9, pp. 965–
979.

[7] K. B. Gallagher and J. R. Lyle (1991), Using program
slicing in software maintenance, IEEE Transactions on
Software Engineering, vol. 17, no. 8, pp. 751–761.

[8] J. Krinke (2001), Identifying similar code with program
dependence graphs, in Proceedings Eighth Working
Conference on Reverse Engineering, pp. 301–309, IEEE
Computer Society Press.

[9] K. Hotta, Y. Higo, and S. Kusumoto (2012), Identifying,
tailoring, and suggesting form template method refac-
toring opportunities with program dependence graph,
in 16th European Conference on Software Maintenance
and Reengineering (CSMR), pp. 53–62, IEEE.

[10] D. Giffhorn and G. Snelting (2012), Probabilistic Non-
interference Based on Program Dependence Graphs.
KIT, Fakultät für Informatik.

[11] A. Johnson, L. Waye, S. Moore, and S. Chong (2015),
Exploring and enforcing security guarantees via pro-
gram dependence graphs, ACM SIGPLAN Notices,
vol. 50, no. 6, pp. 291–302.

[12] J. Cheng (1994), Nondeterministic parallel control-flow
/ definition-use nets and their applications, in G. R.
Joubert, D. Trystram, F. J. Prters, and D. J. Evans (Eds.),
Parallel computing: Trends and Applications, pp. 589–
592, Elseviser Science Publishers B. V.

[13] J. Cheng (1992), Task dependence net as a represen-
tation for concurrent ada programs, in Ada: Moving
towards 2000, 11th Ada-Europe International Confer-
ence, Lecture Notes in Computer Science, vol. 603,
pp. 150–164, Springer-Verlag.

[14] J. Cheng (1993), Process dependence net of dis-
tributed programs and its applications in development
of distributed systems, in Proc. 17th Annual Interna-
tional Computer Software & Applications Conference,
pp. 231–240, IEEE Computer Society Press.

[15] Y. Kasahara, J. Cheng, and K. Ushijima (1996), Task
dependence net of concurrent ada programs and its au-
tomatic generation (in Japanese), Transactions of IEICE,
vol. J79-D-I, no. 11, pp. 925–935.

[16] J. Cheng (1997), Task dependence nets for concurrent
systems with ada 95 and its application, in 1997 ACM
TRI-Ada International Conference, pp. 67–78, ACM
Press.

[17] J. Zhao, J. Cheng, and K. Ushijima (1997), System de-
pendence net: An interprocedural program dependence
representation for occam 2 programs, Noguchi, S., Ota,
M. (Eds), Correct Models of Parallel Computing, pp. 87–
96.

[18] J. Cheng (1993), Complexity metrics for distributed pro-
grams, in Proc. 4th International Symposium on Soft-
ware Reliability Engineering, pp. 132–141, IEEE Com-
puter Society Press.

[19] J. Cheng (1993), Slicing concurrent programs - a graph-
theoretical approach, in Fritzson, P. A. (Eds.), First In-
ternational Workshop, Automated and Algorithmic De-
bugging, Lecture Notes in Computer Science, vol. 749,
pp. 223–240, Springer.

[20] ISO/IEC (2012), ISO/IEC 8652:2012 (E): Information
Technology - Programming Language - Ada.

[21] AdaCore, Ada 2012. Available at
http://www.ada2012.org, accessed at Jan. 9. 2017.

[22] AdaCore, The ada programming language.
http://www.adacore.com/adaanswers/about/ada,
accessed at Jan. 9. 2017.

[23] AdaCore, Ada 2012: Ada with contracts.
http://www.drdobbs.com/ architecture-and-design/ada-
2012-ada-with-contracts/240150569, accessed at Jan. 9.
2017.

Volume 38, Number 1, March 2017 Ada User Jour na l



B. Wang, H. Gao, J. Cheng 55

[24] J. Barnes (2013), Ada 2012 Rationale: The Language
– The Standard Libraries (Lecture Notes in Computer
Science / Programming and Software Engineering),
Springer.

[25] J. Barnes (2014), Programming in Ada 2012, Cambridge
University Press.

[26] Y. Nonaka, K. Hatano, Y. Nomura, J. Cheng, and
K. Ushijima (1999), A system dependence net generator
for ada programs, in Proc. Sixth Asia-Pacific Software
Engineering Conference, pp. 441–448, IEEE Computer
Society Press.

[27] B. Wang, Y. Goto, and J. Cheng (2013), New types of
program dependences and interprocedural relations in
ada 2012 programs, in Proceedings of the 4th IEEE
International Conference on Software Engineering and
Service Science, pp. 718–723, IEEE Press.

[28] ISO/IEC (2013), ISO/IEC 15291:2012 (E): Information
Technology - Programming Language - Ada Semantic
Interface Specification (ASIS).

[29] ISO/IEC (1987), ISO/IEC 8652:1987 (E): Information
Technology - Programming Language - Ada.

[30] ISO/IEC (1995), ISO/IEC 8652:1995 (E): Information
Technology - Programming Language - Ada.

[31] ISO/IEC (20016), ISO/IEC 8652:2007 (E), Ed. 3: Infor-
mation Technology - Programming Language - Ada.

[32] S. Horwitz, T. Reps, and D. Binkley (1990), Interproce-
dural slicing using dependence graphs, ACM Transac-
tions on Programming Languages and Systems, vol. 12,
no. 1, pp. 26–60.

[33] A. Bove and P. Dybjer (2009), Dependent types at work,
in Bove, A., Barbosa, L.S., Pardo, A., Pinto, J.S. (Eds.),
Language Engineering and Rigorous Software Devel-
opment, Lecture Notes in Computer Science, vol. 5520,
pp. 57–99, Springer.

[34] Gela Project, Gela asis. http://gela.ada-ru.org/gela_asis,
accessed at Jan. 9. 2017.

[35] AdaCore, Asis-for-gnat user’s guide.
http://docs.adacore.com/asis-docs/asis_ug.html,
accessed at Jan. 9. 2017.

[36] AdaCore, Adacore: Ada web server.
http://www.adacore.com/aws, accessed at Jan. 9.
2017.

[37] M. Weiser (1982), Programmers use slices when de-
bugging, Communications of the ACM, vol. 25, no. 7,
pp. 446–452.

[38] S. Yau, J. Collofello, and T. MacGregor (1978), Ripple
effect analysis of software maintenance, in The IEEE
Computer Society’s Second International, Computer
Software and Applications Conference, pp. 60–65, IEEE
Computer Society Press.

[39] J. McCormick and P. Chapin (2015), Building High In-
tegrity Applications with SPARK, Cambridge University
Press.

Ada User Jour na l Vo lume 38, Number 1, March 2017





 57  

Ada User Journal Volume 38, Number 1, March 2017 

SPARK 2014 Rationale: Type Predicates, Variables 
that are Constant, Support for Ravenscar and 
Support for Type Invariants 
Yannick Moy, Claire Dross 

AdaCore, France 

 
Abstract 

This paper continues the publication of the "SPARK 
2014 Rationale", which started in the December 2013 
issue of the Ada User Journal. In this instalment, we 
present four new contributions regarding type 
predicates, variables that are constant, support for 
Ravenscar and support for type invariants. 

1   Type Predicates 

Yannick Moy 

Preconditions and postconditions define a very strong 
mechanism for specifying invariant properties over the 
program's control. What about similar properties for the 
program's data? It turns out Ada 2012 defined such a 
construct, type predicates, which was not supported in 
SPARK until now. And now it is. 

With type predicates, one can express all the invariant 
properties of data that could not be expressed with type 
ranges, non-nullness constraints, discriminants, etc. For 
example, are you doing cryptography and you want to 
define a type for prime numbers? You can with type 
predicates: 

   type Prime is new Positive with 
     Predicate => (for all Divisor in 2 .. Prime / 2 =>  
 Prime mod Divisor /= 0); 

The predicate above reads: "for all values of divisor 
between 2 and half the value of a prime number, the divisor 
does not divide the prime number". Which is indeed a 
possible definition of prime numbers. 

Closer to a problem reported recently by a customer, are 
you building control software for a chip that does not 
support subnormal floating-point numbers, and you want to 
define a type for normal floating-point numbers only? You 
can with type predicates: 

   subtype Normal_Float is Float with 
     Predicate => Normal_Float <= -2.0**(-126) or  
                  Normal_Float = 0.0 or  
                  Normal_Float >= 2.0**(-126); 

Whether you're doing cryptography or control software, in 
both cases you'll get an error at run time if you try to assign 
a value that does not respect the predicate into a variable of 
that type. With GNATprove, you can additionally prove 

that such run-time errors can never occur in your programs, 
hence that the predicates are always respected by the data. 

Interestingly, predicate checks are the first kind of run-time 
checks for which SPARK rules mandate more verifications 
than the Ada rules. Indeed, Ada rules are on purpose not 
bulletproof. It would be hard in Ada, because any Boolean 
expression is allowed as predicate, so we can write: 

   type My_Type is new Integer with 
     Predicate => Global_Var /= 0; 

But then, if I assign value 0 in Global_Var somewhere in 
the code, I'm suddenly violating the predicates of all values 
of type My_Type. I could even hide the predicate behind 
function calls to further complicate the matter. Hence, 
when they created predicates in Ada, the ARG committee 
chose to request that only some run-time checks are 
performed to verify that predicates are respected, without 
trying to detect all possible violations. 

In SPARK, we took the opposite path, restricting 
expressions that can be used as predicates so that we can 
perform bulletproof formal verification that no violation 
can occur. In the SPARK Reference Manual, the restriction 
is expressed quite succinctly: "A Dynamic_Predicate 
expression shall not have a variable input." In particular, 
this means that the predicate of My_Type above is not 
allowed in SPARK. 

Even with this restriction, the Ada rules are not sufficient to 
make sure a predicate is never violated. In particular, Ada 
does not require that the predicate is checked after 
assignment to a record component. For example, assume 
you have a type for pairs of distinct integer values: 

   type Distinct_Pair is record 
     Val1, Val2 : Integer; 
   end record 
     with Dynamic_Predicate =>  
 Distinct_Pair.Val1 /= Distinct_Pair.Val2; 

Ada rules do not disallow the following code (although it 
violates the spirit of using type predicates) which 
temporarily violates the predicate above: 

   D : Distinct_Pair := (1, 2); 
   D.Val2 := 1; 
   <do something which may read D's value> 
   D.Val2 := 2; 



58  SPARK 2014 Rat ionale 

Volume 38, Number 1, March 2017 Ada User Journal 

 

In SPARK, we have defined a verification rule that forces 
the predicate to hold when assigning to component Val2 
above. Thus, GNATprove detects the possible violation in 
this code. Note that this is only a verification rule, which 
does not change how GNAT compiles this code. 

For simplicity, I used the GNAT-specific aspect Predicate 
in the examples above. In fact, Ada defines two different 
aspects Static_Predicate and Dynamic_Predicate. See the 
references below for an explanation of their differences. 

To know more about predicates in Ada, see the Ada 
Reference Manual [1] and John Barnes's excellent rationale 
on the subject (section 5 on Subtype predicates) [2]. 

To know more about predicates in SPARK, see the SPARK 
User's Guide [3]. 

2   Variables that are Constant 

The SPARK tools now support yet another feature that 
allows users to better specify the intended behavior of their 
programs. This new feature enables users to declare that 
specific variables can only be updated during the 
elaboration of their enclosing package.  

Aspect Constant_After_Elaboration can be used on a 
library-level variable to indicate that the variable must 
retain the value that it has after elaboration of its enclosing 
package throughout the entire life of the program. This 
means that no user of the package is allowed to update the 
variable's value. The tools will issue warnings if the aspect 
is not respected. Since users of the package are prohibited 
from updating such variables, procedures that update them 
cannot be declared in the visible part of the package, they 
can only be declared in the package's body so that they can 
be used within the package itself. Let's have a quick look at 
some code: 

package CAE is 
   Var : Integer := 0 
     with Constant_After_Elaboration; 
 
   procedure Illegal; 
end CAE; 
 
package body CAE is 
   procedure Illegal is 
   begin 
      Var := 10;  --  Problem 
   end Illegal; 
 
   procedure Legal is 
   begin 
      Var := Var + 2;  --  This is fine 
   end Legal; 
begin 
   Var := Var + 1; 
   Legal; 
end CAE; 
 
 

 
with CAE; use CAE; 
 
procedure User is 
begin 
   Var := 5;  --  Problem 
end User; 

On the following code the tools issue two messages: 

user.adb:3:11: high: constant after elaboration "Var" 
must not be an output of procedure "User" 
cae.ads:5:14: high: constant after elaboration "Var" must 
not be an output of procedure "Illegal" 

These messages inform us that the 
Constant_After_Elaboration contract of Var has been 
violated. Notice that procedure Illegal cannot be called by a 
user of CAE without resulting in a violation of the 
Constant_After_Elaboration aspect. So having procedure 
Illegal appear in the visible part of CAE makes no sense. 
On the other hand, procedure Legal, which also does update 
Var, is perfectly OK since it is declared in the body of CAE 
and therefore can be used during the elaboration of package 
CAE but cannot be called from users of CAE. This is the 
reason why the tools issue a message on procedure Illegal 
but not on procedure Legal. This new feature is particularly 
useful when tasking code is involved. Variables which have 
aspect Constant_After_Elaboration set are guaranteed to be 
free of unsynchronised updates (since they are only ever 
updated during elaboration). 

3   Support for Ravenscar 

Yannick Moy 

The upcoming release of SPARK Pro will support 
concurrency features of Ada, with the restrictions defined 
in the Ravenscar profile of Ada [4]. This profile restricts 
concurrency so that concurrent programs are deterministic 
and schedulable. SPARK analysis makes it possible to 
prove that shared data is protected against data races, that 
deadlocks cannot occur and that no other run-time errors 
related to concurrency can be encountered when running 
the program. Avoiding deadlocks in Ravenscar can be seen 
as a special form of run-time error to avoid, as the Ceiling 
Priority protocol in Ravenscar defines precisely which 
tasks are allowed to access which shared data and makes it 
a run-time error to perform an access which could create a 
deadlock. The main restriction to respect to fit in Ravenscar 
profile is that all concurrent objects (tasks and protected 
objects) should be defined statically at the top-level (that is, 
not created dynamically inside subprograms). I'll reuse the 
example presented by Pavlos [5] to illustrate the main 
features of this support for concurrency in SPARK. 

The preferred way to communicate between tasks in 
Ravenscar is through protected objects, as task rendez-vous 
(using task entries) are forbidden in Ravenscar (because 
they make schedulability analysis too difficult). A protected 
object declares public operations: functions which cannot 
modify the state of the protected object, procedures which 
can modify the state of the protected object and entries 



Y. Moy, C. Dross 59  

Ada User Journal Volume 38, Number 1, March 2017 

which are like procedures with a guard to stop the task 
from entering the protected object until some condition is 
true. For more details, see the SPARK User's Guide [3]. 

Functionally, a protected object maintains an invariant over 
the data it protects. As a refinement over the code presented 
by Pavlos, I'm going here to express the invariant that 
traffic lights maintain as a type predicate (see Section 1): 

--  The following type represents the actual lights of the 
--  traffic light. There are three lights for vehicles and two 
--  for pedestrians. When a component is True the  
--  corresponding light is On. When a  component is  
--  False the corresponding light is Off. 
  type Lights_State is record 
      Vehicles_Green    : Boolean := False; 
      Vehicles_Yellow   : Boolean := False; 
      Vehicles_Red      : Boolean := True; 
      Pedestrians_Green : Boolean := True; 
      Pedestrians_Red   : Boolean := False; 
   end record; 
 
   function Valid_Combination (LS : Lights_State)  
 return Boolean; 
 
   subtype Valid_Lights_State is Lights_State 
     with Predicate => Valid_Combination 
 (Valid_Lights_State); 
 

The protected object Traffic_Light is now mostly 
encapsulating a value of this record type plus a few other 
components: 

   protected Traffic_Light is 
      entry Change_Lights; 
      procedure Check_Time; 
 
   private 
      --  The following holds the time when the last state  
      --  change occurred. 
      Last_State_Change : Time := Time_First; 
 
      --  The following is a boolean flag that indicates  
      --  whether or not the time has arrived to change the  
      --  state of the traffic light. 
      Change_State : Boolean := False; 
 
      --  The following variable represents the actual lights 
      --  of the traffic light. There are three lights for  
      --  vehicles and two for pedestrians. 
      Lights : Valid_Lights_State; 
 
   end Traffic_Light; 

Tasks call the protected subprograms to communicate. So 
task Change_The_Time calls Check_Time to update the 
inner state of the protected object so that the next activation 
of task Change_The_Lights updates the lights by calling 
Change_Lights which follows the inner automaton of 
Traffic_Lights. Because the two tasks only communicate 
through protected object Traffic_Light, there is no possible 
data race here, and no possible deadlock either, as correctly 

analyzed by GNATprove. The respect of the Ceiling 
Priority protocol is guaranteed here because the (default) 
priority of tasks Change_The_Time and 
Change_The_Lights is indeed lower than the (default) 
priority of protected object Traffic_Light. But this could be 
false if priorities were specified here explicitly, and in such 
a case GNATprove would detect it. For more details, see 
[3]. 

Like in the original code, an assumption is still required at 
the start of entry Change_Lights, for a different reason 
though. In the original code, the assumption was needed as 
a replacement for calling protected function 
Valid_Combination in the precondition. Indeed, as the 
precondition is logically outside the protected subprogram, 
getting the assurance that Valid_Combination holds in the 
precondition is not a protection against it not holding 
anymore when the protected subprogram is entered. Thus, 
Ada forbids such calls in preconditions. In our code, the 
invariant that Valid_Combination expresses is stated on the 
type of the component Lights of protected object 
Traffic_Light, so no precondition is needed. The assumption 
is only needed because GNATprove is not currently smart 
enough to assume the invariant properties of components of 
protected objects on entry of protected subprograms. 

There is more in the support of concurrency in SPARK, in 
relation with suspension objects (lightweight form of 
protected objects, as if the data was a single boolean), task 
contracts and state abstraction. See the details in [3]. 

Finally, here is the complete program: 

--  For the sake of this example the lights go as follows: 
-- 
--  Vehicles                 Pedestrians 
-- 
--  Green                    Red 
--  Yellow                   Red 
--  Red                      Green 
--  Red and Yellow           Red 
-- 
--  and over and over they go.. 
 
with Ada.Real_Time; use Ada.Real_Time; 
 
package Traffic_Lights is 
 
   --  The following type represents the actual lights of the  
   --  traffic  light. There are three lights for vehicles and  
   --  two for pedestrians. When a component is True the  
   --  corresponding light is On. When a component is  
   --  False the corresponding light is Off. 
    
type Lights_State is record 
      Vehicles_Green    : Boolean := False; 
      Vehicles_Yellow   : Boolean := False; 
      Vehicles_Red      : Boolean := True; 
      Pedestrians_Green : Boolean := True; 
      Pedestrians_Red   : Boolean := False; 
   end record; 
 



60  SPARK 2014 Rat ionale 

Volume 38, Number 1, March 2017 Ada User Journal 

 
   function Valid_Combination (LS : Lights_State)  
 return Boolean; 
 
   subtype Valid_Lights_State is Lights_State 
     with Predicate => Valid_Combination 
 (Valid_Lights_State); 
 
   protected Traffic_Light is 
      entry Change_Lights; 
      procedure Check_Time; 
 
   private 
      --  The following holds the time when the last state  
      --  change occurred. 
      Last_State_Change : Time    := Time_First; 
 
      --  The following is a boolean flag that indicates  
      --  whether or not the time has arrived to change the  
      --  state of the traffic light. 
      Change_State : Boolean := False; 
 
      --  The following variable represents the actual lights  
      --  of the traffic light. There are three lights for  
      --  vehicles and two for pedestrians. 
      Lights : Valid_Lights_State; 
 
   end Traffic_Light; 
 
   task Check_The_Time; 
   --  This task determines when it's time to change the  
   --  traffic light. 
 
   task Change_The_Lights; 
   --  This task is periodically notified to change the traffic 
  --   light. 
 
end Traffic_Lights; 
 
package body Traffic_Lights is 
 
   function Valid_Combination (LS : Lights_State)  
 return Boolean is 
 
      (if LS.Vehicles_Green then 
        not LS.Vehicles_Yellow 
        and not LS.Vehicles_Red 
        and not LS.Pedestrians_Green 
        and LS.Pedestrians_Red 
      elsif LS.Pedestrians_Green then 
        not LS.Vehicles_Green 
        and not LS.Vehicles_Yellow 
        and LS.Vehicles_Red 
        and not LS.Pedestrians_Red 
      else 
        not LS.Pedestrians_Green 
        and LS.Pedestrians_Red); 
 

 

   protected body Traffic_Light is 
 
      entry Change_Lights when Change_State is 
         LS : Lights_State := Lights; 
      begin 
         pragma Assume (Valid_Combination (Lights)); 
         if LS.Vehicles_Green then 
            LS.Vehicles_Green  := False; 
            LS.Vehicles_Yellow := True; 
         elsif LS.Vehicles_Yellow and not    
                 LS.Vehicles_Red then 
            LS.Vehicles_Yellow   := False; 
            LS.Vehicles_Red      := True; 
            LS.Pedestrians_Green := True; 
            LS.Pedestrians_Red   := False; 
         elsif LS.Vehicles_Red and not  
                 LS.Vehicles_Yellow then 
            LS.Vehicles_Yellow   := True; 
            LS.Pedestrians_Green := False; 
            LS.Pedestrians_Red   := True; 
         elsif LS.Vehicles_Red and  
                 LS.Vehicles_Yellow then 
            LS.Vehicles_Green  := True; 
            LS.Vehicles_Yellow := False; 
            LS.Vehicles_Red    := False; 
         end if; 
 
         Lights := LS; 
         Change_State := False; 
         Last_State_Change := Clock; 
      end Change_Lights; 
 
      procedure Check_Time is 
         Wait_Duration : constant Time_Span := 
           (if Lights.Vehicles_Yellow then 
               --  States that involve a yellow vehicle light only 
              --   last 2 seconds. 
               Seconds (2) 
            else 
               --  All other states last 15 seconds. 
               Seconds (15)); 
      begin 
         if Clock - Last_State_Change >= Wait_Duration  
         then 
            --  We have waited enough. It is time for a  
            --  state change... 
            Change_State := True; 
         end if; 
      end Check_Time; 
   end Traffic_Light; 
 
   task body Check_The_Time is 
   begin 
      loop 
         Traffic_Light.Check_Time; 
      end loop; 
   end Check_The_Time; 
 
   
 



Y. Moy, C. Dross 61  

Ada User Journal Volume 38, Number 1, March 2017 

 task body Change_The_Lights is 
   begin 
      loop 
         Traffic_Light.Change_Lights; 
      end loop; 
   end Change_The_Lights; 
end Traffic_Lights; 

4   Support for Type Invariants 

Claire Dross 

Type invariants are used to model properties that should 
always hold for users of a data type but can be broken 
inside the data type implementation. Type invariants are 
part of Ada 2012 but were not supported in SPARK until 
SPARK Pro 17. 

To demonstrate how they can be used, let us consider an 
implementation of binary trees as an example. As 
GNATprove does not support access types, we model them 
using indexes inside an array. 

package Binary_Trees is 
  type Index_Type is range 1 .. Max; 
   subtype Extended_Index_Type is Index_Type'Base 
range 0 .. Max; 
   type Position_Type is (Left, Right, Top); 
 
   type Tree is private; 
 
private 
 
   type Cell is record 
      Left, Right, Parent : Extended_Index_Type := 0; 
      Position : Position_Type := Top; 
   end record; 
 
   type Cell_Array is array (Index_Type) of Cell; 
 
   type Tree is record 
      Top : Extended_Index_Type := 0; 
      C   : Cell_Array; 
   end record; 
end Binary_Trees; 

Each cell contains the index of its right and left child, as 
well as the index of its parent. This index is 0 is the cell has 
no left or right child or no parent. It also contains a position 
which can be Top for the root of the tree and Left or Right 
for the other nodes, depending on whether they are left or 
right children in the tree structure. A tree contains an array 
of cells as well as the index of the tree root. 

There are properties that are imposed on the record fields 
by the tree structure. These properties are required for a the 
record to represent a valid binary tree structure. For 
example, the root must have position Top and no parent: 

    (if Top /= 0 then C (Top).Parent = 0 
       and then C (Top).Position = Top) 

the left child of a node I must have position Left and parent 
I: 

    (for all I in Index_Type => 
         (if C (I).Left /= 0 
          then C (C (I).Left).Position = Left 
              and then C (C (I).Left).Parent = I)) 

All these properties represent an invariant over the 
structure. They can be grouped together in an expression 
function which can then be attached to the full view of Tree 
using a Type_Invariant aspect: 

   type Tree is record 
      Top : Extended_Index_Type := 0; 
      C   : Cell_Array; 
   end record 
     with Type_Invariant => Tree_Structure (Tree); 
 
   function Tree_Structure (T : Tree) return Boolean is 
     ((if T.Top /= 0 then T.C (T.Top).Parent = 0 
       and then T.C (T.Top).Position = Top) 
      and then 
        (for all I in Index_Type => 
             (if T.C (I).Left /= 0 
              then T.C (T.C (I).Left).Position = Left 
                and then T.C (T.C (I).Left).Parent = I)) 
      and then 
        ... 

In spirit, this means that Tree_Structure must always return 
True on objects of type Tree visible from outside 
Binary_Trees. To ensure this property, GNATprove 
enforces restrictions on subprograms working on trees 
depending on where they are declared. If the subprogram is 
private, like Tree_Structure, no invariant checks are 
required for its parameters, neither on entry nor on exit of 
the subprogram. In the invariant expression, only private 
functions should be used so as to avoid any circularity. 

If the subprogram is declared outside of Binary_Trees or if 
it is declared in the public part of Binary_Trees, then the 
invariant must hold for its input in entry of the subprogram 
and for its outputs in exit of the subprogram. 

For example, let us consider the Insert function which 
inserts a new node into a tree. Let us assume this is a 
boundary function for Tree, that is, it is declared in the 
public part of the specification of the package Binary_Trees 
in which Tree is declared: 

   procedure Insert (T : in out Tree;  
 I : Index_Type; D : Direction); 

The invariant is required to hold on input T when entering 
Insert. GNATprove will check Tree's invariant every time 
Insert is called inside Binary_Trees to make sure this is 
verified. In the same way, verification conditions are 
generated by GNATprove to ensure that the invariant holds 
for T at the end of Insert. In effect, it is like if we had 
written: 

   procedure Insert (T : in out Tree;  
 I : Index_Type; D : Direction) with 
     Pre  => Tree_Structure (T), 
     Post => Tree_Structure (T); 



62  SPARK 2014 Rat ionale 

Volume 38, Number 1, March 2017 Ada User Journal 

Unlike type predicates (Section 1), type invariant can be 
broken temporarily in the body of Insert, as long as it is 
restored at the end of the subprogram: 

   procedure Insert (T : in out Tree;  
 I : Index_Type; D : Direction)  is 
 
        M : Model_Type := Model (T) with Ghost; 
      J : Index_Type; 
 
   begin 
      --  Find an empty slot in the underlying array 
 
      Find_Empty_Slot (T, J); 
 
      --  Plug it as the D child of I 
 
      T.C (J).Position := D; 
      T.C (J).Parent := I; 
 
      --  The invariant of T is broken, J is not the child of I 
 
      if D = Left then 
         T.C (I).Left := J; 
      else 
         T.C (I).Right := J; 
      end if; 
 
      --  Tree_Structure (T) holds again 
   end Insert; 

Outside of Binary_Tree, the invariant of Tree is never 
checked. Indeed, the rules of SPARK are enough to ensure 
no invariant breaking value can leak out of Binary_Tree's 
implementation. This allows to split considerations 
between multiple layers. For example, we can then reuse 
our binary trees to implement search trees. We do not need 
to prove the tree structure invariant anymore, but can 
simply rely on it to prove the remaining properties: 

package Search_Trees with SPARK_Mode is 
   type Search_Tree is private; 
 
   function Mem (T : Search_Tree; V : Natural)  
 return Boolean; 
 
   procedure Insert  (T : in out Search_Tree;  
 V : Natural; I : out Extended_Index_Type); 
 
private 
 
   type Value_Array is array (Index_Type) of Natural; 
 
   type Search_Tree is record 
      Struct : Binary_Trees.Tree; 
      Values : Value_Array; 
   end record 
     with Type_Invariant => Ordered_Leafs 
(Search_Tree); 
 

   function Ordered_Leafs (T : Search_Tree) 
  return Boolean with Ghost; 
end Search_Trees; 

When calling Binary_Trees.Insert in the implementation of 
Search_Trees.Insert, GNATprove does not need to check 
that the invariant of T.Struct hold, as it is enforced at the 
boundary of Binary_Trees: 

   procedure Insert (T : in out Search_Tree;  
 V : Natural; I : out Extended_Index_Type) is 
   begin 
      if Top (T.Struct) = 0 then 
         Init (T.Struct); 
         I := Top (T.Struct); 
         T.Values (I) := V; 
         return; 
      end if; 
 
      declare 
         Current  : Extended_Index_Type := Top (T.Struct); 
         Previous : Extended_Index_Type := 0; 
         D        : Direction := Left; 
      begin 
         while Current /= 0 loop 
            Previous := Current; 
            if V = T.Values (Previous) then 
               I := 0; 
               return; 
            elsif V < T.Values (Previous) then 
               D := Left; 
            else 
               D := Right; 
            end if; 
            Current := Peek (T.Struct, Previous, D); 
         end loop; 
 
         --  We have found the leaf where we want  
         --  to insert V 
 
         Insert (T.Struct, Previous, D); 
         --  No invariant check 
         --  The tree structure is preserved by Insert 
 
         I := Peek (T.Struct, Previous, D); 
         T.Values (I) := V; 
 
         --  Check that the leaf ordering is preserved 
      end; 
   end Insert; 

Note that GNATprove does not support type invariants on 
tagged types nor on types declared in nested/child units for 
now. Therefore, we can neither change Search_Tree to 
derive from Tree nor move Binary_Trees as a nested or 
child package of Search_Trees. 

References 
[1] ISO/IEC 8652:2012(E) (2012), Ada 2012 Reference 

Manual. 



Y. Moy, C. Dross 63  

Ada User Journal Volume 38, Number 1, March 2017 

[2] J. Barnes (2011), Rationale for Ada 2012: 1 Contracts 
and aspects, Ada User Journal vol. 32, issue 4. 

[3] AdaCore and Altran UK Ltd (2013), SPARK 2014 
User’s Guide.  

[4] A. Burns, B. Dobbing and T. Vardanega (2003), Guide 
for the use of the Ada Ravenscar Profile in high 

integrity systems, University of York Technical Report 
YCS-2003-348. 

[5] P. Efstathopoulos (2015), SPARK 2016 supports 
Ravenscar!, http://www.spark-2014.org/entries/detail/ 
spark-2016-supports-ravenscar.



64    

Volume 38, Number 1, March 2017 Ada User Journal 

National Ada Organizations 
 

Ada-Belgium     
attn. Dirk Craeynest 
c/o KU Leuven 
Dept. of Computer Science 
Celestijnenlaan 200-A 
B-3001 Leuven (Heverlee) 
Belgium 
Email: Dirk.Craeynest@cs.kuleuven.be 
URL: www.cs.kuleuven.be/~dirk/ada-belgium 

 

Ada in Denmark 
attn. Jørgen Bundgaard 
Email: Info@Ada-DK.org 
URL: Ada-DK.org 

 

Ada-Deutschland 
Dr. Hubert B. Keller 
Karlsruher Institut für Technologie (KIT)  
Institut für Angewandte Informatik (IAI) 
Campus Nord, Gebäude 445, Raum 243  
Postfach 3640 
76021 Karlsruhe 
Germany 
Email: Hubert.Keller@kit.edu 
URL: ada-deutschland.de 

 
 

Ada-France 
attn: J-P Rosen 
115, avenue du Maine 
75014 Paris 
France 
URL: www.ada-france.org 

 

Ada-Spain 
attn. Sergio Sáez 
DISCA-ETSINF-Edificio 1G 
Universitat Politècnica de València 
Camino de Vera s/n 
E46022 Valencia 
Spain 
Phone: +34-963-877-007, Ext. 75741 
Email: ssaez@disca.upv.es 
URL: www.adaspain.org 

 

Ada-Switzerland 
c/o Ahlan Marriott 
Altweg 5 
8450 Andelfingen 
Switzerland 
Phone: +41 52 624 2939 
e-mail: president@ada-switzerland.ch 
URL: www.ada-switzerland.ch 

 
 


