

Ada User Journal Volume 38, Number 3, September 2017

ADA
USER
JOURNAL

Volume 38

Number 3

September 2017

Contents
Page

Editorial Policy for Ada User Journal 114

Editorial 115

Quarterly News Digest 116

Conference Calendar 132

Forthcoming Events 138

Special Contribution

 J. Tokar

“The Ada High-Integrity Rapporteur Group (HRG) Status Report” 141

Ada-Europe 2017 Industrial Presentations

 A. Marriot and U. Maurer

“Using GtkAda in Practice” 143

Articles

 C. Brandon, P. Chapin, C. Farnsworth, S. Klink

“CubedOS: A Verified CubeSat Operating System” 151

 N. Abid, L. Loukil, W. Ayedi, M. Abid, A. C. Ammari

“Parallelizing an Embedded Real-Time Person Matching System for Smart Cameras” 157

Ada-Europe Associate Members (National Ada Organizations) 168

Ada-Europe Sponsors Inside Back Cover

114

Volume 38, Number 3, September 2017 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and December.

Copy date is the last day of the month of

publication.

Aims

Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics, such

as reliable software technologies, are

welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

 Refereed original articles on

technical matters concerning Ada

and related topics.

 Invited papers on Ada and the Ada

standardization process.

 Proceedings of workshops and

panels on topics relevant to the

Journal.

 Reprints of articles published

elsewhere that deserve a wider

audience.

 News and miscellany of interest to

the Ada community.

 Commentaries on matters relating

to Ada and software engineering.

 Announcements and reports of

conferences and workshops.

 Announcements regarding

standards concerning Ada.

 Reviews of publications in the field

of software engineering.

Further details on our approach to these

are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will be

relayed to the authors at the discretion

of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues

The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups to

find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be of

interest to them.

Reprinted Articles

While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it a

wider audience. This includes papers

published in North America that are not

easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries

We publish commentaries on Ada and

software engineering topics. These may

represent the views either of individuals

or of organisations. Such articles can be

of any length – inclusion is at the

discretion of the Editor.

Opinions expressed within the Ada

User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports

We are happy to publicise and report on

events that may be of interest to our

readers.

Reviews

Inclusion of any review in the Journal is

at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to print

reviews submitted from elsewhere at

the discretion of the Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be rapid.

Currently, accepted papers submitted

electronically are typically published 3-

6 months after submission. Items of

topical interest will normally appear in

the next edition. There is no limitation

on the length of papers, though a paper

longer than 10,000 words would be

regarded as exceptional.

 115

Ada User Journal Volume 38, Number 3, September 2017

Editorial

This issue of the Ada User Journal starts with a report on the work of the High-Integrity Rapporteur Group (HRG), provided

by the Chair of the HRG, Joyce Tokar, from Pyrrhus Software, USA. The HRG, under the auspices of WG9, deals with the

concerns of using Ada and its development tools in high integrity systems. We intend that the work of the groups involved in

the Ada standardization process becomes a recurring theme in the Journal, as it is more and more relevant to give visibility to

the effort of the experts that guarantee that Ada continues to meet with the evolving needs of applications and users.

Afterwards, the issue continues with the publication of contributions from the Industrial Track of the Ada-Europe 2017

conference, with a paper by Ahlan Marriott and Urs Maurer, from White Elephant, Switzerland, providing an experience report

on using GTKAda on three different operating systems.

Continuing with the technical contributions, the issue then provides an article on CubedOS, a SPARK lightweight framework

for CubeSat software, written by a group of authors from Vermont Technical College, USA, which have been successfully

taking Ada and SPARK into space. Finally, an article describing approaches to parallelise a real-time embedded software, by

a group of authors from the National School of Engineering of Sfax, Tunisia and the King Abdulaziz University, Saudi Arabia.

As usual, the reader will find the valuable information of the News and Calendar sections, contributed by Jacob Sparre Andersen

and Dirk Craeynest, their respective editors. I would also like to draw your attention to the two Ada focused events taking place

next year, the International Real-Time Ada Workshop (IRTAW) and the Ada-Europe 2018 Conference. IRTAW has been one

of the main drivers of the evolution of the concurrency (and now parallelism) and real-time models of Ada. Ada-Europe, the

International Conference on Reliable Software Technologies, is more and more the key event on Ada and other technologies

for reliable and high-integrity systems (and next year it takes place in a very beautiful city and country!). As usual, these events

live from the effort and contributions of the community – please consider submitting your works and participating.

The reader will forgive me for ending this editorial with a short personal note, as this issue marks my 10th year serving as the

Journal Editor. During this period, I had the pleasure to work as a member of an excellent team of volunteers, preparing 40

journal issues, which I hope to have met with your expectations and interests. I would like to apologise for any mishaps during

these years, and say that we will continue thriving to provide our readers with high-quality and timely information on Ada and

reliable software technologies.

 Luís Miguel Pinho

Porto

September 2017

 Email: AUJ_Editor@Ada-Europe.org

mailto:AUJ_Editor@Ada-Europe.org

116

Volume 38, Number 3, September 2017 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Organizations 116
Ada-related Events 117
Ada-related Resources 117
Ada-related Tools 117
Ada-related Products 119
Ada and Operating Systems 120
References to Publications 121
Ada Inside 121
Ada in Context 121

Ada-related
Organisations

Community Input
for the ARG

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 3 Aug 2017 00:45:49 -0500
Subject: Community Input for the

Maintenance and Revision of the Ada
Programming Language

Newsgroups: comp.lang.ada

ISO/IEC JTC 1/SC 22/WG 9 (WG 9) is
responsible for the maintenance and
revision of the Ada Programming
Language and associated standards and
technical reports. As part of the language
maintenance activity, WG 9 has
established a group of Ada experts as the
Ada Rapporteur Group (ARG). The ARG
receives input from the Ada community at
large to consider for inclusion in revision
to the Ada programming language
standard. The WG 9 has produced a
number of revisions to the language in
accordance with ISO policy and to
address the evolution of technology (Ada
83, Ada 95, Ada 2005, Ada 2012).

Presently, the ARG is beginning work on
a revision to Ada 2012 so that ISO
standardization of the new version can be
completed by 2020. This is a relatively
short horizon, but it ensures that the
language continues to evolve, and at the
same time requires that the changes to the
language are evolutionary and do not
present an undue implementation burden
on existing compilers and users.

WG 9 requests the Ada community to
submit enhancements to be considered for
inclusion in the next revision of Ada.
These should be sent to ada-
comment@ada-auth.org as described in
the Ada Reference Manual Introduction

(http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-0-3.html#p58). For
enhancement requests, it is very important
to describe the programming problem and
why the Ada 2012 solution is complex,
expensive, or impossible. A detailed
description of a specific enhancement is
welcome but not necessarily required. The
goal of the ARG is to solve as many
programming problems as possible with
new/enhanced Ada features that fit into
the existing Ada framework. Thus the
ARG will be looking at the language as a
whole, which may suggest alternative
solutions to the problem posed by an
enhancement request. For a more detailed
discussion, the guidelines presented for
the Ada 2005 revision (see
http://archive.adaic.com/news/pressreleas
e/call4apis.html) can be used as the ARG
requirements are little changed.

WG9 accepts enhancement requests at
any time. To be considered for inclusion
in the next revision of Ada, enhancement
requests must be received by 15 January
2018. Suggestions received after that date
may be considered if they relate to topics
already under development; others will be
considered only for future versions of
Ada.

WG 9 has directed the ARG to focus its
work on three areas of particular interest
to the Ada community: additional
facilities for multi-core and multithreaded
programming, improved facilities for
program correctness, and enhanced
container libraries. There are numerous
proposed enhancements in these and other
areas. Some of these proposals originated
with members of the ARG, and others
from members of the community at large.
The interested reader can find the current
state of these at http://www.ada-
auth.org/AI12-SUMMARY.HTML.

WG 9 encourages members of the Ada
community at large to use the guidelines
outlined above to provide input to WG 9
and the ARG for needed revisions and
upgrades to the Ada programming
language.

From: Pascal Leroy
Date: 2003
Subject: ISO Working Group asks Ada

Community for Candidate APIs for
Standardization

URL: http://archive.adaic.com/news/
pressrelease/call4apis.html

[We're re-running this as a reminder for
the community. The request is still open.
—sparre]

As part of the next revision of Ada,
planned for 2005, there has been a lot of
interest in the Ada community for the
standardization of reusable components
and APIs to existing services. It is felt that
such standardizations would improve the
marketability of the language as well as
day-to-day programmer productivity.

For most of these APIs, the proper
standardization vehicle is a secondary
standard (that is, a standard referencing
the Ada standard, but standardized as a
separate process). For relatively small
APIs, inclusion in an existing annex is
also an option, although this might delay
the language standardization process.

The Ada Rapporteur Group (ARG) is the
technical committee in charge of
proposing amendments to the language to
WG9, the ISO working group on Ada.
While the ARG will conduct (based on
input from the Ada community) the
revision of the core language and
annexes, it doesn't have the resources to
develop proposals itself for the
standardization of reusable components or
APIs. The ARG will oversee the
development of secondary standards, but
this is best accomplished by cooperating
with external groups developing the
substance of such standards.

We would like to ask the Ada community
to submit proposals for the
standardization of APIs. Proposals should
be sent to ada-comment@ada-auth.org,
and should preferably have the form of an
amendment AI (see http://www.ada-
auth.org/cgi-bin/cvsweb.cgi/AIs/AI-
00248.TXT for an example). While all
input will be carefully reviewed, the ARG
will act as a filter to retain only those
proposals that have a sufficient level of
maturity and usefulness, and will provide
feedback to the authors. Criteria that will
be used for evaluating the proposals
include:

- Benefits of the standardization.
Presumably the advantage of
standardization is that it brings
uniformity and portability among
implementations. However, there is a
significant overhead associated with a
formal standardization process, so in
some cases a de facto standard may
bring practically the same benefits at a
much lower cost.

- Usefulness of the API. APIs which have
been conjured up solely for the purpose
of writing a proposal, or which have
been used by a very small group of
users, are less likely to be generally

mailto:jacob@jacob-sparre.dk
http://www.ada-auth.org/standards/
http://archive.adaic.com/news/

Ada-re lated Tools 117

Ada User Journal Volume 38, Number 3, September 2017

useful than APIs which have been
available for years and have benefited
from feedback from a large user base.

- Quality and precision of the proposal. At
a minimum, the proposal must include a
set of Ada specifications, and a semi-
formal description of the semantics of
each declaration, such as can be found in
the annexes of the Reference Manual. A
rationale showing examples of use,
explaining the choices that were made,
the alternatives that were considered,
and why they were discarded, would
also be much appreciated.

- Community consensus for the proposal.
Proposals with a substantial consensus
of the Ada community or the appropriate
subcommunity are preferred over
proposals made by an individual or
small group. This is not to say that a
proposal primarily authored by an
individual is necessarily bad (indeed, it
is likely to provide a more consistent
proposal), but to encourage authors to
seek input/approval from as many
potential users of the API as possible.

- Portability and language usage. The
definition of the API must not depend on
implementation-defined characteristics
of a particular compiler, although it is
acceptable to require the compiler to
support some Specialized Needs Annex
(or part thereof). As much as possible,
the API should only use the features of
Ada 95 (as opposed to those that are
under consideration for the 200Y
amendment) although we realize that
this may not be practical in some cases.

- Implementation. A publicly available
reference implementation would be
useful, although this is not a strict
requirement, as in some cases that may
cause intellectual property issues.

- Test suite. A test suite ensuring
conformity to the specification should be
provided at some point during the
standardization process. This is
especially important for standards for
which no publicly available reference
implementation will be available. This
doesn't necessarily mean that there will
be a formal conformity assessment
process like there is for compilers, but it
will help implementers ensure that they
comply with the standard.

It is anticipated that the groups submitting
proposals will keep ownership of the
standard during the entire standardization
process, although the ARG will provide
guidance regarding that process and
continuous feedback on the contents of
the proposal.

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to

inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Swiss Ada Event

From: Ahlan Marriott
<ahlan@marriott.org>

Date: Thu, 17 Aug 2017 01:25:11 -0700
(PDT)

Subject: ANN: Swiss Ada Event 21-Sep-17
Newsgroups: comp.lang.ada

Ada Switzerland is organising a half day
Ada event on Thursday 21-Sep-17 at HSR
in Rapperswil.

It will start at 14:00 and pause at 15:30
for a coffee break, restarting at 16:00 and
finishing at 17:30 whereafter there will be
an apéro for networking opportunities.

Entrance will be free and is open to
anyone, not just members of Ada
Switzerland.

For logistical reasons, those wishing to
attend the event are cordially requested to
register by sending an email to
registration@ada-switzerland.ch
containing their name and address and
contact email.

Full details, including the preliminary
program, can be obtained from the Ada-
Switzerland web site: www.ada-
switzerland.ch

Ada-related Resources

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed Aug 30 2017
Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn: 2_650 members [1]

- Reddit: 1_025 readers [2]

- StackOverflow: 849 followers [3]

- Google+: 749 members [4]

- Freenode 77 participants [5]

- Gitter: 52 people [6]

- Twitter: 14 tweeters [7]

[1] https://www.linkedin.com/
groups?gid=114211

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://plus.google.com/communities/
102688015980369378804

[5] #Ada on irc.freenode.net

[6] https://gitter.im/ada-lang

[7] https://twitter.com/search?f=realtime&
q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
38-2, p. 70. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed Aug 30 2017
Subject: Repositories of Open Source

software

GitHub: 714 repositories [1]

 421 developers [1]

 635 issues [1]

Rosetta Code: 635 examples [2]

 32 developers [3]

 0 issues [4]

Sourceforge: 259 repositories [5]

BlackDuck OpenHUB: 210 projects [6]

Bitbucket: 79 repositories [7]

Codelabs: 45 repositories [8]

OpenDO Forge: 24 projects [9]

 529 developers [9]

AdaForge: 8 repositories [10]

[1] https://github.com/search?q=language
%3AAda&type=Repositories

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] http://rosettacode.org/wiki/Category:
Ada_examples_needing_attention

[5] http://sourceforge.net/directory/
language%3Aada/

[6] https://www.openhub.net/tags?
names=ada

[7] https://bitbucket.org/repo/all?
name=ada &language=ada

[8] http://git.codelabs.ch/

[9] https://forge.open-do.org/

[10] http://forge.ada-ru.org/adaforge

[See also “Repositories of Open Source
Software”, AUJ 38-2, p. 70. —sparre]

Ada-related Tools

VTKAda

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Sat, 1 Jul 2017 02:02:41 -0700 (PDT)
Subject: Announce: VTKAda version 8.0.0

release 01/07/2017
Newsgroups: comp.lang.ada

I'm pleased to announce

VTKAda version 8.0.0 free edition
release 01/07/2017

VTKAda is Ada-2012 port to VTK
(Visualization Toolkit by Kitware, Inc)

https://www.linkedin.com/
http://stackoverflow.com/questions/
https://plus.google.com/communities/
https://twitter.com/search?f=realtime&
https://github.com/search?q=language
http://rosettacode.org/wiki/
http://rosettacode.org/wiki/
http://rosettacode.org/wiki/Category
http://sourceforge.net/directory/
https://www.openhub.net/tags
https://bitbucket.org/repo/all

118 Ada-re lated Tools

Volume 38, Number 3, September 2017 Ada User Journal

and Qt5 application and UI framework by
Nokia.

VTK version 8.0.0, Qt version 5.9.0 open
source and vtkc.dll, vtkc2.dll, qt5c.dll
(libvtkc.so, libvtkc2.so, libqt5c.so) were
built with Microsoft Visual Studio 2015
in Windows (WIN32) and gcc in Linux
x86-64.

Package was tested with gnat gpl 2017
ada compiler in Windows 10 64bit,
Debian 8.5 x86-64.

As a role Ada is used in embeded
systems, but with VTKAda (+QtAda) you
can build any desktop applications with
powerful 2D/3D rendering and imaging
(games, animations, emulations) GUI,
Database connection, server/client,
Internet browsing and many others thinks.

VTKAda you can be used without QtAda
subsystem.

Qt5Ada and VTKAda for Windows,
Linux (Unix) is available from

https://drive.google.com/folderview?
id=0B2QuZLoe-
yiPbmNQRl83M1dTRVE &usp=sharing
(google drive. It can be mounted as virtual
drive or directory or viewed with Web
Browser)

[See also “VTKAda”, AUJ 38-1, p. 5.
—sparre]

RDF Processing

From: Victor Porton <porton@narod.ru>
Date: Mon, 10 Jul 2017 02:42:29 +0300
Subject: RDF in Ada (new library released)
Newsgroups: comp.lang.ada

Raptor is a C library for working with
RDF network data format (a library
capable of downloading, parsing, and
serializing RDF resources).

I have added (thick, object oriented) Ada
bindings for Raptor (but not for Rasqal
and Redland, for which I do not have time
to work on).

See

https://github.com/vporton/ redland-
bindings/tree/ada2012/ada

Note that the target `make dist` does not
work yet. So it is a Git only distribution
yet. We must get into Debian.

The API is not quite stable yet.

Test coverage is yet very partial.

I will probably write an article for Ada
User Journal about how I did it in an
object-oriented way.

It is a part of a big, ambitious open source
project:

en.wikiversity.org/wiki/Automatic_
transformation_of_XML_namespaces

Emacs Ada Mode

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 13 Jul 2017 06:52:08 -0700
(PDT)

Subject: Ada mode 5.2.2 released
Newsgroups: comp.lang.ada

Ada mode 5.2.2 is now available in GNU
ELPA. See the homepage
(http://www.nongnu.org/ada-mode/) for
NEWS, or the project page
(https://savannah.nongnu.org/projects/
ada-mode) for tarball download.

A major new feature in this release; the
GPS indentation engine can be used as the
primary or backup indentation engine.
This makes indenting while editing faster
on large files, and more friendly on all
files.

[See also “Emacs Ada Mode”, AUJ 37-4,
p. 188. —sparre]

Gnoga

From: Pascal Pignard <p.p14@orange.fr>
Date: Sun, 16 Jul 2017 13:21:51 +0200
Subject: V1.3-beta release.
Newsgroups: gmane.comp.lang.ada.gnoga

Version V1.3-beta has been released on
SF GIT branch Dev_1.3:

https://sourceforge.net/p/gnoga/code/ci/
dev_1.3/tree/

V1.3 will not more change for new
features.

See HISTORY for features added.

V1.3 has been tested (demos, tests,
tutorials) with GNAT GPL 2017 on
macOS 10.11 with Safari 10.

Volunteers are welcome to test it on their
own configuration.

Some testing on Windows and Linux
configuration will be appreciated.

Just get last commit on
https://sourceforge.net/p/gnoga, do:

$ git clone https://git.code.sf.net/p/
gnoga/code gnoga-code

$ git checkout dev_1.3

$ make all

and for courageous:

$ make tests

then:

$ cd bin

and test.

Feel free to report detailed issues on this
list or create tickets on SF.

From: Pascal Pignard <p.p14@orange.fr>
Date: Sun, 23 Jul 2017 13:04:36 +0200
Subject: V1.2b release.
Newsgroups: gmane.comp.lang.ada.gnoga

Version 1.2b has been released on SF GIT
master branch.

https://sourceforge.net/p/gnoga/code/ci/
master/tree/

Mostly this release updates Jeff Carter's
demos from Github.

https://github.com/jrcarter

See HISTORY for details.

This version has been zipped on:

https://sourceforge.net/projects/gnoga/
files/

Feel free to report detailed issues on this
list or create tickets on SF.

Request: SOCKS5 Client
Library

From: Adam Jensen <hanzer@riseup.net>
Date: Wed, 19 Jul 2017 03:27:04 -0000

(UTC)
Subject: SOCKS5 client library
Newsgroups: comp.lang.ada

Does anyone know of SOCKS5 client
library written in Ada?

https://tools.ietf.org/html/rfc1928

Simple Components

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 24 Jul 2017 09:54:12 +0200
Subject: ANN: Simple Components for Ada

v4.22
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, multiple
connections server/client designing tools.
The library is kept conform to the Ada 95,
Ada 2005, Ada 2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- Bug fix in the package Block_Streams.
Only very large transmissions were
affected by it;

- Bug fix in the HTTP server
implementation. The query part is now
recognized when the status line contains
file name.

[See also “Simple Components”, AUJ 38-
2, p. 72. —sparre]

Fuzzy Sets

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 25 Jul 2017 17:38:54 +0200
Subject: ANN: Fuzzy sets for Ada v5.12
Newsgroups: comp.lang.ada

The current version includes distributions
of string edit, interval arithmetic and
simple components packages. It provides
implementations of:

https://github.com/vporton/
https://savannah.nongnu.org/projects/
https://sourceforge.net/p/gnoga/code/ci/
https://git.code.sf.net/p/
https://sourceforge.net/p/gnoga/code/ci/
https://sourceforge.net/projects/gnoga/
http://www.dmitry-kazakov.de/ada/

Ada-re lated Products 119

Ada User Journal Volume 38, Number 3, September 2017

- Confidence factors with the operations
not, and, or, xor, +, *;

- Classical fuzzy sets with the set-
theoretic operations and the operations
of the possibility theory;

- Intuitionistic fuzzy sets with the
operations on them;

- Fuzzy logic based on the intuitionistic
fuzzy sets and the possibility theory;

- Fuzzy numbers both integer and
floating-point ones with conventional
arithmetical operations;

- Dimensioned fuzzy numbers;

- Fuzzy linguistic variables and sets of
linguistic variables with operations on
them;

- Dimensioned fuzzy linguistic variables
and sets;

- String-oriented I/O is supported;

- GUI interface based on GTK+ (The
GIMP Toolkit) with fuzzy set editors,
truth values widgets and renderers,
linguistic variables sets editors.

http://www.dmitry-kazakov.de/ada/
fuzzy.htm

Changes to the previous version:

- Workaround GNAT 7 (20170622) bug
in generic instantiation

[See also “Fuzzy Sets”, AUJ 35-3, p. 157.
—sparre]

Cortex GNAT RTS

From: Simon Wright
<simon@pushface.org>

Date: Tue, 08 Aug 2017 14:04:05 +0100
Subject: ANN: Cortex GNAT RTS
Newsgroups: comp.lang.ada

This release is available at Github [1] -
note the move from Sourceforge.

The main motivation for the last two
releases has been to support AdaCore's
Certyflie [2], or at least my fork at [3].

There have been compiler interface
changes, so some patching will be
required [4] if you're using GNAT GPL
2016 or 2017.

New features:

- Ada.Numerics.* (except random
numbers).

- Interfaces.C.Extensions.

- Ada.Real_Time.Timing_Events.

- All free store (bar a 2048-byte
allowance for startup and interrupts) is
available for heap allocation.

- Sequential elaboration (with the
configuration pragma
Partition_Elaboration_Policy
(Sequential)) is supported.

- type'Image() and object'Img are
supported.

[1] https://github.com/simonjwright/
cortex-gnat-rts/releases

[2] https://github.com/AdaCore/Certyflie

[3] https://github.com/simonjwright/
Certyflie

[4] https://github.com/simonjwright/
cortex-gnat-rts/blob/master/
INSTALL.md#compatibility

[See also “Cortex GNAT Run Time
Systems”, AUJ 37-2, p. 72. —sparre]

AdaYaml

From: Felix Krause <contact@flyx.org>
Date: Thu, 17 Aug 2017 10:48:27 +0200
Subject: ANN: AdaYaml 0.1.0 (initial

release)
Newsgroups: comp.lang.ada

I am happy to announce the first release
of AdaYaml, an experimental YAML
implementation in Ada 2012.

This release is made in the spirit of
“release early, release often”. It is still
rough around the edges, features are still
missing, and the API is far from stable.
However, I make this release in the hope
to get feedback about the general API
design and usability.

The background of this library is that I am
part of a working group designing YAML
1.3 and wrote this implementation to test
proposed changes to YAML 1.2. This
means that AdaYaml does not conform to
the YAML 1.2 spec, since it already
implements some of the proposed
changes. However, all of these concern
edge cases and I am pretty confident that
a common YAML 1.2 document will
parse propertly with AdaYaml.

More background and (currently sparse)
documentation is available on the library's
website [1], the release is available as tag
of the GitHub repository [2].

[1]: https://ada.yaml.io

[2]: https://github.com/yaml/AdaYaml/
tags

Ada-related Products

VectorCast for Deos

From: Vector Software
Date: Tue, 22 Aug 2017
Subject: DDC-I and Vector Software

Announce Availability of VectorCAST
Test Automation Platform for Deos DO-
178 Safety-Critical RTOS

URL: https://www.vectorcast.com/news/
vector-software-press-releases/
2017/ddc-i-and-vector-software-
announce-availability-vectorcast

Vector Software, the world’s leading
provider of innovative software solutions
for embedded software quality and DDC-
I, a leading supplier of software and
professional services for mission- and

safety-critical applications, today
announced the availability of the
VectorCAST test automation platform for
DDC-I’s Deos™ safety-critical real-time
operating system (RTOS) and
OpenArbor™ integrated development
environment. The integrated platform
greatly reduces the time and cost
associated with developing, testing, and
certifying DO-178 safety-critical
application software.

“We’re excited to be working with Vector
Software to offer their world-class test
automation tools for our safety-critical
RTOS,” said Greg Rose, vice president of
marketing and product management at
DDC-I. “The integration of our RTOS
and tools with Vector Software's test
automation suite addresses all aspects of
development, test and certification for
DO-178 safety-critical applications.”

”We are pleased to support DDC-I’s Deos
RTOS with the VectorCAST test
automation platform,” said Jeffrey Fortin,
head of product management for Vector
Software. “The integration, along with
both companies’ DO-178 expertise,
provides customers with a complete
solution for a more efficient certification
process.”

VectorCAST is a dynamic software test
solution that automates C/C++ and Ada
unit and integration testing, which is
necessary for validating safety- and
mission-critical embedded systems.
VectorCAST automates the creation of
stubs and drivers as part of the creation of
the test harness, normally a manual
process, giving developers time to focus
on building high-quality and thorough test
cases. With VectorCAST, unit testing can
be done natively or on a specific target or
simulator. The VectorCAST Runtime
Support Package (RSP) provides a full-
featured integration that allows for the
download, execution and results capture
using the built-in networking facilities of
the Deos RTOS.

Deos is a safety-critical embedded RTOS
that has been certified to DO-178 DAL A
since 1998. Featuring deterministic real-
time response, the time- and space-
partitioned RTOS employs patented slack
scheduling to deliver higher CPU
utilization than any other certifiable
safety-critical COTS RTOS. Deos is built
from the ground up for safety-critical
applications, and is the only certifiable
time- and space-partitioned COTS RTOS
that has been created using RTCA DO-
178, Level A processes from the very first
day of its product development. Deos
provides the easiest, lowest cost path of
any COTS RTOS to DO-178 Level A
certification, the highest level of safety
criticality.

Development support for Deos includes
DDC-I’s Eclipse-based, mixed-language
OpenArbor IDE, which features Ada, C
and C++ optimizing compilers, a color-

http://www.dmitry-kazakov.de/ada/
https://github.com/simonjwright/
https://github.com/simonjwright/
https://github.com/simonjwright/
https://github.com/yaml/AdaYaml/
https://www.vectorcast.com/news/

120 Ada and Operat ing Systems

Volume 38, Number 3, September 2017 Ada User Journal

coded source editor, project management
support, automated build utilities, and a
symbolic debugger. Also included is a
virtual target hardware development tool,
QEMU (Quick EMUlator), which allows
developers to develop, debug and test
their code on their development host PC
in advance of actual target hardware
availability.

Ada and Operating
Systems

Fedora: GNAT GPS

From: John Marino
<dragonlace.cla@marino.st>

Date: Tue, 27 Jun 2017 06:36:47 -0700
(PDT)

Subject: Re: gnat-gps for Fedora 25
Newsgroups: comp.lang.ada

> Fedora 25 does not have gnat-gps
available. [...]

I'm working on a cross-platform packing
system.

It currently supported DragonFly BSD
and Linux (FreeBSD and Solaris coming)

It contains GNAT GPS 2016 (built with
GCC FSF 6.3).

It is not RPM based, but if you install it, it
should work on your fedora (located at
/raven/bin/gps).

see https://github.com/jrmarino/
Ravenports/wiki/Ravenusers_Guide

navigate to Quickstart guide for Linux
testers

This has not been announced anywhere
yet, but I think it can help you in
particular.

From: John Marino
<dragonlace.cla@marino.st>

Date: Tue, 27 Jun 2017 06:40:18 -0700
(PDT)

Subject: Re: gnat-gps for Fedora 25
Newsgroups: comp.lang.ada

> [...]

FYI, step 4 you'd do something like "sudo
/raven/sbin/pkg install gps-complete-
standard" to install the prebuilt package.

List of current linux packages:
http://muscles.dragonflybsd.org/misc/Rav
enports/Linux%3A2.6.32%3Aamd64/All/

Mac OS X: GNAT GPL for
ARM-EABI

From: Simon Wright
<simon@pushface.org>

Date: Sat, 1 Jul 2017 16:51:47 +0100
Subject: GNAT GPL 2017 for arm-eabi on

macOS
Newsgroups: gmane.comp.lang.ada.macosx

This is GNAT GPL 2017, rebuilt as a
cross-compiler from Mac OS X to arm-

eabi. The CPUs supported include cortex-
m3, cortex-m4, cortex-r4.

The runtimes from the AdaCore gnat-gpl-
2017-arm-elf-linux-bin are included:

- ravenscar-full-rpi2

- ravenscar-full-stm32f4

- ravenscar-full-stm32f429disco

- ravenscar-full-stm32f469disco

- ravenscar-full-stm32f746disco

- ravenscar-full-stm32f769disco

- ravenscar-full-tms570

- ravenscar-full-zynq7000

- ravenscar-sfp-rpi2

- ravenscar-sfp-stm32f4

- ravenscar-sfp-stm32f429disco

- ravenscar-sfp-stm32f469disco

- ravenscar-sfp-stm32f746disco

- ravenscar-sfp-stm32f769disco

- ravenscar-sfp-tms570

- ravenscar-sfp-zynq7000

- zfp-lm3s

- zfp-rpi2

- zfp-stm32f4

- zfp-stm32f429disco

- zfp-stm32f469disco

- zfp-stm32f746disco

- zfp-stm32f769disco

- zfp-tms570

- zfp-zynq7000

as are the examples in
share/examples/gnat-cross/.

The compiler is known to run on Sierra
and El Capitan.

Find at https://sourceforge.net/projects/
gnuada/files/GNAT_GPL%20Mac%20O
S%20X/2017-arm-eabi-darwin-bin/

[See also “Mac OS X: GNAT GPL for
ARM-EABI”, AUJ 37-2, p. 78. —sparre]

Debian: GNAT

From: Nicolas Boulenguez
<nicolas.boulenguez@free.fr>

Date: Fri, 28 Jul 2017 14:59:02 +0200
Subject: gcc-7 migration
Newsgroups:

gmane.linux.debian.packages.ada

In testing and unstable, most Ada
packages FTBFS because some changes
libgnat6-dev invalidate their .ali files.
Fixing this requires a source upload and a
passage through the NEW queue for every
library.

[1] https://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=866355

In experimental, the migration to gnat-7 is
on its way. Most FTBFS are also caused
by obsolete .ali files, but it is sufficient to
recompile as the ALI/SO versions are

already diffenent *from the ones in
unstable*.

asis, aunit, dh-ada-library, florist,
gmpada, gnatcoll, gpr, gtkada,
ncursesada, opentoken, templates-parser,
texttools, xmlada and xmlezout are mostly
completed.

adabrowse, adacgi, adacontrol,
adasockets, ahven, alog, anet, aws,
dbusada, gnat-gps, liblog4ada, pcscada,
polyorb, spark and topal need to be
updated.

Now that gcc-7 is available in testing, and
its ali files do not change anymore, I
suggest that we start uploading to
unstable.

From: Nicolas Boulenguez
<nicolas.boulenguez@free.fr>

Date: Sat, 12 Aug 2017 19:52:26 +0200
Subject: gcc-7 migration
Newsgroups:

gmane.linux.debian.packages.ada

The gnat package now depends on gnat-7,
meaning that gnat-7 is the default Ada
compiler in the unstable distribution.

Each source package building an Ada
library requires a source+binary upload
with new ALI and SO versions (source-
only uploads are not allowed in the NEW
queue).

Each source package depending on an
Ada library requires a source upload with
an updated -dev build-dependency, once
the dependency has passed through the
NEW queue.

Feel free to contact me for advice, review
and/or upload sponsorship.

Ubuntu: Simple
Components etc.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 11 Aug 2017 15:19:19 +0200
Subject: ANN: Ubuntu 17.10 packages

available
Newsgroups: comp.lang.ada

Ubuntu 17.10 packages of

- Ada industrial control widget library

- Fuzzy machine learning framework

- Fuzzy sets for Ada

- GtkAda 3.14.2

- GtkAda contributions

- MAX! home automation

- Interval arithmetic for Ada

- Units of measurement for Ada

- Simple components for Ada

- String edit

- Tables

are available at www.dmitry-kazakov.de.
The packages can be downloaded
individually or via repository. The

https://github.com/jrmarino/
https://sourceforge.net/projects/

Ada in Context 121

Ada User Journal Volume 38, Number 3, September 2017

repository can be added by placing the
following line into /etc/apt/sources.list:

deb [trusted=yes] http://www.dmitry-
kazakov.de/distributions/ubuntu zesty
main

References to
Publications

Automating Test Generation

From: Rapita Systems
Date: Thu, 20 Jul 2017
Subject: Automating test generation with

AUTOSAC
URL: https://www.rapitasystems.com/blog/

automating-test-generation-autosac

As anyone working with safety-critical
software knows, testing is a costly
process. DO-178 and ISO 26262
guidelines set standards for software
quality assurance that require significant
effort to meet. In the avionics software
industry, it has been estimated that over
50% of the cost of overall development is
spent on testing!

How much of this cost could be avoided if
test requirements were written in a
computer-parseable language so that tests
can be generated automatically from
them?

In January 2016 we partnered with Altran
UK, Rolls-Royce and the Universty of
Oxford to answer just that. In the 15-
month NATEP-funded AUTOSAC
project, we aimed to AUTOmate the
generation of tests from Spark Ada
Contracts.

[...]

Ada Inside

MAX! Home Automation

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 26 Jul 2017 15:43:59 +0200
Subject: ANN: MAX! home automation

v1.10
Newsgroups: comp.lang.ada

MAX! home automation is a GTK+
application to manage ELV/eQ-3 MAX!
cubes. A cube is a gateway to a network
of radiator thermostats, shutter contacts
etc.

http://www.dmitry-kazakov.de/ada/
max_home_automation.htm

Changes to the previous version:

- HTTP requests added to get the average,
maximum, minimum valve positions;

- MQTT topics added to subscribe to the
average, maximum, minimum valve
positions.

[See also “MAX! Home Automation”,
AUJ 38-2, p. 78. —sparre]

SparCanto

From: Ken O. Burtch
<koburtch@gmail.com>

Date: Thu, 17 Aug 2017 20:17:18 -0700
(PDT)

Subject: ANN: SparCanto Prototype
Newsgroups: comp.lang.ada

SparCanto is a web framework and CMS
written in SparForte, my Ada-based
scripting language. It is for development
of SparForte web applications.

This version is a proof-of-concept and not
yet ready for general use. I had to
temporarily suspend work on SparCanto
due to other projects.

Contributors that want to work on
SparCanto can access it on GitHub.
There is a link to it on the SparForte
website download page.

Pasta!

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 29 Aug 2017 17:49:39 +0000
Subject: Pasta! with High Scores
Newsgroups: gmane.comp.lang.ada.gnoga

From now on there is a high score list
appearing at the end of each successfully
completed level of “Pasta!” [1].

Actually the best scores were already
recorded for the last couple of days, but
not displayed.

[1] http://pasta.phyrama.com/game.html

[See also “Pasta!”, AUJ 38-2, p. 78.
—sparre]

Job

From: Real-Time Innovations
Date: Thu, 31 Aug 2017
Subject: Senior Ada Software Engineer

Industrial IoT at Real-Time Innovations
URL: https://boards.greenhouse.io/rti/jobs/

781054#.WaXvpNOGPwO

As a senior Ada software engineer in our
development team, you will be part of a
team of experts building a secure real-
time middleware platform with extreme
performance and scalability. Focussed on
our Ada language binding, your work will
directly impact RTI customers, e.g.,
building reliable radar systems and
avionics applications.

The RTI Connext software enables 100s
and 1000s of applications and devices to
exchange data in a timely and reliable
way. Our software features direct peer-to-
peer connections, reliable multicast,
automated application discovery, and
unique, contractual quality-of-service
control. Our team values creativity, risk-
taking, innovation, and open
communication.

So, what do we do? Simply put, RTI
connects smarts to distributed systems.
We seek to transform entire industries.

Our hottest markets are today’s most
exciting: autonomous cars, smart medical
systems, green energy, unmanned planes.
Our software smartly runs the largest
power plants on the continent, connects
perception to control in vehicles, drives
the new generation of medical robotics,
controls hyperloop and flying cars, and
provides 24x7 medical intelligence to
hospital patients and emergency victims.
We are making the world greener, safer,
faster, and flat-out cooler.

[...]

Requirements

- Experienced programmer. Hands-on
experience with the Ada programming
language. You love programming
languages. You will also work in other
programming languages. We support
C/C++/Java/C#/Python/Javascript/Lua.

- Degree in Computer Science or related
field (Advanced degree preferred).
Studies related to distributed systems,
peer-to-peer networks, and computer
networking

- Ability to work successfully in a highly
distributed team, including headquarters
in USA.

- Excellent English written
communication skills, with the drive and
desire to improve English verbal
communication skills

[...]

Ada in Context

Compile-time Checking of
Access Types?

From: Nick P. <digitalkevlar@gmail.com>
Date: Sat, 13 May 2017 13:33:27 -0700

(PDT)
Subject: Rust's temporal safety for

Ada/SPARK
Newsgroups: comp.lang.ada

I'm a high-assurance engineer/researcher
who mainly evangelizes the use of proven
methods, tools, etc in proprietary and
FOSS systems. I've promoted Ada long
time (esp Barnes' Safe and Secure book)
but I don't use it myself so I need help
answering something. Inspired by
Cyclone language and linear types, the
Rust language has pulled off a rare feat in
using the ownership and type system (esp
affine types) to eliminate temporal errors
that come from mismanaging references.
That plus two "traits" eliminates race
conditions, too. This is not in static code
or something with heavy restrictions on
what the code can do. Their thriving
community is coding about everything
you can think of from desktop (eg Redox
OS) to servers (eg TrustDNS) to
embedded (eg Tock OS). Here's a
description of their memory-safety
scheme:

https://www.rapitasystems.com/blog/
http://www.dmitry-kazakov.de/ada/
https://boards.greenhouse.io/rti/jobs/

122 Ada in Context

Volume 38, Number 3, September 2017 Ada User Journal

https://doc.rust-lang.org/book/references-
and-borrowing.html

Here's the Cyclone page for people just
curious where it came from or on safe
languages in general:

https://en.wikipedia.org/wiki/
Cyclone_(programming_language)

So, with Rust's approach, they get
memory safety even for *dynamic or
concurrent use* of memory at compile
time with no overhead, runtime checks,
GC, etc. Whereas, the last thing I read on
Ada showed it has a few tricks but many
dynamic uses resort to unsafe
deallocations at some point. Other people
were suggesting reference counting or a
GC leading me to further think it lacks
this ability of Rust. So, my question is,
does Ada 2012 currently have Rust's
capability to enforce both temporal,
memory safety and immunity to race
conditions? I'm really focusing on an
equivalent to the borrow-checker in Rust,
though. If it doesn't have an equivalent, is
there anyone working on adding it to Ada
esp at AdaCore? What Ada/SPARK have
already + memory safety for dynamic
code would be an awesome combination
that would put Rust in distant second. [...]

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sat, 13 May 2017 23:19:26 +0200
Subject: Re: Rust's temporal safety for

Ada/SPARK
Newsgroups: comp.lang.ada

> [...]

This looks sort of like Ada's accessibility
levels and accessibility rules, from ARM
3.10.2, though as it says there, "In most
cases, accessibility is enforced at compile
time by Legality Rules. Run-time
accessibility checks are also used, since
the Legality Rules do not cover certain
cases involving access parameters and
generic packages."

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sun, 14 May 2017 13:19:53 +0300
Subject: Re: Rust's temporal safety for

Ada/SPARK
Newsgroups: comp.lang.ada

> [...]

I agree that Ada accessibility rules are
related to Rust's scoped lifetimes, but my
impression (after a brief read of the Rust
"borrow-checker" material) is that the
Rust scheme goes a lot further than what
is today standard in Ada. For example,
AIUI Rust makes it impossible to try to
dereference a null pointer, and Rust also
completely prevents dangling references,
even when dynamically allocated objects
are deallocated.

In a multi-threaded program, again AIUI,
Rust statically prevents concurrent writes
from different threads to the same
variable. That is "legal" in Ada, but (as
discussed in a concurrent thread on

"Portable memory barriers") Ada has
unchecked rules on when such access is
non-erroneous.

AIUI the Rust scheme is based on (a)
compile-time tracking of the set of
references that refer to a given object, as
well as the kind of access (read-only, or
read-and-write) that each reference
allows, and (b) wrapping all possibly-null
references into "Optional" types (similar
to Ada's variant records) to hide the "null"
values.

It is not clear to me if these Rust
advantages bring with them some
restrictions on the kinds of data structures
that a Rust program can use, or require
some Rust-specific idioms for
transforming traditional reference-heavy
data structures (for example graphs) into
Rust form.

I hope "someone" will make an in-depth
study of how the advantages of the Rust
scheme could be imported into Ada. I'm
afraid it may be rather hard to do, as Rust
references are so different from Ada's
access values.

From: Nick P. <digitalkevlar@gmail.com>
Date: Sun, 14 May 2017 09:46:04 -0700

(PDT)
Subject: Re: Rust's temporal safety for

Ada/SPARK
Newsgroups: comp.lang.ada

> [...] most programmers consider code
that needs run-time checking as a bug

I can see why they'd avoid such
constructions if their tooling couldn't
prove them safe. If another tool can,
though, then I'm thinking it's a bug in Ada
in that Ada's model or tools can't handle
that analysis at compile-time. Something
worth fixing with R&D. That's why I'm
trying to assess what Ada can do currently
in this area. Several other languages
knock this problem out at compile time.
They're functional, logical, and
imperative. So, I know it is feasible in
general case.

Niklas Holsti's post shows he understands
what capability I'm describing. Rust code
can be shown free of double-free's and
dangling-pointers at *compile-time* with
no runtime checks or GC. It does it
with just a few simple rules. Here's the
simplest, shortest description I could find
to save you all time:

https://stackoverflow.com/questions/3613
6201/how-does-rust-guarantee-memory-
safety-and-prevent-segfaults

Those are combined with "traits"... or
something else in language... to allow
race-free concurrency. Instead of
mandating one model for language,
various models of concurrency are
defined in libraries to let you use model
easiest for your problem. Language's
ownership model & borrow-checker
ensures they're all memory-safe and race-
free along with any code using them. So,

you get these guarantees even in multi-
threaded code doing many allocations and
de-allocations of memory dynamically.
New developers do have a hard time
fighting with the borrow-checker early on.
My meta-analysis of their comments
indicates much of it is intrinsic to safely
handling ownership and borrowing of
references that C and GC'd languages
didn't teach them. The tool just enforces
rules (i.e. affine types) known to work.
Learning curve is about 1-2 months of
practice until they say borrow-checker
rarely has problems with their code.

So, can someone today use Ada in a
straight-forward way to write single- or
multi-threaded applications that are, in
every use-case, totally immune at
compile-time to use-after-free and double-
free errors with zero, runtime overhead?
Or can it not do that?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 14 May 2017 19:18:45 +0200
Subject: Re: Rust's temporal safety for

Ada/SPARK
Newsgroups: comp.lang.ada

> [...]

It would be helpful to have an example
where pointers are needed. The example
provided requires no pointers. So in Ada
case, no such problem exist at all.

> [...]

Without having other examples, the
answer is: there is no such problem in
Ada because arguments of task
rendezvous are not pointers.

For multitasking, problems arise when the
method of problem decomposition
requires constructs which are not safe in
the sense that safety is statically
undecidable. Which means that a
decidable static constraints would simply
kill the algorithm.

Considering the problem of having
tasking safe per construction, my
impression is that constraints are no or
very little help. Additional methods of
decomposition are.

From: Yannick Moy <moy@adacore.com>
Date: Sun, 14 May 2017 14:28:34 -0700

(PDT)
Subject: Re: Rust's temporal safety for

Ada/SPARK
Newsgroups: comp.lang.ada

In fact, we currently have at AdaCore an
intern working with us on the inclusion of
Rust-like pointers in SPARK. He has
reached a first milestone which was the
description of suitable rules to include
safe pointers in SPARK, which have
convinced the SPARK Language Design
Group at AdaCore and Altran UK (the
small group working on the evolutions of
the SPARK language).

He's now working with us and researchers
from Inria team Toccata to give a

https://en.wikipedia.org/wiki/

Ada in Context 123

Ada User Journal Volume 38, Number 3, September 2017

mathematical semantics to the notions
that we're using for these safe pointers:
move (on assignment mostly), borrow (on
parameter passing for mutable objects)
and observe (on parameter passing for
immutable objects). We have also started
looking at the concrete implementation of
these rules in GNATprove (the SPARK
analysis tool).

In this work, we don't target everything
that the Rust borrow checker does:

- we leave accessibility checking (the
lifetime checking in Rust) to the
compiler, using existing Ada rules, plus
some restrictions in SPARK to avoid the
need for dynamic accessibility checks

- we leave nullity checking to proof (a
Verification Condition will be generated
for dereference of possibly null
pointers), with the help here of Ada non-
null types that reduce the need for such
proofs. Given that pointers are always
initialized to null in Ada, there is no
need to separately deal with
initialization.

- we ignore the problem of memory leaks
(which could be tackled later as an
extension of the current scheme)

So the main issue that we really address
with this work is the issue of non-aliasing.
Or rather the issue of problematic
interferences, when two names, one of
which can be updated, are referring to the
same memory location. We're focusing on
this issue, because it is the one preventing
inclusion of pointers in SPARK, as for
formal analysis we rely on the ability to
perform modular analysis, where we
make assumptions on the absence of
problematic interferences.

But since our solution to non-aliasing is
based on this Rust-like notion of
ownership of pointers, the same solution
will also forbid use-after-free or double-
free.

This work is ongoing, we will certainly let
the community know about our progress
after the summer.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sun, 14 May 2017 22:59:55 +0300
Subject: Re: Rust's temporal safety for

Ada/SPARK
Newsgroups: comp.lang.ada

[...]

> It's very rare for well designed Ada to
need access types.

"Well designed" is of course subjective.
The container library has made it practical
to avoid access types in the application
code, but then there are other potential
run-time problems, such as "tampering"
with the containers, which require run-
time checks (and which are to some
extent consequences of the use of access
types within the container library).

> An overwhelming majority of
applications can be implemented
without ever writing "access".

I find it difficult to agree with that
"overwhelming", at least if one includes
the access types used under the covers in
the container library.

Even in applications where heap
allocation is forbidden, there are usually
some dynamically allocated resources --
elements of "resource pools" such as
message buffers -- with the corresponding
application-defined "reference" data
types, and the same problems of
managing allocations over time. I don't
know if Rust's memory-management
scheme extends to such non-heap
"references, however.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Mon, 15 May 2017 18:23:07 +0200
Subject: Re: Rust's temporal safety for

Ada/SPARK
Newsgroups: comp.lang.ada

> [...]

I'm pretty sure the "tampering"
restrictions in the containers have nothing
to do with possible implementations
(which need not even be in Ada), and
everything to do with maintaining the
integrity of the structures. They're
intended to ensure that an ordered
container doesn't have an element out of
order, or a hashed container, one with a
different hash than its bin.

> [...]

There's nothing about using the containers
that requires the user to write "access", so
clearly they should not be included.

One might want to use 'access to pass a
subprogram as an anonymous access-to-
subprogram parameter of a container
operation, but since such things can't be
assigned and can't be freed, they're not
really access types, but rather a strange
syntax for limited subprogram types.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 15 May 2017 18:19:43 -0500
Subject: Re: Rust's temporal safety for

Ada/SPARK
Newsgroups: comp.lang.ada

> [...] It's very rare for well designed Ada
to need access types. [...]

I would suggest that Jeff's answer here
should be read to say that "well-designed
Ada code has no need for dynamic
checks". Ada has plenty of unsafe
constructs (for low-level memory
managment, machine access, and the
like), but one never has to use them. Ada
after all is about combining safety with
capability -- we try to allow everything
(including unsafe stuff), but try to make it
clear what is unsafe so that code review
tools can determine what issues exist.

In any case, Ada code can be written so
that there are no dereference checks and
no dangling pointers. You obviously lose
some capability when one does so. Does
that matter? Depends on what you are
doing.

Static rules (of any sort) are always going
to reduce capability, *especially* when it
comes to multithreaded programs. I find it
highly unlikely that any sort of static rules
would actually work in "every use-case".
That's been claimed many times in the
past, and it has always turned out that the
claims were *way* overblown. The
people making such claims often don't
understand multithreading well enough.
(It's an area, like random numbers and
probability, that a little knowledge is
more dangerous than no knowledge.)

I'm also very suspicious of any claims of
new static rules simply because OOP
pretty much forces dynamic checks if one
uses references; strong typing breaks
down for that and everything essentially
becomes dynamic. There probably aren't
any dereference checks, but you end up
with dynamic type checks instead
(substantially worse). Best thing is to
avoid references altogether (but of course
that too reduces capability).

Object_Size Attribute

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 7 Jun 2017 19:51:38 -0500
Subject: Re: Arrays in Ada 2012
Newsgroups: comp.lang.ada

> I always use rounding in the
corresponding cases

 (Long_Long_Integer'Size +
Storage_Unit - 1) / Storage_Unit;

 Is this an overkill from the point of view
the permissions RM gives to array
implementation?

The definition of 'Size is stupid, so you
need rounding like that to be portable. It's
probably not necessary for base types, but
if you had

 (Natural'Size / Storage_Unit)

you would get the wrong answer (Ada
requires Natural'Size to be one less than
Integer'Size, so it usually is 15 or 31 or
63).

Probably a better solution is to use
'Object_Size for such expressions, but that
is only portable to Ada 202x compilers
(for which none exist yet for obvious
reasons). Object_Size usually will be a
multiple of the storage unit; that's the
Implementation Advice for it, but of
course some implementation could ignore
that in some circumstance.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 8 Jun 2017 09:07:41 +0200
Subject: Re: Arrays in Ada 2012
Newsgroups: comp.lang.ada

124 Ada in Context

Volume 38, Number 3, September 2017 Ada User Journal

> The definition of 'Size is stupid, [...]

You mean being bit size or being kind of
weakly typed (universal integer). I
disagree on the first and agree on the
second. It possibly should be overloaded:

function 'Size (...)

 return Storage_Count;-- Storage units

function 'Size (...)

 return Storage_Size; -- Bits

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 8 Jun 2017 22:23:26 -0500
Subject: Re: Arrays in Ada 2012
Newsgroups: comp.lang.ada

> [...]

The definition of 'Size is stupid, because
it's neither the bit size nor the usual
allocation size, but a weird hybrid of both.
It's primary effect is to provide a lower
bound for packing, which is hardly ever
what you want to limit. (Why would you
want to prevent someone from packing
some component?)

And 'Size has no effect at all on what you
can write in other rep. clauses, like
'Component_Size and record
representations. So setting 'Size almost
never does what you want (unless the
compiler tries to be friendly -- but that
runs into problems with the required
default value of Size).

Thus GNAT (and soon Ada) introduced
'Object_Size, which gives the UPPER
bound on the allocated size. A much more
useful thing to bound - you can ensure
that type Byte really only uses a byte, for
instance.

Array Aggregates

From: Ivan Levashev
<bu_gen@octagram.name>

Date: Sun, 18 Jun 2017 09:14:12 +0700
Subject: Re: Arrays in Ada 2020
Newsgroups: comp.lang.ada

FYI Ada 2020 is about to bring some
improvements:

http://www.ada-auth.org/standards/2xrm/
html/ RM-4-3-3.html#p45

> G : constant Matrix :=

 (for I in 1 .. 4 =>

 (for J in 1 .. 4 =>

 (if I = J then 1.0 else 0.0)));

 -- Identity matrix

Proposal: Maximum_Size
Aspect

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Fri, 23 Jun 2017 22:21:33 +0300
Subject: Re: Ada Annoyances
Newsgroups: comp.lang.ada

> [...]

Sometimes usage rules are imposed by
environment constraints, in particular
limited resources in smallish embedded

systems, combined with reliability
requirements which mean that running out
of resources at run time must be avoided.

> [...]

I have so far avoided using tagged types
in my embedded applications because
they indeed hamper the discovery of
resource usage (execution time and stack
space) by static analysis, as you said.

There are two reasons why tagged types
hamper such analysis:

a) dispatching calls (as you said), where
the actual callee is determined by run-
time values (tags) which are hard to
predict by static analysis

b) the non-static size of class-wide objects
(of type T'Class), which means that the
compiler and/or the programmer must
use dynamic allocation (usually heap or
secondary stack) for such objects.

Point (a) can be worked around: static
analysis tools usually let the analyst
specify the possible set of callees for a
"dynamic call" (of which dispatching calls
are one kind) and the analysis can then
encompass all those callees.
(Alternatively, the analysis tool can
extract the class hierarchy from the
debugging information, and itself
discover the possible callees.)

Point (b) is more difficult and I know of
no work-around that can be applied at
analysis time.

For some time, I have had in mind a
possible Ada extension to solve point (b):
an attribute/aspect that would let the
programmer set a static upper bound on
the size of any object in T'Class. If we call
this aspect Maximum_Size (or perhaps
Maximum_Size'Class), the programmer
could use it like this:

 type Root is

 tagged record ... end record;

 with Maximum_Size => 128;

 type Child is new Root

 with record ... end record;

 -- The compiler checks that Child'Size is

 -- at most 128 bits, and

 -- rejects the program otherwise.

It would now be legal to create statically
sized data structures using Root'Class,
without dynamic memory allocation, by
allocating 128 bits for each value of type
Root'Class:

 type Object_List is

 array (List_Index) of Root'Class;

 type Object_Pair is record

 A, B : Root'Class;

 end record;

and so on.

With this extension, or some other means
to solve point (b), I would start using
tagged types in embedded SW. For
example, I have a major SW component,
used in several projects, which simulates
a class hierarchy with variant records and

case statements. This component would
be greatly improved by using a tagged
type instead, but it would need data
structures with class-wide components of
static (maximum) size.

What do people think of a
Maximum_Size aspect? Should I consider
writing a formal suggestion to ada-
comment?

[See also “Community Input for the
ARG” earlier in this issue. —sparre]

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Fri, 23 Jun 2017 21:02:59 -0700
(PDT)

Subject: Re: Ada Annoyances
Newsgroups: comp.lang.ada

> [...] Should I consider writing a formal
suggestion to ada-comment?

Please do.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sat, 24 Jun 2017 23:56:58 +0300
Subject: Re: Ada Annoyances
Newsgroups: comp.lang.ada

> GNAT is happy with

> type Parent is tagged null record

> with Dynamic_Predicate => Size
(Parent) < 128;

> function Size (P : Parent'Class)
return Integer is (P'Size);

> type Large is array (1 .. 10) of
Integer;

> type Child is new Parent with record

> L : Large;

> end record;

>

> Declaring an object of type Child raises
Assert_Failure.

As one would expect, based on standard
Ada, yes?

> Of course you'd much rather have a
static compile-time check!

Indeed I would.

But the check is not the main point in the
suggested Maximum_Size aspect: the
main point is that it would let the
compiler consider the type Root'Class as a
definite subtype, and would therefore
allow its direct use as a component of
arrays or records, instead of forcing an
access-classwide to be used as an
intermediate.

I don't suppose GNAT lets you use
Parent'Class as the component type of an
array, even with this Dynamic_Predicate?

There may however be some other
semantic implications of the definite vs
indefinite subtype divide, not related to
the size of the values, that would make it
hard to let the suggested Maximum_Size
aspect change the classwide type from
indefinite to definite.

http://www.ada-auth.org/standards/2xrm/

Ada in Context 125

Ada User Journal Volume 38, Number 3, September 2017

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Mon, 26 Jun 2017 23:20:01 +0300
Subject: Re: Ada Annoyances
Newsgroups: comp.lang.ada

>> Point (b) [...]

> Simply banning the use of T'Class has
that effect.

At design and compilation time, yes, with
consequent restrictions on the design. But
it is not a work-around that allows static
analysis of programs which do use
T'Class.

> It's rather drastic, but it eliminates all of
the dynamic features. Note that this was
considered important enough that the
standard (in Annex H) restriction
No_Dispatch has this effect.

> You still get the other advantages of
tagged types (extension, proper
inheritance for private, equality,
prefixed notation, etc.), and there is
almost no runtime penalty (or analysis
problem).

For the application I most have in mind (a
SW component currently using
discriminated records to simulate tagged
types) there would be no point in using
tagged types with the No_Dispatch
restriction. The loss of class-wide
programming and class-wide data
structures would remove almost all
benefits.

My hope is that a Maximum_Size aspect
would let one manipulate class-wide
objects in the same "definite" way as is
possible for variant records with a default
discriminant value. However, it would
require that the tag of an object could be
changed by assignment; this is perhaps
too radical a change in the tagged object
semantics.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 26 Jun 2017 16:47:26 -0500
Subject: Re: Ada Annoyances
Newsgroups: comp.lang.ada

> [...]

There's no free lunch! T'Class is by
definition "indefinite", since existing code
already compiled has to be able to handle
newly defined types (including those that
don't yet exist). That's never going to
allow conventional static analysis.

> [...] it would require that the tag of an
object could be changed by assignment;
[...]

That seems way too drastic a change. I
could imagine an aspect like the one you
proposed to get rid of the indirection, but
changing the semantics in a major way
seems to be more than aspects are
supposed to do. And changing the tag via
assignment means having to be prepared
to change finalization of objects after the
fact as well. Ugh.

From: Robert A Duff
<bobduff@TheWorld.com>

Date: Thu, 29 Jun 2017 17:12:20 -0400
Subject: Re: Ada Annoyances
Newsgroups: comp.lang.ada

> There are two reasons why tagged types
hamper such analysis:

As Randy pointed out, it is more correct
to say that class-wide types do that.
Tagged types by themselves do not cause
these problems. Tagged types without
class-wide types are not super useful, but
they are somewhat useful.

> type Root is tagged record ... end
record

 with Maximum_Size => 128;

Something like that was considered and
rejected for Ada 9X. Part of the problem
is that it seems so low level to be talking
about sizes. It's not even portable. And
not maintainable -- if you delete a big
type, or make it smaller, you're now
wasting space.

It would be better to have the compiler
compute the maximum size needed. That
would require the compiler to do a fairly
global analysis, which is something Ada
compilers are not set up to do.

> type Object_List is array (List_Index)
of Root'Class;

> type Object_Pair is record

> A, B : Root'Class;

> end record;

Would you allow:

 X : Object_List (1..10);

 Y : Object_Pair;

? If so, what is the 'Tag of the various
components? "Undefined" is not a very
satisfying answer.

These things are analogous to records
with defaulted discriminants. The
language makes some (unsuccessful!)
attempt to prevent uninitialized
discriminants.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Tue, 4 Jul 2017 22:30:23 +0300
Subject: Re: Ada Annoyances
Newsgroups: comp.lang.ada

> [...] Part of the problem is that it seems
so low level to be talking about sizes.
It's not even portable.

You are right, but this feature would be
used only or mainly in embedded
programs, which usually already contain
unportable, low-level stuff: task stack
sizes, record representation clauses, etc.

> And not maintainable -- if you delete a
big type, or make it smaller, you're now
wasting space.

If the feature would be adopted, I imagine
a friendly compiler would (at least
optionally) tell me that I am wasting
space, or that the given Maximum_Size is

too small, and what would be the
minimum valid value (as GNAT does
now for 'Size clauses that give a too-small
size) even if it requires some bind-time or
link-time global check. That is a quality-
of-implementation issue.

> It would be better to have the compiler
compute the maximum size needed.
[...]

Well, the "binder" part of the compilation
system does some global stuff. And I
would not be surprised if link-time
"relocation"-type computations could be
(mis-)used to compute the maximum size
of any type in a class.

Some compilers already support stack-
size analysis, which is a similar global
analysis.

> [...]

I would like to allow that (default
initialized components of type
Root'Class), but I would not much mind
having to initialize such components
explicitly.

> If so, what is the 'Tag of the various
components? "Undefined" is not a very
satisfying answer.

I agree that "undefined" would not be
good. The natural answer seems to be that
the default initial tag is that of the Root
type, but then we must assume that it is
not an abstract type.

> These things are analogous to records
with defaulted discriminants.

Yes, that has been my mental model (and
it is the implementation used in the main
SW component that I would like to switch
over to class-wide types).

> The language makes some
(unsuccessful!) attempt to prevent
uninitialized discriminants.

Interesting -- I did not know that the
attempt is not fully successful. Is it easy
to explain when the attemp fails?

From: Robert A Duff
<bobduff@TheWorld.com>

Date: Wed, 05 Jul 2017 16:03:47 -0400
Subject: Re: Ada Annoyances
Newsgroups: comp.lang.ada

> [...]

I would use it even in nonembedded
systems.

I don't buy the idea that just because some
of one's embedded code needs to be
nonportable/low-level, it's OK to force
other stuff to be, when it's not logically
necessary.

If you're not interfacing with external
hardware or similar, the compiler should
compute record layouts/sizes.

> [...]

If it can warn about too-large max size,
then it can compute the max size for you.
Yes, it has to be a global analysis.

126 Ada in Context

Volume 38, Number 3, September 2017 Ada User Journal

Too-small max size is easy -- that can be
done at compile time for each type.

> [...]

Well, if you implemented this feature in
GNAT, you'd be proven right. I don't
think AdaCore is going to spend time on
it any time soon.

> [...] global analysis.

Yes. ARG has always shied away from
requiring such things.

> I would like to allow that (default
initialized components of type
Root'Class), but I would not much mind
having to initialize such components
explicitly.

OK.

> [...] The natural answer seems to be
that the default initial tag is that of the
Root type, [...]

But root types are usually abstract.

> Is it easy to explain when the attemp
fails?

Quite easy:

 Uninit : Integer;

 X : Some_Record (Discrim => Uninit);

In a simple case like that, compilers likely
warn. But it's not hard to hide the
uninitialized variable from the compiler.
E.g. a component of a heap-allocated
record -- compilers can't warn about that,
because it would cause too many false
positives.

Strings and Text

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Thu, 29 Jun 2017 19:23:02 +0200
Subject: Re: State of the compiler market
Newsgroups: comp.lang.ada

> The current string mess. Remove it all
and start again.

While at removing the string mess,
remove strings altogether!

Strings' use cases are almost always just
UI related: be it an exception message,
compiler diagnostic, an alert box, and so
forth: in the end, strings are almost always
at the human interface level. (Note that
hashed keys need not be strings.) UI in
just strings?

The presence of bare strings in programs
is only a legacy and reminiscent of

- lack of typed data,

- our habits that move towards ADTs
slowly.

E.g., a notion of Message conveys not just
an array of characters. Microformats of
text exist only because lenient
management is tolerant of stuff that
"tends to work in 90% of the cases", and
"everyone else does it like this, plus we're
not disruptors". IT business could use
that tolerance of bare strings in more

meaningful IT situations, those that
promise higher ROI than messing about
strings.

Note that this posting is demonstrably not
just a string.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Thu, 29 Jun 2017 20:27:07 +0200
Subject: Re: State of the compiler market
Newsgroups: comp.lang.ada

> While at removing the string mess,
remove strings altogether!

Interesting point. While I think I can
follow you, I still think we would need to
have quite a lot of string-like types in the
language anyway (file names, directory
names, host names, user-entered
characters, user-readable characters,
XML, HTML, Ada identifiers, Ada
comments, Ada source file lines, ...).

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 30 Jun 2017 07:27:07 +0200
Subject: Re: State of the compiler market
Newsgroups: comp.lang.ada

> There's just so much stuff I need
unicode strings for and we just don't
have good enough support for it.

Well, you have Wide_String if you can
stay within the BMP, or
Wide_Wide_String if you need the whole
Unicode. There are packages for character
characterization/translation. You have
packages for encoding/decoding
UTF8/16/32. What is the extra support
you need?

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 30 Jun 2017 04:23:31 -0700
(PDT)

Subject: Re: State of the compiler market
Newsgroups: comp.lang.ada

> 1) Character database.

> 2) Iterators over code points, word
boundaries, grapheme clusters, etc.

> 3) BIDI iterators, if your want to render
internationalised text.

> That's just for starters. Like I said, a full
implementation which is in the
standard, not some half arsed thing
which is scattered all over the place.

You just reminded me...

4) Normalisation conversion.

5) Sorting.

6) Unicode regular expressions.

7) Streaming.

8) Unbounded Unicode strings.

The amount of text processing people
need to do in the 21st century is massive,
Ada should make this easy to do, but it
doesn't. Ada needs it's arse dragging into
the modern world.

Unicode in File Names
(and other places)

From: Simon Wright
<simon@pushface.org>

Date: Tue, 04 Jul 2017 14:57:03 +0100
Subject: Re: GNAT vs UTF-8 source file

names
Newsgroups: comp.lang.ada

> [...] GNAT smashes the file name to
lower case if it knows that the file
system is case-insensitive (using an
ASCII to-lower, so of course “smash”
is the right word if there are UTF-8
characters in there). [...]

It's worse than that, on MacOS anyway
[2].

$ GNAT_FILE_NAME_CASE_
SENSITIVE=1 gnatmake -c p*.ads

gcc -c páck3.ads

páck3.ads:1:10: warning: file name does
not match unit name, should be
"páck3.ads"

The reason for this apparently-bizarre
message is [3] that MacOS takes the
composed form (lowercase a acute) and
converts it under the hood to what HFS+
insists on, the fully decomposed form
(lowercase a, combining acute); thus the
names are actually different even though
they _look_ the same.

I have to say that, great as it would be to
have this fixed, the changes required
would be extensive, and I can’t see that
anyone would think it worth the trouble.

The recommendation would be “don’t use
international characters in the names of
library units”.

[2] https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=81114#c1

[3] https://stackoverflow.com/a
/6153713/40851

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 5 Jul 2017 07:25:11 +0200
Subject: Re: GNAT vs UTF-8 source file

names
Newsgroups: comp.lang.ada

[...]

> One of unicode's biggest problems is
that there's no longer any coherent
vision -- it started off as a idea to offer
one code-point per character in human
language, but then shifted to glyph-
building (hence combining characters),
and as such lacks a unifying principle.

The unifying principle is the
normalization forms. The fact that there
are several normalization forms comes
from the difference between human and
computer needs.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 5 Jul 2017 07:21:31 +0200

https://gcc.gnu.org/bugzilla/
https://stackoverflow.com/a

Ada in Context 127

Ada User Journal Volume 38, Number 3, September 2017

Subject: Re: GNAT vs UTF-8 source file
names

Newsgroups: comp.lang.ada

> [...] thus the names are actually different
even though they _look_ the same.

Apparently, they use NFD (Normalization
Form D). Normalization forms are
necessary to avoid a whole lot of
problems, although Ada requires
normalization form C (ARM 2.1 (4.1/3)),
or more precisely, it is implementation
defined if the text is not in NFC.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 05 Jul 2017 10:47:39 +0100
Subject: Re: GNAT vs UTF-8 source file

names
Newsgroups: comp.lang.ada

> [...] implementation defined if the text is
not in NFC.

That reference specifies NFKC which I
suppose is near! GNAT uses this if either
you compile with -gnatW8 or the file
begins with a UTF8 BOM.

The problems I've noted in this thread in
the GNAT implementation are two:

(1) On Windows and MacOS (and
possibly on VMS, not sure if that's
relevant any more) the file name
corresponding to a unit name is converted
to lower-case assuming it's Latin-1 -
System.Case_Util.To_Lower,

 function To_Lower (A : Character)

 return Character is

 A_Val : constant Natural :=

 Character'Pos (A);

 begin

 if A in 'A' .. 'Z'

 or else A_Val in 16#C0# .. 16#D6#

 or else A_Val in 16#D8# .. 16#DE#

 then

 return Character'Val (A_Val + 16#20#);

 else

 return A;

 end if;

 end To_Lower;

This is the problem that prevents use of
extended characters in unit names.

(2) On MacOS, the expected file name
appears to be stored in NFC, but is
retrieved from the file system in NFD.

It seems this will only cause a problem if
you compile the file (on its own, not as
part of the closure of another file - weird -
possibly because the wildcard picks up
the NFD representation, while compiling
as part of the closure uses the NFC
representation in the ALI?) with -gnatwe:

$ GNAT_FILE_NAME_CASE_
SENSITIVE=1 gnatmake -c -f p*.ads
-gnatwe

gcc -c -gnatwe páck3.ads

páck3.ads:1:10: warning: file name does
not match unit name, should be
"páck3.ads"

gnatmake: "páck3.ads" compilation error

[I'm unable to replicate the difference
between á and á here. --sparre]

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 5 Jul 2017 13:20:53 +0200
Subject: Re: GNAT vs UTF-8 source file

names
Newsgroups: comp.lang.ada

> That reference specifies NFKC which I
suppose is near!

Not that near when it comes to ligatures
and other crazy characters... But you are
right, it's NFKC.

> GNAT uses this if either you compile
with -gnatW8 or the file begins with a
UTF8 BOM.

Actually, this has nothing to do with
encoding or coded character sets. Even if
you use Latin-1, the set of allowed
characters is defined as those that belong
to NFKC.

> [...]

I can talk about character issues since I
gave that tutorial at AE'17...

How operating systems manage that, I
don't know.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 5 Jul 2017 13:42:14 -0500
Subject: Re: GNAT vs UTF-8 source file

names
Newsgroups: comp.lang.ada

> But you are right, it's NFKC.

Actually, you were right the first time, but
it doesn't show up in the Ada 2012 as this
is a recent correction (recall AI12-0004-
1? It was just approved by WG 9 at the
June meeting). NFKC is *definitely* the
wrong rule.

Note that we chose NFC in part because
WC3 recommends that all Internet
content be in NFC, and because it is the
more compact representation. I'm
surprised that anyone would use NFD
(since it can be three times larger than
NFC), but I suppose I shouldn't ever be
surprised by the choices of others. ;-)

As always, you can see the *current* state
of Ada by using the working draft RM
(see http://www.ada-auth.org/
standards/ada2x.html). For this rule, that
is 2.1(4.1/5). [http://www.ada-auth.org/
standards/2xrm/html/RM-2-1.html#p4.1]

I suppose the working draft is a bit
confusing for this use (that is, Ada-
Comment) as corrections (like this) take
effect immediately upon WG 9 approval
while amendments don't take effect until
the next Standard update. You can tell
them apart by looking at the bottom of
each subclause at the “<something> from
Ada 2012” (for instance, “Wording
Changes from Ada 2012”) --
“corrections” are identified that way,
while amendments are not identified
specially.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 06 Jul 2017 19:43:49 +0100
Subject: Re: GNAT vs UTF-8 source file

names
Newsgroups: comp.lang.ada

> [...] Even if you use Latin-1, the set of
allowed characters is defined as those
that belong to NFKC.

I don't understand.

If your source has no BOM and you don't
say -gnatW8, GNAT expects Latin-1
encoding. If your source has a BOM or
you say -gnatW8, GNAT expects UTF8
encoding (I haven't tried what happens if
you use NFD).

I haven't tried giving UTF8 coding
without BOM or -gnatW8 - ignoring the
use in unit names - ARM 2.1(16) says it
should be accepted.

(later) UTF8 is accepted in strings but not
in identifiers.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 7 Jul 2017 10:26:08 +0200
Subject: Re: GNAT vs UTF-8 source file

names
Newsgroups: comp.lang.ada

> [...] I don't understand. [...]

This is a common confusion between
characters, coded sets, and encodings...

ISO-10646 defines a coded set (code
points) for a number of characters
(identical to the one defined by Unicode).
Some of these characters can be
represented in NFKC. These are the
allowed characters.

If you use Latin-1, you have different
code points for the same characters - and
the allowed characters are still those
representable in NFKC, even with
different code points.

UTF8 is an encoding, nothing more than a
compression algorithm for numerical
values. It is generally used to compress
Unicode strings, but could be used for any
numerical values. In any case, it doesn't
change logical values, just the way they
are stored.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri, 07 Jul 2017 13:49:57 +0200
Subject: Re: GNAT vs UTF-8 source file

names
Newsgroups: comp.lang.ada

> The rest is about GNAT's behaviour; to
reiterate, ARM 2.1(16/3) says

> “An Ada implementation shall accept
Ada source code in UTF-8 encoding,
with or without a BOM (see A.4.11),
where every character is represented by
its code point.”

> which for GNAT is not met unless
either there is a BOM or -gnatW8 is
used.

http://www.ada-auth.org/

128 Ada in Context

Volume 38, Number 3, September 2017 Ada User Journal

Which sounds perfectly okay.

There are no limitations to which
command-line arguments a program can
require to behave like an Ada compiler.

> On the other hand, ARM 2.1(4/3) says
“The coded representation for
characters is implementation defined”,
which seems to conflict with (16) - but
then, the AARM ramification (4.b/2)
notes that the rule doesn't have much
force!

That sounds like the classical wording.

I suppose that the intent is that UTF-8
encoded ISO-10646 (in the right
normalization form) _has_ to be
supported, but that any other encoding is
allowed in addition to that.

It would of course be nice if that was also
what the ARM actually said.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 7 Jul 2017 14:44:17 -0500
Subject: Re: GNAT vs UTF-8 source file

names
Newsgroups: comp.lang.ada

> I suppose that the intent is that UTF-8
encoded ISO-10646 (in the right
normalization form) _has_ to be
supported, but that any other encoding
is allowed in addition to that.

Precisely.

> It would of course be nice if that was
also what the ARM actually said.

Mostly we're not changing text that
doesn't have to be changed. In some
cases, it would make more sense if it was
changed, but since every change has a
potential for errors and unintended
consequences, its often best to leave stuff
alone. (There are many cases where a
“simple” change broke something else,
leading to repeated fixes.)

Smart Pointers and Tagged
Type Hierarchies

From: Felix Krause <contact@flyx.org>
Date: Mon, 24 Jul 2017 17:41:37 +0200
Subject: Smart Pointers and Tagged Type

Hierarchies
Newsgroups: comp.lang.ada

With Ada's controlled types, it is possible
to implement smart pointers which
manage heap objects with reference-
counting. There is more than one tutorial
showing how that works.

A problem I encounter is how this can be
used with type hierarchies i.e. I have a
smart pointer managing a tagged type,
and I want to be able to derive from that
tagged type and still be able to use my
smart pointer with that new type. Let me
give an example: Assume I want to
implement an abstract type Stream that
represents a stream of events (has nothing
to do with Ada.Streams). I will use a
slightly modified Rosen '95 name scheme

here for clarity: Reference is the smart
pointer, Instance is the actual object. Let
this be the base type:

 package Stream is

 type Reference is new

 Ada.Finalization.Controlled

 with private;

 type Instance is abstract tagged

 limited private;

 type Instance_Pointer is

 access all Instance'Class;

-- Reference-counting implementation here

 overriding procedure Adjust (

 Object : in out Reference);

 overriding procedure Finalize (

 Object : in out Reference);

 -- Fetches an event from the stream

 procedure Fetch (

 Object : in out Instance;

 Ret : out Event) is abstract;

-- Initialize the smart pointer with an object.

-- The smart pointer takes control of that

-- object and will deallocate it when reference

-- count reaches zero.

 procedure Init (

 Object : in out Reference'Class;

 Impl : in Instance_Pointer);

 function Implementation_Access (

 Object : Reference'Class)

 return Instance_Pointer;

-- Is called before deleting the instance.

-- override if you have cleanup to do.

 procedure Finalize (

 Object : in out Instance) is null;

 private

 type Reference is new

 Ada.Finalization.Controlled

 with record

 Impl : Instance_Pointer;

 end record;

 type Instance is abstract tagged

 limited record

 Refcount : Natural := 1;

 end record;

 end Stream;

An example non-abstract type derived
from this would be stream that reads
events from a file:

 package File_Stream is

 type Reference is new

 Stream.Reference with null record;

 procedure Init (

 Object : in out Reference;

 Path : String);

-- Fetches the current position within the file

 procedure Current_Position (

 Object : in out Reference;

 Line, Column : out Positive);

 private

 type Instance is

 new Instance with record

 File : Ada.Text_IO.File_Access;

-- Possibly other fields, e.g. information

-- needed for Current_Position

 end record;

 -- Closes the file

 overriding procedure Finalize (

 Object : in out Instance);

 end File_Stream;

Some observations:

- Unless all implementations are child
classes of Stream, it is necessary to
make the Instance type public.

- A derived type, if it wants to provide
additional operations (like
Current_Position), must not only derive
from Instance, but also from Reference,
to be able to provide an type-safe
interface to those operations.

- As types derived from Stream possibly
need to derive Stream.Reference, a
consumer of a Stream object needs to
take a Stream.Reference'Class as input.
This type cannot be used for a record
field, so I need to allocate it in heap
memory and store a pointer if I want to
memorize a Stream.Reference value
anywhere.

- The implementation of Current_Position
is cumbersome as I need the
Implementation_Access function and
convert the result to
File_Stream.Instance, which creates a
needless downcast check.

I think this is not an ideal interface for the
user and I am searching for a better
alternative. One thing I thought of is
having a generic pointer, so that only the
Instance is tagged:

 package Stream is

 type Instance is

 abstract limited tagged private;

 -- Fetches an event from the stream

 procedure Fetch (

 Object : in out Instance;

 Ret : out Event) is abstract;

 private

 type Instance is

 abstract tagged limited record

 Refcount : Natural := 1;

 end record;

 end Stream;

 generic

 type Implementation is

 new Stream.Instance with private;

 package Stream.Smart is

 type Reference is

 new Ada.Finalization.Controlled

 with private;

 -- Reference-counting implementation

 overriding procedure Adjust (

 Object : in out Reference);

 overriding procedure Finalize (

 Object : in out Reference);

 private

 type Implementation_Access is

 access all Implementation'Class;

 type Reference is

 new Ada.Finalization.Controlled

 with record

 Data : access Implementation_Access;

 end record;

 end Stream.Smart;

This looks good at first glance. But now,
all consumers of a Stream must also be
generic and take an instance of the Smart
package as generic parameter (at least if I
want them to take the smart pointer and

Ada in Context 129

Ada User Journal Volume 38, Number 3, September 2017

not Instance_Pointer as parameter, which
is kind of the point).

Now I am wondering what others think of
these approaches. Are there alternatives?
Which one would be better from a user
perspective?

From: Chris Moore
<zmower@ntlworld.com>

Date: Mon, 24 Jul 2017 22:24:58 +0100
Subject: Re: Smart Pointers and Tagged

Type Hierarchies
Newsgroups: comp.lang.ada

> [...] A derived type, if it wants to
provide additional operations (like
Current_Position), must not only derive
from Instance, but also from Reference,
to be able to provide an type-safe
interface to those operations.

Why? All ops on Instance-derived types
(including constructing subprograms)
should be in terms of that type.
References are for access only (ho ho).

> As types derived from Stream possibly
need to derive Stream.Reference, a
consumer of a Stream object needs to
take a Stream.Reference'Class as input.
This type cannot be used for a record
field, so I need to allocate it in heap
memory and store a pointer if I want to
memorize a Stream.Reference value
anywhere.

No. This way lies madness. A parallel
hierarchy of References gains you very
little and takes a lot of maintenance.

> The implementation of
Current_Position is cumbersome as I
need the Implementation_Access
function and convert the result to
File_Stream.Instance, which creates a
needless downcast check.

The downcast has to go *somewhere*.

<snip generic version>

I had to do this kind of thing a great deal
in the Ada version of the mal lisp
interpreter. See for example:

https://github.com/zmower/mal/blob/
master/ada/smart_pointers.ads

https://github.com/zmower/mal/blob/
master/ada/types.ads

But my advice is to avoid tagged types if
you can. They only make sense if your
problem is wildly dynamic or you want to
be lazy when thinking about memory
allocation. mal qualified on both counts.

From: Felix Krause <contact@flyx.org>
Date: Thu, 27 Jul 2017 21:38:34 +0200
Subject: Re: Smart Pointers and Tagged

Type Hierarchies
Newsgroups: comp.lang.ada

> Why? All ops on Instance-derived
types (including constructing
subprograms) should be in terms of that
type. References are for access only
(ho ho).

Well, if the smart pointer for File_Stream
is the same type as the smart pointer for
Stream, I'd need to downcast the retrieved
access type each time I want to call a
subroutine only defined for File_Stream,
such as Current_Position in my example.
An explicit downcast is undesirable
because it implies that it may fail, which
it cannot when I create a File_Stream
reference with a construction subroutine
and subsequently call Current_Position on
it.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 31 Jul 2017 23:07:49 -0500
Subject: Re: Smart Pointers and Tagged

Type Hierarchies
Newsgroups: comp.lang.ada

> Well, if the smart pointer for
File_Stream is the same type as the
smart pointer for Stream, I'd need to
downcast the retrieved access type each
time I want to call a subroutine only
defined for File_Stream, [...]

Our experience with Claw eventually led
to an in-house rule that all access types
(and pseudo-access-types like smart
pointers would be the same) had to be
access-to-classwide. Once we did that, we
found that we could avoid most explicit
type conversions by using dispatching; we
did need a few in cases of operations only
defined for a subset of child types.

<Rant>There are no "casts" in Ada.
Moreover, talking about "up" or "down"
when talking about type conversions is
confusing, mainly because many
computer people apparently have never
seen an actual tree. I can speak from
experience when I say that I've seen
thousands of trees and almost every one
of them had the roots on the bottom. (The
rest were windfalls and had the roots on
the side...:-) Ergo, "down" in a tree is
inherently toward the roots. Since a lot of
people like to draw their trees upside
down, they're confused about where the
root of a tree is. The only solution to that
is to be explicit: convert toward the root
or toward the leaves. The only thing a
"downcast" should be used for is fly
fishing (and I *hate* fishing :-). If you
want people to understand, "cast" out that
terminology.</Rant>

From: Christoph Karl Walter Grein
<christ-usch.grein@t-online.de>

Date: Fri, 28 Jul 2017 02:21:53 -0700
(PDT)

Subject: Re: Smart Pointers and Tagged
Type Hierarchies

Newsgroups: comp.lang.ada

I haven't followed the thread in detail, but
perhaps this page can help you:

http://www.christ-usch-grein.homepage.t-
online.de/Ada/Smart_Pointers.html

From: Emmanuel Briot
<briot@adacore.com>

Date: Sun, 30 Jul 2017 12:45:48 -0700
(PDT)

Subject: Re: Smart Pointers and Tagged
Type Hierarchies

Newsgroups: comp.lang.ada

I like the approach with
Implicit_Dereference for the accessor In
AdaMagica's link. In fact, I am pretty sure
we could use this for the smart pointer
itself, so that the call to Get at the bottom
of the page is not even necessary. I started
playing with that for
GNATCOLL.Refcount, but did not have
time to finish yet.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 31 Jul 2017 22:43:37 -0500
Subject: Re: Smart Pointers and Tagged

Type Hierarchies
Newsgroups: comp.lang.ada

> [...] I want to be able to derive from that
tagged type and still be able to use my
smart pointer with that new type.

What's needed is something like "co-
derivation", where multiple types are
derived in lock-step. Sadly, this is
effectively impossible in an OOP
environment, because dispatching calls
would have the wrong parameter types for
any co-derived types. (I've spent quite a
bit of effort in trying to make such a
solution work, and have enlisted others to
help, but the conclusion was that it wasn't
promising.)

One would have to have some form of
multiple dispatch to get around that, but
that's a bridge too far for a language that's
mainly used in embedded, safety-critical
systems.

One could make it work for non-tagged
types, but of course that prevents
dispatching and extension. So it's
probably not worth the effort to design.

Proposal: Smart Pointers

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Thu, 31 Aug 2017 14:12:17 +0200
Subject: Interest in standard smart pointers

for Ada 2020
Newsgroups: comp.lang.ada

I wonder if there would be interest in
standardizing some usual smart pointers
for the next revision. I will try to state the
problems. I hope you'll point any
misunderstandings on my part.

Ada has the particular limited and
indefinite types, typically absent in other
languages. However, their constraints
often get in the way of comfort (all the
cases I will list have workarounds, it's
only tiresome and unnecessary noise):

- You cannot have indefinite record
members, unless you make the record
indefinite as well by providing a

https://github.com/zmower/mal/blob/
https://github.com/zmower/mal/blob/

130 Ada in Context

Volume 38, Number 3, September 2017 Ada User Journal

constraint. This basically moves the
problem elsewhere (to the containing
record, which may have no reason to be
indefinite). Furthermore, some types do
not have public constraints (e.g., to
prevent declaration without
initialization), so the previous solution
wouldn't work. Also for class-wide
members?

 o Ada.Containers.Indefinite_Holders is
aimed at this use case, but it is only for
by-value semantics, so if you don't want
to pay that penalty for some reason
(large types) you're out of luck.

- You cannot have a limited type
(obviously) as a member of an unlimited
type. You're then forced to resort to low-
level accesses or custom wrappers to
pass around those members.

- Delayed initialization of limited types,
specially in combination with indefinite-
ness will require some access type use.

- Delayed initialization of indefinite types,
when you don't want to/can have a
default discriminant (I remember a
recent discussion about limited-size
indefinites).

- Any other use cases I'm forgetting about
right now?

Arguably (I'm unsure about this) in most
cases problems could be avoided with
careful design? I don't know, but I do
know that there are smart pointer Ada
libraries around, and I have rolled my
own more often than not, and when I try
to go the unconstrained way all around,
sooner or later I have to backpedal.

If we look at the cousin C++, the standard
pointers there are:

> unique_ptr [1]

> Allows exactly one owner of the
underlying pointer. Use as the default
choice for POCO unless you know for
certain that you require a shared_ptr.
Can be moved to a new owner, but not
copied or shared.

> shared_ptr [2]

> Reference-counted smart pointer. Use
when you want to assign one raw
pointer to multiple owners, for
example, when you return a copy of a
pointer from a container but want to
keep the original. The raw pointer is not
deleted until all shared_ptr owners have
gone out of scope or have otherwise
given up ownership.

> weak_ptr [3]

> Special-case smart pointer for use in
conjunction with shared_ptr. A
weak_ptr provides access to an object
that is owned by one or more
shared_ptr instances, but does not
participate in reference counting. Use
when you want to observe an object,
but do not require it to remain alive.
Required in some cases to break
circular references between shared_ptr
instances.

I'd argue for having these, and also
thread-safe implementations (that I guess
would be heavier, requiring protected
internals). I'd be willing to work on this
too, if there is interest.

[1] http://en.cppreference.com/w/cpp/
memory/unique_ptr

[2] http://en.cppreference.com/w/cpp/
memory/shared_ptr

[3] http://en.cppreference.com/w/cpp/
memory/weak_ptr

[See also “Community Input for the
ARG” earlier in this issue. —sparre]

http://en.cppreference.com/w/cpp/
http://en.cppreference.com/w/cpp/
http://en.cppreference.com/w/cpp/

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

132

Volume 38, Number 3, September 2017 Ada User Journal

Conference Calendar
Dirk Craeynest

KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2017

October 02-06 17th International Conference on Formal Methods in Computer-Aided Design (FMCAD'2017),

Vienna, Austria. Topics include: theory and applications of formal methods in hardware and system

verification; synthesis and compilation for computer system descriptions, modeling, specification, and

implementation languages, model-based design, correct-by-construction methods, ...; experience with the

application of formal and semi-formal methods to industrial-scale designs; tools that represent formal

verification enablement, new features, or a substantial improvement in the automation of formal methods;

etc.

 October 04-06 25th International Conference on Real-Time Networks and Systems (RTNS'2017), Grenoble, France.

Topics include: real-time applications (automotive, avionics, process control, multimedia, cyber-physical

systems, ...); software technologies for real-time systems (compilers, programming languages,

middleware, RTOS, ...); real-time system design and analysis (real-time scheduling, mixed-criticality

systems, model-driven development, WCET estimation, ...); formal specification and verification (formal

methods, model checking, ...); real-time distributed systems (fault tolerance, task/messages allocation,

IoT, ...); etc.

October 09-11 18th International Conference on System and Design Languages (SDL'2017), Budapest, Hungary.

Topics include: evolution of development languages (domain-specific language profiles; modular

language design; language extensions, semantics and evaluation; real-time aspects and performance;

methodology for application; education and promotion); model-driven development; industrial

application reports (industrial usage reports; standardization activities; tool support and frameworks;

domain-specific applicability, such as automotive, aerospace, control, ...); etc.

 October 11-13 30th International Workshop on Languages and Compilers for Parallel Computing (LCPC'2017),

College Station, Texas, USA. Topics include: compilers for parallel computing, parallel programming

models and languages, formal analysis and verification of parallel programs, debugging tools for

concurrency, concurrent data structures, parallel applications, software engineering for parallel programs,

etc.

October 15-20 Embedded Systems Week 2017 (ESWEEK'2017), Seoul, South Korea. Topics include: all aspects of

embedded systems and software. Includes CASES'2017 (International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems), CODES+ISSS'2017 (International Conference on

Hardware/Software Codesign and System Synthesis), EMSOFT'2017 (International Conference on

Embedded Software).

 Oct 15-20 ACM SIGBED International Conference on Embedded Software (EMSOFT'2017).

Part of ESWEEK, EMSOFT brings together researchers and developers from academia,

industry, and government to advance the science, engineering, and technology of

embedded software development. EMSOFT is a venue for cutting-edge research in the

design and analysis of software that interacts with physical processes, with a long-

standing tradition for results on cyber-physical systems, which compose computation,

networking, and physical dynamics.

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html

Conference Calendar 133

Ada User Journal Volume 38, Number 3, September 2017

October 15-20 International Conference on Compilers, Architecture, and Synthesis for Embedded

Systems (CASES'2017). Part of ESWEEK, CASES is a forum where researchers,

developers and practitioners exchange information on the latest advances in compiler and

architectures for high-performance, low-power embedded systems. The conference has a

long tradition of showcasing leading edge research in embedded processor, memory,

interconnect, storage architectures and related compiler techniquest targeting

performance, power, predictability, security, reliability issues for both traditional and

emerging application domains. In addition, we invite innovative papers that address

design, synthesis, and optimimization challenges in heterogeneous and accelerator-rich

architectures.

October 19 7th International Workshop on Design, Modeling and Evaluation of Cyber Physical

Systems (CyPhy'2017). In conjunction with ESWEEK 2017. Topics include: modeling

and simulation languages for hybrid and cyber-physical systems; development of

industrial or research-oriented cyber-physical systems in domains such as robotics, smart

systems (homes, vehicles, buildings), medical and healthcare devices, future generation

networks; evaluation of novel research tools, comparisons of state of the art tools in

industrial practice; etc.

 October 22-27 ACM Conference on Systems, Programming, Languages, and Applications: Software for Humanity

(SPLASH'2017), Vancouver, Canada. Topics include: all aspects of software construction, at the

intersection of programming, languages, systems, and software engineering.

October 23-25 3rd Symposium on Dependable Software Engineering: Theories, Tools and Applications

(SETTA'2017), Changsha, China. Topics include: formalisms for modeling, design and implementation;

model checking, theorem proving, and decision procedures; scalable approaches to formal system

analysis; integration of formal methods into software engineering practice; contract-based engineering of

components, systems, and systems of systems; formal and engineering aspects of software evolution and

maintenance; parallel and multi-core programming; embedded, real-time, hybrid, and cyber-physical

systems; mixed-critical applications and systems; safety, security, reliability, robustness, and fault-

tolerance; applications and industrial experience reports; tool integration; etc.

October 23-26 28th IEEE International Symposium on Software Reliability Engineering (ISSRE'2017), Toulouse,

France. Topics include: innovative, high-impact techniques and tools for assessing, predicting, and

improving the reliability, safety, and security of software products; validation and verification, testing;

faults, errors, failures, defects, bugs; software quality and productivity; software security; dependability,

survivability, fault tolerance and resilience of software systems; systems (hardware + software) reliability

engineering; supporting tools and automation; industry best practices; software standards; etc.

October 23-27 14th International Colloquium on Theoretical Aspects of Computing (ICTAC'2017), Hanoi, Vietnam.

Topics include: principles and semantics of programming languages; models of concurrency, security,

and mobility; real-time, embedded, hybrid and cyber-physical systems; program static and dynamic

analysis and verification; software specification, refinement, verification and testing; model checking;

case studies, theories, tools and experiments of verified systems; etc.

Oct 30 – Nov 03 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE'2017),

Urbana-Champaign, Illinois, USA. Topics include: foundations, techniques, and tools for automating the

analysis, design, implementation, testing, and maintenance of large software systems; such as component-

based systems; maintenance and evolution; model-driven development; reverse engineering and re-

engineering; specification languages; software architecture and design; software product line engineering;

software security and trust; testing, verification, and validation; etc.

November 07-09 30th IEEE Conference on Software Engineering Education and Training (CSEET'2017), Savannah,

USA. Topics include: curriculum development; empirical studies; personal or institutional experience;

software assurance, quality, and reliability; methodological aspects of software engineering education;

open source in education; cooperation between industry and academia; etc.

November 09-10 11th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement

(ESEM'2017), Toronto, Canada. Topics include: strengths and weaknesses of software engineering

technologies and methods from a strong empirical viewpoint, including quantitative, qualitative, and

mixed studies; case studies, action research, and field studies; replication of empirical studies and families

of studies; mining software engineering repositories; empirically-based decision making; assessing the

benefits/costs associated with using certain development technologies; industrial experience, software

134 Conference Calendar

Volume 38, Number 3, September 2017 Ada User Journal

project experience, and knowledge management; software technology transfer to industry; empirical

studies with negative results, i.e. studies that did not deliver the expected results; etc.

 November 14-16 International Conference on Reliability, Safety and Security of Railway Systems (RSSRail'2017),

Pistoia, Italy. Topics include: safety in development processes and safety management combined

approaches to safety and security system and software safety analysis formal modelling and verification

techniques system reliability validation according to the standards tool and model integration, toolchains

domain-specific languages and modelling frameworks model reuse for reliability, safety and security

modelling for maintenance strategy engineering etc. Deadline for early registration: October 2, 2017.

Nov 29 – Dec 01 18th International Conference on Product-Focused Software Process Improvement (PROFES'2017),

Innsbruck, Austria. Topics include: experiences, ideas, innovations, as well as concerns related to

professional software process improvement motivated by product and service quality needs; industrial

experience reports and empirical studies reporting, e.g., on the application of respective methods or

technologies in real settings; etc.

 December 05-08 38th IEEE Real-Time Systems Symposium (RTSS'2017), Paris, France. Topics include: all aspects of

real-time systems theory, design, analysis, implementation, evaluation, and experiences.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2018

January 16-19 10th Software Quality Days Conference (SWQD'2018), Vienna, Austria. Theme: "Software Quality

4.0: Advanced Methods and Tools for better Software and Systems". Topics include: improvement of

software development methods and processes; testing and quality assurance of software and software-

intensive systems; domain specific quality issues such as embedded, medical, automotive systems; novel

trends in software quality; etc.

Jan 29 – Feb 02 44th International Conference on Current Trends in Theory and Practice of Computer Science

(SOFSEM'2018), Krems an der Donau, Austria. Topics include: foundations of computer science,

software engineering, and data and knowledge-based systems. Deadline for submissions: November 20,

2017 (posters).

February 03-04 Free and Open Source Software Developers' European Meeting (FOSDEM'2018), Brussels, Belgium.

February 07-09 12th International Workshop on Variability Modelling of Software-Intensive Systems

(VaMoS'2018), Madrid, Spain. Topics include: variability across the software life cycle; runtime

variability approaches; variability in software architecture; managing variability at post-deployment time;

formal verification, testing, and debugging of variable software systems; refactoring and evolution of

variable software systems; Reverse engineering approaches; formal reasoning and automated analysis on

variability; software economic aspects of variability; etc. Deadline for submissions: October 13, 2017

(abstracts), October 23, 2017 (papers).

February 21-24 49th ACM Technical Symposium on Computer Science Education (SIGCSE'2018), Baltimore,

Maryland, USA.

March 19-22 24th International Working Conference on Requirements Engineering - Foundation for Software

Quality (REFSQ'2018), Utrecht, the Netherlands. Deadline for submissions: October 2, 2017 (papers),

October 16, 2017 (workshops), January 15, 2018 (workshop papers).

 April 09-12 The Art, Science, and Engineering of Programming Conference (Programming'2018), Nice, France.

Topics include: everything to do with programming, including the experience of programming; general-

purpose programming; distributed systems programming; parallel and multi-core programming; security

programming; interpreters, virtual machines and compilers; modularity and separation of concerns;

model-based development; testing and debugging; program verification; programming education;

programming environments; etc. Deadline for submissions: October 1, 2017 (workshops), December 1,

2017 (research papers, deadline 3).

April 09-13 33rd ACM Symposium on Applied Computing (SAC'2018), Pau, France.

 April 09-13 Track on Object-Oriented Programming Languages and Systems (OOPS'2018).

Topics include: aspects and components; code generation, and optimization; distribution

Conference Calendar 135

Ada User Journal Volume 38, Number 3, September 2017

and concurrency; evaluation; formal verification; Internet of Things technology and

programming; integration with other paradigms; interoperability, versioning and software

evolution and adaptation; language design and implementation; modular and generic

programming; runtime verification and monitoring; safe, secure and dependable software;

static analysis; testing and debugging; type systems; etc.

April 09-13 Track on Software Verification and Testing (SVT'2018). Topics include: new results

in formal verification and testing, technologies to improve the usability of formal methods

in software engineering, applications of mechanical verification to large scale software,

model checking, correct by construction development, model-based testing, software

testing, static and dynamic analysis, analysis methods for dependable systems, software

certification and proof carrying code, fault diagnosis and debugging, verification and

validation of large scale software systems, real world applications and case studies

applying software testing and verification, etc.

April 09-13 9th ACM/SPEC International Conference on Performance Engineering (ICPE'2018), Berlin,

Germany. Theme: "Continuous Performance Assurance in Agile Delivery". Deadline for submissions:

October 13, 2017 (workshops), October 16, 2017 (research and industrial/experience abstracts), October

18, 2017 (tutorials, research and industrial/experience papers), December 15, 2017 (artifact registration),

December 22, 2017 (artifact submission), January 3, 2018 (posters/demos), January 10, 2018 (work-in-

progress/vision papers).

April 10-13 11th Cyber-Physical Systems Week (CPS Week'2018), Porto, Portugal. Deadline for submissions:

November 3, 2017 (workshops, tutorials, competitions).

 April 11-13 24th IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS'2018). In conjunction with CPSWeek'2018. Topics include: timing issues

ranging from traditional hard real-time systems to latency-sensitive systems with soft real-

time requirements; original systems and applications, case studies, methodologies and

applied algorithms that contribute to the state of practice in the design, implementation

and verification of real-time systems; embedded, networked and cyber-physical systems

that consider real-time aspects; etc. Deadline for submissions: October 6, 2017.

April 11-13 9th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS'2018).

In conjunction with CPSWeek'2018. Topics include: development of technologies, tools,

and architectures for building CPS systems; design, implementation, and investigation of

CPS applications; secure and resilient CPS infrastructure; etc. Deadline for submissions:

October 6, 2017 (full papers).

April 14-21 21st European Joint Conferences on Theory and Practice of Software (ETAPS'2018), Thessaloniki,

Greece. Events include: ESOP (European Symposium on Programming), FASE (Fundamental

Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation

Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the Construction

and Analysis of Systems), SV-COMP (7th Competition on Software Verification). Deadline for

submissions: October 13, 2017 (abstracts), October 20, 2017 (papers), November 22, 2017 (POST

abstracts), November 24, 2017 (POST papers).

April 17-19 10th NASA Formal Methods Symposium (NFM'2018), Newport News, Virginia, USA. Topics include:

identify challenges and provide solutions for achieving assurance for critical systems; model checking,

static analysis, use of formal methods in software and system testing, compositional techniques, parallel

and/or distributed techniques, safety cases and system safety, fault tolerance, model-based development,

etc. Deadline for submissions: November 10, 2017 (abstracts), November 20, 2017 (papers).

 April 18-20 19th International Real-Time Ada Workshop (IRTAW'2018), Benicàssim, Spain.
Deadline for submissions: February 4, 2018 (position papers).

April 30 – May 04 2nd International Conference on Software Architecture (ICSA'2018), Seattle, USA. Topics include:

model driven engineering for continuous architecting; component based software engineering and

architecture design; re-factoring and evolving architecture design decisions and solutions; architecture

frameworks and architecture description languages; preserving architecture quality throughout the system

lifetime; software architecture for legacy systems and systems integration; architecting families of

products; software architects roles and responsibilities; training, education, and certification of software

architects; industrial experiments and case studies; bold arguments against current research directions and

results; results that challenge established results or beliefs giving evidence that call for fundamentally new

136 Conference Calendar

Volume 38, Number 3, September 2017 Ada User Journal

directions, open up new research avenues where software architecture research can contribute; etc.

Deadline for submissions: November 12, 2017 (workshops), January 18, 2018 (technical abstracts),

January 25, 2018 (full technical papers), March 8, 2018 (New and Emerging Ideas, engineering track,

Early Career Researchers Forum abstracts, workshop papers), March 9, 2018 (tutorials), March 15, 2018

(New and Emerging Ideas, engineering track, Early Career Researchers Forum papers).

May 21-23 17th International Conference on Software Reuse (ICSR'2018), Madrid, Spain. Theme: "New

Opportunities for Software Reuse". Topics include: component-based reuse techniques, generative reuse,

systematic reuse approaches helping industries transitioning from ad-hoc approaches, reverse engineering

of potentially reusable components, evolution and maintenance of reusable assets, development of

reusable components for Product Line Engineering, software variability approaches for configuring and

deriving reusable assets, dynamic aspects of reuse (i.e post-deployment time), etc. Deadline for

submissions: December 4, 2017 (papers).

May 21-25 32nd IEEE International Parallel and Distributed Processing Symposium (IPDPS'2018), Vancouver,

Canada.

May 27 – June 03 40th International Conference on Software Engineering (ICSE'2018), Gothenburg, Sweden. Deadline

for submissions: October 10, 2017 (workshops), October 15, 1027 (IEEE TCSE Harlan Mills Award

nominations), October 23, 2017 (SE in Practice, SE Education and Training, SE in Society, New Ideas

and Emerging Results), November 1, 2017 (technical briefings), November 20, 2017 (doctoral

symposium, demos), January 8, 2018 (ACM Student Research Competition), January 15, 2018 (student

contest on Software Engineering), January 22, 2018 (student volunteers), February 5, 2018 (posters).

June 11-15 30th International Conference on Advanced Information Systems Engineering (CAiSE'2018), Tallin,

Estonia. Theme: "Information Systems in the Big Data Era". Topics include: methods, models,

techniques, architectures and platforms for supporting the engineering and evolution of information

systems and organizations in the big data era. Deadline for submissions: October 15, 2017 (workshops),

November 24, 2017 (abstracts), December 1, 2017 (papers), March 4, 2018 (forum).

 June 18-22 23rd International Conference on Reliable Software Technologies - Ada-
Europe'2018. Lisbon, Portugal. Sponsored by Ada-Europe. Deadline for submissions:
January 22, 2018 (regular papers, industrial presentations, tutorials, workshops).

July 14-16 22nd International Symposium on Formal Methods (FM'2018), Oxford, UK. Topics include: formal

methods for the engineering of computer-based systems and software.

 July 16-22 32nd European Conference on Object-Oriented Programming (ECOOP'2018), Amsterdam, the

Netherlands.

138 For thcoming Events

Volume 38, Number 3, September 2017 Ada User Journal

19th International Real-Time Ada Workshop – IRTAW 2018

Hotel Voramar, Benicàssim, Spain

18-20 April 2018
http://www.ada-europe.org/irtaw2018

Call for Papers
The International Real-Time Ada Workshop series has provided a forum for identifying issues with real-time system support

in Ada and for exploring possible approaches and solutions, and has attracted participation from key members of the research,

user, and implementer communities worldwide. Recent International Real-Time Ada Workshop meetings contributed to the

Ada 2005/Ada 2012 standards, especially with respect to the tasking features, the real-time and high-integrity systems annexes,

and the standardization of the Ravenscar Tasking Profile.

In keeping with this tradition, the goals of the 19th edition of IRTAW will be to:

 Review Ada 2012 Issues vis-a-vis real-time systems;

 Examine experiences in using Ada 2012 for real-time systems and applications;

 Implementation approaches for Ada 2012 real-time features;

 Consider developing other real-time Ada profiles in addition to the Ravenscar profile;

 Implications to Ada with multiprocessors in development of real-time systems;

 Paradigms for using Ada for real-time distributed systems, with special emphasis on robustness as well as hard,

flexible and application-defined scheduling;

 Analysis of specific patterns and libraries for real-time systems development in Ada;

 Ada in context of the certification of safety-critical and/or security-critical real-time systems;

 Examine the Real-Time Specification for Java and other languages for real-time systems development, their current

implementations and their interoperability with Ada in embedded real-time systems;

 Industrial experience with Ada and the Ravenscar Profile in real-time projects;

 Consider the language vulnerabilities of the Ravenscar and full language definitions;

 Consider testing for compliance with the Real-Time Annex.

Participation at the 19th IRTAW is by invitation following the submission of a position paper addressing one or more of the

above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an invitation, but for one reason or

another is unable to produce a position paper, may send in a one-page position statement indicating their interests. Priority will

be given to submitted papers.

Submission Requirements
Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. All accepted papers

will appear, in their final form, in the Workshop Proceedings, which will be published as a special issue of Ada Letters (ACM

Press). Selected papers will also appear in the Ada User Journal. Authors with a relevant paper submitted to the 23rd

International Conference on Reliable Software Technologies – Ada-Europe 2018 (deadline 24 January, 2018) may offer an

extended abstract of the same material to IRTAW. Please submit position papers, in PDF format, to the Program Chair by e-

mail: brad.moore@shaw.ca

Important Dates
Paper Submission: 4 February, 2018

Notification of Acceptance: 23 February, 2018

Confirmation of Attendance: 9 March, 2018

Final Paper Due: 30 March, 2018

Workshop: April 18-20, 2018

 Program Chair Workshop Chair
Brad Moore, General Dynamics Mission Systems, Canada Jorge Real Universitat Politècnica de València, Spain

Conference Chair
Nuno Neves
LASIGE/U. Lisboa

Program Chair
António Casimiro
LASIGE/U. Lisboa

Special Session Chair
Marcus Völp
University of Luxembourg

Tutorial and Workshop Chair
David Pereira
CISTER/ISEP

Industrial Co-Chairs
Marco Panunzio
Thales Alenia Space
José Rufino
LASIGE/U. Lisboa

Publication Chair
Pedro Ferreira
LASIGE/U. Lisboa

Exhibition Co-Chairs
José Neves
GMV
Ahlan Marriott
White Elephant GmbH

Publicity Chair
Dirk Craeynest
Ada-Belgium & KU Leuven

Local Secretariat
Madalena Almeida
Viagens Abreu S.A.

General Information
The 23rd International Conference on Reliable Software Technologies – Ada-Europe
2018 will take place in Lisbon, Portugal. Following its traditional style, the conference
will span a full week, including a three-day technical program and vendor exhibition
from Tuesday to Thursday, along with parallel tutorials and workshops on Monday
and Friday.

Schedule

Topics
The conference is a leading international forum for providers, practitioners and
researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and
maintenance of long-lived, high-quality software systems for a challenging variety of
application domains. The program will allow ample time for keynotes, Q&A sessions
and discussions, and social events. Participants include practitioners and researchers
representing industry, academia and government organizations active in the
promotion and development of reliable software technologies.

This edition of Ada-Europe features a focused Special Session on Security in Safety-
Critical Systems. Safety-critical systems, on which we daily bet our lives, have become
increasingly more complex, networked and distributed. In combination with the
growing professionalism of adversarial teams, this demands for not only safe systems,
but systems that also remain safe while under attacks. This session seeks (but is not
limited to) contributions aiming at bridging the safety and security gap in cyber-
physical and other safety-critical systems. The topics of interest include: Software and
System Aspects of Secure and Dependable CPS, Vulnerabilities and Protective
Measures for Safety-Critical System Infrastructures, and Fault and Intrusion Tolerance
and Long-Term Unattended Operation for Safety-Critical Systems. For further
information, please contact the Special Session Chair directly.

The topics of interest for the general track of the conference include, but are not
limited to (full list on the website): Real-Time and Embedded Systems, Mixed-
Criticality Systems, Theory and Practice of High-Integrity Systems, Software
Architectures, Methods and Techniques for Software Development and
Maintenance, Formal Methods, Ada Language and Technologies, Software Quality,
Mainstream and Emerging Applications, Experience Reports in Reliable System
Development, Experiences with Ada.

22 January 2018 Submission of papers, industrial presentation, tutorial and
workshop proposals

9 March 2018 Notification of acceptance to all authors
24 March 2018 Camera-ready version of papers required

8 May 2018 Industrial presentations, tutorial and workshop material required

23rd International Conference on Reliable Software Technologies
18-22 June 2018, Lisbon, Portugal

http://www.ada-europe.org/conference2018

Call for Regular and Special Session Papers

Authors of papers that are to undergo peer review for acceptance are invited to submit original contributions by 22 January 2018.
Paper submissions shall be 14 LNCS-style pages in length. Authors for both the general track and the special session shall submit their
work via EasyChair at https://easychair.org/conferences/?conf=adaeurope2018. The format for submission is solely PDF.

The International Conference on Reliable Software Technologies is listed in DBLP, SCOPUS and Web of Science Conference Proceedings
Citation index, Google Scholar, and Microsoft Academic Search, among others.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS) series by Springer, and will be available
at the conference. The authors of accepted regular and special session papers shall prepare camera-ready submissions in full
conformance with the LNCS style, strictly by 24 March 2018. For format and style guidelines, authors should refer to
http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register for the conference by that date will prevent the
paper from appearing in the proceedings.

Call for Industrial Presentations

The conference seeks industrial presentations that deliver value and insight but may not fit the selection process for regular papers.
Authors are invited to submit a presentation outline of at least 1 page in length by 22 January 2018. Submissions shall be made via
EasyChair following the link https://easychair.org/conferences/?conf=adaeurope2018. The format for submission is solely PDF.

The Industrial Committee will review the submissions and make the selection. The authors of selected presentations shall prepare a
final short abstract and submit it by 8 May 2018, aiming at a 20-minute talk. The authors of accepted presentations will be invited to
submit corresponding articles for publication in the Ada User Journal (http://www.ada-europe.org/auj/), which will host the
proceedings of the Industrial Program of the Conference. For any further information, please contact the Industrial Co-chairs directly.

Awards

Ada-Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be proposed as either half- or full-day events.
Proposals should include a title, an abstract, a description of the topic, a detailed outline of the presentation, a description of the
presenter's lecturing expertise in general and with the proposed topic in particular, the proposed duration (half day or full day), the
intended level of the tutorial (introductory, intermediate, or advanced), the recommended audience experience and background, and
a statement of the reasons for attending. Proposals should be submitted by e-mail to the Tutorial Chair. The authors of accepted full-
day tutorials will receive a complimentary conference registration as well as a fee for every paying participant in excess of 5; for half-
day tutorials, these benefits will be accordingly halved. The Ada User Journal will offer space for the publication of summaries of the
accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half- or full-day events,
to be scheduled at either end of the conference week. Workshop proposals should be submitted to the Tutorial and Workshop Chair.
The workshop organizer shall also commit to preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and providers of software products and services
should contact the Exhibition Co-chairs for information and for allowing suitable planning of the exhibition space and time.

Grants for Reduced Student Fees
A limited number of sponsored grants for reduced fees is expected to be available for students who would like to attend the conference
or tutorials. Contact the Conference Chair for details.

Venue
The conference venue is the VIP Executive Art’s Hotel (left image), in the Parque das Nações area (central images), in Lisbon, Portugal.
June is full of events in Lisbon, including the festivities in honour of St. António, with music, grilled sardines and popular parties taking
place in the old neighbourhoods of Alfama and Bairro Alto, downtown (image on the right). Plan in advance! It is absolutely worth it!

 141

Ada User Journal Volume 38, Number 3, September 2017

The Ada High-Integrity Rapporteur Group (HRG)

Status Report

Joyce Tokar

Chair of the High-Integrity Rapporteur Group

Pyrrhus Software, LLC, PO Box 1352, Phoenix, AZ 85001-1352, USA; Tel: +1 480-951-1010;

E-mail: tokar@pyrrhusoft.com

1 Introduction

The Ada High-Integrity Rapporteur Group (HRG) was

established in 1995 to provide the content of Annex H: High

Integrity Systems of the Ada Programming Language

Standard (Ada) [1]. The work of the group has expanded to

address more of the concerns that are arising in high integrity

systems.

As the charter of the HRG states, the group will synthesize

the essential requirements of typical sector-specific

standards for high integrity applications which have a

bearing on Ada and its supporting tools. Guidance will be

developed for users, implementers, evaluators and certifiers.

The guidance produced will be in a form suitable for

reference in procurement.

2 Current Activities

The HRG produces technical reference documents for use in

conjunction with Ada including:

 TR 24718 Guide for the Use of the Ravenscar Profile

in High Integrity Systems [2]

This Technical Report (TR) provides a complete

description of the motivations behind the Ravenscar

Profile, to show how conformant Ada programs using

the profile can be analysed, and gives examples of

usage. The Ravenscar profile is a subset of the Ada

tasking model, restricted to meet the real-time

community requirements for determinism,

schedulability analysis and memory-boundedness. The

Ravenscar profile is suitable for mapping to a small and

eficient run-time system that supports task

synchronization and communication. The profile has

been designed such that the restricted form of tasking

that it defines can be used for software that needs to be

verified to the very highest integrity levels.

This document was recently updated to address the 2012

changes and modifications of Ada. The revised

document was submitted to ISO for approval and

publication.

 TR 15942 Guidance for the Use of Ada in High

Integrity Systems [3]

This TR provides guidance on the use of Ada when

producing high integrity systems. In producing such

applications adherence to domain specific guidelines or

standards has to be demonstrated to independent bodies.

These guidelines and standards vary according to the

application area, industrial sector, or nature of the risk

involved.

This TR assumes that a system is being developed in

Ada to meet the criteria established in one of these

domain specific standards. The primary goal of the

document is to translate general requirements to Ada

specific ones. The document provides guidance only;

there are no “shall” statements. The TR identifies

verification and validation issues which should be

resolved and documented in accordance with the

appropriate domain specific standard.

This document is being updated to reflect changes in

Ada as well as new domain specific standards and

guidance that have been introduced since the

publication of the TR. The revised TR is expected to be

submitted to ISO for approval and publication in 2018.

 TR-24772-2 Guidance to Avoiding Vulnerabilities in

Programming Languages – Vulnerability Descriptions

for the Programming Language Ada [4]

This Technical Report specifies Ada vulnerabilities to

be avoided in the development of systems where

assured behaviour is required for security, safety,

mission-critical and business-critical software. In

general, this guidance is applicable to the software

developed, reviewed, or maintained for any

application.

Vulnerabilities described in this technical report

document the way that the vulnerability described in

the language-independent document TR 24773: Guide

to avoiding vulnerabilities in programming languages

through language selection and use [5] are manifested

in Ada.

This Technical Report is under development by the

HRG and is expected to be completed by the end of

2017. The HRG will support activities associated with

developing a similar document for SPARK, TR 24772-

6 [6].

3 Conclusions

The HRG meets in conjunction with other Ada events such

as the International Conference on Reliable Software

Technologies. Work continues between meetings to enable

142 The Ada High-Integr i ty Rapporteur Group (HRG) Status Report

Volume 38, Number 3, September 2017 Ada User Journal

the generation and update of TRs for the high integrity

community.

The HRG is very active with a core set of members who

continue to work as volunteers to provide guidance on the

use of Ada in high-integrity systems. Please contact the

convenor of this working group, Dr. Joyce L Tokar

(tokar@pyrrhusoft.com), if you are interested in joining.

References

[1] ISO/IEC 8652:2012, Information technology –

Programming languages – Ada, Edition 3, International

Organization for Standardization (ISO)/International

Electrotechnical Commission (IEC) Joint Technical

Committee (JTC) 1 / SubCommittee 22 (ISO/IEC JTC

1/SC 22), 12/2012.

[2] ISO/IEC TR 24718:2015, Information technology –

Programming languages – Guide for the use of the Ada

Ravenscar Profile in high integrity systems, Edition 2,

ISO/IEC JTC 1/SC 22, 02/2005.

[3] ISO/IEC TR 15942:2000, Information technology –

Programming languages – Guide for the use of the Ada

programming language in high integrity systems,

Edition 1, ISO/IEC JTC 1/SC 22, 03/2000.

[4] ISO/IEC TR 24772-2, Information technology –

Programming languages – Guide to avoiding

vulnerabilities in programming languages – Part 2: Ada,

Under Development, ISO/IEC JTC 1/SC 22.

[5] ISO/IEC TR 24773:2013 Information technology –

Programming languages – Guide to avoiding

vulnerabilities in programming languages through

language selection and use, Edition 2, ISO/IEC JTC

1/SC 22, 03/2013.

[6] ISO/IEC TR 24772-2, Information technology –

Programming languages – Guide to avoiding

vulnerabilities in programming languages – Part 6:

SPARK, Under Development, ISO/IEC JTC 1/SC 22.

 143

Ada User Journal Volume 38, Number 3, September 2017

Using GtkAda in Practice

Ahlan Marriott, Urs Maurer

White Elephant GmbH, Beckengässchen 1, 8200 Schaffhausen, Switzerland; email: software@white-elephant.ch

Abstract

This article is an extract from the industrial
presentation “Astronomical Ada” which was given at
the 2017 Ada-Europe conference in Vienna.

The presentation was an experience report on the
problems we encountered getting a program written
entirely in Ada to work on three popular operating
systems: Microsoft Windows (XP and later), Linux
(Ubuntu Tahr) and OSX (Sierra).

The main problem we had concerned the
implementation of the Graphical User Interface (GUI).
This article describes our work using GtkAda.

Keywords: Gtk, GtkAda, GUI

1 Introduction

The industrial presentation was called “Astronomical Ada”

because the program in question controls astronomical

telescopes.

1.1 Telescopes

The simplest of telescopes have no motor. An object is

viewed simply by pointing the telescope at it. However, due

to the rotation of the earth, the viewed object, unless the

telescope is continually adjusted, will gradually drift out of

view.

To compensate for this, a fixed speed motor can be attached

such that when aligned with the Earth’s axis it effectively

cancels out the Earth’s rotation.

However many interesting objects appear to move relative

to the Earth, for example satellites, comets and the planets.

To track this type of object the telescope needs to have two

motors and a system to control them.

Using two motors the control system can position the

telescope to view anywhere in the night sky.

Our Ada program (SkyTrack) is one such program. It can

drive the motors to position the telescope onto any given

object from within its extensive database and thereafter

follow the object either by calculating its path or, in the case

of satellites and comets, follow the object according to a

downloaded pre-calculated path.

1.2 Graphical User Interface

The GUI is used to instruct the program where to position

the telescope and what astronomical object it should follow.

The screen shot shown as figure 1 shows the SkyTrack

program positioning the telescope on Mars. An object

selected from the Favourites catalogue.

The GUI was implemented using a package that provides a

simple interface to create and manipulate common graphical

objects. It was originally implemented using direct calls to

the Windows API so, at least in theory; all we had to do was

re-implement the implementation.

We chose to re-implement the GUI based on Gtk because

both Gtk and Ada bindings to Gtk were available on all the

designated target platforms.

Figure 1 - SkyTrack GUI

144 Using GtkAda in Pract ice

Volume 38, Number 3, September 2017 Ada User Journal

GtkAda are Ada bindings to Gtk that are available from

AdaCore at their web site libre.adacore.com/download.

Unfortunately, by themselves, these are not sufficient to

implement a GUI of any complexity. A lot of extra code has

to be written in order that Gtk can actually be used.

This article describes the code we developed in order to use

GtkAda.

2 Restrictions

The Windows API is not task safe. By which we mean that

although the Windows SendMessage and PostMessage

procedures are thread-safe, the API generally requires the

passing of pointers to external objects. This is unsafe

because the referenced object must be kept until the message

is processed. Also the object must be locked against

concurrent access because Windows supports message loops

in different threads and the sending/posting of messages

across thread borders.

Therefore in our original Windows based implementation

we used protected objects to prevent concurrent API calls

and an Ada task to process the Windows message loop.

However Gtk has the even more dramatic restriction that all

Gtk calls must be executed from the same thread.

This required us to develop a system that provided our GUI

with a simple and reliable means to make Gtk calls whilst at

the same time guaranteeing that they were executed by the

same thread.

In our implementation a dedicated thread is provided to

process all the Gtk calls. The GUI package makes calls to

this thread to request that it execute Gtk calls on its behalf.

In this arrangement, the GUI can be considered to be the

client and the dedicated thread, the Gtk server.

We identified two types of Gtk request that the client may

make: Synchronous and Asynchronous.

A synchronous request is a request made by the Gtk client to

the Gtk server that expects the server to return a value. For

example retrieving the contents of an edit box.

An asynchronous request is a request made by the Gtk client

to the Gtk server that does not return a value. For example

writing a row to a list view.

3 Synchronous requests

The synchronous interface consists of an abstract type and

an abstract procedure based on this type.

type Request_Data is abstract tagged null record;

procedure Synchronous_Service (Data : in out

 Request_Data) is abstract;

The Gtk client makes a synchronous request to the Gtk

server by extending the abstract type to include data that is

to be sent to the server as well as the data that the client

expects to receive from the server.

The following is an example demonstrating how to

determine whether or not a specified check box is checked.

First the abstract type Request_Data is extended to make a

new type Check_Enquiry_Data. This is defined to be a

record containing two fields: Check_Box to specify the

check box to be enquired and Is_Checked to hold the result

of the enquiry.

type Check_Enquiry_Data is new Request_Data with

record

 Check_Box : Gtk.Check_Button.Gtk_Check_Button;

 Is_Checked : Boolean;

end record;

The abstract procedure Synchronous_Service then has to be

defined for the extended type. This procedure contains the

code to be executed by the server on behalf of the client.

overriding procedure Synchronous_Service

 (Data : in out Check_Enquiry_Data) is

begin

 Data.Is_Checked := Data.Check_Box.Get_Active;

end Synchronous_Service;

The synchronisation and passing of data between the client

and the server is implemented using a protected type that has

two entries, one for the client to call and another that is used

to block the client from immediately returning. The

protected type also has a state and a means of retaining

access to the client data.

type Request_Data_Ptr is access all

 Request_Data'class;

protected Gateway is

 entry Synchronous_Request (Data : in out

 Request_Data'class);

private

 entry Serviced (Unused_Data : in out

 Request_Data'class);

 State : Gateway_State := Idle;

 Data : Request_Data_Ptr;

end Gateway;

In order that the client defined synchronous procedure is

executed in the context of the server thread, the client needs

to create a variable of the extended type, initialise it with the

data required by the synchronous procedure and then

rendezvous with the server.

At the rendezvous with the server the data will be passed to

the server and the client blocked until the server has executed

the synchronous procedure associated with the data.

In the following example the client function Is_Checked

takes a check box as its only parameter. It puts this into a

variable of type Check_Enquiry_Data that is an extension of

Request_Data (see previously). The data is then passed to

the Gtk server by making a rendezvous at the entry

Synchronous_Request. When it is released from the entry it

obtains the result from the variable and returns it to the

caller.

function Is_Checked (The_Check_Box : Check_Box)

return Boolean is

 Data : Check_Enquiry_Data := (Request_Data with

 Check_Box => The_Check_Box.The_Box,

 Is_Checked => False);

http://www.libre.adacore.com/download

A. Marr iott , U. Maurer 145

Ada User Journal Volume 38, Number 3, September 2017

begin

 Gateway.Synchronous_Request (Data);

 return Data.Is_Checked;

end Is_Checked;

The entry Synchronous_Request within the protected type

Gateway is implemented as follows:

entry Synchronous_Request (Data : in out

 Request_Data'class)

when State = Idle is

begin

 Gateway.Data := Data'unchecked_access;

 State := Busy;

 requeue Serviced;

end Synchronous_Request;

entry Serviced (Unused_Data : in out

 Request_Data'class)

when State = Ready is

begin

 State := Idle;

end Serviced;

Callers to Synchronous_Request are blocked until the server

is ready to process the request by placing a guard on the

entry, which is opened when the gateway state is set to Idle.

Within the entry a pointer is made to the data passed as the

entry’s parameter and the state set to Busy.

Finally it makes a call to the entry Serviced that effectively

blocks the call from returning until the state is set to Ready.

In this way the client waits for the server to be Idle, sets up

a pointer to the data, indicates that the data is ready and then

waits for the server to indicate that it has processed the data.

Note that the requeue prevents the entry’s parameter from

being destroyed. Therefore until the state is set to Ready, the

pointer Gateway.Data remains valid.

3.1 Synchronous Server

Making Gtk calls do not, by themselves, result in anything

happening. For something to happen a thread must execute

Gtk.Main.Main_Iteration in a loop.

loop

 Unused_Boolean := Gtk.Main.Main_Iteration;

end loop;

Consequently a minimum Gtk server must do this as well as

process the synchronous requests made by the Gtk clients.

We can do this by modifying the Gtk Main_Iteration loop so

that Main_Iteration is only called whilst there are Gtk events

that need to be processed and then making a selective wait

with timeout to check if there are any synchronous requests

pending.

The code to determine whether there are any pending

requests, to obtain the request and to signal that the request

has been processed, is implemented by two entries and one

function as part of the Gateway protected type.

protected Gateway is

 entry Check;

 entry Complete_Synchronous_Service;

end Gateway;

function Synchronous_Data return Request_Data_Ptr;

The entry Check blocks until the state is set to Busy. This

happens after the client has entered Synchronous_Request

and has made a pointer to the request data.

entry Check

when (State = Busy) is

begin

 null;

end Check;

The function Synchronous_Data can be used to access the

request data.

function Synchronous_Data return Request_Data_Ptr

is

begin

 return Gateway.Data;

end Synchronous_Data;

The entry Complete_Synchronous_Service sets the state to

Ready which frees the client blocked on the requeue at the

entry Serviced.

procedure Complete_Synchronous_Service is

begin

 State := Ready;

end Complete_Synchronous_Service;

A Gtk server for synchronous requests can therefore be

implemented as follows:

loop

 while Gtk.Main.Events_Pending loop

 Unused_Boolean := Gtk.Main.Main_Iteration;

 end loop;

 select

 Gateway.Check;

 Synchronous_Service

 (Gateway.Synchronous_Data.all);

 Gateway.Complete_Synchronous_Service;

 or

 delay The_Period;

 end select;

end loop;

The server processes any pending Gtk events then checks for

any client requests. If there aren’t any within a short period

of time (we typically wait for 50ms) the process is repeated.

If Gateway.Check is taken then the function

Synchronous_Data is called to obtain the request data and

then the client defined synchronous procedure associated

with the data type is called. After which the procedure

Complete_Synchronous_Service is called to release the

client.

4 Asynchronous calls

We could have left it at that. We could have implemented

our entire application by processing all our Gtk calls as

synchronous requests. However if we had done so, the

performance would have been very poor.

146 Using GtkAda in Pract ice

Volume 38, Number 3, September 2017 Ada User Journal

This is because the task switch between the client and the

server and then back again are both relatively expensive.

Using the synchronous mechanism to place a large amount

of data into a list view is noticeably and unacceptably slow.

For the sake of efficiency we needed to implement an

asynchronous method whereby the client can issue requests

to the server to be processed at some future time. The client

does not wait for the server to process these requests and

therefore does not have to incur the penalty of the task switch

back and forth to the server.

The asynchronous method is very similar to the synchronous

method described previously, in so far that it relies on an

abstract type that is extended to contain the request data and

a procedure that overrides the type’s abstract procedure.

It differs from the synchronous method in that instead of

synchronising with the server it simply places the request

into a protected queue ready for the server to process.

Unlike the synchronous method the client is not blocked and

so is immediately free to make further requests. In the

example of filling a list view with data, the client can first

place all the requests into the queue and then, when this is

done, the server can process the whole of the queue.

Having a queue of work to process avoids having to

continually switch between client and server and is

noticeably faster.

The asynchronous interface consists of an abstract type and

an abstract procedure based on this type.

type Message_Data is abstract tagged null record;

procedure Asynchronous_Service

 (Message : Message_Data) is abstract;

The Gtk client makes an asynchronous request to the Gtk

server by extending the abstract type to include data that is

to be sent to the server.

The following is an example demonstrating how to set a

specified check box.

First the abstract type Message_Data is extended to make a

new type Set_Check_Data. This is defined to be a record

containing the field Check_Box which is used to specify the

check box to be set.

type Set_Check_Data is new Message_Data with

record

 Check_Box : Gtk.Check_Button.Gtk_Check_Button;

end record;

The abstract procedure Asynchronous_Service then has to

be defined for the extended type. This procedure contains

the code to be executed by the server on behalf of the

client.

overriding procedure Asynchronous_Service

 (Data : in out Set_Check_Data) is

begin

 Data.Check_Box.Set_Active (True);

end Asynchronous_Service;

The data is placed into the queue for the server to process

using a protected type that has an entry and an indefinite

doubly linked list that is used to implement the queue of

requests.

package Message_List is new

 Ada.Containers.Indefinite_Doubly_Linked_Lists

 (Message_Data'class);

protected Gateway is

 procedure Asynchronous_Request (Data : in

 Message_Data'class);

private

 The_Messages : Message_List.Item;

end Gateway;

In order that the client defined asynchronous procedure is

executed in the context of the server task, the client needs to

create a variable of the extended type, initialise it with the

data required by the asynchronous procedure and then place

the data into the server queue.

In the following example, the client procedure Set takes as

its only parameter the check box that should be set.

It copies the parameter into a variable of type

Set_Check_Data that is an extension of Message_Data (see

previously). The data is then placed into the Gtk server

queue by making a call to the entry Asynchronous_Request.

procedure Set (The_Check_Box :

 Gtk.Check_Button.Gtk_Check_Button)

is

 Data : Set_Check_Data

 := (Message_Data with

 Check_Box => The_Check_Box);

begin

 Gateway.Asynchronous_Request (Data);

end Is_Checked;

The entry Asynchronous_Request within the protected type

Gateway is implemented as follows:

protected body Gateway is

 procedure Asynchronous_Request (Data : in

 Message_Data'class) is

 begin

 The_Messages.Append (Data);

 end Asynchronous_Request;

end Gateway;

4.1 Asynchronous Server

In order to process asynchronous requests, in addition to

synchronous requests, the server needs to be extended. The

Check entry needs to block until either a synchronous

request is made or the queue of asynchronous work becomes

not empty and for it to return what type of request is

available.

type Data_Type is (Synchronous, Asynchronous);

entry Check (The_Data_Type : out Data_Type)

when not (State = Busy) or else

 (The_Messages.Count > 0) is

begin

 If The_Messages.Count > 0 then

A. Marr iott , U. Maurer 147

Ada User Journal Volume 38, Number 3, September 2017

 The_Data_Type := Asynchronous;

 elsif State = Busy then

 The_Data_Type := Synchronous;

 end if;

end Check;

The main processing loop can then use the request type to

decide how to process the request.

loop

 while Gtk.Main.Events_Pending loop

 Unused_Boolean := Gtk.Main.Main_Iteration;

 end loop;

 select

 Gateway.Check (The_Data_Type);

 case The_Data_Type is

 when Synchronous =>

 Synchronous_Service

 (Gateway.Synchronous_Data.all);

 Gateway.Complete_Synchronous_Service;

 when Asynchronous =>

 Asynchronous_Service

 (Gateway.Next_Message);

 Gateway.Delete_First_Message;

 end case;

 or

 delay The_Period;

 end select;

end loop;

The function Next_Message is a function to return the

asynchronous request at the head of the asynchronous

request queue and the procedure Delete_First_Message

removes it from the queue.

function Next_Message return Message_Data'class is

 The_Message : constant Message_Data'class :=

 The_Messages.First_Element;

begin

 return The_Message;

end Next_Message;

procedure Delete_First_Message is

begin

 The_Messages.Delete_First;

end Delete_First_Message;

5 Callbacks

Most GUI implementations will require some form of

callback in order that they can be notified of user interaction.

Some callbacks need only identify the object (for example

the button when a button is clicked) whilst others will require

additional information (for example which row within a list

view has been clicked).

GtkAda provides bindings to the Gtk mechanism however it

is important to realise that only a very limited amount of

work should be performed within these callbacks otherwise

the responsiveness of the windowing system will be

adversely affected.

To prevent this type of degradation, the Gtk callbacks in our

GUI implementation are kept as simple as possible – any

large amount of work is placed into a protected queue to be

processed by a separate dedicated task.

For example, the Gtk callback called as a result of clicking

on a button would add an action to the callback handler

queue. The callback handler task processing this queue

eventually processes the action; which invariably results in

a routine being called that does whatever work is actually

required.

By delegating this work to another task, the Gtk server task

is released to service Gtk requests (perhaps generated as a

result of the button being clicked) as well as processing the

main Gtk event loop, thereby keeping windows and mouse

tracking up to date.

Although the provision of this mechanism is not a

requirement for a functional Gtk server, we found it

convenient if the mechanism is provided in the same

package as the server.

For example, causing The_Action_Routine to be executed

whenever The_Button is clicked could be coded as follows.

type Action_Routine is access procedure;

package Action_Callback is new

 Gtk.Handlers.User_Callback (

 Widget_Type => Gtk.Widget.Gtk_Widget_Record,

 User_Type => Action_Routine);

procedure Action_Handler (

 Unused : access

 Gtk.Widget.Gtk_Widget_Record'class;

 The_Action_Routine : Action_Routine) is

begin

 Callback_Handling.Put (The_Action_Routine);

end Action_Handler;

Gtk.Button.Gtk_New (The_Button, “Button”);

Action_Callback.Connect (

 The_Button,

 "clicked",

 Action_Callback.To_Marshaller(

 Action_Handler'access),

 The_Action_Routine);

When The_Button is clicked, Gtk calls the procedure

Action_Handler in the context of the Gtk server thread. All

this does is place The_Action_Routine into the callback

queue.

A dedicated task Callback_Handler created by the Gtk

server serially executes procedures placed in this queue. This

can be coded as follows:

package Callback_List is new

 Definite_Doubly_Linked_Lists (Action_Routine);

protected Callback_Handling is

 procedure Put (The_Action : Action_Routine);

 procedure Finish;

 entry Get (The_Callback : out Action_Routine);

private

 Is_Enabled : Boolean := True;

 The_Callback_List : Callback_List.Item;

end Callback_Handling;

148 Using GtkAda in Pract ice

Volume 38, Number 3, September 2017 Ada User Journal

protected body Callback_Handling is

 procedure Put (The_Action : Action_Routine) is

 begin

 if Is_Enabled then

 The_Callback_List.Append (The_Callback);

 end if;

 end Put;

 procedure Finish is

 begin

 Is_Enabled := False;

 end Finish;

 entry Get (The_Routine : out Action_Routine) when

 (not Is_Enabled) or (The_Callback_List.Count > 0)

 is

 begin

 if Is_Enabled then

 The_Routine :=

 The_Callback_List.First_Element;

 The_Callback_List.Delete_First;

 else

 The_ Routine := null;

 end if;

 end Get;

end Callback_Handling;

task body Callback_Handler is

 The_Routine : Action_Routine;

begin

 loop

 Callback_Handling.Get (The_ Routine);

 exit when The_ Routine = null;

 The_Routine.all;

 end loop;

 The_Termination_Handler.Finalize;

end Callback_Handler;

5.1 Qualified callbacks

A qualified callback is a variation on the callback idea. It

works in a similar fashion as the simple callback described

previously but in addition returns client supplied data. This

type of callback is used when it is insufficient just knowing

which widget has been the subject of an event. For example

when the row of a list view has been clicked the application

invariably wants to know which row was clicked.

To support qualified callbacks we need to base the callback

queue on a record that may contain different information

depending on the type of the callback.

type Callback is (Simple, Qualified);

type Quaified_Routine is

 access procedure (Item : Information);

type Callback_Data (The_Callback : Callback := Action)

is record

 case The_Callback is

 when Simple =>

 Simple_Action : Action_Routine;

 when Qualified =>

 Qualified_Action : Qualified_Routine;

 The_Information : Information;

 end case;

end record;

package Callback_List is new

Definite_Doubly_Linked_Lists (Callback_Data);

and the protected type Callback_Handling extended

accordingly.

protected Callback_Handling is

 procedure Put (The_Action : Action_Routine);

 procedure Put (The_Action : Qualified_Routine;

 The_Information : Information);

 procedure Finish;

 entry Get (The_Callback : out Callback_Data);

end Callback_Handling;

task body Callback_Handler is

 The_Callback : Callback_Data;

begin

 loop

 Callback_Handling.Get (The_Callback);

 case The_Callback.The_Callback is

 when Simple =>

 exit when The_Callback.Simple_Action = null;

 The_Callback.Simple_Action.all;

 when Qualified =>

 The_Callback.Qualified_Action.all

 (The_Callback.The_Information);

 end case;

 end loop;

 The_Termination_Handler.Finalize;

end Callback_Handler;

The following is an example of how this extended callback

mechanism could be used to indicate which row of a list view

has been clicked.

package Qualified_Callback is new

Gtk.Handlers.User_Callback

(Gtk.Widget.Gtk_Widget_Record, Qualified_Routine);

Gtk.Tree_View.Gtk_New (The_View);

Qualified_Callback.Connect (

 The_View,

 "row-activated",

 Qualified_Callback.To_Marshaller

 (List_Click_Handler'access),

 The_Routine);

The procedure List_Click_Handler and the client supplied

qualified routine are connected to the row activation event

of the list view.

When the row of the list view is clicked, the procedure

List_Click_Handler is called with both the list view widget

and the user supplied qualified routine passed as parameters.

The List_Click_Handler procedure can then retrieve the

information associated with the row that has been activated

and then schedule a callback with this information.

procedure List_Click_Handler (

 Widget : access

 Gtk.Widget.Gtk_Widget_Record'class;

 The_Routine : Qualified_Routine)

is

A. Marr iott , U. Maurer 149

Ada User Journal Volume 38, Number 3, September 2017

 Iter : Gtk.Tree_Model.Gtk_Tree_Iter;

 Model : Gtk.Tree_Model.Gtk_Tree_Model;

 Value : Glib.Values.GValue;

begin

 Gtk.Tree_Selection.Get_Selected

 (Gtk.Tree_View.Get_Selection

 (Gtk.Tree_View.Gtk_Tree_View(Widget)),

 Model, Iter);

 Gtk.Tree_Model.Get_Value (Model, Iter, 0, Value);

 Callback_Handling.Put (The_Routine,

 Information(Glib.Values.Get_Ulong(Value)));

end List_Click_Handler;

6 Closing the server

As previously described, the Gtk server sits in a loop either

executing Gtk events or processing synchronous or

asynchronous requests. However this is insufficient, we need

a method to exit the loop and return control back to the

thread that called the server procedure.

This is achieved by calling the Gateway entry Quit. The

Gateway is the protected type used by clients to make

synchronous or asynchronous requests. This needs to be

enhanced so that a new type of request can be made.

This new type is the Killed request.

type Data_Type is (Killed, Synchronous, Asynchronous);

The gateway procedure Quit sets the gateway state to Killed

and the Check entry is enhanced to return the Killed request

if called in the Killed state.

procedure Quit is

begin

 State := Killed;

end Quit;

entry Check (The_Data_Type : out Data_Type)

when (State = Busy) or else

 (State = Killed) or else

 (The_Messages.Count > 0) is

begin

 if State = Killed then

 The_Data_Type := Killed;

 elsif The_Messages.Count > 0 then

 The_Data_Type := Asynchronous;

 elsif State = Busy then

 The_Data_Type := Synchronous;

 end if;

end Check;

The server can then use this request type as an indication that

it should exit the otherwise infinite processing loop.

loop

 while Gtk.Main.Events_Pending loop

 Unused_Boolean := Gtk.Main.Main_Iteration;

 end loop;

 select

 Gateway.Check (The_Data_Type);

 case The_Data_Type is

 when Killed =>

 Gtk.Widget.Destroy

 (Gtk.Widget.Gtk_Widget(The_Main_Window));

 exit;

 when Synchronous =>

 …

 when Asynchronous =>

 …

 end case;

 end select;

end loop;

Note that this is also where the server destroys the main

window that it created just before calling the start-up

procedure.

7 The OSX restriction

Under MS-Windows and Linux, the server can be a standard

Ada task; usually created in the package body. Unfortunately

under OSX the thread that executes the Gtk calls must be the

main thread of the process.

This tedious restriction means that the server has to be

implemented as a procedure (which we call Execute – see

below for details) that is called from the main thread and

returns only when the GUI has been closed down.

To help synchronise start-up and shutdown we implemented

our server procedure to include two procedures passed as

parameters, one that is called immediately after the server is

able to accept requests and the other that is called in response

to the GUI being closed down.

Both of these procedures are executed in their own dedicated

tasks so that they can better interact with the Gtk server.

Typically the start-up procedure is used to start GUI related

tasks and to create the GUI objects, whilst the shutdown

procedure is used to terminate these tasks.

procedure Execute (

 Startup_Routine : access procedure

 (Window : Gtk.Window.Gtk_Window);

 Termination_Routine : access procedure);

7.1 Start-up

The server procedure creates the main Gtk window. It then

creates the start-up task with the user supplied start-up

procedure passed as its parameter. It then waits for the task

to start by making a rendezvous with it, at which time it

passes the previously created main Gtk window. After the

rendezvous it executes the server code described previously.

task type Startup (Startup_Routine : access procedure

 (Window : Gtk.Window.Gtk_Window))

is

 entry Start (Window : Gtk.Window.Gtk_Window) ;

end Startup;

type Startup_Ptr is access Startup;

Startup_Task : Startup_Ptr;

task body Startup is

 The_Main_Window : Gtk.Window.Gtk_Window;

begin

 accept Start (Window : Gtk.Window.Gtk_Window) do

 The_Main_Window := Window;

 end Start;

150 Using GtkAda in Pract ice

Volume 38, Number 3, September 2017 Ada User Journal

 Startup_Routine.all (The_Main_Window);

end Startup;

procedure Execute (

 Startup_Routine : access procedure

 (Window : Gtk.Window.Gtk_Window);

 Termination_Routine : access procedure)

is

 The_Main_Window : Gtk.Window.Gtk_Window;

begin

 Gtk.Window.Gtk_New (The_Main_Window);

 Startup_Task := new Startup (Startup_Routine);

 Startup_Task.Start (The_Main_Window);

 while Gtk.Main.Events_Pending loop

 Unused_Boolean := Gtk.Main.Main_Iteration;

 end loop;

 … -- remainder of server

7.2 Termination

Early in the execution of the server procedure, a termination

task is created.

task type Termination_Handler is

 entry Start;

 entry Finalize;

end Termination_Handler;

The server then connects a function to the delete-event of the

main window.

package Window_Callback is new

 Gtk.Handlers.Return_Callback

 (Gtk.Window.Gtk_Window_Record, Boolean);

 Window_Callback.Connect (The_Main_Window,

 "delete-event",

 Close_Window'access);

The connected function is called when the main window of

the GUI is closed.

function Close_Window (Unused : access

 Gtk.Window.Gtk_Window_Record'class)

return Boolean is

begin

 The_Termination_Handler.Start;

 return True; -- Don't destroy the main window.

end Close_Window;

This function starts the server termination task by making a

rendezvous at its Start entry. Note that the function returns

True to indicate to Gtk that the window should not be

destroyed. This is so that the termination routine can still

access the window in order that it can retrieve information

before the window is actually closed and the information

lost. For example its size and position on screen.

task body Termination_Handler is

begin

 accept Start;

 The_Termination_Routine.all;

 Callback_Handling.Finish;

 accept Finalize;

 Gateway.Quit;

end Termination_Handler;

The termination task waits to be started then executes the

termination routine supplied by the client. When this is

finished it causes the callback task to terminate. It waits for

the callback task to rendezvous at its Finalize entry to make

sure that all the action routines have been executed before it

finally closes the window and terminates the Gtk server by

calling the Gateway Quit entry.

8 Downloads

A working example of a Gtk server package as described in

this article may be downloaded from our web site www.white-

elephant.ch

We cordially invite readers to comment and suggest

improvements and/or corrections. We do not consider

ourselves to be in any way knowledgeable with regard to Gtk

or GtkAda and so would very much appreciate feedback.

Acknowledgements

We would like to acknowledge the work done by

Dmitry A. Kazakov and Maxim Reznik in their GtkAda

Contributions.

 (http://www.dmitry-kazakov.de/ada/gtkada_contributions)

The work presented in this article was inspired by and

derived from ideas implemented by Dmitry and Maxim in

the afore-mentioned work.

However our implementation differs from theirs in that our

Gtk server blocks (with timeout) waiting for requests rather

than periodically processing pending requests using a timer

and that our implementation of asynchronous requests uses

a queue.

In our experience using a queue and a select with timeout

greatly increases the performance of the GUI.

http://www.white-elephant.ch/
http://www.white-elephant.ch/

151

CubedOS: A Verified CubeSat Operating System

Carl Brandon, Peter Chapin, Chris Farnsworth, Sean Klink
Vermont Technical College, 201 Lawrence Place, Williston VT 05495, PO Box 500, Randolph Center, VT
05061; email: {cbrandon, pchapin}@vtc.edu

Abstract

In this paper we present CubedOS, a lightweight appli-
cation framework for CubeSat flight software. CubedOS
is written in SPARKand proved free of certain classes
of runtime errors. It consists of a collection of interact-
ing, concurrent modules that communicate via message
passing over a microkernel based on Ada’s Ravenscar
tasking model. It provides core services such as, for
example, communication protocol processing and pub-
lish/subscribe message handling. Application-specific
modules can be added to provide both high level func-
tions such as navigation and power management, as
well as low level device drivers for mission-specific
hardware.

Keywords: SPARK, student project, CubeSat

1 Introduction
CubedOS is being developed at Vermont Technical College’s
CubeSat Laboratory with the purpose of providing a robust
software platform for CubeSat missions and of easing the
development of CubeSat flight software. In many respects
the goals of CubedOS are similar to those of the Core Flight
Executive (cFE) written by NASA Goddard Space Flight Cen-
ter [1]. However, unlike cFE, CubedOS is written in SPARK
and verified to be free of the possibility of runtime error.
SPARK has also been used to provide some other correctness
properties in certain cases. We compare CubedOS and cFE in
more detail in Section 4.

The intent is for CubedOS to be general enough and modular
enough for many groups to profitably employ the system.
Since every mission uses different hardware and has different
software requirements, CubedOS is designed as a framework
into which modules can be plugged to implement whatever
mission functionality is required. CubedOS provides inter-
module communication and other common services needed
by many missions. CubedOS thus serves both as a kind of
operating environment and as a library of useful tools and
functions.

Some of the module functionality useful for complex Cube-
Sat missions would include interfaces to attitude determina-
tion and control systems (ADACS), electrical power systems
(EPS), photovoltaic panel orientation gimbals, navigation and
data radio, data collection instruments, thermal control radia-
tors, ion engine with gimbals, and cameras. We also plan on
including a specific module for spiral thrusting which allows

for three axis angular momentum control with a two axis
thruster.

It is our intention that all CubedOS modules also be written
in SPARK and at least proved free of runtime error. However,
CubedOS allows modules, or parts of modules, to be written
in full Ada or C. This allows CubedOS to take advantage of
third party C libraries or to integrate with an existing C code
base.

CubedOS runs on top of the Ada runtime system and thus
works with any underlying platform supported by the avail-
able Ada compiler. For example, CubedOS makes use of Ada
tasking without directly invoking the underlying system’s
support for threads. This simplifies the implementation of
CubedOS while improving its portability. However, Cube-
dOS does require that a rich Ada runtime system be available
for all envisioned targets. Specifically, CubedOS requires a
runtime system that supports the Ravenscar profile.

For resources that are not accessible through the Ada runtime
system, CubedOS driver modules can be written that interact
with the underlying operating system or hardware more di-
rectly. Although these modules would not be widely portable,
they could, in some cases, be written to provide a kind of
low level abstraction layer (LLAL) with a portable interface.
We have not yet attempted to standardize the LLAL interface.
However, we see that as an area for future work.

CubedOS applications are organized as a collection of active
and passive modules, where each active module contains
one or more Ada tasks. Passive modules do not contain any
tasks but are used as containers for shared, reusable code.
Although CubedOS is written in SPARK there need not be a
one-to-one correspondence between CubedOS modules and
SPARK packages. In fact, modules are routinely written as a
collection of Ada packages in a package hierarchy.

Critical to the plug-and-play nature of CubedOS, each active
module is self-contained and does not make direct use of any
code in any other active module, although passive modules
serving as library components can be used. All inter-module
communication is done through the CubedOS infrastructure
with no direct sharing of data or executable content. In this
respect CubedOS active modules are similar to operating sys-
tem processes. One consequence of this policy is that a library
used by several modules must be either duplicated in each
module, for example as private child packages, or provided
as an independent, passive module. In this respect passive
modules are similar to operating system shared libraries and
have similar concerns regarding task safety and global data
management.

Ada User Jour na l Vo lume 38, Number 3, September 2017

152 CubedOS: A Ver i f ied CubeSat Operat ing System

In the language of operating systems, CubedOS can be said
to have a microkernel architecture where task and memory
management is provided by the Ada runtime system. Both
low level facilities, such as device drivers, and high level
facilities, such as communication protocol handlers, are all
implemented as CubedOS modules. All modules are treated
equally by CubedOS; any layered structuring of the modules
is imposed by programmer convention.

CubedOS is currently a work in progress It is our intention
to release CubedOS as open source once it is more mature
and refined. We also need to review the code base to verify
that it is free from International Traffic in Arms Regulations
(ITAR) restrictions and possibly release both ITAR compliant
and U.S non ITAR compliant versions. We anticipate this to
happen in mid-2018.

2 CubedOS Architecture
To understand the context of the CubedOS architecture, it is
useful to compare the architecture of a CubedOS application
with that of a more traditional application. Since CubedOS
is written in SPARK and must abide by the restrictions of
Ravenscar, we compare CubedOS with other Ravenscar-based
approaches.

Figure 1 shows an example application using Ravenscar task-
ing. Tasks, which must all be library level infinite loops, are
shown as open circles and labeled as T1 through T4. Tasks
communicate with each other via protected objects, shown as
solid circles and labeled as PO1 through PO4.

T1

T2

T3

T4

PO1

PO2

PO3

PO4

Figure 1: Traditional Ravenscar-based Architecture

Arrows from a sending task to a protected object indicate calls
to a protected procedure to install information in the protected
object. Arrows from a protected object to a receiving task
indicate calls to an entry in the protected object used to pick
up information previously stored in the object. Entry calls
will block if no information is yet available but protected
procedure calls do not block.

Ravenscar requires that protected objects have at most one
entry and that at most one task can be queued on that entry.
In CubedOS applications each protected object is serviced
by exactly one task. This ensures that two tasks will never
accidentally be queued on the protected object’s entry. In
the figure this means only one arrow can emanate from a

protected object. However, multiple arrows can lead to a
protected object, since it is permitted for many tasks to call the
same protected procedure or for there to be multiple protected
procedures in a given protected object.

In the example application of Figure 1, tasks T1 and T3 call
protected procedures in two different protected objects. This
presents no problems since protected procedures never block,
allowing a task to call both procedures in a timely manner.
However, task T3 calls two entries, one in PO1 and another in
PO2. Since entry calls can block, this means the task might
get suspended on one of the calls leaving the other protected
object without service for an extended time. The application
needs to either be written so that will never happen or be such
that it doesn’t matter if it does.

There are several advantages over the traditional organization:

• The protected objects can be tuned to transmit only the
information needed so the overhead can be kept minimal.

• The parameters of the protected procedures and en-
tries specify the precise types of the data transfered so
compile-time type safety is provided.

• The communication patterns of the application are
known statically, facilitating analysis.

However the traditional architecture also includes some dis-
advantages:

• The protected objects must all be custom designed and
individually implemented, creating a burden for the ap-
plication developer.

• The communication patterns are relatively inflexible.
Changing them requires overhauling the application.

A CubedOS application has an architecture as shown in Fig-
ure 2. In this case CubedOS provides the communication
infrastructure as an array of general purpose, protected mail-
box objects. CubedOS modules communicate by sending
messages to the receiver module’s mailbox. The messages are
unstructured octet streams, and thus completely generic. Each
active module has exactly one mailbox associated with it and
contains a task dedicated to servicing that mailbox. That task
extracts messages from the mailbox, and then decodes and
acts on each message. Active CubedOS modules can also con-
tain internal tasks as part of their implementation, but those
tasks do not participate in message processing (although they
can send messages) and are not important here.

The communication connections shown in Figure 2 are the
same as those shown in Figure 1 except that the two commu-
nication paths from T1 to T3 are combined into a single path
going through one mailbox.

CubedOS relieves the application developer of the problem of
creating the communications infrastructure manually. Adding
new message types is simplified with the help of a tool,
XDR2OS3, that we describe in Section 3. In addition to
providing basic, bounded mailboxes, CubedOS also provides
other services such as message priorities and multiple send-
ing modalities (for example, best effort versus guaranteed
delivery). Many of these additional services would be tedious

Volume 38, Number 3, September 2017 Ada User Jour na l

C. Brandon, P. Chapin , C. Far nswor th , S. K l ink 153

T1 T2 T3 T4

CubedOS

Figure 2: CubedOS-based Architecture

to provide on a case-by-case basis following the traditional
architecture. CubedOS also allows any module to potentially
send a message to any other module. Thus the communica-
tion paths in the running application are very flexible and
dynamic.

Although the CubedOS architecture supports only point-to-
point message passing, the CubedOS system provides an
active module supporting a publish/subscribe discipline. The
module allows multiple channels to be created to which other
modules can subscribe. Publisher modules can then send
messages to one or more channels, allowing for message
broadcast and multicast. Since the messages themselves are
unstructured octet streams, the publish/subscribe module can
handle them generically without being modified to account
for new message types.

Every CubedOS module has a statically assigned ID number.
Messages sent from a module include the ID number of the
sender. This allows a server module to return reply messages
without statically knowing its clients. Thus server modules
can be written as part of a general purpose “module library”
and used without modification in a variety of applications. We
have started compiling a registry of “well known” module IDs
for common services, such as file handling and timer services.
This allows CubedOS module libraries to make use of well
known services and remain reusable. Here active CubedOS
modules resemble network clients and servers where the mod-
ule IDs play the role of a network address. Extending the
architecture across different physical machines, or between
different operating system processes on the same machine, is
an interesting area for future work.

We are also defining standard message interfaces to certain
services, such as file handling, that third party modules could
implement. This allows modules to use a service without
knowing which specific implementation backs that service.

However, CubedOS’s architecture also carries some signifi-
cant disadvantages as well:

• All mailboxes must have the same size since they are
stored in an array. Some mailboxes will be larger than
necessary, wasting space.

• All messages must have the same type and thus the same
size. Some messages will be larger than necessary and
slower to copy than necessary.

The common message type also requires that typed in-
formation sent from one module to another be encoded
into a raw octet format when sent, and decoded back into
specifically typed data when received. This encoding
and decoding increases the runtime overhead of message
passing and reduces static type safety. Modules must
defend themselves, at runtime, from malformed or in-
appropriate messages, causing certain errors that were
compile-time errors in the traditional architecture to now
be runtime errors. This is exactly counter to the general
goals of high integrity system development.

• In order to return reply messages, the mailboxes must be
addressable at runtime using module ID numbers. Ac-
cessing a statically named mailbox isn’t general enough.
As a result, the precise communication paths used by the
system cannot easily be determined statically.

In particular, since SPARK does not attempt to track
information flow through individual array elements, it
is necessary for us to manually justify certain SPARK
flow messages. The architecture of CubedOS ensures
that there is a one-to-one correspondence between a
module and its mailbox. The tools don’t know this,
and the spurious flow messages they produce must be
suppressed.

The details of CubedOS mitigate, to some degree, the prob-
lems above. For example, the mailbox array is actually instan-
tiated from a generic unit by the application developer. This
allows the developer to tune the sizes of the mailboxes, and
the messages they contain, to the application’s needs. Cube-
dOS does not attempt to provide a one-size-fits-all mailbox
array that will be satisfactory to all applications.

Also every well behaved CubedOS module should contain
an |API| package with subprograms for encoding and decod-
ing messages. This package is generated by the XDR2OS3
tool that we describe in Section 3. The parameters to these
subprograms correspond to the parameters of the protected
procedures and entries in the traditional architecture, and pro-
vide much of the same type safety. However, using the API
subprograms is not enforced by the compiler. It is also pos-
sible to accidentally send a message to the wrong mailbox.
Thus modules still need to include runtime error checking to
detect and handle these problems.

So far we have described two extremes: a traditional approach
that does not use CubedOS at all, and an approach that entirely
relies on CubedOS. However, hybrid approaches are also
possible. Figure 3 shows a combination of several CubedOS
mailboxes and a hand-made, optimized protected object to
mediate communication from T3 to T4.

This provides the best of both worlds. The simplicity and
flexibility of CubedOS can be used where it makes sense to
do so, and yet critical communications can still be optimized
if the results of profiling indicate a need. In Figure 3 task
T4 can’t be reached by CubedOS messages. The hand-made

Ada User Jour na l Vo lume 38, Number 3, September 2017

154 CubedOS: A Ver i f ied CubeSat Operat ing System

T1 T2 T3 T4

CubedOS

PO4

Figure 3: Hybrid Architecture

protected object creates a degree of isolation that can also
simplify analysis as compared to a pure CubedOS system.

It is also possible to instantiate the CubedOS message man-
ager multiple times in the same application, effectively creat-
ing multiple communication domains using separate mailbox
arrays. Figure 4 shows an example of where T4 is in a sepa-
rate domain from the other modules (because it receives from
a mailbox that is separate from the others).

T1 T2 T3 T4

Figure 4: Multiple Communication Domains

This approach allows the CubedOS infrastructure to be used
for easy development while still partitioning the system into
semi-independent sections. For example, the sizes of the
mailboxes and of the messages used in each communication
domain need not be the same. The parts of the application
that require large messages could be grouped into a domain
separate from the parts that only require small messages.

Notice in Figure 4 tasks (modules) T3 and T4 send messages
into multiple domains. This is, of course, sometimes neces-
sary if the domains are going to interact. Modules that do this
will need multiple module ID values scoped to different do-
mains. At the moment the handling of this is largely a matter
of manual configuration, which is reasonable for the relatively
small programs typical of CubeSat missions. Creating a more
comprehensive solution for module and domain addresses
would be necessary as part of extending the architecture to
multiple processes or machines as mentioned earlier. It is also
likely that a naming service of some kind would need to be

added to the module library provided by CubedOS. This is
also an area for future work.

3 Message Encoding
CubedOS mailboxes store messages as unstructured octet
arrays. This allows a general purpose mailbox package to
store and manipulate messages of any type. Unfortunately
this also requires that well structured, well typed message
information be encoded to raw octets before being placed
in a mailbox and then decoded after being retrieved from a
mailbox.

The CubedOS convention is to use External Data Representa-
tion (XDR) encoded messages. XDR is a well known stan-
dard [2] that is also simple and has low overhead. We have
defined an extension to XDR that allows SPARK’s constrained
scalar subtypes to be represented. We are currently working
on a tool, XDR2OS3, that will compile a high level descrip-
tion of a message into message encoding and decoding sub-
programs. Our tool is written in Scala and is not verified, but
its output is subject to the same SPARK analysis as the rest of
the application. It is easier to prove the output of XDR2OS3
than it is to prove the correctness of XDR2OS3 itself.

The use of XDR2OS3 mitigates some of CubedOS’s disad-
vantages. The developer need not manually write the tedious
and repetitive encoding and decoding subprograms. Further-
more, those subprograms have well-typed parameters thus
shielding the application programer from the inherent lack of
type safety in the mailboxes themselves.

The use of XDR encoding may seem like an odd choice
since XDR was originally defined for use in networking ap-
plications where data must be sent between potentially het-
erogenous systems. Since we envision current CubedOS
applications being written entirely in SPARK and executing
in a single process, XDR seems like a needless complication.
However, as described in Section 2, we anticipate extending
CubedOS to work in exactly the kind of potentially heteroge-
nous environment XDR was developed to support. Thus we
aim to provide a single standard for message encoding that
will work in both the near and long term.

To illustrate CubedOS message handling, consider the follow-
ing short example of a message definition file that is accept-
able to XDR2OS3.

enum Series_Type { One_Shot, Periodic };

typedef unsigned int Module_ID
range 1 .. 16;

typedef unsigned int Series_ID_Type
range 1 .. 10000;

message struct {
Module_ID Sender;
Time_Span Tick_Interval;
Series_Type Request_Type;
Series_ID_Type Series_ID;

} Relative_Request_Message;

Volume 38, Number 3, September 2017 Ada User Jour na l

C. Brandon, P. Chapin , C. Far nswor th , S. K l ink 155

This file introduces several types following the usual syntax
of XDR interface definitions. The syntax is extended, how-
ever, to allow the programmer to include constrained ranges
on the scalar type definitions in a style that is normal for
Ada. The message itself is described as a structure containing
various components in the usual way. The reserved word
message prefixed to the structure definition, another XDR
extension, alerts XDR2OS3 that it needs to generate encoding
and decoding subprograms for that structure. Other structures
serving only as message components (parameters) can also
be defined.

XDR2OS3 has built-in knowledge of certain Ada private types
such as Time_Span (from the Ada.Real_Time package). Pri-
vate types need special handling since their internal structure
can’t be accessed directly from the encoding and decoding
subprograms. There is currently no mechanism in XDR2OS3
to solve this problem in the general case.

Each message type has an ID number that is scoped by the
module that defines the message. Upon receiving a message,
the first step in message handling is to verify that the module
ID of the receiver in the message header agrees with the ID
of the module that is processing that message. This ensures
that the message was actually sent to the intended module.
Once that is done, the module is free to interpret the message
ID value locally. Message ID values are never directly visible
to module clients since the client calls a named encoding
procedure to build each message. Thus the value and mean-
ing of the message IDs defined by a module is entirely an
implementation matter for the module. XDR2OS3 defines
an enumeration type that specifies a module’s messages as
easy to read enumerators. It then uses the position value of a
message enumerator as the message ID value.

XDR2OS3 is a work in progress. We intend to ultimately
support as much of the XDR standard as we can including,
for example, variable length arrays and discriminated unions.
The development of XDR2OS3 is guided by our immediate
needs with our currently envisioned missions, but we intend
to extend and generalize the functionality of XDR2OS3 as
the tool matures.

There are other possible encoding and decoding schemes that
could have been used. For example, ASN.1 [3] is another
standard with approximately similar goals as XDR. However,
ASN.1 is much more complicated and entails more overhead
both in space and time. ASN.1 includes type information in
the encoded message itself, however, which may have advan-
tages for error detection and handling. Since the application
developer invokes tool-generated encoding and decoding pro-
cedures, and does not directly deal with message encoding,
it would be possible to switch the message encoding method
without significantly impacting applications. A future version
of XDR2OS3 could potentially provide an ASN.1 mode (as
one possiblity), perhaps for reasons of error handling or in-
teroperability with legacy systems. This is also an area for
future work.

4 Related Work
The most closely related work to CubedOS is NASA’s Core
Flight Executive [1]. Like CubedOS, cFE endeavors to be a

general purpose framework for building flight software. Also
like CubedOS, cFE is associated with a collection of modules,
called the Core Flight System (CFS), that support common
functionality needed by many missions. In addition, cFE
makes use of a message passing discipline using a publish/-
subscribe model of message handling. CubedOS can provide
support for publish/subscribe message handling by way of a
library module.

The main difference between the systems, aside from maturity
level (cFE is a long established project with a history of actual
use), is that CubedOS is written in SPARK and verified free
of runtime error. In contrast, cFE is written in C with no
particular static verification goals.

The cFE architecture is layered, whereas CubedOS modules
operate as peers of each other. The cFE architecture makes use
of a separate Operating System Abstraction Layer (OSAL)
that presents a common interface across all the platforms
supported by cFE. In contrast, CubedOS relies on the Ada
runtime system for this purpose, and is thus Ada specific.
CubedOS also uses a module library, the CubedOS LLAL,
to provide hardware and OS independence in areas not cov-
ered by the Ada runtime system and standard library, but the
interface to these modules is not yet standardized.

Kubos [4] is a project with roughly similar goals as cFE and
CubedOS. It is not as mature as cFE. Like cFE, Kubos is
written in C without static verification goals in the sense that
we mean here.

Some CubeSat flight software is written directly on top of
conventional embedded operating systems such as Linux, Vx-
Works [5], or RTEMS [6]. These systems allow application
software to potentially be written with a variety of tools and
methods, although C is most often used in practice. They
provide flexibility by imposing few restrictions, but they also
don’t, by themselves, provide support for common flight soft-
ware needs. Also they are themselves not statically verified
as CubedOS is, although the Wind River VxWorks Cert plat-
form [7] does provide a means by which VxWorks can be
used in safety critical avionics applications conforming to the
DO-178B standard.

5 Conclusion
CubedOS is an application framework based on message pass-
ing that is intended to support the flight software of space
missions, particularly CubeSat missions. Our early experi-
ence with CubedOS is favorable. The architecture seems to
provide an effective way to organize flight software.

Unlike similar projects such as cFE and Kubos, CubedOS is
written entirely in SPARK and proved free of runtime errors
in the sense meant by SPARK. It is necessary to manully
suppress certain SPARK messages related to information flow
through the CubedOS mailbox array. However, we feel the
danger of doing this is minimal since the easy to understand
architecture of the system ensures no flow problems will
actually arise in practice.

CubedOS provides a great deal of concurrency and runtime
flexibility, but sacrifices some static type safety to achieve

Ada User Jour na l Vo lume 38, Number 3, September 2017

156 CubedOS: A Ver i f ied CubeSat Operat ing System

this. We mitigate the danger using a tool, XDR2OS3, that
generates message encoding and decoding subprograms based
on strongly typed message descriptions. The output of the
tool is verified by SPARK.

We intend to release CubedOS to the open source CubeSat
community once we have completed an ITAR review of our
code base and possibly release both ITAR compliant and U.S
non ITAR compliant versions. We anticipate that release to
be some time in mid-2018.

References
[1] “Core flight executive.” http://opensource.

gsfc.nasa.gov/projects/cfe/. Accessed
2017-01-22.

[2] M. Eisler, RFC-4506: XDR: External Data Repre-
sentation Standard. Internet Engineering Task Force,
May 2006. http://tools.ietf.org/html/
rfc4506.html.

[3] ITU, Information technology – Abstract Syntax No-
tation One (ASN.1): Specification of basic nota-
tion. International Telecommunications Union, Novem-
ber 2008. http://www.itu.int/rec/T-REC-X.
680/en.

[4] “Kubos.” http://www.kubos.co/. Accessed 2017-
01-22.

[5] “Vxworks.” http://www.windriver.com/
products/vxworks/. Accessed 2017-01-22.

[6] “Real time executive for multiprocessor systems.”
https://www.rtems.org/. Accessed 2017-01-22.

[7] “Wind river vxworks cert platform.”
http://www.windriver.com/
products/product-overviews/
vxworks-cert-product-overview/. Accessed
2017-01-22.

Volume 38, Number 3, September 2017 Ada User Jour na l

 157

Ada User Journal Volume 38, Number 3, September 2017

Parallelizing an Embedded Real-Time Person

Matching System for Smart Cameras

Nesrine Abid, Kais Loukil, Walid Ayedi, Mohamed Abid

Laboratory of Computer and Embedded Systems, National School of Engineering of Sfax, 3038, Tunisia; Tel

+216 23 217 951; email: nesrineabid88@gmail.com

Ahmed Chiheb Ammari

MMA Laboratory, National Institute of the Applied Sciences and Technology, 676 - 1080, Tunisia

Renewable Energy Group, Department of Electrical and computer engineering, Faculty of Engineering, King

Abdulaziz University, 21589, Saudi Arabia

Abstract

Person matching is an important topic in video-
surveillance and can be used to design detection,
tracking and recognition systems. Multi-scale
covariance (MSCOV) is considered as one of the most
promising descriptors for person matching.
Unfortunately, implementing such descriptors for
person matching requires heavy computation. For a
system that requires real-time matching, visual
information needs to be fast processed without
reducing accuracy. Parallel processing is frequently
adopted to speed-up execution-time. This paper
presents an optimized parallel model of a person
matching system based on MSCOV. To this aim, a
high-level parallelization approach based on the
exploration of task and data levels of parallelism is
adopted. Starting from the block diagram, an initial
model that extracts the maximum task-level
parallelism is proposed. This model is implemented
and validated at a high system-level. Analyzing the
communication and computation workload results,
the potential bottlenecks of this model are identified.
An optimized parallel model with the best workload
balance is then developed. This model is prototyped
and validated using a multicore architecture. The
experimental results are promising and the system is
shown to perform person matching in real-time with
16.33 fps using a dual-core ARM-Cortex-A9.

Keywords: multi-scale covariance descriptor, person
matching, multi-core architecture, KPN parallel
model.

1 Introduction

The development of smart camera networks is an emerging

research field which represents the evolution of centralized

computer vision applications towards distributed systems.

In fact, in smart camera networks the logic of application

is not centralized, but distributed among network nodes.

Each node is capable to locally pre-process acquired

images. A huge number of algorithms and techniques was

developed targeting smart camera with various

requirements to automatically detect, track and recognize

person in video surveillance systems. Person matching has

been an important topic in person detection, person

tracking and person re-identification.

Person matching aims to determine a visual match between

two image instances of the same individual appearing at

different times and locations under different viewing

conditions. Actually, person matching is a challenging

problem because the imagery of a person may have strong

variations due to the multiple geometrical transformations,

deformations, appearance changes in the different viewing

conditions. Different approaches have been used to tackle

these problems. The performance of the person matching

methods depends on the descriptor, the matching algorithm

and the matching metric. Actually, a lot of interest has been

given for person description based on characteristic feature

descriptors like Haar-like features [1] Scale-Invariant

Feature Transform (SIFT) [2], Histograms of Oriented

Gradients (HOG) [3] and covariance descriptor (COV)[4].

Using such feature descriptors, person matching

techniques are then implemented using Euclidean or

Mahalanobis distance as a direct distance measure.

The SIFT descriptor extracts potential-points-of-interest

and transforms them to an assigned scale, orientation and

location for each feature. It is characterized by its

invariance against the change of illumination, angle of

view, scale and rotation. However, it has high computation

complexity which limits its use. The Haar features are less

complex. They define regions and compute in each one the

difference between pixel intensities sums. However, their

use is not recommended when image background is

complex. The HOG descriptor has usually been considered

as a standard method on video surveillance. It computes

local intensity gradients and edge directions. The major

inconvenience of HOG is the high dimension of the

characteristic vector. Nevertheless COV descriptor [4] has

been proved to be very effective for many computer vision

tasks. The major advantage of COV is its ability to capture

simultaneously the three aspects of features; shape, texture

and color. These features are combined by measuring the

variations and correlations between two features.

158 Paral le l izing an Embedded Real-T ime Person Matching System

Volume 38, Number 3, September 2017 Ada User Journal

Experiments on [5] show that COV descriptor outperform

HOG, SIFT and other known descriptors. The Multi-Scale

Covariance descriptor (MSCOV) is an evolved

presentation of COV descriptor that was originally

proposed in [6].In this work, authors proposed to integrate

a quadtree structure of the covariance matrix to capture

only relevant information of the image and discard noise.

MSCOV has been used in different contexts, including

detection [7], matching [8], and re-identification [6]. In

these works, authors proved that MSCOV largely

outperforms COV and also many others well known

descriptors as HOG and SIFT.A new matching technique

adapted to the MSCOV descriptor is proposed in [8]. This

technique can be used for designing robust systems for

detection, tracking, and recognition.

Nevertheless, such video surveillance applications are

computationally complex and time consuming. One of the

most important design challenges of Smart Camera is to

find the appropriate processing architecture capable to run

complex and computationally intensive computer vision

algorithms. For this aim, different processing solutions

have been used. This includes the use of microprocessors

CPUs [9], Digital Signal Processors DSPs [10], dedicated

hardware implementations FPGA [11], Application-

Specific Integrated Circuits ASICs [12] platforms.

Traditionally, DSPs are ideally suited for intensive image

signal processing. They generally integrate parallel

processing capabilities, have internal memory blocks and

provide multiplication and accumulation operations in a

single cycle. However, DSPs have a high cost. The ASIC

design can also offer high competitive performance, but

they are specific, not flexible and not reconfigurable. ASIC

devices are usually used only for high volume series

manufacturing due to the high initial engineering cost of

integrated circuits. FPGA devices can also meet real-time

execution constraints thank to their high parallelization rate

and data throughput. However, their exploitation requires

significant code reformulations. Also translating computer

vision library like OpenCV to hardware is a hard and time

consuming task. Recently, with the increasing performance

demands and the growing technological, new hardware

architectures for embedded processing have emerged

named multi-core systems. This technology consists of

integrating many processing cores on the same chip. These

systems can offer strong computational efficiency with

high flexibility.

Theoretically, parallel architectures can help largely

accelerate processing, but the gain obtained with

application parallelizing is limited by data communications

among processors, unbalance computation workload,

memory access time, etc. In some cases, a parallel

implementation may take longer to execute comparatively

to its sequential version. This raises the need to develop

efficient parallelization methodology that starts from the

sequential application and provides a parallel model having

the best processing and communication workload balance.

In this context, this paper proposes a high level parallel

model for a matching technique application based on

MSCOV. The Zynq-7000 platform based on dual core

ARM Cortex A9 is adopted to evaluate the performance of

the proposed parallel model. For this aim, a high-level

parallelization approach is used. This approach is based on

Khan Process Network (KPN) [13] models of computation

implemented by Y-chart Applications Programmers

Interface (YAPI) C++ library [14]. The key characteristic

of this approach is the simultaneous use of data and task

levels of parallelism to determine the parallel model that

has the best processing and communication workload

balance. Starting from the block diagram of the person

matching system based on MSCOV descriptor, an initial

model that extracts the maximum task-level parallelism is

proposed. This model is validated at a high system-level

using KPN and YAPI programming C++ runtime library.

Analyzing the communication and computation workload

results, the potential bottlenecks of the initial model are

identified. Task level splitting, merging and data-level

partitioning are then simultaneously explored to get a

parallel model with the best computation and

communication workload balance. Porting the proposed

model on the Zynq-7000 platform, it is shown that

comparatively to the original reference code, two times

speedup of the system execution are obtained using a dual

core ARM cortex A9 without losing any accuracy in the

visual appearance performance.

The paper is organized as follows: Section 2 presents the

person matching algorithm based on MSCOV descriptor.

In section 3, the used parallelization approach is detailed

and the different steps implemented to get an optimized

parallel model are then discussed in section 4. The

performance results of the obtained model are shown in

section 5. Section 6 concludes the paper.

2 Person matching algorithm based on
the Multi-Scale Covariance descriptor

Person matching is an important service on video

surveillance systems. It saves a lot of human efforts on

exhaustively searching and recognizing a person from

large amounts of images and videos. It addresses the

problem of person detection, person tracking and person

re-identification. It consists in calculating the similarity

between a reference object and its match at each position

of the image. Initially a person region is defined as a

reference object. Then matching of the reference object at

all locations of the candidate image region is performed.

The highest corresponding (matching) degree obtained at a

given location is considered to be the best corresponded

point. Typically, a person matching application includes

three steps: extracting a discriminative feature as the

person descriptor, calculating similarities between feature

vectors and ranking the similarities that yields to a matched

result. A sliding Window is used to create multiple

candidate regions of the person. The window is a

rectangular region that scans the entire image with a

vertical and horizontal constant stride. Each window is

described with a feature vector. The vector is calculated for

the given region. Then, every vector is evaluated to predict

if the region is the corresponding person or not.

N. Abid, L. Louk i l , W . Ayedi , M. Abid, A. C. Ammari 159

Ada User Journal Volume 38, Number 3, September 2017

The block diagram of the MSCOV person matching

application is shown in Figure 1. It is constituted by four

modules. The First module extracts features from the scene

image. The second module creates the quadtree (IQF) and

stores extracted features in the quadtree nodes. The third

and fourth modules are two repetitive functions. The third

module collect image quadrants of IQF which are inside

each scanning widow and computing the covariance

matrix. The fourth module calculates the Euclidian

distance between the reference image and the scanned

image window. The correctly matched region corresponds

to the least measured Euclidian distance. More details

about the application modules are given next.

Figure 1 The block diagram of person matching based on

MSCOV

2.1 Features extraction

MSCOV descriptors have been used in computer vision for

person matching using ten features [6] which are a

combination of structure features and content features. The

structure features are the x location "X", the y location "Y"

and the node level "l". The content features are the

grayscale intensity value "I", the red chrominance

component "Cr", the blue chrominance component "Cb",

the norm of the first order derivatives in x "Ix", the norm

of the first order derivatives in y "Iy", the Gradient "G" and

the Magnitude "M" features. Structure features are related

to the structure of the image representation. These features

are therefore extracted when creating the quadtree. The

color features can be computed in parallel. Once the "I" is

extracted, the "Ix" and "Iy" can then also be computed in

parallel. Using "Ix" and "Iy", the "G" and "M" features may

also be computed simultaneously.

2.2 Quadtree creation

A quadtree is an image data structure which is represented

by a set of nodes as presented in Figure. 2. Each node has

four children. The whole image is represented by the root

node. The root is recursively decomposed into four equal

quadrants called nodes. This decomposition continues until

a stopping condition of quadrant homogeneity is met. Each

quadrant is associated to a node that is storing data about

the corresponding quadrant. In the MSCOV descriptor, an

image is presented by its quadree structure. Each node ‘c’

of the tree stores the extracted feature vector (Fc), the sum

(Pc(k)) of each feature k at that node c, the multiplication

(Qc(k, l)) of each two features k and l of the node c. All

these features are used to compute the multi-scale

covariance matrices (Cc). (Pc(k)) and (Qc(k, l)) of nodes

whose children are leaves are computed using eq.1 and

eq.2. (Pc(k)) and (Qc(k, l)) of parent nodes are computed

from child ones using eq.3 and eq.4 With ci is the child

nodes of parent node c.

 (1)

 (2)

(3)

 (4)

Figure 2 Quatree representation on MSCOV descriptor [6]

The multi-scale covariance matrices are computed by:

 (5)

where: is the number of descendant nodes of C.

2.3 Similarity measures

The matching technique is based on the determining of the

most similar candidate region of a reference object. The

similarity search consists to find the minimum distance

Δmin between a reference person image and all candidate

regions of the processed image.

 (6)

Where is the set of all candidate regions of an image.

In the MSCOV descriptor, a region is presented by

quadrant node that is storing among other features a multi-

scale covariance matrix. Therefore, to compare between

two quadrant nodes, a Euclidian similarity measure of the

two corresponding covariance matrices is required.

Authors in [8] use the log Euclidian distance calculated by:

 (7)

With log(A) and log(B)are two log-arithmetic covariance

matrices computed using the orthonormal matrix U and the

eigenvalues by the following equation:

U
T

n
diagUA)).log(),....log(),(log(.)log(

21 (8)

3 The parallelization approach

Matching application based on MSCOV descriptor is

computationally intensive and embedded implementation

based on classical mono-processor architectures are often

inadequate to achieve real time decoding performance

superior to 10 frames per second (fps). To accelerate the

system processing, some kind of multiprocessor

implementation is motivated. Prior to any kind of

multiprocessing, a parallel model of the person matching

algorithm is needed. This paragraph starts by a literature

review of previous developments of embedded systems

targeting video surveillance applications, Kahn Processes

Network model of computation and their implementation

through the YAPI programming interface are then

discussed. Finally, the approach used for the system

parallelization is presented.

160 Paral le l izing an Embedded Real-T ime Person Matching System

Volume 38, Number 3, September 2017 Ada User Journal

3.1 Motivation

Few embedded video surveillance systems are presented in

the literature. Many of these devices are based on HOG

descriptors using FPGA architectures [15]. To take

advantage from the computing speed of hardware and the

flexibility of software, authors in [16] proposed a HW/SW

framework for person detection and tracking. They use a

"Region Proposal Network" to extract detection regions of

interest and HOG descriptor to track detected person. They

used Zynq XC7Z020 SoC platform to prototyping their

architecture composed by three hardware accelerators

(Convolutional Neural Network, HOG and FFT) controlled

by ARM. They reached 14.7 fps on person detection and

20 fps on tracking but they use image with low resolution

(72 x72). Authors of [17] used Xilinx Spartan-6 LX-150T

to design a hardware accelerator of HOG descriptor and

ARM processor to compute the other functional modules

of the detection application. Despite, 15 fps decoding rate

are reached, a loss of the detection accuracy is observed. In

[18], a software/hardware architecture for person detection

based on HOC descriptor was designed using FPGA and

ATOM processor. For this case, however, the obtained

real-time detection performance is still below expectations,

2 times speedup was achieved compared to a full software

mono processor implementation. In [19], a speedup of 3.22

times was achieved using ARM Coretex-A9 processor with

a hardware accelerator but, the detection accuracy is

decreased about 2.68%. In [20], a HOG-based pedestrian

detection system is designed where a specific hardware

accelerator is dedicated to the HOG module. For this case,

real time detection performance is achieved however about

0.1–0.4% accuracy loss are observed in reference with full

software implementation. Chen et al. [21] propose a low-

cost high-speed hardware implementation of HOG where

the detection accuracy is also shown to slightly decrease in

reference to the performance of the original system. All of

these HOG descriptor implementations are based on

dedicated hardware accelerators, and are tolerating some

performance accuracy decrease given the different

algorithm modifications and simplifications used to ensure

higher decoding rates.

In addition to embedded implementation based on HOG

descriptors, there have been developments focusing on

devoted accelerators of the covariance descriptor using

FPGA. Martelli et al. [22] proposed a person detection

frame work using covariance descriptor and machine

learning classifier. The computation time is estimated to 92

fps VGA image. Authors in [23] proposed a HW/SW

architecture of covariance descriptor. They used hardware

accelerators to compute first and second integral features.

A good performance was achieved by the hardwired

covariance feature extractor. Authors on [15] proposed a

framework for pedestrian detection based on sliding

covariance matrix. They use Xilinx Virtex-6 FPGA

platform to design a dedicated hardware covariance

descriptor. Their proposed Hardware architecture is based

on three modules: the features extraction module, the

tensors calculation model and the covariance matrices

calculation model. These models are applied on small

image cells (block 16 x 16) and estimates execution time to

292 fps of VGA resolution.

Almost all of these previous works are using some kind of

dedicated hardware accelerators to achieve real-time

performance for person detection and tracking. These

implementations do not offer enough flexibility to cope

with adapting the system to different situations or to

upgrade it with improved features and techniques. Also

these works ignored the computing time and the connection

of the rest modules required for detection.

A solution that provides higher flexibility while

maintaining performance at appropriate levels is therefore

desirable. Multi-core architectures are good alternatives.

For multi-core processing systems, the reference

application needs to be partitioned into multiple tasks that

can be executed simultaneously on different cores.

Generally for parallel computing, the most complex task is

split into several parts that can be processed

simultaneously. These parts are then distributed to diverse

processors. A coordination mechanism should be

employed to control the status of processors and to

communicate with each other to produce final results. Prior

to any multiprocessor implementation, a parallel

specification is required to functionally describe the

studied application as a set of processes exchanging data

according to an appropriate model of computation. The

predominant forms of parallelism are Data-Level

Parallelism (DLP) and Task-Level Parallelism (TLP). DLP

has been the most commonly used form of parallelism,

implemented through vector or SIMD (Single Instruction

Multiple Data) architectures [24]. This form of parallelism

consists in extracting from the original source code regular

data (vectors, matrices, etc.) on which the same sequence

of instructions are applied. DLP is well adapted

particularly to algorithms handling very large structures of

homogenous data. On the other hand, TLP partitions the

code by functionality. Each functionality is dedicated to

execute on a separate execution unit. Optimized task-level

decomposition needs to regroup some system

functionalities to get a balanced task computation

workload. An effective TLP implementation requires a

data dependency analysis between tasks and an accurate

study of their execution orders from the original sequential

code. Since both TLP and DLP have their strengths and

weaknesses, it is attractive to integrate both forms of

parallelism to get an optimized model with the best

computation workload and communication workload

balance.

3.2 Kahn Processes Network model of
computation

Kahn Process Networks (KPN) [13] has been used for

modeling several signal processing applications. This

model of computation assumes a network of concurrent

autonomous processes that communicate over a point-to-

point unbounded first-in-first-out (FIFO) channels, using a

blocking-read and write synchronization primitives. Read

actions from these FIFOs block until at least one data item

becomes available. Write actions are non-blocking

N. Abid, L. Louk i l , W . Ayedi , M. Abid, A. C. Ammari 161

Ada User Journal Volume 38, Number 3, September 2017

assuming the channels to have unbounded capacity. It is

demonstrated that KPN is deterministic and independent of

process interleaving, meaning that for a given input always

the same output is produced and the same workload is

generated, irrespective of the execution schedule [13].

Using KPN, a parallel model of an application can be

specified in terms of distributed control and distributed

memory which allows for its mapping onto a

multiprocessing platform in a systematic and efficient way.

3.3 YAPI programming interface

YAPI [14] is a C++ library that implements KPN models

of computation. A KPN/YAPI process network consists in

a set of processes and a set of FIFO channels. Processes are

provided with sets of input and output ports. A channel

connects a process output port to a process input port of the

same data type. Each port is connected to precisely one

channel. A process gets blocked when it tries to read from

an empty FIFO or it tries to write into a FIFO which is full.

There are primitives provided by YAPI to ensure data

transfer over channels. The “read” primitive is used to read

data from an input port and to save it in a local variable

within the process. The “write” primitive is used to write

the value of a local variable into a FIFO channel. A

validated YAPI network specification is platform

independent and represents a valuable starting point for any

multi-core implementation.

3.4 Approach used for the system
parallelization

To get a matching parallel model based on MSCOV

descriptor that has the best processing and communication

workload balance, an appropriate approach has been used.

The different steps of this approach are depicted in Figure

3.

The First step is "the system analysis". The entry for this

step is a sequential C reference specification of the system.

First, we start by optimizing as much as we can the original

C reference code in terms of processing and memory usage.

Computational and memory profiling are used to better

understand the characteristics of the different application

modules and identify the major system bottlenecks. The

second step is "the task level parallelization" where the

available task-parallelism is extracted by splitting compute

nodes as far as possible. For this case, the application block

diagram will serve as a starting point to extract the

maximum task level parallelism. The original reference

code is modified and structured by hand to describe the

KPN in C++. Each Kahn process is described by a set of

associated functions extracted from the original C code.

The inter process communication is performed using YAPI

FIFO primitives.

Using global variables is not allowed with a KPN model

[13]. Thus, to ensure inter process communication, all the

global shared variables used in the sequential reference

code are grouped into associated data structures for

communication over the FIFO channels

Figure 3 Parallelization approach Flowchart

The output of this second step is an initial KPN model

implemented through YAPI multi-threading programming

interface. This obtained model is first validated using high

level functional simulations. This consists to verifying that

the parallel model carries out the same computation with

the same functionalities as the original reference source

code. The next step is "the concurrent optimization". This

consists in balancing the communication and computation

workload between the different processes of the original

KPN/YAPI model defined in the previous step. For this

aim, computation and communication profiling are

performed to identify processes with high computing

complexity and communication channels with unbalanced

workload. Using communication and computation

profiling results, different forms of task level splitting or

merging and data level splitting are derived in a structured

way to propose a model with more balanced computational

workload and better communication behaviour. With task

merging, channels transmitting large data values are

removed. Data splitting is implemented for computational-

expensive processes that are going to be split into multiple

identical processes processing each a partition of the

original data. For this case, a data dependency analysis is

implemented before deciding for data partitioning to the

spitted processes. The last step is "the real

implementation". In this step the proposed model is

implemented on a multi-core architecture.

162 Paral le l izing an Embedded Real-T ime Person Matching System

Volume 38, Number 3, September 2017 Ada User Journal

4. Experimentation

A person matching application based on MSCOV is

parallelized using the approach described above. In this

section, a starting KPN/YAPI parallel model is first

developed. The obtained performance results of the starting

model are analyzed. For improved concurrency properties,

an optimized parallel model is proposed. Finally the

proposed model is validated using Zynq 7000 platform

based on ARM cortex A9.

4.1 The initial parallel model

Starting from a C-code specification of a person matching

application based on MSCOV, this code is first optimized

in terms of memory usage and processing requirements.

KPN/YAPI is then used to transform the optimized

sequential C-code into a set of parallel communicating

processes. The block diagram has served as a starting point

to extract the maximum task level parallelism. KPN

processes are extracted and inter-process communication is

established using the message passing KPN primitives. The

obtained KPN model is shown in Figure 4. This model acts

as follows: First, the “I”, “Cr” and “Cb” processes collect

image data from the input file. Then, "Ix" and "Iy" are

computed using "I". After that, the "G" and "M" are

computed using "Ix" and "Iy". The outputs of these

processes represent the features needed as input for the

"quadtree" process. When the quadtree structure is

obtained, it will be forwarded to the "scan of image"

process.

Figure 4 Initial parallel model of the MSCOV person

matching technique

The KPN model of Figure 4 is implemented at the YAPI

system level. The KPN/YAPI implementation is validated

by high level functional simulation. The correctness of the

parallel code is proved by comparing both execution results

of sequential and parallel code using the same input. For

performance evaluation of the proposed parallel model,

two important functional properties are generated: the

communication workload and the computation workload.

The communication workload for a particular FIFO

communication channel represents the amount of data

exchange over this channel. The computation workload

represents the processing time of each process in the

network. These computation and communication

characteristics define the concurrency properties of the

model and measure the efficiency of the computation

division over the different processes.

The communication workload

For the YAPI run-time environment the communication

workload is defined as the number of tokens that are

exchanged through the FIFOs channels. The obtained

communication workload results of the starting model for

an image of VGA resolution are shown in Figure 5.The

Initial model has 13 FIFO channels transmitting 307200

tokens of 4 bytes size. So the total number of bytes

communicated over each channel is equal to

1228800=307200*4 bytes. This big transmitted amount of

data will require the involved processes to spend a lot of

time dealing with communication. In addition, 3268590

(510*6409 bytes) are communicated over

"quadtreecreaction_scan of image" channel. This makes

the communication workload over a particular channel

very high where as it remains comparatively low for the

others. For a better communication balance, more data and

task level splitting or merging techniques are required.

Figure 5 Communication workload of the Initial parallel

model

Computation workload analysis

To better understand the concurrency properties of the

starting parallel model, the computational workload in

terms of CPU time percentage spent in the execution of

each process is obtained in Figure 6.

Figure 6 Parallel computational profiling of the first

proposed model

This figure clearly shows that the Initial model has too

much unbalanced computational workload. All processes

have a negligible load compared to "scan of image" process

which has the highest load. The "scan of image" process is

N. Abid, L. Louk i l , W . Ayedi , M. Abid, A. C. Ammari 163

Ada User Journal Volume 38, Number 3, September 2017

very computational-expensive with more than 90% of the

total computation time complexity.

Therefore, it is clear, using the obtained communication

and computation workload results, that the initial parallel

model of the person matching application based on

MSCOV descriptor has poor concurrency properties. To

get a better communication behavior, we should be using

appropriate data level parallelism and task level splitting or

merging. Data level parallelism consists in splitting the

data exchanged over selected channels thus duplicating the

associated processes of the model. Task level merging

consists in merging the processes that are exchanging large

data structures. Using task level splitting the available task-

level parallelism is extracted by further splitting the

computing nodes. The decision on using data splitting and

task merging or splitting depends on the computational

workload of the studied network. Generally, the processes,

that have low computation with high communication loads,

are merged while data splitting is applied for those with

high computational workload.

4.2 The optimized parallel model

This section presents the different steps that have been used

to derive in a structured way a parallel implementation of

person matching application based on MSCOV with a

balanced workload and good communication behavior.

Using the profiling results of Figure 5 and Figure 6, it is

clear that the processes "I", "Cb", "Cr", "Ix", "Iy", "M" and

"G" have negligible computations loads and transmit

quantitative data amounts to "quadtree creation" process.

So we propose to merge all these processes into only one

"feature_quadtree" process. In this case all features are

calculated when the quadtree is created. So the associated

channels transmitting the associated tokens structures are

removed. On the other hand, the "scan of image" process is

highly time consuming. This process execute the sliding

mechanism that is carried out sequentially by processing

one candidate region after the other as shown in Figure 7.

Figure 7 Illustration of the scanning matching window

For a better concurrency optimization, the data splitting of

the most computational-expensive "scan of image" process

is proposed. The idea is to process overlapping windows of

a single column in parallel. For this, a dedicated

accumulation unit named a slice is introduced. Each slice

calculates in parallel, the Euclidian distance between the

obtained descriptors of the set of windows and the

descriptor of the reference person. In fact, each process is

allocated a set of scanning windows of the same column to

be processed. After processing all columns, a "min

distance" process should be introduced to extract the

minimum distance of all scanning windows. The parallel

model is shown in Figure 8.

Treating all scanning windows simultaneously reduce

about 35 times the computation time of the "scan of image"

process. However, a lot of communication workload (about

3268590 bytes) is exchanged between "feature_quadtree"

and each process of scanning window. To reduce

communication time, we suggest to duplicate quadtree

representation into four sub quadtree processes.

Theoretically, each image should be split into four parts

each part has the dimensions (height x width/4). For each

region a "feature_quadtree" process is performed. However

before deciding for the partitioning, an analysis of data

dependency should be considered to minimize data

dependencies and maximize the parallelism rate between

the four decomposed tasks.

Figure 8 Proposed optimized parallel KPN model of person

matching application based on MSCOV descriptor

Data dependencies analysis

In this section, we are concerned with analyzing data

dependencies of the "feature_quadtree" and "scan of

image" processes as the data-partitioning is performed for

these processes. The computation of covariance matrix of

each region in the "scan of image" process, requires image

characteristics presented on the quadtree structure. So each

one requires about 3268590 bytes. Splitting

"feature_quadtree" to four processes can decrease the

communicated data per process to 823140 bytes. However

regions within the cutting boundary will not be examined.

This may effects the recognition result particularly if a

person is in the cutting boundary. So we propose to split

the image into four parts. In his connection parts 1, 2 and 3

has about (height x (with/4+ Hs-seuil)) resolution and part

4 has about (height x (with/4)) resolution. In this case the

maximum workload communicated inter these processes in

about 925650 bytes where scanning window size is 48x128

and the seuil of the scan is 16.

164 Paral le l izing an Embedded Real-T ime Person Matching System

Volume 38, Number 3, September 2017 Ada User Journal

Concurrency results of the optimized model

The obtained parallel model of the person matching

application based on MSCOV descriptor is given in Figure

8. This figure displays the task-merging of the

"feature_quadtree" process, the data-partitioning for the

"feature_quadtree" processes into "feature_quadtree1",

"feature_quadtree2", "feature_quadtree3", and

"feature_quadtree 4" processes and the data-partitioning

for the "scan of image" process into the "scan of image 1",

"scan of image 2", ..., "scan of image n" processes. This

model has been implemented and validated by YAPI

system level tool.

The communication and computational workload

simulation results are shown respectively in Figure 9 and

Figure 10 for VGA image resolution.

Figure 9 Communication workload of the optimized parallel

model

Figure 10 Parallel computational profiling of the final

model

It is clear from Figure 9 that the optimized proposed model

has better communication behavior compared to the initial

model. The total number of communicated tokens are

reduced. In addition, as indicated in Figure 10, merging

tasks has decreased the time processes spent in

communication and data spilling has distributed better the

computation over processes. This final proposed model of

the matching technique based on MSCOV descriptor has

obviously better communication and computational

behavior compared to the Initial model.

5 Implementation

The platform used to implement and validate the proposed

parallel model is the Zynq®-7000 AP SoC ZC702

evaluation board. The Zynq-7000 family is ideal for

embedded applications. It provides low power, high

performance and ease of use [25]. Its average power

consumption is about 1W while running at frequencies

close to 1 GHz. It features a processing subsystem that

implements a dual-hard core Cortex-A9 ARM supporting

NEON technology. Considering all these advantages,

Xilinx Zynq-7000 is chosen for prototyping the proposed

solution of person matching application. The proposed

model is obtained using a parallelization approach

independent to the architecture. Therefore, prior to any real

implementation, a quick prototyping of this task model is

necessary to perform schedulability analysis and to

determine which process will be executed on which

processor. In this connection, many scheduling simulators

and tools are proposed to model software architectures of

real-time systems and to check its schedulability.

CHEDDAR [26] is a free framework which provides tools

to check if a real-time application meets its temporal

constraints. The framework is based on the real-time

scheduling theory to help for quick prototyping.

Figure 11 Scheduling simulation of proposed model of

QVGA image

5.1 Scheduling simulation

Figure 11 is a screenshot of CHEDDAR. This scheduling

is drawn for the proposed model targeting dual core

N. Abid, L. Louk i l , W . Ayedi , M. Abid, A. C. Ammari 165

Ada User Journal Volume 38, Number 3, September 2017

architecture according to the preemptive policy

SCHED_RR using the POSIX 1003.1b scheduler.

According to Figure 11, each process of the proposed

model is running to the end without releasing the processor.

Processes are mapped as follow: "feature_quadtree 1",

"feature_quadtree 3" and their corresponding "scan of

image i" are mapped into core 1 and "feature_quadtree 2",

"feature_quadtree 4" and their corresponding "scan of

image i" are mapped into core 2. The final process

"comparison" is mapped in core 1.

5.2 Parallel implementation

An example of matching technique by MSCOV descriptor

using QVGA image resolution is illustrated on Figure 12.

The execution time is illustrated on Table 1 using the two

versions of implementation: original sequential

implementation on 1 core ARM cortex-A9 and parallel

implementation of proposed model on 2 cores ARM

cortex-A9.

Figure 12 Example of matching person based on MSCOV

descriptor

As shown in Table 1, the execution time of the person

matching application based on MSCOV descriptor using

the proposed model implemented on dual cores ARM

cortex A9 is 1.9 x faster than sequential implementation on

mono-core. Also, the number of frame per second is

increased to achieve about 16.33 fps using dual core.

Table 1. Execution time for serial and parallel

implementation

 1 core ARM cortex
A9

2 cores ARM cortex
A9

Execution time 116.49 ms 61.21ms

Fps 8.58 fps 16.33 fps

6 Conclusion

This paper presented an optimized parallel model of a

person matching technique based on MSCOV descriptor,

developed using a high-level independent target-

architecture parallelization approach. This approach is

based on the use of KPN parallel programming models. It

is characterized by the exploration of task and data levels

of parallelism and merging to ensure the optimal balance

of the model computation and communication behavior. In

this context, we proposed an initial parallel model that

extracts the maximum task level parallelism. This model is

then implemented and validated using the YAPI

environment. The communication and computation

workload analysis of the KPN/YAPI initial model has

showed very poor concurrency properties. To improve the

model concurrency properties, data level parallelism and

task level splitting or merging are applied. At the end, an

optimized parallel model of the matching technique based

on MSCOV descriptor is obtained. This model gives

considerable computation and inters process

communication workload balance without sacrificing

detection quality. This model is validated by a real

implementation on dual core architecture. The proposed

model has proven to be effective since it reachs 16.33 fps

in a dual core implementation. We are planning to perform

further studies on maximizing the power of ARMs with

DSP/GPU accelerators.

References

[1] R. Lienhart, J. Maydt (2002), An extended set of Haar-

like features for rapid object detection, International

conference on image processing, pp. 900–903.

[2] G. David (2004), “Distinctive image features from

scale-invariant keypoints,” International Journal of

Computer Vision, vol. 60, pp. 91–110.

[3] N. Dalal, B. Triggs, “Histograms of oriented gradients

for human detection,” IEEE computer society.

computer vision and pattern recognition, vol. 1, pp.

[4] O. Tuzel, F. Porikli, P. Meer (2008), “Pedestrian

detection via classification on riemannian manifolds,”

IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 30, pp. 1713-1727.

[5] J.M. Michael, W. Marcel, W.M.S. Arnold (2010),

“Color based tracing in real-life surveillance data,”

Transactions on Data Hiding and Multimedia Security.

Springer-Verlag, Berlin, Heidelberg, vol. 6010, pp 18-

33.

[6] W. Ayedi, H. Snoussi, M. Abid (2011), “A fast multi-

scale covariance descriptor for object re-

identification,” Pattern Recognition Letters, vol. 33,

pp. 1902–1907.

[7] W. Ayedi, H. Snoussi, F. Smach, M. Abid (2012),

“The multi-scale covariance descriptor: Performances

analysis in human detection,” Biometric

Measurements and Systems for Security and Medical

Applications, IEEE Workshop, pp. 1-5.

[8] W. Ayedi, H. Snoussi, F. Smach, M. Abid (2012),

“Tree based object matching using multi-scale

covariance descriptor,” Proc. International Conference

on Image Processing, Computer Vision, and Pattern

Recognition, 2012. (p. 1). The Steering Committee of

The World Congress in Computer Science, Computer

Engineering and Applied Computing (WorldComp).

[9] M. Bramberger, A. Doblander, A. Maier, B. Rinner,

H. Schwabach (2006), “Distributed embedded smart

cameras for surveillance applications,” Computer, vol.

39, no. 2, pp. 68–75.

[10] A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L.

Benini (2007), “A low-power wireless video sensor

node for distributed object detection,” Journal of Real-

Time Image Processing, vol. 2, pp. 331–342.

http://fr.wikipedia.org/wiki/International_Journal_of_Computer_Vision
http://fr.wikipedia.org/wiki/International_Journal_of_Computer_Vision
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6338386
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6338386
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6338386
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6338386

166 Paral le l izing an Embedded Real-T ime Person Matching System

Volume 38, Number 3, September 2017 Ada User Journal

[11] Y. Yang, C. Chiu (2014), “Boosted multi-class object

detection with parallel hardware implementation for

real-time applications,” in Acoustics, Speech and

Signal Processing , IEEE International Conference,

pp. 7530–7534.

[12] A. Suleiman, V. Sze (2016), “An energy-efficient

hardware implementation of hog-based object

detection at 1080hd 60 fps with multi-scale

support,” Journal of Signal Processing Systems, vol.

84, pp. 325-337.

[13] G. Kahn (1974), “The semantics of a simple language

for parallel programming,” Proceedings of IFIP 74,

North Holland

[14] E. Kock, G. Essink, W. Smits (2000), P.Wolf, J.Y.

Brunel, W.M Kruijtzer, P. Lieverse, K.A. Vissers,

“YAPI:Application modeling for signal processing

system,” IEEE Procceedings of the 37th Annual

Design Automation Conference, pp. 402-405.

[15] Y. Said, M. Atri (2016), “Efficient and high-

performance pedestrian detector implementation for

intelligent vehicles,” IET Intelligent Transport

Systems, vol. 10, pp. 438-444.

[16] J. Wang, K. Yan, K. Guo, J. Yu, L. Sui, S. Yao, Y.

Wang (2016), “Real-time pedestrian detection and

tracking on customized hardware,” 14th Symposium

on Embedded Systems For Real-time Multimedia.

[17] P. Y. Hsiao, S.Y. Lin, C. Y. Chen (2016), “A real-

time fpga based human detector,” IEEE International

Symposium on Computer, Consumer and Control, pp.

1014-1017.

[18] Y. Zhu, Y. Liu, D. Zhang, S. Li, P. Zhang (2010),

“Acceleration of pedestrian detection algorithm in

novel c2rtl hw/sw codesign platform,” International

Conference Green Circuits and Systems, pp 615 - 620,

[19] H. Mao, M. Takaaki, A. Hideharu (2015), “Data

reduction and parallelisation for human detection

system,” The 19th Workshop on Synthesis And

System Integration of Mixed Information

Technologies, pp. 134 - 139

[20] P. Y. Hsiao, S.Y. Lin , S. Huang (2015), “An FPGA

based human detection system with embedded

platform,” Microelectronic Engineering, vol. 138,

pp. 42–46.

[21] P. Y. Chen, C. C. Huang, C. Y. Lien, and Y. H. Tsai,

“An efficient, hardware implementation of hog feature

extraction for human detection,” IEEE Transactions

on Intelligent Transportation Systems., vol. 15 , pp.

656 - 662, 2013.

[22] S. Martelli, D. Tosato, M. Cristani (2011), “Fast

FPGA-based architecture for pedestrian detection

based on covariance matrices,” IEEE International

Conference on Image Processing, pp. 389 –392.

[23] A. Nesrine, A. Walid, A.C. Ammari, A. Mohamed

(2014), “SW/HW implementation of image

covariance descriptor for person detection system,”

Advanced Technologies for Signal and Image

Processing (ATSIP), 2014 1st International

Conference on, pp. 115 – 119.

[24] J. Chhugani , W. Macy , A. Baransi , D. Nguyen , M.

Hagog , S. Kumar , W. Lee , Y. Chen , P. Dubey

(2008), “Efficient Implementation of Sorting on

Multi-Core SIMD CPU Architecture,” Proceedings of

the VLDB Endowment, vol. 1, pp. 1313-1324.

[25] Xilinx Inc. UG585, “Zynq-7000 extensible processing

platform technical reference manual,” 2012.

[26] The Cheddar project : a GPL real-time scheduling

analyzer, http://beru.univ-brest.fr/~singhoff/cheddar/

https://scholar.google.com/citations?user=zZ1QL4YAAAAJ&hl=fr&oi=sra
https://scholar.google.com/citations?user=hvPGGbsAAAAJ&hl=fr&oi=sra
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5523682
http://www.sciencedirect.com/science/journal/01679317
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6823825
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6823825
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6823825

168

Volume 38, Number 3, September 2017 Ada User Journal

National Ada Organizations

Ada-Belgium

attn. Dirk Craeynest

c/o KU Leuven

Dept. of Computer Science

Celestijnenlaan 200-A

B-3001 Leuven (Heverlee)

Belgium

Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard

Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland

Dr. Hubert B. Keller

Karlsruher Institut für Technologie (KIT)

Institut für Angewandte Informatik (IAI)

Campus Nord, Gebäude 445, Raum 243

Postfach 3640

76021 Karlsruhe

Germany

Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France

attn: J-P Rosen

115, avenue du Maine

75014 Paris

France
URL: www.ada-france.org

Ada-Spain

attn. Sergio Sáez

DISCA-ETSINF-Edificio 1G

Universitat Politècnica de València

Camino de Vera s/n

E46022 Valencia

Spain

Phone: +34-963-877-007, Ext. 75741

Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland

c/o Ahlan Marriott

Altweg 5

8450 Andelfingen

Switzerland

Phone: +41 52 624 2939

e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

http://www.ada-france.org/
http://www.adaspain.org/

