

Ada User Journal Volume 39, Number 1, March 2018

ADA
USER
JOURNAL

Volume 39

Number 1

March 2018

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 6

Conference Calendar 24

Forthcoming Events 31

Articles

 J. Maâzoun, N. Bouassida, H. Ben Abdallah

“A New Approach Mining the SPL Feature Model and Design from Product Variants” 37

 V. Porton

“Experiences on Writing Ada Bindings for a C Library” 48

 Y. Moy

“Applied Formal Logic: Searching in Strings” 52

Ada-Europe Associate Members (National Ada Organizations) 58

Ada-Europe Sponsors Inside Back Cover

2

Volume 39, Number 1, March 2018 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and

December. Copy date is the last day of

the month of publication.

Aims

Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics,

such as reliable software technologies,

are welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

• Refereed original articles on

technical matters concerning Ada

and related topics.

• Invited papers on Ada and the Ada

standardization process.

• Proceedings of workshops and

panels on topics relevant to the

Journal.

• Reprints of articles published

elsewhere that deserve a wider

audience.

• News and miscellany of interest to

the Ada community.

• Commentaries on matters relating

to Ada and software engineering.

• Announcements and reports of

conferences and workshops.

• Announcements regarding

standards concerning Ada.

• Reviews of publications in the

field of software engineering.

Further details on our approach to

these are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will

be relayed to the authors at the

discretion of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues

The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups

to find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be

of interest to them.

Reprinted Articles

While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it

a wider audience. This includes papers

published in North America that are

not easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries

We publish commentaries on Ada and

software engineering topics. These

may represent the views either of

individuals or of organisations. Such

articles can be of any length –

inclusion is at the discretion of the

Editor.

Opinions expressed within the Ada

User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports

We are happy to publicise and report

on events that may be of interest to our

readers.

Reviews

Inclusion of any review in the Journal

is at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to

print reviews submitted from

elsewhere at the discretion of the

Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be

rapid. Currently, accepted papers

submitted electronically are typically

published 3-6 months after submission.

Items of topical interest will normally

appear in the next edition. There is no

limitation on the length of papers,

though a paper longer than 10,000

words would be regarded as

exceptional.

 3

Ada User Journal Volume 39, Number 1, March 2018

Editorial

In this Editorial, I would like to start by pointing out the preliminary program of the Ada-Europe 2018 conference, June 18-

22, in Lisbon, Portugal, which you can find in the forthcoming events section of the Journal. The conference program

includes three very valuable keynotes (on Tuesday, Paulo Esteves-Veríssimo, from the University of Luxembourg, with a

keynote about “Security and Dependability Challenges of IT/OT Integration”; on Wednesday, Carl Brandon, from the

Vermont Technical College, USA, will provide the perspective “From Physicist to Rocket Scientist, and How to Make a

CubeSat that Works”; and Thursday, Erhard Plödereder, from the University of Stuttgart, Germany, will talk about

“Vulnerabilities in Safety, Security, and Privacy”), nine sessions of technical papers and industrial presentations, an extensive

group of tutorials and two workshops on Monday and Friday. The week will also have an interesting social program – details

will be increasingly available in the conference website.

I am looking forward to meeting you all in Lisbon!

And this year is full of Ada-related events. After the Ada Developer Room at FOSDEM, last February, and a new edition of

the International Real-Time Ada Workshop, taking place in Benicàssim, Spain, 18-20 April, we will also have the ACM

SIGAda High Integrity Language Technology workshop, 5-6 November, in Boston, USA. Information about the latter can

also be found in the forthcoming events section.

As for the technical content of the issue, the first article, from a group of authors from the Sfax University, Tunisia and

Abdulaziz University, Saudi Arabia, presents an approach using text mining techniques to extract common and variable

features from product variants. Afterwards, Victor Porton, from Israel, discusses the experiences with writing an Ada binding

to the Redland RDF libraries. Finally, Yannick Moy presents how SPARK can be used to prove a brute force version of string

search, and to discover a bug in a faster quick search version.

As usual, the reader will also encounter the information provided in the News Digest and Calendar sections, prepared by

Jacob Sparre Andersen and Dirk Craeynest, their respective editors.

 Luís Miguel Pinho

Porto

March 2018

 Email: AUJ_Editor@Ada-Europe.org

mailto:AUJ_Editor@Ada-Europe.org

4

Volume 39, Number 1, March 2018 Ada User Journal

Ada User Journal

Call for Contributions

Topics: Ada, Programming Languages, Software

Engineering Issues and Reliable Software

Technologies in general.

Contributions: Refereed Original Articles, Invited

Papers, Proceedings of workshops and panels and

News and Information on Ada and reliable software

technologies.

More information available on the

Journal web page at

http://www.ada-europe.org/auj

Online archive of past issues at http://www.ada-europe.org/auj/archive/

 5

Ada User Journal Volume 39, Number 1, March 2018

Join Ada-Europe!

Become a member of Ada-Europe and support Ada-

related activities and the future development of the

Ada programming language.

Membership benefits include receiving the quarterly

Ada User Journal and a substantial discount when

registering for the annual Ada-Europe conference.

To apply for membership, visit our web page at

http://www.ada-europe.org/join

6

Volume 39, Number 1, March 2018 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Organisations 6
Ada-related Events 6
Ada Semantic Interface

Specification 8
Ada-related Resources 9
Ada-related Tools 9
Ada-related Products 12
Ada and CORBA 13
Ada and Operating Systems 13
References to Publications 13
Ada Inside 14
Ada in Context 15

Ada-related
Organisations

ACM SIGAda 2017 Robert
Dewar Award

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri Dec 15 2017
Subject: Dr. Peter Chapin (Vermont

Technical College) receives ACM
SIGAda 2017 Robert Dewar Award

URL: http://www.adaic.org/2017/12/
dr-peter-chapin-vermont-technical-
college-receives-acm-sigada-2017-
robert-dewar-award/

The ARA congratulates Dr. Peter Chapin
on his receipt of ACM SIGAda’s Robert
Dewar Award, which acknowledges
outstanding contributions to the Ada
community. Dr. Chapin was a major
contributor to the Vermont Tech Lunar
CubeSat project (cubesatlab.org) whose
software was written in SPARK/Ada. The
Vermont Tech CubeSat was launched in
November 2013 and successfully
completed its full two-year mission, the
only one out of twelve academic
CubeSats to do so. Dr. Chapin attributes
the software’s reliability in large part to
the SPARK/Ada technology, which was
used to prove the absence of run-time
errors.

Dr. Chapin is now coordinating the work
on CubedOS, a SPARK/Ada
implementation of a software framework
for small spacecraft, with plans to release
the result as an open-source project. Other
groups will thus have access to a high-
integrity software base for their CubeSats,
which currently have a very high failure
rate.

Dr. Chapin is the co-author, along with
Prof. John McCormick, of “Building High
Integrity Applications with SPARK”, a
student-oriented textbook on SPARK
2014.

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

FOSDEM 2018

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Wed, 10 Jan 2018 22:18:04 -0000
Subject: FOSDEM 2018 - Ada Developer

Room - Sat 3 Feb 2018 - Brussels
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Ada-Belgium is pleased to announce the
program for its

8th Ada Developer Room at FOSDEM
2018

on Saturday 3 February 2018

Université Libre de Bruxelles (ULB),
Solbosch Campus, Room AW1.125

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organized in cooperation with
Ada-Europe

<http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/18/180203-fosdem.html>

<http://fosdem.org/2018/schedule/
track/ada/>

FOSDEM, the Free and Open source
Software Developers' European Meeting,
is a non-commercial two-day weekend
event organized early each year in
Brussels, Belgium. It is highly developer-
oriented and brings together 8000+
participants from all over the world. The
goal is to provide open source developers
and communities a place to meet with
other developers and projects, to be
informed about the latest developments in
the open source world, to attend
interesting talks and presentations on
various topics by open source project
leaders and committers, and to promote

the development and the benefits of open
source solutions. The 2018 edition takes
place on Saturday 3 and Sunday 4
February. It is free to attend and no
registration is necessary.

In this edition, Ada-Belgium organizes
once more a series of presentations related
to the Ada Programming Language and
Free or Open Software in a s.c. Developer
Room. The "Ada DevRoom" at FOSDEM
2018 is held on the first day of the event,
Saturday 3 February 2018.

Ada Programming Language and
Technology

Ada is a general-purpose programming
language originally designed for safety-
and mission-critical software engineering.
It is used extensively in air traffic control,
rail transportation, aerospace, nuclear,
financial services, medical devices, etc. It
is also perfectly suited for open source
development.

Awareness of safety and security issues in
software systems is increasing. Multi-core
platforms are now abundant. These are
some of the reasons that the Ada
programming language and technology
attracts more and more attention, among
others due to Ada's support for
programming by contract and for multi-
core targets. The Ada 2012 language
definition was approved and published by
ISO in December 2012, updated early
2016, and work on new features for the
next revision is ongoing. As with the prior
Ada 1995 and Ada 2005 standards, the
first full implementation of the Ada 2012
standard was made available in gcc - the
GNU Compiler Collection (GNAT). More
and more tools are available, many are
open source, including for small and
recent platforms. Interest keeps
increasing, also in the open source
community, and many exciting projects
started.

The Ada DevRoom aims to present the
facilities offered by the Ada language
(such as for object-oriented, multicore, or
embedded programming) as well as some
of the many exciting tools and projects
using Ada.

Ada Developer Room Presentations
(room: AW1.125, 76 seats)

The presentations in the Ada DevRoom
start after the opening FOSDEM keynote.
The program runs from 10:30 to 19:00,
and consists of 7.5 hours with 9 talks by 9
presenters from 5 different countries, plus

mailto:jacob@jacob-sparre.dk

Ada-re lated Events 7

Ada User Journal Volume 39, Number 1, March 2018

 2 half-hour sessions with informal
discussions.

10:30-11:00 - Arrival & Informal
Discussions

 Feel free to arrive early, to start the day
with some informal discussions while the
set-up of the DevRoom is finished.

11:00-11:05 - Welcome
 by Dirk Craeynest - Ada-Belgium

 Welcome to the Ada Developer Room at
FOSDEM 2018, which is organized by
Ada-Belgium in cooperation with Ada-
Europe. Ada-Belgium and Ada-Europe
are non-profit organizations set up to
promote the use of the Ada programming
language and related technology, and to
disseminate knowledge and experience
into academia, research and industry in
Belgium and Europe, resp. Ada-Europe
has member-organizations, such as Ada-
Belgium, in various countries, and direct
members in many other countries. More
information on this DevRoom is available
on the Ada-Belgium web-site (see URL
above).

11:05-11:50 - An Introduction to Ada for
Beginning and Experienced Programmers
by Jean-Pierre Rosen - Adalog

 An overview of the main features of the
Ada language, with special emphasis on
those features that make it especially
attractive for free software development.
Ada is a feature-rich language, but what
really makes Ada stand-out is that the
features are nicely integrated towards
serving the goals of software engineering.
If you prefer to spend your time on
designing elegant solutions rather than on
low-level debugging, if you think that
software should not fail, if you like to
build programs from readily available
components that you can trust, you should
really consider Ada!

12:00-12:50 - Making the
Ada_Drivers_Library: Embedded
Programming with Ada
by Fabien Chouteau - AdaCore

 The Ada programming language was
designed for embedded programming and
it is well known in the aerospace domains
and in general every domain where failure
is not an option. Unfortunately it is not
used a lot in the embedded FOSS
community. In the past two years,
AdaCore worked to promote the use of
Ada in the FOSS community, in particular
for embedded programming with the
"Make with Ada" blog post series, my
interview for the Embedded.fm podcase,
blog posts on "ARM Community" or the
"Make with Ada" competition.

 In this 45 minutes lecture I will:

 - give a short introduction of Ada for
embedded and how its features
(programming by contract, strong
typing, representation clauses (hardware
mapping), OOP, static compiler checks

 and optional run-time checks) can help
improving the development time,
maintenance and quality of FOSS
embedded projects;

 - present the Ada_Drivers_Library
project, where we put all those features
in practice to develop micro-controller
device drivers in Ada;

 - make a quick getting started demo;

 - present some of the best projects from
the "Make with Ada" competition.

13:00-13:20 - Shared Memory Parallelism
in Ada: Load Balancing by Work Stealing
by Jan Verschelde - University of Illinois
at Chicago

 Tasking in Ada provides an effective tool
for shared memory parallelism. For coarse
grained regular parallelism, load
balancing works with one single job
queue. For finer grained and irregular
parallelism, work stealing balances the
load with multiple job queues. The
programming concepts will be illustrated
with examples of algorithms in polyhedral
geometry. The demonstrated code belongs
to the free and open source PHCpack.

13:30-13:50 - Ada, or How to Enforce
Safety Rules at Compile Time
by Jean-Pierre Rosen - Adalog

 This is a real life story of a mixed
criticality system, where a proper usage of
Ada's features for controlling visibility
allowed a provable enforcement of the
segregation rules at compile time: any
violation would simply not compile.

14:00-14:50 - Contract-based
Programming: a Route to Finding Bugs
Earlier
by Jacob Sparre Andersen - JSA Research
& Innovation

 Contract-based programming is a
software development technique, where
you include assertions of program
properties as a part of the compiled source
text. In the strict form, the assertions are
checked at compile-time, but in this
presentation I will focus on the more
common, less strict, form, where at least
some of the assertions aren't checked until
run-time. Ada gives us a lot of help, so we
can write the our assertions about the
program properties once, and then have
the compiler insert actual run-time checks
wherever there is a possibility that the
assertion is violated.

 This presentation will focus on how we
can write these contracts in Ada in a way
that make them effective at ensuring that
our source text does what we intend it to
and allow the compiler to generate
efficient checks of the assertions. The
intended audience is anybody with
enough programming experience to know
concepts like types, encapsulation and
packages. Having tried to write Ada
before will be a benefit, but it isn't a
requirement.

15:00-15:50 - SPARK Language:
Historical Perspective & FOSS
Development
by Yannick Moy - AdaCore

 SPARK started in 1987 as a restricted
subset of Ada 83, defined by its own
grammar rules. The overhaul of the
language and toolset starting in 2010
increased greatly the language subset,
dropping in effect the need for separate
grammar rules. Since then, SPARK has
progressively adopted most of the Ada
features, to a point where the last
remaining non-SPARK significant Ada
feature today is pointers. We have started
work on including safe pointers in
SPARK, borrowing the ideas of pointer
ownership from Rust. So one can
legitimately wonder what difference
remains between SPARK and Ada.

 In the first part of this talk, I will lay out
the principles that have guided us through
the inclusion of language features in
SPARK since 2010. I will describe in
particular the trade-offs that we
considered for support of important
features like recursion, types with non-
static constraints, generics, object
orientation, concurrency. I will give a
preview of the support envisioned for
pointers in SPARK. So that the distinction
between Ada and SPARK appears clearly:
it's not about quantity, it's about safety
and security.

 In the second part of this talk, I will give
a tour of FOSS projects which are using
SPARK today: Aida, Certyflie, Muen,
PolyORB-HI, Pulsar, StratoX, Tokeneer.
For each one, I will describe at which
level of assurance SPARK is used, with
how much efforts and for which benefits.
Then I will focus on the largest one,
Muen, an x86/64 separation kernel for
high assurance. Finally, we will look at
the resources which are available to the
community for FOSS development in
SPARK.

16:00-16:50 - Writing REST APIs with
OpenAPI and Swagger Ada
by Stephane Carrez - Bouygues Telecom

 The OpenAPI specification is an
emerging specification to describe
RESTful web services. The Swagger suite
is a collection of tools to write such API
descriptions and have the code generated
in more than 29 languages, including Ada.
The presentation will describe how to
write a REST operation with OpenAPI,
generate the Ada client with Swagger
Codegen and use the generated code to
interact with the server. We will also
describe the generated Ada server code
and how to implement the server side and
run a complete REST server.

17:00-17:50 - Browser-as-GUI and Web
Applications with Gnoga
by Jeffrey R. Carter - Atos Belgium

8 Ada Semant ic Interface Spec if icat ion

Volume 39, Number 1, March 2018 Ada User Journal

Gnoga is an all-Ada library that uses the
features of modern web browsers as a
portable GUI. The program may run on
the same computer as the browser, or on a
server over the internet. Participants will
be introduced to using Gnoga to create
such programs.

 A singleton version of the Random_Int
demo program will be used to
demonstrate the use of Gnoga as the GUI
for a program running on the same
computer as the browser. Random_Int is a
very simple program that generates
(pseudo)random integers in a user-
specified range. The Chattanooga demo is
a text-chat server program allowing
people to chat on line. It demonstrates the
use of Gnoga to create web applications.
A secure version of Chattanooga can
sometimes be accessed at
https://chat.gnoga.com/. (The certificate
for this site has expired, but can still be
used to ensure encrypted communication
with the site.)

 After installing Gnoga, the demos are
available in the demo directory. More
information about Gnoga may be found at
gnoga.com, especially the Tools page.

18:00-18:20 - Easy Ada Tooling with
Libadalang
by Raphaël Amiard and Pierre-Marie De
Rodat - AdaCore

 A lot of developers consider that a
language is only as good as the tooling
that accompanies it. Ada has been
conceived as a language pretty well
amenable to tooling, yet the tooling offer
besides AdaCore's is not very extensive,
at least when compared to other languages
like Java, despite the existence of the
ASIS project (Ada Semantic Interface
Specification).

 One of Libadalang's aims is to help solve
that by providing an easy way to build
new Ada-aware tools. Libadalang is a
library that allows the user to query
information about Ada code, including:

 - Syntactic information. Query the token
stream, the syntax tree, find syntax
patterns, etc.

 - Semantic information, such as which
declaration an identifier references, the
type of expressions, all references to a
declaration, etc.

 In addition, one of the aims is to allow
the users to modify the trees, and
propagate the changes to the source.

 This talk will go over what Libadalang
can already do today, how it differs from
ASIS, future plans for the library, and
potential exciting use cases.

18:30-19:00 - Informal Discussions &
Closing

 Informal discussion on ideas and
proposals for future events.

More information on Ada DevRoom

Speakers bios, pointers to relevant
information, links to the FOSDEM site,
etc., are available on the Ada-Belgium
site at
 <http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/18/
180203-fosdem.html>

We invite you to attend some or all of the
presentations: they will be given in
English. Everybody interested can attend
FOSDEM 2018; no registration is
necessary.

We hope to see many of you there!

From: Leff Ivanov
<droiddermo@gmail.com>

Date: Wed, 7 Feb 2018 00:26:35 -0800
Subject: FOSDEM 2018 Ada!
Newsgroups: comp.lang.ada

It seems this year awesome people from
FOSDEM finally made things right and
videos from Ada DevRoom is available
for us to watch:
https://fosdem.org/2018/schedule/
track/ada/

[...]

[See also “FOSDEM 2018”, AUJ 38-4, p.
175. —sparre]

Ada-Europe 2018 in Lisbon

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Thu, 1 Feb 2018 21:22:36 -0000
Subject: FINAL CfP Ada-Europe 2018, Mon

5 February submission deadline
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

FINAL Call for Papers

23rd International Conference on
Reliable Software Technologies -

Ada-Europe 2018

18-22 June 2018, Lisbon, Portugal

http://www.ada-europe.org/
conference2018

Organized by Univ. Lisboa and
Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN and the

Ada Resource Association (ARA)

The 23rd International Conference on
Reliable Software Technologies - Ada-
Europe 2018 will take place in Lisbon,
Portugal. Following its traditional style,
the conference will span a full week,
including a three-day technical program
and vendor exhibition from Tuesday to
Thursday, along with parallel tutorials and
workshops on Monday and Friday. This
edition features a focused Special Session
on Security in Safety-Critical Systems.

DEADLINE Monday 5 FEBRUARY
2018

Regular & Special Session Papers +
Industrial Presentations: submit via
https://easychair.org/conferences/
?conf=adaeurope2018

Tutorials & Workshops: submit to the
Tutorial & Workshop Chair

 David Pereira <dmrpe at isep.ipp.pt>

 For more information please see the full
Call for Contributions at
http://www.ada-europe.org/
conference2018

[See also “Ada-Europe 2018 in Lisbon”,
AUJ 38-4, p. 175. —sparre]

IRTAW 2018

From: Jorge Real <jorge@disca.upv.es>
Date: Sat, 10 Feb 2018 02:30:22 -0800
Subject: IRTAW 2018 Call for Papers

Deadline Extension and Final Reminder
Newsgroups: comp.lang.ada

The paper submission deadline for the
19th International Real-Time Ada
Workshop, IRTAW 2018 has been
extended to February 14, 2018.

19th IRTAW - Call for Papers Deadline
Extension and Final Reminder

The 19th International Real-Time Ada
Workshop will be held on 18-20 April
2018 at Hotel Voramar, Benicassim,
Spain.

The call for papers is posted at
<http://www.ada-europe.org/irtaw2018/
IRTAW_2018.html>
and closes 14 February 2018.

The workshop series is famous for
creating the Ravenscar Tasking Profile for
Ada, plus many improvements in the area
of real-time programming to every
revision of Ada since Ada 95. Since 16th
IRTAW, the workshop has been
considering multicore paradigms for real-
time systems.

If you have any interest in the areas that
the workshop covers, you are invited to
submit a position paper to the workshop.

Ada Semantic Interface
Specification (ASIS)

ASIS/libadalang

From: Mark Lorenzen
<mark.lorenzen@gmail.com>

Date: Fri, 22 Dec 2017 00:28:21 -0800
Subject: Re: ASIS for gnat GPL 2017
Newsgroups: comp.lang.ada

> [...]

I think AdaCore is phasing out support for
ASIS as they migrate to libadalang
instead, but I'm not absolutely sure.

https://github.com/AdaCore/libadalang

https://github.com/AdaCore/
libadalang-tools

http://blog.adacore.com/
cross-referencing-ada-with-libadalang

Ada-re lated Tools 9

Ada User Journal Volume 39, Number 1, March 2018

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 22 Dec 2017 10:12:53 +0100
Subject: Re: ASIS for gnat GPL 2017
Newsgroups: comp.lang.ada

> [...]

It is the official line of the party, however
I think they won't do that until libadalang
gets sufficiently stable to allow all their
current ASIS tools to migrate - and my
gut feeling is that it won't happen shortly.
I've also heard rumors that they would
build an ASIS layer on top of libadalang -
quite sensible to maintain compatibility.

Ada-related Resources

OpenDO Forge Shutting
Down

From: Open-Do Forge
Date: Wed, 31 Jan 2018 23:55:10 +0100
Subject: Open-DO Forge Shutting Down on

Feb 14th

If you receive this email, then that means
you are a member of one of the projects
hosted on AdaCore's Open-DO forge
(https://forge.open-do.org/softwaremap/
full_list.php). As previously announced to
all Project Admins, we are shutting down
the forge and will stop hosting projects.

As of February 14th (in 2 weeks), the
forge will be officially closed. Please take
this time to review the projects and
archive anything you need. Several of the
projects have been moved to places like
GitHub; this information is reflected in
the project descriptions.

Do not hesitate to send an email to
forge@adacore.com if you have any
questions.

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue Mar 6 2018
Subject: Ada on Social Media
Ada groups on various social media:

- LinkedIn: 2_698 members [1]

- Reddit: 1_712 readers [2]

- StackOverflow: 964 followers [3]

- Google+: 754 members [4]

- Freenode 87 participants [5]

- Gitter: 53 people [6]

- Twitter: 21 tweeters [7]

[1] https://www.linkedin.com/
groups?gid=114211

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://plus.google.com/communities/
102688015980369378804

[5] #Ada on irc.freenode.net

[6] https://gitter.im/ada-lang

[7] https://twitter.com/search?f=realtime&
q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
38-4, p. 175. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue Mar 6 2018
Subject: Repositories of Open Source

software
GitHub: 2_155 repositories [1]

 493 developers [2]

 2_390 issues [3]

Rosetta Code: 645 examples [4]

 33 developers [5]

 0 issues [6]

Sourceforge: 233 projects [7]

BlackDuck OpenHUB: 177 projects [8]

Bitbucket: 94 repositories [9]

Codelabs: 45 repositories [10]

OpenDO Forge: 24 projects [11]

 551 developers [11]

AdaForge: 8 repositories [12]

[1] https://github.com/search?q=language
%3AAda&type=Repositories

[2] https://github.com/search?q=language
%3AAda&type=Users

[3] https://github.com/search?q=language
%3AAda&type=Issues

[4] http://rosettacode.org/wiki/
Category:Ada

[5] http://rosettacode.org/wiki/
Category:Ada_User

[6] http://rosettacode.org/wiki/Category:
Ada_examples_needing_attention

[7] http://sourceforge.net/directory/
language%3Aada/

[8] https://www.openhub.net/tags?
names=ada

[9] https://bitbucket.org/repo/all?
name=ada&language=ada

[10] http://git.codelabs.ch/

[11] https://forge.open-do.org/

[12] http://forge.ada-ru.org/adaforge

[See also “Repositories of Open Source
Software”, AUJ 38-4, p. 175. —sparre]

Ada-related Tools

GNAT Community Edition

From: Emma Adby <adby@adacore.com>
Date: Thu, 2 Nov 2017 13:08:09 +0000
Subject: [AdaCore] New GNAT Community

edition!
To: libre-news@lists.adacore.com

Dear GNAT Community,

We are pleased to announce that AdaCore
has a brand new website complete with its
own section dedicated to the community.
This now houses the GNAT Community
edition download, formerly known as the
GNAT GPL, along with other information
and resources to help you get started with
Ada and SPARK.

Therefore, the Libre site has gone and will
now redirect you here:
<https://www.adacore.com/community>,
where you will find everything you need.

We hope you enjoy our new and
improved community resources!

[See also “GNAT GPL and SPARK
GPL”, AUJ 37-2, p. 75. —sparre]

OS Command Execution

From: Victor Porton <porton@narod.ru>
Date: Mon, 13 Nov 2017 18:38:48 +0200
Subject: Execute an OS command and

capture output
Newsgroups: comp.lang.ada

I need a (preferably portable, but only
Linux would be well) way to execute an
OS command with some input in stdin
which I provide and capture the output
from stdout.

Note that stdin and stdout may possibly
pass NUL characters.

I am interested in both shell commands
for different shells and in direct (such as
execve()) execution of a command.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Nov 2017 18:41:56 +0100
Subject: Re: Execute an OS command and

capture output
Newsgroups: comp.lang.ada

[...]

Anyway see:

1. GNAT's System.OS_Lib.Spawn,
System.OS_Lib.Non_Blocking_Spawn.

2. A more comfortable method would be
to use GTK bindings (GLib actually):

http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm#10

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 15 Nov 2017 19:00:49 -0600
Subject: Re: Execute an OS command and

capture output
Newsgroups: comp.lang.ada

> [...]

There is no portable solution, as Ada does
not provide any sort of OS access. You'll
have to use something either compiler-
specific (like the GNAT Spawn
mentioned elsewhere or the Janus/Ada
Prog_Call) or perhaps something in a
library (most of which only work with
GNAT anyway).

10 Ada-re lated Tools

Volume 39, Number 1, March 2018 Ada User Journal

We (the ARG) once tried to define a
portable OS access. We discussed it for
the better part of an hour and ended up
arguing about a portable problem
statement -- we couldn't even agree on
how to portably describe the problem we
were trying to solve. We eventually
decided that we could make better use of
our time working on something else
(pretty much anything else!). So it's
unlikely that Ada will ever get such a
facility; it is very target-specific. It would
be nice if all Windows compilers
supported the same mechanism, but that
would require herding cats
(implementers) and probably would be a
long shot. [Implementers don't even seem
to support file information portably, even
though the specification of
Ada.Directories.Information for Windows
and for Linux is provided in the AARM.
For instance, my understanding is that
GNAT doesn't implement either of these
packages as specified there.]

From: Andrea Cervetti
<andrea.cervetti@gmail.com>

Date: Tue, 14 Nov 2017 02:57:26 -0800
Subject: Re: Execute an OS command and

capture output
Newsgroups: comp.lang.ada

> [...]

See the example
http://rosettacode.org/wiki/
Get_system_command_output#Ada

It uses
GNAT.Expect.Get_Command_Output
that does exactly what you need.

You have just to define a String for the
Input parameter to the
Get_Command_Output function.

Qt5Ada

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Sat, 9 Dec 2017 03:02:27 -0800
Subject: Announce : Qt5Ada version 5.10.0

(546 packages) release 09/12/2017 free
edition

Newsgroups: comp.lang.ada

Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.10.0 final)

Qt5ada version 5.10.0 open source and
qt5c.dll,libqt5c.so(x64) built with
Microsoft Visual Studio 2015 in
Windows, gcc x86-64 in Linux.

Package tested with gnat gpl 2012 ada
compiler in Windows 32bit and 64bit ,
Linux x86-64 Debian 8.5

It supports GUI, SQL, Multimedia, Web,
Network, Touch devices,
Sensors,Bluetooth, Navigation and many
others thinks.

Changes for new Qt5Ada release :

Added direct load UI QDesigner
generated files:

.New packages and demos

My configuration script to build Qt 5.10.0
is: configure -opensource -release -
nomake tests -opengl dynamic -qt-zlib -
qt-libpng -qt-libjpeg -openssl-linked
OPENSSL_LIBS="-lssleay32 -llibeay32"
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.10"

As a role ADA is used in embedded
systems, but with QTADA(+VTKADA)
you can build any desktop applications
with

powerful 2D/3D rendering and imaging
(games, animations, emulations) GUI,
Database connection, server/client,
Internet browsing , Modbus control and
many others thinks.

Qt5Ada and VTKAda for Windows,
Linux (Unix) is available from

https://drive.google.com/folderview?id=0
B2QuZLoe-yiPbmNQRl83M1dTRVE&
usp=sharing

 (google drive. It can be mounted as
virtual drive or directory or viewed with
Web Browser)

The full list of released classes is in "Qt5
classes to Qt5Ada packages relation
table.docx"

VTKAda version 8.0.0 is based on VTK
8.0.0 (OpenGL2) is fully compatible with
Qt5Ada 5.10.0

I hope Qt5Ada and VTKAda will be
useful for students, engineers, scientists
and enthusiasts

With Qt5Ada you can build any
applications and solve any problems easy
and quickly.

If you have any problems or questions,
tell me know.

[See also “Qt5Ada”, AUJ 38-2, p. 74.
—sparre]

AdaControl

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 15 Dec 2017 17:02:29 +0100
Subject: [Ann] New version of AdaControl

(with terrific new features)
Newsgroups: comp.lang.ada

Adalog is pleased to announce the release
of version 1.19r10 of AdaControl, with a
big count of 539 rules and subrules.

Special mention to the new subrule
Assignment/Access_Duplication: it
controls assignments where at least one
subcomponent is of an access type. Great
for finding remaining references after an
Unchecked_Deallocation.

BUT THERE IS MORE TO IT:

AdaControl can now generate suggested
fixes in its output file. Under GPS, the
corresponding messages are marked with
the small "wrench" icon, and clicking on
it applies the fix. There is also an
adactl_fix utility that applies
automatically all suggested fixes.

Remember these hundreds of "wrong
casing" violations that you never had the
time to fix? It now takes seconds to
reduce your technical debt!

AND MORE:

You can now download plugins that
provide full integration of AdaControl
with
GnatHub/GnatDashboard/SONARQube!

Full list of improvements is available in
file HISTORY as usual.

AdaControl can be downloaded from
http://www.adacontrol.fr

Enjoy!

[See also “AdaControl”, AUJ 37-4, p.
190. —sparre]

GStreamer Binding

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Mon, 25 Dec 2017 21:17:57 +0100
Subject: [ANN] version alpha 0.0 of Ada

GStreamer bindings.
Newsgroups: comp.lang.ada

Just want to take a poll on the interest
level.

Got Ada-equivalents for all GStreamer
header files.

https://github.com/persan/A-gst

ArchiCheck

From: Lionel Draghi
<lionel.draghi@gmail.com>

Date: Sat, 30 Dec 2017 14:01:40 -0800
Subject: [ANN] Archicheck v 0.5.0
Newsgroups: comp.lang.ada

A new ArchiCheck version is available.

Most important changes since v0.3:

1. Many improvements in the rules syntax
: cf.

 http://lionel.draghi.free.fr/Archicheck/
rules/

2. A first implementation of Java support

Quick Start :
http://lionel.draghi.free.fr/Archicheck/

Feel free to suggest any Ada or Java
software, with a minimally described
architecture (like this :
https://xmlgraphics.apache.org/batik/
using/architecture.html), and available
sources, so that I can improve my test
suite.

[See also “ArchiCheck”, AUJ 38-2, p. 74.
—sparre]

GtkAda Contributions

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 4 Jan 2018 10:02:12 +0100
Subject: ANN: GtkAda contributions 3.19
Newsgroups: comp.lang.ada

Ada-re lated Tools
 11

Ada User Journal Volume 39, Number 1, March 2018

The library extends GtkAda bindings to
GTK+. It deals with the

following issues:

- Tasking support;

- Custom models for tree view widget;

- Custom cell renderers for tree view
widget;

- Multi-columned derived model;

- Extension derived model (to add
columns to an existing model);

- Abstract caching model for directory-
like data;

- Tree view and list view widgets for
navigational browsing of abstract
caching models;

- File system navigation widgets with
wildcard filtering;

- Resource styles;

- Capturing resources of a widget;

- Embeddable images;

- Some missing subprograms and bug
fixes;

- Measurement unit selection widget and
dialogs;

- Improved hue-luminance-saturation
color model;

- Simplified image buttons and buttons
customizable by style properties;

- Controlled Ada types for GTK+ strong
and weak references;

- Simplified means to create lists of
strings;

- Spawning processes synchronously and
asynchronously with pipes;

- Capturing asynchronous process
standard I/O by Ada tasks and by text
buffers;

- Source view widget support.

http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm

The new version adds SVG images
support through bindings to librsvg2.

[See also “GtkAda Contributions”, AUJ
38-1, p. 5. —sparre]

Industrial Control Widget
Library

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 5 Jan 2018 10:12:31 +0100
Subject: ANN: Ada industrial control widget

library v 3.17
Newsgroups: comp.lang.ada

The library assists design of high-quality
industrial control widgets for Ada
applications. The software is based on
GtkAda, Ada bindings to GTK+ and
cairo. The key features of the library:

- Widgets composed of transparent layers
drawn by cairo;

- Fully scalable graphics;

- Support of time controlled refresh policy
for real-time and heavy-duty
applications;

- Caching graphical operations;

- Stream I/O support for serialization and
deserialization;

- Ready-to-use gauge, meter, oscilloscope
widgets;

- Editor widget for WYSIWYG design of
complex dashboards.

http://www.dmitry-kazakov.de/ada/
aicwl.htm

Changes to the previous version:

- The package Gtk.Layered.Line has color
opacity parameter added;

- The package Gtk.Layered.SVG layer
was added to show an SVG image;

- The package Gkt.Layered.Disk_Needle
was added, a needle type used in valve
position indicating instruments;

- The package Gtk.Valve.Round_90
example added, it provides a valve
position indicator;

- Bordered layers have "lens" with light
reflex and shadow;

- Another bug fix in Gtk.Layered.Editor
to work around GNAT compiler issues;

- Minor bug fixes.

[See also “Industrial Control Widget
Library”, AUJ 38-4, p. 177. —sparre]

VTKAda

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Thu, 4 Jan 2018 23:39:13 -0800
Subject: VTKAda version 8.1.0 release

05/01/2018
Newsgroups: comp.lang.ada

I'm pleased to announce VTKAda version
8.1.0 free edition release 05/01/2018.
VTKAda is Ada-2012 port to VTK
(Visualization Toolkit by Kitware, Inc)
and Qt5 application and UI framework by
Nokia.

VTK version 8.1.0, Qt version 5.10.0
open source and vtkc.dll, vtkc2.dll,
qt5c.dll(libvtkc.so,libvtkc2.so,libqt5c.so)
were built with Microsoft Visual Studio
2015 in Windows (WIN32) and gcc in
Linux x86-64 Package was tested with
gnat gpl 2017 ada compiler in Windows 0
64bit,Debian 9.2 x86-64.

As a role ADA is used in embedded
systems, but with VTKADA(+QTADA)
you can build any desktop applications
with powerful 2D/3D rendering and
imaging (games, animations, emulations)
GUI, Database connection, server/client,
Internet browsing and many others thinks.

VTKADA you can be used without
QTADA subsystem Qt5Ada and VTKAda
for Windows, Linux (Unix) is available

from https://drive.google.com/
folderview?id=0B2QuZLoe-
yiPbmNQRl83M1dTRVE&usp=sharing
(google drive. It can be mounted as virtual
drive or directory or viewed with Web
Browser)

[See also “VTKAda”, AUJ 38-3, p. 117.
—sparre]

GNAT: Stack Traces

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Mon, 15 Jan 2018 09:22:34 -0800
Subject: Re:

ADA.STRINGS.INDEX_ERROR : a-
strunb.adb:782

Newsgroups: comp.lang.ada

> [...]

It is even better to use GNAT addition to
print out full stack trace as shown in the
snippet.

 exception

 when Err : others =>

 Text_IO.Put_Line ("Houston we have a

 problem: " &

 Exceptions.Exception_Information

 (Err));

 Text_IO.Put_Line ("Traceback => " &

 GNAT.Traceback.

 Symbolic.Symbolic_Traceback

 (Err));

 end [Ada Unit Name];

[See also “Traceback Wrapper”, AUJ 37-
1, p. 7. —sparre]

Raspberry Pi SenseHAT

From: Philip Munts
<philip.munts@gmail.com>

Date: Thu, 25 Jan 2018 03:12:56 -0800
Subject: Re: Raspberry Pi SenseHAT /

AstroPi
Newsgroups: comp.lang.ada

I have written some Ada packages and
test programs for the Sense HAT. The
platform independent sensor drivers are in
libsimpleio:

http://git.munts.com/libsimpleio/ada/

The platform dependent code is in
MuntsOS:

http://git.munts.com/arm-linux-mcu/
examples/ada

My code use the i2c-dev interface rather
than kernel drivers. I had to reverse
engineer the display and joystick from the
AVR firmware source code.

I primarily target my own embedded
Linux distribution, MuntsOS, but the test
programs all run on Raspbian as well.

List_Image

From: Lionel Draghi
<lionel.draghi@gmail.com>

Date: Tue, 30 Jan 2018 16:44:07 -0800
Subject: [ANN] List_Image v0.2.0
Newsgroups: comp.lang.ada

12 Ada-re lated Products

Volume 39, Number 1, March 2018 Ada User Journal

List_Image is a small helper to print the
content of Ada predefined containers,
available here: https://github.com/
LionelDraghi/List_Image

The Image generic function returns the
image of containers content in various
format, customizable at instantiation time,
from the simple

 A, B, C

or

 [A, B, C]

or

 - A

 - B

 - C

or

 A, B and C

or more complex format like html :

 A

 B

 C

Format may differ for empty list and list
containing a single item.

So, the same instantiation of the function
may return :

- "No test failed" if the list is empty

- "Test test_1 fails" if the list contains
"test_1"

- "Tests test_1 and test_2 fail" if the list
contains "test_1" and "test_2"

ID3 Parser

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 7 Feb 2018 21:23:37 -0800
Subject: any mp3 library bindings?
Newsgroups: comp.lang.ada

I'm working on a web interface to my
music library, and I need to read the meta
info from each music file; i.e., read the
mp3 tags.

I found ffmpeg (https://ffmpeg.org/),
which provides a C interface. Does
anyone have Ada bindings for that, or
another mp3 library?

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Thu, 8 Feb 2018 17:49:42 +0100
Subject: Re: any mp3 library bindings?
Newsgroups: comp.lang.ada

Well gave it some 30 minutes and ended
up with a 1:1 mapping of between Ada-
specs and C-headers:

https://github.com/persan/a-ffmpeg

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 9 Feb 2018 15:24:58 -0800
Subject: Re: any mp3 library bindings?
Newsgroups: comp.lang.ada

> [...]

> https://github.com/persan/a-ffmpeg

I tried writing my own subset of that,
since I only need a few subprograms. It
linked against the mingw32 ffmpeg
libraries, but crashed at runtime, before
the GNAT debugger got control.

So I wrote my own ID3 parser
(http://id3.org/d3v2.3.0); much simpler,
and it works!

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Sat, 24 Feb 2018 15:52:19 +0100
Subject: Re: any mp3 library bindings?
Newsgroups: comp.lang.ada

> [...]

Well I had to generate a binding to
"http://taglib.org/". The API is Ada-style.
See:

https://github.com/persan/a-taglib

ANSI Terminal Control
(X3.64)

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Fri, 16 Feb 2018 15:47:52 -0800
Subject: Ada package for handling ANSI

Standard (X3.64)
Newsgroups: comp.lang.ada

I've looked around and haven't been able
to find any X3.64 library/bindings for
Ada, does anyone know of any? -- I
think ISO-2022 library/bindings might
work, but I'd have to double-check on
that.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sat, 17 Feb 2018 09:54:47 +0100
Subject: Re: Ada package for handling ANSI

Standard (X3.64)
Newsgroups: comp.lang.ada

> [...]

There's a partial implementation in
PragmARC.ANSI_TTY_Control;
additional sequences are easy to add.

https://github.com/jrcarter/PragmARC

From: Emmanuel Briot
<briot@adacore.com>

Date: Sat, 17 Feb 2018 03:17:43 -0800
Subject: Re: Ada package for handling ANSI

Standard (X3.64)
Newsgroups: comp.lang.ada

Also GNATCOLL.Terminal will let you
output colored text (including on
Windows where by default the terminal
does not support ANSI escape sequences).

To interpret those sequences, there is a
package in GPS (widgets/src/gtkada-
terminal.c) that provides a GtkAda text
viewer. Perhaps it could be moved outside
of GPS (it wasn't tricky to write, but now
it is able to interact with vim, for instance,
which is not bad)

Ada-related Products

GNAT Pro, CodePeer,
SPARK Pro and QGen

From: AdaCore Press Center
Date: Wed Jan 31 2018
Subject: AdaCore V18.1 Product Release

Brings New Software Development and
Verification Solutions

URL: https://www.adacore.com/press/
adacore-v18-1-product-release-brings-
new-software-development-and-
verification-solutions

GNAT Pro, CodePeer, SPARK Pro and
QGen upgraded with new features, better
performance

NEW YORK & PARIS & TOULOUSE,
France, January 31, 2018 - ERTS²
Congress - AdaCore, a trusted provider of
software development and verification
tools with headquarters in New York and
Paris, is unveiling Version 18.1 of its
industry-leading GNAT Pro, CodePeer,
SPARK Pro, and QGen products. This
latest version enhances the already robust,
feature-rich software suite with new tools
and capabilities and marks the first release
of GNAT Pro in its three product lines:
GNAT Pro Assurance, GNAT Pro
Enterprise and GNAT Pro Developer.

For more than twenty years, AdaCore has
been delivering products and services
designed specifically to help developers
build safe, secure, reliable, high-integrity
software. AdaCore’s GNAT Pro,
CodePeer, SPARK Pro and QGen are
software development and verification
tools of choice for safety-critical, high-
security, and mission-critical applications
across a growing number of markets,
including aerospace and defense,
automotive, energy, medical, railway, and
the Internet of Things (IoT).

“Specializing the GNAT Pro offering into
three product lines is one of the major
new aspects of this release, allowing us to
adapt our toolset and services to different
user needs” said Cyrille Comar, AdaCore
President. “As an example, the GNAT Pro
Assurance product line provides specific
services for environments where a major
tooling upgrade can be very delicate and
where tool errata (‘known-problems’)
need to be accurately described and
actively managed.”

The GNAT Pro Ada development
environment provides new tools,
improved code efficiency, several new
targets and a variety of compiler
enhancements with Version 18.1. All
GNAT Pro subscriptions now include the
SPARK Discovery verification
technology, and GNAT Pro Assurance
and GNAT Pro Enterprise also supply
AdaCore’s GNATstack stack analysis
tool.

References to Publ icat ions
 13

Ada User Journal Volume 39, Number 1, March 2018

The GNAT Pro tool suite features
GPRbuild project tool upgrades, new
rules in the GNATcheck coding standard
checker, GNATcoverage support for
Lauterbach probes, and new options in the
GNATtest unit testing framework. The
GNAT Programming Studio (GPS)
Integrated Development Environment
(IDE) boasts performance and user
interface improvements, including C/C++
navigation engine enhancements, while
GNATbench adds support for Eclipse 4.8
Oxygen and Wind River Workbench 4.12.

CodePeer, the advanced CWE-compatible
static analysis tool for Ada, brings
improved performance, easier analysis of
non-GNAT code, fewer “false positives”,
and integration of GNAT warnings into
the tool output. An updated tool
qualification kit for DO-178C is also
available for CodePeer 18.1, with
coverage of additional Ada constructs
including exceptions, access types, and
generic units.

The SPARK Pro formal verification
environment, co-developed by AdaCore
and its partner Altran, has added contracts
to units in the predefined environment and
has enhanced the automation of proofs.
SPARK Pro 18.1 also allows users to
perform interactive proofs in GPS.

QGen, AdaCore’s qualifiable model-
based development tool kit which
generates SPARK and MISRA C, has
been enhanced with a compatibility
checker to verify compliance of sample
models with the supported safe subset of
Simulink®/Stateflow® models. QGen
18.1 also implements several new blocks
and supports Simulink®/Stateflow®
versions up to 2017b.

For a complete list of new and improved
features in Version 18.1, visit:

- GNAT Pro base technology –
http://docs.adacore.com/R/relnotes/
features-18

- GPS and GNATbench IDEs –
http://docs.adacore.com/R/relnotes/
features-ide-18

- GPR library and tools –
http://docs.adacore.com/R/relnotes/
features-gprbuild-18 CodePeer –
http://docs.adacore.com/R/relnotes/
features-codepeer-18

- SPARK Pro –
http://docs.adacore.com/
R/relnotes/features-spark-18

- QGen –
http://docs.adacore.com/
R/relnotes/features-qgen-18

[...]

Ada and CORBA

OMG IDL-4.x Mapping
Revision?

From: Oliver Kellogg
<olivermkellogg@gmail.com>

Date: Tue, 2 Jan 2018 12:05:55 -0800
Subject: OMG IDL-4.x to Ada mapping

revision
Newsgroups: comp.lang.ada

Thanks to the IDL4 "building blocks" [1],
we have clean separation of the common
IDL core from transport specific aspects
(CORBA, CCM, DDS, etc.)

The IDL to C++11 mapping [2] has taken
steps toward IDL4. The current IDL to
Ada mapping [3] is still closely tied in
with CORBA. Is anyone working on
aligning it with IDL4?

[1] http://www.omg.org/spec/IDL/4.2/
Beta1/

[2] http://www.omg.org/spec/CPP11/1.3/
Beta1/

[3] http://www.omg.org/spec/ADA/1.3/

Ada and Operating
Systems

Mac OS X: ASIS for GNAT
GPL

From: Rasika Srinivasan <s@srin.me>
Date: Thu, 21 Dec 2017 20:15:37 -0800
Subject: ASIS for gnat GPL 2017
Newsgroups: comp.lang.ada

My gnat 2017 installs on macos does not
appear to include ASIS. Nor have I been
able to download from the Adacore site.

I am hoping to find a solution that is
usable in macos and linux. pointers
appreciated.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 22 Dec 2017 10:29:39 +0000
Subject: Re: ASIS for gnat GPL 2017
Newsgroups: comp.lang.ada

> [...]

On the Libre (Community Edition)
download page for Mac OS X (btw,
should be macOS now!!), at the bottom
right, click on "More packages, platforms,
versions and sources"; click on the
"Sources" link under "GNAT GPL Ada";
asis-gpl-2017-src.tar.gz is the second
source listed.

Mac OS X: JVM-GNAT-
GPL

From: Pascal Pignard <p.p14@orange.fr>
Date: Sun, 4 Mar 2018 20:53:35 +0100
Subject: JVM-GNAT GPL 2013 binaries for

macOS available
Newsgroups: gmane.comp.lang.ada.macosx

I've upload JVM-GNAT GPL 2013
binaries for macOS El Capitan on Source
Forge:

https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2017-el-capitan/

This is the Ada GNAT compiler targeted
for the Java Virtual Machine.

Some complete examples are on:

https://github.com/Blady-Com/
jvm-gnat-examples.

There are also some bugs reported there.

Well, GNAT for JVM seems to have been
no more supported by AdaCore since
2013. But recently I received some
motivation from Ivan Levashev which
had succeeded running an applet with
GNAT-JVM Windows version:

https://plus.google.com/+ИванЛевашев/
posts/i7cHtH7chMo

Furthermore, he succeeded in bringing
JRE classes translated in Ada:

https://gitlab.ow2.org/octagram/
Hello_CheerpJGNAT

I hope this may be useful. Nevertheless,
don't hesitate to report here if you try it.

[See also “JVM-GNAT GPL 2011 for
Mac OS X Snow Leopard”, AUJ 33-1.
—sparre]

References to
Publications

Using Ada.Sequential_IO to
Create a Simple Hexdump
Utility

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon Dec 26 2016
Subject: Using Ada.Sequential_IO to create

simple hexdump utility
URL: http://ada.tips/using-

adasequential_io-to-create-simple-
hexdump-utility.html

There is every now and then need for
viewing the file contents as "raw" bytes
shown as hex numbers. Usually, operating
systems have tool 'hexdump' to do this.
But it is not hard to create one from
scratch.

Here is one example how to create a
simple hexdump utility in Ada.

[...]

On Sponsoring Open Source
Software

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Sun, 12 Nov 2017 06:21:15 +0100
Subject: Re: Looking for experience on XML

parser (DOM) for Ada
Newsgroups: comp.lang.ada

14 Ada Ins ide

Volume 39, Number 1, March 2018 Ada User Journal

> [...]

Not exactly your question, but you can
find my paper "On the benefits for
industrials of sponsoring free software
development" interesting:
http://www.adalog.fr/publicat/
Free-software.pdf

AdaTutor

From: Joakim Strandberg
<joakimds@kth.se>

Date: Sat, 23 Dec 2017 12:30:16 -0800
Subject: Re: exercices
Newsgroups: comp.lang.ada

One resource for learning Ada that I like
is: https://zhu-qy.blogspot.se/2012/08/
adatutor.html

There are exercises there if I remember
correctly.

[See also “AdaTutor on the web”, AUJ
33-4, p. 235. —sparre]

Going all-in with Ada

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Tue, 9 Jan 2018 11:57:29 -0000
Subject: Check out "Going all-in with Ada"
Newsgroups: comp.lang.ada
https://www.reddit.com/r/ada/comments/
7p12n3/going_allin_with_ada_
a_manifesto/

Another great article to read and
distribute.

Thanks Ingo for pointing it out!

AVR-Ada Tutorial

From: Jordan Lee Mauro-Buhagiar
<jordanleemauro@gmail.com>

Date: Fri, 26 Jan 2018 19:03:31 +0100
Subject: AVR-ADA Tutorial Now Available
Newsgroups:

gmane.comp.hardware.avr.ada

First Book explaining the process

- Kindle: https://www.amazon.co.uk/
Real-Time-Critical-Systems-Prototype-
Integration-ebook/dp/B07986YGNM/
ref=sr_1_2?ie=UTF8&qid=1516989731
&sr=8-2&keywords=
real+time+critical+systems

- Paperback:
https://www.amazon.co.uk/dp/
1984171992/ref=sr_1_1?ie=UTF8&qid=
1516989731&sr=8-1&keywords=
real+time+critical+systems

Ada Inside

MAX! Home Automation

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 17 Dec 2017 16:02:02 +0100
Subject: ANN: MAX! home automation v2.0
Newsgroups: comp.lang.ada

MAX! home automation is a GTK+
application to manage ELV/eQ-3 MAX!
cubes. A cube is a gateway to a network
of radiator thermostats, shutter contacts
etc.

 http://www.dmitry-kazakov.de/ada/
max_home_automation.htm

Changes to the previous version:

- MQTT broker bug fix that prevented
publishing thermostat temperatures;

- MQTT broker settings allow specifying
if the broker should accept publishing
requests from the clients on unknown
topics. The topics can be limited by a list
of MQTT topic patterns.

- Python scripts added.

P.S. I would like to support scripting in an
Ada-friendly interpreter in addition to
Python, which I really dislike. I remember
some discussions about Ada-like scripting
language, but found no references to.

[See also “MAX! Home Automation”,
AUJ 38-4, p. 181. —sparre]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 6 Jan 2018 10:46:30 +0100
Subject: ANN: MAX! home automation v2.3
Newsgroups: comp.lang.ada
[...]

Changes to the previous version:

- Minor bug fixed;

- Example of controlling a relay from a
script.

The script is written in Python. A Wemos
D1 relay is attached to a ESP8266
microcontroller. ESP8266 is connected to
WiFi and controlled from the script via
MQTT topic published on the MAX!
home automation broker.

P.S. Proposals and help with porting to
AVR Ada and/or adding scripting in an
Ada-like scripts are welcome.

Artificial Heart

From: AdaCore Press Center
Date: Tue Feb 27 2018
Subject: Scandinavian Real Heart Selects

AdaCore Embedded Software
Development Platform for Revolutionary
Artificial Heart

URL: https://www.adacore.com/press/
scandinavian-real-heart-selects-
adacore-embedded-software-
development-platform-for-revolutionary-
artificial-heart

AdaCore software development and
verification tools help Real Heart deliver
the high assurance, safety, and reliability
that lifesaving medical devices demand.

Embedded World Booth # 4-149

NUREMBERG, Germany, February 27,
2018 – Embedded World – AdaCore, a
trusted provider of software development
and verification tools with headquarters in
New York and Paris, today announced

that Scandinavian Real Heart AB in
Sweden is using a suite of AdaCore
software solutions to develop reliable
embedded software for its revolutionary
Total Artificial Heart.

Scandinavian Real Heart’s Total Artificial
Heart mimics the way that the natural
heart functions to “save patients with
heart failure, and give them a better
quality of life than the alternatives that are
available today” said Fredrik Pahlm,
Chief Technology Officer (CTO) and
Project Manager at Scandinavian Real
Heart.

Scandinavian Real Heart is in the final
development phase of the heart pump’s
motor control software, which is both
complicated and truly unique in its ability
to adjust to the patient’s blood pressure.
Real Heart employs AdaCore software
solutions throughout its end-to-end
embedded software development
workflow, including:

- The GNAT Programming Studio (GPS)
Integrated Development Environment
(IDE) for designing, implementing, and
managing applications that demand high
reliability,

- The SPARK Pro verification toolset
based on formal methods and oriented
toward high-assurance systems,

- The GNAT Pro Ada for ARM multi-
language development environment for
use with ARM processors,

- The GPRbuild advanced build system
that helps automate the construction of
multi-language systems and

- The GNATstack static analysis tools for
stack usage computation.

“Our heart pump has to work
uninterrupted throughout the life of the
patient” said Professor Lars Asplund,
Main Software Architect at Scandinavian
Real Heart. “The quality and reliability of
all parts of the system are crucial. We
want to create software with the highest
level of safety, and we know that SPARK
together with Ada is the best option.”

“The programming tools and
programming language were selected
considering optimum reliability and
quality assurance” added Azad Najar,
Scandinavian Real Heart Chief Executive
Officer (CEO).

“Innovators like Scandinavian Real Heart
continue to choose AdaCore’s
comprehensive suite of software
development and verification solutions,
particularly for lifesaving and safety-
critical applications” said Jamie Ayre,
Commercial Team Lead at AdaCore.
“AdaCore provides the open-source tools
and libraries embedded systems
developers need to craft the most complex
software with high assurance, integrity,
and reliability while lowering
development and verification costs.”

Ada in Context 15

Ada User Journal Volume 39, Number 1, March 2018

AdaCore software solutions have been the
software development and verification
tools of choice for safety-critical and
mission-critical applications for decades.
AdaCore continues to advance and adapt
its trusted tools to meet the most stringent
requirements and high-assurance, high-
integrity needs of modern projects across
multiple markets.

AdaCore is presenting its suite of
software tools – including Version 18.1 of
its industry-leading GNAT Pro,
CodePeer, SPARK Pro and QGen
products, as well as GNAT Pro
Assurance, GNAT Pro Enterprise and
GNAT Pro Developer tailored to specific
user needs – in Booth # 4-149 at
Embedded World 2018.

The annual Embedded World exhibition
and conference is taking place at the
Nuremberg Exhibition Centre in
Nuremberg, Germany, from 27 February
through 1 March 2018.

[...]

Ada in Context

Declaring Subtypes of
Private Types

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sat Sep 2 2017
Subject: Declaring subtypes of private types
URL: http://ada.tips/declaring-subtypes-of-

private-types.html

Sometimes, you want to declare a subtype
for a subset of the possible values of a
private type.

You might for example want a subtype of
Ada.Calendar.Time, which only can
include times in the past. If
Ada.Calendar.Time was a numeric type,
we could declare a subset using range, but
as it is a private type, we have to do it
differently:

 subtype Past_Time is Ada.Calendar.Time

 with Dynamic_Predicate =>

 Past_Time < Ada.Calendar.Clock;

You could even expand this to a subtype
representing values in the last hour:

 subtype Last_Hour is Past_Time

 with Dynamic_Predicate =>

 Ada.Calendar.Clock - 3600.0

 <= Last_Hour;

Notice that while Past_Time is an ever
expanding subtype, Last_Hour is an ever
changing subtype, such that values which
were valid earlier, not necessarily are
valid now.

Adding Finalization to an
Existing Type

From: Jere <jhb.chat@gmail.com>
Date: Wed, 22 Nov 2017 04:43:41 -0800
Subject: Extending a third party tagged type

while adding finalization
Newsgroups: comp.lang.ada

Has anyone have any good tips for
extending a third party type:

type Third_Party_Type is tagged private;

I want to extend it but also add
finalization which is inheritable by later
descendants:

 type My_Base_Type is new

 Third_Party_Type with private;

 procedure Finalize (Object : in out

 My_Type);

 procedure Initialize (Object : in out

 My_Type);

 procedure Adjust (Object : in out

 My_Type);

That way, clients of My_Base_Type can
use them along side Third_Party_Type
such as through a variable of
Third_Party_Type'Class. My first
(untested) thought is to maybe string
together a proxy object inside
My_Base_Type using the Rosen
technique and have it forward the
Finalization operations through dispatch. I
haven't tested this to see if it works but
even if it does, it feels very hacky and is
not my preferred way.

Does anyone have any techniques they
have used in the past?

From: Christoph Karl Walter Grein
<christ-usch.grein@t-online.de>

Date: Wed, 22 Nov 2017 08:42:17 -0800
Subject: Re: Extending a third party tagged

type while adding finalization
Newsgroups: comp.lang.ada

Perhaps this might help you:
http://www.christ-usch-grein.homepage.t-
online.de/Ada/Finalization.html

I published this in Ada Letters, Volume
XIX, Number 4, December 1999.

Pre'Class

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 11 Dec 2017 16:47:26 -0600
Subject: Re: I am leaving Ada :-(because of

GNAT bugs
Newsgroups: comp.lang.ada

Simon Wright wrote:

> See ARM 6.1.1(17.1/4), "Pre'Class shall
not be specified for an overriding
primitive subprogram of a tagged type
T unless the Pre'Class aspect is
specified for the corresponding
primitive subprogram of some ancestor
of T."

That was a rule change in the 2015
Corrigendum. It was made because the

derived Pre'Class will be ored with the
inherited one, and if you've inherited from
a routine with no Pre'Class, you are oring
with True -- which means your new
Pre'Class will be completely ignored.

Pre'Class makes sense mainly for a root
class; one generally will use dispatching
calls within it so it can adjust as needed
for child types. If you need a precondition
that doesn't fit into that model, you should
use Pre (and be aware that you are
violating the basic LSP approach).

Empty Arrays

From: Robert I. Eachus
<rieachus@comcast.net>

Date: Thu, 21 Dec 2017 21:01:30 -0800
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

> [...]

Is it a reasonable language improvement
request to allow "" for other empty
arrays? Another possibility is the reserved
word null. If that were allowed I might
even use it in place of "" for strings,
because that is not different enough from
'"' when reading, depending on the type
face used.

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Fri, 22 Dec 2017 21:15:18 -0000
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

> Is it a reasonable language improvement
request to allow "" for other empty
arrays?

No. That would be too confusing IMHO
because it would initially appear to be a
string type to anyone unfamiliar with that
part of the code and that just feels _way_
wrong.

> Another possibility is the reserved word
null. [...]

null is an interesting option for the empty
array. However, for your strings idea,
would people unfamiliar with the code
and this new usage of null read this new
usage as a null pointer instead of an
empty string? That could be confusing.

The 1 .. 0 notation is ugly but anyone who
sees it knows instantly exactly what the
original programmer meant. Any cleaner
replacement should instantly come across
as the empty array without the possibility
of confusion because someone reused
Ada syntax for this in an ambiguous way.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sat, 23 Dec 2017 00:11:49 +0200
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

[...]

I think the aggregate form (null array)
was suggested some time ago, in analogy
with the existing (null record). It looks
good to me, but as I remember, there was

16 Ada in Context

Volume 39, Number 1, March 2018 Ada User Journal

some objection. One problem is that if the
index type has exactly one value, then a
null array with that index type cannot
exist (because then A'First = A'Last for
any such array A).

> The 1..0 notation is ugly but anyone
who sees it knows instantly exactly
what the original programmer meant.

Yes, but it becomes rather more ugly if
the index type is an enumeration, or a
generic formal discrete type, something
like

 Thingummybob'Succ (Thingummybob'First)

.. Thingummybob'First

Note that Thingummybob'Last ..
Thingummybob'First won't be a null
range if Thingummybob has exactly one
value.

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 22 Dec 2017 23:51:58 +0100
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

> I think the aggregate form (null array)
was suggested some time ago, in
analogy with the existing (null record).

These two totally different things. "null
record" is not a record aggregate (a value
of record type), it is a type construct (a
value of a record type's type).
Correspondingly "null array" would mean
a type of arrays rather than an empty
aggregate of an array type.

> I think (null array) satisfies that. I wish
it could be introduced.

If "" is QK, why () isn't?

 Empty : My_Array := ();

It could be an attribute as well:

 Empty : My_Array := My_Array'Null;

(You are right about indices. String has
the lower bound set to 1. That gives an
unambiguous range of an empty string.
For general case arrays it is ambiguous.)

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sat, 23 Dec 2017 09:15:35 +0200
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

> These two totally different things. "null
record" is not a record aggregate (a
value of record type), it is a type
construct (a value of a record type's
type).

Yes and no. Compare

 type Nothing is null record;

 -- Last choice in RM 3.8(3).

and

 N : Nothing := (null record);

 -- Last choice in RM 4.3.1(3).

So "null record" in a type declaration is a
record_definition (RM 3.8(3)) but it can

also occur in an expression as a
record_component_association_list (RM
4.3.1(3)). Thus "(null record)" is a record
aggregate.

> [...]

> If "" is QK, why () isn't?

Could be, but parentheses are already so
overloaded (which quotes are not) that I
like (null array) better.

> [...]

> Empty : My_Array := My_Array'Null;

Could be, but it is not much better than
My_Array'(null array).

> (You are right about indices. String has
the lower bound set to 1. That gives an
unambiguous range of an empty string.

No, for example (16 .. -40 => ' ') is an
empty string, with bounds 16 .. -40.

The index range of the empty string
denoted by the null string literal "" is
defined in the RM unambiguously.

> For general case arrays it is ambiguous)

Yes, the index bounds of "(null array)"
would have to be specifically defined in
the RM, similarly to the case for the null
string literal.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sat, 23 Dec 2017 17:23:29 +0100
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

> [...] One problem is that if the index
type has exactly one value, then a null
array with that index type cannot exist
(because then A'First = A'Last for any
such array A).

Actually, a null array of such a type can
exist if it's a string type, because you can
use the string literal "" for such types.
AIUI, 'Last is undefined for such a value.
Allowing (null array) for non-string array
types with an index type with a single
value would presumably work the same.

From: Robert I. Eachus
<rieachus@comcast.net>

Date: Sat, 23 Dec 2017 19:37:40 -0800
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

> [...]

The rule that allows 1..0 as a null string
range only has a problem if you have an
array with an enumeration index type
containing a single component. I think
that is one of those cases where we say,
"Don't do that!" and move on.

A more complex, and potentially ugly
case is for multidimensional arrays.
Defining (null array) as being empty in all
dimensions with Foo'Range(n) =
Bar'First..Bar'Pred(Bar'First) where Bar is
the nth index SUBtype for Foo works. If
the last materialized is a (real)
Numeric_Error AKA Constraint_Error?
Again, only an issue for smart alecks. In
general, you should be surprised if

Foo'Last(N) for a null array doesn't raise
Constraint_Error.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sun, 24 Dec 2017 15:39:56 +0200
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

> [...]

> A more complex, and potentially ugly
case is for multidimensional arrays.
Defining (null array) as being empty in
all dimensions with Foo'Range(n) =
Bar'First..Bar'Pred(Bar'First) where Bar
is the nth index SUBtype for Foo
works.

In other words, the same as the current
rule for the null string literal "".

> In general, you should be surprised if
Foo'Last(N) for a null array doesn't
raise Constraint_Error.

That is not true in current Ada, as I
understand it.

That would be very bad -- it would mean
that any general operation that loops over
an array that is potentially null would
have to first check the 'Length.
Fortunately this is not the case.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sun, 24 Dec 2017 15:32:57 +0200
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

> [...]

RM 4.2(9) says "for a null string literal,
the upper bound is the predecessor of the
lower bound". I would understand this to
mean applying 'Pred to the lower bound,
which will raise Constraint_Error if the
type has only one value.

If I try this with GNAT:

 type One_T is (Unique);

 type Str_T is array (One_T range <>) of

Character;

 S : constant Str_T := "";

I get compilation errors:

 nullstr.adb:11:26: null string literal not

allowed for type

 "Str_T" defined at line 9

 nullstr.adb:11:26: static expression fails

Constraint_Check

where line 11 is the one with the "" literal.

So one can try to make a null array of this
type with "", but it will fail.

> Allowing (null array) for non-string
array types with an index type with a
single value would presumably work
the same.

I agree, it should also raise
Constraint_Error.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Mon, 25 Dec 2017 14:40:18 +0100
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

Ada in Context 17

Ada User Journal Volume 39, Number 1, March 2018

> nullstr.adb:11:26: null string literal not
allowed for type

> "Str_T" defined at line 9

> nullstr.adb:11:26: static expression
fails Constraint_Check

Interesting. I'm pretty sure that used to
work. Has that changed in a recent
revision?

Ranges over Containers

From: Brad Moore
<bmoore.ada@gmail.com>

Date: Thu, 21 Dec 2017 15:46:54 -0800
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

> [...]

I've been thinking lately that it's a bit of a
wart that 'Range or at least range syntax
can´t be used in more places.

Specifically, I have been thinking of
container iteration.

It is currently awkward to iterate a subset
of a container, given two cursors, a start
and end cursor.

For a discrete subtype, we can express in
ada;

 for I in 5 .. 10 loop

 ...

 end loop

Where the bounds of iteration can be a
subset of the values of a subtype.

It seems one ought to be able to do the
same with cursors.

 for Position in Cursor1 .. Cursor2 loop

 list (Position) := ...

 end loop

Note: This currently isn't legal in Ada.

Otherwise, one has to write a while loop,
which is a bit awkward.

 Position : Cursor := Cursor1;

 Iteration_Loop :

 loop

 List (Position) := ...

 exit Iteration_Loop when

 Position := Cursor2;

 Next (Position);

 end loop;

One can almost do this with the current
containers, with Ada 2012 iterator syntax
because they generally have an Iterate
primitive that accepts a start cursor. e.g.

 for I in List.Iterate(Start => Cursor1) loop

 List (I) := ...

 end loop;

But we currently do not have Iterate
primitives in the standard containers that
also accept an End cursor, so these calls
allow one to start somewhere in the
middle of a container and iterate to the
end, but not to stop earlier. It seems like it
would be relatively easy to add such calls.

Then we could write;

 for I in List.Iterate(Start => Cursor1,

 Finish => Cursor2) loop

 List (I) := ...

 end loop;

Perhaps the intent was to use exit to exit
the loop earlier when you hit the second
cursor.

 for I in List.Iterate(Start => Cursor1) loop

 List (I) := ...

 exit when I = Cursor2;

 end loop;

I think that's somewhat satisfactory.

But I still think it would be nice to take
this one step further and be able to add
syntactic sugar to express this with range
syntax, as shown in the example above.

I don't know how useful this would be, or
how easy it would be to add to the
language, but one place I would use it is
when trying to iterate through containers
in parallel where workers are each given a
subset of the container by providing each
worker with a start and end cursor.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 22 Dec 2017 17:45:22 -0600
Subject: Re: syntaxic exploration
Newsgroups: comp.lang.ada

[...]

> for I in List.Iterate(Start => Cursor1)
loop

> List (I) := ...

> end loop;

This is true, too. But you just need to exit
the loop at the end cursor to get the
semantics you want:

 for I in List.Iterate(Start => Cursor1) loop

 List (I) := ...

 exit when I = Cursor2;

 end loop;

Ada doesn't care what kind of loop you
use an exit in!

If there was to be a complaint here, it's
that you can't easily use the element form
("of") with an ending cursor (because the
cursor has to be explicit). But it seems
weird to me to want to use cursors and yet
hide them at the same time.

Conclusion: There isn't a need for an
explicit "ending cursor", because an exit
works fine for that in the cursor form.
There still might be some sort of
consistency argument, but we didn't add it
originally since the exit is so easy to use
for ending a loop "early".

Sudoku Solver Data
Structures

From: Mace Ayres
<mace.ayres@gmail.com>

Date: Fri, 29 Dec 2017 16:51:48 -0800
Subject: Arrays, slices, case, and ‘in’

strategies
Newsgroups: comp.lang.ada

I have a two dimensional array, Grid, 1 ..
9, 1 .. 9 index of Integer and array of a
record type named cell and array is named
grid. So, a grid is a 9x9 array of record
type Cell. Cell has some properties, and
functions in the containing package to
enter, change, values in a field called
Value. So I can traverse the array named
grid with

 for Row in 1 .. 9 loop

 for Column in 1 .. 9 loop

 Grid (Row, Column).x := y;

 -- x is some attribute of the cell/record/

 -- object that the array is type of

 end loop; --and y is some value I assign

 -- to the x field, of the object cell in the

 -- array location (row, column)

 end loop;

When attempting to assign a y value to
the cell’s x field, I want to check that the
y that is to be assigned to the cell’s x field
does not already exist anywhere already
in all the columns of the row, or all the
rows of the target column. Easy enough
with function:

 Check_Row (R,C, Number : Integer ...

 begin

 for C in 1 .. 9 loop -- traverse the row in

 -- grid that is passed in with param r

 if Grid (R).Value = Number -- if if

 -- grid(r,c).value = numb.

 -- numb is passed in also a param

 then -- proposed value numb already

 -- exists in proposed row to put it in

 return false -- not ok

 ...

function check_column uses some logic.
Both work and are fast enough on my 64
bit Mac OS X.

Now, challenge is: besides checking to
see if a proposed value (integer 1..0)
already exists in the proposed row and
column to put it in, I also have an
abstraction of triads superimposed
(mentally) on the grid, giving 9 triads
layer on top of the 9x9 array called ‘grid.’
The 9x9 grid nicely holds 9 of these
imaginary triads,, i.e., first 3 rows and
first 3 columns are in triad 1 and first 3
rows and columns 4 to 6 are conceived as
triad 2,

I need to check, in addition to whether the
proposed integer value is already in any
cells in that row, or column, whether the
proposed value already exists in any
cell.value field for any cell in triad. The in
parameters of r,c can reveal what triad is
in question, but it looks like some fat code
to traverse the abstract 3x3 triads.

I know I could create some triad types of
arrays, but I am wondering if I can slice
the array grid into 9 collections and then
check loop.. if numb (proposed number)
already exists in the triad [this would be
determined by row, column in
parameters) OR also, the cell/record has a
field with its triad, a constant property.

18 Ada in Context

Volume 39, Number 1, March 2018 Ada User Journal

If this is too convoluted and or not clear, I
can just delete the question, but if it’s
understandable, best approach
recommended appreciated.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sat, 30 Dec 2017 09:34:41 +0100
Subject: Re: Arrays, slices, case, and ‘in’

strategies
Newsgroups: comp.lang.ada

Mace Ayres wrote:

[A problem description which sound very
much like a part of a Sudoku solver. :-)]

You could make the two dimensional
array a container with three different
iterators, one for iterating over a selected
column, one for iterating over a selected
row, and one for iterating over a block.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sat, 30 Dec 2017 10:58:46 +0100
Subject: Re: Arrays, slices, case, and ‘in’

strategies
Newsgroups: comp.lang.ada

> [...]

You could create a function:

 function Block (Row : Row_Number;

 Column : Column_Number) return

 Block_Number;

or a map:

 type Block_Map is array (Row_Number,

 Column_Number) of

 Block_Number;

 Block : constant Block_Map := ...;

both of which would be used as

 Block (Row, Column)

From: Robert I. Eachus
<rieachus@comcast.net>

Date: Sun, 31 Dec 2017 12:14:46 -0800
Subject: Re: Arrays, slices, case, and ‘in’

strategies
Newsgroups: comp.lang.ada

> [...]

I would do this by putting the Triad
number in each cell, and having a set
type:

 type Sudoku_Set is array

 (Integer range 1 .. 9) of Boolean;

 Reset : constant Sudoku_Set :=

 (others => False);

 Set_Array : array (Integer range 1 .. 9)

 of Sudoku_Set;

 Row_Array, Col_Array, Triad_Array :

 Set_Array := (others => Reset);

Now your tests for whether a number is
already used is some ors:

 if not (Row_Array (Row) or Col_Array

(Column) or Triad_Array (Cell (Row,

Column).Triad) (Candidate) then...

Oring the three arrays together then
choosing a candidate should be faster than
indexing them separately. I didn't attempt
to compile the above so it probably

includes a syntax error or two. The reason
I didn't is that once you have the Ah Ha!
moment of oring the sets together, you are
likely to change your tree search to do the
oring into a local variable, then do
something like:

 function Recur (Row, Column : in Integer)

 is

 Local_Set : Sudoku_Set := Row_Array

 (Row) or Col_Array (Column) or

 Triad_Array (Cell (Row,

 Column).Triad;

 begin

 if Cell(Row, Column) = 0 then

 -- set as part of conditions.

 if Row < 9 then

 return Recur (Row+1, Column);

 elsif Column < 9 then

 return Recur (1, Column+1);

 else

 return True;

 end if;

 end if;

 for I in Integer range 1 .. 9 loop

 if not Local_Set (I) then

 Grid (Row_Column).Value := I;

 Row_Array (Row) (I) := True;

 Col_Array (Column) (I) := True;

 end if;

 if Row < 9 then

 return Recur(Row+1, Column);

 elsif Column < 9 then

 return Recur (1, Column+1);

 else

 return True;

 end if;

 end loop;

 end Recur;

This does a brute force search, but it
should be fast enough. You can add bells
and whistles like filling in a row column
or triad cell when eight numbers have
been used. I don't think that would make
things any faster. Using an access value
instead of an index for triads might make
it faster, but that's the type of optimization
best left until last.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 30 Dec 2017 17:41:53 +0000
Subject: Re: Arrays, slices, case, and ‘in’

strategies
Newsgroups: comp.lang.ada

> [...]

Oh, I see, it's Sudoku, and those are the
given cells.

Anyway, this looks simple enough for
checking whether the value is already in
the block:

 function Check_Block (

 For_Value : in Integer;

 At_Row : in Grid_Coordinate;

 At_Column : in Grid_Coordinate;

 In_Grid : in Grid) return Boolean

 is

 Row_First : constant Grid_Coordinate :=

 ((At_Row - 1) / 3) * 3 + 1;

 Col_First : constant Grid_Coordinate :=

 ((At_Column - 1) / 3) * 3 + 1;

 begin

 for Row in Row_First .. Row_First + 2

 loop

 for Col in Col_First .. Col_First + 2

 loop

 if In_Grid (Row, Col).X = For_Value

 then

 return False;

 end if;

 end loop;

 end loop;

 return True;

 end Check_Block;

Common Part for all
Exception Handlers

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Sat, 6 Jan 2018 23:04:09 +0100
Subject: Re: stopping a loop iteration

without exiting it
Newsgroups: comp.lang.ada

Matt Borchers wrote:

> begin

> ...

> exception

> when EX1 => ...

> when EX2 => ...

> when others => ...

> finally

> ...

> end;

>

> This would allow programmers to
handle common cleanup operations that
would otherwise have to be duplicated
in every exception case.

Actually, it is possible (ever since Ada
83!) to have a common part for all
exception handlers, and then different
handlings according to the exception:

 exception

 when others =>

 begin

 Common_Part;

 raise;

 exception

 when EX1 => ...

 when EX2 => ...

 ...

 end;

 end;

On Submitting Proposals to
the ARG

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Mon, 8 Jan 2018 21:48:51 -0000
Subject: Submitting requests to the ARG,

was: Re: stopping a loop iteration
without exiting it

Newsgroups: comp.lang.ada

Ada in Context 19

Ada User Journal Volume 39, Number 1, March 2018

> [...]

I don't know if Dmitry is joking or not,
but language lawyers most certainly are
not required when submitting an issue
to the ARG.

You just need to provide clear examples
of your reasoning and maybe some
suggestions about what you would like
the new syntax or semantics to look like
and why.

Most important however, is that you
MUST state at the beginning of your
submission what it is that you think Ada
is missing and what your proposal brings
to Ada.

Everything else in your proposal should
follow on from that; there's no point in
submitting unstructured paragraphs of text
to the ARG that don't state _what_ you
are asking to be fixed in Ada and why.

Just make your submission readable, give
clear reasons for it, and provide
examples that clarify your reasoning or
concerns.

That's all I had to do. (Oh, and make sure
you register for the ARG mailing list so
that you can read the responses; the initial
period after you submit your proposal is a
two-way process where you can respond
to questions and comments about your
proposal.)

On Language Design

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 24 Jan 2018 14:39:30 +0100
Subject: Re: Five Years After
Newsgroups: comp.lang.ada

> [...]

Nothing happens without scientific efforts
towards new concepts of language design.
There was no any advance for more than
30 years. The compiler market was
demolished long ago, so there is no
commercial interest in any research.

Languages are designed either by
hobbyists or by monopolists for purposes
of customer lock and stiffening
competition. They recycle old ideas good
and bad all the same, just like fashion
designers do their collections.

There is no push from the programmers'
side either because there is no interest in
software quality in general, quality does
not sell.

Ergo, use Ada while you can.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 24 Jan 2018 20:44:21 -0600
Subject: Re: Five Years After
Newsgroups: comp.lang.ada

> [...]

This is one the best descriptions of
modern language design that I've heard!
Part of the problem is that few of these so
called language designers have much
exposure to many languages, so one
doesn't really even know what does and
does not work. And some features
(exception contracts come to mind) are
declared bad as much because of bad
designs which inevitably lead to bad
outcomes.

Ada is not immune to this, unfortunately.
There is always pressure to add some pet
feature from some other favorite
language, and I have to hope that
ultimately we will resist adding too much
of that sort of stuff.

Random Numbers

From: Robert I. Eachus
<rieachus@comcast.net>

Date: Fri, 2 Feb 2018 11:07:31 -0800
Subject: Re: Card game deck but with

trumps suit for tarot "divination" Is there
a better way than enumerating all cards?

Newsgroups: comp.lang.ada

> [...]

It also depends on whether you want
selection with or without replacement. To
deal out a deck you want dealing without
replacement (no two hands get the Queen
of Hearts, or whatever).

The best way to deal with replacement is
to use a Long_Float random number
generator then multiply by 78. Convert to
Integer, and if 0, change to 78. (Doesn't
matter, if you do that, what type of
rounding is used.)

To shuffle a deck, make an array of 78
records with an Integer and a Long_Float.
Assign the Integer field 1 through 78.
Assign (78) random Long_Floats to the
other field, then apply whatever sort
algorithm you wish. (I tend to use a
generic heap sort, but with only 78 values,
you will spend more time setting things
up and assigning random values than
anything else.) You can either use these
values to indirectly index into your cards,
or just add the Long_Float field and let
the sort shuffle the card values.

Why go through sorting the Long_Float
values? If you draw without replacement,
you draw from 78 cards, then 77, 76,
75,...4,3,2,1. There is nothing in Ada's
random number generators to guarantee
that these 78 generators work together to
produce random values. By choosing 78
values from the same generator you don't
have that problem.

Oh, what about assigning two equal
(Long_Float) values to different cards? If
you really worry about it, with more than
2**56 values, think of the card number as
a second index, and if two values are
equal you look at the card number. You
don't do this, you just choose a sort that

maintains the original order when two
values are the same.

From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 2 Feb 2018 17:05:21 -0600
Subject: Re: Card game deck but with

trumps suit for tarot "divination" Is there
a better way than enumerating all cards?

Newsgroups: comp.lang.ada

> If you draw without replacement, you
draw from 78 cards, then 77, 76,
75,...4,3,2,1. There is nothing in Ada's
random number generators to guarantee
that these 78 generators work together
to produce random values. By choosing
78 values from the same generator you
don't have that problem.

As previously noted, Ada 2020 has added
an additional Random function into
Discrete_Random to deal with this
problem.

An alternative approach using current
Ada would be to use a fixed
Discrete_Random range (0 .. 77), and
simply discard any values that identify
cards already dealt, just retrying to get a
random value. This works well and is
properly uniform, but only if you are
going to deal part of the deck (say 25%).
If you need to deal the whole deck, it can
get slow toward the end when most of the
values returned from Random have
already been dealt. (That's especially bad
if you forget to special case the last card
to the dealt - you don't need a random
choice to figure out which one that is after
all of the rest have been dealt.)

Experience shows that most users don't
get this right, as did the discussion on the
topic (in which many knowledgeable
people suggested approaches which just
don't work). I had to fix the Janus/Ada
random number generator after that
discussion, as it had made one of the
mistakes as well.

From: Robert I. Eachus
<rieachus@comcast.net>

Date: Sat, 3 Feb 2018 08:59:24 -0800
Subject: Re: Card game deck but with

trumps suit for tarot "divination" Is there
a better way than enumerating all cards?

Newsgroups: comp.lang.ada

> [...]

If your random number generator uses the
Linux RNG for initialization, and has a
long enough period (the GNAT generator
does) the above will work, and is
reasonably fast. Throwing back
duplicates, as Randy said, can take a lot of
RNG calls near the end. If you are going
to special case the last card, why not
special case the last few cards, generate a
permutation of say six values and use that
for the last six cards. Much faster, but the
one value per card, then sort takes O(n
log2 n) time, and is usually dominated by
the n RNG calls.

20 Ada in Context

Volume 39, Number 1, March 2018 Ada User Journal

Thoughts on Access Types

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Fri, 9 Feb 2018 18:01:38 +0100
Subject: Re: grassroots thoughts on access

types
Newsgroups: comp.lang.ada

Others have responded to your questions.
I'd like to mention my thoughts on using
access-to-object types (which I'll call
"access types") in general. (By "use", I'm
referring to designing code with access
types, not to using them when required to
in order to reuse existing code. Gnoga, for
example, requires you to supply some
access values to use it.)

It's very rare to actually need to use access
types in Ada. Other than while learning
the language, it's quite likely that you'll
never encounter a situation in which you'll
need them. So while it's important to learn
how they work, you shouldn't be
designing in terms of them.

My personal rules for designing with
access types:

1. Don't use access types

2. If you think you need access types, see
rule 1.

3. If you still think you need access types,
don't use visible or anonymous access
types

4. If you think you need visible or
anonymous access types, see rule 3.

5. If you still think you need visible or
anonymous access types, then you
shouldn't design software.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 9 Feb 2018 18:19:27 +0100
Subject: Re: grassroots thoughts on access

types
Newsgroups: comp.lang.ada
> [...]

I mostly agree with that, yet there are
some notable exceptions from these rules.

a. Dispatching operation. It cannot have a
named access type. The conflicting
design rule here is that *all* operations
must be dispatching and any type must
have a class.

b. Anonymous access type accepts
arguments without explicit type
conversion. Type conversions are
always bad, ones exposing run-time
hazard are more than bad.

c. Mix-in discriminant, anonymous access
type is the only way in many cases. Mix-
in itself is a horrid design pattern, but
there is no multiple inheritance here to
replace mix-in and no proper classes of
protected and task types either.

In general, anonymous access type is the
only way to enforce referential semantics.

It would be great if Ada had it decoupled
that from pointers. Unfortunately it did
not.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Fri, 9 Feb 2018 20:12:02 +0100
Subject: Re: grassroots thoughts on access

types
Newsgroups: comp.lang.ada

> [...]

Anything that requires the use of
anonymous access types is bad and should
not be used.

From: Robert A Duff
<bobduff@TheWorld.com>

Date: Fri, 09 Feb 2018 15:17:06 -0500
Subject: Re: grassroots thoughts on access

types
Newsgroups: comp.lang.ada

> Anything that requires the use of
anonymous access types is bad and
should not be used.

So you won't use things like "A(X) :=
A(X) + 1;", where A is a Vector?

Or "for X of A loop..."?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 9 Feb 2018 23:06:06 +0100
Subject: Re: grassroots thoughts on access

types
Newsgroups: comp.lang.ada

[...]

Having said that, nether iteration interface
nor indexing interface should rely on
access types, anonymous or not. It is a
language design flaw that they do.
Nevertheless both interfaces are clearly
useful and desirable.

Anonymous access type is an ugly hack to
work around real language problems. It
should have never been introduced. The
problems should have been properly
addressed instead.

Finding Memory Leaks

From: Tomasz “darkestkhan” Maluszycki
<darkestkhan@gmail.com>

Date: Sun, 11 Feb 2018 02:58:33 -0800
Subject: Re: How to optimize use of

RAM/disk access ?
Newsgroups: comp.lang.ada

> [...]

Use valgrind for checking memory leaks -
top would show you only big ones (I
know that few bytes may not sound like
much, but IT IS A LOT - for example
windows 10 audio driver seems to leak
memory [otherwise you can't explain why
it uses over 500MB of memory after just
2-3 weeks of running] - how? small leak
over prolonged period of time becomes
big one).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 11 Feb 2018 12:38:11 +0100
Subject: Re: How to optimize use of

RAM/disk access ?
Newsgroups: comp.lang.ada

> [...]

For memory leaks I would recommend
gnatmem. It is extremely easy to use. No
code change required. It groups similar
memory allocations together. It also finds
leaks related to C code, which is the main
source of leaks when using bindings to
low-level C libraries.

Default_Storage_Pool

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Tue, 20 Feb 2018 18:00:05 -0800
Subject: Default_Storage_Pool
Newsgroups: comp.lang.ada

Can anyone offer insight into what
exactly should happen when
Default_Storage_Pool is explicitly set
within an extended return statement to a
pool within the return object? In
particular, consider these shenanigans:

 package O is

 pool_1 : My_Fancy_Pool

 pragma Default_Storage_Pool (pool_1);

 type T is limited

 record

 pool_2 : My_Fancy_Pool

 p1 : access Integer;

 end record;

 function F return T;

 end O;

 package body O is

 function F return T is

 begin

 return Result : T do

 declare

 pragma Default_Storage_Pool

 (Result.pool_2); -- legal?

 p2 : access Integer;

 begin

 p2 := new integer'(42);

 Result.p1 := new integer'(43);

 end;

 end return;

 end F;

 end O;

GNAT happily accepts this, but based on
print lines, it allocates Result.p1 from
pool_1 and p2 from some unspecified
default pool (i.e. neither pool_1 or
pool_2). I wasn't sure what I was
expecting; I assumed an error message,
but failing that, both to go into
result.pool_2, and was surprised to get
neither.

Any clarifications are appreciated.

Ada in Context 21

Ada User Journal Volume 39, Number 1, March 2018

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 21 Feb 2018 19:13:58 -0600
Subject: Re: Default_Storage_Pool
Newsgroups: comp.lang.ada

> [...]

Default_Storage_Pool only has an effect
when an access type is declared (not when
it is used). Thus the allocators for the
component of type T should use Pool_1
regardless of what the
Default_Storage_Pool is when the
allocator is written.

But I'd expect the local anonymous access
allocator to use Pool_2. I don't see any
reason to use some other pool in this case
- 13.11.3(6-6.3/4) is pretty clear about
this, and the rules specifically were
designed so that it would apply to
anonymous access types.

Thus, this appears to be a bug, but I also
fail to see any use for it (the anonymous
access type having to disappear long
before anyone can used the return value),
so I would probably not give it much
priority if it was reported to me. (Of
course, a fuller example could cause me
to change my mind on that.)

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Thu, 22 Feb 2018 05:02:42 -0800
Subject: Re: Default_Storage_Pool
Newsgroups: comp.lang.ada

> [...]

Thank you, that was what I thought it
should do. I had no legitimate use case, I
was just trying to tease out counter-
examples to confirm my understanding.

I claim no in-depth comprehension, but
because of either subsequent bugs or
perhaps 2012 changes to AATs (or
perhaps legitimately), GNAT also takes
this:

 package body O is

 janky : access Integer;

 function F return T is

 begin

 return Result : T do

 declare

 pragma Default_Storage_Pool

 (Result.pool_2);

 p2 : access Integer;

 begin

 p2 := new integer'(42);

 janky := p2; --legal?

 end;

 end return;

 end F;

 end O;

When does janky become a dangling
pointer? Surely if the default pool is local
to F (because the entire pool goes away
after F ends), never if the default pool is
pool_1 (since it has the same lifetime as
janky), and 'possibly' if it's contained
within Result.pool_2 (since it depends on
where the client has creates the result).

GNAT accepts all three variations (well,
subject to the aforementioned bug
presumably making case 3 the same as 1)
and raises no exceptions for any of them.

Thank you for the continued explanations

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 22 Feb 2018 18:06:10 -0600
Subject: Re: Default_Storage_Pool
Newsgroups: comp.lang.ada

> [...]

I think the assignment to Janky should
raise Program_Error, as it can take an
object of any lifetime that is *longer*
than itself.

RM 3.10.2(13.3/4) says this explicitly "...;
accessibility checks ensure that this is
never deeper than that of the declaration
of the stand-alone object".

Trying to figure out precisely what check
this is talking about is hard, however (the
AARM is supposed to explain that part as
it is claimed to follow from other rules --
but it doesn't). I'm not going to try to
work that out in detail (it's also possible
that it is supposed to be illegal).

Diamond Diagram for 'with'

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 21 Feb 2018 17:20:33 +0100
Subject: Diamond diagram for 'with'
Newsgroups: comp.lang.ada

I would ask language lawyers regarding
multiple with.

Consider this:

 limited with Root.A;

 package Root is

 end Root;

 package Root.A is

 type T is ...;

 end Root.A;

 with Root.A;

 package Root.B is

 end Root.B;

Now Root.B has both limited (inherited
from Root) and full "with" of Root.A. So,
may Root.B use Root.A.T? It cannot
according to "limited with" and it can due
to full "with". Which one to win?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 21 Feb 2018 19:38:24 -0600
Subject: Re: Diamond diagram for 'with'
Newsgroups: comp.lang.ada

> [...]

Off the top of my head, it should be the
"full with". Generally, Ada allows one to
open more visibility, but you can't remove
it. Deriving this formally would be
somewhat painful, but it has to be true,
since the motivating use for limited with
is something like:

 limited with P;

 package Q is

 ...

 end Q;

 limited with Q;

 package P is

 ...

 end P;

 with Q;

 package body P is

 -- Q is normally visible here.

 end P;

If the limited with "won" in the body, one
could never access the full package in the
body, which would make actually
implementing any mutually dependent
package hard. (You may want to call
some primitive routine declared in Q in
the body of P, but that isn't possible for a
"limited with").

Since all withs work basically the same
way, the same has to be true for a child
package.

BTW, Root.A.T would be legal either
way. But if it came from the limited with,
it would be an incomplete type (which has
its own limitations).

Use of Separates

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 28 Feb 2018 17:23:30 -0600
Subject: Re: body stub not allowed in inner

scope
Newsgroups: comp.lang.ada

> [...]

Does anyone other than ACATS tests
actually use stubs these days? Why? [...]

From: Simon Wright
<simon@pushface.org>

Date: Thu, 01 Mar 2018 08:24:55 +0000
Subject: Re: body stub not allowed in inner

scope
Newsgroups: comp.lang.ada

> [...]

My use case for stubs is that I have a code
generator that transforms a UML model
into the framework of an Ada solution;
subprograms, task and protected type
bodies are generated as separates, so that
there's no hassle with having the tool
work out how not to overwrite the real
bodies. This was triggered by bad
experiences with Rational Rose back in
2000.

I have to admit that the only commercial
project that I'm aware of that uses this tool
is (if any work is being done at all) in
very low-level long term maintenance,
and (on past evidence) supremely unlikely
to be interested in upgrading to a new Ada
standard.

[I have one separate package body of 300
lines - to reduce clutter in a package body
that was already 260 lines. Even if emacs

22 Ada in Context

Volume 39, Number 1, March 2018 Ada User Journal

ada-mode would now be able to fold it, it
certainly couldn't then!]

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Thu, 01 Mar 2018 21:52:03 +0100
Subject: Re: body stub not allowed in inner

scope
Newsgroups: comp.lang.ada

> My use case for stubs is that I have a
code generator that transforms a UML
model into the framework of an Ada
solution [...]

This sounds rather similar to some work
I've done for Consafe Logistics last year. I
wrote a code generator, which compiles
Swagger/OAS specifications of REST
interfaces into packages declaring the
services and the types used. The actual
service implementations are made
separate, to have the optimal separation of
developer-written and tool-written Ada
code.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 1 Mar 2018 16:45:26 -0600
Subject: Re: body stub not allowed in inner

scope
Newsgroups: comp.lang.ada

> [...] The actual service implementations
are made separate, to have the optimal
separation of developer-written and
tool-written Ada code.

The CLAW Builder generated code does
this, but used user-generated packages for
this purpose (rather than separates). The
user provides the name of the package,
and the generated code makes the needed
calls. We were about to allow the user to
choose to generate the package
specifications for such packages (that
never got implemented) so that the bodies
would be easier to write (that would make
the profiles of the needed routines
obvious, rather than just being in the
popup help for the builder). We never
even considered subunits for this purpose
(maybe should have? Dunno.) One never
wants to mix machine-generated code
(which the user should look at only in
cases where there is a bug in the tools)
with user-generated code (which the user
obviously has to manage, and would
prefer to use their normal IDE for
development).

Alternatives to
Unrestricted_Access

From: Jere <jhb.chat@gmail.com>
Date: Wed, 7 Mar 2018 12:11:01 -0800
Subject: Ada Alternatives to

Unrestricted_Access
Newsgroups: comp.lang.ada

I'm currently updating a generic package
that takes a container type as an input and
creates an iterative type around it. I found
quite a few instances of GNAT's
Unrestricted_Access which appear to be
necessary because of the Iterate function's

container parameter of being mode "in"
and the iterator needing a non constant
access to it to supply tamper check
semantics. I tried changing the mode to
"in out" but that caused a slew of errors
where Iterate was used inside other
operations that had the Container supplied
via "in" mode parameters. Changing those
other operations doesn't make sense (and
causes other errors later), but I don't like
relying on GNAT's implementation
defined attribute if I can help it.

I was able to use
System.Address_To_Access_Conversions
to achieve both compiler happiness and
expected runtime execution, but I am
worried this is not legal as it is skirting
kind of close to Address overlays. In this
case the types are identical aside from one
(the Iterate "in" mode parameter) being
constant and the other (the iterators
"Container_Access" component) being
variable. However, I am not fully
convinced it is (relatively) safe or portable
yet.

The gist of the differences being:

 Container_Access =>

 C'Unrestricted_Access

is converted to:

 Container_Access =>

 A2A.To_Pointer(C'Address)

where:

 package A2A is new

System.Address_To_Access_Conversions

(Container);

and the parameter mode of C is defined
as:

 function Iterate(C : in Container) return

 Iterator_Interfaces.

 Forward_Iterator'Class;

and the generic formal for Container

 type Container is tagged private;

I'm working with an existing code base,
so complete overhaul is not a great option.

If it isn't a good idea, are there
alternatives? Since the Container
implementation is unknown in the
generic, I wasn't able to get a version of
the Rosen technique to work as an
alternative (same constant vs variable
access problem).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 7 Mar 2018 21:38:07 +0100
Subject: Re: Ada Alternatives to

Unrestricted_Access
Newsgroups: comp.lang.ada

> [...]

I am not sure I understand the problem.
Why don't you pass a function Self along
with the container type:

 generic

 type Container is tagged whatever;

 function Self (C : Container'Class)

 return not null access

 Container'Class;

 package Iterative_Mess is

From: Jere <jhb.chat@gmail.com>
Date: Wed, 7 Mar 2018 14:29:46 -0800
Subject: Re: Ada Alternatives to

Unrestricted_Access
Newsgroups: comp.lang.ada

> [...]

Because the package is already in use in
other code, so changing the specification
would be a very time consuming change. I
was just trying to get rid of the
Unrestricted_Access if I could and was
asking if using Address_To_Access_
Conversions was an ok way to do so (is it
portable Ada, and is it defined behavior)
OR if there was a different alternative.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 8 Mar 2018 09:27:01 +0100
Subject: Re: Ada Alternatives to

Unrestricted_Access
Newsgroups: comp.lang.ada

> [...]

You can default Self when not used.

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Wed, 7 Mar 2018 19:18:45 -0800
Subject: Re: Ada Alternatives to

Unrestricted_Access
Newsgroups: comp.lang.ada

I had the same problem for GL[U[T]]
bindings (work on both GNAT and
ObjectAda, and perhaps other Ada
systems) [1]. A quick search with AZip
(shameless plug :-) [2] leads to

 package A2A_double is new System.

 Address_To_Access_Conversions

 (Double);

 procedure Vertex (v: Double_Vector_3D)

 is

 begin

 Vertex3dv(

 A2A_double.To_Pointer(

 v(0)'Address));

 -- This method is functionally identical

 -- to using GNAT's 'Unrestricted_Access

 end Vertex;

Other places use an
Unchecked_Conversion.

The GNAT doc says:

"The Unrestricted_Access attribute is
similar to Access except that all
accessibility and aliased view checks are
omitted. This is a user-beware attribute. It
is similar to Address, for which it is a
desirable replacement where the value
desired is an access type. In other words,
its effect is identical to first applying the
Address attribute and then doing an
unchecked conversion to a desired access
type."

[1] https://globe3d.sourceforge.io/

[2] https://azip.sourceforge.io/

24

Volume 39, Number 1, March 2018 Ada User Journal

Conference Calendar
Dirk Craeynest

KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2018

☺ April 09-12 The Art, Science, and Engineering of Programming Conference (Programming'2018), Nice, France.

Topics include: everything to do with programming, including the experience of programming; general-

purpose programming; distributed systems programming; parallel and multi-core programming; security

programming; interpreters, virtual machines and compilers; modularity and separation of concerns;

model-based development; testing and debugging; program verification; programming education;

programming environments; etc.

April 09 2nd Workshop on Modern Language Runtimes, and Ecosystems (MoreVMS'2018).

Topics include: design, implementation, and usage of modern languages and runtimes;

interoperability between languages; tooling support (e.g. debugging, profiling, etc.);

programming language development environments; case studies of existing language

implementation approaches; language implementation challenges and trade-offs;

surveys and usage reports to understand usage in the wild; ideas for how we should

build languages in the future; etc.

April 09-13 33rd ACM Symposium on Applied Computing (SAC'2018), Pau, France.

☺ April 09-13 Track on Object-Oriented Programming Languages and Systems (OOPS'2018).

Topics include: aspects and components; code generation, and optimization; distribution

and concurrency; evaluation; formal verification; Internet of Things technology and

programming; integration with other paradigms; interoperability, versioning and

software evolution and adaptation; language design and implementation; modular and

generic programming; runtime verification and monitoring; safe, secure and dependable

software; static analysis; testing and debugging; type systems; etc.

☺ April 09-13 Track on Programming Languages (PL'2018). Topics include: compiling techniques,

domain-specific languages, garbage collection, language design and implementation,

languages for modeling, model-driven development, new programming language ideas

and concepts, practical experiences with programming languages, program analysis and

verification, programming languages from all paradigms, etc. Deadline for submissions:

September 25, 2016 (full papers).

April 09-13 13th Track on Dependable, Adaptive, and Trustworthy Distributed Systems

(DADS'2018). Topics include: Dependable, Adaptive, and trustworthy Distributed

Systems (DADS); middleware for DADS; modeling, design, and engineering of DADS;

foundations and formal methods for DADS; etc.

April 12 Track on Software Verification and Testing (SVT'2018), Topics include: new results

in formal verification and testing, technologies to improve the usability of formal

methods in software engineering, applications of mechanical verification to large scale

software, model checking, correct by construction development, model-based testing,

software testing, static and dynamic analysis, analysis methods for dependable systems,

software certification and proof carrying code, fault diagnosis and debugging,

verification and validation of large scale software systems, real world applications and

case studies applying software testing and verification, etc.

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html

Conference Calendar 25

Ada User Journal Volume 39, Number 1, March 2018

April 09-13 9th ACM/SPEC International Conference on Performance Engineering (ICPE'2018), Berlin,

Germany. Theme: "Continuous Performance Assurance in Agile Delivery".

April 09-13 11th IEEE International Conference on Software Testing, Verification and Validation (ICST'2018),

Västerås, Sweden. Topics include: experience reports, formal verification, model checking, security

testing, software reliability, testing in specific domains (such as embedded, concurrent, distributed, real-

time, ..., systems), testing/debugging tools, etc.

April 10-13 11th Cyber-Physical Systems Week (CPS Week'2018), Porto, Portugal.

☺ April 11-13 24th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'2018),

Porto, Portugal. In conjunction with CPSWeek'2018. Topics include: timing issues ranging from

traditional hard real-time systems to latency-sensitive systems with soft real-time requirements; original

systems and applications, case studies, methodologies and applied algorithms that contribute to the state

of practice in the design, implementation and verification of real-time systems; embedded, networked

and cyber-physical systems that consider real-time aspects; etc.

* {PT} 2018/04/11-13: 9th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS'2018), Porto,

Portugal. In conjunction with CPSWeek'2018. Topics include: development of technologies, tools, and

architectures for building CPS systems; design, implementation, and investigation of CPS applications;

secure and resilient CPS infrastructure; etc.

April 14-20 21st European Joint Conferences on Theory and Practice of Software (ETAPS'2018), Thessaloniki,

Greece. Events include: ESOP (European Symposium on Programming), FASE (Fundamental

Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation

Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the

Construction and Analysis of Systems), SV-COMP (7th Competition on Software Verification).

April 17-19 10th NASA Formal Methods Symposium (NFM'2018), Newport News, Virginia, USA. Topics

include: identify challenges and provide solutions for achieving assurance for critical systems; model

checking, static analysis, use of formal methods in software and system testing, compositional

techniques, parallel and/or distributed techniques, safety cases and system safety, fault tolerance, model-

based development, etc. Deadline for registration: April 1, 2018.

April 18-20 19th International Real-Time Ada Workshop (IRTAW'2018), Benicàssim, Spain.
In cooperation with Ada-Europe.

April 23-27 21st Ibero-American Conference on Software Engineering (CIbSE'2018), Bogotá, Colombia. Event

includes Software Engineering Track (SET) and Experimental Software Engineering Track (ESELAW).

April 30 - May 04 2nd International Conference on Software Architecture (ICSA'2018), Seattle, USA. Topics include:

model driven engineering for continuous architecting; component based software engineering and

architecture design; re-factoring and evolving architecture design decisions and solutions; architecture

frameworks and architecture description languages; preserving architecture quality throughout the

system lifetime; software architecture for legacy systems and systems integration; architecting families

of products; software architects roles and responsibilities; training, education, and certification of

software architects; industrial experiments and case studies; bold arguments against current research

directions and results; results that challenge established results or beliefs giving evidence that call for

fundamentally new directions, open up new research avenues where software architecture research can

contribute; etc.

May 21-23 17th International Conference on Software Reuse (ICSR'2018), Madrid, Spain. Theme: "New

Opportunities for Software Reuse". Topics include: component-based reuse techniques, generative

reuse, systematic reuse approaches helping industries transitioning from ad-hoc approaches, reverse

engineering of potentially reusable components, evolution and maintenance of reusable assets,

development of reusable components for Product Line Engineering, software variability approaches for

configuring and deriving reusable assets, dynamic aspects of reuse (i.e. post-deployment time), etc.

May 21-25 19th International Conference on Agile Software Development (XP'2018), Porto, Portugal.

May 21-25 32nd IEEE International Parallel and Distributed Processing Symposium (IPDPS'2018),

Vancouver, Canada.

26 Conference Calendar

Volume 39, Number 1, March 2018 Ada User Journal

May 27-29 13th IEEE/ACM International Conference on Global Software Engineering (ICGSE'2018),

Gothenburg, Sweden.

☺ May 29-31 21st IEEE International Symposium On Real-Time Computing (ISORC'2018), Singapore. Topics

include: object/component/service-oriented real-time distributed computing (ORC) technology,

programming and system engineering (real-time programming challenges, ORC paradigms, languages,

...), trusted and dependable systems, system software (real-time kernels, middleware support for ORC,

extensibility, synchronization, scheduling, fault tolerance, security, ...), applications (medical devices,

intelligent transportation systems, industrial automation systems, Internet of Things and Smart Grids,

embedded systems in automotive, avionics, consumer electronics, ...), system evaluation (performance

analysis, monitoring & timing, dependability, fault detection and recovery time, ...), cyber-physical

systems, etc.

May 27 - June 06 40th International Conference on Software Engineering (ICSE'2018), Gothenburg, Sweden.

June 11-15 30th International Conference on Advanced Information Systems Engineering (CAiSE'2018),

Tallin, Estonia. Theme: "Information Systems in the Big Data Era". Topics include: methods, models,

techniques, architectures and platforms for supporting the engineering and evolution of information

systems and organizations in the big data era.

 June 18-22 23rd International Conference on Reliable Software Technologies - Ada-
Europe'2018. Lisbon, Portugal. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association (ARA).

June 25-29 Software Technologies: Applications and Foundations (STAF'2018), Toulouse, France. Successor of

the TOOLS federated event. Topics include: practical and foundational advances in software

technology, such as object-oriented design, testing, formal approaches to modelling and verification,

transformation, model-driven engineering, aspect-oriented techniques, and tools. Deadline for

submissions: April 20, 2018 (workshop papers).

June 27-29 16th International Conference on Software Engineering and Formal Methods

(SEFM'2018). Topics include: light-weight and scalable formal methods; software

evolution, maintenance, re-engineering and reuse; programming languages; abstraction

and refinement; correctness-by-construction; model checking; verification and

validation; testing; safety-critical, fault-tolerant and secure systems; software

certification; real-time and embedded systems; application and technology transfer; case

studies, best practices and experience reports; tool integration; education; etc.

June 27-29 12th International Conference on Tests And Proofs (TAP'2018). Topics include:

many aspects of verification technology, including foundational work, tool

development, and empirical research; the connection between proofs (and other static

techniques) and testing (and other dynamic techniques); verification and analysis

techniques combining proofs and tests; program proving with the aid of testing

techniques; deductive techniques supporting the automated generation of test vectors

and oracles; deductive techniques supporting novel definitions of coverage criteria;

program analysis techniques combining static and dynamic analysis; testing and runtime

analysis of formal specifications; verification of verification tools and environments;

applications of test and proof techniques in new domains, such as security, configuration

management, learning; combined approaches of test and proof in the context of formal

certifications (Common Criteria, CENELEC, ...); case studies, tool and framework

descriptions, and experience reports about combining tests and proofs; etc.

June 25-29 12th ACM International Conference on Distributed Event-Based Systems (DEBS'2018), Hamilton,

New Zealand. Topics include: systems dealing with detecting, processing and responding to events and

with massively distributed middleware and applications, real-time analytics, complex event processing,

distributed programming, fault tolerance, reliability, availability, scalability, internet of things, cyber-

physical systems, transportation, enterprise application integration, etc.

June 27-29 22nd International Conference on Evaluation and Assessment in Software Engineering

(EASE'2018), Christchurch, New Zealand.

July 03-06 30th Euromicro Conference on Real-Time Systems (ECRTS'2018), Barcelona, Spain. Topics include:

all aspects of real-time systems, such as scheduling design and analysis, real-time operating systems,

Conference Calendar 27

Ada User Journal Volume 39, Number 1, March 2018

hypervisors and middlewares, virtualization and timing isolation, mixed-criticality design & assurance,

worst-case execution time analysis, modelling and/or formal methods, industrial use-cases and real-time

applications, tools, compilers and benchmarks for embedded systems, etc. Event includes: Worst-Case

Execution Time analysis (WCET), Workshop on Analysis Tools and methodologies for Embedded and

Real-time Systems (WATERS).

☺ July 09-10 Workshop: Konstruktion von SafeWare - Construction of SafeWare (KSW'2018), Karlsruhe,

Germany. Co-organized by Ada-Deutschland.

July 14-17 30th International Conference on Computer-Aided Verification (CAV'2018), Oxford, UK. Topics

include: theory and practice of computer-aided formal analysis methods for hardware and software

systems, algorithms and tools for verifying models and implementations, specifications and correctness

criteria for programs and systems, deductive verification using proof assistants, program analysis and

software verification, formal methods for cyber-physical systems, verification methods for parallel and

concurrent systems, testing and run-time analysis based on verification technology, applications and

case studies in verification and synthesis, verification in industrial practice, formal models and methods

for security, etc.

July 15-17 22nd International Symposium on Formal Methods (FM'2018), Oxford, UK. Topics include: formal

methods for the engineering of computer-based systems and software; such as industrial applications of

formal methods; experience with formal methods in industry; tool usage reports; advances in automated

verification, model-checking, and testing with formal methods; tools integration; environments for

formal methods; development processes with formal methods; usage guidelines for formal methods; etc.

July 16-20 18th IEEE International Conference on Software Quality, Reliability and Security (QRS'2018),

Lisbon, Portugal. Topics include: reliability, security, availability, and safety of software systems;

software testing, verification and validation; program debugging and comprehension; fault tolerance for

software reliability improvement; modeling, prediction, simulation, and evaluation; metrics,

measurements, and analysis; software vulnerabilities; formal methods; benchmark, tools, and empirical

studies; etc. Deadline for submissions: April 1, 2018 (workshop papers), May 1, 2018 (Student Doctoral

Program, fast abstracts, industry track).

☺ July 16-22 32nd European Conference on Object-Oriented Programming (ECOOP'2018), Amsterdam, the

Netherlands.

July 23-27 42nd Annual IEEE Conference on Computer Software and Applications (COMPSAC'2018), Tokyo,

Japan. Deadline for submissions: April 10, 2018 (workshop papers).

July 25-28 37th ACM Symposium on Principles of Distributed Computing (PODC'2018), Royal Holloway,

University of London, UK.

August 29-31 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2018),

Prague, Czech Republic. Topics include: information technology for software-intensive systems;

conference tracks on DSLs and Model-Based Development (DSLMBD), Software Process and Product

Improvement (SPPI), etc.; tentative special sessions on Cyber-Physical Systems (CPS), Software

Engineering and Technical Debt (SEaTeD), Monitoring Large-Scale Software Systems (MoLS), etc.

August 29-31 12th International Symposium on Theoretical Aspects of Software Engineering (TASE'2018),

Guangzhou, China. Topics include: theoretical aspects of software engineering, such as abstract

interpretation, component-based software engineering, cyber-physical systems, distributed and

concurrent systems, embedded and real-time systems, formal verification and program semantics,

integration of formal methods, language design, model checking and theorem proving, model-driven

engineering, object-oriented systems, program analysis, reverse engineering and software maintenance,

run-time verification and monitoring, software architectures and design, software testing and quality

assurance, software safety, security and reliability, specification and verification, type systems, tools

exploiting theoretical results, etc.

September 03-07 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE'2018),

Montpellier, France. Topics include: foundations, techniques, and tools for automating the analysis,

design, implementation, testing, and maintenance of large software systems; maintenance and evolution;

model-driven development; reverse engineering and re-engineering; specification languages; software

analysis; software architecture and design; software product line engineering; software security and

trust; testing, verification, and validation; etc. Deadline for submissions: April 19, 2018 (abstracts),

28 Conference Calendar

Volume 39, Number 1, March 2018 Ada User Journal

April 26, 2018 (papers), April 30, 2018 (tutorials), May 31, 2018 (tool demos, doctoral symposium),

June 15, 2018 (journal-first submissions).

September 04-06 4th Symposium on Dependable Software Engineering: Theories, Tools and Applications

(SETTA'2018), Beijing, China. Topics include: formalisms for modeling, design and implementation;

model checking, theorem proving, and decision procedures; scalable approaches to formal system

analysis; integration of formal methods into software engineering practice; contract-based engineering

of components, systems, and systems of systems; formal and engineering aspects of software evolution

and maintenance; parallel and multicore programming; embedded, real-time, hybrid, and cyber-physical

systems; mixed-critical applications and systems; safety, reliability, robustness, and fault-tolerance;

applications and industrial experience reports; tool integration; etc.

September 05-07 14th International Conference on integrated Formal Methods (iFM'2018), Maynooth, Ireland.

Topics include: hybrid approaches to formal modeling and analysis; i.e., the combination of (formal and

semi-formal) methods for system development, regarding both modeling and analysis, and covering all

aspects from language design through verification and analysis techniques to tools and their integration

into software engineering practice. Deadline for submissions: April 16, 2018 (abstracts), April 20, 2018

(papers).

September 09-12 Federated Conference on Computer Science and Information Systems (FedCSIS'2018), Poznan,

Poland. Event includes: 3rd International Workshop on Language Technologies and Applications

(LTA), Joint 38th IEEE Software Engineering Workshop and 5th International Workshop on Cyber-

Physical Systems (SEW & IWCPS), etc. Deadline for submissions: May 15, 2018 (papers), June 12,

2018 (position papers).

Sep 30 - Oct 5 Embedded Systems Week 2018 (ESWEEK'2018), Torino, Italy. Topics include: all aspects of

embedded systems and software. Includes CASES'2018 (International Conference on Compilers,

Architectures, and Synthesis for Embedded Systems), CODES+ISSS'2018 (International Conference on

Hardware/Software Codesign and System Synthesis), EMSOFT'2018 (International Conference on

Embedded Software). Deadline for submissions: April 3, 2018 (journal track full papers, tutorials), May

30, 2018 (work-in-progress track papers).

Sep 30 - Oct 5 International Conference on Compilers, Architecture, and Synthesis for Embedded

Systems (CASES'2018). Topics include: the latest advances in compilers and

architectures for high-performance, low-power embedded systems; leading edge

research in embedded processor, memory, interconnect, storage architectures and related

compiler techniques targeting performance, power, security, reliability, predictability

issues for both traditional and emerging application domains; innovative papers

addressing design, synthesis & optimization challenges in heterogeneous, accelerator-

rich architectures. Deadline for submissions: April 3, 2018 (full papers), May 30, 2018

(Work-in-Progress papers).

Sep 30 - Oct 5 ACM SIGBED International Conference on Embedded Software (EMSOFT'2018).

Topics include: the science, engineering, and technology of embedded software

development; research in the design and analysis of software that interacts with physical

processes; results on cyber-physical systems, which compose computation, networking,

and physical dynamics. Deadline for submissions: April 3, 2018 (full papers).

☺ October 10-12 26th International Conference on Real-Time Networks and Systems (RTNS'2018), Poitiers, France.

Topics include: real-time applications design and evaluation (automotive, avionics, space, railways,

telecommunications, process control, multimedia), real-time aspects of emerging smart systems (cyber-

physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks

modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)

analysis, ...), software technologies for real-time systems (model-driven engineering, programming

languages, compilers, WCET-aware compilation and parallelization strategies, middleware, Real-time

Operating Systems (RTOS), hypervisors), formal specification and verification, real-time distributed

systems (fault tolerance, task/messages allocation, ...), etc. Deadline for paper submissions: June 26,

2018.

October 11-12 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement

(ESEM'2018), Oulu, Finland. Topics include: the strengths and weaknesses of software engineering

technologies and methods from a strong empirical viewpoint, including quantitative, qualitative, and

mixed studies; case studies, action research, and field studies; replication of empirical studies and

Conference Calendar 29

Ada User Journal Volume 39, Number 1, March 2018

families of studies; mining software engineering repositories; empirically-based decision making;

assessing the benefits/costs associated with using certain development technologies; industrial

experience, software project experience, and knowledge management; software technology transfer to

industry; etc. Deadline for submissions: May 18, 2018 (full paper abstracts), May 25, 2018 (full papers),

July 1, 2018 (Emerging Results, Vision papers), July 20, 2018 (industrial papers, posters), August 10,

2018 (Journal-First track).

☺ November 04-09 ACM Conference on Systems, Programming, Languages, and Applications: Software for

Humanity (SPLASH'2018), Boston, Massachusetts, USA. Topics include: all aspects of software

construction, at the intersection of programming, languages, and software engineering. Deadline for

submissions: April 16, 2018 (PACMPL issue OOPSLA), April 23, 2018 (Onward! papers, Onward!

essays), June 29, 2018 (GPCE abstracts - Generative Programming: Concepts & Experiences, SLE

abstracts - Software Language Engineering), July 1, 2018 (DLS - Dynamic Languages Symposium),

July 6, 2018 (GPCE - Generative Programming: Concepts & Experiences, SLE - Software Language

Engineering), July 20, 2018 (Doctoral Symposium), July 27, 2018 (Student Research Competition),

September 22, 2018 (Posters), end of September 2018 (Student Volunteers applications).

November 5-6 11th ACM SIGPLAN International Conference on Software Language Engineering

(SLE'2018). Topics include: areas ranging from theoretical and conceptual

contributions, to tools, techniques, and frameworks in the domain of software language

engineering; generic aspects of software languages development rather than aspects of

engineering a specific language; software language design and implementation; software

language validation; software language integration and composition; software language

maintenance (software language reuse, language evolution, language families and

variability); domain-specific approaches for any aspects of SLE (design,

implementation, validation, maintenance); empirical evaluation and experience reports

of language engineering tools (user studies evaluating usability, performance

benchmarks, industrial applications); etc. Deadline for submissions: June 29, 2018

(abstracts), July 6, 2018 (papers), August 31, 2018 (artifacts).

November 04-09 12th Joint European Meeting of the Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering (ESEC/FSE'2018), Orlando, Florida, USA.

Topics include: architecture and design; components, services, and middleware; debugging;

dependability, safety, and reliability; development tools and environments; distributed, parallel, and

concurrent software; education; embedded and real-time software; empirical software engineering;

formal methods, including languages, methods, and tools; model-driven software engineering; processes

and workflows; program analysis; program comprehension and visualization; refactoring; reverse

engineering; safety-critical systems; scientific computing; security and privacy; software economics and

metrics; software evolution and maintenance; software modularity; software product lines; software

reuse; testing; traceability; etc. Deadline for submissions: May 30, 2018 (journal-first papers), June 15,

2018 (new ideas and emerging results, industry papers, student research competition), June 25, 2018

(artifacts), June 29, 2018 (doctoral symposiums).

☺ November 05-06 ACM SIGAda's High Integrity Language Technology International Workshop on Cyber-Security

Interaction with High Integrity (HILT'2018), Boston area, Massachusetts, USA. Co-located with

SPLASH 2018. Organized by ACM SIGAda.

November 28-30 19th International Conference on Product-Focused Software Process Improvement

(PROFES'2018), Wolfsburg, Germany. Topics include: experiences, ideas, innovations, as well as

concerns related to professional software development and process improvement driven by product and

service quality needs. Deadline for submissions: June 11, 2018 (full research and industry papers),

August 5, 2018 (short papers, tools, demos, posters).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

Advance Information
The 23rd International Conference on Reliable Software Technologies – Ada-Europe 2018 – will

take place in Lisbon, Portugal. This conference is the latest in a series of annual international

conferences started in the early 80's, under the auspices of, and organization by, Ada-Europe,

the international organization that promotes the knowledge and use of Ada and Reliable

Software in general into academia, research and industry.

Ada-Europe 2018 provides a unique opportunity for dialogue and collaboration between academics and industrial

practitioners interesting in reliable software.

The conference will span a full week, including tutorials, workshops and a central three-day technical program with

the latest advances in reliable software technologies and Ada. The core program features 3 keynote talks, 10

refereed scientific papers, 12 industrial presentations, 3 invited presentations and an industrial exhibition. The

program is complemented with two workshops, on “Challenges and new Approaches for Dependable and Cyber-

Physical Systems Engineering” (DeCPS) and on “Runtime Verification and Monitoring Technologies for Embedded

Systems” (RUME). Half-day and full-day tutorials will be provided on Monday and Friday.

Week Overview

Monday Tuesday Wednesday Thursday Friday

5 Tutorials
&

RUME Workshop

Keynote Talk

Paulo Veríssimo

Keynote Talk

Carl Brandon

Keynote Talk

Erhard Plödereder

5 Tutorials
&

DeCPS Workshop

Regular session
Safety and

Security

Regular session
Handling Implicit

Overhead

Industrial session
V&V of Safety-

Critical Software

Industrial session

Ada in Industry

Industrial session

Space Systems

Industrial session
Software

Methodologies

Regular session

Ada 202X

Regular session
Real-time

Scheduling

Regular session
New Application

Domains

Ada-Europe
General Assembly

Welcome
Reception

Conference
Banquet & Best

Paper Award

Best Presentation
Award & Closing

session

http://www.ada-europe.org/conference2018

Keynote talks
Each day of the core program will be opened with a keynote talk delivered by one the following eminent speakers:

• Paulo Esteves-Veríssimo, University of Luxembourg, Luxembourg, “Security and Dependability Challenges
of IT/OT Integration”

• Carl Brandon, Vermont Technical College, USA, “From Physicist to Rocket Scientist, and How to Make a
CubeSat that Works”

• Erhard Plödereder, University of Stuttgart, Germany, “Vulnerabilities in Safety, Security, and Privacy”

Tutorials
Bracketing the conference on Monday and Friday, the program includes ten tutorials:

• Recent Developments in SPARK 2014, Peter Chapin, Monday full day

• Access Types and Memory Management in Ada 2012, Jean-Pierre Rosen, Monday morning

• Design and Architecture Guidelines for Trustworthy Systems, William Bail, Monday morning

• Numerics for the Non-Numerical Analyst, Jean-Pierre Rosen, Monday afternoon

• Requirements Development for Safety- and Security-Critical Systems, William Bail, Monday afternoon

• Scheduling Analysis of AADL Architecture Models, Frank Singhoff and Pierre Dissaux, Friday full day

• Writing Contracts in Ada, Jacob Sparre Andersen, Friday morning

• Introduction to Libadalang, Raphaël Amiard and Pierre-Marie de Rodat, Friday morning

• Unit-Testing with Ahven, Jacob Sparre Andersen, Friday afternoon

• Frama-C, a Framework for Analysing C Code, Julien Signoles, Friday afternoon

Co-Located Workshops
The conference week features a new workshop, on the important topic of Runtime Verification and Monitoring

Technologies for Embedded Systems (RUME), and the 5th edition of the International Workshop on Challenges and

new Approaches for Dependable and Cyber-Physical Systems Engineering (DeCPS), following the success of the

previous editions. The RUME workshop will take place on Monday, June 18th, and the DeCPS workshop will be on

Friday, June 22nd, both from 09:30 to 17:30.

About the Venue

Lisbon is currently considered one of the best touristic cities in Europe. It is the capital

of Portugal and is well known for its medieval castle, for the Belém tower, for its

charming old neighbourhoods of Alfama and Bairro Alto, for the natural light and

breath-taking scenery views, for the Fado music, for the

sweet pastéis de Belém, and for so many other nice

things that you should discover by yourself.

June is full of events in Lisbon, including the festivities in honour of St. António, with

music, grilled sardines and popular parties in the old neighbourhoods. This year there

is also the Rock in Rio Music Festival, starting on the weekend right after the

conference. For all these reasons, you should book your hotel in advance! We arranged a block of rooms at the

conference hotel with a special price for Ada-Europe (90€ for single and 100€ for double rooms, inc. breakfast),

which can be reserved when registering for the conference. Room availability cannot be ensured after April 20.

The conference will take place at the VIP

Executive Art’s Hotel, in the modern

Parque das Nações area. There you will

find a large shopping mall, plenty of

restaurants and bars, museums and the

Lisbon oceanarium.

http://www.ada-europe.org/conference2018

Social Events
The program includes 1-hour long coffee breaks, providing the opportunity for participants to discuss their work,

to visit the exhibition and to socialise. Lunches will be served at the hotel restaurant, from Monday to Friday,

providing further interaction opportunities. On Tuesday, participants are invited for a welcome reception after the

Ada-Europe General Assembly, whose details are still being arranged. We hope to make everyone feel really

welcome to Lisbon. And on Wednesday the day will end with the conference banquet, at the “Casa do Bacalhau”

restaurant. The restaurant is located in the old stables of the Duke of Lafões palace. The room where dinner will be

served has a wonderful ceiling, which is original from the 18th century. But most of all, we believe that you will fully

enjoy the food and the wine!

Organization
General Chair: Nuno Neves (LASIGE/U. Lisboa, Portugal)
Program Chair: António Casimiro (LASIGE/U. Lisboa, Portugal)
Special Session Chair: Marcus Völp (U. Luxembourg, Luxembourg)
Tutorial and Workshop Chair: David Pereira (CISTER/ISEP, Portugal)
Industrial Co-Chairs: Marco Panunzio (Thales A.S., France) and José
Rufino (LASIGE/U. Lisboa, Portugal)

Publication Chair: Pedro Ferreira (LASIGE/U. Lisboa, Portugal)
Exhibition Co-Chairs: José Neves (GMV Skysoft, Portugal) and Ahlan
Marriott (White Elephant GmbH, Switzerland)
Publicity Chair: Dirk Craeynest (Ada-Belgium & KU Leuven, Belgium)
Local Secretariat: Madalena Almeida (Viagens Abreu, Portugal)

Program Committee

Mario Aldea (Universidad de Cantabria), Ezio Bartocci (Vienna University of Technology), Johann Blieberger (Vienna University of
Technology), Rakesh Bobba (Oregon State University), Bernd Burgstaller (Yonsei University), António Casimiro (LASIGE/U. Lisboa), Juan A. de
la Puente (Universidad Politécnica de Madrid), Virgil Gligor (Carnegie Mellon University), Michael González Harbour (Universidad de
Cantabria), J. Javier Gutiérrez (Universidad de Cantabria), Jérôme Hugues (ISAE), Ruediger Kapitza (Technische Universität Braunschweig),
Hubert Keller (Karlsruhe Institute of Technology), Raimund Kirner (Univ. of Hertfordshire), Adam Lackorzynski (TU Dresden and Kernkonzept
GmbH), Kristina Lundkvist (Mälardalen University), Franco Mazzanti (ISTI-CNR), Laurent Pautet (Telecom ParisTech), Luís Miguel Pinho
(CISTER/ISEP), Erhard Plödereder (Universität Stuttgart), Jorge Real (Universitat Politècnica de València), José Ruiz (AdaCore), Sergio Sáez
(Universitat Politècnica de València), Elad Schiller (Chalmers University of Technology), Frank Singhoff (Université de Bretagne Occidentale),
Jorge Sousa Pinto (University of Minho), Tucker Taft (AdaCore), Elena Troubitsyna (Åbo Akademi University), Santiago Urueña (GMV), Tullio
Vardanega (Università di Padova), Marcus Völp (University of Luxembourg).

Industrial Committee
Ian Broster (Rapita Systems), Luís Correia (EMPORDEF-TI), Dirk Craeynest (Ada-Belgium & KU Leuven), Thomas Gruber (Austrian Institute Of

Technology - AIT), Andreas Jung (European Space Agency), Ismael Lafoz (Airbus Defence and Space), Ahlan Marriott (White Elephant GmbH),

Maurizio Martignano (Spazio IT), Marco Panunzio (Thales Alenia Space), Paul Parkinson (Wind River), Jean-Pierre Rosen (Adalog), José Rufino

(LASIGE/U. Lisboa), Emilio Salazar (GMV), Helder Silva (EDISOFT), Jacob Sparre Andersen (JSA Consulting), Andreas Wortmann (OHB System).

Conference Sponsors (preliminary list)

Additional support and sponsorship by: In Cooperation with:

Ada Resource Association

http://www.ada-europe.org/
http://www.ada-europe.org/conference2018

34 For thcoming Events

Volume 39, Number 1, March 2018 Ada User Journal

Call for papers and extended abstracts

HILT 2018

Workshop on Languages and Tools for Ensuring Cyber-Resilience in Critical

Software-Intensive Systems

As part of SPLASH 2018, November 5 & 6, 2018, Boston, MA, USA

Sponsored by ACM SIGAda

The High Integrity Language Technology (HILT) 2018 Workshop is focused on the

cyber-resilience needs of critical software systems, where such a system must be trusted

to maintain a continual delivery of services, as well as ensuring safety in its operations.

Such needs have common goals and shared strategies, tools, and techniques, recognizing

the multiple interactions between security and safety.

We encourage papers and extended abstracts relating to:

• Language features that can be used to build security and/or safety into software-

intensive systems;

• Approaches to apply effectively the emerging technologies of AI and Machine

Learning in critical software systems;

• Mechanisms that can be used to understand, certify, and manage systems that are

“data driven,” relying on “soft code,” where control flow and algorithms are

expressed using data rather than “hard code” expressed directly in programming

languages;

• Extending contract-based programming to specifying security resistance and

resilience properties as well as safety and/or correctness properties;

• Strategies to minimize risk when applying complex software requirements to

cyber-physical systems;

• Modeling and/or programming language features and analysis techniques that aid

in code analysis and verification and that increase the level of abstraction and

expressiveness;

• Language features that support continuous requirements maturation to support

evolving needs, particularly in cyber-physical systems, while ensuring that security

and safety properties are preserved.

For thcoming Events 35

Ada User Journal Volume 39, Number 1, March 2018

This workshop is designed as a forum for

communities of researchers and practitioners from

academic, industrial, and governmental settings, to

come together, share experiences, and forge

partnerships focused on integrating and deploying

tool and language combinations to address the

challenges of building cyber-resilient software-

intensive systems. The workshop will be a

combination of presentations and panel discussions,

with one or more invited speakers.

Attendees wishing to present at the workshop should

prepare full papers (approx. 6-8 pages), or extended

abstracts (approx. 2-4 pages) for their proposed

presentations, and the workshop program committee

will select presentations and organize them into

sessions. Other interested participants are welcome

to register for the HILT 2018 Workshop as part of

their SPLASH 2018 registration.

July 31: Papers or Extended abstracts due;

Aug 31: Notification of submissions accepted for presentation

Sep 30: Final submissions due

Nov 5&6: Workshop as part of SPLASH 2018

Please submit papers and extended abstracts, by July 31, 2018, by following the link

from: http://sigada.org/conf/hilt2018

Workshop Co-Chairs

• Bill Bail, MITRE

• Tucker Taft, AdaCore, Inc

Organizing Committee

• Dirk Craeynest, ACM SIGAda International Representative, KU Leuven

• Drew Hamilton, Chair, ACM SIGAda, Mississippi State University, CCI

• Clyde Roby, Secretary-Treasurer, ACM SIGAda, Institute for Defense Analyses

• Alok Srivastava, Editor, ACM Ada Letters, Engility Corp.

• Ricky E. Sward, Past Chair, ACM SIGAda, MITRE

URLs

• SPLASH 2018: http://www.splashcon.org

• HILT 2018: http://sigada.org/conf/hilt2018

• ACM SIGAda: http://sigada.org

37

A New Approach Mining the SPL Feature Model
and Design from Product Variants

J. Maâzoun, N. Bouassida
MIR@CL laboratory, Sfax University, Tunisia; email: jihenmaazoun@gmail.com, nadia.bouassida@isimsf.rnu.tn
H.Ben Abdallah
Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; email: hbenabdallah@kau.edu.sa

Abstract

Feature models are a popular means to express require-
ments of software product lines in a given domain at
an abstract level. They are used to describe variable
and common properties of products in a product line,
and to derive and validate configurations of software
systems. Existing feature model identification methods
start from a set of product variants to extract the com-
mon and variable features. They rely on the hypothesis
that the product variants have the same structure and
names, which may not be always the case. In this paper,
we present a method that lifts this restricting hypothesis
by using text mining techniques. We empirically com-
pare the quality of the feature models produced by our
method to those constructed by experts.

Keywords: Software product line, SPL, feature model,
SPL design.

1 Introduction
A Software Product Line (SPL) [1] represents a family of
systems in a given domain, that share a group of manage-
able features each of which is seen as an end-user, visible
characteristic of the system [2]. It provides for predictive
and organized software reuse. Generally, an SPL is modeled
through a feature model (or diagram) that specifies the com-
mon features and variation points among the systems in the
SPL domain.

A feature model can be constructed either in a bottom-up
(cf., [3, 4, 5]) or top-down (cf., [6]) approach. A top-down
development approach starts with a domain analysis to con-
struct the feature model of an SPL; that is, this approach is
driven by the functional requirements towards the definition
of alternative solutions. It is best applied when the domain has
not yet been sufficiently explored. However, this approach
is time consuming and requires guidelines (so far undefined)
for the domain requirements analysis. On the other hand, a
bottom-up approach starts from the code of a set of existing
products in a given domain and it identifies their common and
variable features.

Most proposed bottom-up feature model construction meth-
ods examine a set of product variants code to identify common
blocks of elements each of which represents a feature. They

first use textual similarity measures to identify the source
code elements that constitute a feature. Then, based on these
measures, they extract features and/or feature models using
either information retrieval techniques (cf. [5]) or genetic al-
gorithms (cf. [7]) by clustering elements with "similar" names.
In this identification process, they adopt different similarity
measures and clustering techniques. Consequently, they differ
in the granularity and cohesiveness of the identified features,
which in turn affects the structure of the constructed feature
model. Evidently, this difference also impacts the reuse of
the SPL when deriving a new product.

In recent years, several researchers examined the extraction
of features and/or feature models from product source codes.
Existing feature identification approaches [3, 4, 5, 7, 8] rely
on two essential hypotheses: all source codes use the same
vocabulary to name packages, classes, attributes and methods;
and the product variants have very similar/identical structures.
These assumptions stem from their way of seeing how the
product variants were created: essentially through “copy-
and-paste” operations which, indeed, preserve the names and
cause little structuring changes. However, these approaches
cannot be applied in the general setting where an SPL should
be constructed from product variants that were produced by
different developers, and/or product variants that endured
so many modifications that the same names and structure
assumptions are violated. For instance, a class in one product
can be represented in a second product through two classes
where the attributes and methods of the original class are
distributed. A second example of product variability is when
a class in one product was moved from one package to another
package. In this case, we treat each element independently
of its possessing class. For these simple examples, existing
feature identification approaches would fail. In fact, unlike
Al-Msiedeeen et al. [5], we do not consider the owner of each
element when constructing both FM and design. Furthermore,
we can find two methods having the same name but different
body or two methodes having different name but the same
body. To verify this variability, we use a code-clone detection
technique.

The herein presented bottom-up feature model extraction
method has four main merits. First, it accounts for the dif-
ferences in the structures and element names of the product
variants. Secondly, after a comparative evaluation of three
popular textual similarity measures (LSI, PCA and TF-IDF),
our method adopts LSI which has the highest precision in

Ada User Jour na l Vo lume 39, Number 1, March 2018

38 A New Approach Min ing the SPL Feature Model and Design f rom Product Var iants

feature identification. Third, our method extracts the SPL
design along with its feature model. For this purpose, we use
reverse engineering techniques to extract the design (class
and sequence diagrams) of the product variants. Then, we use
the the Density Based Spatial Clustering of Applications with
Noise (DBSCAN) technique [9] to unify the design of the
different products and to extract the design of the SPL. At the
same time, we use the FCA [10] and LSI (Latent Semantic
Indexing) [11] and DBSCAN clustering techniques to extract
the feature model from the source code of the product variants.
The design of the SPL is enriched with the information con-
tained in the feature model. Fourth, our method is supported
by a tool set named “SPL-Design” that automates its steps.

The remainder of this paper is organized as follows. Section
2 overviews feature model and existing works interested in
the extraction of SPL from products source code. Section 3
presents our technique for feature model extraction. Section
4 presents our technique for SPL design extraction from prod-
uct source codes. Section 5 presents our tool named “SPL-
Design” which is used to evaluate empirically the quality of
feature models produced by our method. Finally, Section 6
summarizes the paper and outlines future work.

2 Related work

We propose in this section a brief overview of feature models
and bottom up processes to extract feature models.

A feature model is a hierarchical model that captures the
commonality and variability of a product line. It is used
to derive and validate configurations of software systems.
As introduced by the FODA method [2, 12], feature models
have a tree structure, with features forming nodes of the tree.
Feature variability is represented by the arcs and groupings
of features. Relationships between a parent (or compound)
feature and its child features (or subfeatures) designate the
following selection strategies among features when deriving
a product in the line of the SPL.

Feature models have also been used to improve program
comprehension. In most re-engineering activities, the source
code is the only reliable source of information. Feature mod-
els allow designers to bridge the gap between the concrete
code and the fairly abstract information of documents such
as architecture design. They are applied in the approaches
supporting reverse engineering in a hypothesis-verification
procedure [13].

A Feature model has a tree structure where each node repre-
sents a feature. Feature variability is represented by the arcs
and groupings of features. There are two different types of
feature groups:

• Mandatory : Child feature is obligatory

• Optional : Child feature is optional

In addition to the parental relationships between features,
cross-tree constraints are allowed. Five common cross-tree
constraints are:

• And connected (sub)features must all be selected to-
gether when deriving a new product from the SPL.

• Xor connected (sub)features indicate that only one fea-
ture can be selected when deriving a new product from
the SPL.

• Or connected (sub)features indicate that one or more
(sub)feature(s) can be selected when deriving a new prod-
uct from the SPL.

• Require indicates that the selection of one (sub)feature
necessitates the selection of the other.

• Exclude indicates that two (sub)features cannot be part
of the same product derived from the SPL.

Note that a feature can be either simple/elementary like a
package and a class, or composed of several elements like
(package, Class), (package, Class, attribute, method)...

Several works investigated feature model extraction from
the source code of products in order to construct the SPL
([3, 5, 13, 14]). For instance, Ziadi et al., [3, 15] propose an
approach that first abstracts the input products in SoCPs (Sets
of Construction Primitives) and, secondly, it identifies fea-
tures by determining common and intersecting SoCPs. This
approach was validated using two case studies: a banking
example and the Argo-UML software product line [16]. The
obtained results show that the approach can handle products
with variable names for classes, methods and attributes. How-
ever, this approach produces a feature model which contains
only one mandatory feature and the others are considered
as optional features. Thus, it identifies neither separated
mandatory features, nor alternative features and their related
constraints such as the mutual exclusion.

Al-Msiedeeen [5] propose an approach based on the defini-
tion of the mapping model between OO elements and feature
model elements. This approach uses FCA to cluster simi-
lar OO elements into one feature. It uses LSI to define a
similarity measure based on which the clustering is decided.
This approach improves the approach of Ziadi [3] since it
extracts mandatory features and optional features along with
some constraints among features like "And" and "Require".
However, it does not treat product variants with different struc-
tures or different terminologies. Moreover, Al-Msiedeeen et
al. ([5, 17, 18]) use, in the step of extracting features FCA
and LSI, while the input of FCA 0 or 1 and the results of LSI
are real values. Finally, it does not extract the design which
facilitates the SPL comprehension.

Salman et al., [7, 19] present a genetic algorithm to recover
traceability links between feature models and source code.
Traceability links in SPL are needed to relate variation points
and variants with all corresponding low level artifacts (re-
quirements, design, source code and test cases artifacts). The
genetic algorithm can determine approximately the imple-
mentation of each feature (by linking the feature to classes).
However, it generates just one solution for each run, and the

Volume 39, Number 1, March 2018 Ada User Jour na l

J. Maâzoun, N. Bouass ida, H. Ben Abdal lah 39

number of runs necessary to determine all possible classes for
each feature is unknown.

Note that all source code in the approaches of [3, 5, 7] use
the same vocabulary and the same structure. However, these
approaches cannot be applied in the derivation of an SPL
from product variants that were produced by different devel-
opers. Moreover, in case of maintenance or evolution, all
feature models extracted through these works do not produce
information at an intermediate level of abstraction between
the code and the feature model. Such information is vital for
comprehension, maintenance and evolution purposes. With-
out it, maintainers and developers end up spending a lot of
time and effort to understand the behavior and structure of the
system. To provide for these purposes, we propose to have
a design that accompanies the feature model and the source
code of the SPL.

3 Feature mining process
In this section, we present a bottom-up process that extracts
from the source code of product variants, the feature model.
Our approach contains four steps: Name harmonization, com-
monalities and variability identification and feature model
extraction (see figure 1).

Figure 1: Feature mining process

3.1 Name Harmonization
This pre-processing step starts by identifying the semantic
correspondences between the names of packages, classes,
methods and attributes names through interrogating Word-
Net [20]. The semantic relations are examined in the fol-
lowing order: the equivalence (Synonyms), the string ex-
tension (str_extension), and then the generalization (Hyper-
nyms) [21].

In order to determine the correspondences between the names,
we propose a set of semantic criteria. The following five cri-
terias express linguistic relationships between element names
(however, the list can be extended):

• Synonyms(C1,· · · ,Cn): implies that the names are either
identical or synonym, e.g., Mobile-Mobile and Phone-
Mobile.

• Hypernyms(C1; C2,· · · ,Cn): implies the name C1 is a
generalization of the specific names C2, · · · , Cn, e.g.,
Media-Video.

• str_extension(C1; C2): implies that the name C1 is a
string extension of the name of the class C2, e.g., Image-
NameImage.

• Hyponyms(C1; C2):implies that the name C1 is in-
cluded in the meaning of another C2 more general word,
e.g.,Audio-Media.

• Antonyms(C1; C2): implies that the name C1 is opposite
in meaning to another C2, e.g., full-empty.

The determination of the above linguistic/semantic relation-
ships can be handled through either a dictionary (e.g., Word-
net), or a domain ontology when available.

The above semantic criteria are insufficient when two methods
have the same or synonymous names but different bodies.
Then, it is necessary to verify the variability between methods’
body. To resolve this problem and to verify the variability
encapsulated in the body of the methods, we adopt the code
cloning technique presented in [22].

As presented in Figure 2, we remark that in Wordnet dictionay,
"Search" and "Explore" are synonyms and have the same
bodies, consequently, we harmonize their names. Note that,
if the bodies of both methods were detected as different by
our cloning algorithm, we wouldn’t have harmonized their
names.

At the end of the pre-processing step, all semantically re-
lated names would be harmonized and can then be analyzed
through the FCA in the features identification step.

3.2 Commonalities and variability identification

In this step, we use Formal Concept Analysis (FCA) to ex-
tract the commonalities and variability among the harmo-
nized product variants. Before explaining this step, let us first
overview the basics of FCA. FCA [10] is a method of data
analysis with a growing popularity across various domains.
The main idea of FCA is to analyze data described through
the relationships among a particular set of data elements. In
our approach, the data represent the product variants being
analyzed; the data description is represented through a table
where the product variants constitute the rows while source
code elements (packages, classes, methods, attributes) consti-
tute the columns of the table. Due to space limitations, Figure
3 shows an extract of this table.

As illustrated in the table of Figure 3, certain elements are
common blocks which are commonly used in all products
like Package(ChangeDisplaySetting). Other elements ap-
pear in specific products. For example, Class(Replace),
Class(ReplaceAll), Class(SearchSetting), Class(Search),
Method(SearchSetting) and Method(Search) appear in prod-
uct 1,3,5 and 7. Then, these elements belong to the same
block of variations.

From this table, a concept lattice is derived. It allows first to
define commonalities and variations among all products. The
top element of the lattice indicates that certain objects have
elements in common (i.e., Package(ChangeDisplaySetting)
presented in the table of figure 3), while the bottom element
of the lattice show that certain attributes fit common objects

Ada User Jour na l Vo lume 39, Number 1, March 2018

40 A New Approach Min ing the SPL Feature Model and Design f rom Product Var iants

Figure 2: An example of name harmonization step

Figure 3: Part of the formal context describing TextEditing sys-
tems by source code elements

(variations). In our example,in the table of figure 3, we re-
mark that the elements Class(Replace), Class(ReplaceAll),
Class(SearchSetting), Class(Search) appearing in specific
products, belong to the same block of variations in figure
4. We note that elements Common blocks and blocks of varia-
tion are composed of atomic blocks of variation representing
only one feature.

3.3 Feature identification

The objective of this work is to analyze the effects of different
information retrieval techniques on the feature identification
step. As explained in the previous section, this step starts
after the common blocks and the variable elements have been
identified. It then applies one of the existing textual similarity
techniques (LSI, TF-IDF, or PCA).

Figure 4: The lattice for the formal context

3.3.1 LSI application:

LSI (Latent Semantic Indexing) [23] assumes that words that
always appear together are related [11] and that words that
are used in the same contexts tend to have similar meanings.
Consequently,it would be beneficial to use it in identifying
features based on their textual similarity. Similarity between
lines is described by a similarity matrix where the columns
and rows represent lines vectors. Thereafter, a document-term
matrix (TDM) and a matrix-term query is constructed for each
line in the block to save the variation occurrences of terms in
a single collection of document.

LSI uses each line in the block of variations as a query to
retrieve all lines similar to it, according to a cosine similarity.
In our work, we consider the most widely used threshold for
cosine similarity that equals 0.70 [11].

3.3.2 TF-IDF application:

TF-IDF (Term Frequency-Inverse Document Frequency) [24]
uses term weighting to determine the importance of a term in

Volume 39, Number 1, March 2018 Ada User Jour na l

J. Maâzoun, N. Bouass ida, H. Ben Abdal lah 41

a document.

The computation of terms weights is followed by the calcula-
tion of a similarity measure which is the cosine, as follows:

sim(di, q) ≈ cos(
−→
di,−→q) =

∑
tj∈T WijWqj√∑
tj∈T W 2

ijW
2
qj

(1)

where: di is the document i; q is the query; Wij is the weight
of the term tj in di;Wqj is the weight of the term tj in q; and
T is the set of terms contained in the documents.

We use the TF-IDF method to count the frequency of terms in
all the documents. The document contains names of elements
(package, class, method, attribute) in a block.

3.3.3 PCA application:

Principal component analysis (PCA) [25] is a statistical tech-
nique for information extraction. It identifies patterns in data
and expresses the data in such a way as to highlight their
similarities and differences [26].

First, PCA identifies a new set of orthogonal coordinate axis
by finding the direction of maximal variance through the coor-
dinates. Once the first principal component has been obtained,
we can use orthogonal projection to map the coordinates down
onto this new axis.

The PCA then calculates the second greatest variance on
the the second coordinate called second principal coordinate
(axis) which is both orthogonal to the first principal com-
ponent, and is the next best direction for approximating the
original data. Then, PCA calculates the third greatest variance
and so on.

3.3.4 Clustering of features’ elements:

To cluster elements and identify features, Msie’ddine et al. [5]
use LSI and FCA to identify features. However, FCA use
as input 0 or 1, while the result of LSI are real values. To
solve this problem, we use another clustering technique (DB-
SCAN) [9] which is a topometric algorithm used to cluster
spatial data. This algorithm was chosen since it does not
limit the number of clusters. we propose to use the Density
Based Spatial Clustering of Applications with Noise (DB-
SCAN). It is a topometric algorithm used to cluster spatial
data. This algorithm was chosen since it does not limit the
number of clusters. We used Weka (Waikato Environment for
Knowledge Analysis) for the implementation of DBSCAN
algorithm. Weka is a popular suite of machine learning soft-
ware written in Java, developed at the University of Waikato,
New Zealand [27].

The different matrices resulting for the LSI, PCA, TF-IDF are
used as input for the DBSCAN to group the similar elements
together based on the lexical similarity. The result of LSI is
presented through three clusters. However, only two clusters
are identified after the use of PCA and TF-IDF techniques.

The resulting atomic blocks (features) are displayed in Figure
5.

Figure 5: The resulting features extracted with the different
textual similarity measures

To evaluate the best textual similarity measure for feature
extraction, we used two clustering evaluation measures, pre-
cision and recall, which are defined as follows:

Recall(i,j) =
nij

ni

Precision(i,j) =
nij

nj

where nij is the number of elements present in the correct
or true atomic block obtained by our tool (feature) Fi and in
the resulting atomic block (feature) Fj . ni represent the total
number of elements in correct or true feature Fi. nj represent
the total number of elements in the block Fj obtained by our
method.

For every feature model in our evaluation corpus, we selected
ten blocks and we apply the different textual similarity mea-
sures for feature extraction. Table 1 shows a comparison of
the recall and precision values of the different techniques.
After calculating the average of recall and precision for all
features, we remark that the LSI technique is the most suitable
for features extraction since it has the best recall which equals
to 0.877 and the best precision which equals to 0.686.

A main advantage of LSI is its ability to generate more efficent
atomic blocks. In addition, LSI is capable of assuring decent
results, much better than PCA and TF-IDF. LSI is performing
better since it appear together are in the same context.

As a conclusion, in our approach, we use LSI to extract both
feature model and SPL design. The next step in our approach
determines the hierarchy and constraints among features and
finalizes the feature model construction.

3.4 Feature model construction

This phase has a threefold motivation. First, the features
which are composed of many elements (packages, classes,
attributes, methods) are renamed based on the frequency of
the names of its elements. In addition, the organization and
structure of the features is also retrieved based on the semantic
criteria. In fact, since the owner information was omitted,
then to retrieve the organization of the features, we use the
semantic criterion and concept lattice.

Ada User Jour na l Vo lume 39, Number 1, March 2018

42 A New Approach Min ing the SPL Feature Model and Design f rom Product Var iants

Table 1: Recall and precision calculus

FM1 FM2 FM3 Average
Technique Recall Precision Recall Precision Recall Precision Recall Precision

LSI 0.9 0.85 0.857 0.46 0.904 0.75 0.887 0.686
PCA 0.7 0.75 0.625 0.38 0.5 0.33 0.608 0.48
TF-IDF 0.6 0.28 0.6 0.3 0.66 0.21 0.62 0.26

In the first time, the concept lattice permits to define common-
alities and variations among all products. The top element
of the lattice indicates that certain objects have elements in
common, while the bottom element of the lattice show that
certain attributes fit common objects (variations).

To deduce the hierarchy of features, we use the semantic cri-
terion hypernym and hyponym. The extraction of hypernym
and hyponym can be done through the WordNet. In our case,
if we have two features, F1 and F2; if F1 is an hypernymy
or hyponym of F2 then F1 is the parent of F2. For example,
considering the features: "File management", "read only", we
note that the word "File" is an hypornym of "read"; conse-
quently, the feature "File management" is the parent of the
feature "read only".

After deducing the hierarchy of features, it is necessary to
define the constraints between them. For this purpose, we
apply some rules based on semantic criterion and the concept
lattice. Consequently, the lattice indicates the relationships
among features. The following relationships can be automati-
cally derived from the sparse representation of the lattice and
presented to the analyst:

• Mandatory: The features appearing at the top concept in
the lattice used in every product.

• Optional: The features appearing at the bottom concept
in the lattice used in some product.

• Or: Can be deduce from two facts:

– Antonym relation: If we have two features, F1
and F2; if F1 is an Antonym with F2 then F1 has
an Or constraint with F2. For example, the fea-
ture "Open" has an antonymy relation with "Close".
Then, the relation between them is "Or".

– str_extension relation: If a feature F1 is an
str_extension with a feature F2 then F1 has an Or
constraint with F2.

• Xor:

– If two features F1 and F2, having the same parent,
that never appear together in FCA cross-table and
always one of them is present then F1 has an Xor
constraint with F2.

– synonym relation: If a feature F1 is an synonym
with a feature F2 then F1 has an Xor constraint
with F2.

• Exclude: If two features F1 and F2, having different
parents, that never appear together in FCA cross-table
and always one of them is present, then F1 has an exclude
constraint with F2.

• Require: Can be deduce from two facts:

– If the appearing of feature F1 requires the appear-
ing of feature F2, then F1 has an Require constraint
with F2.

– If an element (package, class) in one feature F1
have elements (Method, attribute) belonging in a
second feature F2, then F1 has a require constraint
with F2.

• AND: Two features F1 and F2 that appear in the same
concept

At the end of this last step, all the features are collected
in a feature model to specify the variations between these
products.

4 SPL Design mining process
In this section, we present a bottom-up process that extracts
from the source code of product variants, the SPL design
enriched with information extracted from the feature model.
We adopt the same step as presented in feature model mining
process and we add the step of reverse enginnering. Next,
all steps of design elements extraction and SPL design con-
struction will be applied to the design. For the construction
of the SPL with some differences since we work on the de-
sign, we use our UML profile named UML-SPL presented
in Maazoun et al. [28] to resolve the problem of traceability
between design and feature model. Our UML profile enriches
the UML diagrams with informations extracted from the fea-
ture model and highlights the variability of the SPL. It treats
the static and dynamic aspect. It defines the concept of rec-
ommendation at class and sequence diagrams. It integrates
also OCL(Object-Constraint Language) constraints ensuring
the consistency of the variation points.

4.1 Reverse engineering

Following Name harmonization, we needed to reverse engi-
neer the code to construct the class and sequence diagrams
required in the feature extraction step of our process. A class
diagram contains all of the classes and enumerates the rela-
tionship between them (association, inheritance, composition,
aggregation. . .). A sequence diagram contains Lifelines, mes-
sage, operation, object...

In order to construct the class and sequence diagrams, we
reverse engineered the code using plugin eUML 1 for eclipse
2.

1http://www.soyatec.com/euml2/installation/
2https://eclipse.org/downloads/

Volume 39, Number 1, March 2018 Ada User Jour na l

J. Maâzoun, N. Bouass ida, H. Ben Abdal lah 43

4.2 Design elements extraction

In order to tolerate some difference among the design of
the product variants, we adapt the FCA [11]. In this phase,
the FCA is applied to extract the common elements and the
variable elements of the design. The data description is repre-
sented through a table where the product variants constitute
the rows while class’ diagram elements (packages, classes,
methods, attributes)and relationship between classes consti-
tute the columns of the table.

Then, a concept lattice is derived.The top element of the lattice
indicates the common elements while the bottom element of
the lattice show variations of certain attributes. This process
permits us, first, to derive design enriched with optional and
mandatory.

The organization and structure of the SPL design is retrieved
based on the construct rules defined in the next section.

4.3 SPL design construction and enrichement with
Feature Model

To construct and organize our SPL design, we define some
rules which used our proposed UML profile "SPL-UML".
These rules are:

• R1: Each mandatory class will be presented with its
mandatory elements (attribute, method).

• R2: If a relationship is mandatory, then startAssociation
and the endAssociation are mandatory and it will be
present in the design.

• R3:If a relationship has a startAssociation or an endAs-
sociation mandatory, will be present in the design and
the optional startAssociation or endAssociation will be
present and stereotyped "recommended".

• R4: The rest of the optional elements will be present in
the design according to the degree of its presence in all
the class’ diagrams.

Finally, we propose to represent the design of the SPL using
our UML profile enriched with the information extracted from
the generated feature model.

Consequently a generic class’ diagram is derived. This dia-
gram is enriched by information extracted from the feature
model illustrated in figure 6.

In our running example, we present the SPL design construc-
tion. In fact, by applying the rule R1, all mandatory elements
will be stereotyped with "mandatory" and "feature_name" and
the relation between them must be mandatory and presented
with a bold line. For example, classes "File", "Text" are
mandatory and the relation between them are also mandatory
by applying the rule R2.

5 Evaluation
The overall objective of this section is to show the ability of
our method and tool to evaluate feature model, SPL design
extracted from product variants having different structure and
naming.

5.1 SPL Design tool

SPL Design tool automates all the steps of the feature and
SPL design mining process.

In the first step, the user chooses the source code file, then the
tree will be extracted and saved in an XMI document. The
XMI document corresponds to the name of elements of the
parsed code (package, class, method, attribute)(see interface
1 of figure 7).

After applying the name harmonization, the XMI file will
be updated (see the interface 2 of figure 7) and will be an
input of FCA method (see the interface 3 of figure 7) and the
concept lattice will be derived (shown in the interface 4 of
figure 7). Then, common blocks and blocks of variation will
be determined (shown in the interface 5 of figure 7).

Common blocks and blocks of variations are composed of
atomic blocks of variation representing only one feature. To
define features, we apply LSI with Matlab by clicking to the
button "Apply LSI". According to a cosine similarity that is
equal to 0.70, LSI uses each line in the block of variations as
a query to retrieve all lines similar to it. The similarity matrix
which is the LSI result is used as input for the DBSCAN
to group the similar elements together based on the lexical
similarity.

5.2 Feature model and SPL design evaluation

This section aims at evaluating both the feature model and the
SPL design extracted from product variants having different
structure and naming and generated by our tool. For this
purpose, we have developed in our team different products
in the domain of Mobile Media, games (Sodoku, Tankwar,
Acrade Maker),DB system. For every SPL, we select five
products. The products were developed by different persons
and consequently the naming and structure were different.
In every product, the number of package do not exceed five
packages, the number of classes do not exceed 27 classes.
Then, we applied our approach to obtain the SPL design
and feature model. Afterwards we compared the obtained
SPL design and feature model with an existing FM and the
SPL design from FeatureHouse 3. The design of the SPLs
extracted from FeatureHouse was reverse engineered with le
plagin e-UML for eclipse.

Our evaluation starts by comparing the feature models ob-
tained by our tool vs. feature models handled by experts.
This comparison focused namely on the different elements
(i.e. features, packages, classes, methods, attributes) and con-
straints that compose the feature model. More specifically,
we used the recall and precision measures. Similarly, we
relied on a comparative evaluation of the design generated
by our tool vs. the design produced by experts, based on
these measurements. The precision represents the ratio of the
number of correct elements and constraints (respectively the
design elements) detected by our tool among the total num-
ber of the generated elements and constraints (respectively
the design elements), whereas the recall represents the ratio
number of correct elements and constraints(respectively the

3http://www.infosun.fim.uni-passau.de/spl/apel/fh/

Ada User Jour na l Vo lume 39, Number 1, March 2018

44 A New Approach Min ing the SPL Feature Model and Design f rom Product Var iants

Figure 6: The class diagram of the SPL represented with SPL-UML.

Table 2: Evaluation results

EvaluationTP FP FN Precision=
TP/(TP+FP)

Recall=
TP/(TP+FN)

Feature
model

46 16 5 0.74 0.90

SPL de-
sign

56 15 4 0.78 0.93

design elements) belonging to the feature model generated by
our tool and the total number of the elements and constraints
(respectively the design elements) handled by experts. For
this reason, we count the number of True Positives (TP), False
Positives (FP), and False Negatives (FN). False Positives are
elements and constraints belonging to the feature model (or
design) wrongly identified. False Negatives are elements be-
longing to the feature model (or design) identified by expert
that our tool could not generate.

In our feature model evaluation (Table 2), the average pre-
cision of 0.74, is explained by the fact that we found some
false positive features (i.e. incorrect detected features, in-
correct detected constraints). Compared to the true positives
found by our method, the false positives elements are not
significant. The recall, whose average value is 0.90, indi-
cates that we have also some false negative features and some
false negative constraints (i.e. true features not detected, false
constraints).

In our SPL design evaluation (Table 2), the average precision
of 0.78, is explained by the fact that we found some false
positive classes (i.e. incorrect detected classes or methods
belonging to incorrect class). The recall, whose average value
is 0.93, indicates that we have some false negative classes (i.e.
true associations between classes not detected).

Threats to validity. An important concern of our approach is
the rely on the WordNet ontology; in fact, this latter cannot
recognize the semantic relations between all the words that
it contains. This fact causes the inability of our approach to
generate some features and constraints. For instance, in the
context of mobile media domain, the product variants contain,
in particular, two different methods: "RemoveAlbum" and
"DeleteAlbum". The problem is that the WordNet does not
consider the word "remove" as a synonym of "delete". Thus,
the name harmonization step would not be performed by our
approach, which leads to the generation of incorrect feature.
In addition, in the reverse engineering step of our SPL design
mining process, some relations (aggregation or composition)
could not be detected; this fact is caused by the plugin e-UML
for Eclipse.

5.3 Feature model quality evaluation

The overall objective of this section is to show the ability
of our method and tool to generate a feature model with a
quality similar to the quality of existing SPLs in the same
domain. For this purpose, we evaluated our method through
a quantitative, empirical evaluation based on a comparison
between our feature models and feature models constructed
by experts.

More specifically, our empirical study took five feature mod-
els existing in FeatureHouse 4:

• FM1: Feature model for TankWar game.

• FM2: Feature model for MobileMedia system.

• FM3: Feature model for BerkeleyDB system.

• FM4: Feature model for Sodoku game.

• FM5: Feature model for Acrade Game Maker.
4http://www.infosun.fim.uni-passau.de/spl/apel/fh/

Volume 39, Number 1, March 2018 Ada User Jour na l

J. Maâzoun, N. Bouass ida, H. Ben Abdal lah 45

Figure 7: SPL Design tool

To compare the performance of our feature, we used the
metrics originally proposed by Bagheri et al. [29] and from
which we took the following list:

• Number of features (NF): Counts the number of features
in a feature model.

• Number of top features (NTop): Counts the number of
features that are first direct descendants of the feature
model root.

• Number of leaf features (NLeaf): Counts the number of
features with no children or further specializations.

• Cyclomatic complexity (CC): Counts the number of dis-
tinct cycles that can be found in the feature model. Since
feature models are in the form of trees, no cycles can
exist in a feature model; however, integrity constraints
between features can cause cycles. This metric counts
the number of “exclude” and “require”.

• Ratio of variability (RoV): Counts the ratio of the aver-
age branching factor of the parent features in the feature
model. In other words, the average number of children
of the nodes in the feature model tree.

• Flexibility of configuration (FoC): Counts the ratio of
the number of optional features over all of the available
features in the feature model.

• Coefficient of connectivity density (CoC): Counts the
ratio of the number of edges over the number of features
in a feature model.

Figure 8 shows a comparison of quality metrics values ob-
tained for the feature model of TankWar game,MobileMedia
system, BerkeleyDB system, Soduko game and Acrade Game
Maker.

It is clear that the values obtained by our approach are close to
those obtained for the feature model resulting from the work

of experts. The number of features in our feature models is
nearby those belonging to feature models built by experts.
The difference between the number of feature do not exceed
3 features. For example, in the feature model "TankWar", we
find 35 feature whereas the expert found 37.

Figure 8: A comparative study by measurement

In conclusion, our preliminary empirical study shows that
the feature models generated are of high quality because they
do not go beyond the values of the used metrics applied on
existing feature models.

6 Conclusion
This paper presented a new bottom-up method for automat-
ically extracting both the feature model and design of an
SPL from product variants. Our method has the advantage
of using semantic information to account for the differences
in the structures and element names of the product variants.
It first harmonizes the names of the source codes’ elements.
Then, it uses the FCA technique to distinguish among the
mandatory and optional elements. To extract features with the
appropriate cohesion, we first conducted a comparative study

Ada User Jour na l Vo lume 39, Number 1, March 2018

46 A New Approach Min ing the SPL Feature Model and Design f rom Product Var iants

between three popular textual similarity measures (LSI, PCA
and TF-IDF) and then adopted LSI for our feature identifica-
tion process. As for the SPL design, our method produces
SPL designs enriched with information extracted from the
feature model and specified with our UML profile named
SPL_UML. The utility of the proposed method is illustrated
through the extraction of the feature model and design of
an SPL for mobile phones. As presented in this paper, our
method was quantitatively evaluated on five existing FM in
different domains and it was compared to existing FM de-
veloped by experts. The precision and recall produced in
our experimental evaluation showed the advantages of our
method.

In our future works, we are examining how to add more
intelligence in the feature model extraction by considering
product variants where the variability is in the body of the
operations. We aim also to conduct an evaluation on a larger
set of products.

References
[1] P. Clements and L. Northrop, “Software product lines:

Practices and patterns.,” SEI Series in Software Engi-
neering, 2001.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son, “Feature-oriented domain analysis (foda) feasibil-
ity study„” Technical report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute,Carnegie Mellon University,,
1990.

[3] T. Ziadi, L. Frias, M. Silva, and M. Ziane, “Feature
identification from the source code of product variants,”
pp. 417–422, 2012.

[4] S. She, R. Lotufo, T. Berger, A. Wsowski, and K. Czar-
necki, “Reverse engineering feature models,” pp. 461–
470, 2011.

[5] R. Al-Msie’Deen, A. Seriai, M. Huchard, C. Urtado,
S. Vauttier, and H. Salman, “An approach to recover
feature models from object-oriented source code,” in
Day Product Line 2012, 2012.

[6] T. Ziadi, “Manipulation de lignes de produits en uml,”
These de doctorat, Universite de Rennes 1, 2004.

[7] H. Salman, A. Seriai, C. Dony, and R. Al-Msie’Deen,
“Genetic algorithms as recovering traceability links
method between feature models and source code of
product variants,” in Day Product Line 2012, 2012.

[8] M. Acher, B. Baudry, P. Heymans, A. Cleve, and J.-L.
Hainaut, “Support for reverse engineering and maintain-
ing feature models,” in Proceedings of the Seventh Inter-
national Workshop on Variability Modelling of Software-
intensive Systems, VaMoS ’13, (New York, NY, USA),
pp. 1–8, 2013.

[9] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-
based algorithm for discovering clusters in large spatial
databases with noise,” pp. 226–231, AAAI Press, 1996.

[10] B. Ganter and R. Wille, “Formal concept analysis: Math-
ematical foundations,” Springer-Verlag, 1996.

[11] D. Binkley and D. Lawrie, “Information retrieval appli-
cations in software maintenance and evolution,” In En-
cyclopedia of Software Engineering, pp. 454–43, 2011.

[12] K. Czarnecki and U. Eisenecker, Generative program-
ming - methods, tools and applications. Addison-
Wesley, 2000.

[13] P. Riebisch, “Using feature modeling for program
comprehension and software architecture recovery,”
(Huntsville Alabama, USA), 2003.

[14] N. Nan and E. Steve, “Concept analysis for product line
requirements,” in Proceedings of the 8th ACM inter-
national conference on Aspect-oriented software devel-
opment, AOSD ’09, (New York, NY, USA), pp. Pages
137–148, 2009.

[15] Z. Tewfik, H. Christopher, P. Mike, Z. Mikal, and
L. Yves, “Towards a language-independent approach
for reverse-engineering of software product lines,” in
Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC ’14, pp. 1064–1071, 2014.

[16] M. Couto, M. Valente, and F. Figueiredo, “Extracting
software product lines: A case study using conditional
compilation,” pp. 191–200, 2011.

[17] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado,
S. Vauttier, and H. Salman, “Feature location in a collec-
tion of software product variants using formal concept
analysis,” in Safe and Secure Software Reuse - 13th In-
ternational Conference on Software Reuse, ICSR 2013,
Pisa, Italy, June 18-20. Proceedings, pp. 302–307, 2013.

[18] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado,
and S. Vauttier, “Documenting the mined feature im-
plementations from the object-oriented source code of
a collection of software product variants,” in The 26th
International Conference on Software Engineering and
Knowledge Engineering, Hyatt Regency, Vancouver, BC,
Canada, July 1-3, 2013., pp. 138–143, 2014.

[19] H. Salman, A. Seriai, and C. Dony, “Feature-level
change impact analysis using formal concept analy-
sis.,” International Journal of Software Engineering
and Knowledge Engineering, vol. 25, no. 1, pp. 69–92,
2015.

[20] H. Ben-Abdallah, N. Bouassida, F. Gargouri, and A. B.
Hamadou, “A uml based framework design method,”
Journal of Object Technology, pp. 97–120, 2004.

[21] J. Maazoun, N. Bouassida, and H. Ben-Abdallah, “Fea-
ture model extraction from product source codes based
on the semantic aspect,” ICSOFT13, pp. 154–161, 2013.

[22] J. Maâzoun, N. Bouassida, and H. Ben-Abdallah, “Fea-
ture model recovery from product variants based on a
cloning technique,” in The 26th International Confer-
ence on Software Engineering and Knowledge Engineer-
ing, Hyatt Regency, Vancouver, BC, Canada, July 1-3,
2013., pp. 431–436, 2014.

Volume 39, Number 1, March 2018 Ada User Jour na l

J. Maâzoun, N. Bouass ida, H. Ben Abdal lah 47

[23] S. Dumais, “Latent semantic indexing (lsi) and trec-
2,” in The Second Text REtrieval Conference (TREC-2,
pp. 105–115, 1994.

[24] K. Jones, “A statistical interpretation of term specificity
and its application in retrieval,” Journal of Documenta-
tion, vol. 28, pp. 11–21, 1972.

[25] I. Jolliffe, Principal Component Analysis. Springer
Verlag, 1986.

[26] L. Smith, A tutorial on Principal Component Analysis.
2002.

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. Witten, “The weka data mining software:
An update,” in SIGKDD Exploration, vol. 11, 2009.

[28] J. Maazoun, N. Bouassida, and H. Ben-Abdallah, “A bot-
tom up spl design method,” MODELSWARD’14, (Jan-
vier 2014).

[29] E. Bagheri and D. Gasevic, “Assessing the maintain-
ability of software product line feature models using
structural metrics,” in Software Quality Journal, vol. 19,
pp. 579–612, 2011.

Ada User Jour na l Vo lume 39, Number 1, March 2018

48

Volume 39, Number 1, March 2018 Ada User Journal

Experiences on Writing Ada Bindings for a C

Library

Victor Porton

Ashkelon, Israel; email: porton@narod.ru

Abstract

I share my experience of writing thick (object
oriented) Ada binding of a C library. This article
provides some Ada tips and tricks (especially for Ada
bindings writers).

Keywords: Ada bindings, thick bindings, C.

1 Introduction

We have a C library, written in object-oriented style (C

structure pointers serve as objects, and C functions taking

such structure pointers serve as methods). However

fortunately for us (making our task easier) there is no

inheritance in that C library.

The particular libraries we will deal with are Redland RDF

Libraries, a set of libraries which parses RDF (Resource

Description Framework) files or other RDF resources and

manages them, allows to do RDF queries, etc. Don't worry

if you don't know what RDF is, it is not really relevant for

this article. See more info about this C library in [1] and [2]

and on RDF itself in [3].

The paper describes thick Ada bindings for this library.

“Thick” means that the API which I create is a full-fledged

Ada interface. For example, it uses Ada controlled tagged

types to represent objects. It also uses derived types and

some other Ada features which are not available in C. By

Ada here I will mean Ada 2012, the latest currently

available Ada standard.

This is a work in progress. The source code of my library is

available at https://github.com/vporton/redland-bindings. Please

write your comments.

Note that the main purpose I created Ada bindings for

Redland is to use them in this project:

https://en.wikiversity.org/wiki/Automatic_transformation_of_XM

L_namespaces.

2 Little things

One thing I learned during this project, is that Ada types

should have different names, they shouldn’t have the same

name even if they are in different packages. This both

allows to shorten the code with use directives and to

increase reliability of not passing a wrong type if a use

directive is indeed used.

An alternative solution would be to use renames of

packages. But then not only types but also subprograms

would be to be referred with a prefix. However my actual

solution allows to use subprogram overloading to write

subprograms without prefixes, what personally I consider

more convenient. Also (and probably more importantly),

even if I were recommended to use package renames, not

“use” directives, some users of my code would probably

use “use” directives and get into difficulties with coinciding

types with the same name from different packages.

The reason why I prefer this solution (to have different

types names in different packages), is that this allows the

user the freedom to choose at his mood either “use”

directives or package renames. He is not bound to use

package renames.

Initially I tried to use GCC with -fdump-ada-spec flag to

autogenerate Ada specs from C headers. But shortly I

realized that it will work better if I write Convention=>C

subprograms manually (mainly because I sometimes want

char_array and sometimes chars_ptr for a char* argument

of a C function, as char_array is useful and convenient for

passing the value of To_C function to a subprogram).

3 Packages structure

I put all my API into package hierarchy RDF.*.

The package RDF itself is empty:

package RDF is
 pragma Pure(RDF);
end RDF;

I also have a RDF.Auxiliary package and its subpackages for

“auxiliary” things (things used by or with my bindings, but

not being bindings for a particular C library function).

I will discuss some particular RDF.Auxiliary.* packages

below.

4 My tagged types

As I've said above, C objects are pointers to structures. All

C pointers to structures have the same format and

alignment [4]. This allows to represent any pointers to C

structures as pointers to Dummy_Record as defined in

RDF.Auxiliary package:

type Dummy_Record is null record
 with Convention=>C;

A new Ada type (call it T_Without_Finalize for the reasons

explained below) corresponding to a dynamically allocated

C record is created by instantiating generic packages

RDF.Auxiliary.Handled_Record or RDF.Auxiliary.

Limited_Handled_Record with a Convention=>C record

https://github.com/vporton/redland-bindings
https://en.wikiversity.org/wiki/Automatic_transformation_of_XML_namespaces
https://en.wikiversity.org/wiki/Automatic_transformation_of_XML_namespaces

V. Porton 49

Ada User Journal Volume 39, Number 1, March 2018

type (can be Dummy_Record if record layout is considered

internal by the C library documentation) and a

Convention=>C access to this record and deriving our type

from the tagged type Base_Object in the instantiated

package.

Representing C structure pointers as tagged types is not

memory efficient, but here we trade efficiency for

programming ease.

It would be compelling to make Limited_Handled_Record a

descendant type of Handled_Record, but it is impossible in

Ada because Ada.Finalization.Limited_Controlled is not a

descendant of Ada.Finalization.Controlled. As such I wrote

two similar packages RDF.Auxiliary.

Limited_Handled_Record and RDF.Auxiliary.Handled_

Record which duplicate mainly the same code. This is not

perfect, but neither it is very bad, as the quantity of the

code of these two packages (including their bodies) is not

large.

5 About finalization and related stuff

The main challenge writing object-oriented bindings for a

C library is finalization. In the C library in consideration

(as well as in many other C libraries) every object is

represented as a pointer to a dynamically allocated C

structure.

The corresponding Ada object can be a (tagged) record

holding the pointer (aka handle).

Ada objects representing C objects should be descendants

of Ada.Finalization.Limited_Controlled or Ada.Finalization.

Controlled to be properly finalized when appropriate.

But oftentimes a C function returns a so called “shared

handle” that is a pointer to a C struct which we should not

free because it is a part of a larger C object and shall be

freed (by the C library) only when that larger C object goes

away.

As such I first define a tagged type T_Without_Finalize

type. For this type I define such procedures as Do_Finalize

and Do_Adjust which do what Finalize and Adjust should do

but leave Finalize and Adjust empty, so that a shared handle

is neither finalized nor copied. I define type T with Finalize

and Adjust as a derived type. T could be defined as ancestor

of both T_Without_Finalize and a type which defines

Finalize and Adjust. But as Ada misses inheritance from

multiple tagged private types, I do it with generics instead

(below is a partial listing):

generic
 type Base is new Base_Object with private;
package Common_Handlers is
 type User_Type is new Base with null record;
 overriding procedure Finalize(Object: in out User_Type)
 renames Do_Finalize;
 overriding procedure Adjust(Object: in out User_Type)
 renames Do_Adjust;
 type Base_With_Finalization is new User_Type
 with null record;
end;

The Base generic parameter is intended to be that

T_Without_Finalize type.

You see that Do_Finalize and Do_Adjust become actual

handlers of finalization and adjustment.

Note that I recommend overriding the subprograms

Finalize_Handle and Adjust_Handle (see the source) rather

than Do_Finalize and Do_Adjust themselves.

Note that values of T_Without_Finalize type may become

invalid (containing dangling access values). There seems

that there is no easy enough way to deal with this problem

(because of the way the C library works). The objects are

sometimes destroyed by the C library and we may not

know when it is destroyed. Or we may know but be not

able to appropriately “explain” it to the Ada compiler. Just

be careful when using this library not to use objects which

are already destroyed.

6 User defined types

Next thing to note that I first define User_Type. This type

is intended to serve among other as a base for user-defined

types which may contain not only the C handle but also

other fields. The type Base_With_Finalization on the other

hand is meant not to be a base for types with additional

fields but contain only the handle (and null record

extensions).

The reason why I make distinction between User_Type and

Base_With_Finalization is the following:

We define some functions like

function From_Filename
 (World: Raptor_World_Type_Without_Finalize'Class;
 Filename: String)
 return IOStream_Type;

IOStream_Type is derived from Base_With_Finalization not

from User_Type directly. If we derived our User_Type

from IOStream_Type then non-null record extensions

would cause (by Ada rules) the necessity to redefine

From_Filename function also for the derived type, which is

a nonsense.

We actually use User_Type (in the private part of a

package) like this (for an I/O stream reading from a string):

type Stream_From_String(Length: size_t) is
 new IOStream_Type_User with
 record
 Str: char_array(1..Length);
 end record;

7 Controlling vs class-wide arguments

Controlling and class-wide arguments differ mainly in their

relationship with inheritance. But as there is no inheritance

in the C library which we bind, we have certain freedom to

choose either.

One disadvantage of class-wide types is that such things as

that is makes necessary Get_Handle(null) to be type-

qualified and thus the subprogram specifications longer.

That is we need to use something like

URI_Type_Without_Finalize'(From_Handle(null)) or

50 Exper iences on Writ ing Ada Bindings for a C L ibrary

Volume 39, Number 1, March 2018 Ada User Journal

URI_Type'(From_Handle(null)) instead of just

From_Handle(null) to make it unambiguous (as otherwise

the Ada compiler rejects it with a compilation error).

One advantage of class-wide types is that I can use (as in

query_results.ads) ST‘Class where ST is a subtype with a

predicate to restrict to a subtypes matching a predicate.

Example:
subtype URI_Term_Type_Without_Finalize is
 Term_Type_Without_Finalize
 with Dynamic_Predicate =>
 Is_URI(URI_Term_Type_Without_Finalize);

It is possible that in a future version of the library I will

consistently replace controlling arguments with class-wide

arguments. This would make it more symmetric, as all

tagged arguments would be class-wide and none special

controlling one.

8 Dealing with callbacks

To deal with C callbacks (particularly accepting a void*

argument for additional data) in object-oriented way, we

need a way to convert between C void pointers and accesses

to Ada tagged (even class-wide) objects. (We pass Ada

tagged objects as C “user data” pointers.)

When we create a callback we need to pass an Ada object

as a C pointer and a Convention=>C subprogram defined by

us as the callback. The callback receives the pointer

previously passed by us and in the callback code we should

(if we want to stay object oriented) convert this pointer into

an Ada object access.

What we need is some bijective (“back and forth”)

mapping between Ada access values and C pointers.

At first, I was tempted to use Ada.Unchecked_Conversion.

But (despite GNAT 7.2.0 gives no warning on this) it is not

in any way guaranteed to work, because the format of Ada

access type and of C pointer are not necessarily the same.

Now I do conversion this way:

I convert chars_ptr to a Convention=>C access to char then

this to System.Address using System.Address_

To_Access_Conversions and then the address (also by

Address_To_ Access_Conversions) to the required access

to a class-wide type.

The backward conversion is analogous.

The above should work if we understand the words “back

and forth” RM13.7.2(5/2) “The To_Pointer and

To_Address subprograms convert back and forth between

values of types Object_Pointer and Address.” as that the

conversion must be bijective (I filed a clarification request 1

about the meaning of the words “back and forth” to the Ada

Commentaries).

1 AC95-00298/00, discussion and answer available at

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/acs/ac-00298.txt?rev=1.1

All this is implemented in RDF.Auxiliary.Convert_Void of

my library, but in my opinion this package should be added

to Ada standard packages.

How to do this in practice? The best way to explain is an

example (for a user-defined I/O Stream which calls our

function Do_Write_Bytes when “write” message is sent to

it):

package My_Conv is
 new RDF.Auxiliary.Convert_Void
 (Handled_IOStream_Type_User'Class);
function raptor_iostream_write_bytes_impl
 (context: chars_ptr; ptr: chars_ptr; size, nmemb: size_t)
 return int
 with Convention=>C;
function raptor_iostream_write_bytes_impl
 (context: chars_ptr; ptr: chars_ptr; size, nmemb: size_t)
 return int is
begin
 declare
 Result: constant int := Do_Write_Bytes
(My_Conv.To_Access (context).all, ptr, size, nmemb);
 begin
 return Result;
 end;
exception
 when others =>
 return -1;
end;

9 Storage pools for memory allocation

I tried to define storage pools for C allocation/deallocation

functions such as raptor_alloc_memory() and

raptor_free_memory(), but it appeared to be impossible by

the following reason:

System.Storage_Pools receives Alignment argument which

is an integer multiple of the alignment of the allocated type.

This alignment may be greater than the alignment

raptor_alloc_memory() warrants (Dummy_Record’

Alignment) and so lead to undefined behavior.

I have sent a proposal to the standardization committee 2 to

make the programmer able to restrict the maximum

alignment.

Because using allocators appeared to be impossible, I did it

instead this way (for Locator_Handle which is a pointer to

Locator_Type record):

package Locator_Conv is
 new RDF.Auxiliary.Convert_Void(Locator_Type_Record);

function Copy_Locator (Handle: Locator_Handle)
 return Locator_Handle
is
 Size: constant size_t :=
size_t((Locator_Type'Max_Size_In_Storage_Elements *
Storage_Unit + (char'Size-1)) / char'Size);
 Result2: constant chars_ptr :=
 RDF.Raptor.Memory.raptor_alloc_memory(Size);

2 AC95-00299/00, discussion and answer available at

www.ada-auth.org/cgi-bin/cvsweb.cgi/acs/ac-00299.txt?rev=1.1

AC95-00298/00
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/acs/ac-00299.txt?rev=1.1

V. Porton 51

Ada User Journal Volume 39, Number 1, March 2018

 Result: constant Locator_Handle :=
 Locator_Handle(Locator_Conv.To_Access(Result2));
begin
 Result.all := Handle.all;
 Result.URI := raptor_uri_copy(Handle.URI);
 Result.File :=
RDF.Raptor.Memory.Copy_C_String(Handle.File);
 return Result;
end;

Note that (Locator_Type'Max_Size_In_Storage_Elements *

Storage_Unit + (char'Size-1)) / char'Size is the ceiling of

floating point division of Locator_Type'Max_Size_In_

Storage_Elements * Storage_Unit by char'Size (but without

using floating point). Using ceiling warrants that the

allocated space is at least as big as required space.

Here I allocate with raptor_alloc_memory() function the

amount of memory which is max size needed (apparently

not to overwrite nearby memory) for a record pointed by

Locator_Type (ARM specifies this max size only for

memory returned by an allocator, but I am pretty sure that

in any reasonable implementation of Ada the same amount

of memory will work well if it is allocated by

raptor_alloc_memory() function instead and the nearby

memory thus won’t be overwritten).

10 More little things

Ada standard misses a function converting a C string (with

possible NULs) described by a chars_ptr and and its length

in characters into an Ada String. There is the function

To_Ada which accepts a char_array argument. But in real

life we get a char pointer (for example of chars_ptr type)

and its length, not an array from a C library, so we cannot

use To_Ada in some circumstances.

I define function Value_With_Possible_NULs which does

this in terms of Interfaces.C.Pointers. Note that the pointer

defined in suitably instantiated Interfaces.C.Pointers is

correctly converted from/to chars_ptr with

Ada.Unchecked_Conversion.

I also gave the proposal 3 to add such a function to Ada

standard, in order not to re-create it every time one writes a

bindings of a C library. See the discussion at this proposal

for more details.

The Ada standard To_C with Trim_Nul=>False is broken

(accordingly my personal opinion): RM B.3(51) “If

Append_Nul is False and Item'Length is 0, then To_C

propagates Constraint_Error.” Said in another way the

Standard means: “This does not work with empty strings.”

So I wrote a wrapper My_To_C_Without_Nul around it. It’s

a fact that there are met empty (non-null-terminated) strings

in real life and we need to deal with them. An example of

such a circumstance is the result of reading an external file:

It may be empty and it may contain NUL chars.

I would write a lot more advice how to write Ada bindings

for a C library, but you can just follow my source, which

can serve as an example.

I “encode” values of C strings (which can be NULL) as an

Ada indefinite holder holding a String. If the string is

NULL, the holder is empty. However often it is enough to

transform an empty Ada string into NULL C string (this

can work only if we don’t differentiate between empty and

null strings).

References

[1] The Design and Implementation of the Redland RDF

Application Framework. David Beckett, 2001,

http://www10.org/cdrom/papers/490/

[2] Bootstrapping RDF applications with Redland. David

Beckett, https://www.dajobe.org/papers/xtech2005/

[3] Resource Description Framework (RDF). RDF

Working Group, https://www.w3.org/RDF/

[4] ISO/IEC 9899:2011, section 6.2.5, paragraph 28.

3 AC95-00291/00, discussion and answer available at

www.ada-auth.org/cgi-bin/cvsweb.cgi/acs/ac-00291.txt?rev=1.2

http://www10.org/cdrom/papers/490/
https://www.dajobe.org/papers/xtech2005/
https://www.w3.org/RDF/

52

Volume 39, Number 1, March 2018 Ada User Journal

Applied Formal Logic: Searching in Strings*

Yannick Moy

AdaCore, France

A friend pointed me to recent posts by Tommy M.

McGuire (TMM), in which he describes how Frama-C can

be used to functionally prove a brute force version of string

search 1, and to find a previously unknown bug in a faster

version of string search called quick search 2. Frama-C and

SPARK share similar history, techniques and goals. So it

was tempting to redo the same proofs on equivalent code in

SPARK, and completing them with a functional proof of

the fixed version of quick search. This is what I'll present in

this post.

Contrary to strings in C which start at index 0, standard

strings in SPARK range over positive numbers, and usually

start at index 1. I could have made my own strings to start

at index 0, but there is no reason to stick to C convention

when writing the algorithm in SPARK. At the same time,

it's convenient to force the string to start at index 1 with an

explicit predicate, which I do like that:

subtype Text is String with Predicate => Text'First = 1;

Following the order of exposure of Tommy M. McGuire's

posts, here is the implementation for the brute force

algorithm in SPARK:

function Brute_Force (Needle, Haystack : in Text)

 return Natural is

 Diff : Boolean;

 begin

 for I in 1 .. Haystack'Length - Needle'Length + 1

loop

 Diff := False;

 for J in Needle'Range loop

 Diff := Needle(J) /= Haystack(J + (I - 1));

 exit when Diff;

 end loop;

 if not Diff then

 return I;

 end if;

 end loop;

 return 0;

 end Brute_Force;

* Paper derived from blog post at http://www.spark-

2014.org/entries/detail/applied-formal-logic-searching-in-strings

1 https://maniagnosis.crsr.net/2017/06/AFL-brute-force-search.html

2 https://maniagnosis.crsr.net/2017/06/AFL-bug-in-quicksearch.html

I am doing here without the parameters n and h which were

used in the C version to denote the length of strings needle

and haystack, since these are readily available as attributes

Haystack'Length and Needle'Length in SPARK. Since I'm

working on strings starting at index 1, there are a few

adjustments compared to the C version. The use of a

temporary variable Diff is needed to detect that the inner

loop was exited due to a difference between Needle and the

portion of Haystack starting at J, as the for-loop in SPARK

does not increment its index in the last iteration of the loop,

contrary to its C version.

On this initial version, GNATprove issues one message

about a possible integer overflow when computing

"Haystack'Length - Needle'Length + 1". It automatically

proves all other run-time checks (2 initialization checks, 1

array index check, 2 integer range checks, 2 integer

overflow checks). GNATprove also provides a

counterexample to understand the possible failure, which

can be displayed in our IDE GPS by clicking on the

magnify icon on the left of the message/line (Figure 1).

You have to scroll right in the IDE to see all the values, so

here are the relevant ones: Haystack'First = 1 and

Haystack'Last = 2147483647 and Needle'First = 1 and

Needle'Last = 0. In that case, Haystack'Length is

2147483647 and Needle'Length is 0, which means that

"Haystack'Length - Needle'Length + 1" is one past the

largest signed 32-bits integer. Hence the overflow. One

way to avoid this issue is to require that Needle is not the

empty string, so its length is at least 1:

 function Brute_Force (Needle, Haystack : in Text)

 return Natural with

 Pre => Needle'Length >= 1;

This precondition is sufficient for GNATprove to prove all

checks in Brute_Force, but I've made it stronger like done

by TMM in his post, as it does not make sense to look for a

needle that is longer than the haystack:

 function Brute_Force (Needle, Haystack : in Text)

 return Natural with

 Pre => Needle'Length in 1 .. Haystack'Length;

Y. Moy 53

Ada User Journal Volume 39, Number 1, March 2018

Note that, compared to what is needed with Frama-C, we

don't need here to provide loop assigns or loop invariants.

GNATprove automatically computes the variables that are

modified in a loop, as well as the range of for-loop indexes.

Still following the order of exposure of TMM's posts, let's

turn to the functional contract for searching a string. I'm

directly translating here the functions partial_match_at and

match_at given by TMM from C to SPARK, as well as the

contract of brute_force. Functions Partial_Match_At and

Match_At are ghost functions in SPARK (with aspect

Ghost), which means that they can be used only in

assertions/contracts and ghost code 3 . A difference with

Frama-C is that ghost code is executable like regular code

in SPARK, so one must show absence of run-time errors in

ghost code as well, hence the precondition on

Partial_Match_At below:

 -- There is a partial match of the needle at location

 -- loc in the haystack, of length len.

 function Partial_Match_At (Needle, Haystack : Text;

 Loc : Positive; Len : Natural)

 return Boolean

 is

 (for all I in 1 .. Len => Needle(I) =

 Haystack(Loc + (I - 1)))

 with Ghost,

 Pre => Len <= Needle'Length

 and then Loc - 1 <= Haystack'Length - Len;

 -- There is a complete match of the needle at location

 -- loc in the haystack.

 function Match_At (Needle, Haystack : Text;

 Loc : Positive) return Boolean is

 (Loc - 1 <= Haystack'Length - Needle'Length

 and then Partial_Match_At (Needle, Haystack,

 Loc, Needle'Length))

 with Ghost;

The contract on Brute_Force is similar to the one in Frama-

C, with a shift by one for the origin of strings,

Brute_Force'Result instead of \result to denote the result of

the function, and an if-expression instead of behaviors

(SPARK has a similar notion of contract cases 4, but they

must always have disjoint guards in SPARK, so are not

applicable here):

3 http://docs.adacore.com/spark2014-docs/html/ug/en/source/specification

_features.html#ghost-code

4 http://www.spark-2014.org/entries/detail/spark-2014-rationale-contract-

cases

 function Brute_Force (Needle, Haystack : in Text)

 return Natural with

 Pre => Needle'Length in 1 .. Haystack'Length,

 Post => Brute_Force'Result in 0 ..

 Haystack'Length - Needle'Length + 1

 and then

 (if Brute_Force'Result > 0 then

 Match_At (Needle, Haystack, Brute_Force'Result)

 else

 (for all K in Haystack'Range =>

 not Match_At (Needle, Haystack, K)));

Before we even try to prove that this contract is satisfied by

the implementation of Brute_Force, it is a good idea to test

it on a few inputs, to get rid of silly mistakes. Here is a test

driver to do precisely that:

with String_Search; use String_Search;

procedure Test_Search is

 All_Men : constant Text :=

 "We hold these truths to be self-evident, that all men

 are created equal,"

 & " that they are endowed by their Creator with

 certain unalienable "

 & "Rights, that among these are Life, Liberty and the

 Pursuit of "

 & "Happiness. That to secure these rights,

 Governments are instituted "

 & "among Men, deriving their just powers from the

 consent of the governed";

begin

 pragma Assert (

 Brute_Force (All_Men, "just powers") > 0);

 pragma Assert (

 Brute_Force (All_Men, "austin powers") = 0);

end Test_Search;

Just compile the code with assertions on (switch -gnata),

run it, and... it fails the precondition of Brute_Force:

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE :

failed precondition from string_search.ads:24

What happened here is that I put arguments in the wrong

order in the call to Brute_Force. I'm not making this up,

this really happened to me (I am that bad!). Anyway, that

illustrates that testing is a good idea, even if here it detected

a bug in the test itself. The fix in SPARK is to use named

parameters to avoid such issues. They don't have to appear

in the same order as in the function signature, but it's a

good idea nonetheless:

pragma Assert (Brute_Force (Needle => "just powers",

 Haystack => All_Men) > 0);

Figure 1. Magnify icon in GPS (left of the message/line)

http://docs.adacore.com/spark2014-docs/html/ug/en/source/specification

54 Appl ied Formal Logic: Searching in Str ings

Volume 39, Number 1, March 2018 Ada User Journal

Once fixed, the test passes without errors. Like in the case

of Frama-C, we need to add loop invariants for

GNATprove to prove that Brute_Force satisfies its contract.

Loop invariants in SPARK are different from the classical

loop invariants used in Frama-C: you can put them

anywhere in the loop, and they don't have to hold when

reaching/exiting the loop but only when execution reaches

the program point of the loop invariant. I prefer in general

to put loop invariants at the end of loops, because it's more

natural to express what has been achieved so far:

 function Brute_Force (Needle, Haystack : in Text)

 return Natural is

 Diff : Boolean;

 begin

 for I in 1 .. Haystack'Length - Needle'Length + 1

 loop

 Diff := False;

 for J in Needle'Range loop

 Diff := Needle(J) /= Haystack(J + (I - 1));

 exit when Diff;

 pragma Loop_Invariant (

 Partial_Match_At (Needle, Haystack, I, J));

 pragma Loop_Invariant (

 Diff = (Needle(J) /= Haystack(J + (I - 1))));

 end loop;

 if not Diff then

 return I;

 end if;

 pragma Loop_Invariant

 (for all K in 1 .. I => not Match_At (

 Needle, Haystack, K));

 end loop;

 return 0;

 end Brute_Force;

A subtlety above is that, since we're replacing the implicit

loop invariant in the inner loop (located at the start of the

loop) by an explicit loop invariant at the end of the inner

loop, we need to repeat in that loop invariant the

information about the current value of Diff, otherwise this

information is not available on the path starting from the

loop invariant and exiting the loop in the last iteration.

Otherwise this is similar to what was done in Frama-C.

With these loop invariants, GNATprove proves all checks

in Brute_Force, including its postcondition.

I kept above the implementation structure originating from

the C version of Brute_force, but in SPARK we can

simplify it by replacing the inner loop with a direct

comparison of Needle with a slice of Haystack:

 function Brute_Force (Needle, Haystack : in Text)

 return Natural is

 begin

 for I in 1 .. Haystack'Length - Needle'Length + 1 loop

 if Needle = Haystack(I .. I + (Needle'Last - 1)) then

 return I;

 end if;

 pragma Loop_Invariant

 (for all K in 1 .. I => not Match_At (Needle,

 Haystack, K));

 end loop;

 return 0;

 end Brute_Force;

This version is also completely proved by GNATprove.

Now turning to the more involved algorithm for string

search called quick search presented in this other post by

TMM 5. Translating the implementation, contracts and loop

invariants in SPARK is quite easy. As for the brute force

version, more precise types in SPARK allow to get rid of a

number of annotations:

 type Shift_Table is array (Character) of Positive;

 procedure Make_Bad_Shift (Needle : Text;

 Bad_Shift : out Shift_Table) with

 Pre => Needle'Length < Integer'Last,

 Post => (for all C in Character => Bad_Shift(C)

 in 1 .. Needle'Length + 1);

 function QS (Needle, Haystack : in Text)

 return Natural with

 Pre => Needle'Length < Integer'Last

 and then Haystack'Length < Integer'Last - 1

 and then Needle'Length in 1 .. Haystack'Length;

I am also getting rid of a loop in Make_Bad_Shift and a

loop in QS compared to their C version, as we can directly

assign and compare strings in SPARK:

 procedure Make_Bad_Shift (Needle : Text;

 Bad_Shift : out Shift_Table) is

 begin

 Bad_Shift := (others => Needle'Length + 1);

 for J in Needle'Range loop

 Bad_Shift(Needle(J)) := Needle'Length - J + 1;

 pragma Loop_Invariant (

 for all C in Character => Bad_Shift(C) in

 1 .. Needle'Length + 1);

 end loop;

 end Make_Bad_Shift;

 function QS (Needle, Haystack : in Text)

 return Natural is

 Bad_Shift : Shift_Table;

 I : Positive;

 begin

 -- Preprocessing

 Make_Bad_Shift (Needle, Bad_Shift);

5 https://maniagnosis.crsr.net/2017/06/AFL-bug-in-quicksearch.html

Y. Moy 55

Ada User Journal Volume 39, Number 1, March 2018

 -- Searching

 I := 1;

 while I <= Haystack'Length - Needle'Length + 1

 loop

 if Needle = Haystack(I .. I + (Needle'Last - 1)) then

 return I;

 end if;

 I := I + Bad_Shift(Haystack(I + Needle'Length));

 -- Shift

 end loop;

 return 0;

 end QS;

GNATprove proves all checks on the above code, including

postconditions, except for the array index check when

computing "Haystack(I + Needle'Length)". This is precisly

the bug that was discovered by TMM, that he presents in

his post. GNATprove further helps by providing a

counterexample to understand the possible failure (Figure

2).

Indeed, when I=2 and Haystack'Last=2, "I + Needle'Length"

is outside of the bounds of Haystack whenever Needle is

not the empty string. We can fix that by exiting early from

the loop before the assignment to I in the loop:

 exit when I = Haystack'Length - Needle'Length + 1;

With this fix, GNATprove proves all checks on the code of

quick search.

Now turning to proving the functional behavior of quick

search. The postcondition of QS is the same as the one of

Brute_Force, given that only the algorithm changes

between the two:

 function QS (Needle, Haystack : in Text)

 return Natural with

 Pre => Needle'Length < Integer'Last

 and then Haystack'Length < Integer'Last - 1

 and then Needle'Length in 1 .. Haystack'Length,

 Post => QS'Result in 0 ..

 Haystack'Length - Needle'Length + 1

 and then

 (if QS'Result > 0 then

 Match_At (Needle, Haystack, QS'Result)

 else

 (for all K in Haystack'Range =>

 not Match_At (Needle, Haystack, K)));

In order to prove the contract of QS, we'll need to specify

and prove the functional behavior of Make_Bad_Shift first.

As explained by TMM in his post, Make_Bad_Shift is used

to align the last instance of a given character in the needle

with a matching character in the haystack. So for every

such character C, either it does not occur in the needle in

which case Bad_Shift(C) has the value "Needle'Length + 1",

or it occurs (possibly multiple times) in the needle in which

case it occurs last at index "Needle'Length - Bad_Shift(C) +

1". This is what is expressed in the following

postcondition:

 procedure Make_Bad_Shift (Needle : Text;

 Bad_Shift : out Shift_Table) with

 Pre => Needle'Length < Integer'Last,

 Post => (for all C in Character =>

 Bad_Shift(C) in 1 .. Needle'Length + 1)

 and then (for all C in Character =>

 (if Bad_Shift(C) = Needle'Length + 1 then

 (for all K in

 Needle'Range => C /= Needle(K))

 else

 Needle(Needle'Length -

 Bad_Shift(C) + 1) = C

 and (for all K in Needle'Length -

 Bad_Shift(C) + 2 ..

 Needle'Last => Needle(K) /= C)

));

In order to prove that the implementation of

Make_Bad_Shift satisfies this postcondition, we simply

have to repeat this postcondition as a loop invariant,

accumulating that information as the loop index J

progresses (see how occurrences of Needle'Last in the

postcondition were replaced by occurrences of J in the loop

invariant):

 procedure Make_Bad_Shift (Needle : Text;

 Bad_Shift : out Shift_Table) is

 begin

 Bad_Shift := (others => Needle'Length + 1);

 for J in Needle'Range loop

 Bad_Shift(Needle(J)) := Needle'Length - J + 1;

 pragma Loop_Invariant (for all C in Character =>

 Bad_Shift(C) in 1 .. Needle'Length + 1);

 pragma Loop_Invariant (for all C in Character =>

 (if Bad_Shift(C) = Needle'Length + 1 then

Figure 2. Counter example

56 Appl ied Formal Logic: Searching in Str ings

Volume 39, Number 1, March 2018 Ada User Journal

 (for all K in 1 .. J => C /= Needle(K))

 else

 Needle(Needle'Length -

 Bad_Shift(C) + 1) = C

 and (for all K in Needle'Length -

 Bad_Shift(C) + 2 .. J => Needle(K) /= C)

));

 end loop;

 end Make_Bad_Shift;

GNATprove proves all checks on the above code.

Now turning to QS, we need to establish a loop invariant

very similar to the one used in Brute_Force, except here we

want to establish the property that Needle does not match

up to index "I + Bad_Shift(Haystack(I + Needle'Length)) - 1"

instead of just I:

 pragma Loop_Invariant

 (for all K in 1 .. I + Bad_Shift(Haystack(I +

 Needle'Length)) - 1 =>

 not Match_At (Needle, Haystack, K));

We also need to bound I in the loop invariant, as we're

inserting the above loop invariant in the middle of the loop,

hence we do not get "for free" that I satisfies the loop test:

 pragma Loop_Invariant (I <= Haystack'Length -

 Needle'Length);

With these additions, GNATprove proves all checks in QS,

including its postcondition, but it does not prove its loop

invariant:

string_search.adb:111:81: medium: loop invariant might

fail after first iteration, cannot prove not Match_At

(Needle, Haystack, K) (e.g. when Haystack = (0 =>

'NUL', 5 => 'NUL', others => 'SOH') and Haystack'First =

1 and Haystack'Last = 6 and I = 4 and K = 5 and Needle

= (0 => 'SOH', 3 => 'SOH', 4 => 'SOH', 6 => 'SOH',

others => 'NUL') and Needle'First = 1 and Needle'Last =

2)

string_search.adb:111:81: medium: loop invariant might

fail in first iteration, cannot prove not Match_At (Needle,

Haystack, K) (e.g. when Haystack = (0 => 'NUL', 2 =>

'NUL', others => 'SOH') and Haystack'First = 1 and

Haystack'Last = 3 and I = 1 and K = 2 and Needle = (0

=> 'SOH', 3 => 'SOH', others => 'NUL') and Needle'First

= 1 and Needle'Last = 2)

This is expected. There is a big reasoning gap to go from

the postcondition of Make_Bad_Shift to the loop invariant

in QS. We are going to use ghost code to close that gap and

convince GNATprove that the loop invariant holds in every

iteration. What we need to show is that, for every starting

position that is skipped (for K in the range I + 1 to I +

Bad_Shift(Haystack(I + Needle'Length)) - 1), the needle

cannot align with the haystack at that position. In fact, we

know exactly at which position these alignments would

fail: at the position "I + Needle'Length" in Haystack.

Looking at the postcondition of Make_Bad_Shift, this

corresponds to position "I + Needle'Length - K + 1" in

Needle. Let's write it down just before the loop invariant:

 for K in I + 1 .. I + Bad_Shift(Haystack(I +

 Needle'Length)) - 1 loop

 pragma Assert (Haystack(I + Needle'Length) /=

 Needle(I + Needle'Length - K + 1));

 pragma Assert (not Match_At (Needle,

 Haystack, K));

 end loop;

GNATprove proves the above assertions, using the first one

to prove the second one, so we can now accumulate this

information in a loop invariant for all values of positions

that are skipped:

 for K in I + 1 .. I + Bad_Shift(Haystack(I +

 Needle'Length)) - 1 loop

 pragma Assert (Haystack(I + Needle'Length) /=

 Needle(I + Needle'Length - K + 1));

 pragma Loop_Invariant

 (for all L in 1 .. K => not Match_At (Needle,

 Haystack, L));

 end loop;

With this addition of ghost code, GNATprove proves all

checks in QS, including its postcondition and loop

invariants. In the final version of that code, I'm using a

local ghost procedure Prove_QS instead of inlining the

ghost code in the implementation of QS. That way,

GNATprove still internally inlines the implementation of

Prove_QS to prove QS, but the compiler will completely

get rid of the body and call to Prove_QS in the final

executable built without assertions:

 function QS (Needle, Haystack : in Text)

 return Natural is

 Bad_Shift : Shift_Table;

 I : Positive;

 procedure Prove_QS with Ghost is

 Shift : constant Positive := Bad_Shift(Haystack(I +

 Needle'Length));

 begin

 for K in I + 1 .. I + Shift - 1 loop

 pragma Assert (Haystack(I + Needle'Length) /=

 Needle(I + Needle'Length - K + 1));

 pragma Loop_Invariant

 (for all L in 1 .. K => not Match_At (Needle,

 Haystack, L));

 end loop;

 end Prove_QS;

 begin

 -- Preprocessing

 Make_Bad_Shift (Needle, Bad_Shift);

 -- Searching

 I := 1;

 while I <= Haystack'Length - Needle'Length + 1

 loop

 if Needle = Haystack(I .. I + (Needle'Last - 1)) then

 return I;

 end if;

Y. Moy 57

Ada User Journal Volume 39, Number 1, March 2018

 exit when I = Haystack'Length -

 Needle'Length + 1;

 Prove_QS;

 pragma Loop_Variant (Increases => I);

 pragma Loop_Invariant (I <= Haystack'Length -

 Needle'Length);

 pragma Loop_Invariant

 (for all K in 1 .. I + Bad_Shift(Haystack(I +

 Needle'Length)) - 1 =>

 not Match_At (Needle, Haystack, K));

 I := I + Bad_Shift(Haystack(I + Needle'Length));

 -- Shift

 end loop;

 return 0;

 end QS;

I also added a loop variant to ensure that the while-loop

will terminate. For-loops always terminate in SPARK

because the loop index cannot be assigned by the user

(contrary to what C allows), but while-loops or plain-loops

might not terminate, hence the use of a loop variant to

verify their termination.

The code presented in this post is available on GitHub:

spec 6 and body 7. Now a challenge for Frama-C users is to

translate back the functional proof of QS in SPARK into C

and Frama-C!

The project SPARK-by-Example 8 by Christophe Garion

and Jérôme Hugues contains other examples of functionally

proven string algorithms, which correspond to the SPARK

version of the work done by Jens Gerlach with Frama-C in

the ACSL-by-Example 9 project.

6 https://github.com/AdaCore/spark2014/blob/master/testsuite/gnatprove/

tests/string_search/string_search.ads

7 https://github.com/AdaCore/spark2014/blob/master/testsuite/gnatprove/

tests/string_search/string_search.adb

8 https://github.com/yoogx/spark_examples/tree/master/spark-by-example

9 https://github.com/fraunhoferfokus/acsl-by-example

https://github.com/AdaCore/spark2014/blob/master/testsuite/gnatprove/
https://github.com/AdaCore/spark2014/blob/master/testsuite/gnatprove/

58

Volume 39, Number 1, March 2018 Ada User Journal

National Ada Organizations

Ada-Belgium

attn. Dirk Craeynest

c/o KU Leuven

Dept. of Computer Science

Celestijnenlaan 200-A

B-3001 Leuven (Heverlee)

Belgium

Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard

Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland

Dr. Hubert B. Keller

Karlsruher Institut für Technologie (KIT)

Institut für Angewandte Informatik (IAI)

Campus Nord, Gebäude 445, Raum 243

Postfach 3640

76021 Karlsruhe

Germany

Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France

attn: J-P Rosen

115, avenue du Maine

75014 Paris

France
URL: www.ada-france.org

Ada-Spain

attn. Sergio Sáez

DISCA-ETSINF-Edificio 1G

Universitat Politècnica de València

Camino de Vera s/n

E46022 Valencia

Spain

Phone: +34-963-877-007, Ext. 75741

Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland

c/o Ahlan Marriott

Altweg 5

8450 Andelfingen

Switzerland

Phone: +41 52 624 2939

e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

http://www.ada-france.org/
http://www.adaspain.org/

