

Ada User Journal Volume 39, Number 3, September 2018

ADA
USER
JOURNAL

Volume 39

Number 3

September 2018

Contents
Page

Editorial Policy for Ada User Journal 138

Editorial 139

Quarterly News Digest 140

Conference Calendar 159

Forthcoming Events 165

Special Contribution

 J. Cousins
“ARG Work in Progress II” 169

Ada-Europe 2018 Industrial Presentations

 M. Martignano
“C Guidelines Compliance and Deviations (the MISRA and CERT Cases)” 175

 A. Marriot and U. Maurer
“Using Ada in Non-Ada Systems” 180

Ada-Europe 2018 Technical Presentations

 A. R. Mosteo
“Alire: a Library Repository Manager for the Open Source Ada Ecosystem” 189

 B. S. Fagin and M. C. Carlisle
“The IRONSIDES Project: Final Report” 197

Articles

 B. I. Sandén
“Designing Multitask Control Software in a Multiprocessor World” 203

Ada-Europe Associate Members (National Ada Organizations) 208

Ada-Europe Sponsors Inside Back Cover

138

Volume 39, Number 3, September 2018 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 139

Ada User Journal Volume 39, Number 3, September 2018

Editorial
I would like to start this Editorial by welcoming Kristoffer Nyborg Gregertsen, from SINTEF, Norway, to the Ada User
Journal Editorial Team. Kristoffer, who has been a recurrent contributor to the Journal with his work on Ada clocks and
timers, is now also contributing in the role of Assistant Editor. The editorial team is thus reinforced, which I am sure will
provide our readers with an even better Journal, both in contents as well as in the production process.

Concerning the contents of the September issue, the first article is a report on the work of the Ada Rapporteur Group (ARG),
in preparation for the forthcoming revision of the language. This report is, as its first instalment published in the January issue
of the Journal, written by Jeff Cousins, now former chair of the ARG.

Afterwards, the issue continues the publication of contributions which originate from the Ada-Europe 2018 conference. First,
the reader will find two papers derived from Industrial Presentations of the conference: the first, by Maurizio Martignano
from Spazio IT, Italy, describes the pitfalls of tailoring C Guidelines and proposes an approach to properly manage
compliance to MISRA and CERT guidelines; the second, from authors from White Elephant GmbH, Switzerland, present the
authors’ experience on using Ada packages within existing non-Ada embedded systems.

The conference contributions also include two papers derived from technical presentations. In the first, Alejandro Mosteo
from the Instituto de Investigación en Ingeniería de Aragón and the Centro Universitario de la Defensa de Zaragoza, Spain,
proposes the Alire tool, a library repository manager for Ada open source packages. The second paper, by authors of the US
Air Force Academy, USA, provides the final report of the IRONSIDES project, which constructed a provably secure DNS
server, using Ada and SPARK.

The final contribution in this issue is an article by Bo Sandén, from the Colorado Technical University, USA, presenting two
approaches to design a control application in a multiprocessor context.

The reader will also find in this issue the usual News Digest, Calendar and Forthcoming Events sections, provided by the
respective editors. In particular, the forthcoming events section provides information about the program of the upcoming
ACM SIGAda High Integrity Language Technology workshop, which will take place 5-6 November, in Boston, USA, co-
located with the ACM SPLASH conference, and the call for contributions for Ada-Europe 2019: the 24th International
Conference on Reliable Software Technologies, which will take place 10-14 June 2019, in Warsaw, Poland.

 Luís Miguel Pinho
Porto

September 2018
 Email: AUJ_Editor@Ada-Europe.org

140

Volume 39, Number 3, September 2018 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Events 140
Ada-related Resources 142
Ada-related Tools 143
Ada-related Products 145
Ada and Operating Systems 146
References to Publications 148
Ada Inside 150
Ada in Context 150

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Ada-Belgium Spring Event

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sun, 27 May 2018 18:03:03 -0000
Subject: Ada-Belgium Spring 2018 Event,

Sun 10 June 2018
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, be.comp.programming

Ada-Belgium Spring 2018 Event

Sunday, June 10, 2018, 12:00-19:00

Leuven, Belgium

including at 15:00

2018 Ada-Belgium General Assembly

and at 16:00

Ada Round-Table Discussion

http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/local.html

Announcement

The next Ada-Belgium event will take
place on Sunday, June 10, 2018 in
Leuven.

For the 11th year in a row, Ada-Belgium
organizes their "Spring Event", which
starts at noon, runs until 7pm, and
includes an informal lunch, the 25th(!)
General Assembly of the organization,
and a round-table discussion on Ada-
related topics the participants would like
to bring up.

Schedule

- 12:00 welcome and getting started
(please be there!)

- 12:15 informal lunch

- 15:00 Ada-Belgium General Assembly

- 16:00 Ada round-table + informal
discussions

- 19:00 end

Participation

Everyone interested (members and non-
members alike) is welcome at any or all
parts of this event.

For practical reasons registration is
required. If you would like to attend,
please send an email before Wednesday,
June 6, 21:00, to Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> with
the subject "Ada-Belgium Spring 2018
Event", so you can get precise directions
to the place of the meeting. Even if you
already responded to the preliminary
announcement, please reconfirm your
participation ASAP.

If you are interested to join Ada-Belgium,
please register by filling out the 2018
membership application form[1] and by
paying the appropriate fee before the
General Assembly. After payment you
will receive a receipt from our treasurer
and you are considered a member of the
organization for the year 2018 with all
member benefits[2]. Early enrolment
ensures you receive the full Ada-Belgium
membership benefits (including the Ada-
Europe indirect membership benefits
package).

As mentioned at earlier occasions, we
have a limited stock of documentation
sets and Ada related CD-ROMs that were
distributed at previous events, as well as
some back issues of the Ada User
Journal[3]. These will be available on a
first-come first-serve basis at the General
Assembly for current and new members.
(Please indicate in the above-mentioned
registration e-mail that you're interested,
so we can bring enough copies.)

[1] http://www.cs.kuleuven.be/~dirk/ada-
belgium/forms/member-form18.html

[2] http://www.cs.kuleuven.be/~dirk/ada-
belgium/member-benefit.html

[3] http://www.ada-europe.org/auj/home/

Informal lunch

The organization will provide food and
beverage to all Ada-Belgium members.
Non-members who want to participate at

the lunch are also welcome: they can
choose to join the organization or pay the
sum of 15 Euros per person to the
Treasurer of the organization.

General Assembly

All Ada-Belgium members have a vote at
the General Assembly, can add items to
the agenda, and can be a candidate for a
position on the Board[4]. See the separate
official convocation[5] for all details.

[4] http://www.cs.kuleuven.be/~dirk/
ada-belgium/board/

[5] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/18/
180610-abga-conv.html

Ada Round-Table Discussion

As in recent years, we plan to keep the
technical part of the Spring event informal
as well. We will have a round-table
discussion on Ada-related topics the
participants would like to bring up. We
invite everyone to briefly mention how
they are using Ada in their work or non-
work environment, and/or what kind of
Ada-related activities they would like to
embark on. We hope this might spark
some concrete ideas for new activities and
collaborations.

Directions

To permit this more interactive and social
format, the event takes place at private
premises in Leuven. As instructed above,
please inform us by e-mail if you would
like to attend, and we'll provide you
precise directions to the place of the
meeting. Obviously, the number of
participants we can accommodate is not
unlimited, so don't delay...

Looking forward to meet many of you!

Ada-Europe 2018 in Lisbon

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Tue, 12 Jun 2018 05:43:47 -0000
Subject: Press Release - Reliable Software

Technologies, Ada-Europe 2018
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

FINAL Call for Participation

*** UPDATED Program Summary ***

23rd International Conference on
Reliable Software Technologies

- Ada-Europe 2018

18-22 June 2018, Lisbon, Portugal

Ada-related Events 141

Ada User Journal Volume 39, Number 3, September 2018

http://www.ada-europe.org/
conference2018

** Check out tutorials and workshops! **

** Full Program available on conference
web site **

*Online proceedings available at event *

*** Register now! ***

Press release:

23rd Ada-Europe Conference on Reliable
Software Technologies

International experts meet in Lisbon

Lisbon, Portugal (12 June 2018) - The
University Lisboa and Ada-Europe
organize from 18 to 22 June 2018 the
"23rd International Conference on
Reliable Software Technologies - Ada-
Europe 2018" in Lisbon, Portugal. The
event is organized in cooperation with the
Ada Resource Association (ARA), and
with ACM's Special Interest Groups on
Ada (SIGAda), on Embedded Systems
(SIGBED) and on Programming
Languages (SIGPLAN).

The Ada-Europe series of conferences has
over the years become a leading
international forum for providers,
practitioners and researchers in reliable
software technologies. These events
highlight the increased relevance of Ada
in general and in safety- and security-
critical systems in particular, and provide
a unique opportunity for interaction and
collaboration between academics and
industrial practitioners.

This year's conference offers two days of
parallel tutorials and workshops, three
keynotes, a full technical program of
refereed papers and industrial
presentations, an industrial exhibition and
vendor presentations, and a social
program.

Eight excellent tutorials on Monday and
Friday cover a broad range of topics:
Recent Developments in SPARK 2014;
Scheduling analysis of AADL
architecture models; Access types and
memory management in Ada 2012;
Numerics for the Non-Numerical Analyst;
Writing Contracts in Ada; Introduction to
Libadalang; Unit-testing with Ahven;
Frama-C, a Framework for Analysing C
Code.

In addition, on Monday the conference
hosts the new workshop on "Runtime
Verification and Monitoring Technologies
for Embedded Systems" (RUME 2018),
and on Friday for the 5th consecutive year
the workshop on "Challenges and new
Approaches for Dependable and Cyber-
Physical Systems Engineering" (DeCPS
2018).

Three eminent keynote speakers have
been invited to open each day of the core
conference program. Paulo Esteves-
Veríssimo (University of Luxembourg,

Luxembourg), on "Security and
Dependability Challenges of Information
Technology (IT) and Operational
Technology (OT) Integration". Carl
Brandon (Vermont Technical College,
USA), on "From Physicist to Rocket
Scientist, and how to make a CubeSat that
works". Erhard Plödereder (University of
Stuttgart, Germany), on "Vulnerabilities
in Safety, Security, and Privacy".

The technical program presents 10
refereed and carefully selected technical
papers and 4 presentations on the latest
research, new tools, applications and
industrial practice and experience, a
collection of 12 industrial presentations
reflecting current practice and challenges,
and vendor presentations. Springer Verlag
publishes all peer-reviewed papers in the
proceedings of the conference, as LNCS
Vol. 10873. The remainder of the
proceedings will be published in the Ada
User Journal, the quarterly magazine of
Ada-Europe.

The industrial exhibition opens Tuesday
morning in the networking area and runs
until the end of Thursday afternoon.
Exhibitors include AdaCore, PTC
Developer Tools, Rapita Systems, and
Ada-Europe.

The social program includes on Tuesday
evening a Welcome Reception on board
of modern catamaran, to see Lisbon from
a different perspective and watch the
sunset from the Tagus river. On
Wednesday evening will be the traditional
Ada-Europe Conference Banquet, held at
the restaurant "A Casa do Bacalhau",
which means "The House of the Codfish",
located in the old stables of the Duke of
Lafões palace. Each day, coffee breaks in
the exhibition area and sit-down lunches
offer ample time for interaction and
networking.

The Best Paper Award will be presented
during the Conference Banquet, the Best
Presentation Award during the Closing
session.

The conference is hosted by Univ. Lisboa
at the VIP Executive Art's Hotel,
strategically located in the Parque das
Nações area, Lisbon's modern business
centre, close to the Tagus river and the
Vasco da Gama bridge, and can easily be
accessed by metro.

The full program is available on the
conference web site.

Online registration is still possible.

Latest updates:

The 16-page "Final Program" is available
at <http://www.ada-europe.org/
conference2018/AdaEurope2018%20
Final%20Program.pdf>

Check out the 8 tutorials in the PDF
program, or in the schedule at
<http://www.ada-europe.org/
conference2018/tutorials.html>.

Registration fees are very reasonable and
the registration process is done on-line.
Don't delay! For all details, select
"Registration" at <http://www.ada-
europe.org/conference2018> or go
directly to <http://ae2018.di.fc.ul.pt/
registration.html>.

The proceedings, published by Springer
Verlag as Lecture Notes in Computer
Science Vol. 10873, are already available
online. See
<https://link.springer.com/book/10.1007/
978-3-319-92432-8>. A printed copy is
included in every full conference
registration.

Help promote the conference by
advertising for it! <http://www.ada-
europe.org/conference2018/promotion.ht
ml>. Put up the poster at
<http://www.ada-europe.org/
conference2018/picts/
AE2018_poster.png>.

Recommended Twitter hashtags:
#AdaEurope and/or #AdaEurope2018.

For the latest information consult the
conference web site <http://www.ada-
europe.org/conference2018>.

[See also “Ada-Europe 2018 in Lisbon”,
AUJ 39-2, p. 62. —sparre]

Ada-Europe 2019 in Warsaw

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Fri, 22 Jun 2018 12:05:48 -0000
Subject: Ada-Europe 24th Int'l Conf. on

Reliable Software Technologies
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

As announced this week at the Ada-
Europe 2018 conference in Lisbon: Ada-
Europe 2019 will be in Warsaw, Poland,
in the week of 10-14 June.

Info on http://www.ada-europe.org/
conference2019 will be expanded shortly,
including the Preliminary Call for
Contributions. Start planning!

ACM HILT 2018 in Boston

From: S. Tucker Taft, AdaCore
Date: Fri, 29 Jun 2018 10:25:30 -0700
Subject: CFP: ACM HILT 2018 Workshop

on Languages/Tools for Cyber-
Resilience at SPLASH in Boston, Nov
5&6

Newsgroups: comp.lang.ada

Here is a chance to show how Ada and
SPARK can be used to address cyber-
security challenges:

https://2018.splashcon.org/track/
hilt-2018-papers

HILT 2018: Workshop on Languages and
Tools for Ensuring Cyber-Resilience in
Critical Software-Intensive Systems, as
part of SPLASH 2018, November 5 & 6,
2018, Boston, MA, USA, Sponsored by
ACM SIGAda.

142 Ada-related Resources

Volume 39, Number 3, September 2018 Ada User Journal

The High Integrity Language Technology
(HILT) 2018 Workshop is focused on the
cyber-resilience needs of critical software
systems, where such a system must be
trusted to maintain a continual delivery of
services, as well as ensuring safety in its
operations. Such needs have common
goals and shared strategies, tools, and
techniques, recognizing the multiple
interactions between security and safety.

We encourage papers and extended
abstracts relating to:

- Language features that can be used to
build security and/or safety into
software-intensive systems; Approaches
to apply effectively the emerging
technologies of AI and Machine
Learning in critical software systems;

- Mechanisms that can be used to
understand, certify, and manage systems
that are “data driven,” relying on “soft
code,” where control flow and
algorithms are expressed using data
rather than “hard code” expressed
directly in programming languages;

- Extending contract-based programming
to specifying security resistance and
resilience properties as well as safety
and/or correctness properties;

- Strategies to minimize risk when
applying complex software requirements
to cyber-physical systems;

- Modeling and/or programming language
features and analysis techniques that aid
in code analysis and verification and that
increase the level of abstraction and
expressiveness;

- Language features that support
continuous requirements maturation to
support evolving needs, particularly in
cyber-physical systems, while ensuring
that security and safety properties are
preserved.

This workshop is designed as a forum for
communities of researchers and
practitioners from academic, industrial,
and governmental settings, to come
together, share experiences, and forge
partnerships focused on integrating and
deploying tool and language combinations
to address the challenges of building
cyber-resilient software-intensive
systems. The workshop will be a
combination of presentations and panel
discussions, with one or more invited
speakers.

Attendees wishing to present at the
workshop should prepare full papers
(approx. 6-8 pages), or extended abstracts
(approx. 2-4 pages) for their proposed
presentations, and the workshop program
committee will select presentations and
organize them into sessions. Other
interested participants are welcome to
register for the HILT 2018 Workshop as
part of their SPLASH 2018 registration.

- Aug 1: Papers or Extended abstracts
due;

- Sep 1: Notification of submissions
accepted for presentation

- Oct 1: Final submissions due

- Nov 5&6: Workshop as part of SPLASH
2018

Please submit papers and extended
abstracts, by Aug 1, 2018, on HotCRP:
https://hilt18.hotcrp.com/

Workshop Co-Chairs

- Bill Bail, MITRE

- Tucker Taft, AdaCore, Inc

Organizing Committee

- Dirk Craeynest, ACM SIGAda
International Representative,
KU Leuven

- Drew Hamilton, Chair, ACM SIGAda,
Mississippi State University, CCI

- Clyde Roby, Secretary-Treasurer, ACM
SIGAda, Institute for Defence Analyses

- Alok Srivastava, Editor, ACM Ada
Letters, Engility Corp.

- Ricky E. Sward, Past Chair, ACM
SIGAda, MITRE

URLs:

- SPLASH 2018:
http://www.splashcon.org

- HILT 2018 Information:
http://sigada.org/conf/hilt2018

- HILT 2018 Submissions:
https://hilt18.hotcrp.com/

- ACM SIGAda: http://sigada.org

Ada-related Resources

The Ada-wide Search
Engine

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 May 2018 19:53:12 -0500
Subject: Re: Ada in polluted WWW searches
Newsgroups: comp.lang.ada

> [problems searching for Ada]

This problem was well known decades
ago. Tom Moran and I built the Ada-wide
search engine to "solve" this problem -- it
indexes all known Ada sites. It doesn't
work as well as it used to because a lot of
sites have switched to HTTPS which we
can't index yet. (I need to find some time
to fix that; I have *soooo* much spare
time ;-).

Anyway, you can find it on AdaIC or
directly at <http://www.ada-auth.org/
wide-search.html>.

Note that the blurb for this on the ACAA
home page says "Search many Ada-
related web sites without getting results
for dentists and dairymen."

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue, 22 May 2018 08:08:52 +0200
Subject: Re: Ada in polluted WWW searches
Newsgroups: comp.lang.ada

> [...]

Is the source for the indexing engine
available? Maybe somebody could be
tempted to submit a patch, adding support
for HTTPS.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 22 May 2018 16:31:38 -0500
Subject: Re: Ada in polluted WWW searches
Newsgroups: comp.lang.ada

> [...] Is the source for the indexing
engine available? [...]

Unfortunately, it's not. We built it out of
spare parts laying around, and I never
found time to figure out the licensing on
those. Another job for the copious spare
time. :-)

I do plan to work on that project this
summer after the Lisbon ARG meeting
(it's tied into a long-running project to get
the various servers off of Windows, to use
more modern hardware and not cost $$$).

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sat Jul 7 2018
Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn: 2_712 members [1]

- Reddit: 1_900 readers [2]

- StackOverflow: 1_000 followers [3]

- Google+: 771 members [4]

- Freenode 87 participants [5]

- Gitter: 57 people [6]

- Twitter: 8 tweeters [7]

[1] https://www.linkedin.com/
groups?gid=114211

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/
questions/tagged/ada

[4] https://plus.google.com/
communities/102688015980369378804

[5] #Ada on irc.freenode.net

[6] https://gitter.im/ada-lang

[7] https://twitter.com/search?
f=realtime&q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
39-2, p. 63. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sat Jul 7 2018

Ada-related Tools 143

Ada User Journal Volume 39, Number 3, September 2018

Subject: Repositories of Open Source
software

GitHub: 2_123 repositories [1]

 513 developers [2]

 2_809 issues [3]

Rosetta Code: 645 examples [4]

 33 developers [5]

 1 issues [6]

Sourceforge: 265 projects [7]

BlackDuck OpenHUB: 206 projects [8]

Bitbucket: 82 repositories [9]

Codelabs: 45 repositories [10]

AdaForge: 8 repositories [11]

[1] https://github.com/search?
q=language%3AAda&type=
Repositories

[2] https://github.com/search?
q=language%3AAda&type=Users

[3] https://github.com/search?
q=language%3AAda&type=Issues

[4] http://rosettacode.org/wiki/
Category:Ada

[5] http://rosettacode.org/wiki/
Category:Ada_User

[6] http://rosettacode.org/wiki/Category:
Ada_examples_needing_attention

[7] http://sourceforge.net/directory/
language%3Aada/

[8] https://www.openhub.net/tags?
names=ada

[9] https://bitbucket.org/repo/all?
name=ada&language=ada

[10] http://git.codelabs.ch/

[11] http://forge.ada-ru.org/adaforge

[See also “Repositories of Open Source
Software”, AUJ 39-2, p. 63. —sparre]

Ada-related Tools

DragonEgg

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Mon, 21 May 2018 21:37:12 -0000
Subject: DragonEgg has been revived
Newsgroups: comp.lang.ada

[I apologise if this has already been
covered in the walls of text which have
been flying around recently, but I have
not seen this mentioned yet.]

I've just discovered that DragonEgg has
been revived for GCC 8.x and LLVM 6.x,
although there is nothing in the
announcement about Ada:

http://lists.llvm.org/pipermail/llvm-
dev/2017-August/116705.html

[See also <https://github.com/xiangzhai/
dragonegg>. —sparre]

State of the Compiler
Market

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Tue, 22 May 2018 12:29:09 -0000
Subject: Re: DragonEgg has been revived
Newsgroups: comp.lang.ada

> [...]

What I would like to see is an Ada
compiler that can generate code for a
wide range of targets without any GPL
restrictions on the generated code.

I'm not really bothered how that happens
but LLVM seems like an interesting
option.

The real question however is will this Ada
compiler still work with the versions of
the toolchains available 2-5 years from
now or will it fall into disuse just like
DragonEgg did ?

There's a confidence problem here. I can
write C and C++ code in 2018 for some
random embedded target knowing there's
a very very good chance I will still be
able to compile that code on the freely
available toolchains which will exist 5
years from now.

I don't currently have that confidence with
the Ada compilers which are available in
2018.

As I have said before, the language is
really good, but the compiler situation
is lousy.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 23 May 2018 08:26:46 +0100
Subject: Re: DragonEgg has been revived
Newsgroups: comp.lang.ada

> What I would like to see is an Ada
compiler that can generate code for a
wide range of targets without any GPL
restrictions on the generated code.

Pretty sure that's called GCC.

People are perfectly happy to use GCC
for C-based commercial projects in spite
of the fact that libgcc, and GNU
libstdc++, if you're that way inclined,
have *exactly* the same runtime
exception as FSF GNAT's RTS and the
GNAT Pro RTS.

The formal position is that the GCC
compiler itself doesn't assert any licensing
restrictions over target code generated by
it beyond that derived from the original
source code.

I can see that people, especially
commercial lawyers, might be confused
about this, especially if they read all the
hot air that's been blasting over this
newsgroup lately. It's a good thing that
that's unlikely.

Seems to me that one could in theory get
over the licensing issue by writing an
independent BSD-licensed RTS. Not that
this is a small task; deliberately omitting

finalization, exception propagation, full
tasking, and multiprocessors would make
it just about feasible for a small team, I
think. But I may be seeing through rose-
tinted specs because of having based
Cortex GNAT RTS on FSF GCC.

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 23 May 2018 09:11:55 +0100
Subject: Re: DragonEgg has been revived
Newsgroups: comp.lang.ada

> People are perfectly happy to use GCC
for C-based commercial projects [...]

It’s not just the licensing stupidity with
Ada libs. On the C or C++ front, they can
easily go to Clang and get more targets,
I.e. iOS, Ada programmers can’t.

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Fri, 25 May 2018 13:16:54 -0000
Subject: Re: DragonEgg has been revived
Newsgroups: comp.lang.ada

[...]

I don't care if the compiler itself is GPL.

I _do_ care if the RTS or anything else is
GPL (or even LGPL) and as a result there
are constraints imposed on my binaries or
source code when I use the compiler. I
want to be able to compile programs
using the compiler without having to do
anything else other than ship the binary
for my program.

This is why I talk about generated code
and not the compiler.

The FSF runtime exception is fine for me.

I would like to be able to use Ada in all
the places I can currently use C and C++
code, including bare metal targets.

If I start using Ada in those places, I
would like to be sure that I can still build
Ada code for those targets in 2-5 years
using the current toolchains of the day,
just like I can with C and C++ code.

It would be nice if it was as easy to port a
compiler toolchain to a new OS or
architecture as it is to port a RTOS to a
new target. This would be one answer to
the lack of targets for an Ada compiler.

For those of you who have not done
RTOS based development, an RTOS is
typically very cleanly divided internally
into libraries of generic code and target
specific low level Board Support
Packages (BSP) that implement the
required functionality for a specific piece
of hardware.

All that it typically takes to port to a new
piece of hardware is to write a new BSP
and the interface from the BSP to the rest
of the RTOS is typically very clean and
well documented.

It would be nice if an Ada compiler was
also that clean internally and as well
documented so that you could easily port
it to a new OS or environment yourself if
you needed.

144 Ada-related Tools

Volume 39, Number 3, September 2018 Ada User Journal

[See also “State of the Compiler Market”,
AUJ 38-2, p. 75. —sparre]

Qt5Ada

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Sat, 26 May 2018 20:25:41 -0700
Subject: Announce : Qt5Ada version 5.11.0

(548 packages) release 26/05/2018 free
edition

Newsgroups: comp.lang.ada

Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.11.0 final)

Qt5ada version 5.11.0 open source and
qt5c.dll,libqt5c.so(x64) built with
Microsoft Visual Studio 2015 in
Windows, gcc x86-64 in Linux.

Package tested with gnat gpl 2012 ada
compiler in Windows 32bit and 64bit ,
Linux x86-64 Debian 9.2

It supports GUI, SQL, Multimedia, Web,
Network, Touch devices,
Sensors,Bluetooth, Navigation and many
others thinks.

Changes for new Qt5Ada release :

Added new packages:
Qt.QStringView,Qt.QGraphicsCustomIte
m,Qt.QGLContext

My configuration script to build Qt 5.11.0
is: configure -opensource -release -
nomake tests -opengl dynamic -qt-zlib -
qt-libpng -qt-libjpeg -openssl-linked
OPENSSL_LIBS="-lssleay32 -llibeay32"
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.11"

As a role ADA is used in embedded
systems, but with QTADA(+VTKADA)
you can build any desktop applications
with

powerful 2D/3D rendering and imaging
(games, animations, emulations) GUI,
Database connection, server/client,
Internet browsing , Modbus control and
many others thinks.

Qt5Ada and VTKAda for Windows,
Linux (Unix) is available from

http://hybrid-web.global.blackspider.com/
urlwrap/?q=AXicFc47DoJAEIDhOYKns
HMBIb4SotHYqRFiLOxgd4VJZnfI8goX
tLbwIB5B7P8v-ScHeH0Avm8AR0MU5
qJ2nTAZkmTbOCYh2UAfJWvpW-
kH0WK5AmKLSigmk9kdajk2AgnKpqnq
jecph50WBXNB-s-9J5PSrkPdb1HF
n6etI8T69mA19xckpRW4TlQt_R-
nLZ1Fddl5tAWAFCMWz_OvTcj&Z
(google drive. It can be mounted as virtual
drive or directory or viewed with Web
Browser)

The full list of released classes is in "Qt5
classes to Qt5Ada packages relation
table.docx"

VTKAda version 8.1.0 is based on VTK
8.1.0 (OpenGL2) is fully compatible with
Qt5Ada 5.11.0

I hope Qt5Ada and VTKAda will be
useful for students, engineers, scientists
and enthusiasts

With Qt5Ada you can build any
applications and solve any problems easy
and quickly.

[See also “Qt5Ada”, AUJ 39-1, p. 10.
 —sparre]

TCP/IP in SPARK

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Wed, 30 May 2018 17:40:02 -0700
Subject: SPARK TCP-IP
Newsgroups: comp.lang.ada

Does anyone have a checkout/archive of
the SPARK TCP/IP implementation that
used to be hosted here: [...]

From: Matti Oinas
<matti.oinas@gmail.com>

Date: Wed, 30 May 2018 20:41:03 -0700
Subject: Re: SPARK TCP-IP
Newsgroups: comp.lang.ada

Are you looking this one?

https://github.com/AdaCore/spark2014/
tree/master/testsuite/gnatprove/tests/
ipstack

Simple Components

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 2 Jun 2018 16:34:43 +0200
Subject: ANN: Simple components for Ada

v4.29
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- Handling faulty devices added to the
package GNAT.Sockets.
Connection_State_Machine.
ELV_MAX_Cube_Client;

- Asynchronous execution of remote calls
is supported;

- Bug fix in the function To_HTML from
GNAT.Sockets.

Connection_State_Machine.
HTTP_Server;

- Bug fix GNAT.Sockets.Server.Secure.
Anonymous, misspelled Initialize.

[See also “Simple Components”, AUJ 39-
2, p. 66. —sparre]

Cortex GNAT RTS

From: Simon Wright
<simon@pushface.org>

Date: Thu, 07 Jun 2018 17:39:01 +0100
Subject: ANN: Cortex GNAT RTS 20180607
Newsgroups: comp.lang.ada

This release doesn't change any RTS
functionality; instead, it reorganises the
structure of the source code so as to
accommodate the changes made to keep
in synchrony with compiler releases
without using git branches. [I'd like to
shout out a big THANKS! to the person
here who reminded me about using
variant-specific subdirectories for the
changed files. I was getting quite
overwhelmed with running 6 parallel
branches!]

This affects how you build the RTS: you
must specify which release of the
compiler you're building for, e.g.

 make RELEASE=gnat-gpl-2017

and the RTS must be installed, either with
the compiler or locally (you can't any
longer use the RTS directly in its build
location).

Find at

https://github.com/simonjwright/
cortex-gnat-rts/releases/tag/r20180607

[See also “Cortex GNAT RTS”, AUJ 39-
2, p. 66. —sparre]

From: Simon Wright
<simon@pushface.org>

Date: Sat, 09 Jun 2018 11:57:51 +0100
Subject: Re: ANN: Cortex GNAT RTS

20180607
Newsgroups: comp.lang.ada

> [...]

To build using the new GNAT CE 2018
ARM-ELF compiler, use:

 make RELEASE=gcc8

From: Simon Wright
<simon@pushface.org>

Date: Thu, 14 Jun 2018 21:47:06 +0100
Subject: ANN: Cortex GNAT RTS 2018-06-

14
Newsgroups: comp.lang.ada

This release[1] adds support for the task
aspect Secondary_Stack_Size. Writeup at
[2].

It turns out that it also supports GNAT CE
2018 (use RELEASE=gcc8).

Ada-related Products 145

Ada User Journal Volume 39, Number 3, September 2018

[1] https://github.com/simonjwright/
cortex-gnat-rts/releases/tag/r20180614

[2] https://forward-in-code.blogspot.com/
2018/06/secondary-stack-in-
cortex-gnat-rts.html

GNAT Community Edition

From: Simon Wright
<simon@pushface.org>

Date: Fri, 08 Jun 2018 18:58:05 +0100
Subject: GNAT Community Edition 2018
Newsgroups: comp.lang.ada

GNAT Community Edition 2018 is
available. The macOS arm-elf cross
compiler is there too! (phew)

[See also “GNAT Community Edition”,
AUJ 39-1, p. 9. —sparre]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 8 Jun 2018 21:27:18 +0200
Subject: Re: GNAT Community Edition

2018
Newsgroups: comp.lang.ada

> [...]

Great news! 64-bit Windows and 64-bit
Gtk.

VisualAda

From: alby.gamper@gmail.com
Date: Sun, 24 Jun 2018 01:10:08 -0700
Subject: ANN: VisualAda (Ada Integration

for Visual Studio 2017)
Newsgroups: comp.lang.ada

I am pleased to announce the initial
release of VisualAda. This is a extension
(aka plugin) for Visual Studio 2017 and is
made freely available. Some or the
features of VisualAda are:

1) Full edit, build and debug integration

2) GIT, and TFS source control
integration

3) Limited Intellisense (For now)

4) Project templates targeting both
Desktop and UWP based applications
(Note for UWP applications you will
need the Ada/Winrt bindings available
on GitHub)

Please feel free to download the plug-in
from the following URL

https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda

Generic Image Decoder

From: SourceForge
Date: Thu, 28 Jun 2018
Subject: Generic Image Decoder
URL: https://sourceforge.net/projects/gen-

img-dec/

https://sourceforge.net/projects/
gen-img-dec/files/gid_008.zip/download

The Generic Image Decoder is a package
for decoding a broad variety of image
formats, from any data stream, to any
kind of medium. Unconditionally portable
code: OS-, CPU-, compiler- independent
code.

Features:

- Supported formats: BMP, GIF, JPEG,
PNG, PNM, TGA

- Use of generics and inlining at multiple
nesting levels for fast execution

- Standalone (no external dependency)

- Task safe

- Endian-neutral

- Unconditionally portable

- Pure Ada 95 (nothing compiler/system
specific), can be used in projects in Ada
95, Ada 2005, Ada 2012 and later
language versions

[See also “Generic Image Decoder”, AUJ
36-2, p. 65. —sparre]

Zip-Ada

From: SourceForge
Date: Thu, 28 Jun 2018
Subject: Zip-Ada
URL: http://unzip-ada.sf.net

https://sourceforge.net/projects/
unzip-ada/files/zipada54.zip/download

Zip-Ada is a library for .zip archives. Full
sources are in Ada and are
unconditionally portable. Input and output
can be any stream (file, buffer,...) for
archive creation as well as data extraction.
Task safe and endian-neutral.

Features:

- Files and streams supported, for archives
and entries, for compression and
decompression

- Unconditionally portable

- Task safe

- Endian-neutral

- Standalone

- Zip methods supported for compression:
Reduce, Shrink, Deflate, LZMA.

- Zip methods supported for
decompression: the above methods,
plus: Implode, Deflate64, BZip2

- Pure Ada 95 (nothing compiler/system
specific), can be used in projects in Ada
95, Ada 2005, Ada 2012 and later
language versions

[See also “Zip-Ada”, AUJ 38-4, p. 178.
—sparre]

Bar Codes

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Thu, 5 Jul 2018 02:49:32 -0700
Subject: Ann: Ada Bar Codes v.002
Newsgroups: comp.lang.ada

Ada Bar Codes is free and fully Ada
open-source.

- Supported bar code formats in v.002:
Code 128 and QR Code (new)

- Ready-to-use output formats:

 o PDF, SVG (vector graphics)

 o PBM (raster graphics)

http://ada-bar-codes.sf.net/

The project Ada Bar Codes provides a
package for generating various types of
bar codes (1D, or 2D like QR codes) on
different output formats, such as PDF or
SVG.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Thu, 5 Jul 2018 17:25:15 +0200
Subject: Re: Ann: Ada Bar Codes v.002
Newsgroups: comp.lang.ada

> [...]

You can use it to display bar codes with
Gnoga using Gnoga_Bar_Codes:

https://github.com/jrcarter/
Gnoga_Bar_Codes

[See also “Gnoga”, AUJ 39-2, p. 65.
—sparre]

Ada-related Products

GNAT Pro for BlackBerry
QNX

From: AdaCore Press Center
Date: Tue, 15 May 2018
Subject: AdaCore’s GNAT Pro Ada

Toolchain Released for BlackBerry QNX
- AdaCore

URL: https://www.adacore.com/
press/gnat-pro-ada-toolchain-for-
blackberry-qnx

AdaCore and BlackBerry partnering to
support development of critical
applications

NEW YORK and PARIS, May 15, 2018–
AdaCore today announced a new
partnership with BlackBerry to support
the company’s industry-leading QNX
operating system across AdaCore’s family
of GNAT Pro software tools, including
GNAT Pro Assurance, GNAT Pro
Enterprise and GNAT Pro Developer. The
support for QNX within the GNAT Pro
product line will further expand the broad
range of embedded platforms available to
Ada users and also offer C developers on
QNX an easy migration path to the Ada or
SPARK languages.

GNAT Pro for QNX is initially targeted
for the ARM Cortex A family with plans
to support all architectures in the future.

GNAT Pro for QNX comes with a full
Ada run-time library supporting all
versions of the language from Ada 83
through Ada 2012, together with an early
implementation of features that are

146 Ada and Operat ing Systems

Volume 39, Number 3, September 2018 Ada User Journal

expected to be in the next Ada standard.
The product includes the GNAT
Programming Studio (GPS) IDE and the
Eclipse plugin GNATbench, several basic
static analysis tools for metrics
computation and coding standard
verification, the Ada unit testing tool
GNATtest, and the SPARK Discovery
toolset that can be used to gain experience
with formal methods in general and the
SPARK language in particular.

“BlackBerry’s QNX operating system is
the foundational software in automotive,
industrial automation, medical, defense,
railway and many other mission-critical
systems that require reliability, safety, and
security,” said Grant Courville, Head of
Product Management at BlackBerry
QNX. “We are pleased to partner with
AdaCore to support the integration of the
GNAT Pro Ada software as this will
enable customers who require Ada
language support to leverage both
companies’ expertise and technology to
build reliable, safe and secure QNX-based
products.”

"In recent years we've seen increasing
interest in Ada from domains outside of
the language's traditional aerospace and
defense niche," said Quentin Ochem, lead
of Business Development at AdaCore.
"We're thrilled to combine our forces with
one of the leading players in the mission-
critical embedded software domain,
BlackBerry QNX. Our joint solution will
help developers design systems at the
highest levels of reliability, safety and
security."

[...]

RapiTest

From: Rapita Systems
Date: Wed, 16 May 2018
Subject: (Re)-introducing RapiTest | Rapita

Systems
URL: https://www.rapitasystems.com/

news/re-introducing-rapitest

Bowing to popular demand, we've
renamed our (formerly)
RapiTestFramework product to RapiTest.
Future versions of the tool will be
released with the new name, while
existing versions will continue to work as
normal.

Why did we make the change? One
reason among many is that the former
name was somewhat difficult on the
tongue and many people, including our
own engineers, were already calling the
product RapiTest.

RapiTest will continue to reduce the cost
of critical software verification by helping
engineers efficiently write, run and
analyze results from requirements-based
tests.

AdaCore Extends Support
for Wind River VxWorks
Portfolio

From: AdaCore Press Center
Date: Tue, 19 Jun 2018
Subject: AdaCore Extends Support for Wind

River VxWorks Portfolio - AdaCore
URL: https://www.adacore.com/press

/adacore-extends-support-for-wind-
river-vxworks-portfolio

GNAT Pro Ada and VxWorks offer 32-bit
and 64-bit support on the latest ARM,
Intel, and Power multi-core processors

PARIS & NEW YORK & MUNICH,
Germany, June 19, 2018 – Avionics
Electronics Europe Conference –
AdaCore, a trusted provider of software
development and verification tools, today
announced the availability of its flagship
GNAT Pro Ada Development
Environment for the Wind
River®VxWorks®7 real-time operating
system (RTOS), on leading multi-core
hardware platforms. GNAT Pro 18 now
supports VxWorks 7 on the ARM (64-
bit), Power (64-bit) and Intel (32-bit)
architectures, under both Linux and
Windows development environments.
These releases extend GNAT Pro’s
coverage of the Wind River VxWorks
platforms, being added to the existing
support for VxWorks 7 targets (ARM 32-
bit, Power 32-bit, and Intel 64-bit),
VxWorks 6 and VxWorks 653,
reinforcing the companies’ longstanding
strategic alliance.

 “Adding support for the new VxWorks
platforms continues a long history of Ada
on VxWorks,” said Jamie Ayre,
Commercial Director at AdaCore.
“Hundreds of projects in various domains
have benefitted from the close
relationship between Wind River and
AdaCore. Our software development and
verification tools combined with the
power of VxWorks allow our customers
in the aerospace community – both
commercial and military – to develop
reliable, safe and secure applications that
need to meet the most demanding
standards.”

“GNAT Pro Ada’s capability to support
Wind River VxWorks 7 on ARM, Intel,
or Power hardware platforms will drive
down both program cost and risk,” stated
Chip Downing, senior director of
aerospace and defense at Wind River.
“Opening up 64-bit capabilities on multi-
core processors will enable a vast new
range of applications for our joint
customers.”

GNAT Pro customers on VxWorks can
choose from several specialized Ada run-
time libraries based on project
requirements:

- The ZFP (Zero Footprint Profile) with
minimal run-time code.

- The Cert profile, which extends the ZFP
with features including support for
ARINC-653 APEX processes (on
VxWorks 653) in Ada or mixed-
language applications. The Cert profile
is amenable to analysis for inclusion in
systems requiring certification under
standards such as DO-178B or DO-
178C.

- The Ravenscar-Cert profile, which
extends the Cert profile with the
Ravenscar tasking subset, likewise
appropriate for systems needing
certification

- Full Ada, for maximal expressibility
when certification is not required.

In addition to using one of the certifiable
run-time libraries on VxWorks, customers
can reduce certification costs by adopting
one of AdaCore’s qualifiable verification
tools. These include the CodePeer
advanced static analysis tool for Ada, the
GNATcheck coding standard checker,
and the GNATcoverage code coverage
analyzer. Certification material for the
Cert and Ravenscar-Cert libraries, and
qualification material for the qualifiable
tools, are available as an option to
customers with a subscription to the
GNAT Pro Assurance edition.

 One of the most promising developments
in the avionics community is the Future
Airborne Capability Environment
(FACE™) initiative, which can help
reduce system costs through portable
components. VxWorks 653 is the first
Commercial-Off-The-Shelf (COTS)
product to be certified as conformant to
the FACE Technical Standard’s Operating
System Segment (OSS) Safety Base
Profile. GNAT Pro for VxWorks 653 can
thus offer users the benefits of Ada’s high
reliability together with the safety-critical
support and ease of rapid component
integration that come from VxWorks 653
and its FACE conformance.

[...]

Ada and Operating
Systems

MacOS: GCC for ARM-
EABI

From: Simon Wright
<simon@pushface.org>

Date: Sun, 20 May 2018 11:48:04 +0100
Subject: ANN: GCC 8.1.0 for arm-eabi
Newsgroups: comp.lang.ada

This is GCC 8.1.0, rebuilt as a cross-
compiler from macOS to ARM-EABI
(tested with the Cortex-M3 as found on
the Arduino Due[1] and the Cortex-M4 as
found on the STMicroelectronics[2]
STM32F4 Discovery and STM32F429I
Discovery boards; but note that GCC has
implemented multilib support for other
ARM chips).

Ada and Operat ing Systems 147

Ada User Journal Volume 39, Number 3, September 2018

Find at

https://sf.net/projects/gnuada/files/
GNAT_GCC%20Mac%20OS%20X/8.1.0
/arm-eabi/

GNAT GDB 2017 (rebuilt for arm-eabi)
is included.

The compiler comes with no Ada
Runtime System (RTS). See the Cortex
GNAT Run Time Systems project[3] for
candidates.

NOTE 1: the compiler/RTS interface has
changed; for the time being, you will need
to check out the [gcc8] branch.

NOTE 2: for the same reason, this
compiler can't presently be used with
AdaCore's bb-runtimes repository at
Github[4].

The compiler is known to run on El
Capitan and High Sierra; it may not run
on earlier OS X releases.

[1] http://www.arduino.com

[2] http://www.st.com

[3] https://github.com/simonjwright/
cortex-gnat-rts/tree/gcc8

[4] https://github.com/AdaCore/bb-
runtimes

[See also “Mac OS X: GCC for ARM-
EABI”, AUJ 38-2, p. 77. —sparre]

Windows: 64 bit Bindings?

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Mon, 21 May 2018 12:30:27 -0700
Subject: win64ada or win_32_64_ada ?
Newsgroups: comp.lang.ada

Are there win64ada bindings around, or
win_32_64_ada (they would adapt
depending on the compilation target, like
GNATCOM & GWindows do), or do the
current win32ada just work with the 64
bit address types?

Debian: Yearly Migration

From: Nicolas Boulenguez
<nicolas.boulenguez@free.fr>

Date: Sat, 26 May 2018 15:11:22 +0200
Subject: yearly migration
Newsgroups:

gmane.linux.debian.packages.ada

Next default C compiler on Debian will
be gcc-8. Most Ada packages already
build with trivial changes [1].

Every library will need to rename its -dev
and so package. Such renamings take time
because they imply a manual review in
the NEW queue.

Please consider updating your packages
and uploading them to experimental,
where gnat already depends on gnat-8.
Once the dust has settled there, we will
reupload a consistent set to unstable and
hopefully see it quickly migrate to testing.

This is an opportunity to apply unrelated
pending changes requiring package

renamings, like packaging a new
upstream version [2].

[1] As usual, adacontrol fails because of
incompatibilities between gnat and
ASIS. Updating ASIS [2] will hopefully
fix this.

[2] Adacore usually updates its GPL
packages in may.

By the way...

Until now, Debian has supported the
coexistence of different versions for the
default Ada and C compilers. The
motivation is to allow a time window or a
release where $adaversion < $cversion, so
that GCC does not need to wait for all
Ada packages to update its version.

More and more packages rely on the
gprbuild tool. Currently, gprbuild assumes
that all (default) compilers produce the
same ABI for all languages. Any effort by
successive maintainers to do better has
been wasted for 8 years.

- If the user must configure a compiler
version manually, they will complain.

- If the tool selects $cversion, it will find
no Ada compiler.

- If the tool selects $adaversion, people
writing pure C will want the default C
ABI.

I suggest that we stop promising that we
support the divergence. As far as I know,
it has been some years since GCC has not
been waiting just for Ada.

Any idea?

Debian: Package
Maintenance

 From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: Sun, 10 Jun 2018 15:25:24 +0200
Subject: Asking for best practices to

maintain a debian Ada package
Newsgroups:

gmane.linux.debian.packages.ada

In the past, I've made several Debian
packages for various Ada libraries and
tools I'm writing. I've read carefully the
Debian Ada policy and I think I followed
what was explained. At the end, I was
able to provide Debian packages for
Ubuntu trusty (14.04) and raring (13.04).
You may have a look at the list:

https://blog.vacs.fr/vacs/debian/
ubuntu-trusty/index.html

I would like to resurrect these packages
and get a better way on how to manage
the debian package files. I have a couple
of questions and need your advices on
how to maintain such files on different
Debian versions.

How do you maintain your debian/* files
for different versions of Debian and
different versions of gnat?

Do you have recommendations on
package naming to take into account the

library version and the gnat compiler
version?

How can I ship a version A of a package
for gnat-7 and a version A of the same
package for gnat-8?

I'm aware of the Ada-France monotone
server. I was able to get the package files
for several packages (libaws, libxmlada)
but it looks like only gnat-8 is used now.

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Wed, 20 Jun 2018 21:52:54 +0200
Subject: Re: Asking for best practices to

maintain a debian Ada package
Newsgroups:
gmane.linux.debian.packages.ada

> [...] How can I ship a version A of a
package for gnat-7 and a version A of
the same package for gnat-8?

The "aliversions" must be different; the
"aliversion" is part of the package
name. The numerical versions are
separate from the name and they can be
the same.

For example:

- libfoo1-dev (=8.2.4-4) for gnat-7

- libfoo2-dev (=8.2.4-4) for gnat-8

You would maintain these two as
branches in your version control system.

> [...] it looks like only gnat-8 is used
now.

Yes, as part of the policy we choose a
single version of the compiler and build
everything with it. This makes all Ada
packages compatible with one another.
We don't have the manpower (aka
courage, aka time) to maintain several
versions of gnat together. Also we don't
want a situation where one Ada library is
available for one compiler but not the
other.

Debian, Ubuntu and Fedora:
FSF GNAT

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 11 Jun 2018 16:03:04 +0200
Subject: Re: GNAT Community Edition

2018
Newsgroups: comp.lang.ada

> Where is GCC 8 already available?

Debian (buster), Ubuntu, Fedora, all have
GNAT 8, works just fine.

Linux: Docker Images

From: Tomek Wałkuski
<tomek.walkuski@gmail.com>

Date: Fri, 29 Jun 2018 02:26:50 -0700
Subject: ANN: Ada / GNAT Docker image
Newsgroups: comp.lang.ada

Hi, for all you Docker folks: Ubuntu with
GNAT installed:

https://hub.docker.com/r/tomekw/
ada-gnat/

148 References to Publ icat ions

Volume 39, Number 3, September 2018 Ada User Journal

Project repository:
https://github.com/tomekw/ada-gnat

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Fri, 29 Jun 2018 08:09:07 -0700
Subject: Re: ANN: Ada / GNAT Docker

image
Newsgroups: comp.lang.ada

In case if somebody wants Docker image
for GNAT Community 2018, I have one:

https://hub.docker.com/r/reznik/gnat/

Project repository:
https://bitbucket.org/reznikmm/gnat

It contains just compiler (no any extra
library such as GNATCOLL, xmlada,
bareboard RTL).

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sat, 07 Jul 2018 16:55:12 +0200
Subject: Re: ANN: Ada / GNAT Docker

image
Newsgroups: comp.lang.ada

There is also a Docker image with GNAT
on Debian by Samuel Tardieu:

https://hub.docker.com/r/rfc1149/gnat/

That's the one I use for testing my Ada
libraries, when they are pushed to
Bitbucket.

[See also “Getting Started with AVR-
Ada”, AUJ 38-4, p. 180. —sparre]

References to
Publications

Concurrent Programming

From: Mehdi Saada
<00120260a@gmail.com>

Date: Sun, 20 May 2018 03:53:18 -0700
Subject: tutorial for concurrent

programming techniques (in Ada).
Newsgroups: comp.lang.ada

Is there somewhere such tutorial online?

Something with the basic techniques, and
the use of standard libraries?

I'm at my first scheduling program, and
I'm always telling myself "I would like to
do that and that, I saw it somewhere but
I've no clue how to do it". Things that are
complicated per se, but beginners would
gain to see gathered.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Sun, 20 May 2018 10:21:26 -0400
Subject: Re: tutorial for concurrent

programming techniques (in Ada).
Newsgroups: comp.lang.ada

> Is there somewhere such tutorial online?

Well...

- https://en.wikibooks.org/wiki/
Ada_Style_Guide/Concurrency

- https://en.wikibooks.org/wiki/
Ada_Programming/Tasking

Though in truth, one should have some
familiarity with general tasking concepts
(semaphores, mutex, critical section) --
which used to be part of any course in
operating systems.

Mostly concerned with hard real-time:

- https://www.amazon.com/Concurrent-
Real-Time-Programming-Alan-
Burns/dp/0521866979

- https://www.amazon.com/Analysable-
Real-Time-Systems-Programmed-
Ada/dp/1530265509

- https://www.amazon.com/Real-Time-
Systems-Programming-
Languages/dp/0201729881

More general...

- https://www.adacore.com/papers/a-
comparison-of-the-concurrency-and-
real-time-features-of-ada-95-and-java

- https://www.amazon.com/
Communicating-Sequential-Processes-
International-Computing/dp/
0131532715

- http://greenteapress.com/wp/
semaphores/ (semaphores can be
modeled in Ada using protected objects;
though I seem to recall textbooks pre-
Ada95 showing how to do them via
rendezvous and tasks)

> Something with the basic techniques,
and the use of standard libraries?

Ada's tasking model is built into the
language itself, and is not a library
(except as affected by the degree of the
run-time system and operating system
features -- bare-board development
requires one to provide a run-time that
supports tasking natively, whereas
Linux/Windows development punts from
the run-time to the operating system).

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Tue, 22 May 2018 07:25:48 -0700
Subject: Re: tutorial for concurrent

programming techniques (in Ada).
Newsgroups: comp.lang.ada

> [...]

Not a tutorial per se, but this is an
!AWESOME! read: “Concurrent and
Real-Time Programming in Ada” [see
link above —sparre]

“Building Parallel, Embedded, and Real-
Time Applications with Ada” (Covers
PolyORB, for distributed programming):
http://www.cambridge.org/core_title/gb/3
95592

Definitely the first one. You will greatly
cover tasks, protected objects and real-
time scheduling. All along it exemplify
how to program different systems like
worker pool, futures etc. Worth every
penny.

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Wed, 23 May 2018 10:30:12 -0700
Subject: Re: tutorial for concurrent

programming techniques (in Ada).
Newsgroups: comp.lang.ada

> [...]

The first book goes deeper about
concurrency and scheduling. ~300p on
concurrency and ~150p on scheduling.
(Alan Burns and Andy Wellings)

The second book is ~100p to present the
Ada itself (type model, oop etc), ~100p
for concurrency, ~100p for distributed
computing (PolyORB, Corba, etc) and
finally ~100p for real-time and
scheduling. (John W. McCormick, Frank
Singhoff, Jerome Hugues)

Note: It looks to me they are not the same
people.

Best is to buy both. They are very neat
book and inspire to do everything using
Ada. :)

Simple Blockchain

From: Tomek Wałkuski
<tomek.walkuski@gmail.com>

Date: Wed, 20 Jun 2018
Subject: Simple blockchain in Ada
URL: https://tomekw.com/simple-

blockchain-in-ada/

I consider myself a late adopter. Everyone
talks about blockchain these days.
Everyone tries to apply the technology
everywhere, even when it doesn't make
sense. So let's learn by doing and try to
implement the simple blockchain from
scratch. And let's do this in Ada!

Wikipedia defines blockchain as:

 “A blockchain, originally block chain, is
a continuously growing list of records,
called blocks, which are linked and
secured using cryptography. Each block
typically contains a cryptographic hash of
the previous block, a timestamp, and
transaction data. By design, a blockchain
is resistant to modification of the data.”

Twitter has a different opinion:

 “High-latency, low-throughput, append-
only database with very expensive
transaction commit protocols just doesn't
have the same ring to it as "Blockchain"
does it?”

So it looks like we have to model:

 - blocks: timestamped records that are
able to store some kind of payload

 - a chain of blocks, a.k.a., the
blockchain

 - a way to prove the validity of the
whole blockchain

 - a proof of work to implement the
commit protocol.

Block can be implemented as a new Ada
type, Block.Object:

References to Publ icat ions 149

Ada User Journal Volume 39, Number 3, September 2018

 [...]

 package Simple_Blockchain.Block is
 type Object is private;
 [...]
 private
 type Object is record
 Cryptographic_Hash_Current_Block :
 String (1 .. 64);
 Cryptographic_Hash_Previous_Block
 : String (1 .. 64);
 Timestamp : Time;
 Transaction_Data_Payload :
 Unbounded_String;
 end record;
 end Simple_Blockchain.Block;

The complete, working code can be found
at tomekw/simple_blockchain Github
repository: https://github.com/tomekw/
simple_blockchain

[...]

Book on Cyber Security

From: AdaCore Press Center
Date: Wed, 27 Jun 2018
Subject: AdaCore Shows How to Address

the Cyber Security Challenge - AdaCore
URL: https://www.adacore.com/press/

adacore-shows-how-to-address-the-
cyber-security-challenge

Free book offers guidance for achieving
secure and reliable software

PARIS & NEW YORK &
GAITHERSBURG, Maryland, June 27,
2018 – Workshop on Sound Static
Analysis for Security - AdaCore, a trusted
provider of software development and
verification tools, today announced the
availability of AdaCore Technologies for
Cyber Security, the latest volume in its
series of free publications on high-
assurance software. Authored by
internationally known experts Dr.
Roderick Chapman and Dr. Yannick
Moy, the book explains why making a
cyber system secure is so difficult and
shows how using appropriate
programming languages and tools can
contribute to a solution. Languages such
as Ada and SPARK, and verification
based on formal methods or other sound
static analysis techniques, can prevent
vulnerabilities from being introduced in
the first place. They can also detect latent
issues in legacy codebases, including
many of the weaknesses in the MITRE
Corporation’s Common Weakness
Enumeration (CWE).

“Many of the nasty security-related
incidents that we’ve seen over the past
few years stemmed from entirely
preventable software errors,” said co-
author Yannick Moy, a senior software
engineer at AdaCore. “By following the
guidance presented in our new book,
software developers can learn from
history and avoid repeating it.”

“Developing software that is robust in the
face of malicious attack is a huge

engineering challenge,” said co-author
Roderick Chapman. “It requires a world-
class combination of languages,
technologies, disciplines and skills. Ada,
SPARK, and AdaCore’s tools can provide
some key pieces of that puzzle. In
particular, AdaCore has pioneered the
development of static verification
techniques that are both formal and
sound, and so offer real assurance. I hope
the book will inform, entertain, and
challenge readers’ preconceptions about
how high-assurance software can be
developed and verified.”

AdaCore Technologies for Cyber Security
contains four principal chapters.

- “The Challenge of Secure Software”
identifies the various factors that make
security so hard to achieve, ranging from
the interconnected nature of modern
systems to the limits of testing as a
verification mechanism. The chapter
concludes with “A Manifesto for Secure
Software” that outlines the basic
principles for high-integrity software
engineering.

- “Languages, Tools and Technologies
Overview” summarizes the Ada and
SPARK languages, as well as
AdaCore’s tools and technologies, and
highlights their contributions to system
security.

- “Security Vulnerabilities and Their
Mitigation” considers a number of
specific high-profile software
vulnerabilities, inspired by the
CWE/SANS “Top 25 Most Dangerous
Software Errors”, and discusses how
each can be prevented or mitigated using
Ada, SPARK, and AdaCore’s tools.

- “Industrial Scenario Examples” presents
a number of security-related scenarios
that may arise in real-world projects.
Each opens with a description of the
context and the security issue, and then
shows how either Ada or SPARK, in
conjunction with the relevant AdaCore
tools, can contribute. Each scenario is
illustrated with one or more examples
drawn from experience with customers
and industrial projects.

Complementing the discussion in these
chapters, additional details and examples
are provided in two appendices. One
appendix focuses on the MITRE
Corporation’s Common Weakness
Enumeration (CWE) and shows how the
use of Ada and/or SPARK, as well as
AdaCore’s tools, can address specific
CWEs. The second appendix shows how
contract-based programming in SPARK
or Ada, verified by the corresponding
static or dynamic analysis, can help avoid
the “SQL Injection” vulnerability.

“AdaCore Technologies for Cyber
Security” is available at

<http://adacore.com/cyber-security-
book>; to request a printed copy, please
contact info@adacore.com.

[...]

Introduction to Ada
Programming

From: Andrew Shvets
<andrew.shvets@gmail.com>

Date: Fri, 29 Jun 2018 20:23:21 -0700
Subject: Introduction to Ada Programming,

2nd Edition
Newsgroups: comp.lang.ada

In 2016, I published an introductory Ada
book as an e-book. This time around, I
have created a second version of this
book, located here:
https://amzn.to/2KC3Zic

This is what the second edition has:

- It's in print. You can buy a printed
version. I've read programming e-books
before, but mostly it has been a question
if my screen/monitor was large enough
to correctly display the source-code (it
often was, but was impossible on an
iPhone).

- I added a chapter on networking.
Networking is something that I'm
working on improving my
understanding. Only after I sufficiently
understood how to implement examples
in Ada did I add this to my next book.

- There is a chapter on how to build
libraries. Packages and methods are
great for encapsulating code and making
it more reusable. However, not having to
re-compile the code is simply
phenomenal.

- There is a chapter on proofs. In my
previous book, this was a part of a
chapter. In this book, it is a chapter.
Such an important topic earned its own
chapter.

- I had a professional editor looked over
the book. After my first attempt, I
realized that there is plenty of room for
improvement in subsequent versions. As
a result, I hired a professional to give me
invaluable input on specific things that I
can do better.

I'm open to sending PDFs as review
copies, please send your requests to:
introductory.ada@gmail.com

Thank you for those who have helped me
better understand Ada!

[See also “Introductory Ada Programming
Book”, AUJ 38-1, p. 10. —sparre]

Méthodes de Génie Logiciel
avec Ada 95

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Wed, 4 Jul 2018 08:21:55 -0700
Subject: Looking to buy Méthodes de Génie

Logiciel avec Ada 95 (paper version)
Newsgroups: comp.lang.ada

I am looking to buy the paper version of:

150 Ada in Context

Volume 39, Number 3, September 2018 Ada User Journal

Méthodes de Génie Logiciel avec Ada 95,
J-P. Rosen, ISBN 2 7296 0569 X

Anyone has a copy and would to sell it to
me? olivier.henley@
'google_email_service'.com

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 5 Jul 2018 16:42:36 +0200
Subject: Re: Looking to buy Méthodes de

Génie Logiciel avec Ada 95 (paper
version)

Newsgroups: comp.lang.ada

[...]

It has been issued as a WikiBook (thanks
to Pascal Pignard):

https://fr.wikibooks.org/wiki/
Méthodes_de_génie_logiciel_avec_Ada

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 6 Jul 2018 11:38:25 +0200
Subject: Re: Looking to buy Méthodes de

Génie Logiciel avec Ada 95 (paper
version)

Newsgroups: comp.lang.ada

[...] I made it available on Adalog's web
site. The link is at the bottom of the page
at:

http://www.adalog.fr/fr/livrejpr.html

Ada Inside

CLARREO Pathfinder

From: AdaCore Press Center
Date: Tue, 22 May 2018
Subject: University of Colorado’s

Laboratory for Atmospheric and Space
Physics adopts Ada and GNAT Pro for
NASA project

URL: https://www.adacore.com/press/
university-of-colorados-laboratory-for-
atmospheric-and-space-physics-adopts-
ada-and-gnat-pro-for-nasa-project

Ada selected over C to run on a Cortex
M1 core

PARIS & NEW YORK,May 22, 2018 –
AdaCore today announced that the
University of Colorado’s Laboratory for
Atmospheric and Space Physics (LASP)
has selected the Ada language and the
GNAT Pro for the ARM Cortex product
for NASA’s Climate Absolute Radiance
and Refractivity Observatory
(CLARREO) Pathfinder mission.
CLARREO Pathfinder will deploy a
Reflected Solar spectrometer on the
International Space Station (ISS) starting
in 2021 that will detect the complete
spectrum of radiation from the Sun
reflected by Earth.

LASP has selected the Ada language over
C, to develop the orchestration and
interface portions of the CLARREO
Pathfinder flight software, which is
responsible for controlling the instruments
and interfacing with the ISS. The

application will run on an ARM Cortex
M1 FPGA board, using a bare metal
configuration together with the Ravenscar
micro-kernel provided by the GNAT Pro
toolchain.

"We selected Ada and the Ravenscar
micro-kernel for several reasons: it is as
efficient as C, allows object-oriented
design, will increase reliability, and
provides a tasking system without
introducing a great deal of complexity
like many of the other options we
considered,” said Mathew Merkow,
CLARREO Pathfinder flight software
lead at LASP.“Ada provided an extremely
robust and efficient foundation for our
framework, Adamant. We partnered with
AdaCore to port Ravenscar to the Cortex
M1; they have been a great partner, and
we are excited to continue our
relationship with them on this and future
projects."

“The CLARREO Pathfinder project
represents a new generation of
applications developed with Ada, in areas
where C has been the traditional choice,”
said Quentin Ochem, lead of business
development at AdaCore. “We are excited
to support the usage of our technology to
meet the ever-increasing reliability
requirements and challenges of space
missions.”

[...]

Jobs

From: eduardsapotski@gmail.com
Date: Sun, 3 Jun 2018 23:15:27 -0700
Subject: How to find remote job as Ada-

developer?
Newsgroups: comp.lang.ada

I have more than ten years of experience
in programming. Mainly programmed on
C# and Java. Very long ago I
programmed Atmel-microcontrollers on
C-language. In recent times I'm sick of
Java and C#. A year ago I met Ada-
language. I like everything! Ada is the
most correct programming language I
have ever met! While using Ada-language
only in their small projects.

I have no experience of industrial
development in Ada-language. How to get
it? There are no vacancies for Ada-
developers in my region.

I'm not really interested in money. I am
willing to work for a nominal fee, only to
gain experience.

Who can advise?

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 3 Jun 2018 23:28:55 -0700
Subject: Re: How to find remote job as Ada-

developer?
Newsgroups: comp.lang.ada

> [...]

You're basically stuck with military,
aerospace, some car company's and train

company's, I think there's some medical
equipment out there using Ada.

Ada is just not advertised enough.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon, 04 Jun 2018 08:49:10 +0200
Subject: Re: How to find remote job as Ada-

developer?
Newsgroups: comp.lang.ada

> I have no experience of industrial
development in Ada-language. How to
get it?

Check out the list of companies AdaCore
advertises as their customers.

See if you would be willing to move to
any of their locations.

Check if they have open positions and
apply - or send them unsolicited
applications.

I doubt that you will get a remote position
without documented experience in Ada.
Even with documented Ada experience, it
is hard. And for big projects, you should
expect 6-24 months on-site just to get to
know the project well enough to be able
to work independently.

Ada in Context

Anonymous Allocators

From: Mehdi Saada
<00120260a@gmail.com>

Date: Wed, 16 May 2018 01:23:19 -0700
Subject: Re: little precision about

anonymous access types
Newsgroups: comp.lang.ada

I may add, that the craziest thing was to
allow the very possibly of using allocators
with non-discriminant/non-parameter
anonymous access (though I have no idea,
and it's not easy to find, where and for
how long goes things like values like
my_func(new something', ...) types. Their
existence, that forbid and uselessness
aside, it wouldn't be that much of a
loophole. At least provide a way to bind
the objects' life time to something,
dudes...

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 17 May 2018 16:20:14 -0500
Subject: Re: little precision about

anonymous access types
Newsgroups: comp.lang.ada

The better solution here is restriction
No_Anonymous_Allocators (see
H.4(8.1/3)). Using that restriction helps
because it forces all allocation to named
access types (for which you can do
deallocation in all of the normal ways).
This is just to note that Ada does have
ways to mitigate this problem (I noted
another one, pragma
Default_Storage_Pool, in a previous
message). The annoyance is that these
things aren't the default.

Ada in Context 151

Ada User Journal Volume 39, Number 3, September 2018

ARM ELF Development
with GNAT GPL

From: Adam Jensen <hanzer@riseup.net>
Date: Wed, 23 May 2018 06:37:44 -0000
Subject: How to configure GNAT GPL on

x86-64 Linux for ARM ELF development
Newsgroups: comp.lang.ada

I would like to tinker with Ada and
SPARK embedded real-time software
development. [...]

I have installed AdaCore's GNAT GPL
and SPARK Discovery on Ubuntu 18.04
LTS [...]

And I've installed gnat-gpl-2017-arm-elf-
linux-bin.tar.gz [...]

I am following this tutorial:
http://www.inspirel.com/articles/
Ada_On_Cortex.html

[...]

Given:

 $ export PATH="$HOME/.local/gnat-
arm/bin:$PATH"

The tutorial suggests that maybe this
(below) might produce a binary suitable
to be loaded onto the MCU:

 $ arm-eabi-gcc -c -mcpu=cortex-m4 -
mthumb program.adb

 $ arm-eabi-ld -T flash.ld -o program.elf
program.o

 $ arm-eabi-objcopy -O binary
program.elf program.bin

This is what actually happens:

 $ arm-eabi-gcc -c -mcpu=cortex-m4 -
mthumb program.adb

 fatal error, run-time library not installed
correctly

 cannot locate file system.ads

 compilation abandoned

I guess that the LD_LIBRARY_PATH
and GPR_PROJECT_PATH environment
variables should be set but I don't yet
understand enough to make reasonable
guesses.

Any advice on how to proceed would be
very much appreciated!

From: Simon Wright
<simon@pushface.org>

Date: Wed, 23 May 2018 09:07:51 +0100
Subject: Re: How to configure GNAT GPL

on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

> Any advice on how to proceed would be
very much appreciated!

I think that the reason why the tutorial
works and your attempt doesn't is that the
tutorial was developed on a Raspberry Pi,
which is already an ARM-based machine,
so the native compiler actually has a
runtime (i.e. system.ads etc) visible to it.

Yours doesn't, and gcc-for-ada must see
an RTS.

I managed to get a compilation using this
over-the-top incantation:

 $ gprbuild -c -u -f program.adb --
target=arm-eabi --RTS=zfp-stm32f4

but a simpler (more memorable!)
procedure might be to construct your
own:

1. Create directories adainclude/, adalib/

2. Copy $prefix/arm-eabi/lib/gnat/zfp-
stm32f4/gnat/system.ads to your
adainclude/ ($prefix is the root of your
compiler installation, I think
~/.local/gnat-arm)

The ZFP (zero footprint) runtime is the
closest to what you need, and the fact that
the -stm32f4 part isn't quite right
shouldn't matter; I suspect that system.ads
is the same for all the zfp runtimes.

Now,

 $ arm-eabi-gcc --RTS=. -c program.adb

From: Adam Jensen <hanzer@riseup.net>
Date: Thu, 24 May 2018 07:35:46 -0000
Subject: Re: How to configure GNAT GPL

on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

> [...]

 > $ gprbuild -c -u -f program.adb --
target=arm-eabi --RTS=zfp-stm32f4

Many thanks, this works! I do not yet
know why it works - what it is doing - but
the hint is a valuable. It occurred to me
that I should be looking for AdaCore
documentation. I have yet to find a
"getting started" tutorial for embedded
development aimed at scientists,
engineers and other technically mature
people (ideally, such a tutorial would be
comprehensive, to the point, and regularly
tested), but I did find:

GPRbuild and GPR Companion Tools
User’s Guide <https://docs.adacore.com/
gprbuild-docs/html/gprbuild_ug.html>

and

GNAT User’s Guide Supplement for
Cross Platforms
<http://docs.adacore.com/live/wave/
gnat_ugx/html/gnat_ugx/gnat_ugx.html>

By mining these two documents it might
be possible to extract a basic explanation
for these very first steps of the embedded
development process.

It is curious that the Ada technology's
utilization of the system engineering
approach has not [yet] been extended into
the pedagogical component. After all,
software development is a very human-
centric process.

But I digress. Thanks again for the
guidance! After extracting the basics of
project management from the core
documentation, I hope to find a build
process that enables the use of a

Ravenscar profile. And after that I hope to
configure the development environment
to include SPARK process components in
the real-time embedded system. Does this
seem reasonable?

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Thu, 24 May 2018 12:12:26 -0000
Subject: Re: How to configure GNAT GPL

on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

> [...]

The error you saw "Cannot find
system.ads" and Simon's answer arise
because, targeting small embedded CPUs,
you are looking below the full Ada
environment (supplied by the runtime
system (RTS) on the host machine, to
targets which may require unique
runtimes supplying the facilities you need
and nothing more (thanks to potential
space limitations).

As such I would suggest a ZFP RTS as a
good short-term study, for several
reasons:

- it can be a pretty small codebase, but
revealing in terms of how things are
done and how to adapt them.

- there are a plethora of targets out there,
un- or semi-supported by Ada, from the
AVR and MSP430 to ARM cores from
ST, NXP, TI and others. Starting with
the STM4 as you are is good, but you
may want to port to other platforms for
cost, power, security or other reasons ...
the TI Hercules which runs dual ARM
cores in lockstep for safety, has obvious
attractions as an Ada target, for
example.

Nice price too ... https://store.ti.com/
LAUNCHXL-TMS57004.aspx

And porting to these builds on
understanding the RTS, starting with the
simplest - ZFP - as in Simon's suggestion
- or AVR-Ada or my MSP430-Ada
adaptation. I finally got round to
machining the case and bezel, so I am
wearing a wristwatch running Ada, telling
the time 1970's style, in under 1 kilobyte
including RTS.

(the current version still has 200 bytes of
C startup code which the linker insists on
inserting by default; one TODO is to
persuade the linker to let me replace that
with pure Ada and strip out the
unnecessary stuff)

You suggest going in 2 more interesting
directions:

- Building up to a Ravenscar profile: I
believe Simon's work so far builds on
FreeRTOS, but a "native" Ravenscar
RTOS would be nice too...

- SPARK qualification would be excellent
... again, especially for the Hercules.
And again, a SPARK proven ZFP RTS

152 Ada in Context

Volume 39, Number 3, September 2018 Ada User Journal

would be a good base to build on, and a
relatively simple place to start.

From: Adam Jensen <hanzer@riseup.net>
Date: Fri, 25 May 2018 04:45:16 -0000
Subject: Re: How to configure GNAT GPL

on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

> [...]

AdaCore's GNAT GPL seems to include a
full Ravenscar RTS for Xilinx's zynq7000
ARM/FPGA SoC:
<https://www.xilinx.com/products/
boards-and-kits/device-family/
nav-zynq-7000.html>

One of those development kits might be
my next target platform, but successfully
configuring tools from two different
vendors for hardware/software co-design -
simulation, emulation, and cross-
compilation - on a third-party OS (Ubuntu
or RHEL) seems like a long way off.
Right now, configuring a Ravenscar/
SPARK development environment that
can produce a binary for the Nucleo-144
board that will flash an LED is the
[surprisingly challenging] goal :) [...]

Is it common for developers to create
their own run-time system for embedded
platforms? My inclination would be to
look for hardware based on 1) RTS
availability/quality and 2) toolkit
complexity/completeness (completeness
implies useful documentation). Given
that, which seems like an obvious thing to
do, I am surprised that AdaCore does not
have more apparent associations with
hardware vendors where dev-kits and
SBC products are promoted. I bought the
Nucleo-144 board because I thought there
was a BSP, RTS, and a tool-chain
configuration tutorial. That turned out to
be a bit of a mistake and generally a poor
choice. If AdaCore, or some other
enterprising entrepreneur, offered well-
developed BSP, RTS, tool-chain
configuration and programming tutorials
for several MCU dev-kits and SBC
(single board computer) products, that
would make the choice easy and actually
enable people to get started with the
technology in a reasonable way. It seems
so bizarre to me that this isn't a front-page
item for AdaCore. I guess there are
hidden obstacles in their business model
and the way the incentives are arranged in
their social organization. I suppose it
could have something to do with
European culture. In France, does
pedagogy have the demeanour of a wood-
chipper (e.g., is it based in punishment,
toil, and obscurity)? <smirk>

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Fri, 25 May 2018 10:50:07 -0000
Subject: Re: How to configure GNAT GPL

on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

> Is it common for developers to create
their own run-time system for
embedded platforms? [...]

Not common, no. But RTS availability
(esp. SPARK RTS) has to start
somewhere, and for the MSP430 I didn't
really develop one, just adapt from AVR-
Ada.

With remarkably little feedback on that
project, I admit I've put remarkably little
effort into pushing it further. But I want it
for my own purposes, the watch is just a
pretty by-product.

>[...] I am surprised that AdaCore does
not have more apparent associations
with hardware vendors where dev-kits
and SBC products are promoted. [...]

Not AdaCore ... there isn't much hobbyist
money for them, given their business
model. They do publicise occasional
hobby-level projects like LEGO
Mindstorms and Certyflie, but I don't see
them making money off it.

Meanwhile we have to support each other,
perhaps your work on Nucleo can feed
back into Simon's RTS and expand its
supported platforms.

From: Adam Jensen <hanzer@riseup.net>
Date: Sat, 26 May 2018 05:06:40 -0000
Subject: Re: How to configure GNAT GPL

on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

> [...]

> Not AdaCore ... there isn't much
hobbyist money for them, given their
business model. They do publicise
occasional hobby-level projects like
LEGO Mindstorms and Certyflie, but I
don't see them making money off it.

They have the "Make with Ada"
competition:
<https://www.makewithada.org/>

And the AdaCore University:
<http://university.adacore.com/>

If there is not a large vibrant community
of people who understand and use the
technology it will fade and collapse. It
seems like maybe they recognize this but
it doesn't seem like they know what to do.
(Only an idiot would have advertisers
involved in technical communication).
C'est la vie.

 > Meanwhile we have to support each
other, perhaps your work on Nucleo
can feed back into Simon's RTS and
expand its supported platforms.

The Nucleo-144 board was selected as a
gentle starter kit to develop some
confidence and familiarity with the tool-
chain and the work-flow. It was a total
failure in this role. However, I have been
keeping notes and at some point I might
create a tutorial for Ada/SPARK
development on Ubuntu x86_64 targeting
the ARM MCU on a Nucleo-144 board.
After that, I will probably move to a

platform with more resources. Eventually,
I need a processor coupled with an FPGA
- the FPGA is where most of the hard
real-time activity (traction with physics)
should take place, IMO.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Sat, 26 May 2018 23:58:17 -0000
Subject: Re: How to configure GNAT GPL

on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

> Super cool. Are your project's
documents posted/hosted anywhere for
others to view and use?

https://sourceforge.net/projects/
msp430ada/

It's somewhat stuck in the past, using
Peter Bigot's rather nice MSP430
backend, because gcc's own MSP430
backend built into newer versions have a
considerably poorer code generator (last
time I looked a couple of years ago).

Revisiting it is on my to-do list, hopefully
it has improved.

> [“Make with Ada” and AdaCore
University]

Both good forms of publicity, though I
wonder to what extent they manage to
bring in new people as opposed to
reaching to the converted.

[...]

From: Adam Jensen <hanzer@riseup.net>
Date: Fri, 25 May 2018 03:29:59 -0000
Subject: Re: How to configure GNAT GPL

on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

[...]

> I think that the reason why the tutorial
works and your attempt doesn't is that
the tutorial was developed on a
Raspberry Pi, which is already an
ARM-based machine, so the native
compiler actually has a runtime (i.e.
system.ads etc etc) visible to it.

This is so very relevant yet the tutorial
seems rather vague [to me] on this point.
It should be explicit, in bold, in a
highlighted box on the front page, IMO.
Thanks again for pointing that out. Even
on a second reading, it isn't clear [to me]
that using a Raspberry Pi as a software
development platform is the environment
of the tutorial.

<http://www.inspirel.com/articles/
Ada_On_Cortex_Documentation_And
_Tools.html>

Multiple Iterators for a Type

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 25 May 2018 09:49:46 -0700
Subject: Multiple iterators for a type
Newsgroups: comp.lang.ada

Ada in Context 153

Ada User Journal Volume 39, Number 3, September 2018

I want to have a type which is an array of
8 bit values, I want the default iterator to
be the normal array loop.

But then I want to add more iterators
which return different types but
constructed from the array, i.e. a 32-bit
value and a sub-array.

1. Can this be done on the base type or do
I need to create new types from the base
type?

2. if 1. can be done, do these iterators all
need to be one package or can I put them
in child packages?

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri, 25 May 2018 21:50:08 +0200
Subject: Re: Multiple iterators for a type
Newsgroups: comp.lang.ada

> [...] Can this be done on the base type
[...]?

It can be done on the base type.

> [...] or can I put them in child packages?

They can be in child packages. Or even
locally defined in the subprogram where
you use them.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 25 May 2018 16:50:07 -0500
Subject: Re: Multiple iterators for a type
Newsgroups: comp.lang.ada

> [...]

There can only be one "of" iterator, and
it's built-in for array types. To replace the
"of" iterator you need different private
types (which means of course that they
can't directly be used as arrays, either,
although you can emulate that). Why
you'd want to go through that escapes me.

You can explicitly use alternate iterators
using the "in" syntax. After all, any
iterator object can be iterated (duh!), and
you can create as many different ones of
those as you want/need.

The "of" iterator is just a convenience,
and I think the language would have been
just fine without it. Ignore its existence
and you'll be just fine and can have all of
the iterators you ever could need.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 26 May 2018 04:57:45 +0100
Subject: Re: Multiple iterators for a type
Newsgroups: comp.lang.ada

> [...]

I’m attempting to implement a Unicode
string using UTF-8, so I want the basic
iterator over octets, then the next will
iterate over the octets and generate code
points, then another will be graphème
clusters.

From: Jeremiah Breeden
<jhb.chat@gmail.com>

Date: Fri, 25 May 2018 21:44:16 -0700
Subject: Re: Multiple iterators for a type
Newsgroups: comp.lang.ada

> [...]

When I did multiple iterators I ended up
making a package for it, which I later
adapted just for fun to provide iteration of
types in generics. The steps I ended up
doing were:

1. Create my Cursor type and Has
Element

2. Create a set of functions returning
reference types, but use a package to do
it so I could pass them into another
generic

3. Instantiate Iterator_Interfaces for my
cursor

4. Implement my iterator

5. Pass it into a package that created an
iterable wrapper

Technically if you just want "in" iteration,
you stop at #4, but I like the "of" version
so that is why I made a package for step
5.

In the end I was able to get something
like:

 for E of Iterable (Container_Object) loop
 E.Do_Things;
 end loop;

where Iterable is a function from my
generic package that returns an iterable
version of Container object. It was handy
for generics and having multiple iterators,
though it comes at a performance cost
since it uses a layer on top of the
container.

Package for making reference types:
https://github.com/jeremiahbreeden/
bullfrog/blob/master/src/
bullfrog-access_types-references.ads

Package for making "of" iterable
wrappers:
https://github.com/jeremiahbreeden
/bullfrog/blob/master/src/
bullfrog-containers-iterable_wrappers.ads

Package with some predefined wrappers
of the standard containers to my iterable
wrappers:
https://github.com/jeremiahbreeden/
bullfrog/blob/master/src/
bullfrog-containers-
predefined_iterable_wrappers.ads

Some testing of the predefined wrappers
that I made:
https://github.com/jeremiahbreeden/
bullfrog/blob/master/src/tests
/test_generic_iteration.adb

Literals for Private Types

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 30 May 2018 14:46:08 -0500
Subject: Re: Strings with discriminated

records
Newsgroups: comp.lang.ada

> [...]

See AI12-0249-1. This hasn't been
discussed at a meeting yet, so it probably
will change some, but Tucker suggests
aspects "Integer_Literal", "Real_Literal",
"Null_Literal", and "String_Literal".
These represent functions that can be
specified:

 type Message (discriminants or not) is ...
 end record
 with String_Literal => Make_Message;

where Make_Message is something like:

 function Make_Message (Lit : in
 Wide_Wide_String) return Message;

with the obvious semantics when a string
literal is encountered.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 30 May 2018 14:48:43 -0500
Subject: Re: Strings with discriminated

records
Newsgroups: comp.lang.ada

BTW, the reason that I said "it might
change" is that there are some issues with
what to do with private types where the
full type "naturally" has the same kind of
literal. I don't think that is handled quite
right yet, and it's relatively important to
get right (user-defined aggregates have a
similar, even worse problem).

[See also <http://www.ada-auth.org/
cgi-bin/cvsweb.cgi/ai12s/ai12-0249-
1.txt?rev=1.2&raw=N>. —sparre]

Use Clauses

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 30 May 2018 15:09:54 -0500
Subject: Re: Strings with discriminated

records
Newsgroups: comp.lang.ada

> [...] What's the problem?

(A) The person I was responding to was
upset that they had to write the fully
qualified name in this case, and
practically, they're right. (Tucker has
complained about this multiple times.)

(B) But package use clauses make things
visible that are not overloadable (like
objects), so they tend to be a substantial
maintenance hazard -- adding something
to a package can make client code using
use clauses illegal because of conflicts.
Adding unrelated stuff should *never*
make any client illegal (changes,
obviously are different).

If Ada had made objects/exceptions
overloadable, this problem would be
much less severe. But it didn't, and
changing that now would be difficult to
do without lots of subtle incompatibilities.

Use type/use all type (and better still,
prefix calls) mostly avoid this problem by
only operating on overloadable things.
You still can get conflicts, but only when
there are design issues (having multiple
operations with the same name and profile

154 Ada in Context

Volume 39, Number 3, September 2018 Ada User Journal

means either there is unnecessary
duplication [two routines doing the same
thing] or that there is routines doing
different things with the same name
(yikes!).

In a best case world, a rename conflicting
with the original routine or another
rename of it would be ignored in all use
clauses, along with overloading of
objects/exceptions. That would reduce
conflicts to a handful of cases. (If
overloading of generics could be figured
out, that would be even better.) But that
has to wait for Ada++.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 31 May 2018 06:19:28 +0200
Subject: Re: Strings with discriminated

records
Newsgroups: comp.lang.ada

> [...] package use clauses make things
visible that are not overloadable [...]
tend to be a substantial maintenance
hazard [...]

Here I don't agree. OF COURSE,
changing a specification can make client
code illegal, with or without use clauses.
And I would not call making code illegal
a "maintenance hazard"; on the contrary, a
maintenance hazard is when a change
does not make code illegal, but acts
differently. We know how hard Tuck
fought in Ada 95 to eliminate the
Beaujolais effect...

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 31 May 2018 17:18:37 -0500
Subject: Re: Strings with discriminated

records
Newsgroups: comp.lang.ada

> [...]

Whenever large amounts of code depend
on some package, causing unusual
illegalities in working code just because
of the addition of a new object/exception
is a major problem. Consider something
like Claw: we have to avoid making
changes to the specs -- even ones that are
clearly good ideas -- in order to avoid
breaking user code. Similarly, I have to
document *every single* change in a
language-defined package as an
incompatibility -- even though only
people overusing use clauses have a
possibility of such an incompatibility.
And this is a real problem; it bites me
often in Janus/Ada (which itself overuses
use clauses) -- the main reason that I
hardly ever use them in new code.

Ada's "solution" of making things illegal
is better than silent changes (although
those can happen, too, especially in child
units), but the best situation is one where
adding new
subprograms/objects/exceptions don't
have any effect at all on existing code (in
the absence of dubious design - that is
multiple different things with the same
name and profile). Anything else makes it

hard to enhance libraries cleanly (you end
up with unnecessary child packages - like
"Ada.Directories.Hierarchical_File_
Names" - to avoid the incompatibilities -
and that itself is just another kind of pain.

Execute External Program

From: John Smith
<yoursurrogategod@gmail.com>

Date: Sun, 3 Jun 2018 20:17:31 -0700
Subject: Trying to execute a command from

inside of Ada
Newsgroups: comp.lang.ada

I found the following example:
http://rosettacode.org/wiki/Execute_a_sys
tem_command#Ada

And this is how I tried to adapt it to
Linux:

 with Interfaces.C;

 with Ada.Text_IO; use Ada.Text_IO;
 with GNAT.OS_Lib; use GNAT.OS_Lib;

 procedure Sys_Command is
 Result : Integer;
 Arguments : Argument_List :=
 (1 => new String'("bash"),
 2 => new String'("ls -l ~"));
 begin
 Spawn (Program_Name => "bash",
 Args => Arguments,
 Output_File_Descriptor => Standout,
 Return_Code => Result);
 end Sys_Command;

The problem is that 'ls -l ~' is not executed
correctly. I don't see any output at all.
What am I doing wrong?

From: Yuta Tomino <aghia05@gmail.com>
Date: Sun, 3 Jun 2018 21:42:09 -0700
Subject: Re: Trying to execute a command

from inside of Ada
Newsgroups: comp.lang.ada

> [...]

"-c" switch is needed for bash to pass the
subcommand. Try to compare them in
your interactive shell.

$ bash "ls -l ~"

$ bash -c "ls -l ~"

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon, 04 Jun 2018 08:44:10 +0200
Subject: Re: Trying to execute a command

from inside of Ada
Newsgroups: comp.lang.ada

> [...]

Have you tried to run this on your
command line?

 bash "ls -l ~"

That's basically what you ask your
program to do.

I would:

1) Avoid involving Bash in this.

2) Remember to pass each argument
separately.

And I might additionally:

3) Expand "~" myself, as "ls" doesn't
know how to do that (but "system()" or
"/bin/sh" might).

Generic Formal Type with
'Image Attribute

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Wed, 6 Jun 2018 15:03:22 +0200
Subject: Generic formal type with 'Image
Newsgroups: comp.lang.ada

I'm pretty sure the answer is "no", but just
in case:

Is there a formal for a generic that serves
for any type that has a predefined 'Image?

The purpose is to avoid:

 generic
 type Printable is ...
 -- What should go here?
 with function Image (P : Printable) return
String is <>;
 package

and then have to pass the 'Image attribute
as the Image function in all instantiations.

The closest thing I can think of is (<>) but
that won't do for floating point types.

I understand this is an unusually narrow
case (I need a generic for many numeric
types, both discrete and floating, and this
would save me some typing -- that I have
already spent here anyway.)

With these issues I feel a kind of
overlap/missed connection between
attributes and interfaces.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 6 Jun 2018 15:34:02 -0500
Subject: Re: Generic formal type with

'Image
Newsgroups: comp.lang.ada

[...]

Ada 2020 is likely to allow 'Image on all
types, and also to allow redefining it
similarly to the way one redefines
streaming. I say likely because that's still
being worked on, and with the deadlines
rapidly approaching, I can't guarantee
anything will get finished and thus
included unless it is already finished.

Parsing JSON with
GNATCOLL

From: eduardsapotski@gmail.com
Date: Thu, 7 Jun 2018 22:52:54 -0700
Subject: GNATCOLL JSON Parsing
Newsgroups: comp.lang.ada

I try understand parsing JSON in Ada.

For example:

Have web-api that gives simple JSON:
http://api.exmo.com/v1/trades/?pair=BTC
_USD&limit=10

I need to save this data to database.

Ada in Context 155

Ada User Journal Volume 39, Number 3, September 2018

Created type:

 type Money is delta 0.00000001 range 0.0
.. 9_999_999_999.9;
 type UTC_Date is range 1_500_000_000
.. 3_000_000_000;

 type Trade is record
 Trade_Id : Integer;
 Pair : Unbounded_String;
 Trade_Type : Unbounded_String;
 Price : Money;
 Quantity : Money;
 Amount : Money;
 Date : UTC_Date;
 Saved : Boolean;
 end record;

Created collection:

 package Vector_Trades is new
Ada.Containers.Vectors(Natural, Trade);

 Trades : Vector_Trades.Vector;

Receive data:

 JSON : Unbounded_String;

 JSON := To_Unbounded_String(
 AWS.Response.Message_Body
 (AWS.Client.Get (URL =>
 "http://api.exmo.com/
 v1/trades/?pair=BTC_USD
 &limit=10")));

What to do next? How to get list of
objects from the JSON-text?

How to save data to database already
understood.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 8 Jun 2018 11:35:19 +0200
Subject: Re: GNATCOLL JSON Parsing
Newsgroups: comp.lang.ada

> [...]

Something like (not tested):

 declare
 use GNATCOLL.JSON;
 Current_Item, Reply : JSON_Value :=
 Create;
 BTC_Array : JSON_Array :=
 Empty_Array;
 begin
 Reply := Read (Strm =>
 AWS.Response.Message_Body
 (AWS_Reply),
 Filename => "");

 if Reply.Has_Field ("BTC_USD") then
 BTC_Array := Reply.Get("BTC_USD");
 if Length (BTC_Array) > 0 then
 for I in 1 .. Length (BTC_Array) loop
 Current_Item := Get (BTC_Array, I);
 declare
 Trade_ID : Integer := 0;
 begin
 if Current_Item.Has_Field
 ("tradeid") then
 Trade_ID := Current_Item.Get
 ("tradeid");

 end if;
 ...
 end;
 end loop;
 end if;
 end if;
 end;

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Fri, 8 Jun 2018 05:00:27 -0700
Subject: Re: GNATCOLL JSON Parsing
Newsgroups: comp.lang.ada

> [...]

You might find the library
<https://github.com/persan/gnatcoll-json>
useful. It contains JSON supPort for most
Ada.Containers.* packages and some
examples.

Forcing Explicit
Initialisation

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Thu, 14 Jun 2018 17:37:26 +0200
Subject: Unknown constraints and type

composition
Newsgroups: comp.lang.ada

I think I have read somewhere that types
with unknown constraints are a good way
of ensuring you (or your users) don't end
with uninitialized values:

 types Whatever (<>) is [limited] private;
 function Create return Whatever;

This seems nice at first sight but when
these types have any likelihood of ending
as members of another type you will hit
the "unconstrained member" problem.

A workaround then is to use a
Indefinite_Holder, but that's an imposition
on your clients (ugly). If your type is
furthermore limited, then you must use
pointers and consider providing
controlledness and deallocation in the
enclosing type (uglier).

Right now I'm on the point of a new
design where I have many interrelated
types that require initialization calls (it's a
C binding). And, as always, I'm unsure of
the way to go, or if I'm missing another
technique without shortcomings. Your
thoughts if you have any on this issue are
much appreciated.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 14 Jun 2018 18:19:57 +0200
Subject: Re: Unknown constraints and type

composition
Newsgroups: comp.lang.ada

> [...]

As well as problems with publicly derived
types.

[...]

In large projects instead of holder I use a
reference-counted controlled handle. The
target's type declaration goes into private

packages. The handles go to the public
interface packages. It is tedious, but it the
only working method if you want to
enforce construction and hide
implementation.

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Thu, 14 Jun 2018 09:58:12 -0700
Subject: Re: Unknown constraints and type

composition
Newsgroups: comp.lang.ada

One approach would be to use
coextensions, assuming you are aware of
all that entails, e.g.:

 type Inner (<>) is private;
 function Create_Inner return Inner;
 ...
 type Outer (<>) is private;
 function Create_Outer return Outer;

 private
 type Outer (x : access Inner) is null
record;
 ...
 function Create_Outer return Outer is
 begin
 return Outer (x => new
 Inner'(Create_Inner));
 end Create;

And, assuming the compiler follows the
advice (and is bug free :/) everything
should work itself out safely and neatly.
Though a portable way to do this would
be nice.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Thu, 14 Jun 2018 19:53:07 +0200
Subject: Re: Unknown constraints and type

composition
Newsgroups: comp.lang.ada

> [...] types with unknown constraints are
a good way of ensuring you (or your
users) don't end with uninitialized
values [...]

It's one way. There are others that might
be better. Unknown discriminants are
more for generic formal types, to show
that the generic accepts indefinite actual
types.

One way to deal with this is to make the
full type a record with reasonable defaults
for all the components. This works for all
versions of the language.

Another is to make the type a descendant
of [Limited_}Controlled and override
Initialize. This works for Ada 95 and
later.

Another way is to have

 function Initialized (Thing : Whatever)
 return Boolean;

that returns True if its parameter has been
initialized. Have a Dynamic_Predicate on
Whatever that Initialized returns True.
Have a postcondition on your
New_Whatever function that its return
value is Initialized. Make the full type a
record with an Initialized component

156 Ada in Context

Volume 39, Number 3, September 2018 Ada User Journal

default initialized to False. This only
works for Ada 2012.

Another is to leave off the predicate, and
instead give all operations on the type the
precondition that the value is Initialized.
This only works for Ada 2012, but it can
be emulated in any version of Ada with
manual checks of the precondition.

> [...]

After having made an effort to make the
type indefinite, you should not be
surprised that it's an indefinite type.

Part of design is to try to anticipate all
reasonable uses for a type, and choose an
approach that works for them all. If this is
a reasonable use of the type, then
unknown discriminants is not a suitable
approach.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 15 Jun 2018 07:13:38 +0200
Subject: Re: Unknown constraints and type

composition
Newsgroups: comp.lang.ada

> [...] One way to deal with this is to
make the full type a record with
reasonable defaults for all the
components. [...]

Even better, the default can be a raise
expression (or a function that raises an
exception for pre-2012), so no
uninitialized object can be created. This is
a run-time check, but a decent compiler
would warn you at compile time.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sun, 08 Jul 2018 15:53:44 +0200
Subject: Re: Unknown constraints and type

composition
Newsgroups: comp.lang.ada

> Even better, the default can be a raise
expression [...]

This does not give a warning at compile
time with FSF GNAT 8 (Debian/sid), nor
with GNAT CE 2018, but you get the
correct run-time error with both
compilers:

 private with Ada.Strings.Unbounded;

 package Initialisation_Required is
 type Instance is private;
 function Create (Name : in String)
 return Instance;
 private
 type Instance isrecord
 Name : Ada.Strings.Unbounded.
 Unbounded_String := raise
 Constraint_Error
 with "Uninitialised object.";
 end record;
 end Initialisation_Required;

 package body Initialisation_Required is
 function Create (Name : in String)
return Instance is
 begin
 return R : Instance do

 R.Name := Ada.Strings.Unbounded.
 To_Unbounded_String (Name);
 end return;
 end Create;

 end Initialisation_Required;

 with Initialisation_Required;
 procedure Demo is
 O : Initialisation_Required.Instance :=
 Initialisation_Required.
 Create (Name => "Hello");
 begin
 O := Initialisation_Required.Create
 (Name => "Hello");
 end Demo;

Another problem with this is that you
can't wait until you leave your internal
constructor function, before the
initialisation has to happen.

With the example above, you get your
exception already at "return R : Instance
do", which isn't what we want. (Easy to
work around, but something you should
be aware of.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 14 Jun 2018 16:28:40 -0500
Subject: Re: Unknown constraints and type

composition
Newsgroups: comp.lang.ada

> [...]

If there was a technique without
shortcomings, we wouldn't need any other
options!!

The other option, of course, is to ensure
that the default initialized object is
"meaningful" in some sense. Most of my
objects default initialize to a state that
causes most operations on them to raise
an exception ("Not_Valid_Error" in
Claw). I don't think it is reasonable to try
to make objects valid 100% of the time,
that forces all of your operations into the
straitjacket of Ada scoping.

That of course has the downside of
making the checks dynamic. In the case of
Claw, there's no choice anyway (a
Window object can disappear due to an
action that comes from the program's user
[clicking on the close button], not the
program's code, so nothing really can be
determined statically). I suspect that is
somewhat true of most real systems.

Subpools

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Thu, 14 Jun 2018 06:48:26 -0700
Subject: Comprehending subpools
Newsgroups: comp.lang.ada

I've been trying for what I guess is six
years now to figure out subpools, and I
just can't seem to make heads or tails of it.
Yes, I understand it inasmuch as it means
you can deallocate multiple objects at
once with proper finalization, but it seems

like a hell of a lot of work went into it,
with multiple AI's, hundreds of
comments, and what has to be thousands
of man-hours for a feature that seems
niche, at best. The AI's are filled with big
talk and grand plans (the phrase "portable
garbage collecting pool" was uttered), and
even the "Controlled" pragma was marked
as being supplanted by subpools, but what
made it into the language seems, well, not
much better than what was there already.
But it wouldn't be the first Ada feature
that was too complex for programmers to
understand, so please point out where I
have gone off the rails.

The rationale says "this is far safer and
often cheaper than trying to associate
lifetimes with individual objects". But is it
really?

Deallocating subpools is still just as
unchecked as deallocating an individual
objects, and it's not like you get partial
credit for dangling references.
Deallocating a subpool with a reference
into it still hanging around is just as
unsafe as regular
Unchecked_Deallocation, so you still
have the same old problem of either
limiting the scope, or reference counting
everything. And practically, if you are
going to reference count it, it's going to be
some generic, reusable package that either
works right for everything or nothing at
all, which is exactly as safe/unsafe as it
was before.

Moreover, reference counting in a world
of subpools is even harder, because not
only do you have to worry about the
objects in the subpool, but the subpool
handle itself. So it becomes a *more*
complex task of ensuring that a) all the
references into the subpool are gone and
B) all references to the subpool itself are
gone. The reference counted values would
need some mechanism to know which
subpool they came from, which probably
means the subpool handle, which now
also has to be reference counted, so you
have shared pointers inside of shared
pointers, which i would classify as "at
best equally complex and error prone"
instead of "far safer". You could argue
you might save some bytes by only
having a single total reference count
instead of many, but that is probably
offset by needing to save the subpool
reference anyway. And of course this
means reference counted subpool values
would be different than normal reference
counted values, which means a THIRD
type of incompatible pointer running
around; i.e. you still can't have a set of
references that can hold 'regular'
(accessibility-checked) access values,
'standard' reference counted values, and
subpool counted values.

Alright, so maybe this is intended for the
case where you can control the entire
scope, and not have to worry about
passing them around. But in those cases,

Ada in Context 157

Ada User Journal Volume 39, Number 3, September 2018

can't you just declare a new access type
and use 'Storage_Size (or a normal
storage pool) to give you exactly that?
The only reason to use a subpool is when
the type has to be declared at a higher
scope, which is presumably so you can
pass that type around (and save it off
somewhere), which demands some sort of
reference counting.

So then perhaps it's "often cheaper"? It
will certainly be faster to deallocate a big
chunk than a bunch of little chunks, but
all premature optimization platitudes
aside, I can honestly not think of a time
when the speed of deallocations
concerned me in the least, as either
programmer or user. Normally this
happens when the program (or significant
portion of it) is over, at which point who
cares how long some thread runs in the
background cleaning up storage? Even the
given example of a retail shopping web
site seems forced; who worries about how
long a web server takes to deallocate old
shopping cart data after the user has
closed his browser? If anything that
example demonstrates the need for some
form of automated garbage collection, not
optimizing the manual method.

Moreover, even in a supposed use-case
where speed DOES matter, the whole
point of this change was to do it in a way
that allows for finalization of the objects;
otherwise the pre-existing Mark/Release
pool was sufficient. But if you need a
subpool because all these objects are
going to have complex finalization, isn't
that almost certainly going to be the
bottleneck? The runtime still has to walk
through the list of objects, one-by-one,
and run their big, slow, complex Finalize
procedures. So the idea that you can just
'adjust a pointer' and be done with it really
doesn't hold water either.

So at the end of the day, I can't see how
much of any of this is better than what
was already there, and certainly not to the
extent it was worth the apparently
enormous amount of time spent,
especially when there are other things
begging for improvement. It seems like it
would have been much more efficient to
just make the mark/release pool a
standard library package instead of an
example, and add a rule that saying that
the implementation needs to finalize the
objects within.

I have to assume I just haven't had that "a-
ha!" moment that readjusts my old way of
thinking, so does someone actually have a
real, serious, concrete example of
something using subpools that warrants
the time and expense that this took? I'm
all for revising the memory management
facilities in Ada (I long for the day when
you can use raw access values from a
reference-counting pool, a mark/sweep
pool, and those generated from 'Access
interchangeably), but this just doesn't
seem to be it.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 14 Jun 2018 16:21:59 -0500
Subject: Re: Comprehending subpools
Newsgroups: comp.lang.ada

> [...]

The use case is situations when you have
separable data structures that it only
makes sense to treat as a whole. Think of
an expression tree in a compiler. There
are a lot of inter-structure links, so a
reference counting scheme for every
pointer doesn't work. Rather, you can use
a subpool and only reference count the
references to the entire tree. When that
goes to zero, you use the subpool to
clobber the entire structure. Alternatively,
you might have weak references to the
tree, that automatically get nulled when
the tree is clobbered.

You can't use separate access types in
cases like this, since there's lots of shared
code that needs to take pointers to these
trees. And you want to clobber the whole
structure at once, as that reduces the
possibility of dangling pointers.

Tucker originally had various weak and
strong references with the subpool
proposal, but those were massively
complex and can easily be constructed out
of existing Ada concepts. So the subpool
is a tool, but it's expected to be used with
programmer constructed strong and weak
references - by itself, it only really
provides one thing: the ability to finalize a
group of objects together. (The one thing
that you can't do without it.)

It *is* a niche need; personally, I think
using tree containers to represent an
expression tree would be a better solution
to the problem given above. Those too
can have dangling pointers, but only if
you insist on an implementation that puts
performance above safety.
(Unfortunately, many users do exactly
that.) It's relatively easy to detect all
dangling cursors for the unbounded
containers (the requirement for the
packages to be Pure prevents such
detection for the bounded containers,
although the usual implementation of a
bounded container means that such
cursors still point at *something*, it's just
not what you expect).

In any case, subpools precedes the tree
containers, so that wasn't an option then.
For me, I'd try to avoid ever writing an
access type and use the containers instead
(you can get dangling detection for free,
and many operations -- like iteration and
lookup -- never need a cursor in the first
place).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 15 Jun 2018 09:15:00 +0200
Subject: Re: Comprehending subpools
Newsgroups: comp.lang.ada

> [...]

I think the questions rather were:

1. What is so special about arena or a
mark-and-release pool that it cannot be
handled by a user-defined pool in Ada
95?

2. Arena is inherently unsafe whatever
implementation used. So all talk about
"safety" does not make much sense.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 15 Jun 2018 17:15:21 -0500
Subject: Re: Comprehending subpools
Newsgroups: comp.lang.ada

> 1. What is so special about arena or a
mark-and-release pool that it cannot be
handled by a user-defined pool in Ada
95?

No pool that does block deallocation (not
using Unchecked_Deallocation) can work
properly with controlled objects. For
almost all implementations, attempting to
do that with controlled objects would
cause the program to instantly crash
because of an attempt to follow pointers
that no longer exist.

Since virtually all memory management
schemes in Ada use controlled types or
some language-defined equivalent, that
essentially means that you would be so
limited in what you can put into such a
pool that it is close to useless.

> 2. Arena is inherently unsafe whatever
implementation used. So all talk about
"safety" does not make much sense.

"Safety" in this case is related to properly
handling controlled types. With that, one
can construct properly working strong and
weak references and other safe memory
management structures that will work on
essentially any Ada objects. Without it,
you have no chance of any safe memory
management.

The basic idea is that one manages the
"strong" references to an arena (such as
the reference to the root of a tree), and
when they are all gone, one can safety
destroy the arena. The weak references
aren't managed for that purpose, but don't
become erroneous when the arena is
destroyed, but rather just get (effectively)
nulled out.

One could implement the containers this
way, such that when a container is
destroyed, that the entire arena of nodes is
immediately reclaimed. (There's no legal
references into the container at that point.)

In any case, a subpool by itself doesn't
provide any safety; it's just a building
block to be used to provide such safety.
All of the other things needed to build
such abstractions already existed in Ada,
the only thing missing was an ability to
finalize all of the objects in an arena
(subpool) at once.

Draw your own conclusions as to how
valuable (or not) that is.

158 Ada in Context

Volume 39, Number 3, September 2018 Ada User Journal

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 16 Jun 2018 09:36:19 +0200
Subject: Re: Comprehending subpools
Newsgroups: comp.lang.ada

> [...]

Right, it is so special case that I join OP
wondering why this was paid any
attention at all. Normally the schema is
reverse, the objects must go when the
arena goes, if any safety could be added,
then a linked list of objects to finalize
[prematurely, BTW] as it is done in other
cases.

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Mon, 18 Jun 2018 17:32:23 -0700
Subject: Re: Comprehending subpools
Newsgroups: comp.lang.ada

I guess it's just a case of me reading too
much into things. The rationale declares
subpools "a major new facility", but I just
couldn't (and perhaps still can't) see a
niche feature as being worth all the time
and trouble. When people say "far safer" i
think of code that doesn't have to be
prefixed with Unchecked_* at all, not just
"you have to call it less".

And sure, finalization is of course
important, but subpools seem almost
specifically engineered to solve one
problem that one person had writing one
type of program, and not a general-
purpose building block (which happily
most features in Ada are). Which is fine
for small features that are relatively easy,
but just judging from the AI text,
subpools seems to be the biggest change
to 2012 second only to contracts, and it
mostly seems, well, wasted. It doesn't
appear the default pool has to support
them (?), so step one to using a subpool is
to go and implement a pool-with-subpools
and hardcode your program to use it, and
that's a high barrier to entry even when it's
warranted. And when there are so many
other things developers on CLA are
always clamoring for
(<cough>constructors<cough>), it all
seems like an odd way to focus energies.
Not to be flippant, but my kingdom for a
do loop...and 'do' is already a reserved
word!

I'd rather pull all the nonsense of
wrapping access values in controlled
types out of the client in the first place

and put it into the pool itself (a callback
passed to allocate or something?), instead
of just solving the problems piecemeal.
Having to use controlled types for
memory management is the problem
IMHO. Let code work with access values
directly and leave it to the pool they came
from to decide how and when to clean it
up.

I suppose I was just hoping for more. I
would, however, be interested to hear
examples of how other people have found
them useful in their own code (outside of
compiler ASTs) to help foster my
imagination of what else can be done with
them.

Thank you again for the responses and
continued support.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 29 Jun 2018 14:57:08 -0500
Subject: Re: Comprehending subpools
Newsgroups: comp.lang.ada

> [...] Let code work with access values
directly and leave it to the pool they came
from to decide how and when to clean it
up.

That was my original idea for what
eventually became generalized references.
The problem being that you have to lie
about the specification of pools for that to
work (the "System.Address" parameters
become handles that you pass into a
dereferencer). And magic was required
for the call-back needed to tell the pool
when the dereference wasn't needed
anymore. Most readers couldn't wrap their
heads around either part of that.

Using a totally different specification for
a new kind of pool wasn't appealing, as it
would mean having to support multiple
ways of doing the same thing.

[...]

P.S. The original driving force for
subpools came from Tucker Taft and Bob
Duff, who had used a system like this
when implementing the tool now known
as CodePeer. The original proposal was
ten times more complicated, containing
strong and weak references, and
automated deallocation mechanisms. All
of these can easily be constructed with the
building blocks available, and trying to
support all of that would have taken a lot
more effort.

I've never seen much value for arena
memory management myself, but I prefer
to hide access types as much as possible
with almost no visible surface. In that
case, all of the memory management
belongs to the objects, and that tends to
require separate management for each
object.

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Fri, 29 Jun 2018 15:42:31 -0700
Subject: Re: Comprehending subpools
Newsgroups: comp.lang.ada

> [...]

Hm, maybe they could be useful for some
sort of distributed system? I mean if
you're considering a shared memory-
space (like, say, IEEE 1394) then
disconnection of a device and reclaiming
the address-values ala arena management
seem to be fairly analogous.

Generics

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Sun, 24 Jun 2018 10:19:32 +0100
Subject: Re: Ada Successor Language
Newsgroups: comp.lang.ada

> [...]

You really need to understand the rules:
"assume the best" in generic
specifications, "assume the worse" in
generic bodies.

I.e. a generic spec is legal if there is at
least one legal instantiation. This is
because the user is assumed to see the
specification, and therefore understand
why some instantiation is rejected.

A generic body is illegal if there is at least
one illegal instantiation. This is because
the user is not assumed to see the body of
a generic.

Hint: a generic can be made legal by
moving some declarations from the body
to the specification (even into the private
part).

 159

Ada User Journal Volume 39, Number 3, September 2018

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2018
October 02-05 37th IEEE International Symposium on Reliable Distributed Systems (SRDS'2018), Salvador,

Bahia, Brazil. Topics include: dependability, security and privacy of distributed systems; methods and
tools for the design, implementation, verification, validation and benchmarking of dependable and
secure applications, middleware and operating systems; etc.

October 04-05 8th Workshop on Model-Based Design of Cyber Physical Systems (CyPhy'2018), Torino, Italy. In
conjunction with ESWEEK 2018.

 October 10-12 26th International Conference on Real-Time Networks and Systems (RTNS'2018), Poitiers, France.
Topics include: real-time applications design and evaluation (automotive, avionics, space, railways,
telecommunications, process control, multimedia), real-time aspects of emerging smart systems (cyber-
physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks
modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)
analysis, ...), software technologies for real-time systems (model-driven engineering, programming
languages, compilers, WCET-aware compilation and parallelization strategies, middleware, Real-time
Operating Systems (RTOS), hypervisors), formal specification and verification, real-time distributed
systems (fault tolerance, task/messages allocation, ...), etc.

October 11-12 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2018), Oulu, Finland. Topics include: the strengths and weaknesses of software engineering
technologies and methods from a strong empirical viewpoint, including quantitative, qualitative, and
mixed studies; case studies, action research, and field studies; replication of empirical studies and
families of studies; mining software engineering repositories; empirically-based decision making;
assessing the benefits/costs associated with using certain development technologies; industrial
experience, software project experience, and knowledge management; software technology transfer to
industry; etc.

October 15-18 29th IEEE International Symposium on Software Reliability Engineering (ISSRE'2018), Memphis,
Tennessee, USA. Topics include: innovative techniques and tools for assessing, predicting, and
improving the reliability, safety, and security of software products; reliability, availability and safety of
software systems; validation and verification; faults, errors, failures, defects, bugs; software quality and
productivity; software security; dependability, survivability, fault tolerance and resilience of software
systems; systems (hardware + software) reliability engineering; open source software reliability
engineering; supporting tools and automation; industry best practices; virtualization and software
reliability; empirical studies of any of the above topics; software standards; etc.

October 16-19 15th International Colloquium on Theoretical Aspects of Computing (ICTAC'2018), Stellenbosch,
South Africa. Topics include: semantics of programming languages; theories of concurrency; theories of
distributed computing; models of objects and components; timed, hybrid, embedded and cyber-physical
systems; static analysis; software verification; software testing; model checking and automated theorem
proving; verified software, formalized programming theory; etc.

 November 04-09 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2018), Boston, Massachusetts, USA. Topics include: all aspects of software
construction, at the intersection of programming, languages, and software engineering. Events include:

160 Conference Calendar

Volume 39, Number 3, September 2018 Ada User Journal

ACM SIGAda's HILT workshop (High Integrity Language Technology for Cybersecurity in Real-Time
and Safety-Critical Systems).

Nov 05-06 11th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2018). Topics include: areas ranging from theoretical and conceptual
contributions, to tools, techniques, and frameworks in the domain of software language
engineering; generic aspects of software languages development rather than aspects of
engineering a specific language; software language design and implementation; software
language validation; software language integration and composition; software language
maintenance (software language reuse, language evolution, language families and
variability); domain-specific approaches for any aspects of SLE (design,
implementation, validation, maintenance); empirical evaluation and experience reports
of language engineering tools (user studies evaluating usability, performance
benchmarks, industrial applications); etc.

November 04-09 12th Joint European Meeting of the Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE'2018), Orlando, Florida, USA.
Topics include: architecture and design; components, services, and middleware; debugging;
dependability, safety, and reliability; development tools and environments; distributed, parallel, and
concurrent software; education; embedded and real-time software; empirical software engineering;
formal methods, including languages, methods, and tools; model-driven software engineering; processes
and workflows; program analysis; program comprehension and visualization; refactoring; reverse
engineering; safety-critical systems; scientific computing; security and privacy; software economics and
metrics; software evolution and maintenance; software modularity; software product lines; software
reuse; testing; traceability; etc.

 Nov 05-06 ACM SIGAda's High Integrity Language Technology International Workshop on Languages and
Tools for Ensuring Cyber-Resilience in Critical Software-Intensive Systems (HILT'2018), Boston,
Massachusetts, USA. Co-located with SPLASH 2018. Organized by ACM SIGAda. Topics include:
language features that can be used to build security and/or safety into software-intensive systems;
extending contract-based programming to specifying security resistance and resilience properties as well
as safety and/or correctness properties; modeling and/or programming language features and analysis
techniques that aid in code analysis and verification and that increase the level of abstraction and
expressiveness; language features that support continuous requirements maturation to support evolving
needs, particularly in cyber-physical systems, while ensuring that security and safety properties are
preserved; etc.

November 10-13 18th International Conference on Runtime Verification (RV'2018), Limassol, Cyprus. Topics
include: monitoring and analysis of the runtime behaviour of software and hardware systems.
Application areas include cyber-physical systems, safety/mission-critical systems, enterprise and
systems software, autonomous and reactive control systems, health management and diagnosis systems,
and system security and privacy.

November 26-30 21st Brazilian Symposium on Formal Methods (SBMF'2018), Salvador-BA, Brazil. Topics include:
techniques and methodologies (such as model-driven engineering, development methodologies with
formal foundations, software evolution based on formal methods, ...); specification and modeling
languages (such as well-founded specification and design languages, formal aspects of popular
languages, code generation, formal methods of programming paradigms (such as objects, aspects, and
component), formal methods for real-time, hybrid, and safety-critical systems, ...); theoretical
foundations (such as models of concurrency, ...); verification and validation (such as abstraction,
modularization and refinement techniques, correctness by construction, model checking, static analysis,
formal techniques for software testing, software certification, ...); experience reports regarding teaching
formal methods; applications (such as experience reports on the use of formal methods, industrial case
studies, tool support).

November 28-30 19th International Conference on Product-Focused Software Process Improvement
(PROFES'2018), Wolfsburg, Germany. Topics include: experiences, ideas, innovations, as well as
concerns related to professional software development and process improvement driven by product and
service quality needs.

December 03-05 16th Asian Symposium on Programming Languages and Systems (APLAS'2018), Wellington, New
Zealand. Topics include: foundational and practical issues broadly spanning the areas of programming

Conference Calendar 161

Ada User Journal Volume 39, Number 3, September 2018

 languages and systems, such as semantics, design of languages and type systems, domain-specific
languages, compilers, interpreters, abstract machines, program analysis, verification, model-checking,
software security, concurrency and parallelism, tools and environments for programming and
implementation, future directions of programming, addressing rapid changes of underlying computing
platforms, etc.

December 04-07 25th Asia-Pacific Software Engineering Conference (APSEC'2018), Nara, Japan. Topics include:
agile methodologies, component-based software engineering, cyber-physical systems and Internet of
Things, debugging and fault localization, embedded real-time systems, formal methods, middleware,
model-driven and domain-specific engineering, open source development, parallel, distributed, and
concurrent systems, programming languages and systems, refactoring, reverse engineering, security,
reliability, and privacy, software architecture, modelling and design, software comprehension, software
engineering education, software engineering tools and environments, software maintenance and
evolution, software product-line engineering, software reuse, software repository mining, testing,
verification, and validation, etc. Deadline for submissions: October 1, 2018 (posters).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

 December 11-13 24th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2018), Sentosa,
Singapore. Topics include: parallel and distributed applications and algorithms, middleware, security
and privacy, dependable and trustworthy computing and systems, cyber-physical systems, embedded
systems, real-time systems, multi-core and multithreaded architectures, scheduling, etc.

 December 11-14 39th IEEE Real-Time Systems Symposium (RTSS'2018), Nashville, Tennesse, USA. Topics include:
all aspects of real-time systems, including theory, design, analysis, implementation, evaluation, and
experience.

December 12-14 23rd International Conference on Engineering of Complex Computer Systems (ICECCS'2018),
Melbourne, Australia. Topics include: verification and validation, security and privacy of complex
systems, model-driven development, reverse engineering and refactoring, software architecture, design
by contract, agile methods, safety-critical & fault-tolerant architectures, real-time and embedded
systems, cyber-physical systems and Internet of Things (IoT), tools and tool integration, industrial case
studies, etc.

2019
January 08-11 31st Conference on Software Engineering Education and Training (CSEET'2019), Grand Wailea,

Maui, USA. Topics include: curriculum development; empirical studies; personal or institutional
experience; team development; software assurance, quality, and reliability education; methodological
aspects of software engineering education; global and distributed software development; open source in
education; cooperation between industry and academia; etc.

January 15-18 11th Software Quality Days Conference (SWQD'2019), Vienna, Austria. Topics include:
improvement of software development methods and processes; testing and quality assurance of software
and software-intensive systems; domain specific quality issues such as embedded, medical, automotive
systems; novel trends in software quality; etc.

March 18-21 25th International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2019), Utrecht, the Netherlands. Deadline for submissions: October 2, 2018 (papers).

March 25-28 14th European Conference on Computer Systems (EuroSys'2019), Dresden, Germany. Topics
include: all areas of computer systems research; such as distributed systems; language support and
runtime systems; systems security and privacy; dependable systems; parallelism, concurrency, and
multicore systems; real-time, embedded, and cyber-physical systems; tracing, analysis, verification, and
transformation of systems; etc. Deadline for submissions: October 1, 2018 (full papers), October 10,
2018 (workshops), January 23, 2019 (posters).

March 25-29 IEEE International Conference on Software Architecture (ICSA'2019), Hamburg, Germany. Topics
include: model driven engineering for continuous architecting; component based software engineering
and architecture design; re-factoring and evolving architecture design decisions and solutions;
architecture frameworks and architecture description languages; preserving architecture quality
throughout the system lifetime; software architecture for legacy systems and systems integration;
architecting families of products; software architects roles and responsibilities; training, education, and

162 Conference Calendar

Volume 39, Number 3, September 2018 Ada User Journal

certification of software architects; industrial experiments and case studies; etc. Deadline for
submissions: November 29, 2018 (abstracts Technical Track, New and Emerging Ideas, Software
Architecture in Practice, Tool Demonstrations Track), December 03, 2018 (abstracts Early Career
Researchers Forum), December 06, 2018 (papers Technical Track, New and Emerging Ideas, Software
Architecture in Practice, Tool Demonstrations Track), December 10, 2018 (submissions Early Career
Researchers Forum), January 17, 2019 (workshop papers), January 25, 2019 (tutorials). Deadline for
early registration: February 28, 2019.

March 25-29 Design, Automation and Test in Europe Conference (DATE'2019), Firenze Fiera, Fortezza da Basso,
Florence, Italy. Event includes: tracks on design methods & tools, application design, test and
dependability, embedded and cyber-physical systems.

 April 01-04 International Conference on the Art, Science, and Engineering of Programming
(Programming'2019), Genova, Italy. Topics include: programming practice and experience; general-
purpose programming; distributed systems programming; parallel and multi-core programming; security
programming; interpreters, virtual machines and compilers; modularity and separation of concerns;
model-based development; testing and debugging; program verification; programming education;
programming environments; etc.

April 07-11 10th ACM/SPEC International Conference on Performance Engineering (ICPE'2019), Mumbai,
India. Deadline for submissions: October 12, 2018 (workshops), October 13, 2018 (research and
industrial/experience abstracts), October 15, 2018 (research and industrial/experience papers),
December 14, 2018 (artifact registration), December 22, 2018 (artifacts), January 11, 2019 (work-in-
progress/vision papers), January 14, 2019 (posters/demos, tutorials).

April 15-18 12th Cyber-Physical Systems Week (CPS Week'2019), Montreal, Canada.

 April 16-18 25th IEEE Real-Time and Embedded Systems and Applications Symposium
(RTAS'2018). Topics include: research related to embedded systems or timing issues
ranging from traditional hard real-time systems to embedded systems without explicit
timing requirements, including latency-sensitive systems with informal or soft real-time
requirements; original systems and applications, case studies, methodologies, and
applied algorithms that contribute to the state of practice in the design, implementation,
verification, and validation of embedded systems and time-sensitive systems (of any
size); etc. Deadline for submissions: October 17, 2018 (papers), January 31, 2019 (brief
presentations, demos).

April 16-18 10th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS'2019). Topics include: development of technologies, tools, and architectures for
building CPS systems; design, implementation, and investigation of CPS applications;
etc. Deadline for submissions: October 17, 2018 (full papers).

April 06-12 22nd European Joint Conferences on Theory and Practice of Software (ETAPS'2019), Prague,
Czech Republic. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the
Construction and Analysis of Systems).

April 08-12 34th ACM Symposium on Applied Computing (SAC'2019), Limassol, Cyprus.

 April 08-12 Track on Programming Languages (PL'2019). Topics include: technical ideas and
experiences relating to implementation and application of programming languages, such
as compiling techniques, domain-specific languages, garbage collection, language
design and implementation, languages for modeling, model-driven development, new
programming language ideas and concepts, practical experiences with programming
languages, program analysis and verification, etc.

April 08-12 Track on Software Verification and Testing (SVT'2019). Topics include: new results
in formal verification and testing, technologies to improve the usability of formal
methods in software engineering, applications of mechanical verification to large scale
software, model checking, correct by construction development, model-based testing,
software testing, static and dynamic analysis, analysis methods for dependable systems,
software certification and proof carrying code, fault diagnosis and debugging,

Conference Calendar 163

Ada User Journal Volume 39, Number 3, September 2018

verification and validation of large scale software systems, real world applications and
case studies applying software testing and verification, etc.

April 08-12 14th Track on Dependable, Adaptive, and Trustworthy Distributed Systems
(DADS'2019). Topics include: Dependable, Adaptive, and trustworthy Distributed
Systems (DADS); modeling, design, and engineering of DADS; foundations and formal
methods for DADS; etc.

April 08-12 Track on Next Generation Programming Paradigms and Systems (NGPS'2019).
Topics include: runtime verification and monitoring; secure and dependable software;
formal models and verification; design, implementation and optimization of high-level
programming languages; middleware platforms; scenarios, case studies and experience
reports on innovative applications; high-level parallel programming; distributed systems
and concurrency; development tools; security, trust and privacy management; etc.

April 08-12 Embedded Systems Track (EMBS'2019). Topics include: verification, validation,
testing, debugging, and performance analysis of embedded systems; cyber physical
systems; multicore, SoC-based, and heterogeneous embedded systems and applications;
multithreading in embedded systems design and development; compilation strategies,
code transformation and parallelization for embedded systems; reliability in embedded
computing and systems; security within embedded systems and embedded systems for
security; safety-critical embedded systems; case studies; etc.

May 25-31 41st International Conference on Software Engineering (ICSE'2019), Montréal, Québec, Canada.
Theme: "The next 50 years for Software Engineering". Deadline for submissions: October 1, 2018
(IEEE TCSE Harlan Mills Award nominations, Software Engineering in Practice, Software Engineering
in Society, Software Engineering Education and Training, new ideas and emerging results,
demonstrations), October 10, 2018 (workshops), November 19, 2018 (Doctoral Symposium), November
30, 2018 (Journal-First papers), January 7, 2019 (ACM Student Research Competition), February 1,
2019 (workshop papers), February 7, 2019 (student volunteers).

 June 10-14 Ada-Europe 24th International Conference on Reliable Software Technologies
(Ada-Europe 2019), Warsaw, Poland. Sponsored by Ada-Europe, in cooperation
(pending) with ACM SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association
(ARA). Deadline for submissions: February 14, 2019 (regular papers, industrial
presentation outlines, tutorial and workshop proposals).

 July 33rd European Conference on Object-Oriented Programming (ECOOP'2019), London, England.
Topics include: original and unpublished results on any Programming Languages topic. Deadline for
submissions: January 11, 2019 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

Forthcoming Events 165

Ada User Journal Volume 39, Number 3, September 2018

HILT 2018 Workshop on Languages and Tools
for Ensuring Cyber-Resilience in Critical
Software-Intensive Systems
As part of SPLASH 2018, November 5 & 6, 2018, Boston, MA, USA

Sponsored by ACM SIGAda

This is the fifth in the HILT series of conferences and workshops focused on the use of High Integrity
Language Technology to address challenging issues in the engineering of software-intensive critical
systems. HILT 2018 will focus on addressing cybersecurity and cyber-resilience issues that arise in real-
time, embedded, and/or safety-critical systems, where such a system must be trusted to maintain a
continual delivery of services, as well as ensuring safety in its operations. Such needs have common
goals and shared strategies, tools, and techniques, recognizing the multiple interactions between security
and safety.

Keynote speakers:

Bob Martin, MITRE Ray Richards, DARPA

Common Vulnerabilities Enumeration (CVE),
Common Weakness Enumeration (CWE), and
Common Quality Enumeration (CQE) –
Attempting to systematically catalog the
safety and security challenges for modern,
networked, software-intensive systems.

DARPA’s new Cyber-Assured Systems
Engineering (CASE) Program – Motivations,
Challenges, and Technical Approaches to
addressing cyber-resilience in critical
software-intensive systems

This workshop is designed as a forum for communities of researchers and practitioners from academic,
industrial, and governmental settings, to come together, share experiences, and forge partnerships
focused on integrating and deploying tool and language combinations to address the challenges of
building cyber-resilient software-intensive systems. The workshop will be a combination of
presentations and panel discussions, with a number of invited speakers.

166 Forthcoming Events

Volume 39, Number 3, September 2018 Ada User Journal

Tentative HILT 2018 Schedule:

Time Monday November 5th Tuesday November 6th
8:30AM-9:00AM Welcome to HILT 2018 ACM SIGAda Awards
9:00AM-10:00AM Bob Martin, MITRE, CVE,

CWE, CQE, and all that
Ray Richards, DARPA,
DARPA CASE program,
motivation and challenges

10:00AM-10:30AM Coffee Break Coffee Break
10:30AM-11:15AM David Wheeler, IDA,

Approaches to Cyber-Resilience
Lucas Wagner, Rockwell
Collins, SpeAR – Using a
formal specification language
for security

11:15AM-12:00PM Stephen Chong, Harvard Univ.,
Language-Based Security

Sam Procter, SEI,
Architecture-level Security
concerns in a safety-critical
system

12:00PM – 1:30PM Lunch Break Lunch Break
1:30PM – 2:15PM Ina Schaefer,

TU Braunschweig,
Confidentiality-by-Construction

Jeff Foster, Tufts Univ.,
Permission systems on
Android and beyond

2:15PM – 3:00PM Panel on Language-Based
Security (X10, SPARK, Rust,
SpeAR, …)

<TBD> Hardware support for
cyber resilience

3:00PM – 3:30PM Coffee Break Coffee Break
3:30PM – 4:00PM <submitted paper#1> Security Tools Showcase
4:00PM – 4:30PM <submitted paper#2>
4:30PM – 5:00PM <submitted paper#3> Workshop Wrapup
5:15PM – 6:15PM SIGAda Annual Meeting
6:30PM – 9:00PM HILT Banquet at Legal Sea

Foods, 26 Park Plaza, Boston

Workshop Co-Chairs

 Bill Bail, MITRE
 Tucker Taft, AdaCore, Inc

Organizing Committee

 Dirk Craeynest, ACM SIGAda International Representative, KU Leuven
 Drew Hamilton, Chair, ACM SIGAda, Mississippi State University, CCI
 Clyde Roby, Secretary-Treasurer, ACM SIGAda, Institute for Defense Analyses
 Alok Srivastava, Editor, ACM Ada Letters, Engility Corp.
 Ricky E. Sward, Past Chair, ACM SIGAda, MITRE

Conference & Program Chair

Tullio Vardanega
University of Padova, Italy
tullio.vardanega@unipd.it

Educational Tutorial &
Workshop Chair

Dene Brown
SysAda Ltd, UK
dene.brown@sysada.co.uk

Industrial Chair

Maurizio Martignano
Spazio IT, Italy
maurizio.martignano@spazioit.com

Exhibition & Sponsorship Chair

Ahlan Marriott
White Elephant GmbH, Switzerland

software@white‐elephant.ch

Publicity Chair

Dirk Craeynest
Ada‐Belgium & KU Leuven, Belgium
dirk.craeynest@cs.kuleuven.be

Local Chair

Maciej Sobczak
GE Aviation – EDC Warsaw, Poland
maciej.sobczak@ge.com

General Information

Ada‐Europe is pleased to announce that its 24th International Conference on Reliable
Software Technologies (Ada‐Europe 2019) will take place in Warsaw, Poland. The
conference schedule at its fullest includes a three‐day technical program and vendor
exhibition from Tuesday to Thursday, and parallel tutorials and workshops on Monday
and Friday.

Schedule

Topics

The conference is a leading international forum for providers, practitioners and
researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and
maintenance of long‐lived, high‐quality software systems for a challenging variety of
application domains. The program will allow ample time for keynotes, Q&A sessions
and discussions, and social events. Participants include practitioners and researchers
from industry, academia and government organizations active in the promotion and
development of reliable software technologies.

The topics of interest for the conference include but are not limited to:

 Design and Implementation of Real‐Time and Embedded Systems,

 Design and Implementation of Mixed‐Criticality Systems,

 Theory and Practice of High‐Integrity Systems,

 Software Architectures for Reliable Systems,

 Methods and Techniques for Quality Software Development and Maintenance,

 Ada Language and Technologies,

 Mainstream and Emerging Applications with Reliability Requirements,

 Experience Reports on Reliable System Development,

 Experiences with Ada.

Refer to the conference website for the full list of topics.

Ada-Europe
24th International Conference on
Reliable Software Technologies

10-14 June 2019, Warsaw, Poland

14 January 2019 Submission of papers, industrial presentation outlines, tutorial
and workshop proposals

1 March 2019 Notification of acceptance to all authors
16 March 2019 Camera‐ready version of papers required
30 April 2019 Industrial presentations, tutorial and workshop material required

Call for Regular Papers

The regular papers submitted to the conference must be original and shall undergo anonymous peer review. The corresponding authors
shall submit their work by 14 January 2019. Such submissions shall be in PDF only and up to 16 LNCS‐style pages in length. The authors
shall use the EasyChair submission service at https://easychair.org/conferences/?conf=adaeurope2019.

The International Conference on Reliable Software Technologies is listed in the principal citation databases, including DBLP, Scopus,
Web of Science, and Google Scholar.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS) series by Springer, and will be available
at the conference, both online and in print. The authors of accepted regular papers shall prepare camera‐ready submissions in full
conformance with the LNCS style, strictly by 16 March 2019. For format and style guidelines, the authors should refer to
http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register at least one author for the conference by that date
will prevent the paper from appearing in the proceedings.

Call for Industrial Presentations

The conference seeks industrial presentations that deliver insightful information value but may not sustain the strictness of the review
process required for regular papers. The authors of industrial presentations shall submit their proposals, of at least 1 page in length, by
14 January 2019, strictly in PDF, using the submission service at https://easychair.org/conferences/?conf=adaeurope2019.

The Industrial Committee will review the submissions anonymously and make recommendations for acceptance. The authors of
accepted contributions shall be requested to submit a 2‐page abstract by 30 April 2019, for inclusion in the conference booklet, and be
invited to deliver a 20‐minute talk at the conference. These authors will also be required to expand their contributions into articles for
publication in the Ada User Journal (http://www.ada‐europe.org/auj/), as part of the proceedings of the Industrial Program of the
Conference. For any further information, please contact the Industrial Chair directly.

Awards

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Educational Tutorials

The conference is seeking tutorials in the form of educational seminars including hands‐on or practical demonstrations. Proposed
tutorials can be from any part of the reliable software domain, they may be purely academic or from an industrial base making use of
tools used in current software development environments. We are also interested in contemporary software topics, such as IoT and
artificial intelligence and their application to reliability and safety.

Tutorial proposals shall include a title, an abstract, a description of the topic, an outline of the presentation, the proposed duration
(half day or full day), and the intended level of the tutorial (introductory, intermediate, or advanced). All proposals should be submitted
by e‐mail to the Educational Tutorial Chair.

The authors of accepted full‐day tutorials will receive a complimentary conference registration. For half‐day tutorials, this benefit is
halved. The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half‐ or full‐day events,
to be scheduled at either end of the conference week. Workshop proposals should be submitted to the Workshop Chair. The workshop
organizer shall also commit to producing the proceedings of the event, for publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the core days of the main conference. Vendors and providers of software products and services
should contact the Exhibition Chair for information and for allowing suitable planning of the exhibition space and time.

Special Registration Fees

Contributors to the conference and all students will enjoy reduced registration fees.

Venue

The conference will take place in Warsaw, the capital of Poland, at the facilities of the Engineering Design Center (EDC), a partnership

between General Electric (GE) Poland and the Institute of Aviation, one of the largest engineering institutions in Europe.

 169

Ada User Journal Volume 39, Number 3, September 2018

ARG Work in Progress II
Jeff Cousins CEng FIET
Member and former chair of the Ada Rapporteur Group; email: jeffrey.cousins@btinternet.com

Abstract

Work continues on developing the next edition of Ada.
Adding support for parallelism is a priority, but there are
many other small improvements, particularly in support
of static analysis (mostly now approved) and in the Real-
Time area (mostly relatively new proposals).

1 Introduction

This paper presents an update on the proposed changes
for the next edition of Ada, provisionally called Ada 2020
in anticipation of publication in 2020. The previous paper
was published in the Vol. 38, No. 1, March 2017 edition
of the AUJ.

As before, Ada Issues (AIs) are first worked on and
approved by the Ada Rapporteur Group (ARG). They are
then passed to WG 9 (the ISO/IEC Working Group
responsible for Ada) for consideration and approval
before eventually being consolidated and sent to ISO for
formal processing to create a revised international
standard.

The deadline for public input into what new features
should be incorporated into Ada 2020 passed in January
2018. The ARG held an internal ballot in May 2018 that
split those AIs still outstanding approximately 50:50
between those for 2020 and those to ‘hold’ until a future
edition. This allowed a draft Ada 2020 Scope document to
be produced for WG 9, listing those Amendment AIs that
the ARG hopes to include in Ada 2020 (including those
already approved). The final version is imminent; but in
the meantime, for progress see http://www.ada-auth.org/
ai-files/grab_bag/2020-Amendments.html.

2 WG 9 approved

This section describes some of the more important
changes to the language that have been approved by WG
9.

The issues listed in the previous paper as being in the
pipeline, viz Add @ as an abbreviation for the LHS of an
assignment (AI12-0125-3) and Update to the Fortran
Annex (AI12-0058), were approved by WG 9.

Many of the changes since that paper was published are to
allow more information to be specified for the support of
static analysis tools, e.g.:

 Nonblocking subprograms (AI12-0064-2) and the
related Specifying Nonblocking for Language
Defined Units (AI12-0241);

 Max Queue Length aspect for protected types (AI12-
0164);

 Stable properties of abstract data types (AI12-0187);

 Pre/Post for access-to-subprogram types (AI12-
0220);

 Default_Initial_Condition for types (AI12-0265);

 Aspect No_Return for functions reprise (AI12-0269).

One of the issues is to tidy up an inconsistency in the
language, i.e. Missing operations of static string types
(AI12-0201).

2.1 Nonblocking subprograms (AI12-0064-2)
This adds the aspect Nonblocking and the attribute
Nonblocking to Ada. These allow specifying and
querying the blocking status of a subprogram. If a
subprogram is declared to be nonblocking, the Ada
compiler will verify that it does not execute any
potentially blocking operations (other than deadlocking
operations).

2.2 Static expression functions (AI12-0075)
The aspect Static is introduced. It can only be applied to
an expression function, and requests that it be regarded as
a static function.

If called in a context that requires the expression function
to be static, such as in a static expression, then its actual
parameters need to be static. For example, if we declare:

function If_Then_Else (Flag : Boolean;
 X, Y : Integer) return Integer
is
 (if Flag then X else Y) with Static;

and then attempt to declare:

X : constant := If_Then_Else (True, 37, 1 / 0); -- Error.

we get an error at compile time since 1/0 is not a static
expression.

2.3 Partial aggregate notation (AI12-0127)
A new syntactic form of aggregate, the delta_aggregate, is
introduced. This allows one to update one or more fields
of a composite object without having to specify every
field. This will be particularly useful for postconditions,
where one might want to check that only certain fields of
a composite parameter had changed, for example:

procedure Twelfth (D : in out Date)
 with Post => D = (D'Old with delta Day => 12);

The values of the Year and Month components of the
delta aggregate are the same as those of D'Old but the
Day component is 12.

170 ARG Work in Progress I I

Volume 39, Number 3, September 2018 Ada User Journal

2.4 Max Queue Length aspect for protected
types (AI12-0164)
The new aspect Max_Entry_Queue_Length for an entry
declaration specifies the maximum number of callers
allowed on that entry. This facilitates timing analysis and
should be useful for new restricted tasking profiles
besides Ravenscar.

Violation of this restriction results in the raising of
Program_Error at the point of the call or requeue.

The value specified for the Max_Entry_Queue_Length
aspect for an entry must be no higher than any specified
for the corresponding type, and both must be no higher
than the Max_Entry_Queue_Length partition-wide
restriction. These are checked at compilation.

2.5 Stable properties of abstract data types
(AI12-0187)
This adds a type and subprogram aspect Stable_Properties
along with class-wide versions.

This aspect can be given on a partial view or on a full
type with no partial view, and on primitive subprograms.
(It is not allowed on formal types, since it is only
meaningful for primitive subprograms.) The intent is that
the subprogram version be used to override the type
version when necessary; it is not very useful as a stand-
alone aspect (it makes more sense to just modify the
postcondition in that case).

The aspect determines a list of stable property functions
for each primitive subprogram. The postcondition(s) of
the subprogram are modified with an item that verifies
that the property is unchanged for each parameter of the
appropriate type, unless that property is already
referenced in the explicit postcondition (or inherited
postcondition, in the case of class-wide postconditions).

For example, suppose that we wish many subprograms to
behave as if they have a postcondition as in:

procedure Put (File : in File_Type; Str : in String)
 with Pre => Mode(File) /= In_File,
 Post => Mode(File) = Mode(File)'Old;

Then rather than having to repeat this postcondition for
numerous subprograms, if Ada.Text_IO could be
rewritten in the form:

package Ada.Text_IO is
 type File_Type is private
 with Stable_Properties => Is_Open, Mode;
…

then the declaration of Put could simply be:

 procedure Put (File : in File_Type; Item : in String)
 with Pre => Mode(File) /= In_File;

since we have stated that the Mode is a stable property.

(Sadly we cannot change Ada.Text_IO – this is just an
illustrative example for the future!)

2.6 Missing operations of static string types
(AI12-0201)
Relational operators and type conversions of static string
types are now static.

Static membership tests for strings, e.g. S in "abc", were
already allowed; static equality tests for strings, e.g. S =
"abc", are now also allowed.

2.7 Pre/Post for access-to-subprogram types
(AI12-0220)
This allows Pre and Post aspects for access-to-
subprogram types, so that contract information is
available when calling a subprogram indirectly via an
access value, as well as (or even instead of) when called
directly. For example, to check that a parameter is even:

type T1 is access procedure (X : Integer)
 with Pre => X mod 2 = 0;
procedure Foo (X : Integer) is ... end;
…
 Ptr1 : T1 := Foo'Access;
begin
 Ptr1.all (222); -- Precondition check performed

2.9 Specifying Nonblocking for Language
Defined Units (AI12-0241)
Aspect Nonblocking is specified for language-defined
units as needed to keep compatibility with Ada 2012. This
follows on from AI12-0064-2 defining new aspect
Nonblocking, this aspect now needs to be specified for
many language-defined units and subprograms.

2.10 Bounded_Indefinite_Holders (AI12-0254)
A new container type, Bounded_Indefinite_Holder,
allows the storage of a (single) class-wide object without
the use of dynamic memory allocation, for use in safety
critical environments. Rather than having a bounded
indefinite variant of every container, it is envisaged that
this holder container would be used as a building block,
e.g. in a container of such holder containers.

Compared with the existing Indefinite_Holder, there is an
additional generic parameter:

Max_Element_Size_in_Storage_Elements :
Storage_Count;

If this is exceeded, Program_Error is raised.

2.11 Default_Initial_Condition for types (AI12-
0265)
A new contract aspect, Default_Initial_Condition, may be
specified for a private type (or private extension). This is
useful for checking that the default initialisation of an
object has been performed as expected. After the
successful default initialization of an object of the type, a
default initial condition check is performed. In the case of
a controlled type, the check is performed after the call to
the type's Initialize procedure. For example:

J. Cousins 171

Ada User Journal Volume 39, Number 3, September 2018

package Sets is
 type Set is private
 with Default_Initial_Condition => Is_Empty (Set);
 function Is_Empty (S : Set) return Boolean;
 ...
end Sets;

2.12 Aspect No_Return for functions reprise
(AI12-0269)
The aspect No_Return may now be specified for
functions, not just procedures, but the reason that such a
function never returns must be that it raises an exception
(rather than containing an endless loop). The only return
statements allowed in such functions are simple return
statements with an expression that is a raise expression or
a call of another non-returning function (or a
parenthesized expression of one of these). As for
procedures, there will be a check at run-time that it does
not run into the final end.

3 In the pipeline

These have been approved by the ARG but have yet to be
approved by WG 9. They include the first, of what is
hoped to be several, AIs on parallelism. Again, one of the
issues is to tidy up an inconsistency in the language, e.g.
Generalize expressions that are objects (AI12-0226).

3.1 Parallel operations (AI12-0119)
Two parallel constructs are proposed, namely parallel
blocks and parallel loops. A parallel block consists of a
set of concurrent activities each specified by a handled
sequence of statements, separated by the reserved word
and, analogous to the syntax for a select statement where
the alternatives are separated by the reserved word or. A
parallel loop defines a loop body which is designed such
that the various iterations of the loop can run
concurrently. The implementation is expected to group
the iterations into "chunks" to avoid creating an excessive
number of physical threads of control, but each iteration is
nevertheless considered for most purposes as its own
separate logical thread of control.

Both constructs start with the new reserved word parallel
to clearly indicate that these constructs are designed for
parallel execution. The implementation might still not
execute the constructs in parallel, but the intent is that if
multiple processors are available, some or all of them
should be allocated to the execution of the construct.

An example of using parallel blocks when searching a
binary tree:

procedure Traverse (T : Expr_Ptr) is
begin
 -- Recurse down the binary tree
 if T /= null and then T.all in Binary_Operation'Class
then
 parallel do
 Traverse (T.Left);
 and
 Traverse (T.Right);
 and

 Ada.Text_IO.Put_Line ("Processing " &
 Ada.Tags.Expanded_Name
 (T'Tag));
 end do;
 end if;
end Traverse;

An example of using parallel blocks when searching a
string for a particular character:

function Search (S : String;
 Char : Character) return Boolean is
begin
 if S'Length <= 1000 then
 -- Sequential scan
 return (for some C of S => C = Char);
 else
 -- Parallel divide and conquer
 declare
 Mid : constant Positive := S'First + S'Length/2 – 1;
 begin
 parallel do
 for C of S(S'First .. Mid) loop
 if C = Char then
 return True; -- Terminates enclosing "do"
 end if;
 end loop;
 and
 for C of S(Mid + 1 .. S'Last) loop
 if C = Char then
 return True; -- Terminates enclosing "do"
 end if;
 end loop;
 end do;
 -- Not found
 return False;
 end;
 end if;
end Search;

An example of using a parallel loop when initialising an
array:

parallel for I in Grid'Range(1) loop
 Grid(I, 1) := (for all J in Grid'Range(2) =>
 Grid(I,J) = True);
end loop;

3.2 Loop body as anonymous procedure (AI12-
0189)
A loop body can be used to specify the implementation of
a procedure to be passed as the actual for an access-to-
subprogram parameter, when used in the context of a
special kind of for-loop statement, whose
iterator_specification is given by a procedure_iterator.

This can be used for iterating over Directories and
Environment variables, or iterating through a map-like
container over the keys. Dedicated mechanisms were
proposed for these (AI12-0009 and AI12-0188,
respectively), but it was considered more useful to add a
more general mechanism. For example:

172 ARG Work in Progress I I

Volume 39, Number 3, September 2018 Ada User Journal

for (Name, Val) of Ada.Environment_Variables.Iterate
 (<>)
loop
-- "(<>)" is optional because it is the last parameter
 Put_Line (Name & " => " & Val);
end loop;
for (C : Cursor) of My_Map.Iterate loop
 Put_Line (My_Key_Type'Image (Key (C)) & " => " &
 My_Element_Type'Image(Element (C)));
end loop;

3.3 Generalize expressions that are objects
(AI12-0226)
A value conversion of an object is an object in order to be
consistent with a qualified expression. If we have

Max : constant Natural := 10;

then the following are now all legal

-- Legal
Ren1 : Natural renames Max;
-- Qualified expression, legal
Ren2 : Natural renames Natural'(Max);
-- Value conversion, was illegal, now legal
Ren3 : Natural renames Natural(Max);

3.4 Contracts for generic formal parameters
(AI12-0272)
Pre and Post are allowed on generic formal (nonabstract)
subprograms. For example:

generic
 type Foo is ...
 with function Reduce (Obj : Foo) return Integer
 with Post => Reduce'Result in –9 .. 9;
package Gen is
 ...
end Gen;

In addition the new aspect Default_Initial_Condition
(AI12-0265 – see above) is allowed on generic formal
private types

3.5 Make subtype_mark optional in object
renames (AI12-0275)
This makes the subtype_mark optional in object renaming
declarations. The expression will be correctly typed as
long as the right hand object_name can be resolved to
only one specific type.

It has long been an irritant that writing a renaming
declaration required looking up the subtype of the object,
and that giving the subtype can be misleading as only the
type is checked anyway.

4 The Future

4.1 What happened to the previous ‘The
Future’?

The proposals to add new aspects Nonblocking (AI12-
0064) and Stable_Properties (AI12-0187) to aid analysis
tools were successful – see above.

The proposal to add the basic syntax and semantics to
support parallelism (AI12-0119 – see above) has been

approved by the ARG, but the related AIs are still work in
progress (though at higher priority than most):

 Global-in and global-out annotations to specify which
global objects a subprogram may access, and in
which mode (AI12-0079);

 Reduction Expressions (AI12-0242);

 Explicit chunk definition for parallel loops (AI12-
0251-1);

 Parallel loop chunking libraries (AI12-0251-2);

 Map/Reduce Attribute (AI12-0262);

 Parallel Container Iterators (AI12-0266);

 Data race and non-blocking checks for explicit
parallelism (AI12-0267).

A new container type, Bounded_Indefinite_Holder, is
added – see above.

Investigations into Lambda functions (AI12-0190),
Generators/co-routines (AI12-0197), and Declare
expressions (AI12-0236) continue, albeit with less
enthusiasm for Generators/co-routines.

The suggestions to add a new pragma Loop_Invariant and
to add Function Decorators were never formally raised.

4.2 Support for Static Analysis
Ghost code (AI12-0239). "Ghost code" is code that is
added to support specification and verification, typically
functions (marked by the aspect Ghost) that are defined in
specifications and called from preconditions and
postconditions, but which do not generate any code in the
final executable.

4.3 Real-Time
A number of AIs were discussed by, or arose from, the
19th International Real-Time Ada Workshop, as reported
on in the Vol. 39, No. 2, March 2018 edition of the AUJ:

 Thread-safe Ada libraries (AI12-0139);

 Deadline Floor Protocol (AI12-0230);

 Compare-and-swap for atomic objects (AI12-0234);

 Admission Policy Defined for Acquiring a Protected
Object Resource (AI12-0276);

 Dispatching Needs More Dispatching Points (AI12-
0279);

 CPU Affinity for Protected Objects (AI12-0281);

 Atomic and Volatile generic formal types (AI12-
0282).

IRTAW also proposed an extended version of the
Ravenscar profile, provisionally named Jorvik, though the
AIs have yet to be raised for this.

4.4 Others
The attribute 'Image is added for all types (AI12-0020).
This should be a boon for debugging. A developer will be
able to insert a line of Text_IO.Put for Any_Object'Image,
without having to laboriously write a subprogram to
output the object field by field if it is a composite object.

J. Cousins 173

Ada User Journal Volume 39, Number 3, September 2018

Defaults for generic formal parameters (AI12-0205). This
would provide easier and more natural generic
instantiation. These use the reserved words or use. For
example:

generic
 type Item_Type is private;
 type Item_Count is range <> or use Natural;
 -- New syntax using use
 with function "=" (L, R : in Item_Type)
 return Boolean;
package Lists is
 ...
end Lists;

This allows the instantiator to be able to provide a type
for the Item_Count, but it can simply be omitted in
ordinary circumstances (in which case Natural would be
used).

Predefined big numbers support (AI12-0208). This
defines a package Big_Numbers and various child
packages to support arbitrary precision arithmetic.

Access value aliasing and parameter aliasing (AI12-
0240). This is an ambitious proposal which introduces the
concept of access type "ownership" such that no more
than one access value can point to a given object on the
heap, thus allowing automatic storage management.

User-defined literals (AI12-0249). An aspect, or aspects,
will be defined to allow a type to use numeric, string,
character, and/or null literals. For example:

type Unbounded_String is private
 with String_Literal => To_Unbounded_String;

function To_Unbounded_String
 (Source : Wide_Wide_String)
 return Unbounded_String;

X : constant Unbounded_String := "This is a test"

The above declaration of X is equivalent to:

X : constant Unbounded_String :=
 To_Unbounded_String
 (Wide_Wide_String'("This is a test"));

And finally we have Iterator Filters (AI12-0250). When
iterating through a container, it is often required to filter
the results to only return those values that meet some
condition. This proposal makes use of the keyword when,
for example:

S : constant Set :=
 (for E of C when E mod 2 = 1 => E);

to obtain all the odd elements of Container C.

5 Conclusions

The successful delivery of so many projects using earlier
editions of Ada has demonstrated that it is already a very
capable language. Ada 2020 will be a relatively modest
update compared with Ada 2005 and Ada 2012, but the
new features should maintain its power, in particular the
support for parallelism to make use of the ever growing
numbers of cores in a processor.

 175

Ada User Journal Volume 39, Number 3, September 2018

C Guidelines Compliance and Deviations (the
MISRA and CERT Cases)
Maurizio Martignano
Spazio IT – Soluzioni Informatiche, Via Manzoni 40, 46030 San Giorgio di Mantova, Italy; Tel: +39 0376
1434259; email: Maurizio.Martignano@spazioit.com

Abstract

C Guidelines such as MISRA and CERT define a set
of rules and directives designed to help developers in
writing quality code. Unfortunately, more often than
not these guidelines are heavily tailored and
customized before being applied to actual projects.
The paper will first show some of the potential
dangers that can be caused by such customizations.
Then it will describe MISRA and CERT efforts in the
attempt to rationalize, standardize the customization
process. Finally, the paper will propose a viable
approach to properly manage compliance and
deviations by respecting the new MISRA and CERT
indications while retaining the necessary flexibility at
project level.

Keywords: C Language, MISRA, CERT, Standard,
Guideline, Compliance, Conformance, Deviation.

1 Introduction

MISRA C:2012 (“guidelines for the use of the C language
in critical systems”) and SEI CERT C (“SEI CERT C
Coding Standard”) provide a set of guidelines (rules and
directives – MISRA or rules and recommendations -
CERT) designed to help developers in writing quality code,
i.e. code that is safer, more secure, understandable and
maintainable.

Obviously, it is not always possible to adhere to all these
guidelines and this why in several software development
projects deviations and compliance levels are established in
the context of so called customization or tailoring activities.

The customization activity can be performed very formally,
adhering once again to specific and additional standards, or
rather informally on a project by project base, according to
the specific needs and actual limitations of the project
itself. The customization strategies adopted by actual
projects range from not allowing any deviation to accepting
every documented deviation.

Both MISRA and CERT have tried to improve this
situation. MISRA in April 2016 has published a relatively
new guidance, MISRA Compliance:2016 (“Achieving
compliance with MISRA Coding Guidelines). CERT C
Coding Standard (as well as the C++ and Java ones) in the
Introduction, section 1.8 Conformance, provides a set of
indications about the rules and recommendations

conformance, defines a set of levels of conformance and
describes a proper deviation procedure.

The paper will start by describing some examples of
customizations, implemented by actual projects, and in
particular will try to show that:

1. excessive tailoring of the guidelines could be a
problem;

2. it is not always true that the knowledge of the language
available inside projects is better than the one
contained, implied by the guidelines;

3. guidelines can be used to improve the understanding of
the language among unexperienced developers.

Secondly, the paper will describe in detail both MISRA and
CERT standardization efforts in the areas of compliance
and deviations.

Thirdly the paper will concentrate on the analysis tools and
on their importance in verifying, endorsing and
encouraging compliance to the guidelines.

Finally, the paper will propose a viable approach to
properly manage compliance and deviations by respecting
the new MISRA and CERT indications while retaining the
necessary flexibility at project level.

2 Customizations Examples

Note 1: all customizations examples in this section have
been “anonymized” so that the original projects cannot be
identified.

Note 2: due to copyright restrictions, MISRA directives and
rules descriptions have been altered. The original
descriptions can be found in reference document [1].

Integral types size and sign

Involved guideline

MISRA C 2012 – Directive 4.6 (Advisory) – “typedefs
indicating size and sign should be used instead of the basic
integral types”.

Description

This MISRA directive recommends to use the “new” C99
integral types contained in “stdint.h” instead of the “old”
integral numerical types, e.g. int8_t instead of char, uint8_t
instead of unsigned char, int32_t instead of int (or long
depending on the hardware architecture), etc… This header
file provides a set of typedefs specifying exact-width

176 C Guidel ines Compl iance and Deviat ions (the MISRA and CERT Cases)

Volume 39, Number 3, September 2018 Ada User Journal

integral types, together with their minimum and maximum
values. “stdint.h” is particularly useful for embedded
programming, especially in portions of code interfacing
with hardware devices requiring integer data of fixed
width. With the “basic” types the only guarantee about the
sizes common among the various compilers is that char <=
int <= long <= long long; but the actual sizes are
implementation dependent.

In some projects (say Type A) this directive has been
completely ignored and only the basic integral types have
been used, leaving the actual sizes implicitly defined by the
compiler implementation. In some other projects (say Type
B) the directive has been followed to the letter. Finally, in
yet some other projects (say Type C) MISRA has been
customized and the directive has been adopted only “when
relevant”, only when “it made sense”, that is only in
portions of code interfacing with the hardware. In Type A
and Type C projects coding “was not for everyone”, coding
required additional knowledge: either on the data
representation implicitly used by the compiler or on the
software architecture (to know when it was necessary to
use the “new” C99 integral types). On the other hand, in
Type B projects, coding “was for everybody”, given that
only the “new” integral types were allowed and there was
no need to distinguish a piece of code from the others.
Being knowledgeable on a given project, on a given piece
of code is not just a matter of experience, but also a matter
of “frequentation”. A person that today knows everything
on a given software system or some of its components, may
lose all her knowledge in a matter of months, if not weeks
when working on other assignments.

(Not NULL) Pointer Function Parameters

Involved guidelines

MISRA C 2012 – Directive 4.11 (Required) – “The validity
of parameters passed to library functions shall be checked”.

CERT – EXP34-C – “Do not dereference null pointers”

CERT – MEM10-C – “Define and use a pointer validation
function”

Description

The “common sense” rule is that function parameters
should be checked for their validity. Between the “caller”
and the “callee” it is the first one which is more
knowledgeable, has more information about the validity of
the passed parameter. In the case of pointer function
parameters, a first and simple check consists in verifying
they are not NULL; both the “caller” and the “callee” have
enough knowledge to perform this check. Though this
check could be placed in the “caller” before the function
invocation, inserting it in the “callee” simplifies the
verification that all parameters have been checked. This
check is usually performed via an “if” if the pointer
parameter can only be known at execution time or via an
“assert-like” construct when the pointer is known at
design/compilation time.

Once again, in some projects (say type A) these guidelines
have been ignored, and pointer function parameters are
never checked. In some other projects (say Type B) the
guidelines have been followed and always via an “if” check
inside the “callee”. In yet some other projects (say Type C)
the difference between “assert-like” checks and “if” checks
has been retained and in production/flight the “assert-like”
checks have been removed (either via conditional
compilation or actual deletion from the code). Quite often
the reasoning behind non-complying with these guidelines
has been performance, even if these checks do not (and
cannot) consume a lot of resources. In Type B projects
there is no particular decision to be taken: i.e. pointer
functions parameters have to be checked, always, by the
“callee”, via an “if”-check. In Type C projects
distinguishing between “if” and “assert-like” checks and
deciding which checks can be safely removed in the final
code could be rather difficult and require “knowledgeable”
developers.

Forbidden Conversions (and then again)

Involved Guidelines

MISRA C 2012 – Rules 10.x – “Essential type model” and
Rules 11.x – “Pointer type conversions”

Description

All these rules about conversions between pointer types
and/or between essential types belonging to different
categories or with different sizes are sound and make sense
in generic, application level pieces of code. Wherever a
violation is found something suspicious is taking place and
most of the times it is an error.

Unfortunately, when coding low level portions of
embedded systems and trying to access hardware IOs,
registers, non-volatile memory, etc… it is impossible not to
break one or more of these rules. E.g. the following very
simple piece of code:

at line 6 violates Rule 11.4 “conversion between a pointer
and integer type” and Rule 11.6 “cast from integer to
pointer”.

Because of this situation in some projects all the 11.x Rules
have been completely ignored. In some other projects the
Rules have been kept, accepted, and their violations have
been confined (as much as possible) in isolated modules,
isolated components. The advantages of the second
approach are obvious: whenever deviations have to be
adopted, it makes sense to confine such deviations to a
portion, a subset of the system, so that the general

 1: typedef unsigned char uint8_t;
 2:
 3: int main(void) {
 4:
 5: uint8_t * ui8_ptr;
 6: ui8_ptr = (uint8_t *) 0x12;
 7:
 8: return 0;
9: }

M. Mart ignano 177

Ada User Journal Volume 39, Number 3, September 2018

recommendations and guidelines are still valid and
applicable to the other portions.

3 MISRA and CERT Standardization
Efforts

Both MISRA and CERT have tried to harmonize,
standardize the way in which deviations can be established.

MISRA

MISRA in April 2016 has published a guidance, MISRA
Compliance:2016 (“Achieving compliance with MISRA
Coding Guidelines” – reference document [3]).

MISRA guidelines are divided in:

1. directives: guidelines which are not defined with
reference to the source code alone, but which also refer
to, or impose requirements on processes and
documentation;

2. rules: guidelines which impose requirements on the
source code and the source code only.

Rules are then divided into:

1. decidable: rules that can always be assessed, verified
by a (properly configured) analysis tool;

2. undecidable: rules that cannot be assessed, verified by
an analysis tool in every situation.

Finally, guidelines are categorized into:

1. mandatory: guidelines for which violation is never
permitted;

2. required: guidelines for which violations are permitted
if justified by documented deviations

3. advisory: guidelines that can be violated without the
need of a corresponding deviation.

All this framework gives a set of indications on how to
establish deviations. Mandatory guidelines cannot have
deviations. Among the required guidelines decidable rules
are the less expensive to verify while undecidable rules and
directives are more expensive. Advisory guidelines can be
followed till it make sense, till it is reasonably practical to
do so. It is important that all deviations are properly
documented at the beginning of the projects and the
guidance together with Appendix I of reference document
[1] provide a detailed table of contents for the deviation
record. On this specific point it must be noted that both the
guidelines with their explanatory texts and examples as
well as the deviations justifications provide a valuable
training material that can be used to increase the
“knowledge” and “awareness” of the less “experienced”
team members.

The guidance provides also special provisions for “adopted
source code”, i.e. code deriving from other projects, for
which further deviations may be needed in addition to the
ones applied to the project code, and compiler standard
libraries, for which in general MISRA compliance is not
required.

CERT

The CERT compliance framework is similar but somehow
simpler than the MISRA one (see reference document [2]
chapter 1, and especially sections 1.8 “Conformance” and
1.13.4 “Risk Assessment”).

CERT guidelines are divided into:

1. recommendations: guidelines that are likely to improve
the quality of the system;

2. rules: guidelines whose violations are likely to
introduce defects which may adversely affect the
safety, reliability, or security of the system.

Each guideline contains a risk assessment based on its
severity, likelihood and remediation cost; all these
attributes are expressed as a number ranging from 1 to 3.

 severity: 1 – low, 2 – medium, 3 – high.

 likelihood: 1 – unlikely, 2 – probable, 3 – likely.

 remediation cost: 1 – high, 2 – medium, 3 – low.

The risk associated to a guideline is the product of these
three attributes, which is called priority. Though the
product ranges from 1 to 27, only the following 10 distinct
values are present in the document: 1, 2, 3, 4, 6, 8, 9, 12,
18, and 27.

This scheme allows the definition of levels:

 L1: guidelines with priority from 12 to 27

 L2. guidelines with priority from 6 to 9

 L3: guidelines with priority from 1 to 4

Violations to L1 guidelines are high severity, likely and
inexpensive to fix; violations to L2 guidelines are medium
severity, probable and medium cost to fix; violations to L3
guidelines are low severity, unlikely and expensive to fix.
A system is said to be L1 compliant if no L1 guideline is
violated, L1-L2 complaint if no L1 and L2 guideline is
violated and fully compliant if all guidelines are satisfied.

Though CERT Coding Standard realizes that strict
adherence to all rules is unlikely and therefore deviations
are needed, contrary to MISRA [1, Appendix I] [3], it does
not provide detailed information on the deviation procedure
nor on how to document deviations.

4 Analysis Tools

The web version of the CERT C Coding Standard
(reference document [4]) for each guideline lists which
tools can verify it (if any). The list is quite detailed
providing the name of the tool, its version, the checker
involved and a description with some additional
information. Several years of Independent Software
Verification and Validation activities have allowed the
author to gather quite some experience on the various
analysis tools. This experience can be summarised in the
following heuristics.

There is no perfect tool. No tool is able to verify all
MISRA (or all CERT) guidelines in all conditions.
Analysis tools, in particular conditions, may generate both

178 C Guidel ines Compl iance and Deviat ions (the MISRA and CERT Cases)

Volume 39, Number 3, September 2018 Ada User Journal

“false positives” (i.e. the tool reports a flaw when one does
not exist) and “false negatives” (i.e. the tool does not report
anything when a flaw actually does exist). “False positives”
can be simply filtered out, either during the analysis or
when reporting the results. On the contrary there is no
remedy against the “false negatives”, apart from using
different tools and hoping that what is missed by one tool is
detected by another one.

Analysis tools can be divided into three broad categories:

1. “Shallow Analysers”: based on patterns matching, e.g.
“PC-Lint”, “splint”, “Understand”, “Cppcheck”, …

2. “Deep Analysers”: based on techniques like bounded
model checking, semantic analysis and abstract
execution, e.g. “CBMC”, “Frama-C”, “Polyspace”, …

3. “Compiler Based Analysers”: based on the analyses
performed by the compilers themselves, e.g. “Clang
Static Analyzer”, “Facebook Infer”, …

“Shallow Analyser” are usually able to verify/assess the
compliance of the majority of MISRA and CERT
guidelines. In some cases, for some specific guidelines,
“Deep Analysers” or manual intervention may be required.

The problem with “Deep Analysers” is that they require a
lot of computing resources to perform their analyses and
this might compromise their applicability to large
codebases.

A recent, very interesting trend in static analysis is the
adoption of “Compiler Based Analysers”; they offer several
advantages, among which the most important are:

1. they are the “real thing”, the very same tools used to
build the software under analysis;

2. they are fast and can easily analyse large codebases;

3. they are easy to use, especially by developers and
testers who are already accustomed to the compilation
toolsets.

5 A Viable Approach to Manage
Compliance

Compliance management can be seen as a process, divided
in the following steps:

1. guidelines assessment and selection

2. system partitioning

3. tools configuration

4. (continuous) analysis execution

5. results exploitation

Guidelines Selection

Ideally in every project all guidelines should be adopted.
Having to decide which deviations must be put in place it is
very helpful to follow MISRA and CERT guidance in
terms of priority, looking at which guidelines offer the
“best value for money”.

For MISRA:

1. decidable rules

2. undecidable rules

3. directives

It should be noted that in total there are 10 mandatory
guidelines, i.e. guidelines that cannot be deviated; all of
them are rules, 4 are decidable and 6 undecidable.

For CERT:

1. L1 guidelines

2. L2 guidelines

3. L3 guidelines

Deviations should be documented and MISRA offers a
good guidance in terms of which information should be
included in their justification.

System partitioning

Nowadays trends in software design and architecture, see
for instance reference document [5], concentrate on
simplifying and facilitating both the development and
maintenance of software systems. This is why principles
like the “dependency inversion” or design patterns like the
“plugin architecture” are widely spread and adopted. On
top of these criteria it would make sense to partition a
system in modules, components based on their compliance
to MISRA and/or CERT guidelines. For instance, a system
could be partitioned into layers:

1. High-level, application level, layer – containing all
modules where full compliance can be achieved

2. Low-level, base software, layer – containing all
modules where deviations must be introduced (e.g.
components interfacing the hardware, legacy libraries,
compiler/language libraries, etc…)

Even in embedded, real-time, critical systems, quite likely,
the majority of the components would belong to the high-
level layer.

Tools Configuration

The configuration of tools is a rather expensive activity
whose effort, based on the size and complexity of the
project, may vary from few days to few weeks. Its purpose
is to identify, define details like:

 selection of the analysis tools, to reduce as much as
possible the “false negatives” while maintaining the
costs inside a reasonable envelop;

 how to call the analysis tools, with which options, on
which files;

 how to prepare the code base under analysis, so that
the tools can process it (if needed);

 how to filter out “false positives” and when, if during
the analysis itself or when presenting the results.

The configuration costs can be shared among projects with
the same typology, e.g.: same quality/compliance
requirements, same type of software, same type of
platform, same compilation toolset, etc…

It must be noted that “Compiler Based Analysers” require
very little or even no configuration at all (in fact the

M. Mart ignano 179

Ada User Journal Volume 39, Number 3, September 2018

compilation toolset has already been configured to build the
software).

Results exploitation

It would be very limiting and economically inconvenient to
consider the MISRA/CERT compliance analysis just as a
tool, a sort of “necessary evil”, required to obtain a given
quality mark, an official certificate of the quality of a
system.

MISRA and CERT guidelines are precious instruments to
identify in the codebase “hot spots”, “critical areas”,
portions of code that require special attention (during both
the development and the maintenance).

Analysis tools, quite often, produce their results as text files
or spreadsheets. It is much more useful to display the
violations from within the code itself.

Figure 1 shows how valuable is to display the violations
from within the code (see reference document [7]). For
instance, looking at the code it is much easier to decide if a
violation is valid or if it is a “false positive”. On top of that,
the information contained in the guidelines together with
portions of code violating them become a powerful and
effective “educational tool”, a way of passing knowledge to
less experienced developers or testers. There are quality
platforms, e.g. SonarQube – see reference document [6],
that are able to aggregate the results of various analysis
tools and present them from within the code. On top of that
they are also able to “follow” the historical evolution of the
project and show, for instance, how violations have been
addressed and solved.

6 Conclusions
The paper has shown the potential drawbacks of excessive
customization during the tailoring of the MISRA (or

CERT) guidelines to be applied to a given project.
Examples have been provided in usually critical areas like
data handling, data representation, defensive programming
and (pointer) type conversions.

Secondly the paper has presented the efforts of both
MISRA and CERT in the attempt of standardizing the
process of customizing the guidelines. Though MISRA and
CERT have produced two similar conceptual frameworks,
the CERT one seems simpler.

Thirdly the paper has presented the current “status of the
art” of the analysis tools.

Finally, the paper has presented the approach the author is
using and recommending to manage compliance. The
approach is based on concentrating more on actual
feasibility and economic considerations rather than
following a strict, a priori, adherence to regulations and
standards.

Proper emphasis has been put on the educational value of
MISRA and CERT guidelines.

References

[1] The Motor Industry Software Reliability Association
(2012), MISRA C:2012, “Guidelines for The Use of
The C Language in Vehicle Based Software”, March
2013, ISBN 978-1-906400-11-8.

[2] Software Engineering Institute, Carnegie Mellon
University (2016), SEI CERT C Coding Standard -
Rules for Developing Safe, Reliable, and Secure
Systems.

[3] The Motor Industry Software Reliability Association
(2016), MISRA COMPLIANCE:2016, “Achieving
compliance with MISRA Coding Guidelines”, ISBN
978-1-906400-13-2.

[4] SEI CERT C, SEI CERT C Coding Standard – Web
Version: https://wiki.sei.cmu.edu/confluence/display/c/
SEI+CERT+C+Coding+Standard

[5] R. C. Martin (2017), Clean Architecture: A
Craftsman's Guide to Software Structure and Design,
Prentice Hall, Pearson Education , ISBN 978-0-13-
449416-6.

[6] SonarQube, http://www.sonarqube.org.

[7] http://sonarsrv.spazioit.com/projects.

Figure 1- MISRA Violations in SonarQube

 180

Ada User Journal Volume 39, Number 3, September 2018

Using Ada in Non-Ada Systems
A Marriott, U Maurer
White Elephant GmbH, Beckengässchen 1, 8200 Schaffhausen, Switzerland; email: software@white-elephant.ch

Abstract

This article is based on the industrial presentation
“Using Ada in non-Ada systems” which was given
at the 2018 Ada-Europe conference in Lisbon.

The presentation was an experience report on our
use of Ada packages within existing non-Ada
embedded microprocessor based systems.

Keywords: GCC, Modula-2, C, ZFA

1 History

In the late eighties, when we first started replacing dis-
crete electronics with embedded microprocessors, there
were very few Ada compilers available, especially for
microprocessors, and those that did exist were slow, re-
quired vast resources and were very expensive.

As a consequence, and because we wanted to use a highly
typed language rather than use the ubiquitous C, we
decided to implement our systems in ISO 10514
Modula-2. Modula-2 is a programming language invented
by Niklaus Wirth that has many features in common with
Ada. For example, it's verbose non-ambiguous syntax and
the separation of specification and implementation into
separately compiled units.

Originally we used cross compilers, compiling Modula-2
source directly into the target machine code. However,
over time it became increasingly difficult to find
Modula-2 compilers for the new microprocessors that
were coming onto the market.

For this reason we switched to using a Modula-2
translator that translates Modula-2 into C. This machine
generated C is then compiled into the target machine
code. We rarely look at this machine-generated C code
– preferring to treat it as some form of intermediary
"binary".

None the less our Modula-2 is translated into C and it is
this C that is compiled and linked to form our embedded
hard real-time systems. Later in this article, when I
present how and why we have started using Ada in our
systems, it should be noted that we are effectively talking
about using Ada in a predominantly C environment. The
fact that we ourselves don't actually program in C, or even
know how to program in C, is a luxury we have been
afforded but that shouldn't distract from the usefulness or
relevancy of this article.

We have a large amount of well-established code that
executes on a multitude of platforms and that uses our
own proprietary multitasking run-time. Management is

unlikely to sanction the conversion of this code base into
Ada - if only because the risk of introducing errors would
far out way any perceived benefit of coding exclusively in
Ada.

However this is not to say that new features or features
that have to be substantially modified couldn’t be written
in Ada, provided that an affordable Ada compiler exists
for the target microprocessor architecture and if the code
can be integrated into the existing system.

Until recently, we have been using the Wind River Diab
tool chain to build our executables (in ELF format with
DWARF debugging information) for Motorola M68332
and Coldfire microprocessors. We have no intention of
touching these systems. However our most recent
hardware is ARM based and we have also switched C
compiler and now use the Gnu Compiler Collection
(GCC).

In fact we use GCC version 6.3.1 to compile our C code
for ARM which is the same version of the GCC that
AdaCore releases under GPL 2017 for compiling Ada for
ARM. So the challenge has been to write code in Ada and
then use GNAT to compile it and link it together with our
existing C code.

An important caveat is that we are not talking about using
full Ada. A lot of the power of Ada comes from language
features that depend on its runtime. However we already
have a runtime. Rather than modify the Ada runtime to
use our runtime or modify our runtime to use Ada's, we
decided, at least for now, that the simplest course of
action is to restrict ourselves to a subset of Ada that
doesn't require a runtime.

This is what is known as the Zero Footprint profile for
Ada.

Exactly what Zero Footprint Ada means for any particular
system depends on which pragma restrictions are declared
in the file System.ads

For example a typical ZFA could be defined as:

pragma Restrictions (No_Exception_Propagation);
pragma Restrictions (No_Implicit_Dynamic_Code);
pragma Restrictions (No_Finalization);
pragma Restrictions (No_Tasking);
pragma Restrictions (No_Delay);
pragma Discard_Names;

These restrictions mean we lose a lot of nice features of
Ada. Features such as:

 Tasks

A. Marr iot , U. Maurer 181

Ada User Journal Volume 39, Number 3, September 2018

 Protected objects

 Controlled types

 The delay statement

 Dynamic storage allocation using new

 Exception propagation

In addition to the above we also voluntarily imposed
additional restrictions to reduce Ada down to the level we
wanted to support.

For example our target microprocessor has no fixed point
hardware therefore any code that uses floating point will
be exceedingly slow. To prevent the accidental use of
floating point we added

pragma Restrictions (No_Floating_Point);

into System.ads.

Another restriction, at least initially, is to forego Ada
functions that return unconstrained types. This is because
variable length results are returned to the caller using
what GNAT terms the secondary stack. However the
microprocessors we are currently using have very little
RAM, therefore we can ill afford the luxury of having a
second stack for each and every task.

Consequently we added

pragma Restrictions (No_Secondary_Stack);

into System.ads.

The main consequence of this decision is that we can’t
write Ada functions that return strings nor can we use
attributes such as ‘image or ‘img.

We also initially decided to restrict ourselves to writing
pre-elaborated packages. By declaring all our packages
"with preelaborate" or "with pure" and including

pragma Restrictions (No_Elaboration_Code);

in system.ads we forego elaboration.

Without elaboration:

1. Global variables can only be initialised to values
evaluated at compile time

2. Packages may not have a body, i.e. code between the
begin and end of the package implementation.

3. Pre-elaborated packages may only call packages that
are themselves pre-elaborated or pure.

However, even with all these restrictions we believe that
there is still enough left of Ada to make integration
attractive. We have always considered Modula-2 to be a
poor man's Ada. However, in our opinion, even a severely
cut back Ada is better than programming in Modula-2 and
we can only imagine how much of an improvement it
must be over writing in C.

Ada is obviously syntactically superior to C and even
though they share the same roots, Ada offers many
advantages over Modula-2

For example:

 Named parameters

 Named fields in constructors

 Private types, functions and procedures.

 Bit level specification in representation clauses.

Representation clauses are extremely useful when
interfacing to hardware and third party protocols. An
enumeration that is not represented as a complete byte is
accessed in most computer programming languages by a
combination of bit masks and shifting – a typically error
prone endeavour that is handled automatically by Ada.

2 Getting Started

The simplest form of integration is when a program
written in Modula-2 calls a parameter-less procedure
written in Ada.

To make procedures accessible from other modules,
Modula-2 mangles the procedure names by prefixing
them with the name of the module together with a
separating underscore. Thus procedure Y defined in the
definition of module X would be called X_Y.

In Ada a similar thing happens. The global procedure
name is composed of the package name followed by a
double underscore followed by the name of the procedure,
and the whole name rendered to lowercase. Thus
procedure Y defined in the specification of package X
would be called x__y

Therefore to access an Ada procedure from C you first
need to declare the Ada procedure as an external
procedure

extern void adaunit__adaprocedure (void);

and then call it using its full mangled name

adaunit__adaprocedure();

To do this in Modula-2 we have to import the package
and then call the procedure in the same way we would for
a procedure written in Modula-2

IMPORT AdaUnit;
AdaUnit.AdaProcedure;

As this is written in the same way that a Modula-2
procedure would be called we need to inform the
translator that the procedure being called is an Ada
procedure rather than one written in Modula-2.

This is achieved by creating a foreign definition module
that tells the Modula-2 translator which language the
procedures within the module are written in.

DEFINITION MODULE ["Ada"] AdaUnit;
 PROCEDURE AdaProcedure;
END AdaUnit.

The above informs the translator that the procedure
AdaProcedure in the module AdaUnit is written in Ada
and therefore will have its global name mangled to
adaunit__adaprocedure.

182 Using Ada in Non-Ada Systems

Volume 39, Number 3, September 2018 Ada User Journal

We then have to write and compile the procedure in Ada

package body AdaUnit is
 procedure AdaProcedure is
 begin
 null;
 end AdaProcedure;
end AdaUnit;

and then make a specification so that it is exported.

package AdaUnit is
 procedure AdaProcedure;
end AdaUnit;

The Ada package has to be compiled using GNAT and the
Modula-2 translated into C which is then compiled by the
GCC. The resultant objects then have to be linked
together to produce an executable.

In order that certain Ada features are made available, the
compiler requires a number of ads files to be found
somewhere in the source search path.

A package implementation is not required because the
implementation is intrinsic (built into) the compiler.

For example, using Ada.Unchecked_Conversion requires
that the file a-unccon.ads to be found in the source file
search path.

Unfortunately GNAT has the very strange restriction that
these specification files MUST have the "crunched" file
names listed below. It does not support their being named
according to the more usual convention derived from the
full name of the package they contain. This is presumably
some sort of historical left over, which is a pity, because
these names are both ugly and unreadable.

 a-except.ads (ada.exceptions)

 a-unccon.ads (ada.unchecked_conversions)

 interfac.ads (interfaces)

 s-maccod.ads(system.machine_code)

 s-stoele.ads (system.storage_elements)

 s-unstyp.ads (system.unsigned_types)

3 Debugging

If the executable had been written entirely in Ada and ran
on a machine sitting on a nearby desktop, we could have
used something like GPS for debugging. However this is
not the case. Our code is a mixture of Modula-2, C and
now Ada. Moreover the machines are physically remote
and not easily accessible.

So when something goes wrong our machines generate a
memory dump and then, sometime later, we use a static
dump analyser. The analyser uses the debug information
that is stored in the executable file by the compiler and
linker. It expects this information to be written according
to the DWARF standard.

Fortunately for us GNAT is based on the GCC, which
accepts the switch -gdwarf-3. This switch causes GNAT
to supply debugging information according to version 3 of

the DWARF standard and to place this information into
the ELF executable.

Our challenge has been to enhance our analyser to better
support bit fields and sub-ranges – something it never had
to deal with when the executables were built purely from
C.

Another debugging problem concerns the GCC's link time
optimisation feature. This feature is enabled using the -lto
switch and is required for the in-lining explained later in
section 7.

Entries within the DWARF debugging information are
contained within compilation units. These compilation
units are Ada packages or Modula Modules. The full
global name of an entity can normally be derived by
prefixing the name of the compilation unit with the name
of the entity. Unfortunately a side effect of using the lto
feature is that the compilation units are all renamed
<artificial>!

To solve this problem all our Modula-2 & C variables and
procedures have to be name mangled in order that we can
differentiate and know in which module the entity was
defined. We have to do this even if the entity is not
exported, i.e. is only used locally and therefore, from the
linker's perspective, does not have to have a globally
unique name.

Fortunately for us, Ada also mangles all its names - even
if they are not exported. So this is not a problem and we
can therefore use Link Time Optimization.

4 Functions

To make our example a little more useful we can replace
the parameter-less procedure with a function that
increments a global variable and returns its new value.

package AdaUnit is
 function AdaFunction return Integer;
end AdaUnit;

package body AdaUnit is

 TheGlobal : Integer;

 function AdaFunction return Integer is
 begin
 TheGlobal := TheGlobal + 1;
 return TheGlobal;
 end AdaFunction;

end AdaUnit;

However when we try to link a program that calls
AdaFunction the linker complains that it is missing a last
chance handler for the function.

This is because the function will raise an exception when
TheGlobal reaches Integer'last. If this situation is not
explicitly handled, the Ada compiler will insert a call to
the last chance handler __gnat_last_chance_handler.

A. Marr iot , U. Maurer 183

Ada User Journal Volume 39, Number 3, September 2018

Of course, one could define a last chance handler and then
link this into the final program. However we chose not to.
Instead we chose to always explicitly handle Ada implicit
exceptions.

For example by rewriting the code so that the error
situation cannot arise:

function AdaFunction return Integer is
begin
 if TheGlobal < Integer'last then
 TheGlobal := TheGlobal + 1;
 return TheGlobal;
 else
 return Integer'last;
 end if;
end AdaFunction;

or by catching the exception

function AdaFunction return Integer is
begin
 TheGlobal := TheGlobal + 1;
 return TheGlobal;
exception
when Constraint_Error =>
 return Integer'last;
end AdaFunction;

By adding the switch -gnatw.x the Ada compiler will
generate a warning if an implicit or explicit exception is
not covered by a local handler.

Unfortunately Ada doesn't always get it right and we
often have false positives – occasions when Ada warns
that an exception may be raised when in fact this is not
possible.

In the following example Ada complains that
Constaint_Error might be raised when calling
The_Handler.all even though the explicit check for a null
pointer precludes this.

type Handler is access procedure;
The_Handler : Handler;

procedure Test is
begin
 if The_Handler /= null then
 The_Handler.all;
 end if;
end Test;

Interestingly, if we switch off warnings for the duration of
the code in question, the program still links. This
therefore shows that the compiler was, in fact, smart
enough to realise that the exception could not be raised.

Rather than disable and then re-enable warnings we prefer
to use the pragma Suppress to remove the specific check.

Suppressing checks can be selective. Typically we place
the code that is causing the problem within a declaration
block and add the appropriate pragma suppress between
the declare and begin statements.

For example:

declare
 pragma suppress (Access_Checks);
begin

We consider this less error prone than messing around
with warnings but we also hope that, as the compiler is
improved, it might one day warn us that these pragmas
are no longer necessary.

5 Initialising Globals

Global variables can be initialised using the standard Ada
syntax. In our example the global variable can be
initialised to forty two by declaring it as:

 TheGlobal : Integer := 42;

Initialising variables in this manner does not work without
a runtime to initialise the variable. Zero footprint Ada
does not have a runtime and so if used purely by itself it
would require an alternative mechanism to initialise
global variables. However we are using Ada within an
existing system, the runtime of which will initialise ALL
global variables, irrespective of the compiler used,
provided that all the compilers adhere to a few
conventions.

Fortunately for us, GNAT adheres to these conventions
and so its global variables are initialised in the same way
that global variables written in ether Modula-2 or C are.

How does this work?

Quite simply, global variables are placed in a section
called .bss if they are initialised to zero or in a section
called .data if they are initialised to anything else.

The following GCC linker script groups all the .bss
variables along will all uninitialized variables
(COMMON) together and sets two linker symbols to the
start and end addresses of the area of memory they have
been allocated. The same script groups all initialised data
together, assigns another pair of linker variables to their
start and end addresses and instructs the linker to place
their initialization values into ROM.

 .mdata :
 {
 __Data_Start = ABSOLUTE(.);
 (.data)
 __Data_End = ABSOLUTE(.);
 } > Ram AT > Rom
 .bss :
 {
 __Bss_Start = ABSOLUTE(.);
 *(.bss)
 *(COMMON)
 __Bss_End = ABSOLUTE(.);
 } > Ram
__Data_Rom = LOADADDR(.mdata);
__Bss_Size = __Bss_End - __Bss_Start;
__Data_Size = __Data_End - __Data_Start;

184 Using Ada in Non-Ada Systems

Volume 39, Number 3, September 2018 Ada User Journal

The runtime has access to the linker defined global
symbols __Data_Start, __Data_Rom, __Data_Size and
Bss_Size. Using these symbols the runtime can initialise
memory thus:

 MOVE (DataRom(),DataStart(),DataSize());
 FILL (BssStart(), 0, BssSize());

The first instruction copies the initial values of initialised
variables into the space occupied by the variables. The
second instruction initialises to zero all remaining
variables.

6 Ada calling Modula-2

The examples so far have shown how code written in
Modula-2 or C can call routines written in Ada however
these Ada routines would be severely restricted if they
were not able to communicate with portions of the
application written in languages other than Ada.

To be useful our Ada routines need to be able to call
routines written in Modula-2. This is achieved by
declaring the function as an import using the C calling
convention and by specifying its external name. In the
case of Modula-2 the external name is the name of the
module followed by an underscore followed by the name
of the procedure.

For example, the Modula-2 module ModulaUnit could be
defined as:

DEFINITION MODULE ModulaUnit;
 PROCEDURE ModulaFunction () : INTEGER;
END ModulaUnit.

And implemented as:

IMPLEMENTATION MODULE ModulaUnit;
 PROCEDURE ModulaFunction () : INTEGER;
 BEGIN
 RETURN 42;
 END ModulaFunction;
END ModulaUnit.

And then the function called from Ada as:

 procedure Example is
 function ModulaFunction return Integer
 with Import, Convention => C,
 External_Name => "ModulaUnit_ModulaFunction";
begin
 TheGlobal := ModulaFunction;
end Example;

This is all very well provided that the types are base types
that both Modula-2 and Ada agree are the same. Problems
arise when the types are represented differently. In these
cases a wrapper is required.

For example, in Modula-2 (and C) a Boolean is defined to
be eight bits wide. In Ada the Boolean type is defined to
be only one bit wide however the compiler is generally
free to allocate more than this for objects of type Boolean
– how much isn't defined by the language. Therefore

when Ada calls a Modula-2 function that returns a
Boolean we need to do this via a wrapper function.

For example:

If our Ada code wants to call the Modula-2 function
Hardware_Is_Available from module Ip we first define
the specification in Ip.ads as

function Hardware_Is_Available return Boolean;

and then define the wrapper in Ip.adb as

type Modula_BOOLEAN is new Standard.Boolean
with Size => 8;

 function Hardware_Is_Available return Boolean is

 function Ip_Hardware_Is_Available return
Modula_BOOLEAN
 with Inline, Import, Convention => C,
 External_Name => "Ip_HardwareIsAvailable";

begin
 return Boolean(Ip_Hardware_Is_Available);
end Hardware_Is_Available;

The astute will notice that the Modula-2 function that the
wrapper calls is declared as Inline. Which brings us nicely
onto the subject of in-lining.

7 In-lining

The relatively weak microprocessors we use cannot afford
the overhead of superfluous calls. Certain time critical
portions of our code must be in-lined for efficiency
reasons. The GCC is very good at in-lining provided the
–flto option is specified on the command line when
compiling C and – Winline when linking. In addition, in
order that Ada in-lines in the same way, we need to
specify the switch –gnatn2 when compiling our Ada
source code.

The result is very impressive; in-lining is possible
between units as well as between languages. The example
of the Boolean wrapper produces absolutely no extra code
- the wrapper keeps Ada happy without any additional
overhead.

8 Enumerations

In C, the amount of storage allocated to enumeration
types defaults to the word size of the target machine. In
our case this is 32 bits. However reserving 32 bits for
every enumeration is extremely wasteful for
microprocessors that are memory challenged, so we
compile using the switch --short-enums which directs the
GCC to use the least number of bytes possible to store
any given enumeration. This turns out to have been a very
fortunate decision because enumerations in Ada use the
same storage strategy, and so by using this switch we
make enumerations compatible between Ada and C.

A. Marr iot , U. Maurer 185

Ada User Journal Volume 39, Number 3, September 2018

9 Strings

Strings are another occasion when wrapper functions are
required.

In the following example, the Modula-2 procedure takes a
string as its parameter. Strings in Modula-2 are
unconstrained arrays of character and so the procedure
DefineComputerNameAs is defined as follows.

PROCEDURE DefineComputerNameAs (TheName :
ARRAY OF CHAR);

This translates into C as

extern void Nbns_DefineComputerNameAs(const
char [], unsigned long);

Where the unconstrained array of characters has been
translated into two parameters, the first being the start
address of the array and the second the number of
elements in the array.

To call this from Ada we need to provide a wrapper. For
example:

procedure Define_Computer_Name_As
(The_Name : String) is

 procedure Nbns_Define_Computer_Name_As
 (Name_Address : ADDRESS;
 Name_Size : CARD32)
 with Inline, Import, Convention => C,
 External_Name =>
 "Nbns_DefineComputerNameAs";

begin
 Nbns_Define_Computer_Name_As
 (The_Name'address, The_Name'length);
end Define_Computer_Name_As;

10 Exception Handling

The above example is not quite right. We shouldn't pass
the address of the String but the address of the first
character of the string. However if we code this then we
need to check that the string has at least one character and
decide what to do if it doesn't.

Ideally we would raise an exception. Unfortunately zero
foot print Ada precludes the propagation of exceptions,
however this does not mean that we cannot define
exceptions provided we catch them locally or use them
for other purposes.

Note however that the –gnatwh compiler switch to detect
declaration hiding does not detect the hiding of standard
exceptions. The Standard exceptions

 Constraint_Error

 Program_Error

 Storage_Error

 Tasking_Error

are implicitly raised by compiler checks. Therefore, to
avoid confusion, it is highly recommended not to declare
exceptions with these names.

Our existing Modula-2 system has an exception concept.
Our Modula-2 exceptions can be raised but not caught
and are always fatal. They stop the machine and produce
a memory dump for later analysis.

In the previous example, if we correct the code to pass the
address of the first character, Ada will complain that this
might raise an exception. So we need to include additional
code that explicitly handles that situation.

Empty_Name : exception;
begin
 Nbns_Define_Computer_Name_As
 (The_Name(The_Name’first)'address,
 The_Name'length);
exception
when Constraint_Error =>
 HALT (Empty_Name’identity);
end Define_Computer_Name_As;

The procedure HALT saves the exception identity and
stops the system. Our analyser can retrieve this identity,
which is nothing more than the address of the exception,
and convert it into its symbolic name.

11 Elaboration

Unlike C, Modula-2 has the concept of elaboration. It is
not as powerful as Ada – global variables cannot be
elaborated – but modules can have body code that is
executed at start-up before any of the exported procedures
can be called.

However our Ada packages only link to specific named
routines and there is no concept of using “with” to import
units written in anything other than Ada. Consequently
there is no Ada syntax or mechanism whereby Ada can be
instructed to elaborate a specific foreign unit.

And even if there were, we decided that all our Ada
packages are either pure or pre-elaborate.

However this decision turns out to be too much of a
restriction. Too much of our existing code requires the
Modula-2 module bodies to be executed prior to their
exported routines being made available. Not being able to
elaborate our Ada packages was also inconvenient.

Therefore we changed our strategy and decided to
implement and support elaboration.

The first problem was establishing the elaboration order.
If unit A calls unit B then unit B must be elaborated
before unit A is elaborated. If unit B calls other units then
these must be elaborated before unit B and so on. If any
unit calls a unit that has to be elaborated before itself, then
this is a cyclic dependency and must be regarded as an
error.

Because Modula-2 has the concept of elaboration our IDE
already had a mechanism for determining the elaboration

186 Using Ada in Non-Ada Systems

Volume 39, Number 3, September 2018 Ada User Journal

order of Modula-2 modules. So all we had to do was
extend this mechanism to include units written in Ada.

The IDE has to parse the Modula-2 source files and
process the IMPORT statements and parse the Ada source
files and process the with statements. Whilst the
Modula-2 IMPORTs indicate a unit dependency,
irrespective of language, the Ada with is restricted to
indicating the package's dependency only on other Ada
packages and does not include any dependency on units
written in other languages.

We were therefore obliged to enhance our IDE to
recognise a new pragma.

By default GNAT issues a warning when it encounters an
unrecognised pragma. This warning can be switched off
using the -gnatwG switch. Using this switch is potentially
dangerous and contrary to the Ada Reference Manual
specification that a warning be generated whenever an
unrecognised pragma is encountered. Therefore we had to
enhance our IDE to verify pragma names and issue our
own error message if it detected any unrecognised
pragmas, i.e. unrecognised by GNAT and not an
extension implemented by our own IDE.

So solve the elaboration problem we recognised the new
pragma Modula_Import. The pragma takes as its
parameter the name of a Modula-2 module.

For example: pragma Modula_Import (ModulaUnit);

Note: It isn’t quite that simple because Modula-2 module
names can have names that aren’t Ada identifiers.
However how we handled this anomaly is a detail beyond
the scope of this short article.

By processing the IMPORTs, withs and pragma
Modula_Import statements, our IDE can build the
dependency tree. Provided that there are no cyclic
dependencies it can then generate a table of procedures
that must be called at start-up before the main program is
entered.

For example:

extern void
__attribute__((weak)) ModulaUnit_BEGIN(void);

extern void
__attribute__((weak)) adaunit___elabb(void);

typedef void (*Unit_List[1])(void);

static const Unit_List Unit_Body_the_list = {
 ModulaUnit_BEGIN,
 adaunit___elabb};

The name of the elaboration routine for a Modula-2
module is the name of the module followed by _BEGIN
whilst the name of the elaboration routine for an Ada
package is the name of the package followed by elabb if
the implementation is being elaborated or elabs if the
specification requires elaboration.

There is no easy way to detect whether or not an Ada
package requires elaboration, so our IDE needs to assume
that all Ada packages might be elaborated unless directed
otherwise. This is implemented by the IDE building a
table of weak links to possible elaboration routines.

The use of weak external links means that if the unit did
not require elaboration and consequently the expected
elaboration routine was not generated, the linker would
not complain but instead leave the default null pointer in
the table. These null entries obviously have to be skipped
when processing the table.

int the_index;
 for (the_index = 0; the_index < 7ul; the_index++) {
 if (Unit_Body_the_list[the_index]!=0)
 Unit_Body_the_list[the_index]();
 };

To avoid possible cyclic dependencies it is sometimes
necessary that Ada (and the IDE) be told that the package
does not require elaboration. This is achieved using the
aspect "with preelaboration" or "with pure".

12 Interrupt routines

Our applications require that we write interrupt routines.
On ARM microprocessors, interrupt routines are nothing
other than parameter-less procedures whose addresses are
placed into the vector table.

Using standard Ada the address of the procedure is placed
into the vector table using the pragma Attach_Handler.
Unfortunately when we use this, GNAT complains that
the argument of pragma Attach_Handler must be a
protected procedure.

However protected types and procedures require a run-
time and are therefore not allowed in the Zero Footprint
Profile.

In any case, even if Attach_Handler was allowed, it is
unlikely that it would of any use because we need a
mechanism that allows a vector table to be generated that
has entries of procedures written in a mixture of
languages – not just Ada.

For this reason, our IDE builds the vector table. The IDE
is instructed to add a procedure into the vector table by
special constructs within the source.

In Modula-2 this is achieved by using the direct language
specification "Vector"

For example:

PROCEDURE ["Export", "Vector=36"] InterruptHandler;

In order that a similar thing could be achieved from
sources written in Ada, we further enhanced our IDE to
recognise an additional pragma Use_Vector

For example:
procedure Interrupt_Handler with Export;
pragma Use_Vector (36);

A. Marr iot , U. Maurer 187

Ada User Journal Volume 39, Number 3, September 2018

In the above example, the pragma Use_Vector instructs
the IDE to place the address of the exported, parameter-
less procedure Interrupt_Handler into interrupt vector
position 36.

13 The use of assembler

We haven't had cause to write much assembler but there
will always be occasions when this is necessary.
Fortunately this is possible. The GNAT package
System.Machine_Code provides the procedure Asm
which behaves in a similar and recognisable manner to
that of the standard GCC embedded assembler but with
the rather tiresome restriction that parameters can only be
reference by position rather than by name.

In the following example, written in C, the procedure
DisableInterrupts places the constant 1 into a register of
its choice that we symbolically call Mask which the MSR
instruction then loads into the Primask register.

__attribute__ ((always_inline)) inline
static void DisableInterrupts(void)
{
 asm volatile (
 "MSR primask, %[Mask];"
 :
 :[Mask] "r" (1)
 :"memory");
}

Unfortunately GNAT does not support the use of named
parameters and therefore in Ada the register used to house
the constant has to be referred to by its position in the list
of inputs (starting at zero)!

with System.Machine_Code; use
System.Machine_Code;

procedure Disable_Interrupts with Inline is
begin
 Asm ("msr primask, %0;",
 Inputs => Integer'asm_input ("r", 1),
 Clobber => "memory",
 Volatile => True);
end Disable_Interrupts;

Referring to parameters by their numeric position rather
than by name seems like a step back into the stone-age.

14 Results

In the guise of conducting a feasibility study, we did
exactly what we originally stated we wouldn't do. Rather
than wait until an opportunity arose that would benefit
from being written in Ada we decided to convert two
ARM based applications that already existed and had
already been written in Modula-2.

We didn't convert the whole application; we left the run-
time and a lot of low level interfaces written in Modula-2

but we did convert all the application specific modules
into Ada packages.

These included interrupt routines, interfaces to hardware
and, of course, interfaces to our proprietary multitasking
runtime.

So the port wasn't exactly trivial but on the other hand
because of the similarities between Modula-2 and Ada it
wasn't that difficult either.

We are pleased to report that the conversions were very
successful and we now have two of our ARM specific
applications written in Ada.

This is not to say that the conversion didn’t have any
problems. Unfortunately we did introduce a few errors as
part of the conversion process. These occurred when the
conversion was more complex than a simple syntax
change

We identified four areas where conversion errors were
likely to occur:

1. Ada has no syntax to increment or decrement a
variable so it is impossible to implement the
Modula-2 procedures INC and DEC without
resorting to generics.

2. Modifying the code to replace INC and DEC
statements with X:=X+1 and X:=X-1 respectively
presented an opportunity to accidently decrement
when we should have incremented and vice versa.

3. The Ada attribute ‘size returns the size of an object in
bits whereas the equivalent Modula-2 SIZE
procedure returns the size in bytes. Therefore one
must remember to divide ‘size by the number of bits
in a byte.

4. Expressions in Modula-2 are evaluated left to right
and so there is no need for the Ada constructs and
then and or else. Care is therefore required when
converting Modula-2 Boolean expressions.

5. In Modula-2 in parameters can be modified – thereby
saving a local variable. In Ada this is not allowed and
so a local variable must be explicitly created,
initialised and then used instead of the original in
parameter. This complicated code modification is
another opportunity to introduce subtle conversion
errors.

15 Conclusion

This article is an experience report. It does not present
anything particularly clever or original. Far from it. Our
goal in writing this article was to illustrate how easy it is
to integrate Ada into an existing non-Ada system and
thereby perhaps animate others in a similar situation to
use Ada where previously it would not have been
considered.

189

Alire: a Library Repository Manager for the Open
Source Ada Ecosystem

Alejandro R. Mosteo
Instituto de Investigación en Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; email: amosteo@unizar.es

Abstract

Open source movements are main players in today’s
software landscape. Communities spring around pro-
gramming languages, providing compilers, tooling and,
chiefly, libraries built with these languages. Once a
community reaches a certain critical mass, management
of available libraries becomes a point of contention. Op-
erating system providers and distributions often support
but the most significant or mature libraries so, usually,
language communities develop their own cross-platform
software management tools. Examples abound with
languages such as Python, OCaml, Rust, Haskell and
others.

The Ada community has been an exception to date, per-
haps due to its smaller open source community. This
work presents a working prototype tailored to the Ada
compiler available to open source enthusiasts, GNAT.
This tool is designed from two main principles: zero-cost
infrastructure and a pure Ada work environment. Ini-
tially available for Linux-based systems, it relies on the
semantic versioning paradigm for dependency resolu-
tion and uses Ada specification files to describe project
releases and dependencies.

Keywords: Library Management, Dependency resolu-
tion, Open Source, Ada 2012.

1 Introduction

“If I have seen further it is by standing on ye sholders of Giants”
wrote Sir Isaac Newton in a letter to Robert Hooke [1]. Be-
lievers in the virtues of open source licenses may recognize
the sentiment; in nowadays rapidly evolving technological
landscape, reuse of code is critical to adapt to new technolo-
gies, avoid past errors, stay on top of vulnerabilities, and
foster collaboration. In the communities built around pro-
gramming languages this can be seen in the publishing of free
software under more or less permissive licenses [2]. Open
source programmers want their code to be run and built upon.

However, the availability of code and simplicity of distribu-
tion, compared to pre-Internet generalization, has brought
with itself its own problems, such as a difficulty to be aware
of available libraries, obsolescence of code that becomes

unmaintained (a form of bit rot [3]) and incompatibilities be-
tween versions of a same library, or among different libraries
being used simultaneously.

To address those problems, one of the most notable efforts in
the open source world are the different Linux distributions.
Either based on distribution of source code, like Gentoo [4],
or of binaries, like Debian [5], these communities have since
long dealt with the problem of packaging consistent systems
for different architectures. The difficulty of such a task is
captured in the dependency or DLL hell expressions [6], and
one of the most dreaded experiences is ending in a broken
configuration during an upgrade.

Programmers, however, do not all use the same distribution,
nor even the same operating system, since today they can
resort to about half a dozen generalist operating systems.
Given the polarizing nature of programming languages [7] it
is then unsurprising that many languages have seen efforts
aimed at providing an easy way of distributing libraries for
those languages, as we shall discuss in Section 2. In some
cases, like Rust [8], the tool for the distribution of libraries is
an integral effort of the team developing the language.

The Ada language, perhaps because of its ties to closed devel-
opment and today’s considered niche place in the language
landscape [9], has not seen such a tool appear (to the best of
our knowledge), despite the notable amount of open source li-
braries available [10]. This work presents a tool that could be
a first step in this direction, with the main contribution being
the tool itself. The tool tries to appeal to the Ada programmer
by using native Ada code to describe releases and its depen-
dencies, thus avoiding the need to learn new formats. To use
this information, the tool uses self-compilation to incorporate
the required data into its catalog of libraries. A contributed
byproduct is the semantic versioning library1 that is used to
describe dependencies among releases.

The project started as an informal discussion2 under the name
of Alire (from Ada Library Repository), and this work reflects
the view of the author on how a tool that addressed the low-
hanging problems of the open source Ada community could
be brought to life. The tool itself is termed alr,3 in the vein

1https://github.com/alire-project/semantic_versioning
2https://github.com/mosteo/alire/issues
3A monospace font is used throughout the paper to denote actual exe-

cutable commands or logical entities such as files.

Ada User Jour na l Vo lume 39, Number 3, September 2018

https://github.com/alire-project/semantic_versioning
https://github.com/mosteo/alire/issues

190 The Al i re Ada Librar y Repos i tor y Manager

of other venerable command-line tools such as git, svn, etc.,
and to distinguish it from the general project.

The paper is structured as follows: Section 2 examines the
situation in other languages and points the referents taken
for this tool. Section 3 introduces the design of alr and
some use cases. Next, Section 4 presents details about the
implementation mechanisms underpinning the design. A brief
discussion follows on the open questions this design leaves
and, lastly, concluding remarks and future directions close
the paper in Section 5.

2 Related Work
The problem of library distribution has been tackled in two
main ways, namely distribution of binaries and of source code.
The former has the advantage of speed for the user, because it
saves the step of compilation. The latter allows the complete
tailoring of the building process to one’s environment, and
reduces the work load and hardware requirements on main-
tainers. Furthermore, for purely interpreted languages the
distribution of sources is unavoidable.

Once libraries are obtained, we see yet two possibilities: in-
stallation of packages system-wide, as if they where integral
parts of the platform, or local installation in a confined or user
sandbox (that sometimes can be the default user environment).
In Python’s pip [11], e. g., libraries are installed globally if
run as superuser. If run as a regular user, they will be installed
in the user’s environment. These two options present to the
user a default environment that can become broken [6] when
dependencies are improperly managed, and for that reason
it is recommended [11] to use a sandbox or virtual environ-
ment for each development context (Fig. 1). Some packagers,
like OPAM [12] or Nix [13], avoid that duplication by using
a common store where individual releases are isolated (i.e.,
there is not a “current” version of any library).

Mainstream languages such as Java, C, and C++ also have
a variety of tools at their disposal, the problem being in this
case the lack of a standardized unique (or prevalent) go-to
tool. Since these languages do not natively consider the build
consistency problem as Ada does, their tools may also include
complex building aspects, like Gradle/Maven do for Java [14].
A main player for the C/C++ world, Conan [15], is instead a
build-system agnostic package manager that however relies
on YAML configuration files and Python scripts, increasing
the technical burden.

When one inspects the many solutions out there, like Rust’s
cargo, Python’s pip and easy_install, OCaml’s opam, D’s
dub, Haskell’s stackage and cabal-install, to name more
examples, a few common traits arise. The backend is usually
some kind of database that in its simplest form is merely a
set of files under version control in a public repository or in
dedicated servers. Submission of new libraries becomes then
the merging of a pull request into the stable branch of the
catalog. Fetching of a library involves the download of a file
bundle or checkout of a particular commit.

The other salient aspect these tools address is dependency
resolution. When building a project with a complex set of

Figure 1: Library management problems have reached the level
of Internet running joke (https://xkcd.com/1987/)

dependencies, it may happen that two (or more) subprojects
depend on the same libraries with some version restrictions.
From all the possible combinations, only one that satisfies all
dependent projects can be chosen, or if an incompatible re-
quest is made a resolution conflict appears. Again, a common
approach is to use semantic versions [16] of the form M.m.p,
where M stands for major version (one that is backwards in-
compatible), m is the minor version (one that is backwards
compatible within the same major version) and p is a patch,
a mere bug fix release that should be API compatible with
other M.m releases. These dependencies are usually repre-
sented in some textual description of a release, like key-value
lists, JSON, XML, or the own language syntax when it is
interpreted.

Semantic versioning is not the only solution to the depen-
dency upgrade issue, but in many cases semantic versions can
encompass other paradigms like calendar versioning [17] that
are less strict in their specification. At a minimum, pinning of
versions and careful manual updating is a worst-case scenario
that often is unavoidable if projects do not follow a strict
backwards-compatible release policy.

3 Design objectives and use cases
For alr, after reviewing these solutions, the following deci-
sions were taken, given the constraints of a lack of guaranteed
funding and the idiosyncrasies of the Ada language and GNAT
build tools:

• The objective is to help develop software, but not to
configure the system. Hence, the mode of operation
cannot depend on installing the compiled libraries, thus
entirely avoiding any possibility of breaking the user’s
system. The tool operates in user-space and the libraries
are stored as source code.

Volume 39, Number 3, September 2018 Ada User Jour na l

https://xkcd.com/1987/

A. R. Mosteo 191

• A sandbox approach is applied for every working project
to avoid variations due to build scenarios of a same
dependency, which in turn ensures reproducible builds
given a compiler/platform combination.

• To not depend on private servers nor live processes, the
Alire catalog and code releases are stored in public Ver-
sion Control System (VCS) services such as GitHub,
BitBucket, etc., with which the open source community
is used to work.

• New releases are incorporated into Alire by means of a
pull request into the catalog repository. Since this is a
manual process, at this time Alire can only be considered
a curated system.4

• An indexed release is described using Ada code that
is verified by means of compiling it, relying only on
a single specification file that is part of the alr source
code. The aim is to stay within the Ada realm as much as
possible. In its present form, the alr tool only requires
familiarity with the GNAT [18] compiler.

• Library developers should be minimally impacted for in-
tegration into Alire, if at all. This is achieved ultimately
by only requiring a GNAT project file (GPR file) that
can be created by Alire maintainers without bothering
library authors uninterested in this tool.

Ada adopted the idea of library items [19] that can be submit-
ted to the compiler independently. This concept, together with
the well-defined dependency and elaboration rules, has spared
Ada developers to an extent the quagmire of dependency-
building tools such as autoconf, automake and CMake [20].
Given that nowadays there is a single open source Ada com-
piler, namely GNAT in its GPL and FSF editions, at this time
alr relies on GNAT aggregate project files to completely
manage the building process, without the need to modify the
environment. This solution lets programmers use dependen-
cies as usual, merely “with-ing” their project file.

3.1 Components of the Alire project
The Alire project is divided in the following main parts:

• The catalog of projects is a repository hosted under the
name of alire.5 It fulfills the same role as, e.g., the
crates.io-index6 project in the Rust community. It
comprises the database of known projects and the mini-
mal Ada types needed to represent that information. This
way, commits to its repository should be for the most
part, once development stabilizes, just additions to the
catalog.

• The command-line tool available to users to interact
with the Alire catalog is named alr, as its repository.7

Again, this allows development on the tool with minimal
disturbance to the catalog. It fulfills the role of the
cargo8 tool for Rust.

4The same happens in other languages. For example, in the Haskell
community the Stackage project arose as a curated alternative to the cabal-
install breakage-prone tool.

5https://github.com/alire-project/alire
6https://github.com/rust-lang/crates.io-index
7https://github.com/alire-project/alr
8https://github.com/rust-lang/cargo

• The indexed code releases from third parties can be in
any online repository, with the implicit assumption that
the longest lived a repository is, the better. Current free
offerings favored by developers are the usual suspects:
GitHub, BitBucket, GitLab, etc. Of course, forks of par-
ticular releases could be made to ensure high availability.

3.2 Main use cases

Depending on the role of the user, a number of applications
can be found for package managers. In its current form alr
already enables the following use cases:

• Packagers: authors or entities wishing to disseminate
their code can publish well-defined releases of their
projects with the proper dependencies necessary to build
them. Volunteers can also package popular Ada projects
to increase their exposure. The Alire catalog knows
about all licenses curated by GitHub9, making explicit
the rights granted by publishers.

• Developers: be it with the aim of publishing a project
in Alire or not, developers can use alr to declare de-
pendencies to be used in their own Ada projects. These
dependencies are resolved into a valid solution, their
code fetched, and a project file is generated that allows
edition/compilation with the GNAT toolchain.

• Final users: despite the ‘library’ in Alire, more gener-
ally any packaged project can be also a binary tool or
application. A single alr get command allows the re-
trieval, compilation and verification of target executables
of such a binary project.

3.3 Introduction to alr

The prototype being discussed in this work is available for
testing with a number of representative projects already in-
dexed (see Fig. 6 in last page). Once installed and run without
arguments, the user is greeted by the help screen shown in
Listing 3.1, which will not be unfamiliar to similar tools users:

Ada Library Repository manager (alr)
Usage : alr [global options] command [options] [arguments]

Valid commands:

build Upgrade and compile current project
clean GPRclean project and dependency cache
compile GPRbuild current project
depend Manage dependencies of working project
get Fetch a project or show its metadata
init Create a project or generate its metadata
list See indexed projects in database

pin Pin dependencies to current versions
run Launch a project executable
search Search text in project names and properties
test Test deployment of releases
update Update alire catalog or project dependencies
version Shows alr diagnostics
with Locate index file of project

Use "alr help <command>" for information about a command

Listing 3.1: Help screen of alr

9https://choosealicense.com/

Ada User Jour na l Vo lume 39, Number 3, September 2018

https://github.com/alire-project/alire
https://github.com/rust-lang/crates.io-index
https://github.com/alire-project/alr
https://github.com/rust-lang/cargo
https://choosealicense.com/

192 The Al i re Ada Librar y Repos i tor y Manager

Figure 2: Entities in the Alire catalog.

Before diving into these commands, an explanation on the
terminology being used (in the remainder of the paper and in
the Alire source code) is in order (see also Fig. 2):

• A project refers to what also is typically called a library
in the software world; e.g., GtkAda10, AWS11, etc.

• A milestone is a project name plus a semantic version;
i.e., a particular version of a project.

• A release is the actual materialization of a milestone,
available online and indexed by Alire. A release must
provide one or more GPR files that build it.

The most straightforward function of alr is to retrieve a
particular project and build it. Projects can contain libraries,
which are useful to other projects, but also executables, in
which case the compilation process will result in one or more
executables ready to be run. This is achieved with the alr get
<project> command. The result will be a folder containing
the requested project and its dependencies, so compilation
will immediately succeed.

Alternatively, alr can create new projects to start easily work-
ing within the Alire ecosystem. This is achieved with the alr
init [--bin|--lib] <project> invocation. Initially the
project will not have dependencies; required libraries can be
added directly with alr depend --add <project> or with
especially formatted comments in the user own GPR file.

Any project obtained by each of these two means can be called
an alr-enabled or aware project, since it contains a metadata
file that allows alr to perform its functions. Once within
the folder tree of an alr-aware project, we can use the rest
of commands (see Fig. 3). The compile command launches
the gprbuild tool with a generated aggregate project file
that makes dependencies available without needing to fiddle
with paths. The update command refreshes the catalog and
upgrades the dependencies of the working project.

There are also compound commands that group functions for
common combinations: run will compile and then launch the
resulting executable, whereas build will ensure that depen-
dencies are up to date to then compile the project.

The commands interrelations have been designed to guarantee
success, in the sense that compilation should always succeed
if the requested dependencies are valid. alr will also detect
the manual addition of new dependencies by the user and
fetch them before a new compilation.

10https://github.com/AdaCore/gtkada
11https://github.com/AdaCore/aws

Figure 3: Relationships among commands. Single-frame com-
mands can be used anywhere in the filesystem, whereas double-
framed ones are to be used within an alr-enabled project.

To conclude this section, we show how dependencies are
represented in a working project. As advanced, this is done
in a package specification that can be compiled to verify
its correctness, and which is initially generated by alr. A
dependency on RxAda [21] has been already added.

with Alire .Index.Rxada;

package Alr_Deps is

Current_Root : constant Root := Set_Root (
"My_Shiny_Project",
Dependencies =>

Rxada.Project.Within_Major ("1.1"));

end Alr_Deps;

Listing 3.2: Metadata file in an alr-enabled project.

If the user wishes to compile this file directly (instead of
through the alr tool), it is enough to add the Alire project
itself as a dependency of the working project.

Restrictions on dependencies are described using the usual
Ada comparison operators, and named functions for the se-
mantic versioning specific operators caret (‘^’) and tilde
(‘~’). This way there is no possible confusion on what is be-
ing asked for (In some implementations, the caret and tilde act
differently on pre-1.0 versions). In the example, we request
any future version of RxAda that is at least 1.1 but within the
same major number, hence backwards-compatible.

4 Implementation details
This section presents some lower level details on alr imple-
mentation, particularly those aspects that present a specific
idiosyncrasy of the tool when compared with its homologues
for other languages.

GNAT is currently the only open source Ada compiler avail-
able, and its GPR project files are the preferred way to conve-
niently manage the building process. For these reasons, alr
takes advantage of these project files, and in particular uses
aggregate projects to make available the dependencies to be
included in the compilation of a project.

Volume 39, Number 3, September 2018 Ada User Jour na l

https://github.com/AdaCore/gtkada
https://github.com/AdaCore/aws

A. R. Mosteo 193

4.1 Alire-mandated files
For alr to be able to perform its project-specific commands
(see Fig. 3), it needs three critical files to be present:12

• myproject.gpr (henceforth the project file): this is a
regular GPR project file that builds the project. In prac-
tice, GNAT projects typically already have one or several
project files, so this is not a special requirement. alr
provides ways of querying the name of these project files
for the benefit of client projects.

• alr_deps.ads (henceforth the metadata file): this file
is used by alr as a telltale that it is being run inside an
alr-enabled project. It must contain the project name
and its dependencies, as already shown in 3.2. It is ini-
tially generated by alr init, or could be hand-crafted
if needed. It can also be regenerated on demand and
manipulated through alr depend.

• alr_build.gpr (henceforth the environment file): this
file is generated by alr to set up the environment paths
required to find any projects the current project depends
on. It can also be used to work in the GNAT GPS IDE.

Of these three files, the only one that is entirely the respon-
sibility of the project author (or maintainer) is the mypro-
ject.gpr one. Its contents are arbitrary, as long as they
succeed in building the library or executable. At a minimum,
they must point the compiler to the source files of the project.
On the other extreme, alr_build.gpr is regenerated by alr
whenever necessary to properly configure the building en-
vironment (namely, whenever dependencies change or the
file is not found). alr_deps.ads lies in the middle, since it
is initially generated by alr but it must by tailored by the
developer to their needs to indicate their dependencies.

Finally note that, for the inclusion of a project into the Alire
catalog, only the project file is needed, since the contents
of the metadata file will appear in the Alire index itself (see
Listing 4.1), and the environment file is regenerated from that
information. Each Alire index file contains the releases for
the project named as the enclosing package. Besides textual
versions, dependencies within the index can be specified using
other indexed releases:

with Alire .Index.Libhello ;

package Alire.Index.Hello is

function Project is new Catalogued_Project
("""Hello, world!"" demonstration project");

Repo : constant URL :=
"https :// github.com/alire−project/hello . git " ;

V_1_0_1 : constant Release :=
Project .Register

(V ("1.0.1"),
Git (Repo, "8cac0afdd"),
Dependencies => Libhello.V_1_0.Within_Major);

−− V_1_0 is an existing release of Libhello

end Alire.Index.Hello;

Listing 4.1: Release in the index with one dependency.
12“myproject” is a placeholder for an actual project name.

Figure 4: Launch sequence of alr for command execution.

A rich set of operations exists that allows the expression of not
only simple dependencies, but also of conditional dependen-
cies on the compiler version, platform properties, availability
of native packages, and so forth. Also, to simplify indexing
and clarifying the declarations, a base release can be taken
as a template and modified with “extending” and “replacing”
operations. For details the reader is directed to examples in
the Alire database itself.13

4.2 Self-compilation of alr and working projects
Package managers are expected to have an up-to-date cata-
log, and also that the tool itself is up-to-date. In this case,
a catalog update could be achieved in several ways: pars-
ing text files that contain some specific format, or load-
ing a binary database, for example. However, maintaining
the tool up-to-date will involve compiling it from updated
sources and replace the current executable. Also, incorpo-
rating the dependencies of a working project (parsing the
alr_deps.ads file) would need either a custom parser or
compilation and processing with ASIS [22] or a similar tech-
nology like libadalang [23].

As an alternative, alr solves all these necessities in a single
and perhaps uncommon way: whenever the need is detected,
alr recompiles itself, incorporating into the build fresh meta-
data and updated index files. This way all needed and up-to-
date information is incorporated into alr without the need to
parse any external files, since the compiler already does the
work for us.

To manage this process of self-compilation, up to three dif-
ferent alr executables may exist and be called in succession,
with specific responsibilities. All three come from the same
sources, with a small set of variations for the specific pur-
poses, and are deployed in different locations (see Fig. 4):

13Syntax examples: https://github.com/alire-project/alire/blob/
master/index/alire-index-alire.ads

Ada User Jour na l Vo lume 39, Number 3, September 2018

https://github.com/alire-project/alire/blob/master/index/alire-index-alire.ads
https://github.com/alire-project/alire/blob/master/index/alire-index-alire.ads

194 The Al i re Ada Librar y Repos i tor y Manager

1. A stub alr is built during installation (or could be pro-
vided by the platform). This binary is never recompiled,
acting as a fallback, and will typically be in the sys-
tem PATH. Its purpose is to build the rolling alr from
updated sources (for example to include new index re-
leases) and launch it.

2. The rolling alr has an updated index and can already ex-
ecute commands that are not project-specific (see Fig. 3).
If, however, the command requires a project, and further-
more a project metadata file is in scope, then it builds
and launchs a project alr, incorporating into the build
the metadata file of the project (and so compiling-in the
project dependencies).

3. The project alr contains the project metadata and is able
to carry out project-specific actions. Prior to doing so, it
checks its self-consistency by comparing the hash of the
metadata file in scope with a hash stored internally that
was computed by the rolling alr. If they do not match,
this means that the project alr is outdated, in which case
it is rebuilt with current metadata and launched to take
over the command.

4.3 Final example
The creation of new projects from templates or downloading
of releases do not really merit any special discussion, since
they do not pose particular technological challenges. How-
ever, inspecting the filesystem after the issuing of an alr get
--compile hello command will allow to bring into focus
everything that has been reported up to this point. This com-
mand simultaneously fetches a project and its dependencies,
generates the needed files and builds the whole configuration.
The project itself is a plain “Hello, world!” example artifi-
cially split into having to depend on a library (libhello) that
performs the actual output to the terminal.

Fig. 5 shows the relevant parts of a filesystem in which such a
command were issued in the user’s home folder. From top to
bottom, the following relevant folders and files can be located:

• The stub alr can be anywhere in the user’s path, here
shown in /usr/bin/alr.

• $XDG_CONFIG_HOME/alire/ is the canonical location in
which updated sources are checked out. Inside, the
alire/index/ folder contains the catalog files, and the
most recently built rolling alr executable is found in
alr/bin/alr.

• hello_1.0.1_65725c20/ is the folder in which the re-
quested project, hello, has been deployed. The semantic
version and abbreviated commit hash are appended to
univocally identify the project. The project own organi-
zation is an internal affair of the project author; in this
example the minimal project and main files are shown.
Alire files can be found inside the alire subfolder:

• <project>/alire/ contains firstly the metadata and en-
vironment files. The metadata file can be manually
edited or manipulated through alr depend. The build
file is regenerated on changes to the metadata file, and is
useful to launch builds, or to edit from GPS.

/
usr/bin/alr (stub)
$HOME/

$XDG_CONFIG_HOME/
alire/

alire/index/ (contents omitted)
alr/

bin/alr (rolling)
src/ (contents omitted)

hello_1.0.1_65725c20/
alire

alr_build.gpr
alr_deps.ads
cache/

projects/
libhello_1.0.0_ce78e770/ (contents omitted)

session/
alr (project)
alr_deps.ads
alr-session.ads

hello.adb
hello.gpr

Figure 5: Filesystem details (comments parenthesized).

• <project>/alire/cache/, finally, contains files that the
user does not need to directly know about, and that can
be deleted at any time since alr can download or gen-
erate them again as needed. The projects/ folder con-
tains downloaded dependencies (in this case a particu-
lar release of the libhello dependency). The session/
folder contains generated files for the project build of
alr. This folder is passed as-is to GPRbuild so it finds
the following files:

– alr_deps.ads is a copy of the metadata file.

– alr-session.ads is a file generated at every re-
build that stores the hash of the current metadata,
among other information.

– alr is the built project alr.

The generated environment file for this example is shown in
Listing 4.2:

aggregate project Alr_Build is

for Project_Files use (" ../ hello .gpr");
−− Root project being compiled

for Project_Path use
("cache/projects/ libhello_1 .0.0_ce78e770");

−− Project file paths of dependencies

for External ("ALIRE") use "True";
−− Flag that this is an Alire build

end Alr_Build;

Listing 4.2: The environment file is a GPR aggregate project
file.

4.4 Discussion
At the time of this writing alr offers commands and features
that make feasible the distribution and reuse of Ada libraries
exclusively using Ada tooling and free, public repositories.
(Appropriate index files could also enable its use within pri-
vate environments.) Rich dependencies can be expressed con-
ditionally, and native packages can be used where available.
Finally, triggers allow the execution of external programs

Volume 39, Number 3, September 2018 Ada User Jour na l

A. R. Mosteo 195

at the post-fetch and post-build stages. These features are
enough to cover a wide range of needs expected from typical
source-oriented package managers.

Substantive effort has been devoted to the testing of both
the tool and the packaged projects: through continuous in-
tegration, every alr master commit is tested to vet proper
operation of the alr commands, and to verify that releases
build properly in supported platforms (which include Debian
testing, Ubuntu LTS, and GPL 2017 at this time). Outstanding
open issues are:

Windows port: although technically not difficult, the lack of a
platform package manager would limit the initial availability
of projects with complex dependencies (e.g., GtkAda) that
are natively supported in Linux variants.

Cross-platform builds: given the relevance of Ada in the em-
bedded world, this is a feature that has already been pointed
out to be important, and that is slated for inclusion in a future
release if ongoing interest in alr is evidenced.

Given the presented design, compilation times of alr itself
could be a point of contention since such compilations happen
every time the metadata file changes (i.e., whenever dependen-
cies are added or removed). To assess that point, experimental
runs were conducted for different catalog sizes. However,
since only a few files are recompiled every time (session and
metadata files, and one body that uses them in alr), the im-
pact is mostly limited to the time it takes to redo the binding
and linking. Times measured with a middle-range14 computer
are shown in Table 1. Although not negligible, there is wiggle
room until the issue becomes a pressing bottleneck.

Indexed files
Releases per file 100 1000 10000

1 1.82 3.73 34.09
10 1.94 4.52 44.83

Table 1: Average times (in seconds) for 100 alr recompilations
after metadata changes, for different number of files in the cat-
alog and releases per file. Compiler version was GNAT GPL
2017 using -j0 switch.

5 Conclusions
This work presented an Ada tool, its underlying design, and
supporting infrastructure that facilitates easy dissemination
and reuse of third-party Ada projects. This is achieved by
indexing and tagging code releases in public repositories
with a semantic version, which in turn enables the possibility
of dependency resolution and easy upgrades. The whole
setup only requires a recent GNAT Ada compiler and enables
effortless downloading and compilation of indexed projects.

The design is based around a metadata file which is itself
written in Ada and incorporated into the tool by recompila-
tion triggered by the tool itself, when needed. This process
allows users and developers of the tool alike to remain within
the realm of pure Ada code. The Ada syntax employed in

14Intel® Core™ i3-2015 (4 execution threads), 16GB RAM, SSHD disk.

index files has a rich feature set that allows the expression
of complex conditional dependencies on the availability of
native packages or other platform characteristics. This syntax
is however only relevant to packagers, since users can add or
remove dependencies through tool commands.

Alire is available under an open source license to interested
parties at https://github.com/alire-project.

Acknowledgments
This work has been supported by projects ROBOCHALLENGE
(DPI2016-76676-R-AEI/FEDER-UE), ESTER (CUD2017-
18), SIVINDRA (UZCUD2017-TEC-06) and ROPERT
(DGA-T45_17R/FSE). The author thanks the regulars at
comp.lang.ada for insightful discussions on the topic.

References
[1] I. Newton, H. W. Turnbull, and J. F. Scott (1959), The

correspondence of Isaac Newton / edited by H.W. Turn-
bull. Published for the Royal Society at the University
Press Cambridge.

[2] C. Peterson, How I coined the term ‘open source’.
Available at https://opensource.com/article/18/
2/coining-term-open-source-software.

[3] M. Odersky and A. Moors (2009), Fighting bit rot with
types (experience report: Scala collections, in LIPIcs-
Leibniz Int. Proceedings in Informatics, vol. 4, Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[4] G. K. Thiruvathukal (2004), Gentoo linux: the next gen-
eration of linux, Computing in science & engineering,
vol. 6, no. 5, pp. 66–74.

[5] L. Brenta and S. Leake, Debian policy for Ada.
Available at https://people.debian.org/~lbrenta/
debian-ada-policy.html.

[6] S. Eisenbach, V. Jurisic, and C. Sadler (2003), Man-
aging the evolution of .NET programs, in International
Conference on Formal Methods for Open Object-Based
Distributed Systems, pp. 185–198, Springer.

[7] A. Stefik and S. Hanenberg (2014), The programming
language wars: Questions and responsibilities for the
programming language community, in Proceedings of
the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming &
Software, pp. 283–299, ACM.

[8] N. D. Matsakis and F. S. Klock II (2014), The Rust
language, ACM SIGAda Ada Letters, vol. 34, no. 3,
pp. 103–104.

[9] D. Hamilton and P. Pape (2017), 20 years after the
mandate, CrossTalk, p. 15.

[10] Ada Information Clearinghouse, Ada free tools
and libraries. Available at http://www.adaic.org/
ada-resources/tools-libraries/.

Ada User Jour na l Vo lume 39, Number 3, September 2018

https://github.com/alire-project
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/18/2/coining-term-open-source-software
https://people.debian.org/~lbrenta/debian-ada-policy.html
https://people.debian.org/~lbrenta/debian-ada-policy.html
http://www.adaic.org/ada-resources/tools-libraries/
http://www.adaic.org/ada-resources/tools-libraries/

196 The Al i re Ada Librar y Repos i tor y Manager

$ alr search --list
NAME VERSION DESCRIPTION
ada_lua 0.0.0-5.3 An Ada binding for Lua
adacurses 6.0.0 Wrapper on different packagings of NcursesAda
adayaml 0.3.0 Experimental YAML 1.3 implementation in Ada
adayaml.server 0.3.0 Server component
alire 0.4.0 Alire project catalog and support files
alr 0.4.0 Command-line tool from the Alire project
apq 3.2.0 APQ Ada95 Database Library (core)
aunit 2017.0.0 Ada unit test framework
eagle_lander 1.0.0 Apollo 11 lunar lander simulator (Ada/Gtk/Cairo)
globe_3d 20180111.0.0 GL Object Based Engine for 3D in Ada
hangman 1.0.0 Hangman game for the console
hello 1.0.1 "Hello, world!" demonstration project
libadacrypt 0.8.7 A crypto library for Ada with a nice API
libhello 1.0.0 "Hello, world!" demonstration project support library
mathpaqs 20180114.0.0 A collection of mathematical, 100% portable, packages
openglada 0.6.0 Thick Ada binding for OpenGL and GLFW
pragmarc 2017.2007.0 PragmAda Reusable Components (PragmARCs)
rxada 0.1.0 RxAda port of the Rx framework
sdlada 2.3.1 Ada 2012 bindings to SDL 2
semantic_versioning 0.3.1 Semantic Versioning in Ada
simple_components.connections 4.27.0 Simple Components (clients/servers)
simple_components.connections.ntp 4.27.0 Simple Components (Network Time Protocol)
simple_components.connections.secure 4.27.0 Simple Components (clients/servers over TLS)
simple_components.core 4.27.0 Simple Components (core components)
simple_components.odbc 4.27.0 Simple Components (ODBC bindings)
simple_components.sqlite 4.27.0 Simple Components (SQLite)
simple_components.strings_edit 4.27.0 Simple Components (strings)
simple_components.tables 4.27.0 Simple Components (tables)
simple_logging 1.0.0 Simple logging to console
steamsky 2.1.0-dev Roguelike in sky with steampunk theme
whitakers_words 2017.9.10 William Whitaker’s WORDS, a Latin dictionary
xml_ez_out 1.6.0 Creation of XML-formatted output from Ada programs

Figure 6: Current alr catalog as listed by the alr search command.

[11] K. Reitz and T. Schlusser (2016), The Hitchhiker’s
Guide to Python: Best Practices for Development,
O’Reilly Media, Inc.

[12] F. Tuong, F. Le Fessant, and T. Gazagnaire (2012),
OPAM: an OCaml package manager, in SIGPLAN
OCaml Users and Developers Workshop.

[13] E. Dolstra and A. Löh (2008), NixOS: A purely func-
tional linux distribution, ACM Sigplan Notices, vol. 43,
no. 9, pp. 367–378.

[14] B. Muschko (2014), Gradle in action, Manning.

[15] Conan, the C / C++ package manager for developers.
Available at https://conan.io/.

[16] S. Raemaekers, A. Van Deursen, and J. Visser (2014),
Semantic versioning versus breaking changes: A study
of the maven repository, in 14th Int. Conf. on Source
Code Analysis and Manipulation (SCAM), pp. 215–224.

[17] M. Hashemi (2016), Calendar versioning. Available at
http://calver.org/.

[18] E. Schonberg and B. Banner (1994), The GNAT project:
a GNU-Ada 9X compiler, in Proceedings of the confer-
ence on TRI-Ada’94, pp. 48–57, ACM.

[19] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Ploedereder,
P. Leroy, and E. Schonberg (2014), Ada 2012 Refer-
ence Manual. Language and Standard Libraries: Int.
Standard ISO/IEC 8652/2012 (E), vol. 8339, Springer.

[20] J. Al-Kofahi, T. N. Nguyen, and C. Kästner (2016),
Escaping AutoHell: a vision for automated analysis
and migration of autotools build systems, in 4th Int.
Workshop on Release Engineering, pp. 12–15, ACM.

[21] A. R. Mosteo (2017), Rxada: An Ada implementation of
the ReactiveX API, in Ada-Europe International Confer-
ence on Reliable Software Technologies, pp. 153–166,
Springer.

[22] C. Colket (1995), Ada semantic interface specification
ASIS, ACM SIGAda Ada Letters, no. 4, pp. 50–63.

[23] P.-M. de Rodat and R. Amiard (2018), Easy ada tooling
with libadalang, in Ada-Europe International Confer-
ence on Reliable Software Technologies.

Volume 39, Number 3, September 2018 Ada User Jour na l

https://conan.io/
http://calver.org/

 197

Ada User Journal Volume 39, Number 3, September 2018

The IRONSIDES Project: Final Report
Barry S. Fagin and Martin C. Carlisle
Dept of Computer Science, US Air Force Academy 80840 Tel: 1-719-333-3338; email: barry.fagin@usafa.edu.

Abstract

In a project intended to improve the security of
internet software, the authors developed IRONSIDES:
A DNS server written in Ada/SPARK. Our long-term
goals were a) to show that a fully functional
component of the internet software suite could be
written with provably better security properties than
existing alternatives, b) to show that it could be done
within the relatively modest re-sources available for a
research project at an undergraduate university, c) to
determine the suitability of Ada/SPARK for such a
project, and d) to compare the performance of the
resulting software to existing alternatives and
determine to what extent, if any, the addition of
provable security properties affects performance. We
report our conclusions from this multi-year project.

Keywords: Ada, DNS, formal methods, internet
software, performance analysis, SPARK.

1 Introduction

The Domain Name System (DNS) is the internet protocol
that transforms hostnames (e.g. cnn.com) into IP addresses
(e.g. 151.101.0.73). Originally proposed by Mockapetris in
[1], it is a distributed database protocol that uses the
internet as a tree structure to manage records containing
information about machine names and properties.

Software that implements this protocol is referred to as a
DNS server. This term can also describe the machine that
runs a DNS server. Servers responsible for resolving names
in a single zone (typically a company, university, or
similarly scoped institution) are called authoritative servers.
If queried about names outside the zone for which they are
responsible, authoritative servers reply with a failure
message, the equivalent of “I don’t know”.

Servers capable of resolving names for any publicly visible
machine on the internet are called recursive. They use a
recursive process to travel up the distributed internet tree
structure to determine the name of the machine in question.
In modern DNS practice, most recursive solvers do not use
full recursion to traverse the name tree. Instead, they refer
queries to a publicly available fully recursive DNS server
(for example, Google’s public DNS at 8.8.8.8), and then
cache the result for future use.

DNS is a vital internet protocol. Unfortunately, because it
dates from the early days of networking, it contains security
flaws that require mitigation to prevent malicious actors
from exploiting the system [2]. Additionally, most DNS
software is written in older languages with inherent security
problems. These languages do not lend themselves to

rigorous software design and provable security properties.
The two most popular DNS servers, BIND and WINDNS,
have a large number of known security flaws, including
crashing in response to the injection of bad data and bugs
that permit remote execution [3], [4]. These are described
in more detail in the sections that follow.

2 The IRONSIDES Project

The authors believed many of the security problems with
DNS servers, web servers, and other internet software
could be avoided with the use of better programming tools,
such as the use of different programming languages and
formal methods. They chose Ada and SPARK as an
appropriate development environment to implement a
provably secure DNS server from the ground up.

The SPARK language and toolset from Altran UK is used
in the creation of software systems with provable
correctness and security properties [5]. SPARK is a subset
of Ada, augmented with special annotations. These
annotations appear as ordinary comments to Ada compilers,
but are visible to SPARK’s pre-processing tools used to
validate software. SPARK is a mature technology and has
been used on several projects, including an open-source OS
kernel provably free from runtime errors [6], the British Air
Traffic Control System [7], and multi-level security
workstations [8]. Accordingly, given our prior institutional
experience with Ada [9], we chose SPARK and Ada as the
platform for constructing DNS software that would not be
subject to most of the vulnerabilities that afflict DNS
implementations currently deployed around the world.

The SPARK toolset generates verification conditions
(VC’s) that it then attempts to verify. VCs include
assertions that variables always remain in type, array
bounds are never exceeded (a common source for buffer
overflow vulnerabilities), pre- and post- conditions are
always met, and so forth. When a VC has been proved by
SPARK, it is said to be discharged.

2.1 Milestone 1: An authoritative server on
Ubuntu
The first IRONSIDES milestone was achieved with the
successful construction of an authoritative server, tested
against BIND on Ubuntu [10]. The original test bed and
performance results are shown in Figure 1 and Figure 2,
respectively.

We were pleasantly pleased to discover that the
authoritative IRONSIDES DNS server performed
significantly better than BIND under Linux.

198 The IRONSIDES Project : Final Report

Volume 39, Number 3, September 2018 Ada User Journal

Figure 2 IRONSIDES original test bed for authoritative
servers

Figure 3 BIND and IRONSIDES performance under Linux

2.2 Milestone 2: An authoritative server on
Windows
The next milestone was porting IRONSIDES to Windows,
and testing it against both WinDNS and BIND [11]. The
test bed was similar, except the virtual machine used ran
Windows Server 2008. Performance results are shown
below:

Figure 4 Performance comparison on Windows

We fully expected IRONSIDES to perform better than
BIND, but were surprised to find it outperformed Windows
DNS on its own native OS by 7%.

At this point, the proof requirements of IRONSIDES
looked like this:

Table 1 Proof requirements of IRONSIDES authoritative

Total Examiner
Simplifier Victor

Assert/Post 3106 2209 884 13
Precondition 561 0 532 29
Check stmt. 12 0 12 0
Runtime check 3750 0 3704 46
Refinement. VC s 44 42 2 0
Inherit. VCs 0 0 0 0

=============================
 Totals: 7473 2251 5134 88
%Totals: 30% 69% %

Victor invokes an optional theorem-prover to discharge
VC’s that the first two stages of the tools (the Examiner
and the Simplifier) cannot.

2.3 Milestone 3: A recursive server and detailed
performance comparisons
Recursive servers are more complex than authoritative
ones, requiring more sophisticated data structures, cache
management, and tasking. Building on our experience with
the authoritative version, we next added recursive query
functionality to IRONSIDES. The resulting basic structure
(little changed to the present day) is shown in Figure 4.

Figure 5. IRONSIDES recursive service structure

This structure was implemented with the modules and data
dependency relationships shown in Figure 5.

Lines indicate a data dependency, transitive dependencies
are implied. Their functions are:

 spark_dns_main: Top-level executable.

 udp_query_task: Concurrently executing task
responsible for all incoming DNS traffic.

35,3

107,2

0

100

200

DNS server performance
(queries/ms)

BIND IRONSIDES

0

20

40

DNS server performance
(queries/ms)

BIND IRONSIDES Win DNS

B. S. Fagin, M. C. Car l is le 199

Ada User Journal Volume 39, Number 3, September 2018

Figure 5. IRONSIDES recursive service structure
implementation

 udp_response_task: Concurrently executing task
responsible for managing all responses from upstream
servers.

 process_dns_request: Interprets incoming packet,
queries DNS table, queues query if answer not found.

 wire_to_records: Builds DNS resource records from
DNS packets on the wire.

 dns_network_rcv: SPARK wrapper for network traffic
to guarantee no overflows.

 global_buffers: Query and response queues.

 protected_buffer: ADT for the query and response
queues.

 buffer_pkg: ADT for a queue.

 dns_table: Cache of DNS resource records.

 rr_type: Top-level package for all DNS resource record
types.

 dns_network: Handles low-level network IO.

 dns_types: Data types for working with DNS packets.

The proof requirements for the recursive version were:

 Total Exam. Simp. Victor
Assert/Post 3510 2248 1194 68
Precondition 641 0 609 32
Runtime check 9705 0 9502 203
Refinem. VCs 98 98 0 0
Totals: 13954 2346 11305 303
%Totals: 17% 81% 2%

For static code size, we measured the following:

Total Lines 14448
Blank Lines 1268
Comments 4142
SPARK Lines: 1713
Ada lines 9038
Ada statements 6917
SPARK statements 806

Once we had produced a validated recursive server, we
were ready to do a detailed performance comparison with a
variety of both open-source and proprietary DNS servers
[12]. As shown in Figure 6, 2e expanded the test bed to
include a virtual machine running each server/OS
combination, a VM running the Resperf performance
analyzer [13], and a VM running the network simulator
INETSIM [14].

Figure 6 Recursive server test bed

When we ran the server in authoritative mode under
Ubuntu, IRONSIDES continued to outperform BIND and
others, although the gap had narrowed from about 3x to
about 2x, as shown in Figure 7.

Figure 8 shows how under Windows, however, WinDNS
now performed slightly better, perhaps due to
improvements in later releases or the increased complexity
of IRONSIDES required to support recursive queries.

The number of queries handled as a function of increasing
requests per second for recursive servers is shown in the
two charts included in Figure 9.

spark_dns_main

udp_query_task

process_dns_request udp_response_task

wire_to_records

dns_table

rr_type

dns_network_rcv global_buffers

protected_buffer

buffer

dns_network

dns_types

200 The IRONSIDES Project: F inal Report

Volume 39, Number 3, September 2018 Ada User Journal

Figure 7 Performance comparison of authoritative DNS
servers under Unix

Figure 8 Performance comparison of authoritative servers
under Windows

Figure 9 Performance of recursive servers

Up to 1500 queries per second, the performance of all the
servers is essentially indistinguishable. At higher values,

IRONSIDES, DNSMASQ and DJBDNS dropped off fairly
rapidly. Surprisingly, under Windows, BIND also did the
best.

On the other hand, in terms of queries lost, WinDNS and
IRONSIDES performed best, as shown in Figure 10.

Figure 10 Queries lost by DNS servers

IRONSIDES had the second lowest latency for Unix DNS
servers, but the longest latency for Windows servers. We
believe this is due to latency being extremely important to
Microsoft, and to IRONSIDES policy of trying to handle
every query it can (BIND, by contrast, drops queries if it is
too busy):

Figure 11 Latency of DNS servers

B. S. Fagin, M. C. Carl is le 201

Ada User Journal Volume 39, Number 3, September 2018

For further details, the reader is referred to the references.

3 Insights from experience

The results from the authoritative server design process
gave our first hints that performance did not need to be
sacrificed to improve security. In fact, there were clear
examples in which the use of formal methods actually
improved performance. For example, data flow analysis
identified redundant or ineffective statements that in turn
permit the removal of inefficient code. Code that has been
proven exception-free no longer requires runtime bounds
checking, so that can be eliminated as well.

We also learned, however, that there were cases were total
reliance on formal methods and proof negatively impacted
performance. Because SPARK requires all data structures
to be statically allocated, data structures must be sized at
the upper limits of expected use. Explicit initialization of
such structures, while required for validation, is inefficient
and wasteful. In those rare cases, we explicitly told the
tools to relax that requirement. This improved IRONSIDES
performance by almost 30%. Thus we believe allowing
users to override formal proof requirements when
appropriate is an important feature that formal methods
tools should always support.

It is crucial to always remember the role of the compiler.
Despite our confidence in the tools to help us produce
crash-proof software, we found one combination of
operating system, compiler and optimization level where a
fully validated version of IRONSIDES crashed with an
exception. This was due to a code generation error in the
version of GNAT shipped with Ubuntu, long since
corrected. Still, until formal methods have progressed
sufficiently to the point where they can prove the
correctness of compilers for a given target architecture and
OS, programmers should continue to exercise healthy
skepticism when compiling and testing verified software.

Our experience with the tools produced results we would
describe as both impressive and humbling. Despite both of
us having computer science PhD’s, over 50 years of
combined industry and academic experience, and an
extensive knowledge of programming languages and
software engineering practice, the tools still caught
boundary conditions and potential problems that in
principle we could have found but did not. This is the
whole point of using formal systems, but the experience is
nonetheless humbling. Perhaps it will become less so as
formal methods and proof tools become a standard part of
the software engineering process.

IRONSIDES has numerous provable security properties
absent from all the other servers tested, including BIND
and WinDNS. These include:

1) No classic buffer overflow
2) No incorrect calculation of buffer size
3) No improper initialization
4) No ineffective statements
5) No integer overflow/wraparound

6) No information leakage
7) All input validated
8) No allocation w/o limits (no resource exhaustion)
9) No improper array indexing
10) No null pointer dereferencing
11) No expired pointer dereferencing (use after free)
12) No type confusion
13) No race conditions
14) No incorrect conversions
15) No uncontrolled format strings
16) All loops guaranteed to terminate

With all these advantages, we were pleased to discover that
IRONSIDES also performs comparably to servers with
security problems, including the industry standards of
BIND and WinDNS. IRONSIDES offers comparable
performance at nominal loads, trailing off only under
maximal loading. This is particularly significant
considering each server’s respective development costs.
BIND is produced with an industrial consortium. WinDNS
is bundled with the flagship product of a multibillion dollar
software company. IRONSIDES was written by the
equivalent of a little more than one professor at an
undergraduate university with near full-time teaching
duties.

4 Conclusions and future work

The success of IRONSIDES indicates that formal methods
can be used both improve the security properties of
software without incurring significant performance
penalties, and in some cases can actually improve
performance. This was done in an environment with
significantly fewer resources available than comparable
products.

Why then are similar approaches not more widely adopted?
Existing products have greater sunk costs. In all fairness to
them, they also offer more functionality and a better
support base, options that are not available to the time and
resource constrained environments present in the academic
development of prototype software. Programming with
formal methods also requires the use of a relatively
unfamiliar language (particularly in the United States) as
well as comfort with mathematical logic and proof. Most
software engineers are not yet trained to work this way.
Perhaps, however, over time this will change as the
advantages of formal methods and proof are shown to
produce more reliable software that keeps a company’s
name out of the newspapers.

Since the latest stable release of IRONSIDES, Ada has
added more features that meld it more tightly with SPARK.
We hope to upgrade IRONSIDES in the future to support
these features and to examine their effects.

We hope this work will be further extended to apply formal
methods and performance analysis outside the DNS
domain, in the hopes of continued confirmation that
internet software can be made provably more secure
without significant sacrifices in performance. Web servers,
for example, suffer from similar security problems for
similar reasons. ICS and SCADA systems are currently

202 The IRONSIDES Project : Final Report

Volume 39, Number 3, September 2018 Ada User Journal

attractive targets for hacking, and formal methods have
been used to improve their security [30], but the effect of
formal methods on performance in this domain remains
unknown. These are the subject of current work at the
Academy Center for Cyberspace Research.

Acknowledgments

This work was supported in part by the US Air Force
Office of Scientific Research under grant #1220961, the US
Department of Defense Advanced Research Projects
Agency, and the Academy Center for Cyberspace
Research.

References
[1] https://tools.ietf.org/html/rfc882.

[2] Carnegie Mellon University Software Engineering
Institute (2008), Multiple DNS implementations
vulnerable to cache poisoning, available online at
http://www.kb.cert.org/vuls/id/800113.

[3] Internet Security Consortium, BIND 9 Security
Vulnerability Matrix, available online at
https://kb.isc.org/article/AA-00913/0/
BIND-9-Security-Vulnerability-Matrix.html

[4] https://technet.microsoft.com/library/security/MS15-
127

[5] J. Barnes (2003), High Integrity Software: The SPARK
Approach to Safety and Security, Addison-Wesley
Publishing, 0-321-13616-0, ©.

[6] R. Buerki and A. Rueegsegger (2013), Muen - an
x86/64 separation kernel for high assurance, Technical
Report, University of Applied Sciences Rapperswil
(HSR), Switzerland. Available on line at
http://people.cs.ksu.edu/~danielwang/Investigation/For
mal_Verification/muen-report.pdf.

[7] AdaCore (2017), GNAT Pro chosen for UK’s next
generation ATC system, AdaCore Technologies press

release, available online at http://www.adacore.com/
customers/uks-next-generation-atc-system/.

[8] AdaCore (2010), Spark PRO adopted by secunet,
AdaCore Technologies press release, available online
at http://www.adacore.com/customers/multi-level-
security-workstation/

[9] R. Sward, M. Carlisle, B. Fagin and D. Gibson (2003),
The case for Ada at the USAF Academy, Proceedings
of the ACM SIGAda International Conference on Ada
pp 68-70.

[10] M. Carlisle and B. Fagin (2012), IRONSIDES: DNS
with no single-packet denial of service or remote code
execution vulnerabilities, GLOBECOMM 2012,
Anaheim CA.

[11] B. Fagin and M. Carlisle (2013), Provably secure
DNS: A case study in reliable software, 2013
International Conference on Reliable Software
Technologies, Berlin, Germany pp 81-93.

[12] B. Fagin, M. Carlisle and B. Klanderman (2017),
Making DNS Servers Resistant to Cyber Attacks,
COMPSAC 2017, Turin, Italy pp 566-571.

[13] http://www.nominum.com/measurement-tools/

[14] Internet Services Simulation Suite,
http://www.inetsim.org/

[15] J. Groote, A. Osaiweran and J. Wsesselius (2011),
Analyzing the effects of formal methods on the
development of industrial control software, 2011 IEEE
Conference on Software Maintenance, Williamsburg
VA, pp 467-472.

[16] H. Boulakhrif (2015), Analysis of DNS resolver
performance measurements, Masters’ Thesis,
University of Amsterdam, available at
https://www.nlnetlabs.nl/downloads/publications/
os3-2015-rp2-hamza-boulakhrif.pdf.

 203

Ada User Journal Volume 39, Number 3, September 2018

Designing Multitask Control Software in a
Multiprocessor World
Bo I. Sandén
Colorado Technical University, 4435 N. Chestnut, Colorado Springs, CO 80907, USA; Tel: +1 719-531-9045;
email: bsanden@acm.org

Abstract
In single-processor real-time control systems, tasks are
often scheduled to deadlines to ensure that they can all
have a processor when needed. This can be done on
multiprocessors too, but adding cores/processors can be
simpler and more flexible than loading each core or
processor as heavily as possible. This article compares two
software solutions for a pick-and-place system: an existing
deadline-driven implementation and an event-driven one
without deadlines. The existing implementation schedules
tasks to periodic deadlines on a dual-core processor. It
uses elaborate mode-change logic to allow the controlled
pick-and-place system to run at two predetermined speeds.
The event-driven solution, on the other hand, requires
additional cores or processors but could support a
continuous range of speeds, which allows the controlled
physical system to stop and restart without manual
intervention. It can also be generic and support multiple
configurations because deadlines need not be pre-
computed for each. Arguably, the event-driven solution is
easier to understand and change.

1 Introduction

Even as multicore and multiprocessor hardware is
becoming ubiquitous, much real-time software design still
focuses on processor scheduling: Making sure that every
task gets enough processor time to meet its deadlines
determines the software architecture. If the number of
cores/processors is indeed severely limited, such solutions
are useful when the hardware needs the results of certain
computations by specific times. In that situation, they can
improve on the single-task cyclic executives that have long
prevailed in real-time software. A downside is the potential
rigidity of a design where time constraints are built right
into the architecture.

With multicore and multiprocessor hardware increasingly
available, processor access may not remain the major
concern. That means that deadline-driven architectures can
often give way to an event-driven style. While a deadline-
driven architecture may only be able to run a physical
system at certain, constant speeds, an event-driven system
could adjust its speed to the load, even stop entirely, and
then restart automatically. Letting the physical system fall
back gracefully to a maintenance mode can also be easier
when we need not build a schedule and mode-change logic
for each possible configuration. We shall illustrate this
difference in complexity by means of a model problem
with pick-and-place robots described by Saez et al [3]. It

represents a class of useful control systems and is easy to
understand yet nontrivial.

1.1 The pick-and-place problem

Shown in Figure 1, the pick-and-place system separates
workpieces into cylinders and cubes. As pieces arrive on
the input conveyor belt, a camera captures successive
frames. A software module called segmentation determines
the number of pieces and their positions in each frame. It
inserts this into an ImageBuffer, which the recognition
module uses to determine the type and orientation of each
piece. It puts that information in a queue called ToDo
together with the piece’s position on the conveyor.

Depending on the piece count in each freshly segmented
frame, either Robot0 alone or Robot0 and Robot1 both
move pieces. Repeatedly, a robot first retrieves a ToDo
entry describing a workpiece, then picks the piece off the
input conveyor, and finally places it by type on one of two
output conveyors.

The input conveyor runs at fetching speed until a nonempty
frame is segmented, then at a slower working speed while
pieces remain to be picked, and then again at fetching
speed. There are three system states: Fetch with no robot
picking, Normal with only Robot0 picking, and Overload
with Robot0 and Robot1 both picking.

Figure 1 Schematic of the pick-and-place plant [3]

Unlike, say, the software controlling a car’s airbags, which
must complete its computation within so many
milliseconds, the pick-and-place system imposes no
deadlines directly on individual tasks. Instead the timing
constraints apply to the speeds of the conveyors and robots:

 With workpieces continuously arriving, what are the
greatest fetching and working speeds that let the two
robots pick every piece in every frame?

Camera

Conveyor belt

Robot 1

Robot 0

Unclassified
input

Classified
output

Console

204 Designing Mult i task Control Software in a Mult iprocessor Wor ld

Volume 39, Number 3, September 2018 Ada User Journal

 In state Normal, which maximum threshold piece-
count allows a single robot to pick every piece?

Saez et al [3] describe a deadline-driven architecture that
captures nicely and intuitively the concurrency inherent in
the problem description. For example, each robot has an
instance of a task type robot that takes it through its
motions. Simplifying their solution somewhat, we
introduce another task type, frames, with two instances,
each of which executes segmentation and recognition for
successive frames. With those two tasks, the processing of
different frames can overlap.

We want to compare the deadline-driven solution and an
event-driven architecture with the same set of tasks.
Because it is more straightforward, we begin by describing
the event-driven solution and then discuss the deadline-
driven one.

2 Event-driven solution

The event-driven solution assumes that there are as many
cores or processors as there are tasks, which eliminates the
need for task scheduling altogether. Although the small
number of tasks in this case is quite manageable, we could
most likely do with fewer processors: For example, a single
one may be sufficient for both robot tasks. No task is tied
to a specific core or processor.

Figure 2 State diagram for event-driven solution [5]

The state diagram in Figure 2 shows the three system states
and the superstates ConveyorMoving and Working. It labels
each state-transition arrow with a triggering event,
sometimes followed by a bracket with a condition guarding
the transition, and finally, preceded by a slash, any action
the system takes in response. Event/action pairs, such as
“picked [PendPcs > 1] / PendPcs = PendPcs - 1” that do not
involve a state change appear inside the icons of the states
where they occur. The keyword “do” indicates an activity,
which some task performs in a certain state or superstate.

In this solution, a robot need not do the placing in the same
state where it picked a piece; one or two state transitions
can intervene. More broadly, in an event-driven solution
such as this, not all system-state changes necessarily affect
all tasks immediately. Instead, each task queries the current
state when it is prepared to react to a state change. For
example, robot1 finds out the system state once its physical
robot has placed a workpiece and is at rest at a holding
position. The task then blocks, if necessary, until the

system is back in Overload and both robots are allowed to
pick.

With Figure 2 as a roadmap, here is how this solution
works:

 Fetch is marked as the initial state. The event
segmented (NumPcs) signals that segmentation has
identified a nonempty frame with NumPcs pieces. The
next state depends on NumPcs:

- If NumPcs ≤ Threshold, enter Normal.

- If NumPcs > Threshold, enter Overload.

 In Normal, Robot0 alone picks. As each new frame is
segmented, NumPcs is added to PendPcs, which is the
number of pieces yet to be placed. State transitions
occur in two cases:

- If NumPcs > Threshold, enter Overload.

- If PendPcs = 0, enter Fetch.

 In Overload, both robots pick. For each new frame,
NumPcs is added to PendPcs. State transitions occur in
two cases:

- If NumPcs ≤ Threshold, enter Normal; Robot1
stops picking.

- If PendPcs = 0, enter Fetch.

We implement the state machine as a protected object (PO).
The tasks report the occurrences of significant events such
as segmented or picked by calling the corresponding
operations on that state-machine PO [4].

Another PO is ToDo, a queue of entries each holding the
coordinates on the conveyor of one workpiece to be picked.
The frames tasks feed it new entries. We want the robots to
pick pieces roughly in the order they appear on the
conveyor, so they should retrieve ToDo entries in that
order. However, when two frames tasks run recognition
concurrently, a leading piece in one frame may be
submitted to ToDo before a trailing piece in the previous
frame. ToDo can deliver the entries in the proper order by
keeping track of each piece’s frame number.

2.1 Resource contention

We assume that the robot arms can move between the input
and output conveyors simultaneously without interfering
with each other, and also that each robot has a holding
position close to the input conveyor and another close to
the output conveyors, out of the other robot’s way.

Upon transition from Normal to Overload, both robots may
be at their holding positions near the input conveyor ready
to pick. Because each robot picks pieces located anywhere
across the conveyor, it needs exclusive access to avoid
clashing with the other robot. With a physical robot at rest,
its task first consults ToDo under exclusive access. Once it
has retrieved the coordinates of a piece to pick, it locks the
input conveyor and then waits for its physical robot to pick
and get out of the way before unlocking. In a similar
fashion, a single lock can protect both output conveyors.

Fetch

Normal

segmented (NumPcs) [NumPcs ≤ Threshold] /
PendPcs=PendPcs+NumPcs

picked [PendPcs>1] / PendPcs=PendPcs-1

Overload

segmented (NumPcs) [NumPcs >Threshold] /
PendPcs=PendPcs+NumPcs

Picked [PendPcs > 1] / PendPcs=PendPcs-1

Working

segmented (NumPcs) [NumPcs ≤ Threshold] /
PendPcs= NumPcs; slow down

segmented (NumPcs) [NumPcs > Threshold] / PendPcs=
NumPcs; slow down

segmented (NumPcs)
 [NumPcs ≤ Threshold] /

PendPcs=PendPcs+NumPcs;

picked [PendPcs≤1] /
PendPcs= PendPcs-1;
speed up

do / segmentation do / recognition do / robot0 do / robot1

ConveyorMoving

segmented (NumPcs) [NumPcs >
Threshold] / PendPcs= NumPcs

B. I . Sandén 205

Ada User Journal Volume 39, Number 3, September 2018

2.2 Generic solution

Absent the need for deadlines, we can pattern the tasks on
concurrent processes found in the problem description [4,
5]. The tasks are generally the same as in the deadline-
driven solution:

 The robot tasks represent two sequentially operating
components of the physical system, which proceed
independently except where they need exclusive access
to a shared resource.

 Similarly, the frames tasks represent sequential
processes, each working on a different frame.

 A state-machine PO maintains the system state, shown
in Figure 2.

 Other POs ensure mutual exclusion of robots accessing
the same conveyor.

 The PO ToDo is the interface between frames tasks
and robot tasks.

The event-driven approach makes a generic solution
possible where the working and fetching speeds as well as
the threshold are parameters to be calculated for each
particular installation. We can determine these speeds by
simulation or by trial runs with each physical configuration
at varying speeds and with realistic piece-count
distributions. We can adjust the speeds and the threshold on
the fly.

Because such trial runs will also reveal any shortage of
processor time, separate schedulability analysis becomes
unnecessary: If the system manages to pick and place all
the pieces at a certain conveyor speed under all expected
conditions, then that proves that all tasks involved have
sufficient processor access. Because the speeds vary, this
solution relies on markers along the input conveyor to
determine the position of each piece.

To deal with unlikely scenarios such as a number of
unusually heavily loaded frames arriving directly after one
another, the input conveyor could slow down automatically
and even stop when the robots are too far behind to pick all
the pieces while they are still reachable. The robots would
continue picking and placing while the conveyor slows
down, possibly stops, and then speeds up. Many systems of
this general type should also support planned and
unplanned stops followed by restart without the need for
manual cleanup.

To allow for robot maintenance, the system should be able
to degrade gracefully to a state where a single robot does
all the work at a lower conveyor speed. Robot0 and Robot1
should each be able to operate alone. At the points where a
physical robot is at rest, its task could routinely check
whether it is expected to stop working. If so, the task would
report this event to the state-machine PO.

Such enhancements are not necessarily easy unless
incorporated in the initial architecture, but can be designed
to work in the same vein as the original system: We add
necessary states and transitions to the system-state machine
shown in Figure 2, and modify the existing tasks as
necessary to reflect additional states local to each robot.

We would need to add a task only if, say, a third robot were
somehow introduced. In that case, each output conveyor
should have its own lock so two robots can place at the
same time on different conveyors. A robot that must reach
across one conveyor to the other would need both locks. To
avoid deadlock, all robots must lock the conveyors in a
static order as, for example, always the “cube conveyor”
before the “cylinder conveyor”.

 3 Deadline-driven solution

In order to run the pick-and-place system software on a
dual-core computer with barely sufficient processing power
and on a single core whenever possible, Saez et al. [3]
relied on task scheduling: When the conveyor moves at a
constant speed, the timing can translate into hard task
deadlines. They precalculated the working speed based on
the segmentation time per frame plus the time needed to
recognize and move each piece. They chose a fetching
speed low enough to let the conveyor slow down when a
nonempty frame arrives so the robots can pick all the
pieces. Three distinct modes of operation, FetchMode,
NormalMode, and OverloadMode, replace the three simple
states in Figure 2.

Figure 3 corresponds to Figure 6 in [3], which primarily
shows the workings of the mode manager, a module similar
to the state-machine PO in some ways. In Figure 3,
activities indicate which states allow which tasks to
execute. For example, “do/robot1” in OverloadMode
means that robot1 runs in that superstate only, not in
NormalMode or FetchMode; its physical robot picks and
places only in OverloadMode.

 Figure 3 State diagram for deadline-driven solution

While the tasks are essentially the same as in the event-
driven solution, one technical difference is that
segmentation has its own single task while recognition is a
task type with two instances, one for each core. Tasks run
on a separate schedule for each core in each mode [3]:

 FetchMode: Segmentation alone runs on a single core.

206 Designing Mult i task Control Software in a Mult iprocessor Wor ld

Volume 39, Number 3, September 2018 Ada User Journal

 NormalMode: One robot task runs on a single core
together with recognition and segmentation as follows:

- Repeatedly, the camera captures a frame at time t,
say.

- Segmentation has its deadline at t+10, when
recognition starts.

- Recognition’s deadline is at t+50, when the next
frame is captured.

- The robot task gets three units of processor time in
each successive interval of 10 time units.

 OverloadMode uses two cores, each running one robot
task plus one recognition task. The segmentation task
runs on each core by turns.

For each mode, the authors proved that the tasks indeed
finish their computations by deadline. The following five
mode transitions occur, each requiring a mode-change
operation to phase continuing tasks into their new
schedules as necessary:

 FetchMode to NormalMode

 FetchMode to OverloadMode

 NormalMode to FetchMode

 NormalMode to OverloadMode

 OverloadMode to NormalMode

The mode-manager module [2] handles these changes.
While Figure 2 shows a transition from the superstate
Working to Fetch, Saez et al [3] avoid the direct transition
from OverloadMode to FetchMode, which would have
been an additional mode change to be worked out. Instead,
a transition to FetchMode occurs immediately after the
mode change to NormalMode if PendPcs = 0. (Figure 3
does not show this.)

The situation in NormalMode illustrates the kind of
resource conflict such careful task scheduling can resolve
when there is only one core: The single robot may need
relatively little processor support but is on the critical path
as its physical movements limit the input conveyor’s speed.
Recognition, on the other hand, is computing intensive, and
could occupy the processor for some time, analyzing one
piece after the other. For this reason, the robot task needs
higher priority so it can preempt recognition when
necessary to keep its physical robot going.

The superstate OverloadMode is where the complications
of the deadline-driven solution are most plain. It has two
substates:

 StillOverloaded, which uses two robots and two
recognition tasks. A state transition occurs in one case:

- When segmentation finds a frame with NumPcs ≤
Threshold, enter WorkDecreased. Robot1 stops
picking.

 WorkDecreased, which gives tasks that are not allowed
to run in NormalMode time to wrap up ahead of the
mode change. When WorkDecreased is entered,
recognition of the previous frame may still be in

progress, and Robot1 may be at any point in its cycle:
In the worst case, it has just retrieved a ToDo entry and
is poised to pick and place a piece. WorkDecreased
allows a fixed amount of time for all this to complete.
The event time to process signals the end of the
allotted interval. State transitions occur in two cases:

- When time to process occurs, enter NormalMode
via a mode change.

- If a frame with NumPcs > Threshold is segmented,
return to StillOverloaded. Robot1 resumes picking
along with Robot0.

 While most of the mode-change machinery is hidden in
standard software modules, handling “wrap-up states”
such as WorkDecreased becomes a part of the
application development: The transition to the new
mode must wait until all tasks not allowed to run there
reach suitable stopping points in their logic. As in the
case of WorkDecreased, a straightforward solution
may be to allow a sufficient, fixed amount of time for
this. While it might be more precise to exit the state as
soon as all tasks are ready, that may require
considerable coordination so that any task involved can
determine whether it is the last one to wrap up and
must initiate the mode change.

Although such wrap-up states can complicate the software
design, WorkDecreased appears not to impact the
efficiency of this particular system much. The picking and
placing continues. However, if another task were poised to
start upon entry to NormalMode, it might be delayed for a
fixed period for no reason.

3.1 Setting the parameters for the deadline-driven
solution

In reality, the deadline-driven solution is not as neatly
periodic as it may look, nor does the input conveyor always
run at one of its constant speeds: FetchMode actually has
an acceleration substate reached upon transition from
NormalMode, while StillOverloaded and NormalMode
include deceleration substates reached upon the transitions
from FetchMode. (Figure 3 does not show these substates.)

When a frame is segmented in FetchMode, where the input
conveyor travels fast, the next frame comes sooner than in
superstate Working, where the conveyor travels more
slowly. In the worst case, that first frame is as full as
physically possible. Taking a conservative approach, we
can choose speeds slow enough to let the robots always
move every piece before the next frame has been
segmented. But in reality, a full frame may rarely follow an
empty one, so the system might then be underutilized much
of the time only to accommodate a rare case. The event-
driven solution, on the other hand, can adjust the conveyor
speed as necessary – and even stop the conveyor
temporarily – to deal with such extreme cases.

The parameter Threshold must take into account not only
the number of pieces a single robot can move per time unit
but also the number of pieces that a single core can
segment and recognize. The event-driven solution can

B. I . Sandén 207

Ada User Journal Volume 39, Number 3, September 2018

separate these concerns and make two frames tasks
available in every state as discussed in section 2.

4 Conclusion

As we have seen, taking a multimoded, deadline-driven
approach to the pick-and-place problem complicates the
software relative to working with a few cores or processors
more. While Saez et al [3] must be considered quality
documentation of the design including its rationale, it
focuses on the scheduling. Understanding the details of
how and why the tasks interact is not always easy based on
their paper only.

In both software solutions we have discussed, each task can
be identified from the problem description without further
software design. Each mirrors a sequential process in the
problem environment: either the stepwise movements of a
robot or the segmentation and recognition of successive
frames. This simplifies the deadline-driven solution: If we
want to stop one robot, for example, we stop exactly its
corresponding task. Basing tasks on such sequential
processes tends to be intuitive and works equally well with
an event-driven design approach [4, 5].

Not every deadline-driven architecture may convert this
smoothly into an event-driven one, however. In some
architectures, tasks may be identified by means of
functional decomposition. In such a solution, each input
may “visit” multiple, periodically scheduled tasks one after
the other [1]. In practice, this may produce many tasks,
some of which may always run sequentially rather than

concurrently, making it difficult to tell how many
processors/cores are enough.

Acknowledgment

Jorge Real readily and helpfully answered many detailed
questions on the workings of the pick-and-place system.

References

[1] R. Kazman, L. Bass, and M. Klein (2006), The essential
components of software architecture design and
analysis, Journal of Systems and Software, vol. 79,
issue 8, pp 1207-1216.

[2] J. Real and A. Crespo (2004), Mode-change protocols
for real-time systems: A Survey and a new Proposal,
Real-Time Systems, vol. 26, issue 2, pp 161 -197.

[3] S. Saez, J. Real, and A. Crespo (2012). An Integrated
Framework for Multiprocessor, Multimoded Real-Time
Applications In: M. Brorsson and L. M., Pinho (eds.),
Ada-Europe 2012. LNCS, vol. 7308, pp. 18-34.
Springer, Heidelberg.

[4] B. I. Sandén (2011), Design of Multithreaded Software:
The Entity-Life Modeling Approach, IEEE Computer
Society Press/Wiley.

[5] B. I. Sandén (2017), Entity-life modeling. In
Encyclopedia of Software Engineering, Taylor and
Francis.

208

Volume 39, Number 3, September 2018 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	MAIN.pdf
	Introduction
	Related Work
	Design objectives and use cases
	Components of the Alire project
	Main use cases
	Introduction to alr

	Implementation details
	Alire-mandated files
	Self-compilation of alr and working projects
	Final example
	Discussion

	Conclusions

