

Ada User Journal Volume 39, Number 4, December 2018

ADA
USER
JOURNAL

Volume 39

Number 4

December 2018

Contents
Page

Editorial 211

Editorial Policy for Ada User Journal 212

In memoriam: Jacob Sparre Andersen 213

Quarterly News Digest 214

Conference Calendar 240

Forthcoming Events 247

Ada-Europe 2018 Industrial Presentations

 John Favaro, G. Ioele, A. Jaku, S. Mazzini, P. Panaroni, U. Paone
“AGILE-R: Agile Software Development for Railways” 250

Proceedings of the "Workshop on Challenges and New Approaches for Dependable and
 Cyber-Physical System Engineering" of Ada-Europe 2018

 A. Leitner, S. Sáez-Barona, Z. Slavik, M. Rautila, N. Marko, P. Rosenberg, D. Nickôvić,
W. Krenn, M. Siegel

 “ENABLE-S3: On Improving the Verification and Validation of Automated
Cyber-Physical Systems” 256

 J. Favaro, S. Mazzini, P. Popov, L. Strigini
“AQUAS: A Project to Bridge the Gaps between Safety and Security Processes” 261

 L. Rioux, I. Dor
“FED4SAE: A Digital Innovation Hub for the Smart Anything Everywhere Initiative” 264

 R. Samano-Robles, J. Neves
“Secure Wireless Avionics Intra-Communications: the SCOTT Approach” 267

Proceedings of the "Runtime Verification and Monitoring Technologies for Embedded Systems
Workshop"

 J. Rufino, A. Casimiro, A. Lopes, F. Singhoff, S. Rubini, V-A. Nicolas, M. Lallali, M. Dridi, J.
Boukhobza, L. Allache
“NORTH - Non-intrusive Observation and Runtime Verification of Cyber-Physical Systems” 278

Volume 39, Number 4, December 2018 Ada User Journal

 S. Rubini, V-A.Nicolas, F. Singhoff, J. Rufino
“A Real-Time System Monitoring Driven by Scheduling Analysis” 282

 J. Rufino
“Hardware Support to Non-intrusive Runtime Verification on Processor Technologies” 287

 V-A.Nicolas, M. Lallali, S. Rubini, F. Singhoff
“Verification of Scheduling Properties Based on Execution Traces” 291

 J. Rufino, A. Casimiro, F. D. Lange, M. Leucker, T. Scheffel, M. Schmitz, D. Thoma
“Non-intrusive Runtime Verification within a System-on-Chip” 296

 J. Rufino
“Non-intrusive Observation and Runtime Verification of Avionic Systems” 300

 A. Casimiro, F. Singhoff, L. Lemarchand, S. Rubini, N. T. Hai, J. Boukhobza, P. Esteves-
Veríssimo
“In memoriam: José Rufino” 305

Ada-Europe Associate Members (National Ada Organizations) 306

Ada-Europe Sponsors Inside Back Cover

211

Volume 39, Number 4, December 2018 Ada User Journal

Editorial
This Editorial starts with a very sad note, as the issue remembers two friends that left us in 2018. Jacob, which I was fortunate
to work with in the past six years in his role as Ada User Journal News Editor, and José, a colleague for 20 years, since we
were both doing our PhDs, and one of the organizers of the RUME workshop at Ada-Europe 2018. Although passing away in
a period of 6 months, coincidence made both be remembered in this issue. I leave to the in memoriams the words of
remembrance.

As for the technical contents of the issue, the reader will find a set of contributions related to the Ada-Europe conference
week, that took place last June, in Lisbon, Portugal.

Frist, a paper derived from an industrial presentation at the conference, from a group of authors of Intecs, Italy, on the use of
agile software development approaches in the railway domain. The second part of the issue publishes the proceedings of the
workshop on Challenges and New Approaches for Dependable and Cyber-Physical System Engineering (DeCPS 2018),
which as usual co-located with the Ada-Europe conference. The published papers provide overviews of several of running
European projects addressing this difficult challenge of building dependable cyber-physical systems and systems of systems.

Finally, the issue also publishes the proceedings of the Runtime Verification and Monitoring Technologies for Embedded
Systems Workshop (RUME 2018), which was also co-located with Ada-Europe, in Lisbon. The workshop papers address
different approaches to provide runtime monitoring and verification capabilities, more and more a significant challenge for
more adaptative, whilst reliable, systems.

The Ada-Europe conference week is an important meeting point for researchers and practitioners in all aspects of reliable
technologies and systems. Therefore, I hope to see you all, next June, in Warsaw, for Ada-Europe 2019.

Luís Miguel Pinho
Porto

December 2018
 Email: AUJ_Editor@Ada-Europe.org

212

Volume 39, Number 4, December 2018 Ada User Journal

In Memoriam: Jacob Sparre Andersen

Jacob Sparre Andersen, Ada User Journal News Editor, passed away on Sunday 16th December 2018, after a very short
period fighting an aggressive cancer. The news of Jacob’s illness was very sudden, and quickly escalated. We were still
trying to accept that he was seriously ill when we received news that he was no longer with us.

Jacob was a long-time member of the Ada community, and a very active one at that. He was always keen on helping newbies
(and others) about how to program high-quality software, and an enthusiastic interlocutor to everyone approaching Ada
technology. He regularly participated in groups, discussions and events, promoting Ada, software quality and open source
software, showing how these three could be combined harmoniously.

He was also an active volunteer within Ada-Europe. Not only in the role of Ada User Journal News Editor, a position that he
fulfilled in the past six years, but also in his continuous support to the Ada-Europe conferences, in multiple roles, from
participation in the industrial committee (which he chaired in 2017) to the multiple presentations and tutorials he offered. He
made himself known also through many comments and engaging discussions that he sparked during and after conference
sessions.

We will always remember Jacob as a very friendly, gentle and helpful person. Our community will miss him very much. And
next June in Warsaw, we will find it very awkward to look around and not see him stand out in the conference crowd.

Farewell, our friend and colleague Jacob, Rest in Peace.

Ada-Europe Board
December 2018

213

Volume 39, Number 4, December 2018 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

214

Volume 39, Number 4, December 2018 Ada User Journal

Quarterly News Digest
Kristoffer Nyborg Gregertsen

SINTEF, Email: kristoffer.gregertsen@sintef.no

Contents

Ada-related Events 214
Ada-related Resources 215
Ada-related Tools 215
Ada-related Products 218
Ada and Operating Systems 222
Ada in Context 226

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.]

FOSDEM 2019

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Fri, 16 Nov 2018 19:58:34 -0000
Subject: CfP - Ada Developer Room at

FOSDEM 2019, Brussels, Belgium
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

Call for Presentations

9th Ada Developer Room at FOSDEM
2019

Saturday 2 February 2019, Brussels,
Belgium

http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/19/

190202-fosdem.html

Organized in cooperation with
 Ada-Europe

Ada-Belgium [1] is pleased to announce
that there will be a one-day Ada
Developer Room on Saturday 2 February
2019 at FOSDEM 2019 in Brussels,
Belgium. This Ada DevRoom is once
more organized in cooperation with Ada-
Europe [2].

General Information

FOSDEM [3], the Free and Open source
Software Developers' European Meeting,
is a free and non-commercial two-day
weekend event organized early each year
in Brussels, Belgium. It is highly
developer-oriented and brings together
8000+ participants from all over the
world.

No registration is necessary.

The goal is to provide open source
developers and communities a place to
meet with other developers and projects,
to be informed about the latest
developments in the open source world, to
attend interesting talks and presentations
on various topics by open source project
leaders and committers, and to promote
the development and the benefits of open
source solutions.

Ada Programming Language and
Technology

Awareness of safety and security issues in
software systems is increasing. Multi-core
platforms are now abundant. These are
some of the reasons that the Ada
programming language and technology
attracts more and more attention, among
others due to Ada's support for
programming by contract and for multi-
core targets.

The latest Ada language definition was
updated early 2016. Work on new
features is ongoing, such as improved
support for fine-grained parallelism, and
will result in a new Ada standard
scheduled for 2020.

Ada-related technology such as SPARK
provides a solution for the safety and
security aspects stated above.

More and more tools are available, many
are open source, including for small and
recent platforms. Interest in Ada keeps
increasing, also in the open source
community, and many exciting projects
have been started.

Ada Developer Room

FOSDEM is an ideal fit for an Ada
Developer Room. On the one hand, it
gives the general open source community
an opportunity to see what is happening in
the Ada community and how Ada
technology can help to produce reliable
and efficient open source software. On the
other hand, it gives open source Ada
projects an opportunity to present
themselves, get feedback and ideas, and
attract participants to their project and
collaboration between projects.

At previous FOSDEM events, the Ada-
Belgium non-profit organization
organized very well attended Ada
Developer Rooms, offering a full day
program in 2006 [4], a two-day program
in 2009 [5], and full day programs in
2012 [6], 2013 [7], 2014 [8], 2015 [9],
2016 [10], and 2018 [11]. An important

goal is to present exciting Ada technology
and projects also to people outside the
traditional Ada community.

Our proposal for another dedicated Ada
DevRoom was accepted, and now work
continues to prepare the detailed program.
We most probably will have a total of 8
schedulable hours between 11:00 and
19:00 in one of the rooms which
accommodate from 59 to 85 participants.

More information will be posted on the
dedicated web-page on the Ada-Belgium
site [12], and final announcements will of
course also be sent to various forums, lists
and newsgroups.

Call for Presentations

We would like to schedule technical
presentations, tutorials, demos, live
performances, project status reports,
discussions, etc., in the Ada Developer
Room.

Ada-Belgium calls on you to:

- inform us at ada-belg...@cs.kuleuven.be
about specific presentations you would
like to hear in this Ada DevRoom;

- for bonus points, subscribe to the Ada-
FOSDEM mailing list [13] to discuss
and help organize the details;

- for more bonus points, be a speaker: the
Ada-FOSDEM mailing list is the place
to be!

Do you have a talk you want to give?

Do you have a project you would like to
present?

Would you like to get more people
involved with your project?

We're inviting proposals that are related to
Ada software development, and include a
technical oriented discussion. You're not
limited to slide presentations, of course.
Be creative. Propose something fun to
share with people so they might feel some
of your enthusiasm for Ada!

Speaking slots are either 15 or 45
minutes, plus 5 minutes for Q&A.
Depending on interest, we might also
have a session with lightning
presentations (e.g. 5 minutes each).

Note that all talks will be streamed live
(audio+video) and recorded, for remote as
well as later viewing of talks, and so that
people can watch streams in the hallways
when rooms are full. By submitting a
proposal, you agree to being recorded and
streamed, and agree the content of your
talk will be published under the same

Ada-related Tools 215

Volume 39, Number 4, December 2018 Ada User Journal

license as all FOSDEM content, a
Creative Commons (CC-BY) license.

Submission Guidelines

Subscribe to the Ada-FOSDEM mailing
list [13], and submit your proposal there.
If needed, feel free to contact us at
ada-belgium@cs.kuleuven.be.

Please include:

- your name, affiliation, contact info;

- the title of your talk (be descriptive and
creative);

- a short descriptive abstract;

- potentially pointers to more information;

- a short bio and photo.

See programs of previous Ada DevRooms
(URLs below) for presentation examples,
as well as for the kind of info we need.

We'd like to put together a draft schedule
by early December. So, please act ASAP,
and definitely by Saturday December 1,
2018 at the latest.

We look forward to lots of feedback and
proposals!

Ada-Europe 2019

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: 2 Dec 2018 11:22 -0000
Subject: CfP Ada-Europe 24th Conf. on

Reliable Software Technologies
Newsgroups: comp.lang.ada

Call for Papers

Ada-Europe 24th International
Conference on

Reliable Software Technologies
(Ada-Europe 2019)

10-14 June 2019, Warsaw, Poland

http://www.ada-europe.org/
conference2019

Organized by EDC and Ada-Europe, in
cooperation with ACM SIGAda, SIGBED

(pending), SIGPLAN (pending)
and the Ada Resource Association (ARA)

General Information

Ada-Europe is pleased to announce that
its 24th International Conference on
Reliable Software Technologies (Ada-
Europe 2019) will take place in Warsaw,
Poland, in the week of 10-14 June.

The conference schedule at its fullest
includes a three-day technical program
and vendor exhibition from Tuesday to
Thursday, and parallel tutorials and
workshops on Monday and Friday.

This edition of the conference inaugurates
a major revamp in the registration fees,
redesigned to extend participation from
industry and academia, and to reward
contributors, especially but not solely
students and post-doc researchers.

[More information in the forthcoming
events section of the Journal.]

Ada-related Resources

New SPARK/Ada Blog

From: apemant...@gmail.com
Date: Thu, 27 Sep 2018 02:51:41 -0700
Subject: New SPARK/Ada Blog
Newsgroups: comp.lang.ada

A new SPARK/Ada blog (by me)

Only just started, so not much there, yet:
its focus will be developing commercial
applications (i.e. competing with C# etc)

Feel free to pop over and take a look

http://www.apemantus.co.uk

From: joak...@kth.se
Date: Thu, 27 Sep 2018 04:17:50 -0700
Subject: Re: New SPARK/Ada Blog
Newsgroups: comp.lang.ada

Great! Now many SPARK/Ada blogs
around. Looking forward to more articles!

From: Henrik Härkönen
<heha...@gmail.com>

Date: Thu, 27 Sep 2018 07:52:59 -0700
Subject: Re: New SPARK/Ada Blog
Newsgroups: comp.lang.ada

Nice!

I'm very, very new to Ada, but I've just
recently picked up an interest for it. I'm
always on the lookout for "new" (to me)
programming languages, but it's quite
much just window shopping. But this
time, I think I've come across with
something that I'd actually like to learn.
Seems that your blog will be something
that I'll keep my eyes on! :)

From: Pascal Obry <pas...@obry.net>
Date: Thu, 27 Sep 2018 17:36:53 +0200
Subject: Re: New SPARK/Ada Blog
Newsgroups: comp.lang.ada

If you are new to Ada and want to learn it,
be sure to also have a look here:

https://learn.adacore.com

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Thu, 27 Sep 2018 17:30:14 -0500
Subject: Re: New SPARK/Ada Blog
Newsgroups: comp.lang.ada

> [...]

And of course here:

http://www.adaic.org/learn

Ada-related Tools

GNAT for AVR

From: ada.ne...@gmail.com
Date: Sun, 16 Sep 2018 19:22:45 -0700
Subject: GNAT for AVR - Mathematical

Functions
Newsgroups: comp.lang.ada

I'm programming an ATmega328P with
the GNAT compiler for AVR.

I need to use the Sqrt, Arctan and Atan2
functions. But maybe in the future I will
need to use some more.

I don't have access to the regular
Ada.Numerics package.

By now, I wrote the Sqrt using the
Newton's method and Arctan using Taylor
series.

I would like to know if there is a better
way to use/implement mathematical
functions (maybe import them from C?).

I really appreciate any help.

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Mon, 17 Sep 2018 09:18:06 +0200
Subject: Re: GNAT for AVR - Mathematical

Functions
Newsgroups: comp.lang.ada

> By now, I wrote the Sqrt using the
Newton's method and Arctan using
Taylor series.

Chebyshev's polynomials for arctan?

From: Simon Wright <si...@pushface.org>
Date: Mon, 17 Sep 2018 13:22:05 +0100
Subject: Re: GNAT for AVR - Mathematical

Functions
Newsgroups: comp.lang.ada

For what it's worth, the FSF GCC arm-
eabi compiler/runtime that I built imports
the basic maths functions from the C
library. This may be because I built the C
library (newlib) first?

The GNAT CE arm-eabi compiler goes to
basics with very deep-looking code;
possibly because it's "the Ada Cert Math
specific version" (from s-libsin.ads), i.e.
one with which AdaCore will support
customers with certification requirements.

From: Bill Findlay
<findl...@blueyonder.co.uk>

Date: Mon, 17 Sep 2018 18:28:17 +0100
Subject: Re: GNAT for AVR - Mathematical

Functions
Newsgroups: comp.lang.ada

Since you have sqrt, see:
http://www.findlayw.plus.com/KDF9/
#ATN

From: Aurele Vitali
<aurele...@gmail.com>

Date: Mon, 17 Sep 2018 15:41:33 -0700
Subject: Re: GNAT for AVR - Mathematical

Functions
Newsgroups: comp.lang.ada

I don't know anything about the
ATmega328P, but if it uses a builtin
floating point processor, you can use Ada
inline floating point assembler. It`s not
hard to do. Here is a simple example of
the square root function:

 with System.Machine_Code;
 use System.Machine_Code;
 EOL : constant String :=

ASCII.LF & ASCII.HT;

216 Ada-related Tools

Volume 39, Number 4, December 2018 Ada User Journal

function Sqrt(x : in Long_Float) return
Long_Float is

 Result : Long_Float := 0.0;
 begin
 Asm(("fldl %1" & EOL & -- Load x in St(0)
 "fsqrt" & EOL & -- Take the Sqrt of St(0)
 “fstpl %0"), -- Store result and pop St(0)
 Outputs => (Long_Float'Asm_Output(
 "=m", Result)),
 Inputs => (Long_Float'Asm_Input (
 "m", x)));
 return Result;
 end Sqrt;

You can do the same thing for trig
functions... Just cut and paste and see if
this example works.

From: rakusu...@fastmail.jp
Date: Mon, 17 Sep 2018 18:16:59 -0700

Subject: Re: GNAT for AVR -
Mathematical Functions

Newsgroups: comp.lang.ada

It is always be bottleneck - doing math on
slow integer 8-bit CPU with tiny amount
of memory and instructions only for
addition and subtraction,- because it
produce a huge pieces of slow machine
code. So all math there are doing in
integers by a table calculations, adds and
shifts. Therefore in future it's better to go
away from AVR for you with math, I
think.

Btw, there is a quite old C-runtime library
for AVR at http://savannah.nongnu.org/
projects/avr-libc/ - it might be helpful for
you, especially its handwritten libm. It
can also be useful to look at CORDIC
algorithm, frex http://www.dcs.gla.ac.uk/
~jhw/cordic/inzex.html

From: R R <rrr.e...@gmail.com>
Date: Tue, 25 Sep 2018 00:14:45 -0700
Subject: Re: GNAT for AVR - Mathematical

Functions
Newsgroups: comp.lang.ada

The old AVR-ADA project never
supported floating point math. The AVR
8bit processors are not made for that, even
though you can use float and double in
Arduino. The AVR compiler by Adacore
from around 2011 did support floating
point variables as far as I remember, I am
not sure about the math functions.

XNAdaLib

From: Pascal Pignard <p....@orange.fr>
Date: Fri, 21 Sep 2018 07:57:18 +0200
Subject: [ANN] XNAdaLib 2018 binaries for

High Sierra including GTKAda and
more.

Newsgroups: comp.lang.ada

This is XNAdaLib 2018 built on macOS
10.13 High Sierra for Native Quartz with
GNAT Community 2018 including:

 - GTKAda 18.0w mid-2018
(www.adacore.com/gtkada) with GTK+
3.22.29 (www.gtk.org) complete,

 - Glade 3.22.1 (glade.gnome.org),

 - GnatColl mid-2018
(github.com/AdaCore/gnatcoll),

 - Florist mid-2018a
(www.cs.fsu.edu/~baker/florist.html),

 - AdaCurses 20110404 (invisible-
island.net/ncurses/ncurses-Ada95.html),

 - Gate 3.05-b
(sourceforge.net/projects/lorenz),

 - Components 4.30 (www.dmitry-
kazakov.de/ada/components.htm),

 - AICWL 3.19 (www.dmitry-
kazakov.de/ada/aicwl.htm),

 - Zanyblue 1.4.0
(zanyblue.sourceforge.net),

 - PragmARC mid-2018
(pragmada.x10hosting.com/
pragmarc.htm),

 - GNOGA 1.4-beta (www.gnoga.com),

 - AdaControl 1.19r10
(adalog.fr/fr/adacontrol.html),

 - AdaDep 1.4r1
(adalog.fr/fr/composants.html),

 - AdaSubst 1.5r1
(adalog.fr/fr/composants.html),

 - SparForte 2.2-180916 (sparforte.com),

 and as side libraries:

 - Template Parser 19.0,

 - gtksourceview 3.24.4,

 - GNUTLS 3.5.9,

 - ASIS GPL 2018,

 - SDL 1.2.15 et SDL_Image 1.2.12.

XNAdaLib binaries have been post on
Source Forge:

https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2018-high-sierra/

Feel free to send comments.

Report preferably all comments to
MacAda.org mailing list:

http://macada.org/macada/Contacts.html

See list archive:

https://hermes.gwu.edu/archives/
gnat-osx.html

Third-party library
management

From: Henrik Härkönen
<heha...@gmail.com>

Date: Tue, 9 Oct 2018 00:03:48 -0700
Subject: Per-project third party library

management
Newsgroups: comp.lang.ada

What would be the most convenient way
to manage (mostly install & upgrade) a
third party library for one's project?

With python projects I'd probably fire up
an virtualenv per project and install stuff
there with pip etc. With scala I'd use SBT
to handle the libraries. In my C
development days, we had a proprietary

RTOS with all of its dependencies
managed by someone else, so I didn't
have to (or get to learn) worry about those
personally... :(

As I've understood, Ada doesn't have such
a package distribution system, so one
would typically download sources,
compile and install the library through its
make system. Or install readily packaged
version of the library, for example with
apt-get etc.

So far, I've installed AWS from source
and Ahven from a DEB package, and as
such they are just fine methods. But both
were using root access and system wide
install.

What I'm aiming for with my question, is
to learn a way to install a library so that it
would not require root access and it
would be more tied to the project.

Different projects might need to use
different versions etc.

Should I use GNU Stow, or configure --
prefix to point somewhere under my
project tree and have gprbuild include it
from there, or...?

My apologies if this has been asked a lot,
but at least I didn't find that many directly
related discussions about this.

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Tue, 9 Oct 2018 09:56:14 +0200
Subject: Re: Per-project third party library

management
Newsgroups: comp.lang.ada

> What I'm aiming for with my question,
is to learn a way to install a library so
that it would not require root access and
it would be more tied to the project.

If you don't want to follow the rules
imposed by the OS, there is no such thing
as "install" anymore. Simply copy the
library file where you want it to be.

Specifically for GNAT Ada there is a
ready-to-use tool gprinstall which does
installation of Ada projects. A third-party
library can be described as a separate
(externally built) library project. I didn't
try it, but I suppose it must work as
expected.

But again, for anything beyond simplest
stuff you have no choice but to use the
corresponding packaging tool of the
corresponding OS, however painful, like
in the case of DEB and RPM, it might be.

From: Henrik Härkönen
<heha...@gmail.com>

Date: Tue, 9 Oct 2018 04:57:06 -0700
Subject: Re: Per-project third party library

management
Newsgroups: comp.lang.ada

Ok, I have to tinker with these options
and see what seems like the best option.

The gprinstall at least seems nice in that
way that it would reduce some manual
and error prone steps on the way, perhaps.

Ada-related Tools 217

Volume 39, Number 4, December 2018 Ada User Journal

Gnoga Gallery

From: Pascal Pignard <p....@orange.fr>
Date: Sat, 13 Oct 2018 10:04:06 +0200
Subject: [ANN] Gnoga gallery.
Newsgroups: comp.lang.ada

Please find on Gnoga Wiki
(https://sourceforge.net/p/gnoga/wiki/),
the Gnoga Gallery of demonstration,
tutorial programs and more...

It consists for each Gnoga app, demo, test,
etc to show a screen capture with the list
of the main Gnoga components used by
the program.

The corresponding source code is
available with the link source code.

Many of them are online with the link
"Try it online" to the corresponding app.

Maybe you'll find some down, I'll look
after them from time to time, I apologize
if they are not all OK.

Maybe you'll find some slow, they are
hosted on a VM from AWS and some
work has to do to reduce latency.

https://sourceforge.net/p/gnoga/wiki/
Gnoga-Gallery

Feel free to send your feedback on Gnoga
list:

https://sourceforge.net/p/gnoga/mailman/
gnoga-list/

Feel free to send your own Gnoga
program screen capture, the Gnoga
components used by the program and the
program web site link.

I will add it to the gallery.

From: Henrik Härkönen
<heha...@gmail.com>

Date: Sun, 14 Oct 2018 12:17:10 -0700
Subject: Re: [ANN] Gnoga gallery.
Newsgroups: comp.lang.ada

> [...]

Cool, thanks for the link and gallery! Just
what I need, I'm slowly getting into
Gnoga as well as Ada itself. :)

Gnoga

From: Pascal Pignard <p....@orange.fr>
Date: Sat, 20 Oct 2018 18:49:00 +0200
Subject: [ANN] Gnoga version 1.4a and

1.5-alpha.
Newsgroups: comp.lang.ada

Gnoga version 1.4a has been released on
SF GIT:

https://sourceforge.net/p/gnoga/code/ci/
dev_1.4/tree/

and on SF files as zipped source code:

https://sourceforge.net/projects/gnoga/
files/

See HISTORY for details:

https://sourceforge.net/p/gnoga/code/ci/
dev_1.4/tree/HISTORY

Then new branch dev_1.5 has been
created to collect new Gnoga 1.5-alpha
developments, see TODO:

https://sourceforge.net/p/gnoga/code/ci/
dev_1.5/tree/TODO

Contributors are welcome.

Feel free to report detailed issues on
Gnoga list or create tickets on SF:

https://sourceforge.net/p/gnoga/mailman/

https://sourceforge.net/p/gnoga/tickets/

Strings Edit v3.4

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Tue, 6 Nov 2018 22:21:41 +0100
Subject: ANN: Strings Edit v3.4
Newsgroups: comp.lang.ada

The package Strings_Edit provides I/O
facilities:

 - Generic axis scales support;

 - Integer numbers (generic, package
Integer_Edit);

 - Integer sub- and superscript numbers;

 - Floating-point numbers (generic,
package Float_Edit);

 - Roman numbers (the type Roman);

 - Strings;

 - Ada-style quoted strings;

 - Base64 encoding;

 - RFC 8439 (ChaCha20 cipher,
Poly1305 digest, AEAD);

 - UTF-8 encoded strings and
conversions to older encoding standards;

 - Unicode maps and sets;

 - Wildcard pattern matching.

http://www.dmitry-kazakov.de/ada/
strings_edit.htm

Changes to the previous version:

- The package
Strings_Edit.UTF8.Windows_1250
provides Windows-1250 encoding
conversions;

 -The package
Strings_Edit.UTF8.Windows_1251
provides Windows-1251 encoding
conversions;

 -The package
Strings_Edit.UTF8.Windows_1252
provides Windows-1252 encoding
conversions;

-The package
Strings_Edit.UTF8.Windows_1253
provides Windows-1253 encoding
conversions;

 -The package
Strings_Edit.UTF8.Windows_1254
provides Windows-1254 encoding
conversions;

 -The package
Strings_Edit.UTF8.Windows_1255

provides Windows-1255 encoding
conversions;

 -The package
Strings_Edit.UTF8.Windows_1256
provides Windows-1256 encoding
conversions;

 -The package
Strings_Edit.UTF8.Windows_1257
provides Windows-1257 encoding
conversions;

 -The package
Strings_Edit.UTF8.Windows_1258
provides Windows-1258 encoding
conversions;

- The package
Strings_Edit.UTF8.ISO_8859_2
provides ISO/IEC 8859-2 encoding
conversions;

- The package
Strings_Edit.UTF8.ISO_8859_3
provides ISO/IEC 8859-3 encoding
conversions;

-The package
Strings_Edit.UTF8.ISO_8859_4
provides ISO/IEC 8859-4 encoding
conversions;

- The package
Strings_Edit.UTF8.ISO_8859_5
provides ISO/IEC 8859-5 encoding
conversions;

- The package
Strings_Edit.UTF8.ISO_8859_6
provides ISO/IEC 8859-6 encoding
conversions;

- The package
Strings_Edit.UTF8.ISO_8859_7
provides ISO/IEC 8859-7 encoding
conversions;

- The package
Strings_Edit.UTF8.ISO_8859_8
provides ISO/IEC 8859-8 encoding
conversions;

- The package
Strings_Edit.UTF8.ISO_8859_9
provides ISO/IEC 8859-9 encoding
conversions;

- The package
Strings_Edit.UTF8.ISO_8859_10
provides ISO/IEC 8859-10 encoding
conversions;

- The package Strings_Edit.UTF8.KOI8
provides KOI8 encoding conversions;

- The package
Strings_Edit.UTF8.MacOS_Roman
provides Mac OS Roman encoding
conversions;

- The package
Strings_Edit.UTF8.RADIX50 provides
DEC RADIX-50 encoding conversions;

- The package
Strings_Edit.UTF8.Recoding_Streams
provides streams recoding into/from
UTF-8.

218 Ada-related Products

Volume 39, Number 4, December 2018 Ada User Journal

Simple Components

From: Dmitry A. Kazakov
 <mai...@dmitry-kazakov.de>
Date: Wed, 7 Nov 2018 18:08:20 +0100
Subject: ANN: Simple components v4.31
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementtations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes the previous version:

- Bug fix in GNAT.Sockets.MQTT.
Server.Push, a check for the case when no
client is connected.

Industrial Control Widget
Library

From: Dmitry A. Kazakov
<mai...@dmitry-kazakov.de>

Date: Thu, 8 Nov 2018 18:06:11 +0100
Subject: ANN: Ada industrial control widget

library v3.20
Newsgroups: comp.lang.ada

Intended for design high-quality industrial
control widgets for Ada applications. The
software is based on GtkAda, Ada
bindings to GTK+ and cairo. The key
features of the library:

 - Widgets composed of transparent
layers drawn by cairo;

 - Fully scalable graphics;

 - Support of time controlled refresh
policy for real-time and heavy-duty
applications;

 - Caching graphical operations;

 - Stream I/O support for serialization
and deserialization;

 - Ready-to-use gauge, meter,
oscilloscope widgets;

 - Editor widget for WYSIWYG design
of complex dashboards.

http://www.dmitry-kazakov.de/ada/
aicwl.htm

Changes to the previous version:

- Bug fix in the package
Gtk.Layered.Waveform that causes
wrong time conversion caused daylight
saving shift.

Ada-related Products

AdaControl ASIS Exception

From: Markus Schöpflin
<no.spam@spam.spam>

Date: Fri, 12 Oct 2018 10:23:24 +0200
Subject: ASIS exception with AdaCtl

v1.19r10
Newsgroups: comp.lang.ada

Given the following simple test program:

procedure TEST
is
 package A is
 type T is new FLOAT;
 end A;

 function F return A.T'BASE
 is
 begin
 return 0.0;
 end F;

begin
 null;
end TEST;

Checking this program with AdaCtl gives
the following exception:

 > adactl -l "check style(no_closing_name)"
test
=========Phase: Processing ==========
AdaCtl version: 1.19r10 with ASIS 2.0.R for
GNAT Pro 7.4.2 (20160527)
ASIS error: ASIS.EXCEPTIONS.
ASIS_INAPPROPRIATE_ELEMENT
 In rule: STYLE
 For unit: TEST
Status : VALUE_ERROR
Diagnosis: Inappropriate Element Kind in
Asis.Expressions.Corresponding_Name_Dec
laration (A_SELECTED_COMPONENT)
called in Actual procedure for Pre_Operation
with the argument :
A_FUNCTION_BODY_DECLARATION
located in TEST (body, Unit_Id = 2,
Context_Id = 1)
text position : test.adb:7:4
 Nodes:
 Node : 2315 -
 N_SUBPROGRAM_BODY
 R_Node : 2315 -
 N_SUBPROGRAM_BODY
 Node_Field_1 : 0 - N_EMPTY
 Node_Field_2 : 0 - N_EMPTY
 Rel_Sloc : 65
 obtained from the tree test.adt
(Tree_Id = 1)
called in Asis.Iterator.Traverse_Element
with the argument :
A_FUNCTION_BODY_DECLARATION
located in TEST (body, Unit_Id = 2,
Context_Id = 1)
text position : test.adb:7:4
 Nodes:
 Node : 2315 -
 N_SUBPROGRAM_BODY
 R_Node : 2315 -
 N_SUBPROGRAM_BODY
 Node_Field_1 : 0 - N_EMPTY

 Node_Field_2 : 0 - N_EMPTY
 Rel_Sloc : 65
obtained from the tree test.adt
(Tree_Id = 1)
called in Actual procedure for Pre_Operation
with the argument :
A_PROCEDURE_BODY_DECLARATION
located in TEST (body, Unit_Id = 2,
Context_Id = 1)
text position : test.adb:1:1
 Nodes:
 Node : 2279 -
 N_SUBPROGRAM_BODY
 R_Node : 2279 -
 N_SUBPROGRAM_BODY
 Node_Field_1 : 0 - N_EMPTY
 Node_Field_2 : 0 - N_EMPTY
 Rel_Sloc :-10
 obtained from the tree test.adt

(Tree_Id = 1)
called in Asis.Iterator.Traverse_Element
with the argument :
A_PROCEDURE_BODY_DECLARATION
located in TEST (body, Unit_Id = 2,
Context_Id = 1)
text position : test.adb:1:1
 Nodes:
 Node : 2279 -
 N_SUBPROGRAM_BODY
 R_Node : 2279 -
 N_SUBPROGRAM_BODY
 Node_Field_1 : 0 - N_EMPTY
 Node_Field_2 : 0 - N_EMPTY
 Rel_Sloc :-10
 obtained from the tree test.adt
 (Tree_Id = 1)

Is there anything wrong with my test, or
am I facing an error in either the ASIS
implementation or AdaCtl here?

From: "J-P. Rosen" <ro...@adalog.fr>
Date: Fri, 12 Oct 2018 14:25:08 +0200
Subject: Re: ASIS exception with AdaCtl

v1.19r10
Newsgroups: comp.lang.ada

> […]

Excellent occasion to remind everybody
that there is a bug tracking system for
AdaControl at https://sourceforge.net/p/
adacontrol/tickets/

By all means, please report any issue you
may have!

As for this particular case, I'll have a look
at it. Please write to me directly if you
want a personalized answer, since you
anonymized your address.

(Hmmm... BTW GnatPRO 7.4.2 is quite
old, did you try with a more recent one?)

From: Markus Schöpflin
<no.spam@spam.spam>

Date: Fri, 12 Oct 2018 14:37:30 +0200
Subject: Re: ASIS exception with AdaCtl

v1.19r10
Newsgroups: comp.lang.ada

> [...]

> By all means, please report any issue
you may have!

Ada-related Products 219

Volume 39, Number 4, December 2018 Ada User Journal

I will, once I'm convinced that
AdaControl is at fault here. As I'm not
sure whether the ASIS library or
AdaControl is the culprit, I decided to ask
here first.

> As for this particular case, I'll have a
look at it. Please write to me directly if
you want a personalized answer, since
you anonymized your address.

Thanks. Will do.

> (Hmmm... BTW GnatPRO 7.4.2 is quite
old, did you try with a more recent
one?)

Not yet, will do, thanks for the hint.
(BTW, GNAT Pro 7.4.2 has been released
somewhen in summer 2016, that's only
two years ago. Not what I would consider
old, at least not for an Ada compiler.)

From: "J-P. Rosen" <ro...@adalog.fr>
Date: Fri, 12 Oct 2018 14:50:17 +0200
Subject: Re: ASIS exception with AdaCtl

v1.19r10
Newsgroups: comp.lang.ada

This is fixed now in the wavefront version
of AdaControl.

Simple reproducer, easy to fix... Thanks.

Strange, it seems that nobody ever used a
selected name with a 'BASE attribute
before...

From: Markus Schöpflin
<no.spam@spam.spam>

Date: Fri, 12 Oct 2018 15:25:10 +0200
Subject: Re: ASIS exception with AdaCtl

v1.19r10
Newsgroups: comp.lang.ada

> This is fixed now in the wavefront
version of AdaControl.

That was fast, thanks. So my other post
has become obsolete. Will the GIT
repository over at Sourceforge contain the
fix?

> Simple reproducer, easy to fix...
Thanks.

Just for the sake of completeness: I tried
with GNAT Pro 18.2 and got the same
error as with GNAT Pro 7.4.2.

[...]

From: "J-P. Rosen" <ro...@adalog.fr>
Date: Fri, 12 Oct 2018 15:35:22 +0200
Subject: Re: ASIS exception with AdaCtl

v1.19r10
Newsgroups: comp.lang.ada

> That was fast, thanks. So my other post
has become obsolete. Will the GIT
repository over at Sourceforge contain
the fix?

I don't update the Sourceforge very
frequently, especially because I like to be
able to cancel or rework my local GIT
tree, and you can't do that anymore once
you have pushed something.

Of course, supported users have beta
versions as soon as they ask for...

GNAT Modification_Time
Limitation

From: Lionel Draghi
<lionel...@gmail.com>

Date: Mon, 19 Nov 2018 14:56:29 -0800
Subject: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

I am coding a kind of make application,
that depends on file's time tag (thanks to
Ada.Directories.Modification_Time), and
on Ada.Calendar.Clock, both returning
Ada.Calendar.Time.

Unfortunately, I came across a GNAT
limitation in the Modification_Time
implementation on Linux : sub-second are
ignored, and Modification_Time returns

> Time_Of (Year, Month, Day, Hour,
Minute, Second, 0.0);

So, at the same time Clock returns 2018-
10-29 20:36:01.47 while Modification_
Time returns 2018-10-29 20:36:01.00.

This prevents me from knowing if a file is
modified before or after certain time, and
thus undermine my efforts.

My workaround was to impair also Clock
precision, with an ugly rounding:

> Time := Ada.Calendar.Clock;

> New_Time := Time_Of

> (Year => Year (Time),

> Month => Month (Time),

> Day => Day (Time),

> Seconds => Day_Duration
(Float'Floor (Float (Seconds (Time)))));

But that's not a correct solution either : I
have to order lots of file creation, and
having all files created during the same
second returning the same time tag also
prevent my algorithm from properly
working.

Any workaround to get a precise file time
tag?

Or to compare file's time tag with Clock?

From: Shark8 <onewing...@gmail.com>
Date: Mon, 19 Nov 2018 16:47:46 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

The problem with using the filesystem
timestamp is that its resolution is too
coarse compared to the processing-speed
of your CPU.

I would recommend either implementing
some sort of controlled cache, version-
control, or 'hacking' the timestamp so that
it's a really a build-number (eg Build 1 ->
01 Jan 1900, build 2 -> 02 Jan 1900, build
35 -> 04 Feb 1900, etc).

From: Keith Thompson <ks...@mib.org>
Date: Mon, 19 Nov 2018 17:33:04 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> [...]

It's odd that GNAT's Modification_Time
truncates the time to one-second
precision. A quick experiment on my
system (Ubuntu 18.04) also indicates that
it does so, even though the system stores
the timestamp in nanosecond precision.

On Linux 2.6 and later, the underlying
stat() system call gives you a "struct
timespec" value for the modification time,
as specified by the current POSIX
standard. (struct timespec represents times
with nanosecond precision.) A file system
isn't required to store times with that
precision, but many do.

If you're on a POSIX system, you should
be able to call the stat() system call and
probably get a more precise timestamp.

If you're on a non-POSIX system, there
might still be a system-specific way to get
a more precise timestamp. (NTFS also
seems to store timestamps with high
precision.)

(And remember that nanosecond precision
doesn't necessarily imply nanosecond
accuracy.)

From: Keith Thompson <ks...@mib.org>
Date: Mon, 19 Nov 2018 17:33:40 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> The problem with using the filesystem
timestamp is that its resolution is too
coarse compared to the processing-
speed of your CPU.

That depends on the filesystem. See my
other followup in this thread.

From: briot.e...@gmail.com
Date: Tue, 20 Nov 2018 00:08:52 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> I am coding a kind of make application,
that depends on file's time tag (thanks
to Ada.Directories.Modification_Time),
and on Ada.Calendar.Clock, both
returning Ada.Calendar.Time.

Interesting. I am in the middle of a
discussion with AdaCore about gprbuild,
which fails to recompile when using an
alternative body that happens to have the
same time stamp (to the second). gprbuild
sees that the modification time appears to
be the same, and thus doesn't recompile.

Two points:

 - AdaCore mentioned they made
progress recently on timestamp
precision and it would likely fix the
scenario. I think this is similar to what
you reported, so it is likely your issue
has been fixed now.

 - I am arguing with AdaCore that
checking timestamps is not enough
(might not even be useful at all), as
Shark8 mentioned. The scenario I have
is the following:

220 Ada-related Products

Volume 39, Number 4, December 2018 Ada User Journal

 Create a project with one scenario
variable. Depending on that variable,
chose src1 or src2 for source dirs. In
each of these directories, have a file
utils.adb with a different content.
"touch" these two files so that they have
the same timestamp. If you build your
application once with one value of the
variable, then rebuild with another
value, gprbuild does nothing the second
time.

I had a similar real case because git
created two files with the same
timestamp. And then it took me days to
understand why some of my tests
appeared to be linked with both versions
of utils.adb, since I could see in the log
file traces from both src1/utils.adb and
src2/utils.adb.

Very very confusing.

So I would indeed recommend that you
don't bother with timestamps, and only
look at file contents (or use
timestamp+file path at the very least, or
perhaps inodes).

I am interested in hearing more why you
want to code a new 'make-like'?

Now trying to persuade AdaCore that
gprbuild's behavior is incorrect...

From: Lionel Draghi
<lionel...@gmail.com>

Date: Tue, 20 Nov 2018 03:57:42 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

Thank you guys for your answers:

@Shark: see the description of my app
hereafter, I will try the simple way first :-)

@Keith and Emmanuel: the Time_Of call
I put in my message comes from the body
of Ada.Directories
(/opt/GNAT/2018/lib/gcc/x86_64-pc-
linux-gnu/7.3.1/adainclude/a-direct.adb)

…

Date := File_Time_Stamp (Name);
GM_Split (Date, Year, Month, Day, Hour,
Minute, Second);
return Time_Of (Year, Month, Day, Hour,
Minute, Second, 0.0);

…

and GM_Split (in System.OS_Lib
package) is calling

procedure To_GM_Time
 (P_Time_T : Address; P_Year : Address;
 P_Month : Address; P_Day : Address;
 P_Hours : Address; P_Mins : Address;
 P_Secs : Address);
 pragma Import (C, To_GM_Time,
"__gnat_to_gm_time");

P_Secs is pointing an Integer.

So the limitation seems to come from
GNAT C interface to OS lib.

@Keith: my App is (in this first version)
using strace, so thanks for the stat idea, I

should directly get the OS time stamp
from strace output.

@Emmanuel: my make is a POC to do a
make without makefile! :-) it runs
command and observes files accesses
(thanks to linux kernel ptrace interface),
and automatically understand what files it
depends on, and what files are output.

My first test case is to replace this
Makefile:

all: hello
hello.o: hello.c
 gcc -o hello.o -c hello.c
main.o: main.c hello.h
 gcc -o main.o -c main.c
hello: hello.o main.o
 gcc -o hello hello.o main.o

with just :
gcc -o hello.o -c hello.c
gcc -o main.o -c main.c
gcc -o hello hello.o main.o

and to get the same optimized behavior
when removing a .o file or touching one
of the source files.

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Tue, 20 Nov 2018 17:32:21 -0600
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

NTFS has three timestamps
(modification, creation, and last access).
Only the modification has high precision;
the others are only good to full seconds
(or something like that).

FAT file systems (as you might encounter
on a camera or USB stick) only have
precision to 2 seconds. (Which is why we
had to deal with this in the Janus/Ada
build tools fairly early on.)

Also note that the system clock on
Windows systems typically only changes
every 0.01 sec (Dmitry says this can be
changed, although I've never seen that
done). That extends to the file systems
and other OS timers as well.

Most Ada vendors use a
Ada.Calendar.Clock that blends the
system clock with the high performance
timer to get useful accuracy of
Ada.Calendar.Time.

(A customer/collaborator, Tom Moran,
originally wrote that code the Janus/Ada
implementation of Calendar to fix some
timing problem that he had. He eventually
submitted similar code to AdaCore who
added it to their Calendar as well.)

Moral: Doing "Make" on a modern
machine, especially if you want it to be
portable, is a tricky job.

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Tue, 20 Nov 2018 17:53:58 -0600
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> [...]

I wouldn't claim that the situation is that
dire; it seems to be related to the
particular implementation of a particular
GNAT feature (project scenario
variables). If you're not implementing
something where the source code location
can be changed for a particular build, then
timestamps will work (but you have to
remember that they are quite granular).

It also seems to be related in part of
source-based compilation (which
necessarily keeps less information
between builds). In a Janus/Ada project
(which is very different than a GNAT
project -- it's a binary DB-like file of
compilation information), changing the
location of a source file would invalidate
the entire entry and essentially delete any
existing compilations. More likely,
however, is that a scenario would be set
up using separate project files (most likely
using Windows batch files/Unix shell-
scripts to automate), so each would have
their own set of compilation states. And
it's completely impossible to bind
multiple versions of a unit into a single
executable; only one or the other could be
selected - and if somehow some files were
compiled against the wrong one, some or
all of the compilation timestamps
wouldn't match (which would cause
binding failure).

The moral here is how to implement a
Make-like tool depends a lot on what
capabilities it will have.

From: briot.e...@gmail.com
Date: Tue, 20 Nov 2018 23:31:11 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

The trick of course is to define what a
"build" is in your sentence.

If it is one execution of the builder
(gprbuild, make,...) then I think it is
indeed a reasonable assertion.

If however a build is defined to something
that amount to "in debug mode, in
production mode,..." then of course it
might happen that the sources are changed
and the timestamp have a timestamp delta
of less than 1s (when we generate code
for instance).

Furthermore, the actual scenario was the
following: in the automatic tests, I need to
simulate the connection to the database,
so that means I need to have support for
alternate bodies (but I still compile in
debug mode, or production mode,...). Is
that still the same "build" ?

I would guess it is, but in the end we
would end up with literally dozens of
"build" types, each with its own set of
object files, and each taking 20 or 30
minutes to build from scratch. Not
realistic for continuous testing.

Ada-related Products 221

Volume 39, Number 4, December 2018 Ada User Journal

I spent some time looking around at
general builder tools around. Most of
them seem to advertise nowadays that
they look at file contents, not timestamps.
I started from the list at
https://en.wikipedia.org/wiki/List_of_buil
d_automation_software, and looked at a
few of them.

> It also seems to be related in part of
source-based compilation (which
necessarily keeps less information
between builds). In a Janus/Ada project
(which is very different than a GNAT
project -- it's a binary DB-like file of
compilation information), changing the
location of a source file would
invalidate the entire entry and
essentially delete any existing
compilations. More likely, however, is
that a scenario would be set up using
separate project files (most likely using
Windows batch files/Unix shell-scripts
to automate), so each would have their
own set of compilation states.

That's more or less what gprbuild does in
practice. It uses a "distributed database"
via the .ALI files, which are found in the
object directories, so for best use each
"build" should have a different object
directories. And we are again hitting the
notion of "build".

> And it's completely impossible to bind
multiple versions of a unit into a single
executable; only one or the other could
be selected

That's indeed one of the ways gprbuild
could detect the error. To me it is a bug in
gprbuild that it allows linking different
files for the same unit into the same
executable.

> somehow some files were compiled
against the wrong one, some or all of
the compilation timestamps wouldn't
match (which would cause binding
failure).

timestamps are not reliable enough,
especially on modern fast machines. I am
pretty sure you will hit a similar issue I
had, one day.

From: briot.e...@gmail.com
Date: Tue, 20 Nov 2018 23:40:06 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> @Emmanuel : my make is a POC to do
a make without makefile! :-)

> it runs command and observes files
accesses (thanks to linux kernel ptrace
interface), and automatically
understand what files it depends on,
and what files are output.

There was an article earlier this week on
reddit about `redo`, which seems to have a
similar idea of top-down compilation: you
have a linker script that tells redo it needs
a.o, b.o and c.o (then redo recursively
processes those), and finally does the link.

In turn, for a.o you would tell redo it
needs a.ads, a.adb and b.ads, and then
compile,...

With your idea of using ptrace, that would
be an automatic way maybe to tell redo
about the dependency graph.

I am not sure redo would be really usable
on actual projects though. You have to list
the dependencies for the linker for
instance (I much prefer the gprbuild
approach of finding those automatically).

A similar limitation seems to exist in your
POC: how do I, as a novice user, know
what to compile in the first place? It
seems you would need a combination of
what gprbuild does, with ptrace:

 - compile (with ptrace) the main unit.

 - gprbuild then uses the ALI file to find
the dependencies, and check those
recursively.

 - in your case, you would instead look
at the ptrace output to find those
dependencies.

The ptrace approach would be much more
reliable (though linux-specific), since you
would know for instance:

 - that the compiler searched and did not
find foo,ads in /first/dir

 - found and opened /other/dir/foo.ads

so next time there is a build you can
check first whether 'foo.ads' now exists in
/first/dir. If that file now exists, you need
to rebuild.

gprbuild doesn't handle such changes on
the system, it only store what it found.

(this is all an interesting concept I learned
this week from `redo`)

Let us know the result of the experiment!

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Wed, 21 Nov 2018 09:23:05 +0100
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> Also note that the system clock on
Windows systems typically only
changes every 0.01 sec (Dmitry says
this can be changed, although I've never
seen that done).

The API call is timeBeginPeriod

https://docs.microsoft.com/en-us/
windows/desktop/api/timeapi/
nf-timeapi-timebeginperiod

The time resolution could be set down to
1ms (and never call timeEndPeriod as the
page suggests (:-))

> Moral: Doing "Make" on a modern
machine, especially if you want it to be
portable, is a tricky job.

Yes, especially because the OS on the
modern machine tends to deploy worst
possible time source available. I guess
that some MS-DOS code still does that
job on your i9 ...

From: briot.e...@gmail.com
Date: Wed, 21 Nov 2018 03:16:10 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

Slightly out of topic (sorry): I found tup
(http://gittup.org/tup/index.html) which
appears to be doing exactly what you
want to achieve. It monitors file accesses
but it uses a fuse filesystem for this, rather
than ptrace.

I had implemented a fuse filesystem in
Ada at some point, though I do not have
that code anymore. AdaCore was using
that to access a database that contains all
build+tests results on all possible
combinations, if I remember right.

From: Shark8 <onewing...@gmail.com>
Date: Wed, 21 Nov 2018 06:38:37 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

I read that as https://en.wikipedia.org/
wiki/List_of_build_abomination_software
and had to do a double take.

From: Simon Wright <si...@pushface.org>
Date: Wed, 21 Nov 2018 17:32:48 +0000
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> That's more or less what gprbuild does
in practice. It uses a "distributed
database" via the .ALI files, which are
found in the object directories, so for
best use each "build" should have a
different object directories. And we are
again hitting the notion of "build".

Ideally, each distinct set of scenario
variable values should have its own object
directory. Will take a lot of time for the
initial compilations, of course.

From: briot.e...@gmail.com
Date: Wed, 21 Nov 2018 09:43:56 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> Ideally, each distinct set of scenario
variable values should have its own
object directory. Will take a lot of time
for the initial compilations, of course.

That's actually more than that. We already
use the above (and indeed we have like 5
or 6 major scenarios, thankfully we do not
compile quite all the possible
combinations).

But in the context of tests, we use
extending projects to override some of the
sources (for instance so that we do not
have to actually have a database running).
The test project itself is an extending-all.

So if you have the simple case:

a.gpr imports b.gpr imports c.gpr imports
d.gpr

and need to substitute a body for a file
c.adb in C. you then extend that project,

222 Ada and Operat ing Systems

Volume 39, Number 4, December 2018 Ada User Journal

and make a2.gpr an extending-all project,
thus we now have:

a.gpr imports b.gpr imports c.gpr imports
d.gpr

 |

a2.gpr imports b.gpr imports c2.gpr
imports d.gpr

The scenario variables have not changed,
so b's objects will go in the 'obj-
production' directory as before, for
instance. But in fact, some of object files
now depend on that alternate body of
c.adb. If you had some inlined
subprograms in c.adb (using -gnatn), then
part of their code is in b.o.

In the common (and optimistic) case
where c.adb has a different timestamp
from before, b.o will be recompiled and
all is fine.

If c.adb has the same timestamp as the
original file (because, hey, git does what
it wants), gprbuild doesn't notice the
change in c.adb, so doesn't recompile b.o,
and when we link the executable we go
some case from the old c.adb (the inlined
code).

This is why just checking the timestamp
is not (cannot) be good enough.

Ideally, we should try and use a different
object directory here (though the scenario
is the same), but I don't know how to do
that (b.gpr hasn't changed, thanks to the
extend-all project).

And if you add to the original 5 scenario
variables another case where you can
potentially mock any number of project,
you end up with way too many
combinations of object directories, my
disk would not be big enough I think.

From: Lionel Draghi
<lionel...@gmail.com>

Date: Wed, 21 Nov 2018 11:02:35 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> [...]

> With your idea of using ptrace, that
would be an automatic way maybe to
tell redo about the dependency graph.

Exactly, the idea of the POC is see how
far we can go without any explicit
description of the dependency graph, or
whatever build recipes.

...

> A similar limitation seems to exist in
your POC: how do I, as a novice user, >
know what to compile in the first
place?

It's not in my scope: I don't target making
easier compilations (I don't pretend doing
a better job than gprbuild or so), just
running smartly a list of command.

I used a C compilation example as it's a
classical make example, but it could be
whatever suite of command:

 latex <file>.tex

 dvips <file>.dvi

 ps2pdf <file>.ps

 pdf2eps <pagenumber> <file>

And gprbuild, or even a complex make
could be one those command.

> The ptrace approach would be much
more reliable (though linux-specific),
since you would know

> for instance:

> - that the compiler searched and did
not find foo,ads in /first/dir

> - found and opened /other/dir/foo.ads

> so next time there is a build you can
check first whether 'foo.ads' now exists
in /first/dir. If that file now exists, you
need to rebuild.

Exactly my intent.

And to build the dependency graph, I
need to identify which file is an input file,
and which one is an output (a target).

To do so, I can either:

1. make a complex analysis of a detailed
strace log file on each file operation;

2. just ask strace the list of the involved
files, and classify those file thanks to
modification time : if file modification
time > execution time, then it's an
output.

The second option seems to be far less
complex, but I need enough precision in
time stamps to discriminate if a file is
older than the command run time or not.

Note also that I could store a hashtag for
each used file to check if the file is the
same without getting in all those time tag
problems (I am pretty sure most OSes
propose such services).

It would certainly be useful and reliable to
decide re-executing a command, but
wouldn't help to classify if the used file
was only read, or an output.

So, I didn't investigate in that direction.

From: Lionel Draghi
<lionel...@gmail.com>

Date: Wed, 21 Nov 2018 11:13:06 -0800
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> Slightly out of topic (sorry): I found tup
(http://gittup.org/tup/index.html) which
appears to be doing exactly what you
want to achieve. It monitors file
accesses but it uses a fuse filesystem
for this, rather than ptrace.

Very interesting information for me at
least :-), thank you.Not sure the goal is the
same.

I see on http://gittup.org/tup/
ex_a_first_tupfile.html a small example
of tupfile, and it give's both the input and
the target with the command:

: hello.c |> gcc hello.c -o hello |> hello

This is what I try to avoid! (not to
mention one more specific format)

From: Simon Wright <si...@pushface.org>
Date: Wed, 21 Nov 2018 19:48:39 +0000
Subject: Re: GNAT Modification_Time

limitation
Newsgroups: comp.lang.ada

> [...]

Can't you tell from strace which files were
opened for read and which for write?

I suppose there are some files that are
opened read/write; either, perhaps most
usually, in separate parts of the build, or
by being updated in one.

I have one project (tcladashell) which
runs a tcl script to generate a C source,
which is compiled, built, and run to
generate an Ada package spec. Which is
then used in the rest of the build.

Ada and Operating
Systems

PicoRV32

From: fabien....@gmail.com
Date: Tue, 11 Sep 2018 06:07:26 -0700
Subject: Ada on FPGAs with PicoRV32
Newsgroups: comp.lang.ada

New blog post on my experience with the
TinyFPGA BX board and the PicoRV32
RISC-V Verilog CPU:
https://blog.adacore.com/
ada-on-fpgas-with-picorv32

Msys2

From: Björn Lundin <b.f.l...@gmail.com>
Date: Wed, 19 Sep 2018 10:47:30 +0200
Subject: gnat via msys2 pacman + xml/ada
Newsgroups: comp.lang.ada

Is anyone using (recently) the win-64 bit
compiler found in msys2 for windows?

I found a post here some time ago with
instructions, but:

pacman -S mingw-w64-x86_64-gcc-ada

runs fine - installs the compiler

pacman -S mingw-w64-x86_64-gprbuild-
gpl

pacman -S mingw-w64-x86_64-aws

pacman -S mingw-w64-x86_64-asis

does not. They do not exist anymore.

I did find another gprbuild

mingw-w64-x86_64-gprbuild-bootstrap-
git

which works ok to install.

Looking for xml/ada - I came up short.

so downloading from web I get 4.6.1

Compiling it goes well, but linking - not
so much

Ada and Operat ing Systems 223

Volume 39, Number 4, December 2018 Ada User Journal

$ mingw32-make all install

gprbuild -j0 -m –p XLIBRARY_TYPE=
static -XBUILD=Production

-XPROCESSORS=0 xmlada.gpr

gprbuild -j0 -m -p -XLIBRARY_TYPE=
relocatable -XBUILD=Production

-XPROCESSORS=0 xmlada.gpr

Build Libraries

 [gprlib] xmlada_unicode.lexch

 [link library] libxmlada_unicode.dll

d:/apps/tools/mingw2/mingw64/bin/../lib/
gcc/x86_64-w64-mingw32/8.2.0/../../../
../x86_64-w64-mingw32/bin/ld.exe:

D:\apps\tools\MinGW2\xmlada_tmp\tags\
xmlada-4.6.1\unicode\obj\relocatable\
unicode-ccs-iso_8859_1.o:unicode-ccs-
iso_8859_1.adb:(.text+0x54):

undefined reference to
`system__img_uns__set_image_unsigned'

d:/apps/tools/mingw2/mingw64/bin/../lib/
gcc/x86_64-w64-mingw32/8.2.0/../../../
../x86_64-w64-mingw32/bin/ld.exe:

D:\apps\tools\MinGW2\xmlada_tmp\tags\
xmlada-4.6.1\unicode\obj\relocatable\
unicode-ccs-iso_8859_1.o:unicode-ccs-
iso_8859_1.adb:(.text+0xd8):

undefined reference to
`__gnat_raise_exception'

ca 200 more lines of unresolved symbols

d:/apps/tools/mingw2/mingw64/bin/../lib/
gcc/x86_64-w64-mingw32/8.2.0/../../../../
x86_64-w64-mingw32/bin/ld.exe:

D:\apps\tools\MinGW2\xmlada_tmp\tags\
xmlada-4.6.1\unicode\obj\relocatable\
unicode.o:unicode.adb:(.text+0x1c5):

undefined reference to
`__gnat_rcheck_CE_Range_Check'

collect2.exe: error: ld returned 1 exit
status

gprlib: d:\apps\tools\mingw2\mingw64\
bin\gcc execution error

gprbuild: could not build library for
project xmlada_unicode

mingw32-make: *** [Makefile:55:
relocatable] Error 4

I even tried to add

 for Switches ("Ada") use ("-L" &
"mingw64/bin", "-lgnat");

in share.gpr - but same result - lots of
unresolved symbols.

It looks like it cannot find the gnat
runtime libs.

Anyone seen this before? And have an
idea of how to proceed?

From: alby....@gmail.com
Date: Wed, 19 Sep 2018 02:56:53 -0700
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

The most recent version of xmlada can be
found at https://github.com/AdaCore/
xmlada (same for gprbuild)

I've found these to build/work on msys2,
and as you have already mentioned/
noticed, you need to bootstrap gprbuild
first, and have the xmlada sources
available.

The build instructions are self -
explanatory, and from memory you need
to specify the xmlada source directory
when building/installing gprbuild
(bootstrap)

After which you need to go back and
build xmlada with gprbuild

From: "Alejandro R. Mosteo"
<alej...@mosteo.com>

Date: Wed, 19 Sep 2018 12:39:44 +0200
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

I very recently (like a month ago) tried it
for the first time. It compiled a hello
world without issue.

I also got a bunch of unresolved symbols
at first but it was my fault because I had
profiling ("-p") enabled by mistake.

I didn't try anything serious though.

From: Björn Lundin <b.f.l...@gmail.com>
Date: Wed, 19 Sep 2018 15:06:52 +0200
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

> The most recent version of xmlada can
be found at
https://github.com/AdaCore/
xmlada (same for gprbuild)

Yes, I got the whole tree.

I get the same result for 4.6.1 as for 18.2 -
lots of unresolved symbols.

 > I've found these to build/work on
msys2, and as you have already
mentioned/noticed, you need to
bootstrap gprbuild first, and have the
xmlada sources available

Hmm, yes - do you have anything more
detailed?

I don't quite follow this boostrap thing.

Does gprbuild depend on xmlada?

looking in the branches/gprbuild-1.6
directory it is still xmlada

$./configure --help

`configure' configures XML/Ada 4.2w to
adapt to many kinds of systems.

> The build instructions are self
explanatory,

hmm, I have to disagree...

> and from memory you need to specify
the xmlada source directory when
building/installing gprbuild (bootstrap)

are you talking about the gprbuild in
https://github.com/AdaCore/xmlada?

> After which you need to go back and
build xmlada with gprbuild

It seems that I'm on the wrong rack. No
matter what I do I get unresolved
symbols.

The gprbuild from pacman is 18.0w.

The one from github is within the 18.2
tree but the gprbuild --version shows 18.1

Neither works now to build xmlada 18.2

sattmate@caleb MINGW64
/xmlada_tmp/branches/18.2

$./configure --prefix=/ada/xml/18.2

configure: loading site script
/mingw64/etc/config.site

checking build system type... x86_64-
w64-mingw32

checking host system type... x86_64-w64-
mingw32

checking target system type... x86_64-
w64-mingw32

checking whether gnat can build shared
libs... no

checking for a BSD-compatible install...
/usr/bin/install -c

checking whether ln -s works... no, using
cp -pR

configure: creating ./config.status

config.status: creating shared.gpr

config.status: creating Makefile

config.status: creating
tests/dom/default.gpr

ok good

sattmate@caleb MINGW64
/xmlada_tmp/branches/18.2

$ mingw32-make all install

gprbuild -j0 -m -p -
XLIBRARY_TYPE=static -
XBUILD=Production

-XPROCESSORS=0 xmlada.gpr

No valid configuration found

Generation of configuration files failed

GNAT-TEMP-000001.TMP:1:01:
"project" expected

gprbuild: processing of configuration
project

"C:\tmp\GNAT-TEMP-000001.TMP"
failed

mingw32-make: *** [Makefile:61: static]
Error 4

sattmate@caleb MINGW64
/xmlada_tmp/branches/18.2

$ gprbuild --version

GPRBUILD Pro 18.1 (19940713)
(x86_64-w64-mingw32)

From: Björn Lundin <b.f.l...@gmail.com>
Date: Wed, 19 Sep 2018 15:08:14 +0200
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

224 Ada and Operat ing Systems

Volume 39, Number 4, December 2018 Ada User Journal

Did you try compiling xmlada or AWS?

From: Simon Wright <si...@pushface.org>
Date: Wed, 19 Sep 2018 15:54:39 +0100
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

< [...]

etc - I've no idea how to go about fixing
this Windows/mingw problem, other than
to try to sidestep it by not trying to build
the shared (relocatable) library (try
configuring with --disable-shared).

You shouldn't need to rebuild gprbuild,
not sure why anyone's suggesting it.

From: Jere <jhb....@gmail.com>
Date: Wed, 19 Sep 2018 19:44:12 -0700
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

> You shouldn't need to rebuild gprbuild,
not sure why anyone's suggesting it.

In my past experience, there were no
versions of gprbuild already built for
64bit msys2. So I too tried to build it
myself with no luck. I ended up installing
a 32bit version which did not work at all
until I called gprconfig using the --
target=xxxxx option and had it create an
auto.cgpr file for me. I then renamed it to
default.cgpr and put it in the default share
location for gprbuild (got it from the
adacore manual) and then gprbuild would
work.

Nowadays I suppose you could install
gnat community to get the 64bit version
of gprbuild, install the FSF gnat as well,
then make sure both are in your path but
the FSF path is earlier. This picks up your
FSF gnat (since its path is before gnat
community's) but also gprbuild.

From: briot.e...@gmail.com
Date: Wed, 19 Sep 2018 23:49:49 -0700
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

> GNAT-TEMP-000001.TMP:1:01:
"project" expected

> gprbuild: processing of configuration
project

> "C:\tmp\GNAT-TEMP-000001.TMP"
failed

> mingw32-make: *** [Makefile:61:
static] Error 4

Does C:\tmp exist on your system? I think
on Windows you need to setup some
environment variable to point to a proper
tmp directory.

I haven't used Windows in years so I can't
be more helpful, sorry...

From: Björn Lundin <b.f.l...@gmail.com>
Date: Thu, 20 Sep 2018 09:35:13 +0200
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

> Does C:\tmp exist on your system? I
think on Windows you need to setup
some environment variable to point to a
proper tmp directory.

> I haven't used Windows in years so I
can't be more helpful, sorry...

Yes it does

> dir c:\tmp

 Volume in drive C has no label.

 Volume Serial Number is 1602-8731

 Directory of c:\tmp

2018-09-19 15:01 <DIR> .

2018-09-19 15:01 <DIR> ..

env vars:

sattmate@caleb MINGW64
/xmlada_tmp/branches/18.2

$ env | grep TMP

TMP=/tmp

TMPDIR=c:/tmp

ORIGINAL_TMP=/c/Users/sattmate/App
Data/Local/Temp/2

also /tmp exists

Hmm - I'll try Simon's suggestion now

From: Björn Lundin <b.f.l...@gmail.com>
Date: Thu, 20 Sep 2018 09:51:10 +0200
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

> [...]

Ok - I got a little bit further - I disabled
shared as you suggested.

However that got me the same result.

But - I did the ./configure from a
bash/mingw prompt.

It failed when make was executed in
bash/mingw.

But when I started an ordinary cmd.exe
prompt I get d:\apps\tools\MinGW2\
xmlada_tmp\branches\18.2

> mingw32-make all install

gprbuild -j0 -m -p -XLIBRARY_TYPE
=static -XBUILD=Production

-XPROCESSORS=0 xmlada.gpr

gprinstall --uninstall -XBUILD=
Production -XPROCESSORS=0

--prefix=/ada/xml/18.2 \

--project-subdir=lib/gnat xmlada

Uninstall project xmlada

gprinstall -f -p -XLIBRARY_TYPE
=static -XBUILD=Production -
XPROCESSORS=0 \

 --prefix=/ada/xml/18.2 --project-
subdir=lib/gnat \

 --build-var=XMLADA_BUILD --
build-name=static \

 --install-name=xmlada xmlada.gpr

Install project XmlAda_Schema - static

Install project XmlAda_Dom - static

Install project XmlAda_Sax - static

Install project XmlAda_Unicode - static

Install project XmlAda_Input - static

warning: path does not exist

'd:\apps\tools\mingw2\xmlada_tmp\branc
hes\18.2\input_sources\../docs/_build/htm
l/'

warning: path does not exist

'd:\apps\tools\mingw2\xmlada_tmp\branc
hes\18.2\input_sources\../docs/_build/late
x/'

d:\apps\tools\MinGW2\xmlada_tmp\branc
hes\18.2

> You shouldn't need to rebuild gprbuild,
not sure why anyone's suggesting it.

This is with gprbuild from pacman - the
18.0 one setting path to the 18.2 one
makes it worse.

So - it looks better - but still no libraries
installed.

I'll keep digging for a while.

From: Simon Wright <si...@pushface.org>
Date: Thu, 20 Sep 2018 10:17:58 +0100
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

I get that too: it "just" means that the
documentation isn't installed, probably
because I don't have the necessary tool
chain for building html from
$documentation_source_files.

You should have the static libraries and
the project GPR installed properly.

From: Björn Lundin <b.f.l...@gmail.com>
Date: Thu, 20 Sep 2018 11:27:11 +0200
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

Yes, I should.

But they are to be found nowhere.

I would expect them in /ada/xml/18.2 as
the prefix says - but no.

Nothing. So I created the missing
_build/html and _build/latex and put
XMLAda.pdf there. But no go. I got rid of
the warnings - but nothing created. And I
see that it compiles and creates the static
libs. But it does not install them.

So - I gave up (temporarily) I took all the
sources and put them into a directory and
pointed _my_ .gpr file to that directory. It
works - but is a crude cludge.

I am now on to install AWS too. I think
that will be easier - if I can convince
AWS that I do have XMLAda 'installed'...

From: Simon Wright <si...@pushface.org>
Date: Thu, 20 Sep 2018 11:06:43 +0100
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

> [...]

Ada and Operat ing Systems 225

Volume 39, Number 4, December 2018 Ada User Journal

> Yes, I should.

> But they are to be found nowhere.

I would expect the static libraries to be in

$prefix/lib/xmlada/xmlada_*.static/ and
the GPRs in $prefix/lib/gnat/

(my GPRs are in $prefix/share/gpr/, don't
know why the two possibilities exist or
why some GPRs end up in one or the
other!)

From: Björn Lundin <b.f.l...@gmail.com>
Date: Thu, 20 Sep 2018 12:51:20 +0200
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

> [...]

>> Yes, I should.

>> But they are to be found nowhere.

Or I should say they get build in the
source.

> I would expect the static libraries to be
in $prefix/lib/xmlada/xmlada_*.static/
and the GPRs in $prefix/lib/gnat/ (my
GPRs are in $prefix/share/gpr/, don't
know why the two possibilities exist or
why some GPRs end up in one or the
other!)

Yes. Strange things are happening here.

I now found them in

gprinstall -f -p -
XLIBRARY_TYPE=static -
XBUILD=Production -
XPROCESSORS=0 \

--prefix=/ada/xml/18.2 --project-
subdir=lib/gnat \

--build-var=XMLADA_BUILD --build-
name=static \

--install-name=xmlada xmlada.gpr

xmlada/18.2/static

But under a totally different root.

and it is the *.ali and lib*.a but no *.ads
and no *.gpr

hmm I need to revisit this later.

From: Simon Wright <si...@pushface.org>
Date: Thu, 20 Sep 2018 17:01:20 +0100
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

> and it is the *.ali and lib*.a but no *.ads
and no *.gpr

I'd expect the source files to be
somewhere under $prefix/include

From: Björn Lundin <b.f.l...@gmail.com>
Date: Fri, 21 Sep 2018 14:04:47 +0200
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

Yes - but there are no include
directories...

This - and the other strange things - made
me try it on a win10 box.

I did all the above on a win2016 box.

clean install of msys2.

grabbed xmlada (gpl-2018) and it
compiled ok (with --disable-shared)

grabbed aws (gpl-2018) and it did NOT
compile ok

got lots of warnings and some errors
which seems bad. See below.

But I _think_ they are in the templates-
parser, which we do not use.

commented out quite a bit and then

win32\build.cmd path/to/installation

worked.

copied the libs from win10 -> win2016.

Generated the system from scratch went
good started went well.

Now I'm in for some heavy testing.

aws-os_lib-tmplt.c:323:11: warning: asm
operand 1 probably doesn't match
constraints

 /*NOGEN*/
CND(SIN_FAMILY_OFFSET,
"sin_family offset in record");

 ^~~

aws-os_lib-tmplt.c:342:11: warning: asm
operand 1 probably doesn't match
constraints

 /*NOGEN*/
CND(AI_FLAGS_OFFSET, "???");

 ^~~

aws-os_lib-tmplt.c:343:11: warning: asm
operand 1 probably doesn't match
constraints

 /*NOGEN*/
CND(AI_FAMILY_OFFSET, "???");

 ^~~

aws-os_lib-tmplt.c:344:11: warning: asm
operand 1 probably doesn't match
constraints

 /*NOGEN*/
CND(AI_CANONNAME_OFFSET,
"???");

 ^~~

aws-os_lib-tmplt.c:345:11: warning: asm
operand 1 probably doesn't match
constraints /*NOGEN*/
CND(AI_ADDR_OFFSET, "???");

 ^~~

aws-os_lib-tmplt.c:323:11: error:
impossible constraint in 'asm'
/*NOGEN*/
CND(SIN_FAMILY_OFFSET,
"sin_family offset in record");

 ^~~

aws-os_lib-tmplt.c:342:11: error:
impossible constraint in 'asm'

 /*NOGEN*/
CND(AI_FLAGS_OFFSET, "???");

 ^~~

aws-os_lib-tmplt.c:343:11: error:
impossible constraint in 'asm'

 /*NOGEN*/
CND(AI_FAMILY_OFFSET, "???");

 ^~~

aws-os_lib-tmplt.c:344:11: error:
impossible constraint in 'asm'

 /*NOGEN*/
CND(AI_CANONNAME_OFFSET,
"???");

 ^~~

aws-os_lib-tmplt.c:345:11: error:
impossible constraint in 'asm'

 /*NOGEN*/ CND(AI_ADDR_OFFSET,
"???");

 ^~~

/usr/bin/sh: line 4: ../xoscons: No such file
or directory

mingw32-make[1]: *** [Makefile:90:

../.build/x86_64-w64-
mingw32/release/../setup/src/aws-
os_lib.ads] Error 127

mingw32-make: *** [Makefile:162:
config_setup] Error 2

From: Maxim Reznik <rezn...@gmail.com>
Date: Mon, 24 Sep 2018 03:46:21 -0700
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

I've used msys2 to build Matreshka
project on Windows 64 before GNAT
Community 2018 was released. At that
time msys2 GNAT was most capable
compiler to build it.

The only solution I found is to move
gnat*.dll, gnarl*.dll into adalib/ removing
corresponding gna*.dll.a libraries.

I used commands like that:

 adalib=$(dirname `gcc -print-libgcc-file-
name`)/adalib

 bin_dir=$(dirname `which gcc`)

 rm -f ${adalib}/libgna{t,rl}-6.dll.a

 cp ${bin_dir}/libgna{t,rl}-6.dll
${adalib}/

After that I was able to link shared
libraries.

From: Björn Lundin <b.f.l...@gmail.com>
Date: Mon, 24 Sep 2018 12:51:16 +0200
Subject: Re: gnat via msys2 pacman +

xml/ada
Newsgroups: comp.lang.ada

> […]

> The only solution I found is to move
gnat*.dll, gnarl*.dll into adalib/
removing corresponding gna*.dll.a
libraries.

Ok, thanks.

I got it to works with static linking, and
that is all I need for the moment.

But if I want dynamic linking, I'll keep
this in mind

226 Ada in Context

Volume 39, Number 4, December 2018 Ada User Journal

Undefined fentry Reference

From: Petter Fryklund
<petter....@atero.se>

Date: Thu, 18 Oct 2018 23:57:58 -0700
Subject: Undefined reference to __fentry__

on Windows 7.
Newsgroups: comp.lang.ada

I'm trying to make system call or spawn
using GNAT.OS_lib. Both results in
undefined reference to __fentry__. What
am I missing?

From: Shark8 <onewing...@gmail.com>
Date: Fri, 19 Oct 2018 10:53:26 -0700
Subject: Re: Undefined reference to

__fentry__ on Windows 7.
Newsgroups: comp.lang.ada

Check the linker options; it looks like the
entry isn't being picked up. (I think it's
something like -L[lib-name].)

From: Simon Wright <si...@pushface.org>
Date: Fri, 19 Oct 2018 19:34:53 +0100
Subject: Re: Undefined reference to

__fentry__ on Windows 7.
Newsgroups: comp.lang.ada

Googling __fentry__ finds

https://unix.stackexchange.com/questions/
259591/linux-kernel-missing-fentry-
symbol, don't know if that's any use

From: alby....@gmail.com
Date: Sat, 20 Oct 2018 18:44:42 -0700

Subject: Re: Undefined reference to
__fentry__ on Windows 7.

Newsgroups: comp.lang.ada

I am using msys2/mingw64 FSF 8.1 on
windows 10 and the below sample works
fine (i.e. I get the "cmd /?" output in my
debug window, note I am using my Visual
studio ada addin, called "Visual Ada")
Note However that the Success output
parameter comes back as false! Not sure
why. But it does seem to work.

--
with GNAT.os_lib;
--
procedure ConsoleApp1 is
 Args : GNAT.os_lib.argument_list(1..1)
:= (others => new string(1..2));
 Success : Boolean;
begin
 Args(1).all := "/?";

 GNAT.os_lib.spawn("cmd",
Args, Success);

end;

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Sun, 21 Oct 2018 09:50:34 +0200
Subject: Re: Undefined reference to

__fentry__ on Windows 7.
Newsgroups: comp.lang.ada

> I am using msys2/mingw64 FSF 8.1 on
windows 10 and the below sample
works fine (i.e. I get the "cmd /?"
output in my debug window, note I am
using my Visual studio ada addin,
called "Visual Ada") Note However

that the Success output parameter
comes back as false! Not sure why.

Because cmd /? sets ERRORLEVEL to 1,
which is then reflected in Success.

From: Petter Fryklund
<petter....@atero.se>

Date: Mon, 22 Oct 2018 02:58:09 -0700
Subject: Re: Undefined reference to

__fentry__ on Windows 7.
Newsgroups: comp.lang.ada

Profiling is not supported on 64 bit
windows, which was the problem.

Win32 and WinRT bindings

From: alby....@gmail.com
Date: Fri, 2 Nov 2018 20:17:02 -0700
Subject: Ann: Win32 and WinRT bindings

update
Newsgroups: comp.lang.ada

Dear Ada Community

The Win32 and WinRT bindings have
both been updated to the latest Microsoft
SDK version (10.0.17763). This version
corresponds to the 1809 release of
Windows 10.

Packages/Source can be found at

- https://github.com/Alex-Gamper/
Ada-Win32

- https://github.com/Alex-Gamper/
Ada-WinRT

Microsoft release notes:

https://docs.microsoft.com/en-au/
windows/uwp/whats-new/
windows-10-build-17763

From: Jere <jhb....@gmail.com>
Date: Sat, 3 Nov 2018 07:43:39 -0700
Subject: Re: Ann: Win32 and WinRT

bindings update
Newsgroups: comp.lang.ada

> [...]

Thanks for this!

Question: In your readme, you specify
that you need a 64bit windows build
environment, but then later on say if you
don't there are linux scripts in the
mingw64 directory. Does this mean that
you don't consider mingw64 to be a valid
64bit windows build environment? I run
GCC/GNAT 8.2 on mingw64 in x86_64
and thought that that should be sufficient?

From: alby....@gmail.com
Date: Sat, 3 Nov 2018 17:22:24 -0700
Subject: Re: Ann: Win32 and WinRT

bindings update
Newsgroups: comp.lang.ada

> [...]

> Question: In your readme, you specify
that you need a 64bit windows build
environment, but then later on say if
you don't there are linux scripts in the
mingw64 directory. Does this mean that
you don't consider mingw64 to be a
valid 64bit windows build
environment? I run GCC/GNAT 8.2 on

mingw64 in x86_64 and thought that
that should be sufficient?

I definitely consider Mingw64 a 64bit
build environment, and I have recently
started using it rather than building a
cross compiler on Linux (which is what
the build scripts do)

So yes mingw64 is sufficient and very
useable. Adacore community edition, now
that its 64Bit should also work (although I
must admit I have not as yet tested this.

Ada in Context

Concurrent Modification
Exception in Ada's Cursors

From: rakusu...@fastmail.jp
Date: Wed, 19 Sep 2018 06:12:31 -0700
Subject: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

Why Ada's Cursors does not provide the
ConcurrentModificationException, as
Java Collections do, or some variant of it?
Consider the following:

with
Ada.Containers.Indefinite_Ordered_Maps;
...
 The_Map : Map;
...
declare
 I : Cursor := First (The_Map);
 J : Cursor := First (The_Map);
begin
 -- Now Cursors are synchronized with
 -- each other and with a container.
 Delete (The_Map, I);
 -- It's O'k. But now J lost a sync and points
 -- to a dead Node.
 Next (J);
 -- What should I expected here,
 -- any well defined exception or
 -- raising a zombie?
end;

From: Jacob Sparre Andersen
<ja...@jacob-sparre.dk>

Date: Wed, 19 Sep 2018 17:22:51 +0200
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

> Why Ada's Cursors does not provide the
ConcurrentModificationException, as
Java Collections do,

Because that is something from Java. ;-)

> or some variant of it?

The Ada containers define the concept of
tampering. I can't remember which
exception you get in case you tamper with
a standard container, but you can be pretty
sure you will get one.

Did you try it?

Both with GCC 6.3.0 and with GNAT CE
2018 I get System.Assertions.
Assert_Failure, but that is definitely not
defined as a part of the tampering checks,

Ada in Context 227

Volume 39, Number 4, December 2018 Ada User Journal

so I suspect GNAT is wrong (but still
safe) here.

I've posted an executable example here:

https://bitbucket.org/sparre/
ada-2012-examples/src/default/src/
container_tampering.adb

(Randy, feel free to adapt it for ACATS,
if it shows something relevant)

From: Simon Wright <si...@pushface.org>
Date: Wed, 19 Sep 2018 16:53:28 +0100
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

What actually happens in this case
(GNAT CE 2018) is that the program
enters an endless loop looking at (what it
thinks is) a node with both left and right
pointers designating itself.

The ARM goes to a lot of trouble to
prevent "tampering with cursors", but
that's mainly to do with detecting altering
the structure of a container while iterating
over it, and the code you show isn't really
covered by that. So I'm not sure if it isn't
'just' erroneous [1].

It would be a good thing if the error was
detected. Perhaps submit a bug report to
AdaCore?

[1] http://www.adaic.org/resources/
add_content/docs/95style/html/sec_5/
5-9.html

From: Simon Wright <si...@pushface.org>
Date: Wed, 19 Sep 2018 17:05:02 +0100
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

> I've posted an executable example here:

>

> https://bitbucket.org/sparre/ada-2012-
examples/src/default/src/container_tam
pering.adb

On macOS this hangs. Also on Debian
stretch. No assertion failures.

From: Jacob Sparre Andersen
<ja...@jacob-sparre.dk>

Date: Wed, 19 Sep 2018 18:08:52 +0200
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

> On macOS this hangs. Also on debian
stretch. No assertion failures.

Even built with the project file? Strange.
I'm running Debian/Stretch (9.5) here.

From: Anh Vo <anhvo...@gmail.com>
Date: Wed, 19 Sep 2018 09:31:41 -0700
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

> On macOS this hangs. Also on debian
stretch. No assertion failures.

It also occurred on GNAT Community
2018 running on Windows 7 and Red Hat
Enterprise Linux Workstation release 7.5
(Maipo)

From: Simon Wright <si...@pushface.org>
Date: Wed, 19 Sep 2018 17:47:08 +0100
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

It hadn't even occurred to me that there
might be a project file! I don't use
bitbucket (in spite of having relatives
working at Atlassian) and confused it with
pastebin ...

OK, building with -gnata to enable
assertions does indeed produce assertion
failures:

 $./container_tampering

 ABC

SYSTEM.ASSERTIONS.ASSERT_FAIL
URE: Position cursor of Next is bad
SYSTEM.ASSERTIONS.ASSERT_FAIL
URE: Position cursor of Key is bad

But, if I'd been writing the Containers,
this would have been a Program_Error;
it's a disaster (and quite legal to reward
erroneous code with PE, too).

From: Anh Vo <anhvo...@gmail.com>
Date: Wed, 19 Sep 2018 10:23:17 -0700
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

Adding -gnata switch to compilation, the
SYSTEM.ASSERTIONS.ASSERT_FAIL
URE was raised on both Windows and
Red Hat.

This is compiler dependency. Should
pragma Assertion_Policy(check) be used
for consistency.

From: rakusu...@fastmail.jp
Date: Wed, 19 Sep 2018 10:37:17 -0700
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

On WinXP with GNAT GPL 2017
(20170515) (i686-pc-mingw32) I get the
indefinite loop without “-gnata” and with
this option — the same assertions as
others have, which produces by the Vet
procedure, which checks if a dead Node
referring to itself. I don't think that
necromancy is a good idea — the memory
for a dead Node is actually free and may
use for another Node object, so what
happens in that case?

From: Simon Wright <si...@pushface.org>
Date: Wed, 19 Sep 2018 19:05:56 +0100
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

> [...]

Nothing good.

And it might be in use for something
completely different, anyway!

From: rakusu...@fastmail.jp
Date: Wed, 19 Sep 2018 11:24:32 -0700
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

> It would be a good thing if the error was
detected. Perhaps submit a bug report
to AdaCore?

I am new in Ada, so don't know what is it
— a bug or a feature.

Honestly, I just try to implement a
standard containers in Ada by myself for
educational purposes. In process I looking
in GNU Classpath sources for an advice,
and notice, that they are used an int
counters (an int in Java have wrap-around
semantic) in both containers and iterators
for preventing working with invalid
iterators. They call this a “fail-fast
semantic”. So I decided to implement my
own containers in that way, for example:

private
 type State_Type is mod 2 ** Integer'Size;

 type Map is
 record
 State : State_Type := State_Type'First;
 Size : Natural := Natural'First;
 Root : Node_Access := new
 Node_Object (Variant => Empty);
 end record;

type Map_Access is access constant
Map;

 type Cursor is
 record
 Container : Map_Access := null;
 State : State_Type :=
 State_Type'First;
 Node : Node_Access := null;
 end record;

In operations with container I just
compare States in Container and Cursor
and throw a Concurent_Modification
exception if they are not equal. If any
operation deletes a Node, I just increment
States in Container and Cursor, if it used,
— it makes invalid any other Cursors. It
may be stupid, but works well for me.

After all I looked at the Ada.Containers
and notice, that its Cursors does not have
any kind of modification counters. So I
decided to ask here about it.

From: "Jeffrey R. Carter"
<spam.jrc...@spam.not.acm.org>

Date: Wed, 19 Sep 2018 22:16:15 +0200
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

>[...]

The ARM covers this case in ARM
A.18.4(76-80) [I am unable to access the
current ARM right now, so I'm quoting
from ISO/IEC 8652:2007, which should
be similar]:

"A Cursor value is invalid if ... The node
it designates has been deleted from the
map. The result of "=" or Has_Element is
unspecified if these functions are called
with an invalid cursor parameter.
Execution is erroneous if any other
subprogram declared in

228 Ada in Context

Volume 39, Number 4, December 2018 Ada User Journal

Containers.Hashed_Maps or
Containers.Ordered_Maps is called with
an invalid cursor parameter.

So J is invalid and Next (J) is erroneous.
ARM 1.1.5(10) defines erroneous
execution: "there is no language-specified
bound on the possible effect of erroneous
execution; the effect is in general not
predictable." In other words, this call can
do anything.

From: rakusu...@fastmail.jp
Date: Wed, 19 Sep 2018 13:56:58 -0700
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

> [...]

That isn't right, even if it defined in
reference manual. Depending on heap
usage, that
https://pastebin.com/H73KZ8Ti mess will
work for years and in one fine day may
fail for unknown reason.

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Fri, 21 Sep 2018 18:21:26 -0500
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

> [...]

Of course it's right. The intent is that a
cursor is directly implemented by a pair
of access objects, and that is the behavior
of a dangling pointer.

(That is, all real programs in Ada (and
C!!) have exactly this possibility - we've
lived with it for 40+ years. Doing
something different would have been too
radical in 1980, and it's way too late to do
that now - other than optionally).

We wanted it to be possible for the Ada
containers to be performance-competitive
with C++ containers, and expensive
cursor checks would make that
impossible. In particular, the only known
way to implement perfect dangling cursor
detection would be to make all cursors
controlled and keep links from them back
to their originating container. That would
be much slower (5-10 times) on every
cursor operation than the current
definition -- and such an implementation
would have been required had we not
made the operations erroneous.

(Note that the performance of the checks
we did require are considered too
expensive such that some of those will be
eliminated from Ada 2020's definition.)

That said, another goal was to allow (but
not require) dangling cursor detection --
an implementation *can* detect dangling
cursors if it wants.

There are definitely schemes available
that can detect 99% of such problems
(noting that some corner cases can't be
detected) without much extra overhead.
It's also possible that an implementation
could have a "checking" implementation

of the containers to make such checks as
well as a "fast" implementation that does
not.

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Fri, 21 Sep 2018 18:27:57 -0500
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

>In operations with container I just
compare States in Container and Cursor
and throw a Concurrent_Modification
exception if they are not equal. If any
operation deletes a Node, I just
increment States in Container and
Cursor, if it used, - it makes invalid any
other Cursors. It may be stupid, but
works well for me.

And it would be wrong: deleting a node
from the Map only invalidates cursors that
point at that node, not cursors that point at
other nodes in the Map.

Those can continue to be used (for
instance, if stored in another container)
until their nodes or the map as a whole are
deleted.

You would have to use such a counter in
each *node* for this to work. An
implementation on this line is the 99%
percent solution that I was suggesting, but
it could fail in various circumstances,
most likely when a container is destroyed
and a new one created in the same
location (as could happen with a
commonly called subprogram). It also
could fail if the counter wrapped around
(as it could if many nodes are created and
destroyed repeatedly).

From: rakusu...@fastmail.jp
Date: Fri, 21 Sep 2018 18:09:41 -0700
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

You missed the point, perhaps because I
choose obscure names for properties.
Sorry.

State_Type is a modification's counter
with a wrap-around semantic. It counts
modifications of an internal container's
structure and exists in all container's
instances (call them
Actual_Modifications) and in every
iterator's instance (call them
Known_Modifications). When an iterator
is created for an existing container, its
counter is initialized by value of that
container, so their values are equal. When
container is changed by any public
method, its modification counter is
incremented by one. If modification
process by public method involves an
iterator, the modification counter inside
the iterator also incremented by one.
Before any modification will doing,
values of counters for container and
iterator will be compared for equality, and
if The_Container.Actual_Modifications /=

The_Cursor.Known_Modifications then
raise Concurent_Modification.

Look at http://developer.classpath.org/
doc/java/util/TreeMap-source.html
“knownMod” and “modCount” private
ints.

> when a container is destroyed and a new
one created in the same location

It will be created with zero number of
modifications. If iterator will have zero
number of modifications too, nothing
wrong happens (just because container is
empty), otherwise exception will be
raised.

> It also could fail if the counter wrapped
around

Why? We just need to check if the value
of Known_Modifications in iterator is
equal to the value of
Actual_Modifications in container. It is
the reason why I called them both a State
— an unique number that reflects a
number of container's modifications. And
on a 32-bit machine we have a
4_294_967_296 modifications before a
wrap.

Of course, there is a possibility of check
failure exists, but it has very low
probability.

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Sat, 22 Sep 2018 10:05:22 +0200
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

This schema (sequence numbers) would
invalidate all cursors. Not a good idea at
all, in presence of many cursors. If there
is only one cursor then there is also no
problem. So the case looks quite marginal
to me.

If I wanted to cover it, provided I ever
used cursors, I would rather have the task
ID to identify the owner of the change.
This would be sort of re-entrant mutex
with the difference that it would raise
exception instead of blocking the
offender.

In short:

1. The whole idea of fine
interlocking/detection of concurrent
access at the granularity level of
individual container elements is wrong.
It will never work, IMO.

2. The idea of raising exceptions
concurrently at run-time to indicate
tasking design errors is even worse.

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Mon, 24 Sep 2018 16:47:47 -0500
Subject: Re: Ada.Containers and concurrent

modification exception.
Newsgroups: comp.lang.ada

> [...]

Ada in Context 229

Volume 39, Number 4, December 2018 Ada User Journal

No, I understood the point quite well. It
doesn't work. Consider the following Ada
pseudo-code [...]:

 M : Map;
 R1, R2 : Cursor;
 M.Insert (..., R1); -- Insert a record saving
 -- the cursor. Mod counter = 1.
 M.Insert (..., R2); -- Mod counter = 2.
 M.Delete (R1); -- Oops, cursor is invalid,
 -- container was modifed since it was
 -- created but this must work.
 ... Element (R2) ...; -- Oops, cursor is
 -- invalid, container was modified
 -- since it was created, but this must work.
 ... Element (R1) ...; -- Cursor is invalid, OK
 -- to have raise an error here.

The important point is that a cursor
remains valid until either the container as
a whole or the element it designated is
deleted. Thus, if you were to use some
sort of counter implementation, it has to
be per-node (that is, per-element).

In addition, some container operations
(especially with lists) allow moving nodes
from one container to another, so the
counter has to be global to all of the
containers of a particular type. This brings
tasking issues into it.

Unlikely Dmitry, I think this check can be
done usefully, *but* it can't be done in a
way which is 100% accurate. False
positives (that is, errors in correct cases)
cannot be tolerated, so it necessarily has
to be conservative.

>> when a container is destroyed and a
new one created in the same location It
will be created with zero number of
modifications. If iterator will have zero
number of modifications too, nothing
wrong happens (just because container
is empty), otherwise exception will be
raised.

As noted above, the counter has to be per-
element and global to all containers of a
given type (at least for some types of
containers). So resetting for each
container doesn't work.

>> It also could fail if the counter
wrapped around

>Why? We just need to check if the value
of Known_Modifications in iterator

>...

We're not talking about "iterators", we're
talking about cursors. Iterators have the
tampering check (an iterator being an
active structure that iterates, a for loop
being the basic example), which does
indeed work like this. (And that is
mandated.) Cursors are references, rather
similar to access values in Ada. They live
individually.

>...is equal to the value of
Actual_Modifications in container. It is
the reason why I called them both a
State - an unique number that reflects a
number of container's modifications.

>And on a 32-bit machine we have a
4_294_967_296 modifications before a
wrap.

Remember, this check has to be per-
element, as detailed above. Then consider
a long-lived program (like a web server,
which may run weeks or months) and a
data structure that might be modified
thousands of times per second. I agree
that this is not very likely, but a check
based on such a counter cannot detect all
possible errors -- 99.9999% perhaps, but
that is not an appropriate answer to a
requirement. (And it will be much less
effective if the memory is returned to the
system when nodes are deleted.)

>Of course, there is a possibility of check
failure exists, but it has very low
probability.

Too high in my view to consider it a
solution for cursor checks. Especially as
they cannot be effective once the memory
of the designated node is reclaimed. (For
the Janus/Ada implementation, we will
delay reclamation among other tricks to
maximize detection, but it's far from
perfect.)

Very Large Arrays

From: Shark8 <onewing...@gmail.com>
Date: Thu, 4 Oct 2018 14:38:17 -0700
Subject: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

I'm trying to implement a FITS library for
work -- see https://fits.gsfc.nasa.gov/
standard40/fits_standard40aa.pdf -- and
have come across some rather interesting
problems implementing it.

The main-problem right now is the
"Primary Data Array" which can have a
dimensionality in 1..999, each itself with
some non-zero range. (In the files these
are specified by keywords in the file like
NAXIS = n, NAXIS1 = n_1, NAXIS2 =
n_2, and so on until the NAXISn = n_n
keyword/value pair is encountered.)

Relatively straightforward, no? Well, I'd
thought I could handle everything with a
dimensionality-array and generic like:

 Type Axis_Count is range 0..999 with Size
 => 10;
 Type Axis_Dimensions is Array
 (Axis_Count range <>) of Positive
 with Default_Component_Value => 1;
...

Generic
 Type Element is (<>);
 Dim : Axis_Dimensions:= (1..999 => 1);
Package FITS.Data with Pure is

Type Data_Array is not null access
Array(1..Dim(1),1..Dim(2),
 1..Dim(3),1..Dim(4), 1..Dim(5),
 1..Dim(6),1..Dim(7),1..Dim(8),

 --...
 1..Dim(997),1..Dim(998),1..Dim(999))
 of Element

 with Convention => Fortran;
End FITS.Data;

But no dice.

GNAT won't even compile an array like
this [999 indexes]. What's the proper way
to go about doing this?

(As another interesting constraint, the file-
format mandates a sort of block-structure
of 2880 bytes [23040 bits], and while I
don't anticipate this being an issue,
something that might be relevant.)

From: Jacob Sparre Andersen
<ja...@jacob-sparre.dk>

Date: Fri, 05 Oct 2018 08:17:46 +0200
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

Ouch. :-(

Something like this will work, but it
doesn't look nice:

package Variable_Dimensionality is

 type Raw is array (Positive range <>,
 Positive range <>,
 Positive range <>) of Boolean;

 type Nice (Dim_1, Dim_2, Dim_3 :
 Positive) is
 record
 Data : Raw (1 .. Dim_1,
 1 .. Dim_2,
 1 .. Dim_3);
 end record;

end Variable_Dimensionality;

> (As another interesting constraint, the
file-format mandates a sort of block-
structure of 2880 bytes [23040 bits],
and while I don't anticipate this being
an issue, something that might be
relevant.)

Ada.Sequential_IO and Ada.Direct_IO
can both be instantiated with types of any
size, so you could simply use a 2880
character String, or a 2880 element
Storage_Element_Array (remember to
assert that Storage_Element'Size = 8).

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 5 Oct 2018 09:20:35 +0300
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> [...]

Give it some thought. Even if each
dimension would have the smallest
sensible length, which is two index
values, the total number of elements in
that array would be 2**999, somewhat
larger than the memories of current
computers.

> What's the proper way to go about
doing this?

If you really want to support up to 999
dimensions (though I doubt that any real
FITS file will be close to that number),

230 Ada in Context

Volume 39, Number 4, December 2018 Ada User Journal

your program has to manage the data in
blocks of some practical size.

> (As another interesting constraint, the
file-format mandates a sort of block-
structure of 2880 bytes [23040 bits],
and while I don't anticipate this being
an issue, something that might be
relevant.)

Perhaps that is the solution, not a new
problem.

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Fri, 5 Oct 2018 08:36:37 +0200
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> [...]

A wrong way dealing with protocols is
attempting to define an Ada type having
the exact representation of the data as
defined by the protocol.

It is both useless and difficult to
impossible, especially if bits are involved.

As a starting point consider representation
clauses non-existent and simply provide
operations to construct reasonably defined
Ada objects from raw protocol data and
conversely. Nobody would ever program
anything using 999-D arrays. Nobody
would ever instantiate n**1000 instances.

You could use a flat array internally and
provide operations for image
serialization/deserialization in whatever
format, e.g. by Get_Pixel/Set_Pixel.

The hardest problem would be controlling
bit representations. If they really mean
that. Modern hardware usually handles
octets atomically and simply does not
allow accessing individual bits. There is
basically no way to tell the bit order
programmatically or even define "order".

From: Shark8 <onewing...@gmail.com>
Date: Fri, 5 Oct 2018 09:47:56 -0700
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> [...]

> Give it some thought. Even if each
dimension would have the smallest
sensible length, which is two index
values, the total number of elements in
that array would be 2**999, somewhat
larger than the memories of current
computers.

No, the smallest sensible number of
indices is 1, for everything except maybe
the first two or three dimensions: eg
Image data from a camera, or perhaps
topological data from a map (longitude,
latitude, elevation).

FITS was developed for handling "image"
transport by the astronomy world, back
when there were 9-bit bytes and such.

From: Shark8 <onewing...@gmail.com>
Date: Fri, 5 Oct 2018 09:56:43 -0700
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> [...]

> A wrong way dealing with protocols is
attempting to define an Ada type
having the exact representation of the
data as defined by the protocol. It is
both useless and difficult to impossible,
especially if bits are involved.

Protocol?

FITS is a file-format. The only reason bits
are involved at all in the spec is because it
was developed back when some machines
had 9-bit bytes. It's all defined based on
2880 byte blocks at the very lowest level;
atop that there are headers (key-value
pairs) and data-arrays/-structure
(indicated by data within the header).

> As a starting point consider
representation clauses non-existent and
simply provide operations to construct
reasonably defined Ada objects from
raw protocol data and conversely.
Nobody would ever program anything
using 999-D arrays. Nobody would
ever instantiate n**1000 instances.

I still need a way to conform to the
standard, which means if the standard
says that it's possible to have a 999-
dimension array, I need to have some way
to represent this... even if it is never in
actuality used.

>

> You could use a flat array internally and
provide operations for image
serialization/deserialization in whatever
format, e.g. by Get_Pixel/Set_Pixel.

I tried this, it doesn't quite work though.
(Stack overflow, oddly enough.)

 Function Flatten(Item : Axis_Dimensions
) return Natural is
 (case Item'Length is
 when 0 => 1,
 when 1 => Item(Item'First),
 when 2 => Item(Item'First) *
 Item(Item'Last),
 when others =>
 Flatten(Item(Item'First..Item'Last/2))*
 Flatten(Item(Axis_Count'Succ(
 Item'Last/2)..Item'Last)));
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Fri, 5 Oct 2018 20:39:18 +0300
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> [...]

> No, the smallest sensible number of
indices is 1, for everything except
maybe the first two or three
dimensions: e.g. Image data from a
camera, or perhaps topological data
from a map (longitude, latitude,
elevation).

FITS images can have more dimensions
than that. Further dimensions might be the
frequency of the light (spectral imaging);
polarisation; time when image was taken;
and perhaps a couple more that don't
come to mind immediately.

I understand what you tried to do,
including having length-one dimensions,
but I don't think that it is a sensible
approach to handling up to 999
dimensions. I agree with the flattening
approach that Dimitry suggested.

If your FITS files are not much larger
than your RAM, the fastest approach is
probably to "mmap" the file into your
virtual address space and then compute
the address of any given image pixel with
the flattening method. If your FITS files
are larger than your RAM, your program
should process the file as a stream, which
may or may not be practical, depending
on what the program should output.

> FITS was developed for handling
"image" transport by the astronomy
world, back when there were 9-bit
bytes and such.

I know, I used to work in astronomy.
What's your point about 9-bit bytes? FITS
standard version 4.0 defines "byte" as 8
bits, and allows only 8, 16, 32 and 64-bit
pixels. No 9-bit pixels.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 5 Oct 2018 21:07:47 +0300
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

FITS version 4.0 defines everything with
8-bit bytes, as far as I could see with a
glance at the standard. Do you need to
process some older FITS files with a
different byte-size?

Yes, the FITS block size (2880 octets)
was chosen to be divisible by 9, and other
ancient word-sizes and byte-sizes, but so
what?

>> You could use a flat array internally
and provide operations for image
serialization/deserialization in whatever
format, e.g. by Get_Pixel/Set_Pixel.

> I tried this, it doesn't quite work though.
(Stack overflow, oddly enough.)

> […]

That Item'Last/2 does not seem right. If
you want the middle index, it should be
(Item'First + Item'Last) / 2. Perhaps this
error leads to an unending recursion,
explaining the stack overflow.

> Flatten(
Item(Axis_Count'Succ(Item'Last/2)..Item'
Last)));

But what is this function supposed to do?
Is it meant to compute the length (number
of elements) in the flattened array? That is
just the product of the Axis_Dimension
values, isn't it?

Ada in Context 231

Volume 39, Number 4, December 2018 Ada User Journal

 function Product (Item : Axis_Dimensions)
 return Natural
 is
 Result : Natural := 1;
 begin
 for I in Item'Range loop
 Result := Result * Item(I);
 end loop;
 return Result;
 end Product;

For computing the position (flattened
index) of an element in a flattened multi-
dimensional array, you need a function
that takes two arguments:

- a vector giving the length of each axis

- a vector giving the index (of the
element) for each axis.

Coding that function as a double recursion
gives no benefit IMO. A simple loop is
better, as in the function above.

Also remember that the FITS array is in
Fortran order, so the index of the first axis
varies most rapidly in the flattened
sequence of array elements. This can be
done by a "loop .. in reverse ...".

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Fri, 5 Oct 2018 21:06:14 +0200
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> I still need a way to conform to the
standard, that means if the standard
says that it's possible to have a 999-
dimension array, I need to have some
way to represent this... even if it is
never in actuality used.

No. You only need to support applications
reading/writing 999-D arrays in the
defined format. Nothing in the standard
orders any application to actually have
999-D arrays or any arrays at all.

This is why it is so important to
distinguish objects and their
representations as defined by the protocol
from the objects and their representations
in the application. The problems you face
arise from an attempt to equate them.

From: Shark8 <onewing...@gmail.com>
Date: Fri, 5 Oct 2018 12:49:07 -0700
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> FITS images can have more dimensions
than that. Further dimensions might be
the frequency of the light (spectral
imaging); polarisation; time when
image was taken; and perhaps a couple
more that don't come to mind
immediately.

Sure; but even those are a fairly small
dimensionality than what the standard
allows.

 > I understand what you tried to do,
including having length-one
dimensions, but I don't think that it is a

sensible approach to handling up to 999
dimensions. I agree with the flattening
approach that Dimitry suggested.

That would be rather unfortunate, to be
honest. I'd much rather rely on the
compiler translating the indexes than have
to do so manually. I trust the compiler
more than myself; plus letting it take care
of keeping track of the mapping (i.e.
FORTRAN convention) is nice.

My ultimate goal was to have some
FITS_OBJECT type that had the
appropriate data-members be able to
simply "write itself to a stream" to output
the proper FITS format file.

>

> If your FITS files are not much larger
than your RAM, the fastest approach is
probably to "mmap" the file into your
virtual address space and then compute
the address of any given image pixel
with the flattening method. If your
FITS files are larger than your RAM,
your program should process the file as
a stream, which may or may not be
practical, depending on what the
program should output.

Most of the anticipated usage for where I
am right now would be producing FITS
files, likely in something that would boil
down to a coupling like this:

 Count : Positive := 1;
 Today : Ada.Calendar.Time renames
 Ada.Calendar.Clock;
 New_Image: Camera_Image renames
 Normalize(Get_Camera_Image);
 New_Object : FITS.Object :=
 FITS.Create_w_Defaults(
 New_Image);
 --..
 -- Writes data out to "Observation
 -- (YYYY-MM-DD)_00X.FITS".

New_Object.Write(Base => "Observation",
 Date => Today, Count => X);

I'd rather not tie things to a memory -
mapped file at a high level, but it may be
that my ideal abstraction is non-tenable.

> > FITS was developed for handling
"image" transport by the astronomy
world, back when there were 9-bit
bytes and such.

>

> I know, I used to work in astronomy.
What's your point about 9-bit bytes?
FITS standard version 4.0 defines
"byte" as 8 bits, and allows only 8, 16,
32 and 64-bit pixels. No 9-bit pixels.

Sorry, that was more about Dmitry's
suggestion to pretend representation-
clauses don't exist; I haven't done
anything at a bit-level at all. (And I don't
think I need to, except perhaps to mark
the Primary-Data array elements as Big-
endian [IIRC].)

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Fri, 5 Oct 2018 22:31:25 +0200
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> [...]

> I'd rather not tie things to a memory-
mapped file at a high level, but it may
be that my ideal abstraction is non-
tenable.

You still can do this. The object can have
any representation, the stream attribute
will encode/decode it as required by
FITS:

 Object : FITS.Image :=
 Create
 (Base => "Observation",
 Date => Clock,
 Image => Get_Camera_Image
);
begin
 FITS.Image'Write (Stream, Object);

Or without any intermediate objects:

 FITS.Store
 (File => Stream,
 Base => "Observation",
 Date => Clock,
 Image => Get_Camera_Image
);

The problem with intermediate objects is
copying bulky data like images unless you
deploy some complex reference-counting
schema. Good bindings support provide
in-place I/O operations.

From: Jacob Sparre Andersen
<ja...@jacob-sparre.dk>

Date: Sat, 06 Oct 2018 08:40:22 +0200
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> […]

Why not leave the transport between disk
and RAM to the operating system, and
use memory mapping even if the file is
larger than the RAM of the system?

From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Sat, 6 Oct 2018 12:35:21 +0300
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> Why not leave the transport between
disk and RAM to the operating system,
and use memory mapping even if the
file is larger than the RAM of the
system?

One could use mmap even for very large
files, I guess, but on a 32-bit system the
virtual address space could run out. On a
64-bit system, probably not.

This was advice based on my feeling of
what would work best. If the file is
processed as a stream, the OS is likely to
use read-ahead to speed things up. If the

232 Ada in Context

Volume 39, Number 4, December 2018 Ada User Journal

file is mmap'ed to use the virtual-memory
paging system, I'm not sure if the OS will
do read-ahead, but perhaps modern OS's
have some such adaptive optimisations
even for mmap'ed files.

From: "Jeffrey R. Carter"
<spam.jrc...@spam.not.acm.org>

Date: Sat, 6 Oct 2018 18:04:55 +0200
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

>

> Most of the anticipated usage for where
I am right now would be producing
FITS files, likely in something that
would boil down to a coupling like this:

For that you can probably get by with
something that translates your image into
a sequence of FITS "blocks" and writes
them to a file:

FITS.Write (Image => Image, File_Name =>
"George");

There doesn't seem to be any reason to
store a FITS object.

From: Shark8 <onewing...@gmail.com>
Date: Sat, 6 Oct 2018 11:49:59 -0700
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> […]

> There doesn't seem to be any reason to
store a FITS object.

For our specific usage *RIGHT NOW*,
sure.

All that's *REALLY* required, for the
Telescope's production-side is writing out
those blocks, this is true... but doing it this
way would be kneecapping myself in the
sense of maintenance & usability. (Like
global-variables/states.)

[WRT software:] The Astronomy field is
pretty fragmented and ripe for solid,
reliable, libraries. Getting a good FITS
library is only one of several things I'd
like to produce:

(1) A good ISO 8601 library, to include
periods and intervals;

--(a) This would include a secondary
scheduling library.

(2) A stellar-coordinate library;

(3) A good abstraction for telescope-
control.

From: "Jeffrey R. Carter"
<spam.jrc...@spam.not.acm.org>

Date: Sat, 6 Oct 2018 23:40:52 +0200
Subject: Re: A little trouble with very large

arrays.
Newsgroups: comp.lang.ada

> All that's *REALLY* required, for the
Telescope's production-side is writing
out those blocks, this is true... but doing
it this way would be kneecapping
myself in the sense of maintenance &
usability. (Like global-variables/states.)

Of course you'd also implement

Image : FITS.Image_Handle := FITS.Read
("George");

But there still doesn't seem to be a reason
to store a FITS object.

Documentation usefulness

From: pat...@spellingbeewinnars.org
Date: Sun, 14 Oct 2018 17:42:03 -0700
Subject: Is the Documentation In a spec File

Usually Enough For You?
Newsgroups: comp.lang.ada

I was just reading through the list of
libraries included in C++ boost. We don't
have matches for all of this but the
libraries that ship with Ada have quite a
bit of coverage too and I was surprised
that we more or less match up.

The thing is, that the Ada libraries come
with almost no documentation/example
code at all.

Do you find that just reading through the
spec files is enough for you to understand
how to use the library in most cases? I
was thinking I would try more of them out
but I also wonder if I am about to go off
on a suicide mission.

From: Henrik Härkönen
<heha...@gmail.com>

Date: Sun, 14 Oct 2018 22:44:56 -0700
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

> [...]

My experience of Ada is still very limited,
but so far I'd like to say that I like the
separate spec files, and for small
"interfaces" the might be enough. But I'm
also a learn-by-example kind of person,
so an example always gives me much
more confidence when starting to use
some new library. I don't think that seeing
just the types and function signatures is
always enough to convey the "intent" of
that particular interface.

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Mon, 15 Oct 2018 09:22:13 +0200
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

> The thing is, that the Ada libraries come
with almost no documentation/example
code at all.

Some specific libraries in mind?

> Do you find that just reading through
the spec files is enough for you to
understand how to use the library in
most cases? I was thinking I would try
more of them out but I also wonder if I
am about to go off on a suicide mission.

Usually specifications is all you need.

Tricky stuff must be explained of course,
especially things which specifications do

not cover: exception contracts, behavior
under tasking, numeric complexity etc.

Frameworks is a different kind of thing,
they always require getting started,
examples etc., regardless the language.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 15 Oct 2018 10:42:19 +0300
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

> […]

If you mean the language-defined
libraries, such as the standard container
packages, those are of course documented
in the Ada Reference Manual, which can
be found at http://www.ada-auth.org/
arm.html.

The RM description is rather condensed
and the number of examples is small, but
I have found them sufficient.

For more tutorial documentation and
more examples one must turn to books or
other learning materials
(http://www.adaic.org/learn/materials/).

From: AdaMagica <christ-u...@t-
online.de>

Date: Mon, 15 Oct 2018 03:05:51 -0700
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

If you think of nonlanguage defined
libraries, I must say that what I've seen so
far is mostly very poorly documented.

It's rarely the case that the pure Ada text
in the package specs is enough to
understand how a library works and how
it is supposed to be used. At least a lot of
comments should be included.

In an ideal world, any libraries should be
documented in the same detail as all
language supplied ones in the RM.

This is almost never the case.

The biggest sin: If you want to use some
library and have to look into the bodies to
find out how it has to be used and what it
does.

From: pat...@spellingbeewinnars.org
Date: Mon, 15 Oct 2018 04:25:26 -0700
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

Thanks Guys

So I just printed all the headers for the
Ada.XXX packages and picked one at
random. Yes the reference manual
covered it that helps a lot.

I also printed all the Gnat.XXX headers
and here are a few just randomly picked:

Gnat.Heap.Sort_G

Gnat.Memory_dump

Gnat.Byte_Swapping

Ada in Context 233

Volume 39, Number 4, December 2018 Ada User Journal

I just picked Gnat.Byte_Swapping and I
tried to look for an example. I found the
GNAT reference manual that gives a short
description but I did not find an example
of it in use.

Can I assume that if Adacore included
this, it's good software? but can I also
assume that I will need to post to this list
and/or read through the spec and body to
understand how it works?

From: Markus Schöpflin
<no.spam@spam.spam>

Date: Mon, 15 Oct 2018 13:57:42 +0200
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

 [...]

> Can I assume that if Adacore included
this, it's good software? but can I also
assume that I will need to post to this
list and/or read through the spec and
body to understand how it works?

AdaCore includes extensive
documentation in the spec files. So you
just need to look at the spec files, e.g. for
Gnat.Byte_Swapping have a look at
g-bytswa.ads.

From: pat...@spellingbeewinnars.org
Date: Mon, 15 Oct 2018 06:02:27 -0700
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

Okay thanks :)

As long as I am SUPPOSED to know how
to use the library by using only the spec
file, I will give it a try.

Thanks to everyone again

From: "Jeffrey R. Carter"
<spam.jrc...@spam.not.acm.org>

Date: Mon, 15 Oct 2018 18:50:19 +0200
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

 > The thing is, that the Ada libraries
come with almost no
documentation/example code at all.

"The Ada libraries" covers a lot of
ground. If you're referring to the standard
library, as others have pointed out, it's
well documented in the ARM.

For other libraries, if they can't be used by
only reading the specs or by
documentation similar to that in Annex A,
then I question the competence of the
developer and the correctness of the
implementation.

(Now you can look at the pkgs at
github.com/jrcarter and question my
competence. If they can be clearer I'd like
to improve them.)

From: AdaMagica
 <christ-u...@t-online.de>

Date: Tue, 16 Oct 2018 02:57:37 -0700
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

> For other libraries, if they can't be used
by only reading the specs or by
documentation similar to that in Annex
A, then I question the competence of
the developer and the correctness of the
implementation.

How true!

> (Now you can look at the pkgs at
github.com/jrcarter and question my
competence.

> If they can be clearer I'd like to improve
them.)

OK. In function
Password_Generation.Generate, what are
Domain and Master for?

What does Hash_Symbol do?

What does "correctness of the
implementation" mean for this package?

From: "Jeffrey R. Carter"
<spam.jrc...@spam.not.acm.org>

Date: Tue, 16 Oct 2018 18:57:46 +0200
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

> OK. In function
Password_Generation.Generate, what
are Domain and Master for?

> What does Hash_Symbol do?

Good points. This was extracted from a
more monolithic, earlier version of
Password_Gen, where perhaps these
concepts were better explained, and I
didn't think to clarify them when I pulled
them out. I'll try to explain these better.

> What does "correctness of the
implementation" mean for this
package?

That the function returns the same
password for the same inputs, and the
passwords have all the desirable features
for generated passwords: they appear
random, contain characters from all the
major food groups, and give away nothing
about the master password.

From: AdaMagica <christ-u...@t-
online.de>

Date: Thu, 18 Oct 2018 02:06:32 -0700
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

> […]

> Good points. This was extracted from a
more monolithic, earlier version of
Password_Gen, where perhaps these
concepts were better explained, and I
didn't think to clarify them when I
pulled them out. I'll try to explain these
better.

Yes. Even inner specs that are not visible
for the user must follow these rules that
everything visible in the spec is exactly
described. Then nothing bad happens
when an internal package is extracted.

> > What does "correctness of the
implementation" mean for this
package?

> That the function returns the same
password for the same inputs, and the
passwords have all the desirable
features for generated passwords: they
appear random, contain characters from
all the major food groups, and give
away nothing about the master
password.

This is what I mean. There is no
requirement defined for this operation. So
how can I as a user know what I get? So
you have to put this in the spec as a
description. Then a user can make test to
check whether the claims are true.

From: Brad Moore <bmoor...@gmail.com>
Date: Thu, 18 Oct 2018 08:24:37 -0700
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

It should also be mentioned that with Ada
2012, the addition of contracts helps also
aid to reader of a spec understand what a
subprogram does, and how it was
intended to be used by the author.

A problem with documentation is that it
can become stale if not maintained,
whereas the contracts are assertions in the
code and thus tend to be more accurate.

A designer of a package should consider,
for example, what pre and post conditions
should be applied to the subprograms of
that package. The addition of contracts
tends to simplify the documentation that
is needed.

As an example, in the standard package
Ada.Locales, there is;

 type Country_Code is new String (1 .. 2)
 with Dynamic_Predicate =>
 (for all E of Country_Code =>
 E in 'A' .. 'Z');

 function Country return Country_Code;

If we didn't have the contract for
Dynamic_Predicate on the Country_Code
type, we would need to document that the
function Country returns a 2 character
string where all the characters of the
string consist of capital letters from A to
Z inclusive.

With the contract, this doesn't need to be
documented, and the contract is more
concise for the reader than having to read
a full paragraph of text. Further, anywhere
the Country_Code result is used in the
user's program, it is clear that the contract
holds, since it is a property of the type.

If the implementation changes in a way
that breaks the contracts, then this tends to
get caught, and either the implementation
is adjusted to meet the contracts, or the
contracts are adjusted to meet the
implementation. Generally one tries to
avoid making changes to contracts,

234 Ada in Context

Volume 39, Number 4, December 2018 Ada User Journal

particularly if there are existing users of
those contracts.

From: "Jeffrey R. Carter"
<spam.jrc...@spam.not.acm.org>

Date: Thu, 18 Oct 2018 19:29:14 +0200
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

> […]

I'm not sure I agree. This is package
Password_Generation, function Generate,
a service to generate passwords. I think
that is clear from the code and needs no
further explanation. The description
above is simply the definition of a good
generated password.

I don't think this spec should be a tutorial
on password generation. Someone
looking at it wants to generate passwords,
and should know why one generates
passwords and what the qualities of a
good generated password are.

From: AdaMagica
 <christ-u...@t-online.de>

Date: Thu, 18 Oct 2018 10:54:23 -0700
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

So just say WHAT it does, not HOW it
does.

If you do not say that your code produces
a good password, how can the user know
he will get a good password? He must
trust JC because he possibly knows him
personally or because he uses other well
defined and well written sw from him.

But I claim: In SW, there must be no such
trust. JC may just have been being lazy in
this case.

And I further claim there are tons of bad
SW around. Just because a unit's name
says XXX, there is no guarantee that it
indeed does XXX.

If I were looking for password generators,
I would not waste my time in trying some
that don't claim to produce good ones;
instead I'd pick one with such a claim and
test it thoroughly.

From: "Jeffrey R. Carter"
<spam.jrc...@spam.not.acm.org>

Date: Thu, 18 Oct 2018 22:07:16 +0200
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

> […]

> But I claim: In SW, there must be no
such trust. JC may just have been being
lazy in this case.

Right. So if I claim the function returns a
good password, you won't trust me and
won't accept my claim until you've tested
it. So there's no point in my making such
a claim.

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Thu, 18 Oct 2018 16:24:11 -0500
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

I'd also want some documentation as to
what the author considers a "good"
password, as the advice for that seems to
change every few years. I'd guess that this
package was based on some advice from a
few years ago, so it might not even be
"good" anymore. (That's certainly the case
with a lot of Ada libraries, which haven't
been modified for a long time as no one
has seen a need to do so.)

After all, "good" is not a technical term,
in any field that I'm aware of.

Certainly, you don't need to put this sort
of documentation on individual
subprograms; it belongs to the library as a
whole. But without it, you really can't
judge fitness.

From: "J-P. Rosen" <ro...@adalog.fr>
Date: Fri, 19 Oct 2018 09:39:31 +0200
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

> After all, "good" is not a technical term,
in any field that I'm aware of.

However, quoting A.4.9(12/2):

 "The Hash functions should be good
hash functions..."

Admittedly, it's only implementation
advice ;-)

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Fri, 19 Oct 2018 20:27:14 -0500
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

>> After all, "good" is not a technical
term, in any field that I'm aware of.

> However, quoting A.4.9(12/2):

> "The Hash functions should be good
hash functions..."

>

> Admittedly, it's only implementation
advice ;-)

Exactly. One of the most meaningless
statements in the RM. Note that this
statement goes on to give a description of
what it means: "...returning a wide spread
of values for different string values. It
should be unlikely for similar strings to
return the same value." That's the
important part; "good" really doesn't add
anything here.

From: AdaMagica <christ-u...@t-
online.de>

Date: Sun, 21 Oct 2018 08:20:07 -0700
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

> [...]

> Right. So if I claim the function returns
a good password, you won't trust me
and won't accept my claim until you've
tested it. So there's no point in my
making such a claim.

So if you used a library written by me,
would you take it as is without ever caring
whether it does what I claimed that it
does? How imprudent!

From: "Jeffrey R. Carter"
<spam.jrc...@spam.not.acm.org>

Date: Sun, 21 Oct 2018 20:56:39 +0200
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

It appears that you have significantly
misunderstood what I wrote.

From: AdaMagica <christ-u...@t-
online.de>

Date: Mon, 22 Oct 2018 09:04:51 -0700
Subject: Re: Is the Documentation In a spec
File Usually Enough For You?
Newsgroups: comp.lang.ada

OK, let's put it in a different way.

There is a library written by me called
XYZ, but I do not claim anything about
reliability etc. And there are many others
out there also doing XYZ. Which one
would you chose? I guess the one with the
optimal documentation, but definitely not
mine; and you will test it, wouldn't you?

From: "Jeffrey R. Carter"
<spam.jrc...@spam.not.acm.org>

Date: Mon, 22 Oct 2018 21:13:31 +0200
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

I'm not talking about me. I'm talking
about your statement that you don't trust
any S/W, and the logical consequences of
that towards claims made by authors
about their S/W. If an author makes a
claim, you won't trust it until you've
tested it, because you don't trust S/W. If
an author makes no claim, that shouldn't
change anything, because you have the
same trust in that S/W that you have in
S/W with a claim: none until you've tested
it. Yet you seem to say that between a
library that makes a claim of goodness
and another with no claim, you'd choose
the one with the claim, despite having
equal lack of trust in both.

From: AdaMagica <christ-u...@t-
online.de>

Date: Tue, 23 Oct 2018 03:00:57 -0700
Subject: Re: Is the Documentation In a spec

File Usually Enough For You?
Newsgroups: comp.lang.ada

We all are fond of Ada and trust the
compilers and like the portability of Ada's
code. Why? Because there is the ACATS
(the former ACVC) test suite. And
according to Randy, many compilers have
great difficulties to fulfil the last x% of
the ACATS.

So tests of SW are a kind of sine qua non.

Ada in Context 235

Volume 39, Number 4, December 2018 Ada User Journal

Interfacing to C and
COBOL

From: pat...@spellingbeewinnars.org
Date: Mon, 15 Oct 2018 06:42:37 -0700
Subject: Least Dangerous Way to Do This?
Newsgroups: comp.lang.ada

Okay, don't laugh(or laugh too hard)

I need to interface with automatically
generated C. function pointers are
represented as a pointer to a pointer to a
char. This is weird but done for pointer
arithmetic purposes.

I have this:

type pointer1 is access character ;
type pointer2 is access pointer1 ;
foo : pointer2 ;

What do you think is the best way to
assign an access to a subprogram to foo?

I realize this is really-really weird and
dangerous which is why I am asking for
help.

From: pat...@spellingbeewinnars.org
Date: Mon, 15 Oct 2018 07:20:07 -0700
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

sorry to reply to my own post.

Here is some C I am trying to redo in
Ada:

int init_obj(char **test_ptr){
 (*test_ptr) = (char *)&foo ;
}
or in a struct/record, this is obviously just
hacky code to try something out
typedef struct _obj
{
int intty ;
char **procedure_pointer ;
} obj ;
int foo(int nothing){
 printf("this is foo in C \n") ;
}
int init_obj(obj *obj_test){
 obj_test->intty = 4 ;
 obj_test->procedure_pointer = (char **)&foo
;
}

From: Jacob Sparre Andersen
<ja...@jacob-sparre.dk>

Date: Mon, 15 Oct 2018 16:51:28 +0200
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

> I need to interface with automatically
generated C.

Have you tried to see how a binding
generated by `gcc -fdump-ada-spec` (or
`g++ -fdump-ada-spec`) looks?

From: Simon Wright <si...@pushface.org>
Date: Mon, 15 Oct 2018 17:05:33 +0100
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

> [...]

But it's not really a char**, is it!

 procedure Pointers is
 type Procedure_P is access procedure
with Convention => C;

type Procedure_P_P is access
Procedure_P;

 P : Procedure_P_P;
 procedure Proc is null with Convention
 => C;
 begin
 P.all := Proc'Access;
 end Pointers;

You could try something involving
Proc'Address, though it's not obvious that
that's mandated to be the address of
something that you could call. Maybe
convention C does that.

From: pat...@spellingbeewinnars.org
Date: Mon, 15 Oct 2018 12:28:59 -0700
Subject: Re: Least Dangerous Way to Do

This ?
Newsgroups: comp.lang.ada

Thanks Jacob and Simon!

This is proving to be quite tricky. I have
the pointer stuff worked out but I have
memory access errors. I will figure this
out. If this works out, I will post to the
mailing list, I think you will find it
interesting or laughable :)

From: pat...@spellingbeewinnars.org
Date: Mon, 15 Oct 2018 12:36:08 -0700
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

Okay, I worked through the last piece.
You know what I am doing.....

I am thinking about using the Ada.XXX
and Gnat.XXX libraries from
GnuCOBOL!

Hee-hee, I know COBOL isn't going to
have a lot of fans here but it is actually a
lot of fun.

I will post back with some examples just
in case someone cares :)

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Mon, 15 Oct 2018 15:36:25 -0500
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

> [...]

It's not certain (in the real world, at least)
if a function pointer and an object pointer
have the same representation. We treat
them as completely different things in our
code generator, because some weird
machines (in particular the U2200) have
very large representations for function
pointers (one version was 8 36-bit
words!). Similarly, on the 16-bit 8086
compilers, function pointers carried a
segment (thus a 32-bit address), and
object pointers usually didn't (thus a 16-
bit address).

So if you want this code to work in
different environments, I'd try to avoid
mixing the two (as Simon suggested).

From: Shark8 <onewing...@gmail.com>
Date: Tue, 16 Oct 2018 09:07:56 -0700
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

> [...]

> I am thinking about using the Ada.XXX
and Gnat.XXX libraries from
GnuCOBOL!

Ada has a whole section in Annex B for
interfacing to COBOL -- "B.4 Interfacing
with COBOL" -- online here:
http://www.ada-auth.org/standards/
2xrm/html/RM-B-4.html

Exporting to COBOL will be as easy as
saying:

 Function J return Integer
 with Export, Convention => COBOL;

And Importing is similar:

 Function K return
 Interfaces.COBOL.Floating

 with Import, Convention => COBOL;

Actually given Ada's ease with interfacing
like this, and the SPARK provers, I'm
surprised that the banking industry hasn't
leveraged Ada into its infrastructure,
using Ada to prove the correctness of the
system and COBOL for the fast
reporting/record-processing as-needed.

>

> I will post back with some examples
just in case someone cares :)

I think that would be pretty cool.

From: pat...@spellingbeewinnars.org
Date: Tue, 16 Oct 2018 15:32:26 -0700
Subject: Re: Least Dangerous Way to Do

This ?
Newsgroups: comp.lang.ada

Thanks Randy

GnuCOBOL has 2 types, procedure-
pointer and pointer.

I would have to dig into the generated C
to tell you for sure how they differ but I
think I should be safe.

GnuCOBOL runs on pretty much
anything that has an OS from Raspberry
PIs to Z Series mainframes so I think that
this is a concern that has been addressed.

From: pat...@spellingbeewinnars.org
Date: Tue, 16 Oct 2018 17:09:47 -0700
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

I am actually pretty familiar with the
interface to COBOL package. I actually
don't trust it. I am thinking about trying to
improve it but in its current condition, it
could be a liability.

So Ada83 was pretty cool already but if
we had Ada68 or Ada78 they would have

236 Ada in Context

Volume 39, Number 4, December 2018 Ada User Journal

sucked large. COBOL68 and COBOL73
suck and the language is still haunted by
criticism from this time.

When I first started with
GnuCOBOL(called Open-Cobol at the
time) I thought it was awesome and that
the critics must all be insane and then I
saw code from 68 and 73 revisions. One
program (like a procedure) was almost
10000 lines long. All identifiers were
limited to 8 characters. There was not a
single comment in it. So yes old COBOL
is terrible. The thing is that the interfaces
cobol package appears to be for this old
code and not the current stuff.

In COBOL we have pointers, procedures
(called programs) and functions. The spec
file in the interfaces cobol package makes
all kinds of false statements.

GnuCOBOL generates intermediate C, so
I can inspect it and see what is happening.
At the moment I am better off with the
interfaces C package.

I have wondered the same thing. People
can write very reliable COBOL code but
there are some topics related to calling
other procedures (programs) that could be
a concern for the most critical portions,
this is where Ada would really shine in
banking, yet it doesn't.

Ada has much better facilities for
organizing huge amounts of code yet
COBOL likely has far larger code bases. I
think one bank has something like 130
million lines of COBOL, I could borrow
the library book I read this in, to get the
exact amount if you are interested but the
point is that organizing this much code in
COBOL is very hard.

I hope you don't mind a bit of a rant but I
think Ada has serious-serious advocacy
issues. Adacore has done a horrible job
and we could improve more as a
community too. Catering to existing
Adacore customers does not move the
language forward. Adacore did not move
to microcontrollers for the longest time
and it has staff that go around telling
people not to use Ada for webservers or
telephony systems when this would
actually be good things to do and so on.

People using Ada for fun like on AVRs
and on the Raspberry Pi are doing good
work. We really need to show people
what can be done with it and done with it
for fun.

Books are terrible. You can read hundreds
and hundreds of pages were all that is
being demonstrated is some language
feature you are never going to use and
text_io displaying something. I have 53lbs
of Ada books (and counting) and in all
this I think I have 2 or 3 pages that deal
with interfacing with real hardware and
there is next to no information about
interfacing with other languages. How
many new application these days are
going to be in pure Ada, it's crazy to cover

features from Ada2005 and Ada2012 and
not providing any examples of interfacing
with other languages. What are you
actually going to do with interfaces in a
new code base that has no contact with
other languages? Isn't it more important to
understand procedures, function and
packages and how to use Ada with other
languages?

Today is a special day for me. I realized
something super-awesome about Ada that
no one told me about and that I did not
read about and this really should not have
happened. It's so simple in hindsight but I
didn't realize that you could use Ada
packages with other languages without
"with"ing them into an Ada program. I
patched byteswap with pragma export and
called it from COBOL. I can now use an
Ada library directly from COBOL
without writing any Ada code. Fortran
and C people could do the same, with
some simple patching.

So I can't verify that any of this is true but
according to MicroFocus, a company with
a vested interest in COBOL (and that sued
a city here in Canada for having too many
copies of their software) the cost to
replace COBOL in the USA would be
over 1 trillion. They say that there is
hundreds of billions of lines of code in
use. Others have said that there is more
COBOL code than all other languages
combined. Again, I am not saying that all
of this is true, it could be fanboy
propaganda but certainly there is
mountains of it.

Please see this site (it is a lot of material
on one page and can be slow to load):

https://open-cobol.sourceforge.io/
faq/index.html

This will give a good overview of the
language. There is a small part that
touches on Ada. However look at this
code, it's almost all using C libraries.
GnuCOBOL has lots of facilities for
interfacing with C, especially matching
types but we still have to jump though
some hoops such as appending null bytes
and so on.

Ada and COBOL are much closer then
COBOL and C and Ada has tons of
facilities for working with other
languages, such as its type system and
strings.fixed to match COBOL's and so
on, they are just poorly documented.

I am planning on patching as many Ada
libraries as I can so that they can be used
from GnuCOBOL. There is so much
functionality that we don't have in our
community. Imagine if this ends up being
used by existing COBOL code bases...
Maybe even banks will see the value if I
can do this, I write up lots of
documentation and I can actually try to
promote these concepts.

If one company is entrusted to promote
Ada and all they want to do is service

existing customers, the language will die
out when there old customers finally
switch to C++/Java etc.

There is so much to promote and so much
value to be had but Ada instruction books
and Adacore are not going to get the word
out, we need to!

From: Petter Fryklund
<petter....@atero.se>

Date: Tue, 16 Oct 2018 22:16:17 -0700
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

> [...]

I don't think the U2200 is weird, it is or
was actually a very nice machine.
Unfortunately most of the Unisys
Linköping people where kicked out
before we could try Ada, but we were
very interested in it then. I for a while
maintained the local releases of COBOL
before going in to performance analysis
and cache-disk simulations.

Is there any U2200 out there?
comp.sys.unisys talks a lot about virtual
ones.

From: Shark8 <onewing...@gmail.com>
Date: Wed, 17 Oct 2018 13:49:35 -0700
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

> [...]

I'm rather looking forward to seeing your
improved COBOL interface.

(We might even be able to replace
Interfaces.COBOL, or perhaps add a new
child-package like
Interfaces.COBOL.ISO_1989_2014.)

>

> GnuCOBOL generates intermediate C,
so I can inspect it and see what is
happening. At the moment I am better
off with the interfaces C package.

Hm, are you going to use that as a bit of a
feedback-loop in your design of a [new]
COBOL interfacing package?

> [...]

> Ada has much better facilities for
organizing huge amounts of code yet
COBOL likely has far larger code
bases. I think one bank has something
like 130 million lines of COBOL, I
could borrow the library book I read
this in, to get the exact amount if you
are interested but the point is that
organizing this much code in COBOL
is very hard.

Indeed, and code-organization is one area
that Ada really shines [IMO].

> I hope you don't mind a bit of a rant but
I think Ada has serious-serious
advocacy issues. Adacore has done a
horrible job and we could improve
more as a community too. Catering to
existing Adacore customers does not

Ada in Context 237

Volume 39, Number 4, December 2018 Ada User Journal

move the language forward. Adacore
did not move to microcontrollers for the
longest time and it has staff that go
around telling people not to use Ada for
webservers or telephony systems when
this would actually be good things to do
and so on.

I'm not bothered by your rant -- it actually
mirrors a lot of the criticisms the Ada-
community as-a-whole has. While I'm
glad that AdaCore has interests in Ada,
and does some good work, there are some
big problems that "only one [viable,
opensource] implementation" entails
which isn't good for the language as-a-
whole.

[...]

> Please see this site(it is a lot of material
on one page and can be slow to load):

> https://open-cobol.sourceforge.io/
faq/index.html

Interesting, I'll take a look.

> I am planning on patching as many Ada
libraries as I can so that they can be
used from GnuCOBOL. There is so
much functionality that we don't have
in our community. Imagine if this ends
up being used by existing COBOL code
bases... Maybe even banks will see the
value if I can do this, I write up lots of
documentation and I can actually try to
promote these concepts.

>

I, for one, would love to see this.

There's a lot of value to be had here:
keeping your main-system organized,
proven (where possible), and ensuring
that your main reporting/processing isn't
being handed garbage is a big win.

> If one company is entrusted to promote
Ada and all they want to do is service
existing customers, the language will
die out when there old customers
finally switch to C++/Java etc.

Yep.

This is a big problem, in part because
existing customers develop workarounds
for flaws and issues that they never voice
(that's just how things are), whereas new
customers will have different needs and
ideas [and expectations] which often at
least shed some light on issues.

>

> There is so much to promote and so
much value to be had but Ada
instruction books and Adacore are not
going to get the word out, we need to!

I try.

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Wed, 17 Oct 2018 16:50:50 -0500
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

>I don't think the U2200 is weird, it is or
was actually a very nice machine.

Well, the actual machine code is very
weird; it was weird enough that they
provided our project with a guy whose
main job was to figure out what was
happening at the lowest level and feed it
back to the rest of us working in the
"normal" world.

>Unfortunately most of the Unisys
Linköping people where kicked out
before we could try Ada, but we were
very interested in it then. I for a while
maintained the local releases of
COBOL before going in to
performance analysis and cache-disk
simulations.

So far as I know, no one ever used the
Ada 95 compiler we built for Unisys.

(I hope not, 'cause we never got paid for
one. :-) It was a lot harder project than we
predicted and it didn't get done fast
enough for the prospective customers. A
very interesting project, though.

>Is there any U2200 out there?
comp.sys.unisys talks a lot about virtual
ones.

Dunno. I haven't heard from any of that
group in many years.

From: Petter Fryklund
<petter....@atero.se>

Date: Wed, 17 Oct 2018 22:24:11 -0700
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

> Well, the actual machine code is very
weird; it was weird enough that they
provided our project with a guy whose
main job was to figure out what was
happening at the lowest level and feed
it back to the rest of us working in the
"normal" world.

I regard(ed) 1100/2200 as the normal
world ;-), it is (was) everything else that is
weird. For instance, until much later I
didn't know about little-endian, still weird
to me. I was almost brought up with 1100,
since I got head-hunted together with 27
other people directly from University.

Traditional machine-code like early 1100
is very nice. I love traditional LMJ, Load
Modifier and Jump, which loaded the
return address in the modifier part of a X
(index) register and jumped to the
specified location. The called routine
could then return to an offset of the X
register where 0 was usually the normal
return and others different error returns.
The X register could also do automatic
increments and decrements when used.
The Modifier part was added to the other
part if a bit in the instruction was set. We
needed all 36 bits of the instructions for
different purposes including part-word
operations. The ability to have for
different banks directly visible (maybe
later there were more?) and possibility to
change any of them with just one or two

instructions was very neat. Those were
the days.

I agree that the new what-ever-it-was-
called, I bet new, was a bit ..., but not
weird ;-)

But 1991 I "had" to learn Ada, which I
have used most of the time since.

From: pat...@spellingbeewinnars.org
Date: Thu, 18 Oct 2018 06:52:24 -0700
Subject: Re: Least Dangerous Way to Do

This?
Newsgroups: comp.lang.ada

Thanks very much. I am going to start
another thread tonight about GnuCOBOL
and Ada. This thread has drifted quite a
bit.

Equality Operator

From: JLotty <jlotsp...@gmail.com>
Date: Sat, 10 Nov 2018 02:36:28 -0800
Subject: "Equality operator appears too

late"
Newsgroups: comp.lang.ada

with
Ada.Containers.Synchronized_Queue_Interfa
ces;
with
Ada.Containers.Unbounded_Priority_Queues
;
procedure Min_Working_Example is

 generic
 type Data_Type is private;
 type Weight_Type is (<>);
 with function "<" (Left, Right :
 Weight_Type) return Boolean is <>;
 package Min_Data_Structure is
 private
 type Data_Rec is record
 Data : Data_Type;
 Weight : Weight_Type;
 end record;

 function Get_Priority
 (Element : Data_Rec)
 return Weight_Type;

 function Before
 (Left, Right : Weight_Type)
 return Boolean;
 package Queue_Interface is new
Ada.Containers.Synchronized_Queue_Interfa
ces
 (Data_Rec);

 package Edge_Queue is new
Ada.Containers.Unbounded_Priority_Queues
 (Queue_Interfaces => Queue_Interface,
 Queue_Priority => Weight_Type,
 Get_Priority => Get_Priority,
 Before => Before);
 end Min_Data_Structure;

 package body Min_Data_Structure is
 function Get_Priority
 (Element : Data_Rec)
 return Weight_Type is
 (Element.Weight);

238 Ada in Context

Volume 39, Number 4, December 2018 Ada User Journal

 function Before
 (Left, Right : Weight_Type)
 return Boolean is
 (Left < Right);
 end Min_Data_Structure;
begin
 null;
end Min_Working_Example;

When compiling the above, I get the
following error:

Builder results

 min_working_example.adb

 27:7 equality operator appears too
late

 27:7 instantiation error at a-
cuprqu.ads:76

The error is occurring when the builder
tries to elaborate the Ada.Containers.
Unbounded_Priority_Queues package,
where and "=" operator is defined on line
76.

I'm running the following command for
build:

gprbuild -q -c -f -gnatc -u -Ptest.gpr
min_working_example.adb

using version:

GPRBUILD GPL 2017 (20170515)
(x86_64-pc-linux-gnu)

Copyright (C) 2004-2017, AdaCore

I don't know what to do from here. Any
help you can offer would be appreciated.

From: joak...@kth.se
Date: Sat, 10 Nov 2018 05:34:49 -0800
Subject: Re: "Equality operator appears too

late"
Newsgroups: comp.lang.ada

I've tried the code with GNAT
Community Edition 2018 and got the
same error message. My spontaneous
guess is that this is a compiler bug. The
work around would be to rewrite the code
not to instantiate the generic package
Ada.Containers.Unbounded_Priority_Que
ues inside a generic compilation unit. I
hope somebody else in this forum has a
better idea on what to do.

From: JLotty <jlotsp...@gmail.com>
Date: Sat, 10 Nov 2018 06:36:13 -0800
Subject: Re: "Equality operator appears too

late"
Newsgroups: comp.lang.ada

> [...]

I should have included that in my original
post. If I remove the generic components
and add in type definitions instead, it
compiles just fine.

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Sun, 11 Nov 2018 00:32:29 -0600
Subject: Re: "Equality operator appears too

late"
Newsgroups: comp.lang.ada

Use a different compiler? :-) There rarely
is a *good* solution when dealing with a
compiler bug.

>The error is occurring when the builder
tries to elaborate the Ada.Containers.
Unbounded_Priority_Queues package,
where and >"=" operator is defined on
line 76.

The language-defined specification of that
package doesn't contain any "=" operator,
so the existence of such a thing itself
might be the bug. Note that Ada 2012
adopted rules for overriding of "=" for
untagged record types similar to those for
tagged record types (that was to allow
composition to make sense), and thus
some "=" declarations that were legal in
previous Ada aren't legal anymore.
Perhaps a recent GNAT tightened up
these rules and caught some of their
library code.

From: Simon Wright <si...@pushface.org>
Date: Sun, 11 Nov 2018 20:05:17 +0000
Subject: Re: "Equality operator appears too

late"
Newsgroups: comp.lang.ada

> [...]

> The language-defined specification of
that package doesn't contain any "="
operator, so the existence of such a
thing itself might be the bug.

This is in the package Implementation.

The code compiles OK with GCC 6.1.0
but not with GCC >= 7 or GNAT >=
2016.

Aliased Unchecked_Unions

From: Lucretia
<lague...@googlemail.com>

Date: Mon, 12 Nov 2018 09:56:03 -0800
Subject: Aliased Unchecked_Unions not

seen or taken notice of
Newsgroups: comp.lang.ada

I'm trying to binding the MPC parser
library and have come upon an issue with
unchecked_unions and aliased.

The error in my minimal sample is:

test.adb:36:07: prefix of "access" attribute
must be aliased

Source:

procedure test is
 type Errors is null record with
 Convention => C;

 type Errors_Ptr is access Errors with
 Convention => C;

 type Values is null record with
 Convention => C;

 type Values_Ptr is access Values;

 type Results (Success : Boolean) is
 record

 case Success is
 when False =>
 Error : Errors_Ptr;

 when True =>
 Output : Values_Ptr;
 end case;
 end record with
 Convention => C_Pass_By_Copy,
 Unchecked_Union => True;

 type Results_Ptr is access all Results
with
 Convention => C;

 procedure B (R : in Results_Ptr) is
 begin
 null;
 end B;

 Result : aliased Results := (Success =>
False, others => <>);
begin
 B (Result'Access);
end test;

From: Lucretia
<lague...@googlemail.com>

Date: Mon, 12 Nov 2018 10:29:05 -0800
Subject: Re: Aliased Unchecked_Unions not

seen or taken notice of
Newsgroups: comp.lang.ada

> type Results (Success : Boolean) is

> record

> case Success is

> when False =>

> Error : Errors_Ptr;

>

> when True =>

> Output : Values_Ptr;

> end case;

> end record with

> Convention => C_Pass_By_Copy;

This compiles fine. So it seems
impossible to use unchecked_union and
access types together.

From: Per Sandberg

<per.s.s...@bahnhof.se>
Date: Mon, 12 Nov 2018 19:53:00 +0100
Subject: Re: Aliased Unchecked_Unions not

seen or taken notice of
Newsgroups: comp.lang.ada

You could always do.

 B (Result'Unrestricted_Access);

As a workaround

/P

From: Lucretia<lague...@googlemail.com>
Date: Mon, 12 Nov 2018 11:44:42 -0800
Subject: Re: Aliased Unchecked_Unions not

seen or taken notice of
Newsgroups: comp.lang.ada

Thanks, that works.

Ada in Context 239

Volume 39, Number 4, December 2018 Ada User Journal

From: "Dmitry A. Kazakov"
<mai...@dmitry-kazakov.de>

Date: Mon, 12 Nov 2018 21:13:51 +0100
Subject: Re: Aliased Unchecked_Unions not

seen or taken notice of
Newsgroups: comp.lang.ada

What about C_Pass_By_Copy? That
looks much inconsistent with access to
me.

BTW, why do you want to use unchecked
union? In comparable cases I rather
simply overload imported functions with
whatever arguments:

 procedure Foo (X : in out int);
 procedure Foo (X : in out unsigned);
 pragma Import (C, Foo);

Ada is so great that it can fix C faults...
(:-))

From: Lucretia
<lague...@googlemail.com>

Date: Mon, 12 Nov 2018 13:02:15 -0800
Subject: Re: Aliased Unchecked_Unions not

seen or taken notice of
Newsgroups: comp.lang.ada

> [...]

> What about C_Pass_By_Copy? That
looks much inconsistent with access to
me.

I did try removing that too.

> BTW, why do you want to use
unchecked union? In comparable cases
I rather simply overload imported
functions with whatever arguments:

Because it's not that simple.

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Mon, 12 Nov 2018 18:14:17 -0600
Subject: Re: Aliased Unchecked_Unions not

seen or taken notice of
Newsgroups: comp.lang.ada

Sure, but it's almost always simple
enough. We built Claw without using
Unchecked_Union at all (it didn't exist in
Ada 95), and there weren't many (if any)
cases where the result would have been
better had it existed.

Worse, Unchecked_Union is an easy way
to introduce erroneous execution into
one's program accidentally; at least using
Unchecked_Conversion or some similar
scheme makes that obvious. (Using the
"wrong" discriminant is erroneous, even
though that isn't checked or checkable.)

I'd keep the use of Unchecked_Union
very limited, mostly to just cases where
it is a component of some outer type. And
even that might be better handled with
Unchecked_Conversion (for reasons
noted above).

From: "Randy Brukardt"
<ra...@rrsoftware.com>

Date: Mon, 12 Nov 2018 18:17:01 -0600
Subject: Re: Aliased Unchecked_Unions not

seen or taken notice of
Newsgroups: comp.lang.ada

> [...]

> Thanks, that works.

BTW, I'd report a bug to AdaCore, too, as
there doesn't seem to be any reason for
what you wrote to not work. (If there was,
the error message should explain it, not
complain that something explicitly
declared as aliased isn't aliased -- so there
still is a bug to be fixed.)

240

Volume 39, Number 4, December 2018 Ada User Journal

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2019
January 03-05 19th IEEE International Symposium on High Assurance Systems Engineering (HASE'2019),

Hangzhou, China. Topics include: formal methods for high assurance systems engineering, domain
specific languages, system verification and validation, high assurance systems development, cyber-
physical systems, distributed systems, embedded, mobile, and real-time systems, safety, vulnerability,
and fault tolerance, reliability, robustness, and resilience, modeling and simulation, security and privacy,
autonomous systems and robotics, large-scale systems integration, space and communication systems,
etc.

January 08-11 31st Conference on Software Engineering Education and Training (CSEET'2019), Grand Wailea,
Maui, USA. Topics include: curriculum development; empirical studies; personal or institutional
experience; team development; software assurance, quality, and reliability education; methodological
aspects of software engineering education; global and distributed software development; open source in
education; cooperation between industry and academia; etc.

 January 13-19 46th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL'2019), Lisbon,
Portugal. Topics include: all aspects of programming languages and programming systems.

January 14-15 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM'2019). Topics include: semantics based program synthesis and program
optimisation; program and model manipulation techniques (such as partial evaluation,
slicing, symbolic execution, refactoring, ...); techniques that treat programs/models as
data objects (including metaprogramming, generative programming, embedded domain-
specific languages, model-driven program generation and transformation, ...); program
analysis techniques that are used to drive program/model manipulation (such as abstract
interpretation, termination checking, type systems, test case generation, ...); application
of the above techniques (including case studies of program manipulation in real-world
(industrial, open-source) projects and software development processes, descriptions of
robust tools capable of effectively handling realistic applications, benchmarking); etc.

January 15-18 11th Software Quality Days Conference (SWQD'2019), Vienna, Austria. Topics include:
improvement of software development methods and processes; testing and quality assurance of software
and software-intensive systems; domain specific quality issues such as embedded, medical, automotive
systems; novel trends in software quality; etc.

 February 02 Ada Developer Room at FOSDEM 2019, Brussels, Belgium. FOSDEM 2019 is a
two-day event (Sat 2 - Sun 3 Feb). This years' edition includes once more a full-day
Ada Developer Room, organized by Ada-Belgium in cooperation with Ada-Europe,
which will be held on Saturday 2 February.

February 06-08 13th International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS'2019), Leuven, Belgium. Topics include: variability management throughout the life cycle;
variability-driven runtime adaptation; testing, formal reasoning and automated analysis on variability
models; refactoring and evolution of variability intensive software systems; variability mining and
reverse engineering approaches; software economic aspects of variability; etc.

Conference Calendar 241

Volume 39, Number 4, December 2018 Ada User Journal

February 14-16 12th Innovations in Software Engineering Conference (ISEC'2019), Pune, India.

February 16-17 28th International Conference on Compiler Construction (CC'2019), Washington DC, USA. Co-
located with CGO'2019, HPCA'2019, and PPoPP'2019. Topics include: processing programs in the most
general sense (analyzing, transforming or executing input that describes how a system operates,
including traditional compiler construction as a special case); compilation and interpretation techniques;
run-time techniques, including memory management, virtual machines, ...; programming tools,
including refactoring editors, checkers, verifiers, compilers, debuggers, and profilers; techniques for
specific domains, such as secure, parallel, distributed, embedded, ... environments; design and
implementation of novel language constructs, programming models, and domain-specific languages.

 February 16-20 24th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP'2019), Washington DC, USA. Co-located with HPCA'2019 and CGO'2019. Topics include: all
aspects of parallel programming, including theoretical foundations, techniques, languages, compilers,
runtime systems, tools, and practical experience; such as compilers and runtime systems, concurrent
data structures, development, analysis, or management tools, formal analysis and verification, parallel
programming languages, programming tools for parallel systems, software engineering for parallel
programs, synchronization and concurrency control, etc.

February 24-27 26th IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER'2019), Hangzhou, China. Topics include: software analysis, parsing, and fact extraction;
software reverse engineering and reengineering; program comprehension; software evolution analysis;
software architecture recovery and reverse architecting; program transformation and refactoring; mining
software repositories and software analytics; software maintenance and evolution; education related to
all of the above topics; etc.

Feb 27 - March 02 50th ACM Technical Symposium on Computer Science Education (SIGCSE'2019), Minneapolis,
Minnesota, USA.

March 18-21 25th International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2019), Utrecht, the Netherlands.

March 25-28 14th European Conference on Computer Systems (EuroSys'2019), Dresden, Germany. Topics
include: all areas of computer systems research; such as distributed systems; language support and
runtime systems; systems security and privacy; dependable systems; parallelism, concurrency, and
multicore systems; real-time, embedded, and cyber-physical systems; tracing, analysis, verification, and
transformation of systems; etc. Event includes: 12th European Workshop on Systems Security (EuroSec
2019), 13th EuroSys Doctoral Workshop (EuroDW 2019), 9th Workshop on Systems for Multi-core and
Heterogeneous Architectures (SFMA 2019), 2nd International Workshop on Edge Systems, Analytics
and Networking (EdgeSys 2019), 6th Workshop on Principles and Practice of Consistency for
Distributed Data (PaPoC 2019). Deadline for submissions: January 3, 2019 (EuroSec 2019), January 7,
2019 (EuroDW 2019), January 17, 2019 (SFMA 2019), January 20, 2019 (EdgeSys 2019), January 23,
2019 (posters), January 24, 2019 (PaPoC 2019).

March 25-29 IEEE International Conference on Software Architecture (ICSA'2019), Hamburg, Germany. Topics
include: model driven engineering for continuous architecting; component based software engineering
and architecture design; re-factoring and evolving architecture design decisions and solutions;
architecture frameworks and architecture description languages; preserving architecture quality
throughout the system lifetime; software architecture for legacy systems and systems integration;
architecting families of products; software architects roles and responsibilities; training, education, and
certification of software architects; industrial experiments and case studies; etc. Deadline for
submissions: January 17, 2019 (workshop papers), January 25, 2019 (tutorials). Deadline for early
registration: February 28, 2019.

March 25-29 Design, Automation and Test in Europe Conference (DATE'2019), Firenze Fiera, Fortezza da Basso,
Florence, Italy. Event includes: tracks on design methods & tools, application design, test and
dependability, embedded and cyber-physical systems.

 April 01-04 International Conference on the Art, Science, and Engineering of Programming
(Programming'2019), Genova, Italy. Topics include: programming practice and experience; general-
purpose programming; distributed systems programming; parallel and multi-core programming; security
programming; interpreters, virtual machines and compilers; modularity and separation of concerns;

242 Conference Calendar

Volume 39, Number 4, December 2018 Ada User Journal

 model-based development; testing and debugging; program verification; programming education;
programming environments; etc.

April 06-11 22nd European Joint Conferences on Theory and Practice of Software (ETAPS'2019), Prague,
Czech Republic. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the
Construction and Analysis of Systems).

 April 06-07 VerifyThis Verification Competition 2019. Topics include: no restrictions on
programming language and verification technology used. Deadline for submissions:
January 28, 2019 (ideas for verification challenges and problems).

April 07-11 10th ACM/SPEC International Conference on Performance Engineering (ICPE'2019), Mumbai,
India. Deadline for submissions: January 11, 2019 (work-in-progress/vision papers), January 14, 2019
(posters/demos, tutorials).

April 08-12 34th ACM Symposium on Applied Computing (SAC'2019), Limassol, Cyprus.

 April 08-12 Track on Programming Languages (PL'2019). Topics include: technical ideas and
experiences relating to implementation and application of programming languages, such
as compiling techniques, domain-specific languages, garbage collection, language
design and implementation, languages for modeling, model-driven development, new
programming language ideas and concepts, practical experiences with programming
languages, program analysis and verification, etc.

April 08-12 Track on Software Verification and Testing (SVT'2019). Topics include: new results
in formal verification and testing, technologies to improve the usability of formal
methods in software engineering, applications of mechanical verification to large scale
software, model checking, correct by construction development, model-based testing,
software testing, static and dynamic analysis, analysis methods for dependable systems,
software certification and proof carrying code, fault diagnosis and debugging,
verification and validation of large scale software systems, real world applications and
case studies applying software testing and verification, etc.

April 08-12 14th Track on Dependable, Adaptive, and Trustworthy Distributed Systems
(DADS'2019). Topics include: Dependable, Adaptive, and trustworthy Distributed
Systems (DADS); modeling, design, and engineering of DADS; foundations and formal
methods for DADS; etc.

April 08-12 Track on Next Generation Programming Paradigms and Systems (NGPS'2019).
Topics include: runtime verification and monitoring; secure and dependable software;
formal models and verification; design, implementation and optimization of high-level
programming languages; middleware platforms; scenarios, case studies and experience
reports on innovative applications; high-level parallel programming; distributed systems
and concurrency; development tools; security, trust and privacy management; etc.

April 08-12 Embedded Systems Track (EMBS'2019). Topics include: verification, validation,
testing, debugging, and performance analysis of embedded systems; cyber physical
systems; multicore, SoC-based, and heterogeneous embedded systems and applications;
multithreading in embedded systems design and development; compilation strategies,
code transformation and parallelization for embedded systems; reliability in embedded
computing and systems; security within embedded systems and embedded systems for
security; safety-critical embedded systems; case studies; etc.

April 15-17 23rd International Conference on Evaluation and Assessment in Software Engineering
(EASE'2019), Copenhagen, Denmark. Topics include: evidence-based software engineering and its
implications for software practice. Deadline for submissions: January 10, 2019 (research papers),
January 18, 2019 (doctoral symposium plans), January 20, 2019 (emerging results and vision track
abstracts), January 27, 2019 (emerging results and vision track papers, short papers and artefacts track
abstracts, industry track experience report extended abstracts, industry track empirical studies abstracts),
February 3, 2019 (short papers and artefacts track papers, industry track empirical studies papers),
February 11, 2019 (industry track talk proposals, industry track panel proposals), February 28, 2019
(posters).

Conference Calendar 243

Volume 39, Number 4, December 2018 Ada User Journal

April 15-18 12th Cyber-Physical Systems Week (CPS Week'2019), Montreal, Canada.

 April 16-18 25th IEEE Real-Time and Embedded Systems and Applications Symposium
(RTAS'2019). Topics include: research related to embedded systems or timing issues
ranging from traditional hard real-time systems to embedded systems without explicit
timing requirements, including latency-sensitive systems with informal or soft real-time
requirements; original systems and applications, case studies, methodologies, and
applied algorithms that contribute to the state of practice in the design, implementation,
verification, and validation of embedded systems and time-sensitive systems (of any
size); etc.

April 16-18 10th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS'2019). Topics include: development of technologies, tools, and architectures for
building CPS systems; design, implementation, and investigation of CPS applications;
etc.

April 22-26 22nd Ibero-American Conference on Software Engineering (CIbSE'2019), La Habana & Varadero,
Cuba. Event includes Software Engineering Track (SET) and Experimental Software Engineering Track
(ESELAW). Deadline for submissions: February 4, 2019 (doctoral symposium).

April 22-27 12th IEEE International Conference on Software Testing, Verification and Validation (ICST'2019),
Xi'an, China. Topics include: formal verification, model based testing, model checking, manual testing
practices and techniques, security testing, software reliability, test automation, testability and design,
testing and development processes, testing in specific domains (such as embedded, concurrent,
distributed, ..., and real-time systems), testing/debugging tools, empirical studies, experience reports,
etc. Deadline for submissions: February 8, 2019 (PhD Symposium).

May 01-03 8th International Conference on Fundamentals of Software Engineering (FSEN'2019), Tehran, Iran.
Topics include: all aspects of formal methods, especially those related to advancing the application of
formal methods in the software industry and promoting their integration with practical engineering
techniques; software specification, validation, and verification; software architectures and their
description languages; integration of formal and informal methods; component-based software systems;
model checking and theorem proving; software verification; CASE tools and tool integration; industrial
Applications; etc.

 May 07-09 22nd IEEE International Symposium On Real-Time Distributed Computing (ISORC'2019),
Valencia, Spain. Topics include: object/component/service-oriented real-time distributed computing
(ORC) technology, programming and system engineering (real-time programming challenges, ORC
paradigms, languages, ...), trusted and dependable systems, system software (real-time kernel/OS,
middleware support for ORC, extensibility, synchronization, scheduling, fault tolerance, security, ...),
applications (medical devices, intelligent transportation systems, industrial automation systems, Internet
of Things and Smart Grids, embedded systems in automotive, avionics, consumer electronics, ...),
system evaluation (performance analysis, monitoring & timing, dependability, fault detection and
recovery time, ...), cyber-physical systems, etc. Deadline for submissions: January 15, 2019 (main
track), March 7, 2019 (posters, demos).

May 07-09 11th NASA Formal Methods Symposium (NFM'2019), Houston, Texas, USA. Topics include:
identify challenges and provide solutions for achieving assurance for critical systems; formal
verification, including theorem proving, model checking, and static analysis; use of formal methods in
software and system testing; run-time verification techniques and algorithms for scaling formal
methods, such as abstraction and symbolic methods, compositional techniques, as well as parallel and/or
distributed techniques; safety cases and system safety; formal approaches to fault tolerance; formal
methods in systems engineering and model-based development; etc.

May 20-23 32nd International Conference on Architecture of Computing Systems (ARCS'2019), Copenhagen,
Denmark. Focus: "architectures for complex real-time systems". Topics include: autonomous control
systems, as well as safety and security critical systems; upcoming architectures and technologies,
exploitable architectural features, languages, and tooling; architectures for real-time and mixed-
criticality systems; programming models for many-core computing platforms; hypervisors and
middleware for multi-/many-core computing platforms; support for safety and security; etc.

May 20-24 33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS'2019), Rio de
Janeiro, Brazil.

244 Conference Calendar

Volume 39, Number 4, December 2018 Ada User Journal

 April 20 24th International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS'2019). Topics include: the areas of parallel
applications, language design, compilers, runtime systems, and programming tools; the
areas of emerging programming models for large-scale parallel systems and many-core
architectures; new programming languages and constructs for exploiting
parallelism/locality; experience with and improvements for existing parallel languages
and run-time environments; parallel compilers, programming tools, and environments;
programming environments for heterogeneous multicore systems and accelerators such
as GPUs, FPGAs, and MICs; etc. Deadline for submissions: January 22, 2019 (full
papers), January 29, 2019 (short papers).

April 25-31 41st International Conference on Software Engineering (ICSE'2019), Montréal, Québec, Canada.
Theme: "The next 50 years for Software Engineering". Deadline for submissions: January 7, 2019
(ACM Student Research Competition), February 1, 2019 (workshop papers), February 7, 2019 (student
volunteers).

June 03-07 31st International Conference on Advanced Information Systems Engineering (CAiSE'2019),
Rome, Italy. Theme: "Responsible Information Systems". Topics include: methods, models, techniques,
architectures and platforms for supporting the engineering and evolution of information systems and
organizations.

 June 04-06 DAta Systems In Aerospace (DASIA'2019), Sicily, Italy.

 June 10-14 Ada-Europe 24th International Conference on Reliable Software Technologies
(Ada-Europe 2019), Warsaw, Poland. Sponsored by Ada-Europe, in cooperation with
ACM SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association (ARA) Deadline
for submissions: January 28, 2019 (regular papers, industrial presentation outlines,
tutorial and workshop proposals).

June 26-28 18th International Conference on Software Reuse (ICSR'2019), Cincinnati, Ohio, USA. Topics
include: approaches facilitating reuse in industry; technical debt and reuse; component-based reuse
techniques; generative, systematic, and opportunistic reuse; reverse engineering of potentially reusable
components; evolution and maintenance of reusable assets; dynamic aspects of reuse (e.g., post-
deployment time); retrieval of reusable artifacts and knowledge in large-scale software repositories (e.g.,
open-source and industrial code bases); etc. Deadline for submissions: January 31, 2019 (papers),
February 15, 2019 (Industry Innovation Track papers or extended abstracts).

July 09-12 31st Euromicro Conference on Real-Time Systems (ECRTS'2019), Stuttgart, Germany. Topics
include: all aspects of real-time systems, such as scheduling design and analysis, real-time operating
systems, hypervisors and middleware, memory management, worst-case execution time analysis, formal
models and analysis techniques for real-time systems, mixed-criticality design and assurance,
programming languages and compilers, virtualization and timing isolation, etc. Deadline for
submissions: February 7, 2019 (papers).

 July 15-19 33rd European Conference on Object-Oriented Programming (ECOOP'2019), London, England.
Topics include: original and unpublished results on any Programming Languages topic. Deadline for
submissions: January 11, 2019 (papers).

July 15-19 43rd Annual IEEE Conference on Computer Software and Applications (COMPSAC'2019),
Milwaukee, Wisconsin, USA. Deadline for submissions: open (workshops), January 21, 2019 (abstracts,
full papers), April 15, 2019 (workshop papers).

July 29-31 13th International Symposium on Theoretical Aspects of Software Engineering (TASE'2019),
Guilin, China. Topics include: theoretical aspects of software engineering, such as abstract
interpretation, component-based software engineering, cyber-physical systems, distributed and
concurrent systems, embedded and real-time systems, formal verification and program semantics,
integration of formal methods, language design, model checking and theorem proving, model-driven
engineering, object-oriented systems, program analysis, reverse engineering and software maintenance,
run-time verification and monitoring, software architectures and design, software testing and quality
assurance, software safety, security and reliability, specification and verification, type systems, tools
exploiting theoretical results, etc. Deadline for submissions: January 4, 2019 (abstracts), January 11,
2019 (papers).

Conference Calendar 245

Volume 39, Number 4, December 2018 Ada User Journal

August 26-31 17th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS'2019), Amsterdam, the Netherlands. Topics include: theoretical foundations of timed
systems and languages; methods and tools (techniques, algorithms, data structures, and software tools
for analyzing timed systems and resolving temporal constraints, such as scheduling, worst-case
execution time analysis, optimization, model checking, testing, constraint solving, ...); adaptation and
specialization of timing technology in application domains in which timing plays an important role
(real-time software, problems of scheduling in manufacturing and telecommunication, ...); etc. Deadline
for submissions: April 21, 2019 (abstracts), April 24, 2019 (papers).

August 27-30 30th International Conference on Concurrency Theory (CONCUR'2019), Amsterdam, the
Netherlands. Topics include: basic models of concurrency; verification and analysis techniques for
concurrent systems, such as abstract interpretation, atomicity checking, model checking, race detection,
run-time verification, static analysis, theorem proving, type systems, security analysis, ...; distributed
algorithms and data structures; theoretical foundations of architectures, execution environments, and
software development for concurrent systems, such as multiprocessor and multi-core architectures,
compilers and tools for concurrent programming, programming models such as component-based,
object-oriented, ...; etc. Deadline for submissions: April 15, 2019 (abstracts), April 22, 2019 (papers).

August 28-30 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2019),
Thessaloniki / Chalkidiki, Greece. Topics include: information technology for software-intensive
systems; conference tracks on Embedded Systems & Internet of Things (ES-IoT), Software Process and
Product Improvement (SPPI), etc.; special sessions on Cyber-Physical Systems (CPS), Software
Engineering and Technical Debt (SEaTeD), Model-Driven Engineering and Modeling Languages
(MDEML), etc. Deadline for submissions: March 1, 2019 (abstracts), March 15, 2019 (papers).

 Sep 10-13 International Conference on Parallel Computing 2019 (ParCo'2019), Prague, Czech Republic.
Deadline for submissions: February 28, 2019 (extended abstracts), March 31 2019 (mini-symposia),
July 31, 2019 (full papers).

September 16-20 17th International Conference on Software Engineering and Formal Methods (SEFM'2019), Oslo,
Norway. Deadline for submissions: January 11, 2019 (workshops).

October 07-11 23rd International Symposium on Formal Methods (FM'2019), Porto, Portugal, aka 3rd World
Congress on Formal Methods. Topics include: formal methods in a wide range of domains including
software, computer-based systems, systems-of-systems, cyber-physical systems, human-computer
interaction, manufacturing, sustainability, energy, transport, smart cities, and healthcare; formal
methods in practice (industrial applications of formal methods, experience with formal methods in
industry, tool usage reports, ...); tools for formal methods (advances in automated verification, model
checking, and testing with formal methods, tools integration, environments for formal methods, ...);
formal methods in software and systems engineering (development processes with formal methods,
usage guidelines for formal methods, ...); etc.

December 03-06 40th IEEE Real-Time Systems Symposium (RTSS'2019), Hong Kong.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

Call for Participation
9 th Ada Developer Room at FOSDEM 2019

Saturday 2 February 2019, Brussels, Belgium

Organized by Ada-Belgium
in cooperation with Ada-Europe

FOSDEM1, the Free and Open source Software Developers' European Meeting, is a non-commercial
two-day weekend event organized early each year in Brussels, Belgium. It is highly developer-
oriented and brings together 8000+ participants from all over the world. The 2019 edition takes
place on Saturday 2 and Sunday 3 February. It is free to attend and no registration is necessary.

In this edition, Ada-Belgium2 organizes once more a full day of presentations related to Ada and Free
or Open Software in a s.c. Developer Room. The “Ada DevRoom” at FOSDEM 2019 is held on the
first day of the event. The program offers introductory presentations on the Ada programming
language, as well as more specialised presentations on focused topics, tools and projects. This year
FOSDEM has a total of 15 Ada-related presentations by 12 authors from 7 countries!

Program overview:
• Welcome to the Ada DevRoom, by Dirk Craeynest, Ada-Belgium
• An Introduction to Ada for Beginning and Experienced Programmers, by Jean-Pierre Rosen, Adalog
• Sequential Programming in Ada: Lessons Learned, by Joakim Strandberg, Mequinox
• Autonomous Train Control Systems: a First Approach, by Julia Teissl, FH Campus Wien
• Controlling the Execution of Parallel Algorithms in Ada, by Jan Verschelde, Univ. of Illinois at Chicago
• Persistence with Ada Database Objects, by Stephane Carrez, Twinlife
• Shrink your Data to (almost) Nothing with Trained Compression, by Gautier de Montmollin, Ada-Switzerl.
• GSH: an Ada POSIX Shell to Speed Up GNU Builds on Windows, by Nicolas Roche, AdaCore
• What is Safety-Critical Software, and How Can Ada and SPARK Help?, by Jean-Pierre Rosen, Adalog
• Secure Web Applications with AWA, by Stephane Carrez, Twinlife
• Distributed Computing with Ada and CORBA using PolyORB, by Frédéric Praca, Ada-France
• Cappulada: Smooth Ada Bindings for C++, by Johannes Kliemann, Componolit
• The Azip Archive Manager: a full-Ada Open-Source Portable Application, by G. de Montmollin, Ada-Swit.
• Proof of Pointer Programs with Ownership in SPARK, by Yannick Moy, AdaCore
• (in RISC-V room) Alternative Languages for Safe&Secure RISC-V Programming, by F.Chouteau, AdaCore

The Ada at FOSDEM 2019 web-page has all details, such as the full schedule, abstracts of
presentations, biographies of speakers, and pointers to more info. For the latest information at any
time, contact <Dirk.Craeynest@cs.kuleuven.be>, or see:

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/19/190202-fosdem.html

1https://fosdem.org/2019
2http://www.cs.kuleuven.be/~dirk/ada-belgium

Conference & Program Chair
Tullio Vardanega
University of Padua, Italy
tullio.vardanega@unipd.it

Educational Tutorial &
Workshop Chair
Dene Brown
SysAda Ltd, UK
dene.brown@sysada.co.uk

Industrial Chair
Maurizio Martignano
Spazio IT, Italy
maurizio.martignano@spazioit.com

Exhibition & Sponsorship Chair
Ahlan Marriott
White Elephant GmbH, Switzerland
software@white-elephant.ch

Publicity Chair
Dirk Craeynest
Ada-Belgium & KU Leuven, Belgium
dirk.craeynest@cs.kuleuven.be

Local Chair
Maciej Sobczak
GE Aviation – EDC Warsaw, Poland
maciej.sobczak@ge.com

General Information

Ada-Europe is pleased to announce that its 24th International Conference on Reliable
Software Technologies (Ada-Europe 2019) will take place in Warsaw, Poland. The
conference schedule at its fullest includes a three-day technical program and vendor
exhibition from Tuesday to Thursday, and parallel tutorials and workshops on Monday
and Friday. This edition of the conference inaugurates a major revamp in the
registration fees, redesigned to extend participation from industry and academia, and
to reward contributors, especially but not solely, students and post-doc researchers.

Schedule

Topics

The conference is a leading international forum for providers, practitioners and
researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and
maintenance of long-lived, high-quality software systems for a challenging variety of
application domains. The program will allow ample time for keynotes, Q&A sessions
and discussions, and social events. Participants include practitioners and researchers
from industry, academia and government organizations active in the promotion and
development of reliable software technologies.

The topics of interest for the conference include but are not limited to:

• Design and Implementation of Real-Time and Embedded Systems,
• Design and Implementation of Mixed-Criticality Systems,
• Theory and Practice of High-Integrity Systems,
• Software Architectures for Reliable Systems,
• Methods and Techniques for Quality Software Development and Maintenance,
• Ada Language and Technologies,
• Mainstream and Emerging Applications with Reliability Requirements,
• Achieving and Assuring Safety in Machine Learning Systems,
• Experience Reports on Reliable System Development,
• Experiences with Ada.

Refer to the conference website for the full list of topics.

28 January 2019 Submission of papers, industrial presentation outlines, tutorial
and workshop proposals (extended deadline, final)

1 March 2019 Notification of acceptance to all authors
16 March 2019 Camera-ready version of papers required

30 April 2019 Industrial presentations, tutorial and workshop material required

Ada-Europe
24th International Conference on
Reliable Software Technologies

10-14 June 2019, Warsaw, Poland

Program Committee

Mario Aldea, Univ. de Cantabria, ES
Johann Blieberger, Vienna Univ. of

Technology, AT
Bernd Burgstaller, Yonsei Univ., KR
António Casimiro, Univ. Lisboa, PT
Barbara Gallina, Mälardalen Univ., SE
Michael González Harbour, Univ. de

Cantabria, ES
J. Javi Gutiérrez, Univ. de Cantabria, ES
Jérôme Hugues, ISAE, FR
Hubert Keller, Karlsruhe Institute of

Technology, DE
Raimund Kirner, Univ. of Hertford-

shire, UK
Franco Mazzanti, ISTI-CNR, IT
Laurent Pautet, Telecom ParisTech, FR
Luís Miguel Pinho, CISTER/ISEP, PT
Erhard Plödereder, Univ. Stuttgart, DE
Juan A. de la Puente, Univ. Pol. de

Madrid, ES
Jorge Real, Univ. Pol. de València, ES
José Ruiz, AdaCore, FR
Sergio Sáez, Univ. Pol. de València, ES
Elad Schiller, Chalmers Univ. of

Technology, SE
Frank Singhoff, Univ. de Bretagne

Occidentale, FR
Jorge Sousa Pinto, Univ. of Minho, PT
Tucker Taft, AdaCore, USA
Elena Troubitsyna, Åbo Akademi Uni., FI
Santiago Urueña, GMV, ES
Tullio Vardanega, Univ. of Padua, IT
Marcus Völp, Univ. of Luxembourg, LU

Industrial Committee

Ian Broster, Rapita Systems, UK
Dirk Craeynest, Ada-Belgium &

KU Leuven, BE
Gonçalo Gouveia, Critical Techworks, PT
Thomas Gruber, Austrian Institute of

Technology, AT
Andreas Jung, European Space

Agency, NL
Ismael Lafoz, Airbus Military, ES
Patricia Lopez Cueva, Thales Alenia

Space, FR
Ahlan Marriott, White Elephant, CH
Maurizio Martignano, Spazio-IT, IT
Silvia Mazzini, Intecs, IT
Marco Panunzio, Thales Alenia Space, FR
Paul Parkinson, Wind River, UK
Jean-Pierre Rosen, AdaLog, FR
José Emilio Salazar Marsà, GMV, ES
Helder Silva, Edisoft, PT
Jacob Sparre Andersen, JSA Cons., DK
Pawel Zakrzewski, GE Aviation, PL

Call for Regular Papers
The regular papers submitted to the conference must be original and shall undergo anonymous
peer review. The authors shall submit their work by 28 January 2019, in PDF only, and up to 16
LNCS-style pages in length, via https://easychair.org/conferences/?conf=ae2019.

The conference is listed in the principal citation databases, including DBLP, Scopus, Web of
Science, and Google Scholar. The authors of the papers that will appear in the conference
proceedings will be invited to extend their work for submission to a Special Issue of Elsevier’s
Journal of Systems Architecture, centered on the conference themes.

Proceedings
The conference proceedings will appear in Springer’s Lecture Notes in Computer Science (LNCS)
series, and will be available at the conference, both online and in print. The authors of accepted
regular papers shall prepare camera-ready submissions in full conformance with the LNCS style,
strictly by 16 March 2019. For format and style guidelines, the authors should refer to
http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register at least one
author for the conference by that date will prevent the paper from appearing in the proceedings.

Call for Industrial Presentations
The conference seeks industrial presentations that deliver insightful information value but may
not sustain the strictness of the review process required for regular papers. The authors of
industrial presentations shall submit their proposals, of at least 1 page in length, by 28 January
2019, strictly in PDF, via https://easychair.org/conferences/?conf=ae2019.

The Industrial Committee will review the submissions anonymously and make recommendations
for acceptance. The authors of accepted contributions shall be requested to submit a 2-page
abstract by 16 March 2019, for inclusion in the conference booklet, and be invited to deliver a
20-minute talk at the conference. These authors will also be invited to expand their contributions
into articles for publication in the Ada User Journal (http://www.ada-europe.org/auj/), as part of
the proceedings of the Industrial Program of the Conference. For any further information, please
contact the Industrial Chair directly.

Awards
Ada-Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Educational Tutorials
The conference seeks tutorials in the form of educational seminars that may include hands-on or
practical demonstrations. Proposed tutorials can address any part of the reliable software
domain, and may have an academic or industrial slant from technology perspective. All software
topics and their application to reliability and safety are welcome. Tutorial proposals shall include
a title, an abstract, a description of the topic, an outline of the presentation, the proposed
duration (half day or full day), and the intended level of the tutorial (introductory, intermediate,
or advanced), and most importantly a statement expressing why it will be worthwhile to attend
the tutorial. Tutorial proposals shall be submitted to the Educational Tutorial Chair.

The authors of accepted full-day tutorials will receive a complimentary conference registration.
For half-day tutorials, this benefit is halved. The Ada User Journal will offer space for the
publication of summaries of the accepted tutorials.

Call for Workshops
Workshops on themes within the conference scope may be proposed. Proposals may be
submitted for half- or full-day events, to be scheduled at either end of the conference week.
Workshop proposals shall be submitted to the Workshop Chair. The workshop organizer shall
also commit to producing the proceedings of the event, for publication in the Ada User Journal.

Call for Exhibitors
The commercial exhibition will span the core days of the main conference. Interested providers
of software products and services should send inquiries to the Exhibition Chair.

Venue
The conference will take place in Warsaw, Poland, at the Engineering Design Center, partnership
of General Electric and the Institute of Aviation, one of Europe’s largest engineering institutions.

250

Volume 39, Number 4, December 2018 Ada User Journal

AGILE-R1: Agile Software Development for
Railways
J. Favaro, G. Ioele, A. Jaku, S. Mazzini, P. Panaroni
Intecs Solutions, Via Umberto Forti 5, Loc. Montacchiello - 56121 Pisa; Italy, Tel: + 39 050 9657 411; email:
{John.Favaro, Guido.Ioele, Aida.Jaku, Silvia.Mazzini, Paolo.Panaroni}@intecs.it

U. Paone
Intecs Solutions, Via Giacomo Peroni 130 - 00131 Roma; Italy, Tel: + 39 06 20392 800; email:
Umile.Paone@intecs.it

Abstract1

In this paper we present AGILE-R, a Scrum based
approach defined by Intecs Solutions to combine
Agile and EN 50128 for Railway software
development.

Keywords: Railway, Agile, Safety, Embedded Systems.

1 Introduction

Agile approaches have their roots in 2001 with the
elaboration of the famous “Agile Manifesto”.
Subsequently, it gradually gained in popularity over the so
called “heavy processes” (waterfall based, the champion
being CMMI) and Agile is now the most adopted software
development approach worldwide. Even the proponents of
CMMI are now proposing a “marriage” with Agile [3].

However, for over a decade there has been much
controversy with respect to Agile in real time and safety
critical software domains such as avionics, space, railway,
automotive, medical devices, etc. Today, however, there
are many success stories and considerable experience
proving that Agile is not in contradiction with highly
critical software, on the condition that agility is applied
with rigor and discipline.

“Barriers to using Agile no longer exist. Developments in
globally distributed teams, large projects, safety-critical
systems, and hardware and systems engineering have
shown that Agile technologies are adoptable and
adaptable.” is reported in IEEE Software Magazine [10].

An Agile Software Development Handbook [5] has been
developed by the European Cooperation for Space
Standardization (ECSS), with the support of the European
Space Agency, providing detailed guidelines and advice for
the adoption of the Scrum software development approach
in those space projects where ECSS-E-ST-40 and ECSS-Q-
ST-80 are applicable. Detailed mappings between
requirements and agile practices have been reported for the
avionics sector, while adoption of agile development
methods is reported by the NASA Ames Research Center
for the development of mission control technology software

1 Trademark registered

[6]. Recently a Norwegian study from SINTEF ICT and
NTNU has proposed Agile for CENELEC EN 50128, by
defining the SafeScrum variant of Scrum with some of the
CENELEC requirements outside of the agile approach and
some safety requirements added to the agile methodology,
together with the involvement of the assessor as early as
possible to reduce certification costs [8].

In this paper we present AGILE-R, a practical approach
adopted by Intecs Solutions for the application of Scrum to
the development of Railway software in accordance with
the EN 50128 standard (at least up to safety integrity level
SIL2) [1].

AGILE-R has been elaborated by an Intecs Solutions team
combining diverse and complementary sets of expertise,
including Software Methodologies, Safety Assessments,
Quality Assurance, CENELEC Standards, Agile, Scrum,
and Project Management. The results have been shared and
discussed with external Independent Safety Assessors.

2 Goals

The main goals of AGILE-R are:

 to reduce time to market and improve responsiveness
to change, without sacrificing safety and quality. This
is mainly achieved by shortening the time between
development and bug fixing. Every increment is fully
tested and validated. Regression risks are also reduced.
While Agile does not reduce the number of total tests
to be executed, it distributes them over manageable
quantities for any given increment. In this way, the
high costs and delays associated with large and late
integration of software are avoided.

 to increase the control and predictability of the
development process itself, by forcing visible and
tangible results at fixed intervals. Progress is measured
by the state of the product rather than estimations and
presentations.

 to decrease the risk of producing unsatisfactory
solutions, with strong involvement of the product
owner.

J. Favaro, G. Ioele, A. Jaku, S. Mazzini , P. Panaroni , U. Paone 251

Ada User Journal Volume 39, Number 4, December 2018

3 Background

Scrum life cycle (www.scrumprimer.org) is a time-
sequenced process (a life cycle) with incremental/iterative
time-boxed deliveries as shown in Figure 1.

EN-50128 is a logical sequence of processes (a process
model) transforming customer requirements into
deliverable software as shown in Figure 2.

From INTECS experience in SW Engineering and ISA’s
feedbacks some fundamental aspects arise:

 Scrum defines HOW to manage software development
projects, it is not a new standard.

 Scrum does not impose specific work products.

 Scrum is not in contradiction with WHAT is required
by EN50128.

 Scrum does not sacrifice quality (quality is usually
better thanks to early detection of bugs and pair
programming).

 Few adaptations are required to best combine the two
approaches and achieve the right Balance of Agility
and Discipline.

They are not in contradiction: the EN-50128 process model
may be executed in an incremental/iterative life cycle like
that proposed by Scrum [4].

4 Scrum and EN-50128 in action

Figure 3 provides a high level overview of the
recommended Agile-R approach for combining Scrum and
the application of EN-50128.

The phases (building blocks) of Agile-R are detailed in the
following:

System Level Planning and Analysis
This phase is not detailed in Figure 3 as it is out of scope of
Agile-R. Agile-R is proposed only for software
development and not at system level. All risk and safety
analyses at the system level are performed outside the
Agile process, including the analysis needed to determine
the SIL level.

Planning (red block in Figure 3)
This initial managerial process is essential to coordinate the
software development with all affected stakeholders. At
this stage all plans (e.g. quality plan, verification plan,
validation plan, etc.) are elaborated, the Scrum team is
established and proper tools made available.

Sprint 0 (warm up sprint) (orange block in Figure 3)
This is a special initial sprint intended to define a
preliminary overall architecture and implement some basic
software. Sprint 0 is not a new concept, it provides solid
foundations for all other sprints.

Sprint N (blue blocks in Figure 3)
This is the development heartbeat, implementing an
increment of functionality, fully tested. High-level
requirements (user stories) assigned to that sprint are fully
implemented.

Integration (black blocks in Figure 3)
At given planned and coordinated events, the software
developed in a Sprint may be integrated with software
developed with Sprints of other Scrums running in parallel,
other available software and/or integrated on the available
HW resources. It means that one or a combination of the
following integrations may be performed:

 The software with the software of other Scrums;

 The software with other available software;

 The software on the available HW resources;

 The Overall integrated software on the available HW
resources.

Release (dark blue blocks in Figure 3)
These are special finalization phases where the software is
wrapped up ready to be delivered. Final safety and quality
checks shall be performed during these phases.

5 Independent Testing

EN-50128 requires testing to be specified and executed by
personnel independent from the development team (the
type of independence to a greater or lesser extent depends
on the SIL).

We recommend that testing of implemented user stories
remains assigned to independent test staff different from
developers. We do not stress full organization
independence (e.g. a separate test department or a separate
company) but at least people independence (i.e. staff shall
never test its own developed code). This is compliant with
SIL 2 requirements.

Figure 2 The EN-50128 life cycle

Figure 1 The Scrum life cycle

252 AGILE-R: Agi le Software Development for Rai lways

Volume 39, Number 4, December 2018 Ada User Journal

For higher SILs, where independent test teams get
involved, we propose to allow independent tests to be run
within validation sprints phased with development sprints
as depicted in Figure 4.

The output of a development sprint becomes the input of an
independent validation sprint. The possible problems
identified by the test sprints will be formalized and entered
into the product backlog (as “bug-to-be-fixed”) and
prioritized and managed by the ordinary development
sprint planning as detailed in Figure 5.

The bugs can be fixed as soon as possible at the immediate
next development sprint but may even be deferred to a
future development sprint.

A running development sprint should not be affected (and
distracted) by incoming bugs from validation sprints.

Figure 5 AGILE-R for SIL3-4 - Details

6 Process roles

Scrum process roles are:

 Scrum Master.

 Product Owner.

 Development Team.

EN 50128 Process roles are:

 Requirements Manager (part of development team)
(RQM).

 Designer (part of development team) (DES).

 Implementer (part of development team) (IMP).

 Tester (part of development team, with independence’s
degree related to SIL) (TST).

 Integrator (part of the development team) (INT).

 Verifier (part of development team, with
independence’s degree related to SIL) (VER).

 Validator (preferably external to the development
team, with independence’s degree related to SIL)
(VAL).

 Assessor (external to the organization) (ASR).

 Project Manager (PM).

 Configuration Manager (CM).

 Quality Engineer (SQA) 2.

The Agile-R roles are detailed in the following table:

Agile-R® Role EN-50128 Role
Product Owner
[PO]

[N\A]: mapped on the System
Engineer

Scrum Master
[SM]

PM but with major orientation to
collaborative work

Development
Sprint Team

RQM, DES, IMP, INT, TST, VER

Validation
Sprint Team

VAL

Note: the EN-50128 Roles distribution inside the
Development and Validation Sprint Team could change
according to the tailoring of the methodology but always
taking into account EN-50128 clauses on independency.

7 Parallel work (Scrum of Scrums)

It is well known that the agile approach does not scale well
with large teams (e.g. > 7 people). This is often
circumvented by running separate Scrum teams in parallel
and setting some “integration/coordination” steps.

2 not directly covered by EN-50128 but required by quality

Figure 3 Agile-R High Level Overview

Figure 4 Agile-R for SIL3-4 Development

J. Favaro, G. Ioele, A. Jaku, S. Mazzini , P. Panaroni , U. Paone 253

Ada User Journal Volume 39, Number 4, December 2018

The aim of these intermediate steps is to agree solutions to
interfaces between teams and to negotiate responsibility
boundaries, for continuous improvement of the between-
team coordination.

AGILE-R relies on the Scrum of Scrums [12] for parallel
work.

Many Scrums may run in parallel even working on the
same sub-system, assuming given intermediate integration
points and final integration and wrap-up for release are
defined, as depicted in Figure 6.

However it may be also the case that different Scrum teams
work on the same sub-system but with different objectives
(e.g. different user stories to be implemented).

While some front-end planning and a proper architecture
may minimize interferences among the teams assigning
disjoint tasks, it is always required an integration
(reconciliation) phase. This is the same pattern as the
branch-merge in version management.

A recommendation is to hold a Scrum of Scrums periodic
meeting where each Scrum is represented by an
“ambassador” and integration issues are discussed.

Figure 6 Agile-R for Large Projects

8 Methods, Techniques and Tools

It is of paramount importance to speed up the process of
rapid evolution of project documentation through frequent
iterations and refactoring. This is best achieved using
models (e.g. SysML, UML) rather than plain textual
documents. The documents (required by EN-50128
assessor) are then largely automatically generated from
models.

A complete list of tools to be used (the so-called toolchain)
has to be identified at the planning step with proper
qualification actions.

9 AGILE-R in practice

A case study for the application of AGILE-R was defined
in the context of the Railway Sirio-LX product. Sirio-LX is
an automatic radar-based system for preventing trains from
colliding with obstacles on the track at level crossings (see
Figure 7). Sirio-LX is designed to ensure the highest level
of safety standard CENELEC SIL4.

The experiment has been the development of a software
part outside the official development, not starting from

scratch, with the execution of 1 week initial planning phase
and Sprint 0 and 2 Sprints with time box of 3 weeks. The
main goal was to tune the approach getting learning lessons
«from the battlefield» and remove some skepticism.

The impact on EN50128 planning phase was minimal, the
approach was welcomed by the team with no resistance.
Education on Agile and Scrum principles was
straightforward. Globally the staff reported a positive
experience. Respect of budget and schedule was
maintained.

The use of AGILE-R has confirmed the following:

 Agile is a way to manage the software development
life cycle, not a different standard.

 Agile does not impose specific new work products, and
all documents of EN 50128 have been adopted to
ensure compliance.

 There are no contradictions between the application of
AGILE-R and formal assessments.

 Agile does not sacrifice safety and quality (these are
even better thanks to early detection of bugs and pair
programming).

Project pitfalls, such as wrong or simplistic design, poor
tools, and immature test environment, have an impact in the
same way as with the traditional approach but you learn it
after a short period of time and you can implement some
counter-measures in the early stages of the project.

10 Conclusion

AGILE -R has confirmed that: “Barriers to using Agile no
longer exist. Developments in globally distributed teams,
large projects, safety-critical systems, and hardware and
systems engineering have showed that agile technologies
are adoptable and adaptable.” [11]

Only few adaptations have been recommended to best
combine the Scrum and EN 50128 approaches, with the
right Balance of Agility and Discipline [2].

Acknowledgement

The authors would like to thanks the colleagues of Intecs
that have contributed with their effective review and
suggestions, in particular Marco Casucci, Giancarlo
Gennaro, Alessandro Brachini and Simone Gianfranceschi.

Radar
Sensor	

Figure 7 The SIRIO LX Use Case

254 AGILE-R: Agi le Software Development for Rai lways

Volume 39, Number 4, December 2018 Ada User Journal

References
[1] CENELEC (2011), CENELEC EN 50128:2011

Railway applications – Communication, signalling and
processing systems – Software for railway control and
protection systems.

[2] B. Boehm, R. Turner (2004), Balancing Agility with
Discipline, A Guide for the perplexed, Addison
Wesley, ISBN 0-321-18612-5.

[3] CMMI Institute (2008), CMMI & Agile: why not
embrace both!

[4] J. L. Boulanger (2015), CENELEC 50128 and IEC
62279 Standards, Wiley-ISTE.

[5] ECSS (2013), ECSS-EHB-40A Software engineering
handbook.

[6] J. Trimble, C. Webster (2012), Agile Development
Methods for Space Operations, Proceedings of
SpaceOps 2012 Conference.

[7] S. H. VanderLeest, A. Buter (2009), Escape the
Waterfall: Agile for Aerospace, Proc of the

IEEE/AIAA 28th Digital Avionics Systems
Conference.

[8] T. Myklebust, T. Stålhane, N. Lyngby (2015),
Application of an Agile Development Process for
EN50128/railway conformant Software, Proceedings
of the 25th European Safety and Reliability
Conference.

[9] C. Scholz (2014), Agile Software Development
compliant to Safety Standards?, Proceedings of the
19th Ada Europe International Conference on Reliable
Software Technologies.

[10] C. Ebert, M. Paasivaara (2017), Scaling Agile, IEEE
Software 2017 (issue 6), p. 98.

[11] IEEE (2017), IEEE Software Magazine,
November/December Issue.

[12] J. Sutherland (2001), Agile Can Scale: Inventing and
Reinventing SCRUM in Five Companies, IT Journal
Vol. 14, No 12.

256

ENABLE-S3: On Improving the Verification and
Validation of Automated Cyber-Physical Systems

Andrea Leitner
AVL List GmbH, Austria; email: Andrea.Leitner@avl.com

Sergio Sáez-Barona
Instituto Tecnológico de Informática, Spain; email: ssaez@iti.es

Zora Slavik
FZI Research Center for Information Technology; email: slavik@fzi.de

Mika Rautila
VTT Technical Research Centre of Finland, Finland; email: Mika.Rautila@vtt.fi

Nadja Marko
Virtual Vehicle Research Center GmbH; email: Nadja.Marko@v2c2.at

Philipp Rosenberger
Technical University Darmstadt, Germany; email: rosenberger@fzd.tu-darmstadt.de

Dejan Ničković, Willibald Krenn
AIT Austrian Institute of Technology GmbH, Austria; email: {Dejan.Nickovic,willibald.krenn}@ait.ac.at

Michael Siegel
OFFIS e.V.; email: michael.siegel@offis.de

Abstract

ENABLE-S3 is an industry-driven project and aspires to
substitute today’s cost-intensive verification & valida-
tion efforts by more advanced and efficient methods to
pave the way for the commercialization of highly Auto-
mated Cyber Physical Systems (ACPS). Pure simulation
cannot cover physics in detail due to its limitations in
modeling and computation. Real-world tests are too ex-
pensive, too time consuming and potentially dangerous.
Thus, ENABLE-S3 aims at developing an innovative so-
lution capable of combining both worlds in an optimized
manner.

1 Introduction
Technologically the development of automated systems (such
as automated driving) is satisfactorily understood and wit-
nessed e.g. by millions of test kilometers already traveled
by automated cars on public roads. These new technologies
are leading to greater safety, lesser accidents as well as more
efficient and environmentally friendly traffic. ADAS as well
as automated driving (AD) systems are becoming an irre-
placeable part of the everyday driving experience. Similar
statements are true for other domains as well.

Nevertheless, Watzenig et.al. [1] state that new validation
methodologies, procedures, and laws are needed in order to

successfully incorporate emerging technologies into traffic
and thus improve safety, reduce emissions, provide traffic flow
optimization and enhanced mobility. Some steps towards this
goal have already been taken. The EU made legal obligations
on new passenger cars to include certain safety-related ADAS
systems (EPS, EBA) and the level of automation will increase
in the following years.

However, demonstrating the reliability, safety, and robustness
of the technology in all conceivable situations, e.g. in all
possible situations under all potential environmental condi-
tions, has been identified as the main roadblock for product
homologation, certification and thus commercialization. For
automated driving, Winner et.al. [2] as well as Wachenfeld
et.al. [3] predict that more than 100 million km of road driv-
ing would be required to statistically prove that an automated
vehicle is as safe as a manually driven one. This means that
a proven-in-use certification is simply not feasible by phys-
ical tests. OEMs currently mainly rely on proving ground
or public road testing in order to validate their systems be-
cause of the lack of alternatives. ENABLE-S3 proposes a
scenario-based virtual V&V approach. This means that more
and more aspects are represented in a virtual environment in
terms of models. The input for the testing are scenarios. The
test scenarios are usually taken from collections generated by
engineers, which include the complete scenario description
together with the expected response of the system. However,
even when utilizing these collections one cannot prove that

Volume 39, Number 4, December 2018 Ada User Jour na l

A. Le i tner et . a l . 257

the system will not fail in a test scenario that was not previ-
ously covered. For higher levels of automation the system
cannot easily hand over the responsibility to a human, which
means that the system needs to reliably handle even unknown
situations. Proving ground and real world testing is associated
with high costs, low reproducibility and long validation times.
Especially reproducibility in a real world setup is challenging
because of the difficulty to reach correct initialization, exact
traffic behavior, similar environmental influences, and so on.
Furthermore, safety is a very important aspect and further
limitations arise because some test cases could be dangerous
or even impossible to be carried out by human drivers. All
these limitations add up and influence the overall time needed
to successfully validate an automated system.

Taking further into account the high number of system vari-
ants and software versions, it becomes obvious that new ap-
proaches are required to validate automated systems within a
reasonable time period at reasonable costs. New approaches
are needed to reduce the effort required by today’s state-of-the-
art practices by orders of magnitude in order to become eco-
nomically acceptable. ENABLE-S3 is an ECSEL JU funded
project, which aims for overcoming these challenges.

2 Scope of the project

Figure 1: Main scope of the ENABLE-S3 project

Figure 1 shows the main scope of the project: the develop-
ment of a modular framework for validation and verification
of automated systems. The goal is not to have one platform
which is capable of solving all problems, but to have reusable
technology bricks (tools, methods, models, etc.), which can
be used to build up a testing environment for a certain use
case. Summarized, this requires covering the aspects of virtu-
alization, modularization, as well as standardization.

Because of the large scope and complexity of the problem, it
has been split into two parts. The validation methodologies
on the one hand side describe the necessary steps and research
on data acquisition and storage, scenario and metrics selec-
tion, as well as test generation methods. Since the project is
aiming for a scenario-based validation approach, scenarios
are an integral aspect. There is a huge number of potential
scenarios that are either extracted from recorded data (real
world data) or generated synthetically (e.g. based on safety

and security analysis). In reality a lot of variations for these
scenarios exist (i.e. for different environmental conditions,
different persons/traffic participants involved, etc.) leading
to an enormous number of test cases. The goal is to provide
intelligent methods to select the required test scenarios in a
way that ensures sufficient test coverage.

The validation platform on the other side focuses on reusable
validation technology bricks, which are able to seam-
lessly support various development and testing environ-
ments (model-in-the-loop, hardware-in-the-loop, system-in-
the-loop, e.g. vehicle-in-the-loop, as well as real-world test-
ing). By combining both parts and their respective technology
bricks the project aims for a significant reduction of the re-
quired test effort.

3 Generic Test Architecture
One major goal of the ENABLE-S3 project is to deliver
reusable technology bricks and seamless development envi-
ronments. The first promotes the development of models and
tools that are easily reusable in different contexts. The latter
requires to set up a testing environment where virtual repre-
sentations can easily be exchanged by physical components.
For both, the use of a modular structure with well-defined
interfaces is essential. In order to achieve this goal, one main
result of the first project year is the definition of a generic
ENABLE-S3 test architecture. This architecture aims for
supporting the integration of different technology bricks in a
concrete test system instance. It consists of three main parts
and includes the most essential parts for testing automated
cyber-physical systems (ACPS), which will be elaborated in
more detail in the following. The architecture is also inde-
pendent of the domain and is therefore applicable for all six
ENABLE-S3 application domains (automotive, aerospace,
rail, maritime, health care and farming). The concrete char-
acteristics of the blocks depend on the specific use cases.
For some use cases, the blocks might be interpreted slightly
different or are not required at all.

Figure 2: ENABLE-S3 Generic Test Architecture

Figure 2 shows the single blocks, which are described in more
detail in the following.

On a high level, we distinguish between the Test Framework
and the Test Data Management. The Test Data Management
covers all aspects, which are valid across test phases and are
reusable for testing different products. The test framework
summarizes all aspects required for the planning (Test Man-
agement) and execution of tests (Test Execution Platform).

Ada User Jour na l Vo lume 39, Number 4, December 2018

258 ENABLE-S3 Pro jec t

3.1 Test Framework

The test framework is divided into two parts: Test Manage-
ment and Test Execution Platform. The main aspects are
described in more detail in the following.

3.1.1 Test execution platform

The Test Execution Platform covers all relevant aspects for
testing an ACPS. The ACPS control system interacts with
its environment (e.g. driving on a road, which is shared
with other traffic participants, etc.). For the interaction, the
ACPS control system has to perceive its environment either
via sensors or the communication to the infrastructure or both.
The system itself is described by its physical dynamics, which
again need to be fed back to the environment and so on. The
arrows show the basic interactions of these testing architecture
blocks. The concrete description of the interface depends on
the application domain as well as on the concrete use case.

Depending on the development stage, there will be different
instances of the test platform/architecture. For example, in a
MiL environment all components will be available as simula-
tion models. Later simulated components will be successively
substituted by real physical components resulting in a mixed
environment of real-time and non-real-time components.

In a MiL environment, the ACPS control system describes the
main system under test (SUT). In later development stages,
more aspects are integrated in the SUT (e.g. real sensors).

Figure 3: Test Execution Platform

In the following, the single blocks shown in Figure 3 are
described in more detail:

ACPS Control System The hardware and/or software that
is collectively capable of performing all aspects of the dy-
namic/automated task (whether part time or full time) of the
actual car, train, ship, etc.

System Dynamics The physical model of the SUT that simu-
lates how the actual car, train, or robot physically responds to
commands and operator handling.

Operator The human that operates the ACPS (driver, sur-
geon, etc.). In case of partly automated systems, this mainly
includes the hand-off between the operator (e.g. driver) and
the system.

Communication Communication between the system under
test and other systems (e.g. V2x communication);

Environment Sensors A device that senses physical parame-
ters of the environment.

Infrastructure Includes the facilities that the SUT will com-
municate with: road-side units, other (autonomous) objects
or ACPS, signaling systems. It is the ‘active’ part of the envi-
ronment (non-active parts such as road signs are considered
as part of the “Environment”).

Environment This block describes all aspects around the
automated system, which are perceived by the automated
system or do have an influence on its behavior. It covers
conditions and surroundings intended for the legal operation
of the system under test: temperatures, lights, pressures, road
friction coefficient, weather conditions, etc.

3.1.2 Test Management

Figure 4: Test Management

The Test Management part is organized in 3 groups: Test
definition and control, Evaluation and Release. Figure 4
shows the different aspects of the Test Management part in
more detail. The inner blocks are described next.

Test Case generation Generation of a representative set of
test cases from scenarios. This means that an interface to a
scenario database is required in order to query the required in-
formation. This means the identification of relevant scenarios
as well as the retrieval of relevant parameters (e.g. weather,
type of operator, type of route, equipment, etc.). Depending
on the testing purpose this module has to include intelligent
methods to select and instantiate the required test cases.

Test initialization & automation Initialization of the test
platform and automatic execution of test cases; Controls the
order in which tests are performed, in playing out scenarios
to the Test Platform.

Measurement Recording of relevant test data; either to be
directly processed or to be stored. Post-processing. Definition
of certain KPIs and post processing of measured values to
calculate the KPIs.

Visualization Visualization of measured data and test results
in a way that support the analysis of this data.

Qualification Estimation of the remaining risk and release
for operation.

Volume 39, Number 4, December 2018 Ada User Jour na l

A. Le i tner et . a l . 259

3.2 Test Data Management

This part focuses on all aspects that are valid across different
test environments and includes the management of different
types of data. In the following, the single blocks are described
in more detail.

Test framework instantiation/Variant Management The
test framework should be instantiated for a certain test frame-
work or configured for testing a certain product. Variant man-
agement can be used in addition to systematically describe
the different test framework configurations.

Model management This block describes a model manage-
ment facility, which is able to store and manage different
models (to be reused in different tests). This includes for
example information such as which instances of models are
used for testing, under what conditions, how long, etc.

Simulation-/Measurement results This block covers a
database to store and manage simulation results as well as
measurement taken from tests. The amount and type of data
usually depends on the purpose of the test.

Real world data base This block summaries databases which
are providing real-world data (e.g. real driving data, accident
data, operating room data, etc.). It contains a lot of informa-
tion about what is typically happening in a real world environ-
ment. This data can for example be used to retrieve statistics
about the frequency and probability of certain scenarios or
their criticality.

Scenario generation The ENABLE-S3 project aims for a
scenario-based verification and validation approach. A major
prerequisite is the existence of a set of scenarios which need to
be executed. These scenarios can either be extracted from real-
world data as well as generated synthetically. The “scenario
generation” block summarizes all activities, methods and
tools which are required to generate (virtual) scenarios (e.g.
by identifying and transforming critical real-world situations)
which can be executed by a simulation engine.

Scenario database This block describes a database which is
capable of storing scenarios. In best case, scenarios can be
stored in or exported to a standardized format (making them
reusable in different tools). Examples for such open formats
are OpenDrive and OpenScenario.

SUT Requirements This block covers the System-under-test
requirements, which are an essential aspect in the testing
process. An essential aspect here is the description of KPIs
as an input for the testing process.

Test reports Generation and archiving of test reports.

4 Modularization and standardization
In order to allow the maximum interoperability among the
technology bricks that will cover the main aspects of the
verification and validation architecture presented above, it is
necessary to use of the appropriated standards. This section
presents some of the standards that are being used and/or
extended in this project.

4.1 Standard management of scenarios

In the context of scenarios we distinguish between two main
aspects, the static and the dynamic content. The static content
covers everything that does not change frequently such as the
road network, traffic signs, buildings, and so on. The dynamic
content defines the position and behavior of all the traffic
participants involved in such a test run, including the “ego”-
vehicle. Generating scenarios can either be done synthetically
(i.e. manually based on engineering methods like FMEA) or
based on recorded data. This is true for static as well as for
dynamic aspects. For dynamic aspects, the former one means
to generate test scenarios manually based on safety/security
analysis or using existing scenario description e.g. EURO-
NCAP test scenarios and reproduce them in a scenario editor.
The latter means to mine scenarios from recorded real world
data. This approach will at the end lead to a more complete
scenario database, since observations of the real world are
systematically included in the database.

Not everything can be gathered by recorded data. A lot of
existing data sources need to be included as well (e.g. GIS
data, map data, pictures, etc.). This means that the various
data sources need to be fused in order to get a comprehensive
description of the real world. One major problem is the lack
of a standardized description of the environment.

In order to promote reusability, open formats and interfaces,
such as OpenDrive R©1 and OpenScenario R©2 should be sup-
ported.

OpenDrive [4] is an open file format for the logical descrip-
tion of road networks. It is developed and maintained by
a team of simulation professionals with large support from
the simulation industry. OpenDrive is an already quite es-
tablished specification for describing the logical view on the
environment (i.e. road curvature, lane information, speed
limits and directions for single lanes). This specification is
supported by various environment simulation tools. Currently,
the specification is restricted to automotive applications. Nev-
ertheless, reusing certain aspects and design decisions might
be reused in other application domains (e.g. to describe routes
for vessels).

OpenScenario is an open file format for the description of
dynamic contents in driving simulation applications. The
project is in its very early stage and just starts to be supported
by environment simulation tools. OpenScenario is targeting
the dynamic aspects of the scenario (i.e. traffic participants
and their interaction). Again, the specification is currently
developed for the automotive domain, but might be adapted
for other domains as well.

The main advantage of a standardized scenario description
is the reusability of scenarios in various simulation environ-
ments. This is especially important since the development of
a comprehensive scenario database should be a joint effort by
various players. Since each party should still be able to rely
on its preferred development and simulation environment a
common format is essential. Nevertheless, for sensor models,

1http://www.opendrive.org
2http://www.openscenario.org

Ada User Jour na l Vo lume 39, Number 4, December 2018

260 ENABLE-S3 Pro jec t

this is still not enough, as materials, surfaces, thicknesses
as well as shapes are not standardized and look completely
different in every single tool.

The level of detail and the required information for the sce-
nario description typically depends on the purpose of the test.
For early stage validation of the trajectory planning, a sce-
nario description with only little level of detail might be fine.
For sensor validation or virtual certification, more detailed
descriptions are required.

4.2 Co-simulation support

Another important issue is to facilitate the integration of dif-
ferent simulation tools to cooperate in a distributed manner to
perform a co-simulation of the ACPS, where each simulation
tool focuses in a different part of the simulated scenario, e.g.
the environment, sensor behavior, vehicle dynamics, etc.

Currently no standardized interface or protocol specification
is available, which allows tools from different vendors to
interact with each other during a co-simulation of real-time
and non-real-time systems. Therefore, the integration and
coupling of heterogeneous systems still require great efforts
during the verification process.

To facilitate this integration, this project is promoting the use
of the Distributed Co-simulation Protocol [5] (DCP) which is
subject to proposal as a standard for real-time and non-real-
time system integration and simulation.

The DCP, one of the main results of the ACOSAR project,
consists of a data model, a finite state machine, and a com-
munication protocol including a set of protocol data units. It
enables the definition, configuration and execution of a wide
range of different simulations and test scenarios.

5 Concluding remarks
The ENABLE-S3 consortium, composed by 68 partners from
16 countries of European Union, will present its main results
and their applicability to the 13 use cases from 6 different
domains in May 2019 in Graz, Austria, during the public
event and final review of the project.

References
[1] D. Watzenig and M. Horn (2017), eds., Automated Driv-

ing: Safer and More Efficient Future Driving, Springer
International Publishing.

[2] H. Winner and W. Wachenfeld (2013), Automatic Driv-
ing Protection, 6, FAS Conference Muenchen, Munich,
vol. 9.

[3] W. Wachenfeld and H. Winner (2015), Die Freigabe des
autonomen Fahrens, in Autonomes Fahren: Technische,
rechtliche und gesellschaftliche Aspekte, (M. Maurer,
J. C. Gerdes, B. Lenz, and H. Winner, eds.), pp. 439–464,
Berlin, Heidelberg: Springer Berlin Heidelberg.

[4] M. Dupuis and H. Grezlikowski (2006), Opendrive R©-
an open standard for the description of roads in driving
simulations, in Proceedings of the Driving Simulation
Conference, pp. 25–36.

[5] M. Krammer, M. Benedikt, T. Blochwitz, K. Alekeish,
N. Amringer, C. Kater, S. Materne, R. Ruvalcaba,
K. Schuch, J. Zehetner, M. Damm-Norwig, V. Schreiber,
N. Nagarajan, I. Corral, T. Sparber, S. Klein, and J. An-
dert (2018), The Distributed Co-simulation Protocol for
the integration of real-time systems and simulation en-
vironments, in Proceedings of the 50th Computer Sim-
ulation Conference, SummerSim ’18, (San Diego, CA,
USA), pp. 1:1–1:14, Society for Computer Simulation
International.

Volume 39, Number 4, December 2018 Ada User Jour na l

 261

Ada User Journal Volume 39, Number 4, December 2018

AQUAS: A Project to Bridge the Gaps between
Safety and Security Processes
John Favaro, Silvia Mazzini
Intecs SpA, Pisa, Italy; email: {John.Favaro,Silvia.Mazzini}@intecs.it

Peter Popov, Lorenzo Strigini

Centre for Software Reliability, City, University of London, U.K.; email: {ptp,strigini}@csr.city.ac.uk

1 Introduction

We report on an approach to the management of the
interplay between the safety and security processes,
currently studied in a recently started collaborative
European project, AQUAS (Aggregated Quality
Assurance for Systems, http://aquas-project.eu/). AQUAS
is experimenting with co-ordinating these processes
through "interaction points", which will be introduced
below, via a set of case studies or "demonstrators". It is
motivated by the problems found by industry in
combining in a cost-effective way the tasks of ensuring
satisfaction of various non-functional requirements
(where "ensuring" means "achieving and demonstrating").

 Most such problems have been reported with the task of
ensuring both safety and security in embedded systems.
Companies with established processes for ensuring safety
would import processes for ensuring security as well, but
problems may arise because on the one hand, the two
need to be considered together (e.g. because security
violations affect safety, and because design trade-offs
may arise between these two sets of goals), but on the
other hand, they are the preserves of different technical
cultures with their own languages, habitual assumptions
in their analyses, etc. It is sometimes said, deprecatingly,
that these specialists of different cultures work in "silos",
with information flowing vertically within a specialism
but not across specialisms. As the SAE J3061
Cybersecurity Guidebook has noted: “A tightly integrated
process for Cybersecurity and safety has the advantage of
a common resource set, thus, requiring fewer additional
resources. However, since both activities require different
technical expertise and both activities are resource
intensive, it may not be feasible to expect a single team of
experts to have the skills to perform both Cybersecurity
and safety tasks simultaneously.” It is for this reason that
the Guidebook, while recognizing the advantages of the
ideal integrated process, makes provisions for non-
integrated safety and security processes that communicate
in more or less well-defined ways – what in AQUAS we
call interaction points (Figure 1).

We call "interaction point" both an activity and the point
in a product life cycle (PLC) at which it occurs. The
activity is "interaction" in that (a) experts in the various
aspects of the system and its properties interact., e.g.
security and safety experts; (b) their analyses are

combined in some way, that may be anywhere in the
range from informal discussion and mutual critique to
using mathematical models to assess various measures of
interest for alternative design options, or even a single,
summary measure to be optimised (e.g., probability of an
undesired event); (c) the need for changes or decisions
may be recognised that require an integrated view, e.g.
because of inevitable trade-offs between desirable
properties, and these trade-offs are discussed between the
various experts to produce recommendations/decisions,
possibly with the aid of the above-mentioned
mathematical models.

2 Static versus dynamic interaction
points

An important question is when these interactions should
take place, to be cost-effective for a given project in a
given company. One viewpoint is that the lifecycle model
used by the developers should identify from the beginning
when interaction points will be needed. These "statically
scheduled" interaction points are so scheduled as to
achieve a reasonable trade-off between

 The cost of too many interactions for those "lucky"
projects that never have conflicts or resulting rework
(for these projects, all interactions may be counted in
hindsight as unnecessary costs) and

Figure 1 Two separate PLCs with interaction points
between them

262 AQUAS: A Project to Br idge the Gaps between Safety and Secur i ty Processes

Volume 39, Number 4, December 2018 Ada User Journal

 The cost of too few interactions for the "unlucky"
projects, in which conflicts between requirements and
unsatisfactory design trade-off are recognised late,
requiring expensive rework or causing project
failures. For these projects, frequent interaction
points would save money by reducing rework.

The standards tend to identify static interaction points,
partially through the very nature of the standard as a static
text. But the potential improvements through dynamic
interaction points are significant. Pre-planned, statically
scheduled interaction points are akin to scheduled
maintenance of equipment: they happen at predictable
times, their cost is factored into the total cost from the
beginning, and they are frequent enough to avoid nasty
surprises. However, a regime of scheduled maintenance
does not necessarily avoid ALL surprises and there is a
need to have a design that can deal with failures occurring
between maintenance points. If components of a system
fail during operation, the system typically needs: means
for failure detection; means for diagnosis; means for
repair or reconfiguration, recovery and restart. In the
case of the co-engineered lifecycle, examples of failures
and their detection mechanisms might be the following:

 Initial requirements from a client are found to be in
conflict during the implementation phase (for
instance encryption of data for a particular security
standard takes too much time to meet a performance
requirement). This may trigger interaction points in
the current phase of the PLC, and/or in previous
phases (that is, undoing some refinement activity for
some system part, going back to change and re-
analyse a higher-level design, so as to make the
satisfaction of the requirements feasible; or even
going back to renegotiate these requirements).

 Inadequate performance may lead to a safety related
issue. For example, a machine vision component in
an automated system may turn out to be insufficiently
robust to adequately recognize a sufficiently large set
of risky scenarios and may need to be upgraded for
performance. The introduction of new, redundant
mechanisms to deliver the needed performance might
open up a new attack surface that was previously
unanalysed.

 in the process of refining an aspect of design, the
design team discovers that they violated some
'contract' established at a previous stage of refinement
(e.g., they agreed to implement a certain message
encryption as a security control in less than a certain
fraction of the main control loop period of a system;
but they discover that when implemented it takes
longer).

 the safety specialists realise that they may have
missed out something important in communicating
their proposed architecture to the security team; so,
the analysis by the latter that gave the 'all clear' to the
architecture may be wrong.

 independently of an on-going development effort (or,
alternatively, after deployment), a new vulnerability

has been discovered in a component or algorithm.
The security team wishes therefore to introduce new
controls, which might violate some assumption made
by the other teams (e.g. about timing, or about
possibility of communication between two
components, or authority given to a component) on
the basis of the currently specified controls.

In all these cases, the "detection" amounts to some team
member becoming aware of something potentially being
wrong. Triggering an interaction point (possibly delayed,
just as responsive maintenance can be delayed) then
serves to perform diagnosis: to decide whether something
is indeed wrong, possibly through intermediate steps of
more extensive analysis. The interaction point may in turn
trigger more extensive analyses (e.g., if our trust that a
deadline would not be violated was built simply on
extensive statistics of the delays observed in off-line
testing, it may trigger another similar round of offline
testing), just for the purpose of reaching a diagnosis, and
then possibly some rework/redesign, again possibly
requiring new analyses on the redesigned system.
Analyses of the results of the rework/redesign would be
subjected to another interaction point, to check that
indeed the problem is resolved. The combination of
statically scheduled interaction points and dynamically
scheduled ones might prove more cost-effective than a
more frequent series of statically scheduled ones.

3 System Design vs. Safety/Security/
Performance Analyses

The evolution of the system through the PLC is captured
by models, chosen by the developers. In AQUAS the
system models of most of the demonstrators will be based
on the OMG SysML/UML formalisms. A significant part
of it may be created directly from these models, including
by e.g. automatic code generation. Should the system be
changed (e.g. fixing faults/vulnerabilities in development
or post-deployment), the system model will be modified
too, so that the “real system” and the model of it are kept
consistent throughout the phases of the PLC.

Assurance about the required non-functional properties of
the designed system is achieved by dedicated methods of
analysis (i.e., Safety, Security, Performance – SSP
analysis), focused on assessing whether the system has
the required non-functional properties or not. Each one of
the various methods used for analysing security, safety
and/or performance relies on its own models. In some
cases, these models coincide with parts of the design
documentation: e.g., some verification methods are
applied directly to source code or to state machine
diagrams used in specifications. But for many SSP
analyses, the models they need rely on formalisms that are
very different from SysML/UML. E.g., performance
modelling might use Petri nets or queuing networks. The
important point here is that whenever an SSP analysis is
needed, a model suitable for it must be extracted or
derived from the model of the designed system, available
at that particular point in time. Two further important
points are worth making here:

J. Favaro, S. Mazzini , P. Popov, L. Str ig in i 263

Ada User Journal Volume 39, Number 4, December 2018

 Some methods of analysis (and their respective
models) may not be applicable at all before the
system model has matured enough (e.g. a tool might
need the availability of source code for analysis).

 Some analyses may ignore some details of the
designed system even if such details are available.
For instance, if one uses a probabilistic state-based
model such as Stochastic Petri Nets (SPN) one may
be unable to benefit fully from having the full source
code of the designed product.

 The design models or design documentation are
normally incomplete descriptions. For instance,
designers may specify the type of a microcontroller
or memory chip to use in the system, and so to
facilitate verification, appropriate data sheets for
these products can be used. But implementation
details inside these components may have major
effects on non-functional properties. E.g., chip mask
changes may have undocumented performance
implications, or add/remove design faults; the much
publicised "Spectre" and "Meltdown" vulnerabilities
result from vendor-controlled chip design details that
a system designer would typically ignore; and the
new security/performance trade-offs required by the
fixes for these vulnerabilities were arranged by
vendors with limited communication to users. So,
analyses for security, safety etc. may require adding
extensive "annexes" to system design documentation.

4 Tool Support

Interaction points occur within the context of a number of
questions:

 Why an interaction point would be needed (e.g. a
potential conflict may arise)

 When an interaction point should take place (e.g.
statically or dynamically determined)

 What will take place during the interaction point (e.g.
joint examination of a design artefact, trade-off
analysis of conflicting design decisions)

 How it will take place (e.g. manual observation and
discussion, automated tool support, semi-automated
tool support)

As challenging as the first two questions are, it is equally
challenging to address the second two questions. That is,
when an interaction point does occur, there must be a
viable set of artefacts (at whatever level of abstraction or
lifecycle phase) available.

 What. The procedures of e.g. the security and safety
analysts can be run independently without difficulty.
But they may use different models that are difficult to
relate to each other; or, simply, the kind of questions
that need to be asked to identity gaps left by the
independent analyses are non-obvious. Or e.g. the
security analyst may propose a design addition – a
subsystem implementing a security control, but
specify it in a formalism that makes it hard for the
other specialists to analyse. This may create practical
difficulties that make a complete analysis too onerous
in practice.

 How. Even if two artefacts have been created with the
same formalism (e.g. SysML), there may be a lack of
adequate tools to support the needed analyses (e.g.
tools for worst-case performance analysis). More
critically, even if the tools are individually available,
they may not be able to interact due to poor planning
of the overall toolchain framework.

Efficiency of interaction is also an important factor here.
People might limit themselves to simpler analyses if it is
too time/effort-consuming to do deeper analyses, such as
the combined analyses for SSP. Inadequate tool
interoperability and inconsistencies of modelling
formalisms can severely hamper efficiency, but they can
be addressed through emerging interoperability standards.
In the end, tool interoperability and judicious automation
will improve not only the economics of the work, but also
the quality of the result.

Acknowledgment

This project has received funding from the Electronic
Component Systems for European Leadership Joint
Undertaking under grant agreement No 737475. This
Joint Undertaking receives support from the European
Union’s Horizon 2020 research and innovation
programme and Spain, France, United Kingdom, Austria,
Italy, Czech Republic, Germany.

Conclusions

The AQUAS project aims to unlock the traditional
approaches and bring co-engineering into mainstream
development processes. The project follows a use case
driven approach where we are developing the concept and
support for interaction points taking place inside and
across the product life-cycle. Lessons learned and tool
support emerging from the collaborative work in the
use cases will be the basis to define the AQUAS
methodology.

264

Volume 39, Number 4, December 2018 Ada User Journal

FED4SAE: A Digital Innovation Hub for the Smart
Anything Everywhere Initiative
L. Rioux
Thales Research and Technology, Palaiseau, France

I. Dor
CEA, Grenoble, France

1 Introduction

The introduction of Cyber-Physical Systems (CPS) and
Embedded Systems into everything from production
facilities and industrial products to everyday products and
services provides a wealth of opportunities with long term
growth potential. The challenge ahead is for the European
industry to seize these opportunities to ensure
competitiveness and production capacity.

In this context, many European member states and
regions are rolling out various initiatives to promote
digital transformation. However, they are neither
organized nor financed to act at a Pan-European level due
to their local (national/regional) objectives. Cross border
interactions are rather limited hampering European
digitalization wave across all industries. As stated by Mr.
G. Oettinger, European Commissioner: “Digitalisation of
industry implies, by nature, cross-border transactions and
international presence. No single Member State can
resolve the related issues alone, or has the resources to
respond to global challenges. We need European
champions to win the global game”.

The FED4SAE project (www.fed4sae.eu) , whose name is
short for Federated CPS Digital Innovation Hubs for the
Smart Anything Everywhere (SAE) is in alignment with
the European Commission SAE initiative (https://
smartanythingeverywhere.eu/). The ambition of the
resulting program is to unleash the creative power of
European companies and to support them through their
innovation process in various “smart domains” so they
can contribute to accelerate the digitization of European
industries. FED4SAE permits companies to leverage the
resources and the know-how and advanced technologies
of some of Europe's top research institutes (research and
technology organizations, technology transfer-oriented
university institutes) and to provide access to cutting-edge
technology platforms offered by leading industrial
companies. An additional and new aspect of this program
will be to help companies with business modeling and
market insights through guidance from conceptual design
through market launch. This also includes assistance with
access to further funding beyond the initial cascade
funding provided by the FED4SAE project.

2 Project Objectives

Due to the complexity of CPS and Embedded Systems,
Start-ups, SMEs and Midcaps are very often do not
possess all the necessary skills (software, hardware,
integration, real time computing…) and technologies
(sensors, actuators, communication technologies…)
required to successfully develop and bring such systems
rapidly to market. The challenges ahead for them are
therefore to:

 Identify the role of key CPS technologies in their
innovation strategy and understand the added value
versus their technology challenges,

 quickly their innovation challenges into technology
programs framed in line with market opportunities
without necessarily having a strong in-house R&D
capacity,

 Select the relevant technologies and their packaging,
which implies learning and maturation time,

 Get easy access to state of the art and leading edge
technologies with necessary technical support to
rapidly exploit these,

 Implement innovation management in their
organization to be enable digital market entry
especially for new comers,

 Prototype, test, refine and iterate their innovations
quickly with end customers to identify and capture
the maximum business value,

 Exploit innovative solutions to address their market
with innovative business model adapted to the
evolution of the industry towards digitization.

The overall ambition of FED4SAE is to boost and sustain
the digitization of the European industry in strengthening
the European competitiveness in the CPS and Embedded
System market by lowering both the technical and
business barriers for innovative companies.

Objective 1: To bring innovative CPS technologies to
businesses from any sector

The first objective of FED4SAE will be to make available
CPS and Embedded System solutions to any European
Start-up, SME and Midcap (defined as Third parties) from
any sector, understand their innovation project, specify
their technology needs and support them to extend their

L. Rioux, I . Dor 265

Ada User Journal Volume 39, Number 4, December 2018

business in developing and exploiting CPS and Embedded
System innovative solutions.

Objective 2: To link Third parties to suppliers across
value-chains and regions in order to create innovative
CPS solutions

The second objective of FED4SAE will be to initiate and
boost synergies between Third parties and established
organizations engaged in and connected to the FED4SAE
DIHs in order to enable the emergence of innovative CPS
and Embedded Systems.

Objective 3: To link Third parties to investors across
value-chains and regions in order to accelerate CPS
solutions development and industrialization

The third objective of FED4SAE will be to support third
parties to reach out to further funding opportunities in
order to engage the next step of their development after
completing their AE (pre-series, industrialization phase,
commercialization…).

Objective 4: To ensure the sustainability of the pan-
European DIH network

FED4SAE objective is to ensure both the sustainability of
the ecosystem for cross border collaboration but also the
access to further cascade funding since this model has
already demonstrated its added-value when combined
with relevant business case analysis and business driven
operation. The sustainability of FED4SAE will combine
public and private financing in:

 Encouraging the organization of local hubs with ESIF
support in allocating specific resources to FED4SAE
pan-European model.

 Raising private financing and partnership to support
the pan-European DIH network with relevant
financial schemes.

3 Overall project concept

FED4SAE concept is dedicated to leverage on the
European added-value to accelerate innovation and
business growth with a broader adoption of CPS and
Embedded Systems innovation while bringing its
technical, industrial and business expertise.

In encouraging Third parties to strengthen their product
and business differentiation with CPS innovation,
FED4SAE will contribute to the digital innovation wave
across all of Europe in managing and facilitating the
relevant interactions between key innovation stakeholders
including regions and local authorities, industries along
the entire value chain up to the market as well as private
investors. FED4SAE is designed to limit the risk of
national silos while focusing on critical mass of actions
and communities working all together to adopt,
implement and invest in digital innovation.

3.1 Support European companies to lead the
CPS based market
The digitization of the European industry is a main
challenge and can not only rely on large corporate. Indeed
as the European Commission highlights “Small and
medium-sized enterprises (SMEs) are the backbone of
Europe's economy. They represent 99% of all businesses
in the EU. In the past five years, they have created around
85% of new jobs and provided two-thirds of the total
private sector employment in the EU.” However only a
very small part of European SMEs have so far been part
of the digital revolution. Only 1.7% of all EU enterprises
use advanced digital tools to innovate in products and
processes. 41% of European SMEs do not use digital
technologies at all according to the European
Commission. Many of the smaller businesses don’t have
the resources to cope with the digital transformation of
their business on their own. The main reason is that they
are mainly working on incremental innovation, with
limited possibility to evolve towards disruptive innovation
that drive the creation of new markets and value
networks.

3.2 Facilitating innovation adoption in
minimizing the valley of death syndrome
One of the main challenges for innovative companies is to
face the so called Valley of death6. The valley of death
can be defined as the time required to finalize the product
development with no or low revenues generation yet. The
valley of death is the period when the technical and
market risks co-exists. The company has limited resources
and has to reach rapidly the market. FED4SAE will
support companies and AEs in limiting this valley of
death syndrome to accelerate product introduction and in
focusing on preparing market penetration. It will be done
by providing access to relevant resources including
funding for prototyping and production of attractive and
innovative solutions. In those early development stages,

Figure 1 Summary of FED4SAE objectives

266 FED4SAE: A Digi ta l Innovat ion Hub for the Smart Anything Everywhere In i t iat ive

Volume 39, Number 4, December 2018 Ada User Journal

FED4SAE will start engaging the market introduction
with relevant business cases, differentiation and by
engaging further investment to support next steps of
development up to commercialization.

3.3 Accelerating innovation with proactive
actions adapted to start-ups, SMEs and midcaps
organization and challenges
A CPS is a system with information processing
capabilities that integrates or at least interacts with users,
the physical word (through sensors and actuators) and the
cyberspace (Server, cloud), as illustrated in Figure 2.
Common applications often fall under sensor-based
communication-enabled autonomous systems. Other types
of CPS include for example autonomous automotive
systems, medical monitoring, process control systems,
distributed robotics, automatic pilot avionics.

Figure 2 Illustration of ingredients of a CPS

CPS and Embedded Systems are composed from diverse
constituent parts (both Software and Hardware) and

design practices related to various engineering disciplines
making CPS and Embedded System solution development
a very complex task.

Today, in a marketplace where rapid innovation is
essential, engineers from all disciplines need to be able to
explore system designs collaboratively. FED4SAE will
act as a value chain aggregator relying on
multidisciplinary competencies. FED4SAE DIHs will
provide a unique Marketplace organized as a one-stop-
shop providing access to technologies, technical expertise,
business and financial services to drive successfully
innovation projects.

4 Summary

FED4SAE DIHs will provide industrial technology core
platforms, research institutes advanced technologies and
testbed environments to accelerate Third parties CPS and
Embedded System developments.

The industrial technology core platforms are of two kinds:
software core platforms and hardware core platforms.
Fitting major technological evolutions, the research
institutes advanced technologies will bring original
concepts and technologies in the CPS challenging
domains. Testbed solutions provided by research
institutes will use to test the AE prototypes in quasi-real
environment of usage. FED4SAE will provide the
required competences to enable Third parties to use them
and to support their innovative developments. The list of
platforms are available on the FED4SAE website
(http://www.fed4sae.eu).

 267

Ada User Journal Volume 39, Number 4, December 2018

Secure Wireless Avionics Intra-Communications:
the SCOTT Approach
Ramiro Samano-Robles1 and José Neves2
1Research Centre in Real-time and Embedded Computing Systems, Porto, Portugal; email:rasro@isep.ipp.pt
2GMVIS SKYSOFT SA, Lisbon, Portugal; email:jose.neves@gmv.com

Abstract

This paper presents the objectives and architecture
of the use case of secure wireless avionics intra-
communications of the European Project SCOTT
(secure connected trustable things). SCOTT aims to
build trust of the Internet of Things (IoT) in
industrial applications. SCOTT addresses multiple
issues such as security, safety, privacy, and
dependability across 5 industrial domains:
automotive, aeronautics, railway, building and
healthcare. The aeronautics use case focuses on the
application for active flow control (AFC) based on
dense wireless sensor and actuator networks
(DWSANs). Topics about security, vulnerabilities
and safety in the general field of wireless avionics
intra-communications (WAICs) will be addressed.
The paper presents preliminary conclusions of the
vulnerabilities and security solutions across
different entities and layers of the aeronautics IoT
architecture.

Keywords: WAICs, security, vulnerability, IoT,
Bubble.

1 Introduction

The number of wireless links is growing exponentially. It
is estimated that nearly 25 billion devices will be online
by 2020 [1]. A high percentage of these devices will use
wireless links. Wireless is expanding to areas previously
reluctant to this type of communication. In aeronautics,
wireless is just recently gaining acceptance for on-board
applications. This late adoption is due to reliability and
interference issues. Wireless is starting to be used on
board for systems that conventionally used only wireline
infrastructure (i.e., as replacement of wires). It will also
be used for applications which are now only possible
thanks to the wireless component (e.g., indoor
localization). Recent interference and reliability studies
with state-of-the-art wireless standards (see [2]) suggest
the feasibility of a relatively new research area called
wireless avionics intra-communications (WAICS) [3].
Examples of potential applications of WAICs are:
structure health monitoring, fuel tank sensors, automatic
route control based on optimized fuel consumption and
weather monitoring, automatic turbulence reduction or
active flow control, flexible wiring redundancy design,
logistics, and in-flight entertainment.

The avionics industry will experience a wireless
revolution in the years to come. The concept of “flyby-
wireless” [4] opens several issues in design,
configuration, security, trustiness, and interference
control. Wireless networks are inherently prone to
security and privacy threats due to their broadcast nature.
Eavesdropping by unintended parties on board or outside
the airplane is one of the main issues, which requires
appropriate encryption, coding and/or authentication
schemes to be minimized. Man-in-the-middle (MiM) and
denial of service (DoS) attacks can prevent sensor
information about aircraft health from reaching the
control cabin, thus posing a threat to the safety of the
plane, leading to mal-functioning. Intentional and
unintentional jamming can also increase the risk of failure
and lack of communication in aircraft. All these
vulnerabilities and risks need to be properly studied, so
that potential countermeasures can be implemented.

This paper deals with security in the domain of
aeronautics of the European ECSEL project SCOTT
(secure Connected Trustable Things) [5]. The aeronautics
use case exploits the application of active flow control
(AFC) using dense wireless sensor and actuator networks
(DWSANs) to design secure communications across
different layers and entities of the architecture. The
objective is to increase the technology readiness level
(TRL) of secure wireless solutions in the avionics
industry.

SCOTT is a project that aims to boost trust, security,
safety, privacy and dependability of the Internet of things
(IoT) in industrial applications. SCOTT envisions a
trusted, industrial-compliant cloud connectivity for IoT,
with high energy efficiency and autonomous operation.
SCOTT uses the concept of Bubble from the predecessor
project DEWI [6]. The Bubble is a high-level abstraction
of an industrial WSAN with enhanced interoperability,
dependability, standardized access to sensor readings, and
cross-domain development [7]. SCOTT foresees an
ecosystem of communicating bubbles in different
industrial use cases.

This paper is organized as follows. Section 2 presents the
objectives of the aeronautics domain of the project.
Section 3 presents the advances with respect to the state
of the art. Section 4 presents the application of active
flow control and its architecture. Section 5 presents the
physical entity model. Section 6 deals with the
functionality model. Section 7 presents preliminary

268 The SCOTT Approach

Volume 39, Number 4, December 2018 Ada User Journal

vulnerability and security analysis. Section 8 presents the
conclusions of the paper.

2 Objectives and measurable indicators

The objectives of the aeronautics domain (Figure1) are
[5]:

 Ensure that WAICs are secure, trustable and safe
(reduce identified vulnerabilities and security threats
in the project of wireless solutions by up to 90%).

 Construct gateways between WAICs and the internal
networks of commercial aircraft enforcing multi-level
and multi-metric security, privacy and safety.

 Increase fuel efficiency by replacing cables and using
dense-WSANs for turbulence and skin drag control.

 Conduct a study of vulnerabilities and potential
attacks to the new hybrid wireless/wired avionics
infrastructure. Propose countermeasures with a trade-
off analysis between complexity and risk.

 Provide guidelines to stakeholders on how to solve
common problems of security, privacy, and
trustiness.

 Help in the adoption of WAICs in industry (including
standardization and certification issues).

 Enable the use of semantics interoperable middleware
tools for the development of advanced fleet
management and smart avionics applications.

The objectives in terms of measurable indicators are:

 To create a repository of tools, reference
implementations and links to middleware and
reliability studies of avionics infrastructure.

 Demonstrate secure wireless avionics applications
covering different scenarios.

 Development of gateways for avionics applications
providing secure and trustable protocol translation.

 Improve the performance of wireless avionics by a
factor of 10 in terms of spectral efficiency, also to
improving energy efficiency and interference
reduction.

 Demonstrate via a prototype, standardization and a
reference implementation the reliability and trustiness
of commercial wireless standards on board aircraft.

 Provide guidelines to aerospace stakeholders on how
to improve privacy and security in WAICs.

Figure 1 Aeronautics objectives

3 State of the art (SoA) and progress

One major potential advantage of using wireless
technology in aeronautics is the reduction of wiring,
which is a critical issue in aircraft and spacecraft design
[8]. Blackhawk helicopters carry almost 2,000 pounds of
wires for computers and sensors [9]. Electrical wiring
problems cause on average two inflight fires every month
as well as more than 1077 mission aborts and over a
hundred thousand lost mission hours per year [10]. Each
year, navy spends one to two million man-hours finding
and fixing wiring problems [11] . Damages on a wired
connection can affect not only the system related to the
faulty wire, but also contiguous systems which
individually would have been fully operational.
Therefore, the use of wireless technology is expected to
bring considerable gains to the avionics industry in terms
of reduction of cables, more flexibility in the design of
redundancy links, and faster troubleshooting. Wireless
nodes have also the advantage reaching places of an
aircraft that cannot be reached by wires. Furthermore,
modern WSNs provide self-configuration, RF tolerance,
and maintenance troubleshooting that are much more
flexible than their wireline counterparts. In critical
avionics applications though, wireless links cannot
completely replace wired links due to the high reliability
requirement. However, they can replace redundant links,
thus increasing reliability and flexibility in the design.

In avionics, wireless technology is well known for several
applications such as: air traffic management (ATM),
telemetry, aircraft-ground control, satellite localization/
communication, identification of friend-or-foe systems,
inter-aircraft communications, and radar. In contrast to
these applications, which are relatively mature, WAICs
have just recently gained attention. Recent results suggest
that existing standardized commercial wireless
technologies show potential low levels of interference and
thus low impact to on-board systems, as well as reliable
performance compatible with existing wireline
infrastructure. These results have paved the way for new
applications for wireless communications in aircrafts.

Security is an important issue in wireless avionics. In
comparison with conventional WSNs, the data of an
aircraft, particularly related to aircraft health monitoring,
is vital for the good functioning, management and safety
of a plane. Therefore, the sensor network should be more
robust to different types of attacks either from passengers
or entities on board, ground or even from other aircrafts.
An extensive analysis of different types of security attacks
using an adversary model, where the adversary can be
internal or external and the attack can be passive or active
are available in the literature. Safety and business threats
have been identified such as: data integrity, authenticity,
confidentiality, link-key establishment, channel jamming
mitigation, secure routing, secure location verification,
and robustness to node capture (eavesdropping)[12].

SCOTT intends to leverage wireless technology in the
aeronautical industry. This means to effectively
implement secure and safe wireless technology in real

R. Samano-Robles, J . Neves 269

Ada User Journal Volume 39, Number 4, December 2018

applications to be used by the aeronautics industry. The
objective is to bring the concept of IoT to aeronautical
applications thus creating a smart, flexible and automatic
environment on board and in different elements of the
aeronautics industry, including airports, management of
infrastructure, flight control, vehicle-to-infrastructure
and/or vehicle-to-vehicle communication, turbulence
reduction, etc. The aeronautics domain will present a full
analysis of vulnerabilities and potential countermeasures
for the hybrid aircraft wireless/wireline infrastructure.
SCOTT attempts to create a framework for smart avionics
development with different levels of security and
trustiness that will enable big data analytics and cloud
computation for the optimization of aircraft performance,
reduction of fuel consumption, controlled interference,
and high spectral efficiency.

Several issues will be addressed, including propagation
modelling for reliable transmission and reduced leaking
or interference, as well as MAC-PHY cross-layer design
to reduce conflicts between different subnetworks in the
same aircraft and minimize interference to control
subsystems. Secure links will be addressed by minimizing
transmissions to potential eavesdroppers or unsafe
locations either within the same or in other airplanes.
Privacy of data will be also addressed by convenient
mechanisms and data-context management with ground
control.

The aeronautics industry expects huge benefits from the
use of wireless technologies. It is estimated that cables
constitute over 70% of aircraft weight. The use of
wireless links could reduce this figure down to 55%. In
addition, technologies such as AFC enabled by DWSANs
can help reduce the effect of skin drag, thus further
improving fuel consumption efficiency. A reduction of
10% in fuel consumption is translated into several
millions of dollars in savings. It is estimated that the use
of wireless technologies will bring a 12% reduction in
terms of fuel consumption [13]. Further improvements
are possible when combined with other technologies such
as winglets, carbon fibre fuselage and improved turbine
design. The use of cables has one more benefit in terms of
cabling planning tasks. It is estimated that these planning
tasks have a cost of 2,200 dollars per kg of aircraft [14].
When considering two types of aircraft the estimated
savings are the following [15]: A320/B737-900 6,400 kg
x 2,200 $/kg ≈ $14 million, and A350-900/B787-9 23,000
kg x 2,200$/kg ≈ $50,6 million. It is also estimated that
13% of an aircraft operation cost is related to
maintenance, reparation and overhaul. Wireless
technologies are expected to have a big impact in the
reduction of these costs. Automatic configuration,
maintenance and troubleshooting can be performed over
the air reducing maintenance service costs.

 4 Application case: Active Flow Control
based on dense WSANs

The objective of the Bubble AFC is to employ a wireless
sensor-actuator and communication bubble for

suppression of the turbulent flow and delaying the BL
(boundary layer) transition. The sensor network will
detect the low-pressure region on the upper wing surface.
The position of BL transition zone will be defined,
selecting the appropriate actuators to be activated. At the
same time, and based on the sensor values, the set of
conditions for operation of the actuators (e.g., frequency,
amplitude) will be calculated based on existing data (pre-
set data). The selected actuators are activated to manage
the turbulent flow on the wing surface. The data is stored.
A new sensor reading is collected, and the cycle is
repeated. The stored data can be analysed to assess system
operation during, for example, different flight profiles or
moments (e.g., take-off, landing, and cruise). Ground
systems can interact with the sensor-actuator and
communication bubble to get the data recorded during the
flight and process this information to determine actuation
plans and analyse the data of the whole fleet.

There are several challenges in the interconnectivity and
how to achieve the desired objective in a dependable
manner, whilst minimizing energy expenditure. The
WSAN requires sensor measurements at high frequency
and in a synchronous manner, to be able to correlate
sensor readings, especially from sensors in close
proximity. The WSAN also needs deal with failures of
sensors, and this can be approached by employing reliable
data transmission and data delivery mechanisms and also
by employing data processing strategies that can deal with
sensor failures.

It is important to boost the use of wireless communication
systems on board to enable the deployment, as soon as
possible, of technologies like Structural Health
Monitoring (SHM) and Active Flow Control. To achieve
this goal, these wireless networks and sensor systems
need to communicate and interact with the main data
buses of the aircraft. Hence, the specification of bi-
directional bridges between different types of
technologies is required. This is still the case if wireless
technologies are used as the main data bus of the aircraft.
Different wireless networks, with different delivery
deadlines and different underlying technologies must
operate together without possibility of interference.
Bridge protocols and interfaces must be specified
considering the constraints of the different networks.

The AFC system uses an architecture with a set of
polygonal patches, each patch with a regular grid/array of
sensors and actuators. These patches will be located
mainly on surface of the wings of the aircraft, and
potentially on other surfaces of the fuselage. The
objective is to control the turbulence region across the
aircraft and reduce losses. All the sensors and actuators
inside a single patch will be wired together sharing a
single communication and control point. The patches will
communicate wirelessly with a relay or access point
located conveniently in the aircraft to ensure good
communication with several patches. Each patch will be
enabled with some sort of intelligence to provide
management of all the sensors and actuators inside the

270 The SCOTT Approach

Volume 39, Number 4, December 2018 Ada User Journal

patch and to provide convenient communication link with
the sink and the control unit inside the Bubble. The
architecture of AFC is therefore a hybrid of a wireless and
wireline sensor network, which is the most convenient for
this application. The information generated by each
sensor will be collected by the control unit of each patch
(node) which will provide some preliminary filtering,
fusion and aggregation functionalities. The refined
information will be then relayed towards the control unit
(Gateway or relay node). Based on this collected
information and based on different flight profiles, the
AFC system will decide the type of actions to be
performed by the set of actuators on each patch. Each of
the flow control actuators is a piezoelectric device
(synthetic jet actuator –SJA- or Fliperon). These actuators
can delay the turbulence BL and thus help in
counteracting the dragging effect in response to the
measured information and according to flight profiles.

The size and number of patches, as well as the number of
sensors/actuators per patch is optimized using a simulator.
These parameters are function of the accuracy of the
active flow control system, the range of the wireless
technology selected, and the data rate of the wireless
sensor nodes. All sensor/actuators nodes will be powered
via cables. The patch will be provided with some power
saving features too. For example, when a sensor
information or actuation is not required from some
patches, they can be powered down until they need to be
used again, thereby saving energy.

The architecture proposed for the AFC system is
relatively new in aeronautics, as it constitutes a hybrid
design with wired and wireless components. The number
of sensors for this application is expected to be large,
more than in common WSNs, being deployed over a
relatively small area. This brings up the issue of
interference, if each sensor was to be enabled with an
individual wireless connection. To solve this, our
approach presents an architecture where groups of sensors
wired together form a patch that will act as a single
wireless transmitter. Each patch will be provided with
smart self-configuration and control. Figure 2 shows the
possible embodiment of a regular design of sensor and
actuators inside a patch. Each patch will have a radio
transceiver and a control unit with some intelligence. This
node will be in charge of organizing the processing and
operations inside the patch, as well as filtering, fusing,
and aggregating data to be sent towards the wireless node.

Figure 2 Patch concept for AFC

Another aspect is the interconnection of WAICs into the
avionics internal systems as shown in Figure 3. The
proposed solution has to be able to pass reliably the traffic
from/to the wireless sensor/actuator network to the
internal avionics network under different QoS constraints.
In general, the AFDX (Avionics Full-Duplex Switched
Ethernet) network (or ARINC664) has more stringent
QoS requirements, therefore the solution must include an
appropriate scheduler that will ensure these QoS
constraints of the AFDX traffic are met or conveniently
addressed when transported to/from the wireless domain.

4.1 Overview of the architecture
The main physical entity of the SCOTT AFC system is a
regular array of wired sensors and actuators also called
patch. A possible configuration of this patch and an array
of patches are shown in Figure 2. The patch can have
hexagonal, rectangular or in general a polygonal shape,
depending on the needs of coverage over the aircraft. The
patch is mounted over the surface of the fuselage and
mainly the wings of the aircraft, where turbulent flow is
expected to be formed, particularly at high vehicle speeds
and high values of angle of attack (AoA). We recall here
that the objective of the dense SAN (sensor and actuator
network) implemented by means of patches is to track the
formation of turbulent flow and attempt to delay the
separation of the boundary layer using actuation policies
for different flight profiles or moments of an aircraft
mission. All the sensors and actuators inside the patch are
controlled by a master unit, which is in charge of intra-
patch management, signal relaying, data aggregation, data
fusion, compression, and protocol conversion. The
sensors and actuators can be connected using a real time
technology that can have several characteristics or
topologies. One potential configuration is using a
microprocessor board controlling one subset of sensors
and actuators inside the patch. A network of
microprocessors is deployed inside the patch, with a real
time transmission technology such as CAN (Controller
Area Network) or ARINC 664. Intra-patch routing
algorithms can be implemented to allow the information
of different sensors to be collected reliably and in real
time by the master unit.

Each patch in the network has a wireless transmission unit
that is used to communicate with a wireless gateway

Sensor

Actuator

Figure 3 Interconnection with an
aeronautical internal network (AFDX)

R. Samano-Robles, J . Neves 271

Ada User Journal Volume 39, Number 4, December 2018

located conveniently in the aircraft to maximize coverage
with a set of distributed patches (see high level
architecture displayed in Figure 5). The patch is the basic
unit of the proposed AFC system, as it provides
modularity, scalability, flexible implementation, as well
as advanced management and troubleshooting. Close loop
operation occurs at three levels:

1. Directly at the sensor and actuator microprocessor
control level to deal with the fast (short term) and
spatially correlated variations of the turbulent flow to
be sensed.

2. At the level of the internal aeronautics network (see
Figure 3). A control unit for the network of patches
resides in the internal control operation of the
aircraft. The decisions of the medium-term
turbulence statistics are taken directly in this close
loop control unit on-board the aircraft.

3. All the relevant measurements for different moments
of an aircraft mission are relayed from the aircraft to
ground control. Ground control contains a database
of actuation policies that are optimized over different
types of aircraft at different times of the year, routes
and weather conditions. This level of control allows
operators to optimize routes, as well as actuation
policies based on big data analytics that will become
more reliable over longer periods of time and with
more data of sensor and actuation policies.

5 Physical entity model

Patch of sensors and actuators. The basic unit of the
AFC system consists of a regular set of sensors and
actuators that communicate with each other in a mesh
array or in star formation with a master control unit. The
intra-patch communication technology can be real-time or
with high reliability to transport all the sensor readings to
the master unit, as well as any actuation control policy
back from the master unit to the actuators. Each patch has
a wireless communication module that allows
transmission with an access point or with other patches
depending on the configuration. Patches are also allowed
to relay the information of other patches towards the
destination if necessary. The control unit can also process
the sensor data across time and space inside the patch.
Other functionalities of the patch include filtering,
encoding, encryption, compression, etc. One potential
configuration is using a microprocessor board controlling
one subset of sensors and actuators inside the patch. A
network of microprocessors is deployed inside the patch,
with a real time transmission technology such as CAN
(Controller Area Network) or ARINC 664.The intra patch
communication technology can use secure routing to
avoid malfunction or an attack.

Wireless gateway or WAICs access point. This entity
implements the PHY and MAC layer transmission and
organisation of the WAICS radio technology for
communication with patches. The gateway translates the
wireless protocol to the internal wireline aeronautics
network of commercial aircraft. This translation has

several challenges due to the different nature of the
unreliable and unsecure wireless world in comparison
with the real-time internal avionics network. Part of the
analysis is how to make secure this translation from the
wireless domain to the wireline real-time operation of the
commercial aircraft.

Internal actuation policy control unit. This entity is in
charge of the collection of the medium-term statistics of
the collected flow information from the network of
patches across the entire aircraft. Therefore, it can be used
to calculate actuation policies that optimize the delaying
of the BL separation for the whole airplane. In this
problem it is evident that the whole performance and
stability of the aircraft as well as aerodynamic efficiency,
and monitoring of other stability issues of the airplane
come into place. In addition, for security purposes it is
possible to implement intrusion detection, misbehaviour
tracking, redundancy coding, authentication of patches,
authorisation of actuation policy control, etc.

Ground operator and actuation policy database back
end servers. This entity is in charge of the actuation
control and optimisation across different aircraft. It is
intended to provide airline operators with a means to
control, analyse, collect and process sensor data of
different routes and aircraft. This processing aims to
obtain (using cloud computing tools, for example)
optimised actuation policies according to the time of the
year, route, type of aircraft, weather conditions, etc. In a
generalized scenario, this entity provides consolidated
access to sensor and actuation control information for
wireless avionics applications. Several security
mechanisms can be used in this external access to aircraft
information such as authorization, authentication,
encryption, tunnelling, intrusion detection, privacy
labelling/control, etc.

5.1 Aircraft architecture
The aircraft comprises several systems with different
functions defined to achieve several product goals (see
Figure 4):

1. Aircraft Control Domain (ACD): contains functions
required to maintain the aircraft airworthy providing
control to pilot or breathable environment to
passengers. Any fail or malfunction jeopardizes the
aircraft.

2. Airline Information Services Domain (AISD): used
by airline to operate the aircraft providing
maintenance information and software and databases
updates.

3. Passenger Information and Entertainment Services
Domain (PIESD): contains those functions used by
passengers during the flight like games, internet
connection and access to media.

5.2 Layered model alignment
This section provides the alignment of the physical entity
model described in previous subsection with the layered
overview of the SCOTT high level architecture. This
layered model is closely correlated to the concept of

272 The SCOTT Approach

Volume 39, Number 4, December 2018 Ada User Journal

SCOTT Bubble, which is the basic building block for
interoperability and security enhancing for the project.
This layered model consists of three levels (one of them
optional) that define the intra and extra-bubble space as
observed in Figure 5. Level 0 is the wireless domain to
provide the last link between the fixed aeronautical
infrastructure towards the distributed sensor or object
nodes. In the active flow control use case, this wireless
technology has actually a hybrid approach using wireline
and wireless components under the name of patch. A
patch is a wireline entity of sensors and actuators. Each
patch uses wireless technology to communicate with the
L0 or WSN gateway. The access point is placed on-board
the aircraft therefore acting as the translation entity
between the wireless domain and the internal network of
the aircraft. This internal network of the aircraft acts as
the L1 of the SCOTT reference architecture. Many other
WAICs applications will use the same approach,
particularly those in which the wireless link replaces an
existing wireline sensor. In the case of the AFC use case,
it is also plausible that L1 is completely independent of
the internal network of the aircraft. However, for the sake
of covering more generic implementations, it will be
multiplexed inside this internal network, which in many
current commercial aircraft is a real-time deterministic
version of Ethernet technology. This integration into the
L1 internal aircraft network, comes at the expense of
traffic contention, possible attacks from other points
inside the internal network, as well as attacks originated
in the wireless network towards other aircraft internal
subsystems. This means that the internal critical aircraft
network can be subject of an attack coming from the
wireless domain, which is a less secure environment. In
the SCOTT reference architecture, L1 is an optional level,
mainly because in some uses cases it is possible that this
interaction with an existing domain network does not
exist. The on-board unit acts as the Bubble Gateway,
which controls all aspects of the intra-bubble space and
provides translation for external user access. This is the
boundary of the SCOTT Bubble in aeronautics.

Finally, Level 2 of the reference architecture defines the
extra bubble space. L2 is used for external access to the
information of Nodes inside the aeronautical Bubble. This
is the ground control operation network, where the
external user is the airline operator or a smart avionics
application collecting information from many different

aeronautical Bubbles, inside the same aircraft or located
in different aircraft or fleets. The mapping of the
aeronautical use case to this layered view of the
architecture is shown in Figure 5.

The Bubble is a concept that allows an integration of
legacy WSN and local industrial domain technologies into
a single point of entry towards the modern Internet cloud.
The bubble Gateway can provide transparent access to the
objects inside the Bubble, or simply to a summarized
version of the information generated inside the Bubble.
This concepts allows designers to exercise control over
the access to the intra-bubble entities, and therefore
enforce higher dependability different from the non-delay
sensitive internet-like infrastructure (L2) and also higher
security control. In the aeronautics industry, the use of a
Bubble confined to one aircraft or sections of the aircraft
is a powerful tool to avoid attacks from external entities,
while also controlling the permissions granted to L1
internal users. The attacks coming from the passenger
entertainment system can also be handled by enabling the
bubble gateway with convenient scheduling policies and
out-of-band security communication, as well as
autonomous operation.

Figure 5: AFC use case architecture

6 Functionality model

The functionality model is derived explicitly from the
reference architecture of the project. The explicit
functional model for the AFC system is shown in Figure
6, and the hybrid view functional versus layered entity
model is shown in Figure 7. Functional layers include:
Device Layer (DL), Network Layer (NL), Service Layer
(SL), IoT and Virtualization Layer (IOTL), Cloud and
application Layer (CAL), and Service Layer Management
(SLM) and Cross-Layer Management (CLM).

Each of the physical entities will implement a slight
variation of the functional model. The hardware layer in
the patch unit focuses on the technology to interconnect
sensors and actuators, intra-patch routing, management,
compression, redundancy coding, encryption (optionally),
authentication, intrusion detection, safe mode operation
and troubleshooting. The intra-patch technology is real-
time and is used to collect the sensor measurements from
the dense mesh of nodes in the master unit of each patch.
There are no high-level functionalities here except in the
master unit of each patch, which provides protocol
translation to the wireless domain.

Figure 4 Aircraft domains and users

GW

L1

L2

L1

WSN
GW

WSN
GW

WSN
GW

WSN
GW

R. Samano-Robles, J . Neves 273

Ada User Journal Volume 39, Number 4, December 2018

Figure 6 Functional entity layered model

Figure 7 Mapping functional vs physical entity

One candidate for intra-patch communication is the
protocol TTP (Time Triggered protocol). In the wireless
domain for inter-patch communication, several aspects of
the functional model are here presented: MAC and PHY
communication layers use MIMO (multiple-input
multiple output), beamforming, MAC-PHY security,
interference rejection, spatial-based authentication,
collision resolution by retransmission diversity, multi-
packet reception, interference alignment, and
dependability control. Optionally, encryption in this link
will also be used based on the IEEE 802.15.4 standard.
Intrusion detection, and safety hazards identification are
also being investigated. Higher layer functionalities
include secure routing, tunnelling, patch-authentication
using key distribution algorithms, malware detection, and
firewall protection to avoid intrusion into the internal
network of the aircraft. The inter patch network is focused
heavily on secure radio resource management using
multidimensional physical and MAC layer diversity
(retransmission control), as well as MIMO allocation.
Other functionalities in this inter-patch network are
troubleshooting, energy management, flow state
estimation, and actuation control.

The functionalities in L1 are mainly focused on the
scheduling of traffic of the AFC system into the internal
commercial real-time network of the aircraft (using the
standard ARINC 664). Other functionalities include the
following: quality of service control, flow management,
secure encryption, traffic analysis to avoid malware
intrusion, etc. The Bubble gateway has upper layer
functionalities of routing in the internet, sensor data
fusion, actuation control/update, sensor node
virtualization, tunnelling, authentication of external users,
key distribution, intra AFC system management, traffic

control, dependability insurance mechanisms for real time
internal networks, device management, etc. Secure
Socket Layer (SSL) is one of the options in evaluation to
be implemented at the L1 and L2 network levels of the
aeronautics architecture. An extension of the concept of
virtual link (VL) used in the standard ARINC 664 is also
under consideration to be used in the wireless domain.

Other associated functionalities to the AFC use case are
aircraft collision avoidance using the technology TCAS
(Traffic collision avoidance). This refers to the high-level
application domain of secure wireless avionics intra
communications. The model can also be extended to other
structure health monitoring (SHM)-like applications for
the aircraft. More details are shown in Figure 7, where
some of the interfaces are still under study (TBD- to be
defined). The functional view of the reference architecture
defines several interfaces between layers as follows:

6.1 Interface DL-NL
The network layer requests the services from the device
layer implemented in the patches and the MAC-PHY
technology used for the inter-patch communication. The
NL is in charge of routing in the network of patches, IP
address identification, interoperability with the internal
network of the airplane via scheduling, and traffic control.
The network layer has also the objective to have a load
balance in all the possible AFC networks across the plane,
and the matching between the deadlines of the wireline
and wireless network. This interface can also host some
security functionalities based on IP technology such as
IPSEC, tunnelling, secure sockets layer, etc.

6.2 Interface NL-SL
The service layer requests the network layer with the
flows of the different patches and wireless networks
aggregates of the active flow control system. It is in
charge of organizing all the collection of sensor
information across the different wireless networks of
patches, processing and correcting errors. Intrusion
identification is possible by matching the statistics of
different networks and comparing to established margins
of values. There is also the possibility to detected
interference and jammers. Error of the boundary layer
tracking or estimation of lift off forces can be used as
metrics to estimate malfunction or potential attacks.

6.3 Interface SL-IOTL
The IoT layer allows airliner operator to gather data from
aircraft. Authentication of credential of operators, as well
as rules for privacy management for integrity or exposure
can be implemented in this interface mechanism.

6.4 Interface IOTL-CAL
This interface aims to provide the data of one aircraft to
the cloud computing facilities that will calculate optimum
actuation policies using the data from different aircraft,
airliners and potentially different routes. This will allow
us to provide one last level of closed loop control.

Device layer

Network layer

Service layer

IoT and Virtualization layer

Cloud and applications layer

Secu
rity, P

rivacy , an
d
 tru

stin
e
ss M

an
age

m
e
n
t

C
ro
ss
‐l
ay
e
r
m
an
ag
e
m
en
t

TBD

TBD

TBD

SSL

MIMO

Tellus‐B

IEEE 802.15.4

Patch proprietary

ARINC 664

TCAS

Zig‐Bee ARINC 664WAICs

SHM Fleet control
operation

Cross operator and turbulence weather monitoring

Weather and fleet international control

L0 device to/from L0
GW

L0 Device to/from L0
Device

L0 GW to/from L1 GW
Bubble L1 to/from Internal

User
Bubble GW to/from

Service provider/Cloud

Cloud and applications
layer

- N/A
- -

N/A
-

Operator fleet
control

- Operator
fleet

control

Encryption

IoT Virtualization layer -
N/A - -

WAIC server
- Avionics layer -

Avionics
layer

PHY-access

Service layer

Security, trustability
and privacy

SSL SSL
- -

SSL
-

SSL
-

SSL
-

Common services
Flow

control
HTTPS

- -
WAICs

-
WAICs

-
HTTPS

-

Network layer

Transport UDP SSL
- -

VL
-

VL
-

HTTP
-

Network ZigBee
Encryptio

n

- -
ARINC 664

-
ARINC 664

-
IP

-

Device layer

Basic functions and
MAC/PHY layers IEEE

804.15.4
MIMO-
based

- -
ARINC 664

-
ARINC 664

-
Ethernet

TBD

Hardware layer

Pressure
sensors,

micropum
ps, TTP

Compres
sion

-
-

ARINC 664
-

ARINC 664
-

Ethernet
-

274 The SCOTT Approach

Volume 39, Number 4, December 2018 Ada User Journal

6.5 Interface DL-CLM
The main mechanisms for security control in the AFC
system are foreseen to be implemented in the MAC-PHY
layer. The cross-layer management aims to use this
information to improve system performance in different
layers. Channel conditions can be used indirectly to
estimate flow states and provide redundancy to the sensor
information. They can also be used to authenticate,
manage and troubleshoot different patches.

6.6 Interface DL-SLM
This interface focuses on the multi-layer security interface
with the device layer. Examples of this interface allow
MAC-PHY algorithms to identify jammers or directions
of eavesdroppers. Node identification using direction of
arrival or statistical signal processing are also possible.
Redundancy of source and channel coding can be used.

6.7 Interface NL-CLM
In this interface the network layer provides information to
cross-layer optimization algorithms, Routes, Addresses,
traffic state, quality of service, etc. are some of the
metrics and information that can be requested through this
interface.

6.8 Interface NL-SLM
The network layer interacts with the security layer
management via a set of specific protocols. Tunnelling,
virtual links, security layers, etc. are examples of specific
implementations of this interface. In the aeronautics use
case there is no expected usage of this interface.

7 Vulnerability and attack model(s)

Vulnerability and attack models are being developed for
different layers of the aeronautics architecture. A useful
reference model used in the SCOTT reference
architecture and across the literature of security of IT
systems (Common Criteria) is displayed in Figure 8. The
important aspect from this framework is to identify the
main asset, the associated vulnerability, and potential
threats(s). From this information it is possible to define
the actions that the stakeholders are willing to implement
to reduce risk. The following tables show the
vulnerabilities identified so far and potential solutions.

, Table 2, and Table 3 present the vulnerabilities and
potential solutions for L0, L1, and L2 layers, respectively.
The tables follow the functional model of the SCOTT
reference Architecture.

Figure 8 The Common criteria conceptual model for security

Table 1: Vulnerabilities, threats and solutions AFC L0

Layer Vulnerabilities Potential solutions

CAL N/A N/A
IOTL N/A N/A
SL DDoS Packet analysis, authentication
NL DoS, spoofing, MiM Authentication, encryption,
DL Jamming, eavesdropping,

collision, Integrity.
MIMO, beamforming, blind
processing, rotational
invariance techniques, multi-
objective optimization

Table 2: Vulnerabilities, threats and solutions AFC L1

Layer Vulnerabilities Potential solutions

CAL Spoofing, Identity
theft

IOTL DoS, latency issues
SL Replay attack
NL DoS, spoofing, MIM Authentication, encryption,
DL Interference,

congestion, spoofing
MIMO, scheduling, traffic shaping,
authentication, PHY-layer assisted
control and sensor aggregation

Table 3: Vulnerabilities, threats and solutions AFC L2

layer Vulnerabilities Potential solutions

CAL Data integrity, lack of
privacy, lack of
confidentiality, Spoofing,
Identity theft

IOTL DoS, latency issues
SL Replay attack Firewall L3, tunnelling, Key

distribution
NL DoS, MiM Authentication, encryption,
DL Spoofing PHY-layer assisted control

and sensor aggregation,
authentication

Figure 9 shows the loop of actuation control and the
potential security issues that can be found along that loop
and the entities involved in the process of the aeronautics
use case. The intra-patch technology can be subject to
software and hardware malfunctions, hacking attacks that
take over the control of some patches operating system or
transmission units. Some software verification, safe-mode
operation, or firewalls can be used to avoid these
problems inside the patch. The patches aim to reliably
collect information of the state of the flow, and also
implement the optimum actuation policy with the lowest
delay to reduce risks of incorrect operations, or instability
of the aircraft. It has been identified in previous
deliverables that attacks such as denial of service or
jamming that can completely disable the AFC system are
not the most serious types of threats, provided the system
is identified as unavailable. The most serious threats in
the AFC case is when the information collected by the
patch has been mismanaged or that its integrity is lost due
to man in the middle, spoofing or replay attacks. This
means that the control logic of the AFC system will
decide actuation policies that are incorrect and therefore
will affect the efficiency of the system in terms of loss of
lift off forces, reduced efficiency in skin drag reduction,
and eventually in fuel consumption increase, reduced
range, payload capacity or aircraft speed. Therefore,
particular attention will be placed on attacks where the
data integrity of the sensors or the loop to disseminate
actuation policies is compromised. In the network of

Stakeholder

Countermeasure

Vulnerability

Risk

AssetAttack

Threat

Threat agent

Provide value

ImposeImposed by

Place value
to

Leading to

Increase

May exploit

Give Rise to

Aware of

Materialise

R. Samano-Robles, J . Neves 275

Ada User Journal Volume 39, Number 4, December 2018

patches, MIMO (multiple input multiple output) will be
used to construct an efficient way to manage the wireless
transmissions to reduce risks of eavesdropping attacks,
counteract jamming, identify compromised patches,
authenticate and authorize spatially-based transmissions,
and provide redundancy to the measurements of the state
of the flow aggregated from al the patches across the
airplane.

Figure 9 Security analysis of the ACF use case

Currently four attacks and security solutions are being
considered in this use case. An interference jamming
attack model is being considered using direction of arrival
detection, higher layer detection using statistical tools or a
simple passive footprint stochastic geometry model to
reduce the potential attacks from pre-established
directions in the aircraft. This information about the
attacker, either active or passive is used in the adaptation,
retransmission control, MIMO resource allocation or
beamforming solution. These processes are illustrated in
Figure 10.

Figure 10 Interference attack model and countermeasure

Eavesdropping is a passive attack common in wireless
applications. When using MIMO to manage the
information transmitted in different spatial direction, it is
possible to deal simultaneously with the reduction of
interference and the leakage of information to insecure
directions where eavesdropper might be detected or where
there is a high risk. The model is shown in Figure 11.

Figure 11 Eavesdropping attack model and
countermeasure

Intrusion attack can lead patches to have incorrect or
undesirable behaviour, producing data or incorrect
feedback to the loop control. Mechanisms are being
developed to provide redundancy about the flow state
sensed by different patches. These mechanisms are based
on a combination of physical MAC and higher layer
reasoning processes. The idea is to detect patches that
have been compromised and adapt all the network to
reduce the influence of a compromised patch. The process
is shown in Figure 12.

Figure 12 Intrusion attack and countermeasure model

Higher layer attacks are also being considered. A denial
of service attack (see Figure 13) can be launched in the
internal network of the aircraft, producing the lack of
contact of the patches with the control unit on board the
plane. Different approaches are being considered to
address this issue, for example the triggering of an
autonomous operation by the network of patches,
distributed decision making, etc.

Figure 13 DoS attack and proposed countermeasure model

Conclusions

This paper has presented the architecture of the
aeronautics use case for secure WAICs. Interface,
objectives, requirements and preliminary vulnerability
and security analysis have been conducted. The
aeronautics industry will benefit from a detailed security
analysis of interfaces in the context of modern IoT
systems and architectures. SCOTT expects to cover
several aspects in the coming years.

Acknowledgments

SCOTT has received funding from the Electronic
Component Systems for European Leadership Joint
Undertaking under grant agreement No 737422. This
Joint Undertaking receives support from the European
Union’s Horizon 2020 research and innovation
programme and Austria, Spain, Finland, Ireland, Sweden,

Sensor

Actuator

Boundary detection

Data aggregation

Secure routing

Software verification

Redundancy coding

Compression

Airplane Data Buse
(internal user)Internal

GW

Eavesdropping

Jamming

MIMO monitoring

Security-safety
Denial of service

Man in the middle
Jamming

Data integrity

Intentional
interference

attack

Higher layer detection

Adaptation and
control

retransmissions

Passive detection

Detection DoA

Eavesdropper
attack

Higher layer detection

Adaptation and
control

retransmissions

Passive detection

Detection DoA

Intrusion patch
attack

Redundancy
Higher layer detection

Adaptation and
control

retransmissions
Kill patch command

Space‐time ID
detection

Detection DoA

DDoS AFDX

Redundancy
Higher layer detection

Autonomous mode
operation

Network testing

Load Detection

276 The SCOTT Approach

Volume 39, Number 4, December 2018 Ada User Journal

Germany, Poland, Portugal, Netherlands, Belgium,
Norway. Funded also by FCT/MEC, ERDF (European
Regional Development Fund) under PT2020, and by
CISTER Research Unit (CEC/04234).

References

[1] D. Evans, The Internet of Things. How the Next
Evolution of the Internet Is Changing Everything.
Available at http://www.cisco.com/c/dam/en_us/
about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

[2] N.L. Armstrong and Y. M. M. Antar (2008),
Investigation of the Electromagnetic Interference
Threat Posed by a Wireless Network Inside a
Passenger Aircraft, IEEE transactions on
Electromagnetic Compatibility, vol.50, no.2, pp.277-
284.

[3] ITU-R (2013), Technical characteristics and
spectrum requirements of Wireless Avionics Intra-
Communications systems to support their safe
operation, Report M. 2283-0.

[4] D. Dang, A. Mifdaoui and T. Gayraud (2012), Fly-
By-Wireless for Next Generation Aircraft:
Challenges and Potential solutions, Wireless Days
(WD) IFIP.

[5] SCOTT JU Grant Agreement incl. Description of
Action (DoA), ECSEL Joint Undertaking, Grant
Agreement No. 737422, Part B, 2017-05-18.

[6] DEWI JU Grant Agreement Annex 1 – Description
of Work, 2016-12-16.

[7] R. Samano-Robles, T. Nodstrom, W. Rom, S.
Santoja, and E. Tovar (2016), The DEWI high-level
architecture: Wireless sensor networks in industrial
applications, Eleventh International Conference on
Digital Information Management (ICDIM), Porto.

[8] J. Liu, I. Demirkiran, T. Yang, and A. Helfrick
(2008), Communication schemes for aerospace
wireless sensors, IEEE/AIAA 27th Digital Avionics
Systems Conference, 2008, 26-30.

[9] L. N. Long and S. J. Schweitzer (2004), Information
and knowledge transfer through archival journals
and online communities, AIAA Paper 2004-1264,
Aerospace Sciences Meeting, Reno, NV.

[10] S. Field, P. Arnason, and C. Furse (2001), Smart wire
technology for aircraft applications, Proceedings of
the 5th Joint NASA/FAA/DoD Conference on Aging
Aircraft, Orlando, FL.

[11] T. Stone, R. Alena, J. Baldwin, and P. Wilson (2012),
A viable COTS based wireless architecture for
spacecraft avionics, IEEE Aerospace Conference,
Big Sky MT, pp. 1-11.

[12] K. Sampigethaya, R. Poovendran, L. Bushnell, L.
Mingyan, R. Robinson, and S. Lintelman (2009),
Secure wireless collection and distribution of
commercial air-plane health data, IEEE Aerospace
and Electronic Systems Magazine, vol.24, no.7,
pp.14-20.

[13] D. Graham-Rowe (2009), Fly-by-wireless set for
take-off, New Scientist, vol. 203, pp. 20-21.

[14] M. Harrington (2011), Introduction to wireless
systems in aerospace applications, Proceedings of the
CANEUS "Fly-by-Wireless" Workshop, Montreal,
Canada.

[15] O. Elgezabal (2010), Fly-by-Wireless (FBWSS):
Benefits, risks and technical challenges, CANEUS
Fly-by-Wireless Workshop, Orono, ME, USA.

278

NORTH - Non-intrusive Observation and
RunTime Verification of Cyber-Physical Systems∗

José Rufino, António Casimiro, Antónia Lopes
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal; email: {jmrufino, casim,
malopes}@ciencias.ulisboa.pt

Frank Singhoff, Stéphane Rubini, Valérie-Anne Nicolas, Mounir Lallali, Mourad Dridi, Jalil Boukhobza,
Lyes Allache
Lab-STICC UMR CNRS 6285, Université de Bretagne Occidentale, UBL, Brest, France; email: {singhoff, rubini,
vnicolas, lallali, mourad.dridi, boukhobza}@univ-brest.fr

Abstract

The increasing usage of autonomous vehicles and other
cyber-physical systems has motivated the adoption of
Runtime Verification (RV) techniques for embedded sys-
tems. This stems from the criticality of such systems,
which call for the assurance of correct operation, both
on value and time domains. However, traditional RV
techniques (mostly based on code instrumentation) may
inevitably pose significant overheads, both in perfor-
mance and timeliness, due to their inherent intrusive-
ness, which make them clearly unfit for critical systems.

This paper aims at advancing the state-of-art in RV
techniques by presenting an innovative research obser-
vation and runtime verification method, supported in
non-intrusive monitoring machinery. The negative ef-
fects of traditional techniques (ranging from function
call interception to source code annotation with obser-
vation points) are avoided, making this novel approach
relevant to virtually all (critical) cyber-physical systems.

1 Introduction and Motivation
Autonomous vehicles are finding their way into more applica-
tions every day. For example, drones for surveillance. These
vehicles include on-board computing systems that are based
on embedded processing elements, performing the necessary
control functions to perform the vehicle’s mission.

Given that the interaction with the environment may have
very high safety requirements, the correctness of the overall
system is paramount and should be ensured at all times. This
may be envisaged as a general framework of the so-called
Cyber-Physical Systems (CPS) with mechanisms controlled
and/or monitored by computer-based techniques [1].

∗This work was partially supported by FCT, through funding of LASIGE
Research Unit, ref. UID/CEC/00408/2013, and by FCT/CAMPUS FRANCE
(PHC PESSOA programme), through the transnational cooperation project
3732 (PT) / 37932TF (FR), Non-intrusive Observation and RunTime verifica-
tion of cyber-pHysical systems (NORTH). This work integrates the activities
of COST Action IC1402 - Runtime Verification beyond Monitoring (ARVI),
supported by COST (European Cooperation in Science and Technology).

In order to satisfy the demanding timing, safety and security
properties, some sort of correctness verification procedures
are needed during the execution (runtime) stage of the system,
assessing its state against a previously defined specification.
The systematic and well-defined use of such procedures is
called Runtime Verification (RV) [2].

Most of the current RV techniques require the modification
of the application source-code. Although such code instru-
mentation is reasonable for larger systems, the timeliness
requirements together with scarce resource availability that
characterise autonomous and vehicular systems may pose an
unsurpassable challenge for runtime verification in such kind
of systems. Other techniques, such as system and/or function
call interception, are also not free from intrusiveness [3, 4].

The goal of this work is to enable non-intrusive observation
and runtime verification techniques in cyber-physical systems.
This calls for advanced models, methodologies and mecha-
nisms. Non-intrusive RV needs a novel approach based on
accurate modelling of system components and embedded pro-
cessing elements. These models will then be strengthened by
the usage of formal temporal logics for verification rule def-
inition, based on specifications and model properties. Then,
rules are verified at runtime by independent (non-intrusive)
hardware observation and monitoring mechanisms.

A comprehensive set of properties, ranging from timeliness to
safety and security, shall be monitored. Timeliness and safety
are crucial for the correctness of vehicle operation and for
mission survivability. Security proprieties and resilience to
intrusion attacks is mandatory in vulnerable systems subject
to an increasing number of threats. Therefore, novel and
innovative RV techniques are in need to be applied to the CPS
realm. To avoid the intrusiveness shortcomings of traditional
RV techniques, the observation of the system must be made
non-intrusively, a fundamental step for the NORTH project.

The paper is organized as follows. Section 2 introduces the
NORTH work flow. Section 3 focuses on the non-intrusive
NORTH features while Section 4 discusses the evaluation
of those features in NORTH-inspired systems. Section 5
describes the related work and, finally, Section 6 presents
some concluding remarks and future research directions.

Volume 39, Number 4, December 2018 Ada User Jour na l

J. Ruf ino, F. S inghof f e t a l . 279

Application to Adaptive

Systems

Task 5

Proof of Concept Prototype

and Demonstration of Use

Tasks 6

Cyber-Physical Systems:

Models and Properties

Task 1

Temporal Logics for Runtime

Verification

Task 2

Safety Manager
Run Time Safety

Information

Safety
Kernel

Sense Compute Communicate Actuate

Nominal system components

Design Time
Safety

Information

Functions
with

several
Levels of
Service

Adjust
Component behavior

(or reconfigure)

Extract
Sensor data validity/

Timeliness information

“Hybridization
line”

Predictable
behaviour
(all bounds
proved to

hold at
design time)

Uncertain
behaviour

(no bounds
are proved to

hold at
design time)

?

Non-intrusive Observation and Runtime Verification

Task 4
Task 3

Runtime Verification Requirements

Methods & Tools

Figure 1: The NORTH project work flow.

2 NORTH Project Work Flow
Understanding and formalising the properties of a cyber-
physical system and how temporal logics can be used to verify
those properties, is one key point of research. The gained
knowledge will then be consolidated in a methodology and
in the architecture of a tool for assisting in the definition and
expression of runtime verification mechanisms. These should
be combined with mechanisms for self-adaptability, allowing
the dynamic definition of new sets of observation points. A
proof of concept demonstrator merges the outcomes of the
activities, sketched in the diagram of Figure 1.

T1. CPS Component Modelling and Property Extraction
this task aims at modelling the several components in a cyber-
physical system, both hardware and software, identifying/ex-
tracting the properties that can be subjected to runtime ver-
ification activities. The hardware may include not only the
computing platform but also a relevant set of sensors/actu-
ators. The software part of the system includes the control
components. However, it may include also properties of
data processing (validity and fusion), (self-)awareness, (self-
)adaptability, perception, collaboration, among others. On the
environment level, dealing with uncertainty is a must.

T2. Temporal Logics for Runtime Verification of CPS
this task aims at exploring the applicability of Temporal Log-
ics to the runtime verification of cyber-physical systems, and
therefore study how the properties extracted in the previous
task can be verified at runtime by such logics. Properties
that should be verified at runtime may include: load bounds,
timeliness, safety and security.

T3. Methods and Tools for Runtime Verification of CPS
this task aims at defining the architecture and flow for the
integration of the results stemming from the previous task
into the specification of runtime verification clauses. The

definition and design of special-purpose tools, augmenting
and extending the scope of existing standard tools (e.g., the
GNU binutils), may be required for adequate assistance in
this process. This task defines a set of points of interest that
should be non-intrusively observed and verified: variables
and data-types; dynamically allocated memory (if it exists);
system or function calls; exception handling.

T4. Non-intrusive Observation and Runtime Verification
this task aims at designing a runtime verification system,
using non-intrusive observation and monitoring machinery,
implemented in hardware, as a basis for supporting runtime
verification. The results from the previous tasks are used to
map the temporal logic formulas into sets of data and/or event
observation points, to be configured in the hardware machin-
ery and into runtime verification assertions to be checked on
the monitoring activities, which may then take a decision on
system correctness. The RV system may be restricted to use
a set of few fundamental monitors complemented with some
additional functional blocks.

T5. Adaptive Non-intrusive Observation and RV of CPS
this task aims at designing self-contained hardware-based
mechanisms allowing the dynamic definition of new sets of
observation points, due to normal changes in the operational
conditions of the system, while maintaining the same run-
time verification assertions. For example: a running program
makes a function call (either recursive or not) that creates a
new stack frame; runtime verification needs to define a new
set of observation points for the recently created stack frame
but the runtime verification assertions (e.g., non-violation of
stack frame boundaries) are invariant.

T6. System Prototype for RV and Demonstration of Use
this task aims at creating a prototype merging both the toolset
architecture and flow to demonstrate the usage of effective
runtime verification for cyber-physical systems.

Ada User Jour na l Vo lume 39, Number 4, December 2018

280 NORTH

3 Non-intrusive Runtime Verification
tools

In the next sections, we focus on one kind of properties mon-
itored and verified in the NORTH project: the timing prop-
erties. To evaluate the approach proposed in NORTH for
such properties, we have developed two tools. The first one
monitors a target system at runtime and triggers the collection
of a trace of scheduling events whenever some condition on
the sequence of events is not respected. The second tool can
verify online more complex temporal scheduling properties
from the execution traces.

3.1 Scheduling monitoring tool

More precisely, the aim of the first tool, which is called the
health monitor, is to verify, at runtime, the conformity of
a cyber-physical real-time system with the specification of
its task model. The task model may be defined during the
early steps of a design process and specifies the execution
sequence and duration of the software tasks. The engineers
use this model to verify the schedulability of their design
before execution, by means of scheduling simulation tools
such as Cheddar [5].

A scheduling simulation result constitutes a deterministic ref-
erence that can configure the health monitor. We propose
a hardware implementation of a monitor which integrates a
micro-sequencer in charge of verifying the occurrence of a
timed sequence of scheduling events on the target system.
The hardware also includes a module for the event capture,
an event recorder, a timestamp generator and some communi-
cation logic to transfer the event traces. In case of erroneous
behaviour, with respect to the expected task scheduling, the
event trace is sent to a supervision station for further analysis.

3.2 Online verification tool

The second tool is a verification tool which performs the tem-
poral scheduling properties verification on system execution
traces. It has to be embedded as a component of the health
monitor and to be executed in line during the system execu-
tion. Therefore, its execution speed has to be compliant with
the system requirements and its memory footprint must stay
as low as possible. In addition, the monitored systems may
have non finite executions or long finite executions. During
execution, the verification tool should not consider as input
the whole trace, but only a finite fixed size slice of it (by using
a transition buffer filled by the monitor hardware part). The
verification tool execution time on one slice must be lower
than the system execution time corresponding to the next
trace slice, otherwise some trace events may be lost. For all
these reasons, the verification algorithm performs only one
pass through the trace.

The verification tool adopts the same system model and trace
model used in the Cheddar tool. Its verification algorithm
is based on a representation of the system state (including
task and resource states), and starting from an inactive initial
state (built from the system model), simulates the execution
represented by the trace, event by event. At the same time,
and depending on the properties to verify, some checks are

Figure 2: Modeling of the ROSACE application for Cheddar

done on event occurrences or periodically at the end of each
time sequence. Periodic checks concern the tasks reaching
the end of their period and are needed to cope with possible
missing events in the trace, such as missing task activation
events. They also allow us to complete the detection of undue
locked resources or task missed deadlines.

4 Evaluation
The tools described in the previous section have been vali-
dated by several experiments.

The monitoring tool has been implemented on a Xilinx
System-On-Chip (SoC) Zynq7000. The hardware monitor
has been synthesized from a VHDL1 model and the resulting
design occupies less than 5% of the FGPA resources.

A simple experiment composed of two tasks has been success-
fully run to demonstrate the ability of the monitor to record
the corresponding scheduling event on a Real-Time Executive
for Multiprocessor Systems (RTEMS) target [6].

The online verification tool has been implemented in C and ap-
plied on several case examples produced from Cheddar. From
those examples, four properties have been identified: missed
deadlines, deadlocks, priority inversion and lock resources.

Larger experiments based on a mixed-criticality system case
study are also planned during the project.

As any mixed-criticality system, the case study is composed
of several applications with different levels of criticality [7].
In this context, the different levels of criticality imply differ-
ent levels of guarantee on the application deadlines. As an
example, a two level mixed-criticality system may contain
high-criticality applications on which the deadlines must be
met and low-criticality applications on which the deadlines
are allowed to be missed.

The case study of the NORTH project is a drone system
with 3 criticality levels [8]. The highest criticality level is a
flight controller software called ROSACE [9]. ROSACE is a
data flow oriented application composed of a set of periodic
dependents tasks and requires that all task deadlines are met.
Figure 2 shows a model of ROSACE made for Cheddar. Each
task is defined by the classical periodic task parameters, i.e.

1Very High-Speed Integrated Circuit Description Language.

Volume 39, Number 4, December 2018 Ada User Jour na l

J. Ruf ino, F. S inghof f e t a l . 281

WCET (Worst Case Execution Time), period, priority, release
time and deadline.

The dependencies between tasks are expressed by a specific
priority assignment. The middle criticality level application
is a path planning algorithm computing online the path of the
drone according to its environment.

Finally, the lowest criticality application is a video application
with a high computation need which simulates a video surveil-
lance system embedded in the drone. All the applications run
on a POSIX RTEMS [6] target and are written in C.

5 Related Work
The application of non-intrusive runtime monitoring to em-
bedded systems has been discussed in [3, 4] and, more specif-
ically, in safety critical environments [10].

Configurable minimally intrusive event-based frameworks
for dynamic runtime monitoring have been developed [11].
Additionally, the RV concept has been applied to autonomous
systems [12] and to a AUTOSAR-like RTOS, aiming the au-
tomotive domain [13]. A runtime monitoring approach for
autonomous vehicle systems requiring no code instrumenta-
tion by observing the network state is described in [14].

However, to the extent of our knowledge, no such techniques
have been applied to aerospace systems, especially if critical
avionic applications are combined with other non-critical
applications.

6 Conclusion
In this paper we have presented NORTH. The NORTH project
is a collaborative project between the LASIGE/Univ. Lisboa
and the Lab-STICC/Univ. Bretagne Occidentale aiming to
investigate and evaluate a runtime verification platform for
embedded real-time systems.

The NORTH project addresses the study of Non-intrusive
Observation and Runtime Verification in a comprehensive
way, from conceptual tasks such as component modelling and
property extraction to implementation and prototyping, pass-
ing through methods and tools for building a (self-)adaptive
RV architecture.

Those propositions led to the development, up to the moment,
of two tools: a hardware scheduling monitor implemented on
a Field Programmable Gate Array (FPGA) board and running
a RTEMS target, and a runtime analysis tool written in C and
allowing online detection of task scheduling errors.

In the next steps of the project, the tools will be evaluated on a
drone case study running a mixed-criticality system. A mixed-
criticality system is both composed of high and low criticality
tasks and cannot be designed by resource reservation only.
Thus monitoring and verification for online resources man-
agement is expected to be an interesting approach in this
context.

References
[1] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kotten-

stette, P. Antsaklis, V. Gupta, B. Goodwine, J. Baras,
and S. Wang (2012), Toward a science of cyber-physical
system integration, Proc. of the IEEE, vol. 100.

[2] M. Leucker and C. Schallhart (2009), A brief account of
runtime verification, The Journal of Logic and Algebric
Programming, vol. 78, pp. 293–303.

[3] C. Watterson and D. Heffernan (2007), Runtime verifi-
cation and monitoring of embedded systems, Software,
IET, vol. 1.

[4] T. Reinbacher, M. Fugger, and J. Brauer (2014), Run-
time verification of embedded real-time systems, Formal
Methods in System Design, vol. 24, no. 3, pp. 203–239.

[5] F. Singhoff, J. Legrand, L. N. Tchamnda, and L. Marcé
(2004), Cheddar: a flexible real time scheduling frame-
work, ACM Ada Letters journal, vol. 24, pp. 1–8.

[6] The RTEMS Project (2017), Real-Time Executive for
Multiprocessor Systems - RTEMS POSIX Applica-
tion Programmimg Interface Guide, release 5.0.0 ed.
https://www.rtems.org.

[7] S. Vestal (2007), Preemptive scheduling of multi-
criticality systems with varying degrees of execution
time assurance, in Proceedings of the 28th Int. Real-
Time Systems Symposium (RTSS), IEEE.

[8] L. Allache (2018), Mise en oeuvre d’un benchmark
drone/mix-criticality, in Master thesis, Master 2 LSE.

[9] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and
P. Siron (2014), The ROSACE case study: From simulink
specification to multi/many-core execution, in IEEE 20th
Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 309–318, IEEE.

[10] A. Kane (2015), Runtime Monitoring for Safety-Critical
Embedded Systems, PhD thesis, Carnegie Mellon Uni-
versity, USA.

[11] J. C. Lee and R. Lysecky (2015), System-level obser-
vation framework for non-intrusive runtime monitoring
of embedded systems, ACM Transactions on Design
Automation of Electronic Systems, vol. 20, no. 42.

[12] G. Callow, G. Watson, and R. Kalawsky (2010), System
modelling for run-time verification and validation of
autonomous systems, in Proc. 5th Int. Conf. on System
of Systems Engineering, UK.

[13] S. Cotard, S. Faucou, J.-L. Bechennec, A. Queudet, and
Y. Trinquet (2012),A data flow monitoring service based
on runtime verification for AUTOSAR, in Proceedings
of the 14th Int. Conf. on High Performance Computing
and Communications, Liverpol, UK, IEEE.

[14] A. Kane, O. Chowdhury, A. Datta, and P. Koopman
(2015), A case study on runtime monitoring of an au-
tonomous research vehicle (ARV) system, in Proc. 15th
Int. Conf. on Runtime Verification, Vienna, Austria.

Ada User Jour na l Vo lume 39, Number 4, December 2018

282

A Real-Time System Monitoring driven by
Scheduling Analysis

Stéphane Rubini, Valérie-Anne Nicolas, Frank Singhoff
Lab-STICC UMR 6285, UBO, UBL, Av. Le Gorgeu, 29200 Brest, France; email: {surname.name}@univ-brest.fr

José Rufino
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal; email: jmrufino@ciencias.ulisboa.pt

Abstract

Real-Time system engineers may introduce task schedul-
ing analysis at the early stage of the design process. Sys-
tem temporal behavior and task schedules are strongly
related. The noncompliance to an expected schedule is
a symptom of an erroneous state that may result in a
serious risk for the system integrity. Spreading the de-
sign task model, as a timing reference to guide run-time
verification, is a kind of extension to the model driven
design paradigm.

This paper presents the overall architecture of a non-
intrusive hybrid monitor. Configured by the result of
a scheduling simulation, the monitor is intended to ob-
serve the system execution and raised an alarm in case
of divergence with the predicted schedule. To advance
this goal, a first experiment shows the scheduling of 2
tasks rebuilt from the events collected by the monitor
while the RTEMS OS’ scheduler was executing.

Keywords: health monitoring, real-time system, schedul-
ing analysis.

1 Introduction
In real-time systems, the scheduling is a set of rules that
govern the order of the processing on the system’s hardware
resources. Beyond the need to provide program codes func-
tionally corrects, the designers must also ensure timeliness
of theirs results. To fulfill timing requirements of real-time
systems, the scheduling of the tasks must be taken into ac-
count at the early stages of the design. Scheduling analysis
works from an abstract view of tasks, the task model, which
defines their timing behavior independently of the nature of
computation they have to do.

We propose to extend the scheduling simulation field of use
onto run-time verification of hard real-time systems. Hard
real-time systems are characterized by deterministic execution
and strict time constraints. From a given task model that
specifies the timing parameters to enforce, the analysis tools
verify their respect during the design step. They also define a
deterministic awaited execution trace of the system tasks at
run-time.

A health monitor can observe at run-time the sequence of
events that describes the evolution of the task states from the
schedule point of view, and compare them to those predicted
by the simulation. Our goal is to configure the monitor from
the task models, and then to use a unified specification from
the design of the system to its run-time supervision. This
paper focuses on the overall hardware architecture of the
monitor. We evaluate its ability to collect and report a trace of
scheduling events observed on a target system. Only an initial
and restricted version of the scheduling comparison module
is presented here as a more complete implementation remains
to be developed.

The outline of the paper is the following. The first part char-
acterizes the task models we want to monitor. Next, the
architecture of the health monitor is described. Some techni-
cal problems about the rebuilding of long term time stamps
is emphasized. Section 3 presents the status of the project,
and the results of the initial experiments. The last part of the
article describes some related works and concludes.

2 Task model and run-time verification
The systems we are targeting for run-time monitoring are
time-triggered hard real-time systems on uni-processor ex-
ecution platform, like the systems that control the critical
functions in transport vehicles. The number of tasks and
their parameters (e.g. deadlines, release times) are fixed and
specified at design time. Tasks are periodic and the complete
system itself has a repetitive temporal behavior, eventually
achieved after a stabilization time that can be determined by
scheduling analysis. We observe such a stabilization phase
when the initial release time is not the same for all tasks
(i.e. the offset parameter of some tasks is different from 0).
The scheduling of the tasks, computed off-line or by static
schedulers, must be deterministic.

From the above assumptions, the scheduling trace produced
by a scheduling analysis tool from a given task model may
serve as a "golden reference" for the verification of a sys-
tem also implementing this task model. Fig. 1 sums up this
approach.

The main interest to do monitoring at the schedule level is the
restricted number of event types to observe and their common
semantics on multiple systems. As opposed to the operations

Volume 39, Number 4, December 2018 Ada User Jour na l

S. Rubin i , V.A. Nico las, F. S inghof f , J. Ruf ino 283

Figure 1: Scheduling analysis as "golden" reference.

performed by the tasks which are generally different for each
application, scheduling concepts remain similar.

A challenge of the implementation of this approach is to
define how to manage discrepancies between the task model
specification, the simulation results and the real execution
on the target platform. For instance, the release of a set
of tasks can be stated as simultaneous for the scheduling
while related events are emitted and detected in a sequential
order. The matching of the physical time as approximated
in the observed system, in the monitor and in the result of
simulation constitutes another example of practical problems
that need to be solved.

The first step of the approach is based on a scheduling simu-
lation tool. Our team has already developed such a tool, that
is called Cheddar [1]. The second step is to have a monitor
which allows us to observe the real-time system by inducing a
weak perturbation. The next section presents the architecture
of this health monitor, and gives details about the implemen-
tation of some of its functions.

3 Monitor Architecture
The monitor verifies that the trace of observed events is con-
form to the scheduling simulation predictions. Hence, there
is no need for reporting the events if the system works as
expected.

However, more meaningful information is how the system
goes into an erroneous state, that is, from the monitor obser-
vation, what is the preceding sequence of events before the
failure. This working mode will be named in the sequel back
trace mode. But, the analysis of the consequence of an error
can also be another outcome of the monitor report. In this
second case, the monitor switches in a forward trace mode,
which transfers all captured events to the supervision station.

So, the hardware monitor we are developing is structured
following the previous objectives: run-time verification of the
scheduling, and reporting of the cause or the consequences of
a discrepancy. Fig. 2 shows the 5 main components of the its
architecture and their interactions.

The "event capture" component is in charge of events collect,
either by observing the behavior of the monitored system
from an external point of view, or by receiving the event
explicitly transmitted to it. A time stamp is adjunct to each

Figure 2: Hardware monitor architecture.

traced event, generated by the "time stamp generator". Time
stamped events are stored in the "event recorder", while the
"Failure detection" component verifies that the sequence of
events respects an expected order and some timing constraints.
At last, the failure reporting component aims to extract the
event trace from the monitor, to carry it on a supervision
station for post-processing and analysis.

The next paragraphs give details about the design and func-
tions of these 5 components.

3.1 Event capture and recording

Inside the recorder, a FIFO buffer, implemented by a cir-
cular array, stores the collected events, associated to their
time stamps. When the buffer is full, the oldest events are
forgotten.

If the monitor enters into reporting mode, the event recorder
behavior depends on the chosen trace mode. In back trace
mode, event recording is stopped as soon an erroneous event
sequence has been detected, and only the events already
present in the buffer are transmitted towards the supervision
station. In forward trace mode, the monitor resets the array
and the event recording will work as a temporary buffer be-
tween the event collector and the supervision station. If the
buffer becomes full, the event recording stops, and the moni-
tor only flushes the events available in the array. This behavior
ensures that the event trace is not corrupted by intermediate
missing events.

Event capture The basic interest of hybrid monitoring so-
lutions is in reducing the interference on the observed system.

Hardware event sensors could use a technique like bus snoop-
ing [2], which limits the system disturbance. However, its
implementation is technically difficult on processing systems
that include complex memory hierarchy. Moreover, the point
where sensors should listen could be unreachable from the
monitor side [3]. Software sensors are easiest to implement
but require source or OS code instrumentation. However, soft-
ware sensors could impact the application temporal behavior.

Currently, we use software probes that write in monitor’s
memory-mapped registers. An event is coded on a 32 bits
word, and is composed of an event type and a source iden-
tifier (i.e. a task identifier). The monitor manages the time-
stamping of an event by a dedicated hardware component (see
the next paragraph for details), and so the interference on the
target system is expected to be limited (few memory word
transfers by task job).

Ada User Jour na l Vo lume 39, Number 4, December 2018

284 Moni tor ing dr iven by Schedul ing Analys is

3.2 Failure detection

The failure detection module is in charge of verifying the
system is working as expected. A micro-coded sequencer
implements this function; the micro-code is included in the
hardware configuration (see section 4).

Currently, the sequencer can only detect a periodic, – after
the stabilization time –, and totally ordered suite of events.
The first constraint is in accordance with the assumption on
the target system, whereas the second one should be partially
weakened in future designs. Fig. 3 shows the architecture of
the detector. The values in the microcode memory defines the
sequence of expected events. The events, represented by their
source and their type identifiers, must arrive before or after a
given time expressed in a micro-instruction.

Figure 3: Failure detector (simplified hardware schematic).

We do not give anymore details about this failure detection
module, because its architecture remains to be enrich to verify
a more extended set of properties on the scheduling event
trace.

3.3 Time stamping

Constrains of real-time system executions do not only concern
the occurrence of events, but also the instant at which these
events have been produced. So, time stamps go with the
collected events. The following observations justify the way
the time stamps is generated:

• non-intrusive: the access to the current time could im-
ply calls to run-time (OS) services, then disrupting the
execution of the observed application. The amount of
information transfers to the health monitor must also be
restricted to the bare minimum.

• independent; erroneous time management on the ob-
served system could be difficult to analyze if event time
stamps are issued from the same time reference.

• adapted: resolution, cycling and representation of time
must be adapted to the need and the potential of the
hardware monitor implementation. These requirements
should be different than those of the target system.

The preceding remarks lead us to generate the time stamps
within the hardware monitor, at the moment the events are
received. We assume the duration of events collect trough
Memory-Mapped register is constant, and therefore the time
interval between 2 events is the same in the observed system
and in the monitor.

The size, in number of bits, of the time stamp are constant,
and must be small enough to limit (1) the storage needs to
keep the trace in the monitor, and (2) the communication
bandwidth to transfer the trace on the supervision station. A
clock produces the time stamp, whose resolution depends on
a periodic signal generated by frequency division from the
basic system clock.

Fig. 4 shows the synopsis of the time stamp generation circuit:
The frequency divisor creates periodic ticks at a frequency
defined at the start up of the monitored system. This signal
controls the increasing of a counter which gives time stamps
when needed for a new event.

Figure 4: Time stamp management (simplified hardware
schematic).

Considering a divisor factor register on 24 bits, a time reg-
ister implemented on 16 bits, and a basic system clock at
100MHz, the timer resolution goes from 10ns to 160ms,
and the timer counter overflow (cycling) occurs after about
0.6ms at the worst case.

The instant ti at which an event i occurs is ti = ki.tcycle +
tsi.tres, with ki ∈ N+, tres and tcycle being the timer res-
olution and the timer cycling period respectively. tsi is the
time stamp bound to the event i; ki represents the number of
counter overflows since the starting of the system.

The supervision station can get tsi, tres and tcycle, but does
not have access to ki, since the event trace has been collected
in the past, and only time stamps tsi are associated to the
events. So, to be able to rebuild the event instant at the
level of the supervision station, the monitor must be sure
to receive the next event within the counter overflow period
subsequent to a given event. With this condition, ki = ki−1

if tsi ≥ tsi−1, and ki = ki−1 + 1 otherwise.

The instant ti can be computed from the instant of the previ-
ous event by the following equation:

ti = ti−1+

{
(tsi − tsi−1).tres if tsi ≥ tsi−1

tcycle + (tsi − tsi−1).tres if tsi < tsi−1

Volume 39, Number 4, December 2018 Ada User Jour na l

S. Rubin i , V.A. Nico las, F. S inghof f , J. Ruf ino 285

To build the series of the event instants, the condition previ-
ously stated, i.e. the time between two collected events is
less than the timer overflow period, must be ensured by the
monitor. The component "Sync event generator" in Fig. 4
produces pseudo "sync" events to respect a minimum rate of
event occurrence.

4 Implementation and first Experiments
Hardware platform The development board "ZedBoard"
built by AVNET has been chosen to evaluate the ability of the
hardware monitor to verify the health of a real software at
run-time. This board is built around a Xilinx System-On-Chip
Zynq7000. The Soc Zynq contains a Dual ARM Cortex A9
core processing system, and a programmable logic area of the
family Virtex7. The connection with the supervision station
(a Linux PC) is based on a USB2 serial link (115200 bauds
UART emulation).

A VHDL model of the hardware monitor has been synthesized
and implemented into the Zynq’s FPGA. The current capacity
of the event recorder is 1024 events. The failure detection
can recognize sequences of 32 events. The micro-instructions
that encode the sequence are stored in an internal memory
(BRAM), whose the content is currently defined in the VHDL
model. However, it is also possible to populate the BRAM
by a direct updating of the FPGA configuration. With these
parameters, the circuit occupies less than 5 % of the available
FPGA resources whatever their type (LUT, BRAM . . .).

First experiment: A two-task system This first experi-
ment verifies the monitor ability to collect, time stamp and
transfer events to a supervisor station in the forward trace
mode. We consider a simple task model composed of 2 tasks,
whose the periods are 20 and 5ms, and the capacities 6 and
2ms respectively. The second task has a greater priority than
the first one. The RTEMS OS1 controls the target system. Its
Deterministic Priority Scheduler [4] has been instrumented
to signal scheduling events.

The Cheddar tool2 is a scheduling analysis tool able to select
and apply a set of analysis methods from a given task model
and execution platform. Scheduling simulation results can be
exported or imported as an XML file which contains the in-
stants of significant scheduling events. Fig. 5 is a visualization
of the events collected by the monitor after importation into
Cheddar. The first period of each task appears as too short,
due to time rounding in Cheddar and RTEMS tick resolution
(1ms in this experiment).

Figure 5: Collected events shown in the Cheddar’s tool time
line. Axis time unit represents 1 ms.

1http://www.rtems.org
2http://beru.univ-brest.fr/~singhoff/cheddar/

The transformation of the simulation trace into an expected
and timed sequence of events must meet several challenges:
How to relate logical simulation time and real execution ones,
how to deal with task model abstraction (0-cost task switching
for instance), how to order simultaneous simulation events,
object matching between the simulation and the execution
platform . . .

5 Related works

An overview and a classification of monitors focused on tim-
ing constraints is established in [5]. Criteria like the adapt-
ability, data collection methods, type of targeted systems or
the monitor implementation organize the classification. Fol-
lowing this classification, our monitor is a "hybrid" monitor,
based on a "tracing" data collection method and dedicated
to the observation of "general" "real-time" and "embedded"
system target.

In [6], Bandur et al. show how to implement a timed automa-
ton on a micro-controller. The execution time of instructions
in this micro-controller must be deterministic. The supported
timed automaton assumes only one clock and that the time
interval of concurrent outgoing transitions must be the same.
The approach of this article could be a basis for an improve-
ment of the "failure detection" module in our monitor.

Finally, Peters and Parnas argue in [7] that monitors should
be based on the design requirements of the observed systems.
They identify some necessary condition allowing a monitor
to be feasible. The approach we propose follows this idea,
although the parameters of a task model can be seen as a
derivative of the system specification.

6 Conclusion

This article describes the overall architecture of a hardware
monitor. First experiments have shown the ability of the mon-
itor to collect the scheduling events of a sample task model
controlled by the RTEMS operating system. The execution
time of a software event sensor in the scheduler is less than
200ns and its intrusivity is limited.

Our goal is to derive automatically the monitor configuration
from the real-time system task model and its scheduling. To
achieve this objective, various assumptions or choices must
be expressed and then specified in the design models. An
architecture description language like AADL [8] can both
specify the task model for the scheduling simulator and supply
matching information to configure the monitor. We expect
that expressing such information should contribute to increase
the quality and conformity of the systems implementation.

Acknowledgments This work and Cheddar are supported
by Brest Métropole, Ellidiss Technologies, CR de Bretagne,
CG du Finistère and Campus France PESSOA programs num-
ber 27380SA and 37932TF.

Ada User Jour na l Vo lume 39, Number 4, December 2018

286 Moni tor ing dr iven by Schedul ing Analys is

References
[1] F. Singhoff, J. Legrand, L. Nana, and L. Marcé (2004),

Cheddar: a flexible real-time scheduling framework,
ACM SIGAda Ada Letters, vol. 24, pp. 1–8, ACM Press,
New York, USA.

[2] J. J. P. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi (1990),
A noninterference monitoring and replay mechanism for
real-time software testing and debugging, IEEE Transac-
tions on Software Engineering, vol. 16, no. 8, pp. 897–
916.

[3] M. M. Gorlick (1991), The flight recorder: an archi-
tectural aid for system monitoring, in ACM SIGPLAN
Notices, vol. 26, pp. 175–181, ACM.

[4] G. Bloom and J. Sherrill (2014), Scheduling and thread
management with RTEMS, ACM SIGBED Review,
vol. 11, no. 1, pp. 20–25.

[5] N. Asadi, M. Saadatmand, and M. Sjödin (2013), Run-
time monitoring of timing constraints: A survey of meth-
ods and tools, in Proceedings of the the 8th International
Conference on Software Engineering Advances (ICSEA),
Venice, Italy, pp. 391–401.

[6] V. Bandur, W. Kahl, and A. Wassyng (2012), Micro-
controller assembly synthesis from timed automaton
task specifications, in International Workshop on For-
mal Methods for Industrial Critical Systems, pp. 63–77,
Springer.

[7] D. K. Peters and D. L. Parnas (2002), Requirements-
based monitors for real-time systems, IEEE Transactions
on Software Engineering, vol. 28, no. 2, pp. 146–158.

[8] P. H. Feiler and D. P. Gluch (2012), Model-based engi-
neering with AADL: an introduction to the SAE architec-
ture analysis & design language, Addison-Wesley, 2012.

Volume 39, Number 4, December 2018 Ada User Jour na l

287

Hardware Support to Non-intrusive Runtime
Verification on Processor Technologies∗

José Rufino
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal; email: jmrufino@ciencias.ulisboa.pt

Abstract

Software-based instrumentation probes always disturbs
the functional and non-functional properties of a system,
even if in a minimal way. To avoid the disturbance of
system operation, by instrumentation probes, nonintru-
sive runtime verification must rely on hardware-based
technology. This paper reviews classical processor tech-
nology to understand which kind of support is provided
on each processor family, its intrusiveness, functionality
and offered system support.

Keywords: Hardware-based runtime verification

1 Introduction
The traditional approach to runtime verification is to instru-
ment the software of a functional system with small pieces
of code that, acting as observers, assess the software state
in runtime. Software-based instrumentation inherently dis-
turbs the functional or non-functional properties of a system,
namely with respect to timing properties, which are crucial to
embedded and real-time system design [1, 2, 3]. They always
exhibit some degree of intrusiveness, even if minimal.

Software-based observing components affect the normal be-
haviour of the observed system, throughout what is called
“the observer effect” or “the probe effect” [4]. The delays
implicitly associated with the insertion of software-based
probes may affect the timing characteristics of concurrent
programs. The removal of such probes from the software,
which will lead to shorter program/task execution times, may
render a given task set unschedulable, due to changes in the
corresponding cache-miss profile [5, 6, 7].

Hardware-based approaches are inherently non-intrusive, i.e.
they do not affect system operation. Though hardware-based
observation is in essence non-intrusive, monitoring functions,
i.e. runtime verification (RV) may have some degree of intru-
siveness. Non-intrusiveness, may then be referred to as a RV
constraint. RV constraints are not only relevant, but in fact
fundamental, for highly critical systems [2].

∗This work was partially supported by FCT, through funding of LASIGE
Research Unit, ref. UID/CEC/00408/2013, and by FCT/CAMPUS FRANCE
(PHC PESSOA programme), through the transnational cooperation project
3732 (Portugal) / 37932TF (France), Non-intrusive Observation and Run-
Time verification of cyber-pHysical systems (NORTH). This work integrates
the activities of COST Action IC1402 - Runtime Verification beyond Moni-
toring (ARVI), supported by COST (European Cooperation in Science and
Technology).

Figure 1: Non-intrusive runtime verification

This paper reviews classical processor technology to under-
stand which kind of support is provided on each processor
family, its intrusiveness, functionality and, in general, offered
system support.

A comprehensive overview of various hardware (including
on-chip), software and hybrid (i.e., a combination of hard-
ware and software) methodologies for system observation and
verification of software execution in runtime is provided in
[8]. System observing solutions can be designed to be directly
connected to some form of system bus, enabling information
gathering regarding events of interest, such as data transfers
and signalling taking place inside the computing platform,
namely instruction fetch, memory read/write cycles and inter-
rupt requests, with no required changes on the target system’s
architecture, as shown in the diagram of Figure 1. Examples
of such kind of hardware-based observation approaches are
proposed in [9, 10, 11, 12, 13].

The paper is organized as follows. Section 2 presents a de-
scription of the previous related work. Section 3 reviews the
classical processor technology looking for non-intrusive run-
time verification support. Section 4 describes the evaluation
experiment for a particular processor technology (SPARC
LEON) and, finally, Section 5 presents some concluding re-
marks and future research directions.

2 Previous Work
The application of non-intrusive runtime monitoring to em-
bedded systems has been discussed in [8,14] and, more specif-
ically, in safety critical environments [13].

Configurable minimally intrusive event-based frameworks
for dynamically runtime monitoring was developed in [15],
which was later complemented with a combination of hard-
ware and software observability [3].

Additionally, the RV concept has been applied to autonomous
systems [16] and to a AUTOSAR-like real-time operating

Ada User Jour na l Vo lume 39, Number 4, December 2018

288 Hardware Suppor t to Non- in t rus ive Runt ime Ver i f i ca t ion

Figure 2: Intel processor trace (Intel PT)

system aiming the automotive domain [17]. A runtime mon-
itoring approach for autonomous vehicle systems requiring
no code instrumentation by observing the network state is
described in [18].

High quality trace data in a multi-core environment uses an
approach based on non-intrusive full observation, meaning
not only the program counter, but also other data read/write
cycles, cache and bus operations are included in the trace [9].

A set of first contributions and discussion of technical issues
such as metadata management, format and storage on prac-
tical examples are addressed in [19]. A description of the
fundamentals of a trace are presented in [20].

3 Processor Technology
This section reviews different processor families to determine
the support they provide, its intrusiveness and functionality.

3.1 Intel: Processor Trace

The Intel processor trace (PT) [21] is an extension of the
Intel Architecture that captures information concerned with
software execution, on each hardware thread, using dedicated
hardware facilities. So, when an execution completes some
special-purpose software can do processing of the captured
trace data and reconstruct the exact program flow (Figure 2).
Intel PT has an execution overhead cost: though a target less
than 5% overhead is desirable, there are some applications
with 35% overhead, being 20% an average value.

The captured information is collected in data packets, as de-
scribed in [22] and summarized next. A set of packets (Packet
Stream Boundary, PSB and Paging Information Packet, PIP),
act as heartbeats generated at regular intervals (every 4 KiB)
and record changes in attributing a linear address to an ap-
plication. The MODE packet provides the decoder relevant
execution information for binary interpretation and trace log
and the Overflow (OVF) packet is issued when a processor ex-
periences an internal buffer overflow. Three different packets,
ranging different precisions, are used to get time information:
Timestamp Counter (TSC) which provides some portion of a
software-visible timestamp counter; Mini Timestamp Counter
(MTC) which is more frequent and used with TSC to get accu-
rate timestamps for less cost; Cycle Counter (CYC) packets

Figure 3: ARM CoreSight

provide even finer grain timestamp information. The Core
Bus Ratio (CBR) contains the core bus clock ratio.

In a control flow tracing context, the following packets are
used: Taken Not-Taken (TNT) tracks the direction of condi-
tional branches (taken or not taken); Target IP (TIP) record
the target value of the IP (Instruction Pointer) register in indi-
rect branches; Flow Update Packet (FUP) provide the value
of the IP for asynchronous events (interrupt and exception).

Each packet of the trace output is written to memory in
a collection of variable-sized regions of physical memory.
Therefore, with the knowledge of binary information, one can
reconstruct the entire control flow of the original software,
together with the precise timing of each branch.

Since the decoding of the traces is “several orders of magni-
tude slower than tracing”, one may think a proprietary design
where the Intel PT decoder memory area is set as a dual-port
memory device, thus providing independence and allows non-
intrusive runtime verification. However, these schemes are
very specialised.

3.2 ARM: CoreSight Technology

The next system we analyse is based on the ARM technology
and its non-intrusive observation scheme, generically known
as ARM CoreSight [23, 24, 25].

The architecture of ARM CoreSight is represented in Figure
3. The simplest form of trace is that generated by the software
executing on the cores. Optimizations on this approach allow
writing to the ARM Instrumentation Trace Macrocell (ITM),
which streams the trace data direct to a trace buffer, as shown
in Figure 3. This provides a high bandwidth channel that
allows the delivery of more instrumentation points. However,
the drawback of this approach is its natural intrusiveness.

To avoid instrumentation, hardware trace is an option, ma-
terialized by the ARM Embedded Trace Macrocell (ETM),
is extremely popular. As shown in Figure 3, there is one
ARM ETM for each core. In hardware trace, special-purpose
logic watches the address, data and control signals within
the System-on-Chip (SoC) compresses that information and
emits to a trace buffer, which itself can be subdivided in to
three main categories: program/instruction trace; data trace;
and bus (or interconnect fabric) trace. The ARM ETM is thus
a non-intrusive observer.

In terms of cost, for program/instruction trace macrocells
can be quite small: only one byte/instruction/processor is
required. Unfortunately, the cost of implementing data trace

Volume 39, Number 4, December 2018 Ada User Jour na l

J. Ruf ino 289

Figure 4: SPARC LEON processor and observer entity

Figure 5: Observer Entity Architecture

is highest: trace macrocells need to be larger, data is more
difficult to compress (data trace from an ARM ETM typically
requires 1-2 bytes/instruction/processor). Each captured trace
data have attached a timestamp.

The collected data is replicated and presented in two different
resources: an internal (on-chip) embedded trace buffer; a trace
port allowing the captured data to be externally processed.

3.3 SPARC LEON: Dedicated Observer
The next system we analyse is embedded in a SoC system
with a LEON processor [26], a SPARC CPU [27], embodying
a state-of-the-art computing architecture. The LEON is the
reference architecture for European Space applications, e.g.
satellites, being also used in other real-time control applica-
tions. The SoC bus is the AMBA bus [28]. A block diagram
with the global system is presented in Figure 4.

Since SPARC LEON does not have specific tools for code
observation and tracing, one have designed one (also shown
in Figure 4). The Observer Entity (OE) infrastructure can
observe the AMBA bus and capture a set of relevant events: in-
struction fetch; memory read/write cycles; interrupt requests.
Alternatively, the OE can be plugged in a cache internal bus,
for a more precise observation.

The OE is specified in VHDL2 and the event capture is in-
dependent and made in parallel with the operation of the
functional system. Therefore, the OE integrates all the mech-
anisms required for a non-intrusive observation. The monitor
option supports non-intrusive runtime verification.

The OE comprises the modules of Figure 5: Bus Interfaces,
capturing all physical bus activity, such as bus transfers or

2Very High-Speed Integrated Description Language.

Figure 6: Task Execution Time Measurement

interrupt vectors; Management Interface, enabling observer
entity configuration; Configuration, storing a dynamically
defined set of events; the System Observer itself, detecting
events of interest; Monitor, which detects possible violations
to the specified system behaviour; Time Base, which allows
to time stamp the events of interest.

4 Evaluation

An example of a runtime monitoring function is presented
next, assuming the use of a SPARC LEON processor; as
software counterpart an application running on the RTEMS
real-time operating system is used [29]. The software system
under evaluation is composed by a task, named Task Sine,
which produces a sine wave with a given frequency.

The task is executed periodically, with a 50 ms period. The
monitoring aims at measuring the execution time of the task
as well as its amplitude. Both the execution time and the am-
plitude are monitored. This data is represented in a graphical
manner through Figure 6, together with a table containing its
statistical analysis. The null competition for the processing
resources allows Task Sine to exhibit a somewhat stable exe-
cution time, i.e. with low variance. In this experiment, given
the monitoring bounds, no error is detected. This will not be
the case if the monitoring values have a lower bound.

5 Conclusion

This paper reviews classical processor technology to under-
stand which kind of support is provided on each processor
family (Intel, ARM and SPARC LEON), its intrusiveness,
functionality and offered system support.

Each processor family was reviewed and we characterize the
offered support to observation. Together with this, we address
the non-intrusiveness and functionality.

For the SPARC LEON, which received a freshly designed
non-intrusive runtime verification scheme, we have conducted
a very simple experiment that evaluate the proposal.

Ada User Jour na l Vo lume 39, Number 4, December 2018

290 Hardware Suppor t to Non- in t rus ive Runt ime Ver i f i ca t ion

References
[1] M. E. Shobaki and L. Lindh (2001), A hardware and soft-

ware monitor for high-level system-on-chip verification,
in Proceedings of the 2nd IEEE International Sympo-
sium on Quality Electronic Design (ISQED 2001), (San
Jose, CA, USA), pp. 56–61.

[2] L. Pike, S. Niller, and N. Wegmann (2011), Runtime ver-
ification for ultra-critical systems, in 2nd International
Conference on Runtime Verification (RV 2011), (San
Francisco, USA), pp. 310–324, Springer.

[3] J. C. Lee and R. Lysecky (2015), System-level observa-
tion framework for non-intrusive runtime monitoring of
embedded systems, ACM Transactions on Design Au-
tomation of Electronic Systems, vol. 20, no. 42.

[4] J. Gait (1986), A probe effect in concurrent programs,
Software - Practise and Experience, vol. 16.

[5] T. Lundqvist and P. Stenstrom (1999), Timing anomalies
in dynamically scheduled microprocessors, in Proc. of
the 20th Real-Time Systems Symposium, IEEE, Dec.
1999.

[6] R. Wilhelm et al (2008), The worst-case execution time
problem - overview of methods and survey of tools, ACM
Transactions on Embedded Computing Systems (TECS),
vol. 7, Apr. 2008.

[7] T. H. Nam (2017), Cache Memory Aware Priority As-
signment and Scheduling Simulation of Real-Time Em-
bedded Systems, PhD thesis, Université de Bretagne
Occidentale, Brest, France.

[8] C. Watterson and D. Heffernan (2007), Runtime verifica-
tion and monitoring of embedded systems, IET software,
vol. 1, pp. 172–179.

[9] R. Backasch, C. Hockberger, A. Weiss, M. Leucker, and
R. Lasslop (2013), Runtime verification for multicore
SoC with high-quality trace data, ACM Trans. on Design
Automation of Electronic Systems, vol. 18.

[10] R. C. Pinto and J. Rufino (2014), Towards non-invasive
runtime verification of real-time systems, in Proc. 26th
Euromicro Conf. on Real-Time Systems - WIP Session,
(Madrid, Spain), pp. 25–28, Euromicro.

[11] T. Reinbacher, M. Fugger, and J. Brauer (2014), Run-
time verification of embedded real-time systems, Formal
Methods in System Design, vol. 24, pp. 203–239.

[12] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu
(2008), Hardware runtime monitoring for dependable
cotsbased real-time embedded systems, in Proceedings
of the Real-Time Systems Symposium (RTSS 2008),
(Barcelona, Spain), pp. 481–491, IEEE.

[13] A. Kane, O. Chowdhury, A. Datta, and P. Koopman
(2015), A case study on runtime monitoring of an au-
tonomous research vehicle (ARV) system, in Proc. 15th
Int. Conf. on Runtime Verification, vol. 9333 of LNCS,
(Vienna, Austria), pp. 102–117, Springer.

[14] T. Reinbacher, K. Y. Rozier, and J. Schumann (2014),
Temporal-logic based runtime observer pairs for system
health management of real-time systems, in Proc. 20th
Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), vol. 8413 of LNCS,
(Grenoble, France), pp. 357–372, Springer.

[15] J. C. Lee, A. S. Gardner, and R. Lysecky (2011), Hard-
ware observability framework for minimally intrusive
online monitoring of embedded systems, in Proc. 18th
Int. Conf. on Engineering of Computer Based Systems,
(Las Vegas, USA), pp. 52–60, IEEE.

[16] G. Callow, G. Watson, and R. Kalawsky (2010), System
modelling for run-time verification and validation of
autonomous systems, in Proc. 5th Int. Conf. on System
of Systems Engineering, (Loughborough, UK).

[17] S. Cotard, S. Faucou, J.-L. Bechennec, A. Queudet, and
Y. Trinquet (2012), A data flow monitoring service based
on runtime verification for AUTOSAR, in Proceedings
of the 14th Int. Conf. on High Performance Computing
and Communications, (Liverpol, UK), IEEE.

[18] A. Kane (2015), Runtime Monitoring for Safety-Critical
Embedded Systems, PhD thesis, Carnegie Mellon Uni-
versity, USA.

[19] S. Jaksic, M. Leucker, D. Li, and V. Stolz (2017), CO-
EMS open traces from the industry, in Proc. of Int. Work-
shop on Competitions, Usability, Benchmarks, Evalua-
tion, and Standardisation for Runtime Verification Tools
(RVCuBES 2017), vol. 3, (Seatle, USA.).

[20] G. Reger and K. Havelund (2016), “What is a trace?
a runtime verification perspective, in Proc. of 7th Int.
ISoLA 2016 - Leveraging Applications of Formal Meth-
ods, Verification and Validation (T. Margaria and B. Stef-
fen, eds.), vol. LNCS 9953, (Corfu, Greece).

[21] J. Reinders (2013), Intel Processor Tracing, Intel Corpo-
ration, Sept. 2013.

[22] Intel (2013), Intel Architecture Instruction Set Exten-
sions Programming Reference, 319433-017 ed.

[23] W. Orme (2008), Debug and trace for multicore SoCs,
ARM White paper.

[24] ARM 2013, CoreSight technical introduction: a quick-
start for designers, ARM White paper EPM-039795.

[25] ARM (2013),ARM CoreSight Architecture Specification,
2.0 ed.

[26] Aeroflex Gaisler A.B. (2014), GRLIB IP Library User’s
Manual.

[27] SPARC International Inc. (1992), The SPARC Architec-
ture Manual.

[28] ARM Limited (1999), AMBATM Specification.

[29] The RTEMS Project (2017), RTEMS: Real-Time Execu-
tive for Multiprocessor Systems - User Manual, release
5.0.0 (master) ed. http://www.rtems.org.

Volume 39, Number 4, December 2018 Ada User Jour na l

291

Verification of Scheduling Properties Based on
Execution Traces

Valérie-Anne Nicolas, Mounir Lallali, Stéphane Rubini, Frank Singhoff
Lab-STICC UMR 6285, Université de Bretagne Occidentale, UBL, Av. Le Gorgeu, 29200 Brest,
France; email: {surname.name}@univ-brest.fr

Abstract

Despite the use of scheduling analysis when design-
ing hard real-time systems, some erroneous temporal
behaviors may still occur at runtime. Monitoring the
execution of the system during runtime is a way to spot
faulty behaviors. We focus on inline and embedded
monitoring for the verification of general but essential
temporal properties: scheduling properties.
This paper presents an approach for the temporal
scheduling properties verification part of monitoring.
The proposed algorithm has been evaluated on a bench-
mark, detecting missed deadlines, priority inversions,
deadlocks and locked resources, in keeping with schedul-
ing analysis and simulation results.

Keywords: monitoring, trace analysis, scheduling prop-
erty verification, real-time system.

1 Introduction
Real-time system correctness depends on its logical and tem-
poral correctness [1]. In the context of hard real-time systems,
the system temporal constraints are essential and have to be
met. The real-time scheduling theory provides methods and
tools to describe, simulate such systems, and to verify tem-
poral properties during the design stage. Despite the large
amount of work in design stage modeling and verification of
hard real-time systems, enhancing the overall system qual-
ity, some erroneous temporal behaviors may still occur at
runtime.

Monitoring the execution of the system is thus mandatory to
guarantee its integrity during its whole execution [2]. More-
over, to deal with hard timing constraints, the overall moni-
toring tool should be embedded into the system, while still
being as non-intrusive as possible, and sufficiently efficient
to adapt the system behavior, when needed, in a restricted
delay. A monitoring tool observes the monitored system and
builds a trace that constitutes a model of the real execution
of the system. There is a number of trace models, depending
on the kind of trace events, and in general closely related
to the monitor tool, the type of monitored application, the
intended properties or behaviors to observe. A processing
module deals with the trace to obtain supervision information,
for example compliance with specific temporal behaviors. A
decision module may take action in line with supervision

information, like ending the system execution for the most
critical cases.

This paper presents an instance of a processing module apply-
ing temporal scheduling properties verification on execution
traces as illustrated on Figure 1. We situate within the frame-
work of the Cheddar scheduling analysis project and its asso-
ciated Cheddar toolset including a scheduling analysis tool, a
simulation tool [3], and a simplified architecture description
language (called Cheddar ADL [4]). One of the output files
when applying the simulation tool is the simulation trace file.
This trace is the sequence of time-stamped events generated
during simulation. The hereafter proposed verification mod-
ule is based on the same system and trace models as in the
Cheddar tool and the monitor introduced in [2].

Figure 1: Verification module integration with the monitor

The paper is organized as follows: Cheddar system model,
Cheddar trace model, and aimed temporal scheduling proper-
ties are described in Section 2. Next, we present the chosen
approach to check temporal scheduling properties on execu-
tion traces in Section 3. In Section 4, the behavior of the
proposed algorithm is illustrated on several simple examples.
Then, related work is presented in Section 5. We finally
conclude and point out upcoming improvements in Section 6.

2 System Model, Trace Model and
Scheduling Properties

Figure 2 shows the verification module software architecture.
The targeted systems for runtime monitoring are hard real-
time systems on uniprocessor execution platform. The system
model exported from the Cheddar ADL system model de-
scribes a system by a set of XML markup elements. Markup
elements are dedicated to system hardware description (pro-
cessors, cores, address spaces, scheduling parameters, etc.)
and system software description (tasks, resources, resource

Ada User Jour na l Vo lume 39, Number 4, December 2018

292 Ver i f ica t ion of Schedul ing Proper t ies Based on Execut ion Traces

sharing protocols, etc.) [4]. As an example, tasks are periodic
and mostly characterized by their period, capacity, deadline,
start time and priority. Resources are mainly characterized
by their critical sections and the sharing protocol defining the
access rules to the resource if it is shared by several tasks.
The critical section for a resource R is the set of critical sec-
tions for the tasks sharing R. The critical section for a task T,
using the shared resource R, is the time interval [begin_time,
end_time] during which T uses R.

Figure 2: Software architecture of the verification module

The XML trace model produced by the Cheddar simulator
or the monitor describes a system execution trace by a finite
sequence of markup elements for time-stamped events. The
types of events, numbering seven, come from the scheduling
theory and describe the task states from the scheduling point
of view. Events at time i for a task T (and resource R) are:

Task_Activation(i,T) event sent out each time i where a task T
is activated (ready to run)

Start_of_Task_Capacity(i,T) event when T actually starts running at
time i

Running_Task(i,T, T cur-
rent_priority)

event when T runs at time i (with its pri-
ority that may change due to dynamic
scheduling or resource sharing protocols)

Allocate_Resource(i,T,R) event when a resource R is allocated to
task T at time i

Wait_for_Resource(i,T,R) event when a task T asks for an already
used resource R at time i

Release_Resource(i,T,R) event when a resource R is released by
task T at time i

End_of_Task_Capacity(i,T) event when a task T finishes its execution
at time i

An extract of an XML execution trace model is presented in
Figure 3 (in Section 3).

From the verification perspective, we are interested in schedul-
ing properties of execution traces, numbering eight. For any
given trace Exe, we focus on: P_priority_inversion(Exe),
P_deadlock(Exe), P_activation(Exe), P_capacity(Exe),
P_deadline(Exe), P_allocate(Exe), P_unlock(Exe)
and P_wait(Exe). The properties P_deadlock and
P_priority_inversion characterize the absence of the corre-
sponding scheduling theory usual concepts. In the simplest
case and with a preemptive fixed priority scheduler, two
tasks T1 and T2 are in deadlock if T1 locks a resource R1, T2

locks a resource R2, and T1 waits for R2 while T2 waits for
R1. Both tasks prevent each other from accessing the shared
resources R1 and R2 and therefore are blocked, missing their
deadlines. Let see now an example of scheduling when a
priority inversion occurs. A priority inversion occurs when
two tasks T1 (a low priority) and T2 (a high priority) share a
resource R, a third medium priority task T3 uses no resource.
T1 begins and owns R, then T2 is activated and preempts T1,
T2 later blocks waiting for R (still locked by T1). T1 resumes
its execution and T3 is activated before T1 has released R.
T1 is preempted by T3. At that point, T3 (medium priority)
can run and thus blocks T2 (high priority), through T1, even
though they share no resource.

We now define the other properties investigated in this paper.

P_activation(Exe) holds true if for each system task, Task_Activation
events occur at the accurate times (periodically from
start time), with no missing or extra Task_Activation
events in the whole trace Exe.

P_capacity(Exe) holds true if each task job in the trace Exe runs exactly
for the duration of its capacity.

P_deadline(Exe) holds true if all task jobs in the trace Exe meet their
deadlines.

P_allocate(Exe) holds true if for each Allocate_Resource(i,T,R) event
in the trace Exe, R is really needed by T at time i, R is
free at time i and i is the required time for this event.

P_unlock(Exe) holds true if for each system task in the trace Exe,
owned resources are released at the required time, and
in any case before deadline.

P_wait(Exe) holds true if for each Wait_for_Resource(i,T,R) event
in the trace Exe, R is really needed by T at time i, R is
not free at time i and i is the event required time.

Brought together, all these properties give a fairly complete
overview of the expected scheduling behavior of the system.

In the next Section we describe the algorithm for checking
these properties, based on the system and trace models pre-
sented above.

3 Verification of Scheduling Properties on
Execution Traces

The final objective of the verification module is to be embed-
ded into the real-time system and run inline during the system
execution. Its execution speed has thus to be compatible with
that of the system. Another constraint, even if it is related, is
that the monitored real-time systems may have non finite exe-
cutions, or finite executions but with a great number of events.
Therefore, during execution, the verification module does not
take as input the whole trace, but a finite fixed size slice of
it, using a transition buffer filled by the hardware part of the
monitor. The direct induced impact is that the verification
module execution time on one slice must be lower than the
system execution time corresponding to the next trace slice,
otherwise some trace events may be lost. For these reasons,
the general frame of our verification algorithm is a one and
only one pass through the trace.

As shown on the example of Figure 3 (which is a lim-
ited extract of events from a trace for conciseness), trace
events are not fully ordered. This is especially the case

Volume 39, Number 4, December 2018 Ada User Jour na l

V.A. Nico las, S. Rubin i , M. La l la l i , F. S inghof f 293

for Task_Activation events. The Task_Activation event for
a task T job is computed at the end of the previous task T
job and immediately sent out stamped with the time of ac-
tivation of the future task T job. An instance of that is the
Task_Activation event at time 2 occurring in the trace be-
fore events stamped with time 0 or 1. One may also note
that several events may appear at the same time. It is quite
common to find at the same time a Task_Activation event, a
Start_of_Task_Capacity event and a first Running_Task event
for the same task as illustrated by the example at time 0. The
events at a same time may also concern different tasks, as
shown at time 3 with a Wait_for_Resource event for a first
task and a Release_Resource event for a second task. There is
a number of such possible combinations. Sorting the trace (ac-
cording to time growing order) is thus imperative to allow to
check the properties in a single pass through the trace. To or-
der same time events, we define an order relation event_order
on events, well suited to the kind of checked properties. For
same time events, the order relation event_order states that:

End_of_Task_Capacity < Task_Activation <
Start_of_Task_Capacity < Running_Task

∧ Running_Task < Allocate_Resource
∧ Allocate_Resource = Wait_Resource = Release_Resource

meaning that, for example, a End_of_Task_Capacity event is
considered as precedent a Task_Activation event even if they
occur at the same time in the trace. As stated in Section 2,
we target systems on uniprocessor execution platform and
thus deal with one single execution trace on the processor.
In that framework, the order relation event_order is compli-
ant with the trace semantics. Actually, if a task job ends
reaching its deadline (a End_of_Task_Capacity(i,T) event
then follows the last Running_Task(i-1,T,prio) event), the task
next job will be activated at the same time i, and possibly
started and first runned also at the same time. On the contrary,
by construction, the trace can not exhibit a Task_Activation
(or Start_of_Task_Capacity or Running_Task) event and a
End_of_Task_Capacity event at the same time for a same task
job. Regarding resources, task resource allocation (or wait
for resource) is first processed at the beginning of the first
time unit where the resource is used by the task, whereas
resource release is done at the end of the last using time unit.
The same time resource related events can not be ordered
in the absolute. Each pattern is specific, depending on the
real use of resources by tasks. The order relation event_order
states that the three resource related events are equal, which
finally means that the order of these events in the initial trace
is preserved.

We now describe the proposed algorithm for verifying
scheduling properties in one pass from the time and
event_order sorted trace. The different points where the
properties are checked are depicted in the simplified out-
line of the algorithm presented in Figure 4. The algorithm
is based on a representation of the system state at runtime
(including task and resource states), and starting from an in-
active initial state (built from the system model), simulates
the execution represented by the trace, event by event. At the
same time, and depending on the properties to verify, some

<event_table>
<mono_core_processor id="id_2">
<scheduling_result>
<result>
<time_unit>0 </time_unit>
<time_unit_event>
<type_of_event>TASK_ACTIVATION</type_of_event>
<activation_task ref="id_4"> </activation_task>
</time_unit_event>
<time_unit>2 </time_unit>
<time_unit_event>
<type_of_event>TASK_ACTIVATION</type_of_event>
<activation_task ref="id_5"> </activation_task>
</time_unit_event>
<time_unit>0 </time_unit>
<time_unit_event>
<type_of_event>START_OF_TASK_CAPACITY</...>
<start_task ref="id_4"> </start_task>
</time_unit_event>
<time_unit>0 </time_unit>
<time_unit_event>
<type_of_event>RUNNING_TASK</type_of_event>
<running_task ref="id_4"> </running_task>
<current_priority>89</current_priority>
</time_unit_event>
<time_unit>1 </time_unit>
<time_unit_event>
<type_of_event>ALLOCATE_RESOURCE</...>
<allocate_task ref="id_4"> </allocate_task>
<allocate_resource ref="id_26"> </allocate_...>
</time_unit_event>
<time_unit>1 </time_unit>
<time_unit_event>
<type_of_event>RUNNING_TASK</type_of_event>
<running_task ref="id_4"> </running_task>
<current_priority>89</current_priority>
</time_unit_event>
<time_unit>2 </time_unit>
<time_unit_event>
<type_of_event>START_OF_TASK_CAPACITY</...>
<start_task ref="id_5"> </start_task>
</time_unit_event>
<time_unit>2 </time_unit>
<time_unit_event>
<type_of_event>RUNNING_TASK</type_of_event>
<running_core>core1</running_core>
<running_task ref="id_5"> </running_task>
<current_priority>90</current_priority>
</time_unit_event>
<time_unit>3 </time_unit>
<time_unit_event>
<type_of_event>WAIT_FOR_RESOURCE</...>
<wait_for_resource_task ref="id_5"> </...>
<wait_for_resource ref="id_27"> </wait_...>
</time_unit_event>
<time_unit>3 </time_unit>
<time_unit_event>
<type_of_event>RELEASE_RESOURCE</...>
<release_task ref="id_4"> </release_task>
<release_resource ref="id_26"> </release_...>
</time_unit_event>
<time_unit>9 </time_unit>
<time_unit_event>
<type_of_event>END_OF_TASK_CAPACITY</...>
<end_task ref="id_4"> </end_task>
</time_unit_event>
</result>
</scheduling_result>
<mono_core_processor id="id_2">
</event_table>

Figure 3: Extract of an XML execution trace model

checks are done on specific event occurrences and some oth-
ers periodically at the end of each same time sequence of
events. Periodic checks concern the tasks reaching the end
of their period, and are needed to cope with possible missing
events in the trace, such as missing Task_Activation events
(thus contributing to P_activation) or End_of_Task_Capacity
events. It also allows to complete the detection of undue
locked resources (P_unlock), or task missed deadline detec-
tion (P_deadline). Otherwise, when dealing with a specific

Ada User Jour na l Vo lume 39, Number 4, December 2018

294 Ver i f ica t ion of Schedul ing Proper t ies Based on Execut ion Traces

Algorithm: Apply&Check (system_runtime_state S, trace T)

foreach event E of trace T do
state_update_with_event(S,E);
switch E do

case Task_Activation do
P_activation_TActivEvt_Check(S,E);
P_deadline_TActivEvt_Check(S,E);

case Start_of_Task_Capacity do
Start_of_Task_Capacity event error detection;

case Running_Task do
Running_Task event error detection;
P_capacity_RunTaskEvt_Check(S,E);
P_deadline_RunTaskEvt_Check(S,E);
P_priority_inversion_RunTaskEvt_Check(S,E);

case End_of_Task_Capacity do
End_of_Task_Capacity event error detection;
P_capacity_EndTaskCapaEvt_Check(S,E);
P_deadline_EndTaskCapaEvt_Check(S,E);
P_unlock_EndTaskCapaEvt_Check(S,E);

case Allocate_Resource do
P_allocate_AllocResEvt_Check(S,E);

case Release_Resource do
Release_Resource event error detection;

case Wait_for_Resource do
P_wait_WaitResEvt_Check(S,E);
P_deadline_WaitResEvt_Check(S,E);
P_deadlock_WaitResEvt_Check(S,E);

end
end
Periodic_P_activation_Check(S);
Periodic_P_unlock_Check(S);
Periodic_P_deadline_Check(S);
End

Figure 4: Apply&Check Algorithm

event, the algorithm checks that no property is violated by this
event by calling the procedures associated to the event type
adequate properties. These procedures are thus named Prop-
ertyName_EventType_Check(S,E), meaning that they check
that the event E of type EventType does not violate the prop-
erty PropertyName in the system runtime state S. A specific
type event has an impact on only some of the eight studied
properties. Thus, only the procedures associated to the poten-
tially impacted properties for the considered type of event are
called. For example, a Allocate_Resource event may solely
affect the P_allocate property whereas a Task_Activation
event may affect the P_activation and P_deadline proper-
ties, and a Wait_for_Resource event the P_wait, P_deadline
and P_deadlock properties. To give a more precise
idea of the content of the checking procedures, here are
some details about the P_activation_TActivEvt_Check and
P_deadline_TActivEvt_Check procedures that are called when
processing a Task_Activation event.

P_activation_TActivEvt_Check(S,E) :

• if the event E is a task first activation: checks that the event
timestamp is not too late or too early,

• else checks that the previous task job activation event is not
missing and that there is not extra activation event for the
task in the interval.

P_deadline_TActivEvt_Check(S,E) :
checks that the previous task job did not miss its deadline.

The algorithm has been implemented in C in order to fit with
the monitoring constraints: embedded into the system and
efficiency.

In the next Section, the behavior of the algorithm is illustrated
on several simple trace examples.

4 Evaluation of the Verification Module
The algorithm described in Section 3 has been evaluated
on a benchmark of nine system and trace examples. This
benchmark mainly comes from a Cheddar tutorial [5]. Each
example is made of a system model and a trace model result-
ing from the Cheddar simulation tool. For all the examples,
the verification algorithm results are compliant with Cheddar
scheduling analysis and simulation tools. Among the nine
examples, four exhibit erroneous behaviors (missed deadlines,
deadlocks, priority inversions or locked resources).

For brevity, we here only present two mistaken examples
whose system and trace models can be accessed online [6].
For each of them, we assume a preemptive fixed priority
scheduling policy and priorities are assigned according to
Rate Monotonic. In the first example, a system with three
periodic tasks, synchronous and with deadlines on request is
considered.

Task Period Deadline Capacity Start time
T1 6 6 2 0
T2 8 8 2 0
T3 12 12 5 0

Tasks T1 and T3 share a resource S with mutual exclusion
access: T3 needs S during all its capacity, T1 needs S during
the 2nd unit of time of its capacity only. There is no specific
priority inheritance protocol, blocked tasks are thus stored in
a FIFO queue. The trace contains 75 events and expresses
the system behavior over its feasability interval, that is from
0 to the tasks periods Least Common Multiple (LCM) as the
tasks are synchronous [7], thus from time 0 to time 24. When
executing our verification algorithm, a priority inversion be-
tween tasks T1 and T2 is detected at times 8 and 9, and a
missed deadline for the task T1 is detected at times 12 and
13. Changing the sharing resource protocol by PIP (Priority
Inheritance Protocol) leads to a correct behavior of the system,
attested by the execution of the verification algorithm which
finds no more errors.

The second example is a system with two asynchronous peri-
odic tasks and one shared resource.

Task Period Deadline Capacity Start time
T1 20 20 10 0
T2 10 10 4 1

Tasks T1 and T2 share a resource R1 with mutual exclusion
access: T1 needs R1 from the the 1st unit of time of its
capacity up to the 4th (included), and from the 3rd unit of
time of its capacity up to the 6th (included). T2 needs R1 from
the 1st unit of time of its capacity up to the 2nd (included).
There is no specific priority inheritance protocol. Here, tasks
are not synchronous and the feasability interval is defined

Volume 39, Number 4, December 2018 Ada User Jour na l

V.A. Nico las, S. Rubin i , M. La l la l i , F. S inghof f 295

from 0 to the maximum of tasks start times + 2 * LCM(tasks
periods) [7]. The trace contains 85 events and expresses the
system behavior over its feasability interval, that is from time
0 to time 41. When executing our verification algorithm, a
deadlock on R1 for task T1 is detected at all times from 2, a
missed deadline for the task T2 is detected at all times from
11 (while waiting for R1), an unlock error is detected on R1
for T1 at time 19 and 39, a missed deadline for the task T1 is
detected at all times from 20 (while waiting for R1).

On this benchmark, results confirm that the whole set of
considered properties give a fairly complete overview of the
scheduling behavior of the system, similar to scheduling anal-
ysis and simulation results.

5 Related Work
Several works have been proposed for runtime verification/-
monitoring of timed properties based on execution traces.
[8] proposes a runtime verification framework for SoC (Sys-
tems on Chip) model. This framework allows the verification
of temporal properties described in PSL (Property Specifi-
cation Language), and the analysis of verification results.
The authors of [9] present a software architecture based on
Logic-Labeled Finite-State Machine (LLFSM) and regular
expressions to perform runtime monitoring and verification of
robotic system behaviors. [10] proposes a runtime verification
approach for timed systems based on executable models. They
define an on-the-fly conformance relation (between implemen-
tations and specifications) used for runtime verification, and
they suggest an on-the-fly matching for timed traces. The pro-
posed method has been implemented in an open-source toolkit
which has been experimented on the verification of some units
of different industrial microprocessors. [11] presents a predic-
tive runtime verification framework for systems with timing
requirements. Unlike the previous approaches, this predictive
verification is related to a system which is not monitored as
a black-box (some information about the system behavior is
known).

Previous works propose their own verification framework
and/or architecture that are not integrated as a part of the
real-time system monitoring. In addition, these works deal
with general temporal properties. In our case, we focus on
scheduling properties verification for inline and embedded
monitoring, and we aim at using our verification module as a
part of an inline embedded health monitor.

6 Conclusion
In this paper, an approach for the verification of scheduling
properties on uniprocessor hard real-time system execution
traces has been presented. This verification module has been
implemented in C and evaluated on a simple benchmark. Test-
ing showed that verification module results were compliant
with Cheddar scheduling analysis and simulation results, thus
strengthening confidence in the algorithm pertinence and con-
firming that the set of considered properties gives an accurate
overview of the expected scheduling behavior of the system.
Currently, the verification module deals with one slice of exe-
cution trace. Next improvement is to enchain the processing

of several execution trace slices.
After what the objective is to use this verification module
as a part of an inline embedded health monitor [2]. Further
work is needed to evaluate the verification module on more
consistent and realistic examples, so as to assess its efficiency
when embedded into a real-time system.

Acknowledgments This work and Cheddar are supported
by Brest Métropole, Ellidiss Technologies, CR de Bretagne,
CG du Finistère and Campus France PESSOA programs num-
ber 27380SA and 37932TF.

References
[1] C. L. Liu and J. W. Layland (1973), Scheduling algo-

rithms for multiprogramming in a hard-real-time envi-
ronment, Journal of the ACM (JACM), vol. 20, no. 1,
pp. 46–61.

[2] S. Rubini, V.-A. Nicolas, F. Singhoff, and J. Rufino
(2018), A real-time system monitoring driven by schedul-
ing analysis, RUME’18 Workshop.

[3] F. Singhoff, J. Legrand, L. Nana, and L. Marcé (2004),
Cheddar: a flexible real-time scheduling framework,
ACM SIGAda Ada Letters, vol. 24, pp. 1-8, ACM Press,
New York, USA.

[4] C. Fotsing, F. Singhoff, A. Plantec, V. Gaudel, S. Ru-
bini, S. Li, H. N. Tran, L. Lemarchand, P. Dissaux, and
J. Legrand (2014), Cheddar architecture description
language, Lab-STICC technical report.

[5] F. Singhoff (2015), Tutorial about cheddar : an ex-
ample of real-time scheduling analysis with cheddar,
Lab-STICC technical report.

[6] http://beru.univ-brest.fr/svn/CHEDDAR/trunk/docs/
publications/nicolas18.

[7] J. Y.-T. Leung and M. Merrill (1980), A note on preemp-
tive scheduling of periodic, real-time tasks, Information
Processing Letters, vol. 11, no. 3, pp. 115 – 118.

[8] L. Pierre and M. Chabot (2017), Assertion-based veri-
fication for soc models and identification of key events,
2017 Euromicro Conference on Digital System Design
(DSD), pp. 54–61.

[9] V. Estivill-Castro and R. Hexel (2016), Run-time ver-
ification of regularly expressed behavioral properties
in robotic systems with logic-labeled finite state ma-
chines, 2016 IEEE International Conference on Simu-
lation, Modeling, and Programming for Autonomous
Robots (SIMPAR), pp. 281–288.

[10] M. M. Chupilko and A. S. Kamkin (2013), Runtime
verification based on executable models: On-the-fly
matching of timed traces, Proceedings Eighth Workshop
on Model-Based Testing, Rome, Italy, 17th March 2013,
pp. 67–81.

[11] S. Pinisetty, T. Jron, S. Tripakis, Y. Falcone, H. Marc-
hand, and V. Preoteasa (2017), Predictive runtime ver-
ification of timed properties, J. Syst. Softw., vol. 132,
pp. 353–365.

Ada User Jour na l Vo lume 39, Number 4, December 2018

296

Non-intrusive Runtime Verification within a
System-on-Chip∗

José Rufino, António Casimiro
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal; email: jmrufino@ciencias.ulisboa.pt

Felix Dino Lange, Martin Leucker, Torben Scheffel, Malte Schmitz, Daniel Thoma
Institute for Software Engineering and Programming Languages, Universität zu Lübeck, Lübeck,
Germany; email: lange,leucker,scheffel,schmitz,thoma@isp.uni-luebeck.de

Abstract

This paper describes how to enrich a System-on-Chip
(SoC) design by flexible monitoring capabilities allow-
ing to analyze the system’s execution for ensuring safety
requirements. To this end, a general SoC architecture
is described enriched by observation means. Moreover,
it is described how verification properties expressed in
a temporal stream-based specification language can be
translated into a monitor expressed in a hardware de-
scription language (Verilog) checking the underlying
property. Finally, the link between the SoC and the
monitoring unit is explained. Overall, a self-observing
system is obtained that works coherently with the SoC.

Keywords: SoC runtime verification

1 Introduction and Motivation
Autonomous vehicles are paving their way into application
domains as diverse as: terrestrial, aerospace, maritime and
submarine. They include a System-on-Chip (SoC), hosting an
on-board computing system, to control the vehicle and ensure
the fulfillment of its mission.

In general, those control functions are extremely complex,
with strict real-time requirements. Interaction with the en-
vironment and operation in harsh or uncertain contexts are
potential sources for lack of determinism. In any case, the
correctness of the overall system is paramount, and safety
should be ensured at all times.

Runtime Verification (RV) [1, 2] assumes herein great rele-
vance, since it adds an extra layer of protection, assessing the
system against a previously defined specification, checking
whether timing and safety properties are satisfied or violated.

∗This work was partially supported by FCT, through funding of LASIGE
Research Unit, ref. UID/CEC/00408/2013, and by FCT/CAMPUS FRANCE
(PHC PESSOA programme), through the transnational cooperation project
3732 (PT) / 37932TF (FR), Non-intrusive Observation and RunTime verifica-
tion of cyber-pHysical systems (NORTH). This work integrates the activities
of COST Action IC1402 - Runtime Verification beyond Monitoring (ARVI),
supported by COST (European Cooperation in Science and Technology).
This work was partially supported by the BMBF project ARAMIS II with
funding ID 01 IS 16025 and EU H2020, through project 732016, COEMS
(Continuous Observation of Embedded Multicore Elements).

Most of the current RV techniques require the modification of
the application source code. Although software-based instru-
mentation is reasonable for larger systems, the requirements
that characterise these vehicular systems may pose an un-
surpassed challenge for runtime verification in such kind of
systems. Other techniques, such as system and/or function
call interception, are also not free from intrusiveness.

In this context, the concept of Hardware-based Observability,
a non-intrusive observation and runtime verification tech-
nique, assume particular relevance. More precisely, the under-
lying idea is that a safety-critical system should be enriched
by observation and analysis/monitoring techniques directly
on the core system itself. Thus, they should become a part of
the SoC. The direct combination allows perfect observability
of the functional system. The allocation of hardware resource
for the analysis further ensures that the monitoring does not
affect the execution of the functional system.

While SoC are traditionally specified in hardware description
languages like VHDL [3] or Verilog [4], the specification of
verification properties should ideally be performed in some
high-level domain specific language. Recently, the authors
hosted at Lübeck introduced the temporal stream-based spec-
ification language TeSSLa [5] which is especially designed
for specifying correct program executions. In this paper, we
describe how TeSSLa specification can be translated into a
hardware description language and integrated into a SoC for
performing basic verification tasks. Overall, we obtain a
self-observing system that works coherently with the SoC.

The paper is organized as follows. Section 2 presents
hardware-based observability monitors. Section 3 focuses
on an introduction to TeSSLa while Section 4 discusses its
translation into a Verilog format. Section 5 evaluates the
work done. Section 6 describes the related work and Sec-
tion 7 presents some concluding remarks and future research
directions.

2 Non-Intrusive Observation and Run-
time Verification

The classical approach to runtime verification implies the in-
strumentation of the functional system software components:
small pieces of software, acting as observers, are added to

Volume 39, Number 4, December 2018 Ada User Jour na l

J. Ruf ino, A. Cas imi ro, F. Dino Lange, M. Leucker, T. Schef fe l , M. Schmi tz , D. Thoma 297

assess their state in runtime. Software-based instrumentation
inherently disturbs the system, namely with respect to timing
properties, which are crucial to system design.

2.1 Hardware-based Observability
The demand for non-intrusive observability justifies, per se,
the interest in hardware-based methods, powered by: the
usage of reconfigurable logic, supported on FPGA special
purpose observers [6, 7, 8]; the raw availability of integrated
observation resources [9, 10]. By nature, hardware-based
system observation is completely non-intrusive and can be
made, by design, extremely effective.

The architecture described in Figure 1 describes the functional
system platform, implemented as a SoC architecture and how
runtime observation and monitoring features can be integrated
non-intrusively, meaning execution of runtime verification
actions does not disturb the execution of the functional system
software components. Probing the processor-cache interfaces
should allow an higher accuracy in the observation of software
components execution.

2.2 Observer Entity
The Observer Entity defined by the architecture of Figure 2
aims to support the non-intrusive observation and runtime
verification of an associated functional system, therefore en-
abling the verification in runtime that its properties are being
fulfilled and that no design assumption is being violated.

The Observer Entity is plugged to the platform where the func-
tional system software components execute, and comprises
the hardware modules of Figure 2: Bus Interfaces, capturing
all physical bus activity, such as bus transfers or interrupt
vectors; Management Interface, enabling observer entity con-
figuration; Configuration, storing the dynamic set of events;
the System Observer itself, detecting events of interest; Moni-
tor, which detects possible violations of the specified system
behaviour; Time Base, which allows to time stamp the events
of interest.

2.3 System Observing Mechanisms
The System Observer collects, in runtime, from the functional
system bus interfaces, all the addressing/data information to
detect events of interest set by configuration, performed stati-
cally (offline) or dynamically, while the system is executing.

When an event of interest (e.g., the fetch of a specific instruc-
tion or a read/write access to a given variable in the memory)
is detected, it is timestamped with the instant of occurrence,
as obtained from the Time Base module, and supplied to every
downstream block awaiting for that event. A unique identifier
(obsID) is assigned to each observed event, being an event
composed by the tuple:

evtobsID =< aobs, vobs, tobs >

where: aobs is the address observed from the functional sys-
tem bus interface that matches a given event specification;
vobs, the corresponding observed value (e.g., instruction cod-
ing or data value); tobs, is the attached timestamp.

Figure 1: Generic SoC architecture and Observer Entity

Figure 2: Observer Entity architecture

2.4 Monitoring Mechanisms

A divide and conquer strategy is used in the definition and
design of a minimal set of hardware-based essential blocks
for the synthesis of runtime verification mechanisms. A set of
basic monitors, encompassing essential runtime verification
actions, in both value and time domains, is detailed in [11].
These monitors can be instantiated as required. Additional
blocks (selectors, transformers and past-time event registers)
complement and enlarge the functionality provided by the ba-
sic monitors. The right combination of these building blocks
should be able to provide the necessary and sufficient mecha-
nisms for the runtime verification of any functional system.

3 An introduction to TeSSLa
TeSSLa [5] is a temporal stream-based specification language
that is designed for monitoring real-time signals and has al-
ready been used to build monitors for Runtime Verification
[12]. TeSSLa reasons over asynchronous input streams and
provides a rich data domain (Boolean, integer, real). Monitors
specified in TeSSLa can observe events, that were emitted
with different speeds and with different delays. TeSSLa sup-
ports signals and event streams. An event stream is only
allowed to be defined for a finite number of timestamps in a
finite interval, while a signal stream defines a value for every
point in time.

The basic concept of TeSSLa is deriving internal or output
streams by applying functions to already existing streams.
A stream can be defined declaratively as can be seen in the
following example of a TeSSLa specification:

def maximum := max(x1, x2)
def max(a,b) := if a > b then a else b

Ada User Jour na l Vo lume 39, Number 4, December 2018

298 Non- in t rus ive Runt ime Ver i f i ca t ion

The specification contains two input streams x1 and x2 and
creates a new stream maximum which always contains the
larger value of x1 and x2. Note that it is possible to define
macros (i.e. max(a, b)) that can be used to define more
sophisticated properties.

A complete list of all functions can be found in [5]. For
example can basic arithmetic function (like the comparison of
two numbers) be lifted. The lifted function is able to reason
over streams instead of i.e. integers. For timing properties it
is possible to generate a stream of timestamps corresponding
to the current value of another stream:

def timeOfx := time(x)

TeSSLa is useful for the approach of hardware-based monitor-
ing because it is especially designed for monitoring streams
and can be directly translated into hardware descriptions as is
explained in the following.

4 Translation into Verilog
Figure 3 shows the approach of Non-intrusive Runtime Ver-
ification within a System-on-Chip. The TeSSLa compiler
translates the TeSSLa specification into a dependency graph.
The dependency graph contains the necessary information to
generate Verilog code, which is used to synthesize the moni-
tor in FPGA hardware. There are five different operators that
have to be considered for the translation. Every operator can
directly be implemented as a node in the dependency graph
of a TeSSLa specification and the nodes can be connected
via message parsing. To show that this direct translation is
generally possible, two cases have to be considered.

Without recursion: If there are no recursions in a TeSSLa
specification, its dependency graph is known to be a directed,
acyclic graph [12]. To make sure that there is always at least
one node that is able to write, extra events, called progress
events, are introduced. Their purpose is to inform nodes
downstream about the absence of events. From that follows a
constant event throughput at all times. A formal proof can be
found in [13].

With recursion: There are two operators in TeSSLa that have
recursive behaviour. The last() operator returns a stream
with the last value of another stream based on a trigger signal.
The delay() operator delays a stream by a given amount of
time and can be reset by a signal stream. Because both the
trigger signal stream and the reset signal stream cannot be
recursive, it is guaranteed that a progress exists at all times.

This shows that every TeSSLa specification produces the same
output independently of timed reordering and it is therefore
possible to translate into evaluation engines implemented in
Verilog.

5 Use Case Integration
A use case in the domain of aerospace is the observation
of a navigation system of a satellite. The execution time of
different tasks with different priorities has to be observed,
because sometimes the execution takes longer than expected.
If a task exceeds the expected execution time, it has to be

canceled so other task can be executed in time. However, if the
same task is failing three times in a row, this is considered an
error, because the calculation of the trajectory of the satellite
needs the result of this task at least every third execution.

In order to monitor this behavior, we need to check the run-
time of the task, compare the timestamps and count the num-
ber of failed task executions. The runtime of the task can be
gathered by instrumenting the hardware of the Leon proces-
sor as described in Section 2 and can be passed as streams of
events to a monitor on the FPGA. The two streams contain
the events of starting (call) and finishing (return) the task.
The runtime of the tasks can be calculated and compared with
TeSSLa:

def runtime := on(return,
time(return) - time(call))

def count_violations :=
if runtime > threshold
then resetcount(runtime, false)
else
resetcount(runtime, true)

Note that the macro on(x, y) assures that the stream
runtime is only updated, if a new return event was sent.
resetcount(trigger, reset) returns the counted number and
is reset every time the second argument is true. The full code
for the macros is not shown in this paper due to paper size
limitations. An error is declared, if the threshold is violated
three times in a row:

def error :=
if count_violations > 3 then true
else false

This specification is then translated into a dependency graph
by the TeSSLa compiler. The dependency graph can be used
to generate a hardware specification as described in section 4.
With this setup it is possible to observe the activity of the satel-
lite for an unlimited amount of time and gather information
about the runtime violations of certain tasks.

6 Related Work
The application of non-intrusive runtime monitoring to em-
bedded systems has been discussed in [6,14] and, more specif-
ically, in safety critical environments [15]. Configurable mini-
mally intrusive event-based frameworks for dynamic runtime
monitoring have been developed [16]. Additionally, the RV
concept has been applied to autonomous systems [17] and to
diagnose multi-processor SoC [18]. However, to the extent of
our knowledge, no previous work has exploited how a TeSSLa
specification can be translated into a hardware description
language and integrated into a SoC.

7 Conclusion
We propose an approach on how to combine hardware-based
non-intrusive observation of a System on Chip with the high-
level temporal stream-based specification language TeSSLa.
With its easy to read C-style TeSSLa can be used to describe
properties much more intuitively than directly in hardware

Volume 39, Number 4, December 2018 Ada User Jour na l

J. Ruf ino, A. Cas imi ro, F. Dino Lange, M. Leucker, T. Schef fe l , M. Schmi tz , D. Thoma 299

Figure 3: An overview over our approach

description languages. It can be shown that TeSSLa specifi-
cations are directly translatable into a hardware description
language like Verilog.

Hardware-based observation is especially useful in domains
with long observation times. Therefore we introduce the
use case of task runtime observation of a satellite navigation
system to show a possible application of this approach.

This paper is the first step towards integrating TeSSLa into
a SoC. The use case prototype, showing the feasibility of
hardware-based observation within a SoC, needs further work,
namely with regard to: the exploitation of the monitoring
infrastructure [11]; the translation from TeSSLa to a hardware
description language; the definition of an effective algorithm
for the direct translation from the TeSSLa specification.

References
[1] M. Leucker and C. Schallhart (2009), A brief account of

runtime verification, The Journal of Logic and Algebric
Programming, vol. 78, pp. 293–303.

[2] Y. Falcone, K. Havelund, and G. Reger (2013), A Tuto-
rial on Runtime VerificationEngineering, in Dependable
Software Systems, vol. 34, pp. 141–175. Marktoberdorf,
Germany: IOS Press Ebooks.

[3] IEEE (2018), 1076.1-2017 - IEEE Standard VHDL Ana-
log and Mixed-Signal Extensions.

[4] IEEE (2018), 1800-2017 - IEEE Standard for SystemVer-
ilog– Unified Hardware Design, Specification, and Veri-
fication Language.

[5] L. Convent, S. Hungerecker, M. Leucker, T. Scheffel,
M. Schmitz, and D. Thoma (2018), TeSSLa: a temporal
stream-based specification language, in International
Colloquium on Theoretical Aspects of Computing (IC-
TAC). Submitted for publication.

[6] C. Watterson and D. Heffernan (2007), Runtime verifi-
cation and monitoring of embedded systems, Software,
IET, vol. 1, Oct. 2007.

[7] J. C. Lee, A. S. Gardner, and R. Lysecky (2011), Hard-
ware observability framework for minimally intrusive
online monitoring of embedded systems, in Proc. 18th
Int. Conf. on Engineering of Computer Based Systems,
(Las Vegas, USA), pp. 52–60, IEEE.

[8] R. C. Pinto and J. Rufino (2014), Towards non-invasive
runtime verification of real-time systems, in 26th Eu-
romicro Conf. on Real-Time Systems - WIP Session,
(Madrid, Spain), pp. 25–28.

[9] ARM (2013), ARM CoreSight Architecture Specification,
Cambridge, England, 2.0 ed.

[10] R. Backasch, C. Hochberger, A. Weiss, M. Leucker, and
R. Lasslop (2013), Runtime verification for multicore
SoC with high-quality trace data, ACM Transactions on
Design Automation of Electronic Systems (TODAES),
vol. 18, p. 18.

[11] J. Rufino (2018), Runtime verification monitors, tech.
rep., Faculdade de Ciências da Universidade de Lisboa,
Portugal.

[12] N. Decker, P. Gottschling, C. Hochberger, M. Leucker,
T. Scheffel, M. Schmitz, and A. Weiss (2017), Rapidly
adjustable non-intrusive online monitoring for multi-
core systems, Brazilian Symposium on Formal Methods,
pp. 179–196, Springer.

[13] M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A.
Schram (2018), TeSSLa: Runtime verification of nonsyn-
chronized real-time streams, in ACM Symp. on Applied
Computing (SAC), (Pau, France), ACM.

[14] T. Reinbacher, M. Fugger, and J. Brauer (2014), Run-
time verification of embedded real-time systems, Formal
Methods in System Design, vol. 24, no. 3, pp. 203–239.

[15] A. Kane, O. Chowdhury, A. Datta, and P. Koopman
(2015), A case study on runtime monitoring of an au-
tonomous research vehicle (ARV) system, in Proc. 15th
Int. Conf. on Runtime Verification, (Vienna, Austria).

[16] J. C. Lee and R. Lysecky (2015), System-level observa-
tion framework for non-intrusive runtime monitoring of
embedded systems, ACM Transactions on Design Au-
tomation of Electronic Systems, vol. 20, no. 42.

[17] G. Callow, G. Watson, and R. Kalawsky (2010), System
modelling for run-time verification and validation of
autonomous systems, in Proc. 5th Int. Conf. on System
of Systems Engineering, (Loughborough, UK).

[18] P. Wagner, T. Wild, and A. Herkersdorf (2017), DiaSys:
Improving SoC insight through on-chip diagnosis, Jour-
nal of Systems Architecture, vol. 75.

Ada User Jour na l Vo lume 39, Number 4, December 2018

300

Non-intrusive Observation and Runtime
Verification of Avionic Systems ∗

José Rufino
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal; email: jmrufino@ciencias.ulisboa.pt

Abstract

Unmanned autonomous systems (UAS) avionics call
for advanced computing system architectures fulfilling
strict size, weight and power consumption (SWaP) req-
uisites. The AIR (ARINC 653 in Space Real-Time Oper-
ating System) defines a partitioned environment for the
development and execution of aerospace applications,
preserving application timing and safety requisites.

This paper intensively explores the potential of nonintru-
sive runtime verification (NIRV) mechanisms, currently
being included in AIR, to the overall improvement of
system safety.

Keywords: Avionic and runtime verification

1 Introduction and Motivation
Avionic systems have strict safety and timeliness requirements
as well as strong size, weight and power consumption (SWaP)
constraints. Modern unmanned autonomous systems (UAS)
avionics follow the civil aviation trend of transitioning from
federated architectures to Integrated Modular Avionics (IMA)
[1] and resort to the use of partitioning.

Partitioning implement the logical separation of applications
in criticality domains, that we named partitions, and allow
hosting both avionic and payload functions in the same com-
putational infrastructure [2, 3].

However, partitioned architectures in general, and those de-
signed using AIR (ARINC 653 in Space Real-Time Operating
System) [4], in particular, tend to have their complexity and
may largely benefit of their combination with a runtime veri-
fication and monitoring infrastructure [5].

This paper explains how fundamental runtime verification
(RV) mechanisms can be combined with advanced time-and
space-partitioned (TSP) systems. To reduce the temporal over-
head of such mechanisms in the operation of onboard systems
an innovative non-intrusive design approach is followed.

∗This work was partially supported by FCT, through funding of LASIGE
Research Unit, ref. UID/CEC/00408/2013, and by FCT/CAMPUS FRANCE
(PHC PESSOA programme), through the transnational cooperation project
3732 (PT) / 37932TF (FR), Non-intrusive Observation and RunTime verifica-
tion of cyber-pHysical systems (NORTH). This work integrates the activities
of COST Action IC1402 - Runtime Verification beyond Monitoring (ARVI),
supported by COST (European Cooperation in Science and Technology).

Figure 1: Non-intrusive observer and runtime verification

The paper is organized as follows. Section 2 describes the
non-intrusive RV features being introduced while Section
3 presents the AIR architecture for TSP systems. Section
4 describes how to integrate RV mechanisms with the AIR
architecture and Section 5 performs their evaluation. Section
6 describes the related work and, finally, Section 7 issues
concluding remarks and future research directions.

2 Mechanisms for Non-intrusive Observa-
tion and Runtime Verification

Runtime verification obtains and analyses data from the exe-
cution of a system to detect and possibly react to behaviours,
either satisfying or violating the system specification. Run-
time verification implies that small components, which are not
part of the functional system, acting as observers, are added
to monitor and assess the state of the system in runtime.

The usage of reconfigurable logic supporting versatile plat-
form designs (e.g., soft-processors), as depicted in Figure
1, enables innovative approaches to RV [6]. In the context
of TSP systems: the computer hardware platform is instru-
mented with non-intrusive observers; the runtime verification
is secured by an independent hardware module, with no sys-
tem actions (unless there is an error).

An enhanced AIR architecture uses an AIR Observer and
Monitor (AOM) featuring: non-intrusiveness, meaning sys-
tem operation is not adversely affected and code instrumenta-
tion with RV probes is not required; configurable, being able
to accommodate different event observations.

The AOM hardware is plugged to the platform where the AIR
software components execute, and comprises the modules
depicted in Figure 2: bus interfaces, capturing all physical
bus activity, such as system bus and cache bus transfers or in-
terrupts; management interface, enabling AOM configuration;
configuration, storing the patterns of the events to be detected;

Volume 39, Number 4, December 2018 Ada User Jour na l

J. Ruf ino 301

Figure 2: AIR Observer and Monitor architecture

Figure 3: AIR architecture with AOM hardware

observer, detecting events of interest based on the registered
configurations and monitor, performing the required runtime
verification actions.

Though RV concepts can be applied to both time and space
partitioning, this paper is restricted to temporal issues. Thus,
it is assumed that a robust time base1 accounts for, in the
AOM hardware (Figure 2), the number of POS-level clock
ticks elapsed so far, to which AIR components have access,
through the read only current Ticks variable/register (used in
Algorithm 1). Other variable/registers may need to be stored
within the scope of the AOM hardware.

3 AIR Technology for TSP systems
The AIR design aims at providing high levels of flexibility,
hardware- and OS-independence, easy integration and inde-
pendent component verification, validation and certification
[4]. The AIR architecture is depicted in Figure 3.

The AIR Partition Management Kernel (PMK) is a core soft-
ware layer, enforcing robust TSP properties, together with
partition scheduling and dispatching, low-level interrupt man-
agement, and interpartition communication support. Robust
TSP implies that the execution of functions in one partition
does not affect other partitions’ timeliness and that separated
addressing spaces are assigned to different partitions.

Each partition can host a different OS (the partition operating
system, POS), which in turn can be either a real-time operat-
ing system (RTOS) or a generic non-real-time one. The AIR
POS Adaptation Layer (PAL) encapsulates the POS of each
partition, providing an adequate POS-independent interface.

1The design and engineering of AIR robust timers is out of the scope of
this paper. It will be addressed in a future work.

The Portable Application Executive (APEX) interface [7]
provides a standard programming interface derived from the
ARINC 653 specification [1], with the possibility of being
subsetted and/or adding specific functional extensions for
certain partitions [8].

The architecture of Figure 3 also includes the AOM hardware
module that we will intensively exploit in our design.

4 Integrating Non-intrusive Observation
and Runtime Verification

The integration of RV features in the AIR architecture is, in
essence, concerned with the operation of the AIR Partition
Scheduler and Dispatcher and uses a dual approach:

• operation enforced in hardware, either totally or with
some degree of assistance from software components,
being the RV actions performed in software, being this
kind of action only seldom used;

• operation achieved through the execution of software
components, with RV actions enforced in hardware, the
normal operating behaviour.

4.1 Partition scheduling

The original ARINC 653 notion of a single fixed Partition
Scheduling Table (PST) [1], defined offline, is limited in terms
of timeliness, as well as safety and fault-tolerance control. To
address this primary limitation, the AIR design incorporates
the notion of mode-based partition schedules, inspired by the
optional service defined within the scope of ARINC 653 Part
2 specification [9].

The system can now be configured with multiple PSTs, which
may differ in terms of their Major Time Frame (MTF) du-
ration. The different PSTs may specify which partitions are
scheduled on each mission phase, and of how much processor
time is assigned to them [4], as shown in Figure 4. The system
can then switch between these PSTs; a PST switch request is
only effectively granted at the end of the ongoing MTF [4].

4.2 Mode-based schedules

The AIR RV architecture uses an hardware-assisted approach
for selecting the partition scheduling switch instants, which
are programmed at the AOM, whenever a partition is dis-
patched: the next partition preemption point is inserted in the
AOM configuration; when this instant is reached, an AOM’s
hardware exception triggers the execution of Algorithm 1.

The RV actions of Algorithm 1 check, from the active PST,
if the current instant is a partition preemption point (line 3).
If that is not the case, a severe system level error has oc-
curred and the Health Monitor is notified (line 4) to handle
the situation. The AIR Health Monitor is a component, not
represented in Figure 3, that aims to contain faults within their
domains of occurrence, to provide the corresponding error
handling capabilities and that it spreads throughout virtually
all of the AIR architectural components. The remaining lines
(6-12) implement the partition switch actions of [4], checking
(line 6) if there is a pending scheduling switch to be applied

Ada User Jour na l Vo lume 39, Number 4, December 2018

302 Non- in t rus ive Obser vat ion and Runt ime Ver i f i ca t ion of Av ion ic Systems

Figure 4: Partition scheduling featuring mode-based schedules

and the current instant is the end of the MTF. If these condi-
tions apply, a different PST will be used henceforth (line 7).
The processing resources are assigned to the heir partition, ob-
tained (line 11) from the PST in use. The Partition Scheduler
is set (line 12) to access the heir partition parameters.

4.3 Partition dispatching
The execution is followed by the AIR RV Partition Dispatcher
specified in Algorithm 2. Two significant differences do exist
from the software-based approach of [4]: elapsed clock ticks
settings is no longer needed because the partition dispatcher is
always invoked after a partition switch; insertion of the next
partition preemption point in the hardware-assisted AOM
configuration (line 6). The remaining actions in Algorithm 2
are related to saving and restoring the execution context (lines
2 and 7) and evaluation of the elapsed clock ticks (line 4).

4.4 Observation of application components
Besides the AIR RV Partition Scheduler and Dispatcher, two
fundamental parts of our system, one dedicate our attention to

Figure 5: Analysis of processing time overheads

the monitoring of other components, such as the applications.
Through the use of the AOM module, observation and mon-
itoring continues to be non-intrusive. This is done through
Algorithm 3, the AIR Event Observer.

The AOM observes the Bus, compares (line 6) the transfer
operations Bus.trf with a configured set of observation points,
Config. Upon match, it sends a piece of information to the
external system (line 9). This piece of information is an event,
being comprised of: the time-stamp of the occurrence; the id
of the event, specified in the configuration (lines 7-8). The
numTick value (line 4) is incremented at every system clock
tick, and used as the event time-stamp.

5 Evaluation: analysis and discussion
One relevant metric for code complexity is its size, in lines
of source code. The standardized accounting method one
employ is the logical source lines of code (logical SLOC)
metric of the Unified CodeCount tool [11]. The C imple-
mentation of fundamental AIR components, such as the AIR
Partition Scheduler and Dispatcher, is assessed in Figure 6,
which shows its logical SLOC count along with the entity
instantiating the component, and implicitly, the instantiation
frequency. The data show a reduction of code complexity.

Volume 39, Number 4, December 2018 Ada User Jour na l

J. Ruf ino 303

Figure 6: Logical SLOC metrics and instantiation entities for fundamental AIR software components

With respect timing issues, comparing the normalised pro-
cessing time overheads of AIR Partition Scheduler and Dis-
patcher (TSD), in the software-based and hardware-assisted
approaches, along a full normalised MTF period (TMTF):

V ≈ TSD_soft

Tsys_tick
− TSD_Hard

TMTF
· nppp (1)

where, nppp is the number of partition preemption points in
the MTF and Tsys_tick is the normalised POS-level clock tick.
The normalisation of timing parameters in Figure 5 take the
experimental values TSD_Soft = 150 ns and Tsys_tick =
1ms as references, making TSD_Hard ≈ TSD_Soft for hard-
ware assisted and TSD_Hard = 0 for a full hardware imple-
mentation of the AIR Partition Scheduler/Dispatcher [12].

To exemplify the use of AIR AOM hardware in the observa-
tion/monitoring of several events, consider the Attitude and
Orbit Control Subsystem (AOCS) function of a Low Earth
Orbit (LEO) satellite. The Cartesian coordinates are used to
evaluate the satellite position:

(x− ux)
2 + (y − uy)

2 + (z − uz)
2 ≤ (δd)

2 (2)

where, (x, y, z) are the real position of the satellite and
(ux, uy, uz) are the specified satellite position; the value δd
defines a specified maximum distance deviation.

The real position of the satellite is read and compared with
the specified position. This difference should be kept below a
given and specified threshold. If a violation occurs, such an
event will be signalled to the AIR Health Monitor.

The synthesis of a monitor can be ensured with TeSSLa [13],
a Temporal Stream-based Specification Language, which is
specially designed for specifying correct program executions.

6 Related Work
Approaches to flexible scheduling in TSP systems are re-
stricted to the mode-based scheduling of the commercial
Wind River VxWorks 653 product [14]. Alternatives to
TSP/IMA are compared in [15], which includes recommen-
dations for adaptation of IMA-like solutions. Emergence of
non-intrusive runtime verification techniques for embedded
systems in general is addressed in [16, 17], while its applica-
bility to complex safety-critical systems is presented in [18].
However, no previous work have applied such techniques to
the realm of TSP systems.

7 Conclusion
This paper addressed how mechanisms providing support to
the AIR architecture for time- and space-partitioned systems
can be designed and engineered. The usage of a non-intrusive
AIR Observer and Monitor allows not only the monitoring
of fundamental AIR components but also of generic events.
Non-intrusive runtime verification is a relevant contribution
with respect to verification, validation and certification efforts
of TSP systems that will be extended in future research.

References
[1] AEEC (Airlines Electronic Engineering Committee)

(2006), Avionics Application Software Standard Inter-
face, Part 1 - Required Services.

[2] TSP Working Group (2009), Avionics time and space
partitioning user needs, Technical Note TEC-SW/09-
247/JW, ESA.

[3] J. Rushby (1999), Partitioning in avionics architectures:
Requirements, mechanisms and assurance, Tech. Rep.
NASA CR-1999-209347, SRI International.

[4] J. Rufino, J. Craveiro, and P. Verissimo (2010), Archi-
tecting robustness and timeliness in a new generation of
aerospace systems, in Architecting Dependable Systems
VII, vol. 6420 of LNCS, Springer.

[5] M. Leucker and C. Schallhart (2009), A brief account of
runtime verification, The Journal of Logic and Algebric
Programming, vol. 78, pp. 293–303.

[6] R. C. Pinto and J. Rufino (2014), Towards non-invasive
runtime verification of real-time systems, in 26th Eu-
romicro Conf. on Real-Time Systems - WIP Session,
(Madrid, Spain), pp. 25–28.

[7] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J.
Windsor (2008), A portable ARINC 653 standard inter-
face, in Proc. 27th Digital Avionics Systems Conf., (St.
Paul, MN, USA).

[8] J. Rosa, J. P. Craveiro, and J. Rufino (2011), Safe online
reconfiguration of time- and space-partitioned systems,
in Proc. 9th IEEE Int. Conf. on Industrial Informatics
(INDIN 2011), (Caparica, Lisbon, Portugal).

[9] AEEC (Airlines Electronic Engineering Committee)
(2008), Avionics Application Software Standard Inter-
face, Part 2 - Extended Services.

Ada User Jour na l Vo lume 39, Number 4, December 2018

304 Non- in t rus ive Obser vat ion and Runt ime Ver i f i ca t ion of Av ion ic Systems

[10] J. P. Craveiro and J. Rufino (2010), Adaptability support
in time- and space-partitioned aerospace systems, in
Proc. 2nd Int. Conf. on Adaptive and Self-adaptive
Systems and Applications, (Lisbon, Portugal).

[11] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm
(2007), A SLOC counting standard, in The 22nd Int.
Ann. Forum on COCOMO and Systems/Software Cost
Modelling, (Los Angeles, USA).

[12] J. Rufino (2016), Towards integration of adaptability
and nonintrusive runtime verification in avionic systems,
ACM SIGBED Review, vol. 13.

[13] M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and
A. Schramm (2018), TeSSLa: Runtime verification of
nonsynchronized real-time streams, in ACM Symp. on
Applied Computing (SAC), (Pau, France), ACM.

[14] Wind River (2015), Wind River VxWorks 653 Platform
2.4 and 2.5.

[15] B. Ford, P. Bull, A. Grigg, L. Guan, and I. Phillips
(2009), Adaptive architectures for future highly depend-
able, real-time systems, in Proc. 7th Ann. Conf. on
Systems Engineering Research, (Loughborough, UK).

[16] C. Watterson and D. Heffernan (2007), Runtime verifi-
cation and monitoring of embedded systems, Software,
IET, vol. 1, pp. 172–179.

[17] T. Reinbacher, M. Fugger, and J. Brauer (2014), Run-
time verification of embedded real-time systems, Formal
Methods in System Design, vol. 24, no. 3, pp. 203–239.

[18] A. Kane (2015), Runtime Monitoring for Safety-Critical
Embedded Systems, PhD thesis, Carnegie Mellon Uni-
versity, USA.

Volume 39, Number 4, December 2018 Ada User Jour na l

 305

Ada User Journal Volume 39, Number 4, December 2018

In memoriam: José Rufino

José Rufino passed away this summer. This summer, we
lost someone on whom we could always count, we could
talk to and be heard by, we could receive back nice words
and incentives. José had a strong voice, but we never heard
him raising his voice to anyone. We also lost his deep
technical knowledge in the area of real-time and embedded
systems, his ideas and persistence in pursuing them, his
scientific honesty and strict rigor and his great collaborative
skills. We will miss you.

José devoted perhaps most of his time to his students. He
cared to conveying knowledge, always seeking to improve
the course materials, exercises, investigating new ways to
make them learn more and better. He was considered a very
demanding teacher, a characteristic that many students are
only able to appreciate years later. He was also extremely
dedicated and competent teacher. We believe that there will
hardly be a student who will not remember José in a
positive way. The students will miss you.

José was one of the kindest and educated persons we ever
met. He was a very reserved person, his kindness was too
great and he didn't like to bother with his problems. Despite
so many years knowing him, there are only very few things
we knew about his personal life, what he liked and what he
used to do when being away from the university. He loved
an old car that belonged to his father, which he kept in
good shape as he knew a lot about automotive mechanics
and he could do the repairs by himself. But he didn't drive
this car (at least not always), as he preferred to use public
transportation to avoid traffic jams when going to work. He
was taking care of his relatives who lived in Alentejo (far
from Lisbon), so he went there very often and, from time to
time, did some maintenance work on the house there. That's
how he was. He lived his life thinking more about the
others than about himself.

We will miss you and we know well how much we lost by
not having you with us any longer.

Antonio Casimiro, who met José in 1989 and worked
together for almost 30 years.

Frank Singhoff, Laurent Lemarchand, Stéphane Rubini,
Nam Tran Hai, Jalil Boukhobza, your friends from Brest.

José Rufino was part of a crazy dream from the very start --
- to create an internationally successful research group in
the Portugal of the mid-eighties. That’s how the Navigators
group --- then at INESC and TU Lisboa --- was created,
and José was there from the start. José fulfilled his part of
the dream, becoming one of the most renowned and
respected researchers on safety and reliability of distributed
real-time and embedded systems. His achievements in this
area are highly cited, and I can only thank him for having
let me be his advisor and later, colleague, doing so many
things together during more than 30 years.

He allied an ultra-soft and polite temper (never heard him
raise his voice), with an indestructible stubbornness (which
the wise call persistence), and that was a great asset to the
group, especially in times of doubt or uncertainty. The
Navigators “never failed a demo” (literally, in over 30
years, and more than 40 projects), and a huge part of that
success was due to José’s meticulousness, leaving no detail
behind. His sophisticated sense of humor would be present
even in writing papers, like when I was obliged to make a
graphical explanation of the “Columbus Egg” story at a PC
dinner, after he named a paper after the fable (José, we
should have patented that one…).

It is impossible to be concise enumerating his human
qualities, as they were so many, but his generosity was
immense, and despite worrying about his friends and
always being there to help, we knew very little about his
own ordeals. Being a research-oriented professor, his
dedication to teaching and to his students should be an
example to us all.

He left us too early, but he will always be remembered.

Paulo Esteves-Veríssimo

(Head of the Navigators Group, 1985-2014)

306

Volume 39, Number 4, December 2018 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	CfP_AE2019.pdf
	Proceedings
	Call for Industrial Presentations
	Awards
	Call for Educational Tutorials
	Call for Workshops
	Call for Exhibitors
	Venue

