

Ada User Journal Volume 40, Number 1, March 2019

ADA
USER
JOURNAL

Volume 40

Number 1

March 2019

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 24

Forthcoming Events 31

Ada-Europe 2018 Industrial Presentations

 Z. Haider, B. Gallina, A. Carlsson, S. Mazzini, S. Puri
“ConcertoFLA-based Multi-concern Assurance for Space Systems” 35

Ada-Europe 2018 Technical Presentations

 M. Lindler, J. Aparicio, P. Lindgren
“Concurrent Reactive Objects in Rust Secure by Construction” 41

Special Contribution

 A. Burns, B. Dobbing, T. Vardanega
“Guide for the Use of the Ada Ravenscar Profile in High Integrity Systems (Part 1)” 53

Ada-Europe Associate Members (National Ada Organizations) 72

Ada-Europe Sponsors Inside Back Cover

2

Volume 40, Number 1, March 2019 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volume 40, Number 1, March 2019

Editorial

Is it true that life begins at forty? Looking back to the history of the Ada User Journal, I think no, it doesn’t. The AUJ has a
very rich and lively past, with countless contributions received from, and to, the community, actively playing an important
role in the promotion of Ada and Reliable Software! Nonetheless, in the year the AUJ turns 40, we instead look to, and
prepare for, the future.

An important guarantee of this future is the team in charge of the Journal. And I am glad to inform the readers of further
changes to the Ada User Journal editorial team: António Casimiro, from the University of Lisbon in Portugal, joins the team
as Associate Editor, and Alejandro Mosteo, from Centro Universitario de la Defensa de Zaragoza, Spain, joins as News
Editor. As you all know, the Journal is put together by a set of volunteers, which dedicate time and effort to the preparation,
editing, publishing and distribution of the Journal, and it is thus important to strengthen this team. Further changes are being
prepared, which we will inform later in the year.

As for the contents of the issue, we conclude the publication of contributions related to the Ada-Europe 2018 conference.
First, a paper derived from an industrial presentation, from a group of authors of Mälardalen University and OHB, Sweden,
and Intecs, Italy, presenting the customization of the CHESS methodology and the ConcertoFLA toolset for the development
of space software under the ECSS standard. Afterwards, the reader will find a paper on the use of the concurrent object
concept in the context of the Rust language, which was the topic of a technical presentation at the conference, by a group of
authors from the Luleå University of Technology, Sweden.

Closing the issue, we publish the first part of the Guide for the Use of the Ada Ravenscar Profile in High Integrity Systems,
which has been updated to consider Ada 2012, and is being prepared to be approved as a ISO technical report. The guide,
written by Alan Burns, from the University of York, UK, Brian Dobbing, currently retired and at the time at Altran Praxis,
UK, and Tullio Vardanega, from the University of Padua, Italy, includes the definition, rationale and examples of use of the
Ravenscar profile, provided in this first part, and also describes the verification approach appropriate to analyse Ravenscar
programs, which will be published in the next issue of the Journal.

As usual, the reader will also find the valuable information of the News and Calendar sections. I would also like to draw your
attention to the advance information about the Ada-Europe 2019 conference, which, apart from the rich content of tutorials,
exhibition and scientific and technical presentations will also provide a very rich networking environment.

 Luís Miguel Pinho
Porto

March 2019
 Email: AUJ_Editor@Ada-Europe.org

4

Volume 40, Number 1, March 2019 Ada User Journal

Quarterly News Digest
Kristoffer Nyborg Gregertsen

SINTEF, Email: kristoffer.gregertsen@sintef.no

Contents

Ada-related Tools 4
Ada-related Products 7
References to Publications 8
Ada Inside 8
Ada in Context 17

Ada-related Tools

Qt5Ada

From: leonid.dulman@gmail.com
Subject: Announce: Qt5Ada version 5.12.0

release 21/12/2018 free edition
Newsgroups: comp.lang.ada
Date: Fri, 21 Dec 2018 10:56:14 -0800

Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.12.0 final)

Qt5ada version 5.12.0 open source and
qt5c.dll, libqt5c.so(x64) built with
Microsoft Visual Studio 2017 in
Windows, gcc x86-64 in Linux.

Package tested with gnat gpl 2012 ada
compiler in Windows 32bit and 64bit ,
Linux x86-64 Debian 9.4.

It supports GUI, SQL, Multimedia, Web,
Network, Touch devices, Sensors,
Bluetooth, Navigation and many others
thinks.

Changes for new Qt5Ada release:

Added new packages: Qt.QStringView,
Qt.QGraphicsCustomItem,
Qt.QGLContext

My configuration script to build Qt 5.12.0
is: configure –opensource -release -
nomake tests -opengl dynamic -qt-zlib -
qt-libpng -qt-libjpeg -openssl-linked
OPENSSL_LIBS="-lssleay32 -llibeay32"
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.12"

As a role Ada is used in embedded
systems, but with QTADA(+VTKADA)
you can build any desktop applications
with powerful 2D/3D rendering and
imaging (games, animations, emulations)
GUI, Database connection, server/client,
Internet browsing , Modbus control and
many others thinks.

Qt5Ada and VTKAda for Windows,
Linux (Unix)
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/

The full list of released classes is in "Qt5
classes to Qt5Ada packages relation
table.docx" VTKAda version 8.1.0 is
based on VTK 8.1.0 (OpenGL2) is fully
compatible with Qt5Ada 5.12.0

I hope Qt5Ada and VTKAda will be
useful for students, engineers, scientists
and enthusiasts

With Qt5Ada you can build any
applications and solve any problems easy
and quickly.

If you have any problems or questions,
tell me know.

AWS issue

From: Andrew Shvets
<andrew.shvets@gmail.com>

Subject: Can't get to include AWS
Newsgroups: comp.lang.ada
Date: Thu, 27 Dec 2018 19:58:14 -0800

I installed the latest GNAT Community
distribution from AdaCore in ~/GNAT
and when I tried to use my *.GPR file in
order to build my code, I encountered the
below error:

unknown project file: "aws"

In my *.GPR file I did 'with "aws";'.

Is there some path or some other config
value that needs to be set?

Thanks in advance for your replies.

From: eduardsapotski@gmail.com
Subject: Re: Can't get to include AWS
Newsgroups: comp.lang.ada
Date: Fri, 28 Dec 2018 01:23:55 -0800

Run GPS.

Open project.

Edit -> Project Properties ->
Dependencies

Drag AWS to left panel.

Save.

Or in .gpr file paste: with "aws.gpr";

From: Simon Wright
<simon@pushface.org>

Subject: Re: Can't get to include AWS
Newsgroups: comp.lang.ada
Date: Sat, 29 Dec 2018 20:30:30 +0000

> I installed the latest GNAT Community
distribution from AdaCore in ~/GNAT
and when I tried to use my *.GPR file
in order to build my code, I
encountered the below error:

> unknown project file: "aws"

> In my *.GPR file I did 'with "aws";'.

I have GNAT CE installed under
/opt/gnat-ce-2018.

If I don't have /opt/gnat-ce-2018/bin on
my PATH but say /opt/gnat-ce-2018/
bin/gprbuild -P shvets.gpr where
shvets.gpr contains 'with "aws";' I get the
same as you.

If I do have /opt/gnat-ce-2018/bin on my
PATH and say

 gprbuild -P shvets.gpr

it works fine.

Protobuff for Ada

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Subject: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Fri, 28 Dec 2018 19:57:40 +0100

I managed to resurrect an old master
thesis work that was done by Niklas
Ekendahl in 2013 and put it on

https://github.com/persan/protobuf-ada

the plan is to get it in working shape.

From: Shark8
<onewingedshark@gmail.com>

Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Fri, 28 Dec 2018 21:53:55 -0800

Cool!

More libs, bindings, and implementations
in Ada is a good thing.

Though, it should be noted that ASN.1 is
probably the better technology in cases
where ProtoBufs are being considered:

http://ttsiodras.github.io/asn1.html

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Sat, 29 Dec 2018 12:05:40 +0100

> Though, it should be noted that ASN.1
is *probably* the better technology in
cases where ProtoBufs are being
considered:

> http://ttsiodras.github.io/asn1.html

Sorry to disappoint you in this festive
time, but this approach has the same
fundamental flaw as prepared SQL
statements do. You have to bind native
Ada objects to protocol/serialized/
persistent objects forth and back. This

Ada-related Tools 5

Ada User Journal Volume 40, Number 1, March 2019

does not work well in practice. In fact, it
barely work at all considering the
overhead and hazards of type conversions.

A different approach is Ada's
representation clauses which describe
both objects same. Beyond simple
textbook cases that does not work either.

The best practical method so far is using
manually written stream attributes.
Unfortunately it has shortcomings too:

1. Reuse is limited and composition is
unsafe because stream attributes are
non-primitive operations.

2. Introspection is almost non-existed.
Only tagged types could have it.

3. No support of error handling and
versioning. Though it is possible to do
manually that is extremely error-prone
and totally lacks static verification when
the number of test cases is huge to
potentially infinite. Even worse, the
offending cases do not show up in a
normally functioning system. So, when
detected, it is always too late.

P.S. Needless to say, the problems 1-3
fully apply to other two methods as well.

P.P.S. And nothing was said about
referential and recursive types...

From: Olivier Henley
<olivier.henley@gmail.com>

Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Mon, 31 Dec 2018 08:55:40 -0800

Interesting. I do not grasp the problem in
full though...

When you say "Sorry to disappoint you in
this festive time", do you mean trying a
solution from ASN.1 or only trying at
Protobuff?

I think I get why a Protobuff could not
cover "complete" transfer of Ada types
around, but how does other languages do?
(Almost everyone has it) Some of these
languages have relatively "complex" type
system..?

How do they achieve it? They express any
complex types with a limited subset of
primitive types(string, int32, etc)?

Can you give a more pragmatic example
that exemplifies the limitations in Ada?

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Mon, 31 Dec 2018 18:59:35 +0100

>> When you say "Sorry to disappoint
you in this festive time", do you mean
trying a solution from ASN.1 or only
trying at Protobuff?

Both. They are useless, up to harmful.

> I think I get why a Protobuff could not
cover "complete" transfer of Ada types
around, but how does other languages
do? (Almost everyone has it) Some of

these languages have relatively
"complex" type system..?

The very concept of a data
definition/description language (DDL) is
wrong as I tried to explain. It has a very
long and sad history in process
automation, control, communication (e.g.
CORBA), databases (e.g. SQL). Almost
everybody and everyone tried it and
failed. There are countless protocol
describing "languages" around in process
automation. I fought with them for
decades, wrote several compilers for this
mess. One could save huge amount of
money and time if there were a law to
punish people introducing this stuff... (:-))

> How do they achieve it? They express
any complex types with a limited subset
of primitive types (string, int32, etc)?

You cannot express a type in a DDL. Data
/= Type. Type = data + operations. If you
want to express complex typed objects
you lose before you start with a DDL.
You throw all type semantics overboard.

If you are OK without semantics then
there is no need to introduce this mess.
Use Ada stream attributes and simply read
and write what you want and how you
want. It is clean, easy, fast and 100% Ada.

> Can you give a more pragmatic
example that exemplifies the limitations
in Ada?

Any limitations Ada might have are
unrelated to the issue of language
impedance: DDL vs Ada unless you make
DDL embedded like embedded SQL,
which does not work either.

I believe AdaCore has a product of the
sort. Though I don't think that would be
much better, but I would rather trust them
than anybody else...

From: G. B. <nonlegitur@nmhp.invalid>
Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Wed, 2 Jan 2019 06:57:14 -0000

> *If* you are OK without semantics then
there is no need to introduce this mess.
Use Ada stream attributes and simply
read and write what you want and how
you want. It is clean, easy, fast and
100% Ada.

What kind of stream do you write for your
partners in business? Three of them have
different needs than you WRT data and
none of them is using Ada.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Wed, 2 Jan 2019 11:02:10 +0100

> [...]

> What kind of stream do you write for
your partners in business?

Stream of octets.

> Three of them have different needs than
you WRT data and none of them is
using Ada.

They still can read and write the stream.
You are confusing description of a
protocol with the implementation of.

The OP suggested having descriptions in
protobuff and partial implementation
generated from that. It is a bad idea.

BTW, it is very easy to write things like
protobuff straight in Ada with Simple
Components

http://www.dmitry-kazakov.de/ada/
components.htm#17.2.1

This feature is rarely used because, as I
said, the concept is too limited and
constraining if not wrong altogether.

Here is a small example. Consider an
example in protobuff:

 message Person {

 required string name = 1;

 required int32 id = 2;

 optional string email = 3;

 }

This direct Ada code:

 type Person is new State_Machine with
 Name : String_Data_Item
 (Max_String_Length);
 ID : Unsigned_32_Data_Item;
 Email : String_Data_Item
 (Max_String_Length);
 end record;

Thanks to Ada's "introspection" that is all.
It will be read or written by the
connections server automatically. On the
packet receipt callback, you get values
like Person_Session.ID.Value. Before
sending a new packet you assign
Person_Session.ID.Value. Note, this is
Ada 95, no fancy stuff.

I didn't show here alternation for using
optional fields because the transport level
representation would be different anyway.
Which is the point actually. Such key
details are all left unspecified in the
protobuff "description" above along with
endianness and other encoding issues. Yet
exactly these details are essential in
practice where the protocol is already
defined. Present or not bits might kept
combined in the message header, special
values of integers are reserved to indicate
exceptional states and so on and so forth.
And, again, no semantics whatsoever, just
buckets of bits.

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Tue, 1 Jan 2019 09:05:38 +0100

From my perspective absolutely biggest
flaw with technologies like protobuff is:

* Its backed by a large corporation.

* The technology is well known.

6 Ada-related Tools

Volume 40, Number 1, March 2019 Ada User Journal

* 99.9% of the programming population
think that they are the salvation to
serialization.

* The licensing is open.

And on top.

* There are significantly more than one
project where the lack of protobuff
support has ruled out Ada as
implementation technology.

And my intent was to eliminate at least
the last points even if the technology is
inferior.

AdaControl

From: "J-P. Rosen" <rosen@adalog.fr>
Subject: [Ann] AdaControl V1.20r7

released
Newsgroups: comp.lang.ada
Date: Thu, 3 Jan 2019 14:03:30 +0100

Adalog is pleased to announce the release
of a new version of AdaControl. Thanks
to the support of several sponsors, there
are several interesting new controls (see
file HISTORY), with a grand total of 70
rules and 565 possible tests! The
automatic fixes feature has been extended
too.

More details, download, etc. from
http://adacontrol.fr. The executable
version is now provided for Gnat
Community edition 2018.

Reminder: If you have any issue with
AdaControl, please report it using

http://sourceforge.net/p/adacontrol/ticket

And if you use it for an industrial project,
commercial support is available from
Adalog, don't hesitate to ask for
information at info@adalog.fr

GNU ELPA

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: GNU ELPA package ada-ref-man
version 2012.4 is now available

Newsgroups: comp.lang.ada
Date: Sat, 5 Jan 2019 10:26:23 -0800

GNU ELPA package ada-ref-man version
2012.4 is now available. This version
adds '<' '>' annotation to indicate italics in
syntax element names:

 generic_instantiation ::=
 package defining_program_unit_name is
 new <generic_package_>name
 [generic_actual_part]
 [aspect_specification];

Simple Components

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components for Ada
v4.36

Newsgroups: comp.lang.ada
Date: Tue, 8 Jan 2019 12:50:31 +0100

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- The package
GNAT.Sockets.Server.Blocking was
added to provide connection servers
handling blocking I/O;

- Procedures Send_Socket and
Receive_Socket were added to the
package GNAT.Sockets.Server;

- Procedures Reconnect and
Request_Disconnect were added to the
package GNAT.Sockets.Server;

- The functions Is_Configured, Is_In,
Has_Device_Configuration were added
GNAT.Sockets.Connection_State_Mach
ine.ELV_MAX_Cube_Client;

- Airing time decoding/encoding error in
GNAT.Sockets.Connection_State_Mach
ine.ELV_MAX_Cube_Client.

SparForte

From: koburtch@gmail.com
Subject: Ann: SparForte 2.2
Newsgroups: comp.lang.ada
Date: Tue, 8 Jan 2019 20:15:29 -0800

SparForte version 2.2 was released over
the holidays.

It is available for download from the
SparForte website:

 https://www.sparforte.com/

This version brings preliminary
programming-by-contract, side-effect
detection and additional shell features. An
overview can be found on my blog:

https://www.pegasoft.ca/coder/
coder_december_2018.html

There are also several recent blog articles
on the design of SparForte, as requested
by the mailing list subscribers.

SparForte is a shell, scripting language
and web template engine with a core
feature set based on Ada. I hope you will
find it useful.

Note: I do not regularly read this
newsgroup. Please direct questions to the
SparForte mailing list.

VTKAda

From: leonid.dulman@gmail.com
Subject: VTKAda 8.2.0
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 11:19:09 -0800

I'm pleased to announce VTKAda version
8.2.0 free edition release 01/02/2019.

VTKAda is Ada-2012 port to VTK
(Visualization Toolkit by Kitware, Inc)
and Qt5 application and UI framework by
Nokia VTK version 8.2.0, Qt version
5.12.0 open source and vtkc.dll, vtkc2.dll,
qt5c.dll (libvtkc.so, libvtkc2.so,
libqt5c.so) were built with Microsoft
Visual Studio 2017 (15.9) in Windows
(WIN32) and gcc in Linux x86-64

Package was tested with gnat gpl 2017
ada compiler in Windows 10 64bit,
Debian 9.4 x86-64

As a role ADA is used in embedded
systems, but with VTKADA(+QTADA)
you can build any desktop applications
with powerful 2D/3D rendering and
imaging (games, animations, emulations)
GUI, Database connection, server/client,
Internet browsing and many others thinks.

VTKADA you can be used without
QTADA subsystem

Qt5Ada and VTKAda for Windows,
Linux (Unix)
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/

Florist

From: "J-P. Rosen" <rosen@adalog.fr>
Subject: Florist is in Ada !
Newsgroups: comp.lang.ada
Date: Tue, 19 Feb 2019 17:10:08 +0100

See: https://www.carolslaneflorist.com/
about-us

(found this while browsing for Florist, the
Ada interface to Posix) :-)

OpenGLAda

From: Felix Krause <contact@flyx.org>
Subject: ANN: OpenGLAda 0.7.0
Newsgroups: comp.lang.ada
Date: Sat, 9 Mar 2019 19:18:49 +0100

This release includes some additions to
the API, but primarily adds GNAT
Community 2018 support. It is also the
first release with a Windows installer.
This installer includes the optional
dependencies (GLFW and Freetype) and
installs OpenGLAda on top of an existing
GNAT installation.

The dependency on the 3rd party library
Strings_Edit has been removed and UTF-
8 decoding is now part of the project. This
hopefully reduces confusion.

Release and further information is
available here:

https://github.com/flyx/OpenGLAda/
releases

Ada-related Products 7

Ada User Journal Volume 40, Number 1, March 2019

Ada-related Products

SPARK

From: addaon@gmail.com
Subject: New to Spark, working an example
Newsgroups: comp.lang.ada
Date: Sat, 15 Dec 2018 21:43:50 -0800

Folks, new to this list, so not quite sure on
etiquette.

I've been trying to understand Spark-2014
well enough to work through an example,
and understand the capabilities and
workflow of the tools. The example I
chose was an example of floor(lg(n)) for n
positive.

Rather than put a long post here, I'll refer
to my (long) post at stackoverflow:

https://stackoverflow.com/questions/
53752715/proving-floor-log2-in-spark.
(If this is bad etiquette here, let me know,
and I'll fix -- but it does seem a bit silly to
duplicate the content in two locations)

Since SO seems to have a very limited
Ada/Spark community, I'm hoping
someone here can point me in the right
direction. Basically, trying to understand
what tools I should be trying to
understand at this point. :-) Should I be
looking at proving this with just a better
understanding of how to write loop
invariants; through appropriate lemmas;
through an external prover like Coq; or
something else?

From: Simon Wright
<simon@pushface.org>

Subject: Re: New to Spark, working an
example

Newsgroups: comp.lang.ada
Date: Sun, 16 Dec 2018 09:48:17 +0000

I don't think there's anything wrong with
trying to attract attention (what gets my
goat a bit is people posting the same
question in both places at the same time).

I have to confess that I hadn't set up my
SO account to watch the tags [spark-
2014] or [spark-ada] (why both?), or even
[gnat] or [ada2012] - rectified. You would
have got more views if you'd included
[ada] (but not necessarily any (more)
answers :)

Your problems are an indication of why I,
as a person who has no access to
professional SPARK support, haven't
invested any effort to speak of in SPARK
(my difficulties were with tasking/time
rather than mathematical loops, which
tend to be rare in control systems).

That said, it looks to me as though the
version of gnatprove in GNAT CE 2018
may not fully understand exponentiation:

util.ads:3:14: medium: postcondition
might fail, cannot prove
2 ** Floor_Log2'Result <= X

util.ads:3:16: medium: overflow check
might fail

(e.g. when Floor_Log2'Result = 0)

From: Brad Moore
<bmoore.ada@gmail.com>

Subject: Re: New to Spark, working an
example

Newsgroups: comp.lang.ada
Date: Tue, 18 Dec 2018 18:41:59 -0800

I am by no means a SPARK expert, but I
am also interested in exploring SPARK
capabilities.

My approach led me to the following
solution using just the SPARK 2018 GPL
download from Adacore.... (no extra
provers were needed here, other than the
ones that come with GNAT CE 2018)

As an aside, it appears the version of
gnatprove in GNAT CE 2018 does have a
pretty good understanding of
exponentiation, given that I was able to
get the following proven.

package Util with SPARK_Mode is
 Max_Log2 : constant := Positive'Size - 1;
 subtype Log_Result is Natural
 range 0 .. Max_Log2;

 function Floor_Log2 (X : Positive) return
 Log_Result with
 Global => null,
 Depends => (Floor_Log2'Result => X),
 Post => X >= 2**Floor_Log2'Result
 and then X / 2 < 2**Floor_Log2'Result;
end Util;

pragma Ada_2012;
package body Util with SPARK_Mode is
 function Floor_Log2 (X : Positive) return
 Log_Result is
 begin -- Floor_Log2
 Log_Loop :
 for I in Log_Result loop
 pragma Loop_Invariant
 (for all J in 0 .. I => X >= 2**J);
 pragma Assert
 (X / 2 < 2**Log_Result'Last);
 if X / 2 < 2**I then
 pragma Assert (X >= 2**I);
 pragma Assert (X / 2 < 2**I);
 return I;
 end if;
 pragma Assume(I /= Log_Result'Last);
 end loop Log_Loop;
 return Log_Result'Last;
 end Floor_Log2;
end Util;

I technically didn't need to use the Global
aspect or the Depends Aspect to prove
this function, but I think it is a good idea
to provide a more detailed contract using
additional SPARK and Ada features,
when possible.

The approach I took is to first of all make
use of Ada 2012 contracts to constrain the
results to only allow valid values. The
Log_Result subtype only includes valid
result values.

I think this is an important goal in general
to eliminate bugs, whether writing code
for regular Ada as well as SPARK.

My view is that in general, types such as
Integer and Float should not be used since
they are types that describe memory
storage, not types that describe values of
interest in the application domain.

By creating types that more accurately
represent the application domain, I
believe it makes the job of writing proofs
in SPARK much easier, since the prover
can reason that the values assigned to
such values have specific value ranges
and properties.

Another point, is to try to write an
implementation that is easier to prove. For
that reason, I wrote this is a for loop
rather than a while loop, because the
compiler can reason statically about how
many iterations are performed, and what
the values of the loop parameters can be.

The prover was able to prove all the
assertions in the implementation.

I had to leave in one assumption, (the
pragma assume),

 pragma Assume(I /= Log_Result'Last);

Without that, the prover complains that
the post condition,

 X / 2 < 2**Floor_Log2'Result

cannot be proven. It appears that the
prover is not able to prove that the loop
exited by the return statement, rather than
iterating the full loop and exiting the loop
without entering the if statement.

However, I think this can be visually
inspected and confirmed to be true, since
the assert for the if statment,

pragma Assert(X / 2 < 2**Log_Result'Last);

just prior to the if statement was proven.

It follows that if the assertion is true, then
the if statement would have to be entered
on the following line, and that the return
would exit the loop.

Thus, the reader should be able to visually
tell that it is impossible to get by the if
statement when I = Log_Result'Last, and
thus the pragma Assume is true.

The return at the end of the function
should never get executed, as the only
way to exit the function is via the return
inside the loop.

I didn't need to have the return inside the
loop for the purpose of proving the
function. I just did that to eliminate the
need of extra variable declarations.

Probably the prover could be improved so
that such an assume could be eliminated
while still proving the overall function.

There may be a way to add additional
asserts or pragmas to eliminate the need
for the pragma Assume. So far I haven't
found any, but perhaps someone else
might come up with a way. Otherwise,
I'm pretty happy with the solution I ended
up with, given that the one assume in the

8 Ada Inside

Volume 40, Number 1, March 2019 Ada User Journal

code can be visually checked easily for
correctness.

I am sure that other SPARK solutions
exist. I think when it comes to proving
something, it is better to start with
something simple, and to have in mind
choosing an implementation that is easier
to prove. This should make it easier to
arrive at a proof.

From: Simon Wright
<simon@pushface.org>

Subject: Re: New to Spark, working an
example

Newsgroups: comp.lang.ada
Date: Wed, 19 Dec 2018 16:58:41 +0000

>> util.ads:3:16: medium: overflow check
might fail (e.g. when >>
Floor_Log2'Result = 0)

> As an aside, it appears the version of
gnatprove in GNAT CE 2018 does have
a pretty good understanding of
exponentiation, given that I was able to
get the following proven.

Apparently so. But the part of gnatprove
that gives examples of when the assertion
might fail is quite misleading: for
example,

util.ads:7:14: medium: postcondition
might fail, cannot prove
2 ** Floor_Log2'Result <= X
(e.g. when Floor_Log2'Result = 0
and X = 0) *when X is Positive* !!
and util.adb:19:15: medium: overflow
check might fail (e.g. when I = 0)

 l.18 for I in 1 .. Log_Result'Last loop

 l.19 if 2 ** I > X then

From: Brad Moore
<bmoore.ada@gmail.com>

Subject: Re: New to Spark, working an
example

Newsgroups: comp.lang.ada
Date: Wed, 19 Dec 2018 20:34:13 -0800

I agree that the error messages are
misleading, as I was getting similar
messages when I was working on this.
While the values "0" mentioned in the
error messages were confusing to me, I
think the messages were helpful at least in
suggesting the sort of tests the prover was
trying to prove, which ultimately helped
me figure out the assertions that were
needed to get this to pass. The values
given can be a bit of a red herring
sometimes, but I think the underlying test
described by the message is more helpful.
This is my second problem that I
attempted to prove in SPARK, so I didn't
know if I would succeed, or know much
about how to approach this. It's kind of a
rewarding feeling when you get the
prover to pass.

One suggestion I have to prove post
conditions, is to state the post condition as
an assert before returning from the
subprogram, and work backwards from
there.

References to
Publications

Ravenscar References

From: lyttlec <lyttlec@removegmail.com>
Subject: Ravenscar References
Newsgroups: comp.lang.ada
Date: Wed, 16 Jan 2019 12:48:28 -0500

Can anyone suggest a good reference on
using the ravenscar profile? In the Ada
books I have, it only gets a one or two
page mention. A reference with an
extended case study would be great.

From: Simon Wright
<simon@pushface.org>

Subject: Re: Ravenscar References
Newsgroups: comp.lang.ada
Date: Wed, 16 Jan 2019 18:15:03 +0000

You might find something useful at
http://cubesatlab.org e.g.
http://www.cubesatlab.org:430/
PUBLIC/brandon-chapin-HILT-2016.pdf

From: lyttlec <lyttlec@removegmail.com>
Subject: Re: Ravenscar References
Newsgroups: comp.lang.ada
Date: Fri, 18 Jan 2019 14:18:10 -0500

Thanks all for the links. They are a help.
However, I'm looking for something
along the lines of porting legacy code to
be ravenscar "safe".

As an illustration, consider making
Dmitry A Kazakov's code meet
Ravenscar. I need to port lots of existing
more or less standard components to meet
Ravenscar. This is to satisfy some
regulatory authorities.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Subject: Re: Ravenscar References
Newsgroups: comp.lang.ada
Date: Sun, 20 Jan 2019 18:12:11 +0100

I don't know that "port" is a good word
for this activity. I once looked at
implementing Sandén's FMS problem
using Ravenscar. Starting from the
requirements, I first had to find a
Ravenscar-suitable design. The standard
design has a dynamic task per job, and is
clearly not possible using Ravenscar. An
alternative design using a task per
workstation had to be used.

From that choice, Ravenscar drove a
proliferation of protected objects and
helper tasks. Things that were simple in
full Ada became much more complex to
meet the restrictions of the profile.

Presumably you would need to apply a
similar process to each of the components
you need to convert.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Re: Ravenscar References
Newsgroups: comp.lang.ada
Date: Mon, 21 Jan 2019 17:19:43 -0600

Note that the less strict profile Jorvik,
defined in Ada 2020 (and already
implemented in GNAT) would simplify
this process.

I don't think it is possible to "convert"
regular Ada code into Ravenscar (unless,
of course, it doesn't use any tasks ;-). You
pretty much have to completely rewrite it
with Ravenscar in mind. (In this way, it is
very much like using SPARK.)

From: "J-P. Rosen" <rosen@adalog.fr>
Subject: Re: Ravenscar References
Newsgroups: comp.lang.ada
Date: Tue, 22 Jan 2019 10:25:08 +0100

I don't fully agree with that statement; it
all depends where you start from.

I recently helped one of my clients who
wanted to move to Ravenscar. The
original structure was all Ada83,
communicating with rendezvous.

However, it was already safety critical,
therefore based on cyclic, never ending
tasks, and limited communications. It was
reasonably easy to define patterns for
matching the existing structure into
Ravenscar patterns.

Ada Inside

Compilation Issues

From: alexander@junivörs.com
Subject: Licensing Paranoia and Manual

Compilation Issues
Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 03:46:02 -0800

I've read some threads on here regarding
the licensing situation of AdaCore's Libre
compiler. For my upcoming project, I'm
going to need (= very strong desire) to use
Ada and I'm also going to need to be able
to license the executable produced thereof
in any way I desire.

In regards to the aforementioned, I have
two questions. I realize I come forth as
somewhat paranoid in the upcoming
paragraphs (which undoubtedly I am).
The licensing situation worries me a great
deal.

1. ```As for the compiler build provided
by (the GetAdaNow Mac OS X section's
link to Sourceforge)[1]; which parts of
that GCC build for compiling Ada can
you safely use and still be covered by the
"GCC Runtime Library Exception"? I can
see it states you can use `GNATCOLL`
and `XMLAda`. I'm assuming the
standard library is included as well. Can
you on the other hand use all console
commands? `gnat <command>`?
`gprbuild`? Or would these inject "non-
runtime library exception'd" GPL code
into the executable?```2. ```I've been
attempting to compile and link some code
through the use of the `gcc` command
solely, but haven't been successful in
doing so. I have, on the other hand, been
able to successfully generate an

Ada Inside 9

Ada User Journal Volume 40, Number 1, March 2019

executable by utilizing the `gnatbind` and
`gnatlink` commands consecutively after
compiling with `gcc -c <file>`. Is it
possible to use only the `gcc` command
for the matter, or do you need to also
throw in a few calls to the `gnat`
commands?

When executing the following
commands...

$ gcc -c src/main.adb -o obj/main.o

$ gcc -o main obj/main.o

I wind up with the following error (on the
second command, which should be a
GCC link):

Undefined symbols for architecture
x86_64:

 "_main", referenced from:

 implicit entry/start for main executable

 (maybe you meant: __ada_main)

ld: symbol(s) not found for architecture
x86_64

collect2: error: ld returned 1 exit status

A similar error occurs when I attempt to
create `.so` libraries manually using the `-
shared` compiler switch. With all that
being said, is it simply not possible to do
these things through solely `gcc`, or am I
missing something?```

It may be worth noticing that I've fallen in
love with Ada to the utmost degree over
the past year. As such, I'm planning on, at
the very least, stalking "comp.lang.ada"
like some creepy figure. You'll probably
see more from me beyond these first two
questions, is what I'm saying.

[1] https://sourceforge.net/projects/
gnuada/files/GNAT_GCC 20Mac OS X/
8.1.0/native-2017/

From: Simon Wright
<simon@pushface.org>

Subject: Re: Licensing Paranoia and
Manual Compilation Issues

Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 16:11:48

Let me start by saying that I'm not a
lawyer.

> 1. ```As for the compiler build provided
by (the GetAdaNow Mac OS X
section's link to Sourceforge)[1]; which
parts of that GCC build for compiling
Ada can you safely use and still be
covered by the "GCC Runtime Library
Exception"? I can see it states you can
use `GNATCOLL` and `XMLAda`. I'm
assuming the standard library is
included as well. Can you on the other
hand use all console commands? `gnat
<command>`? `gprbuild`? Or would
these inject "non-runtime library
exception'd" GPL code into the
executable?```

They may (do) *generate* source code
that gets included in the executable
(gnatbind does this). But that isn't code
that's provided with the compiler and

might have a copyright issue; it's no
different in principle from object code
generated directly by the compiler.

> 2. ```I've been attempting to compile
and link some code through the use of
the `gcc` command solely, but haven't
been successful in doing so. I have, on
the other hand, been able to
successfully generate an executable by
utilizing the `gnatbind` and `gnatlink`
commands consecutively after
compiling with `gcc -c <file>`. Is it
possible to use only the `gcc` command
for the matter, or do you need to also
throw in a few calls to the `gnat`
commands?

 [...]

Building even hello_world* is sufficiently
complex that you need gnatbind, gnatlink.
As you've seen, you can use gcc for the
actual compilation.

Building a dynamic library (do you mean
.so? are you on a Mac or Linux?

You mention my darwin 8.1.0 release) is
more so.

To see what gnatbind gets up to while
doing its work, look at the b__* (or b~*)
files it generates. Not much fun or point
in generating those by hand.

* You can build a simple null program for
an embedded system on an MCU without
gnatbind, gnatlink. But you have to bother
about storage mappings, prcessor startup,
linker scripts etc instead.

From: Lucretia
<laguest9000@googlemail.com>

Subject: Re: Licensing Paranoia and
Manual Compilation Issues

Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 08:31:59 -0800

[...].

What version is that compiler on
sourceforge? Is it from FSF directly, i.e.
gcc.gnu.org? Or is it GNAT-GPL/CE, i.e.
from AdaCore.com? If the latter, the
licence is GPL-3.0 no linking exception,
otherwise it's GPL-3.0 with linking
exception. Basically, avoid anything
GPL-3.0 no linking exception, especially
Adacore's libraries.

From: G. B. <nonlegitur@nmhp.invalid>
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 18:50:45 -0000

> I've read some threads on here
regarding the licensing situation of
AdaCore's Libre compiler. For my
upcoming project, I'm going to need (=
very strong desire) to use Ada and I'm
also going to need to be able to license
the executable produced thereof in any
way I desire.

For licensing in arbitrary ways, the
aforementioned Ada distribution is not the
suitable one. Another compiler
distribution might meet your needs,

including some FSF GNAT. GPL means
tit-for-tat and thus intentionally puts
restrictions on licensing, no back doors.

From: Simon Wright
<simon@pushface.org>

Subject: Re: Licensing Paranoia and
Manual Compilation Issues

Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 19:21:04 +0000
> What version is that compiler on

sourceforge? [...]

It's vanilla FSF with Adacore libraries,
some of which have the runtime library
exception, some of which don't (as noted
at the link).

The Adacore sources, at
https://github.com/AdaCore, are on the
whole GPLv3 with the runtime exception.
I've taken care to report the status:

from https://sourceforge.net/projects/
gnuada/files/GNAT_GCC MacOS X/
8.1.0/native-2017/

Tools included:

Full GPL:

 ASIS from https://github.com/
simonjwright/ASIS at [8ba68f3].

 AUnit and GDB from GNAT GPL 2017.

 Gprbuild from https://github.com/
AdaCore/gprbuild at commit [1e551df]
(note, libgpr is GPL with Runtime
Library Exception[1]).

GPL with Runtime Library Exception[1:

 GNATCOLL from:

 https://github.com/AdaCore/
gnatcoll-core at commit [a093d11].

 https://github.com/AdaCore/
gnatcoll-bindings at commit [2c426fe].

 https://github.com/AdaCore/
gnatcoll-db at commit [b66441c].

 XMLAda from
https://github.com/AdaCore/xmlada at
commit [8a4b2bf]

From: alexander@junivörs.com
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 12:50:42 -0800

> Building a dynamic library (do you
mean .so? are you on a Mac or Linux?

> You mention my darwin 8.1.0 release)
is more so.

Yes. According to (this page)[1] it's
accomplishable using the following
command:

$ gcc -shared -o libmy_lib.so *.o

but that causes an error mentioning how
there are "Undefined symbols for
architecture x86_64:".

> For licensing in arbitrary ways, the
aforementioned Ada distribution is not
the suitable one. Another compiler
distribution might meet your needs,
including some FSF GNAT. GPL

10 Ada Inside

Volume 40, Number 1, March 2019 Ada User Journal

means tit-for-tat and thus intentionally
puts restrictions on licensing, no back
doors.

GPL on its own, I must say, does serve a
purpose. It's nice for the author to be able
to share their source or works and still be
certain nobody can (legally anyway) steal
their work and distribute it for a fee
themselves.

When it comes to source code licensed
under GPL lacking the runtime library
exception, on the other hand, I can't say
I'm too fond of it. Compilers on their
own, featuring a standard library, should
always be free to use; whereupon the user
may licence their executable in any way
they want.

[1] http://beru.univ-brest.fr/~singhoff/
DOC/LANG/ADA/gnat_ugn_20.html

From: Simon Wright
<simon@pushface.org>

Subject: Re: Licensing Paranoia and
Manual Compilation Issues

Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 23:45:48 +0000

> [1] http://beru.univ-brest.fr/~singhoff/
DOC/LANG/ADA/gnat_ugn_20.html

Because that page (and even the latest one
at [2]) is wrong.

Almost all Ada code requires the services
of the Ada runtime, and you need to
reference the runtime at the link stage.

$ gcc -shared -o libmy_lib.dylib *.o -
L<whereever> -lgnat -lgnarl

(<whereever>: e.g. /opt/gcc-8.1.0/lib/gcc/
x86_64-apple-darwin15/8.1.0/adalib)

This is why it is *so* much easier to use
gprbuild (I see that that reference talks
about using gnatmake; that's because
gnatmake is part of GCC Ada, and
gprbuild isn't. But modern gnatmakes will
delegate to gprbuild if they find one, at
any rate if libraries are involved; they
can't generate libraries, because it's too
complicated for Adacore to maintain in
two places, the GCC tree and the gprbuild
tree).

If you want to see what's going on you
can use -v.

[2] http://docs.adacore.com/gnat_ugn-
docs/html/gnat_ugn/gnat_ugn/the_gnat_c
ompilation_model.html#general-ada-
libraries

>> For licensing in arbitrary ways, the
aforementioned Ada distribution >> is
not the suitable one. Another compiler
distribution might meet >> your needs,
including some FSF GNAT. GPL
means tit-for-tat and thus intentionally
puts restrictions on licensing, no back
doors.

> GPL on its own, I must say, does serve
a purpose. It's nice for the author to be
able to share their source or works and
still be certain nobody can (legally

anyway) steal their work and distribute
it for a fee themselves.

> When it comes to source code licensed
under GPL lacking the runtime library
exception, on the other hand, I can't say
I'm too fond of it. Compilers on their
own, featuring standard library, should
always be free to use; whereupon the
user may licence their executable in any
way they want.

I don't understand. The first para says it's
good, the second says it's bad.

From: alexander@junivörs.com
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Wed, 12 Dec 2018 01:34:01 -0800

> I don't understand. The first para says
it's good, the second says it's bad.

Perhaps I've misunderstood something
regarding the licensing situation. Is not
the reason you cannot use a bunch of
AdaCore developed packages due to the
fact that it's licensed under GPL without
the runtime library exception, ultimately
meaning your executable must be licensed
under GPL too?

Let's assume someone made a tool to aid
people with a repetitive task in Ada. Give
that the GPL license and it'd be
impossible for someone to "steal"
(redistribute for a fee) the original author's
code, still allowing people to learn from
the code that makes up the tool.

In the second situation, I'm speaking of
any library package offering nigh on
essential functionality to a programming
language (in this case Ada), that does not
contain the runtime library exception. I
believe that all code developed to ship
with a compiler should contain that
exception.

I will make sure to await further
responses before I justify my belief
mentioned in the previous paragraph,
should I prove to having gotten something
wrong.

Whilst quickly scouring the Internet for
some information that would substantiate
the claim that some library package files
do not contain the runtime library
exception, I came across the
(`GNAT.Regpat` source)[1], which does
contain some form of the runtime library
exception.

I presume perhaps that is an older source
file than the one shipped with the
compiler at this day (Copyright (c) 1996-
2002)?

[1] https://www2.adacore.com/gap-static/
GNAT_Book/html/rts/g-regpat__adb.htm

From: Björn Lundin
<b.f.lundin@gmail.com>

Subject: Re: Licensing Paranoia and
Manual Compilation Issues

Newsgroups: comp.lang.ada
Date: Thu, 13 Dec 2018 10:21:54 +0100

> [...]

You can always "steal" GPL code, and
redistribute it for a fee as you see fit. The
freedom in GPL is not free as free beer,
but free as free speach. So you would
need to provide the sources to the
customers you sell to. And I think, a fairly
easy way to reproduce an
executable/library.

You code depending on GPL (linked
with) will inherit the GPL license.

But you can charge your customers
whatever you want.

However you likely need to provide
something better that the original code for
people _wanting_ to pay you, I guess.

From: alexander@junivörs.com
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Thu, 13 Dec 2018 02:30:20 -0800

> [...]

I don't know wherefrom I got my
information that you can't sell a GPL
application. Thank you for clarifying this!

From: alexander@junivörs.com
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Thu, 13 Dec 2018 02:32:47 -0800

> I don't know wherefrom I got my
information that you can't sell a GPL
application. Thank you for clarifying
this!

Or rather, clarifying the contrary;
correcting me.

Coextension Bug In GNAT

From: Jere <jhb.chat@gmail.com>
Subject: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 07:59:00 -0800

I was messing around and trying to learn
coextensions and I came across some
counter intuitive functionality. If I directly
initialize one via an aggregate, it works
fine.

However, if I initialize through a
constructing function, it seems to treat the
access discriminant as a normal access
type and finalizes it at the end of the
program instead of when the object leaves
scope. I don't fully understand them yet
and there isn't much on them listed in the
RM but one section (at least according to
the index)[1]. That one section does
indicate that initialization via a function
should be valid however, so maybe I am
back to I am doing it wrong or potentially
a GNAT bug.

I'm using GNAT 7.1.1

Here is my test program

Ada Inside 11

Ada User Journal Volume 40, Number 1, March 2019

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Finalization; use Ada.Finalization;

procedure Hello is

 type Thing_1 is new Limited_Controlled
 with null record;

 overriding
 procedure Finalize(Self : in out Thing_1)
 is
 begin
 Put_Line("Finalize Thing_1");
 end Finalize;

 type Thing_2
 (Other : not null access Thing_1)
 is limited null record;

 procedure Test_Coextension_1 is
 The_Thing : Thing_2(new Thing_1);
 begin
 Put_Line("Coextension directly
 initialized");
 end Test_Coextension_1;

 function Make_Thing_2 return Thing_2 is
 begin
 return (Other => new Thing_1);
 end Make_Thing_2;

 procedure Test_Coextension_2 is
 The_Thing : Thing_2 := Make_Thing_2;
 begin
 Put_Line("Coextension initialized
 through build in place");
 end Test_Coextension_2;

begin
 Test_Coextension_1;
 Test_Coextension_2;
 Put_Line("Test Finished");
end Hello;

Any thoughts?

[1] Ada 2012 tc1 RM 3.10.2(14.4/3) -
http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-3-10-2.html#I2301

From: Jere <jhb.chat@gmail.com>
Subject: Re: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 08:02:27 -0800

> [...]

Sorry, forgot to put the program output:

$gnatmake -o hello *.adb

gcc -c hello.adb

gnatbind -x hello.ali

gnatlink hello.ali -o hello

$hello

Coextenson directly initialized

Finalize Thing_1

Coextension initialized through build in
place

Test Finished

Finalize Thing_1

From: Simon Wright
<simon@pushface.org>

Subject: Re: Potential Coextension Bug in
GNAT

Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 16:56:11 +0000

> [...]

Compiling with -gnatwa I see "warning:
coextension will not be finalized when its
associated owner is deallocated or
finalized", so GNAT clearly meant to do
it!

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Re: Potential Coextension Bug in
GNAT

Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 20:16:09 -0600

> [...]

This message is nonsense, because a
coextension is effectively part of the
associated object. What they presumably
mean to say is that the declaration in
question is *not* a coextension, thus it
will not be finalized with the owner.

P.S. I hate coextensions. One of the least
necessary complications of Ada.

(Janus/Ada gives you a "feature not
implemented" message if you try to create
one.)

From: Jere <jhb.chat@gmail.com>
Subject: Re: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Fri, 21 Dec 2018 03:24:43 -0800

> [...]

> Compiling with -gnatwa I see "warning:
coextension will not be finalized when
its associated owner is deallocated or
finalized", so GNAT clearly meant to
do it!

that's pretty interesting. The compiler I
was using did not give that warning when
compiled with -gnatwa. You're right, that
definitely looks intentional.

From: Simon Wright
<simon@pushface.org>

Subject: Re: Potential Coextension Bug in
GNAT

Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 17:58:11 +0000

> [...]

> procedure Test_Coextension_1 is

> The_Thing : Thing_2(new
Thing_1);

This is a case of 14.1/3, an allocator used
to define the discriminant of an object,

> begin

> Put_Line("Coextension directly
initialized");

> end Test_Coextension_1;

> function Make_Thing_2 return
Thing_2 is

> begin

> return (Other => new Thing_1);

I think GNAT thinks this is a case of
14.2/3, an allocator used to define the
constraint in a subtype_indication, though
I'm hard put to it to see the difference
from the first case.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Re: Potential Coextension Bug in
GNAT

Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 20:25:40 -0600

> This is a case of 14.1/3, an allocator
used to define the discriminant of an
object,

Right, because 14.2/3 says
"subtype_indication in any other context",
meaning that 14.1/3 applies in an object
declaration.

> I think GNAT thinks this is a case of
14.2/3, an allocator used to define the
constraint in a subtype_indication,
though I'm hard put to it to see the
difference from the first case.

That doesn't make any sense, since 14.2/3
is talking about a syntactic
subtype_indication, and there is no
subtype_indication in the above
aggregate. 14.2/3 would be talking about
a case like:

 function Make_Thing_3 return Thing_2 is
 subtype Silly is Thing_2 (new Thing_1);
 Some_Thing : Silly;
 begin
 return Some_Thing;
 end Make_Thing_3;

This function does NOT define a
coextension.

So it does look like a GNAT bug. There is
the possibility that they are associating the
discriminant with the temporary object
associated with the allocator, and not the
return object, but that seems unnecessarily
unfriendly of an interpretation. And it
would be wrong for any type that requires
built-in-place (I didn't look at the actual
declaration of the type). I think the rules
are supposed to prevent that
interpretation, but whether they really do
is an interesting question that I have no
interest in exploring.

P.S. Did I mention I hate coextensions??
They provide an endless opportunity to
puzzle over rules that really don't matter
in the end (and most likely aren't quite
right). I suppose they've helped me keep
employed running the ARG. :-)

From: Jere <jhb.chat@gmail.com>
Subject: Re: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Fri, 21 Dec 2018 03:32:03 -0800

> So it does look like a GNAT bug. There
is the possibility that they are
associating the discriminant with the

12 Ada Inside

Volume 40, Number 1, March 2019 Ada User Journal

temporary object associated with the
allocator, and not the return object, but
that seems unnecessarily unfriendly of
an interpretation. And it would be
wrong for any type that requires built-
in-place (I didn't look at the actual
declaration of the type). I think the
rules are supposed to prevent that
interpretation, but whether they really
do is an interesting question that I have
no interest in exploring.

Ok, that makes me feel better. I was
concerned I was misinterpreting the RM
about the function return (for build in
place). The type was limited, which I
believe requires it to be built in place.

> P.S. Did I mention I hate
coextensions?? They provide an endless
opportunity to puzzle over rules that
really don't matter in the end (and most
likely aren't quite right). I suppose
they've helped me keep employed
running the ARG. :-)

Overall, they aren't super useful and are
not very intuitive. I don't know the history
for why they were added to the language
though. I will say they do provide one
thing to Ada that no other feature in the
language seems to, so there is that. But I
don't know the cost versus reward of
them.

grpexec Tool

From: VM Celier <vmcelier@gmail.com>
Subject: New tool "gprexec", basically

"make with project file"
Newsgroups: comp.lang.ada
Date: Fri, 11 Jan 2019 14:00:10 -0800

I am starting a new project that I have
been thinking for several years: gprexec.

gprexec is a "Make build automation tool
using GPR project files to describe goals,
dependencies, and processes".

It uses a new package: Execution.

Here is an example of a project that can
be used by gprexec:

project Toto is
 for Main use ("toto.adb");
 package Execution is
 for Process ("display_main") use ("cat",
 "toto.adb");
 for Dependency ("display") use
 ("display_main");
 for Process ("display") use ("cat",
 "toto.gpr");
 for Process ("date") use ("date");
 for Process ("toto") use ("gprbuild", "-f",
 "-q", "toto.gpr");
 for Dependency ("default") use
 ("display", "toto", "date");
 for Process ("default") use ("toto");
 end Execution;
end Toto;

Package Execution has these attributes:

- Dependency, to indicate the goals that
need to be processed before the indexed
goal.

- Process, to indicate the process to be
invoked, with its arguments, for the
indexed goal.

gprexec needs to be invoked with a single
project file and an optional goal. When no
goal is specified on the command line, the
goal "default" is implied.

For example with the project file toto.gpr
above, invoking

 gprexec toto.gpr

the goal default will be used, and
according to the dependencies processes
will be invoked in the following order:

(goal "display_main): cat toto.adb

(goal "display"): cat toto.gpr

(goal "toto"): gprbuild -f -q toto.gpr

(goal "date"): date

(goal "default"): toto

After displaying the main toto.adb and the
project file toto.gpr, toto.adb is compiled,
bound and linked, the date is displayed
and the executable "toto" is invoked.

gprexec uses the project file "gpr.gpr",
part of the gprbuild repository.

I just created a public repository for
gprexec on Github:

 https://github.com/vmcelier/gprexec

Anybody interested?

-- Vincent Celier

(no longer associated with AdaCore)

From: Shark8
<onewingedshark@gmail.com>

Subject: Re: New tool "gprexec", basically
"make with project file"

Newsgroups: comp.lang.ada
Date: Mon, 14 Jan 2019 13:06:35 -0800

> [...]

Yes, but no.

Some of the ideas behind GPR are good,
but if we're being honest its tendency to
be "stringly-typed" is annoying given its
obvious designed similarity to Ada -- and
there are a lot of missed opportunities --
and the sort-of configuration purposes
which don't fully support producing an
Ada executable (e.g. IIRC you have to use
a completely separate configuration to
handle DSA.)

From: VM Celier <vmcelier@gmail.com>
Subject: Re: New tool "gprexec", basically

"make with project file"
Newsgroups: comp.lang.ada
Date: Mon, 14 Jan 2019 16:49:14 -0800

> Some of the ideas behind GPR are
good, but if we're being honest its
tendency to be "stringly-typed" is
annoying given its obvious designed
similarity to Ada

It is true that the syntax of the project
language is similar to the one of Ada, but
there is a big difference between the two
languages:

- Ada is an executable language

- the project language is a declarative
language

You don't "execute" project files, you use
it to describe a system for different tools.
This is why there are almost no types in
the project language because types are not
really needed and they would complexify
the language for no real benefit.

> -- and there are a lot of missed
opportunities

Could you tell us one or two of these
missed opportunities?

From: Shark8
<onewingedshark@gmail.com>

Subject: Re: New tool "gprexec", basically
"make with project file"

Newsgroups: comp.lang.ada
Date: Tue, 15 Jan 2019 08:41:01 -0800

> It is true that the syntax of the project
language is similar to the one of Ada,
but there is a big difference between the
two languages:

> - Ada is an executable language

> - the project language is a declarative
language

This is actually less of an issue than might
be thought; though some of the "fix-ups"
might be a bit stifling to some. You could,
for example, impose
restrictions/mandatory-structure on the
configuration and have all configurations
be valid Ada.

> You don't "execute" project files, you
use it to describe a system for different
tools. This is why there are almost no
types in the project language because
types are not really needed and they
would complexify the language for no
real benefit.

No, real enumerations (and attendant
Ada-like case-coverage) would be
excellent for providing bounded
alternations of the configuration.

> > -- and there are a lot of missed
opportunities

> Could you tell us one or two of these
missed opportunities?

Given Ada's strong generic-system
configurations could be described as
generic parameters [esp enumerations],
which the tools could use to provide
bounded options in the absence of
defaults.

Package PROJECT_NAME

From: Shark8
<onewingedshark@gmail.com>

Subject: Re: New tool "gprexec", basically
"make with project file"

Newsgroups: comp.lang.ada
Date: Tue, 15 Jan 2019 09:22:07 -0800

Sorry, I accidentally submitted the form
while composing my example... which is
here:

Ada Inside 13

Ada User Journal Volume 40, Number 1, March 2019

Package PROJECT_NAME is
 Type Archetectures is (x86, x86_64, ARM,
 SPARC, MIPS_V);
 Type Node_Type is (Storage, Processing);
 Type Partition_Type is (Active, Passive);
 Type Compilation_Parameters is record
 CPUs : Natural := 0; -- Use as many
 -- cores as available.
 Symbols : Boolean := True; -- Don't strip
 -- symbols.
 Target : Archetectures;
 --...
 end record;

 Type Partition(Params :
 Compilation_Parameters; Style :
 Partition_Type) is record
 null; --... Other DSA parameters.
 end record;

 Type Node(Style : Node_type) is record
 Archetecture : Archetectures;
 case Style is
 when Storage => null; --...
 when Processing => null; --...
 end case;
 end record;

 Generic
 Params : Compilation_Parameters;
 Procedure Compile;

 --- CONCEPTUAL GENERIC PACKAGE
 Generic
 Partitions : Array (Positive range <>) of
not null access Partition;
 Package Compiler is
 Procedure Execute;
 End Compiler;

 --- CONCEPTUAL BODY FOR COMPILER
 Package Body Compiler is
 Procedure Execute is
 Begin
 For P of Partitions loop
 declare
 Procedure Make is new
 Compile(P.Params);
 begin
 Make;
 end;
 End loop;
 End Execute;
 End Compiler;

End PROJECT_NAME;

Now, obviously there would have to be
standardization -- and it would probably
work better if "Archetectures" were a
parameter to PROJECT_NAME --
because if all config-packages were
generic we could "nest" dependencies:

Generic
 Type STANDARD_PARAM is limited
 private;
 -- "Configuration standard param"
 with Package P1 is new Project_1
 (STANDARD_PARAM);
 with Package P2 is new Project_2
 (STANDARD_PARAM);
 -- P3 depends on P1&2

 with Package P3 is new Project_3
 (STANDARD_PARAM, P1, P2);
Package Project_4 is
 -- ... STANDARD STRUCTURE.
End Project_4;

Now, all of that is operating with the idea
of using Ada as a config-language, which
is doable, but perhaps a bit ugly... It might
be a bit better to sit down, think about
configurations (esp. in the presence of
DSA) and develop an Ada-like language
for that. (Perhaps in conjunction with a
new Ada IR similar to DIANA, such that
this configuration-description "compiles
down to" the proper generic-nodes which
can then be interpreted by the compiler as
the configuration[s] to use; or processed
by tools to inter-operate with current tools
[ie IR → (GPR_File,
Gnatdist_Configuration_File) for
GNAT].)

Program entry in GPR

From: Jesper Quorning
<jesper.quorning@gmail.com>

Subject: Package procedure as program
entry in GPR project

Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 07:12:22 -0800

Hello All,

With the package specification:

package My_Program_Package is
 procedure Program_Entry_Procedure;
end My_Program_Package;

How do i make
Program_Entry_Procedure as the program
entry procedure in a GPR project?

I think it is possible, but cannot find out
how.

I know how to use a stand-alone
procedure file as program entry and how
to name the executable.

From: Jere <jhb.chat@gmail.com>
Subject: Re: Package procedure as program

entry in GPR project
Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 09:05:24 -0800

> [...]

With that specific setup, I am not sure.
But if you are willing to change a couple
of things you can do:

-- my_program_package.ads
package My_Program_Package is
 -- Notice no declaration here for the
 -- procedure, but you can put other
 -- things if you like
end My_Program_Package;

-- my_program_package-
program_entry_procedure.adb
procedure My_Program_Package.
 Program_Entry_Procedure is
begin
 -- your main stuff
end My_Program_Package.
Program_Entry_Procedure;

Then you modify the GPR file to point to
it as the main:

for Main use ("my_program_package-
program_entry_procedure.adb");

I do something similar for my Gnoga GUI
projects so I can have program level stuff
in the top package but have the main a
child of that top level package.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Re: Package procedure as program
entry in GPR project

Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 15:42:12 -0600

> [...]

I realize you are asking for GPR, so by
definition you don't care about portability,
but:

Ada only requires Ada implementations
to support library-level procedures as the
main. See 10.2(29). A particular
implementation can allow more, but there
is no requirement.

So if you ever might want to use some
other Ada compiler (I for one, hope so),
use such a routine.

It's trivial to write one, after all:

with My_Program_Package;
procedure My_Program_Main is
begin
 My_Program_Package.
 Program_Entry_Procedure;
end My_Program_Main;

From: Jesper Quorning
<jesper.quorning@gmail.com>

Subject: Re: Package procedure as program
entry in GPR project

Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 17:47:30 -0800

I just wanted a way to avoid the trivial
main file.

I also considered

package simple is
 procedure main
end simple;

package body simple is
 procedure main is
 begin
 ...
 end main;
private
 main;
end simple;

But GPR would not do that either. I will
stick to the simple procedure file.

From: Simon Wright
<simon@pushface.org>

Subject: Re: Package procedure as program
entry in GPR project

Newsgroups: comp.lang.ada
Date: Sat, 26 Jan 2019 12:05:35 +0000

> [...]

14 Ada Inside

Volume 40, Number 1, March 2019 Ada User Journal

This isn't a GPR thing, it's a GNAT thing:
GNAT has no extensions here beyond the
requirement.

If you have a minimal bare-board project
without any requirement for the Ada
runtime system, it's possible to do what
you ask: see Maciej Sobczak's 'Ada and
SPARK on ARM Cortex-M' tutorial[1], in
particular the 'First Chapter'[2].

It would be hard (and pointless) to
attempt this for a program intended to run
on a typical operating system.

[1] http://www.inspirel.com/articles/
Ada_On_Cortex.html

[2] http://www.inspirel.com/articles/
Ada_On_Cortex_First_Program.html

GNAT Bug

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 06:51:50 -0800

This will probably sound more like
venting frustration. Sorry if so. But how
does anybody get anything done? gnat is
the major Ada compiler and pretty
much the only one implementing the
standard in full. Yet I cannot seem to get
it working past really small size in any
project. As soon as I try to get any basic
type composition done (only 3-4
inheritance levels, with, perhaps double
interface overlay), I get that dreaded gnat
bug message.. This is at least the 3rd one
just within past week or two..

Specifically this:

https://github.com/gerr135/wann/tree/
gnat_bug01

(the bug triggering code is in a separate
branch pointed to by that link).

This is still early in design phase and far
from being functional in any way, so I
don't really expect much comments on the
code itself (thus that "venting frustration"
comment above). But the pattern that
seems to universally trigger these gnat
bugs is something along these lines:

type Base_Interface is interface;
..

type Derived1_Interface is new
Base_Interface and ..;
..

perhaps few more layers here..

then

type Base_impl1 is new Base_Interface with
private;
..
type Derived1 is new Base_impl1 and
Derived1_Interface with private..

basically trying to stitch together
functional interface hierarchy (containing
algorithmic stuff) and data storage type

hierarchy. Somehow gnat very often just
cannot handle this type of design :(.

(and yes, I am avoiding having to lay
generics on top of other generics like
Dmitry suggests - keeps design and
compilation times sane, but apparently
overloads gnat capacity to deal with
abstraction).

So, I guess my question would be - how
people deal with such situations
(combining algorithmic and data
representation type hierarchies) in their
experience? Or, whether too many child
modules makes any difference? I seem to
have noticed that the more hierarchical
my packages are (but this one is only like
3rd level child!) the more often I trigger
that gnat bug message.. (but then keeping
the code in one huge module is really
messy too!)

And yeah, the specific message here is:

gprbuild -P wann.gpr

Compile

 [Ada] run_customnn.adb

+===GNAT BUG DETECTE===+

| Community 2018 (20180524-73)
(x86_64-pc-linux-gnu) GCC error: |

| in gnat_to_gnu_entity, at ada/gcc-
interface/decl.c:429 |

| Error detected at wann-nets-vectors.ads:
106:5 [run_customnn.adb:23:5] |

| Please submit a bug report by email to
report@adacore.com. |

| GAP members can alternatively use
GNAT Tracker: |

| http://www.adacore.com/ section 'send a
report'. |

| See gnatinfo.txt for full info on
procedure for submitting bugs. |

| Use a subject line meaningful to you and
us to track the bug. |

| Include the entire contents of this bug
box in the report. |

| Include the exact command that you
entered. |

| Also include sources listed below.

| Use plain ASCII or MIME
attachment(s). |

+=======================+

and the "please include" list of files lists
pretty much all of them in the src dir.

But as I said, this is rather a pattern I
observe, not just one-off situation..

This is with the latest FSF gnat compiler
(2018 release based on gcc-7.3.1 backend,
Gentoo Linux, relatively fresh everything
else).

Sigh, I guess another report to file with
AdaCore..

Sorry for disturbance here..

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 19:47:31 +0100

> So, I guess my question would be - how
people deal with such situations
(combining algorithmic and data
representation type hierarchies) in their
experience? Or, whether too many child
modules makes any difference? I seem
to have noticed that the more
hierarchical my packages are (but this
one is only like 3rd level child!) the
more often I trigger that gnat bug
message.

Do not panic. In many cases the bug is
triggered by an illegal program. Try an
older version of GNAT compiler to find
what triggers it. In other cases you can
work around it using minor code
variations.

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 13:32:52 -0800

> [...]

Oh, I am far from panic. It is, as I
mentioned, already like 3rd project where
I trigger a similar bug in the space of a
week or two. Just, when you finally laid
out thing just the way you wanted and
then gnat explodes on that final compile
attempt. Then you get such an expression
of frustration :).

Thanks for the advice though! This is
pretty much how I handle these. But nice
to know I am not alone in this. Well, in
fact not so nice - would be nicer if this
never happened of course :). But at least
reassuring. So thanks again.

From: Simon Wright
<simon@pushface.org>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 01 Feb 2019 20:41:06 +0000

> gprbuild -P wann.gpr

> Compile

> [Ada] run_customnn.adb

> +===GNAT BUG DETECTE===+

> | Community 2018 (20180524-73)
(x86_64-pc-linux-gnu) GCC error: |

> | in gnat_to_gnu_entity, at ada/gcc-
interface/decl.c:429 |

> | Error detected at wann-nets-
vectors.ads:106:5
[run_customnn.adb:23:5] |

but I get

$ gprbuild -p -P wann

wann.gpr:5:32: "../../libs/ada_common/
src" is not a valid directory

gprbuild: "wann" processing failed

Ada Inside 15

Ada User Journal Volume 40, Number 1, March 2019

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 13:26:27 -0800

Oops, that's a stale import of an extra lib I
thought to use at one point but then rolled
back. Apparently I forgot to remove the
path, and I obviously still have that lib on
my system, even if it is not withed any
more.

Removed, you should be able to proceed
now. Sorry about that.

One other note: at first build the compiler
may complain about missing obj/dbg dir.
Please just run:

mkdir -p obj/dbg

from the project dir (not src, one level
above it).

I have obj/ in .gitignore to prevent it
tracking generated files (and git tends to
ignore the entire dir, not just its contents.
At least my very short attempts to force it
to ignore obj/* but not obj/ itself did not
succeed. I preferred the annoyance of
running once the mkdir command over
spending more time trying to beat git
when I set it up).

Thanks for your attempt!

From: Simon Wright
<simon@pushface.org>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 01 Feb 2019 23:17:17 +0000

OK, and all the compilers I have here fail
in the same way:

FSF GCC 6, 7, 8, 9

GNAT 2016, 2017, 2018

For GCC 9, the relevant code in decl.c is

 /* If we get here, it means we have not
yet done anything with this entity. If we
are not defining it, it must be a type or an
entity that is defined elsewhere or
externally, otherwise we should have
defined it already. */

 gcc_assert (definition

 || type_annotate_only

 || is_type

 || kind == E_Discriminant

 || kind == E_Component

 || kind == E_Label

 || (kind == E_Constant &&
 Present (Full_View (gnat_entity))

 || Is_Public (gnat_entity));

... and we are none the wiser.

I tried

 gprbuild -p -P wann.gpr -c -u -f wann-
nets-vectors.adb

and it compiled OK except for loads of
'unimplemented' warnings.

Poking around at your main program, it
seems that things go wrong at the line

 package PNetV is new PNet.vectors;

(i.e., I deleted stuff starting at the bottom,
by the time I'd deleted this line it
compiled "OK".

> One other note: at first build the
compiler may complain about missing

> obj/dbg dir. Please just run:

> mkdir -p obj/dbg

> from the project dir (not src, one level
above it).

'gprbuild -p' will create missing
directories.

Or you could add

 for Create_Missing_Dirs use "true";

to your GPR (recent ones only).

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 23:16:32 -0800

> [...]

> I tried

> gprbuild -p -P wann.gpr -c -u -f wann-
nets-vectors.adb

> and it compiled OK except for loads of
'unimplemented' warnings.

Ok, so the file itself compiles (I gotta read
up on all those switches apparently. This
is a ways to quickly test stuff. Thanks for
a suggestion!)

But that is quite what I expect, given the
nature of the bugs I get - they clearly
come from gnat getting lost in all the
inheritances I throw at it.

> Poking around at your main program, it
seems that things go wrong at the line

The specific offending lines are:

wann-nets-vectors.ads:104 and 106

these two full type definitions (if I
comment out one it still fails on the
other):

 type Cached_Proto_NNet is abstract new
Proto_NNet and Cached_NNet_Interface
with null record;

 type Cached_Checked_Proto_NNet is
abstract new Proto_NNet and
Cached_Checked_NNet_Interface with null
record;

These are null record at the moment, as I
did not yet get around to properly
implement them. Just placeholders
essentially. And this is what might be
confusing gnat I suspect. I did not yet try
to add any actual data inside.

> 'gprbuild -p' will create missing
directories.

> Or you could add

Thanks, I'll add this too.

A small note: I will be at the Fosdem
most of today and possibly tomorrow. So,
I may not be able to reply in a timely
manner these two days.

(But I will surely pass by the Ada dev
room today!)

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Sat, 2 Feb 2019 08:13:02 +0100

I did put some effort to reduce the
problem and the workaround is quite
simple, in file "wann-nets.ads:69" mark
the procedure Del_Neuron as abstract
instead of null.

Here is the small reproducible I ended up
with after stripping the code:

pragma Warnings (Off);
generic
 type Real is digits <>;
package wann is
end Wann;
--
generic
package Wann.Neurons is
end Wann.Neurons;

generic
package Wann.Nets is
 type NNet_Interface is limited interface;
 procedure Del (Net : in out
 NNet_Interface) is null;
 -- Fails
 -- procedure Del (Net : in out
 -- NNet_Interface) is abstract;-- Works
 type Cached_NNet_Interface is limited
interface and NNet_Interface
end Wann.Nets;
--
generic
package wann.nets.vectors is
 type Proto_NNet is abstract new
 NNet_Interface with NULL record;
 type Cached_Proto_NNet is abstract new
 Proto_NNet and
 Cached_NNet_Interface with null record;
end wann.nets.vectors;
--
pragma Warnings (Off);
with wann.nets.vectors;
procedure run_customNN is
 package PW is new wann(Real => Float);
 package PNet is new PW.nets;
 package PNetV is new PNet.vectors;
begin
 null;
end Run_CustomNN;

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Sat, 2 Feb 2019 11:05:19 -0800

Wow, thank you for your time!

Looking at how that final code is so small
and basic, and that snippet of gnat
internals that was dug out on another
comment above, it looks like gnat does

16 Ada Inside

Volume 40, Number 1, March 2019 Ada User Journal

not implement null primitives in full..
(which is a pity, as null method makes
more sense there than abstract, but well..)

Once I am completely back from Fosdem
I'll play with this a bit more, to see if
that's package hierarchy, generics or
combination thereof that is triggering it
and submit a bug with final details.

Thanks again!

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Sat, 2 Feb 2019 22:37:01 +0100

Well I think it's more about deeply nested
generics, since that is a real nightmare to
implement in its full context.

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Mon, 4 Feb 2019 04:28:45 -0800

Not exactly as far as I can tell.

I have played some more with the code
and could simplify it even more - there is
no need for that extra top package level.
Same thing happens if the interfaces are
declared at the top, and overridden in a
child. Flat package structure (still generic)
compiles fine. Removing generics (and
instead doing "type Real is new Float" at
the top) given unstable behavior - one
time I got the same bug triggered, but
after I renamed sources (originally names
"workaround" to "alternative" to reflect
better the situation) gnat started to
compile it properly (giving error message
about declaring vars of abstract type).
Apparently it has a sense of humor - this
is literally the situation of "what is written
here is a lie").

Anyway, I have created a github project
to keep the code producing gnat bugs I
have so far encountered (only one at the
moment, but there are two more I need to
clean-up and report). This project shows
the code triggering the bug, as well as
workarounds and the status of the bug
report. I think such a resource would be
rather useful (given that AdaCore
themselves don't really support the bug
tracker, at least for the community version
[1]). So, please feel free to consult or even
contribute, if there are any more
commonly encountered bugs.

The project can be found here:

https://github.com/gerr135/gnat_bugs

[1] I chatted with them briefly 2 days ago
on Fosdem and they told me that they
prefer an email report and that tracker is
not really functional for a community
version at least.

From: joakimds@kth.se
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Mon, 4 Feb 2019 07:30:30 -0800

George, thanks for your efforts in making
detailed gnat bug reports and your input
in the Ada dev room on Fosdem 2019.

From: Simon Wright
<simon@pushface.org>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Mon, 04 Feb 2019 16:11:47 +0000

> I chatted with them briefly 2 days ago
on FOSDEM and they told me that they
prefer an email report and that tracker
is not really functional for a community
version at least.

Do you mean the GCC Bugzilla? I can
quite understand why reports against just
GNAT CE wouldn't really be appropriate
there.

AdaCore do respond to reports on FSF
GCC there, especially if the report is
about the GCC build system or about bad
code generation. However, old bugs don't
really get curated as they are fixed in new
releases.

This doesn't work where the sources
concerned aren't publicly visible in the
repository: for example, the embedded
runtimes.

Personally I like to report on Bugzilla
where appropriate, because reports to
report@adacore.com aren't publicly
visible. I don't know how annoying it'd be
to report in both places.

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Tue, 5 Feb 2019 11:16:51 -0800

> Do you mean the GCC Bugzilla? I can
quite understand why reports against
just GNAT CE wouldn't really be
appropriate there.

No, I meant the tracker mentioned on the
bug message:

>GAP members can alternatively use
GNAT Tracker: |

>| http://www.adacore.com/ section 'send
a report'.

From his reaction I took it that that tracker
is not that active. Although it would not
be so useful for many people anyway, if it
has usage limitations.

> AdaCore do respond to reports on FSF
GCC there, especially if the report is
about the GCC build system or about
bad code generation.

Oh, they do? Thanks for the info!

That's not something I directly thought
about, as the problem is with the upstream
(of FSF), so it makes sense to take it
directly to upstream (the most common
reaction of many projects and
distributions is to first try to figure out if
its them or upstream, and if its upstream,
then its universally - "report it to
upstream". Which is totally logical, in

avoiding messy duplication of effort. In
fact it is often not something they would
even have control over).

So, I just took it directly to upstream,
strictly following the procedure described
in the bug message :).

> Personally I like to report on Bugzilla
where appropriate, because reports to
report@adacore.com aren't publicly
visible. I don't know how annoying it'd
be to report in both places.

Yes, that's indeed a concern. This is why I
created that github project, as I had a few
bugs lying around already. I'll populate it
with more when I get around to it.

But to the credit of AdaCore, they react
quickly - I already got a confirmation that
they got it and will look into it..

From: Simon Wright
<simon@pushface.org>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Tue, 05 Feb 2019 20:37:16 +0000

> [...]

> From his reaction I took it that that
tracker is not that active. Although it
would not be so useful for many people
anyway, if it has usage limitations.

If you have a contract with AdaCore then
Tracker is the point of contact; and the
response when I worked for a company
with a contract was terrific.

If not, your only direct contact is
report@adacore.com (with GNAT in the
subject line).

> That's not something I directly thought
about, as the problem is with the
upstream (of FSF), so it makes sense to
take it directly to upstream (the most
common reaction of many projects and
distributions is to first try to figure out
if its them or upstream, and if its
upstream, then its universally - "report
it to upstream". Which is totally logical,
in avoiding messy duplication of effort.
In fact it is often not something they
would even have control over). So, I
just took it directly to upstream, strictly
following the procedure described in
the bug message :).

The AdaCore people working on FSF
GCC are the same people working on the
'upstream' product, which is why I've
never thought of it like that; but

I see your point.

And, I've occasionally added 'same
problem with GNAT CE' to Bugzilla
reports where I thought it might stimulate
interest.

> [...]

> But to the credit of AdaCore, they react
quickly - I already got a confirmation
that they got it and will look into itIt
helps if they know you!

Ada in Context 17

Ada User Journal Volume 40, Number 1, March 2019

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Wed, 6 Feb 2019 02:53:18 -0800

> The AdaCore people working on FSF
GCC are the same people working on
the 'upstream' product, which is why
I've never thought of it like that; but

> I see your point.

Oh, so they do have people working on
gcc directly? Nice!

Sure, that makes total sense (for a
company that essentially sells a gcc-based
compiler). But unfortunately this rarely
happens in reality.

AdaCore seems like a real nice company!
(A bit of praise never hearts, but
seriously, thanks to AdaCore people for
nice work overall!)

> > But to the credit of AdaCore, they
react quickly - I already got a
confirmation that they got it and will
look into it.

>

> It helps if they know you!

Maybe, but then I only saw them once in
a person, and that likely were other
people.

But more importantly, this particular issue
seems to be a general omission affecting
gnat universally, which would affect all
kinds of users. I am just puzzled how this
thing was not triggered before by at least
some users? Is nobody fond of trying to
lay out their types in the most abstract
way possible? That *does* force better
design and ends up saving quite a bit of
work down the road (to the point of
coding becoming really boring after the
general structure is in and successfully
compiled by gnat). Well, I guess people
just always write "is abstract" even where
"is null" would make more sense (or that
not many people mix generics and OOP
abstraction)..

Alignment issue

From: Simon Wright
<simon@pushface.org>

Subject: Alignment issue
Newsgroups: comp.lang.ada
Date: Sat, 16 Feb 2019 19:40:38 +0000

I have code like this (written while
working on a StackOverflow question),
and GNAT ignores apparent alignment
requests.

 with System.Storage_Pools;
 with System.Storage_Elements;
 package Alignment_Issue is

 type Data_Store is new
System.Storage_Elements.Storage_Array
 with Alignment => 16; --
Standard'Maximum_Alignment;

 type User_Pool (Size :
System.Storage_Elements.Storage_Count)
 is record
 Flag : Boolean;
 Data : Data_Store (1 .. Size);
 end record
 with Alignment => 16; --
Standard'Maximum_Alignment;

 end Alignment_Issue;

(Standard'Maximum_Alignment is a
GNAT special) and compiling with
GNAT CE 2018 (and other GNAT
compilers) I see

 $ /opt/gnat-ce-2018/bin/gnatmake -c -u
-f -gnatR alignment_issue.ads

 gcc -c -gnatR alignment_issue.ads

 Representation information for unit
Alignment_Issue (spec)

 for Data_Store'Alignment use 16;
 for Data_Store'Component_Size use 8;

 for User_Pool'Object_Size use ??;
 for User_Pool'Value_Size use ??;
 for User_Pool'Alignment use 16;
 for User_Pool use record
 Size at 0 range 0 .. 63;
 Flag at 8 range 0 .. 7;
 Data at 9 range 0 .. ??;
 end record;

which means that GNAT has ignored the
alignment specified for Data_Store when
setting up User_Pool.Data.

 Is this expected? OK?

I found a workround of sorts:

 type Data_Store (Size :
System.Storage_Elements.Storage_Count)
is record
 Data :
System.Storage_Elements.Storage_Array (1
.. Size);
 end record
 with Alignment => 16; --
Standard'Maximum_Alignment;

 type User_Pool (Size :
System.Storage_Elements.Storage_Count)
 is record
 Flag : Boolean;
 Stack : Data_Store (Size);
 end record;

giving

 Representation information for unit
Alignment_Issue (spec)

 for Data_Store'Object_Size use ??;
 for Data_Store'Value_Size use ??;
 for Data_Store'Alignment use 16;
 for Data_Store use record
 Size at 0 range 0 .. 63;
 Data at 8 range 0 .. ??;
 end record;

 for User_Pool'Object_Size use ??;
 for User_Pool'Value_Size use ??;
 for User_Pool'Alignment use 16;
 for User_Pool use record

 Size at 0 range 0 .. 63;
 Flag at 8 range 0 .. 7;
 Stack at 16 range 0 .. ??;
 end record;

(but even then I see that Stack.Data is
offset by 8 bytes because of the
discriminant)

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Re: Alignment issue
Newsgroups: comp.lang.ada
Date: Mon, 18 Feb 2019 17:01:02 -0600

>I have code like this (written while
working on a StackOverflow question),
and GNAT ignores apparent alignment
requests.

I wouldn't have expected Alignment to
cause the effect, but when you specify
representation for a record type, any
requirements on the components are can
be ignored. Perhaps GNAT is taking that
somewhat too far??

Ada in Context

Create Attributes

From: eduardsapotski@gmail.com
Subject: Сreate attributes.
Newsgroups: comp.lang.ada
Date: Fri, 21 Dec 2018 21:37:12 -0800

Sorry for the stupid question...

For example. I have type:

 type Person is record
 First_Name : Unbounded_String :=
 Null_Unbounded_String;
 Last_Name : Unbounded_String :=
 Null_Unbounded_String;
 end record;

There is a list:

 package People_Package is new
Ada.Containers.Vectors(Natural, Person);
 People : People_Package.Vector;

Next, I want to display this list with
headers:

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

| NAME | SURNAME |

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

| John | Smith |

| Ada | Lovelace |

...

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Can I use attributes to display headers?

For example something like this:

People'First_Name_Header

How can this be implemented?

From: Brad Moore
<bmoore.ada@gmail.com>

Subject: Re: Сreate attributes.
Newsgroups: comp.lang.ada
Date: Sat, 22 Dec 2018 11:13:40 -0800

18 Ada in Context

Volume 40, Number 1, March 2019 Ada User Journal

You could use a class-wide type or a type
with discriminants such as;

 type Person_Attribute_Kinds is (Name,
Surname);
 type Person_Attribute (Attribute_Name :
Person_Attribute_Kinds
 :=
Person_Attribute_Kinds'First) is
 record
 case Attribute_Name is
 when Name | Surname =>
 Name_String : Unbounded_String
:= Null_Unbounded_String;
 end case;
 end record;

 type Person is
 record
 First_Name :
Person_Attribute(Name);
 Last_Name :
Person_Attribute(Surname);
 end record;

 X : Person;
begin
 Put_Line ("| " &
X.First_Name.Attribute_Name'Image &
 " | " &
X.Last_Name.Attribute_Name'Image & " |");

Overloading operators

From: daicrkk@googlemail.com
Subject: Overloading operator “=” for

anonymous access types?
Newsgroups: comp.lang.ada
Date: Fri, 11 Jan 2019 13:46:22 -0800

I am working my way through Barnes'
excellent Ada book. This is a code sample
for deep comparison of linked lists from
section 11.7:

type Cell is
 record
 Next: access Cell;
 Value: Integer;
 end record;
function "=" (L, R: access Cell) return
Boolean is
begin
 if L = null or R = null then -- universal =
 return L = R; -- universal = (Line
A)
 elsif L.Value = R.Value then
 return L.Next = R.Next; -- recurses OK
(Line B)
 else
 return False;
 end if;
end "=";

I can't seem to wrap my head around why
in Line A operator "=" of the
universal_access type is called (because
of the preference rule), on Line B,
however, the user-defined operator "=" is
called (which makes recursion possible in
the first place), this time with no
preference for operator "=" of
universal_access.

Both L and R, as well as L.Next and
R.Next are of the same anonymous type
"access Cell". Why the difference in
"dispatching"? Does it have to do with L
and R being access parameters? If so,
what is the rule there?

I did my best to find anything in the
AARM, especially section 4.5.2, but
could not make any sense of it.

From: Simon Wright
<simon@pushface.org>

Subject: Re: Overloading operator “=” for
anonymous access types?

Newsgroups: comp.lang.ada
Date: Sat, 12 Jan 2019 09:50:14 +0000

Given ARM 4.5.2(9.1 ff),

 At least one of the operands of an
equality operator for universal_access
shall be of a specific anonymous access
type. Unless the predefined equality
operator is identified using an expanded
name with prefix denoting the package
Standard, neither operand shall be of an
access-to-object type whose designated
type is D or D'Class, where D has a user-
defined primitive equality operator such
that:

 * its result type is Boolean;

 * it is declared immediately within the
same declaration list as D or any partial or
incomplete view of D; and

 * at least one of its operands is an
access parameter with designated type D.

I'm not at all clear why the example code
is legal, or why it would be legal to call it;
since 'access Cell' appears to match
"neither operand shall be of an access-to-
object type whose designated type is D or
D'Class, where D has a user-defined
primitive equality operator ..."

Might explain why compiling this
example with GNAT (CE 2018) results in
stack overflow.

From: Simon Wright
<simon@pushface.org>

Subject: Re: Overloading operator “=” for
anonymous access types?

Newsgroups: comp.lang.ada
Date: Sat, 12 Jan 2019 14:01:43 +0000

> I'm not at all clear why the example
code is legal, or why it would be legal
to call it; since 'access Cell' appears to
match "neither operand shall be of an
access-to-object type whose designated
type is D or D'Class, where D has a
user-defined primitive equality operator
..."

Still not clear.

Note to self: do *not* attempt to define
"=" for anonymous access types!

Would have liked the AIs to have said "it
is illegal to define "=" for anonymous
access types".

From: daicrkk@googlemail.com
Subject: Re: Overloading operator “=” for

anonymous access types?
Newsgroups: comp.lang.ada
Date: Sat, 12 Jan 2019 07:15:38 -0800

> [...]

> I'm not at all clear why the example
code is legal, or why it would be legal
to call it; since 'access Cell' appears to
match "neither operand shall be of an
access-to-object type whose designated
type is D or D'Class, where D has a
user-defined primitive equality operator
..."

I second that. Access Cell is an access-to-
object type whose designated type is Cell
(check), Cell has a user-defined primitive
equality operator (check) such that its
result type is Boolean (check), it is
declared immediately within the same
declaration list as Cell (check), at least
one of its operands is an access parameter
with designated type Cell (both operands
are, check).

According to 4.5.2, universal_access "="
should never be allowed to kick in at all
here, not even with "L = null". Or am I
missing something?

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Re: Overloading operator "=" for
anonymous access types?

Newsgroups: comp.lang.ada
Date: Mon, 14 Jan 2019 17:08:32 -0600

>I second that. Access Cell is an access-
to-object type whose designated type is
Cell (check), Cell has a user-defined
primitive equality operator (check) such
that its result type is Boolean (check), it
is declared immediately within the
same declaration list as Cell (check), at
least one of its operands is an access
parameter with designated type Cell
(both operands are, check).

>According to 4.5.2, universal_access "="
should never be allowed to kick in at all
here, not even with "L = null". Or am I
missing something?

Yup, I agree with this. My first thought
when reading that example is that it is
wrong, because I don't remember
anywhere in Ada where the same operator
with arguments of the same type means
different things. I don't think the use of
"null" could change that.

Dunno if John wrote that for a different
version of Ada, or he was just confused
by a rule that barely makes sense anyway.

As always, best avoid anonymous access
types unless you have to use one of their
special features (dynamic accessibility,
dispatching, special discriminant
accessibility, or closures [for access-to-
subprograms]). And better still, lets lobby
to get those special features optionally
available for named access types so no
one ever has to use an anonymous
anything. :-)

Ada in Context 19

Ada User Journal Volume 40, Number 1, March 2019

From: Shark8
<onewingedshark@gmail.com>

Subject: Re: Overloading operator "=" for
anonymous access types?

Newsgroups: comp.lang.ada
Date: Mon, 14 Jan 2019 16:34:42 -0800

> As always, best avoid anonymous
access types unless you have to use one
of their special features (dynamic
accessibility, dispatching, special
discriminant accessibility, or closures
[for access-to-subprograms]). And
better still, lets lobby to get those
special features optionally available for
named access types so no one ever has
to use an anonymous anything. :-)

Well, I'm all for getting rid of anonymous
access types altogether -- though that
might not be acceptable to the rest of the
ARG as it would make previously-valid
Ada non-valid, I think reducing the
complexity of the language (and reduce
instances of "a rule that barely makes
sense anyway").

I thought there was an AI for first class
subprograms / subprogram types, but I
couldn't find it with a quick search... so
either I'm misremembering or I'm just
hitting all the wrong keywords in the
search.

 From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: Re: Overloading operator "=" for
anonymous access types?

Newsgroups: comp.lang.ada
Date: Tue, 15 Jan 2019 09:38:11 +0100

> Yup, I agree with this. My first thought
when reading that example is that it is
wrong, because I don't remember
anywhere in Ada where the same
operator with arguments of the same
type means different things. I don't
think the use of "null" could change
that.

But the types are not same. It is
universal_access vs. access.

> Dunno if John wrote that for a different
version of Ada, or he was just confused
by a rule that barely makes sense
anyway.

> As always, best avoid anonymous
access types unless you have to use one
of their special features (dynamic
accessibility, dispatching, special
discriminant accessibility, or closures
[for access-to-subprograms]). And
better still, lets lobby to get those
special features optionally available for
named access types so no one ever has
to use an anonymous anything. :-)

Named or anonymous it makes little
difference, IMO.

Here is a classic multi-method case. "=" is
such an operation. null is universal_access
(4.2). For any access type P there are 3
equality operations "=":

function "=" (Left, Right : universal_access)
return Boolean;
 type P is access T;
 function "=" (Left : P; Right :
universal_access) return Boolean;
 function "=" (Left : universal_access; Right
: P) return Boolean;
 function "=" (Left, Right : P) return
Boolean;

When the last one is overridden, what
happens with the second and the third?

One of three possibilities:

1. It inherits the base operation:

 function "=" (Left : P; Right :
universal_access) return Boolean is
 begin
 return universal_access (Left) = Right;
 end "=";

2. It silently overrides:

 function "=" (Left : P; Right :
universal_access) return Boolean is
 begin
 return Left = P (Right);
 end "=";

3. It gets overridden abstract and
comparison to null becomes illegal
because the operation is not defined.

[The reference manual is shy to say
anything about it. It claims that
universal_access is kind of class-wide,
which would mean, if taken seriously, that
"=" overloads and must clash with the
original "=". Since it does not,
universal_access is more like a parent
type than class-wide.]

It seems that in the OP's case as in the
case with named access types #2 is in
effect, which is illogical, inconsistent,
unsafe, but would be expected by most
people.

Barnes' code presumes rather #1, which is
logical, but confusing and error-prone.

#3 would be consistent and safe:

 if Ptr_Value = Ptr_Type (null) then --
Type conversion required

But it would not work with anonymous
access types. So, if #3 were adopted, then
overriding for anonymous types must be
banished.

All this is fine and good, except that
overriding

 function "=" (Left, Right : access T)
return Boolean;

is also a primitive of T! You cannot
banish it.

P.S. And, wouldn't it be better to fix the
type system, no?

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Re: Overloading operator "=" for
anonymous access types?

Newsgroups: comp.lang.ada
Date: Tue, 15 Jan 2019 15:00:31 -0600

> [The reference manual is shy to say
anything about it. It claims that
universal_access is kind of class-wide,
which would mean, if taken seriously,
that "=" overloads and must clash with
the original "=".

This is what happens. However, such a
clash would mean that you could never
write a user-defined "=" for an
anonymous access type. That would have
been a good idea, but it would have to
have been enforced with a Legality Rule
to be sensible. Some thought that bad
because of compatibility, so...

> Since it does not, universal_access is
more like a parent type than class-wide.]

...there is a hack to have a preference for
the user-defined one. That doesn't
change the fact that universal_access is
class-wide, it just make it possible to
write a user-defined operator.

>P.S. And, wouldn't it be better to fix the
type system, no?

This wart would be one of the things that
would make "fixing the type system" so
much harder. A proper solution (and the
one we should have used in the first
place) is to declare a "=" for every access
type. I think we wanted to avoid that as
anonymous access can be declared in
places where declarations aren't allowed,
so we came up with something worse. :-)

It's the idea of anonymous access types
that destroys the type system that you
have in mind. Your system keeps the
types and operations together, and that
makes no sense for an anonymous type
(what are the operations for an
anonymous type, and where are they
declared? Any answer is either magical or
nonsense.)

One has to get rid of nonsense things
before one could regularize the type
system, especially upon the lines you
have been suggesting for years. It's not
really possible for Ada; you would end up
with an Ada-like language.

This is just another Ada

Return types

From: danielcheagle@gmail.com
Subject: ? Is ok return a type derived from

ada.finalization.controlled from a
"Pure_Function" ? thanks.

Newsgroups: comp.lang.ada
Date: Thu, 24 Jan 2019 15:56:10 -0800

Is ok return a type derived from
ada.finalization.controlled from a function
declared "Pure_Function" ?

Or yet, is ok declare a fuction returning a
controlled type as "pure_function" ?

Thanks in Advance!!!

note1 : the type has a access value.

note2 : initialize, adjust and finalize
overrided and working :-)

20 Ada in Context

Volume 40, Number 1, March 2019 Ada User Journal

 fragment example code:

pragma Ada_2012;
pragma Detect_Blocking;

with Ada.Finalization;

package Arbitrary
 with preelaborate
is

 type Arbitrary_Type (size : Positive) is
 new Ada.Finalization.Controlled with
private;

 function To_Arbitrary (value : Integer;
 precision : Integer)
 return Arbitrary_Type
 with inline; -- Can I add "pure_function" ?

private

 type Mantissa_Type is array (Positive
 range <>) of Integer;
 type Mantissa_Pointer is access
 Mantissa_Type;

 type Arbitrary_Type (size : Positive) is
 new Ada.Finalization.Controlled with
record
 mantissa : Mantissa_Pointer;
 exponent : Integer;
 sign : Integer range -1 .. 1;
 precision : Positive := size;
 end record;

end arbitrary;

pragma Ada_2012;
pragma Detect_Blocking;

with Ada.Unchecked_Deallocation;

package body Arbitrary is

 procedure Delete is new
 Ada.Unchecked_Deallocation
 (Mantissa_Type,
 Mantissa_Pointer);

 -- Initialize an Arbitrary_Type
 --
 procedure Initialize (Object : in out
 Arbitrary_Type) is
 begin
 Object.mantissa := new Mantissa_Type
 (1 .. Object.precision);
 Object.exponent := 0;
 Object.sign := 1;
 -- "here" for diminish race condition from
 -- OS' s
 Object.mantissa.all := (others => 0);
 end Initialize;

 --
 -- Fix an Arbitrary_Type after being --
 -- assigned a value
 --
 procedure Adjust (Object : in out
 Arbitrary_Type) is

 begin
 Object.mantissa := new
 Mantissa_Type'(Object.mantissa.all);
 end Adjust;

--
 -- Release an Arbitrary_Type;
--
 procedure Finalize (Object : in out
 Arbitrary_Type) is
 begin
 if Object.mantissa /= null then
 Delete (Object.mantissa);
 end if;
 Object.mantissa := null;
 end Finalize;

 -- Convert an Integer type to an
 -- Arbitrary_Type
--
 function To_Arbitrary (value : Integer;
 precision : Integer)
 return Arbitrary_Type is
 result : Arbitrary_Type (precision);
 begin
 result.mantissa (result.exponent + 1) :=
 value;
 Normalize (result);
 return result;
 end To_Arbitrary;

end arbitrary;

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Re: ? Is ok return a type derived
from ada.finalization.controlled from a
"Pure_Function" ? thanks.

Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 15:20:47 -0600

Of course it's OK, "Pure_Function" is
some GNAT-specific nonsense. :-)

My recollection is that GNAT does not
check if Pure_Function makes sense, so
the only question is whether you can live
with the possible implications. (And I
don't know why you would want to use
Pure_Function anyway.)

Note that in Ada 2020, you would use the
Global aspect to declare the usage of
globals by your subprogram, and those
are checked, so either the aspect is legal
or your program won't compile. But
GNAT hasn't implemented that yet, so far
as I know.

From: Shark8
<onewingedshark@gmail.com>

Subject: Re: ? Is ok return a type derived
from ada.finalization.controlled from a
"Pure_Function" ? thanks.

Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 16:22:33 -0800

IIRC, Pure_Function doesn't need to be in
a Pure unit to be tagged as such, and the
GNAT-specific meaning is: given a call
with a particular set of parameter-values
always returns the same result.

As I recall GNAT doesn't actually check
this is case, but rather uses it for
optimization purposes.

> Or yet, is ok declare a function
returning a controlled type as
"pure_function" ?

See above: "Pure_Function" has nothing
to do with categorization or restrictions
and is just an attribute denoting allowance
for certain optimizations. (Again, IIRC.)

From: Simon Wright
<simon@pushface.org>

Subject: Re: ? Is ok return a type derived
from ada.finalization.controlled from a
"Pure_Function" ? thanks.

Newsgroups: comp.lang.ada
Date: Sat, 26 Jan 2019 11:48:46 +0000

Given that the documentation of
Pure_Function[1] says

 ... the compiler can assume that there are
no side effects, and in particular that two
calls with identical arguments produce the
same result

and that

 ... there are no static checks to try to
ensure that this promise is met

it would be a Bad Idea to apply it to your
function.

[1] https://gcc.gnu.org/onlinedocs/
gnat_rm/Pragma-Pure_005fFunction.html

Forbid local generic
instantiations

From: joakimds@kth.se
Subject: Why forbid local generic

instantiations?
Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 01:43:29 -0800

[...]

Consider the following code:

procedure Main is
 package Integer_Vectors is new
Ada.Containers.Vectors (Positive, Integer);
begin
 null;
end Main;

It has a generic package instantiation local
to the subprogram Main and not defined
on package level. Both in AdaControl and
GNATCheck there are rules to forbid
local generic instantiations.

For example GNATCheck:

23.7.25 Generics_In_Subprograms

 Flag each declaration of a generic unit in
a subprogram. Generic declarations in the
bodies of generic subprograms are also
flagged. A generic unit nested in another
generic unit is not flagged. If a generic
unit is declared in a local package that is
declared in a subprogram body, the
generic unit is flagged.

This rule has no parameters.

Ada in Context 21

Ada User Journal Volume 40, Number 1, March 2019

Using AdaControl one can use the
following rule to detect instantiations of
generic packages/subprograms:

5.10 Declarations

This rule controls usage of various kinds
of declarations, possibly only those
occurring at specified locations.

...

Why is it considered bad practise to use
local generic instantiations? Within the
C++ Community, limiting the use of
templates doesn't seem an issue. On the
contrary, going all in with template
metaprogramming is the norm.

Does local generic instantiations have a
performance penalty? Is it something that
may be error-prone? Limit cross-compiler
compatibility? Why does the rule exist to
ban local instantiations? I've been
googling/searching the web for an answer
to this question but have not found an
explanation. Does anybody know?

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Subject: Re: Why forbid local generic
instantiations?

Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 17:36:33 +0100

> Why is it considered bad practise to use
local generic instantiations? Within the
C++ Community, limiting the use of
templates doesn't seem an issue. On the
contrary, going all in with template
metaprogramming is the norm.

It isn't bad practice. Mostly such rules are
premature optimization. Are there rules
against regular pkgs in such places?

There's no difference.

It makes perfect sense for things to be
declared in the smallest scope in which
they're needed. This is true of anything,
not just pkgs.

A pkg in a subprogram is elaborated
every time the subprogram is called. If the
elaboration of a specific pkg is expensive
and timing requirements are tight, it might
make sense to move that pkg to a larger
scope. But a general rule against them for
"efficiency" doesn't make sense. Limiting
it to pkgs that are generic instantiations
makes less sense.

Perhaps such people don't know that
instantiation takes place during
compilation and has no run-time impact.

As a 1st-order approximation, anything
the "C++ Community" does should be
avoided.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Re: Why forbid local generic
instantiations?

Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 15:23:55 -0600

> Perhaps such people don't know that
instantiation takes place during

compilation and has no run-time
impact.

I agree with most of what you said, but
this statement is false, since the instance
is elaborated at the point of the
instantiation. Depending on the generic,
that could be a substantial amount of
execution time. (Note that is even more
true for a code-shared implementation
like Janus/Ada, since the elaboration of
the instance creates the instantiation
descriptor.)

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Subject: Re: Why forbid local generic
instantiations?

Newsgroups: comp.lang.ada
Date: Sat, 26 Jan 2019 10:56:27 +0100

> [...]

I can't tell from what you've written if
what I said is wrong or if we're saying
basically the same thing in different ways.
I'm not familiar with the way shared-code
generics are instantiated. Macro-
expansion instantiation is straightforward.

The rule I learned (Ada 83) was:
Instantiation happens during compilation;
elaboration happens during run time.

In more detail: Instantiation is the process
whereby a compiler effectively replaces
an instantiation with a regular pkg (the
instance). The result is no different from
having written the resulting regular pkg
instead of the instantiation, except for
possible code sharing with other
instantiations of the same generic

[ignoring the case of an instantiation in a
pkg spec].

All pkgs, regular or generic instances, are
elaborated during run time. That
elaboration can be as complex as the
developer wants. In the case of a pkg in a
subprogram, that elaboration happens
every time the subprogram is called.

That's what I learned back when dinosaurs
ruled the earth. I gather from what you've
written that a shared-code compiler may
increase the amount of elaboration by
some (hopefully small, fixed?) amount, so
it's not technically correct unless the
increase is small enough to be considered
negligible. I think it's correct for
compilers that do macro-expansion
instantiation, and close enough for the
rule to be correct as a 1st-order
approximation.

If I'm wrong, I'd like to be corrected.

From: Jere <jhb.chat@gmail.com>
Subject: Private extension of a synchronized

interface
Newsgroups: comp.lang.ada
Date: Fri, 15 Feb 2019 16:52:07 -0800

I'll get to my ultimate goal later, but while
following various rabbit trails, I came
across a situation I couldn't solve. GNAT
allows you to make private extensions to
synchronized interfaces and it allows you

to complete those private extensions with
protected types. I can't, however, figure
out how it overrides the abstract
procedures and functions of the
synchronized interface.

If I don't specify an override and try to
call the procedure, it complains that the
procedure is abstract. If I try to override
the abstract function, it complains that the
signature doesn't match the one in the
protected body. I don't know if this is a
GNAT issue or something that Ada
doesn't allow. Here is some test code. It
compiles as is, but there are two parts that
if you uncomment either one of those it
fails to compile.

with Ada.Text_IO; use Ada.Text_IO;
procedure Hello is
 package Example is

 type An_Interface is synchronized
 interface;
 procedure p1(Self : in out
 An_Interface) is abstract;

 type Instance is synchronized new
 An_Interface with private;

 -- The following lines give the errors:
 -- "p1" conflicts with declaration at line
 --- xxx and missing body for "p1"

 --overriding
 --procedure p1(Self : in out Instance);

 private
 -- Some hidden implementation types,
 -- constants, etc.

 -- Instance full view is a protected type
 protected type Instance is new
 An_Interface with
 procedure p1;
 private
 -- some hidden stuff;
 end Instance;

 end Example;

 package body Example is
 protected body Instance is
 procedure p1 is
 begin
 Put_Line("Did Something");
 end p1;
 end Instance;

 end Example;

 v : Example.Instance;

begin
 Put_Line("Hello, world!");
 -- The following line gives the error:
 -- call to abstract procedure must be
 -- dispatching
 --v.p1;
end Hello;

My ultimate goal is not having to declare
a bunch of extra types and packages in the

22 Ada in Context

Volume 40, Number 1, March 2019 Ada User Journal

public view to only use them in the
private view of the protected object. I'd
prefer that all of the private stuff actually
be in a private section. So I'm not tied to
interfaces, but it was one attempt at
getting stuff moved down to the private
section. But while I went down the
interfaces rabbit hole, I just found the
issue I ran into odd.

Does anyone know how to create the
correct overrides for the example above?

Extension of synchronized
interfaces

 From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: Re: Private extension of a
synchronized interface

Newsgroups: comp.lang.ada
Date: Sun, 17 Feb 2019 10:50:21 +0100

> I'll get to my ultimate goal later, but
while following various rabbit trails, I
came across a situation I couldn't solve.
GNAT allows you to make private
extensions to synchronized interfaces
and it allows you to complete those
private extensions with protected types.
I can't, however, figure out how it
overrides the abstract procedures and
functions of the synchronized interface.

> If I don't specify an override and try to
call the procedure, it complains that the
procedure is abstract. If I try to override
the abstract function, it complains that
the signature doesn't match the one in
the protected body. I don't know if this
is a GNAT issue or something that Ada
doesn't allow. Here is some test code. It
compiles as is, but there are two parts
that if you uncomment either one of
those it fails to compile.

Reading RM 9.5.2 (13.2/2) does not really
help:

"if the overriding_indicator is overriding,
then the entry shall implement an
inherited subprogram;"

An inherited subprogram is already
implemented per, well, inheritance. May
be it means:

1. shall implement a primitive operation
(it overrides here);

2. shall implement an overridden
primitive operation (it implements
overriding declared earlier).

Neither #1 nor #2 work.

But synchronized interfaces are totally
bogus from the software design POV. It is
a pure implementation aspect exposed.
Why do you care?

Aggregate a protected object and delegate
primitive operations to it.

 From: Jere <jhb.chat@gmail.com>
Subject: Re: Private extension of a

synchronized interface
Newsgroups: comp.lang.ada
Date: Sun, 17 Feb 2019 05:46:17 -0800

> But synchronized interfaces are totally
bogus from the software design POV. It
is a pure implementation aspect
exposed. Why do you care?

> Aggregate a protected object and
delegate primitive operations to it.

That's what I am doing as my own
solution. I was intrigued with the code
above as an alternate solution because it
could potentially give a compile time
indication that a procedure was a
protected operation (as opposed to me
relying on simply providing that via
comments). A delegate non protected
procedure has to rely on the comment. I
didn't even want the interface to use as an
interface, just as a means to at the API
level to have a compiler enforced
indication that the procedure was from a
protected object. I started with a protected
object in the public view but the
implementation details of the private part
of the protected object led to about 10
lines of code (type declarations and a
couple of package specifications) that had
no use to the public view but had to be
there because of how protected object
declarations work. I saw this as a potential
means of information hiding. My actual
solution is as you suggested with delegate
operations that call the protected object.
However, I honestly wanted to know why
Ada allowed one to setup the private
extension but not allow you to actually
provide the functions (or if this was a
GNAT issue or if I was just not using the
right syntax). So the reason I care was a
thirst for knowledge of how things work.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: Re: Private extension of a
synchronized interface

Newsgroups: comp.lang.ada
Date: Sun, 17 Feb 2019 15:52:38 +0100

Given to who? The compiler knows
already, the user should not care. It is an
implementation aspect which simply does
not belong here.

What could make sense is an entry
interface, a primitive operation which
could be queued/requeued to, used in
timed entry call etc.

> A delegate non protected procedure has
to rely on the comment.

There is no contract that could require it
protected. It is a property of the
object/task and no property of an
operation. You could not do anything
with a task or protected object that would
not resolve into a protected action
anyway.

[...]

> However, I honestly wanted to know
why Ada allowed one to setup the
private extension but not allow you to
actually provide the functions (or if this
was a GNAT issue or if I was just not
using the right syntax). So the reason I

care was a thirst for knowledge of how
things work.

Ada 2005 stuff, most of it makes little
sense to me. It was some halfhearted
attempt to unite tagged types with tasks
and protected objects with no desire to
actually do that...

From: Jere <jhb.chat@gmail.com>
Subject: Re: Private extension of a

synchronized interface
Newsgroups: comp.lang.ada
Date: Sun, 17 Feb 2019 07:36:18 -0800

The compiler cannot always tell
depending on how and where you call
buried protected operations. I always
prefer compile time catching over run
time catching.

> > A delegate non protected procedure
has to rely on the comment.

> There is no contract that could require it
protected. It is a property of the
object/task and no property of an
operation. You could not do anything
with a task or protected object that
would not resolve into a protected
action anyway.

Protected procedures/functions/entries are
particularly heavy operations.

I don't know if you generally work in low
level embedded environments, but being
able know and plan for that can be very
critical. It can change how you approach
your design. When you work in systems
where your system clock is 1-4MHz,
timing of operations does start to matter.

> > However, I honestly wanted to know
why Ada allowed one to setup the
private extension but not allow you to
actually provide the functions (or if this
was a GNAT issue or if I was just not
using the right syntax). So the reason I
care was a thirst for knowledge of how
things work.

> Ada 2005 stuff, most of it makes little
sense to me. It was some halfhearted
attempt to unite tagged types with tasks
and protected objects with no desire to
actually do that...

I'm just curious if or why the process was
stopped half way instead of abandoned or
completed (again that is assuming I didn't
use the wrong syntax, in which case it's
simply that I'm structuring the syntax
wrong).

I don't really need to marry them with
tagged types. I do appreciate the ability to
dispatch over a group of related but
different tasks much more easily and the
interfaces give that. The way that Ada
chose to implement interfaces is one of
many ways (not all of which would have
required tagged types).

Unit testing ∙ System testing ∙ Coverage analysis ∙ Timing analysis

V&V services ∙ Multicore timing services ∙ DO-178C training

Ada ∙ C ∙ C++

www.rapitasystems.com

Revolutionize your
software verif ication

Efficiency, Automation, Reliability+ +

24

Volume 40, Number 1, March 2019 Ada User Journal

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2019
May 01-03 8th International Conference on Fundamentals of Software Engineering (FSEN'2019), Tehran, Iran.

Topics include: all aspects of formal methods, especially those related to advancing the application of
formal methods in the software industry and promoting their integration with practical engineering
techniques; software specification, validation, and verification; software architectures and their
description languages; integration of formal and informal methods; component-based software systems;
model checking and theorem proving; software verification; CASE tools and tool integration; industrial
applications; etc.

 May 07-09 22nd IEEE International Symposium On Real-Time Distributed Computing (ISORC'2019),
Valencia, Spain. Topics include: object/component/service-oriented real-time distributed computing
(ORC) technology, programming and system engineering (real-time programming challenges, ORC
paradigms, languages, ...), trusted and dependable systems, system software (real-time kernel/OS,
middleware support for ORC, extensibility, synchronization, scheduling, fault tolerance, security, ...),
applications (medical devices, intelligent transportation systems, industrial automation systems, Internet
of Things and Smart Grids, embedded systems in automotive, avionics, consumer electronics, ...),
system evaluation (performance analysis, monitoring & timing, dependability, fault detection and
recovery time, ...), cyber-physical systems, etc.

May 07-09 11th NASA Formal Methods Symposium (NFM'2019), Houston, Texas, USA. Topics include:
identify challenges and provide solutions for achieving assurance for critical systems; formal
verification, including theorem proving, model checking, and static analysis; use of formal methods in
software and system testing; run-time verification techniques and algorithms for scaling formal
methods, such as abstraction and symbolic methods, compositional techniques, as well as parallel and/or
distributed techniques; safety cases and system safety; formal approaches to fault tolerance; formal
methods in systems engineering and model-based development; etc.

May 20-23 32nd International Conference on Architecture of Computing Systems (ARCS'2019), Copenhagen,
Denmark. Focus: "architectures for complex real-time systems". Topics include: autonomous control
systems, as well as safety and security critical systems; upcoming architectures and technologies,
exploitable architectural features, languages, and tooling; architectures for real-time and mixed-
criticality systems; programming models for many-core computing platforms; hypervisors and
middleware for multi-/many-core computing platforms; support for safety and security; etc.

May 20-24 33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS'2019), Rio de
Janeiro, Brazil.

 May 20 24th International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS'2019). Topics include: the areas of parallel
applications, language design, compilers, runtime systems, and programming tools; the
areas of emerging programming models for large-scale parallel systems and many-core
architectures; new programming languages and constructs for exploiting
parallelism/locality; experience with and improvements for existing parallel languages
and run-time environments; parallel compilers, programming tools, and environments;
programming environments for heterogeneous multicore systems and accelerators such
as GPUs, FPGAs, and MICs; etc.

Conference Calendar 25

Ada User Journal Volume 40, Number 1, March 2019

May 21-25 20th International Conference on Agile Software Development (XP'2019), Montréal, Québec,
Canada.

May 25-26 14th IEEE/ACM International Conference on Global Software Engineering (ICGSE'2019),
Montréal, Québec, Canada.

May 25 - Jun 01 41st International Conference on Software Engineering (ICSE'2019), Montréal, Québec, Canada.
Theme: "The next 50 years for Software Engineering".

June 03-07 31st International Conference on Advanced Information Systems Engineering (CAiSE'2019),
Rome, Italy. Theme: "Responsible Information Systems". Topics include: methods, models, techniques,
architectures and platforms for supporting the engineering and evolution of information systems and
organizations. Deadline for early registration: May 6, 2019.

 June 04-06 International Conference on Reliability, Safety and Security of Railway Systems (RSSRail'2019),
Lille, France. Topics include: building critical railway applications and systems. Includes tutorials by
Altran and AdaCore.

 June 04-06 DAta Systems In Aerospace (DASIA'2019), Sicily, Italy.

June 11-14 Ada-Europe 24th International Conference on Reliable Software
Technologies (Ada-Europe 2019), Warsaw, Poland. Sponsored by Ada-Europe, in
cooperation with ACM SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association
(ARA). Deadline for early registration: May 20, 2019.

 June 14 Ada-Europe'2019 - 6th Workshop on Challenges and New Approaches for
Dependable and Cyber-Physical System Engineering (DeCPS'2019). Topics include:
vehicle of the future, transport and mobility, Industry 4.0 in transportation sector,
security and comfort of the end-user, human/machine interaction, safety and security,
industrial experiments and case studies, integration of Internet of Things and cloud
computing, evolution of standards and certification processes, impact of artificial
intelligence in CPS.

June 24-28 13th ACM International Conference on Distributed Event-Based Systems (DEBS'2019), Darmstadt,
Germany. Topics include: systems dealing with collecting, detecting, processing and responding to
events through distributed middleware and applications; real-time analytics, complex event processing,
distributed programming, security, reliability and resilience, Internet-of-Things, cyber-physical systems,
etc.

June 26-28 18th International Conference on Software Reuse (ICSR'2019), Cincinnati, Ohio, USA. Topics
include: approaches facilitating reuse in industry; technical debt and reuse; component-based reuse
techniques; generative, systematic, and opportunistic reuse; reverse engineering of potentially reusable
components; evolution and maintenance of reusable assets; dynamic aspects of reuse (e.g., post-
deployment time); retrieval of reusable artifacts and knowledge in large-scale software repositories
(e.g., open-source and industrial code bases); etc.

July 09-12 31st Euromicro Conference on Real-Time Systems (ECRTS'2019), Stuttgart, Germany. Topics
include: all aspects of real-time systems, such as scheduling design and analysis, real-time operating
systems, hypervizors and middleware, memory management, worst-case execution time analysis, formal
models and analysis techniques for real-time systems, mixed-criticality design and assurance,
programming languages and compilers, virtualization and timing isolation, etc. Event includes: CERTS
- International Workshop on Security and Dependability of Critical Embedded Real-Time Systems,
WATERS - International Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems, WCET - International Workshop on Worst-Case Execution Time Analysis, etc.

 July 15-19 33rd European Conference on Object-Oriented Programming (ECOOP'2019), London, England.
Topics include: original and unpublished results on any Programming Languages topic. Deadline for
submissions: June 10, 2019 (student volunteers round 2).

July 15-19 Software Technologies: Applications and Foundations (STAF'2019), Eindhoven, the Netherlands.
Event includes: ECMFA - 15th European Conference on Modelling Foundations and Applications,
ICGT - 12th International Conference on Graph Transformation, ICMT - 12th International Conference
on Model Transformations, TTC - 12th Transformation Tool Contest, STAF-JRC - 1st STAF Junior
Researcher Community Event, STAF-RPS - 1st STAF Research Project Showcase Workshop.

26 Conference Calendar

Volume 40, Number 1, March 2019 Ada User Journal

July 15-19 43rd Annual IEEE Conference on Computer Software and Applications (COMPSAC'2019),
Milwaukee, Wisconsin, USA.

July 22-29 19th IEEE International Conference on Software Quality, Reliability and Security (QRS'2019),
Sofia, Bulgaria. Topics include: reliability, security, availability, and safety of software systems;
software testing, verification, and validation; program debugging and comprehension; fault tolerance for
software reliability improvement; modeling, prediction, simulation, and evaluation; metrics,
measurements, and analysis; software vulnerabilities; formal methods; benchmark, tools, industrial
applications, and empirical studies; etc. Deadline for submissions: May 1, 2019 (workshop papers, fast
abstracts, industry track).

July 29-31 13th International Symposium on Theoretical Aspects of Software Engineering (TASE'2019),
Guilin, China. Topics include: theoretical aspects of software engineering, such as abstract
interpretation, component-based software engineering, cyber-physical systems, distributed and
concurrent systems, embedded and real-time systems, formal verification and program semantics,
integration of formal methods, language design, model checking and theorem proving, model-driven
engineering, object-oriented systems, program analysis, reverse engineering and software maintenance,
run-time verification and monitoring, software architectures and design, software testing and quality
assurance, software safety, security and reliability, specification and verification, type systems, tools
exploiting theoretical results, etc.

July 29 - Aug 02 38th ACM Symposium on Principles of Distributed Computing (PODC'2019), Toronto, Ontario,
Canada.

 August 18-21 25th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'2019), Hangzhou, China. Topics include: real-time operating systems, real-time
scheduling, timing analysis, programming languages and run-time systems, middleware systems, design
and analysis tools, multi-core embedded systems, operating systems and scheduling, embedded software
and compilers, fault tolerance and security, embedded systems and design methods for cyber-physical
systems, applications and case studies of IoT and CPS, cyber-physical co-Design, etc.

August 26-30 27th ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE'2019), Tallinn, Estonia. Topics include: architecture and design;
components, services, and middleware; debugging; dependability, safety, and reliability; development
tools and environments; distributed, parallel, and concurrent software; education; embedded and real-
time software; empirical software engineering; formal methods, including languages, methods, and
tools; model-driven software engineering; processes and workflows; program analysis; program
comprehension and visualization; refactoring; reverse engineering; safety-critical systems; scientific
computing; security and privacy; software economics and metrics; software evolution and maintenance;
software modularity and reuse; software product lines; testing and verification; traceability; etc.
Deadline for submissions: May 17, 2019 (tool demos), May 24, 2019 (student research competition),
May 30 - June 10, 2019 (workshop papers), May 31, 2019 (journal first papers).

August 27-29 17th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS'2019), Amsterdam, the Netherlands. Topics include: theoretical foundations of timed
systems and languages; methods and tools (techniques, algorithms, data structures, and software tools
for analyzing timed systems and resolving temporal constraints, such as scheduling, worst-case
execution time analysis, optimization, model checking, testing, constraint solving, ...); adaptation and
specialization of timing technology in application domains in which timing plays an important role
(real-time software, problems of scheduling in manufacturing and telecommunication, ...); etc. Deadline
for submissions: May 9, 2019 (abstracts), May 13, 2019 (papers).

August 27-30 30th International Conference on Concurrency Theory (CONCUR'2019), Amsterdam, the
Netherlands. Topics include: basic models of concurrency; verification and analysis techniques for
concurrent systems, such as abstract interpretation, atomicity checking, model checking, race detection,
run-time verification, static analysis, theorem proving, type systems, security analysis, ...; distributed
algorithms and data structures; theoretical foundations of architectures, execution environments, and
software development for concurrent systems, such as multiprocessor and multi-core architectures,
compilers and tools for concurrent programming, programming models such as component-based,
object-oriented, ...; etc. Includes 24th International Conference on Formal Methods for Industrial
Critical Systems (FMICS'2019), 17th International Conference on Formal Modelling and Analysis of
Timed Systems (FORMATS'2019), etc.

Conference Calendar 27

Ada User Journal Volume 40, Number 1, March 2019

August 28-30 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2019),
Thessaloniki / Chalkidiki, Greece. Topics include: information technology for software-intensive
systems; conference tracks on Embedded Systems & Internet of Things (ES-IoT), Software Process and
Product Improvement (SPPI), etc.; special sessions on Cyber-Physical Systems (CPS), Software
Engineering and Technical Debt (SEaTeD), Model-Driven Engineering and Modeling Languages
(MDEML), etc.

September 01-04 Federated Conference on Computer Science and Information Systems (FedCSIS'2019), Leipzig,
Germany. Event includes: 4th International Workshop on Language Technologies and Applications
(LTA), 7th Workshop on Advances in Programming Languages (WAPL), 10th Workshop on Scalable
Computing (WSC), 3rd International Conference on Lean and Agile Software Development (LASD),
Joint 39th IEEE Software Engineering Workshop (SEW-39) and 6th International Workshop on Cyber-
Physical Systems (IWCPS-6), etc. Deadline for submissions: May 14, 2019 (papers), June 4, 2019
(position papers).

 September 10-13 International Conference on Parallel Computing 2019 (ParCo'2019), Prague, Czech Republic.
Topics include: all aspects of parallel computing, including applications, hardware and software
technologies, and languages and development environments. Deadline for submissions: July 31, 2019
(full papers).

September 16-20 17th International Conference on Software Engineering and Formal Methods (SEFM'2019), Oslo,
Norway. Topics include: software evolution, maintenance, re-engineering, and reuse; programming
languages; abstraction and refinement; software testing, validation, and verification; model checking,
theorem proving, and decision procedures; testing and runtime verification; other light-weight and
scalable formal methods; safety-critical, fault-tolerant, and secure systems; software certification;
applications and technology transfer; real-time, hybrid, and cyber-physical systems; education; case
studies, best practices, and experience reports; etc. Deadline for submissions: May 3, 2019 (abstracts),
May 10, 2019 (papers).

September 19-20 13th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2019), Porto de Galinhas, Brazil. Deadline for submissions: June 10, 2019 (industry papers),
June 10, 2019 (emerging results and vision papers), July 1, 2019 (Journal-First submissions).

 Sep 30 - Oct 02 Automotive - Safety & Security 2019 & SafeWare Engineering 2019, Karlsruhe, Germany. Co-
organized by Ada-Deutschland. Topics include: all aspects of reliability, safety, security, privacy, etc. in
automotive systems, many of which are heavily influenced by advances in applied Software
Engineering; same themes for application domain of Internet of Things (IoT). Conference (and
submission) language is English.

October 01-04 38th IEEE International Symposium on Reliable Distributed Systems (SRDS'2019), Lyon, France.
Topics include: distributed systems design, development and evaluation, with emphasis on reliability,
availability, safety, dependability, security, and real-time.

October 07-11 23rd International Symposium on Formal Methods (FM'2019), Porto, Portugal, aka 3rd World
Congress on Formal Methods. Topics include: formal methods in a wide range of domains including
software, computer-based systems, systems-of-systems, cyber-physical systems, human-computer
interaction, manufacturing, sustainability, energy, transport, smart cities, and healthcare; formal
methods in practice (industrial applications of formal methods, experience with formal methods in
industry, tool usage reports, ...); tools for formal methods (advances in automated verification, model
checking, and testing with formal methods, tools integration, environments for formal methods, ...);
formal methods in software and systems engineering (development processes with formal methods,
usage guidelines for formal methods, ...); etc.

October 08-11 19th International Conference on Runtime Verification (RV'2019), Porto, Portugal. Topics include:
monitoring and analysis of the runtime behaviour of software and hardware systems. Application areas
include cyber-physical systems, safety/mission critical systems, enterprise and systems software, cloud
systems, autonomous and reactive control systems, health management and diagnosis systems, and
system security and privacy. Deadline for submissions: June 25, 2019 (abstracts), June 30, 2019 (papers,
tutorials).

October 13-18 Embedded Systems Week 2019 (ESWEEK'2019), New York City, USA. Topics include: all aspects of
embedded systems and software. Deadline for submissions: June 7, 2019 (work-in-progress track
papers).

28 Conference Calendar

Volume 40, Number 1, March 2019 Ada User Journal

October 13-18 International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES'2019). Topics include: latest advances in compilers and architectures
for high-performance, low-power embedded systems; compilers for embedded systems:
multi- and many-core processors, GPU architectures, reconfigurable computing
including FPGAs and CGRAs; security, reliability, and predictability: secure
architectures, hardware security, and compilation for software security; architecture and
compiler techniques for reliability and aging; modeling, design, analysis, and
optimization for timing and predictability; validation, verification, testing & debugging
of embedded software; special day on the Internet of Medical Things; etc.

October 13-18 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS'2019). Topics include: system-level design, modeling, analysis, and
implementation of modern embedded, IoT, and cyber-physical systems, from system-
level specification and optimization down to system synthesis of multi-processor
hardware/software implementations.

October 13-18 ACM SIGBED International Conference on Embedded Software (EMSOFT'2019).
Topics include: the science, engineering, and technology of embedded software
development; research in the design and analysis of software that interacts with physical
processes; results on cyber-physical systems, which compose computation, networking,
and physical dynamics.

 October 14-20 TOOLS 50+1: Technology of Object-Oriented Languages and Systems (TOOLS'2019), Innopolis
(Kazan), Russia. Topics include: new development in object technology; experience reports, technology
transfer; challenges of developing software for embedded systems and Internet of Things; reliability and
dependability; hybrid and cyber-physical systems modeling and verification; etc.

 October 20-25 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2019), Athens, Greece. Topics include: all aspects of software construction and
delivery, at the intersection of programming languages and software engineering. Deadline for
submissions: May 17, 2019 (SPLASH-I), May 29, 2019 (DLS abstracts - Dynamic Languages
Symposium), June 5, 2019 (DLS papers - Dynamic Languages Symposium), June 14, 2019 (GPCE
abstracts - Generative Programming: Concepts & Experiences, SLE abstracts - Software Language
Engineering), June 21, 2019 (GPCE papers - Generative Programming: Concepts & Experiences, SLE
papers - Software Language Engineering), July 8, 2019 (MPLR - Managed Programming Languages
and Runtimes), July 12, 2019 (SPLASH-E, Doctoral Symposium, Student Research Competition
abstracts), August 2, 2019 (workshop papers), September 7, 2019 (Posters), end of September 2019
(student volunteer applications).

October 21-22 12th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2019). Topics include: areas ranging from theoretical and conceptual
contributions, to tools, techniques, and frameworks in the domain of software language
engineering; generic aspects of software languages development rather than aspects of
engineering a specific language; software language design and implementation; software
language validation; software language integration and composition; software language
maintenance (software language reuse, language evolution, language families and
variability); domain-specific approaches for any aspects of SLE (design,
implementation, validation, maintenance); empirical evaluation and experience reports
of language engineering tools (user studies evaluating usability, performance
benchmarks, industrial applications); etc. Deadline for submissions: June 14, 2019
(abstracts), June 21, 2019 (papers), August 16, 2019 (artifacts).

Oct 28 - Nov 01 30th IEEE International Symposium on Software Reliability Engineering (ISSRE'2019), Berlin,
Germany. Topics include: development, analysis methods and models throughout the software
development lifecycle; primary dependability attributes (i.e., security, safety, maintainability) impacting
software reliability; secondary dependability attributes (i.e., survivability, resilience, robustness)
impacting software reliability; reliability threats, i.e. faults (defects, bugs, etc.), errors, failures;
reliability means (fault prevention, fault removal, fault tolerance, fault forecasting); reliability of open
source software; etc. Deadline for submissions: May 5, 2019 (full research papers).

Oct 30 - Nov 04 16th International Colloquium on Theoretical Aspects of Computing (ICTAC'2019), Hammamet,
Tunisia. Topics include: semantics of programming languages; theories of concurrency; theories of
distributed computing; models of objects and components; timed, hybrid, embedded and cyber-physical

Conference Calendar 29

Ada User Journal Volume 40, Number 1, March 2019

systems; static analysis; software verification; software testing; model checking and automated theorem
proving; interactive theorem proving; verified software, formalized programming theory; etc. Deadline
for submissions: May 5, 2019 (abstracts), May 12, 2019 (papers).

November 10-13 24th International Conference on Engineering of Complex Computer Systems (ICECCS'2019),
Hong Kong, China. Topics include: verification and validation, security and privacy of complex
systems, model-driven development, reverse engineering and refactoring, software architecture, design
by contract, agile methods, safety-critical and fault-tolerant architectures, real-time and embedded
systems, systems of systems, cyber-physical systems and Internet of Things (IoT), tools and tool
integration, industrial case studies, etc. Deadline for submissions: May 24, 2019 (abstracts), May 31,
2019 (full papers).

November 11-15 34th IEEE/ACM International Conference on Automated Software Engineering (ASE'2019), San
Diego, California, USA. Topics include: foundations, techniques, and tools for automating the analysis,
design, implementation, testing, and maintenance of large software systems; empirical software
engineering; maintenance and evolution; model-driven development; program comprehension; reverse
engineering and re-engineering; specification languages; software analysis; software architecture and
design; software product line engineering; software security and trust; etc. Deadline for submissions:
May 6, 2019 (research abstracts), May 13, 2019 (research papers), June 19, 2019 (other tracks), July 15,
2019 (workshop papers).

November 27-29 20th International Conference on Product-Focused Software Process Improvement
(PROFES'2019), Barcelona, Spain. Topics include: experiences, ideas, innovations, as well as concerns
related to professional software development and process improvement driven by product and service
quality needs. Deadline for submissions: June 7, 2019 (abstracts for full research papers, industry
papers, industry talks), June 14, 2019 (full research papers, industry papers, industry talks), August 5,
2019 (short papers), August 9, 2019 (Journal-First papers, European project space).

December 02-04 17th Asian Symposium on Programming Languages and Systems (APLAS'2019), Bali, Indonesia.

December 02-06 15th International Conference on integrated Formal Methods (iFM'2019), Bergen, Norway. Topics
include: hybrid approaches to formal modelling and analysis; i.e. the combination of (formal and semi-
formal) methods for system development, regarding modelling and analysis, and covering all aspects
from language design through verification and analysis techniques to tools and their integration into
software engineering practice.

 December 03-06 40th IEEE Real-Time Systems Symposium (RTSS'2019), Hong Kong. Topics include: all aspects of
real-time systems, including theory, design, analysis, implementation, evaluation, and experience.
Deadline for submissions: May 30, 2019 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

Advance Information
The 24th International Conference on Reliable Software Technologies (Ada-Europe 2019) will take place in Warsaw,

Poland, 11-14 of June. This conference is the latest in a series of annual international conferences started in the early

80's, under the auspices of, and organization by, Ada-Europe, the international organization that promotes the

knowledge and use of Ada and Reliable Software in general into academia, research and industry. Ada-Europe 2019

provides a unique opportunity for dialogue and collaboration between academics and industrial practitioners interested

in reliable software.

The 2019 edition of the conference features a number of important innovations:

• Reduced fee for all authors.

• Lower registration fees for the conference and tutorials, unified for all participants.

• New, journal-based, open-access, publication model for the peer-reviewed papers

• An educational tutorial offered especially to those who wish to know more about Ada.

• More compact program: two core days (Wednesday and Thursday), and an exhibition opening in the

afternoon of Tuesday, in parallel to the Ada-Europe General Assembly, followed by a welcome aperitif.

Conference Overview

 Morning Before Lunch After Lunch Afternoon

Tuesday,

June 11th

Tutorials, Opening

& Welcome Aperitif

Tutorial:

P. Munts, Controlling I/O Devices with Ada using the Remote I/O Protocol Exhibition Opening

& Ada-Europe GA

& Welcome Aperitif Tutorial:

J.P. Rosen, An introduction to Ada

Wednesday,

June 12th

Sessions & Exhibition

Keynote Talk:

TO BE ANNOUNCED

Presentation Session:

Assurance Issues in

Critical Systems

Presentation Session:

Tooling Aid for

Verification

Presentation Session:

Best Practices for

Critical Applications

Thursday,

June 13th

Sessions & Exhibition

Keynote Talk:

A 2020 View of Ada

Tucker Taft

(AdaCore, USA)

Presentation Session:

Uses of Ada in

Challenging

Environments

Presentation Session:

Verification Challenges

Presentation Session:

Real-Time Systems

Friday,

June 14th

Workshop &

by-invitation meetings

Workshop: Challenges and new Approaches for Dependable

and Cyber-Physical Systems Engineering (DeCPS)

ISO WG 9 meeting ISO ARG meeting

Keynote Talks
Each day of the core program will be opened with a keynote talk delivered by eminent speakers. Currently confirmed:

• Tucker Taft, AdaCore, USA, “A 2020 View of Ada”

Tutorials
Opening the conference on Tuesday, the program includes two tutorials:

• Controlling I/O Devices with Ada using the Remote I/O Protocol, Philip Munts, full day
• An introduction to Ada, Jean-Pierre Rosen, full day

Co-Located Workshop
On Friday, June 14th, the conference program features the 6th edition of the International Workshop on Challenges and

new Approaches for Dependable and Cyber-Physical Systems Engineering (DeCPS). The DeCPS workshop series aims to

facilitate the exchange of ideas, research results and experience in the field of dependable and cyber-physical systems

engineering, from theoretical and practical perspectives. To favour integration and interaction between the DeCPS

workshop and the conference core, the full conference registration includes complimentary access to the workshop.

Vendor Presentations and Exhibition
The conference will feature an exhibition located in a central hall of the hosting site, where all the session breaks will

take place. Exhibitors and vendors will also make technical presentations, scattered throughout the conference

program.

Social Events
The conference program includes two coffee breaks and a seated lunch each day, with ample

opportunity for technical discussions, visits to the exhibition, and social interaction. The Ada-

Europe General Assembly will take place in parallel to the opening of the exhibition in the late

afternoon of Tuesday, right after the tutorials. Immediately after that, the local organizers will

host a Welcome Aperitif on the terrace of the Institute of Aviation, enjoying a wonderful view

of the Warsaw airport and city center, accompanied by drinks and typical Polish snacks.

On Wednesday evening, the Conference Banquet will take place at the elegant old-style restaurant "Przepis na kompot",

in the small Mazovian town of Zelazowa Wola, where Fryderyk Chopin was born in 1810. Chopin’s family moved to

Warsaw soon afterwards, returning there for summer holidays, Christmas or Easter. On

summertime visits, the grand piano of the house would be taken to the garden, and Fryderyk

would give concerts in the shade of firs and lindens. Zelazowa Wola now hosts concerts and

musical exhibitions, “Prezentacje Muzyczne”, by talented young piano players worldwide. The

conference banquet will enjoy Polish cuisine, which is most delicious and renowned in Europe

and the whole world, along with drinks and live piano music in the background.

Registration Fees

Member Non-member

Author (1)
Tutorial/

Workshop (2) Student Student

Early registration (until May 20th) 420 € 260 € 480 € 320 € 220 € 40 €

Late/on-site registration (after May 20th) 480 € 320 € 540 € 380 € 70 €

Single-day registration 270 €

(1) One author per presented paper (peer-reviewed/industrial) is entitled to the discounted author fee

(2) Access to the workshop is included in the full conference registration.

Conference Venue
The conference takes places in Warsaw, the capital city of Poland, itself at the heart of Europe, an apt location for

political, scientific, business and cultural events. Its modern architecture, user-friendly infrastructure and creative

inhabitants make Warsaw the beating heart of business. Behind the hustle and bustle of the business world, beats the

rhythm of city life. Try the varied delights of the city’s many restaurants, take a stroll along the banks of Vistula, or just

wander around and discover the fascinating reality of life in a modern European city. Warsaw is a city that wants

exploring. Constantly changing and modernizing, it rapidly becomes almost unrecognizable if you do not take time to

acquaint yourself with it. Yet, many aspects of its quirky character and cult places persist and just call for discovery.

Whether you are visiting Warsaw on business or for pleasure, the city offers everything you need to make your stay

here maximally enjoyable.

The conference venue is at the Engineering Design Center, partnership of General Electric and

the Institute of Aviation, one of Europe’s largest engineering institutions. Since its inception, the

Institute of Aviation has engaged in applied research in aeronautics and astronautics, achieving

significant results in the operation of

aircraft, helicopters, meteorological

rockets, engines and instrumentation. At

present, the Institute of Aviation continues

expanding its areas of research, to include CAD, new materials

testing, adaptation systems, micro-/nano-technology, alternative

energy sources, application of aviation technologies to medicine

and health protection and local transport. Poland’s membership in

the European Union has created major opportunities for

cooperation in all of these areas. The Institute of Aviation has

joined the European research area most successfully and looks

forward to working with you. Address: Institute of Aviation, Al.

Krakowska 110/114 St. 02-256 Warsaw. Location: 5XH2+G3

Warszawa.

Conference Hotel
The local organizers recommend the Warsaw Marriott Hotel and

have arranged with the hotel a special price for the dates around

the conference. Details on how to obtain the discount will be

provided as part of the registration process.

Sponsors

The conference is supported
and sponsored by

In Cooperation with:

http://www.sigplan.org/

34

Volume 38, Number 4, December 2017 Ada User Journal

Join Ada-Europe!

Become a member of Ada-Europe and support Ada-
related activities and the future development of the
Ada programming language.

Membership benefits include receiving the quarterly
Ada User Journal and a substantial discount when
registering for the annual Ada-Europe conference.

To apply for membership, visit our web page at

http://www.ada-europe.org/join

 35

Ada User Journal Volume 40, Number 1, March 2019

ConcertoFLA-based Multi-concern Assurance
for Space Systems
Zulqarnain Haider, Barbara Gallina
Mälardalen University, P.O. Box 883, SE- 721 23 Västerås, Sweden; zulqarnain.haider@mdh.se
barbara.gallina@mdh.se

Anna Carlsson
OHB Sweden, P.O. Box 1269, SE- 16429 Kista, Sweden; anna.carlsson@ohb-sweden.se

Silvia Mazzini, Stefano Puri
Intecs, Italy; silvia.mazzini@intecs.it stefano.puri@intecs.it

Abstract

Space systems often need to be engineered in
compliance with standards such as ECSS and need to
ensure a certain degree of dependability. Given the
multi-faceted nature of dependability (characterized
by a set of concerns), assuring dependability implies
multi-concern assurance, which requires the
modelling of various system characteristics and their
co-assessment and co-analysis, in order to enable the
management of trade-offs between them. CHESS is a
systems engineering methodology and an open source
toolset, which includes ConcertoFLA. ConcertoFLA
allows users (system architects and dependability
engineers) to decorate component-based architectural
models with dependability-related information,
execute Failure Logic Analysis (FLA) techniques, and
get the results back-propagated onto the original
model. In this paper, we present the customization of
the CHESS methodology and ConcertoFLA in the
context of the ECSS standards to enable architects
and dependability engineers to define a system and
perform dependability-centered co-analysis for
assuring the required non-functional properties of the
system according to ECSS requirements. The
proposed customization is then applied in the context
of spacecraft Attitude Control Systems engineering,
which is a part of satellite on-board software.

Keywords: Dependability analysis, Failure Logic
Analysis, Multi-concern, Dependability assurance,
ECSS standard series, CHESS toolset.

1 Introduction

Space systems such as satellites are often required to be
engineered according to the standards such as European
Cooperation for Space Standardization (ECSS) standards.
The ECSS standards address different aspects of space
project ranging from management, space system
engineering and qualification. Due to the critical nature of
the space systems, ECSS puts requirements on the
assurance of the product and its software systems. In
particular, ECSS has standards for software engineering

ECSS-E-ST-40C [1], the assurance of dependability of
product ECSS-Q-ST-30C [4], safety of product ECSS-Q-
ST-40C [5], assurance of software ECSS-Q-ST-80 [3] and
assurance of security of software ESSB-ST-E-008 [1]. To
fulfil the requirements of the standards and provide
assurance of dependability, safety and security, a
systematic approach for co-assessment and co-analysis
could have advantages on manifold. For example,
modelling of various system characteristics and their co-
assessment and co-analysis leads to reduction in cost as
well enable the management of trade-offs between these
properties.

CHESS [13] is a methodology and an open source
supporting toolset based upon Papyrus UML [23]. CHESS
is the result of several R&D projects, starting from the
original CHESS (Composition with Guarantees for High
integrity Embedded Software Components Assembly)
ARTEMIS JU project [9] and continuing with
CONCERTO (Guaranteed Component Assembly with
Round Trip Analysis for Energy Efficient High Integrity
Multicore Systems) ARTEMIS JU project [9], to provide a
model based solution to address the challenges of
developing critical real time and embedded systems, by
adopting a component based approach, across several
domains of interest, including space.

The CHESS Modelling Language (CHESSML), part of the
CHESS documentation [9], is based upon UML [22],
SysML [19], MARTE [20] and includes also SafeConcert
[14] as its base for the dependability profile. This profile
enables a support of decorating the component based
architectural models with dependability related
information. ConcertoFLA [6], which is a part of CHESS
toolset, utilizes the decorated components and calculates
the failure behaviour of the composed system, representing
the assembly of these components. The CHESS design
modelling capabilities along with the analysis capabilities
are well supportive and compliant with the ECSS standards
addressing product and software engineering and
assurance.

36 ConcertoFLA-Based Mult i -concern Assurance for Space Systems

Volume 40, Number 1, March 2019 Ada User Journal

In this paper, we extend our previous work [21] and we
customize the CHESS and ConcertoFLA methodologies in
the context of ECSS. The approach, resulting from the
customization, enables the co-analysis of reliability, safety
and security concerns. Such co-analysis has the potential to
contribute in the reduction of cost, complexity and in the
management of trade-offs as well as compliance with the
standards for qualification purposes.

2 Background

In this section, we describe the background concepts. In
particular, Section 2.1 provides the details of ECSS
standards. Section 2.2 describes the ConcertoFLA analysis
process.

2.1 European Cooperation for Space
Standardization (ECSS) standards
ECSS standards cover all the aspects of a space system
project spanning to the management of the project,
engineering space system and its qualification. Assurance
of different properties is an essential part of system
engineering. ECSS provides standards for assurance of
dependability, safety of the system and the software
product as well as security of software. ECSS- E-ST-40C
standard is focused on software part of the space system.
The standard covers all the phases of the development of
the software and puts requirements and principles for
software design. For the assurance of software, the standard
refers to the ECSS-Q-ST-80C.

Following are the ECSS standards related to the system and
the software product assurance, in particular assurance of
dependability, safety and security.

 ECSS-Q-ST-30C, defines the dependability
requirements on space product assurance. In ECSS
scope, the notion of dependability embraces reliability,
maintainability and availability. Unlike, the academic
dependability literature [12], where dependability also
includes safety and security. The standard puts
requirements over dependability analysis and states
“dependability analysis shall be conducted on all
levels of the space system and be performed in respect
of the level that is being assessed i.e., System,
Subsystem and Equipment levels”.

 ECSS-Q-ST-40C, defines the requirements on space
product assurance focused on Safety. The standard
requires that hazard analysis shall be conducted to
identify the hazards. Also, it states that “The fault tree
analysis shall be used to establish the systematic link
between the system level hazard and the contributing
hazardous events and subsystems, equipment or piece
part failure”.

 ESSB-ST-E-008, defines the requirements for secure
engineering of the space software product. The
standard is focused on the security of software product
and states that “The supplier shall perform a cyber-
security risk assessment of the software products in
order to determine the security sensitivity of the
individual software components”.

 ECSS-Q-ST-80C, lists the requirements for software
product assurance with emphasise on dependability
and safety. The standard state “The supplier shall
perform a software dependability and safety analysis
of the software products, in accordance with the
requirements of ECSS-Q-ST-30 and ECSS-Q-ST-40
and using the results of system level safety and
dependability analysis, in order to determine the
criticality of the individual software components”.

2.2 ConcertoFLA
ConcertoFLA is a tool-supported methodology for the
compositional calculation of the failure behaviour of
component-based systems, based on the failure behaviour
of individual components. The failure behaviour is
specified using an adaptation [8] in the CHESS context of
Failure Propagation Transform Calculus (FPTC) [7] rules.
Each FPTC rule defines the input/output behaviour of a
specific component using a combination of the port name
and the guide-word/failure mode. ConcertoFLA supports
three types of failure modes with two specializations for
each – the failure modes are value (coarse/subtle), timing
(early, late), provision (omission, commission). Using the
FPTC rules, four different behaviours of a component can
be defined, which are as following:

 Propagator, a component propagates the fault it
received on its input port to the output port without
changing the type of the fault.

 Transformer, component transform the fault received
on its input port into another type of the fault.

 Sink, component sinks the fault it receives on its input
port and produces no fault on its output port.

 Source, component is the source of the fault on its
output port and received no fault on its input port.

3 ECSS-compliant Multi-concern
assurance approach

As recalled in Section 2.1, ECSS standards require the
assurance and analysis of several non-functional properties
of the system. The CHESS methodology and
ConcertoFLA, recalled in Section 1, are customized for
performing multi-concern assurance, focusing on three
concerns, i.e., safety, security, and reliability. The overall
approach, resulting from the customization, consists of five
activities, as the activity diagrams, depicted in Figure 1,
shows. These activities are:

1. System design- The system architecture is specified
using CHESSML. First, all the components in isolation
are specified and then assembled.

2. Individual component failure behavior specification
using FPTC rules. As stated in Section 2.2, the failure
modes used are of high abstraction. The advantage of
this abstraction is the support for the assembly of
heterogeneous components e.g., developed in different
domains with different specialized terminology. In this
paper, the above-mentioned abstraction facilitates the

Z. Haider, B. Gal l ina, A. Car lsson, S. Mazzini , S. Pur i 37

Ada User Journal Volume 40, Number 1, March 2019

interpretation of the failure modes for different
concerns.

3. Behaviour injection and ConcertoFLA execution to
calculate the failure behavior at system level. The
analysis generates failure propagation paths, which
consist of the sequences of the possible events leading
to the system level failures, as a consequence of the
injected behavior (including fault(s) injection, i.e.,
failure(s) of preceding systems feeding the system
under analysis as well as normal behaviour to
potentially detect components acting as sources).

4. Interpretation (conducted manually) of the analysis
results for multi-concern e.g., reliability, safety and
security concerns. Next, a trade-off is calculated
between these properties. Base on the interpretation for
multi-concern and trade off, dependability means are
introduced by refactoring the system design, if the
certain level of dependability is not achieved.

Figure 1 Multi -concern assurance approach

4 Application of Approach to Attitude
Control System Engineering

In this section, first we describe the space system used for
illustration purposes, then, we apply our approach to it.

4.1 Attitude Control System (ACS)
The ACS of a satellite is an on-board subsystem that
controls the orientation of the satellite, relative to a
reference frame, in space. For projects developed for
European Space Agency (ESA), an ACS is normally
developed according to ECSS standards, therefore its
engineering is required to comply with the ECSS standards
and a certain level of dependability, safety and security of
software is assured. ACS engineering includes activities
spanning performance analysis, budgets, procurement and

dimensioning of sensors and actuators etc., along with the
ACS development. ACS development refers to the
development of ACS application software and its
associated algorithms.

The ACS (application) software takes sensor data
containing information about the current state of the
satellite and computes the control torque to be applied to
the satellite body in order to achieve its target state. To do
this, ACS has three functions i.e., process unit data, state
estimation and computation of the control torques to
minimize the difference between current and target state.
ACS has different operational modes, which involves
different devices and reflects the mission requirements. For
example, in Sun Acquisition and Survival Mode (SASM) it
is required to control the orientation of the satellite relative
to the Sun to ensure sufficient solar power to the system.
The SASM normally takes inputs from sun sensors and a
gyroscope to compute a torque that is applied to the
satellite body e.g. using propulsion thrusters.

4.1 Application
We apply our approach to the ACS in SASM mode. We
limit the scope of functions of ACS to the control function,
which maintains the target state in response to the
estimated state. The functional requirements of control
function in SASM mode are as following.

The sun acquisition control function shall compute and
output a control torque based on PD controller, gyroscopic
torque compensation and deadband filter in order to point
the satellite (its reference direction) at the Sun.

To design the system with above-mentioned requirement, a
component based model is defined using CHESS modelling
environment. Figure 2 shows the assembly of the following
four components implementing the SASM control function
requirement.

 PDController, computes the proportional and
derivative torque to orient the satellite relative to the
Sun.

 SteerController, computes the proportional torque
using different gains and control law.

 FeedforwController, compensates for the gyroscopic
coupling.

 TorqueSelector, selects the control torque based on the
current state of satellite via choosing between two
control strategy to enhance the performance and fast
convergence to the target orientation.

The next step, after system definition, is to model
dependability and perform ConcertoFLA analysis. In this
regard, we modelled the failure behaviour of components
as a propagator and injected the system with the failure of
type “value”. It has been assumed that the injected failure,
is due to the failure in state estimation unit of satellite and
refers to the “state estimator unit provides inaccurate value”
failure. Upon execution of ConcertoFLA analysis, the
failure propagation paths are generated providing the
failure behaviour at system level. To interpret the results

38 ConcertoFLA-Based Mult i -concern Assurance for Space Systems

Volume 40, Number 1, March 2019 Ada User Journal

for reliability, a fault tree can be constructed manually
following the failure propagation paths. The system level
failure, which refers to the “ACS computing inaccurate
torques” is due to the value failure at “ctrlTorque” output
port of ACS system. A partial manually constructed fault
tree is depicted in Figure 3. To interpret the results for
safety concern, the top event of the fault tree refers to a
hazardous event, which is the combination of system level
failure and the operational situation e.g., “ACS computing
inaccurate torques in SASM mode” leads to a catastrophic
consequences. To interpret the results for the security, the
top event of fault tree refers to a security threat which is
loss of one or more security properties i.e., confidentiality,
integrity and availability.

5 Conclusion and Future work

In this paper, we presented the customization of the CHESS
methodology and ConcertoFLA in the context of the ECSS
standards to enable architects and dependability engineers
to define a system and perform dependability-centered co-
analysis for assuring the required non-functional properties

of the system according to ECSS requirements. Then, we
applied our customization in the context of the Attitude
Control Systems engineering.

From that application it emerged that CHESSML is
appropriate to design the ACS in compliance with the
requirements of ECSS-E-ST-40C. More precisely, the
CHESSML based design complies with Section 5.4.3 of
that standard, which is focused on the software
architectural design and requires the component based
design. The analysis part of CHESSML i.e., ConcertoFLA
supported the requirements focused on the assurance of
software reliability, safety and security. Moreover, the
certifiable evidences could be manually constructed to
support the qualification process.

We also observed that the employment of CHESS toolset
supports the end to end process, where the functional
design, annotated with non-functional properties and
assurance support, could shorten the feedback loop for
mastering the improved design as well as reduces the
complexity.

In the future, we plan to provide tool support for the
manual interpretation and construction of evidences for
multi concerns. In this regard, our recent work [16]
automatically generates the fault tree for reliability from the
ConcertoFLA results.

Acknowledgements

This work is supported by the EU and VINNOVA via the E
CSEL project AMASS (No 692474) [17] [15].

References

[1] ECSS (2016), ESSB-ST-E-008 - Secure Software
Engineering Standard.

[2] ECSS (2009), ECSS-E-ST-40C, Space engineering –
Software.

[3] ECSS (2009), ECSS-Q-ST-80C, Space product
assurance - Software product assurance.

[4] ECSS (2009), ECSS-Q-ST-30C, Space product
assurance - Dependability.

[5] ECSS (2009), ECSS-Q-ST-40C, Space product
assurance - Safety.

[6] B. Gallina, E. Sefer, A. Refsdal (2014), Towards
Safety Risk Assessment of Socio-Technical Systems via
Failure Logic Analysis, IEEE International
Symposium on Software Reliability Engineering
Workshops, Naples, pp. 287-292.

[7] M. Wallace (2005), Modular architectural
representation and analysis of fault propagation and
transformation, Electronic Notes in Theoretical
Computer Science, volume 141 n.3, pp. 53-71.

[8] B. Gallina, M. A. Javed, F. UL Muram, S. A.
Punnekkat (2012), Model-Driven Dependability
Analysis Method for Component-Based Architectures,
38th Euromicro Conference on Software Engineering

Figure 2 Component based design of ACS

Figure 3 Manually constructed partial fault tree adapted
from [18]

Z. Haider, B. Gal l ina, A. Car lsson, S. Mazzini , S. Pur i 39

Ada User Journal Volume 40, Number 1, March 2019

and Advanced Applications (SEAA) Cesme, Izmir, pp.
233-240.

[9] CHESSML, https://www.polarsys.org/chess/start.html.

[10] ARTEMIS-JU-100022 – CHESS-Composition with
guarantees for High integrity Embedded Software
components assembly, http://www.chess-project.org.

[11] ARTEMIS-JU CONCERTO - Guaranteed Component
Assembly with Round Trip Analysis for Energy
Efficient High-integrity Multi-core systems,
http://www.concerto-project.org

[12] A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr
(2004), Basic concepts and taxonomy of dependable
and secure computing, in IEEE Trans. Dependable
Sec. Comput. 1(1): 11-33.

[13] S. Mazzini, J. Favaro, S. Puri, L. Baracchi (2016),
CHESS: an open source methodology and toolset for
the development of critical systems, Third Workshop
on Open Source Software for Model Driven
Engineering.

[14] L. Montecchi, B. Gallina (2017), SafeConcert: a
Metamodel for a Concerted Safety Modeling of Socio-
Technical Systems, 5th International Symposium on
Model-Based Safety and Assessment (IMBSA),
Trento, Italy.

[15] A. Ruiz, B. Gallina, J. L. de la Vara, S. Mazzini, H.
Espinoza (2016), Architecture-driven, Multi-concern

and Seamless Assurance and Certification of Cyber-
Physical Systems, Computer Safety, Reliability, and
Security, SAFECOMP, LNCS, vol. 9923, Springer.

[16] Z. Haider, B. Gallina and E. M. Zornoza (2018),
FLA2FT: Automatic generation of fault tree from
ConcertoFLA results, 3rd International Conference on
System Reliability and Safety (ICSRS), Barcelona.

[17] AMASS, http://www.amass-ecsel.eu

[18] B. Gallina, Z. Haider, A. Carlsson, Towards
generating ECSS compliant fault tree analysis results
via ConcertoFLA, IOP Conference Series: Materials
Science and Engineering.

[19] Object Management Group (2015), SysML v1.4
Specification Release, http://www.omgsysml.org/
specifications.htm

[20] Object Management Group, MARTE Specification,
www.omg.org/spec/MARTE/About-MARTE/

[21] B. Gallina, Z. Haider, A. Carlsson, S. Mazzini, S. Puri
(2018), Multi-concern Dependability-centered
Assurance for Space Systems via ConcertoFLA, 23rd
International Conference on Reliable Software
Technologies-Industrial Presentation Track (Ada-
Europe), Lisbon, Portugal.

[22] Object Management Group, Unified Modeling
Language, www.omg.org/spec/UML/2.5.1/.

[23] Papyrus, www.eclipse.org/papyrus/.

41

Concurrent Reactive Objects in Rust
Secure by Construction

Marcus Lindner, Jorge Aparicio, Per Lindgren
Luleå University of Technology, Sweden; email: {marcus.lindner@,jorapa-7@student.,per.lindgren@}ltu.se

Abstract

Embedded systems of the IoT era face the software de-
veloper with requirements on a mix of resource effi-
ciency, real-time, safety, and security properties. As
of today, C/C++ programming dominates the main-
stream of embedded development, which leaves ensur-
ing system wide properties mainly at the hands of the
programmer. We adopt a programming model and ac-
companying framework implementation that leverages
on the memory model, type system, and zero-cost ab-
stractions of the Rust language. Based on the outset
of reactivity, a software developer models a system in
terms of Concurrent Reactive Objects (CROs) hierar-
chically grouped into Concurrent Reactive Components
(CRCs) with communication captured in terms of time
constrained synchronous and asynchronous messages.
The developer declaratively defines the system, from
which a static system instance can be derived and ana-
lyzed. A system designed in the proposed CRC frame-
work has the outstanding properties of efficient, memory
safe, race-, and deadlock-free preemptive (single-core)
execution with predictable real-time properties. In this
paper, we further explore the Rust memory model and
the CRC framework towards systems being secure by
construction. In particular, we show that permissions
granted can be freely delegated without any risk of leak-
age outside the intended set of components. Moreover,
the model guarantees permissions to be authentic, i.e.,
neither manipulated nor faked. Finally, the model guar-
antees permissions to be temporal, i.e., never to outlive
the granted authority. We believe and argue that these
properties offer the fundamental primitives for building
secure by construction applications and demonstrate its
feasibility on a small case study, a wireless autonomous
system based on an ARM Cortex M3 target.

1 Introduction and motivation
Besides constraints set by the environment and the target plat-
form like available memory, CPU, and energy resources in
addition to other functional and extra-functional properties of
the application at hand, embedded software typically operates
autonomously with requirements on safety, robustness, relia-
bility, and security. Developers commonly design embedded
systems of the IoT era by taking the outset of a reactive model
implemented in C/C++ either as a bare metal interrupt driven

application or through the support of some threading library.
Meeting the aforementioned requirements is at a large up to
the programmer with little or no support for verification. Cen-
tral to correctness is the management of memory resources
with problems spanning from array indexing and dangling
pointers all the way to race conditions and deadlocks in the
concurrent setting.

In this paper, we take the outset from prior work on Concur-
rent Reactive Objects (CROs) [1] with a heritage to the Timber
language [2] and the Real-Time For the Masses (RTFM, [3])
set of experimental languages and tools. Whereas Timber
provides a high level modeling and implementation approach
offering state protection in the concurrent setting, the dy-
namic memory model requires automatic management which
precludes the deployment to lightweight targets.

With a clear motivation, we want to provide a programming
model that ensures memory safety in a concurrent setting
along with a concurrency model amenable to static analysis.
However, developing yet a new fully fledged language with
accompanying ecosystem is questionable when taking the
amount of work into consideration1. Instead, we seek to
leverage on ongoing community efforts around programming
languages and ecosystems.

Among recent developments, the Rust language stands out
with a memory model, which provides compile time mem-
ory safety and monomorphization, and has a tight coupling
to LLVM achieving zero-cost abstractions through link time
optimization. Sidestepping the compiler is explicit (unsafe)
and can be rejected in user code, thus allowing for fearless pro-
gramming to the end of memory safety and other properties
within reach of the Rust compiler. In the context of embedded
development, Rust applications on bare metal targets have
already been shown possible [4, 5].

In this paper, we further explore the Rust memory model
and the CRC framework towards systems being secure by
construction. In particular, we show the following properties.

• Granted permissions can be freely delegated without any
risk of leakage outside the intended set of components.
Key here is the static CRC topology, where communica-
tion paths are known at compile time, together with the
Rust language borrowing semantics.

1An observation here is that the design of any memory safe language
would need to take memory aliasing into account, a property directly given
by the Rust language.

Ada User Jour na l Vo lume 40, Number 1, March 2019

42 CRO in Rust - Secure by Const ruc t ion

• Permissions are guaranteed to be authentic, i.e., they can
neither be manipulated nor faked. Key here is the un-
derlying module system and type scoping together with
the memory safety provided by the Rust language. In
effect, preventing any intentional or accidental memory
corruption leads up to an unauthentic permission.

• Permissions are guaranteed to be temporal, i.e., they
can never outlive the granting authority. Key here is the
concept of lifetimes, which the Rust language brings and
the compiler enforces.

In conclusion, we believe and argue that these properties offer
the fundamental primitives for building secure by construc-
tion applications and demonstrate their feasibility on a small
case study, a wireless autonomous system based on an ARM
Cortex M3 target.

2 Background
The Rust memory model and the Stack Resource Policy (SRP)
based scheduling approach is at heart of the proposed frame-
work.

The ambition behind Rust is to provide a systems program-
ming language with memory safe zero-cost abstractions. In
Rust, mutability is first class, distinguishing between im-
mutable (&T) and mutable (&mut T) references with the
following invariant:

At any instance in time each value of T may be
mutably referenced once or immutably referenced
zero or arbitrarily many times.

In Figure 1, A and B denote two concurrent execution con-
texts while a, b, and c are references to a shared location or
resource T . The invariant applies to (1) the concurrent case
with accesses from a of context A and b/c of context B and
(2) the sequential case with accesses from b and c of context
B. For the concurrent case (1), the invariant ensures obvi-
ously race free access while for the sequential case (2), the
invariant may at first glance appear too restrictive. However,
the sequential restriction allows to spot and reject at compile
time memory related issues such as iterator invalidation (see
Section 4.9 in [6]). Moreover, the invariants are passed to the
compiler back-end (LLVM) as no alias attributes allowing
aggressive yet safe code optimization.

Ta
b
c

A B

Figure 1: Illustration of the Rust memory model.

Rust implements an affine type system and an ownership
model with the notion of lifetimes. The borrow checker and
lifetime analysis ensures memory consistency of safe code.

Any access to shared mutable data ultimately boils down to
explicitly stated unsafe code, out of reach for the Rust com-
piler to verify. Abstractions providing a safe API allow user

code to access shared mutable data. Thus, given that the ab-
stractions are sound (i.e., uphold the invariant), any program
passing compilation is memory safe by construction!2

2.0.1 Stack Resource Policy based scheduling
Stack Resource Policy (SRP) based scheduling offers a means
to preemptive scheduling of tasks with shared resources on
single-core processors [7]. The approach offers advantages in
terms of deadlock-free execution, efficient memory utilization,
single blocking, and so on and brings a plethora of readily
available methods for static analysis, see, e.g., [7, 8].

SRP builds upon static analysis of the task set T to derive the
ceiling value π(r) for each resource r. π(r) = max(p(t))
with t ∈ Tl(r), where p(t) is the priority of task t and Tl(r)
is the set of tasks that (may) access the resource r. During
execution, the (dynamic) system ceiling Π = max(π(r))
with r ∈ L, where L is the (global) set of currently held re-
sources. A task t ∈ T may preempt the currently running task
te only if p(t) > p(te), p(t) > Π, and p(t) = max(p(t′))
with t′ ∈ P , where P is the set of pending tasks.

Targeting lightweight MCUs, we can exploit the underlying
interrupt hardware to implement the system ceiling and per-
form static priority scheduling3in compliance to SRP, achiev-
ing performance on par with hand written bare metal code [3].

3 Model of computation
Component models are frequently used to capture the system
topology and to bring the benefit of re-use. Our system model
is declarative, defined in terms of nested Concurrent Reac-
tive Components (CRCs) with Concurrent Reactive Objects
(CROs) at the leafs. The system designer declares interaction
inside the model and with its environment in terms of time
constrained synchronous and asynchronous point-to-point
messages, where ultimately the end points are methods of
CRO leaf instances.

3.1 Execution semantics
The execution model builds on the notion of time constrained
messages defined as

M : {BL : Ti, dl : Ti, o : &O, f : (&O,D)→ R, d : D},

where Ti is a time type, BL specifies the absolute release
time, dl specifies the relative deadline, o indicates the target
object, f indicates the method to execute, and d is the payload
(i.e., the arguments for the receiver).

The execution of a message

E(m : M)→ R

returns with a value of typeR. Messages execute concurrently
under mutual exclusion on the object state (o) (similar to
Ada’s protected objects or Java’s synchronized methods) and
run-to-completion within their eligible timing window for any
correctly scheduled system.

2Memory safety can in most cases be statically ensured. If not, a run-time
monitor is injected to emit a panic! on a memory violation. Stack memory
allocation errors (overruns) are assumed to be treated at the run-time system
level.

3Eligible tasks with the same priority are scheduled in static order. While
preserving invariants for correctness, we must take this into consideration
during the response time analysis.

Volume 40, Number 1, March 2019 Ada User Jour na l

M. Lindner, J. Apar ic io, P. L indgren 43

3.2 Timing semantics

The absolute release time BL along with the absolute dead-
line DL = BL + dl define the eligible timing window for
the execution of a message m. The execution E(m : M) of a
message m may emit additional synchronous messages

Sync(o′ : &O′, f ′ : (&O′, D′), d′ : D′)→ m′ : M,

which result in messages

m′ = M{BL = m.BL, dl = m.dl, o = o′, f = f ′, d = d′}

that inherit the sender’s timing window. The synchronous
execution E(m′ : M)→ r : R blocks the sender and returns
the value r.

Similarly, the sender may emit asynchronous messages with
a relative release time bl′′

Async(bl′′ : Ti, dl′′ : Ti, o′′ : &O′′, f ′′ : (&O′′, D′′),

d′′ : D′′)→ m′′ : M,

which result in messages

m′′ = M{BL = m.BL+ bl′′, dl = dl′′,

o = o′′, f = f ′′, d = d′′}

with a timing window relative to the sender’s (E(m : M))
timing window. Emitting an asynchronous message m′′

amounts to queuing the message for later execution. The
emission of an asynchronous message returns a reference to
that message, which allows the cancellation of the message
as long as its execution is not yet scheduled4.

3.3 Discussion

The CRO model resembles actor models in that the execution
of asynchronous messages is decoupled from the sender. How-
ever, the notion of synchronous communication is usually not
found in actor models, while here supported with resemblance
to monitors and protected objects. Messages execute under
mutual exclusion on the corresponding object (resource). This
not only allows race-free execution by construction but also
ensures sequential behavior of operations holding a resource.
This is instrumental to control the order of side effects not
only on object states but also for communication, i.e., syn-
chronous calling of other objects and communication with
the environment. Asynchronous messages are the units of
concurrency with the execution semantics precisely defined
by their resource dependencies, where mutual exclusion is
the sole (necessary and sufficient) means to synchronization.

In this paper, we target lightweight MCUs and adopt an SRP
based scheduling approach, where the asynchronous mes-
sages constitute SRP tasks and objects amount to (shared)
SRP resources.

At the border of the system, we find the environment, which
drives our reactive model, represented as event or message

4We have not yet implemented this feature in the prototype Rust frame-
work.

sources. Internal events and actions become observable only
at the point where communication involves the environment.
In the setting of embedded targets, the environment is typ-
ically represented by the hardware peripherals, where the
interrupt handlers are our event or message sources. This can
be generalized to APIs of external code and hosted environ-
ments [9], where the underlying operating system schedules
our tasks on top of its thread model and the external code
emits messages or events.

To facilitate re-use and to manage complexity, the model
provides a hierarchical component based abstraction. The
declarative definition allows us to statically analyze the topol-
ogy of the system and derive a flat system instance without
the need of dynamic bindings. As we show in the remain-
der of the paper, the CRC/CRO model can be implemented
efficiently using zero-cost abstractions of the Rust language
and rendering executables that perform on par with carefully
designed bare-metal code.

4 LED runner example
Figure 2 depicts a CRC system, which autonomously controls
the RGB values of an LED array. At the highest level, the
system consists of two components, the USART CRO and
the LED CRC wrapping the STM state machine and the DMA
CROs. The USART receives and parses the serial stream and
controls the LED component. The DMA CRO sends a frame
of data to the LED array utilizing the DMA hardware. The
STM CRO triggers on behalf of the periodically executing
transition method the on_update method, which gen-
erates the frame content. The on_command method controls
the behavior of the state machine, i.e., the direction and speed
of the running lights. The transition method emits an
asynchronous message with a baseline offset to postpone
the release of the message, which implements the periodic
behavior.

5 CRC framework
With the CRC framework, a developer specifies the system
topology in terms of CROs and CRCs through .cro and
.crc files, respectively. The developer provides the behavior
of the CROs in form of standard Rust code, i.e., .rs files.

A build script (build.rs) is the Rust mechanism for code
generation before compilation. Our framework uses a build
script to analyze the system model, transform .cro and
.crc files into actual Rust code, and inject it into the compi-
lation process.

A .cro file for each CRO stores its specification. List-
ing 1 shows the definition of the USART CRO. The file spec-
ifies port signatures (signature) with Rust syntax. Each
input port enumerates internal connections to output ports
(sync_ports/async_ports) and peripheral dependen-
cies (peripherals).

A .crc file for each CRC stores its specification. Listing 2
shows the main wrapping CRC of our example system. A
CRC consists of CRO and other CRC instances, referred to

Ada User Jour na l Vo lume 40, Number 1, March 2019

44 CRO in Rust - Secure by Const ruc t ion

main: main

USART: usart

LED: led

DMA: dma_controller
STM: state_machine

receive
fn() send_command

fn(:: util :: Command)

USART1

on_command

on_update
fn([:: util :: Rgb ; 24]) DMA1

TIM2

on_command
fn(:: util :: Command)

transition
fn() update

fn([:: util :: Rgb ; 24])
before 80000

next
fn()after 80000, before 80000

USART1 before 696

Figure 2: The LED runner CRC system autonomously controls the RGB values of an LED array. Synchronous messages are marked
black and asynchronous messages are marked red for environmental messages and blue for internal messages.

1 inputs: {
2 receive: {
3 signature: fn(),
4 sync_ports: [send_command],
5 peripherals: [USART1],
6 },
7 },
8

9 outputs: {
10 send_command: fn(::util::Command),
11 }

Listing 1: File usart.cro (template).

as components. The .crc file specifies incoming and out-
going connections to each component on a per-component
basis. Finally, the CRC itself has input and output ports. The
analysis stage of the framework derives these ports from the
connections information in the file. If a port specifies no
component, it is a CRC port. The interrupts field defines
the interrupt sources of the CRC and according component
connections. The available field contains a list of addi-
tional interrupt sources that may be used to dispatch async
messages while device indicates the crate (i.e., library)
holding the peripheral API.

Our framework derives a system instance by spanning the top
level CRC5.

Using our CRC framework, a user implements the CRO ap-
plication logic in safe Rust code. Listing 3 partly shows the
state machine implementation of our example system.

A State struct represents the state of the CRO and defines
input ports as methods on the struct. The new constructor
initializes the state of the CRO, which the compiler evaluates
at compile time (due to the const context).

The exact signature of each input port varies according to
its .cro file specification. Input port methods can have as
arguments a mixture of:

1. The port input (i.e., message payloads),

2. A set of output ports both synchronous and asyn-
chronous, and

3. A set of peripherals.

The Ports struct provides the output ports, which are essen-
tially normal Rust functions (see lines 19 and 23 in Listing 3).

5Currently, our framework allows available and device fields only
in the top level CRC, but we will remove this restriction in the future to allow
cross crate component re-use.

1 components: {
2 USART: {
3 template: usart,
4 connections: [
5 self.send_command
6 -> LED.on_command,
7],
8 },
9

10 LED: {
11 template: led,
12 },
13

14 },
15

16 interrupts: {
17 USART1: {
18 connects_to: USART.receive,
19 before: 696, // 87 us
20 },
21

22 available: [EXTI0],
23 },
24

25 device: stm32f103xx,

Listing 2: File main.crc.

1 use util::{Command, Direction, Rgb};
2 cro!(); // include auto generated code
3

4 pub struct State {
5 active: bool,
6 rgb: [Rgb; 24],
7 ...
8 }
9

10 impl State {
11 pub const fn new() -> Self {
12 State { active: false, ... }
13 }
14

15 pub fn transition(
16 &mut self,
17 port: self::transition::Ports,
18) {
19 (port.async.next)();
20

21 if self.active {
22 ...
23 (port.async.update)(self.rgb);
24 ...

Listing 3: File state_machine.rs (abridged).

Volume 40, Number 1, March 2019 Ada User Jour na l

M. Lindner, J. Apar ic io, P. L indgren 45

1 // root of the crate
2 extern crate stm32f103xx; // target device
3 extern crate blue_pill; // development board
4

5 crc!(); // indicates that it is a CRC system

Listing 4: File main.rs.

1 use stm32f103xx;
2 use blue_pill::{Channel, Pwm};
3 cro!();
4

5 pub struct State {
6 buffer: ...,
7 }
8

9 impl State {
10 ...
11

12 pub fn on_update(
13 &mut self,
14 rgb: [Rgb; 24],
15 p: self::on_update::Peripherals,
16) {
17 p.DMA1.claim(|dma1| {
18 p.TIM2.claim(|tim2| {
19 let pwm = Pwm(tim2);
20 pwm.set_duties(
21 dma1,
22 Channel::_1,
23 &self.buffer
24).unwrap();
25 });
26 ...
27 });
28 }
29 }

Listing 5: File dma_controller.rs.

The root of the crate (see file main.rs in Listing 4) lists
all library dependencies and indicates with a crc!() macro
call that this is a CRC system.

5.1 Implementation
5.1.1 Peripherals

We opted to implement access to peripherals as structs with
interior mutability. Thus, mutation of the registers is possible
through shared (&T) references. The svd2rust [10] tool
automatically generates a register-level API for peripherals
from vendor based SVD files. CROs can access peripherals
as if they were resources using a claim method and passing
a closure. Nested closures allow the access to multiple periph-
erals (see lines 17-25 in Listing 5). Internally, the peripheral
APIs use volatile read/write operations.

5.1.2 Analysis

The build script collects all .cro and .crc files, parses
them, and combines them into a system model sys or rejects
ill-formed models (see Section 7.1).

During the analysis stage, we derive for the SRP scheduling
the task priorities (i.e., interrupt priorities) from the given

timing constraints and the resource ceilings from the task
priorities [7, 9].

5.2 Code generation

If sys is well-formed, the build script proceeds to generate
Rust code required for run-time execution.

5.2.1 CROs

For each CRO, our framework generates a Rust file with the
definition of the Ports and Peripherals structs. The
cro! macro injects this file into the compilation process,
which allows the Rus compiler (rustc) to reject user code
that mismatches port signatures specified in the corresponding
.cro file.

5.2.2 Top level CRC

Our framework generates a Rust file for the whole system that
contains the full application logic. The crc! macro injects
this file into the compilation process.

This file contains a module for each CRO instance in the
system, which statically allocates a State struct per CRO
instance. The code in the system file also optimizes connec-
tions by refining synchronous messages to function calls and
asynchronous messages to enqueue operations.

Synchronous messages: For every CRO instance, our
framework generates a proxy function for each input port.
The signature of this proxy matches the signature entered by
the user in the .cro file. Instantiating the Ports struct of a
sending CRO with the proxy that matches an actual connec-
tion to a receiving CRO expresses the connection between the
two CRO instances.

Asynchronous messages: An asynchronous message de-
fers the invocation of the input port (i.e., the object method)
by storing the input data and the input port function pointer
in a queue. An interrupt handler executes asynchronous mes-
sages at a later time. The message struct holds a next field
forming an in place linked list. In order to store differently
typed objects because asynchronous messages differ in the
payload field type, we enforce a static layout of all message
types (#[repr(C)]) ensuring the next field to have a
known offset.

6 Security
Embedded systems often access and process sensitive data.
For this reason, security is an important factor that may not
be disregarded when designing and developing embedded
software. Ravi et al. [11] argue it is wrong to establish se-
curity by solely adding features like encryption to a system.
Instead, we have to take all aspects of embedded system de-
sign into account together with existing resource constraints,
e.g., performance and power limitations.

In the context of lightweight embedded systems, resource
constraints come into play, thus memory and CPU efficiency

Ada User Jour na l Vo lume 40, Number 1, March 2019

46 CRO in Rust - Secure by Const ruc t ion

1 mod trusted {
2 pub struct Auth {
3 level: u8,
4 }
5

6 pub fn auth(k: &str) -> Option<&Auth> {
7 if k == "abc" {
8 Some(&Auth { level: 1 })
9 } else {

10 None
11 }
12 }
13 ...

Listing 6: File trusted_base.rs (abridged).

become an issue. The emerging security enabled microcon-
trollers exemplify this. They range from hardware AES en-
cryption like the ARM Cortex-M3 based stm32l162vc to
more elaborate solutions like the Cortex-M4 based CEC1702
offering hardware encryption, authentication, and public key
capabilities. Hardware cryptographic ciphering may offer
speedup and increase energy savings by orders of magnitude
over software solutions. Moreover, pre-boot authentication
of system firmware offering a root of trust, firmware update
authentication, authentication of system critical commands,
and protection of secrets with encryption improves system
integrity.

In this paper, we focus on software in security mechanisms
from the outset of the platform agnostic CRC framework and
leverage properties of the Rust language to establish security
mechanisms, which are guaranteed by the Rust semantics and
statically ensured by the Rust compiler. While being comple-
mentary to security mechanisms offered by the underlying
hardware, we argue that a higher degree of trust and reliability
can be achieved by also offering compile time guarantees to
the embedded software.

6.1 Authentication and authorization

At device level, we are concerned with the permissions to
access data and perform operations. The trusted base has
the authority to grant such device level permissions based on
a-priory knowledge or external authentication. For this pre-
sentation, we focus on device level authorization mechanisms
and discuss system level authorization as future work.

The notion of opaque structures in the Rust language allows
us to define data types that a user can neither construct, nor
inspect, nor manipulate, merely pass on as parameters. This
perfectly fits the need and purpose of device level authoriza-
tion, where the trusted base grants permission to the user.

Listing 6 demonstrates an implementation of an authorization
ticket providing a range u8 of permission levels. Note, the
Auth structure is public but its level data field is private
to the module, i.e., code from other modules can hold a ref-
erence to an Auth structure but not create it or access the
containing data. Therefore, the public auth function returns
an authorization ticket in case the input matches the defined
a-priory knowledge (here "abc").

1 // user code in ‘safe‘ Rust
2 fn user1(d: &Sec<u32>, e: &Enc<u32>) {
3 let a = auth("abc").unwrap();
4 user2(&sec_add_u32(d, &e.get(a)));
5 user3(d, &e.get(a));
6 user4(d, e, a);
7 }

Listing 7: File user1.rs.

By default, structs in Rust do not implement the Copy
trait, thus user code cannot duplicate the ticket but a reference
thereof. Moreover, tickets are temporal with a lifetime limited
to the sequential execution context of the call to the granting
authority. This follows from the Rust lifetime semantics.

Listing 7 depicts user code written in “safe” Rust. The user
requests authorization in line 3 and uses the given permission
a locally in lines 4 and 5. In line 6, the user passes the
permission ticket on to another user function. For brevity,
the example illustrates the concept with plain Rust code but
permission delegation is also possible through synchronous
messages. However, asynchronous messages cannot store the
received ticket due to the lifetime bound and consequently
the temporal property of the authorization holds.

6.2 Secure data container

Dealing with sensitive data sets a number of restrictions and
requirements regarding integrity, use, and visibility. Specifi-
cally, integrity restricts primitive operations on sensitive data
to be limited to the trusted base, an authority limits the use of
sensitive data, and the designers intention limits its visibility.
Also to this end, we can ensure the desired behavior through
an opaque representation of secure data.

Listing 8 demonstrates an implementation of a generic (i.e.,
polymorphic to the type T) secure data container Sec<T>.
Only the trusted base code can instantiate and delegate this
type. The function sec_add_u32 (lines 18 to 20) exempli-
fies how to declare primitive operations on arbitrary instances
of secure data containers in the trusted base. While the func-
tion internally uses unsafe code, the API is safe, i.e., safe
Rust code can call the function6. Notice here, user code has
never access to the inner secure data or can disclose it because
the return type is also a secure data container Sec<u32>.

6.3 Encryption and decryption

While cryptography as such is not the focus of this work, we
discuss the topic from the framework perspective and high-
light outsets for efficient, reliable, and secure management of
sensitive information. To this end, we leverage on the Rust
language zero-cost abstractions and type system with static
guarantees offered by the compiler.

6An alternative to unsafe is to use the pub(crate) modifier and use
visibility as a fence for usage violations.

Volume 40, Number 1, March 2019 Ada User Jour na l

M. Lindner, J. Apar ic io, P. L indgren 47

1 ...
2 // opaque representation of secure data
3 #[derive(Debug)]
4 pub struct Sec<T> {
5 data: T,
6 }
7

8 impl<T> Sec<T> {
9 pub unsafe fn new(d: T) -> Self {

10 Sec { data: d }
11 }
12 pub unsafe fn get(&self) -> &T {
13 &self.data
14 }
15 }
16

17 // safe API for operating on Sec<u32>
18 pub fn sec_add_u32(s1: &Sec<u32>,
19 s2: &Sec<u32>)
20 -> Sec<u32> {
21 unsafe { Sec::new(s1.get() + s2.get()) }
22 }
23 ...

Listing 8: File trusted_base.rs (continued).

1 ...
2 // in place transformation
3 // by a cipher closure f
4 fn cipher<T, F>(s: &mut T, mut f: F)
5 where
6 T: Sized,
7 F: FnMut(&mut u8),
8 {
9 let ptr = s as *mut T as *mut u8;

10 for i in 0..size_of::<T>() {
11 f(unsafe {
12 &mut *ptr.offset(i as isize)
13 });
14 }
15 }
16 ...

Listing 9: File trusted_base.rs (continued).

6.3.1 Cipher

A fully fledged cryptography crate (rust-crypto = "0.2.36")
is readily available providing implementations for popular
ciphers (AES, RC4, and others). While strong encryption by
software is likely resource consuming and may thus be out
of range for light-weight targets, a microcontroller may defer
the actual encryption and decryption to a capable encryption
hardware if supported by the target.

To the purpose of this presentation, Listing 9 demonstrates
an in place transformation of raw data. The generic function
cipher<T, F> iterates the closure f:F over the byte array
representation of the data s and transforms it. With a suitable
cipher closure f, the function encrypts or decrypts the data.

6.3.2 Encrypted data container

As we have already seen in Section 6.1, authorization tickets
are secure against faking and manipulation in user code. We
can use this approach to delegate secure information keyed

1 ...
2 // opaque representation of
3 // encrypted data
4 pub struct Enc<T> {
5 data: T,
6 }
7

8 impl<T> Enc<T>
9 where

10 T: Copy,
11 {
12 pub unsafe fn new(d: &T) -> Self {
13 let mut c = d.clone();
14 cipher(&mut c, |i| { *i += 1; });
15 Enc { data: c }
16 }
17

18 pub unsafe fn get_unsafe(&self)
19 -> Sec<T> {
20 let mut c = self.data.clone();
21 cipher(&mut c, |i| { *i -= 1; });
22 Sec::new(c)
23 }
24

25 pub fn get(&self, _: &Auth)
26 -> Sec<T> {
27 unsafe { self.get_unsafe() }
28 }
29 }
30 }

Listing 10: File trusted_base.rs (end).

with an authorization ticket. Also here, we take the outset of
an opaque type definition7.

Listing 10 demonstrates an implementation of a generic en-
crypted data container Enc<T>. The signature of the new
constructor specifies the unsafe modifier, and as a conse-
quence, solely the trusted base code can call the function and
create a new encrypted data container. When calling new, the
constructor applies the cipher function to a copy of the data
(lines 13 and 14) and returns the encrypted data in an Enc<T>
container (line 15). The closure |i| { *i += 1; } (line
14) increments each byte of the data by 1, which essentially
is the classical Caesar cipher [12]. User code has access to a
safe API function (get(...) in lines 25 to 28), which inter-
nally uses an unsafe function to return a Sec<T> secure
container that holds the decrypted information.

6.4 Example

Listing 11 demonstrates the application of our proposed secu-
rity system. The trusted base instantiates a secure container
Sec<u32> (line 3) and an encrypted container End<u32>
(line 4) Following this, it calls the user code function user1
and passes on references to the containers (line 5). The user
code is free to delegate the references but has never access
to the actual content of the containers. Note also, the autho-
rization ticket a is temporal with a lifetime limited to the
sequential execution context of user1, even when delegated
to user4.

7While we can indeed allow the user to read encrypted data, we do not
want the user to create or manipulate encrypted data outside the control of
the trusted base.

Ada User Jour na l Vo lume 40, Number 1, March 2019

48 CRO in Rust - Secure by Const ruc t ion

1 // inside trusted base
2 fn main() {
3 let d = unsafe { Sec::new(10u32) };
4 let e = unsafe { Enc::new(&32u32) };
5 user1(&d, &e);
6 }
7

8 // user code in ‘safe‘ Rust
9 fn user1(d: &Sec<u32>, e: &Enc<u32>) {

10 let a = auth("abc").unwrap();
11 user2(&sec_add_u32(d, &e.get(a)));
12 user3(d, &e.get(a));
13 user4(d, e, a);
14 user5(d, e);
15 }
16

17 fn user2(d: &Sec<u32>) {...}
18

19 fn user3(d1: &Sec<u32>, d2: &Sec<u32>) {
20 let d = sec_add_u32(d1, d2));
21 ...
22 }
23

24 fn user4(d: &Sec<u32>, e: &Enc<u32>,
25 a: &Auth) {
26 let d = sec_add_u32(d, &e.get(a)));
27 ...
28 }
29

30 fn user5(d: &Sec<u32>, e: &Enc<u32>) {...}

Listing 11: File example.rs.

1 ...
2 impl<T> !Send for Sec<T> {}
3 ...

Listing 12: File trusted_base.rs.

6.5 Discussion

Our intention here is not to provide a fully fledged security
framework but rather to demonstrate that security by con-
struction is indeed feasible with our approach. The reader
may notice that unwrapping encrypted information stores the
decrypted data in plain form. This is perfectly secure from
the perspective of the embedded software as the plain data
is still wrapped in a secure container Sec<T> and thus not
directly exposed to the user code. However, side channel
attacks may exploit plain (decrypted) data that is stored in
persistent memory.

With the proposed design, we allow persistent storage of
decrypted data beyond the lifetime of the authorization ticket.
I.e., a CRC component may store a Sec<T> container in its
state when using a delegated authentication ticket to unwrap
data from an encrypted container. If we want to ensure that
this cannot happen, we need to apply only a small change to
the trusted base (see Listing 12).

By default, Rust structs are Send, but we may override the
default implementation and explicitly declare Sec<T> not
to be Send. CRO states require Send and consequently
the Rust compiler rejects all attempts to store a Sec<T>

(e.g., e.get(a)) at compile time. The same applies to
asynchronous messages, and thus when using this approach,
decrypted data cannot live longer than the authorization ticket.

Looking further at Listing 8, we find that the sec_add_u32
function operates on the Sec<T> type and requires encrypted
data to be decrypted before passing on. With trait objects in
Rust, we could implement sec_add_u32 for any type that
allows access to T with an additional Auth parameter. The
advantage is that the decryption only takes place at the instant
of the function execution and limits the exposure to side chan-
nel attacks. However, a drawback is the increased complexity
and the impeded ability for the compiler to generate zero-cost
abstractions, because the Rust compiler introduces dynamic
dispatch only for trait objects.

Another possible extension is to associate each CRC compo-
nent with an authorization level. This allows us to statically
differentiate between partitions of the system at design time
and give a base authorization that can be temporarily raised.
Moreover, we may associate each Sec<T>/Enc<T> with an
Auth level providing precise control over the data access.
Note, secure software implementations do not require any
of these extensions, they just provide additional means to
manage granularity.

In the setting of mixed critical systems, our framework allows
design time analysis of security aspects. The topology of the
system statically defines the delegation of authorization, and
thus our framework effectively mitigates the need for run-time
monitoring of security breaches. In effect, we can fearlessly
introduce untrusted code for low critical subsystems with
jeopardizing neither system safety nor security.

6.6 Comparison to C/C++

We exploit the borrow semantics, the lifetime semantics, and
the possibility to prohibit the execution of unsafe user code
in Rust programs to establish a statically verifiable security
architecture. Following our approach, the Rust compiler en-
sures in a system built on such a proposed trusted base that no
stealing (borrow semantics) or faking (no unsafe user code)
of authorization can occur as well as an authorization has
a guaranteed temporal validity with well-defined life span
(lifetime semantics).

When it comes to the system level languages C/C++, there
is no concept like borrow semantics. Memory can freely be
aliased because the compiler is not rejecting multiple refer-
ences to the same memory location. In effect, it is impossible
for the compiler to statically deduce a lifetime for a memory
location and thus eventually drop the reference and free the
memory. In contrast to Rust, where we utilize the lifetime
semantics for a guaranteed temporal validity of authorization
tokens, this is not possible in plain C/C++. On the other hand,
the C++ Standard Library includes smart pointers with the
special pointer type unique_ptr. It essentially provides
the same functionality as the Rust ownership model and sup-
ports the RAII (Resource Acquisition Is Initialization, [13])
programming principle. Such pointers indicate unique own-
ership of the memory they reference to and the memory is

Volume 40, Number 1, March 2019 Ada User Jour na l

M. Lindner, J. Apar ic io, P. L indgren 49

automatically freed when the pointer goes out of scope. How-
ever, the big difference to Rust is the validation point. While
Rust incorporates the ownership model into the language, it
can be statically verified during compilation. On violation,
smart pointers in C++ cause a run-time error.

C/C++ does not support the segmentation of code into safe
and unsafe partitions. We utilize this functionality of Rust to
assure at compile time that no user code is able to generate,
copy, or store authorization tokens. In C/C++, the same as-
surance can only be achieved by either applying static code
analysis (e.g., formal methods) or verifying the authenticity
of all authorization tokens by the trusted base on each usage
during run-time. But the run-time token verification gener-
ates computational overhead and requires to carry additional
information along with an authorization token, e.g., a private
key signature of the token from the trusted base.

7 Memory safety of the Rust CRC
framework

The pillar of the Rust memory model is avoiding mutable
aliasing (referred to as the invariant in the following). As we
provide a safe API, user code does not contain any unsafe
fragments, and hence the rustc compiler grants memory
safety. CRO connections, which the build script generates
with unsafe code, are outside the knowledge of the com-
piler. Consequently, we have to ensure that the unsafe
fragments preserve the invariant.

7.1 Synchronous messages
Each method receives a &mut self, a mutable reference
to its state. Any synchronous message chain, for which an
object o appears more than once, generates a mutable alias
to the state of o and hence the build script has to reject it at
compile time.

7.2 Asynchronous messages
The current implementation statically allocates a single el-
ement buffer for each asynchronous connection per CRO
instance. A static mutable variable, which is hidden from the
user, passes the message payload by value. A data race may
occur if the sender (writer) preempts the dispatcher (reader).
We handle this case by panicking the sender. An alternative
option is to use an SRP resource for the buffer that ensures
race free access8.

7.3 Peripheral access
Let us assume a system with two objectsA andB, which have
access to the same peripheral P and a connection between
output port op of object A and input port ip of object B. Let
us further assume the method associated to the input port ip of
object B claims the peripheral P . If in this system a method
of object A claims the peripheral P and sends a synchronous
message within this claim block through the output port op
to the input port ip, we end up aliasing the reference to the
register block of P . This is, however, not a problem because
a claim returns an immutable reference (&T) to the register
block, which upholds the invariant.

8However, this does not prevent a message payload to be overwritten
before it has been dispatched. Therefore, further system wide timing analysis
and potentially larger buffers are required.

7.4 Leaking of references

Passing data by reference in Rust is memory safe by con-
struction. The borrow checker, one of the rustc compiler
passes, is in charge of rejecting the use of invalid references
at compile time It does this by tracking the lifetime of each
memory location. In Rust, lifetime refers to the lexical scope
for which access to a memory location is valid. The spe-
cial lifetime identifier ’static indicates in Rust that the
memory location is valid for the entire program.

In our CRC framework, it is possible to pass data by refer-
ence in a synchronous message but not in an asynchronous
message. The compiler can trace the lifetime of data across
synchronous messages because they run in the same execution
context. On the other hand, asynchronous messages run in
different execution contexts. Semantically, a reference passed
in an asynchronous message has to be valid for the span of
both execution contexts. This cannot be verified at compile
time and thus the compiler rejects it.

7.4.1 Leaking of peripherals

Peripherals provide a claim interface, which grants access
to the peripheral register block only within the closure passed
to it. The borrow checker does not allow references to escape
from the closure.

7.4.2 Leaking through static variables

The Rust compiler prohibits to pass references between ob-
jects outside the message passing mechanism of the CRC
framework. Such an operation requires to store the reference
in a global (i.e., static mut) variable and load it from
there. The compiler rejects this because static variables con
only store values with ’static lifetime and references to
values with ’static lifetime. E.g., the compiler rejects
to store a reference to a stack allocated variable in a static
variable. Apart from the lifetime problem, it is also unsafe
to read, write, or modify static mut variables because
the accesses to them are not synchronized. In conclusion,
our CRC framework upholds the Rust memory invariants
if we reject systems with synchronous message cycles (see
Section 7.1) and ensure race-free execution with SRP [9].

8 Demonstration and performance
analysis

For the design and measurements in this section, we used
a Cortex-M3 microcontroller on a Blue Pill development
board [14] running at 8 MHz and with zero memory wait
states. Figure 2 depicts the example system implementation
utilizing our proposed framework and Figure 3 illustrates the
toolchain of our CRC framework.

Ada User Jour na l Vo lume 40, Number 1, March 2019

50 CRO in Rust - Secure by Const ruc t ion

main: main

USART: usart

LED: led

STM: state_machine DMA: dma_controller

receive
fn() send_command

fn(:: util :: Command)

USART1

on_command

transition
fn()

next
fn()after 80000, before 100

update
fn([:: util :: Rgb ; 24])

before 100

on_command
fn(:: util :: Command)

on_update
fn([:: util :: Rgb ; 24])

DMA1

TIM2

USART1 before 10

usart.rs dma.rsstm.rs main.rs

CRC model

User files

Libraries

stm32f103xx crccortex-m

 build.rs
usart dmastm

Generated files

rustc
LLVM

ld
elf

sys

core

Figure 3: The build.rs build script is at heart of our tool-
chain. It analyzes the CRC/CRO model and generates the port
binding proxies and system configuration, i.e., the statically allo-
cated state and message memory. The user files that implement
the CRO application logic contain no unsafe code. Among de-
pendencies, the crc library contains the hardware related re-
source protection and scheduling primitives. rustc and LLVM
compile all files and libraries for the binutils-ld linker to
build a monolithic elf binary.

1 pub unsafe fn claim<R, F>(
2 nvic_prio_bits: u8,
3 ceiling: u8, f: F) -> R
4 where
5 F: FnOnce() -> R,
6 {
7 let max_priority = 1 << nvic_prio_bits;
8 let old = basepri::read();
9 let hw = (max_priority - ceiling)

10 << (8 - nvic_prio_bits);
11 basepri_max::write(hw); // sys ceiling
12 let r = f();
13 basepri::write(old);
14 r
15 }

Listing 13: Resource protection with claim.

8.1 Characterization of overhead
In order to characterize the overhead, we performed a set of
clock cycle accurate measurements with a 100% repeatability
between runs. For all measurements, we compiled the code
in -release mode.

The claim interface, as depicted in Listing 13, has an over-
head of 4 clock cycles (call to return). We also observed this
overhead when invoking object methods because the system
applies the same claim mechanism to prevent data races
on the object state. Our implementation of claim closely
follows [3] and enforces compiler barriers around the critical
section.

Synchronous messages are plain function calls, which allow
to inline the code. In many cases, rustc opts to inline and
eliminate the overhead of a function call. It also enables
further optimization because it gives the compiler more local
information about the behavior of the program.

Enqueuing an asynchronous message takes 20 clock cycles
plus the time required to copy the message payload from the
stack into a statically allocated buffer.

Dispatching asynchronous messages has a per message over-
head of 26 clock cycles plus the time required to copy the

message payload from a statically allocated buffer back into
the stack.

The interrupt latency (11 clock cycles) plus the proxy over-
head claiming the target object and entering the user code
(3 clock cycles) determines the external event latency. It
amounts on an 8 MHz MCU to 1.75us.

The model offers a plethora of methods for response time
analysis, taking into consideration preemption and blocking
[7] as well as offsets [8]. Scheduling and resource protection
overhead is O(1), i.e., free of run-time dependencies. Hence,
further scheduling analysis can utilize the characterizations
as direct input.

8.1.1 Example system
We designed our example system with reactivity in mind. The
environment and the application at hand set the timing con-
straints, which we specified in cycles as depicted in Figure 2.

The USART operates at 115.2kbps, which is roughly 87us
or 696 cycles to serve an arriving byte. For simplicity, we
assume a single buffer.

The LED array consists of 24 daisy chained WS2812B-LEDs.
In order to update each LED with a unique RGB value, the
DMA peripheral sends a non-return-to-zero bit stream and
latches the output on the end of the frame by holding the data
line low for at least 50us. The DMA operates at 400kHz,
which results in a transfer time of 1.5ms. This is on the safe
side at half of the maximum specified operation rate.

The design ensures that blocking will not be an issue, because
the state of the STM is completely decoupled from the state
of the DMA9. Alternatively, we could use an asynchronous
message between the USART and the STM in the LED com-
ponent to achieve the same effect of decoupling. When we
see our LED application as a freestanding and re-usable com-
ponent, there is no restriction on how to implement it, both
synchronous and asynchronous calls work equally well.

Looking at the STM CRO, we set the interarrival time of
transition events in the system to 10ms, i.e., a fre-
quency of 100Hz. The number of preemptions during a
10ms period is roughly 115. I.e., the transition suffers
115 ∗ C(receive) in the worst case. We measured a worst
case execution time of 299 cycles for receive, amounting to
a total of 4.3ms.

The response time for a task is r = C + P +B, where C is
the execution time, P is the preemption time (interference),
andB is the blocking time. For the transition, we derive
r = 0.098ms+ 4.3ms+ 0, which is a worst case estimation
well under the required 10ms or 80000 cycles10. For this pre-
sentation, we conclude the response times of receive and
on_command to be clearly within their timing requirements
and skip the precise analysis.

We measured a CPU utilization of 13.25% at the maximum
animation speed (100 frames per second).

9The 1.5ms transfer period blocks the DMA, but there is only 87us in
between two USART events. Hence, a synchronous (blocking) approach is
not sufficient.

10Computing the actual busy period of transition and taking the US-
ART parsing logic into account allows to derive a less pessimistic estimation.
Not all character inputs yield the worst case behavior.

Volume 40, Number 1, March 2019 Ada User Jour na l

M. Lindner, J. Apar ic io, P. L indgren 51

1 text data bss dec hex filename
2 3974 196 620 4790 12b6 crc-test

Listing 14: arm-none-eabi-size

8.2 Memory usage

The system compiled in -release mode shows a 4kB
Flash memory footprint and less than 1kB of RAM usage.
Listing 14 displays the actual sizes.

The DMA buffer requires 601 bytes to store the non-return-to-
zero bit encoding including a postamble of 25 zeros to latch
the data to the WS2812B LED array. In the STM CRO we
store the RGB values of each individual LED (24 ∗ 3 = 72
bytes) and send it with an async message buffer. In total,
this amounts to 745 bytes. The remaining allocated RAM
memory of 67 bytes holds additional CRO states (USART,
STM, DMA) and message structure overhead.

We conclude the abstraction to be memory efficient and zero-
cost in comparison to a handwritten implementation.

9 Conclusions and future work
In this paper, we present a Rust based component model for
concurrent programming along with a framework for analysis
and code generation that produces efficient, memory safe,
race- and deadlock-free executables for single-core Stack
Resource Policy (SRP) based scheduling. As the main con-
tribution, we show that the CRC model allows a secure by
construction design of embedded software, covering authen-
tication for operations as well as abstractions for safe and
secure data containers. For the underlying CRC framework,
we discuss soundness in regard to the Rust memory model
and SRP invariants.

Other contributions include key design decisions for the
ecosystem under development, a feasibility demonstration
on an ARM Cortex-M3 target, and the characterization of
run-time overhead for resource protection and scheduling
primitives.

For the prototype, we manually carried out the timing analysis
and timer queue generation. Current and future work includes
the analysis of arbitrary timing offsets to determine safe (yet
tight) bounds for the number of outstanding asynchronous
messages and the synthesis of queuing and timer primitives.

Based on recent advances of the RustBelt formal model [15],
we project a formalization and mechanized proof of correct-
ness.

References
[1] J. Nordlander, M. P. Jones, M. Carlsson, R. B. Kieburtz,

and A. Black (2002), Reactive objects, in Proceed-
ings Fifth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing. ISIRC
2002, pp. 155–158.

[2] The Timber Language, webpage. http://www.timber-
lang.org, last accessed 2017-09-16.

[3] J. Eriksson, F. Häggström, S. Aittamaa, A. Kruglyak,
and P. Lindgren (2013), Real-time for the masses, step
1: Programming api and static priority srp kernel primi-
tives, in Industrial Embedded Systems (SIES), 2013 8th
IEEE International Symposium on, pp. 110–113, IEEE.

[4] A. Levy, B. Campbell, B. Ghena, P. Pannuto, P. Dutta,
and P. Levis (2017), The case for writing a kernel in
rust, in Proceedings of the 8th Asia-Pacific Workshop
on Systems, APSys ’17, (New York, NY, USA), pp. 1:1–
1:7, ACM.

[5] E. Holk, M. Pathirage, A. Chauhan, A. Lumsdaine, and
N. D. Matsakis (2013), Gpu programming in rust: Im-
plementing high-level abstractions in a systems-level
language, in 2013 IEEE International Symposium on
Parallel Distributed Processing, Workshops and Phd Fo-
rum, pp. 315–324.

[6] The Rust Programming Language book, webpage.
https://doc.rust-lang.org/book/, last accessed 2018-02-
05.

[7] T. P. Baker (1991), Stack-based scheduling for realtime
processes, Real-Time Syst., vol. 3, pp. 67–99.

[8] J. Mäki-turja and M. Nolin (2004), Tighter response-
times for tasks with offsets, in Proc. of the 10 th Inter-
national conference on Real-Time Computing Systems
and Applications (RTCSA’04).

[9] P. Lindgren, M. Lindner, E. Fresk, D. Pereira, and
L. Pinho (2014), RTFM-core: Language and Implemen-
tation. Embedded Systems Week, New Delhi, India.

[10] svd2rust, webpage. https://github.com/japaric/svd2rust,
last accessed 2017-09-16.

[11] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattan-
gady (2004), Security in embedded systems: Design
challenges, ACM Trans. Embed. Comput. Syst., vol. 3,
pp. 461–491.

[12] D. Kahn (1976), The Codebreaker: The Story of Secret
Writing, Macmillam.

[13] S. Meyers (2005), Effective C++: 55 specific ways to
improve your programs and designs, Pearson Education.

[14] Blue Pill compact STM32F103 board, webpage.
https://wiki.stm32duino.com/index.php?title=Blue_Pill,
last accessed 2018-09-07.

[15] RustBelt: Logical Foundations for the Future of
Safe Systems Programming, webpage. http://plv.mpi-
sws.org/rustbelt, last accessed 2017-09-16.

Ada User Jour na l Vo lume 40, Number 1, March 2019

Automate Your Ada Unit Testing

With VectorCAST/Ada

Vector Austria GmbH | www.vector.com

VectorCAST/Ada is an integrated software test solution that significantly reduces the time, effort, and
cost associated with testing Ada software components necessary for validating safety- and
mission-critical embedded systems.

> Complete test-harness construction for unit and
integration testing

> Test execution from GUI or scripts
> Code coverage analysis
> Regression Testing
> Code complexity calculation
> Automatic test creation based on decision paths

> User-defined tests for requirements-based
testing

> Test execution trace and playback to assist in
debugging

> Integrations with best of breed requirements
traceability tools

More information: www.vector.com/vectorcast

 53

Ada User Journal Volume 40, Number 1, March 2019

Guide for the Use of the Ada Ravenscar Profile in
High Integrity Systems (Part 1) 1

Alan Burns
University of York, UK; email: alan.burns@york.ac.uk

Brian Dobbing
Altran Praxis, UK +

Tullio Vardanega
University of Padua, Italy; email: tullio.vardanega@unipd.it

1 Introduction 1

There is increasing recognition that the software
components of critical real-time applications must be
provably predictable. This is particularly so for a hard real-
time system, in which the failure of a component of the
system to meet its timing deadline can result in an
unacceptable failure of the whole system. The choice of a
suitable design and development method, in conjunction
with supporting tools that enable the real-time performance
of a system to be analysed and simulated, can lead to a high
level of confidence that the final system meets its real-time
constraints.

Traditional methods used for the design and development
of complex applications, which concentrate primarily on
functionality, are increasingly inadequate for hard real-time
systems. This is because non-functional requirements such
as dependability (e.g. safety and reliability), timeliness,
memory usage and dynamic change management are left
until too late in the development cycle.

The traditional approach to formal verification and
certification of critical real-time systems has been to
dispense entirely with separate processes, each with their
own independent thread of control, and to use a cyclic
executive that calls a series of procedures in a fully
deterministic manner. Such a system becomes easy to
analyse, but is difficult to design for systems of more than
moderate complexity, inflexible to change, and not well

1 Editor note: This paper includes chapters 1 to 5 of the report of the
University of York, UK (University of York Technical Report YCS-2017-
348, June 2017), which updates the original “Guide for the use of the Ada
Ravenscar Profile in high integrity systems”, published in 2003,
considering the changes in the definition of Ada (Ada 2012). Chapters 1 to
5 present the Ravenscar profile, the rationale for the decisions taken and
examples of usage. Chapters 6, which discusses the verification
approaches appropriate to Ravenscar programs, and Chapter 7, which
provides and extensive example, will be published in the next issue of the
Journal. This updated Guide will also be published as an official ISO
Technical Report (TR), with some changes. The paper in the Ada User
Journal follows the York version, noting, where applicable, the changes in
the ISO TR.

+now retired

suited to applications where sporadic activity may occur
and where error recovery is important. Moreover, it can
lead to poor software engineering if small procedures have
to be artificially constructed to fit the cyclic schedule.

The use of Ada has proven to be of great value within high
integrity and real-time applications, albeit via language
subsets of deterministic constructs, to ensure full
analysability of the code. Such subsets have been defined
for Ada 83, but these have excluded tasking on the grounds
of its non-determinism and inefficiency. Advances in the
area of schedulability analysis currently allow hard
deadlines to be checked, even in the presence of a run-time
system that enforces preemptive task scheduling based on
multiple priorities. This valuable research work has been
mapped onto a number of new Ada constructs and rules
that have been incorporated into the Real-Time Annex of
the Ada language standard [RM D]. This has opened the
way for these tasking constructs to be used in high integrity
subsets whilst retaining the core elements of predictability
and reliability.

The Ravenscar Profile is a subset of the tasking model,
restricted to meet the real-time community requirements for
determinism, schedulability analysis and memory-
boundedness, as well as being suitable for mapping to a
small and efficient run-time system that supports task
synchronization and communication, and which could be
certifiable to the highest integrity levels. The concurrency
model promoted by the Ravenscar Profile is consistent with
the use of tools that allow the static properties of programs
to be verified. Potential verification techniques include
information flow analysis, schedulability analysis,
execution-order analysis and model checking. These
techniques allow analysis of a system to be performed
throughout its development life cycle, thus avoiding the
common problem of finding only during system integration
and testing that the design fails to meet its non-functional
requirements.

It is important to note that the Ravenscar Profile is silent on
the non-tasking (i.e. sequential) aspects of the language.
For example it does not dictate how exceptions should, or
should not, be used. For any particular application, it is
likely that constraints on the sequential part of the language

54 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 1, March 2019 Ada User Journal

will be required. These may be due to other forms of static
analysis to be applied to the code, or to enable worst-case
execution time information to be derived for the sequential
code. The reader is referred to the ISO Technical Report,
Guide for the Use of Ada Programming Language in High
Integrity Systems [GA] for a detailed discussion on all
aspects of static analysis of sequential Ada.

The Ravenscar Profile has been designed such that the
restricted form of tasking that it defines can be used even
for software that needs to be verified to the very highest
integrity levels. The Ravenscar Profile has already been
included in the ISO technical report [GA] referenced
above. The aim of this guide is to give a complete
description of the motivations behind the Ravenscar
Profile, to show how conformant programs can be analysed
and to give examples of usage.

Structure of the Guide
The report is organized as follows. The motivation for the
development of the Ravenscar Profile is given in the next
chapter. Chapter 3 includes the definition of the profile as
specified by the Ada Standard; the definition is included
here for convenience, but this report is not the definitive
statement of the profile. In Chapter 4, the rationale for each
aspect of the profile is described. Examples of usage are
then provided in Chapter 5. The need for verification is an
important design goal for the Ravenscar Profile: Chapter 6
reviews the verification approach appropriate to Ravenscar
programs. Finally, in Chapter 7 an extended example is
given. Definitions and references are included at the end of
the report.

Readership
This report is aimed at a broad audience, including
application programmers, implementers of run-time
systems, those responsible for defining company/project
guidelines, and academics. Familiarity with the Ada
language is assumed.

Conventions
This report uses the italics face to flag the first occurrence
of terms that have a defining entry in Chapter 8. For all
Ada-related terms, the report follows the language
reference manual [RM] style: it uses the Arial font where
there is a reference to defined syntax entities (e.g.
delay_relative_statement). For all other names (e.g.
Ada.Calendar) it uses normal text font, as do language
keywords in the text except that they are in bold face.

2 Motivation for the Ravenscar Profile

Before describing the Ravenscar Profile in detail, in this
chapter we explain some of the reasoning behind its
features. These primarily come from the need to be able to
verify concurrent real-time programs, and to have these
programs implemented reliably and efficiently.

In this chapter, we look mainly at scheduling theory, as this
is the main driver for the definition of the restrictions of the
Ravenscar Profile. In addition, there is a section that

summarizes other program verification techniques that can
be used with the profile.

2.1 Scheduling Theory
Recent research in scheduling theory has found that
accurate analysis of real-time behaviour is possible given a
careful choice of scheduling/dispatching method together
with suitable restrictions on the interactions allowed
between tasks. An example of a scheduling method is
preemptive fixed priority scheduling. Example analysis
schemes are Rate Monotonic Analysis (RMA) [1] and
Response Time Analysis (RTA) [2].

Priority-based preemptive scheduling is normally used with
a Priority Ceiling Protocol (PCP) to avoid unbounded
priority inversion and deadlocks. It provides a model
suitable for the analysis of concurrent real-time systems.
The approach supports cyclic and sporadic activities, the
idea of hard, soft, firm, and non-critical components, and
controlled inter-process communication and
synchronization. It is also scalable to programs for
distributed systems.

Tool support exists for RMA and RTA, and for the static
simulation of concurrent real-time programs. The primary
aim of analysing the real-time behaviour of a system is to
determine whether it can be scheduled in such a way that it
is guaranteed to meet its timing constraints. Whether the
timing constraints are appropriate for meeting the
requirements of the application is not an issue for
scheduling analysis. Such verification requires a more
formal model of the program and the application of
techniques such as model checking – see Section 2.4.

2.1.1 Tasks Characteristics

The various tasks in an application will each have timing
constraints. For critical tasks, these are normally defined in
terms of deadlines. The deadline is the maximum time
within which a task must complete its operation in response
to an event.

Each task is classified into one of the following four basic
levels of criticality according to the importance of meeting
its deadline:

 Hard
A hard deadline task is one that must meet its
deadline. The failure of such a task to meet its deadline
may result in an unacceptable failure at the system
level.

 Firm
A firm deadline task is one that must meet its deadline
under “average” or “normal” conditions. An occasional
missed deadline can be tolerated without causing
system failure (but may result in degraded system
performance). There is no value, and thus there is a
system-level degradation of service, in completing a
firm task after its deadline.

 Soft
A soft deadline task is also one that must meet its
deadline under “average” or “normal” conditions. An

A. Burns, B. Dobbing, T. Vardanega 55

Ada User Journal Volume 40, Number 1, March 2019

occasional missed deadline can be tolerated without
causing system failure (but may result in degraded
system performance). There is value in completing a
soft task even if it has missed its deadline.

 Non-critical
A non-critical task has no strict deadline. Such a task
is typically a background task that performs activities
such as system logging. Failure of a non-critical task
does not endanger the performance of the system.

2.1.2 Scheduling Model

At any moment in time, some tasks may be ready to run
(meaning that they are able to execute instructions if
processor time is made available). Others are suspended
(meaning that they cannot execute until some event occurs)
or blocked (meaning that they await access to a shared
resource that is currently exclusively owned by another
task). Suspended tasks may become ready synchronously
(as a result of an action taken by a currently running task)
or asynchronously (as a result of an external event, such as
an interrupt or timeout, that is not directly stimulated by the
current task).

With priority-based preemptive scheduling on a mono-
processor, a priority is assigned to each task and the
scheduler ensures that the highest priority ready task is
always executing. If a task with a priority higher than the
currently running task becomes ready, the scheduler
performs a context switch, as soon as it can, to enable the
higher-priority task to resume execution. The term
“preemptive” indicates that this can occur because of an
asynchronous event (i.e. one that is not caused by the
running task).

Tasks will normally be required to interact as a result of
contention for shared resources, exchange of data, and the
need to synchronize their activities. Uncontrolled use of
such interactions can lead to a number of problems:

 Unbounded Priority Inversion / Blocking
where a high-priority task is blocked awaiting a
resource in use by a low-priority task; as a result, ready
tasks of intermediate priority may hold up the high
priority task for an unbounded amount of time since
they will run in preference to the low priority task that
has locked the resource.

 Deadlock
where a group of tasks (possibly the whole system)
block each other permanently due to circularities in the
ownership of and the contention for shared resources.

 Livelock
where several tasks (possibly the whole system)
remain ready to run, and do indeed execute, but fail to
make progress due to circular data dependencies
between the tasks that can never be broken.

 Missed Deadline
where a task fails to complete its response before its
deadline has expired due to factors such as system

overload, excessive preemption, excessive blocking,
deadlocks, livelocks or CPU overrun.

The restricted scheduling model that is defined by the
Ravenscar Profile is designed to minimize the upper bound
on blocking time, to prevent deadlocks, and (via tool
support) to verify that there is sufficient processing power
available to ensure that all critical tasks meet their
deadlines.

In this model, tasks do not interact directly, but instead
interact via shared resources known as protected objects 2.
Each protected object typically provides either a resource
access control function (including a repository for the
private data to manage and implement the resource), or a
synchronization function, or a combination of both.

A protected object that is used for resource access control
requires a mutual exclusion facility, commonly known as a
monitor or critical region, where at most one task at a time
can have access to the object. During the period that a task
has access to the object, it must not perform any operation
that could result in it becoming suspended. Ada directly
supports protected objects and disallows internal
suspension within these objects.

A protected object that is used for synchronization provides
a signalling facility, whereby tasks can signal and/or wait
on events. In the Ravenscar Profile definition, the use of
protected objects for synchronization by the critical tasks is
constrained so that at most one task can wait on each
protected object. A simplified version of wait/signal is also
provided in the Ravenscar Profile via the Ada Real-Time
Annex functionality known as suspension objects [RM
D.10]. These can be used in preference to the protected
object approach for simple resumption of a suspended task,
whereas the protected object approach should be used when
more complex resumption semantics are required, for
example including deterministic (race-condition-free)
exchange of data between signaller and waiter tasks.

The Ravenscar Profile definition assures absence of
deadlocks by requiring use of an appropriate locking
policy. This policy requires a ceiling priority to be assigned
to each protected object that is no lower than the highest
priority of all its calling tasks, and results in the raising of
the priority of the task that is using the protected object to
this ceiling priority value. In addition to absence of
deadlocks, this policy also allows an almost optimal time
bound on the worst case blocking time to be computed for
use within the schedulability analysis, thereby eliminating
the unbounded priority inversion problem. This time bound
is calculated as the maximum time that the object is in use
by lower-priority tasks. Therefore, the smaller the worst-
case time bound for this blocking period, the greater the
likelihood that the task set will be schedulable.

2 Editor Note: the ISO technical report adds the use of the atomic aspect to
support object sharing. However, it also notes the need for static assurance
of safe use of atomic objects and the use of protected objects as the
preferable abstraction for shared date, as they are inherently safe.

56 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 1, March 2019 Ada User Journal

The use of priority-based preemptive dispatching defines a
mechanism for scheduling. The scheduling policy is
defined by the mapping of tasks to priority values. Many
different schemes exist for different temporal
characteristics of the tasks and other factors such as
criticality. What most of these schemes require is an
adequate range of distinct priority values. Ada and the
Ravenscar Profile ensure this.

2.2 Mapping Ada to the Scheduling Model
The analysis of an Ada application that makes unrestricted
use of Ada run-time features including tasking rendezvous,
select statements and abort is not currently feasible. In
addition, the non-deterministic and potentially unbounded
behaviour of many tasking and other run-time calls may
make it impossible to provide the upper bounds on
execution time that are required for schedulability analysis
and simulation. Thus, Ada coding style rules and subset
restrictions must be followed to ensure that all code within
critical tasks is statically time-bounded, and that the
execution of the tasks can be defined in terms of response
times, deadlines, cycle times, and blocking times due to
contention for shared resources.

The application must be decomposed into a number of
separate tasks, each with a single thread of control, with all
interaction between these tasks identified. Each task has a
single primary invocation event. The tasks are categorized
as time-triggered (meaning that they execute in response to
a time event), or event-triggered (meaning that they
execute in response to a stimulus or event external to the
task). If a time-triggered task receives a regular invocation
time event with a statically-assigned rate, the task is termed
periodic or cyclic.

Protected objects must be introduced to provide mutually-
exclusive access to shared resources (e.g. for concurrent
access to writable global data) and to implement task
synchronization (e.g. via some event signalling
mechanism). This decomposition is normally the result of
applying a design methodology suitable to describe real-
time systems.

In order to be suitable for schedulability analysis, the task
set to be analysed must be static in composition and have
all its dependencies between tasks via protected objects.
Tasks nested inside other Ada structures incur unwanted
visibility dependencies and termination dependencies.
Therefore, this model only permits tasks to be created at the
library level, at system initialization time.

Hence, in the Ravenscar Profile, all tasks in the program
are created at the library level.

Another consequence of requiring a static task set for
schedulability analysis purposes is that the Ravenscar
Profile must prohibit the dynamic creation of tasks and
protected objects via allocators. This implies that the
memory requirements for the execution of the task set (e.g.
the task stacks) are resolved prior to, or during, elaboration
of the program. In addition, the Ravenscar Profile prohibits
the implementation from implicitly acquiring dynamic

memory from the standard storage pool [RM 13.11(17)].
The data structures that are required by the run-time system
should either be declared globally, so that the memory
requirements can be determined at link time, or in such a
way as to cause the storage to be allocated on the stack (of
the environment task) during elaboration of the run-time
system.

The Ravenscar Profile places no restrictions on the
declaration of large or dynamic-sized Ada objects in the
application other than prohibiting the implementation from
implicitly using the standard storage pool to acquire the
storage for these objects. It is acceptable for the memory
for such objects to be allocated on the task stack.

2.3 Non-Preemptive Scheduling and Ravenscar
The definition of the Ravenscar Profile requires preemptive
scheduling of tasks. However, a similar profile could be
defined that specified non-preemptive execution. Much of
the material and guidelines contained in this report would
also apply to the non-preemptive case. Non-preemptive
implementation for a mono-processor is in between the
cyclic executive approach and the preemptive tasking
approach with regard to ease of timing analysis, flexibility
with regard to change, and responsiveness to asynchronous
events. In common with the cyclic executive approach,
there is no contention for shared resources, and there is no
need to analyse the impact from asynchronous events.
There is still, however, the need to break up long code
sequences using voluntary suspension points (e.g. a
delay_until_statement with a wakeup time argument that
denotes a time in the past) to obtain reasonable
responsiveness to asynchronous events.

2.4 Other Program Verification Techniques
In addition to the provision of support for schedulability
analysis, the rationale behind the Ravenscar Profile
definition is also to support other static program
verification techniques, and to simplify the formal
certification process. These other techniques are discussed
briefly in this section.

2.4.1 Static Analysis

Static analysis is recognized as a valuable mechanism for
verifying software. For example, it is mandated for safety
critical applications that are certified to the UK Defence
Standard 00-55 [DS]. Industrial experience shows that the
use of static analysis during development eliminates classes
of errors that can be hard to find during testing. Moreover,
these errors can be eliminated by the developer before the
code has been compiled or entered into the configuration
management system, saving the cost of repeated code
review and testing which results from faults that are
discovered during testing.

Static analysis as a technology has a fundamental
advantage over dynamic testing. If a program property is
shown to hold using static analysis, then the property is
guaranteed for all scenarios. Testing, on the other hand,
may demonstrate the presence of an error, but the correct
execution of a test only indicates that the program behaves

A. Burns, B. Dobbing, T. Vardanega 57

Ada User Journal Volume 40, Number 1, March 2019

correctly for the specific set of inputs provided by the test,
and within the specific context that the test harness sets up.
For all but the simplest systems, exhaustive testing of all
possible combinations of input values and program
contexts is infeasible. Typically, test cases are devised to
represent broad classes of inputs, so that tests can be
created that use a representative value from each possible
input class. However, complex program state contexts are
usually only creatable during integration and system
testing, when it may be very difficult to simulate all
possible operational states. Further, the impact of
correcting errors that are found only at this stage of the
lifecycle is generally large in comparison to errors found
during development.

There are many methods of static analysis. By using
combinations of these methods, a variety of properties can
be guaranteed for a program. The following list of forms of
analysis is drawn from a study of a variety of standards that
is presented in the ISO Technical Report [GA]. Section 6.2
discusses how these analyses may be applied in the context
of a concurrent Ravenscar Profile program.

Control Flow

Control flow analysis ensures that code is well structured,
and does not contain any syntactically or semantically
unreachable code.

Data Flow

Data flow analysis ensures that there is no executable path
through the program that would result in access to a
variable that does not have a defined value. Data flow
analysis is only feasible on code that has valid control flow
properties.

Information Flow

Information flow analysis is concerned with the
dependencies between inputs and outputs within the code.
It checks the specified dependencies against the
implemented dependencies to ensure consistency. To be
effective, information flow analysis needs to be performed
with knowledge of the system requirements. It can be a
powerful tool for demonstrating properties such as non-
interference between critical and non-critical data.

Symbolic Execution

Symbolic execution generates a model of the function of
the software in terms of parallel assignments of expressions
to outputs for each possible path through the code. This can
be used to verify the code without the need for a formal
specification.

Formal Code Verification

Formal code verification is the process of proving the code
is correct against a formal specification of its requirements.
Each operation is specified in terms of the pre-conditions
that need to be satisfied for the operation to be callable, and
the post-conditions that hold following a successful call to
the operation. The verification process demonstrates that,
given the pre-conditions, execution of the operation always
gives rise to the post-conditions. The level of proof depends

on the information provided in the formal specification.
This can vary depending on the aspects of the code that
need to be verified; this can vary from the proof of a single
invariant right up to full functional behaviour.

Proof of absence of run-time errors is a special form of
formal code verification. This does not require the
provision of a formal specification of the program. Instead,
formal code verification techniques are used to demonstrate
that, at every point in the code where a run-time error may
occur, the pre-conditions on execution of that code and the
current set of data values in the expression guarantee that
the run-time error cannot occur. This is a very valuable
property to be able to demonstrate, especially in systems
where the occurrence of an unexpected run-time exception
is generally unrecoverable, and the overhead of dynamic
defensive mechanisms for preventing all such faults is
unacceptable.

2.4.2 Formal Analysis

The formal analysis of concurrent programs has been a
fruitful research topic for a number of years. Current
standard techniques allow many important properties of
programs to be statically checked.

Concurrent programs, whilst more expressive than their
sequential counterparts, have a number of distinct error
conditions that must be addressed during program
development. The most common of these is deadlock,
where all processes are blocked on a synchronization
primitive with no processes left to undertake the necessary
unblocking actions. In general, a concurrent program
should possess two important properties:

1. Safety - the system of tasks should not get into an
unsafe (undesirable) state (for example; deadlock,
livelock).

2. Liveness - all desirable states of the task must be
reached eventually (that is, useful progress should
always be made).

In a real-time concurrent system, ‘liveness’ becomes
‘bounded liveness’ as desirable states must be reached by
known deadlines.

Ada, like all other engineering languages, does not have its
semantics defined in a formal mathematical way. Hence, it
is necessary to link a model of the program with the
program itself. This link cannot be formal but can be
precise. The use of standard patterns for Ada tasks helps
this linkage. The formal model could be derived from the
code or, more likely in an engineering process, the model is
derived from requirements, and the code is obtained via a
series of refinements from the model.

There are two general forms for these models and two
methods of extracting properties (behaviours) from these
descriptions. First, an algebraic form could be used in one
of the concurrency languages that does have formally
defined semantics; examples being CSP (Communicating
Sequential Processes) and CCS (Calculus of
Communicating Systems). The other, more common,

58 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 1, March 2019 Ada User Journal

approach is to view the program as a collection of state-
transition systems.

Verification comes either from a proof theoretic approach
or via model checking. An algebraic description can be
proved to be deadlock-free, for example, by the use of a
theorem prover. Alternatively, a state-transition description
(or an algebraic one) can be exercised by an exhaustive
search of the set of states the program can enter. This
'checking of the model' can deduce that all safe states, and
no unsafe states, can be reached.

The disadvantage of model checking is that an explosion of
states can make it impossible to terminate the search.
However, there have been considerable (and continuing)
advances in the tools for model checking, and now sizeable
systems can be verified in a respectably small number of
hours of processing time. Theorem proving does not have
this problem but it is a more skilled activity and theorem
proving tools are not simple to use (i.e. the verification
process is not automatic). A proof theoretic approach also
has the advantage that it can show that a property is true
'for any number of tasks'; whereas model checking cannot
generalize in this way – it will show it is true for six client
tasks, say, but for seven the check must be made again.
Combinations of proof and model checking are possible
and are the subject of current research.

For real-time systems, it is possible to add time to the
concurrency model and to then validate temporal aspects of
program. Timed versions of formalisms such as CSP [CSP]
exist and state-transition systems with clocks allow timing
requirements to be expressed and subsequently verified by
model checking. A common formalism for this type of
state-transition system is called timed automata. Again, tool
support for model checking sets of timed automata is well
advanced. One of the very useful features of model
checking tools is that they all produce a well-defined
counter example for any failed check.

2.4.3 Formal Certification

In order to achieve formal certification of a software
architecture and of its Ada implementation, it is necessary
to provide verification evidence of safety and reliability of
the Ada run-time system as well as for the application-
specific components. The run-time system that is needed to
implement the dynamic semantics of the full Ada
concurrency model is complex, and the number of states
that may be represented by its dynamic data structures is
large. As a result, it is very challenging for a commercial
Ada vendor to produce certification evidence to the highest
integrity levels for an entire Ada run-time system.

The Ravenscar Profile definition greatly reduces the size
and complexity of the required run-time system, to simplify
the process of providing evidence of its safety and
reliability. Ada concurrency features that have major
impact on the run-time system semantics, such as abort,
asynchronous transfer of control, multiple entry queues
each with a list of waiting tasks, requeue statements, task
hierarchy and dependency, and finalization actions of local
protected objects, are eliminated. As a result, it is possible

to create not only a small and highly efficient run-time
system implementation, but also one that is amenable to the
forms of verification applicable to sequential code as
described in [GA], which may then be used as evidence to
support the formal certification of an entire software system
to the highest integrity levels.

3 The Ravenscar Profile Definition

3.1 Development History
The 8th International Real-Time Ada Workshop (IRTAW)
was held in April 1997 at the small Yorkshire village of
Ravenscar. Two position papers [3][4] led to an extended
discussion on tasking profiles. By the end of the workshop,
the Ravenscar Profile had been defined [5] in a form that is
almost identical to its current specification.

At the 9th IRTAW [6] (March 1999) the Ravenscar Profile
was again discussed at length. The definition was
reaffirmed and clarified. The most significant change was
the incorporation of Suspension Objects. An Ada Letters
paper [5] became the de facto defining statement of the
Ravenscar Profile.

By the 10th IRTAW [7] (September 2000) many of the
position papers were on aspects of the Ravenscar Profile
and its use and implementation. No major changes were
made, although an attempt to standardize on the Restriction
identifiers was undertaken. Time was spent on a non-
preemptive version of the profile. Following the 10th
IRTAW, the participants decided to forward the Ravenscar
Profile to the ARG – the ISO body in charge of the
maintenance of the Ada language – so that its definition
could move from a de facto to a real standard. The HRG –
the ISO body in charge of the high integrity aspects of the
Ada language – was also tasked with producing a Rationale
for the Ravenscar Profile, which resulted in the production
of this guide.

At the 11th IRTAW [8] (April 2002), the formal definition
of the profile as formulated by the ARG was agreed. It was
confirmed that the Ravenscar Profile requires task
dispatching policy FIFO_Within_Priorities and locking
policy Ceiling_Locking.

Since 2002, the Ravenscar Profile has been a formal part of
the definition of Ada. Each time the language is upgraded,
the profile is revisited to make sure that it continues to have
the right set of restrictions. The series of IRTAW
workshops continues to review the Ravenscar Profile’s
definition. This last took place at the 18th IRTAW, in April
2016.

3.2 Definition
The definition of the Ravenscar Profile is now included in
the Ada Standard. The definition is reported here for
information only. The latest version of Ada defining the
Ravenscar Profile is Ada 2012; ARG agreed changes for
the next version of Ada are incorporated into the definition
given here.

A. Burns, B. Dobbing, T. Vardanega 59

Ada User Journal Volume 40, Number 1, March 2019

An application requests the use of the Ravenscar Profile by
means of the configuration pragma Profile with the
Ravenscar identifier:

pragma Profile(Ravenscar);
There are, in general, two distinct ways of defining the
details of a profile: either by defining what is in it, or by
declaring those parts of Ada that are not. The ‘official’
definition defines the restrictions that are needed to reduce
the full tasking model to Ravenscar. However, this gives a
rather negative definition. Therefore, we shall first
introduce the profile by focusing on the features it does
contain.

3.3 Ravenscar Features
Following from the discussion on verification in the
previous chapter, we are able to define an adequate set of
tasking features. The Ravenscar Profile allows programs to
contain:

 Task types and objects, defined at the library level.

 Protected types and objects, defined at the library
level, with a maximum of one entry per object and
with a maximum of one task queued at any time on
that entry. The entry barrier must be a single Boolean
variable (or a Boolean literal).

 Atomic and Volatile aspects.

 delay_until_statements.

 Ceiling_Locking policy and FIFO_Within_Priorities
dispatching policy.

 The E’Count attribute for protected entries except
within entry barriers.

 The Ada.Task_Identification package plus task
attributes T'Identity and E'Caller.

 Synchronous task control.

 Task type and protected type discriminants.

 The Ada.Real_Time package.

 Protected procedures as statically bound interrupt
handlers.

 Static allocation of task to cores on a multicore (or
multiprocessor) platform so that each core hosts a
separate set of tasks, to which the Ravenscar Profile’s
scheduling and locking policies apply locally.

Together, these form a coherent set of features that define
an adequate language for expressing the programming
needs of statically defined real-time systems.

3.3 Summary of Implications of pragma
Profile(Ravenscar)
The following restrictions apply to the alternative mode of
operation defined by the Ravenscar Profile. Some
restrictions require language features to be omitted, others
can be achieved by simply requiring that certain defined
(standard) library packages are not incorporated into the

program that is conforming to the Ravenscar Profile (i.e.
there is no semantic dependency on the specified package).

The Ravenscar Profile is defined as follows [RM D.13]:

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);
pragma Locking_Policy(Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions(
 No_Abort_Statements,
 No_Dynamic_Attachment,
 No_Dynamic_CPU_Assignment,
 No_Dynamic_Priorities,
 No_Implicit_Heap_Allocations,
 No_Local_Protected_Objects,
 No_Local_Timing_Events,
 No_Protected_Type_Allocators,
 No_Relative_Delay,
 No_Requeue_Statements,
 No_Select_Statements,
 No_Specific_Termination_Handlers,
 No_Task_Allocators,
 No_Task_Hierarchy,
 No_Task_Termination,
 Simple_Barriers,
 Max_Entry_Queue_Length => 1,
 Max_Protected_Entries => 1,
 Max_Task_Entries => 0,
 No_Dependence =>
 Ada.Asynchronous_Task_Control,
 No_Dependence => Ada.Calendar,
 No_Dependence =>
 Ada.Execution_Time.Group_Budgets,
 No_Dependence => Ada.Execution_Time.Timers,
 No_Dependence => Ada.Synchronous_Barriers,
 No_Dependence => Ada.Task_Attributes,
 No_Dependence =>
 System.Multiprocessors.Dispatching_Domains);

4 Rationale

This chapter provides a description of each restriction, a
detailed rationale for the imposition of each restriction and
some general discussion about how to work within the
restrictions while still retaining flexibility in the design and
coding processes.

4.1 Ravenscar Profile Restrictions
4.1.1 Static Existence Model

The restrictions listed below ensure that the set of tasks and
interrupts to be analysed is fixed and has static properties
(in particular, base priority) after program elaboration. If a
variable task set were to exist, then it would be impractical
to perform static timing analysis of the program because of
the dynamic nature of the requirements for CPU time and
the meeting of deadlines.

No_Task_Hierarchy

[RM D.7] No task depends on a master other than the
library-level master.

60 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 1, March 2019 Ada User Journal

The restriction No_Task_Hierarchy prevents the
declaration of tasks local to procedures or to other tasks.
Thus, tasks may only be created at the library level,
i.e. within the declarative part of library level package
specifications and bodies, including child packages and
package subunits.

No_Task_Allocators

[RM D.7] There are no allocators for task types or
types containing task subcomponents.

The restriction No_Task_Allocators prevents the
dynamic creation of tasks via the execution of Ada
allocators [RM 4.8].

No_Task_Termination

[RM D.7] All tasks are non-terminating. It is
implementation-defined what happens if a task attempts
to terminate. If there is a fall-back handler set for the
partition it should be called when the first task attempts
to terminate.

The restriction attempts to mitigate the hazard that may
be caused by tasks terminating silently. Real-time tasks
normally have an infinite loop as their last outermost
statement.

No_Specific_Termination_Handlers

[RM D.7] There is no use of a name denoting the
Set_Specific_Handler and Specific_Handler
subprograms in Task_Termination.

The restriction No_Specific_Termination_Handlers
ensures that the only termination handler defined for the
program is a fall-back handler [RM C.7.3].

No_Abort_Statements

[RM D.7] There are no abort_statements, and there is
no use of a name denoting
Task_Identification.Abort_Task.

The restriction No_Abort_Statements ensures that tasks
cannot be aborted. The removal of abort statements (and
select then abort) significantly reduces the size and
complexity of the run-time system. It also reduces non-
determinacy.

No_Dynamic_Attachment

[RM D.7] There is no use of a name denoting any of the
operations defined in package Interrupts (Is_Reserved,
Is_Attached, Current_Handler, Attach_Handler,
Exchange_Handler, Detach_Handler, and Reference).

The restriction No_Dynamic_Attachment excludes use
of the operations in predefined package Ada.Interrupts,
which contains primitives to attach and detach handlers
dynamically during program execution. In conjunction
with restriction No_Local_Protected_Objects (see
below) this implies that interrupt handlers can only be
attached statically using Attach_Handler applying to
protected procedures within library-level protected

objects. Note the types and names defined in
Ada.Interrupts can be used.

No_Dynamic_Priorities

[RM D.7] There are no semantic dependencies on the
package Ada.Dynamic_Priorities, and no occurrences
of the attribute Priority.

The restriction No_Dynamic_Priorities disallows the
use of the predefined package Ada.Dynamic_Priorities,
thereby ensuring that the priority assigned at task
creation is unchanged during task execution, except
when the task is executing a protected operation, during
which time it inherits the ceiling priority. Protected
objects also have unchanging ceiling priorities (as the
Priority attribute [RM 4.1.4] cannot be used).

No_Local_Timing_Events

[RM D.7] Timing events are declared only at library
level.

The restriction No_Local_Timing_Events prevents the
declaration of timing events local to procedures or
tasks. Thus, Timing_Events may only be created at the
library level.

4.1.2 Static Synchronization and Communication Model

These restrictions are a natural consequence of the static
execution model, since a locally declared protected object
is meaningless for mutual exclusion and task
synchronization purposes if it can only be accessed by one
task. Furthermore, a static set of protected objects is
required for schedulability analysis.

No_Local_Protected_Objects

[RM D.7] Protected objects are declared only at
library-level.

The restriction No_Local_Protected_Objects prevents
the declaration of protected objects local to
subprograms, tasks, or other protected objects.

No_Protected_Type_Allocators

[RM D.7] There are no allocators for protected types or
types containing protected type subcomponents.

The restriction No_Protected_Type_Allocators prevents
the dynamic creation of protected objects via Ada
allocators [RM 4.8].

No_Select_Statements

[RM D.7] There are no select_statements.

Max_Task_Entries => N

[RM D.7] Specifies the maximum number of entries per
task.

For the Ravenscar Profile, the value of
Max_Task_Entries is zero.

The restrictions Max_Task_Entries => 0 and
No_Select_Statements prohibit the use of Ada rendezvous
for task synchronization and communication. This ensures

A. Burns, B. Dobbing, T. Vardanega 61

Ada User Journal Volume 40, Number 1, March 2019

that these operations are achieved using only the two
supported task synchronization primitives: protected object
entries and suspension objects, both of which exhibit the
time-deterministic execution properties needed for static
timing analysis.

4.1.3 Deterministic Memory Usage

The Ravenscar Profile contains two restrictions that are
designed to prevent implicit dynamic memory allocation by
the implementation. The Ravenscar Profile does not
prevent the use of the standard storage pool or a user-
defined storage pool via explicit allocators. However, if
there were no application-level visibility or control over
how the storage in the standard storage pool was managed,
the use of this pool would not be recommended.

No_Implicit_Heap_Allocations

[RM D.7] There are no operations that implicitly
require heap storage allocation to be performed by the
implementation. The operations that implicitly require
heap storage allocation are implementation defined.

The restriction No_Implicit_Heap_Allocations prevents
the implementation from allocating memory from the
standard storage pool other than as part of the execution
of an Ada allocator.

No dependence on Ada.Task_Attributes

[RM D.13] There are no semantic dependencies on the
package Ada.Task_Attributes.

The restriction No_Task_Attributes_Package prevents
use of the predefined package Ada.Task_Attributes
[RM C.7.2], which is used to dynamically create
attributes of each task in the application. Attribute
creation may cause implicit dynamic allocation of
memory. Although an implementation is allowed to
statically reserve space for such attributes and then to
impose a restriction on usage, it is felt that support of
this feature is not compatible with the static nature of
Ravenscar programs.

4.1.4 Deterministic Execution Model

The following restrictions ensure deterministic execution:

Max_Protected_Entries => N

[RM D.7] Specifies the maximum number of entries per
protected type. The bounds of every entry family of a
protected unit shall be static, or shall be defined by a
discriminant of a subtype whose corresponding bound
is static.

For the Ravenscar Profile, the value of
Max_Protected_Entries is 1.

Max_Entry_Queue_Length => N

[RM D.7] Defines the maximum number of calls that
are queued on an entry. Violation of this restriction
results in the raising of Program_Error exception at the
point of the call.

For the Ravenscar Profile, the value of
Max_Entry_Queue_Length is 1, and a call can only be

queued on a protected entry, since Max_Task_Entries is
0.

The restrictions Max_Protected_Entries => 1 and
Max_Entry_Queue_Length => 1 ensure that at most
one task can be suspended waiting on a closed entry
barrier for each protected object which is used as a task
synchronization primitive. This avoids the possibility of
queues of task calls forming on an entry, with the
associated non-determinism of the length of the waiting
time in the queue. It also avoids two or more barriers
becoming open simultaneously as the result of a
protected action, with the associated non-determinism
of selecting which entry should be serviced first. The
restriction also enables a tight time bound on the
epilogue code to be determined.

The Max_Entry_Queue_Length restriction may only be
checkable at run time, in which case violation would
result in the raising of the Program_Error exception at
the point of the entry call. This is consistent with the
Ada rule that states that Program_Error exception is
raised upon calling Suspend_Until_True if another task
is waiting on that suspension object (when the
Detect_Blocking pragma is enabled as it is in the
Ravenscar Profile) [RM D.10]. An application could
further restrict a Ravenscar program so that only one
task is able to call one specific entry. A static check
could then be provided, but this goes beyond what the
Ravenscar Profile defines.

When the restriction Max_Entry_Queue_Length => 1 is
in force, Queuing_Policy ([RM D.4]) has no effect,
since there are no queues.

Simple_Barriers

[RM D.7] The Boolean expression in an entry barrier
shall be either a static expression or a name that
statically denotes a component of the enclosing
protected object.

The restriction Simple_Barriers, coupled with
Max_Protected_Entries => 1, ensures a deterministic
execution time and absence of side effects for the
evaluation of entry barriers at the epilogue of protected
actions within a protected object that is used for task
synchronization. There is also scope for additional
optimization by the implementation since the barrier
value is either static or can be read directly from one of
the protected object components, without needing to be
computed separately. If the application requires
composite entry barrier expressions, this can be
achieved by declaring an additional Boolean in the
protected data and assigning the composite expression
to the Boolean whenever its evaluation result may
change. The Boolean variable must be declared within
the protected object (or type).

No_Requeue_Statements

[RM D.7] There are no requeue_statements.

The restriction No_Requeue_Statements ensures
deterministic task release from protected entry barriers
used for task synchronization. The requeue_statement in
Ada causes the current caller of a protected entry to be

62 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 1, March 2019 Ada User Journal

requeued to a different entry dynamically, thereby
making it difficult to perform static analysis of task
release.

No dependence on Ada.Asynchronous_Task_Control

[RM D.13] There are no semantic dependencies on the
package Ada.Asynchronous_Task_Control.

The restriction No_Asynchronous_Control excludes the
use of asynchronous suspension of execution. This
ensures that task execution is temporally deterministic.
See also the comments made on No_Abort_Statements.

No_Relative_Delay

[RM D.7] There are no delay_relative_statements, and
there is no use of a name that denotes the
Timing_Events.Set_Handler subprogram that has a
Time_Span parameter.

The restriction No_Relative_Delay prohibits use of the
delay_relative_statement based on type Duration. This
statement exhibits non-determinism with respect to the
absolute time at which the delay expires in the case
when the delaying task is preempted after calculating
the required relative delay, but before actual suspension
occurs. In contrast, the delay_until_statement is
deterministic and should be used for accurate release of
time-triggered tasks.

No dependency on Ada.Calendar

[RM D.13] There are no semantic dependencies on the
package Ada.Calendar.

The restriction No_Calendar ensures that all timing is
performed using the high precision afforded by the time
type in package Ada.Real_Time [RM D.8], or by an
implementation-defined time type. The Ada.Real_Time
time type has a precision of the same order of
magnitude as the real-time clock device on the
underlying processor board. In contrast, the time type in
package Calendar generally has much coarser precision
than the real-time clock, due to the need to support a
200-year range, and so its use could result in less
accuracy in task release times. In addition, only the
clock available from Ada.Real_Time is required to be
monotonic.

4.1.5 Simple Run-time Behaviour

To reduce the overheads required to support the full Ada
model, some features are removed from the Ravenscar
Profile: in particular, time-triggered tasks.

No dependency on Ada.Execution_Time.Group_Budgets

[RM D.13] There are no semantic dependencies on the
package Ada.Execution_Time.Group_Budgets.

A Ravenscar runtime can monitor the execution time of
tasks, but it does not support the sharing of a CPU
budget within a group of tasks. Neither does it require a
handler to be executed if a task executes beyond a
defined level of execution time (hence the next
restriction). This simplifies the runtime but makes it
harder to construct programs that can recover from
timing errors.

No dependency on Ada.Execution_Time.Timers

[RM D.13] There are no semantic dependencies on the
package Ada.Execution_Time.Timers.

4.1.6 Parallel Semantics

More recent definitions of the Ada language have included
features that provide more control over the execution of
multi-tasking programs on parallel hardware. Such
hardware includes multiprocessors (with various memory
configurations), multi-core processor and various forms of
heterogeneous architectures. The definition of the
Ravenscar Profile has been extended to deal with these
forms of truly parallel (rather than just concurrent)
execution. The basic approach chosen for the Ravenscar
Profile has been to support the static allocation of tasks to
processors.

No_Dynamic_CPU_assignment

[RM D.13] All of the tasks in the partition will execute
on the same CPU unless the programmer explicitly uses
aspect CPU to specify the CPU assignments for tasks.

This results in tasks being statically assigned to
processors.

No dependency on Ada.Synchronous_Barriers

[RM D.13] There are no semantic dependencies on the
package Ada.Synchronous_Barriers.

Synchronous barriers [RM D.10.1] are used on some
forms of parallel hardware. As they can be programmed
by the user in a Ravenscar application, the use of the
predefined package is not explicitly supported by the
Ravenscar Profile.

No dependency on
System.Multiprocessors.Dispatching_Domains

[RM D.13] There are no semantic dependencies on the
package System.Multiprocessors.Dispatching_Domains

Dispatching domains allow more structured approaches
to parallel execution to be supported. Currently, this
leads to programs that are deemed to be beyond what
can be easily analysed; they are therefore not included
in the Ravenscar Profile

4.1.7 Implicit Restrictions

The set of restriction identifiers for Ada does not represent
an orthogonal set of restrictions with the result that some
restrictions are implied by others. For example,
No_Select_Statements implies Max_Select_Alternatives
must be zero.

4.2 Ravenscar Profile Dynamic Semantics
4.2.1 Task Dispatching Policy

The task dispatching policy that is required by pragma
Profile(Ravenscar) is FIFO_Within_Priorities [RM D.2].

4.2.2 Locking Policy

The locking policy that is required by pragma
Profile(Ravenscar) is Ceiling_Locking [RM D.3]. This
policy provides one of the lowest worst case blocking times

A. Burns, B. Dobbing, T. Vardanega 63

Ada User Journal Volume 40, Number 1, March 2019

for contention for shared resources, and so maximizes the
schedulability of the task set when preemptive scheduling
is used.

4.2.3 Queuing Policy

The queuing policy is not meaningful for pragma
Profile(Ravenscar) since no entry queues can form. Thus
queuing policy identifiers FIFO_Queuing and
Priority_Queuing have no effect.

4.2.4 Additional Run-Time Errors Defined by the
Ravenscar Profile

The Ada language standard defines a number of
concurrency-related run-time checks that may lead to the
raising of an exception. The Ravenscar Profile restrictions
greatly reduce the quantity of these checks, and thus the
number of exception cases that can occur. The two
concurrency-related run-time checks that apply to
Ravenscar programs are:

 detection of priority ceiling violation as defined by
Ceiling_Locking policy;

 detection of violation of not more than one task
waiting concurrently on a suspension object (via the
Suspend_Until_True operation).

The Ravenscar Profile introduces some additional
concurrency-related checks that are potentially detectable
only at execution time:

 the maximum number of calls that are queued
concurrently on an entry must not exceed one.
Program_Error exception is raised if the error occurs
(pragma Restrictions(Max_Entry_Queue_Length =>
1));

 all tasks are non-terminating (pragma
Restrictions(No_Task_Termination)).

A conforming implementation must document the effect of
a task that attempts to terminate. Possible effects may
include:

 allowing the task to terminate silently;

 holding the task in a permanent pre-terminated state;

 executing a task termination handler.

Whatever action is taken by the implementation, the
application cannot assume that full task termination actions
(including finalization) have been executed.

4.2.5 Potentially-Blocking Operations in Protected
Actions

The Ravenscar Profile requires detection of the following
bounded error in the Ada standard, with the consequential
raising of Program_Error exception:

 execution of a potentially-blocking operation during a
protected action (pragma Detect_Blocking).

The Ravenscar Profile definition does however
significantly reduce the list of potentially-blocking
operations that may occur during a protected action. In

particular, the following potentially-blocking operations are
eliminated by the Ravenscar Profile definition:

 a select_statement

 an accept_statement

 a task entry call

 a delay_relative_statement

 an abort_statement

 task creation or activation

 an external requeue_statement with the same target
object as that of the protected action.

The Ravenscar Profile definition does not require detection,
at compile time, of other potentially blocking operations
defined by the language standard [RM 9.5.1 (16)]. In this
case, it is allowed for the detection to occur at the point of
execution of the potentially blocking operation within the
called subprogram body.

The rationale for requiring detection of potentially-blocking
operations in protected actions is to allow a highly efficient
and temporally deterministic implementation of
Ceiling_Locking policy on a mono-processor. In effect, the
ceiling priority alone is sufficient to provide the required
mutual exclusion without the need to use locks such as
mutexes once it is guaranteed that the task cannot suspend
co-operatively whilst inside the protected operation. This
form of locking is also non-queuing on a mono-processor,
with the associated benefit of removing the need to
compute the worst-case duration that a task call may wait in
the queue.

4.2.6 Exceptions and the No_Exceptions Restriction

The general concern within high integrity systems of the
occurrence of unhandled exceptions is not addressed
directly by the Ravenscar Profile since exceptions relate to
the sequential, rather than the concurrent, part of the
language. Consequently, whereas an unhandled exception
will cause a sequential program to terminate, and hence
offer an immediate opportunity for some program level
control to invoke recovery actions, an unhandled exception
during the execution phase of a concurrent program may
not be detected. In particular, an unhandled exception can
cause any of the following effects:

 silent abandonment of the execution of an interrupt
handler;

 silent termination of a task;

 premature exit from a protected action.

The Ravenscar Profile statically avoids the possibility that
an exception can be raised by an entry barrier via the
restriction Simple_Barriers. In addition, the Ravenscar
Profile imposes the restriction No_Task_Termination that
requires the implementation to document the effect of a
task attempting to terminate. Nevertheless, this is
inadequate for most high integrity applications that require
static demonstration of absence of exceptions due to run-

64 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 1, March 2019 Ada User Journal

time check failure. Some techniques are presented in
Section 6.2 to address the topic of proof of absence of the
concurrency-related run-time errors that may occur in a
Ravenscar Profile program, using static analysis.

The Ada standard includes the identifier No_Exceptions as
a valid argument for the Restrictions pragma. It should be
noted that the inclusion of this pragma does not provide a
static guarantee of exception freedom – it merely
guarantees that the application code does not contain any
explicit raise_statement, nor code generation for language-
defined checks, nor any exception handlers. However, it is
possible for an exception to be raised automatically by the
underlying hardware, or by built-in code in the run-time
system. There is a documentation requirement on the
implementation to define such cases [RM H.4 (25)].

In addition, the language standard defines execution of a
program to become erroneous if a language-defined check
is suppressed via the No_Exceptions restriction and the
conditions arise that would have caused the check to fail
[RM H.4 (26)]. This is consistent with the suppression of
checks using pragma Suppress [RM 11.5 (26)]. Since
erroneous execution results in the behaviour of a program
becoming undefined, the recommendation for high integrity
systems is that the No_Exceptions restriction should only
be used in conjunction with verification and analysis
techniques (see Chapter 1) that can statically prove that no
exceptions due to run-time check failure can occur. In this
case, the No_Exceptions restriction is providing the
additional safeguard that exception raising via explicit
raise_statements will be prohibited at compile time.

4.2.7 Access to Shared Variables

The Ravenscar Profile requires all synchronization and
communication between tasks and interrupt handlers to use
data that are guaranteed to have mutually-exclusive access.
This prevents any erroneous execution that might arise if
concurrent access (that includes a write operation) to the
same unprotected shared variable is permitted. Such access
control is provided in Ada using one of the following
constructs:

 a protected object;

 a suspension object;

 an atomic object (to which the Atomic aspect applies).

This access control model applies to the operational phase
of the application, after program initialization via
elaboration of library-level packages is complete. For each
class of object above, it is possible to ensure that its
initialization is completed as part of program elaboration.

There is an issue however, in that the semantics of Ada
define task activation and interrupt handler attachment to
occur during library-level elaboration code for objects that
are declared within library-level packages. Consequently, it
is the case that tasks will execute their declarative part and
may proceed into their sequence_of_statements, and that
interrupt handlers may execute, prior to the elaboration
code for program initialization being completed. This

scenario could give rise to the following undesirable
effects:

 a task body or interrupt handler may suffer an access-
before-elaboration exception;

 a task body or interrupt handler may access
uninitialized data;

 a task body or interrupt handler may access
unprotected data concurrently that it shares only with
the thread of control that is performing the data
initialization.

It is possible to program each task such that it suspends
itself at the start of its sequence of statements, but this is
not possible for interrupt handlers (although an application
may be able to inhibit interrupts if the device allows).
Furthermore, the code executed as part of task activation
(prior to the suspension point) may suffer the effects listed
above. In order to address this issue, the
Partition_Elaboration_Policy is defined in the Ada standard
(see below).

4.2.8 Elaboration Control

The new pragma Partition_Elaboration_Policy [RM H.6]
is not part of the Ravenscar Profile, but it is closely related
to it. If given the argument Sequential, this defines an
alternative elaboration behaviour in which all tasks
declared at the library level proceed to their activation only
after the environment task has completed all its
elaborations and the main program is leaving its
declarative_part. It is only at that point that interrupt
handlers are attached (so that no interrupt can be delivered
earlier), and all tasks eventually start their concurrent
execution. This pragma complements those that are
defined by the Ravenscar Profile and helps achieve the goal
that controlled access to global shared variables is met
during program initialization.

5 Examples of use

This chapter illustrates some simple patterns of use of the
Ravenscar Profile.

The Ravenscar Profile can be used with a variety of coding
styles. However, if the user is required to perform program
analysis, for example to check the schedulability of the
tasks, then certain coding styles are recommended. Indeed,
a small number of templates can cater for a large class of
application needs. In the first eight sections of this chapter,
we give examples that illustrate the straightforward use of
the Ravenscar Profile. After that, in Sections 5.9 to 5.12,
we show how the Ravenscar Profile can deal with
requirements that would appear to lie outside of its scope.

With the 2012 version of the language specification,
aspects should be used in place of most pragmas.
Accordingly, we have replaced all occurrences of the
obsolete pragmas with the corresponding aspect.

5.1 Cyclic Task
The task body for a cyclic (or periodic) task typically has,
as its last statement, an outermost infinite loop containing

A. Burns, B. Dobbing, T. Vardanega 65

Ada User Journal Volume 40, Number 1, March 2019

one or more delay_until_statements. The basic form of a
cyclic task has just a single delay statement either at the
start or at the end of the statements within the loop. The
Ravenscar Profile supports only one time type for use as
the argument – Ada.Real_Time.Time, although a user-
defined time type could be used.

Task termination is considered to be an error condition in
Ravenscar-compliant code since there is no dynamic task
creation (and hence the thread of control would be
permanently lost). Hence, the loop that is presented in the
template below is infinite.

A cyclic task will not usually contain any other form of
voluntary-suspension statement in the infinite loop, since
this would undermine the schedulability analysis.

The Ravenscar Profile supports the use of discriminants for
task types and protected types. One use of a discriminant is
to set differing priorities for task objects or protected
objects that are of the same type by using it as the argument
of the Priority aspect.

Discriminants can also be used to indicate the period of a
cyclic task or other task parameters, including the assigned
priority.

Example 1, Cyclic Template

task type Cyclic(Pri : System.Priority;
 Cycle_Time : Positive)
 with Priority => Pri;

task body Cyclic is
 Next_Period : Ada.Real_Time.Time;
 Period : constant Ada.Real_Time.Time_Span :=
 Ada.Real_Time.Microseconds(Cycle_Time);
 -- Other declarations as needed
begin
 -- Initialization code
 Next_Period := Ada.Real_Time.Clock + Period;
 loop
 delay until Next_Period;
 -- Wait one whole period before executing
 -- Non-suspending periodic response code
 -- May include calls to protected procedures
 Next_Period := Next_Period + Period;
 end loop;
end Cyclic;

-- Now we declare two task objects of this type
C1 : Cyclic(20,200);
C2 : Cyclic(15,100);

Cyclic tasks normally exchange data through protected
operations. In this coding style, there are no protected
entries since the only activation event is on delay until.
Conformance with the Ravenscar Profile requires that all
shared data be placed in protected objects to avoid
corruption. 3

3 Editor Note: the ISO technical report adds the possible use of atomic
objects, statically proven free of race conditions.

5.2 Co-ordinated release of Cyclic Tasks
The simple example illustrated above has a number of
cyclic tasks that each read the clock and then suspend for
time 'Period'. It can however by useful for all such tasks to
co-ordinate their start times so that they share a common
epoch. This can help to enforce precedence relations across
tasks. To achieve this a protected object is used, which
reads the clock on creation and then makes this clock value
available to all cyclic tasks.

Example 2, Protected Object Implementing an Epoch

protected Epoch
 with Priority => System.Priority'Last is
 function Start_Time return Ada.Real_Time.Time;
private
 Start : Ada.Real_Time.Time := Ada.Real_Time.Clock;
end Epoch;

protected body Epoch is
 function Start_Time return Ada.Real_Time.Time is
 begin
 return Start;
 end Start_Time;
end Epoch;

A protected object is not strictly needed to this end, since a
shared variable appropriately initialized will suffice. A
more robust scheme and one that only reads the epoch time
once a task actually needs it is as follows.

Example 3, Caller Initialized Epoch

protected Epoch
 with Priority => System.Priority'Last is
 procedure Get_Start_Time(
 T : out Ada.Real_Time.Time);
private
 Start : Ada.Real_Time.Time;
 First : Boolean := True;
end Epoch;

protected body Epoch is
 procedure Get_Start_Time(
 T : out Ada.Real_Time.Time) is
 begin
 if First then
 First := False;
 Start := Ada.Real_Time.Clock;
 end if;
 T := Start;
 end Get_Start_Time;
end Epoch;

This leads to the following further example.

Example 4, Cyclic Task Using Epoch

task type Cyclic(Pri : System.Priority;
 Cycle_Time : Positive)
 with Priority => Pri;

task body Cyclic is
 Next_Period : Ada.Real_Time.Time;
 Period : constant Ada.Real_Time.Time_Span :=
 Ada.Real_Time.Microseconds(Cycle_Time);
 -- Other declarations as needed

66 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 1, March 2019 Ada User Journal

begin
 -- Initialization code
 Epoch.Get_Start_Time(Next_Period);
 Next_Period := Next_Period + Period;
 loop
 delay until Next_Period;
 -- Wait until next period after epoch
 -- Non-suspending periodic response code
 -- May include calls to protected procedures
 Next_Period := Next_Period + Period;
 end loop;
end Cyclic;

5.3 Cyclic Tasks with Precedence Relations
The use of priorities and a shared epoch can be used to
enforce precedence between tasks with the same period, if
the application can be restricted so that the tasks do not
block during execution. An alternative scheme is to use an
offset in time. Here, scheduling analysis is used to ensure
that each task has completed before the next is released.

Example 5, Cyclic Tasks with Offsets

task type Cyclic(Pri : System.Priority;
 Cycle_Time, Offset : Natural)
 with Priority => Pri;

task body Cyclic is
 Next_Period : Ada.Real_Time.Time;
 Period : constant Ada.Real_Time.Time_Span :=
 Ada.Real_Time.Microseconds(Cycle_Time);
 -- Other declarations
begin
 -- Initialization code
 Next_Period := Epoch.Start_Time +
 Ada.Real_Time.Microseconds(Offset);
 loop
 delay until Next_Period;
 -- Wait until next period after offset
 -- Non-suspending periodic response code
 -- May include calls to protected procedures
 Next_Period := Next_Period + Period;
 end loop;
end Cyclic;

First : Cyclic(20,200,0); -- Required to complete with
 -- deadline 70
Second : Cyclic(20,200,70);

5.4 Event-Triggered Tasks
The task body for an event-triggered task that conforms to
the Ravenscar Profile typically has, as its last statement, an
outermost infinite loop whose first statement is either a call
to a protected entry or a call to Ada.Synchronous_
Task_Control.Suspend_Until_True using a Suspension
Object. The suspension object is used when no other effect
is required in the signalling operation; for example, no data
is to be transferred from signaller to waiter. In contrast, the
protected entry is used for more elaborate event signalling,
when additional operations must accompany the
resumption of the event-triggered task.

An event-triggered task will not usually contain any other
form of voluntary-suspension statement in the infinite loop.

Example 6, An Event-Triggered Task

-- A suspension object, SO, is declared in a visible library
-- unit and is set to True in another (releasing) task

task type Sporadic(Pri : System.Priority)
 with Priority => Pri;

task body Sporadic is
 -- Declarations
begin
 -- Initialization code
 loop
 Ada.Synchronous_Task_Control.
 Suspend_Until_True(SO);
 -- Non-suspending sporadic response code
 end loop;
end Sporadic;

Sp : Sporadic(17);

5.5 Shared Resource Control using Protected
Objects
A protected object used to ensure mutually exclusive access
to a shared resource, such as global data, typically contains
only protected subprograms as operations, i.e. no protected
entries. Protected entries are used only for task
synchronization purposes where data exchange is involved.
A protected procedure should be used when the internal
state of the protected data must be altered, and a protected
function should be used for information retrieval from the
protected data, when the data remains unchanged.

The Ada Reference Manual states that the use of any form
of voluntary-suspension statement during the execution of a
protected operation is a bounded error [RM 9.5.1 (8)]. The
Ravenscar Profile requires, via pragma Detect_Blocking,
an implementation to detect this error (and hence to raise
the Program_Error exception), other than in the case when
suspension is due to execution outside of the Ada
environment, for example within an underlying operating
system call or within imported code that is written in
another language.

It is essential to choose the correct value for the ceiling
priority of the protected object. By default, the value is
System.Priority’Last, unless the protected object contains
interrupt handlers (see below). The chosen value must be at
least as high as the highest priority task that calls one of the
protected operations. If this is not the case, the Ada
Reference Manual requires the Program_Error exception to
be raised when a task with a priority higher than the ceiling
priority makes a call to one of the protected operations.
However, if the ceiling value is higher than necessary, there
may be an increase in the blocking time that high priority
tasks will suffer, and consequently a decrease in the overall
schedulability of the system. Tool support may be available
to determine the optimal ceiling value when the calling
sequences can be statically analysed.

A. Burns, B. Dobbing, T. Vardanega 67

Ada User Journal Volume 40, Number 1, March 2019

Example 7, Use of Protected Object for Mutual
Exclusion

protected Shared_Data
 with Priority => 10 -- All callers must have priority no
 -- greater than 10
is
 function Get return Data; -- For some global type, Data
 procedure Put(D : in Data);
private
 Current : Data; -- Shared data declaration
end Shared_Data;

protected body Shared_Data is
 function Get return Data is
 begin
 return Current;
 end Get;
 procedure Put(D : in Data) is
 begin
 Current := D;
 end Put;
end Shared_Data;

5.6 Task Synchronization Primitives
Task synchronization, in the form of a wait/signal event
model, can be achieved in the Ravenscar Profile using
either a protected entry or a suspension object, as described
above for event-triggered tasks.

The suspension object is the optimized form for a simple
suspend/resume operation. The package
Ada.Synchronous_Task_Control [RM D.10] is used to
declare a suspension object, and the primitives
Suspend_Until_True and Set_True are used for the suspend
and resume operations respectively.

The use of protected objects with entries for task
synchronization is restricted by the Ravenscar Profile. The
protected object can have at most one entry declaration; the
entry barrier must be a simple value that is either a Boolean
literal or a Boolean variable that is part of the protected
state; and at most one task is allowed to wait on the
protected entry at any time (see Section 4.1.4). These
restrictions provide the necessary determinism in knowing
which waiting task is serviced first when entry_barriers
become true, since there can be at most one such task call
enqueued at it. This model is very similar to the suspension
object approach except that:

 Data can be transferred from signaller to waiter
atomically (i.e. without risk of a race condition) by use
of parameters to the protected operations and
additional protected data.

 Additional code can be executed atomically as part of
signalling by use of the bodies of the protected
operations.

Example 8, Event-Triggered Tasks Suspending on a
Protected Entry

protected type Event(Ceiling : System.Priority)
 with Priority => Ceiling -- Ceiling priority defined for each
 -- object
is
 entry Wait(D : out Data);
 procedure Signal(D : in Data);
private
 Current : Data; -- Event data declaration
 Signalled : Boolean := False;
end Event;

protected body Event is
 entry Wait(D : out Data) when Signalled is
 begin
 D := Current;
 Signalled := False;
 end Wait;
 procedure Signal(D : in Data) is
 begin
 Current := D;
 Signalled := True;
 end Signal;
end Event;

Event_Object : Event(15);

task Event_Handler
 with Priority => 14; -- I.e. this must be not greater than 15

task body Event_Handler is
 -- Declarations, including D of type Data
begin
 -- Initialization code
 loop
 Event_Object.Wait(D);
 -- Non-suspending event handling code
 end loop;
end Event_Handler;

5.7 Minimum Separation between Event-
Triggered Tasks
To ensure the timely execution of all tasks in a system it
may be necessary to enforce a separation between sporadic
tasks so that they cannot execute more frequently than
some agreed value. This is easily achieved with a
delay_until_statement. Doing so however introduces a
second activation event into the code of the task’s outer
loop. In general, this can make the task more difficult to
analyse. In Example 9 below however, it actually facilitates
the analysis by ensuring a minimum separation between
task activations. This happens because the two activation
events are in effect subsequent.

68 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 1, March 2019 Ada User Journal

Example 9, Event-Triggered Task with Minimum
Separation

task Event_Handler
 with Priority(14);

task body Event_Handler is
 -- Declarations, including D of type Data
 Minimum_Separation : constant
 Ada.Real_Time.Time_Span := -- some appropriate
 -- value
 Next : Ada.Real_Time.Time;
begin
 -- Initialization code
 loop
 Event_Object.Wait(D);
 Next := Ada.Real_Time.Clock + Minimum_Separation;
 -- Non-suspending event handling code
 delay until Next; -- this ensures minimum temporal
 -- separation
 end loop;
end Event_Handler;

5.8 Interrupt Handlers
The code of an interrupt handler will often be used to
initiate a response in an event-triggered task. This is
because the code in the handler itself executes at the
hardware interrupt level, and typically the major part of the
processing of the response to the interrupt is moved into an
event response task, which executes at a software priority
level with interrupts fully enabled.

In Example 8 above, if signalling is to be achieved via an
interrupt, then the procedure Signal should be defined as
parameterless, and be identified as an interrupt handler by
the aspect Attach_Handler. This aspect includes an
argument of type Ada.Interrupts.Interrupt_ID that identifies
the interrupt to which the handler applies.

The ceiling priority of a protected object that contains an
interrupt handler must be in the range of
System.Interrupt_Priority.

Example 10, Interrupt Handling via a Protected Entry

protected Interrupt_Event
 with Interrupt_Priority => System.Interrupt_Priority'Last
is
 entry Wait(D : out Data);
 procedure Signal
 -- Must be parameterless
 with Attach_Handler => Some_Interrupt_Id;
 -- Wait and Signal will execute with full interrupt lockout
private
 Current : Data; -- Event data declaration
 Signalled : Boolean := False;
end Interrupt_Event;

protected body Interrupt_Event is
 -- Similar to the code in Example 8
 -- except that the setting of Current is
 -- obtained via a register during
 -- the execution of Signal rather than as an in parameter

5.9 Catering for Entries with Multiple Callers
In this and the following three sections we illustrate how to
cater for situations that appear to need more functionality
than provided by the Ravenscar Profile. In doing this we
are not attempting to say that Ravenscar applications will
be able to deal with all situations that full Ada covers. The
tasking features of Ada represent a powerful set of
abstractions for programming concurrent and real-time
systems. To gain predictability and efficiency, the
Ravenscar Profile has had to drop many of these features,
and it is not appropriate to reintroduce them via a
combination of programming tricks and conventions.
However, situations may arise when a requirement in just
part of a program seems outside of the Ravenscar Profile’s
definition. These can often be catered for by
straightforward techniques that benefit from the other
restrictions of the Ravenscar Profile.

Here we focus on the requirement for two (or more) tasks
to call the same entry of some protected object. As an
illustration, consider a situation in which a series of tasks
create work items, while others consume them. If more
than 10 (say) outstanding items ever accumulate then the
two separate event-triggered tasks must be released. An
atomicity requirement is that the two tasks are only
released if both are available and only when new work
items are created.

A non Ravenscar Example

protected Controller is
 entry Overload; -- called by two tasks
 procedure Create;
 procedure Consume;
private
 Work_Items : Integer := 0;
 Released : Boolean := False;
end Controller;

protected body Controller is
 entry Overload when Released is
 begin
 if Overload’Count = 0 then -- barrier is closed when both
 -- tasks have left
 Released := False;
 end if;
 end Overload;
 procedure Create is
 begin
 Work_Items := Work_Items + 1;
 Released := (Work_Items > 10 and
 Overload’Count = 2);
 -- barrier is opened when more than 10 items
 -- and both tasks are waiting
 end Create;
 procedure Consume is
 begin
 Work_Items := Work_Items – 1;
 end Consume;
end Controller;

To conform with the Ravenscar Profile restrictions, two
Controller protected objects are needed, one for each task.
To get the required atomicity the second Controller must be
called from the first.

A. Burns, B. Dobbing, T. Vardanega 69

Ada User Journal Volume 40, Number 1, March 2019

Example 11, Using Multiple Protected Objects to Mimic
an Entry Queue

protected First_Controller is
 entry Overload; -- called by one task
 procedure Check_Called(OK : out Boolean);
private
 Released : Boolean := False;
end First_Controller;

protected body First_Controller is
 entry Overload when Released is
 begin
 Released := False; -- barrier set to False once task has
 -- been released
 end Overload;
 procedure Check_Called(OK : out Boolean) is
 begin
 Released := (Overload’Count = 1);
 OK := Released; -- returns True if task waiting
 end Check_Called;
end First_Controller;

protected Second_Controller is
 entry Overload; -- called by the other task
 procedure Create;
 procedure Consume;
private
 Work_Items : Integer := 0;
 Released : Boolean := False;
end Second_Controller;

protected body Second_Controller is
 entry Overload when Released is
 begin
 Released := False; -- barrier set to False once task has
 -- been released
 end Overload;
 procedure Create is
 begin
 Work_Items := Work_Items + 1;
 if Work_Items > 10 and Overload’Count = 1 then
 First_Controller.Check_Called(Released);
 end if; -- if Released is true then the first task
 -- has been released
 -- and the second one must also be released
 end Create;
 procedure Consume is
 begin
 Work_Items := Work_Items – 1;
 end Consume;
end Second_Controller;

Note that, in the Ravenscar Profile, once a task calls an
entry, it cannot cancel the call; hence the above algorithm
is safe. In the full language, task calls can be cancelled and
therefore the above approach would not be guaranteed to
work.

5.10 Catering for Protected Objects with more
than one Entry
To illustrate the way a two-entry protected object can be
transformed, consider the standard buffer with one task
calling the buffer to extract an item and another task calling
it to place items in the buffer. Usually both of these calls
must be made via entries in a protected object as the extract
call must block if the buffer is empty, and the place call

must block if the buffer is full. To comply with the
Ravenscar Profile restriction of only one entry in any
protected object, a protected object is used for mutual
exclusion only and two suspension objects are introduced
for the necessary conditional synchronization.

Example 12, A Bounded Buffer Example In Ravenscar

package Buffer is
 procedure Place_Item(Item : Some_Type);
 procedure Extract_Item(Item : out Some_Type);
end Buffer;

package body Buffer is
 protected Buff is
 procedure Place(Item : in Some_Type;
 Success : out Boolean);
 procedure Extract(Item : out Some_Type;
 Success : out Boolean);
 private
 Buffer_Full : Boolean := False;
 Buffer_Empty : Boolean := True;
 -- other declarations
 end Buff;

 Non_Full, Non_Empty :
 Ada.Synchronous_Task_Control.Suspension_Object;

 procedure Place_Item(Item : Some_Type) is
 OK : Boolean;
 begin
 Buff.Place(Item, OK);
 if not OK then
 Ada.Synchronous_Task_Control.
 Suspend_Until_True(Non_Full);
 -- note this is a task activation event
 Buff.Place(Item, OK); -- OK must be true
 end if;
 Ada.Synchronous_Task_Control.Set_True(Non_Empty);
 end Place_Item;

 procedure Extract_Item(Item : out Some_Type) is
 OK : Boolean;
 begin
 Buff.Extract(Item, OK);
 if not OK then
 Ada.Synchronous_Task_Control.
 Suspend_Until_True(Non_Empty);
 -- note this is a task activation event
 Buff.Extract(Item, OK); -- OK must be true
 end if;
 Ada.Synchronous_Task_Control.Set_True(Non_Full);
 end Extract_Item;

 protected body Buff is
 procedure Place(Item : in Some_Type;
 Success : out Boolean) is
 begin
 Success := not Buffer_Full;
 if not Buffer_Full then
 -- put Item into Buffer
 Buffer_Empty := False;
 -- set Buffer_Full if appropriate
 end if;
 end Place;
 procedure Extract(Item : out Some_Type;
 Success: out Boolean)) is
 begin
 Success := not Buffer_Empty;

70 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 1, March 2019 Ada User Journal

 if not Buffer_Empty then
 -- extract Item from Buffer
 Buffer_Full := False;
 -- set Buffer_Empty if appropriate
 end if;
 end Extract;
 end Buff;
end Buffer;

5.11 Programming Timeouts
There may be situations where a call to a protected object's
entry should be retracted after a period of time if the event
that should release it has not occurred. In full Ada, this
would be:

select
 PO.Call;
 Timeout := False;
or
 delay until Some_Time;
 Timeout := True;
end select;

Identical functionality can be achieved in Ravenscar by the
use of an extra task that is event-triggered and a protected
object that is used to pass the timeout value to this task.
This is illustrated below; note the expansion in code needed
to accommodate this effect. The full language clearly has
significant superior expressive power in this, and other,
areas.

Example 13, Programming Timeouts in Ravenscar

protected PO is
 entry Call(Timeout : out Boolean);
 procedure Used_To_Release_Call;
 procedure Too_Late;
private
 Timed_Out : Boolean := False;
 Release : Boolean := False;
end PO;

protected body PO is
 procedure Too_Late is
 begin
 if Call’Count = 1 then
 Timed_Out := True;
 Release := True;
 end if;
 end Too_Late;
 procedure Used_To_Release_Call is
 begin
 Timed_Out := False;
 Release := True;
 end Used_To_Release_Call;
 entry Call(Timeout : out Boolean) when Release is
 begin
 Timeout := Timed_Out;
 Release := False;
 -- further non-suspending code if necessary
 end Call;
end PO;

protected Timer_Control is
 entry Wait(Wait_Time : out Ada.Real_Time.Time);
 procedure Set_Time(Wait_Time : Ada.Real_Time.Time);
private
 Timeout : Ada.Real_Time.Time;

 Released : Boolean := False;
end Timer_Control;

protected body Timer_Control is
 entry Wait(Wait_Time : out Ada.Real_Time.Time)
 when Released is
 begin
 Wait_Time := Timeout;
 Released := False;
 end Wait;
 procedure Set_Time(
 Wait_Time : Ada.Real_Time.Time) is
 begin
 Timeout := Wait_Time;
 Released := True;
 end Set_Time;
end Timer_Control;

task Timer; -- note this task has more than one
 -- activation event

task body Timer is
 T : Ada.Real_Time.Time;
begin
 loop
 Timer_Control.Wait(T);
 delay until T;
 PO.Too_Late;
 end loop;
end Timer;

-- application calls the following
Timer_Control.Set_Time(Some_Time);
PO.Call(Timeout);

5.12 Further Expansions to the Expressive Power
of the Ravenscar Profile
If static timing analysis is not of interest to the application
program and a more general model of tasks and interrupts
is required, this can still be achieved with reasonable
expressive power within the subset definition. However, as
noted earlier, the Ravenscar Profile is not a substitute for
the full language when that level of expressive power is
needed.

 Dynamic creation and termination of tasks can be
simulated by declaring a pool of event-triggered tasks
at program start-up, each containing an infinite loop
which has a suspending operation as its first statement,
such that its execution can be invoked dynamically by
one of the task synchronization primitives. Thus, by
changing the settings of suspension objects and entry
barriers, it is possible for certain tasks to have their
execution disabled whilst others have execution
enabled.

 Dynamic exchange of interrupt handlers, often
required for applications performing mode change, can
be simulated by embodying all the different handling
code for a particular interrupt in one interrupt handler
protected procedure, with each of the different actions
being coded as case alternatives in a case statement,
dependent on a mode selector. By changing the value
of the mode selector, the same handler procedure can

A. Burns, B. Dobbing, T. Vardanega 71

Ada User Journal Volume 40, Number 1, March 2019

perform different response actions at various times
during program execution.

 Dynamic task priority change is also generally
associated with mode change. This can be simulated by
use of a separate event response task for each mode of
operation (and assigning a different priority to each
task as required), such that the execution of each task
that belongs to a dormant mode is suspended until
signalled when its mode becomes active.

 A similar effect to requeue can be achieved by
completing the protected entry body and returning a
status result to the caller, which can then emit a
subsequent protected entry call to the intended
destination of the requeue statement. If each protected
entry is called only by a single task, then this
alternative technique does not introduce any race
conditions.

Similarly, if static timing analysis is not of interest, the
classic non-timed rendezvous operations can still be
achieved within the subset definition by use of suspension
objects for synchronization and protected object entries for
communication.

No conditional form of suspension is supported by the
Ravenscar Profile. This can be simulated if a suspension
object is used by polling the state of the suspension object
(via the Current_State function in package
Ada.Synchronous_Task_Control), or if a protected entry is
used by polling the value of the protected data which
controls the synchronization (i.e. the barrier Boolean).

References

[AI 249] Ravenscar Profile for high integrity systems,
ARG, http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ AIs/ AI-00265.TXT

[AI 265] Partition elaboration policy for high integrity
systems, ARG (2002), http://www.ada-auth.org/
cgi-bin/cvsweb.cgi/AIs/AI-00265.TXT

[AI 305] New pragma and additional restriction identifiers
for real-time systems, ARG (2002),
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/
AI-00305.TXT

[CSP] Hoare, C. A. R. (2004), Communicating
Sequential Processes, Prentice Hall
International. ISBN 0-13-153271-5.

[DO] DO-178C Software Considerations in Airborne
Systems and Equipment Certification, RTCA
Inc. (2011).

[DS] U.K. Ministry of Defence (1997), 00-55
Requirements of Safety Related Software in
Defence Equipment.

[GA] Guide for the use of Ada Programming
Language in High Integrity Systems (2000),
ISO/IEC TR 15942.

[RM] International Standard ANSI/ISO/IEC-
8652:2012 (2015), Ada 2012 Reference Manual,
Technical Corrigendum 1.

Bibliography

[1] C. Lui and J. Layland (1973), Scheduling algorithms
for multiprogramming in a hard real-time
environment, JACM, 20 (1), 46 - 61.

[2] M. Joseph and P. Pandya (1986), Finding response
times in a real-time system, BCS Computer Journal, 29
(5), 390 - 395.

[3] A. Burns, and A. J. Wellings (1997), Restricted
Tasking Models, Ada Letters, XVII (5), 27 - 32.

[4] B. Dobbing and M. Richard-Foy (1997), T-SMART -
Task Safe, Minimal Ada Realtime Toolset, Ada Letters,
XVII (5), 45 - 50, 1997.

[5] A. Burns (1999), The Ravenscar Profile, Ada letters,
XIX (4), 49 - 52.

[6] Session Summary (1999), The Ravenscar Profile and
Implementation Issues, Ada Letters, XIX (2), 12 - 14.

[7] Session Summary (2001), Status and Future of the
Ravenscar Profile, Ada Letters, XXI (1), 5 - 8.

[8] Session Summary, Ravenscar Profile, Proceedings of
the 11th International Real-Time Ada Worshop, Ada
Letters.

[9] A. Burns and A. J. Wellings (2016), Analysable Real-
Time Systems: Programmed in Ada, Amazon Books.

[10] J.W.S. Liu (2000), Real-Time Systems, Prentice Hall.

[11] A. Burns and A. J. Wellings (1994), HRT-HOOD: A
design method for hard real-time Ada, Real-Time
Systems, 6 (1), 73 - 114.

72

Volume 40, Number 1, March 2019 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

