

Ada User Journal Volume 40, Number 2, June 2019

ADA
USER
JOURNAL

Volume 40
Number 2
June 2019

Contents
Page

Editorial Policy for Ada User Journal 74

Editorial 75

Quarterly News Digest 77

Conference Calendar 91

Forthcoming Events 97

Ada-Europe 2019 Industrial Presentations

 M. Martignano
“A “New” C Static Analyzer: the Compiler” 99

 T. A. Beyene, C. Herrera, V. Nigam
“Verification of Ada Programs with AdaHorn” 103

Special Contribution

 A. Burns, B. Dobbing, T. Vardanega
“Guide for the Use of the Ada Ravenscar Profile in High Integrity Systems (Part 2)” 110

Ada-Europe Associate Members (National Ada Organizations) 128

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:
http://www.ada-europe.org/join

 77

Ada User Journal Volume 40, Number 2, June 2019

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Ada-related Events 77
Ada-related Resources 80
Ada-related Tools 80
Ada Inside 83
Ada and other Languages 84
Ada Practice 86
Ada in Jest 89

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.]

FOSDEM 2019 post hoc
summary
From: dirk@orka.cs.kuleuven.be

 (Dirk Craeynest)
Date: Mon, 25 Feb 2019 07:04:32 -0000
Subject: FOSDEM 2019 Ada Developer

Room - presentations & videos online
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

*** Presentations, videos, pictures
available online ***

9th Ada Developer Room at
FOSDEM 2019

Saturday 2 February 2019
Université Libre de Bruxelles (ULB),
Solbosch Campus, Room AW1.125

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organized in cooperation with
Ada-Europe

www.cs.kuleuven.be/~dirk/
ada-belgium/events/19/

190202-fosdem.html
fosdem.org/2019/schedule/track/ada

All presentations and video recordings as
well as some pictures from the 9th Ada
Developer Room, held at FOSDEM 2019
in Brussels recently, are available via the
Ada-Belgium and FOSDEM web sites
now.

- "Welcome to the Ada DevRoom" by
Dirk Craeynest - Ada-Belgium

- "An Introduction to Ada for Beginning
and Experienced Programmers" by Jean-
Pierre Rosen - Adalog

- "Sequential Programming in Ada:
Lessons Learned" by Joakim Strandberg
- Mequinox

- "Autonomous Train Control Systems: a
First Approach" by Julia Teissl - FH
Campus Wien

- "Controlling the Execution of Parallel
Algorithms in Ada" by Jan Verschelde -
University of Illinois at Chicago

- "Persistence with Ada Database
Objects" by Stephane Carrez - Twinlife

- "Shrink your Data to (almost) Nothing
with Trained Compression" by Gautier
de Montmollin - Ada-Switzerland

- "GSH: an Ada POSIX Shell to Speed
Up GNU Builds on Windows" by
Nicolas Roche - AdaCore

- "What is Safety-Critical Software, and
How Can Ada and SPARK Help?" by
Jean-Pierre Rosen - Adalog

- "Secure Web Applications with
AWA" by Stephane Carrez - Twinlife

- "Distributed Computing with Ada and
CORBA using PolyORB" by Frédéric
Praca - Ada-France

- "Cappulada: Smooth Ada Bindings for
C++" by Johannes Kliemann -
Componolit

- "AZip Archive Manager: a full-Ada
Open-Source Portable Application" by
Gautier de Montmollin - Ada-
Switzerland

- "Proof of Pointer Programs with
Ownership in SPARK" by Yannick Moy
- AdaCore

- "Alternative Languages for Safe and
Secure RISC-V Programming" by
Fabien Chouteau - AdaCore, in RISC-V
DevRoom on Sat 2 Feb

- "RecordFlux: Facilitating Verification of
Communication Protocols" by Tobias
Reiher - Componolit, in Security
DevRoom on Sun 3 Feb

Presentation abstracts, speaker bios,
pointers to relevant information, copies of
slides, links to corresponding pages and
video recordings, are available via the

Ada-Belgium and FOSDEM sites at the
URLs above.
Some pictures are posted as well. If you
have more pictures or other material you
would like to share, or know someone
who does, then please contact me.
Finally, thanks once more to all presenters
and helpers for their work and
collaboration, thanks to all the FOSDEM
organizers and volunteers, thanks to the
many participants for their interest, and
thanks to everyone for another nice
experience!
Dirk Craeynest, FOSDEM Ada DevRoom
coordinator
Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)
#AdaFOSDEM #AdaProgramming
#AdaBelgium #AdaEurope

DeCPS workshop in Warsaw
From: dirk@orka.cs.kuleuven.be.

(Dirk Craeynest)
Date: Wed, 3 Apr 2019 22:19:24 -0000
Subject: DeCPS 2019 - Dependable and

Cyber-Physical Systems Engineering
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc
Call for Papers

DeCPS 2019 - Workshop on Challenges
and new Approaches for Dependable and

Cyber-Physical Systems Engineering
14 June 2019, Warsaw, Poland

Co-located with the Ada-Europe 24th
International Conference on Reliable

Software Technologies
Conference web site:

http://www.ada-europe.org/
conference2019

--- Scope ---
In recent years, the Internet of Things
(IoT) has experienced an extraordinary
development with a broad impact on
society; however, there is still a gap
between the physical world and the cyber
one. Cyber Physical Systems (CPS)
constitute a new class of engineered
systems, integrating software control and
autonomous decision making with signals
from an uncertain and dynamic
environment. Internet transformed the
way people interact and deal with
information. CPS technology transformed
the way people interact with engineered

78 Ada-related Events

Volume 40, Number 2, June 2019 Ada User Journal

systems. For this type of systems, it is
necessary not only ensuring the safety of
physical devices but also other factors
such as information about customers,
suppliers, and organizational strategies
need to be secured. In the context of cyber
systems, the Artificial Intelligence (AI)
technologies can contribute to manage a
huge amount of heterogeneous data that
come from different sources without
human intervention. To deliver
certification, standards for machine safety
are highly recommended as they give
confidence to the regulatory. The generic
standard for safety-related hardware and
software might be applicable, however,
due to increasing autonomy of robots
there is still a potential for evolution of
such regulations or standards. The proper
combination of AI, CPS and IoT is
therefore fundamental.
CPS are considered a disruptive
technology which will transform the
traditional manufacturing into Industry
4.0 solutions, and are used in a very wide
spectrum of applications: smart mobility,
autonomous driving, digital healthcare,
smart grids and buildings, mobile co-
operating autonomous robotic systems,
digital consumer products and services.
"In conclusion, the emerging Digital (R)-
evolution relies heavily on Embedded
Intelligent Systems technologies in
domains where it is paramount that
Europe takes leadership role" (Laila Gide,
"The pathway to digital transformation:
an opportunity for Europe", ARTEMIS
Magazine 20 May 2016).
This workshop aims to provide a platform
to industrial practitioners, researchers and
engineers in academia to exchange of
their ideas, research results, experiences
in the field of dependable and cyber
physical systems engineering, both a
theoretical and practical perspective. To
foster visibility and interaction,
participation in the workshop will be also
open to conference participants (at no
extra cost).
--- Topics of interest ---
The topics of interest includes, but are not
limited to:
* Vehicle of the Future
* Transport and Mobility
* Industry 4.0 in transportation sector
* Security and comfort of the end-user
* Human/Machine Interaction
* Safety and Security
* Industrial experiments and case studies
* Integration of Internet of Things and

Cloud Computing
* Evolution of standards and certification

processes
* Impact of Artificial Intelligence in CPS
The workshop will also include
contributions from relevant projects in the

domain, such as Future Factories in the
Cloud (FiC), Productive 4.0, AMASS,
ENABLE-S3, SafeCOP, SCOTT, etc.
--- Paper submission ---
Submission of regular papers (4 pages,
AUJ style) at the following page:
https://easychair.org/conferences/
?conf=decps2019
The post-workshop proceedings will be
published in the Ada User Journal
(http://www.ada-europe.org/auj/guide/).
--- Important dates ---
* Submission deadline: 30 April 2019
* Notification to authors: 17 May 2019
* Workshop: 14 June 2019
* After-workshop final version: 15

September 2019
* Publication in Ada User Journal:

December 2019
--- Track Chairs ---
* Faiz Ul Muram, Mälardalen Univ.,

Sweden
--- Steering Committee ---
* Daniela Cancila, CEA LIST, France
* Martin Torngren, KTH Royal Institute

of Technology, Sweden
* Alessandra Bagnato, SOFTEAM,

France
* Cristina De Luca, Infineon

Technologies Austria AG Austria
* Silvia Mazzini, INTECS Italy
* Laurent Rioux, Thales, France
* Barbara Gallina, Mälardalen Univ.,

Sweden
* Luis Miguel Pinho, Polytechnic Institute

of Porto, Portugal
Dirk.Craeynest@cs.kuleuven.be, Ada-
Europe 2019 Publicity Chair

Ada-Belgium Spring 2019
Event
From: dirk@orka.cs.kuleuven.be.

(Dirk Craeynest)
Date: Sun, 5 May 2019 19:35:53 -0000
Subject: Ada-Belgium Spring 2019 Event,

Sun 12 May 2019
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, be.comp.programming

Ada-Belgium Spring 2019 Event
Sunday, May 12, 2019, 12:00-19:00

Wavre area, south of Brussels, Belgium
including at 15:00

2019 Ada-Belgium General Assembly
and at 16:00

Ada Round-Table Discussion
http://www.cs.kuleuven.be/~dirk/

ada-belgium/events/local.html

*** Announcement
The next Ada-Belgium event will take
place on Sunday, May 12, 2019 in the
Wavre area, south of Brussels.
For the 12th year in a row, Ada-Belgium
organizes their "Spring Event", which
starts at noon, runs until 7pm, and
includes an informal lunch, the 26th
General Assembly of the organization,
and a round-table discussion on Ada-
related topics the participants would like
to bring up.
*** Schedule
 * 12:00 welcome and getting started

(please be there!)
 * 12:15 informal lunch
 * 15:00 Ada-Belgium General Assembly
 * 16:00 Ada round-table + informal

discussions
 * 19:00 end
*** Participation
Everyone interested (members and non-
members alike) is welcome at any or all
parts of this event.
For practical reasons registration is
required. If you would like to attend,
please send an email before Thursday,
May 9, 21:00, to Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> with
the subject "Ada-Belgium Spring 2019
Event", so you can get precise directions
to the place of the meeting. Even if you
already responded to the preliminary
announcement, please reconfirm your
participation ASAP.
If you are a member but have not renewed
your affiliation yet, please do so by
paying the appropriate fee before the
General Assembly (you have also
received a printed request via normal
mail). If you are interested to join Ada-
Belgium, please register by filling out the
2019 membership application form [1]
and by paying the appropriate fee before
the General Assembly. After payment you
will receive a receipt from our treasurer
and you are considered a member of the
organization for the year 2019 with all
member benefits [2]. Early enrollment
ensures you receive the full Ada-Belgium
membership benefits (including the Ada-
Europe indirect membership benefits
package).
As mentioned at earlier occasions, we
have a limited stock of documentation
sets and Ada related CD-ROMs that were
distributed at previous events, as well as
some back issues of the Ada User Journal
[3]. These will be available on a first-
come first-serve basis at the General
Assembly for current and new members.
(Please indicate in the above-mentioned
registration e-mail that you're interested,
so we can bring enough copies.)
[1] http://www.cs.kuleuven.be/~dirk/

ada-belgium/forms/
member-form19.html

Ada-related Events 79

Ada User Journal Volume 40, Number 2, June 2019

[2] http://www.cs.kuleuven.be/~dirk/
ada-belgium/member-benefit.html

[3] http://www.ada-europe.org/auj/home/
*** Informal lunch
The organization will provide food and
beverage to all Ada-Belgium members.
Non-members who want to participate at
the lunch are also welcome: they can
choose to join the organization or pay the
sum of 15 Euros per person to the
Treasurer of the organization.
*** General Assembly
All Ada-Belgium members have a vote at
the General Assembly, can add items to
the agenda, and can be a candidate for a
position on the Board [4]. See the separate
official convocation [5] for all details.
[4] http://www.cs.kuleuven.be/~dirk/

ada-belgium/board/
[5] http://www.cs.kuleuven.be/~dirk/

ada-belgium/events/19/
190512-abga-conv.html

*** Ada Round-Table Discussion
As in recent years, we plan to keep the
technical part of the Spring event informal
as well. We will have a round-table
discussion on Ada-related topics the
participants would like to bring up. We
invite everyone to briefly mention how
they are using Ada in their work or non-
work environment, and/or what kind of
Ada-related activities they would like to
embark on. We hope this might spark
some concrete ideas for new activities and
collaborations.
*** Directions
To permit this more interactive and social
format, the event takes place at private
premises in the Wavre area, south of
Brussels. As instructed above, please
inform us by e-mail if you would like to
attend, and we'll provide you precise
directions to the place of the meeting.
Obviously, the number of participants we
can accommodate is not unlimited, so
don't delay...
Looking forward to meet many of you!
Dirk Craeynest, President Ada-Belgium
Dirk.Craeynest@cs.kuleuven.be

Acknowledgements
We would like to thank our sponsors for
their continued support of our activities:

AdaCore, and KU Leuven
(University of Leuven).

If you would also like to support Ada-
Belgium, find out about the extra Ada-

Belgium sponsorship benefits:
http://www.cs.kuleuven.be/~dirk/
ada-belgium/member-benefit.html

#sponsor

Ada-Europe 2019
From: dirk@orka.cs.kuleuven.be. (Dirk

Craeynest)
Date: Thu, 9 May 2019 05:47:27 -0000
Subject: 24th Int. Conf. Reliable Software

Technologies, Ada-Europe 2019
Newsgroups: comp.lang.ada,

fr.comp.lang. ada, comp.lang.misc
--

Call for Participation
*** PROGRAM SUMMARY ***

24th International Conference on Reliable
Software Technologies -

Ada-Europe 2019
11-14 June 2019, Warsaw, Poland

http://www.ada-europe.org/
conference2019

Organized by EDC and Ada-Europe, in
cooperation with ACM SIGAda,
SIGBED, SIGPLAN and the Ada

Resource Association (ARA)
*** Online registration open ***

*** Early registration discount until May
20 ***

*** Extensive info available on
conference web site ***

*** Highly recommended to book your
hotel ASAP ***

The 24th International Conference on
Reliable Software Technologies - Ada-
Europe 2019 visits Poland, for the first
time, and is hosted in Warsaw from the
11th to the 14th of June. The conference
is the latest in a series of annual
international conferences started in the
early 80's, under the auspices of Ada-
Europe, the international organization that
promotes knowledge and use of Ada and
Reliable Software in general, into
academic education and research, and
industrial practice.
The Ada-Europe series of conferences has
over the years become a leading
international forum for providers,
practitioners and researchers in reliable
software technologies. These events
highlight the increased relevance of Ada
in general and in safety- and security-
critical systems in particular, and provide
a unique opportunity for interaction and
collaboration between academics and
industrial practitioners.
Extensive information is on the
conference web site, such as an overview
of the program, the list of accepted papers
and industrial presentations, and
descriptions of workshops, tutorials,
keynote presentations, and social events.
Also check the conference site for
registration, accommodation and travel
information. The 12-page Advance
Program brochure is available there as
well.

The 2019 edition of the conference
features a number of important
innovations:
- lower registration fee for conference,

unified for all participants;
- further reduced fee for all authors;
- lower registration fee for all tutorials;
- journal-based open-access publication

model for peer-reviewed papers;
- an educational tutorial offered especially

for those new to Ada;
- more compact program with two core

days (Wed & Thu); tutorials on
Tuesday, then exhibition opening mid-
afternoon, followed by welcome aperitif
for all participants;

- full-day DeCPS workshop on Friday
(complementary with registration).

Quick overview
- Tue 11: tutorials, opening exhibition +

AE GA, welcome reception
- Wed 12 & Thu 13: core program
- Fri 14: workshop

Proceedings
- peer-reviewed papers in open-access

journal
- industrial presentation and tutorial

abstracts in Ada User Journal

Conference & Program Chair
- Tullio Vardanega, University of Padua,
Italy tullio.vardanega at unipd.it

Keynote speakers
- Tucker Taft, AdaCore, USA, "A 2020

View of Ada"
- other keynote to be confirmed (see

conference web site)

Workshop (full day)
- 6th International Workshop on

"Challenges and new Approaches for
Dependable and Cyber-Physical
Systems Engineering" (DeCPS 2019)

Tutorials (full day)
- "Controlling I/O Devices with Ada,

using the Remote I/O Protocol" Philip
Munts, Sweden

- "An Introduction to Ada" Jean-Pierre
Rosen, Adalog, France

Papers and Presentations
- sessions on Assurance Issues in Critical

Systems, Tooling Aid for Verification,
Best Practices for Critical Applications,
Uses of Ada in Challenging
Environments, Verification Challenges,
Real-Time Systems

- 9 refereed technical papers
- 8 industrial presentations and experience

reports
- a speaker's corner on "Experience from

40 years of teaching Ada"

80 Ada-related Tools

Volume 40, Number 2, June 2019 Ada User Journal

Vendor exhibition and networking area
- area features exhibitor booths, project

posters, reserved vendor tables, and
general networking options

- 4 companies already committed:
AdaCore, PTC Developer Tools, Rapita
Systems, Vector; some exhibition slots
still available

- vendor presentation sessions in core
program

Social events
- each day: coffee breaks in the exhibition

space and sit-down lunches offer ample
time for interaction and networking

- Tuesday afternoon: opening of
exhibition & Ada-Europe General
Assembly, Welcome Aperitif on terrace
overlooking Warsaw Airport

- Wednesday evening: transportation to
restaurant in town where Chopin was
born, banquet with Polish cuisine,
drinks, and live piano music

- Best Paper and Best Presentation awards
will be handed out

Registration
- online registration is open at

<https://registration.ada-
europe.org/index.html>

- early registration discount until Monday
May 20, 2019

- special low fee for authors
- discount for Ada-Europe, ACM

SIGAda, SIGBED and SIGPLAN
members

- extra discount for students
- registration includes coffee breaks and

lunches
- full conference registration includes all

social events
- tutorial fees substantially reduced
- payment possible by credit card or bank

transfer
- see registration page for all details

Promotion
- recommended Twitter hashtags:

#AdaEurope and/or #AdaEurope2019
- 12-page Advance Program brochure

online at http://www.ada-europe.org/
conference2019/AE-2019%20AP.pdf

- support Ada-Europe 2019 with
promotional poster at
http://www.ada-europe.org/
conference2019/picts/
AE2019_poster.pdf

Please make sure you book
accommodation as soon as possible.
For more info and latest updates see the
conference web site at
http://www.ada-europe.org/
conference2019.

We look forward to seeing you in Warsaw
in June 2019!

Our apologies if you receive multiple
copies of this announcement. Please
circulate widely.
Dirk Craeynest, Ada-Europe'2019
Publicity Chair
Dirk.Craeynest@cs.kuleuven.be
*** 24th Intl. Conf. on Reliable Software
Technologies - Ada-Europe'2019
June 11-14, 2019 * Warsaw, Poland *
www.ada-europe.org/conference2019

Ada-related Resources
Ada on Social Media
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Date: Thu May 23 2019
Subject: Ada on Social Media
On March 12, 2019, Maxim Reznik
created an English-language Telegram
chat group, called "Ada", with description
"Ada Programming Language and related
technologies". It can be joined at
https://t.me/ada_lang
On other front, the Google+ Ada
Community seems to no longer exist.
Ada groups on various social media:
- LinkedIn: 2_813 (+101) members [1]
- Reddit: 2_243 (+343) members [2]
- StackOverflow: 1_183 (+183) watchers

 [3]
- Freenode: 87 (-17) users [4]
- Gitter: 42 (-15) people [5]
- Telegram: 47 (new!) users [6]
- Twitter: 6 (-2) tweeters [7]
[1] https://www.linkedin.com/groups/

114211/
[2] http://www.reddit.com/r/ada/
[3] http://stackoverflow.com/questions/

tagged/ada
[4] #Ada on irc.freenode.net
[5] https://gitter.im/ada-lang
[6] https://t.me/ada_lang
[7] https://twitter.com/search?

src=typd&q=%23AdaProgramming%20
since%3A2019-02-
23%20until%3A2019-05-23

Repositories of Open Source
Software
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Date: Thu May 23 2019
Subject: Repositories of Open Source

software

GitHub: 603 (+90) developers [1]
Rosetta Code: 664 (+ 9) examples [2]
 36 (+3) developers [3]
Sourceforge: 270 (+5) projects [4]
Open Hub: 209 (+3) projects [5]
Bitbucket: 87 (+5) repositories [6]
Codelabs: 46 (+1) repositories [7]
AdaForge: 8 repositories [8]
[1] https://github.com/search?

q=language%3AAda&type=Users
[2] http://rosettacode.org/wiki/

Category:Ada
[3] http://rosettacode.org/wiki/

Category:Ada_User
[4] https://sourceforge.net/directory/

language:ada/
[5] https://www.openhub.net/tags?

names=ada
[6] https://bitbucket.org/repo/all?

name=ada&language=ada
[7] http://git.codelabs.ch/
[8] http://forge.ada-ru.org/adaforge

Language popularity
rankings
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Date: Thu May 23 2019
Subject: Ada in language popularity

rankings
- TIOBE Index: 36 (0.326%) [1]
- IEEE Spectrum (general): 46 [2]
- IEEE Spectrum (embedded): 13 [2]
[1] https://www.tiobe.com/tiobe-index/
[2] https://spectrum.ieee.org/static/

interactive-the-top-programming-
languages-2018

Ada-related Tools
Debugging Ada programs
From: "Randy Brukardt"

<randy@rrsoftware.com>
Date: Tue, 2 Apr 2019 17:07:24 -0500
Subject: Re: Intervention needed?
Newsgroups: comp.lang.ada
Does anyone spend much time in a
debugger when writing Ada? Almost all
of the time I do it is to track down
compiler bugs (hopefully something that
the average Ada user doesn't do often).
With the default exception information,
there is little need to debug anything the
majority of the time.
Certainly, moving detection to compile-
time is even better. But I don't see that
changing the mostly non-existent use of
debuggers much.

Ada-related Tools 81

Ada User Journal Volume 40, Number 2, June 2019

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 3 Apr 2019 09:29:20 +0200
> Does anyone spend much time in a

debugger when writing Ada?
Well if there were a working one. GDB
does not count.
I am using tracing, but there are few cases
where debugger could be easier to use. In
the debugger you could inspect the states
of variables and of other tasks. And you
don't need to modify the code. It is quite
often that I have to add, in addition to
"standard" tracing, some more extensive
tracing which I remove later.
[...]
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Wed, 3 Apr 2019 19:15:20 +0200
On 2019-04-03 18:16, Simon Wright
wrote:
> "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de> writes:
> [...]
>> Other debuggers work, GDB does not.

If you have an Ada project of a
moderate size GDB stops working.

>
> How big is "moderate"?
In none of my projects GDB works. I
never tried to figure out if that is related
to the number of compilation units or
number of library projects involved.
When you click Debug->Initialize->your-
main-program in GPS and debugger does
not start you know you reached the point.
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Date: Wed, 3 Apr 2019 22:44:03 -0700
> In none of my projects GDB works.
>
> P.S. It never worked reliable in GPS

and I bet it never will.
This is very troubling. I understand the
sentiment here that Ada is so good in
error prevention that debuggers are not
needed at all, but what I find in projects
I'm related with is that debuggers are not
used for debugging anyway.
The major use for debuggers that I see is
in integration testing, where test
procedures expect particular values in
particular variables (or even exact
memory locations) in particular
circumstances. The test is successful if
such expectations are confirmed. Even for
a presumably 100% correct program such
a test has to be done if foreseen by project
plans.
So, we have another paradox: Ada is so
good in error prevention that the
community does not care about having a
proper debugger, and then the lack of
working debugger prevents people from

choosing Ada for projects that have
rigorous integration testing culture. Part
of the paradox is that such projects
happen to be safety-critical, where Ada is
supposed to be the preferred solution.
And then they use C, where debuggers
work like a charm.
Again: debuggers are not only for
debugging and you better get them
working right (by, well... debugging
them?).
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Date: Thu, 4 Apr 2019 22:45:17 -0700
> As gdb can be scripted, the tests that

Maciej describes can probably be
automated,

Yes.
> albeit with considerable effort,
Not really. I would say there is no need
for this effort to be higher than with any
other form of test automation. Note that as
with anything else in software, recurring
problems can be mitigated by additional
code. That is, if testing this way is
difficult, then the difficulty is similar for
the whole class of similar tests and as
such that difficulty can be refactored
away to additional utility
(library/framework/etc.) with simpler
(higher-level) interface.
> especially if the scripts should be robust

to evolution of the SW under test
(changing the line numbers of the
required breakpoints, etc.)

This is a wider problem of traceability.
You have to solve this problem anyway
for the coverage analysis, for example.
And the solution, whatever you happen to
use (like tool-readable labels in source
comments), will help with debugging, too.
In any case, yes, some projects need the
debugger to test individual memory
locations. The lack of proper tools is a
technology risk.
> However, I don't think that gdb or other

current debuggers are ideal tools for
automated checking of internal states.

They are not. But a non-ideal working
debugger is still better than a not working
one.
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Wed, 3 Apr 2019 20:23:36 +0300
On 19-04-03 01:07 , Randy Brukardt
wrote:
> Does anyone spend much time in a

debugger when writing Ada?
I don't. I can't remember when I last used
gdb or any other debugger, and in my ~30
years of Ada use I estimate that I have
used a debugger on perhaps ten occasions.
I have slightly more often used "monitor"
programs to examine and alter memory
and register contents when analysing
problems in embedded programs, and

those monitor programs can perhaps be
considered crude debuggers. However,
these cases involved the effects and
meanings of HW control registers rather
than ordinary program variables.
A propos, the name "debugger" is IMO
one of the unfortunate historical
misnomers in the programming domain. It
is a misnomer because a "debugger" like
gdb should certainly not be our main tool
for removing bugs from programs. Diving
into the debugger as the first step of
analysing a program failure is akin to
starting a new project by diving into
coding and skipping the design phase.
Moreover, the activity of removing a bug
from program, which should be the
meaning of the term "debugging", should
certainly not consist just of a
gdb/debugger session.
[...]
From: Bill Findlay

<findlaybill@blueyonder.co.uk>
Date: Wed, 03 Apr 2019 18:48:42 +0100
On 3 Apr 2019, Niklas Holsti wrote:
> On 19-04-03 01:07 , Randy Brukardt

wrote:
>> Does anyone spend much time in a

debugger when writing Ada?
> I don't. I can't remember when I last

used gdb or any other debugger, and in
my ~30 years of Ada use I estimate that
I have used a debugger on perhaps ten
occasions.

I can trump that.
I have *never* used a "debugger" in much
the same time with Ada.
~30 years ago I raced an experienced
programmer who was looking for an error
in his code with the DEC Ada debugger,
while I inspected his compilation listing. I
won.

VisualAda 1.2.1
From: Alex Gamper

<alby.gamper@gmail.com>
Date: Fri, 17 May 2019 20:26:55 -0700
Subject: ANN: VisualAda (Ada Integration
for Visual Studio 2017 & 2019) release
1.2.1
Newsgroups: comp.lang.ada
Dear Ada Community
VisualAda version 1.2.1 has been
released.
Fixes include the following:
- UWP DLL is linking with both GCC

and MS.
- UWP XAML application project

template now correctly add project
dependencies .

- Install / Uninstall Ada menu items.
- Fix determining path to gdb.exe.

82 Ada-related Tools

Volume 40, Number 2, June 2019 Ada User Journal

- Minimum supported version of Visual
Studio is now 2017 Update 6
(15.0.27413).

Please feel free to download the free
plugin from the following URL:
https://marketplace.visualstudio.com/
items?itemName=AlexGamper.
VisualAda

Gnu Emacs Ada mode
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sat, 23 Mar 2019 10:25:34 -0700
Subject: Gnu Emacs Ada mode 6.1.0

released.
Newsgroups: comp.lang.ada
Gnu Emacs Ada mode 6.1.0 is now
available in GNU ELPA. This is a
medium feature release; partial file
parsing is now supported when using the
process parser, and error correction is
improved. This means the time spent
parsing is independent of the file size, so
it is fast enough even on the largest files.
The process parser requires a manual
compile step, after the normal list-
packages installation:
 cd ~/.emacs.d/elpa/ada-mode-6.1.0
 ./build.sh
This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

AdaSubst
From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 19 Apr 2019 08:47:50 +0200
Subject: [Ann] Adasubst 1.6r5 released
Newsgroups: comp.lang.ada
Adalog is pleased to announce the release
of a new version of AdaSubst.
This releases adds a new function:
Instantiate. It replaces all generic
instantiations with equivalent, explicit
code. This is useful if your coding
standard disallows generics on the ground
that it is "hidden code", or if you use a
validation or testing tool that does not
handle generics properly.
Adasubst can be downloaded from
http://www.adalog.fr/en/components.html
#adasubst
And of course, it's free software.
Enjoy!

Win32 and WinRT Bindings
From: alby.gamper@gmail.com
Date: Sat, 27 Apr 2019 21:05:21 -0700
Subject: Ann: Win32 and WinRT bindings

update
Newsgroups: comp.lang.ada
Dear Ada Community
The Win32 and WinRT bindings have
both been updated to the latest Microsoft

SDK version (10.0.18362). This version
corresponds to the 19H1 release of
Windows 10.
Packages/Source can be found at
https://github.com/Alex-Gamper/
Ada-Win32
https://github.com/Alex-Gamper/
Ada-WinRT
Alex

Simple Components
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Tue, 14 May 2019 19:05:57 +0200
Subject: ANN: Simple Components v4.40
Newsgroups: comp.lang.ada
The software version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and various protocols
implementations.
http://www.dmitry-kazakov.de/ada/
components.htm
Changes to the previous version:
- The package OpenSSL was added to

provide bindings to OpenSSL;
- The package

GNAT.Sockets.Server.OpenSSL was
added to support secure servers based on
OpenSSL;

- Multiple procedures were added to the
package
GNAT.Sockets.Connection_State_Mach
ine.ELV_MAX_Cube_Client to support
devices topology management and time
management;

- Race condition in Object.Release fixed.
The profile of the primitive operation
Object.Decrement_Count has been
modified.

GtkAda Contributions
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Tue, 14 May 2019 19:08:07 +0200
Subject: ANN: GtkAda Contributions v3.24
The software extends GtkAda 3.14.15, an
Ada bindings to GTK+. It deals with the
following issues:
- Tasking support;
- Custom models for tree view widget;
- Custom cell renderers for tree view

widget;
- Multi-columned derived model;

- Extension derived model (to add
columns to an existing model);

- Abstract caching model for directory-
like data;

- Tree view and list view widgets for
navigational browsing of abstract
caching models;

- File system navigation widgets with
wildcard filtering;

- Resource styles;
- Capturing resources of a widget;
- Embeddable images;
- Some missing subprograms and bug

fixes;
- Measurement unit selection widget and

dialogs;
- Improved hue-luminance-saturation

color model;
- Simplified image buttons and buttons

customizable by style properties;
- Controlled Ada types for GTK+ strong

and weak references;
- Simplified means to create lists of

strings;
- Spawning processes synchronously and

asynchronously with pipes;
- Capturing asynchronous process

standard I/O by Ada tasks and by text
buffers;

- Source view widget support;
- SVG images support.
http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm
Changes to the previous version:
- The package GLib.Time_Zone was

added

GCC 9.1.0 for MacOS
From: Simon Wright

<simon@pushface.org>
Date: Wed, 08 May 2019 20:00:57 +0100
Subject: ANN: GCC 9.1.0 for MacOS
Newsgroups: comp.lang.ada
GCC 9.1.0 for Mac OS X El Capitan
(10.11) is available at
https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
9.1.0/
Also runs on macOS Mojave (10.14) and
(untested) on Sierra (10.12) and High
Sierra (10.13).

* DO NOT USE ON EARLIER
VERSIONS OF OS X *

The native/ directory contains the 9.1.0
x86_64-apple-darwin15 compiler,
together with tools from GNAT CE 2018
and various Github and other repositories.

Ada Inside 83

Ada User Journal Volume 40, Number 2, June 2019

The arm-eabi/ directory contains the 9.1.0
arm-eabi Darwin-hosted cross
compiler.GNAT Community 2019
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Date: Thu May 30 13:58:51 CEST 2019
Subject: GNAT Community 2019 released
As seen in several social media sources,
the new Community edition of GNAT as
arrived and is available for download at:
https://www.adacore.com/download
From the release announce at [1] by
Nicolas Setton:
We are pleased to announce that GNAT
Community 2019 has been released! See
https://www.adacore.com/download.
This release is supported on the same
platforms as last year:
 - Windows, Linux, and Mac 64-bit

 native
 - RISC-V hosted on Linux
 - ARM 32 bits hosted on 64-bit Linux,

Mac, and Windows
GNAT Community now includes a
number of fixes and enhancements, most
notably:
 - The SPARK language now has

support for pointers, a fantastic
milestone for the language! See
https://blog.adacore.com/using-pointers-
in-spark for more information about this
new feature.

 - The installer for Windows and Linux
now contains pre-built binary
distributions of Libadalang, a very
powerful language tooling library for
Ada and SPARK.

Check out the README for some
additional platform-specific notes.
We hope you enjoy using SPARK and
Ada!
[1] https://blog.adacore.com/
gnat-community-2019-is-here

Componolit Ada Runtime
1.0.0
From: u/marc-kd
Date: Tue May 28 2019 14:41:16

GMT+0200 (CEST)
Subject: Componolit Ada Runtime 1.0.0
Newsgroups: reddit:/r/ada/ [1]
https://github.com/Componolit/
ada-runtime/releases/tag/v1.0.0
[News Editor - From the above link:]
Generic Ada Runtime - A downsized Ada
runtime which can be adapted to different
platforms.
The Componolit Ada Runtime 1.0.0
builds upon GCC 8.3 and is compatible
with GNAT Community 2019. It provides
the following runtime features:
- Interfaces (C)

- Secondary stack
- Exception raising
- 64bit arithmetics
- Unchecked conversion
The following features are
DEPRECATED and will be removed in
future releases:
- GNAT IO
Parts of the runtime are proven to have no
runtime errors:
- Secondary stack allocator
- String handling
Supported platforms:
- Genode
- Linux
[1] https://www.reddit.com/r/ada/
comments/btzk99/
componolit_ada_runtime_100/

Ada Inside
Boeing 737 MAX Software
From: Paul Rubin

<no.email@nospam.invalid>
Date: Fri, 05 Apr 2019 14:16:20 -0700
Subject: Boeing 737 and 737 MAX software
Newsgroups: comp.lang.ada
Does anyone know anything about this? It
has been under some criticism lately.
I have heard that the 777 software was
almost entirely in Ada. It also sounds as if
Boeing's software operation may have
slipped in recent years, not good news for
the 737 MAX.
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Sat, 6 Apr 2019 21:45:24 +0300
[...]
As I've read more about these accidents
than I usually do, I will boldly (and
perhaps foolhardily) describe how I have
understood it. All info is from public
sources, I have no insider info. I am not a
pilot, and moreover I write from
recollection of my reading and have no
references to give, so reader beware.
> On 19-04-06 20:30 , Dennis Lee Bieber

wrote:
>
> Unless things have changed severely --

GE Aviation (formerly Smith's
Aerospace, formerly Lear Siegler)
produces the 737 FMS software (and
also the processor boxes).

>
> However, I have the impression (from

TV news) the software is functioning
/as designed/.

All info I have seen agrees with that.

> Some reports have indicated that
Boeing designed the hardware (and
corresponding software requirements)
such that only one sensor is used for the
MCAS subsystem

There are two angle-of-attack (AoA)
sensors, one on each side of the nose.
They feed two redundant computers, each
able to run MCAS. Normally only one
MCAS instance is running and it uses
only its "own" AoA sensor.
The original design of MCAS gave it
rather little control authority, which is
probably why this single-sensor approach
was accepted.
> -- and a fault in that sensor results in

MCAS attempting to prevent a (non)
stall by pushing the nose down.

Yes, but MCAS does not apply a
temporary nose-down command -- as if
pushing the stick forward -- it changes the
pitch trim, the overall angle of the
horizontal stabilizer, giving the plane a
permanent tendency to dive. This trim
change can be overridden by the pilots,
but only if they notice that it has
happened.
In the original MCAS design, one
activation of MCAS changed the pitch
trim by a small amount, at most 0.6
degrees IIRC, and this limit was reported
in the MCAS design documentation to the
authorities. During testing, Boeing found
that it was not enough, and they increased
it quite a lot, to over 2 degrees IIRC. One
source I read claimed that this change was
not updated in the documentation
shown to the authorities.
Moreover, by design MCAS would repeat
this trim change, with a certain minimum
interval, as long as the AoA sensor
reading remained too large and indicated
a risk of stall. This iteration should
converge and stop if the sensor is
working, but if the sensor fails and is
stuck at a high AoA (the false value
reported in the second accident was
around 60 degrees, IIRC) then MCAS
will incrementally and cumulatively keep
increasing the pitch trim and the diving
tendency. If the pilots do not understand
what is happening, they will find it ever
harder to counteract the "dive" trim with
stick inputs.
> Some hints in the news that Boeing is

changing the requirements (well, in
truth, the news only says Boeing is
changing the software) to have MCAS
cross-reference with other flight
parameter data -- and making an
optional bit of hardware (additional
sensors) standard.

AIUI the modified MCAS will read both
AoA sensors and will disable itself if they
disagree, and the disagreement will also
be reported by a display. This display is
the new piece of HW which used to be an
option. There are no new sensors, AIUI.

84 Ada and other Languages

Volume 40, Number 2, June 2019 Ada User Journal

I believe Boeing are also changing the
minimum interval between MCAS
activations -- perhaps even allowing only
one activation -- so as to prevent a
cumulatively increasing "dive" trim.
In summary, it seems to me that the
criticality of MCAS, and thus the need for
redundant sensors, was not realized for
two reasons: (1) in its initial design,
MCAS command authority was small,
and (2) the possibility of multiple
repeated commands (due to a stuck
sensor) and the resulting large cumulative
command (large change of pitch trim) was
not considered.
A kind of "criticality creep".
From: Dennis Lee Bieber

<wlfraed@ix.netcom.com>
Date: Fri, 12 Apr 2019 18:15:07 -0400
On Fri, 12 Apr 2019 00:46:31 -0700 ,
tranngocduong@gmail.com declaimed the
following:
> I know nothing about the software. But

I don't think it is written in Ada. If it
was, programmers must have chosen a
wrong subtype.

It's Ada... (In the past, I was doing
maintenance on the FMS "BootROM"
code -- which, while not the actual run-
time flight software, is responsible for
doing CRC checks of the software and
databases, reading new software from
dataloaders, and loading which
application is to run based upon external
settings. The FMS software links with the
same base "OS".
[...]
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Thu, 18 Apr 2019 21:20:19 +0300
On 19-04-18 19:21 ,
tranngocduong@gmail.com wrote:
[...]
> To my limited knowledge, AoA is a

critical parameter that is used by many
flight control algorithms, not just the
MCAS. The real issue is thus the failure
to detect an unreliable sensor. If the
failure was a "feature, not bug", the
entire flight software (and its
certificate) would be questioned.

I've read rumours that even if the U.S.
FAA lets the fixed 737 MAX fly again,
other air safety authorities (Europe, for
example) might not be satisfied, for that
very reason -- suspicion that the flight
software process was at fault.
From more recent descriptions of the two
crashes, it seems that the problem also
involves complex interaction between
MCAS, the enabling or disabling of the
elevation trim motors, restarts of the
control computer, and the fact that manual
correction of the elevation trim becomes
impossibly hard when the MCAS-
commanded large "dive" trim applies
large aerodynamic forces to the trim

mechanism. Thus the problem was not
only in the software process, but also in
the controllability of the aircraft under
anomalies -- a chain of failures, as typical
for accidents.
> [...] Would Boeing as a company risk its

very existence by committing such a
big mistake? I don't think so.

The suspicion involves Boeing sliding
down two slippery slopes, as I understand
it:
1) For MCAS in particular, its control

authority was greatly increased from its
first design to the flying version, but
this was not propagated into a new
consideration of its criticality.

2) For the process in general, an
increasing complacency ("we know
how to do it") and increasing delegation
of checks from the FAA to Boeing (and
other airplane builders), combined with
specific driving forces for 737 MAX
(urgency + desire to avoid pilot
retraining).

I am reminded of the Space Shuttle O-
rings... and perhaps also of the scandals
with automotive SW hiding emissions,
leading to multi-billion losses for the
guilty European companies...
From: Paul Rubin

<no.email@nospam.invalid>
Date: Thu, 18 Apr 2019 13:20:29 -0700
Niklas Holsti

<niklas.holsti@tidorum.invalid>
writes:

> On the issue of Ada subtypes, it seems
to me that if the SW specification,
design and coding considers sensor
faults (as it of course should), the
normal approach for such critical SW

One of the criticisms of the decisions
leading to the MCAS software is that the
software is certified only at DO-178B
level C, defined as software whose
consequences are
(https://en.wikipedia.org/wiki/DO-178B):
 Major – Failure is significant, but has a
lesser impact than a Hazardous failure
(for example, leads to passenger
discomfort rather than injuries) or
significantly increases crew workload
(safety related)
This is instead of level A (catastrophic,
the whole plane can be lost), or level B
(hazardous, people can be injured). The
rationale was that at worst MCAS going
wrong would change the nose pitch by a
few degrees and then the pilot could fix it.
They didn't consider the possibility of it
activating over and over again, tilting a
few more degrees each time.
Since the software was treated as level C,
its development and certification process
was less rigorous than what it would have
gotten at a more critical level.
Certifying and developing this system at
level C instead of level A was itself

obviously some kind of process failure. I
believe finding out how that happened is
one of the investigation's objectives.

Ada and other
Languages
Pointer Ownership,
Containers and Cursors in
Ada, Rust, SPARK
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 12 Mar 2019 16:53:01 -0500
Subject: Re: Intervention needed?
Newsgroups: comp.lang.ada
[...]
My understanding is that the SPARK
people are far into designing ownership
contracts for Spark.
It's also possible that Ada 2020 will have
a form of pointer ownership.
(Unfortunately, we didn't make any
conclusions on that during yesterday's
meeting, so it's still in limbo, and we're
getting very close to the finish line.) The
current problem is that in Ada 2020 as it
stands, it's not possible to write a
containers implementation in pure Ada.
You'd have to have some implementation
hack to turn off some of the Legality
Rules. Tucker has designed a solution,
based on an ownership mechanism, but as
it is new and barely vetted, it's unclear
what we will do with it ultimately. Note
that this solution will not provide the
perfect safety that you would get with
SPARK or Rust, but it would form the
foundation of the SPARK solution and it
would clearly catch a lot of issues with
using pointers to implement ADTs. (And
there is little other reason to use pointers,
IMHO.)
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 18 Mar 2019 18:36:15 -0500
[...]
But a better question is whether the Rust
borrow checker allows building proper
ADTs for most data structures. Most of
Tucker's proposals didn't have a safe way
to build typical data structures like a
doubly-linked list or the parent pointer of
a tree structure. Leaving out these
backward pointers means adding a
substantial performance degradation for
(possibly) common operations like node
deletion. Depending on what you're
doing, that could be a non-starter. I
haven't had a chance to actually look at
Rust's actual rules; Ada is hard enough
and as we're in the home stretch for Ada
2020, I literally don't have time for much
else. (Probably shouldn't be answering
this message...)

Ada and other Languages 85

Ada User Journal Volume 40, Number 2, June 2019

Tucker's latest proposal does address the
back pointer problem. So at least that can
be done with checks.
[...]
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 19 Mar 2019 18:01:19 -0500
[...]
Some background here: The basic idea
behind pointer ownership is to prevent
various issues by enforcing an invariant --
that each allocated object is stored in
exactly one pointer object. This is
enforced with a variety of runtime and
compile-time rules.
Now, it's clear that one can't even walk a
data structure that way, so the idea of
"borrowing" a pointer for a limited time
was invented. Such borrowing has to be
done in carefully controlled ways in order
to keep it being safe -- for instance, no
one can read or write the original pointer
while it is borrowed.
Multiple long-lived pointers that point at a
single object are simply not allowed. In
part, that's done by making assignment
either illegal or a move (where the source
is nulled when the pointer is assigned).
For something like a cursor, that means
that Rust-pointers couldn't be used to
create the object. The entire point of a
cursor is that it is a long-lived handle to a
specific element in a larger data structure.
One can't null out part of the data
structure to create the handle, and if the
assignment is banned completely, you
could never create a valid cursor object in
the first place.
There are similar issues with back
pointers in a data structure, as you might
guess.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 19 Mar 2019 18:13:45 -0500
[...]
A cursor is a handle accessing an element
of a larger container, nothing more or less
than that. The primary usage is to connect
data structures made up of multiple
containers. For instance, consider a
compiler symbol table. There is a tree
structure that represents each of the
declarations and their scopes, and a map
structure that represents a mapping of
names to nodes of the tree. The contents
of that map is going to be tree cursors,
each representing a declaration with a
particular name.
[...]
The value of cursors is that they can be
implemented by a range of abstractions
with a range of checking, from array
indices (as in the bounded containers and
the vector) to pointers with a variety of
schemes from no dangling checking to the
bulletproof controlled cursor scheme.

[...]
From: Jere <jhb.chat@gmail.com>
Date: Fri, 22 Mar 2019 03:54:03 -0700
[...]
Not really. In Rust they don't even use
cursors. They go straight to iterators. On
top of that, the combination of being able
to specify the lifetime of all of your
variables (if you need to) and the
ownership rules gives them 100% safety
from dangling references when they
create and use those iterators.
[...]
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Sat, 23 Mar 2019 02:53:32 -0500
If you don't store any cursors and just use
iterators in Ada, you have the same level
of safety: the tampering checks prevent
any problems with iterators. (Well, unless
you turn them off, of course, but if you
remove the seatbelts, you can't much
complain that they didn't protect you.)
I'd be interested to find out how Rust
deals with the need to designate
individual elements of a container (which
is the primary reason that Ada exposes
cursors).
From: Jere <jhb.chat@gmail.com>
Date: Sat, 23 Mar 2019 06:59:35 -0700
Keep in mind the rust paradigm is very
different than Ada's. When you obtain an
iterator of a container, you borrow
ownership of the container. At that point
it is impossible to tamper with the
container because it is a compile time
error to modify the container when
something else has ownership of it. It's a
compile time version of Ada's tampering
checks using an ownership model. If you
need to remove items as you iterate, there
is a consuming version of the iterator that
allows for that. It handles all the logic of
keeping the iterator correct as you remove
items. If you need to remove only specific
items, it provides functions for that as
well (but you would not iterate while
using them do to the
ownership/borrowing rules).
Additionally, Rust allows you to specify
the lifetime of the iterator, the lifetime of
the reference to the item, and how they
relate to the lifetime of the container so
that the compiler can guarantee that
nothing dangles (it's a relative
specification..container has lifetime A and
everything else has either A or a lifetime
relative to A).
If you were instead referring to indexing
the container, for things like vector, Rust
looks to see if the container implements
the Index trait, and, if so, allows for the
user to use the index operation on the
container. It's very similar to making a
cursor and setting the variable_indexing
aspect and constant_indexing aspect,
except rust doesn't expose the underlying

equivalent cursor type. So you either
work with Indexes or Iterators depending
on your need.
From: Jere <jhb.chat@gmail.com>
Date: Tue, 19 Mar 2019 18:20:54 -0700
[...]
Rust has a couple levels of ownership and
borrowing. It employs both spacial and
temporal ownership rules. The 90%
solution uses spacial rules (the ones you
are most likely familiar with). For
managing data across threads or doing
complex data types, Rust also provides
temporal ownership/borrowing. Think of
the same distinction Ada has for named
access types vs anonymous access types.
You can catch a lot more at compile time
with named access types, but anonymous
access types can potentially have more
runtime checking. In Rust, the standard
reference scheme you are probably
familiar with employ spacial ownership.
If you need temporal ownership, then for
single threaded you use things like the
RC<> generic (reference counted), and
for multi-threaded you use things like the
ARC<> generic (atomic reference
counted). There are other things of similar
nature. These employ temporal rules,
which can potentially require runtime
checks, though the presence of the spacial
ownership rules can help optimize out a
lot of the run time checks. I kind of
mentioned this above, but the spacial and
temporal rules aren't mutually exclusive.
They can work together when needed.
[...]
From: Olivier Henley

<olivier.henley@gmail.com>
Date: Wed, 13 Mar 2019 06:44:05 -0700
On Wednesday, March 13, 2019 at
5:10:31 AM UTC-4, Maciej Sobczak
wrote:
> So, seriously - what's wrong with

pointers in Rust?
From that excerpt [1] by Oliver Scherer
(Rust compiler contributor), it looks like
the ownership aspect that comes with
them is a real improvement:
"The two (obviously not a good amount
of datapoints) large scale refactorings in
Ada software that I've been part of have
resulted in horrible hacks where people
just spammed protected and pragma
everywhere to get stuff working and bug
free. The protected injections are because
it's nearly impossible to figure out which
things are accessed by multiple tasks
without SPARK and you end up with
undefined behaviour if you accidentally
have a shared access to an unprotected
memory location. The pragmas were
reconfiguring things like stack size or
disabling compiler warnings without
actually thinking about what these
changes meant.
Refactorings in Rust on the other hand are
(compile-time) guaranteed to be free of

86 Ada Pract ice

Volume 40, Number 2, June 2019 Ada User Journal

race conditions, no matter how crazy you
move stuff around or create new
parallelism. Additionally the ownership
concept lead to many libraries typestate
encoding their API which makes misusing
them a near impossibility (at compile-
time) while Ada mainly catches those
misuses at runtime via exceptions."
[...]
[1] "Why Rust was the best thing that

could have happened to Ada".
https://www.reddit.com/r/ada/comments
/7wzrqi/why_rust_was_the_best_thing_t
hat_could_have/

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 14 Mar 2019 17:41:12 -0500
Obviously, if your existing code isn't
documented properly as to what needs to
be task-safe, then refactoring it isn't going
to work very well. Refactoring bad code
is just going to give you bad code. :-) And
almost all code in any language is bad
code, because at some point people turned
to "just make it work" mode, and stopped
doing the things necessary for the code to
be understandable. Using Ada helps, but
surely doesn't eliminate this point.
In any case, Ada 2020 is very much about
addressing this point. The new
Nonblocking and Global contracts make
is possible to declare tasking and memory
side-effects, and the "conflict check
policies" allow using that to prevent data
races. (Note that there is a difference
between a "data race", and "race
conditions"; there are plenty of race
conditions that aren't data races, and no
programming language can statically
prevent the latter, since they're caused of a
sequence of operations. Well, other than
not having any task interactions in the
first place. :-)
In addition, conflict checks are enabled by
default on the new parallel constructs, so
you have to work at causing problems.
(The parallel constructs are safer anyway,
since they do not allow blocking, so there
aren't any rendezvous and entry calls to
worry about.) And they can be enabled on
tasks as well (not done by default for the
obvious reason of compatibility - but also
for capability, tasks should mainly be
used in Ada 2020 when one needs
rendezvous and other constructs that can't
be checked at compile-time).
The issue with this is that a dereference of
an access value is almost always going to
cause a conflict and thus be illegal. And
the contracts for the containers are
designed so that they can be used in
parallel operations (presuming the actual
parameters to the instance allow that).
This means that no access types can be
used to implement the containers, which
is nonsense for the unbounded and
indefinite containers. The ownership stuff
is a proposal to limit that in the case of
building ADTs, including the containers.

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Wed, 13 Mar 2019 06:23:59 -0700
Thanks to those who brought 'material' to
the discussion.
a. The Rust thread is now closed and we

did not slide into a flame war. Very
good.

b. We definitely enlightened a whole
bunch. You have no idea how many
Rustaceans do not even know Ada
exists. After all, awareness and politics
are important. Very good.

c. From Randy's post, I find it exciting to
see that this 'episode' is of actuality
regarding Ada202X. Very good.

Thx

Ada Practice
Interviews to Ada
Practitioners
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Date: Fri, 24 May 2019
Subject: Interviews to Ada enthusiasts
Tomek Wałkuski
<tomek.walkuski@gmail.com>, co-
founder at 98elements [5], is running a
series of interviews [1] to people from the
Ada community. Here is a list with a few
extracted words from each interview since
the last AUJ Issue:
- Fabien Chouteau interview [2]: "My

name is Fabien Chouteau, I am
embedded software engineer at
AdaCore, hobbyist in electronics,
instrument making and woodworking.
[...] A couple years ago I started the Ada
Drivers Library project, at first it was
just a way to have fun with an ARM
Cortex-M micro-controller board and
see how Ada can be used on such
hardware. It became a one stop shop for
getting started in embedded Ada
programming and sparked many other
projects [...]"

- Edward Fish interview [3]: "I was
introduced to Ada in one single class,
Programming Languages, which did a
high-level introduction/survey of various
languages and instantly felt at-home. It
did raise the question as to why a lot of
the features aren’t common in more
languages [...]"

- Stéphane Carrez interview [4]: "Later I
created another computer board based
on 68HC11 and to use it I also did a
complete port of the GNU compiler, the
GNU binutils and the GNU debugger.
My work was integrated in the FSF
sources in 2000. The GNAT Ada
compiler was working! I was able to run
a small Ada program that fit in less than
256 bytes!"

[1] https://tomekw.com/tag/interview/
[2] https://tomekw.com/ada-

programmers-fabien-chouteau/
[3] https://tomekw.com/ada-

programmers-edward-fish/
[4] https://tomekw.com/ada-

programmers-stephane-carrez/
[5] https://98elements.com/

Integer type with gaps
From: mario.blunk.gplus@gmail.com
Date: Fri, 29 Mar 2019 09:10:40 -0700
Subject: type definition for an integer with

discrete range
Newsgroups: comp.lang.ada
Hello,
I'm looking for a way to define a type that
runs from let say -100 to +100 with gaps
of 5 width. Important is to make sure that
a value like 7 cannot be assigned to the
type.
something like:
 type number is new integer range
 -100 .. 100;

 -- or

 subtype number is integer range
 -100 .. 100;

 -- with this special thing or something like
 -- that:

 for number'small use 5; -- cannot applied
 -- here. works with fixed point types only

Thanks !
From: Simon Wright

<simon@pushface.org>
Date: Fri, 29 Mar 2019 21:24:53 +0000
[...]
What about this?
 pragma Assertion_Policy (Check);
 with Ada.Text_Io; use Ada.Text_Io;
 procedure Type_Integer is
 subtype Number is Integer range
 -100 .. 100
 with Dynamic_Predicate => Number
 mod 5 = 0;
 V : Number;
 begin
 V := 0;
 Put_Line ("0'image is " & V'Image);
 V := -50;
 Put_Line ("-50'image is " & V'Image);
 V := 42;
 Put_Line ("42'image is " & V'Image);
 end Type_Integer;

Executing gives
 $./type_integer
 0'image is 0
 -50'image is -50
 raised SYSTEM.ASSERTIONS.
 ASSERT_FAILURE : Dynamic_Predicate
 failed at type_integer.adb:12

Ada Pract ice 87

Ada User Journal Volume 40, Number 2, June 2019

Gauss Error Function in
Ada
From: leov@gammawizard.com
Date: Mon, 1 Apr 2019 09:28:58 -0700
Subject: Erfc() function in ADA
Newsgroups: comp.lang.ada
Greetings, I have been looking into
reimplementing a collection of numerical
heavy code from R/C++ into ADA and so
far things seem doable. My only question
is about the support for the error function
and in particular the complementary error
function erfc(). I assume this is library
dependent so I would appreciate any
information if erfc() is part of the ADA
standard library or perhaps provided by
GNAT in some form?
From: gautier_niouzes@hotmail.com
Date: Mon, 1 Apr 2019 10:01:07 -0700
You can get easily the error function from
the Phi function which is available in the
following library:
http://mathpaqs.sourceforge.net/
From: gautier_niouzes@hotmail.com
Date: Tue, 2 Apr 2019 03:39:57 -0700
A few random remarks...
1) For further references: there is now in

Mathpaqs (rev. 153+) a separate
Erf_function package. Since
Phi_function.Phi uses Erf(x) anyway, it's
better to have access to Erf directly.

2) About the Numerical Recipies: be
careful, some versions support only 7-8
digits (single precision), so numerical
errors cumulate very quickly.

3) Some good stuff can be found in the
Alglib and Cephes libraries, in C,
Fortran or Pascal

4) Simple special functions (with one
parameter) could well be in an official
Ada.Numerics.Generic_Special_Functio
ns (low maintenance effort for compiler
vendors)

5) Don't forget to check:
https://www.adaic.org/ada-
resources/tools-libraries/

6) Perhaps the Alire system has some
math packages?

Porting GNAT bare-board
runtime to a new target
From: Daniel Way

<p.waydan@gmail.com>
Date: Sun, 7 Apr 2019 19:13:07 -0700
Subject: Understanding GNAT Bare Board

Run-time for Cortex-M
Newsgroups: comp.lang.ada
I'm trying to port the bare-board GNAT
run-time to a Coretex-M0+ (NXP
KV11Z7) processor. I'm new to
concurrency and have been reading
through the run-times for the STM32
targets to understand how the tasks and
protected objects are implemented,

however, there seems to be a web of
dependencies between the different
packages and wrappers of wrappers of
wrappers for types and subprograms.
* Is there any tool available to scan

through the source code and generate a
graphical call graph to help visualize the
different dependencies?

* Has anyone on the forum successfully
ported a bare-board run-time? What was
your experience and do you have any
tips?

* Is porting the run-time just a matter of
updating the linker, a few packages, and
a GPR script, or is there some
fundamental implementation changes to
consider?

Thank you,
Daniel
From: Simon Wright

<simon@pushface.org>
Date: Mon, 08 Apr 2019 08:36:59 +0100
Daniel Way <p.waydan@gmail.com>
writes:
> I'm trying to port the bare-board GNAT

run-time to a Coretex-M0+
(NXPKV11Z7) processor. I'm new to
concurrency and have been reading
through the run-times for the STM32
targets to understand how the tasks and
protected objects are implemented,
however, there seems to be a web of
dependencies between the different
packages and wrappers of wrappers of
wrappers for types and subprograms.

Yes.
> * Is there any tool available to scan

through the source code and generate a
graphical call graph to help visualize
the different dependencies?

Pass.
> * Has anyone on the forum successfully

ported a bare-board run-time? What
was your experience and do you have
any tips?

AdaCore have published a guide for
porting their runtime[0].
GNAT CE 2018 includes a ravenscar-sfp-
microbit runtime.
My Cortex GNAT RTS[1] is based on
FreeRTOS[2] and includes an RTS for the
nRF51 as found in the BBC micro:bit.
That's a cortex-m0, but as far as I can see
[3] the differences from the m0+ are
minimal.
The main issue I had was with the clock;
the nRF51 doesn't have a system tick,
instead I had to use RTC1 (I think
AdaCore used RTC0).
> * Is porting the run-time just a matter of

updating the linker, a few packages,
and a GPR script, or is there some
fundamental implementation changes to
consider?

That would be it (also the runtime.xml
file) but the problem is identifying
which packages to change! I wouldn't
expect many from the microbit RTS, it's
likely to be clock setup and interrupt
naming. It would help if you had an SVD
to generate the board peripheral
dependencies.
[0] https://github.com/AdaCore/

bb-runtimes/tree/community-2018/
doc/porting_runtime_for_cortex_m

[1] https://github.com/simonjwright/
cortex-gnat-rts

[2] https://www.freertos.org
[3] https://community.cypress.com/

docs/DOC-10652
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Mon, 8 Apr 2019 10:46:56 +0300
On 19-04-08 05:13 , Daniel Way wrote:
[...]
> * Is there any tool available to scan

through the source code and generate a
graphical call graph to help visualize
the different dependencies?

I know of no free tool that generates
graphical call-graphs. I've used the non-
graphical call tree information from GPS.
> * Has anyone on the forum successfully

ported a bare-board run-time? What
was your experience and do you have
any tips?

In my last project, I ported the small-
footprint Ravenscar run-time for the
SPARC architecture from the generic off-
the-shelf AdaCore version to a specific
SPARC LEON2 processor embedded in
an SoC for processing satellite navigation
signals, the AGGA-4 SoC.
My advice is to first understand the
differences between the original target
processor and the new target processor,
especially in these areas:
- Basic processor architecture, and

especially if there is some difference in
the instruction set or in the sets of
registers that must be saved and restored
in a task switch. In my case there was no
difference, so I did not have to modify
the task-switch code nor the Task
Control Block structure. For porting
across various models of the same
processor architecture, perhaps the most
likely difference is in the presence or
absence of a floating-point unit and
dedicated floating-point registers.

- The HW timers. In my case the RTS
used two HW timers, and there were
some differences: the bit-width was
different (32 instead of 24) and the HW
addresses and interrupt numbers were
different. The corresponding parts of the
RTS had to be adapted, but in my case
the changes were small, and the logic of
the code did not change.

88 Ada Pract ice

Volume 40, Number 2, June 2019 Ada User Journal

- Interrupts and traps. Differences may
have to be implemented in the assembly-
language code that initially handles
interrupts and traps. In my case, the
architecture was the same (the structure
of the trap table and most of the HW
error traps) but the set of external
interrupt traps was different, because of
the particular I/O devices available on
the new target. This difference (if any)
becomes visible to application programs
through Ada.Interrupts.

- "Console" I/O, usually some form of
UART accessible via GNAT.Text_IO.
In my case, the UARTs in the new target
were quite different from the standard
LEON2 UARTs, so I had to
reimplement the low-level I/O
operations (Put character, Put string,
etc.).

- Memory layout. Where in the address
space is the ROM (or flash), where is the
RAM, where are the I/O control
registers? Any differences in the layout
must be implemented in the linker
command script, which in my case was a
file called leon.ld. The Ada RTS code
probably does not have to change for
this reason, and did not change in my
case.

Once all that is sorted out, you will
probably have to modify the start-up
assembly-language code, which in my
case was in the file crt0.S. This deals with
HW initialization (clearing registers,
stopping any I/O that might be running,
disabling interrupts, etc.) and SW
initialization, which means to set up the
stack for the environment task and then
enter the body of that task.
> * Is porting the run-time just a matter of

updating the linker, a few packages,
and a GPR script, or is there some
fundamental implementation changes to
consider?

If you are porting from one
implementation of the same architecture
to another (in your case ARM Cortex
M<n> with the Thumb-1/2 instruction
sets, if I understand right), IMO it is
unlikely that any fundamental changes are
required. However, if there are
differences in the instruction set (with
M0+ omitting some instructions available
larger members and perhaps used in the
original RTS) be sure to use the correct
target options for the compiler so as to
avoid generating code that will not run on
the M0+. If there is a major difference in
instruction sets (say, porting from Thumb-
2 to Thumb-1) you will have to review
and perhaps modify all the assembly-
language RTS parts, and all assembly-
language code insertions in the Ada RTS
code, and all the code in crt0.S.
HTH. I think others on this group have
more experience with ARM Cortex run-
time systems and can probably offer
better advice.

Heart of Darkness
From: "J-P. Rosen" <rosen@adalog.fr>
Date: Sat, 20 Apr 2019 17:58:48 +0200
Subject: Re: Anonymous Access and

Accessibility Levels
Newsgroups: comp.lang.ada
Le 20/04/2019 à 17:29, Jere a écrit :
> I was trying to get a bit better at
understanding how accessibility levels
work with respect to anonymous access
types. I have GNAT to test out things, but
I think I am running into various bugs, so
I am not seeing the exceptions or
compilation errors I would expect. It
could also be that I misunderstand the
rules (They are difficult somewhat).
In my tutorial about memory
management, I explain that there are 34
special cases in 3.10.2 (AKA "heart of
darkness"). Enter at your own risk.
From: "Randy Brukardt"

<randy@rrsoftware.com>
Date: Wed, 24 Apr 2019 18:27:52 -0500
[...]
I suspect that accessibility implemented
by compilers is essentially whatever the
ACATS tests require. I know that I've
never spent time on it in Janus/Ada
beyond that -- it simply isn't worth self-
inflicted pain. Thus, my advice is that
accessibility works like one would expect
in basic cases, and do not go beyond basic
cases unless you like pain.
From: "Randy Brukardt"

<randy@rrsoftware.com>
Date: Mon, 22 Apr 2019 17:11:19 -0500
[...] there are special rules for allocators,
for objects created as return objects, and
many other special cases. [...]
As always, I suggest the following rules:
(1) Do not use anonymous access types
unless you absolutely need one of the
special capabilities that can only be done
with them.
(2) Under no circumstances, do anything
that cannot be checked statically. (So no
one should use dynamic accessibility
checks of anonymous access parameters
or SAOAATs [Editor's note: Stand-Alone
Object of an Anonymous Access Type]).
(3) Think three times before depending
upon access parameter dispatching and
anonymous access-to-subprograms.
 (A) If you find that you really need these
things, complain to the ARG that you
should be able to but cannot do these
things with named access types. (This
limitation is idiotic, as it requires
repeating long declarations at every
usage.) [I need help getting this fixed!!]
(4) Keep access types out of visible
specifications (since they make memory
management much harder, and locks in
clients to suboptimal memory
management).

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 24 Apr 2019 18:21:57 -0500
[...]
In any case, I don't believe that dynamic
accessibility checking buys anything at
all. Indeed, 98% of my code has to resort
to 'Unchecked_Access in order to be
compilable at all. I generally wrap the
uses in a controlled type that cleans up the
accesses as needed (that's how Claw
works, for instance). The dynamic checks
are mainly a hazard to be avoided rather
than anything helpful. (Unlike a static
check, it's hard to prove that a dynamic
check can't fail, so it remains as a hazard
for a future call added in maintenance.)

Licensing woes
[Often, when Ada compilers are
discussed, the licensing model of GNAT
arises in conversation. What follows
discusses the limitations imposed by the
pure GPLv3 license of the GNAT runtime
in Community editions —News Editor.]
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Date: Mon, 27 May 2019 23:43:06 -0700
Subject: Re: Needed - Ada 2012 Compiler.
Newsgroups: comp.lang.ada
On Tuesday, May 28, 2019 at 1:25:03
AM UTC+2, Optikos wrote:
> Hence why Alex was correctly

indicating that GPL Community
Edition forestalls most practical forms
of commercial business activity

I have an impression that nowadays "most
forms of commercial business activity"
involve setting up an account for
accessing whatever on-line service.
This is why most apps today are free,
anyway. In this context, GPL license on
the app is not a problem at all.
No, I do not applaud the GPL licensing. I
only state that the landscape of
"commercial business activity" has
significantly changed from what it was
say two decades ago.
I also think that you are overestimating
the willingness of customers to engage in
further business activity of reproducing
and re-selling what they have bought from
you. This concept is being demonized
since ever, but I don't think it has any
bigger significance than a "traditional"
counterfeiting.
No, I don't applaud GPL as a licensing
scheme. I just don't consider it to be a
showstopper.
> by entirely prohibiting AdaCore-esque

dual licensing
Wrong. You can write your program (or a
library) and sell it in the form of source
code with whatever license you wish and
allow your customer to compile it using
whatever compiler they have. The

Ada in Jest 89

Ada User Journal Volume 40, Number 2, June 2019

compiler that you have used to verify (!)
your product has no impact on the
licensing of your source code. Thus, dual-
or closed- licensing is still possible. Feel
free to complete this scheme with any
kind of NDA or other forms of legal
agreements with your customers.From:
Maciej Sobczak
<see.my.homepage@gmail.com>
Date: Tue, 28 May 2019 22:54:03 -0700
[...] let's go back a little to better
understand the workflow.
1. You write some code. It can be a

standalone app or a library.
2. You can put whatever license you wish

on your source code.
3. You can deliver it (the source code!) to

your users with that license.
Finished.
OK, so you think it might be a good idea
to verify this code a little bit before
selling it to your customers - you know,
test it or at least check whether it
compiles at all. So you add an additional
points to the scheme above:
1a. You compile your code with whatever
compiler you have.

1b. You run your tests or perform
whatever other verification activities to
make sure that your product has an
expected quality level.
These two points have no impact on
points 2. and 3. above.
I will agree that this scheme is not
satisfactory for the case of applications
distributed via App Stores, or for users
who don't want to be involved in technical
activities like compiling something on
their own - this is understandable, and in
such cases a turn-key product needs to be
delivered. But it is a very satisfactory
scheme for the case of libraries, which
become included in this kind of workflow
on the user side anyway.

Ada in Jest
Lightening the mood in
serious discussion
From: Jeffrey R. Carter

<spam.jrcarter.not@spam.not.acm.org>
Date: Tue, 12 Mar 2019 16:41:28 -0500
Subject: Re: Intervention needed?
Newsgroups: comp.lang.ada

I have no desire to register to post on a
[Rust] forum full of people who like to
use pointers. It's bad enough being on one
full of people who like to use anonymous
access types.
From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 22 Mar 2019 15:09:36 +0100
Le 22/03/2019 à 12:10, Lucretia a écrit : .
>> He [a Rust forum poster] also told me

that Ada compilers aren’t allowed to do
certain kinds of optimizations that for
example c, c++ (and Rust and other PL
via LLVM) are doing.

>
> How true is this?
In Ada, the principle is that the compiler
has an obligation of result, i.e. that the
"external effect" (see 1.1.3(9)) of the
compiled program must be the same as
the effect defined by the canonical
execution.
Basically, this means that the compiler
can do any optimization provided the
result is correct. Going farther than that
would mean allowing the compiler to
generate incorrect programs... Maybe
that's what C/C++ compilers are doing ;-)

