

Ada User Journal Volume 40, Number 2, June 2019

ADA
USER
JOURNAL

Volume 40

Number 2

June 2019

Contents
Page

Editorial Policy for Ada User Journal 74

Editorial 75

Quarterly News Digest 77

Conference Calendar 91

Forthcoming Events 97

Ada-Europe 2019 Industrial Presentations

 M. Martignano
“A “New” C Static Analyzer: the Compiler” 99

 T. A. Beyene, C. Herrera, V. Nigam
“Verification of Ada Programs with AdaHorn” 103

Special Contribution

 A. Burns, B. Dobbing, T. Vardanega
“Guide for the Use of the Ada Ravenscar Profile in High Integrity Systems (Part 2)” 110

Ada-Europe Associate Members (National Ada Organizations) 128

Ada-Europe Sponsors Inside Back Cover

74

Volume 40, Number 2, June 2019 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 75

Ada User Journal Volume 40, Number 2, June 2019

Editorial

This issue is being concluded shortly after our annual flagship conference, the 24th Ada-Europe International Conference on
Reliable Software Technologies, which took place 11-14 June 2019, in Warsaw, Poland. The organizers must be
congratulated for a very successful conference, with a very rich program, both technical and social.

This edition of the conference featured several important innovations, of which I would like to particularly note the lower
registration fee for all participants, even more reduced for paper and presentation authors, and the new journal-based, open-
access publication model for the peer-reviewed papers. This new model will be continued in the next year; the reader can find
in this issue the call for contributions for the 25th Ada-Europe International Conference on Reliable Software Technologies,
which will take place in Santander, Spain, in the week of 8-12 of June 2020.

During the conference week there was also another change, which directly relates to the Ada User Journal: the Journal has a
new Editor-in-Chief, António Casimiro, from the University of Lisbon, Portugal. I am glad that António was willing to take
the job, and I know that the Journal will be in the best of hands. Thank you very much António, and my best wishes for this
new endeavour.

I had the pleasure to serve as Editor-in-Chief of the Ada User Journal for 12 years – 12 volumes totalling 48 issues. It has
been a very pleasing task, challenging at times, but always worthwhile. And it would not have been possible, without the
continuous and strong support of many people in the Journal editorial team. I would like to express a heartfelt thanks to
Patricia López, Jorge Real, Dirk Craeynest, Santiago Urueña, Marco Panunzio, Kristoffer Nyborg Gregertsen and Alejandro
R. Mosteo. Also, and special, to Jacob Sparre Andersen, no longer with us. Finally, and of course, the contributors and
readers. The journal would not exist if not for them.

As for the contents of this issue, we start the publication of the proceedings of the industrial track of the 2019 Ada-Europe
Conference. The first paper, by Maurizio Martignano, from Spazio IT, Italy, discusses the evolution of static analysers for C
programs. The second paper, by a group of authors from fortiss GmbH, Germany, presents AdaHorn, a model checker to
verify Ada programs using a Horn constraints solver.

The issue also concludes the publication of the Guide for the Use of the Ada Ravenscar Profile in High Integrity Systems,
written by Alan Burns, from the University of York, UK, Brian Dobbing, currently retired and at the time at Altran Praxis,
UK, and Tullio Vardanega, from the University of Padua, Italy, which has been updated to consider Ada 2012. The first part
of the guide, published in the March issue of the Journal, included the definition, rationale and examples of use of the
Ravenscar profile. This second, and final, part includes the verification approach appropriate to analyse Ravenscar programs,
and an extended example of its use.

I am sure the readers will enjoy reading this issue of the journal, as I have enjoyed.

Signing off …

 Luís Miguel Pinho
Porto

June 2019
 Email: AUJ_Editor@Ada-Europe.org

 77

Ada User Journal Volume 40, Number 2, June 2019

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Ada-related Events 77
Ada-related Resources 80
Ada-related Tools 80
Ada Inside 83
Ada and other Languages 84
Ada Practice 86
Ada in Jest 89

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.]

FOSDEM 2019 post hoc
summary

From: dirk@orka.cs.kuleuven.be
 (Dirk Craeynest)

Date: Mon, 25 Feb 2019 07:04:32 -0000
Subject: FOSDEM 2019 Ada Developer

Room - presentations & videos online
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

*** Presentations, videos, pictures
available online ***

9th Ada Developer Room at
FOSDEM 2019

Saturday 2 February 2019

Université Libre de Bruxelles (ULB),
Solbosch Campus, Room AW1.125

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organized in cooperation with
Ada-Europe

www.cs.kuleuven.be/~dirk/
ada-belgium/events/19/

190202-fosdem.html

fosdem.org/2019/schedule/track/ada

All presentations and video recordings as
well as some pictures from the 9th Ada
Developer Room, held at FOSDEM 2019
in Brussels recently, are available via the
Ada-Belgium and FOSDEM web sites
now.

- "Welcome to the Ada DevRoom" by
Dirk Craeynest - Ada-Belgium

- "An Introduction to Ada for Beginning
and Experienced Programmers" by Jean-
Pierre Rosen - Adalog

- "Sequential Programming in Ada:
Lessons Learned" by Joakim Strandberg
- Mequinox

- "Autonomous Train Control Systems: a
First Approach" by Julia Teissl - FH
Campus Wien

- "Controlling the Execution of Parallel
Algorithms in Ada" by Jan Verschelde -
University of Illinois at Chicago

- "Persistence with Ada Database
Objects" by Stephane Carrez - Twinlife

- "Shrink your Data to (almost) Nothing
with Trained Compression" by Gautier
de Montmollin - Ada-Switzerland

- "GSH: an Ada POSIX Shell to Speed
Up GNU Builds on Windows" by
Nicolas Roche - AdaCore

- "What is Safety-Critical Software, and
How Can Ada and SPARK Help?" by
Jean-Pierre Rosen - Adalog

- "Secure Web Applications with
AWA" by Stephane Carrez - Twinlife

- "Distributed Computing with Ada and
CORBA using PolyORB" by Frédéric
Praca - Ada-France

- "Cappulada: Smooth Ada Bindings for
C++" by Johannes Kliemann -
Componolit

- "AZip Archive Manager: a full-Ada
Open-Source Portable Application" by
Gautier de Montmollin - Ada-
Switzerland

- "Proof of Pointer Programs with
Ownership in SPARK" by Yannick Moy
- AdaCore

- "Alternative Languages for Safe and
Secure RISC-V Programming" by
Fabien Chouteau - AdaCore, in RISC-V
DevRoom on Sat 2 Feb

- "RecordFlux: Facilitating Verification of
Communication Protocols" by Tobias
Reiher - Componolit, in Security
DevRoom on Sun 3 Feb

Presentation abstracts, speaker bios,
pointers to relevant information, copies of
slides, links to corresponding pages and
video recordings, are available via the

Ada-Belgium and FOSDEM sites at the
URLs above.

Some pictures are posted as well. If you
have more pictures or other material you
would like to share, or know someone
who does, then please contact me.

Finally, thanks once more to all presenters
and helpers for their work and
collaboration, thanks to all the FOSDEM
organizers and volunteers, thanks to the
many participants for their interest, and
thanks to everyone for another nice
experience!

Dirk Craeynest, FOSDEM Ada DevRoom
coordinator

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

#AdaFOSDEM #AdaProgramming
#AdaBelgium #AdaEurope

DeCPS workshop in Warsaw
From: dirk@orka.cs.kuleuven.be.

(Dirk Craeynest)
Date: Wed, 3 Apr 2019 22:19:24 -0000
Subject: DeCPS 2019 - Dependable and

Cyber-Physical Systems Engineering
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Call for Papers

DeCPS 2019 - Workshop on Challenges
and new Approaches for Dependable and

Cyber-Physical Systems Engineering

14 June 2019, Warsaw, Poland

Co-located with the Ada-Europe 24th
International Conference on Reliable

Software Technologies

Conference web site:
http://www.ada-europe.org/

conference2019

--- Scope ---

In recent years, the Internet of Things
(IoT) has experienced an extraordinary
development with a broad impact on
society; however, there is still a gap
between the physical world and the cyber
one. Cyber Physical Systems (CPS)
constitute a new class of engineered
systems, integrating software control and
autonomous decision making with signals
from an uncertain and dynamic
environment. Internet transformed the
way people interact and deal with
information. CPS technology transformed
the way people interact with engineered

78 Ada-related Events

Volume 40, Number 2, June 2019 Ada User Journal

systems. For this type of systems, it is
necessary not only ensuring the safety of
physical devices but also other factors
such as information about customers,
suppliers, and organizational strategies
need to be secured. In the context of cyber
systems, the Artificial Intelligence (AI)
technologies can contribute to manage a
huge amount of heterogeneous data that
come from different sources without
human intervention. To deliver
certification, standards for machine safety
are highly recommended as they give
confidence to the regulatory. The generic
standard for safety-related hardware and
software might be applicable, however,
due to increasing autonomy of robots
there is still a potential for evolution of
such regulations or standards. The proper
combination of AI, CPS and IoT is
therefore fundamental.

CPS are considered a disruptive
technology which will transform the
traditional manufacturing into Industry
4.0 solutions, and are used in a very wide
spectrum of applications: smart mobility,
autonomous driving, digital healthcare,
smart grids and buildings, mobile co-
operating autonomous robotic systems,
digital consumer products and services.
"In conclusion, the emerging Digital (R)-
evolution relies heavily on Embedded
Intelligent Systems technologies in
domains where it is paramount that
Europe takes leadership role" (Laila Gide,
"The pathway to digital transformation:
an opportunity for Europe", ARTEMIS
Magazine 20 May 2016).

This workshop aims to provide a platform
to industrial practitioners, researchers and
engineers in academia to exchange of
their ideas, research results, experiences
in the field of dependable and cyber
physical systems engineering, both a
theoretical and practical perspective. To
foster visibility and interaction,
participation in the workshop will be also
open to conference participants (at no
extra cost).

--- Topics of interest ---

The topics of interest includes, but are not
limited to:

* Vehicle of the Future

* Transport and Mobility

* Industry 4.0 in transportation sector

* Security and comfort of the end-user

* Human/Machine Interaction

* Safety and Security

* Industrial experiments and case studies

* Integration of Internet of Things and
Cloud Computing

* Evolution of standards and certification
processes

* Impact of Artificial Intelligence in CPS

The workshop will also include
contributions from relevant projects in the

domain, such as Future Factories in the
Cloud (FiC), Productive 4.0, AMASS,
ENABLE-S3, SafeCOP, SCOTT, etc.

--- Paper submission ---

Submission of regular papers (4 pages,
AUJ style) at the following page:
https://easychair.org/conferences/
?conf=decps2019

The post-workshop proceedings will be
published in the Ada User Journal

(http://www.ada-europe.org/auj/guide/).

--- Important dates ---

* Submission deadline: 30 April 2019

* Notification to authors: 17 May 2019

* Workshop: 14 June 2019

* After-workshop final version: 15
September 2019

* Publication in Ada User Journal:
December 2019

--- Track Chairs ---

* Faiz Ul Muram, Mälardalen Univ.,
Sweden

--- Steering Committee ---

* Daniela Cancila, CEA LIST, France

* Martin Torngren, KTH Royal Institute
of Technology, Sweden

* Alessandra Bagnato, SOFTEAM,
France

* Cristina De Luca, Infineon
Technologies Austria AG Austria

* Silvia Mazzini, INTECS Italy

* Laurent Rioux, Thales, France

* Barbara Gallina, Mälardalen Univ.,
Sweden

* Luis Miguel Pinho, Polytechnic Institute
of Porto, Portugal

Dirk.Craeynest@cs.kuleuven.be, Ada-
Europe 2019 Publicity Chair

Ada-Belgium Spring 2019
Event

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Date: Sun, 5 May 2019 19:35:53 -0000
Subject: Ada-Belgium Spring 2019 Event,

Sun 12 May 2019
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, be.comp.programming

Ada-Belgium Spring 2019 Event

Sunday, May 12, 2019, 12:00-19:00

Wavre area, south of Brussels, Belgium

including at 15:00

2019 Ada-Belgium General Assembly

and at 16:00

Ada Round-Table Discussion

http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/local.html

*** Announcement

The next Ada-Belgium event will take
place on Sunday, May 12, 2019 in the
Wavre area, south of Brussels.

For the 12th year in a row, Ada-Belgium
organizes their "Spring Event", which
starts at noon, runs until 7pm, and
includes an informal lunch, the 26th
General Assembly of the organization,
and a round-table discussion on Ada-
related topics the participants would like
to bring up.

*** Schedule

 * 12:00 welcome and getting started
(please be there!)

 * 12:15 informal lunch

 * 15:00 Ada-Belgium General Assembly

 * 16:00 Ada round-table + informal
discussions

 * 19:00 end

*** Participation

Everyone interested (members and non-
members alike) is welcome at any or all
parts of this event.

For practical reasons registration is
required. If you would like to attend,
please send an email before Thursday,
May 9, 21:00, to Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> with
the subject "Ada-Belgium Spring 2019
Event", so you can get precise directions
to the place of the meeting. Even if you
already responded to the preliminary
announcement, please reconfirm your
participation ASAP.

If you are a member but have not renewed
your affiliation yet, please do so by
paying the appropriate fee before the
General Assembly (you have also
received a printed request via normal
mail). If you are interested to join Ada-
Belgium, please register by filling out the
2019 membership application form [1]
and by paying the appropriate fee before
the General Assembly. After payment you
will receive a receipt from our treasurer
and you are considered a member of the
organization for the year 2019 with all
member benefits [2]. Early enrollment
ensures you receive the full Ada-Belgium
membership benefits (including the Ada-
Europe indirect membership benefits
package).

As mentioned at earlier occasions, we
have a limited stock of documentation
sets and Ada related CD-ROMs that were
distributed at previous events, as well as
some back issues of the Ada User Journal
[3]. These will be available on a first-
come first-serve basis at the General
Assembly for current and new members.
(Please indicate in the above-mentioned
registration e-mail that you're interested,
so we can bring enough copies.)
[1] http://www.cs.kuleuven.be/~dirk/

ada-belgium/forms/
member-form19.html

Ada-related Events 79

Ada User Journal Volume 40, Number 2, June 2019

[2] http://www.cs.kuleuven.be/~dirk/
ada-belgium/member-benefit.html

[3] http://www.ada-europe.org/auj/home/

*** Informal lunch

The organization will provide food and
beverage to all Ada-Belgium members.
Non-members who want to participate at
the lunch are also welcome: they can
choose to join the organization or pay the
sum of 15 Euros per person to the
Treasurer of the organization.

*** General Assembly

All Ada-Belgium members have a vote at
the General Assembly, can add items to
the agenda, and can be a candidate for a
position on the Board [4]. See the separate
official convocation [5] for all details.

[4] http://www.cs.kuleuven.be/~dirk/
ada-belgium/board/

[5] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/19/
190512-abga-conv.html

*** Ada Round-Table Discussion

As in recent years, we plan to keep the
technical part of the Spring event informal
as well. We will have a round-table
discussion on Ada-related topics the
participants would like to bring up. We
invite everyone to briefly mention how
they are using Ada in their work or non-
work environment, and/or what kind of
Ada-related activities they would like to
embark on. We hope this might spark
some concrete ideas for new activities and
collaborations.

*** Directions

To permit this more interactive and social
format, the event takes place at private
premises in the Wavre area, south of
Brussels. As instructed above, please
inform us by e-mail if you would like to
attend, and we'll provide you precise
directions to the place of the meeting.
Obviously, the number of participants we
can accommodate is not unlimited, so
don't delay...

Looking forward to meet many of you!

Dirk Craeynest, President Ada-Belgium

Dirk.Craeynest@cs.kuleuven.be

Acknowledgements

We would like to thank our sponsors for
their continued support of our activities:

AdaCore, and KU Leuven
(University of Leuven).

If you would also like to support Ada-
Belgium, find out about the extra Ada-

Belgium sponsorship benefits:

http://www.cs.kuleuven.be/~dirk/
ada-belgium/member-benefit.html

#sponsor

Ada-Europe 2019

From: dirk@orka.cs.kuleuven.be. (Dirk
Craeynest)

Date: Thu, 9 May 2019 05:47:27 -0000
Subject: 24th Int. Conf. Reliable Software

Technologies, Ada-Europe 2019
Newsgroups: comp.lang.ada,

fr.comp.lang. ada, comp.lang.misc

--

Call for Participation

*** PROGRAM SUMMARY ***

24th International Conference on Reliable
Software Technologies -

Ada-Europe 2019

11-14 June 2019, Warsaw, Poland

http://www.ada-europe.org/
conference2019

Organized by EDC and Ada-Europe, in
cooperation with ACM SIGAda,
SIGBED, SIGPLAN and the Ada

Resource Association (ARA)

*** Online registration open ***

*** Early registration discount until May
20 ***

*** Extensive info available on
conference web site ***

*** Highly recommended to book your
hotel ASAP ***

The 24th International Conference on
Reliable Software Technologies - Ada-
Europe 2019 visits Poland, for the first
time, and is hosted in Warsaw from the
11th to the 14th of June. The conference
is the latest in a series of annual
international conferences started in the
early 80's, under the auspices of Ada-
Europe, the international organization that
promotes knowledge and use of Ada and
Reliable Software in general, into
academic education and research, and
industrial practice.

The Ada-Europe series of conferences has
over the years become a leading
international forum for providers,
practitioners and researchers in reliable
software technologies. These events
highlight the increased relevance of Ada
in general and in safety- and security-
critical systems in particular, and provide
a unique opportunity for interaction and
collaboration between academics and
industrial practitioners.

Extensive information is on the
conference web site, such as an overview
of the program, the list of accepted papers
and industrial presentations, and
descriptions of workshops, tutorials,
keynote presentations, and social events.
Also check the conference site for
registration, accommodation and travel
information. The 12-page Advance
Program brochure is available there as
well.

The 2019 edition of the conference
features a number of important
innovations:

- lower registration fee for conference,
unified for all participants;

- further reduced fee for all authors;

- lower registration fee for all tutorials;

- journal-based open-access publication
model for peer-reviewed papers;

- an educational tutorial offered especially
for those new to Ada;

- more compact program with two core
days (Wed & Thu); tutorials on
Tuesday, then exhibition opening mid-
afternoon, followed by welcome aperitif
for all participants;

- full-day DeCPS workshop on Friday
(complementary with registration).

Quick overview

- Tue 11: tutorials, opening exhibition +
AE GA, welcome reception

- Wed 12 & Thu 13: core program

- Fri 14: workshop

Proceedings

- peer-reviewed papers in open-access
journal

- industrial presentation and tutorial
abstracts in Ada User Journal

Conference & Program Chair

- Tullio Vardanega, University of Padua,
Italy tullio.vardanega at unipd.it

Keynote speakers

- Tucker Taft, AdaCore, USA, "A 2020
View of Ada"

- other keynote to be confirmed (see
conference web site)

Workshop (full day)

- 6th International Workshop on
"Challenges and new Approaches for
Dependable and Cyber-Physical
Systems Engineering" (DeCPS 2019)

Tutorials (full day)

- "Controlling I/O Devices with Ada,
using the Remote I/O Protocol" Philip
Munts, Sweden

- "An Introduction to Ada" Jean-Pierre
Rosen, Adalog, France

Papers and Presentations

- sessions on Assurance Issues in Critical
Systems, Tooling Aid for Verification,
Best Practices for Critical Applications,
Uses of Ada in Challenging
Environments, Verification Challenges,
Real-Time Systems

- 9 refereed technical papers

- 8 industrial presentations and experience
reports

- a speaker's corner on "Experience from
40 years of teaching Ada"

80 Ada-related Tools

Volume 40, Number 2, June 2019 Ada User Journal

Vendor exhibition and networking area

- area features exhibitor booths, project
posters, reserved vendor tables, and
general networking options

- 4 companies already committed:
AdaCore, PTC Developer Tools, Rapita
Systems, Vector; some exhibition slots
still available

- vendor presentation sessions in core
program

Social events

- each day: coffee breaks in the exhibition
space and sit-down lunches offer ample
time for interaction and networking

- Tuesday afternoon: opening of
exhibition & Ada-Europe General
Assembly, Welcome Aperitif on terrace
overlooking Warsaw Airport

- Wednesday evening: transportation to
restaurant in town where Chopin was
born, banquet with Polish cuisine,
drinks, and live piano music

- Best Paper and Best Presentation awards
will be handed out

Registration

- online registration is open at
<https://registration.ada-
europe.org/index.html>

- early registration discount until Monday
May 20, 2019

- special low fee for authors

- discount for Ada-Europe, ACM
SIGAda, SIGBED and SIGPLAN
members

- extra discount for students

- registration includes coffee breaks and
lunches

- full conference registration includes all
social events

- tutorial fees substantially reduced

- payment possible by credit card or bank
transfer

- see registration page for all details

Promotion

- recommended Twitter hashtags:
#AdaEurope and/or #AdaEurope2019

- 12-page Advance Program brochure
online at http://www.ada-europe.org/
conference2019/AE-2019%20AP.pdf

- support Ada-Europe 2019 with
promotional poster at
http://www.ada-europe.org/
conference2019/picts/
AE2019_poster.pdf

Please make sure you book
accommodation as soon as possible.

For more info and latest updates see the
conference web site at
http://www.ada-europe.org/
conference2019.

We look forward to seeing you in Warsaw
in June 2019!

Our apologies if you receive multiple
copies of this announcement. Please
circulate widely.

Dirk Craeynest, Ada-Europe'2019
Publicity Chair

Dirk.Craeynest@cs.kuleuven.be

*** 24th Intl. Conf. on Reliable Software
Technologies - Ada-Europe'2019
June 11-14, 2019 * Warsaw, Poland *
www.ada-europe.org/conference2019

Ada-related Resources

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Date: Thu May 23 2019
Subject: Ada on Social Media

On March 12, 2019, Maxim Reznik
created an English-language Telegram
chat group, called "Ada", with description
"Ada Programming Language and related
technologies". It can be joined at
https://t.me/ada_lang

On other front, the Google+ Ada
Community seems to no longer exist.

Ada groups on various social media:

- LinkedIn: 2_813 (+101) members [1]

- Reddit: 2_243 (+343) members [2]

- StackOverflow: 1_183 (+183) watchers
 [3]

- Freenode: 87 (-17) users [4]

- Gitter: 42 (-15) people [5]

- Telegram: 47 (new!) users [6]

- Twitter: 6 (-2) tweeters [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] #Ada on irc.freenode.net

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] https://twitter.com/search?
src=typd&q=%23AdaProgramming%20
since%3A2019-02-
23%20until%3A2019-05-23

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Date: Thu May 23 2019
Subject: Repositories of Open Source

software

GitHub: 603 (+90) developers [1]

Rosetta Code: 664 (+ 9) examples [2]

 36 (+3) developers [3]

Sourceforge: 270 (+5) projects [4]

Open Hub: 209 (+3) projects [5]

Bitbucket: 87 (+5) repositories [6]

Codelabs: 46 (+1) repositories [7]

AdaForge: 8 repositories [8]

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://bitbucket.org/repo/all?
name=ada&language=ada

[7] http://git.codelabs.ch/

[8] http://forge.ada-ru.org/adaforge

Language popularity
rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Date: Thu May 23 2019
Subject: Ada in language popularity

rankings

- TIOBE Index: 36 (0.326%) [1]

- IEEE Spectrum (general): 46 [2]

- IEEE Spectrum (embedded): 13 [2]

[1] https://www.tiobe.com/tiobe-index/

[2] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2018

Ada-related Tools

Debugging Ada programs

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Tue, 2 Apr 2019 17:07:24 -0500
Subject: Re: Intervention needed?
Newsgroups: comp.lang.ada

Does anyone spend much time in a
debugger when writing Ada? Almost all
of the time I do it is to track down
compiler bugs (hopefully something that
the average Ada user doesn't do often).
With the default exception information,
there is little need to debug anything the
majority of the time.

Certainly, moving detection to compile-
time is even better. But I don't see that
changing the mostly non-existent use of
debuggers much.

Ada-related Tools 81

Ada User Journal Volume 40, Number 2, June 2019

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 3 Apr 2019 09:29:20 +0200

> Does anyone spend much time in a
debugger when writing Ada?

Well if there were a working one. GDB
does not count.

I am using tracing, but there are few cases
where debugger could be easier to use. In
the debugger you could inspect the states
of variables and of other tasks. And you
don't need to modify the code. It is quite
often that I have to add, in addition to
"standard" tracing, some more extensive
tracing which I remove later.

[...]

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 3 Apr 2019 19:15:20 +0200

On 2019-04-03 18:16, Simon Wright
wrote:

> "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de> writes:

> [...]

>> Other debuggers work, GDB does not.
If you have an Ada project of a
moderate size GDB stops working.

>

> How big is "moderate"?

In none of my projects GDB works. I
never tried to figure out if that is related
to the number of compilation units or
number of library projects involved.

When you click Debug->Initialize->your-
main-program in GPS and debugger does
not start you know you reached the point.

From: Maciej Sobczak
<see.my.homepage@gmail.com>

Date: Wed, 3 Apr 2019 22:44:03 -0700

> In none of my projects GDB works.

>

> P.S. It never worked reliable in GPS
and I bet it never will.

This is very troubling. I understand the
sentiment here that Ada is so good in
error prevention that debuggers are not
needed at all, but what I find in projects
I'm related with is that debuggers are not
used for debugging anyway.

The major use for debuggers that I see is
in integration testing, where test
procedures expect particular values in
particular variables (or even exact
memory locations) in particular
circumstances. The test is successful if
such expectations are confirmed. Even for
a presumably 100% correct program such
a test has to be done if foreseen by project
plans.

So, we have another paradox: Ada is so
good in error prevention that the
community does not care about having a
proper debugger, and then the lack of
working debugger prevents people from

choosing Ada for projects that have
rigorous integration testing culture. Part
of the paradox is that such projects
happen to be safety-critical, where Ada is
supposed to be the preferred solution.
And then they use C, where debuggers
work like a charm.

Again: debuggers are not only for
debugging and you better get them
working right (by, well... debugging
them?).

From: Maciej Sobczak
<see.my.homepage@gmail.com>

Date: Thu, 4 Apr 2019 22:45:17 -0700

> As gdb can be scripted, the tests that
Maciej describes can probably be
automated,

Yes.

> albeit with considerable effort,

Not really. I would say there is no need
for this effort to be higher than with any
other form of test automation. Note that as
with anything else in software, recurring
problems can be mitigated by additional
code. That is, if testing this way is
difficult, then the difficulty is similar for
the whole class of similar tests and as
such that difficulty can be refactored
away to additional utility
(library/framework/etc.) with simpler
(higher-level) interface.

> especially if the scripts should be robust
to evolution of the SW under test
(changing the line numbers of the
required breakpoints, etc.)

This is a wider problem of traceability.
You have to solve this problem anyway
for the coverage analysis, for example.
And the solution, whatever you happen to
use (like tool-readable labels in source
comments), will help with debugging, too.

In any case, yes, some projects need the
debugger to test individual memory
locations. The lack of proper tools is a
technology risk.

> However, I don't think that gdb or other
current debuggers are ideal tools for
automated checking of internal states.

They are not. But a non-ideal working
debugger is still better than a not working
one.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 3 Apr 2019 20:23:36 +0300

On 19-04-03 01:07 , Randy Brukardt
wrote:

> Does anyone spend much time in a
debugger when writing Ada?

I don't. I can't remember when I last used
gdb or any other debugger, and in my ~30
years of Ada use I estimate that I have
used a debugger on perhaps ten occasions.
I have slightly more often used "monitor"
programs to examine and alter memory
and register contents when analysing
problems in embedded programs, and

those monitor programs can perhaps be
considered crude debuggers. However,
these cases involved the effects and
meanings of HW control registers rather
than ordinary program variables.

A propos, the name "debugger" is IMO
one of the unfortunate historical
misnomers in the programming domain. It
is a misnomer because a "debugger" like
gdb should certainly not be our main tool
for removing bugs from programs. Diving
into the debugger as the first step of
analysing a program failure is akin to
starting a new project by diving into
coding and skipping the design phase.
Moreover, the activity of removing a bug
from program, which should be the
meaning of the term "debugging", should
certainly not consist just of a
gdb/debugger session.

[...]

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Wed, 03 Apr 2019 18:48:42 +0100

On 3 Apr 2019, Niklas Holsti wrote:

> On 19-04-03 01:07 , Randy Brukardt
wrote:

>> Does anyone spend much time in a
debugger when writing Ada?

> I don't. I can't remember when I last
used gdb or any other debugger, and in
my ~30 years of Ada use I estimate that
I have used a debugger on perhaps ten
occasions.

I can trump that.

I have *never* used a "debugger" in much
the same time with Ada.

~30 years ago I raced an experienced
programmer who was looking for an error
in his code with the DEC Ada debugger,
while I inspected his compilation listing. I
won.

VisualAda 1.2.1

From: Alex Gamper
<alby.gamper@gmail.com>

Date: Fri, 17 May 2019 20:26:55 -0700
Subject: ANN: VisualAda (Ada Integration
for Visual Studio 2017 & 2019) release
1.2.1

Newsgroups: comp.lang.ada

Dear Ada Community

VisualAda version 1.2.1 has been
released.

Fixes include the following:

- UWP DLL is linking with both GCC
and MS.

- UWP XAML application project
template now correctly add project
dependencies .

- Install / Uninstall Ada menu items.

- Fix determining path to gdb.exe.

82 Ada-related Tools

Volume 40, Number 2, June 2019 Ada User Journal

- Minimum supported version of Visual
Studio is now 2017 Update 6
(15.0.27413).

Please feel free to download the free
plugin from the following URL:
https://marketplace.visualstudio.com/
items?itemName=AlexGamper.
VisualAda

Gnu Emacs Ada mode

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sat, 23 Mar 2019 10:25:34 -0700
Subject: Gnu Emacs Ada mode 6.1.0

released.
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 6.1.0 is now
available in GNU ELPA. This is a
medium feature release; partial file
parsing is now supported when using the
process parser, and error correction is
improved. This means the time spent
parsing is independent of the file size, so
it is fast enough even on the largest files.

The process parser requires a manual
compile step, after the normal list-
packages installation:

 cd ~/.emacs.d/elpa/ada-mode-6.1.0

 ./build.sh

This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

AdaSubst

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 19 Apr 2019 08:47:50 +0200
Subject: [Ann] Adasubst 1.6r5 released
Newsgroups: comp.lang.ada

Adalog is pleased to announce the release
of a new version of AdaSubst.

This releases adds a new function:
Instantiate. It replaces all generic
instantiations with equivalent, explicit
code. This is useful if your coding
standard disallows generics on the ground
that it is "hidden code", or if you use a
validation or testing tool that does not
handle generics properly.

Adasubst can be downloaded from
http://www.adalog.fr/en/components.html
#adasubst

And of course, it's free software.

Enjoy!

Win32 and WinRT Bindings

From: alby.gamper@gmail.com
Date: Sat, 27 Apr 2019 21:05:21 -0700
Subject: Ann: Win32 and WinRT bindings

update
Newsgroups: comp.lang.ada

Dear Ada Community

The Win32 and WinRT bindings have
both been updated to the latest Microsoft

SDK version (10.0.18362). This version
corresponds to the 19H1 release of
Windows 10.

Packages/Source can be found at

https://github.com/Alex-Gamper/
Ada-Win32

https://github.com/Alex-Gamper/
Ada-WinRT

Alex

Simple Components

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 14 May 2019 19:05:57 +0200
Subject: ANN: Simple Components v4.40
Newsgroups: comp.lang.ada

The software version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and various protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- The package OpenSSL was added to
provide bindings to OpenSSL;

- The package
GNAT.Sockets.Server.OpenSSL was
added to support secure servers based on
OpenSSL;

- Multiple procedures were added to the
package
GNAT.Sockets.Connection_State_Mach
ine.ELV_MAX_Cube_Client to support
devices topology management and time
management;

- Race condition in Object.Release fixed.
The profile of the primitive operation
Object.Decrement_Count has been
modified.

GtkAda Contributions

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 14 May 2019 19:08:07 +0200
Subject: ANN: GtkAda Contributions v3.24

The software extends GtkAda 3.14.15, an
Ada bindings to GTK+. It deals with the
following issues:

- Tasking support;

- Custom models for tree view widget;

- Custom cell renderers for tree view
widget;

- Multi-columned derived model;

- Extension derived model (to add
columns to an existing model);

- Abstract caching model for directory-
like data;

- Tree view and list view widgets for
navigational browsing of abstract
caching models;

- File system navigation widgets with
wildcard filtering;

- Resource styles;

- Capturing resources of a widget;

- Embeddable images;

- Some missing subprograms and bug
fixes;

- Measurement unit selection widget and
dialogs;

- Improved hue-luminance-saturation
color model;

- Simplified image buttons and buttons
customizable by style properties;

- Controlled Ada types for GTK+ strong
and weak references;

- Simplified means to create lists of
strings;

- Spawning processes synchronously and
asynchronously with pipes;

- Capturing asynchronous process
standard I/O by Ada tasks and by text
buffers;

- Source view widget support;

- SVG images support.

http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm

Changes to the previous version:

- The package GLib.Time_Zone was
added

GCC 9.1.0 for MacOS

From: Simon Wright
<simon@pushface.org>

Date: Wed, 08 May 2019 20:00:57 +0100
Subject: ANN: GCC 9.1.0 for MacOS
Newsgroups: comp.lang.ada

GCC 9.1.0 for Mac OS X El Capitan
(10.11) is available at
https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
9.1.0/

Also runs on macOS Mojave (10.14) and
(untested) on Sierra (10.12) and High
Sierra (10.13).

* DO NOT USE ON EARLIER

VERSIONS OF OS X *

The native/ directory contains the 9.1.0
x86_64-apple-darwin15 compiler,
together with tools from GNAT CE 2018
and various Github and other repositories.

Ada Inside 83

Ada User Journal Volume 40, Number 2, June 2019

The arm-eabi/ directory contains the 9.1.0
arm-eabi Darwin-hosted cross
compiler.GNAT Community 2019

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Date: Thu May 30 13:58:51 CEST 2019
Subject: GNAT Community 2019 released

As seen in several social media sources,
the new Community edition of GNAT as
arrived and is available for download at:

https://www.adacore.com/download

From the release announce at [1] by
Nicolas Setton:

We are pleased to announce that GNAT
Community 2019 has been released! See
https://www.adacore.com/download.

This release is supported on the same
platforms as last year:

 - Windows, Linux, and Mac 64-bit
 native

 - RISC-V hosted on Linux

 - ARM 32 bits hosted on 64-bit Linux,
Mac, and Windows

GNAT Community now includes a
number of fixes and enhancements, most
notably:

 - The SPARK language now has
support for pointers, a fantastic
milestone for the language! See
https://blog.adacore.com/using-pointers-
in-spark for more information about this
new feature.

 - The installer for Windows and Linux
now contains pre-built binary
distributions of Libadalang, a very
powerful language tooling library for
Ada and SPARK.

Check out the README for some
additional platform-specific notes.

We hope you enjoy using SPARK and
Ada!

[1] https://blog.adacore.com/
gnat-community-2019-is-here

Componolit Ada Runtime
1.0.0

From: u/marc-kd
Date: Tue May 28 2019 14:41:16

GMT+0200 (CEST)
Subject: Componolit Ada Runtime 1.0.0
Newsgroups: reddit:/r/ada/ [1]

https://github.com/Componolit/
ada-runtime/releases/tag/v1.0.0

[News Editor - From the above link:]

Generic Ada Runtime - A downsized Ada
runtime which can be adapted to different
platforms.

The Componolit Ada Runtime 1.0.0
builds upon GCC 8.3 and is compatible
with GNAT Community 2019. It provides
the following runtime features:

- Interfaces (C)

- Secondary stack

- Exception raising

- 64bit arithmetics

- Unchecked conversion

The following features are
DEPRECATED and will be removed in
future releases:

- GNAT IO

Parts of the runtime are proven to have no
runtime errors:

- Secondary stack allocator

- String handling

Supported platforms:

- Genode

- Linux

[1] https://www.reddit.com/r/ada/
comments/btzk99/
componolit_ada_runtime_100/

Ada Inside

Boeing 737 MAX Software

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 05 Apr 2019 14:16:20 -0700
Subject: Boeing 737 and 737 MAX software
Newsgroups: comp.lang.ada

Does anyone know anything about this? It
has been under some criticism lately.

I have heard that the 777 software was
almost entirely in Ada. It also sounds as if
Boeing's software operation may have
slipped in recent years, not good news for
the 737 MAX.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 6 Apr 2019 21:45:24 +0300

[...]

As I've read more about these accidents
than I usually do, I will boldly (and
perhaps foolhardily) describe how I have
understood it. All info is from public
sources, I have no insider info. I am not a
pilot, and moreover I write from
recollection of my reading and have no
references to give, so reader beware.

> On 19-04-06 20:30 , Dennis Lee Bieber
wrote:

>

> Unless things have changed severely --
GE Aviation (formerly Smith's
Aerospace, formerly Lear Siegler)
produces the 737 FMS software (and
also the processor boxes).

>

> However, I have the impression (from
TV news) the software is functioning
/as designed/.

All info I have seen agrees with that.

> Some reports have indicated that
Boeing designed the hardware (and
corresponding software requirements)
such that only one sensor is used for the
MCAS subsystem

There are two angle-of-attack (AoA)
sensors, one on each side of the nose.
They feed two redundant computers, each
able to run MCAS. Normally only one
MCAS instance is running and it uses
only its "own" AoA sensor.

The original design of MCAS gave it
rather little control authority, which is
probably why this single-sensor approach
was accepted.

> -- and a fault in that sensor results in
MCAS attempting to prevent a (non)
stall by pushing the nose down.

Yes, but MCAS does not apply a
temporary nose-down command -- as if
pushing the stick forward -- it changes the
pitch trim, the overall angle of the
horizontal stabilizer, giving the plane a
permanent tendency to dive. This trim
change can be overridden by the pilots,
but only if they notice that it has
happened.

In the original MCAS design, one
activation of MCAS changed the pitch
trim by a small amount, at most 0.6
degrees IIRC, and this limit was reported
in the MCAS design documentation to the
authorities. During testing, Boeing found
that it was not enough, and they increased
it quite a lot, to over 2 degrees IIRC. One
source I read claimed that this change was
not updated in the documentation
shown to the authorities.

Moreover, by design MCAS would repeat
this trim change, with a certain minimum
interval, as long as the AoA sensor
reading remained too large and indicated
a risk of stall. This iteration should
converge and stop if the sensor is
working, but if the sensor fails and is
stuck at a high AoA (the false value
reported in the second accident was
around 60 degrees, IIRC) then MCAS
will incrementally and cumulatively keep
increasing the pitch trim and the diving
tendency. If the pilots do not understand
what is happening, they will find it ever
harder to counteract the "dive" trim with
stick inputs.

> Some hints in the news that Boeing is
changing the requirements (well, in
truth, the news only says Boeing is
changing the software) to have MCAS
cross-reference with other flight
parameter data -- and making an
optional bit of hardware (additional
sensors) standard.

AIUI the modified MCAS will read both
AoA sensors and will disable itself if they
disagree, and the disagreement will also
be reported by a display. This display is
the new piece of HW which used to be an
option. There are no new sensors, AIUI.

84 Ada and other Languages

Volume 40, Number 2, June 2019 Ada User Journal

I believe Boeing are also changing the
minimum interval between MCAS
activations -- perhaps even allowing only
one activation -- so as to prevent a
cumulatively increasing "dive" trim.

In summary, it seems to me that the
criticality of MCAS, and thus the need for
redundant sensors, was not realized for
two reasons: (1) in its initial design,
MCAS command authority was small,
and (2) the possibility of multiple
repeated commands (due to a stuck
sensor) and the resulting large cumulative
command (large change of pitch trim) was
not considered.

A kind of "criticality creep".

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Fri, 12 Apr 2019 18:15:07 -0400

On Fri, 12 Apr 2019 00:46:31 -0700 ,
tranngocduong@gmail.com declaimed the
following:

> I know nothing about the software. But
I don't think it is written in Ada. If it
was, programmers must have chosen a
wrong subtype.

It's Ada... (In the past, I was doing
maintenance on the FMS "BootROM"
code -- which, while not the actual run-
time flight software, is responsible for
doing CRC checks of the software and
databases, reading new software from
dataloaders, and loading which
application is to run based upon external
settings. The FMS software links with the
same base "OS".

[...]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 18 Apr 2019 21:20:19 +0300

On 19-04-18 19:21 ,
tranngocduong@gmail.com wrote:

[...]

> To my limited knowledge, AoA is a
critical parameter that is used by many
flight control algorithms, not just the
MCAS. The real issue is thus the failure
to detect an unreliable sensor. If the
failure was a "feature, not bug", the
entire flight software (and its
certificate) would be questioned.

I've read rumours that even if the U.S.
FAA lets the fixed 737 MAX fly again,
other air safety authorities (Europe, for
example) might not be satisfied, for that
very reason -- suspicion that the flight
software process was at fault.

From more recent descriptions of the two
crashes, it seems that the problem also
involves complex interaction between
MCAS, the enabling or disabling of the
elevation trim motors, restarts of the
control computer, and the fact that manual
correction of the elevation trim becomes
impossibly hard when the MCAS-
commanded large "dive" trim applies
large aerodynamic forces to the trim

mechanism. Thus the problem was not
only in the software process, but also in
the controllability of the aircraft under
anomalies -- a chain of failures, as typical
for accidents.

> [...] Would Boeing as a company risk its
very existence by committing such a
big mistake? I don't think so.

The suspicion involves Boeing sliding
down two slippery slopes, as I understand
it:

1) For MCAS in particular, its control
authority was greatly increased from its
first design to the flying version, but
this was not propagated into a new
consideration of its criticality.

2) For the process in general, an
increasing complacency ("we know
how to do it") and increasing delegation
of checks from the FAA to Boeing (and
other airplane builders), combined with
specific driving forces for 737 MAX
(urgency + desire to avoid pilot
retraining).

I am reminded of the Space Shuttle O-
rings... and perhaps also of the scandals
with automotive SW hiding emissions,
leading to multi-billion losses for the
guilty European companies...

From: Paul Rubin
<no.email@nospam.invalid>

Date: Thu, 18 Apr 2019 13:20:29 -0700

Niklas Holsti
<niklas.holsti@tidorum.invalid>
writes:

> On the issue of Ada subtypes, it seems
to me that if the SW specification,
design and coding considers sensor
faults (as it of course should), the
normal approach for such critical SW

One of the criticisms of the decisions
leading to the MCAS software is that the
software is certified only at DO-178B
level C, defined as software whose
consequences are
(https://en.wikipedia.org/wiki/DO-178B):

 Major – Failure is significant, but has a
lesser impact than a Hazardous failure
(for example, leads to passenger
discomfort rather than injuries) or
significantly increases crew workload
(safety related)

This is instead of level A (catastrophic,
the whole plane can be lost), or level B
(hazardous, people can be injured). The
rationale was that at worst MCAS going
wrong would change the nose pitch by a
few degrees and then the pilot could fix it.
They didn't consider the possibility of it
activating over and over again, tilting a
few more degrees each time.

Since the software was treated as level C,
its development and certification process
was less rigorous than what it would have
gotten at a more critical level.

Certifying and developing this system at
level C instead of level A was itself

obviously some kind of process failure. I
believe finding out how that happened is
one of the investigation's objectives.

Ada and other
Languages

Pointer Ownership,
Containers and Cursors in
Ada, Rust, SPARK

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 12 Mar 2019 16:53:01 -0500
Subject: Re: Intervention needed?
Newsgroups: comp.lang.ada

[...]

My understanding is that the SPARK
people are far into designing ownership
contracts for Spark.

It's also possible that Ada 2020 will have
a form of pointer ownership.
(Unfortunately, we didn't make any
conclusions on that during yesterday's
meeting, so it's still in limbo, and we're
getting very close to the finish line.) The
current problem is that in Ada 2020 as it
stands, it's not possible to write a
containers implementation in pure Ada.
You'd have to have some implementation
hack to turn off some of the Legality
Rules. Tucker has designed a solution,
based on an ownership mechanism, but as
it is new and barely vetted, it's unclear
what we will do with it ultimately. Note
that this solution will not provide the
perfect safety that you would get with
SPARK or Rust, but it would form the
foundation of the SPARK solution and it
would clearly catch a lot of issues with
using pointers to implement ADTs. (And
there is little other reason to use pointers,
IMHO.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 18 Mar 2019 18:36:15 -0500

[...]

But a better question is whether the Rust
borrow checker allows building proper
ADTs for most data structures. Most of
Tucker's proposals didn't have a safe way
to build typical data structures like a
doubly-linked list or the parent pointer of
a tree structure. Leaving out these
backward pointers means adding a
substantial performance degradation for
(possibly) common operations like node
deletion. Depending on what you're
doing, that could be a non-starter. I
haven't had a chance to actually look at
Rust's actual rules; Ada is hard enough
and as we're in the home stretch for Ada
2020, I literally don't have time for much
else. (Probably shouldn't be answering
this message...)

Ada and other Languages 85

Ada User Journal Volume 40, Number 2, June 2019

Tucker's latest proposal does address the
back pointer problem. So at least that can
be done with checks.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 19 Mar 2019 18:01:19 -0500

[...]

Some background here: The basic idea
behind pointer ownership is to prevent
various issues by enforcing an invariant --
that each allocated object is stored in
exactly one pointer object. This is
enforced with a variety of runtime and
compile-time rules.

Now, it's clear that one can't even walk a
data structure that way, so the idea of
"borrowing" a pointer for a limited time
was invented. Such borrowing has to be
done in carefully controlled ways in order
to keep it being safe -- for instance, no
one can read or write the original pointer
while it is borrowed.

Multiple long-lived pointers that point at a
single object are simply not allowed. In
part, that's done by making assignment
either illegal or a move (where the source
is nulled when the pointer is assigned).

For something like a cursor, that means
that Rust-pointers couldn't be used to
create the object. The entire point of a
cursor is that it is a long-lived handle to a
specific element in a larger data structure.
One can't null out part of the data
structure to create the handle, and if the
assignment is banned completely, you
could never create a valid cursor object in
the first place.

There are similar issues with back
pointers in a data structure, as you might
guess.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 19 Mar 2019 18:13:45 -0500

[...]

A cursor is a handle accessing an element
of a larger container, nothing more or less
than that. The primary usage is to connect
data structures made up of multiple
containers. For instance, consider a
compiler symbol table. There is a tree
structure that represents each of the
declarations and their scopes, and a map
structure that represents a mapping of
names to nodes of the tree. The contents
of that map is going to be tree cursors,
each representing a declaration with a
particular name.

[...]

The value of cursors is that they can be
implemented by a range of abstractions
with a range of checking, from array
indices (as in the bounded containers and
the vector) to pointers with a variety of
schemes from no dangling checking to the
bulletproof controlled cursor scheme.

[...]

From: Jere <jhb.chat@gmail.com>
Date: Fri, 22 Mar 2019 03:54:03 -0700

[...]

Not really. In Rust they don't even use
cursors. They go straight to iterators. On
top of that, the combination of being able
to specify the lifetime of all of your
variables (if you need to) and the
ownership rules gives them 100% safety
from dangling references when they
create and use those iterators.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 23 Mar 2019 02:53:32 -0500

If you don't store any cursors and just use
iterators in Ada, you have the same level
of safety: the tampering checks prevent
any problems with iterators. (Well, unless
you turn them off, of course, but if you
remove the seatbelts, you can't much
complain that they didn't protect you.)

I'd be interested to find out how Rust
deals with the need to designate
individual elements of a container (which
is the primary reason that Ada exposes
cursors).

From: Jere <jhb.chat@gmail.com>
Date: Sat, 23 Mar 2019 06:59:35 -0700

Keep in mind the rust paradigm is very
different than Ada's. When you obtain an
iterator of a container, you borrow
ownership of the container. At that point
it is impossible to tamper with the
container because it is a compile time
error to modify the container when
something else has ownership of it. It's a
compile time version of Ada's tampering
checks using an ownership model. If you
need to remove items as you iterate, there
is a consuming version of the iterator that
allows for that. It handles all the logic of
keeping the iterator correct as you remove
items. If you need to remove only specific
items, it provides functions for that as
well (but you would not iterate while
using them do to the
ownership/borrowing rules).

Additionally, Rust allows you to specify
the lifetime of the iterator, the lifetime of
the reference to the item, and how they
relate to the lifetime of the container so
that the compiler can guarantee that
nothing dangles (it's a relative
specification..container has lifetime A and
everything else has either A or a lifetime
relative to A).

If you were instead referring to indexing
the container, for things like vector, Rust
looks to see if the container implements
the Index trait, and, if so, allows for the
user to use the index operation on the
container. It's very similar to making a
cursor and setting the variable_indexing
aspect and constant_indexing aspect,
except rust doesn't expose the underlying

equivalent cursor type. So you either
work with Indexes or Iterators depending
on your need.

From: Jere <jhb.chat@gmail.com>
Date: Tue, 19 Mar 2019 18:20:54 -0700

[...]

Rust has a couple levels of ownership and
borrowing. It employs both spacial and
temporal ownership rules. The 90%
solution uses spacial rules (the ones you
are most likely familiar with). For
managing data across threads or doing
complex data types, Rust also provides
temporal ownership/borrowing. Think of
the same distinction Ada has for named
access types vs anonymous access types.
You can catch a lot more at compile time
with named access types, but anonymous
access types can potentially have more
runtime checking. In Rust, the standard
reference scheme you are probably
familiar with employ spacial ownership.
If you need temporal ownership, then for
single threaded you use things like the
RC<> generic (reference counted), and
for multi-threaded you use things like the
ARC<> generic (atomic reference
counted). There are other things of similar
nature. These employ temporal rules,
which can potentially require runtime
checks, though the presence of the spacial
ownership rules can help optimize out a
lot of the run time checks. I kind of
mentioned this above, but the spacial and
temporal rules aren't mutually exclusive.
They can work together when needed.

[...]

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Wed, 13 Mar 2019 06:44:05 -0700

On Wednesday, March 13, 2019 at
5:10:31 AM UTC-4, Maciej Sobczak
wrote:

> So, seriously - what's wrong with
pointers in Rust?

From that excerpt [1] by Oliver Scherer
(Rust compiler contributor), it looks like
the ownership aspect that comes with
them is a real improvement:

"The two (obviously not a good amount
of datapoints) large scale refactorings in
Ada software that I've been part of have
resulted in horrible hacks where people
just spammed protected and pragma
everywhere to get stuff working and bug
free. The protected injections are because
it's nearly impossible to figure out which
things are accessed by multiple tasks
without SPARK and you end up with
undefined behaviour if you accidentally
have a shared access to an unprotected
memory location. The pragmas were
reconfiguring things like stack size or
disabling compiler warnings without
actually thinking about what these
changes meant.

Refactorings in Rust on the other hand are
(compile-time) guaranteed to be free of

86 Ada Pract ice

Volume 40, Number 2, June 2019 Ada User Journal

race conditions, no matter how crazy you
move stuff around or create new
parallelism. Additionally the ownership
concept lead to many libraries typestate
encoding their API which makes misusing
them a near impossibility (at compile-
time) while Ada mainly catches those
misuses at runtime via exceptions."

[...]

[1] "Why Rust was the best thing that
could have happened to Ada".
https://www.reddit.com/r/ada/comments
/7wzrqi/why_rust_was_the_best_thing_t
hat_could_have/

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 14 Mar 2019 17:41:12 -0500

Obviously, if your existing code isn't
documented properly as to what needs to
be task-safe, then refactoring it isn't going
to work very well. Refactoring bad code
is just going to give you bad code. :-) And
almost all code in any language is bad
code, because at some point people turned
to "just make it work" mode, and stopped
doing the things necessary for the code to
be understandable. Using Ada helps, but
surely doesn't eliminate this point.

In any case, Ada 2020 is very much about
addressing this point. The new
Nonblocking and Global contracts make
is possible to declare tasking and memory
side-effects, and the "conflict check
policies" allow using that to prevent data
races. (Note that there is a difference
between a "data race", and "race
conditions"; there are plenty of race
conditions that aren't data races, and no
programming language can statically
prevent the latter, since they're caused of a
sequence of operations. Well, other than
not having any task interactions in the
first place. :-)

In addition, conflict checks are enabled by
default on the new parallel constructs, so
you have to work at causing problems.
(The parallel constructs are safer anyway,
since they do not allow blocking, so there
aren't any rendezvous and entry calls to
worry about.) And they can be enabled on
tasks as well (not done by default for the
obvious reason of compatibility - but also
for capability, tasks should mainly be
used in Ada 2020 when one needs
rendezvous and other constructs that can't
be checked at compile-time).

The issue with this is that a dereference of
an access value is almost always going to
cause a conflict and thus be illegal. And
the contracts for the containers are
designed so that they can be used in
parallel operations (presuming the actual
parameters to the instance allow that).
This means that no access types can be
used to implement the containers, which
is nonsense for the unbounded and
indefinite containers. The ownership stuff
is a proposal to limit that in the case of
building ADTs, including the containers.

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Wed, 13 Mar 2019 06:23:59 -0700

Thanks to those who brought 'material' to
the discussion.

a. The Rust thread is now closed and we
did not slide into a flame war. Very
good.

b. We definitely enlightened a whole
bunch. You have no idea how many
Rustaceans do not even know Ada
exists. After all, awareness and politics
are important. Very good.

c. From Randy's post, I find it exciting to
see that this 'episode' is of actuality
regarding Ada202X. Very good.

Thx

Ada Practice

Interviews to Ada
Practitioners

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Date: Fri, 24 May 2019
Subject: Interviews to Ada enthusiasts

Tomek Wałkuski
<tomek.walkuski@gmail.com>, co-
founder at 98elements [5], is running a
series of interviews [1] to people from the
Ada community. Here is a list with a few
extracted words from each interview since
the last AUJ Issue:

- Fabien Chouteau interview [2]: "My
name is Fabien Chouteau, I am
embedded software engineer at
AdaCore, hobbyist in electronics,
instrument making and woodworking.
[...] A couple years ago I started the Ada
Drivers Library project, at first it was
just a way to have fun with an ARM
Cortex-M micro-controller board and
see how Ada can be used on such
hardware. It became a one stop shop for
getting started in embedded Ada
programming and sparked many other
projects [...]"

- Edward Fish interview [3]: "I was
introduced to Ada in one single class,
Programming Languages, which did a
high-level introduction/survey of various
languages and instantly felt at-home. It
did raise the question as to why a lot of
the features aren’t common in more
languages [...]"

- Stéphane Carrez interview [4]: "Later I
created another computer board based
on 68HC11 and to use it I also did a
complete port of the GNU compiler, the
GNU binutils and the GNU debugger.
My work was integrated in the FSF
sources in 2000. The GNAT Ada
compiler was working! I was able to run
a small Ada program that fit in less than
256 bytes!"

[1] https://tomekw.com/tag/interview/

[2] https://tomekw.com/ada-
programmers-fabien-chouteau/

[3] https://tomekw.com/ada-
programmers-edward-fish/

[4] https://tomekw.com/ada-
programmers-stephane-carrez/

[5] https://98elements.com/

Integer type with gaps

From: mario.blunk.gplus@gmail.com
Date: Fri, 29 Mar 2019 09:10:40 -0700
Subject: type definition for an integer with

discrete range
Newsgroups: comp.lang.ada

Hello,

I'm looking for a way to define a type that
runs from let say -100 to +100 with gaps
of 5 width. Important is to make sure that
a value like 7 cannot be assigned to the
type.

something like:

 type number is new integer range
 -100 .. 100;

 -- or

 subtype number is integer range
 -100 .. 100;

 -- with this special thing or something like
 -- that:

 for number'small use 5; -- cannot applied
 -- here. works with fixed point types only

Thanks !

From: Simon Wright
<simon@pushface.org>

Date: Fri, 29 Mar 2019 21:24:53 +0000

[...]

What about this?

 pragma Assertion_Policy (Check);
 with Ada.Text_Io; use Ada.Text_Io;
 procedure Type_Integer is
 subtype Number is Integer range
 -100 .. 100
 with Dynamic_Predicate => Number
 mod 5 = 0;
 V : Number;
 begin
 V := 0;
 Put_Line ("0'image is " & V'Image);
 V := -50;
 Put_Line ("-50'image is " & V'Image);
 V := 42;
 Put_Line ("42'image is " & V'Image);
 end Type_Integer;

Executing gives

 $./type_integer
 0'image is 0
 -50'image is -50
 raised SYSTEM.ASSERTIONS.
 ASSERT_FAILURE : Dynamic_Predicate
 failed at type_integer.adb:12

Ada Pract ice 87

Ada User Journal Volume 40, Number 2, June 2019

Gauss Error Function in
Ada

From: leov@gammawizard.com
Date: Mon, 1 Apr 2019 09:28:58 -0700
Subject: Erfc() function in ADA
Newsgroups: comp.lang.ada

Greetings, I have been looking into
reimplementing a collection of numerical
heavy code from R/C++ into ADA and so
far things seem doable. My only question
is about the support for the error function
and in particular the complementary error
function erfc(). I assume this is library
dependent so I would appreciate any
information if erfc() is part of the ADA
standard library or perhaps provided by
GNAT in some form?

From: gautier_niouzes@hotmail.com
Date: Mon, 1 Apr 2019 10:01:07 -0700

You can get easily the error function from
the Phi function which is available in the
following library:
http://mathpaqs.sourceforge.net/

From: gautier_niouzes@hotmail.com
Date: Tue, 2 Apr 2019 03:39:57 -0700

A few random remarks...

1) For further references: there is now in
Mathpaqs (rev. 153+) a separate
Erf_function package. Since
Phi_function.Phi uses Erf(x) anyway, it's
better to have access to Erf directly.

2) About the Numerical Recipies: be
careful, some versions support only 7-8
digits (single precision), so numerical
errors cumulate very quickly.

3) Some good stuff can be found in the
Alglib and Cephes libraries, in C,
Fortran or Pascal

4) Simple special functions (with one
parameter) could well be in an official
Ada.Numerics.Generic_Special_Functio
ns (low maintenance effort for compiler
vendors)

5) Don't forget to check:
https://www.adaic.org/ada-
resources/tools-libraries/

6) Perhaps the Alire system has some
math packages?

Porting GNAT bare-board
runtime to a new target

From: Daniel Way
<p.waydan@gmail.com>

Date: Sun, 7 Apr 2019 19:13:07 -0700
Subject: Understanding GNAT Bare Board

Run-time for Cortex-M
Newsgroups: comp.lang.ada

I'm trying to port the bare-board GNAT
run-time to a Coretex-M0+ (NXP
KV11Z7) processor. I'm new to
concurrency and have been reading
through the run-times for the STM32
targets to understand how the tasks and
protected objects are implemented,

however, there seems to be a web of
dependencies between the different
packages and wrappers of wrappers of
wrappers for types and subprograms.

* Is there any tool available to scan
through the source code and generate a
graphical call graph to help visualize the
different dependencies?

* Has anyone on the forum successfully
ported a bare-board run-time? What was
your experience and do you have any
tips?

* Is porting the run-time just a matter of
updating the linker, a few packages, and
a GPR script, or is there some
fundamental implementation changes to
consider?

Thank you,

Daniel

From: Simon Wright
<simon@pushface.org>

Date: Mon, 08 Apr 2019 08:36:59 +0100

Daniel Way <p.waydan@gmail.com>
writes:

> I'm trying to port the bare-board GNAT
run-time to a Coretex-M0+
(NXPKV11Z7) processor. I'm new to
concurrency and have been reading
through the run-times for the STM32
targets to understand how the tasks and
protected objects are implemented,
however, there seems to be a web of
dependencies between the different
packages and wrappers of wrappers of
wrappers for types and subprograms.

Yes.

> * Is there any tool available to scan
through the source code and generate a
graphical call graph to help visualize
the different dependencies?

Pass.

> * Has anyone on the forum successfully
ported a bare-board run-time? What
was your experience and do you have
any tips?

AdaCore have published a guide for
porting their runtime[0].

GNAT CE 2018 includes a ravenscar-sfp-
microbit runtime.

My Cortex GNAT RTS[1] is based on
FreeRTOS[2] and includes an RTS for the
nRF51 as found in the BBC micro:bit.
That's a cortex-m0, but as far as I can see
[3] the differences from the m0+ are
minimal.

The main issue I had was with the clock;
the nRF51 doesn't have a system tick,
instead I had to use RTC1 (I think
AdaCore used RTC0).

> * Is porting the run-time just a matter of
updating the linker, a few packages,
and a GPR script, or is there some
fundamental implementation changes to
consider?

That would be it (also the runtime.xml
file) but the problem is identifying
which packages to change! I wouldn't
expect many from the microbit RTS, it's
likely to be clock setup and interrupt
naming. It would help if you had an SVD
to generate the board peripheral
dependencies.

[0] https://github.com/AdaCore/
bb-runtimes/tree/community-2018/
doc/porting_runtime_for_cortex_m

[1] https://github.com/simonjwright/
cortex-gnat-rts

[2] https://www.freertos.org

[3] https://community.cypress.com/
docs/DOC-10652

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 8 Apr 2019 10:46:56 +0300

On 19-04-08 05:13 , Daniel Way wrote:

[...]

> * Is there any tool available to scan
through the source code and generate a
graphical call graph to help visualize
the different dependencies?

I know of no free tool that generates
graphical call-graphs. I've used the non-
graphical call tree information from GPS.

> * Has anyone on the forum successfully
ported a bare-board run-time? What
was your experience and do you have
any tips?

In my last project, I ported the small-
footprint Ravenscar run-time for the
SPARC architecture from the generic off-
the-shelf AdaCore version to a specific
SPARC LEON2 processor embedded in
an SoC for processing satellite navigation
signals, the AGGA-4 SoC.

My advice is to first understand the
differences between the original target
processor and the new target processor,
especially in these areas:

- Basic processor architecture, and
especially if there is some difference in
the instruction set or in the sets of
registers that must be saved and restored
in a task switch. In my case there was no
difference, so I did not have to modify
the task-switch code nor the Task
Control Block structure. For porting
across various models of the same
processor architecture, perhaps the most
likely difference is in the presence or
absence of a floating-point unit and
dedicated floating-point registers.

- The HW timers. In my case the RTS
used two HW timers, and there were
some differences: the bit-width was
different (32 instead of 24) and the HW
addresses and interrupt numbers were
different. The corresponding parts of the
RTS had to be adapted, but in my case
the changes were small, and the logic of
the code did not change.

88 Ada Pract ice

Volume 40, Number 2, June 2019 Ada User Journal

- Interrupts and traps. Differences may
have to be implemented in the assembly-
language code that initially handles
interrupts and traps. In my case, the
architecture was the same (the structure
of the trap table and most of the HW
error traps) but the set of external
interrupt traps was different, because of
the particular I/O devices available on
the new target. This difference (if any)
becomes visible to application programs
through Ada.Interrupts.

- "Console" I/O, usually some form of
UART accessible via GNAT.Text_IO.
In my case, the UARTs in the new target
were quite different from the standard
LEON2 UARTs, so I had to
reimplement the low-level I/O
operations (Put character, Put string,
etc.).

- Memory layout. Where in the address
space is the ROM (or flash), where is the
RAM, where are the I/O control
registers? Any differences in the layout
must be implemented in the linker
command script, which in my case was a
file called leon.ld. The Ada RTS code
probably does not have to change for
this reason, and did not change in my
case.

Once all that is sorted out, you will
probably have to modify the start-up
assembly-language code, which in my
case was in the file crt0.S. This deals with
HW initialization (clearing registers,
stopping any I/O that might be running,
disabling interrupts, etc.) and SW
initialization, which means to set up the
stack for the environment task and then
enter the body of that task.

> * Is porting the run-time just a matter of
updating the linker, a few packages,
and a GPR script, or is there some
fundamental implementation changes to
consider?

If you are porting from one
implementation of the same architecture
to another (in your case ARM Cortex
M<n> with the Thumb-1/2 instruction
sets, if I understand right), IMO it is
unlikely that any fundamental changes are
required. However, if there are
differences in the instruction set (with
M0+ omitting some instructions available
larger members and perhaps used in the
original RTS) be sure to use the correct
target options for the compiler so as to
avoid generating code that will not run on
the M0+. If there is a major difference in
instruction sets (say, porting from Thumb-
2 to Thumb-1) you will have to review
and perhaps modify all the assembly-
language RTS parts, and all assembly-
language code insertions in the Ada RTS
code, and all the code in crt0.S.

HTH. I think others on this group have
more experience with ARM Cortex run-
time systems and can probably offer
better advice.

Heart of Darkness

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Sat, 20 Apr 2019 17:58:48 +0200
Subject: Re: Anonymous Access and

Accessibility Levels
Newsgroups: comp.lang.ada

Le 20/04/2019 à 17:29, Jere a écrit :

> I was trying to get a bit better at
understanding how accessibility levels
work with respect to anonymous access
types. I have GNAT to test out things, but
I think I am running into various bugs, so
I am not seeing the exceptions or
compilation errors I would expect. It
could also be that I misunderstand the
rules (They are difficult somewhat).

In my tutorial about memory
management, I explain that there are 34
special cases in 3.10.2 (AKA "heart of
darkness"). Enter at your own risk.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 24 Apr 2019 18:27:52 -0500

[...]

I suspect that accessibility implemented
by compilers is essentially whatever the
ACATS tests require. I know that I've
never spent time on it in Janus/Ada
beyond that -- it simply isn't worth self-
inflicted pain. Thus, my advice is that
accessibility works like one would expect
in basic cases, and do not go beyond basic
cases unless you like pain.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Mon, 22 Apr 2019 17:11:19 -0500

[...] there are special rules for allocators,
for objects created as return objects, and
many other special cases. [...]

As always, I suggest the following rules:

(1) Do not use anonymous access types
unless you absolutely need one of the
special capabilities that can only be done
with them.

(2) Under no circumstances, do anything
that cannot be checked statically. (So no
one should use dynamic accessibility
checks of anonymous access parameters
or SAOAATs [Editor's note: Stand-Alone
Object of an Anonymous Access Type]).

(3) Think three times before depending
upon access parameter dispatching and
anonymous access-to-subprograms.

 (A) If you find that you really need these
things, complain to the ARG that you
should be able to but cannot do these
things with named access types. (This
limitation is idiotic, as it requires
repeating long declarations at every
usage.) [I need help getting this fixed!!]

(4) Keep access types out of visible
specifications (since they make memory
management much harder, and locks in
clients to suboptimal memory
management).

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 24 Apr 2019 18:21:57 -0500

[...]

In any case, I don't believe that dynamic
accessibility checking buys anything at
all. Indeed, 98% of my code has to resort
to 'Unchecked_Access in order to be
compilable at all. I generally wrap the
uses in a controlled type that cleans up the
accesses as needed (that's how Claw
works, for instance). The dynamic checks
are mainly a hazard to be avoided rather
than anything helpful. (Unlike a static
check, it's hard to prove that a dynamic
check can't fail, so it remains as a hazard
for a future call added in maintenance.)

Licensing woes

[Often, when Ada compilers are
discussed, the licensing model of GNAT
arises in conversation. What follows
discusses the limitations imposed by the
pure GPLv3 license of the GNAT runtime
in Community editions —News Editor.]

From: Maciej Sobczak
<see.my.homepage@gmail.com>

Date: Mon, 27 May 2019 23:43:06 -0700
Subject: Re: Needed - Ada 2012 Compiler.
Newsgroups: comp.lang.ada

On Tuesday, May 28, 2019 at 1:25:03
AM UTC+2, Optikos wrote:

> Hence why Alex was correctly
indicating that GPL Community
Edition forestalls most practical forms
of commercial business activity

I have an impression that nowadays "most
forms of commercial business activity"
involve setting up an account for
accessing whatever on-line service.

This is why most apps today are free,
anyway. In this context, GPL license on
the app is not a problem at all.

No, I do not applaud the GPL licensing. I
only state that the landscape of
"commercial business activity" has
significantly changed from what it was
say two decades ago.

I also think that you are overestimating
the willingness of customers to engage in
further business activity of reproducing
and re-selling what they have bought from
you. This concept is being demonized
since ever, but I don't think it has any
bigger significance than a "traditional"
counterfeiting.

No, I don't applaud GPL as a licensing
scheme. I just don't consider it to be a
showstopper.

> by entirely prohibiting AdaCore-esque
dual licensing

Wrong. You can write your program (or a
library) and sell it in the form of source
code with whatever license you wish and
allow your customer to compile it using
whatever compiler they have. The

Ada in Jest 89

Ada User Journal Volume 40, Number 2, June 2019

compiler that you have used to verify (!)
your product has no impact on the
licensing of your source code. Thus, dual-
or closed- licensing is still possible. Feel
free to complete this scheme with any
kind of NDA or other forms of legal
agreements with your customers.From:
Maciej Sobczak
<see.my.homepage@gmail.com>

Date: Tue, 28 May 2019 22:54:03 -0700

[...] let's go back a little to better
understand the workflow.

1. You write some code. It can be a
standalone app or a library.

2. You can put whatever license you wish
on your source code.

3. You can deliver it (the source code!) to
your users with that license.

Finished.

OK, so you think it might be a good idea
to verify this code a little bit before
selling it to your customers - you know,
test it or at least check whether it
compiles at all. So you add an additional
points to the scheme above:

1a. You compile your code with whatever
compiler you have.

1b. You run your tests or perform
whatever other verification activities to
make sure that your product has an
expected quality level.

These two points have no impact on
points 2. and 3. above.

I will agree that this scheme is not
satisfactory for the case of applications
distributed via App Stores, or for users
who don't want to be involved in technical
activities like compiling something on
their own - this is understandable, and in
such cases a turn-key product needs to be
delivered. But it is a very satisfactory
scheme for the case of libraries, which
become included in this kind of workflow
on the user side anyway.

Ada in Jest

Lightening the mood in
serious discussion

From: Jeffrey R. Carter
<spam.jrcarter.not@spam.not.acm.org>

Date: Tue, 12 Mar 2019 16:41:28 -0500
Subject: Re: Intervention needed?
Newsgroups: comp.lang.ada

I have no desire to register to post on a
[Rust] forum full of people who like to
use pointers. It's bad enough being on one
full of people who like to use anonymous
access types.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 22 Mar 2019 15:09:36 +0100

Le 22/03/2019 à 12:10, Lucretia a écrit : .

>> He [a Rust forum poster] also told me
that Ada compilers aren’t allowed to do
certain kinds of optimizations that for
example c, c++ (and Rust and other PL
via LLVM) are doing.

>

> How true is this?

In Ada, the principle is that the compiler
has an obligation of result, i.e. that the
"external effect" (see 1.1.3(9)) of the
compiled program must be the same as
the effect defined by the canonical
execution.

Basically, this means that the compiler
can do any optimization provided the
result is correct. Going farther than that
would mean allowing the compiler to
generate incorrect programs... Maybe
that's what C/C++ compilers are doing ;-)

Unit testing ∙ System testing ∙ Coverage analysis ∙ Timing analysis

V&V services ∙ Multicore timing services ∙ DO-178C training

Ada ∙ C ∙ C++

www.rapitasystems.com

Revolutionize your
software verif ication

Efficiency, Automation, Reliability+ +

 91

Ada User Journal Volume 40, Number 2, June 2019

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2019
July 09-12 31st Euromicro Conference on Real-Time Systems (ECRTS'2019). Stuttgart, Germany. Topics

include: all aspects of real-time systems, such as scheduling design and analysis, real-time operating
systems, hypervizors and middleware, memory management, worst-case execution time analysis, formal
models and analysis techniques for real-time systems, mixed-criticality design and assurance,
programming languages and compilers, virtualization and timing isolation, etc. Event includes: CERTS
- International Workshop on Security and Dependability of Critical Embedded Real-Time Systems,
WATERS - International Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems, WCET - International Workshop on Worst-Case Execution Time Analysis, etc.

 July 15-19 33rd European Conference on Object-Oriented Programming (ECOOP'2019). London, England.
Topics include: original and unpublished results on any Programming Languages topic.

July 15-19 Software Technologies: Applications and Foundations (STAF'2019). Eindhoven, the Netherlands.
Event includes: ECMFA - 15th European Conference on Modelling Foundations and Applications,
ICGT - 12th International Conference on Graph Transformation, ICMT - 12th International Conference
on Model Transformations, TTC - 12th Transformation Tool Contest, STAF-JRC - 1st STAF Junior
Researcher Community Event, STAF-RPS - 1st STAF Research Project Showcase Workshop.

July 15-19 43rd Annual IEEE Conference on Computer Software and Applications (COMPSAC'2019).
Milwaukee, Wisconsin, USA.

July 22-29 19th IEEE International Conference on Software Quality, Reliability and Security (QRS'2019).
Sofia, Bulgaria. Topics include: reliability, security, availability, and safety of software systems;
software testing, verification, and validation; program debugging and comprehension; fault tolerance for
software reliability improvement; modeling, prediction, simulation, and evaluation; metrics,
measurements, and analysis; software vulnerabilities; formal methods; benchmark, tools, industrial
applications, and empirical studies; etc.

July 29-31 13th International Symposium on Theoretical Aspects of Software Engineering (TASE'2019).
Guilin, China. Topics include: theoretical aspects of software engineering, such as abstract
interpretation, component-based software engineering, cyber-physical systems, distributed and
concurrent systems, embedded and real-time systems, formal verification and program semantics,
integration of formal methods, language design, model checking and theorem proving, model-driven
engineering, object-oriented systems, program analysis, reverse engineering and software maintenance,
run-time verification and monitoring, software architectures and design, software testing and quality
assurance, software safety, security and reliability, specification and verification, type systems, tools
exploiting theoretical results, etc.

July 29 - Aug 02 38th ACM Symposium on Principles of Distributed Computing (PODC'2019). Toronto, Ontario,
Canada.

 August 18-21 25th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'2019). Hangzhou, China. Topics include: real-time operating systems, real-time
scheduling, timing analysis, programming languages and run-time systems, middleware systems, design
and analysis tools, multi-core embedded systems, operating systems and scheduling, embedded software

92 Conference Calendar

Volume 40, Number 2, June 2019 Ada User Journal

 and compilers, fault tolerance and security, embedded systems and design methods for cyber-physical
systems, applications and case studies of IoT and CPS, cyber-physical co-Design, etc.

August 26-30 27th ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE'2019). Tallinn, Estonia. Topics include: architecture and design;
components, services, and middleware; debugging; dependability, safety, and reliability; development
tools and environments; distributed, parallel, and concurrent software; education; embedded and real-
time software; empirical software engineering; formal methods, including languages, methods, and
tools; model-driven software engineering; processes and workflows; program analysis; program
comprehension and visualization; refactoring; reverse engineering; safety-critical systems; scientific
computing; security and privacy; software economics and metrics; software evolution and maintenance;
software modularity and reuse; software product lines; testing and verification; traceability; etc.

August 27-29 17th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS'2019). Amsterdam, the Netherlands. Topics include: theoretical foundations of timed
systems and languages; methods and tools (techniques, algorithms, data structures, and software tools
for analyzing timed systems and resolving temporal constraints, such as scheduling, worst-case
execution time analysis, optimization, model checking, testing, constraint solving, ...); adaptation and
specialization of timing technology in application domains in which timing plays an important role
(real-time software, problems of scheduling in manufacturing and telecommunication, ...); etc.

August 27-30 30th International Conference on Concurrency Theory (CONCUR'2019). Amsterdam, the
Netherlands. Topics include: basic models of concurrency; verification and analysis techniques for
concurrent systems, such as abstract interpretation, atomicity checking, model checking, race detection,
run-time verification, static analysis, theorem proving, type systems, security analysis, ...; distributed
algorithms and data structures; theoretical foundations of architectures, execution environments, and
software development for concurrent systems, such as multiprocessor and multi-core architectures,
compilers and tools for concurrent programming, programming models such as component-based,
object-oriented, ...; etc. Includes 24th International Conference on Formal Methods for Industrial
Critical Systems (FMICS'2019), 17th International Conference on Formal Modelling and Analysis of
Timed Systems (FORMATS'2019), etc. Deadline for early registration: July 7, 2019.

August 28-30 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2019).
Thessaloniki / Chalkidiki, Greece. Topics include: information technology for software-intensive
systems; conference tracks on Embedded Systems & Internet of Things (ES-IoT), Software Process and
Product Improvement (SPPI), etc.; special sessions on Cyber-Physical Systems (CPS), Software
Engineering and Technical Debt (SEaTeD), Model-Driven Engineering and Modeling Languages
(MDEML), etc.

September 01-04 14th Federated Conference on Computer Science and Information Systems (FedCSIS'2019).
Leipzig, Germany. Event includes: 4th International Workshop on Language Technologies and
Applications (LTA), 7th Workshop on Advances in Programming Languages (WAPL), 10th Workshop
on Scalable Computing (WSC), 3rd International Conference on Lean and Agile Software Development
(LASD), Joint 39th IEEE Software Engineering Workshop (SEW-39) and 6th International Workshop
on Cyber-Physical Systems (IWCPS-6), etc.

 September 10-13 International Conference on Parallel Computing 2019 (ParCo'2019). Prague, Czech Republic.
Topics include: all aspects of parallel computing, including applications, hardware and software
technologies, and languages and development environments. Deadline for submissions: July 31, 2019
(full papers).

September 11-13 12th International Conference on the Quality of Information and Communications Technology
(QUATIC'2019). Ciudad Real, Spain. Topics include: all quality aspects in ICT systems engineering
and management; quality in ICT process, product and applications domains; practical studies; etc.
Tracks on quality aspects in model-driven engineering, DevOps development, process improvement and
assessment, verification and validation, evidence-based software engineering, etc.

September 16-20 17th International Conference on Software Engineering and Formal Methods (SEFM'2019). Oslo,
Norway. Topics include: software evolution, maintenance, re-engineering, and reuse; programming
languages; abstraction and refinement; software testing, validation, and verification; model checking,
theorem proving, and decision procedures; testing and runtime verification; other light-weight and
scalable formal methods; safety-critical, fault-tolerant, and secure systems; software certification;

Conference Calendar 93

Ada User Journal Volume 40, Number 2, June 2019

 applications and technology transfer; real-time, hybrid, and cyber-physical systems; education; case
studies, best practices, and experience reports; etc.

September 19-20 13th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2019). Porto de Galinhas, Brazil. Deadline for submissions: July 1, 2019 (Journal-First
submissions).

 Sep 30 - Oct 02 Automotive - Safety & Security 2019 & SafeWare Engineering 2019 Karlsruhe, Germany. Co-
organized by Ada-Deutschland. Topics include: all aspects of reliability, safety, security, privacy, etc. in
automotive systems, many of which are heavily influenced by advances is applied Software
Engineering; same themes for application domain of Internet of Things (IoT). Conference (and
submission) language is English.

October 01-04 38th IEEE International Symposium on Reliable Distributed Systems (SRDS'2019). Lyon, France.
Topics include: distributed systems design, development and evaluation, with emphasis on reliability,
availability, safety, dependability, security, and real-time.

October 07-11 23rd International Symposium on Formal Methods (FM'2019). Porto, Portugal. aka 3rd World
Congress on Formal Methods. Topics include: formal methods in a wide range of domains including
software, computer-based systems, systems-of-systems, cyber-physical systems, human-computer
interaction, manufacturing, sustainability, energy, transport, smart cities, and healthcare; formal
methods in practice (industrial applications of formal methods, experience with formal methods in
industry, tool usage reports, ...); tools for formal methods (advances in automated verification, model
checking, and testing with formal methods, tools integration, environments for formal methods, ...);
formal methods in software and systems engineering (development processes with formal methods,
usage guidelines for formal methods, ...); etc.

October 08-11 19th International Conference on Runtime Verification (RV'2019). Porto, Portugal. Topics include:
monitoring and analysis of the runtime behaviour of software and hardware systems. Application areas
include cyber-physical systems, safety/mission critical systems, enterprise and systems software, cloud
systems, autonomous and reactive control systems, health management and diagnosis systems, and
system security and privacy. tutorials).

October 13-18 Embedded Systems Week 2019 (ESWEEK'2019). New York City, USA. Topics include: all aspects of
embedded systems and software. Deadline for submissions: July 13, 2019 (ACM SIGBED Student
Research Competition abstracts).

October 13-18 International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES'2019). Topics include: latest advances in compilers and architectures
for high-performance, low-power embedded systems; compilers for embedded systems:
multi- and many-core processors, GPU architectures, reconfigurable computing
including FPGAs and CGRAs; security, reliability, and predictability: secure
architectures, hardware security, and compilation for software security; architecture and
compiler techniques for reliability and aging; modeling, design, analysis, and
optimization for timing and predictability; validation, verification, testing & debugging
of embedded software; special day on the Internet of Medical Things; etc.

October 13-18 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS'2019). Topics include: system-level design, modeling, analysis, and
implementation of modern embedded, IoT, and cyber-physical systems, from system-
level specification and optimization down to system synthesis of multi-processor
hardware/software implementations.

October 13-18 ACM SIGBED International Conference on Embedded Software (EMSOFT'2019).
Topics include: the science, engineering, and technology of embedded software
development; research in the design and analysis of software that interacts with physical
processes; results on cyber-physical systems, which compose computation, networking,
and physical dynamics.

 October 14-20 TOOLS 50+1: Technology of Object-Oriented Languages and Systems (TOOLS'2019). Innopolis
(Kazan), Russia. Topics include: new development in object technology; experience reports, technology
transfer; challenges of developing software for embedded systems and Internet of Things; reliability and
dependability; hybrid and cyber-physical systems modeling and verification; etc.

94 Conference Calendar

Volume 40, Number 2, June 2019 Ada User Journal

October 17-18 9th Workshop on Model-Based Design of Cyber Physical Systems (CyPhy'2019). New York City,
NY, USA. In conjunction with ESWEEK 2019. Deadline for submissions: August 12, 2019 (abstracts),
August 16, 2019 (papers).

 October 20-25 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2019). Athens, Greece. Topics include: all aspects of software construction and
delivery, at the intersection of programming languages and software engineering. Deadline for
submissions: July 8, 2019 (MPLR - Managed Programming Languages and Runtimes), July 12, 2019
(SPLASH-E, Doctoral Symposium, Student Research Competition abstracts), August 2, 2019
(workshop papers), September 7, 2019 (posters), end of September 2019 (student volunteer
applications).

October 20-25 Onward! 2019. Topics include: everything to do with programming and software,
including processes, methods, languages, communities, and applications; different ways
of thinking about, approaching, and reporting on programming language and software
engineering research.

October 21-22 12th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2019). Topics include: areas ranging from theoretical and conceptual
contributions, to tools, techniques, and frameworks in the domain of software language
engineering; generic aspects of software languages development rather than aspects of
engineering a specific language; software language design and implementation; software
language validation; software language integration and composition; software language
maintenance (software language reuse, language evolution, language families and
variability); domain-specific approaches for any aspects of SLE (design,
implementation, validation, maintenance); empirical evaluation and experience reports
of language engineering tools (user studies evaluating usability, performance
benchmarks, industrial applications); etc. Deadline for submissions: August 16, 2019
(artifacts).

Oct 28 - Nov 01 30th IEEE International Symposium on Software Reliability Engineering (ISSRE'2019). Berlin,
Germany. Topics include: development, analysis methods and models throughout the software
development lifecycle; primary dependability attributes (i.e., security, safety, maintainability) impacting
software reliability; secondary dependability attributes (i.e., survivability, resilience, robustness)
impacting software reliability; reliability threats, i.e. faults (defects, bugs, etc.), errors, failures;
reliability means (fault prevention, fault removal, fault tolerance, fault forecasting); reliability of open
source software; etc.

Oct 30 - Nov 04 16th International Colloquium on Theoretical Aspects of Computing (ICTAC'2019). Hammamet,
Tunisia. Topics include: semantics of programming languages; theories of concurrency; theories of
distributed computing; models of objects and components; timed, hybrid, embedded and cyber-physical
systems; static analysis; software verification; software testing; model checking and automated theorem
proving; interactive theorem proving; verified software, formalized programming theory; etc.

November 10-13 24th International Conference on Engineering of Complex Computer Systems (ICECCS'2019).
Hong Kong, China. Topics include: verification and validation, security and privacy of complex
systems, model-driven development, reverse engineering and refactoring, software architecture, design
by contract, agile methods, safety-critical and fault-tolerant architectures, real-time and embedded
systems, systems of systems, cyber-physical systems and Internet of Things (IoT), tools and tool
integration, industrial case studies, etc.

November 11-15 34th IEEE/ACM International Conference on Automated Software Engineering (ASE'2019). San
Diego, California, USA. Topics include: foundations, techniques, and tools for automating the analysis,
design, implementation, testing, and maintenance of large software systems; empirical software
engineering; maintenance and evolution; model-driven development; program comprehension; reverse
engineering and re-engineering; specification languages; software analysis; software architecture and
design; software product line engineering; software security and trust; etc. Deadline for submissions:
July 15, 2019 (workshop papers), August 16, 2019 (student volunteers).

November 25-29 22nd Brazilian Symposium on Formal Methods (SBMF'2019). São Paulo, Brazil. Topics include:
techniques and methodologies (such as model-driven engineering, development methodologies with
formal foundations, software evolution based on formal methods, ...); specification and modeling
languages (such as well-founded specification and design languages, formal aspects of popular

Conference Calendar 95

Ada User Journal Volume 40, Number 2, June 2019

languages, logic and semantics for programming and specification languages, code generation, formal
methods of programming paradigms (such as objects, aspects, and component), formal methods for real-
time, hybrid, and safety-critical systems, ...); theoretical foundations (such as type systems, models of
concurrency, security, ...); verification and validation (such as abstraction, modularization and
refinement techniques, correctness by construction, model checking, static analysis, formal techniques
for software testing, software certification, ...); experience reports regarding teaching formal methods;
applications (such as experience reports on the use of formal methods, industrial case studies, tool
support). Deadline for submissions: July 16, 2019 (papers).

November 27-29 20th International Conference on Product-Focused Software Process Improvement
(PROFES'2019). Barcelona, Spain. Topics include: experiences, ideas, innovations, as well as concerns
related to professional software development and process improvement driven by product and service
quality needs. Deadline for submissions: July 15, 2019 (workshop paper abstracts), July 22, 2019
(workshop papers), August 5, 2019 (short papers), August 9, 2019 (Journal-First papers, European
project space).

December 02-04 17th Asian Symposium on Programming Languages and Systems (APLAS'2019). Bali, Indonesia.

December 02-06 15th International Conference on integrated Formal Methods (iFM'2019). Bergen, Norway. Topics
include: hybrid approaches to formal modelling and analysis; i.e. the combination of (formal and semi-
formal) methods for system development, regarding modelling and analysis, and covering all aspects
from language design through verification and analysis techniques to tools and their integration into
software engineering practice.

 December 03-06 40th IEEE Real-Time Systems Symposium (RTSS'2019). Hong Kong. Topics include: all aspects of
real-time systems, including theory, design, analysis, implementation, evaluation, and experience.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2020
January 14-17 12th Software Quality Days (SWQD'2020). Vienna, Austria. Topics include: improvement of software

development methods, processes, and artifacts; testing and quality assurance of software and software-
intensive systems; domain-specific quality issues such as embedded, medical, automotive systems;
novel trends in software quality; etc.

Apr 25 - May 01 23rd European Joint Conferences on Theory and Practice of Software (ETAPS'2020). Dublin,
Ireland. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline for
submissions: August 30, 2019 (nominations EAPLS PhD Award).

 June 08-12 25th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2020 aka Ada-Europe 2020). Santander, Spain. Sponsored by
Ada-Europe. Deadline for submissions: January 7, 2020 (journal-track papers,
industrial presentation outlines, tutorial and workshop proposals), 31 March 2020
(Work-in-Progress papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

Conference Chair

Michael González Harbour
University of Cantabria, Spain
mgh@unican.es

Program Chair

Mario Aldea Rivas
University of Cantabria, Spain
aldeam@unican.es

WiP Chair

Kristoffer Nyborg Gregertsen
SINTEF Digital, Norway
kristoffer.gregertsen@sintef.no

Educational Tutorial &
Workshop Chair

Jorge Garrido Balaguer
Technical University of Madrid, Spain
jorge.garrido@upm.es

Exhibition & Sponsorship
Chair

Ahlan Marriott
White Elephant GmbH, Switzerland
software@white-elephant.ch

Publicity Chair

Dirk Craeynest
Ada-Belgium & KU Leuven, Belgium
dirk.craeynest@cs.kuleuven.be

General Information

The 25th Ada-Europe International Conference on Reliable Software Technologies
(AEiC 2020 aka Ada-Europe 2020) will take place in Santander, Spain. The conference
schedule includes a technical program, vendor exhibition and parallel tutorials and
workshops.

The 2020 edition of the conference continues the major revamp in the registration fees
introduced in 2019, redesigned to extend participation from industry and academia, and
to reward contributors, especially but not solely, students and post-doc researchers.

Schedule

7 January 2020 Submission of journal-track papers, industrial presentation
outlines, and tutorial and workshop proposals

20 March 2020 Notification of acceptance for journal-track papers and
industrial presentations

31 March 2020 Submission of Work-in-Progress (WiP) papers

30 April 2020 Notification of acceptance for WiP papers

Topics

The conference is a leading international forum for providers, practitioners and
researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and
maintenance of long-lived, high-quality software systems for a challenging variety of
application domains. The program will allow ample time for keynotes, Q&A sessions
and discussions, and social events. Participants include practitioners and researchers
from industry, academia and government organizations active in the promotion and
development of reliable software technologies.

The topics of interest for the conference include but are not limited to:

 Design and Implementation of Real-Time and Embedded Systems,
 Design and Implementation of Mixed-Criticality Systems,

 Theory and Practice of High-Integrity Systems,
 Software Architectures for Reliable Systems,

 Methods and Techniques for Quality Software Development and Maintenance,
 Ada Language and Technologies,

 Mainstream and Emerging Applications with Reliability Requirements,
 Achieving and Assuring Safety in Machine Learning Systems,

 Experience Reports on Reliable System Development,
 Experiences with Ada.

Refer to the conference website for the full list of topics.

www.ada-europe.org/conference2020

25th Ada-Europe
International Conference on

Reliable Software Technologies
 (AEiC 2020)

8-12 June 2020, Santander, Spain
(C) RMR

(C) Pachi Hondal

Call for Journal-Track Papers
The journal-track papers submitted to the conference are full-length papers that must describe mature research work on the
conference topics. They must be original and shall undergo anonymous peer review. The corresponding authors shall submit their
work by 7 January 2020.

Accepted journal-track papers will get a presentation slot within a technical session of the conference and they will be published in an
open-access journal, with no additional costs to authors.

Call for WiP-Track Papers
The Work-in-Progress papers (WiP-track) are short (4-page) papers describing evolving and early-stage ideas and new research
directions. They must be original and shall undergo anonymous peer review. The corresponding authors shall submit their work by 31
March 2020, strictly in PDF and following the Ada User Journal style (http://www.ada-europe.org/auj/).

Authors of accepted WiP-track papers will get a presentation slot within a regular technical session of the conference and will also be
requested to present a poster. The papers will be published in the Ada User Journal as part of the proceedings of the Conference.

The conference is listed in the principal citation databases, including DBLP, Scopus, Web of Science, and Google Scholar. The Ada
User Journal is indexed by Scopus and by EBSCOhost in the Academic Search Ultimate database.

Call for Industrial Presentations
The conference seeks industrial presentations that deliver insightful information value but may not sustain the strictness of the
review process required for regular papers. The authors of industrial presentations shall submit their proposals, of at least 1 page in
length, by 7 January 2020, strictly in PDF and following the Ada User Journal style (http://www.ada-europe.org/auj/).

The Industrial Committee will review the submissions anonymously and make recommendations for acceptance. The authors of
accepted contributions shall be requested to submit a short (one or two pages) abstract, for inclusion in the conference booklet, and
be invited to deliver a talk at a regular technical session of the conference. These authors will also be required to expand their
contributions into articles for publication in the Ada User Journal, as part of the proceedings of the Industrial Program of the
Conference.

Awards
Ada-Europe will offer an honorary award for the best presentation.

Call for Educational Tutorials
The conference is seeking tutorials in the form of educational seminars including hands-on or practical demonstrations. Proposed
tutorials can be from any part of the reliable software domain, they may be purely academic or from an industrial base making use of
tools used in current software development environments. We are also interested in contemporary software topics, such as IoT and
artificial intelligence and their application to reliability and safety.

Tutorial proposals shall include a title, an abstract, a description of the topic, an outline of the presentation, the proposed duration (half
day or full day), and the intended level of the tutorial (introductory, intermediate, or advanced). All proposals should be submitted by e-
mail to the Educational Tutorial Chair.

The authors of accepted full-day tutorials will receive a complimentary conference registration. For half-day tutorials, this benefit is
halved. The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops
Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half- or full-day events,
to be scheduled at either end of the conference days. Workshop proposals should be submitted to the Workshop Chair. The workshop
organizer shall also commit to producing the proceedings of the event, for publication in the Ada User Journal.

Call for Exhibitors
The commercial exhibition will span the core days of the main conference. Vendors and providers of software products and services
should contact the Exhibition Chair for information and for allowing suitable planning of the exhibition space and time.

Special Registration Fees
Authors of accepted contributions and all students will enjoy reduced registration fees.

Venue
Santander is a nice tourist city in the north of Spain, with a well-connected airport and at a 100 km drive from Bilbao airport.

The conference venue and hotel is the Bahia Hotel in the city center and beside Santander bay.

(C) Hotel Bahía (C) Antoni Cutiller y Roig(C) We are content

99

Volume 40, Number 2, June 2019 Ada User Journal

A “New” C Static Analyzer: the Compiler
Maurizio Martignano
Spazio IT – Soluzioni Informatiche s.a.s., San Giorgio Bigarello, Italy; Maurizio.Martignano@spazioit.com

Abstract

While in the past in the C/C++ world compilers and
static analyzers took two separate paths and were
two separate lines of tools, nowadays they are
coming back together, especially the Clang compiler
and its Clang/LLVM based static analyzers. The
paper will show why and how this “reunion” is
beneficial, especially when analyzing large
codebases. In particular the paper first will present
these relatively new analyzers, then it will show how
these tools are currently integrated in code quality
platforms – e.g. SonarQube; finally, the paper will
describe the author’s recent results in terms of
improving the analyzers - code quality platforms
integration and facilitating the adoption and
execution of static analysis in software projects.

Keywords: C/C++, Static Analysis, Clang, LLVM,
libclang, libadalang, SonarQube

1 (a historical) Introduction

The size of software systems in spacecrafts has increased
dramatically over time: e.g. in 1981 NASA Space Shuttle
Primary Flight Software was about 400 K lines of code
(LOC) while in 2012 Curiosity had 2.5 MLOC; in 2008
ESA Automatic Transfer Vehicle (ATV) had about 1
MLOC. A similar trend has occurred in avionics: e.g.: in
1974 an F16A plane had 135 KLOC while in 2012 an F35
had about 10 MLOC. An even more dramatic increase has
occurred in the automotive sector where a nowadays car
software ranges from 10 to 150 MLOC. This increase in
the software size, and consequently its importance and
criticality, calls for new and more efficient methodologies
and tools able to properly support Independent Software
Verification and Validation (ISVV) activities, so that they
are feasible and economic even when applied to very
large codebases.

In the C language, from the very beginning, around the
end of the seventies, a decision was taken to somehow
separate the compiler from the static analyzer (“Lint”)
where the compiler gives the programmer as much
freedom (and responsibility) as possible and the “Lint”
analyzer looks for programming and stylistic errors, bugs,
questionable constructs and so on… This initial
separation has caused over time the independent evolution
of compilers and static analyzers as well as the
communities of people working on them. While the
compiler communities concentrated on the actual software
trends, i.e. its continuous increase in size (by definition, a
build system must be able to build the system), the static
analyzer communities have concentrated on developing

deeper and more detailed analysis techniques without
really considering their actual applicability to large
codebases. Nowadays, especially thanks to Clang (C
language family front-end) and LLVM (compiler
infrastructure), two open source software systems mostly
developed by Apple, Microsoft, Google, ARM, Sony,
Intel and Advanced Micro Device, the compiler and the
static analyzer are getting back together, in the attempt of
combining the compiler efficiency with analytical power
of the static analyzer. In Clang and LLVM [1] systems all
main functionalities are available as libraries: e.g. the
lexer is a library (clangLex”) used by the both the
compiler (Clang) and its static analyzers (Clang-Check
and Clang-Tidy).

Section two of this paper will present various types of
static analyzers, differentiated based on the technique they
use, i.e. pattern matching, data flow analysis, abstract
interpretation and model checking. The paper will show
the actual applicability of these techniques to large
codebases.

Section three will present the Clang/LLVM based static
analyzers, will show their main characteristics and how
they perform on large codebases. The section will present
also “libclang”, a C programming interface (API) to the
compilation system, accessible via C and Python. The
section will end presenting Clang “JSON Compilation
Database Format Specification” [2], which is a data
“format for specifying how to replay single compilations
independently of the build system”. This format is
becoming a “de-facto” standard among tools vendors and
simplifies the task of properly configuring static
analyzers.

Section four will present the current status of the art of the
integration of the Clang/LLVM static analyzers with
SonarQube [3], an open source code quality platform.
Section five will present the author’s current on code
analysis, the “SAFe Toolset”, a toolset based on open
source tools, able to facilitate and simplify the execution
of static analysis on large codebases.

2 Static Analyzers

It is relatively common to categorize static analyzers
based on the techniques they use to find issues, that is:

 pattern matching – the analyzer looks for particular
constructs in the code at both lexical and syntactical
levels – e.g. PC-Lint [4], Cppcheck [5];

 abstract interpretation – the analyzer verifies the code
by “executing” it on some kind of abstract machine
that approximates the original system – e.g.

100 A “New” C Stat ic Analyzer: the Compi ler

Volume 40, Number 2, June 2019 Ada User Journal

Polyspace [6] and Frama-C Eva [7] and Clang-Check
[8];

 data-flow analysis – the analyzer keeps track of a set
of values and how they might change during (virtual)
execution – e.g. Cppcheck and Clang-Check;

 Hoare logic – the analyzer uses a set of logical rules
for reasoning rigorously about the code – e.g. Frama-
C WP on C code extended with ACSL [9] (Ansi C
Specification Language);

 (bounded) model checking – the analyzer works on a
finite state machine representation of the code under
analysis – e.g. CBMC [10].

Techniques like pattern matching and data-flow analysis
are able to process relatively large codebases and this is
because their analyses are rather “shallow”; on the
contrary all the others (i.e. abstract interpretation, Hoare
logic and model checking) do not scale well with the size
of the code under analysis. Analyzers like CBMC and
Frama-C attempt to perform very “deep” analyses; they
use GNU GCC for parsing while they implement their
own semantic analyzers - and this is where they expose
some problems: in no way the commercial or open source
community developing / supporting a given analyzer tool
has the same momentum and energy of the community
behind a compiler (be it GCC or Clang). The C and C++
programming languages are very much alive and in
continuous evolution; so, for a tool developer/community
it is quite difficult keeping up with the pace of this
evolution (and the continuously increasing demand in
performances and efficiency). One possible way of coping
with this “lack of scalability issue” is to use the “shallow”
analyzers to first identify critical areas in the codebase
and then apply the “deep” analyzers only to these critical
and smaller areas.

Another problem is that some of the “deep” analyzers, in
order to properly function, require the code to be extended
with additional information (e.g. Frama-C WP and C code
enriched with ACSL annotation). In the majority of the
cases it is very unlikely that a project has enough
resources to annotate the source code with the required
extra information.

3 Clang/LLVM based Static Analyzers,
“libclang”, and JSON Compilation
Database

In the Clang/LLVM website it is possible to read “The
LLVM Project is a collection of modular and reusable
compiler and toolchain technologies. (…) The LLVM
Core libraries provide a modern source- and target-
independent optimizer, along with code generation
support for many CPUs. (…) Clang is an LLVM native
C/C++/Objective-C compiler, which aims to deliver
amazingly fast compiles.” In fewer words Clang/LLVM is
a compilation toolchain where absolutely everything is
built in a modular fashion as collection of libraries. In this
toolchain the two static analyzers are Clang-Check (a.k.a.
Clang-SA) and Clang-Tidy. Clang-Check relies on a set

of Clang modules to perform things like lexical analysis,
parsing, semantic analysis, AST manipulation and the
like. Clang-Tidy relies on the very same Clang modules
plus some additional modules of Clang-Check itself (this
is why Clang-Tidy can be considered a sort of superset of
Clang-Check). So, for instance, the lexer and parser of the
static analyzers are the very same lexer and parser of the
compiler: when the compiler evolves to keep up with the
changes and improvements in the language, the very same
evolution occurs also in the static analyzers (i.e. no
disconnect between the compiler and the static analyzer
worlds). Clang-Check implements path-sensitive, inter-
procedural analysis based on symbolic execution and data
flow analysis techniques. Even if the analyzer attempts to
perform a sort of abstract interpretation it is still very
efficient because it does not perform this interpretation on
the entire codebase but only on “suspected” areas,
identified via fast techniques like pattern matching; the
performed checks are listed in document [11]. Clang-Tidy
adds up on top of Clang-Check and the list of its checks is
available in document [12].

What really makes Clang-Check stand apart from other
static analyzers is its ability to show graphically from
within the code the causes of a potential issue/bug, as
shown here below.

 “libclang” is nothing but a simple C API (with Python
bindings) exposing Clang functionalities (i.e. modules) to
external applications; thanks to “libclang” also these
third-party applications can use the very same
modules/libraries of Clang (for instance they could parse
a C program as efficiently as Clang does). This is similar
to what was available in Ada with the ASIS (Ada
Semantic Interface Specification) library [13]; also, with
this library it is possible to build Ada tools, different from
the compilers. The ASIS library implemented an
“unforgiving / deep parsing” algorithm, that is while the
analysis was pretty detailed, the code processed by the
library had to be syntactically correct. C static analyzer of
the pasts, e.g. “Lint”, were using “forgiving / shallow
parsing” algorithms, able to process also code
syntactically incorrect but limiting their exploration
capabilities to analyses not too much detailed. “libclang”,
on the contrary implements a “forgiving / deep parsing”
algorithm (containing also portions of the semantic

Figure 1 - Clang-Check Graphic Output

M. Mart ignano 101

Ada User Journal Volume 40, Number 2, June 2019

analysis), that can access all the detailed information
available to the compiler itself but can also process
incomplete, syntactically incorrect codebases and is very
performant. “libclang” advantages are obvious, up to the
point that a sort of a new version of ASIS library, called
“libadalang” [14], adopts the same “forgiving / deep
parsing” approach. The difference between Ada ASIS (or
“libadalang”) and “libclang” is that, once again, Ada
ASIS and “libadalang” are software products/tools
separated from the actual Ada Compilers (e.g. the GNAT
compiler); and this is why, for example, ASIS does not
yet support Ada 2012.

When performing code analysis static analyzers are used
to examine the source code; the more static analyzers the
better, the more issues are found. The problem is that, at
least up to now, each static analyzer uses its own format
for the configuration files controlling their behavior (e.g.
which source files to analyze, how to analyze them, and
so on…). In the attempt of trying to solve this problem,
the Clang/LLVM community has developed a standard
format specification, called “JSON Compilation Database
Format Specification”, defining “a format for specifying
how to replay single compilations independently of the
build system”. This “de facto” standard is rather young,
immature: several build tools (e.g. cmake [15], compiledb
[16], bear [17], ninja [18],) support it but in (slightly)
different ways; the same applies to static analyzers - e.g.
among Clang-Check, Clang-Tidy, Cppcheck and
SonarQube C/C++ Community Plugin [19] only the first
two (obviously) properly support it.

4 Integration with SonarQube

Static analyzers produce their results in the form of
tabular data (e.g. a *.csv or a *.xml file) where per each
found issue, the provided information is the issue type,
where it was found (file name, line number) and some
additional explanation. It is very difficult to assess the
found issues in this format. An already mentioned
exception is Clang-Check, which can produce graphic
html pages with the flow of events causing a given issue
to occur. SonarQube, an open source quality platform, is a
web application able to gather the analyses results
produced by the various analyzers and display them from

within the source code itself. SonarQube is language
agnostic and the interface between SonarQube and a
particular language is provided by “Plugins”. Inside the
“Plugin” per each supported static analyzer there is a
“Sensor” that actually converts the analyzer results into a
format processable by SonarQube. For the C and C++
languages there are two Plugins, one commercial
developed by SonarSource [20] and one open source [19].
The open source plugin supports Clang-Check and Clang-
Tidy (as well as PC-Lint, Cppcheck and some other
analyzers) and the author has always been modifying,
improving it according to the various project needs; in
particular the author has been working on the Clang-
Check and PC-Lint “Sensors”. It has to be noted that the
Clang-Check in the community plugin has gone through a
dramatic improvement towards the end of April 2019
(version 1.3.0-SNAPSHOT); in particular now it is able to
show multilocation issues as well as if not better than the
static analyzer itself, as shown here below.

5 The SAFe Toolset

The SAFe (Static Analysis Framework) Toolset is an
Ubuntu Virtual Machine containing various open source
tools that can be used to perform Software Verification
and Validation. The actual contents of this virtual
machine (as per April 2019) are described here [21]; in
this context is enough to mention that the machine
includes Clang/LLVM compilation system, with its static
analyzers – Clang-Check and Clang-Tidy, Sonar-Qube
and the SAFacilitator (Static Analysis Facilitator).

The SAFacilitator is an application based on the
Compilation Database Format Specification developed by
the Clang/LLVM foundation and its major functionality is
the simplification of the production of the static analyzers
configuration files.

Figure 3 – The SAFacilitator (Static Analysis
Facilitator)

The SAFacilitator, for a given codebase, allows the
creation and editing of a single project file containing all
the information required to properly drive and control the
execution of the selected static analyzers on that
codebase. This information may initially derive from an
externally provided compilation database file. Once the
information contained in the project file is correct, it is
used to automatically generate all the configuration files Figure 2 - Clang-Check Sensor Output displayed

in SonarQube

102 A “New” C Stat ic Analyzer: the Compi ler

Volume 40, Number 2, June 2019 Ada User Journal

and execution scripts required by the static analyzers (and
SonarQube). The development of the “SAFe Toolset” has
been funded by the European Space Agency Contract
number RFP/3-15558/18/NL/FE/as.

6 Conclusions and Future Work

This paper has stressed some few simple but important
points:

1. The increase in the size of software codebases
demands for faster and more efficient static
analyzers.

2. When the compiler and the static analyzer(s) are
separate, are not built form the same modules and
libraries, there is no guarantee that they will follow at
the same pace the natural evolution of the
programming language.

3. When performing code analysis, the more static
analyzers are used, the better. But then configuring
all these tools (in input) and assessing all produced
results (in output) may become quite complex and
difficult. And this is where tools like the
SAFacilitator (in input) and like SonarQube (in
output) come to the rescue.

References
[1] http://clang.llvm.org/

[2] https://clang.llvm.org/docs/
JSONCompilationDatabase.html

[3] https://www.sonarqube.org/

[4] https://www.gimpel.com/

[5] http://cppcheck.net/

[6] https://www.mathworks.com/products/
polyspace.html

[7] https://frama-c.com/value.html

[8] https://clang-analyzer.llvm.org/

[9] http://frama-c.com/wp.html

[10] http://www.cprover.org/cbmc/

[11] https://clang-analyzer.llvm.org/available_checks.html

[12] https://clang.llvm.org/extra/clang-tidy/
checks/list.html

[13] http://gnat-asis.sourceforge.net/

[14] https://github.com/AdaCore/libadalang

[15] https://cmake.org/

[16] https://github.com/nickdiego/compiledb

[17] https://github.com/rizsotto/Bear

[18] https://ninja-build.org/

[19] https://github.com/SonarOpenCommunity/sonar-cxx

[20] https://www.sonarsource.com/

[21] https://www.spazioit.com/pages_en/sol_inf_en/
code_quality_en/safe-toolset-en/

103

Verification of Ada Programs with AdaHorn

Tewodros A. Beyene, Christian Herrera, Vivek Nigam
fortiss GmbH, Forschungsinstitut des Freistaats Bayern für softwareintensive Systeme und Services
Guerickestr. 25, 80805 München, Germany; email: {beyene, herrera, nigam}@fortiss.org

Abstract

We propose AdaHorn, a model checker for verification
of Ada programs with respect to correctness properties
given as assertions. AdaHorn translates an Ada pro-
gram together with its assertion into a set of Constrained
Horn Clauses, and feeds it to a Horn constraints solver.
We evaluate the performance of AdaHorn on a set of
Ada programs inspired by C programs from the software
verification competition (SV-COMP). Our experimental
results show that AdaHorn outputs correct results in
more cases than GNATProve, which is a widely used
Ada verification framework.

Keywords: Ada Verification, Model Checking, Horn
Constraints Solving.

1 Introduction

Ada [1] is widely used by systems developers in the avion-
ics, space, military and railways domains due to its fea-
tures like strong typing, explicit concurrency, support for
design-by-contract, non-determinism, etc., that enable devel-
opers to build robust and dependable safety critical systems.
Prominent Ada analysis tools that support the development
of dependable systems in Ada include GNATProve [2] and
Polyspace [3]. These tools perform static analysis on Ada
programs for detecting runtime errors, such as array out-
of-bounds, arithmetic overflow and division by zero. It is
known that static analysis tools often yield false positives,
i.e. wrongly concluding that errors occur in a program, and
sometimes even false negatives, i.e. wrongly concluding that
a program does not have any error.

In this work, we aim to advance the support available for
the analysis and verification of Ada programs by proposing
AdaHorn, a Horn constraints-based model checker for ver-
ifying Ada programs with respect to correctness properties
written as assertions. Similar to the SeaHorn [4] and Jay-
Horn [5] frameworks, which respectively verify C and Java
programs, AdaHorn translates Ada programs into a set of
Constrained Horn Clauses (CHCs) [6, 7, 8] which are solved
by well-known constraint solvers such as Eldarica [9] and
Z3 [10]. In general, a CHC correspond to a clause with at
most one positive occurrence of an uninterpreted predicate.
One can also think of a CHC as a fragment of first-order
formulas modulo background theories, where its constraints
are formulated using a given background theory [6].

In this work, AdaHorn supports a small but non-trivial subset
of Ada data types, namely integer, floating-point and boolean
data types as well as arrays of these types, and Ada program
constructs, which include procedures, functions, for/while
loops, if-then-else statements, case statements, procedure/-
function calls and assertions.

The contribution of this work is twofold: (1) AdaHorn, which
is the first Horn constraints-based model checker for Ada pro-
grams. (2) A Horn constraints generator for Ada programs,
that takes Ada programs as input and produces a set of CHCs.
This makes various Horn constraints-based program analy-
sis, verification and synthesis techniques available to Ada
programs.

2 Preliminiaries

In this section, we introduce the set of Constrained Horn
Clauses (CHC) that AdaHorn uses as an intermediate lan-
guage to encode an Ada verification problem. We also discuss
the class of Ada programs that can be handled by the current
implementation of AdaHorn.

2.1 Constrained Horn Clauses

In general, a Constrained Horn Clause correspond to a clause
that has at most one positive occurrence of an uninterpreted
predicate. One can also think of a Constrained Horn Clause
as a fragment of first-order formulas modulo background
theories, where its constraints are formulated using a given
background theory [6]. We use the symbol A to denote a
background theory. In this paper, we let A be quantifier-free
linear arithmetic.

Definition 1. CHC is defined by the following grammar:

Π ::= HC ∧ Π | >
HC ::= ∀vars : body → head

pred ::= upred | Φ

head ::= pred

body ::= > | pred | body ∧ body

vars ::= the set of all variables in a given clause

upred ::= an uninterpreted predicate applied to terms

Φ ::= a formula whose terms and predicates are interpreted over A

We use Π to denote a set (conjunction) of CHC, while HC
refers to a single Constrained Horn Clause.

Ada User Jour na l Vo lume 40, Number 2, June 2019

104 Ver i f ica t ion of Ada Programs wi th AdaHor n

2.2 Classes of Target Ada Programs
The current implementation of AdaHorn does not support
all language features and constructs of Ada. However, all
basic constructs of Ada that can be used to write programs of
medium complexity are supported. These include (1) integer,
floating-point and boolean data types, and self-defined ranges
over these types, (2) arrays, (3) assertions, (4) while and
for loops, (5) procedures and functions (together with their
corresponding calls), and (6) if-then-else statements.

The complete class of supported constructs is given in Fig-
ure 1, which presents the grammar for the set of supported
Ada programs. In that grammar, range stands for a finite
range of the underlying data type. An example integer range
can be 0..4. Id corresponds to a typical identifier that can be
used as function names, variable reference, etc. The symbol ∗

denotes the Kleene closure of the underlying grammar item.

We aim to develop AdaHorn further by incrementally adding
support not only for more constructs but additional Ada lan-
guage features. One candidate language construct to add is
protected object [1], which is useful for mutual exclusion
problems. Similarly, a candidate language feature to consider
in the future is the Ravenscar profile [11], which is useful for
real-time and high-integrity applications.

3 Architecture of AdaHorn
Inspired by similar approaches for verifying C and Java pro-
grams [4, 5], the architecture of AdaHorn consists of three
layers. The architecture is shown in Figure 2.

• Front-end: This layer makes use of the gnat2xml util-
ity in the GNAT Compiler Tool [12] to obtain an XML
serialisation of an abstract syntax tree of the input Ada
program.

• Middle-end (glue code): In this layer, AdaHorn takes the
abstract syntax tree generated by the gnat2xml utility as
input, and translates them into a set of CHCs. AdaHorn
performs a top-down, recursive descent through the syn-
tax tree of the given Ada program. It introduces auxiliary
predicates and generates a set CHCs over these predi-
cates.

The interested reader finds in [6] a reference for translat-
ing program constructs into CHCs. Moreover, this step
needs to also make special considerations for constructs
that are not directly supported by the Horn constraints
solvers used in this work. For example, as arrays may
result in Horn clauses with nonlinear structure or higher
orders, further processing needs to be done to translate re-
sulting constraints into array-free Horn constraints [13].

As this constraints generating middle-end layer, also
called the glue code, is the main contribution of this
work, it is explained in more detail in Section 4.

• Back-end: This layer takes the generated CHCs as input
and pass them to a CHC solver to get a result, which is
the final result of AdaHorn’s model checking procedure.
Any CHC solver can be employed in principle. How-
ever, we have used the Eldarica and Z3 solvers in this

〈program〉 ::= 〈with_use〉∗ 〈pkg〉 | 〈with_use〉∗ 〈pkg_body〉 |
〈with_use〉∗ 〈proc_fun_body〉

〈with_use〉 ::= ‘with’ 〈id〉‘;’ ‘use’ 〈id〉‘;’
〈pkg〉 ::= ‘package’ 〈id〉 ‘is’ 〈decl〉∗ 〈proc_fun_decl〉∗

‘end’ 〈id〉‘;’
〈pkg_body〉 ::= ‘package body’ 〈id〉 〈proc_fun_body〉∗

‘end’ 〈id〉‘;’
〈proc_fun_body〉 ::= 〈proc_body〉 | 〈fun_body〉
〈proc_body〉 ::= ‘procedure’ 〈id〉 [‘(’〈formal_part〉‘)’] ‘is’

〈decl〉∗ 〈proc_fun_body〉∗ ‘begin’ 〈stmt〉∗
‘end’ 〈id〉‘;’

〈fun_body〉 ::= ‘function’ 〈id〉 [‘(’〈formal_part〉‘)’]
‘return’ 〈type〉 ‘is’ 〈decl〉∗
〈proc_fun_body〉∗ ‘begin’ 〈stmt〉∗ ‘return’
〈stmt_rtn〉‘;’ ‘end’ 〈id〉‘;’

〈formal_part〉 ::= 〈formal_param_spec〉
(‘;’ 〈formal_param_spec〉)∗

〈formal_param_spec〉 ::= 〈var〉 (‘,’ 〈var〉)∗ ‘:’ 〈mode〉
〈type〉 [‘:=’ 〈expr〉]

〈decl〉 ::= 〈var〉 ‘:’ ‘array’ ‘(’ range ‘)’ ‘of’ 〈type〉
[‘:=’ ‘(’ initial values for array ‘)’] ‘;’ |
〈var〉 ‘:’ 〈type〉 [‘:=’ 〈expr〉]‘;’

〈var〉 ::= 〈id〉
〈proc_fun_decl〉 ::= ‘procedure’ 〈id〉 ‘(’〈formal_part〉‘)’‘;’

| ‘function’ 〈id〉 ‘(’〈formal_part〉‘)’
‘return’ 〈type〉‘;’

〈mode〉 ::= ‘in’ | ‘in out’ | ‘out’
〈type〉 ::= ’Integer’ | ‘Float’ | ‘Boolean’
〈expr〉 ::= arithmetic logical expression
〈stmt〉 ::= 〈var〉 ‘:=’ 〈expr〉 | 〈stmt1〉 ‘;’ 〈stmt2〉

| ‘pragma assert’ ‘(’〈expr〉‘)’ ‘;’ |
‘if’ 〈expr〉 ‘then’ 〈stmt1〉 ‘else’ 〈stmt2〉
‘end if’ ‘;’ | 〈proc_fun_call〉 ‘;’ | ‘while’
〈expr〉 ‘loop’ 〈stmt〉 ‘end loop’ ‘;’ | ‘for’
〈id〉 ‘in’ 〈type〉 ‘range’ range ‘loop’
〈stmt〉 ‘end loop’‘;’ | ‘case’ 〈expr〉 ‘is’
〈case_option〉 (〈case_option〉∗) ‘end case’
‘;’

〈proc_fun_call〉 ::= procedure_name | procedure_name
‘(’〈actual_part〉‘)’ | function_name |
function_name ‘(’〈actual_part〉‘)’

〈actual_part〉 ::= 〈actual_param_spec〉
(‘,’ 〈actual_param_spec〉)∗

〈actual_param_spec〉 ::= 〈expr〉 | 〈var〉 | function_name | function_name
‘(’〈actual_part〉‘)’

〈stmt_rtn〉 ::= 〈var〉 ‘:=’ 〈expr〉 | 〈expr〉
〈case_option〉 ::= ‘when’ 〈discrete_choice〉 ‘=>’ 〈stmt〉 ‘;’
〈discrete_choice〉 ::= 〈expr〉 | range | ‘others’

Figure 1: Grammar for supported Ada programs.

work. Possible results of the solving step are: SAT(the
CHCs are satisfiable), UNSAT(the CHCs are unsatisfi-
able), and UNKNOWN(the solver is not able to output
any conclusive result).

CHCs have enjoyed recent success as languages of interme-
diate representation, and a promising set of frameworks for
verification tasks ranging from temporal verification to synthe-
sis and game solving have recently been proposed [14,15,16].
The Horn constraints generator alone in AdaHorn can also be
useful in making all these Horn constraints-based verification
and synthesis technologies available to Ada programmers and
verification engineers. AdaHorn is implemented in Java.

Volume 40, Number 2, June 2019 Ada User Jour na l

T. A. Beyene, C. Herrera , V. Nigam 105

Figure 2: Architecture of AdaHorn

4 Constraints Generation
In this section, we describe AdaHorn’s constraint generation
process and illustrate how supported Ada constructs are en-
coded as CHCs by AdaHorn.

There are two considerations in the Ada to CHC translation:

1. The first one is encoding program states, which are valu-
ations of program variables at certain critical locations
of the program. These include loop entries and exits,
procedure call and return locations, function call and
return locations, etc.

2. The second one is encoding state transitions that oc-
cur during the execution of the program by translating
involved Ada constructs into their corresponding CHC.

In the rest of this section, we illustrate the constraint gener-
ation process using two simple Ada programs that contain
non-trivial constructs from the grammar in Figure 1. Both
of our example Ada programs are structured into 3 files; a
main Ada project file, a specification file and an implementa-
tion file. The constraint generation procedure needs to take
into consideration all three files to generate a collective set
of CHCs. We provide the corresponding CHCs encoding for
each example, together with discussion on how the transla-
tion is done for supported Ada language constructs. AdaHorn
generates CHC in the SMT-Lib Standard [17].

Example 1. Our first example Ada program, which is
shown in Figure 3, simply increments an input integer value
by 10 and returns the result. As mentioned above, this pro-
gram is structured into a project file (Figure 3a), an imple-
mentation file (Figure 3b), and a specification file (Figure 3c).

The program initialises its two integer variables, res and x,
to 0 (line 3 in Figure 3a), and calls the function sum over
x (line 5 in Figure 3a). Note that the specification file for
the function sum is given in Figure 3c, and its corresponding
implementation file is given in Figure 3b. Finally, the value

1 with prog1;
2 procedure gmain is
3 res , x: Integer := 0;
4 begin
5 res := prog1.sum(x);
6 end gmain;

(a) project file

1 package prog1 is
2 function sum(j: in out Integer)
3 return Integer ;
4 end prog1;

(b) specification file

1 package body prog1;
2 function sum (j : in out Integer)
3 return Integer is
4 begin
5 return j+10;
6 end sum;
7 end prog1;

(c) implementation file

Figure 3: A simple example program.

returned by the function is stored in the variable res (line 5 in
Figure 3a).

The set of CHCs generated by AdaHorn for this program
is given in Figure 4. Each state of the Ada program is en-
coded as an uninterpreted predicate over the program vari-
ables. For example, the predicate gmain_call_init , which
is defined over the empty set of variables, encodes the state
from which the program starts execution. The start of the
program execution is encoded as the clause (assert (=>
true gmain_call_init)) with just true in the body (line 8).
Once the program starts running, the first statement it exe-
cutes is initialisation of its variables res and x to 0 (line 9).
The call to the function sum (line 5 in Figure 3a) is encoded
in line 10. The clause in line 12 of Figure 4 encodes the addi-
tion operation in return j+10 (line 5 in Figure 3b) of the Ada
program. The return statement itself is encoded In line 12,
where that result of the sum operation is stored in the auxiliary
variable _RetV . The value of auxiliary variable _RetV is
assigned back to the variable res of the caller gmain function

Ada User Jour na l Vo lume 40, Number 2, June 2019

106 Ver i f ica t ion of Ada Programs wi th AdaHor n

1 (declare−fun gmain_s0 (Int Int) Bool)
2 (declare−fun gmain_s1 (Int Int) Bool)
3 (declare−const gmain_call_init Bool)
4 (declare−const gmain_call_end Bool)
5 (declare−fun Prog1_Sum_s0 (Int) Bool)
6 (declare−fun Prog1_Sum_call_init (Int) Bool)
7 (declare−fun Prog1_Sum_call_ret (Int) Bool)
8 (assert (=> true gmain_call_init))
9 (assert (forall ((res Int) (x Int)) (=> (and (= res 0)

(= x 0) gmain_call_init) (gmain_s0 res x))))
10 (assert (forall ((res Int) (x Int)) (=> (gmain_s0 res x)

(Prog1_Sum_call_init x))))
11 (assert (forall ((j Int)) (=> (Prog1_Sum_call_init j) (

Prog1_Sum_s0 j))))
12 (assert (forall ((j Int) (_RetV Int)) (=> (and (= _RetV

(+ j 10)) (Prog1_Sum_s0 j)) (Prog1_Sum_call_ret
_RetV))))

13 (assert (forall ((res Int) (x Int) (res ’ Int) (_RetVV
Int))(=> (and (gmain_s0 res x) (Prog1_Sum_call_ret
_RetVV) (= res’ _RetVV)) (gmain_s1 res’ x))))

14 (assert (forall ((res Int) (x Int)) (=> (gmain_s1 res x)
gmain_call_end)))

Figure 4: Generated CHCs for the program in Figure 3

as encoded in line 13. The constraint in line 14 denotes the
end of the call to procedure gmain.

Example 2: In this example, we show how a set of CHC is
generated for a program with arrays. The program is given in
Figure 5. Like the previous example, here also we have three
files. Our main focus, however, will be on the implementa-
tion file (Figure 5c) as it contains all the important variables
and statements of the program from users’ perspective. The
program is defined over an array variable arr, which defines
an array of length 10, and an integer variable temp. During
execution, the program calls the initArray procedure which is
specified and implemented in the package prog2. As shown
in Figure 5c, the procedure does three assignments: the as-
signments arr(1):= 0; and arr(3):= temp; (on lines 6 and
8) involve array write operations, whereas the assignment
temp:=arr(1) (on line 7) involves array read operation. Fi-
nally, as a correctness property the procedure ensures the
array has equal values on indices 1 and 3 with the assert
statement pragma Assert (arr(1) = arr(3)).

This example is particularly interesting as verification of many
properties over arrays often require inferring universally quan-
tified invariants over arrays. However, no general algorithms
exist for checking if such universally quantified array invari-
ants hold, let alone inferring them. In this paper, we have
applied a system of rules for transforming atomic array read
and write statements into a system of non-linear Horn Clauses
over scalar variables only [13]. We find this approach efficient
compared to other approaches for handling arrays as it does
not introduce a new abstract domain or a new interpolation
procedure for arrays. Instead, it generates an abstraction as a
scalar problem, that can be fed to any solver that can handle
non-linear Horn Clauses.

The set of CHCs for this example is given in Figure 6. The
declarations for the boolean variables and predicates used
in the generated CHCs are given in lines 1 - 9. The first

1 with prog2;
2 procedure gmain is
3 begin
4 prog2. initArray ;
5 end gmain;

(a) project file

1 package prog2 is
2 procedure initArray ;
3 end prog2;

(b) specification file

1 package body prog2;
2 procedure initArray
3 arr : array (1..10) of Integer ;
4 temp: Integer ;
5 begin
6 arr (1) := 0;
7 temp:= arr (1) ;
8 arr (3) := temp;
9 pragma Assert (arr (1) = arr (3)) ;

10 end initArray ;
11 end prog2;

(c) implementation file

Figure 5: A program with array read and write operations.

important clause to consider is at line 13 that defines the
predicate Prog2_InitArray_s0. This predicate represents the
state of the program before the input array variable arr is
updated. The auxiliary variable arrIND denotes an index of
arr. Note that this index takes only the values of the indices
of the array accessed in the corresponding Ada program. As
the aim of this example is to illustrate the handling of arrays
during CHCs generation, our focus will be the array read and
write operations in the example Ada program.

Let us now discuss the crux of the implemented array
handling method. A predicate pred(arr, temp), such
as the one encoding the states for our example pro-
gram, is assumed to internally have a table structure
with a set of entries (ind1, val1, temp), (ind2, val2, temp),
. . . (indn, valn, temp)}, where arr[indi] = vali for each
1 ≤ i ≤ n. However, we do not want to flatten the array
eagerly. Rather, what we want to do is to keep the array as
abstract as possible and refer to concrete values only when
the need arises. With this in mind, let us try to see how we
handle array read and write operations one by one:

• write operation: Assume we want to encode
arr[5] := 10. Here we will replace val5 by 10
in (ind5, val5, temp), and for the rest of the en-
tries, i.e., (indj , valj , temp) for each j 6= 5, valj
stays the same. Let us assume predicates pred0
and pred1 represent states of the program before
and after the write operation arr[5] := 10. Our
encoding of the write operation consists of two
CHCs: (1) pred0(ind, val, temp) ∧ ind = 5 →
pred1(ind, 10, temp) (2) pred0(ind, val, temp) ∧
ind 6= 5 → pred1(ind, val, temp). In our example,
there are the two write operations on lines 6 and 8 in
Figure 5. Their corresponding CHCs can be found on
lines 14-15 and 18-19 in Figure 6, respectively.

• read operation: Assume we want to encode temp :=
arr[5]. Here we will have to replace temp by val5

Volume 40, Number 2, June 2019 Ada User Jour na l

T. A. Beyene, C. Herrera , V. Nigam 107

1 (declare−const gmain_s0 Bool)
2 (declare−const gmain_s1 Bool)
3 (declare−const gmain_call_init Bool)
4 (declare−const gmain_call_end Bool)
5 (declare−fun Prog2_InitArray_s0 (Int Int) Bool)
6 (declare−fun Prog2_InitArray_s1 (Int Int) Bool)
7 (declare−fun Prog2_InitArray_s2 (Int Int) Bool)
8 (declare−const Prog2_InitArray_call_init Bool)
9 (declare−const Prog2_InitArray_call_end Bool)

10 (assert (= true gmain_call_init))
11 (assert (= gmain_call_init gmain_s0))
12 (assert (= gmain_s0 Prog2_InitArray_call_init))
13 (assert (forall ((arrIND Int) (arr Int) (temp Int))(=>

Prog2_InitArray_call_init (Prog2_InitArray_s0
arrIND arr temp))))

14 (assert (forall ((arrIND Int) (arr Int) (arr ’ Int) (
temp Int))(=> (and (Prog2_InitArray_s0 arrIND arr
temp)(= arrIND 1)(= arr ’ 0)) (Prog2_InitArray_s1
arrIND arr ’ temp))))

15 (assert (forall ((arrIND Int) (arr Int) (arr ’ Int) (
temp Int))(=> (and (Prog2_InitArray_s0 arrIND arr
temp)(not (= arrIND 1))) (Prog2_InitArray_s1
arrIND arr temp))))

16 (assert (forall ((arrIND Int) (arr Int) (temp Int) (
temp’ Int)) (=> (and (Prog2_InitArray_s1 arrIND
arr temp)(= arrIND 1)(= temp’ arr)) (
Prog2_InitArray_s3 arrIND arr temp’))))

17 (assert (forall ((arrIND1 Int) (arrIND2 Int) (arr2 Int)
(arr1 Int) (temp Int) (temp’ Int))(=> (and (
Prog2_InitArray_s1 arrIND1 arr1 temp)(
Prog2_InitArray_s1 arrIND2 arr2 temp)(= arrIND 1)
(not (= arrIND1 arrIND2))(= temp’ arr1)) (
Prog2_InitArray_s3 arrIND2 arr2 temp’))))

18 (assert (forall ((arrIND Int) (arr Int) (temp Int) (arr ’
Int)) (=> (and (Prog2_InitArray_s3 arrIND arr

temp)(= arrIND 3)(= arr ’ temp))(Prog2_InitArray_s4
arrIND arr ’ temp))))

19 (assert (forall ((arrIND Int) (arr Int) (arr ’ Int) (
temp Int)) (=> (and (Prog2_InitArray_s3 arrIND arr
temp)(not (= arrIND 3))) (Prog2_InitArray_s4

arrIND arr temp))))
20 (assert (forall ((arrIND1 Int) (arrIND2 Int) (arr1 Int)

(arr2 Int) (temp Int)) (=> (and (
Prog2_InitArray_s4 arrIND1 arr1 temp) (
Prog2_InitArray_s4 arrIND2 arr2 temp) (= arrIND1
1)(= arrIND2 3))(= arr1 arr2))))

21 (assert (forall ((arrIND Int) (arr Int) (temp Int)) (=>
(Prog2_InitArray_s4 arrIND arr temp)
Prog2_InitArray_call_end)))

22 (assert (= Prog2_InitArray_call_end gmain_s1))
23 (assert (= gmain_s1 gmain_call_end))

Figure 6: Corresponding set of CHC for the Ada program in
Figure 5.

in (indi, vali, temp), for all i. Note that since temp
is not an array variable, its value is independent of an
index. Let’s assume predicates pred0 and pred1 rep-
resent states of the program before and after the read
operation. Our encoding of the read operation con-
sists of two CHCs: (1) pred0(ind, val, temp) ∧ ind =
5 → pred1(ind, val, val): this constraint ensures that
if the entry has the index involved in the read, we sim-
ply copy val to temp. (2) pred0(ind1, val1, temp) ∧
pred0(ind2, val2, temp) ∧ ind1 6= 5 ∧ ind2 = 5 →
pred1(ind1, val1, val2): this constraint ensures that if
the entry does not have the index involved in the read,
it looks for another entry with the index involved in the

read operation, and then it copies val2 from the other
entry to temp. Note that this constraint is non-linear as
there are two instances of pred0 in the body of the CHC.
This is where the role of non-linear Horn constraints en-
coding comes into play. In our example, there is a read
operation on lines 7 in Figure 5, and its corresponding
CHCs can be found on lines 16-17 in Figure 6.

5 Experiments
We evaluate AdaHorn on a set of Ada benchmarks that con-
sists of four categories of programs: arrays, floats, loops, and
simple 1. The first three categories are inspired by C pro-
grams from the software verification competition SV-COMP
2017 [18]. For the C programs that can exclusively be trans-
lated to the subset of Ada handled in this work, we have
manually created equivalent Ada programs. Programs in the
simple category are written by the authors of this paper.

The arrays and floats categories contain programs whose as-
sertion involves array and float variables, respectively. In the
loops category, the program assertions are placed within while
and for loop constructs. Programs in the simple category were
constructed with integer variables and without any complex
Ada construct like loop or logic statements. While assertions
in the first three categories do not capture specific classes of
properties, programs in the simple category contain assertion
that captures runtime properties such division by zero, integer
and floating-point over(under)-flow and array out of bounds.

The verification task is to prove if an assertion placed in a
given program is valid or not. A timeout is reached if the
verification task can not complete in 1000 seconds (indicated
by TO). Results for each tool are classified into one of the
following four classes by comparing it with the expected
result: (1) True Positive (TP) - tool correctly indicates an
assertion is not valid, (2) True Negative (TN) - tool correctly
indicates an assertion is valid, (3) False Positive (FP) - tool
wrongly indicates an assertion is not valid, and (4) False
Negative (FN) - tool wrongly indicates an assertion is valid.
In addition, AdaHorn may not be able to solve its generated
constraints leaving the final result unknown (indicated by
UN).

Coming to the results, GNATProve takes less than 3 seconds
for verifying each benchmark, whereas AdaHorn timed out
for one example and took less than 60 seconds to verify the
remaining examples. GNATProve concludes false positives
in 48 occasions (out of 68 benchmarks) and 2 false negatives!
After reporting those false negatives to developers of GNAT-
Prove, we were told that GNATProve generally does not out-
put correct results if intermediate checks have failed, which
is the case for the programs related to those false negatives.
This is mainly due to GNATprove’s assumption that any prior
check must be correct in order to prove the next ones. While
AdaHorn does not result in any false negatives, it results in 4
false positives. The reason behind the false positives was the
difference in precisions for floating-point numbers between
the Ada compiler and the Horn constraint solvers used by

1https://bitbucket.org/umaya/adabenchmarksfromsvcomp17

Ada User Jour na l Vo lume 40, Number 2, June 2019

108 Ver i f ica t ion of Ada Programs wi th AdaHor n

benchmark number of GNATProve AdaHorn
category programs TP TN FP FN TO TP TN FP FN TO UN
arrays 20 1 0 19 0 0 8 10 1 0 1 0
floats 20 1 4 13 2 0 5 8 3 0 0 4
loops 20 4 2 14 0 0 7 13 0 0 0 0
simple 8 0 5 2 0 0 2 6 0 0 0 0

Table 1: Comparison of results between GNATProve and AdaHorn

AdaHorn (Eldarica and Z3). AdaHorn, however, is not able
to verify 4 benchmarks due to failure of the Horn constraints
solvers to conclude whether input CHCs are satisfiable or
unsatisfiable.

Finally, we would like to point out that AdaHorn has been
created as a subproject in the context of a cooperation with
one of our partners from the aviation industry. As a next
step in our cooperation we plan to evaluate AdaHorn on our
partner’s industrial Ada code.

References
[1] S. T. Taft, R. A. Duff, R. Brukardt, E. Plödereder,

P. Leroy, and E. Schonberg (2013), Ada 2012 Reference
Manual. Language and Standard Libraries - Interna-
tional Standard ISO/IEC 8652/2012 (E), vol. 8339 of
LNCS, Springer.

[2] J. G. P. Barnes (2003), High Integrity Software - The
SPARK Approach to Safety and Security, Addison-
Wesley.

[3] Polyspace. https://www.mathworks.com/
products/polyspace.html.

[4] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas
(2015), The SeaHorn Verification Framework, vol. 9206
of LNCS, pp. 343–361, Springer.

[5] T. Kahsai, P. Rümmer, H. Sanchez, and M. Schäf (2016),
JayHorn: A Framework for Verifying Java Programs,
vol. 9779 of LNCS, pp. 352–358, Springer.

[6] N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Ry-
balchenko (2015), Horn Clause Solvers for Program
Verification, vol. 9300 of LNCS, pp. 24–51, Springer.

[7] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and
P. J. Stuckey (2015), Horn Clauses as an Intermediate
Representation for Program Analysis and Transforma-
tion, TPLP, vol. 15, no. 4-5, pp. 526–542.

[8] N. Bjørner, K. L. McMillan, and A. Rybalchenko (2012),
Program Verification as Satisfiability Modulo Theories,
in SMT 2012, vol. 20 of EPiC Series in Computing,
pp. 3–11, EasyChair.

[9] H. Hojjat, F. Konecný, F. Garnier, R. Iosif, V. Kuncak,
and P. Rümmer (2012), A Verification Toolkit for Nu-
merical Transition Systems - Tool Paper, vol. 7436 of
LNCS, pp. 247–251, Springer.

[10] L. M. de Moura and N. Bjørner (2008), Z3: An Efficient
SMT Solver, vol. 4963 of LNCS, pp. 337–340, Springer.

[11] A. Burns, B. Dobbing, and G. Romanski (1998), The
Ravenscar Tasking Profile for High Integrity Real-Time
Programs, vol. 1411 of LNCS, pp. 263–275, Springer.

[12] Project Hi-Lite / GNATprove (2014).

[13] D. Monniaux and L. Gonnord (2015), An Encoding
of Array Verification Problems into Array-Free Horn
Clauses, CoRR, vol. abs/1509.09092.

[14] T. Beyene, S. Chaudhuri, C. Popeea, and A. Ry-
balchenko (2014), A constraint-based approach to solv-
ing games on infinite graphs, SIGPLAN Not., vol. 49,
pp. 221–233.

[15] T. A. Beyene, C. Popeea, and A. Rybalchenko (2016),
Efficient CTL Verification via Horn Constraints Solving,
vol. 219 of EPTCS, pp. 1–14, 2016.

[16] N. Bjørner, A. Gurfinkel, K. McMillan, and A. Ry-
balchenko (22015), Horn Clause Solvers for Program
Verification, pp. 24–51, Cham: Springer International
Publishing.

[17] C. Barrett, P. Fontaine, and C. Tinelli (2017), The SMT-
LIB Standard: Version 2.6, tech. rep., Department of
Computer Science, The University of Iowa. Available
at www.SMT-LIB.org.

[18] D. Beyer (2017), Software Verification with Validation
of Results - (Report on SV-COMP 2017), in TACAS
2017, vol. 10206 of LNCS, pp. 331–349.

Volume 40, Number 2, June 2019 Ada User Jour na l

Automate Your Ada Unit Testing

With VectorCAST/Ada

Vector Austria GmbH | www.vector.com

VectorCAST/Ada is an integrated software test solution that significantly reduces the time, effort, and
cost associated with testing Ada software components necessary for validating safety- and
mission-critical embedded systems.

> Complete test-harness construction for unit and
integration testing

> Test execution from GUI or scripts
> Code coverage analysis
> Regression Testing
> Code complexity calculation
> Automatic test creation based on decision paths

> User-defined tests for requirements-based
testing

> Test execution trace and playback to assist in
debugging

> Integrations with best of breed requirements
traceability tools

More information: www.vector.com/vectorcast

110

Volume 40, Number 2, June 2019 Ada User Journal

Guide for the Use of the Ada Ravenscar Profile in
High Integrity Systems (Part 2) 1

Alan Burns
University of York, UK; email: alan.burns@york.ac.uk

Brian Dobbing
Altran Praxis, UK +

Tullio Vardanega
University of Padua, Italy; email: tullio.vardanega@unipd.it

6 Verification of Ravenscar Programs

Chapter 1 described the motivation for the Ravenscar
Profile in terms of the need to verify the temporal
behaviour of concurrent real-time programs. In this chapter,
we provide an introduction to the forms of verification that
can applied to Ravenscar applications, to deliver
dependable systems. 1

The approach to verification in the presence of Ada tasking
is similar in many ways to that traditionally used for cyclic
executives. Each thread of control is independently verified
for conformance with its precise/formal specification, for
example by performing requirements-based testing or by
use of static analysis tools on its sequential behaviour.
Then, the program as a whole is verified against all its
timing constraints. This latter stage differs from the cyclic
executive approach in the presence of priority-based
preemptive task scheduling in that it can be automated by
the use of, for example, a Response Time Analysis (RTA)
tool to verify that a given task set meets its deadlines. The
tool-based approach greatly simplifies the process of
verification of timing constraints during development, and
of re-verification after the system has undergone
modification during maintenance.

The effects of arbitrary dynamic preemption can be
statically analysed by considering all accesses to the global
state of the program as being volatile, e.g. two successive
reads to the same global state variable may deliver different

1 Editor note: This paper includes chapters 6 to 7 of the report of the
University of York, UK (University of York Technical Report YCS-2017-
348, June 2017), which updates the original “Guide for the use of the Ada
Ravenscar Profile in high integrity systems”, published in 2003,
considering the changes in the definition of Ada (Ada 2012). Chapters 1 to
5 (published in the Ada User Journal, Volume 40, Number 1, March 2019)
present the Ravenscar profile, the rationale for the decisions taken and
examples of usage. Chapter 6 discusses the verification approaches
appropriate to Ravenscar programs, and Chapter 7 provides and extensive
example of the profile use. This updated Guide will also be published as
an official ISO Technical Report (TR), with some changes. The paper in
the Ada User Journal follows the York version, noting, where applicable,
the changes in the ISO TR.

+now retired

values (as for reads of values delivered by an external
device).

The approach to verification in the presence of Ada tasking
is similar in many ways to that traditionally used for cyclic
executives. Each thread of control is independently verified
for conformance with its precise/formal specification, for
example by performing requirements-based testing or by
use of static analysis tools on its sequential behaviour.
Then, the program as a whole is verified against all its
timing constraints. This latter stage differs from the cyclic
executive approach in the presence of priority-based
preemptive task scheduling in that it can be automated by
the use of, for example, a Response Time Analysis (RTA)
tool to verify that a given task set meets its deadlines. The
tool-based approach greatly simplifies the process of
verification of timing constraints during development, and
of re-verification after the system has undergone
modification during maintenance.

The effects of arbitrary dynamic preemption can be
statically analysed by considering all accesses to the global
state of the program as being volatile, e.g. two successive
reads to the same global state variable may deliver different
values (as for reads of values delivered by an external
device).

The core set of Ravenscar Profile run-time system packages
can be developed to the most stringent software
development standards so that these packages are suitable
for inclusion in an application that requires certification
against an applicable standard such as RTCA DO-178B
[DO].

In this chapter, we look at four levels of verification:

 Static analysis of sequential code

 Static analysis of concurrent code

 Scheduling analysis

 Formal analysis

6.1 Static Analysis of Sequential Code
As discussed in the introduction, the Ravenscar Profile is
silent about those features of the sequential language that

A. Burns, B. Dobbing, T. Vardanega 111

Ada User Journal Volume 40, Number 2, June 2019

should be used with the profile (apart from requiring no
implicit use of the heap). Similarly, it is not appropriate
here to discuss the forms of static analysis that should be
used to verify the functional behaviour of each task. The
reader is referred to the ISO Technical Report Guide for the
use of Ada in high integrity applications [GA].

6.2 Static Analysis of Concurrent Code
The two main goals of applying static analysis techniques
to Ravenscar programs are:

 to obtain the same level of proof and data / information
flow analysis for concurrent programs as is currently
achievable for a sequential program;

 to obtain proof of absence of the concurrency-related
run-time errors, to supplement the proof of absence of
run-time errors that is currently achievable for
sequential code.

The concurrency-related run-time errors that apply to
Ravenscar programs are described in Sections 4.2.4 and
4.2.5.

In addition, it is highly desirable if the implementation-
defined effect of task termination in the presence of the
No_Task_Termination restriction can be eliminated.

The remainder of this section addresses various techniques
for producing static analysis evidence to meet the above
goals. These verification processes are made possible by
the following assertions about the behaviour of a valid
Ravenscar program:

 Each task and interrupt handler execution is deferred
until after program elaboration is complete.

 Tasks do not terminate.

 All task communication is via protected shared
variables (predominantly using protected objects). 2

 All protected shared variables are initialized during
library-level elaboration code.

6.2.1 Program-wide Information Flow Analysis

Current technology supports data flow analysis,
information flow analysis, and proof based on pre- and
post-conditions and invariants, for sequential code only.
The goal is to extend this to Ravenscar programs that
include tasks, protected objects and interrupt handlers.

The data dependency information that is currently used to
analyse sequential programs can be applied to each task
and each interrupt handler in the concurrent program as an
independent entity. Thus the existing tools and techniques
can verify each thread of control in isolation, including its
use of privately accessed global data. This then leaves only
the issue of the verification of the interactions between the

2 Editor Note: the ISO technical report updates the bullet to also consider
the use of atomic objects, which are statically proven free of race
conditions.

threads of control as represented by the set of protected
shared variables.

The protected shared variables are required to be initialized
by the library-level elaboration code in order to ensure that
uninitialized shared data is not used. If initialization were
instead performed during the operation phase, a race
condition could be introduced. For a suspension object,
initialization is defined by the Ada standard to occur at the
point of declaration. For a protected object or an atomic
object, all fields should be initialized either as part of object
elaboration, or using library-level package elaboration
code. In conjunction with the use of pragma
Partition_Elaboration_Policy(Sequential) this ensures that
no thread of control can access any shared state that has not
been fully initialized.

After the initialization phase is complete, the protected
shared variables can be modelled for data and information
flow analysis purposes if we assume that their data is
volatile. Since the data can be updated at any time due to
the effects of preemption and interrupt occurrence, any
specific task's view of a protected shared variable must
assume that the value may change at any time. For
example, two successive reads by a task of a protected
shared variable may deliver different results and similarly,
the value read by a task following a write by the same task
cannot be assumed to be the written value. This volatility is
the same abstraction as that used to model access to
external program data, such as that which has an address
clause or is an imported variable (via the Import aspect).
Thus, assuming that the static analysis technique supports
access to volatile external data, concurrent access to
protected data can be modelled in the same way. As a
result, each thread of control can now be described both in
terms of its sequential data and information flow, and in
terms of its interactions with volatile protected shared
variables.

Having obtained the analysis of each thread of control that
includes its interactions with the protected state, it is then
possible to combine the analyses to form the overall data
and information flow for the program as a whole, across the
task and interrupt handler boundaries. This allows the
designer to make assertions about how the entire program
should behave in terms of the effect that it has on its
external inputs (including interrupts) to produce its external
outputs. These assertions can then be verified by the
analysis to the same degree of confidence as is currently
achievable in a sequential program.

This form of static analysis does not address the timing or
ordering properties of the program. Later sections in this
chapter address these topics by describing the use of RTA
and other forms of formal analysis, such as model
checking, which can prove statically the timing properties
of the program.

6.2.2 Absence of Run-time Errors

Existing static analysis techniques can be used to prove
absence of run-time errors due to language-defined
exceptions within sequential code. The corresponding

112 Guide for the use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 2, June 2019 Ada User Journal

guidance on the sequential code constructs that may be
used to achieve this goal is contained in the Technical
Report [GA]. These techniques can be independently
applied to each individual thread of control (task, main
program or interrupt handler) of a Ravenscar program.

In order to extend these existing techniques to a full
Ravenscar program, it is necessary to address the various
forms of run-time check failure that relate directly to the
concurrency features. These can be broken down into the
following groups:

 Errors during program elaboration, such as access-
before-elaboration or use of uninitialized data.

 Errors after program elaboration is complete, during
the normal operation phase of the application, in
particular the exceptions that are cited in Sections 4.2.4
and 4.2.5.

 Erroneous behaviour during normal operation, in
particular concurrent access to unprotected shared
variables (see Section 4.2.7).

 Implementation-defined behaviour as a result of
violation of the No_Task_Termination restriction.

The following sub-sections discuss various techniques that
can be applied to verify statically that these forms of error
cannot occur.

Elaboration Errors

Within a sequential program, detection of access before
elaboration errors is generally straightforward during
program development due to the repeatable nature of the
elaboration order, and the raising of Program_Error
exception at the point of failure, causing the program to
terminate. Having obtained a correct elaboration order
during development, this ordering is usually predictable
except when a switch to a different compiler vendor, or an
upgrade to a new product version from the same vendor
that uses a different algorithm for any units that have
implementation-defined ordering, is performed. This
implicit order variation can be prevented by explicit use of
elaboration order pragmas, once a correct order has been
established.

Within a concurrent program however, access to global
data that is not yet initialized by the elaboration code may
occur as a result of race conditions that vary between
development mode and deployment mode, due to factors
such as the use of hardware of differing performance or
memory access times, inclusion or exclusion of checking
code, differences in interpretation of priority, scheduling
variations etc. These race conditions are more likely to be
present because of the Ada rule that a library-level task
shall be activated by its master package prior to the
execution of that master's body elaboration code, and also
prior to the execution of the elaboration code of later
library units in the overall program elaboration order.
Another contributing factor to the race condition is that
having completed its activation, the Ada task proceeds into
its normal execution code, and so must be programmed to

immediately suspend to prevent this code from executing
whilst program elaboration is still incomplete. Similar
concerns apply to the execution of interrupt handlers after
attachment - an interrupt may trigger execution of a handler
prior to completion of program elaboration, and in this
case, the handler cannot be programmed to suspend, of
course. Such an error may actually occur silently - the task
or interrupt handler may read an uninitialized value of a
shared variable and not cause any exception to be raised,
even in the presence of pragma Normalize_Scalars.

There are several solutions that can mitigate this hazard
statically. The most obvious one is to ensure that all shared
variables of a Ravenscar program are initialized at the point
of declaration. However this is inappropriate in the case
when elaboration code in the body is needed to set a correct
initial value. Logically, it is highly desirable if we can
assert that the dynamic semantics of the program are
unaffected whether global shared data is initialized at the
point of declaration, or by library package body elaboration
code, assuming a correct elaboration order for the
sequential elaboration code has been enforced using
elaboration control pragmas.

In order to achieve the static guarantee that all library units
have been elaborated prior to the activation of any task and
prior to the invocation of any interrupt handler, the
Partition_Elaboration_Policy pragma was added to the Ada
standard. If this pragma is used with argument Sequential,
then all task activation and interrupt handler attachment is
deferred until after all program elaboration code is
complete, i.e. just prior to the call of the main subprogram
(see also Section 4.2.7).

Execution Errors Causing Exceptions

Sections 4.2.4 and 4.2.5 identify the concurrency-related
run-time checks that are required of a conformant
implementation of the Ravenscar Profile. In the following
sub-sections, we examine techniques for static elimination
of these error conditions.

Max_Entry_Queue_Length and Suspension Object
Check

The static detection of absence of entry queue length
violation may be achieved by applying further constraints
on the application code, namely that at most one task object
can call each protected entry. This also implies that the task
objects, protected objects and protected entries are
statically identified. Static identification of an object
excludes its name being determined dynamically such as
via a function result, a dynamic array index, the
dereferencing of an access value etc. A less restrictive
scheme that shows that there is no program state in which
more than one task may be calling the same protected
object would require more extensive analysis, such as the
use of model checking (see Section 6.4). The same
approach can be applied to the static detection of absence
of more than one task waiting on each suspension object at
any time.

A. Burns, B. Dobbing, T. Vardanega 113

Ada User Journal Volume 40, Number 2, June 2019

Priority Ceiling Violation Check

The static detection of absence of priority ceiling violation
can be achieved assuming the following further constraints:

 all task objects and protected objects have a static
priority (this may be supplied via a static expression of
a type discriminant for example);

 the protected object call chain (including nested
protected object calls) that is made by each task object
and each interrupt handler is statically determinable,
by requiring static identification of the target protected
object in all cases.

Potentially Blocking Operations in a Protected Action

The static detection of absence of execution of a potentially
blocking operation within a protected action is feasible
given the additional constraint on the use of indirect
subprogram calls, which then allows the call trees to be
statically determined. The presence of any of the following
constructs in any protected or subprogram body in the call
tree that is rooted in a protected operation body would then
be statically disallowed:

 a protected entry_call_statement;

 a delay_statement;

 a call to Ada.Synchronous_Task_Control.Suspend_
Until_True;

 a call to any other language-defined subprogram that is
defined to be potentially blocking [RM 9.5.1 (8-16)].

In addition, the determination of the call trees would enable
static detection of an external subprogram call with the
same target protected object as that of the protected action,
assuming the restriction that the target protected object is
always statically identified.

A slightly less restrictive scheme may be possible that uses
formal verification methods such as model checking (see
Section 6.4) to determine if a program state exists such that
a protected action would cause execution of a potentially
blocking operation (which may be within conditionally-
executed code, although this style is not recommended).

It may also be possible to support detection of potentially
blocking operations in the presence of indirect procedure
calls if a pre-condition that specifies a non-blocking
property is asserted prior to each indirect call, and that
property is shown to be satisfied statically by all possible
procedures that can be invoked by that call. Similarly, the
check for circularity in the protected object call chain may
be possible even in the case of non-statically identified
protected objects, by imposing a pre-condition that none of
the potentially called protected objects invoke operations of
any protected objects that are higher in the call chain.

Task Termination

The Ravenscar Profile defines a static task set and prohibits
dynamic task creation. The intent is that all tasks are
created during program start-up, but in any mode of
operation, some of them may be dormant, waiting on a

synchronization event. A task that is no longer required to
be executed would wait on its event indefinitely. In this
model, task termination is considered to be an error case
and hence the restriction No_Task_Termination is required
by the Ravenscar Profile. The effect of violation of the
No_Task_Termination restriction is implementation-
defined.

Task termination within the restrictions of the Ravenscar
Profile can occur only as a result of normal exit from the
task body, or as a result of an unhandled exception.

 The case of avoidance of normal exit can be statically
analysed if a coding restriction is placed on the task
body code - the final statement must either be an
infinite loop or else be a compound statement (such as
a conditional or case statement) that can only cause an
infinite loop to be executed.

 The case of showing absence of exceptions by static
analysis has already been covered in Section 4.2.6 and
in the sub-sections above.

The combination of these two techniques can be used to
ensure statically that task termination cannot occur, and
hence also that no implementation-defined behaviour that
results from task termination can be invoked.

Use of Unprotected Shared Variables 3

The intent of the Ravenscar Profile is that tasks and
interrupt handlers should not make concurrent use of an
unprotected shared variable - all interactions involving
tasks or interrupt handlers are recommended to be via
protected and atomic objects, where an atomic object is
either a suspension object or one that has the Atomic aspect
applied to it or its type. The avoidance of unprotected
shared variables is generally a requirement of high integrity
systems, although detection of this erroneous case is not
mandated by the Ravenscar Profile definition.

The static detection of absence of unprotected shared
variables can be achieved assuming the restriction that the
use of all global variables of unprotected type by each task
object and by each interrupt handler is statically
identifiable. All global objects that are either of a protected
type or an atomic type may be safely shared, and so no
static identification is required for these. Static verification
can then ensure that no unprotected global variable is
accessed by more than one thread of control.

Note that if a task object or interrupt handler shares global
data only with program elaboration code, i.e. the
elaboration code initializes global data that is subsequently
privately used by a single task or interrupt handler, then
this data does not need to be protected if the
Partition_Elaboration_Policy pragma is used with the
argument Sequential, since this pragma ensures that the

3 Editor note: the ISO technical report updates this section noting that
appropriate use of atomic must be guaranteed, statically proven free of
race conditions.

114 Guide for the use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 2, June 2019 Ada User Journal

elaboration is complete prior to any task execution or
interrupt attachment (and hence there can be no sharing
violation).

6.3 Scheduling Analysis
The use of scheduling theory was mentioned in Chapter 1.
Here we provide more details on the procedure to be
followed. The aim is to introduce the form this analysis
takes as it is not appropriate within this report to give a full
tutorial on this material; such material can be found in text
books (for example [9] and [10]). Ravenscar facilitates the
use of these techniques as it supports priority-based
dispatching and ceiling locking on protected objects. To
apply these techniques, however, further constraints on
application code must be made. All tasks must have a
single invocation event and allow other parameters to be
analysed or measured – see below.

In this section, priority assignment is considered first, then
two forms of analysis are introduced: Rate Monotonic
Analysis and Response Time Analysis.

6.3.1 Priority Assignment

The use of priority-based preemptive dispatching defines a
mechanism for scheduling. The scheduling policy is
defined by the mapping of tasks to priority values. Many
different schemes exist depending on the temporal
characteristics of the task and other factors such as
criticality. For hard deadline tasks it is usually assumed that
the following three parameters are known:

T – Period; time interval between consecutive arrivals
of the task

D – Deadline; required latest completion time for the
task (relative to its arrival)

C – Computation time; worst-case execution time
needed for the task to complete one activation.

For periodic tasks, T is the time interval between releases.
For sporadic tasks, T is the minimum inter-arrival time for
the event that releases the task. The three parameters (T, D,
C) are always given in the same time units. So (30ms,
20ms, 2.73ms) defines a task that (at maximum) is released
every 30ms; must complete within 20ms; and that has a
maximum computation time of 2.73ms. These latter values
are obtained either by measurement or by some form of
static timing analysis (or a combination of the two).

If all tasks are hard and criticality itself is not taken into
account (because we require all tasks to always meet their
deadline) then there is an optimal algorithm for assigning
priority if D <= T for all tasks. By optimal we mean that
the algorithm is as good as any other fixed priority scheme.
The optimal algorithm is called Deadline Monotonic and
simply assigns priority based on deadline – the shorter the
deadline the higher the priority. In the special case when
D = T for all tasks this scheme is known as Rate
Monotonic.

An important property of fixed priority dispatching is that
the lower priority tasks are the most vulnerable to missing a
deadline if there is a run-time problem such as a task

executing for more than its assumed maximum C. Because
of this property the systems designer may wish to place the
highly critical tasks at higher priorities than the Deadline
Monotonic scheme would advise. This may reduce
schedulability but is perfectly valid and is amenable to
Response Time Analysis (see below).

Another reason to raise a task priority is to reduce jitter on
input and/or output actions. Higher priority tasks have a
more regular execution pattern and hence important events
such as reading a sensor or writing to an actuator will occur
with less variation from one period to the next. Scheduling
analysis will only ensure that a task completes somewhere
between its release and its deadline. One way of reducing
jitter is thus to reduce the deadline of the tasks that perform
jitter-sensitive I/O. If this is done, then the Deadline
Monotonic priority assignment scheme will automatically
allocate a higher priority.

Most scheduling schemes assume that each task is assigned
a unique priority. Any Ada runtime for Ravenscar will
support at least 32 priorities (and may indeed support many
more). Although maximum schedulability does require
distinct priorities for the tasks, it is unusual for an
application to be so close to being unschedulable that it
requires these unique priorities. Response Time Analysis
can again deal with shared priority values. It should also be
noted that that some real-time kernels can exploit the
knowledge that tasks share priority to reduce the memory
requirement. This is achieved by noting that two (or more)
tasks that share a priority level never execute at the same
time and hence can ‘share’ a task stack.

Once a priority map has been agreed for the set of tasks
within the application the priorities for the protected objects
can be assigned systematically.

6.3.2 Rate Monotonic Utilization-based Analysis

For a constrained set of temporal characteristics there exists
a very simple schedulability test that quickly verifies if all
deadlines will always be met. The constraints are that D=T
for all tasks, and that priorities are assigned using the Rate
Monotonic scheme. In practice this means that all tasks are
hard and periodic. Each task must finish before its next
release and there is no additional requirement to control
jitter. If we assume, initially, that the program does not
contain protected objects (i.e. all tasks execute
independently) then the schedulability test is simply a
matter of checking the utilization of the task set. For each
task, the fraction of a complete processor it needs is given
by C/T. If this is summed across all tasks this gives the
total utilization of the application. Clearly, this value must
not be more than 1.0 or the system is never going to be
schedulable. The actual upper bound (which is less than
1.0) is given by the following formula, which is a function
of , the number of tasks in the system.

:

2 / 1

A. Burns, B. Dobbing, T. Vardanega 115

Ada User Journal Volume 40, Number 2, June 2019

As n gets arbitrarily large, this expression converges on a
single value. This is the famous ‘Rate Monotonic’ result,
which says that a utilization of less than 0.69 will always
furnish a schedulable system.

Once protected objects (POs) are introduced, blocking can
occur. Here a task when released can be prevented from
executing by the currently executing ‘low’ priority task
running with a ‘high’ ceiling value while in a PO. For each
task, the maximum blocking time, B, can be calculated.
This is the maximum time a lower priority task can be
executing with a priority equal or higher than the task
currently under consideration. As noted in Chapter 1, the
use of Immediate Priority Ceiling Protocol (IPCP) on POs
does reduce blocking to its minimum value. The utilization
test is now augmented with the result that each task must be
examined in turn; so for task j 4:

21/ 1
≔1

The blocking term for the lowest-priority task is 0, as it
cannot suffer blocking by definition.

The simplicity of the utilization-based test makes it a very
attractive one to use. Yet, it only applies to the constrained
set of task characteristics. Moreover, it is a necessary but
not sufficient test. If the application passes the test, all
timing constraints will be met. If it fails the test, instead,
the system may still be schedulable. A better test is needed
in these circumstances. The following is one such example.

6.3.3 Response Time Analysis

Response time analysis is a general technique. It will deal
with any priority assignment scheme and any relationship
between D and T, (although its simple form requires
D<=T). Moreover, it is a necessary and sufficient scheme
for most situations. Like the utilization-based method it is
easily incorporated into tools – many of which already
exist.

The form of the analysis is quite straightforward. Firstly,
the worst-case (longest) completion time for each task is
calculated. This is known as the task response time, R.
Secondly, these R values are compared, trivially, with the
deadlines to make sure that R is less than D for all tasks.
The response time equation is as follows (the hp function
delivers the set of task with priority higher than task i):

j
ihpj j

i
iii C

T

R
BCR

)(

As ceiling functions are used, the unit for time is chosen so
that all parameters are represented as integers.

The equation is solved by forming a recurrence relation:

4 Editor note: this equation has been corrected in relation to the York
Technical Report, and is as provided in the ISO technical report.

j
ihpj j

k
i

ii
k
i C

T
BC

)(

1 :

The initial value of the iteration variable is the task’s
computation time. Iteration continues until either the same
value is obtained on two successive iterations (in which
case the response time has been calculated) or the value
rises higher than the task’s deadline (in which case the task
is not schedulable).

The above description represents the ‘textbook’ version of
the analysis. The engineering version requires extra terms
to capture the overhead of actual implementation. Firstly,
overheads such as context switches can be assigned to the
task that caused them (by incorporating them into the C
parameter). Next, the kernel overheads associated with
manipulating the delay queue, handling clock interrupts and
the releasing of tasks must be factored in. The specific form
this takes will depend on the structure of the kernel – but
the kernel must provide the data needed to model this
overhead. This is a documentation requirement specified in
the Real-Time Annex which is discussed further in the
following section. For an example on how to include this
term in the analysis see the textbooks [9] and [10]. Finally,
the overheads incurred by the application’s interrupts must
be accounted for. We must know a bound on the arrival of
such interrupts, and the execution time of each attached
handler must be known. Putting these values together
allows a set of interrupt overhead terms to be included in
the Response Time Analysis.

The appropriate use of the Ravenscar Profile and the
scheduling results outlined in the previous three sections
provide a sound engineering basis for constructing high
integrity real-time systems. The theory is mature and tool
support is available.

6.2.4 Documentation Requirement on Run-time
Overhead Parameters

There are a number of places in the Reference Manual
where documentation requirements and metrics are
required of an implementation. Those of most relevance to
Ravenscar are:

 C.3 concerning the interrupt model

 D.2.3 (11 - 13) concerning maximum duration of
priority inversion

 D.8 (33 - 45) concerning clock accuracy

 D.9 (8, 11, 13) concerning the precision of delay until

 D12 (5) concerning interrupt blocking

 D.12 (6-7) concerning overhead involved with the use
of protected objects

Unfortunately, this is not a comprehensive list of the data
needed to fully model the overheads caused by the run-time
system. Typically also needed are:

 Cost of context switches between tasks

 Cost of handling delay queue operations

116 Guide for the use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 2, June 2019 Ada User Journal

Both of these factors may, contingent on the
implementation of queues with the run-time system, depend
on the number of tasks in the application's program.
Nevertheless, if timing analysis is to be used on a
Ravenscar program, it is necessary to have one of the
following:

 Evidence of all necessary parameters

 A means by which the programmer can measure these
parameters

 Formulae by which these parameters can be calculated.

6.4 Formal Analysis of Ravenscar Programs
The Ravenscar profile supports only a simple concurrency
model with the error conditions being relatively easy to
avoid. For example, the use of shared resources (via
projected objects with ceiling priorities) cannot lead to
deadlock. Nevertheless, to gain a very high level of
assurance it may be necessary to formally analyse a
Ravenscar program. As outlined in Section 2.4, such
analysis takes the form of either mechanized proof (via a
theorem prover) or model checking.

There is already experience of using model checking to
validate Ravenscar programs. It is possible to add worst-

case and best-case execution times for state transitions and
to then check that deadlines are never missed.
Alternatively, model checking can be used to validate the
top-level description of the timing constraints – leaving
scheduling analysis to check deadline satisfaction once
execution times from the implementation are known.
Typical of the verification that can be achieved with this
approach is to check some end-to-end deadline through a
number of tasks assuming each task itself meets its timing
requirements. Each task is represented by an automaton and
each protected object by a shared variable (there are no
problems with mutual exclusion in these formal models).

As with Ada itself, there can never be a formal map
between a Ravenscar program and its model. However, the
use of standard paradigms and libraries of associated
(reusable) models allows a high integrity process to be
defined.

This demonstrates that formal approach can be applied
effectively to Ravenscar programs, but this does not imply
that all high integrity Ravenscar programs need this level of
verification. For many systems, static analysis of each task
will be sufficient to generate the appropriate level of
confidence.

Figure 1. Schematic architecture of the example Ravenscar application.

Figure 1b: Legend for the symbols and notations in figure 1

A. Burns, B. Dobbing, T. Vardanega 117

Ada User Journal Volume 40, Number 2, June 2019

7 Extended Example

The example presented in this chapter is designed to
illustrate the expressive power of the Ravenscar Profile and
the associated coding paradigms (discussed in Chapter 5),
which aim to facilitate off-line scheduling analysis in the
form outlined in Chapter 6.

The extended application example uses all of the
concurrency components permitted by the Ravenscar
Profile. The structure of the example models, on a reduced
and simplified scale, the operation of real-world embedded
real-time systems. The presentation of the example also
outlines the information required for, and obtained from,
the execution of deadline monotonic priority assignment
and off-line scheduling analysis.

7.1 A Ravenscar Application Example
The example system includes a periodic process that
handles orders for a variable amount of workload.
Whenever the request level exceeds a certain threshold, the
periodic process farms the excess load out to a supporting
sporadic process. While such orders are executed, the
system may receive interrupt requests from an external
source. Each interrupt treatment records an entry in an
activation log. When specific conditions hold, the periodic
process releases a further sporadic process to perform a
check on the interrupt activation entries recorded in the
intervening period. The policy of work delegation adopted
by the system allows the periodic process to ensure the
constant discharge of a guaranteed level of workload. The
correct implementation of this policy also requires
assigning the periodic process a higher priority than those
assigned to the sporadic processes, so that guaranteed work
can be performed in preference to subsidiary activities.

Figure 1, overleaf, shows an HRT-HOOD [11] like
representation of the system, while the legend, in figure 1b,
recalls the meaning of the symbols and notations used in
the diagram.

In HRT-HOOD terms, the system comprises:

 4 active (i.e. threaded) objects respectively called:
Regular_Producer, On_Call_Producer,
Activation_Log_Reader, External_Event_Server;

 1 passive (i.e. unthreaded) object called
Production_Workload;

 3 protected objects respectively called:
Request_Buffer, Event_Queue, Activation_Log

The operation of the system proceeds as follows:

 Regular_Producer, which figure 1 tags as Cyclic,
embeds a fixed-rate periodic task that carries out a
given amount of workload. The example represents the
execution of this workload by the invocation of the
well-known Small_Whetstone procedure exported by
the shared passive object Production_Workload.

 When Regular_Producer determines that the required
amount of workload exceeds its ceiling capacity, it
delegates the excess workload out to

On_Call_Producer. On_Call_Producer, which figure 1
tags as sporadic, embeds a sporadic task whose
activation is specifically invoked to take over the
excess workload of Regular_Producer.

 The sporadic activation and the associated workload
transfer occur by means of a typical Ravenscar data-
oriented synchronization: Regular_Producer invokes
the Start operation exported by On_Call_Producer with
a parameter characterising the service request. The
Start operation enqueues the request in a private queue
embedded within the protected object Request_Buffer.
We need to protect the buffer because we allow new
service requests to come in while the sporadic task is
busy executing old ones. This follows from the
decision to assign Regular_Producer a higher base
priority than that of On_Call_Producer, which we
opted for to ensure the discharge of a guaranteed level
of workload in preference to the execution of
subsidiary activities.

 A successful enqueueing releases the
On_Call_Producer sporadic task, which indefinitely
waits on an empty queue. The sporadic task fetches the
request parameter from the top of the queue and
performs the requested amount of workload in the
same way as Regular_Producer. An invocation of Start
fails when the queue held within Request_Buffer is
full; for example, as a result of a (transient) rate of
requests faster than service execution. Static analysis
of the relationship between the maximum frequency of
activation requests and the longest service time
incurred by the sporadic task of On_Call_Producer
should be used to prevent failure events of this kind.

 While the system carries out the required level of
workload (whether regular or excess), an external
device may occasionally raise an interrupt to signal its
call for attention. In keeping with the Ravenscar
programming model, the example application maps the
arrival of the external interrupt to the invocation of a
protected procedure. Object Event_Queue exports the
procedure in question, which we call Signal.

 The service associated with the raising of the interrupt
is carried out by the sporadic task embedded in
External_Event_Server, which is tagged interrupt-
activated sporadic. To simplify the coding of the
example, and in keeping with the programming model
that minimizes the amount of activity performed at
interrupt priority, we have limited the extent of this
interrupt service to the storing of an activation record
in a protected buffer. The recording occurs by
invocation of procedure Write exported by protected
object Activation_Log. The use of a protected buffer to
hold the activation record offers the natural mechanism
to preserve data integrity in the face of independent
read and write activities.

 In order for the system to monitor the arrival of service
requests from the external device, when certain
conditions hold, the periodic process embedded in

118 Guide for the use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 2, June 2019 Ada User Journal

Regular_Producer requests the task embedded in the
Sporadic object Activation_Log_Reader to examine
the latest activation record stored by the interrupt
service carried out by External_Event_Server.
Activation_Log_Reader does this by invoking the
Read procedure of Activation_Log. This style of work
partitioning between Regular_Producer and
Activation_Log_Reader uses the Ravenscar
concurrency mechanisms to allocate activities with
differing degrees of importance to distinct tasks. This
approach aids system modelling. It also favours the
specialization of tasks, which is a way of using the
Ravensvar Profile definition to facilitate static analysis
of the system.

 The activation request issued by Regular_Producer for
this purpose uses the other form of synchronization
permitted by the Ravenscar Profile: the data-less
synchronization supported by suspension objects.
Procedure Signal exported by Activation_Log_Reader
performs this synchronization on a suspension object
internally held by the object. As HRT-HOOD provides
no specific object representation for suspension
objects, we have used the convention that procedures
by the name Signal exported by sporadic objects be
understood as implemented by invocation of a private
suspension object embedded within the object.
Conversely, procedures by the name Start exported by
sporadic objects are implemented by invocation of the
Deposit procedure exported by an associated protected
object. (Note that Signal is also the name of the
protected procedure attached to an interrupt, which
dispatches the activation event to interrupt-activated
sporadic objects.)

7.2 Code
The Ravenscar Profile model does not inherently require
the application to use any particular coding style for the
execution of cyclic and sporadic tasks, protected objects,
and interrupt handlers. However, if the application is
required to pass schedulability analysis, certain task
templates (patterns or stereotypes) and corresponding
coding styles are useful in defining the activities that are to
be analysed. These task templates are described in Chapter
5 and are used to code the example application outlined
above.

Note that, in order to emphasise the stereotype nature of the
task templates in the example, we have relegated all the
parametric components of the application code into support
packages named with “_Parameters” trailer added to the
name of the corresponding base package. (The code of
these support packages is provided in the closing section of
this example.)

The Ravenscar-compliant HRT-HOOD coding convention
has individual terminal objects in the system implemented
as distinct library-level packages that carry the name of the
corresponding object. An HRT-HOOD terminal object is
one that cannot be further decomposed and therefore
contains at most one type of primitive Ravenscar

concurrency component. As each package, associated with
a terminal object, by definition contains a single task or
protected object, the corresponding entity carries the name
of the enclosing package (and thus of the corresponding
object).

Cyclic Task
The example uses one cyclic task, named
Regular_Producer, the code of which is shown below. The
non-suspending operation of Regular_Producer and its
supporting definitions are defined in the
Regular_Producer_Parameters package shown at the end of
this section.

Regular_Producer

with Regular_Producer_Parameters;
with Ada.Text_IO;
with Ada.Exceptions; use Ada.Exceptions;
package Regular_Producer is
 task Regular_Producer
 with Priority =>
 Regular_Producer_Parameters.
 Regular_Producer_Priority;
 -- Assigned by deadline monotonic analysis
end Regular_Producer;

with Ada.Real_Time;
with Activation_Manager;
package body Regular_Producer is
 Period : constant Ada.Real_Time.Time_Span :=
 Ada.Real Time.Milliseconds
 (Regular_Producer_Parameters.
 Regular_Producer_Period);
 task body Regular_Producer is
 use Ada.Real_Time;
 -- For periodic suspension
 Next_Time : Ada.Real_Time.Time;
 begin
 -- For tasks to achieve simultaneous activation
 Activation_Manager.Activation_Cyclic(Next Time);
 loop
 Next_Time := Next_Time + Period;
 -- Non-suspending operation code
 Regular_Producer_Parameters.
 Regular_Producer_Operation;
 -- Time-based activation event
 delay until Next_Time; -- Delay statement at
 -- end of loop
 end loop;
 exception
 when Error : others =>
 -- Last rites: for example
 Ada.Text_IO.Put_Line
 ("Something has gone wrong here: " &
 Exception_Information (Error));
 end Regular_Producer;
end Regular_Producer;

Event-response (Sporadic) Tasks
The example application includes three sporadic tasks, one
per type of sporadic activation permitted by the profile: the
activation of On_Call_Producer uses a protected object
with a suspending entry; the activation of
Activation_Log_Reader uses a suspension object; and the
activation of External_Event_Server uses a protected object

A. Burns, B. Dobbing, T. Vardanega 119

Ada User Journal Volume 40, Number 2, June 2019

with a suspending entry attached to an interrupt. We first
look at the code of the respective sporadic tasks and then
turn our attention to the corresponding synchronization
objects.

The non-suspending operation of On_Call_Producer and its
supporting definitions are defined in the
On_Call_Producer_Parameters package shown at the end
of this section.

On_Call_Producer

with On_Call_Producer_Parameters;
package On_Call_Producer is
 -- Non-suspending operation with queuing of data
 function Start(Activation_Parameter : Positive)
 return Boolean;
 task On_Call_Producer
 with Priority =>
 On_Call_Producer_Parameters.
 On_Call_Producer_Priority;
 -- Assigned by deadline monotonic analysis
end On_Call_Producer;

with Request_Buffer;
with Activation_Manager;
with Ada.Text_IO;
with Ada.Exceptions; use Ada.Exceptions;
package body On_Call_Producer is
 -- To hide the implementation of the event buffer
 function Start(Activation_Parameter : Positive)
 return Boolean is
 begin
 return Request_Buffer.Deposit(Activation_Parameter);
 end Start;
 task body On_Call_Producer is
 Current_Workload : Positive;
 begin
 -- For tasks to achieve simultaneous activation
 Activation_Manager.Activation_Sporadic;
 loop
 -- Suspending request for activation event with
 -- data exchange
 Current_Workload := Request_Buffer.Extract;
 -- Non-suspending operation code
 On_Call_Producer_Parameters.
 On_Call_Producer_Operation (Current_Workload);
 end loop;
 exception
 when Error : others =>
 -- last rites: for example
 Ada.Text_IO.Put_Line
 ("Something has gone wrong here: " &
 Exception_Information (Error));
 end On_Call_Producer;
end On_Call_Producer;

The non-suspending operation of Activation_Log_Reader
and its supporting definitions are defined in the
Activation_Log_Reader_Parameters package shown at the
end of this section.

Activation_Log_Reader

with Activation_Log_Reader_Parameters;
package Activation_Log_Reader is
 -- non-suspending parameterless operation
 --+ with no queuing of activation requests

 procedure Signal;
 task Activation_Log_Reader
 with Priority =>
 Activation_Log_Reader_Parameters.
 Activation_Log_Reader_Priority;
 -- assigned by deadline monotonic analysis
end Activation_Log_Reader;

with Ada.Synchronous_Task_Control;
with Activation_Manager;
with Ada.Text_IO;
with Ada.Exceptions; use Ada.Exceptions;
package body Activation_Log_Reader is
 Local_Suspension_Object :
 Ada.Synchronous_Task_Control.Suspension_Object;
 procedure Signal is
 begin
 Ada.Synchronous_Task_Control.
 Set_True(Local_Suspension_Object);
 end Signal;
 procedure Wait is
 begin
 Ada.Synchronous_Task_Control.
 Suspend_Until_True (Local_Suspension_Object);
 end Wait;
 task body Activation_Log_Reader is
 begin
 -- for tasks to achieve simultaneous activation
 Activation_Manager.Activation_Sporadic;
 loop
 -- suspending parameterless request of
 -- activation event
 Wait;
 -- non-suspending operation code
 Activation_Log_Reader_Parameters.
 Activation_Log_Reader_Operation;
 end loop;
 exception
 when Error : others =>
 -- last rites: for example
 Ada.Text_IO.Put_Line
 ("Something has gone wrong here: " &
 Exception_Information (Error));
 end Activation_Log_Reader;
end Activation_Log_Reader;

The non-suspending operation of External_Event_Server
and its supporting definitions are defined in the
External_Event_Server_Parameters package shown at the
end of this section.

External_Event_Server

with External_Event_Server_Parameters;
package External_Event_Server is
 task External_Event_Server
 with Priority =>
 External_Event_Server_Parameters.
 External_Event_Server_Priority;
end External_Event_Server;

with Event_Queue;
with Activation_Manager;
with Ada.Text_IO;
with Ada.Exceptions; use Ada.Exceptions;
package body External_Event_Server is
 procedure Wait renames Event_Queue.Handler.Wait;
 task body External_Event_Server is

120 Guide for the use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 2, June 2019 Ada User Journal

begin
 -- for tasks to achieve simultaneous activation
 Activation_Manager.Activation_Sporadic;
 loop
 -- suspending request for external activation event
 Wait;
 -- non-suspending operation code
 External_Event_Server_Parameters.
 Server_Operation;
 end loop;
 exception
 when Error : others =>
 -- last rites: for example
 Ada.Text_IO.Put_Line
 ("Something has gone wrong here: " &
 Exception_Information (Error));
 end External_Event_Server;
end External_Event_Server;

Shared Resource Control Protected Object
The example application uses one protected object, named
Activation_Log, to control access to a shared resource. The
auxiliary package Activation_Log_Parameters shown at the
end of this section defines all the parameters that
characterize the activity of Activation_Log.

Activation_Log

with Activation_Log_Parameters;
with Ada.Real_Time;
package Activation_Log is
 type Range_Counter is mod 100;
 protected Activation_Log
 with Priority =>
 Activation_Log_Parameters.Activation_Log_Priority
 -- Must be ceiling of users' priority
 is
 -- Records interrupt service activation:
 -- non-suspending operation
 procedure Write;
 -- Retrieves the last activation record:
 -- non-suspending operation
 procedure Read
 (Last_Activation : out Range_Counter;
 Last_Active_Time : out Ada.Real_Time.Time);
 private
 Activation_Counter : Range_Counter := 0;
 Activation_Time : Ada.Real_Time.Time;
 end Activation_Log;
 procedure Write renames Activation_Log.Write;
 procedure Read
 (Last_Activation : out Range_Counter;
 Last_Active_Time : out Ada.Real_Time.Time)
 renames Activation_Log.Read;
end Activation_Log;

package body Activation_Log is
 protected body Activation_Log is
 procedure Write is
 begin
 Activation_Counter := Activation_Counter + 1;
 Activation_Time := Ada.Real_Time.Clock;
 end Write;
 procedure Read(Last_Activation : out Range_Counter;
 Last_Active_Time : out Ada.Real_Time.Time)
 is

 begin
 Last_Activation := Activation_Counter;
 Last_Active_Time := Activation_Time;
 end Read;
 end Activation_Log;
end Activation_Log;

Task Synchronization Primitives
The suspension object is the optimized form for a simple
suspend/resume operation. The package
Ada.Synchronous_Task_Control is used to declare a
suspension object, and the primitives Suspend_Until_True
and Set_True are used for the suspend and resume
operations respectively. We have seen an example of use of
the former in the code of Activation_Log_Reader shown
above, whereby the Activation_Log_Reader package
exports a Signal procedure that invokes Set_True on the
local suspension object on which the
Activation_Log_Reader sporadic task suspends by
invoking Suspend_Until_True within the call to its internal
Wait operation.

As mentioned earlier, the activation of On_Call_Producer
is controlled by the use of a protected object named
Request_Buffer, which provides a suspending entry named
Extract and a releasing procedure named Deposit.

The auxiliary package Request_Buffer_Parameters shown
at the end of this section defines all the parameters that
characterize the activity of Request_Buffer.

Request_Buffer

package Request_Buffer is
 function Deposit(Activation_Parameter : Positive)
 return Boolean;
 function Extract return Positive;
end Request_Buffer;

with Request_Buffer_Parameters;
package body Request_Buffer is
 type Request_Buffer_Index is
 mod Request_Buffer_Parameters.
 Request_Buffer_Range;
 type Request_Buffer_T is
 array(Request_Buffer_Index) of Positive;
 protected Request_Buffer is
 with Priority =>
 Request_Buffer_Parameters.Request_Buffer_Priority
 -- Must be ceiling of users' priority
 is
 procedure Deposit
 (Activation_Parameter : Positive;
 Response : out Boolean);
 entry Extract(Activation_Parameter : out Positive);
 private
 My_Request_Buffer : Request_Buffer_T;
 Insert_Index : Request_Buffer_Index :=
 Request_Buffer_Index'First;
 Extract_Index : Request_Buffer_Index :=
 Request_Buffer_Index'First;
 -- The Request_Buffer is initially empty
 Current_Size : Natural := 0;
 -- The guard is initially closed
 -- so that the first call to Extract will block
 Barrier : Boolean := False;
 end Request_Buffer;

A. Burns, B. Dobbing, T. Vardanega 121

Ada User Journal Volume 40, Number 2, June 2019

 -- We encapsulate the call to protected procedure
 -- Deposit in a function
 -- that returns a Boolean value designating the
 -- success or failure of
 -- the operation. This coding style allows for
 -- a more elegant coding
 -- of the call
 function Deposit(Activation_Parameter : Positive)
 return Boolean is
 Response : Boolean;
 begin
 Request_Buffer.Deposit(
 Activation_Parameter, Response);
 return Response;
 end Deposit;
 -- We encapsulate the call to protected entry Extract
 -- in a function
 -- that returns the Positive value designating the
 -- workload level passed
 -- by Regular_Producer on to On_Call_Producer.
 -- This coding style allows
 -- for a more elegant coding of the call
 function Extract return Positive is
 Activation_Parameter : Positive;
 begin
 Request_Buffer.Extract(Activation_Parameter);
 return Activation_Parameter;
 end Extract;

protected body Request_Buffer is
 entry Extract(Activation_Parameter : out Positive)
 when Barrier is
 begin
 Activation_Parameter :=
 My_Request_Buffer(Extract_Index);
 Extract_Index := Extract_Index + 1;
 Current_Size := Current_Size - 1;
 -- We close the barrier when the buffer is empty
 -- this also prevents the counter from
 -- becoming negative
 Barrier := (Current_Size /= 0);
 end Extract;
 procedure Deposit
 (Activation_Parameter : Positive;
 Response : out Boolean) is
 begin
 if Current_Size < Natural(Request_Buffer_Index'Last)
 then
 My_Request_Buffer(Insert_Index) :=
 Activation_Parameter;
 Insert_Index := Insert_Index + 1;
 Current_Size := Current_Size + 1;
 Barrier := True;
 Response := True;
 else
 -- There is no room for insertion, hence the
 -- Deposit returns
 -- with a failure (we might have used as well
 -- an over-writing
 -- policy as long as the call returned)
 Response := False;
 end if;
 end Deposit;
 end Request_Buffer;

Interrupt Handler
The example system handles one external interrupt, which
is serviced by the interrupt sporadic task
External_Event_Server.

Event_Queue is the protected object that provides the
Signal procedure attached to the interrupt and the Wait
suspending entry invoked by External_Event_Server.

The auxiliary package Event_Queue_Parameters shown at
the end of the section holds all the definitions required by
Event_Queue.

Event_Queue

with External_Event_Server_Parameters;
package Event_Queue is
 protected Handler
 with Interrupt_Priority =>
 External_Event_Server_Parameters.
 Event_Queue_Priority
 -- Must be in the range of System.Interrupt_Priority
 is
 procedure Signal
 with Attach_Handler => Some_Interrupt_Id;
 entry Wait;
 private
 -- The entry barrier must be simple
 -- (i.e. Boolean expression)
 Barrier : Boolean := False;
 end Handler;
end Event_Queue;

package body Event_Queue is
 protected body Handler is
 procedure Signal is
 begin
 Barrier := True;
 end Signal;
 entry Wait when Barrier is
 begin
 Barrier := False;
 end Wait;
 end Handler;
end Event_Queue;

7.3 Scheduling Analysis
In order to use the deadline monotonic algorithm to assign
priorities to all tasks and protected objects in the above
application example, we need to determine the respective
real-time attributes. This is done in table 1.

As soon as we know the worst-case execution time of the
non-suspending internal operations performed by the tasks
of our example, we can use response time analysis to
confirm the feasibility of the real-time attributes of the task
set in table 1.

As we mentioned above and as figure 1 illustrates, the
example application uses the Small_Whetstone algorithm
to control the computational workload of
Regular_Producer, On_Call_Producer and
Activation_Log_Reader. The way this occurs is shown in
the respective auxiliary packages.

122 Guide for the use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 2, June 2019 Ada User Journal

Task name Task type Period /
Minimum

inter-arrival
time

Deadline Execution
time

Response
time

Priority

Regular_Producer Cyclic 1000 500 7

On_Call_Producer Sporadic 1,000 800 5

Activation_Log_Reader Sporadic 1,000 1,000 3

External_Event_Server Interrupt sporadic 5,000 100 11

Protected object name User tasks Ceiling priority

Request_Buffer
Regular_Producer (Deposit),
On_Call_Producer (Extract)

9

Event_Queue
External interrupt (Signal),
External_Event_Server (Wait)

System.Interrupt_
Priority'Last

Activation_Log
External_Event_Server (Write),
Activation_Log_Reader (Read)

13

Table 1. Real-time attributes of tasks and protected objects in example application.
All time values are in milliseconds.

Figure 2. Schedule of task execution near the time of system activation.

A. Burns, B. Dobbing, T. Vardanega 123

Ada User Journal Volume 40, Number 2, June 2019

Figure 3. Schedule of execution for one complete activation of all tasks in the example application.

Knowing the processing power of the designated target
processor and the runtime overheads associated to the
execution of the Ravenscar tasking model (e.g. select and
context switch time; insert and remove from delay queue;
insert and remove from single-position entry queue) we
may achieve precise estimates of the required execution
time for all tasks and thus allow the use of response time
analysis.

By way of example, for one particular assignment of
computational workload to the tasks in the system and for
the priority assignment shown in table 1, we obtain the
schedule of execution shown in figure 2 for the region near
the time of system activation (which assumes the arrival of
the 1st external interrupt at notional time 0) and in figure 3
for one complete activation of all tasks in the task set.

7.4 Auxiliary Code
The auxiliary code includes the various operation
parameter packages referred to in the earlier descriptions. It
also includes the Activation_Manager, which provides a
common time reference to all tasks in the application, and
the specification of the Production_Workload package,
which provides the synthetic workload that keeps the
application tasks busy. The body of that package (which is
the well-known Whetstone benchmark) is omitted.

Regular Producer operation parameters

with System;
package Regular_Producer_Parameters is
 Regular_Producer_Priority :
 constant System.Priority := 7;
 Regular_Producer_Period :
 constant Natural := 1_000; -- in milliseconds
 procedure Regular_Producer_Operation;
end Regular_Producer_Parameters;

with Auxiliary;
with On_Call_Producer;
with Production_Workload;
with Activation_Log_Reader;
with Ada.Text_IO;
package body Regular_Producer_Parameters is
 -- approximately 5,001,000 processor cycles of
 -- Whetstone load
 -- on an ERC32 (a radiation-hardened SPARC for
 -- space use) at 10 Hz
 Regular_Producer_Workload : constant Positive := 756;
 -- approximately 2,500,500 processor cycles
 On_Call_Producer_Workload : constant Positive := 278;
 -- the parameter used to query the condition
 -- for the activation of On_Call_Producer
 Activation_Condition :
 constant Auxiliary.Range_Counter := 2;
 procedure Regular_Producer_Operation is
 begin
 -- we execute the guaranteed level of workload
 Production_Workload.
 Small_Whetstone(Regular_Producer_Workload);
 -- then we check whether we need to farm excess
 -- load out to
 -- On_Call_Producer
 if Auxiliary.Due_Activation(Activation_Condition) then
 -- if yes, then we issue the activation request with
 -- a parameter
 -- that determines the workload request
 if not On_Call_Producer.
 Start(On_Call_Producer_Workload) then
 -- we capture and report failed activation
 Ada.Text IO.Put_Line("Failed sporadic activation.");
 end if;
 end if;
 -- we check whether we need to release Activation_Log
 if Auxiliary.Check_Due then
 Activation_Log_Reader.Signal;
 end if;

124 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 2, June 2019 Ada User Journal

 -- finally we report nominal completion of the
 -- current activation
 Ada.Text_IO.Put_Line("End of cyclic activation.");
 end Regular_Producer_Operation;
end Regular_Producer_Parameters;

On_Call_Producer operation parameters

with System;
package On_Call_Producer_Parameters is
 On_Call_Producer_Priority :
 constant System.Priority := 5;
 procedure On_Call_Producer_Operation(
 Load : Positive);
end On_Call_Producer_Parameters;

with Production_Workload;
with Ada.Text_IO;
package body On_Call_Producer_Parameters is
 procedure On_Call_Producer_Operation(Load : Positive)
is
 begin
 -- we execute the required amount of excess workload
 Production_Workload.Small_Whetstone(Load);
 -- then we report nominal completion of
 -- current activation
 Ada.Text_IO.Put_Line("End of sporadic activation.");
 end On_Call_Producer_Operation;
end On_Call_Producer_Parameters;

Activation_Log operation parameters

with System;
package Activation_Log_Parameters is
 Activation_Log_Priority : constant System.Priority := 3;
end Activation_Log_Parameters;

Activation_Log_Reader operation parameters

with System;
package Activation_Log_Reader_Parameters is
 Activation_Log_Reader_Priority :
 constant System.Priority := 3;
 procedure Activation_Log_Reader_Operation;
end Activation_Log_Reader_Parameters;

with Production_Workload;
with Activation_Log;
with Ada.Real_Time;
with Ada.Text_IO;
package body Activation_Log_Reader_Parameters is
 -- approximately 1,250,250 processor cycles of
 -- Whetstone load on an ERC32 (a radiation-hardened
 -- SPARC for space use) at 10 Hz
 Load : constant Positive := 139;
 procedure Activation_Log_Reader_Operation is
 Interrupt_Arrival_Counter :
 Activation_Log.Range_Counter := 0;
 Interrupt_Arrival_Time : Ada.Real_Time.Time;
 begin
 -- we perform some work
 Production_Workload.Small_Whetstone(Load);
 -- then we read into the Activation_Log buffer
 Activation_Log.Activation_Log.
 Read(Interrupt_Arrival_Counter,
 Interrupt_Arrival_Time);

 -- and finally we report nominal completion of
 -- current activation
 Ada.Text_IO.
 Put_Line("End of parameterless sporadic activation.");
 end Activation_Log_Reader_Operation;
end Activation_Log_Reader_Parameters;

External_Event_Server operation parameters

with Ada.Interrupts.Names;
with System;
package External_Event_Server_Parameters is
 -- a target-specific interrupt
 The_Interrupt : constant Ada.Interrupts.Interrupt ID :=
 Ada.Interrupts.Names.External_Interrupt_2;
 -- the interrupt priority should be at the appropriate level
 -- (we set it to ‘Last because the example handles no
 -- other interrupts)
 Event_Queue_Priority :
 constant System.Interrupt_Priority :=
 System.Interrupt_Priority’Last;
 -- the interrupt sporadic priority is determined by deadline
 -- monotonic analysis
 External_Event_Server_Priority :
 constant System.Priority := 11;
 procedure Server_Operation;
end External_Event_Server_Parameters;

with Activation_Log;
package body External_Event_Server_Parameters is
 procedure Server_Operation is
 begin
 -- we record an entry in the Activation_Log buffer
 Activation_Log.Write;
 end Server_Operation;
end External_Event_Server_Parameters;

Request_Buffer operation parameters

with System;
package Request_Buffer_Parameters is
 -- the request buffer priority must ceiling of its
 -- users’ priorities
 Request_Buffer_Priority : constant System.Priority := 9;
 -- proper analysis will determine the appropriate size
 -- of the request
 -- buffer
 Request_Buffer_Range : constant Positive := 5;
end Request_Buffer_Parameters;

The Activation_Manager provides two facilities.

 A common epoch for all tasks in the system.

 A mechanism for all tasks to suspend until a common
time, in order to achieve a co-ordinated release after
elaboration. This achieves the effect of
pragma Partition_Elaboration_Policy(Sequential);.

Activation_Manager internals

with Ada.Real_Time;
package Activation_Manager is
 use Ada.Real_Time;
 function Clock return Ada.Real_Time.Time
 renames Ada.Real_Time.Clock;

A. Burns, B. Dobbing, T. Vardanega 125

Ada User Journal Volume 40, Number 2, June 2019

 -- global start time relative to which all periodic events
 -- in system will be scheduled
 System_Start_Time :
 Ada.Real_Time.Time : constant := Clock;
 -- relative offset of task activation after elaboration
 -- (milliseconds)
 Relative_Offset : constant Natural := 100;
 Task_Start_Time :
 constant Ada.Real_Time.Time_Span :=
 Ada.Real_Time.Milliseconds(Relative_Offset);
 -- absolute time for synchronization of task activation
 -- after elaboration
 Activation_Time : constant Ada.Real_Time.Time :=
 System_Start_Time + Task_Start_Time;
 procedure Activation_Sporadic;
 procedure Activation_Cyclic
 (Next_Time : out Ada.Real_Time.Time);
end Activation_Manager;

package body Activation_Manager is
 procedure Activation_Sporadic is
 begin
 delay until Activation_Time;
 end Activation_Sporadic;
 procedure Activation_Cyclic
 (Next_Time : out Ada.Real_Time.Time) is
 begin
 Next_Time := Activation_Time;
 delay until Activation_Time;
 end Activation_Cyclic;
end Activation_Manager;

Auxiliary definitions and services

package Auxiliary is
 type Range_Counter is mod 5;
 function Due_Activation(Param : Range_Counter)
 return Boolean;
 type Run_Counter is mod 1_000;
 Factor : constant Natural := 3;
 function Check_Due return Boolean;
end Auxiliary;

package body Auxiliary is
 Request_Counter : Range_Counter := 0;
 Run_Count : Run_Counter := 0;
 -- we establish an arbitrary criterion for the activation of
 -- On_Call_Producer
 function Due_Activation(Param : Range_Counter) return
Boolean is
 begin
 Request_Counter := Request_Counter + 1;
 -- we make an activation due according to the caller’s
 -- input parameter
 return (Request_Counter = Param);
 end Due_Activation;
 -- we establish an arbitrary criterion for the activation of
 -- Activation_Log_Reader
 function Check_Due return Boolean is
 Divisor : Natural;
 begin
 Run_Count := Run_Count + 1;
 Divisor := Natural(Run_Count) / Factor;
 -- we force a check due according to an
 -- arbitrary criterion
 return ((Divisor*Factor) = Natural(Run_Count));
 end Check_Due;
end Auxiliary;

Production_Workload (specification only)

package Production_Workload is
 procedure Small_Whetstone(Kilo_Whets : Positive);
end Production_Workload;

8 Definitions, Acronyms, and
Abbreviations
Allocator

An Ada construct used to create an object dynamically
[RM 4.8].

Atomic
An operation performed by a task which is guaranteed
to produce the same effect as if it were executing in
total isolation and without interruption.

Blocked
The state of a task when its execution is prevented,
while waiting for mutually-exclusive access to a shared
resource which is currently held by a lower priority
task.

Bounded error
An implementation- or language-defined error in the
application program whose effect is predictable and
documented.

Ceiling priority
The priority of a shared resource. The static default
priority of all processes that use the resource must be
less than or equal to the ceiling priority.

Context switch
The replacement of one task by another as the executing
task on a processor.

Critical region
A sequence of statements that must appear to be
executed indivisibly.

Critical task
A task whose deadline is significant and whose failure
to meet its deadline could cause system failure.

CSP (Communicating Sequential Processes)
A notation for specifying and analyzing concurrent
systems.

CSS (Calculus of Communicating Systems)
An algebra for specifying and reasoning about
concurrent systems.

Cyclic executive
A scheduler that uses procedure calls to execute each
periodic process in a predetermined sequence at a
predetermined rate.

Cyclic task
A task whose execution is repeated based on a fixed
period of time, also known as a periodic task.

Deadline
The maximum time allowed to a task to produce a
response following its invocation.

126 Guide for the Use of the Ada Ravenscar Prof i le in High Integr i ty Systems

Volume 40, Number 2, June 2019 Ada User Journal

Deadlock
A situation where a group of tasks (possibly the whole
system) block each other permanently.

Dynamic testing
An analysis method that determines properties of the
software by observing its execution (cf. static analysis).

Erroneous execution
A program state in which execution of the program
becomes unpredictable as the result of an error. The
errors that result in this state are defined in the language
reference manual [RM 1.1.5 (9-10)].

Environment Task
The implicit outermost task which executes the program
elaboration code and then calls the main subprogram (if
any) [RM 10.2 (8)].

Epilogue
The code executed by the Ada run-time system to
service the entry queues as defined in RM 9.5.3(13).

Event-Triggered Task
A task whose invocation is triggered either by an
asynchronous action by another task, or by an external
stimulus such as an interrupt.

Finalization
An Ada operation which occurs for controlled objects at
the point of their destruction [RM 7.6.1].

Firm deadline task
A task whose failure to meet a deadline does not
necessarily cause a failure of the application program.
There is no value in completing a firm task after its
deadline.

Hard deadline task
A task whose failure to meet a deadline may cause a
failure of the application program.

IPCP (Immediate Priority Ceiling Protocol, also known
as Priority Ceiling Emulation)
A technique to minimize the blocking time for
contention for shared resources, protected by a
protected object. This is provided by the locking policy
Ceiling_Locking in Ada [RM D.3].

Jitter
The variation in time between the occurrence of a
periodic event and a period of the same frequency.

Library level
The level at which an object which has global
accessibility [RM 3.10.2 (22)].

Livelock
A situation where several tasks (possibly comprising the
whole system) remain ready to run, and execute, but fail
to make progress.

Liveness
The property that a set of tasks will reach all desirable
states.

Mode change
A change in operating characteristics of a system that

requires a co-ordinated change in the operation of
several different processes in the system.

Monitor
A module containing one or more critical regions; all
variables that must be accessed under mutual exclusion
are hidden and all procedure calls are guaranteed to
execute with mutual exclusion.

Mutex
A locking mechanism used to ensure mutually exclusive
access to a shared resource.

Non-critical task
A task with no strict timing requirements.

Overhead
The execution time within the Ada run-time system
which must be included in the schedulability analysis.

PBPS (Priority-Based Preemptive Scheduling)
This ensures that, if a high priority task becomes ready
to run when a lower priority task is executing on the
processor, the high priority task will replace the lower
priority task immediately as the executing task.

PCP (Priority Ceiling Protocol)
A set of techniques that bound the blocking time for
contention for shared resources. One such protocol,
implemented in Ada, is IPCP.

Periodic task
A task whose execution is repeated based on a fixed
period of time, also known as a cyclic task.

Preemptive fixed priority scheduling
A scheduling method in which each process has a static
priority and the scheduler ensures that the currently
selected process is the ready process with the highest
priority.

Priority inversion
This occurs when a high-priority task is blocked waiting
for a shared resource (including the CPU itself)
currently in use by a low-priority task.

Protected object
An Ada construct which is used to provide mutually-
exclusive access to shared resources and as a task
synchronization primitive.

Race condition
A timing condition that causes processes to operate in
an unpredictable sequence so that operation of the
system may be incorrect.

Ready
The state of a task when it is no longer suspended. The
task, however, will not execute whilst all the available
processor resource can be used by higher priority ready
tasks.

RMA (Rate Monotonic Analysis)
A mathematical method based on utilization which is
used to prove that a set of tasks with static (and simple)
characteristics will meet its deadlines in the presence of
PBPS.

A. Burns, B. Dobbing, T. Vardanega 127

Ada User Journal Volume 40, Number 2, June 2019

RTA (Response Time Analysis)
A mathematical method based on calculating latest
completion time which is used to prove that a set of
tasks with static characteristics will meet its deadlines
in the presence of PBPS.

Safety
The property that a set of tasks cannot reach any
undesirable state from any desirable state.

Soft deadline task
A task whose failure to meet a deadline does not
necessarily cause a failure of the application program.
There is value in completing a soft task even if it has
missed its deadline.

Sporadic task
An event-triggered task with defined minimum inter-
arrival time.

Static analysis
A group of analysis techniques that determine
properties of the system from analysis of the program
code (cf. dynamic testing).

Suspended
The state of a task when its execution is stopped due to
execution of a language-defined construct that waits for
a given time (e.g. a delay statement) or an event.

Suspending operation
An operation which causes the current task to be
suspended until released by another task, a timer event
or an interrupt handler.

Suspension object
An Ada construct [RM D.10] which is used for basic
task synchronization, i.e. suspend and resume, which do
not involve data transfer.

Time triggered task
A task whose invocation is triggered by the expiry of a
delay set by that task.

WG9
The Ada Working Group, ISO/IEC JTC1/SC22/WG9. It
is the group tasked with the interpretation and
maintenance of the Ada Language Standard.

Worst-case execution time
A maximum bound on the time required to execute
some sequential code.

TR Acknowledgements

This report is the result of input from a number of people.
The authors acknowledge the contributions of Peter Amey,
Rod Chapman, Stephen Michell, Juan Antonio de la
Puente, Phil Thornley, David Tombs, Jeff Cousins, Ed
Schonberg, Joyce Tokar, Jorge Real and the permission by
Aonix Inc (now PTC) to use sections of their cross-
development guide for the ObjectAda/Raven® product as
the textual basis of the initial version of this report.

References

[AI 249] Ravenscar Profile for high integrity systems,
ARG, http://www.ada-auth.org/cgi-bin/cwsweb.

cgi/AIs/AI-00265.TXT

[AI 265] Partition elaboration policy for high integrity
systems, ARG (2002), http://www.ada-auth.org/
cgi-bin/cvsweb.cgi/AIs/AI-00265.TXT

[AI 305] New pragma and additional restriction identifiers
for real-time systems, ARG (2002),
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/
AI-00305.TXT

[CSP] Hoare, C. A. R. (2004), Communicating
Sequential Processes, Prentice Hall
International. ISBN 0-13-153271-5.

[DO] RTCA Inc. (2011), DO-178C Software
Considerations in Airborne Systems and
Equipment Certification.

[DS] U.K. Ministry of Defence (1997), 00-55
Requirements of Safety Related Software in
Defence Equipment.

[GA] Guide for the use of Ada Programming
Language in High Integrity Systems (2000),
ISO/IEC TR 15942.

[RM] International Standard ANSI/ISO/IEC-
8652:2012 (2015), Ada 2012 Reference Manual,
Technical Corrigendum 1.

Bibliography

[1] C. Liu and J. Layland (1973), Scheduling algorithms
for multiprogramming in a hard real-time
environment, JACM, 20 (1), 46 - 61.

[2] M. Joseph and P. Pandya (1986), Finding response
times in a real-time system, BCS Computer Journal, 29
(5), 390 - 395.

[3] A. Burns, and A. J. Wellings (1997), Restricted
Tasking Models, Ada Letters, XVII (5), 27 - 32.

[4] B. Dobbing and M. Richard-Foy (1997), T-SMART -
Task Safe, Minimal Ada Realtime Toolset, Ada Letters,
XVII (5), 45 - 50, 1997.

[5] A. Burns (1999), The Ravenscar Profile, Ada letters,
XIX (4), 49 - 52.

[6] Session Summary (1999), The Ravenscar Profile and
Implementation Issues, Ada Letters, XIX (2), 12 - 14.

[7] Session Summary (2001), Status and Future of the
Ravenscar Profile, Ada Letters, XXI (1), 5 - 8.

[8] Session Summary, Ravenscar Profile, Proc. of the
11th International Real-Time Ada Workshop, Ada
Letters.

[9] A. Burns and A. J. Wellings (2016), Analysable Real-
Time Systems: Programmed in Ada, Amazon Books.

[10] J.W.S. Liu (2000), Real-Time Systems, Prentice Hall.

[11] A. Burns and A. J. Wellings (1994), HRT-HOOD: A
design method for hard real-time Ada, Real-Time
Systems, 6 (1), 73 - 114.

128

Volume 40, Number 2, June 2019 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

