

Ada User Journal Volume 40, Number 4, December 2019

ADA
USER
JOURNAL

Volume 40

Number 4

December 2019

Contents
Page

Editorial Policy for Ada User Journal 188

Editorial 189

Quarterly News Digest 190

Conference Calendar 197

Forthcoming Events 205

Ada-Europe 2019 Industrial Presentations

 R. Bramberger, H. Martin, B. Gallina, C. Schmittner
“Co-engineering of Safety and Security Life Cycles for Engineering of Automotive Systems” 210

Proceedings of the "Workshop on Challenges and New Approaches for Dependable and
 Cyber-Physical Systems Engineering" of Ada-Europe 2019

 J. Górski
“Using Evidence-Based Arguments to Support Dependability Assurance – Experiences and
Challenges” 219

 T. Naks, M. A. Aiello, S. T. Taft
“Using SPARK to Ensure System to Software Integrity: A Case Study” 226

 J. J Valls, M. García-Gordillo, S. Sáez
“Scenario-Based Validation & Verification, the ENABLE-S3 Approach” 230

 R. Tomar, Sarishma
“Maintaining Trust in VANETs Using Blockchain” 236

Article

 P. Neto, J. Tojal, J. Veríssimo, S. Melo de Sousa
“Towards a Formally Verified Space Mission Software Using SPARK” 243

Ada-Europe Associate Members (National Ada Organizations) 248

Ada-Europe Sponsors Inside Back Cover

188

Volume 40, Number 4, December 2019 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 189

Ada User Journal Volume 40, Number 4, December 2019

Editorial

As some may already have noticed, the Quarterly News Digest section that we offer to our readers in every issue, which used
to become publicly available after one year (with the respective issue), is now being made publicly available on the AUJ
archive, as a separate pdf document, 6 months after the issue date. Given the informative character of this News Digest and
the fact that the selection of news it provides comes from public sources, we considered that by shortening its embargo period
we would increase its relevance and usefulness for a larger audience, while still providing a differentiated service to our
subscribers. In addition, each newly publicly released Quarterly News Digest is now also being announced and made
available by the AdaIC, through a link posted on the adaic.org website. We hope that this change and the collaboration with
the AdaIC will be well received by the Ada community.

As for the contents of this issue, we continue the publication of contributions related to the 24th International Conference on
Reliable Software Technologies (Ada-Europe 2019) that took place in Warsaw last June, and we also include an article that
was directly submitted to the journal.

To conclude the proceedings of the industrial track of the 2019 Ada-Europe, the reader will find a paper that addresses how to
deal with safety and security concerns and their mutual implications when engineering safety-critical automotive systems.
The paper, co-authored by researchers from the Virtual Vehicle Research Center and from the Austrian Institute of
Technology (both in Austria), as well as from the Mälardalen University in Sweden, proposes a safety/security co-
engineering process that fills a gap in currently existing standards, which do not define any such process.

Then we continue the publication of the Workshop on Challenges and New Approaches for Dependable and Cyber-Physical
Systems Engineering (DeCPS 2019) proceedings, with a set of four papers addressing several interesting topics. The first one,
by Janusz Górski from the Gdańsk University of Technology in Poland, addresses the problem of evidence-based arguments
and their applications, referring to challenges that were faced when developing and deploying concrete solutions to that
problem. Then, from AdaCore affiliated authors, the second paper describes work in progress on a workflow that builds on
SysML to Simulink and Simulink to SPARK translations and supports consistent property-preservation proofs from early
stages of system requirement specifications down. The third paper is authored by researchers from the Instituto Tecnológico
de Informática in Spain, and describes work done in the context of the ENABLE-S3 project concerning a solution developed
for validation and verification processes and applied to a Reconfigurable Video Processor (RVP) for space missions. Last but
not the least, the fourth paper, by authors from two universities in Dehradun, India, addresses the important security issue on
how to maintain trust in ad-hoc vehicular networks, describing an approach that relies on blockchains.

Finally, the issue concludes with an article by Portuguese authors, from Critical Software S.A. and from the University of
Beira Interior, which introduces the implementation, verification and validation of the ExoMars Trace Gas Orbiter (TGO)
central software that was implemented by Critical Software, S.A. in cooperation with Thales Alenia Space for the European
Space Agency (ESA) Mars exploration mission.

The Quarterly News Digest and Calendar sections are included as usual, prepared respectively by Alejandro R. Mosteo and
Dirk Craeynest, their editors.

 Antonio Casimiro
Lisboa

December 2019
 Email: AUJ_Editor@Ada-Europe.org

190

Volume 40, Number 4, December 2019 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Ada-related Events 190
Ada-related Resources 191
Ada-related Tools 192
Ada and Operating Systems 194
Ada and other Languages 194
Ada Practice 195

Ada-related Events

25th Ada-Europe Int'l Conf.
on Reliable Software
Technologies

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: CfC 25th Ada-Europe Conf. on
Reliable Software Technologies

Date: Fri, 25 Oct 2019 05:29:17 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

--
Call for Contributions

25th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2020)

8-12 June 2020, Santander, Spain

www.ada-europe.org/conference2020

Organized by University of Cantabria and
Ada-Europe

#AdaEurope #AEiC2020
#AdaProgramming

--

General Information

The 25th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2020 aka Ada-
Europe 2020) will take place in
Santander, Spain, in the week of 8-12
June. The conference schedule includes a
technical program and vendor exhibition,
and parallel tutorials and workshops.

The 2020 edition of the conference
continues the major revamp in the
registration fees introduced in 2019,
redesigned to extend participation from
industry and academia, and to reward
contributors, especially but not solely,
students and post-doc researchers.

[More information in the forthcoming
events section of the Journal. --arm]

10th Ada Developer Room at
FOSDEM 2020

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: CfP - Ada Developer Room at
FOSDEM 2020, Brussels, Belgium

Date: Sat, 26 Oct 2019 06:43:59 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

[NB: The call for contributions has ended
but it is kept for reference. The program is
given in the Forthcoming Events section
of this AUJ issue --arm]

--
Call for Presentations

10th Ada Developer Room at
FOSDEM 2020

Saturday 1 February 2020,
Brussels, Belgium

http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/

200201-fosdem.html

Organized in cooperation with
Ada-Europe

--

Ada-Belgium [1] is pleased to announce
there will be a one-day Ada Developer
Room on Saturday 1 February 2020 at
FOSDEM 2020 in Brussels, Belgium. Our
10th Ada DevRoom is once more
organized in cooperation with Ada-
Europe [2].

General Information

FOSDEM [3], the Free and Open source
Software Developers' European Meeting,
is a free and non-commercial two-day
weekend event organized early each year
in Brussels, Belgium. It is highly
developer-oriented and brings together
8000+ participants from all over the
world.

No registration is necessary.

The goal is to provide open source
developers and communities a place to
meet with other developers and projects,
to be informed about the latest
developments in the open source world, to
attend interesting talks and presentations
on various topics by open source project
leaders and committers, and to promote
the development and the benefits of open
source solutions.

Ada Programming Language and
Technology

Awareness of safety and security issues in
software systems is ever increasing.
Multi-core platforms are now abundant.
These are some of the reasons that the
Ada programming language and
technology attracts more and more
attention, among others due to Ada's
support for programming by contract and
for multi-core targets. The latest Ada
language definition was updated early
2016. Work on new features is ongoing,
such as improved support for fine-grained
parallelism, and will result in a new Ada
standard scheduled for 2021. Ada-related
technology such as SPARK provides a
solution for the safety and security aspects
stated above.

More and more tools are available, many
are open source, including for small and
recent platforms. Interest in Ada keeps
further increasing, also in the open source
community, and many exciting projects
have been started.

Ada Developer Room

FOSDEM is an ideal fit for an Ada
Developer Room. On the one hand, it
gives the general open source community
an opportunity to see what is happening in
the Ada community and how Ada
technology can help to produce reliable
and efficient open source software. On the
other hand, it gives open source Ada
projects an opportunity to present
themselves, get feedback and ideas, and
attract participants to their project and
collaboration between projects.

At previous FOSDEM events, the Ada-
Belgium non-profit organization
organized successful Ada Developer
Rooms, offering a full day program in
2006 [4], a two-day program in 2009 [5],
and full day programs in 2012-2016 [6-
10], and in 2018-2019 [12]. An important
goal is to present exciting Ada technology
and projects also to people outside the
traditional Ada community.

Our proposal for another dedicated Ada
DevRoom was accepted, and now work
continues to prepare the detailed program.
We most probably will have a total of 8.5
schedulable hours between 10:30 and
19:00 in one of the rooms which
accommodate from 59 to 85 participants.

Ada-related Resources 191

Ada User Journal Volume 40, Number 4, December 2019

More information will be posted on the
dedicated web-page on the Ada-Belgium
site [13], and final announcements will of
course also be sent to various forums, lists
and newsgroups.

Call for Presentations

We would like to schedule technical
presentations, tutorials, demos, live
performances, project status reports,
discussions, etc, in the Ada Developer
Room.

Ada-Belgium calls on you to:

- inform us at ada-belgium-
board@cs.kuleuven.be about specific
presentations you would like to hear in
this Ada DevRoom;

- for bonus points, subscribe to the Ada-
FOSDEM mailing list [14] to discuss
and help organize the details;

- for more bonus points, be a speaker: the
Ada-FOSDEM mailing list is the place
to be!

Do you have a talk you want to give?

Do you have a project you would like to
present?

Would you like to get more people
involved with your project?

We're inviting proposals that are related to
Ada software development, and include a
technical oriented discussion.

You're not limited to slide presentations,
of course.

Be creative. Propose something fun to
share with people so they might feel some
of your enthusiasm for Ada!

Speaking slots are 15 or 45 minutes, plus
5 minutes for Q&A. Depending on
interest, we might also have a session
with lightning presentations (e.g. 5
minutes each), and/or an informal
discussion session.

Note that all talks will be streamed live
(audio+video) and recorded, for remote as
well as later viewing of talks, and so that
people can watch streams in the hallways
when rooms are full. By submitting a
proposal, you agree to being recorded and
streamed, and agree the content of your
talk will be published under the same
license as all FOSDEM content, a
Creative Commons (CC-BY) license.

Submission Guidelines

Subscribe to the Ada-FOSDEM mailing
list [14], and submit your proposal there.
If needed, feel free to contact us at ada-
belgium-board@cs.kuleuven.be.

Please include:

- your name, affiliation, contact info;
- the title of your talk (be descriptive and

creative);
- a short descriptive and attractive

abstract;
- potentially pointers to more information;

- a short bio and photo.
See programs of previous Ada DevRooms
(URLs below) for presentation examples,
as well as for the kind of info we need.

We'd like to put together a draft schedule
by end of November. So, please act
ASAP, the sooner the better, but
definitely by November 25, 2019.

We look forward to lots of feedback and
proposals!

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

[1] http://www.cs.kuleuven.be/~dirk/
ada-belgium

[2] http://www.ada-europe.org

[3] https://fosdem.org

[4] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/06/
060226-fosdem.html

[5] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/09/
090207-fosdem.html

[6] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/12/
120204-fosdem.html

[7] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/13/
130203-fosdem.html

[8] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/14/
140201-fosdem.html

[9] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/15/
150131-fosdem.html

[10] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/16/
160130-fosdem.html

[11] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/18/
180203-fosdem.html

[12] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/19/
190202-fosdem.html

[13] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/
200201-fosdem.html

[14] http://listserv.cc.kuleuven.be/
archives/adafosdem.html

Ada-related Resources
[Delta counts are from Aug 7th to Dec
2nd. --arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Mon, 2 Dic 2019
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 2_896 (+48) members [1]

- Reddit: 2_420 (+113) members [2]

- StackOverflow: 1746 (+61) questions
 [3]

- Freenode: 85 (+9) users [4]

- Gitter: 44 (+2) people [5]

- Telegram: 50 (+5) users [6]

- Twitter: 73 (+41) tweeters [7]

 89 (+53) unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] #Ada on irc.freenode.net

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Aug 23, 2019
To: Ada User Journal readership

GitHub: 576 (+3) developers [1]

Rosetta Code: 707 (+41) examples [2]

 38 (+2) developers [3]

Sourceforge: 271 (+1) projects [4]

Open Hub: 211 (+2) projects [5]

Bitbucket: 88 (+1) repositories [6]

Codelabs: 49 (+2) repositories [7]

AdaForge: 8 (=) repositories [8]

[1] https://github.com/search?q=language
%3AAda&type=Users

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://bitbucket.org/repo/all?
name=ada&language=ada

[7] https://git.codelabs.ch/?
a=project_index

[8] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Thu May 23 2019
To: Ada User Journal readership

192 Ada-related Tools

Volume 40, Number 4, December 2019 Ada User Journal

[NB: positive ranking changes means to
go down in the ranking. --arm]

- TIOBE Index: 36 (-1) 0.296% (=) [1]

- IEEE Spectrum (general): 43 (+1)
Score: 24.8 [2]

- IEEE Spectrum (embedded): 13 (=)
Score: 24.8 [2]

[1] https://www.tiobe.com/tiobe-index/

[2] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2019

Exercism

From: AdaMagica <christ-usch.grein@t-
online.de>

Subject: Exercism
Date: Wed, 2 Oct 2019 04:43:17 -0700
Newsgroups: comp.lang.ada

Accidentally, I came across Exercism (not
Exorcism):

https://exercism.io/

Would it be appropriate to add Ada to the
list of languages?

[Exercism seems to be a learning and
mentorship website. From their website:
“Level up your programming skills with
3,094 exercises across 52 languages, and
insightful discussion with our dedicated
team of welcoming mentors. Exercism is
100% free forever.” --arm]

From: Lucretia
<laguest9000@googlemail.com>

Date: Wed, 2 Oct 2019 05:22:09 -0700

> Would it be appropriate to add Ada to
the list of languages?

Yes. From the FAQ:

How do new language tracks get added to
the site?

A new language track gets created when a
member of the community takes the lead
on it and becomes a maintainer of the
track. If you'd like to get involved in
helping set one up, there are instructions
here.

From: Lucretia
<laguest9000@googlemail.com>

Date: Wed, 2 Oct 2019 05:23:22 -0700

Looks like they have it started:
https://github.com/exercism/ada

Ada-related Tools

Gnu Emacs Ada Mode 6.2.1

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Gnu Emacs Ada mode 6.2.1
released.

Date: Mon, 19 Aug 2019 04:46:27 -0700
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 6.2.1 is now
available in GNU ELPA. This is a minor
feature and bug fix release.

The elisp parser is deleted.

Ada-mode now supports some simple
refactor operations; convert between
Object.Method and Prefix.Method
(Object) syntax.

ada-mode now provides a project.el
backend. `project-find-file' does file name
completion on files in the current project,
using the `uniquify-files' completion style.
To use this backend with an existing Ada
mode project file:

(setq ada-project-current (make-ada-
project :ada-prj-file <exising-file.prj>))

(add-to-list 'project-find-functions #'ada-
project-current)

Error correction is faster.

See the NEWS files in ~/.emacs.d/elpa/
ada-mode-6.2.1 and wisi-2.2.1, or at
http://www.nongnu.org/ada-mode/, for
more details.

The process parser requires a manual
compile step, after the normal list-
packages installation:

 cd ~/.emacs.d/elpa/ada-mode-6.2.1
 ./build.sh

This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

GNAT for LLVM

From: Lucretia
<laguest9000@googlemail.com>

Subject: Well, they kept that quiet!
Date: Mon, 30 Sep 2019 06:09:02 -0700
Newsgroups: comp.lang.ada

It's not on their blog yet, but they sneaked
in this onto GitHub:

https://github.com/AdaCore/gnat-llvm

Will require the gprbuild from GitHub by
the looks of it as well, unless you
compilers.xml has support already inside
for GNAT_LLVM as of June:

https://github.com/AdaCore/gprbuild/
search?q=llvm&unscoped_q=llvm

This shall be interesting…

From: Simon Wright
<simon@pushface.org>

Date: Mon, 30 Sep 2019 17:34:10 +0100

> This shall be interesting...

Indeed!

GNAT_LLVM is in gprbuild in the
macOS 9.1.0 build I put on Sourceforge,
as well as in the macOS CE 2019.

From: Arnaud Charlet
Subject: Combining GNAT with LLVM
Date: Tue, 01 Oct 2019
URL: https://blog.adacore.com/

combining-gnat-with-llvm

 [What follows is an excerpt from the post
at AdaCore’s Blog. --arm]

At AdaCore labs, we have been working
for some time now on combining the
GNAT Ada front-end with a different
code generator than GCC. [...]

This time, we're looking at another
general purpose code generator, called
LLVM, in order to expand the outreach of
Ada to the LLVM ecosystem (be it the
compiler itself or other components such
as static analysis tools).

This work-in-progress research project is
called "GNAT LLVM" and is meant to
show the feasibility of generating LLVM
bytecode for Ada and to open the LLVM
ecosystem to Ada, including tools such as
KLEE, that we are also planning to work
with and add Ada support for. Note that
we are not planning on replacing any
existing GNAT port based on GCC, so
this project goes in addition rather than in
replacement.

 [...]

Simple Components for Ada
4.42 with JSON (RFC 7158)

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple components for Ada
v.4.42

Date: Mon, 16 Sep 2019 08:48:35 +0200
Newsgroups: comp.lang.ada

The new version provides an
implementation of JSON (RFC 7158)

http://www.dmitry-kazakov.de/ada/
components.htm

The JSON implementation supports both
parsing and output of JSON objects. The
parser allocates parts of the JSON object
in a user-provided storage pool that can
be an arena stack allowing both
performance and safety by limiting the
overall size of the object.

From: onox <denkpadje@gmail.com>
Date: Thu, 3 Oct 2019 16:53:44 -0700

> Hi Dmitry,

> I would be curious to know the
differences compared to what
GNATCOLL.JSON provides, if you
know? It would be nice if the Ada
world did not have too many packages
competing here.

Uh oh, I've written a JSON parser ([0])
too! Sorry. It's quite fast, only about 1K
SLOC, supports Ada 2012's iterator and
indexing syntax, Apache 2.0 license, but
it does not handle UTF-8 yet (patches
welcome though)

> Various things which I find limiting in
GNATCOLL.JSON: performance is not
really good because there are a lot of
memory allocations

I did some benchmarking of some JSON
parsers using a 110 M large .json file
from [1]:

Ada-related Tools 193

Ada User Journal Volume 40, Number 4, December 2019

- Parsers.JSON choked on it (I used
Parsers.Multiline_Source.Stream_IO)

- GNATCOLL.JSON needs about ~ 17
seconds

- json-ada needs about ~ 3 seconds
(should be ~ 1 second to be competitive
with other languages, patches/advice
welcome)

 [1] https://github.com/onox/json-ada

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 4 Oct 2019 14:15:08 +0200

> Parsers.JSON choked on it

I see. The reason why this is not parsed is
the stack size. The source contains a
JSON array of 1000000 elements. In
order to be parsed there should be
possible to pass an array of 1M
arguments. If I correctly remember it
could be done like this:

 gprbuild ... -largs -Wl,
 --stack=0x8000000

How relevant such samples are is another
question.

XNAdaLib 2019

From: Blady <p.p11@orange.fr>
Subject: [ANN] XNAdaLib 2019 binaries for

macOS High Sierra including GTKAda
and more.

Date: Sun, 13 Oct 2019 21:17:59 +0200
Newsgroups: comp.lang.ada

This is XNAdaLib 2019 built on macOS
10.13 High Sierra for Native Quartz with
GNAT Community 2019 including:

- GTKAda 19.0w mid-2019
(www.adacore.com/gtkada) with GTK+
3.24.8 (www.gtk.org) complete,

- Glade 3.22.1 (glade.gnome.org),

- GnatColl 19.2
github.com/AdaCore/gnatcoll),

- Florist mid-2019a (github.com/
Blady-Com/florist),

- AdaCurses 6.1
(invisible-island.net/ncurses/
ncurses-Ada95.html),

- Gate3 0.5c
(sourceforge.net/projects/lorenz),

- Components 4.41
(www.dmitry-kazakov.de/ada/
components.htm),

- AICWL 3.21
(www.dmitry-kazakov.de/
ada/
aicwl.htm),

- Zanyblue 1.4.0
(zanyblue.sourceforge.net),

- PragmARC mid-2019
(pragmada.x10hosting.com/
pragmarc.htm),

- GNOGA 1.5-beta (www.gnoga.com),

- AdaControl 1.21r3
(adalog.fr/fr/adacontrol.html),

- AdaDep 1.4r1
(adalog.fr/fr/composants.html),

- AdaSubst 1.6r5
(adalog.fr/fr/composants.html),

- SparForte 2.3-190822 (sparforte.com),

and as side libraries:

- Template Parser 20.0,

- gtksourceview 3.24.4,

- GNUTLS 3.5.18,

- ASIS GPL 2019,

- SDL 1.2.15 et SDL_Image 1.2.12,

- GMP 6.1.2,

- make 4.2.1, NEW

- aspell 0.60.7, NEW

- wget 1.20.3, NEW

- Python 2.7.15,

- Python 3.6.8.

XNAdaLib binaries have been post on
Source Forge:

https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2019-high-sierra/

Feel free to send comments.

Report preferably all comments to
MacAda.org mailing list:

http://macada.org/macada/Contacts.html

See list archive:

https://hermes.gwu.edu/archives/
gnat-osx.html

Enjoy, Pascal.

http://blady.pagesperso-orange.fr

AdaControl 1.21r6b

From: "J-P. Rosen" <rosen@adalog.fr>
Subject: [Ann] AdaControl 1.21r6 released
Date: Sun, 27 Oct 2019 11:57:05 +0100
Newsgroups: comp.lang.ada

Adalog is pleased to announce the release
of version 1.21r6 of AdaControl. This is a
bug fix release, with a small addition to
the rule Unnecessary_Use_Clause (see
HISTORY).

Enjoy!

From: "J-P. Rosen" <rosen@adalog.fr>
Subject: [Ann] Adacontrol v1.21r6b
Date: Wed, 30 Oct 2019 11:13:50 +0100
Newsgroups: comp.lang.ada

There was a minor glitch in the packaging
of the version announced two days ago.
Please download the correct version, now
tagged 1.21r6b.

Sorry for the inconvenience.

http://www.adacontrol.fr

Free-Ada Updated to GCC-
9.x

From: Lucretia
<laguest9000@googlemail.com>

Subject: Free-Ada updated to GCC-9.x
Date: Wed, 6 Nov 2019 07:32:36 -0800
Newsgroups: comp.lang.ada

 [From the project’s website: “This is a set
of build scripts to enable you to build the
FSF Ada compiler with AdaCore's GPL'd
tools.” --arm]

Just an update to let you all know i've
added gcc-9.2.0 support to free-ada. I've
also added new packages.

https://github.com/Lucretia/free-ada

FYI, branches gcc-9.x and master are
equivalent at this stage.

From: Jere <jhb.chat@gmail.com>
Date: Fri, 8 Nov 2019 10:46:23 -0800

Nice! This looks like it only builds in
Linux for now? I saw some references to
msys in there, but they don't appear to
always set the same settings as other host
systems. I'm typically doing Ada
development from msys2 on Win10 64bit,
so was curious about it.

From: Lucretia
<laguest9000@googlemail.com>

Date: Fri, 8 Nov 2019 14:38:33 -0800

Yeah, only developed and tested on Linux
for now. The aim is to get it working for
other platforms, but getting this far on one
platform is hard enough.

 [...]

Ada Tools for VSCode

From: Lucretia
<laguest9000@googlemail.com>

Subject: Ann: VSCode extension - Ada
Utilities

Date: Thu, 14 Nov 2019 10:10:17 -0800
Newsgroups: comp.lang.ada

Over the last few days, I've knocked
together a VSCode extension to make my
life a bit easier, I think others might like
it, just copy it in the extensions directory,
I've not got it on the marketplace yet.

https://github.com/Lucretia/ada-utilities

From: Jere <jhb.chat@gmail.com>
Date: Thu, 14 Nov 2019 16:01:41 -0800

[Randy Brukardt asked in another post
about what VSCode is. --arm]

VSCode is an open source text
editor/minimalist IDE (think notepad++
maybe?) provided by microsoft. It has an
extension API so developers can add
various types of language support and
utilities to it (this allows you to customize
it to be more like a traditional IDE if you
like or do whatever you want with it). I
use it a lot for Ada development.

From: briot.emmanuel@gmail.com
Date: Sun, 17 Nov 2019 04:09:39 -0800

194 Ada and other Languages

Volume 40, Number 4, December 2019 Ada User Journal

[...] the reason [VSCode] is interesting is
that it has come with a new protocol
named the Language Server Protocol that
is used by a lot of editors/IDEs nowadays
to do things like cross-reference queries
("go to declaration of", "find all
references") to refactoring ("rename an
entity"), and more.

To the point that most languages
nowadays come with such a server (Ada
has one based on libadalang, too). Those
servers can be queried from vim (which I
use), from Emacs (Stephen has started
looking into that for ada-mode, as per a
discussion two weeks ago), from GPS
(where the Ada language server comes
from), Visual Studio Code, and a lot of
others.

TclAdaShell Release
20191120

From: Simon Wright
<simon@pushface.org>

Subject: ANN: TclAdaShell release
20191120

Date: Wed, 20 Nov 2019 13:38:08 +0000
Newsgroups: comp.lang.ada

This maintenance release is available at
Sourceforge.

https://sourceforge.net/projects/
tcladashell/files/source/20191120/

Ada and Operating
Systems

On Linux Distributions for
Ada Programmers

From: reinert <reinkor@gmail.com>
Subject: What is best linux distribution for

Ada programmers?
Date: Mon, 12 Aug 2019 23:48:00 -0700
Newsgroups: comp.lang.ada

Debian? Ubuntu?

From: Optikos <optikos@verizon.net>
Date: Tue, 13 Aug 2019 06:25:13 -0700

There was a time …

https://www.youtube.com/watch?v
=-3HvUH4fJPM

[Video: Ada in Debian and other
distributions, talk by Ludovic Brenta,
2011. --arm]

… when Debian (or all? Debian-derived)
was clearly & definitively the correct
answer to this question, but Ludovic
Brenta doesn't post here at c.l.a anymore,
so perhaps his dedication to carrying the
Ada torch among the Debian guiding
lights might have waned a bit over the
years.

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Fri, 30 Aug 2019 21:18:41 +0200

To be perfectly honest, I have indeed lost
most of my energy but my former
padawan, Nicolas Boulenguez, has now
been a full Debian Developer for several
years and continues to update packages
(even now doing the transition to gnat-9
for the next Debian release, in
experimental). I am very proud of him.

I only occasionally skim this newsgroup
and post even less often. But since you're
mentioning me I have to express my
gratitude and reassure Debian users that
Ada is still going strong

IIRC there was a one-man effort to port
Ada and many packages to
DragonflyBSD, with the express purpose
of stealing the crown jewel from Debian.
So perhaps DragonflyBSD is a strong
contender too nowadays.

A few months ago I held a two-afternoon
workshop about cryptography for my 13-
year-old son and a few of his friends. Of
course we programmed in Ada on Debian.
Piece of cake for everyone involved to get
GPS and GtkAda running.

From: Andrew Shvets
<andrew.shvets@gmail.com>

Date: Tue, 15 Oct 2019 19:09:31 -0700

> Debian? Ubuntu?

 [...]

But, why would there be a difference
between Ubuntu and Debian? The former
is very similar to the latter.

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Wed, 16 Oct 2019 20:43:17 +0200

"Dmitry A. Kazakov" <mailbox@dmitry-
kazakov.de> writes:

> Ubuntu does their own work keeping
Ada up to date?

Not that I know. All they do is import and
recompile packages from Debian.

> AFAIK, Ubuntu has GCC 9, Debian is
still 8.

Ubuntu is always, by definition and by
construction, behind Debian. The
compiler is only the foundation of the
entire ecosystem of packages. And you
should not look at the gcc package but at
the gnat package.

From: dirk.dickmanns@gmail.com
Date: Sun, 20 Oct 2019 00:25:18 -0700

> Debian? Ubuntu?

Just for completeness, ArchLinux support
is nice with gcc-ada and many additional
packages in AUR. I really very much
enjoy them, although when regularly
updating, there are (the usual) itches and
version conflicts (currently clang 8 to 9
for GPS).

From: Lucretia
<laguest9000@googlemail.com>

Date: Sun, 17 Nov 2019 04:43:49 -0800

On Sunday, 17 November 2019 10:41:46
UTC, Alain De Vos wrote:

> Two interesting linux distributions with
some Ada packages are :

> - fedora

> - gentoo

Gentoo is crap for Ada and is the reason
why I started free-ada, so I could have
Ada on Gentoo.

Ada and Other
Languages

Implementing Rust's
Borrow Checked Pointers

From: Lucretia
<laguest9000@googlemail.com>

Subject: Implementing Rust's borrow
checked pointers

Date: Tue, 24 Sep 2019 02:05:44 -0700
Newsgroups: comp.lang.ada

 [I’ve] been talking to someone on
Telegraph and he was saying Ada should
implement this, just wondering whether
Ada could? I posed a slight change to
access type specification to do this, what
do people think?

 type P is restricted access X;

Restricted in this case would mean that
once assigned it cannot be re-assigned
into or out of without some sort of move
operation, which could be implemented as
an attribute on the access type.

 A : P := L'Access;
 B : P := A'Move; -- A cannot no longer be
 -- used.
 begin
 A.all ... ; -- raises exception.

I don't know enough about all this to put a
complete proposal together, but I think
I've got the basics understood.

From: Optikos <optikos@verizon.net>
Date: Tue, 24 Sep 2019 04:23:28 -0700

 [...]

> A.all ... ; -- raises exception.

No, to be as useful as Rust's borrow
checker, instead of raising exception, it
needs to be a compile-time error. The
compiler needs to maintain a whole-
program directed graph at compile-time,
not defer a detection-based localized
analysis to run-time.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 25 Sep 2019 10:21:46 -0700

> Seems there is an AI for this already.

http://www.ada-auth.org/ai-files/
grab_bag/AI12-0240-1v7-stt.TXT

This technique is also now in SPARK,
which allows SPARK programs to use
access types (in a limited way). See the
SPARK reference manual
https://docs.adacore.com/

Ada Pract ice 195

Ada User Journal Volume 40, Number 4, December 2019

spark2014-docs/html/lrm/
declarations-and-types.html#access-types

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Tue, 24 Sep 2019 18:24:21 +0200

> type P is restricted access X;

> Restricted in this case would mean that
once assigned it cannot be re-assigned
into or out of without some sort of
move operation, which could be
implemented as an attribute on the
access type.

What's wrong with "limited"?

There's already work on including
something like Rust's borrow checking
into Ada, but given how rarely access
types are needed, and how easy it usually
is to confine them to a restricted scope
when they are, I don't see that it's worth
the effort.

From: Florian Weimer
<fw@deneb.enyo.de>

Date: Wed, 25 Sep 2019 18:26:50 +0200

> There's already work on including
something like Rust's borrow checking
into Ada, but given how rarely access
types are needed, and how easy it
usually is to confine them to a restricted
scope when they are, I don't see that it's
worth the effort.

On the other hand, access types are not
the only source of unsoundness in Ada.
There is at least one other problem,
involving records with discriminants with
defaults and aliasing.

Pointer Ownership,
Containers and Cursors in
Ada, Rust, SPARK (cont.)

[See AUJ 40-2 for the initial thread,
which discusses how Rust manages to use
the borrow checker in complicated
structures like containers, and what are its
purported advantages. In this subthread,
multithreading safety is discussed --arm]

From: "Alejandro R. Mosteo"
<alejandro@mosteo.com>

Subject: Re: Microsoft is considering
moving to Rust; potential opportunity

Date: Wed, 7 Aug 2019 11:09:05 +0200
Newsgroups: comp.lang.ada

On 6/8/19 19:49, Brad Moore wrote:

> I believe it is also not just related to
concurrency. For example, if you pass a
pointer to an object into a function
which deletes the object, the compiler
will detect that use of that pointer after
calling the function is not allowed.

Yes; concurrency safety (in a limited
sense) is the side-effect, not the main
point, I'd say.

From: Jere <jhb.chat@gmail.com>
Date: Wed, 7 Aug 2019 19:13:21 -0700

On Wednesday, August 7, 2019 at
5:09:06 AM UTC-4, Alejandro R. Mosteo
wrote:

> Yes; concurrency safety (in a limited
sense) is the side-effect, not the main
point, I'd say.

I think at some point before the language
was first stabilized (2015), both were
actively pursued. Here are some musings
from the original main developer back in
2013ish [1]. Later on, another Mozilla
developer also talked about a similar topic
[2].

 [1]: http://smallcultfollowing.com/
babysteps/blog/2013/06/11/
on-the-connection-between-memory-
management-and-data-race-freedom/

[2]: https://manishearth.github.io/blog/
2015/05/17/the-problem-with-shared-
mutability/

It is interesting that both of them kind of
hint at the idea of a large single threaded
program having similar challenges to a
multithreaded program, at least when
considering how undefined behavior, data
invalidation, and data races occur.

[And here is another reply about self-
referencing structures. --arm]

From: "Alejandro R. Mosteo"
<alejandro@mosteo.com>

Date: Wed, 7 Aug 2019 11:07:24 +0200

> Although, how does Rust's borrow
checker assure the lack of cycles (or
assure that the cyclic references are
self-contained in a glob that itself has
an acyclic reference count, so that the
entire glob is condemned en masse)?

It seems you are on your own (e.g. use
weak references) to deal with these:

https://doc.rust-lang.org/book/
ch15-06-reference-cycles.html

Ada Practice

Single-Character Bugs

[As part of a larger discussion on
C++/Fortran bugs, the following
subthread emerged. --arm]

From: "J-P. Rosen" <rosen@adalog.fr>
Subject: Re: Mariner 1 / FORTRAN bug
Date: Fri, 9 Aug 2019 08:28:01 +0200
Newsgroups: comp.lang.ada

Le 09/08/2019 à 03:57,
robin.vowels@gmail.com a écrit:

>> While it probably didn't cause the
failure of a space probe, people did get
bitten by this language design flaw,
which is an example of a single-
character error (added, omitted, or
changed) that results in valid code.

> Single-character errors are still possible,
whatever the language.

Of course, you can type "-" instead of "+"
in any language.

But outside of mathematical formulas, can
you give an example of single-character
error in Ada?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 9 Aug 2019 09:47:11 +0300

I once declared a record type that
contained a component, aptly (I thought)
called Address, of type System.Address.

Then, in a certain statement dealing with a
record object R of that type, I mistakenly
wrote

 R'Address

when I meant

 R.Address

Silly me.

I now have a personal coding rule: never
use the name Address for a record
component of type System.Address.
Perhaps this should be expanded to forbid
using any record-attribute name as a
component name; for example, Size.

From: Maciej Sobczak
<see.my.homepage@gmail.com>

Date: Fri, 9 Aug 2019 01:38:12 -0700

> But outside of mathematical formulas,
can you give an example of single-
character error in Ada?

with Ada.Text_IO;
procedure Test is
 procedure P (I, J : Integer) is
 begin
 Ada.Text_IO.Put_Line ("Killing people");
 end;
 procedure P (f : Float) is
 begin
 Ada.Text_IO.Put_Line ("Not killing
 people");
 end;
begin
 P (1,2); -- or should it be P (1.2); ?
end;

And of course we have to implement the
Initialise operation for our Controlled
types, right?

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Fri, 9 Aug 2019 09:27:22 -0500

That is why using named arguments is
better and also more clear

 P (I=>1, J=>2);

No chance to mix it up with

 P (f=>1.2);

From: Maciej Sobczak
<see.my.homepage@gmail.com>

Date: Fri, 9 Aug 2019 14:05:38 -0700

> That is why using named arguments is
better and also more clear

> P (I=>1, J=>2);

Of course - the best way to avoid writing
bad code is to write good code. But this is
true in any language. What we should

196 Ada Pract ice

Volume 40, Number 4, December 2019 Ada User Journal

expect from good languages is that bad
code should be impossible, or at least
writing bad code should take more effort
than writing good code. And yet, what the
above example shows, bad code is
perfectly possible in Ada and in fact is
easier - and that good code involves
higher effort.

Which, ultimately, makes it more difficult
for Ada to gain attention of C++
programmers, for example.

To Use or Not to Use
Annex E

[After a question on the status of
PolyORB, the following comment about
the Annex E was made. --arm]

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>
Subject: Re: polyorb
Date: Tue, 13 Aug 2019 12:09:21 +0200
Newsgroups: comp.lang.ada

On 2019-08-13 10:13, tonyg wrote:

> The flexibility from the Distributed
Systems Annex comes from the rigidity
of the types used across the partitions.
This being a natural amplification from
the Ada language.

Annex E is intended and good for tightly
coupled static systems, e.g. a network of
engine control units of a car.

In a loosely coupled system with nodes
going on and off, changing or only
modifying their roles and services, RPCs
and types known prior to start is not a
good choice. Another problem with RPC
is that synchronous calls are utterly
inefficient and slow. For a real-time
system with a time-triggered transport
calculated for the worst-case scenario this
is no problem. But for most practical
applications the load is unpredictable and
millisecond accumulating latencies is not
an option.

Regarding types, there were many
attempts to bring some sort of abstract
types and even OO to distributed systems,
they all failed (CORBA, ASN.1
included).

This is why data distribution layers stick
to some fixed set of primitive types
leaving to the application to build upon
them. Many have no types at all, only
messages (e.g. MQTT). It is not nice but
it works.

IMO, annex E's remote types was a good
start. But there is a lot of work required to
make it full OO, to defining QoS things

making it usable in loosely coupled
applications.

I also think that current work on new
concurrent programming primitives is
wasting time. It must be invested into
annex E which should serve both
concurrent and distributed programming.
The difference between a distributed and
a multiple core system is not that dramatic
(and shared memory architectures will
likely die in some future anyway).

Custom Ranges and
Predicates

From: Andrew Shvets
<andrew.shvets@gmail.com>

Subject: How to best make a custom range?
Date: Mon, 4 Nov 2019 09:26:16 -0800
Newsgroups: comp.lang.ada

Let’s say I have the following code:

subtype Test_Char is Character
range ‘A’ .. ‘Z’;

But what if I wanted to include ‘&’, ‘@‘
and ‘?’ in this custom range of characters
as well? I thought of doing the following,
but this obviously failed:

subtype Test_Char is Character
range ‘@‘ | ‘&’ | ‘?’ | ‘A’ .. ‘Z’;

Or is this impossible unless I use a
different approach?

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 4 Nov 2019 11:16:29 -0800

[...]

Try:

 subtype Upper is Character range 'A'..'Z';
 subtype Lower is Character range 'a'..'z';
 subtype Symbol is Character
 with Static_Predicate =>
 Symbol in '&' | '@' | '?';

 subtype Test_Character is Character
 with Static_Predicate => Test_Character
 in Upper | Lower | Symbol,
 Predicate_Failure => Raise
 Constraint_Error;

From: Andrew Shvets
<andrew.shvets@gmail.com>

Date: Tue, 5 Nov 2019 06:02:35 -0800

 [...] this is the warning that I get (one of
many, but I can’t copy and paste):

warning: in instantiation at a-nudira.adb:54
type “Result_Subtype” has predicates,
attribute “First” not allowed

From: Shark8
<onewingedshark@gmail.com>

Date: Tue, 5 Nov 2019 07:10:43 -0800

OK, the problem here is that the Ada
language *does* discriminate between
subtypes with predicates and those
without -- mostly because there are
arguments about how such attributes
should behave. Things like if we have:

 TYPE Digits is range 0..9;
 SUBTYPE Odds is Digits with
 Static_Predicate => Odds in 1|3|5|7|9;

what should Odds'Pred(1) be? 0?
Constraint_Error?

what about Odds'Pos(1) should it be 0, the
first item of the subtype? Or 1, the
position in the parent-type?

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Fri, 8 Nov 2019 08:07:22 -0800

Am Freitag, 8. November 2019 16:55:16
UTC+1 schrieb AdaMagica:

> Attributes work on the base type [...]

See RM 3.5(25-27)

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Fri, 8 Nov 2019 16:28:56 -0600

> Attributes work on the base type, e.g.

> Natural'Pred (0) = -1

Right, but it's a case-by-case thing as to
whether an attribute applies to the type or
to the subtype. The ones you're talking
about apply to the type (not any subtype),
but 'First and 'Last apply to the subtype.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 5 Nov 2019 18:14:53 +0100

> warning: in instantiation at a-
nudira.adb:54

> type “Result_Subtype” has predicates,
attribute “First” not allowed

Because ordering attributes are ones that
get broken either way. Outside generics
the language treats them contravariant
[the result is of the base subtype], which
breaks ordering but keeps much of other
semantics. When you pass a subtype as an
actual parameter to a generic it suddenly
becomes covariant [the result of the
subtype], which is sometimes worse,
sometimes quite impossible to implement.
Ada plays safe here and just does not let
you. In other cases you might not be so
lucky. The language cannot deduce right
semantics from the constraint. It is
undecidable, incomputable etc. In short,
do not do that.

 197

Ada User Journal Volume 40, Number 4, December 2019

Conference Calendar
Dirk Craeynest
KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2020
January 14-17 12th Software Quality Days (SWQD'2020), Vienna, Austria. Topics include: improvement of software

development methods, processes, and artifacts; testing and quality assurance of software and software-
intensive systems; domain-specific quality issues such as embedded, medical, automotive systems;
novel trends in software quality; etc.

January 19-24 Summer School on Modelling and Programming Languages (ModPro'2020), Stellenbosch, South
Africa. Includes lecture: "Ensuring System to Software Integrity - From SysML to Simulink to SPARK"
by Tucker Taft, AdaCore, USA.

 January 19-25 47th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL'2020), New
Orleans, Louisiana, USA.

January 25 1st ACM SIGPLAN Workshop on Gradual Typing (WGT'2020). Topics include:
integration of compile-time and run-time checking of program invariants, such as
integration of static and dynamic type checking.

January 20-22 15th International Conference on High Performance and Embedded Architecture and
Compilation (HiPEAC'2020), Bologna, Italy. Topics include: parallel, multi-core and heterogeneous
systems; architectural support for programming productivity; reliability and real-time support in
processors, compilers and run-time systems; architectural and run-time support for programming
languages; programming models, frameworks and environments for exploiting parallelism; compiler
techniques; program characterization and analysis techniques; etc.

 January 21 Workshop on Next Generation Real-Time Embedded Systems (NG-RES'2020).
Topics include: programming models, paradigms and frameworks for real-time
computation on parallel and heterogeneous architectures; scheduling and schedulability
analysis, application of formal methods, compiler-assisted solutions, and middlewares
for distributed and/or parallel real-time systems; etc.

January 21 11th Workshop on Parallel Programming and Run-Time Management Techniques
for Many-core Architectures & 9th Workshop on Design Tools and Architectures
for Multi-Core Embedded Computing Platforms (PARMA'2020 & DITAM'2020).
Topics include: programming models and languages, compilers and virtualization
techniques; runtime adaptivity, runtime management, power management and memory
management; parallel applications for many-core platforms; etc.

January 20-24 46th International Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM'2020), Limassol, Cyprus. Topics include: novel and innovative methods and technologies in
the broader field of software engineering, including both software product and development process
aspects; theories, methods and tools aiming at significantly increasing both the quality of software-
intensive systems and the productivity of software development.

 January 29-31 10th European Congress on Embedded Real Time Systems (ERTS'2020), Toulouse, France. Topics
include: all aspects of critical embedded real-time systems, such as embedded computing platforms and
networked systems, model-based system engineering, formal methods, new programming and
verification languages, dependability, safety, cyber security, quality of service, fault tolerance,
maintainability, certification, etc.

198 Conference Calendar

Volume 40, Number 4, December 2019 Ada User Journal

 February 01 10th Ada Developer Room at FOSDEM 2020. Brussels, Belgium. FOSDEM 2020 is
a two-day event (Sat 1 - Sun 2 Feb). This years' edition includes once more a full-day
Ada Developer Room, organized by Ada-Belgium in cooperation with Ada-Europe,
which will be held on Saturday 1 February.

February 03-07 18th Australasian Symposium on Parallel and Distributed Computing (AusPDC'2020), Melbourne,
Australia. Topics include: all areas of parallel and distributed computing; multi-core systems; GPUs and
other forms of special purpose processors; middleware and tools; parallel programming models,
languages and compilers; runtime systems; resource scheduling and load balancing; reliability, security,
privacy and dependability; etc.

 February 18-21 40th IEEE Real-Time Systems Symposium (RTSS'2019), York, UK. RTSS'2019 was moved from
December 3-6 in Hong Kong, to February 18-21 in York, UK. Topics include: all aspects of real-time
systems, including theory, design, analysis, implementation, evaluation, and experience.

February 22-23 29th ACM SIGPLAN International Conference on Compiler Construction (CC'2020), San Diego,
California, USA. Co-located with CGO'2020, HPCA'2020, and PPoPP'2020. Topics include: processing
programs in the most general sense (analyzing, transforming or executing input programs that describe
how a system operates, including traditional compiler construction as a special case); compilation and
interpretation techniques (including program representation, analysis, and transformation; code
generation, optimization, and synthesis; the verification thereof); run-time techniques (including
memory management, virtual machines, ...); programming tools (including refactoring editors, checkers,
verifiers, compilers, debuggers, and profilers); techniques for specific domains (such as secure, parallel,
distributed, embedded or mobile environments); design and implementation of novel language
constructs programming models, and domain-specific languages.

February 27-29 13th Innovations in Software Engineering Conference (ISEC'2020), Jabalpur, India.

March 11-13 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP'2020), Västerås, Sweden. Topics include: embedded parallel and distributed systems, multi- and
many-core systems, GPU and FPGA based parallel systems, programming languages and environments,
runtime support systems, performance prediction and analysis, simulation of parallel and distributed
systems, shared-memory and message-passing systems, middleware and distributed operating systems,
dependability and survivability, real-time distributed applications, etc.

March 11-14 51st ACM Technical Symposium on Computer Science Education (SIGCSE'2020), Portland,
Oregon, USA.

March 16-20 25th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), Lausanne, Switzerland. Topics include: interplay between
programming languages, computer architecture, operating systems, and user interfaces; multicore
architectures and systems; programming models, languages, and compilation for all platforms; security,
reliability, availability, and sustainability; verification and testing, and their impact on design and
security; etc.

 March 23-26 International Conference on the Art, Science, and Engineering of Programming
(Programming'2020), Porto, Portugal.

March 23 4th International Workshop on Programming Technology for the Future Web
(ProWeb'2020). Topics include: quality on the new web (static and dynamic program
analyses, development tools, automated testing, contract systems, type systems,
migration from legacy architectures, API conformance checking, ...); designing for and
hosting novel languages on the web; security on the new web; surveys and case studies
using state-of-the-art web technology; ideas on and experience reports about how to
reconcile the need for quality with the need for agility on the web, how to master and
combine the myriad of tier-specific technologies required to develop a web application;
etc. Deadline for submissions: January 15, 2020.

March 24 4th Workshop on Modern Language Runtimes, Ecosystems, and VMs
(MoreVMS'2020). Topics include: interoperability between languages, tooling support
(e.g. debugging, profiling, etc.), programming language development environments,
case studies of existing language implementation approaches, language implementation
challenges and trade-offs, surveys and usage reports to understand usage in the wild,

Conference Calendar 199

Ada User Journal Volume 40, Number 4, December 2019

ideas for how we should build languages in the future, etc. Deadline for submissions:
January 10, 2020 (extended abstracts, talks).

March 23-27 13th IEEE International Conference on Software Testing, Verification and Validation (ICST'2020),
Porto, Portugal. Topics include: manual testing practices and techniques, security testing, model based
testing, test automation, static analysis and symbolic execution, formal verification and model checking,
software reliability, testability and design, testing and development processes, testing in specific
domains (such as embedded, concurrent, distributed, ..., and real-time systems), testing/debugging tools,
empirical studies, experience reports, etc. Deadline for submissions: January 13, 2020 (doctoral
symposium).

March 24-27 26th International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2020), Pisa, Italy. Deadline for submissions: January 17, 2020 (workshop papers,
doctoral symposium, posters, tools).

Mar 30 - Apr 03 35th ACM Symposium on Applied Computing (SAC'2020), Brno, Czech Republic.

Mar 30-Apr 03 Track on Programming Languages (PL'2020). Topics include: technical ideas and
experiences relating to implementation and application of programming languages, such
as compiling techniques, domain-specific languages, garbage collection, language
design and implementation, languages for modeling, model-driven development, new
programming language ideas and concepts, practical experiences with programming
languages, program analysis and verification, etc.

Mar 30-Apr 03 Track on Software Verification and Testing (SVT'2020). Topics include: new results
in formal verification and testing, technologies to improve the usability of formal
methods in software engineering, applications of mechanical verification to large scale
software, model checking, correct by construction development, model-based testing,
software testing, static and dynamic analysis, analysis methods for dependable systems,
software certification and proof carrying code, fault diagnosis and debugging,
verification and validation of large scale software systems, real world applications and
case studies applying software testing and verification, etc.

Mar 30-Apr 03 Embedded Systems Track (EMBS'2020). Topics include: system-level design and
simulation techniques for embedded systems; testing, debugging, profiling and
performance analysis of embedded systems; multicore and SoC-based embedded
systems and applications; multithreading in embedded systems design and development;
security and dependability support within embedded systems; RTOS for embedded
systems, safety-critical embedded systems; compilation strategies, code transformation
and parallelization for embedded systems; memory and storage management for
embedded systems; case studies; etc.

Mar 30-Apr 03 15th Track on Dependable, Adaptive, and Secure Distributed Systems
(DADS'2020). Topics include: Dependable, Adaptive, and secure Distributed Systems
(DADS); modeling, design, and engineering of DADS; foundations and formal methods
for DADS; etc.

 April 01-03 20th International Real-Time Ada Workshop (IRTAW'2020), Benicàssim, Spain.
In cooperation with Ada-Europe. Topics include: review of the Ada 2012 Issues vis-a-
vis real-time systems; experiences of use of Ada 2012, in full or by profile, for real-
time applications, on single- and multi-processor as well as distributed systems;
implementation approaches for Ada 2012 real-time features; review of the Ada 202X
Issues with respect to the parallel execution model; early prototyping and use
experiences of Ada 202X parallel features, including integration with OpenMP; uses of
Ada, possibly with SPARK, in certification-aware domains; review of the Ada language
vulnerabilities in relation to TR 24772-2 and -6 by ISO/IEC JTC 1/SC 22/WG 23;
contributions to the Ada's conformance test suite for the Real-Time Annex and the
upcoming parallel execution model. Deadline for submissions: February 7, 2020
(position papers).

April 06 7th Workshop on Computational Antifragility and the Engineering of Antifragile Systems
(ANTifragile'2020), Warsaw, Poland. Topics include: dependability, resilience, and antifragile
requirements and open issues; design principles, models, and techniques for realizing antifragile systems

200 Conference Calendar

Volume 40, Number 4, December 2019 Ada User Journal

and behaviours; formal methods for resilience and antifragility; programming language support for
resilience and antifragility; specification and verification of resilient and antifragile systems; etc.
Deadline for submissions: January 10, 2020.

April 14-17 24th International Conference on Evaluation and Assessment in Software Engineering
(EASE'2020), Trondheim, Norway. Topics include: assessing the benefits / costs associated with using
chosen development technologies; empirical studies using qualitative, quantitative, and mixed methods;
evaluation and comparison of techniques and models; replication of empirical studies and families of
studies; etc. Deadline for submissions: January 13, 2020 (workshop papers), January 17, 2020 (tutorials,
discussion panels).

April 21-24 13th Cyber-Physical Systems and Internet of Things Week (CPS Week'2020), Sydney, Australia.

 April 21-24 26th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS'2020). Topics include: research related to embedded systems or timing issues,
ranging from traditional hard real-time systems to embedded systems without explicit
timing requirements, including latency-sensitive systems with informal or soft real-time
requirements; original systems and applications, case studies, methodologies, and
applied algorithms that contribute to the state of practice in the design, implementation,
verification, and validation of embedded systems and time-sensitive systems (of any
size); etc.

April 25-30 23rd European Joint Conferences on Theory and Practice of Software (ETAPS'2020), Dublin,
Ireland. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline for
submissions: January 19, 2020 (nominations ETAPS doctoral dissertation award).

 April 25-30 VerifyThis Verification Competition 2020. Topics include: VerifyThis Collaborative
Long-Term Challenge; no restrictions on verification technology used; at least one team
is using SPARK.

 April 26 12th Workshop on Programming Language Approaches to Concurrency- and
communication-cEntric Software (PLACES'2020). Topics include: general area of
programming language approaches to concurrency, communication, and distribution and
may range from foundational issues, language implementations, to applications and case
studies; design and implementation of programming languages with first class
concurrency and communication; models, such as process algebra and automata;
concurrent data types, objects, and actors; verification and program analysis methods for
concurrent and distributed software; etc. Deadline for submissions: January 24, 2020
(abstracts), February 28, 2020 (papers).

April 27-30 15th European Conference on Computer Systems (EuroSys'2020), Heraklion, Crete, Greece. Topics
include: all areas of computer systems research, such as distributed systems, language support and
runtime systems, systems security and privacy, dependable systems, parallelism, concurrency, and
multicore systems, real-time, embedded, and cyber-physical systems, tracing, analysis, verification, and
transformation of systems, etc. Deadline for submissions: February 21, 2020 (doctoral workshop).

May 04-08 23rd Ibero-American Conference on Software Engineering (CIbSE'2020), Curitiba, Brazil. Deadline
for submissions: February 4, 2020 (doctoral symposium, industry talks).

May 11-13 ACM International Conference on Computing Frontiers 2020 (CF'2020), Catania, Sicily, Italy.
Topics include: embedded, IoT and cyber-physical systems; large-scale system design and networking;
system software, compiler technologies and programming languages; fault tolerance and resilience;
security; etc. Deadline for submissions: January 28, 2020.

May 11-15 12th NASA Formal Methods Symposium (NFM'2020), Moffett Field, California, USA. Topics
include: identifying challenges and providing solutions towards achieving assurance for critical systems;
formal verification, including theorem proving, model checking, and static analysis; run-time
verification; techniques and algorithms for scaling formal methods, such as abstraction and symbolic
methods, compositional techniques, as well as parallel and/or distributed techniques; safety cases and
system safety; formal approaches to fault tolerance; design for verification and correct-by-design
techniques; empirical evaluations of formal methods techniques for safety-critical systems; formal
methods in systems engineering and model-based development; etc.

Conference Calendar 201

Ada User Journal Volume 40, Number 4, December 2019

 May 19-21 23rd IEEE International Symposium On Real-Time Distributed Computing (ISORC'2020),
Nashville, Tennessee, USA. Topics include: object/component/service-oriented real-time distributed
computing (ORC) technology; software architectures for real-time distributing computing
(programming paradigms, ORC paradigms, object/component models, languages, synchronous
languages), trusted and dependable systems, system software (real-time kernels, operating systems,
distribution middleware for ORC, extensibility, synchronization, resource allocation, scheduling, timing
analysis, fault tolerance and resilience, security, ...), applications (medical devices, intelligent
transportation systems, industrial automation systems and Industry 4.0, Internet of Things and Smart
Grids, embedded and cyber-physical systems in automotive, avionics, autonomous vehicles, consumer
electronics, ...), system evaluation (performance & timing evaluation, dependability, fault detection and
recovery time, ...), etc. Deadline for submissions: January 17, 2020 (main track), March 24, 2020
(posters, demos).

May 23-29 42nd International Conference on Software Engineering (ICSE'2020), Seoul, South Korea. Topics
include: the full spectrum of Software Engineering.

May 23-29 Software Engineering Education and Training (SEET'2020). Topics include: novel
methods of teaching software engineering skills, empirical studies describing software
engineering education contexts, novel learning technologies that support software
engineering education and training, well-substantiated arguments about what skills are
most essential to learn, etc.

May 25-26 3rd International Conference on Technical Debt (TechDebt'2020). Topics include:
the business case for technical debt management; understanding causes and effects of
technical debt; technical debt management within software life-cycle management;
technical debt in design and architecture; technical debt and software evolution,
maintenance, and aging; concrete practices and tools used to manage technical debt;
debt remediation and refactoring; technical debt and quality attributes, such as security
(especially at run-time); technical debt in (ultra-) large-scale systems, ecosystems,
platforms and product lines; success and failure stories of technical debt management;
education and training related to technical debt; etc. Deadline for submissions: January
10, 2020 (abstracts), January 17, 2020 (papers). Deadline for early registration: March
17, 2020.

May 25 8th International Conference on Formal Methods in Software Engineering
(FormaliSE'2020). Topics include: approaches and tools for verification and validation;
application of formal methods to specific domains, e.g. autonomous, cyber-physical, and
IoT systems; scalability of formal methods applications; integration of formal methods
within the software development lifecycle formal specification; model-based
engineering approaches; formal methods in a certification context; formal approaches
for safety and security-related issues; usability of formal methods; guidelines to use
formal methods in practice; case studies developed/analyzed with formal approaches;
experience reports on the application of formal methods to real-world problems; etc.
Deadline for submissions: January 9, 2020 (abstracts), January 16, 2020 (papers).

May 25-26 23rd International Workshop on Software and Compilers for Embedded Systems (SCOPES'2020),
St. Goar, Germany. Topics include: all aspects of compilation and mapping process of embedded
systems, such as models of computation and programming languages; automatic code parallelization
techniques; mapping and scheduling techniques for embedded multi-processor systems; code generation
techniques for embedded single- and multi-processor architectures; design of real-time systems;
techniques for compiler aided profiling, measurement, debugging and validation of embedded software;
etc. Deadline for submissions: February 14, 2020 (papers).

June 03-05 20th International Conference on Computational Science (ICCS'2020), Amsterdam, the Netherlands.
Topics include: scientific computing, complex systems - modelling and simulation, parallel and
distributed computing, new programming models, education in computational science, etc. Deadline for
submissions: January 6, 2020 (papers).

 June 08-12 25th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2020 aka Ada-Europe 2020), Santander, Spain. Sponsored by
Ada-Europe, in cooperation with ACM SIGAda (pending), and the Ada Resource
Association (ARA). Deadline for submissions: January 14, 2020 (journal-track papers,

202 Conference Calendar

Volume 40, Number 4, December 2019 Ada User Journal

industrial presentation outlines, tutorial and workshop proposals), 31 March 2020
(Work-in-Progress papers).

June 08-12 21st International Conference on Agile Software and Systems Development (XP'2020),
Copenhagen, Denmark. Deadline for submissions: January 17, 2020 (experience reports), January 29,
2020 (research paper abstracts), February 5, 2020 (research papers, Industry and Practice, Agile in
Education and Training), February 20, 2020 (on-site research, Diversity & Inclusion in Agile, journal
first), March 23, 2020 (doctoral symposium).

 June 09-11 28th International Conference on Real-Time Networks and Systems (RTNS'2020), Paris, France.
Topics include: real-time applications design and evaluation (automotive, avionics, space, railways,
telecommunications, process control, multimedia), real-time aspects of emerging smart systems (cyber-
physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks
modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)
analysis, ...), software technologies for real-time systems (model-driven engineering, programming
languages, compilers, WCET-aware compilation and parallelization strategies, middleware, Real-time
Operating Systems (RTOS), hypervisors, ...), formal specification and verification, real-time distributed
systems (fault tolerance, publisher/subscriber protocols, ...), etc.

 June 16 21st ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES'2020), London, UK. Co-located with PLDI'2020. Topics include: support
for enhanced programmer productivity; support for enhanced debugging, profiling, and
exception/interrupt handling; hardware, system software, application software, and their interfaces;
system integration and testing; run-time system support for embedded systems; support for system
security and system-level reliability; validation and verification, in particular of concurrent and
distributed systems; formal foundations of model-based design for code generation, analysis,
verification; architecture for new language features, virtualization, compilation, debugging tools;
empirical studies and their reproduction, and confirmation; etc. Deadline for submissions: February 28,
2020.

June 18-19 European Conference on Software Engineering Education (ECSEE'2020), Seeon Monastery,
Bavaria, Germany. Deadline for submissions: March 16, 2020.

June 22-26 Software Technologies: Applications and Foundations (STAF'2020), Bergen, Norway.

June 22-26 14th International Conference on Tests And Proofs (TAP'2020). Topics include:
many aspects of verification technology, including foundational work, tool
development, and empirical research; the connection between proofs (and other static
techniques) and testing (and other dynamic techniques); verification and analysis
techniques combining proofs and tests; program proving with the aid of testing
techniques; deductive techniques supporting the automated generation of test vectors
and oracles; deductive techniques supporting novel definitions of coverage criteria;
program analysis techniques combining static and dynamic analysis; testing and runtime
analysis of formal specifications; verification of verification tools and environments;
applications of test and proof techniques in new domains, such as security, configuration
management, learning; combined approaches of test and proof in the context of formal
certifications (Common Criteria, CENELEC, ...); case studies, tool and framework
descriptions, and experience reports about combining tests and proofs; etc. Deadline for
submissions: January 15, 2020 (abstracts), January 22, 2020 (papers).

 July 13-17 34th European Conference on Object-Oriented Programming (ECOOP'2020), Berlin, Germany.
Topics include: design, implementation, optimization, analysis, and theory of programs, programming
languages, and programming environments. Deadline for submissions: January 10, 2020 (papers).

July 13-17 44th Annual IEEE Conference on Computers, Software and Applications (COMPSAC'2020),
Madrid, Spain. Deadline for submissions: January 20, 2020 (main conference papers), April 9, 2020
(worskhop papers).

July 29-31 32nd International Conference on Software Engineering Education and Training (CSEET'2020),
Munich, Germany. Topics include: Teaching formal methods (TFM), Teaching "real world" SE
practices (TRW), Software quality assurance education (SQE), Global and distributed SE education
(GDE), Open source in education (OSE), Cooperation between Industry and Academia (CIA), Training
models in industry (TMI), Continuous education (CED), Methodological aspects of SE education

Conference Calendar 203

Ada User Journal Volume 40, Number 4, December 2019

(MAE), etc. Deadline for submissions: February 1, 2020 (abstracts for research papers, industrial
experience reports, Journal First submissions, posters, tools, panels), February 8, 2020 (research papers,
industrial experience reports, Journal First submissions, posters, tools, panels).

 Sep 02-03 25th International Conference on Formal Methods for Industrial Critical Systems (FMICS'2020),
Vienna, Austria. Co-located with CONCUR'2020 and FORMATS'2020. Topics include: case studies
and experience reports on industrial applications of formal methods, focusing on lessons learned or
identification of new research directions; methods, techniques and tools to support automated analysis,
certification, debugging, descriptions, learning, optimisation and transformation of complex, distributed,
real-time, embedded, mobile and autonomous systems; verification and validation methods that address
shortcomings of existing methods with respect to their industrial applicability (e.g., scalability and
usability issues); impact of the adoption of formal methods on the development process and associated
costs; application of formal methods in standardisation and industrial forums. Deadline for submissions:
May 8, 2020 (abstracts), May 15, 2020 (papers).

September 09-11 13th International Conference on the Quality of Information and Communications Technology
(QUATIC'2020), Faro, Portugal. Topics include: all quality aspects in ICT systems engineering and
management; quality in ICT process, product and applications domains; practical studies; etc. Tracks on
ICT verification and validation, safety, security and privacy, model-driven methods, agile methods,
evolution in ICT / reengineering and refactoring, evidence-based software quality engineering, software
quality education and training, etc. Deadline for submissions: March 30, 2020 (full papers), May 25,
2020 (short papers).

September 15-18 39th International Conference on Computer Safety, Reliability and Security (Safecomp'2020),
Lisbon, Portugal. Topics include: all aspects related to the development, assessment, operation and
maintenance of safety-related and safety-critical computer systems; formal modelling, verification and
validation; model-driven engineering; security and privacy protection mechanisms; safety/security co-
engineering and risk assessment; testing, verification and validation methods & tools; qualification,
assurance and certification methods & tools; cyber-physical threats and vulnerability analysis; safety
and security guidelines, standards and certification; etc. Domains of application include: railways,
automotive, space, avionics & process industries; highly automated and autonomous systems;
telecommunication and networks; safety-related applications of smart systems and IoT; critical
infrastructures,; medical devices and healthcare; surveillance, defense, emergency & rescue; logistics,
industrial automation, off-shore technology; education & training; etc. Deadline for submissions:
February 7, 2020 (workshops), February 14, 2020 (abstracts), February 24, 2020 (full papers).

September 22-24 19th International Conference on Intelligent Software Methodologies, Tools and Techniques
(SOMET'2020), Kytakyushu, Japan. Topics include: state-of-art and new trends on software
methodologies, tools and techniques; software methodologies, and tools for robust, reliable, non-fragile
software design; software developments techniques and legacy systems; automatic software generation
versus reuse, and legacy systems; software evolution techniques; Agile Software and Lean Methods;
formal methods for software design; software maintenance; software security tools and techniques;
formal techniques for software representation, software testing and validation; software reliability;
Model Driven Development (DVD), code centric to model centric software engineering; etc. Deadline
for submissions: March 20, 2020 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Call for Participation
10 th Ada Developer Room at FOSDEM 2020

Saturday 1 February 2020, Brussels, Belgium

Organized by Ada-Belgium
in cooperation with Ada-Europe

FOSDEM1, the Free and Open source Software Developers' European Meeting, is a non-commercial
two-day weekend event organized early each year in Brussels, Belgium. It is highly developer-
oriented and brings together 8000+ participants from all over the world. The 2020 edition takes place
on Saturday 1 and Sunday 2 February. It is free to attend and no registration is necessary.

In this edition, Ada-Belgium2 organizes once more a full day with 8.5 hours of presentations related to
Ada and Free or Open Software in a s.c. Developer Room. The “Ada DevRoom” at FOSDEM 2020 is
held on the first day of the event. The program offers introductory presentations on the Ada
programming language, as well as more specialised presentations on focused topics, tools and projects.
This year FOSDEM has a total of 13 Ada-related presentations by 12 authors from 8 countries!

Program overview:
• Welcome to the Ada DevRoom, by Dirk Craeynest, Ada-Belgium
• An Introduction to Ada for Beginning and Experienced Programmers, by Jean-Pierre Rosen, Adalog, France
• HAC: the Compiler which will Never Become Big, by Gautier de Montmollin, Ada-Switzerland
• Tracking Performance of a Big Application from Dev to Ops, by Philippe Waroquiers, Eurocontrol, Belgium
• Cappulada: What we’ve Learned, by Johannes Kliemann, Componolit, Germany
• Programming ROS2 Robots with RCLAda, by Alejandro R. Mosteo, Centro Universit. de la Defensa, Spain
• Live Demo of Ada’s Distribution Features, by Jean-Pierre Rosen, Adalog, France
• Writing Shared Memory Parallel Programs in Ada, by Jan Verschelde, Univ. of Illinois at Chicago, USA
• Spunky: a Genode Kernel in Ada/SPARK, by Martin Stein, Genode Labs, Germany
• Alire: Ada Has a Package Manager, by Alejandro R. Mosteo, Centro Universitario de la Defensa, Spain,

Pierre-Marie de Rodat and Fabien Chouteau, AdaCore, France
• Protect Sensitive Data with Ada Keystore, by Stephane Carrez, Twinlife, France
• EUgen: a European Project Proposal Generator, by Riccardo Bernardini, University of Udine, Italy
• On Rapid Application Development in Ada, by Tomasz Maluszycki, Poland
• Ada-TOML: a TOML Parser for Ada, by Pierre-Marie de Rodat, AdaCore, France

The Ada at FOSDEM 2020 web-page has all details, such as the full schedule, abstracts of
presentations, biographies of speakers, and pointers to more info. For the latest information at any
time, contact <Dirk.Craeynest@cs.kuleuven.be>, or see:

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/20/200201-fosdem.html

1https://fosdem.org/2020
2http://www.cs.kuleuven.be/~dirk/ada-belgium

206 For thcoming Events

Volume 40, Number 4, December 2019 Ada User Journal

20th International Real-Time Ada Workshop – IRTAW 2020

Hotel Voramar, Benicàssim, Spain
1-3 April 2020

http://www.ada-europe.org/irtaw/2020

Call for Papers
Since its inception, the International Real-Time Ada Workshop (IRTAW) series has provided a forum where members of the
research, user, and implementer communities have raised issues with the real-time systems support in Ada, and explored
possible solutions to them, and approaches to evolve those aspects of the language to the new frontiers of real-time
computing. Over the years, the IRTAW has made important contributions to the 2005 and 2012 revisions of the Ada
programming language standard, for the tasking features, the real-time and high-integrity systems annexes, the Ravenscar and
the Jorvik Profiles, and – more recently – the parallel execution model of the language due to appear in the 202X revision.

The topics of interest to the 20th edition of IRTAW include but are not limited to:
 Review of the Ada 2012 Issues vis-a-vis real-time systems;
 Experiences of use of Ada 2012, in full or by profile, for real-time applications, on single- and multi-processor as

well as distributed systems;
 Implementation approaches for Ada 2012 real-time features;
 Review of the Ada 202X Issues with respect to the parallel execution model;
 Early prototyping and use experiences of Ada 202X parallel features, including integration with OpenMP;
 Uses of Ada, possibly with SPARK, in certification-aware domains;
 Review of the Ada language vulnerabilities in relation to TR 24772-2 and -6 by ISO/IEC JTC 1/SC 22/WG 23;
 Contributions to the Ada’s conformance test suite for the Real-Time Annex and the upcoming parallel execution

model.

Participation in the 20th IRTAW is by invitation, following the submission of a position paper that addresses pertinent topics.
Anyone unable to produce a position paper, but still wishing to receive an invitation, is encouraged to send a one-page
position statement, in PDF, to the Program Chair, indicating their interests and reasons for attending.
Priority in selection will be given to the authors of submitted papers.

Submission Requirements
Position papers should not exceed ten pages in typical IEEE conference layout, excluding code snippets. They shall be
submitted, in PDF, to the Program Chair at the email address listed below. All accepted papers will appear, in their final form
after the event, in a special issue of Ada Letters (ACM Press) also reprinted by the Ada User Journal. Authors with a relevant
paper submitted to the Ada-Europe 25th International Conference on Reliable Software Technologies, AEiC 2020 (deadline 7
January, 2020) may offer an extended abstract of the same material to IRTAW.

Important Dates
Paper Submission: 7 February, 2020

Notification of Acceptance: 6 March, 2020
Confirmation of Attendance: 13 March, 2020

Final Paper Due: 23 March, 2020
Workshop: 1-3 April, 2020

Program Chair Workshop Chair

Tullio Vardanega, University of Padova, Italy
tullio.vardanega@unipd.it

Jorge Real, Universitat Politècnica de València, Spain
jorge@disca.upv.es

Conference Chair
Michael González Harbour
Universidad de Cantabria, Spain

mgh@unican.es

Program Chair
Mario Aldea Rivas
Universidad de Cantabria, Spain

aldeam@unican.es

Work-in-Progress Chair
Kristoffer Nyborg Gregertsen
SINTEF Digital, Norway

kristoffer.gregertsen@sintef.no

Tutorial & Workshop Chair
Jorge Garrido Balaguer
Universidad Politécnica de Madrid, Spain

jorge.garrido@upm.es

Industrial Chair
Patricia Balbastre Betoret
Universitat Politècnica de València, Spain

patricia@ai2.upv.es

Exhibition & Sponsorship Chair
Ahlan Marriott
White Elephant GmbH, Switzerland

software@white-elephant.ch

Publicity Chair
Dirk Craeynest
Ada-Belgium & KU Leuven, Belgium

dirk.craeynest@cs.kuleuven.be

In cooperation with:

 (pending)

General Information

The 25th Ada-Europe International Conference on Reliable Software Technologies (AEiC
2020 aka Ada-Europe 2020) will take place in Santander, Spain. The conference schedule
includes a technical program, vendor exhibition and parallel tutorials and workshops.

The 2020 edition of the conference continues the major revamp in the registration fees
introduced in 2019, redesigned to extend participation from industry and academia, and
to reward contributors, especially but not solely, students and post-doc researchers.

Schedule

14 January 2020 Submission of journal-track papers, industrial presentation
outlines, and tutorial and workshop proposals (EXTENDED)

20 March 2020 Notification of acceptance for journal-track papers, industrial
presentations, tutorials and workshops

31 March 2020 Submission of Work-in-Progress (WiP) papers

30 April 2020 Notification of acceptance for WiP papers

Topics

The conference is a leading international forum for providers, practitioners and
researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and
maintenance of long-lived, high-quality software systems for a challenging variety of
application domains. The program will allow ample time for keynotes, Q&A sessions
and discussions, and social events. Participants include practitioners and researchers
from industry, academia and government organizations active in the promotion and
development of reliable software technologies.

The topics of interest for the conference include but are not limited to:

 Design and Implementation of Real-Time and Embedded Systems,

 Design and Implementation of Mixed-Criticality Systems,

 Theory and Practice of High-Integrity Systems,

 Software Architectures for Reliable Systems,

 Methods and Techniques for Quality Software Development and Maintenance,

 Ada Language and Technologies,

 Mainstream and Emerging Applications with Reliability Requirements,

 Achieving and Assuring Safety in Machine Learning Systems,

 Experience Reports on Reliable System Development,

 Experiences with Ada.

Refer to the conference website for the full list of topics.

www.ada-europe.org/conference2020

25th Ada-Europe
International Conference on

Reliable Software Technologies
 (AEiC 2020)

8-12 June 2020, Santander, Spain
(C) RMR

(C) Pachi Hondal

Program Committee

Mario Aldea, Univ. de Cantabria, ES

Iain Bate, University of York. UK

Johann Blieberger, Vienna Univ. of
Technology, AT

Bernd Burgstaller, Yonsei Univ., KR

Daniela Cancila, CEA LIST, FR

António Casimiro, Univ. Lisboa, PT

Juan A. de la Puente, Univ. Pol. de
Madrid, ES

Barbara Gallina, Mälardalen Univ., SE

Marisol García Valls, Univ. Pol. de
València, ES

J. Javier Gutiérrez, Univ. de Cantabria, ES

Jérôme Hugues, CMU/SEI, USA

Hubert Keller, Karlsruhe Institute of
Technology, DE

Patricia López Martínez, Univ. de
Cantabria, ES

Kristoffer Nyborg Gregertsen, SINTEF
Digital, NO

Laurent Pautet, Telecom ParisTech, FR

Luís Miguel Pinho, CISTER/ISEP, PT

Erhard Plödereder, Univ. Stuttgart, DE

Jorge Real, Univ. Pol. de València, ES

José Ruiz, AdaCore, FR

Sergio Sáez, Univ. Pol. de València, ES

Frank Singhoff, Univ. de Bretagne
Occidentale, FR

Tucker Taft, AdaCore, USA

Elena Troubitsyna, Åbo Akademi Uni., FI

Santiago Urueña, GMV, ES

Tullio Vardanega, Univ. of Padua, IT

Eugenio Villar Bonet, Univ. de
Cantabria, ES

Industrial Committee

Ian Broster, Rapita Systems, UK

Javier Coronel, FentISS, ES

Dirk Craeynest, Ada-Belgium &
KU Leuven, BE

Thomas Gruber, Austrian Institute of
Technology (AIT), AT

Ismael Lafoz, Airbus Defence and
Space, ES

Ahlan Marriott, White Elephant, CH

Maurizio Martignano, Spazio-IT, IT

Laurent Rioux, Thales R&T, FR

Marian Roselló, Terma, NL

Jean-Pierre Rosen, Adalog, FR

Emilio Salazar, GMV, ES

Call for Journal-Track Papers
The journal-track papers submitted to the conference are full-length papers that must describe mature
research work on the conference topics. They must be original and shall undergo anonymous peer review.

Accepted journal-track papers will get a presentation slot within a technical session of the conference and they
will be published in an open-access special issue of the Journal of Systems Architecture with no additional
costs to authors.

The corresponding authors shall submit their work by 14 January 2020 via the Special Issue web page:
https://www.journals.elsevier.com/journal-of-systems-architecture/call-for-papers/advances-in-reliable-
software-technologies

Submitted papers must follow the guidelines provided in the "Guide-for-Authors" of the JSA
(https://www.elsevier.com/journals/journal-of-systems-architecture/1383-7621/guide-for-authors). In particular,
JSA does not impose any restriction on the format or extension of the submissions.

Call for WiP-Track Papers
The Work-in-Progress papers (WiP-track) are short (4-page) papers describing evolving and early-stage
ideas or new research directions. They must be original and shall undergo anonymous peer review. The
corresponding authors shall submit their work by 31 March 2020, via https://easychair.org/conferences/?
conf=aeic2020, strictly in PDF and following the Ada User Journal style (http://www.ada-europe.org/auj/).

Authors of accepted WiP-track papers will get a presentation slot within a regular technical session of the
conference and will also be requested to present a poster. The papers will be published in the Ada User
Journal as part of the proceedings of the Conference.

The conference is listed in the principal citation databases, including DBLP, Scopus, Web of Science, and
Google Scholar. The Ada User Journal is indexed by Scopus and by EBSCOhost in the Academic Search
Ultimate database.

Call for Industrial Presentations
The conference seeks industrial presentations that deliver insightful information value but may not sustain
the strictness of the review process required for regular papers. The authors of industrial presentations shall
submit their proposals, in the form of a short (one or two pages) abstract, by 14 January 2020, via
https://easychair.org/conferences/?conf=aeic2020, strictly in PDF and following the Ada User Journal style
(http://www.ada-europe.org/auj/).

The Industrial Committee will review the submissions anonymously and make recommendations for
acceptance. The abstract of the accepted contributions will be included in the conference booklet, and authors
will get a presentation slot within a regular technical session of the conference.

These authors will also be invited to expand their contributions into articles for publication in the Ada User
Journal, as part of the proceedings of the Industrial Program of the Conference.

Awards
Ada-Europe will offer an honorary award for the best presentation.

Call for Educational Tutorials
The conference is seeking tutorials in the form of educational seminars including hands-on or practical
demonstrations. Proposed tutorials can be from any part of the reliable software domain, they may be purely
academic or from an industrial base making use of tools used in current software development environments.
We are also interested in contemporary software topics, such as IoT and artificial intelligence and their
application to reliability and safety.

Tutorial proposals shall include a title, an abstract, a description of the topic, an outline of the presentation, the
proposed duration (half day or full day), and the intended level of the tutorial (introductory, intermediate, or
advanced). All proposals should be submitted by e-mail to the Educational Tutorial Chair.

The authors of accepted full-day tutorials will receive a complimentary conference registration. For half-day
tutorials, this benefit is halved. The Ada User Journal will offer space for the publication of summaries of the
accepted tutorials.

Call for Workshops
Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for
half- or full-day events, to be scheduled at either end of the conference days. Workshop proposals should be
submitted by e-mail to the Workshop Chair. The workshop organizer shall also commit to producing the
proceedings of the event, for publication in the Ada User Journal.

Call for Exhibitors
The commercial exhibition will span the core days of the main conference. Vendors and providers of software
products and services should contact the Exhibition Chair for information and for allowing suitable planning of
the exhibition space and time.

Special Registration Fees
Authors of accepted contributions and all students will enjoy reduced registration fees.

Venue
Santander is a nice tourist city in the north of Spain, with a well-connected airport and at a 100 km drive from
Bilbao airport.

The conference venue and hotel is the Bahia Hotel in the city center and beside Santander bay.

(C) Antoni Cutiller y Roig(C) We are content (C) Gob. Cantabria

Automate Your Ada Unit Testing

With VectorCAST/Ada

Vector Austria GmbH | www.vector.com

VectorCAST/Ada is an integrated software test solution that significantly reduces the time, effort, and
cost associated with testing Ada software components necessary for validating safety- and
mission-critical embedded systems.

> Complete test-harness construction for unit and
integration testing

> Test execution from GUI or scripts
> Code coverage analysis
> Regression Testing
> Code complexity calculation
> Automatic test creation based on decision paths

> User-defined tests for requirements-based
testing

> Test execution trace and playback to assist in
debugging

> Integrations with best of breed requirements
traceability tools

More information: www.vector.com/vectorcast

210

Volume 40, Number 4, December 2019 Ada User Journal

Co-engineering of Safety and Security Life Cycles
for Engineering of Automotive Systems
Robert Bramberger and Helmut Martin
Virtual Vehicle Research GmbH, Graz, Austria, {Robert.Bramberger, Helmut.Martin}@v2c2.at

Barbara Gallina
Mälardalen University, Västerås, Sweden; Barbara.Gallina@mdh.se

Christoph Schmittner
AIT Austrian Institute of Technology GmbH, Vienna, Austria; Christoph.Schmittner@ait.ac.at

Abstract

Nowadays systems are becoming more and more
connected. Consequently, the co-engineering of
(cyber)security and safety life cycles becomes
paramount. Currently, no standard provides a
structured co-engineering process to facilitate the
communication between safety and security
engineers. In this paper, we propose a process for co-
engineering safety and security by the explicit
systematization and management of commonalities
and variabilities, implicitly stated in the requirements
of the different standards. Our process treats the
safety and security life cycles as members of a
security-informed safety-oriented process line and so
it forces safety and security engineers to come
together and brainstorm on what might be considered
a commonality and what might be considered a
variability. We illustrate the usage of our process by
systematizing commonalities and variabilities at risk
analysis phase in the context of ISO 26262 and
SAE J3061. We then draw lessons learnt. Finally, we
sketch some directions for future work.

Keywords: Security-informed Safety, ISO 26262,
SAE J3061, Security-informed Safety-oriented
Process Line Engineering (SiSoPLE), HARA, TARA

1 Introduction

Nowadays, systems are becoming more and more
connected and offer advanced functionalities. In the
automotive domain, for instance, with the advent of
Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I),
and even vehicle to cloud (V2C) communication, road
vehicles are playing an active and major role within the
Internet of Things (IoT), offering new communication-
centred functionalities aimed at increasing safety by e.g.,
decongesting traffic via roadworks-related communication.
However, connectivity may threaten safety, due to
numerous security threats, which, as recently surveyed by
ENISA [3], are emerging.

Consequently, the co-engineering of (cyber)security and
safety life cycles becomes paramount. Currently, no

standard provides a structured co-engineering process to
facilitate the communication between safety and
cybersecurity engineers. ISO 26262 [5] introduces a
standardized safety life cycle, which needs to be
complemented by requirements stemming from
cybersecurity standards (e.g. the upcoming cybersecurity
standard ISO/ SAE 21434 [6]) and/or guidelines (e.g.
SAE J3061 [8]). SAE J3061 is the only published
guidebook that provides suggestions for considering both
concerns. Specifically, SAE J3061 proposes a life cycle for
handling cybersecurity which is based on the ISO 26262
safety lifecycle. The reason for this analogous life cycle is
to allow organizations with safety processes based on
ISO 26262 to use a common framework for
cybersecurity and safety to facilitate the development of a
tailored cybersecurity process by capitalizing on aspects of
an organization’s existing safety process that are common
to both cybersecurity and safety, for example, the
supporting process procedures and templates.

Thus, the co-engineering of safety and (cyber)security life
cycles and, more broadly, the co-engineering of different
mono-concern life cycles can be facilitated by the explicit
systematization and management of commonalities and
variabilities, implicitly stated in the requirements of the
different standards. This leads to the engineering of a
Security-informed Safety-oriented Process Line (SiSoPL)
[13].

In this paper, we extend our initial thoughts published in
[16], [29] and we engineer an automotive SiSoPL by using
the tool-chain constituted of Eclipse Process Framework
Composer (EPF-C) [33]. EPF-C permits users to engineer
processes in compliance with a SPEM (Software &
Systems Process Engineering Metamodel) 2.0-like
language [30], and BVR Tool [31], which permits users to
orthogonally manage variability at process level in
compliance with the Base Variability Resolution (BVR)
language [18]. The toolchain (shown in [21]) obtained via
the integration between EPF-C and BVR Tool is part of the
AMASS tool platform, delivered by the AMASS project
[1], [26], [28], [29] and hosted by OpenCert [32]. The
engineered SiSoPL embraces the automotive regulations
comprising ISO 26262 and SAE J3061 and focuses on the

R. Bramberger, H. Mart in, B. Gal l ina, C. Schmit tner 211

Ada User Journal Volume 40, Number 4, December 2019

risk analysis phase, as initially done in [12], where the
automotive Security-informed Safety terminological
framework for retrieving the implicit commonalities was
proposed. Finally, from our engineered SiSoPL, we derive
a single security-informed safety-oriented process targeting
the security-informed safety concept of a car2car
communication management unit.

The rest of the paper is organized as follows. In Section 2,
we recall essential background. In Section 3, we clearly
state the problem. In Section 4, we explain our
methodology for SiSoPL engineering. In Section 5, we
apply our methodology and report about our lessons
learned. Finally, in Section 6, we draw our concluding
remarks and sketch future work.

2 Background and related work
In this section, we present the background information on
which we base our work.

2.1 Relevant safety and cybersecurity standards
In this sub-section, we provide an overview about the
standards for functional safety and cybersecurity targeting
non-autonomous road vehicles.

ISO 26262 [5] is the automotive functional safety standard
(first release 2011). It describes a safety life cycle for the
development of safety-related automotive systems with the
purpose of guaranteeing absence of unreasonable risk due
to hazards caused by malfunctioning behaviour of
electrical/electronic systems. The scope in edition 2018 has
been extended from passenger cars to further road vehicles.
Now it also deals with trucks, busses and motorcycles.
ISO 26262 provides an informative guideline on “potential
interaction of functional safety with cybersecurity”.

The life cycle is structured into phases. The first phase,
called the concept phase, starts with the item definition, i.e.,
a description of the system with regard to its functionality,
interfaces, environment, etc. Once the item is defined, the
HARA (Hazard Analysis and Risk Assessment) is
performed to identify/categorize/evaluate hazardous events,
i.e., the combination of hazard (potential source of harm)
and operational situations (scenarios that can occur during
vehicle’s life). Harm is defined as the physical injury or
damage to the health of persons. To minimize harm,
unreasonable risk has to be reduced. To support risk
evaluation, ISO 26262 has introduced the notion of
Automotive Safety Integrity Level (ASIL), which can
assume one out of five values, ranging from negligible QM
and ASIL A to ASIL D, where D represents the most
stringent level. An ASIL is assigned based on the severity,
the exposure, and the controllability of the hazardous event.
The assignment of the ASIL constrains the stringency of
the following activities within the safety life cycle. Another
parameter used to influence the stringency is the
recommendation level (neutral, recommended, highly
recommended), abbreviated as RecL, which is typically
assigned in conjunction with the ASIL to provide guidance
on method application.

The result of the concept phase is the functional safety
concept, represented by the set of safety goals (top-level
safety requirements) derived from the HARA findings.

SAE J3061 [8] provides high level guiding principles for
cybersecurity for the complete engineering life cycle. It
proposes more concrete communication paths between
functional safety and cybersecurity engineering.

The cybersecurity life cycle initiates at the concept phase
with the feature (i.e., system) definition in which the scope
of the feature is specified with respect to physical
boundaries, cybersecurity perimeter, and trust boundaries
of the feature. After that, TARA (Threat Analysis and Risk
Assessment) is performed. TARA is an analysis technique
applied to identify potential threats to a feature and to
assess the risk associated with the identified threats.
Cybersecurity goals are derived and formulated for each of
the highest risk potential threats documented in the TARA.
SAE J3061 does not introduce a specific notion for
cybersecurity level. However, it outlines a sampling of
security analysis methods for performing the TARA such
as the method used by the E-Safety Vehicle Intrusion
Protected Applications (EVITA) program, the Threat,
Vulnerabilities, and implementation Risks Analysis
(TVRA) method, the Operationally Critical Threat, Asset,
and Vulnerability Evaluation (OCTAVE) method, and the
HEAling Vulnerabilities to ENhance Software Security and
Safety (HEAVENS) method and attack tree information.
These methods propose possible security levels.

ISO/SAE 21434 defines requirements related to
cybersecurity risk management for road vehicles that
include electrical and electronic (E/E) systems. A joint
working group of ISO and SAE experts develop
ISO/SAE 21434. It will replace SAE J3061 and provides a
framework, which supports the establishment of a
cybersecurity culture during the complete product life
cycle. Since cybersecurity risks can increase during the
products lifetime it demands a management system, which
is able to monitor changes in the threat landscape,
vulnerabilities, etc. and provide updates from
postproduction until decommissioning.

The standard recommends the definition of specific metrics
for process rigour and risk level. In the presented approach
the SecRL (Security Risk Level) has been defined to
quantify risk and to perform variability management. In
general, different security risk levels are needed for
different attributes (privacy, operational, financial, safety).
The paper at hand only deals with a risk level for functional
safety. The standard is currently under development. The
expected date of publishing is Q4 2020.

In addition, standards demand an established engineering
process according to state of the art automotive quality
standards (e.g. ASPICE, CMMI, IATF 16949).

2.2 Co-engineering life cycle for safety and
security
In this subsection, we recall the method for co-engineering
used in the core of this paper.

212 Co-engineer ing of Safety and Secur i ty L i fe Cycles for Automotive Systems

Volume 40, Number 4, December 2019 Ada User Journal

Security-informed Safety-oriented Process Line
Engineering (SiSoPLE) [13] is a co-engineering method,
which represents the extension of SoPLE, Safety-oriented
Process Line Engineering [14], [15]. Similar to SoPLE,
SiSoPLE consists of a two-phase method for engineering
families of safety life cycles/processes. The first phase is
aimed at engineering the domain from a process
perspective i.e., identifying and systematizing process-
related commonalities and variabilities, focusing on
security-informed safety-related commonalities and
variabilities, in order to concurrently engineer a set of
processes. The second phase is aimed at deriving single
processes via selection and composition of commonalities
and variabilities. From a tooling perspective, SiSoPLE as
well as SoPLE can be supported by the integration between
EPF Composer, recently re-brought to life [20], and BVR
Tool [31]. This integration was qualitatively evaluated as
promising in [11] and its implementation was presented in
[20]. To make the paper self-contained, we recall basic
information regarding EPF Composer and BVR Tool.

EPF Composer implements a metamodel which exhibit a
satisfactory overlapping with the SPEM (Software &
Systems Process Engineering Metamodel) 2.0 language
[30]. EPF Composer enables authoring, tailoring and
deploying engineering life cycles and processes. This
means that process structures containing all necessary
process elements (e.g., activities, tasks, roles, work
products, etc.) can be specified.

The BVR Tool implements the BVR (Base Variability
Resolution) [18] language, built on top of CVL (Common
Variability Language) [19] enable variability modelling in
the context of the engineering of families of safety-critical
systems. BVR enables orthogonal variability management
for any model (called Base model), instance of a Meta-
Object Facility (MOF)-compliant metamodel. Via the BVR
Tool, variability engineers create three kinds of models:

VSpec models specify Feature-Oriented Domain Analysis
(FODA) [22] -like models. To specify cross-branches
constraints, which limit inclusion/exclusion within a
subtree based on choices on other subtrees, Basic
Constraint Language (BCL) is used.

Resolution models define the desired inclusion/exclusion
choices for the specific configuration/resolution.

Realization models specify the placement fragments (i.e.,
sets of elements forming conceptual holes in a base model,
which may be replaced by replacement fragments) and
replacements within the fragment substitutions. A
Fragment substitution is an operation that, if executed,
substitutes a model fragment (placement fragment) with
another (replacement fragment).

2.3 Safety and security co-analysis
In this subsection, we recall the method for co-analysis
used in the core of this paper.

EVITA [4] is used to quantify the risk of potential
cyberattacks. A risk level is derived based on "attack
potential", "attack probability", "severity" and

"controllability". It is a criterion that indicates the risk that
functional safety can possibly be levered out by an attacker
in certain circumstances.

Based on HARA in [24] SAHARA (Security-Aware
Hazard Analysis and Risk Assessment) was introduced. It
combines HARA from the safety and the STRIDE
approach from the security domain. The intention of
SAHARA is to identify security issues which can have an
impact to safety concepts on system level. It also considers
impacts which can occur because of safety issues.

FMVEA (Failure Mode, Vulnerabilities and Effect
Analysis), [27], extends the FMEA and performs a
combined safety and security analysis. It considers threat
modes and failure modes. Threat modes describe possible
ways how the security attribute of a component may fail
caused by vulnerabilities. FMVEA determines the
probability of a threat mode based on identified attack
scenarios and vulnerabilities.

In [23] the relationship between HARA and TARA was
investigated with regard to a joint assurance case.

3 Problem statement

Since vehicles provide highly interconnected system
functions realized in software, the systems are no longer
isolated. They become cyber-physical and cybersecurity
has to be part of the centre of interest. Existing safety-
related processes have to be expanded with methods like
threat analysis and risk assessment and attack tree analysis.

An important aspect is the identification of relationships
between cybersecurity and safety because freedom of
interference has to be guaranteed. It is possible that security
threats have impact to safety, if safety functions are
implemented in software. Whereas safety deals with
hazards and mishaps cybersecurity addresses threats
resulting from malicious intent from external to the E/E
system.

The methodology described in the next chapter is intended
to identify all possible ways how functional safety may be
violated in the different development lifecycle phases. In a
combined process cybersecurity and safety risks will be
identified jointly. In this context it has to be considered that
there are risks which are only related to safety issues (e.g.
hardware failure) and risks which are only related to
cybersecurity (e.g. attackers want to capture personal data).
Cybersecurity risks without safety relation will be possibly
identified but they are out of scope from the perspective of
the paper at hand.

Based on analogies between safety and cybersecurity it is
useful to define processes, which are integrating both
topics. An integrated point of view is necessary because
joint safety and security analysis will lead to measures,
which have the objective to mitigate identified risks, which
can be caused by both disciplines.

In the initial situation process developers have to work with
standards which describe separated topics. Engineering
teams in companies need an integrated development

R. Bramberger, H. Mart in, B. Gal l ina, C. Schmit tner 213

Ada User Journal Volume 40, Number 4, December 2019

process which deals with quality, safety and security on
different levels for different projects. Process developers
have to harmonize several standards in their processes and
provide evidence to all engineering areas.

Highly connected vehicles need a process to track the
security status during the whole lifetime because previously
unknown attacks may have the opportunity to compromise
functional safety.

4 Methodology to define a process flow

To define a joint safety and security process, based on
available but separated processes, it is necessary to have a
systematic procedure to identify commonalities and
variabilities. The proposed way is to use SiSoPLE, which is
able to define joint processes. This chapter describes the
development of two independent standard compliant
processes for safety and security. These processes are the
base for variants with project specific ASIL, SecRL and
quality. The safety and security co-analysis delivers ASIL
and SecRL, which are parameters for the variability
management. The underlying workflow is illustrated in
¡Error! No se encuentra el origen de la referencia..

Activities in cross concern applications, which have to be
executed in any case, are called safety security co-
engineering activities (instead of the single concern
"commonality"). This term definition allows the extension
of indicated activities, because it is the intention to
"maximize" co-engineering activities and reduce
variabilities if it is possible. Co-engineering capable
methods can deal with both areas and they do not need to
be a commonality in a strict sense. In this generalized view,
it is sufficient that the methods head to the same goal.

4.1 Standard selection
The first step to create a process is to define which
requirements it must fulfil. At least standards, which are
demanded by legislator and customers, have to be
considered.

4.2 Process modelling
The base process and the related model contain all
activities, which can possibly be part of the development
process and are directly related to the underlying standards.
This means that all activities which may be needed for any
ASIL and any SecRL are modelled. Later on, company
specific activities and realisations will be added in the
process definition step. Finally, for all concerns process
models (mono concern models) are available. They are the
basis for the following variability management.

4.3 Safety and security co-analysis
As recalled in Section 2.1, safety and security co-analysis is
an important step in the concept phase, which has major
impact to the following engineering activities. The
described approach uses the resulting ASIL and SecRL as
parameters to manage variability and define the co-
engineering process.

Co-analysis in the concept phase has to make sure that
interaction between different concerns is considered,

because it should ensure that cybersecurity issues are
considered as well as safety. The approach should
guarantee that any additional potential hazards will be
identified, which would stay undiscovered if only one
discipline is examined in an isolated way. HARA and
TARA must be performed in parallel but interweaved and
consider potential dependencies between safety and
security. The management of interaction between safety
and security in an assessment is addressed in specific
research papers (see section 2).

Identification of hazards and potential causes is an
indispensable prerequisite for a safe and secure system.
Hazards and threats from both areas need to be identified
because unknown issues can lead to unsafe control actions,
independent whether the cause is related to a hardware fault
(classic safety-oriented view) or to a security issue. The
goal is to define measures that are appropriate to mitigate
any identified risks. To make sure that measures from
competitive disciplines do not influence each other in a
non-admissible way, a trade-off in the risk reduction
measures has to be considered. The impact of each single
safety and security measure needs an evaluation to find a
balance.

Finally, arguments have to be collected in the assurance
case, which covers the integrated and harmonized safety
and security case, to show that the implemented measures
are conform with underlying standards.

4.4 Variability management
Variability management is based on the defined ASIL and
SecRL parameter set (see Figure 2). These two parameters
have a major impact to the extent of the minimum required
process activities. Tailoring of the base processes to a
project specific multi-concern process means that unneeded
activities are removed, and new project specific activities
are added. Standards or company specific regulations

Figure 1 Workflow for safety-security co-engineering process

214 Co-engineer ing of Safety and Secur i ty L i fe Cycles for Automotive Systems

Volume 40, Number 4, December 2019 Ada User Journal

demand for the application of a defined set of methods for a
particular ASIL or SecRL. The development process must
deal with variability because ASIL and SecRL varies for
different items and in different projects.

BVR provides a mechanism to change activities and
methods for various items according to different parameter
sets. This feature is implemented by the usage of choices
and constraints in the VSpec and the Resolution diagram
(see Figure 3) of the BVR tool. The procedure how to build
a process model and how BVR works in detail is described
in the case study and in chapter “Management of
families/lines” in Deliverable 6.3 [2].

An important feature that allows compliance checking is
the verification function of the BVR Tool. This function
uses constraints to evaluate the process model to make sure
that it is compliant with the underlying standards. If the
constraints are defined (this work is done only once) BVR
can verify the model and all its alternative variants to
identify modelling mistakes, which prevent a model from
being standard compliant.

4.5 Definition of joint process
Process designers can use the parametrized model as
starting point to integrate company and project specific
requirements to get the joint process that implies demanded
quality aspects and provides the wanted level of safety and
security.

5 Case study

In this section, we report about the case study. More
specifically, we illustrate the application of our approach,
focusing on the concept phase, to a collaborative security
and safety-critical system.

5.1 System and scenario description
The case study uses a fleet of autonomous (model) cars that
communicate at runtime via car2car communication to
form a platoon (the interested reader may refer to the
AMASS Deliverable 1.6 [2] for further details). The fleet
constitutes a safety- and security-critical system of systems.
The focus is on safety and security aspects of the radio
connection, which is enabled by the car2car communication
management unit. Precisely, the scenario in focus is as
follows: an attacker threatens the fleet’s integrity by adding
unauthorised code to the communication manager unit. The
execution of this code increases the CPU load to a
forbidden level. As result the communication breaks down
and the platooning function is not any longer available
(hazardous event). In a real life scenario this hazardous
event may cause harm to people.

Thus, in our scenario, the communication management unit
loses its functionality (safety issue) triggered by a
cybersecurity attack. Once the cybersecurity issue is
identified, the software must be updated and also the hazard
analysis needs a reverification to guarantee that it is still
valid. Engineers have to check that there are no unwanted
side-effects of the security update on any safety aspects.

5.2 Objectives
The objective of the case study is the definition and
evaluation of a joint process for co-engineering safety and
cybersecurity.

5.3 Application of process flow
For the cybersecurity- and safety-critical system under
consideration, ISO 26262 and SAE J3061 are identified as
relevant. Then, the process modelling in EPF-C begins. The
obtained process model is a direct representation of the
underlying standards and contains all addressed activities.
It is called base model and is used to perform process
tailoring, where unwanted activities are removed and new
project specific ones are added.

According to the concept phase of ISO 26262, item
definition and HARA needs to be performed. SAE J3061
demands a feature definition and a security analysis. In the
system under consideration a combined hazard and threat
analysis was performed with the tool ANSYS medini
analyze [1]. The analysis was done using EVITA, which is
one of the supported methods. The outcome was ASIL=B
related to functional safety and SecRL=4 related to
cybersecurity. ASIL B demands a minimal set of activities
to achieve compliance with ISO 26262 and leads to safety
measures to undercut the allowed failure rate.

Currently, standards do not define strict process
requirements for (cyber)security, but it is demanded to have
a defined process and a consistent line of arguments, when

Figure 2 Variability management based on parameters [2]

Figure 3 BVR Resolution diagram

R. Bramberger, H. Mart in, B. Gal l ina, C. Schmit tner 215

Ada User Journal Volume 40, Number 4, December 2019

the product is brought to the market. Based on the standard
compliant minimal set and the project specific
requirements, the process variability management via the
BVR Tool is started. As recalled in the background section,
this requires the creation of three models: VSpec,
Resolution, and Realization.

Our created VSpec model focuses on activities that
vary in relation to ASIL and SecRL. Alternatives (XOR
relation) and optionality (0/1) are also specified in the
VSpec model. Once the VSpec is created, we can generate
the Resolution model, as shown in Figure 3. Having set
ASIL=B and SecRL=4, we are able to resolve the
variability within our resolution model by choosing the
appropriate features, where the variability parameters ASIL
and SecRL decide whether process activities and specific
methods have to be executed or not. More precisely, we
assign "true" xor "false" to each activity of the model to
define the process model, which will only include the
features with true-value assignment and constraints
satisfaction. Constraints make sure that all necessary
activities are part of the model. They use logic operations
to link elements. In the example shown in Figure 3 "(CC or
D) implies PP” means that if ASIL C or D is selected also
PP (++) has to be selected to receive a valid validation
result. Once constraints are defined, they can be evaluated
as often as needed if the BVR-function "Validate" is
selected. If the validation is "true" the created model
complies with the defined constraints and the requirements
of the underlying standard.

Finally, we are ready to create the realization model, where
the binding between the abstract representation of the
desired/re-configured/resolved process, representing the
joint process, and the concrete representation, expected to
be rendered by EPF-C, is specified via a set of substitution
rules.

In the realization model, partly shown in Figure 4, we
specify that FTA, shown in Figure 3, shall be removed
because it is a deductive analysis method, which is not
highly recommended for ASIL B. Specifically, placement
(FTA) and replacement (null) are specified.

Since FMEA is required for all ASILs, no substitution is
included. Similar considerations are valid for FMVEA.

When the process and possible substitutions are
executed/realized, the final process model is exported to an

EPF-C processable XMI format. The tailored and standard
compliant model is now available in EPF-C. BVR Tool
supports variability management and makes sure that all
relevant activities and methods are part of the final model.

In our elaborated joint process model, FMEA is used in
combination with FMVEA to perform a joint safety and
security analysis to specify requirements for functional
safety and cybersecurity.

5.4 Discussion and lessons learned
Besides safety issues the joint process has to cover security
aspects as well. The behaviour of security issues is different
to safety. From the safety point of view, it is sufficient to
analyse the item and implement measures which make sure
that the intended ASIL will be achieved. If no safety issue
has been missed, developers can assume that implemented
ASIL is valid without a time limit. From the security point
of view the situation is different because malicious attacks
have to be considered. In the example above, the
communication management unit has lost its functionality
(safety issue) triggered by a cybersecurity attack. It is also
important to investigate the possibility that safety issues
enable attackers to find new attack paths. SAHARA is a
methodology which is able to support an analysis towards
this direction.

The SecRL covers only the risk but it is not an adequate
metric for process rigour and the related engineering effort.
Process rigour might be a key indicator used as argument
that during the engineering phase a sufficient combination
of activities has been taken into account.

Metrics are not covered in normative parts of the security
standards. Therefore, developers have to define some kind
of process specific process rigour. Discussions to develop a
framework concerning a cybersecurity assurance level is
ongoing in standardisation working groups.

ISO 26262 demands processes to maintain functional safety
during operation. Related to this requirement, a field
monitoring and update procedure has to be available in
the development process to ensure functional safety until
decommissioning. Safety and especially security
monitoring increase the effort, but it is absolutely essential
with regard to automated driving functions.

Determination of risk in the early phases (e.g. TARA in
concept phase) is based on parameters which will change
during the development phase because “public” tools and
methodologies to perform attacks will be improved and can
influence parameters in the analysis. Regular updates of
the threat analysis have to be planned (e.g. once a year) to
check the validity of assumptions. A sole threat assessment
before SOP is not sufficient in all cases because new attack
paths may be developed.

In particular, the phase starting with post-production until
decommissioning is very important for the security
engineering life cycle. Cybersecurity monitoring during the
use of items in the field will bring up information about
new threats and vulnerabilities which are basis for a
response plan. Figure 4 BVR Realization diagram

216 Co-engineer ing of Safety and Secur i ty L i fe Cycles for Automotive Systems

Volume 40, Number 4, December 2019 Ada User Journal

6 Conclusion and future work

In this paper, we proposed a process for co-engineering
safety and security by the explicit systematization and
management of commonalities and variabilities, implicitly
stated in the requirements of the different standards. Our
process treats the safety and security life cycles as members
of a security-informed safety-oriented process line. It forces
safety and security engineers to come together and
brainstorm on what might be considered a commonality
and what might be considered a variability. We illustrated
the usage of our process by systematizing commonalities
and variabilities at risk analysis phase in the context of
ISO 26262 for functional safety and SAE J3061 for
cybersecurity. We obtained a SiSoPL from which we
derived the intended process for co-engineering and our
lesson learned. However, cybersecurity is an ongoing
development towards ISO/SAE 21434, which will extend
the process with new activities and steps. While functional
safety is more stable there are also developments to extend
the consideration from functional safety towards Safety Of
The Intended Functionality (SOTIF) [7]. SOTIF describes a
situation where hazards can be caused by insufficient
performance or insufficient knowledge about the later
environment. In a similar direction UL4600 [10] goes
towards a guidance document regarding the evaluation of
automated driving. A focus is here also on the reduction of
unknowns, e.g. a process to generate understanding about
the later environment and potential scenarios for complex
systems. Recent examples and the new research on
adversarial images [25] show that security is also an
important consideration for safety of the intended
functionality. For such systems, a life cycle targeting the
co-engineering of safety and cybersecurity needs to
consider the potential adversarial impact on the
environment of an automated system. Thus, the extension
of our SiSoPL, considering the interplay of the different
and relevant standards and guidance within the automotive
domain, constitutes part of our future work. We also aim at
quantitatively evaluating the tailoring enabled by our
SiSoPL, as done in [17], within the space domain.

Acknowledgment. This work is supported by the EU
projects AMASS and Secredas [9]. Research leading to
these results has received funding from the EU ECSEL
Joint Undertaking under grant agreement n° 692474
(project AMASS) and n°783119 (project Secredas) and
from Sweden’s Vinnova, and Sweden’s Knowledge
Foundation via the SACSys (Safe and Secure Adaptive
Collaborative Systems) project, the COMET K2 -
Competence Centres for Excellent Technologies
Programme of the Austrian Federal Ministry for Transport,
Innovation and Technology (bmvit), the Austrian Federal
Ministry of Science, Research and Economy (bmwfw), the
Austrian Research Promotion Agency (FFG), the Province
of Styria, and the Styrian Business Promotion Agency
(SFG).
ANSYS supported the AMASS project with academic
licences for their commercial tool medini analyze.

References

[1] AMASS (Architecture-driven, Multi-concern and
Seamless Assurance and Certification of Cyber-
Physical Systems) Project (online), https://www.amass-
ecsel.eu.

[2] AMASS Project: Deliverables (online)
https://www.amass-ecsel.eu/content/deliverables.

[3] ENISA (European Network and Information Security
Agency), ENISA good practices for security of Smart
Cars, https://www.enisa.europa.eu/publications/enisa-good-
practices-for-security-of-smart-cars.

[4] EVITA project, https://www.evita-project.org.

[5] ISO 26262 (2018), Road vehicles – Functional safety,
International Standard.

[6] ISO/SAE 21434, Road vehicles – Cybersecurity
Engineering - General Overview. https://www.iso.org/
standard/70918.html

[7] ISO/PAS 21448 (2019), Road vehicles - Safety of the
intended functionality.

[8] SAE - Society of Automotive Engineers, SAE J3061 -
Cybersecurity Guidebook for Cyber-Physical
Automotive Systems.

[9] SECREDAS (Product Security for Cross Domain
Reliable Dependable Automated Systems),
http://secredas.eu/

[10] Underwriters Laboratories Inc. (UL), UL 4600 -
Standard for Safety for the Evaluation of Autonomous
Products.

[11] I. Ayala, B. Gallina (2016), Towards Tool-based
Security-informed Safety Oriented Process Line
Engineering, 1st ACM International workshop on
Interplay of Security, Safety and System/Software
Architecture (ISSA), Copenhagen, Denmark.

[12] J. Castellanos Ardila, B. Gallina (2017), Towards
Efficiently Checking Compliance Against Automotive
Security and Safety Standards, 7th IEEE International
Workshop on Software Certification., Toulouse,
France.

[13] B. Gallina, L. Fabre (2015), Benefits of security-
informed safety-oriented process line engineering,
Digital Avionics Systems Conference (DASC),
IEEE/AIAA 34th (pp. 8C1-1), IEEE.

[14] B. Gallina, I. Sljivo, O. Jaradat (2012), Towards a
Safety-oriented Process Line for Enabling Reuse in
Safety Critical Systems Development and Certification,
Post-proceedings of the 35th IEEE Software
Engineering Workshop (SEW-35).

[15] B. Gallina, S. Kashiyarandi, H. Martin, R. Bramberger
(2014), Modeling a safety-and automotive-oriented
process line to enable reuse and flexible process
derivation, Computer Software and Applications

R. Bramberger, H. Mart in, B. Gal l ina, C. Schmit tner 217

Ada User Journal Volume 40, Number 4, December 2019

Conference Workshops (COMPSACW), IEEE 38th
International, pp. 504-509.

[16] B. Gallina, M. A. Javed, H. Martin, R. Bramberger
(2019), Co-engineering of security and safety life-
cycles for engineering security-informed safety-critical
automotive systems in compliance with SAE J3061 and
ISO 26262, 24th International Conference on Reliable
Software Technologies-Industrial Presentation Track
(Ada-Europe), Warsaw, Poland, June 11-14.

[17] B. Gallina (2019), Quantitative Evaluation of
Tailoring within SPICE-compliant Security-informed
Safety-oriented Process Lines, Journal of Software:
Evolution and Process, EuroSPI Special Issue,
DOI:10.1002/smr.2212.

[18] Ø. Haugen, O. Øgård (2014), BVR–better variability
results, International Conference on System Analysis
and Modeling (pp. 1-15). Springer, Cham.

[19] Ø. Haugen (2012), Common Variability Language
(CVL), Object Management Group, Tech. Rep.
ad/2012-08-05 [Online]. Available:
http://www.omgwiki.org/variability/doku.php

[20] M. A. Javed, B. Gallina (2018), Get EPF Composer
back to the future: A trip from Galileo to Photon after
11 years, EclipseCon, Toulouse, France.

[21] M. A. Javed, B. Gallina (2018), Safety-oriented
process line engineering via seamless integration
between EPF composer and BVR tool, Proceedings of
the 22nd International Conference on Systems and
Software Product Line-Volume 2 (pp. 23-28), ACM.

[22] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A.
S. Peterson (1990), Feature-oriented domain analysis
(FODA) feasibility study (No. CMU/SEI-90-TR-21),
Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst.

[23] H. Martin, R. Bramberger, C. Schmittner, Z. Ma, T.
Gruber, A. Ruiz, G. Macher (2017), Safety and
security co-engineering and argumentation framework,
International Conference on Computer Safety,
Reliability, and Security (pp. 286-297). Springer,
Cham.

[24] G. Macher, E. Armengaud, C. Kreiner, E. Brenner, C.
Schmittner, Z. Ma, M. Krammer (2018), Integration of

security in the development lifecycle of dependable
automotive CPS, Solutions for Cyber-Physical Systems
Ubiquity (pp. 383-423), IGI Global.

[25] N. Morgulis, A. Kreines, S. Mendelowitz, Y.
Weisglass (2019), Fooling a Real Car with
Adversarial Traffic Signs, arXiv preprint
arXiv:1907.00374.

[26] A. Ruiz, B. Gallina, J. L. de la Vara, S. Mazzini, H.
Espinoza (2016), Architecture-driven, Multi-concern
and Seamless Assurance and Certification of Cyber-
Physical Systems, 5th International Workshop on Next
Generation of System Assurance Approaches for
Safety-Critical Systems (SASSUR), Trondheim.

[27] C. Schmittner, T. Gruber, P. Puschner, E. Schoitsch
(2014), Security application of failure mode and effect
analysis (FMEA), International Conference on
Computer Safety, Reliability, and Security (pp. 310-
325), Springer, Cham.

[28] J. L. de la Vara, E. Parra Corredor, A. Ruiz Lopez, B.
Gallina (2019), AMASS: A Large-Scale European
Project to Improve the Assurance and Certification of
Cyber-Physical Systems, Proceedings of the 20th
International Conference on Product-Focused Software
Process Improvement (PROFES), Barcelona, Spain.

[29] J. L. de la Vara, A. Ruiz, B. Gallina, G. Blondelle, E.
Alaña, H. Herrero, F. Warg, M. Skoglund, R.
Bramberger (2019), The AMASS Approach for
Assurance and Certification of Critical Systems,
embedded world Conference (ewC), Nuremberg,
Germany.

[30] OMG (2008), Software & systems Process
Engineering Meta-model (SPEM), v 2.0, Full
Specification formal/08-04-01.

[31] BVR Tool. https://github.com/SINTEF-9012/bvr

[32] OpenCert - hosting the AMASS platform.
https://www.polarsys.org/opencert/about/

[33] Eclipse Process Framework, Eclipse Foundation, Inc.,
Canada, http://www.eclipse.org/epf/.

[34] ANSYS medini analyse, ANSYS Inc., USA,
https://www.ansys.com/products/systems/
ansys-medini-analyze

Unit testing ∙ System testing ∙ Coverage analysis ∙ Timing analysis

V&V services ∙ Multicore timing services ∙ DO-178C training

Ada ∙ C ∙ C++

www.rapitasystems.com

Revolutionize your
software verif ication

Efficiency, Automation, Reliability+ +

 219

Ada User Journal Volume 40, Number 4, December 2019

Using Evidence-Based Arguments to Support
Dependability Assurance – Experiences and
Challenges
Janusz Górski
Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; Tel: +48 58 347 1909; email:
jango@pg.edu.pl

Abstract

The presentation introduces to the problem of
evidence-based arguments and their applications.
Then, based on the experiences collected during
development and commercial deployment of a
concrete solution to this problem (system NOR-STA)
we overview selected challenges and the ways of
addressing them.

Keywords: Evidence-based argument, assurance
case, conformance case, tool support.

1 Introduction

The interest in using explicit evidence-based arguments
with respect to socio-technical systems was growing over
last forty years. It originated from the concept of safety
case addressing the need to demonstrate safety and then
was generalized to the concept of assurance case
addressing a broader scope of objectives (like security,
reliability, privacy). It has been also recognized that
explicit evidence-based arguments can be used to
demonstrate conformity with pre-defined sets of
structured requirements of standards and other normative
documents, which resulted in the concept of conformance
case.

In this paper we briefly describe selected challenges
which we were facing while developing, implementing
and deploying the Trust-IT methodology and the NOR-
STA system supporting applications of evidence-based
arguments. NOR-STA has been gradually developed in a
series R&D projects: EU sponsored projects DRIVE,
PIPS and ANGEL, Polish-Norwegian Research Fund
sponsored project ERM and European Regional
Development Fund sponsored project NOR-STA. Since
2014 NOR-STA is a commercial product offered by
Argevide, a spin-off company of Gdansk University of
Technology [1]. More about challenges and the related
solutions implemented in NOR-STA can be found in [2].

2 About evidence- based arguments

Argument is an attempt to persuade someone of
something, by giving reasons and/or evidence for
accepting a particular conclusion. This ’something’ we
want to argue about may be, for instance, assurance of

some important property (like safety, security, privacy,
reliability), conformance with a stated set of criteria
(imposed by a standard, norm, directive,
recommendation) or any other property selected as being
of interest to the parties exchanging the arguments. An
example argument could be:

Module correctness argument:

Tests confirm that this software module meets its
requirements because test results are positive
and the tests coverage is sufficient.

Looking more closely to this argument we can identify
two parts which are of different nature: the logic part and
the epistemic part.

The logic part establishes the ‘conveyance’ relationship
between the conclusion (also called claim) of the
argument and the premises of the argument. In our
example the claim postulates that ‘the module meets
requirements’ and the premise postulates the fact: ‘test
results are positive and the test coverage is sufficient’.
The ‘conveyance’ relationship between the two is
established by the strategy of argumentation (the
inference rule) which asserts that from the truth of the
premise we can conclude the claim. It usually needs some
rationale justifying the reasons for acceptance of such
strategy. In our example the strategy of argumentation is:
argumentation by referring to test results and test
coverage and the rationale could be: experience shows
that positive results of tests of adequate coverage reliably
demonstrate fulfilment of the requirements. A graphical
representation of the logic part of our example argument
is given in Figure 1.

Figure 1 Logic part of Module correctness argument

220 Using Evidence-Based Arguments to Support Dependabi l i ty Assurance

Volume 40, Number 4, December 2019 Ada User Journal

The epistemic part of the argument focuses on providing
evidence which in its broadest sense includes everything
that can be used to determine or demonstrate the truth of
the fact referred to in the argument. For instance, the fact
it is raining outside could be demonstrated by a video
stream from the camera looking outside through the
window.

In our Module correctness argument example, such
evidence could include the test plan and the test results for
the considered software module. In our further
considerations we assume that evidence is delivered in
electronic form: text, graphics, image, video, audio,
sensor measurements, etc. A graphical model of the
epistemic part of the example argument is given in Figure
2.

Figure 2 Epistemic part of Module correctness argument

In general, the premises of an argument can, in addition to
facts, also include assumptions imposing constraints on
the context of argumentation as well as more specific
claims (sub-claims) which need further argumentation.
This latter possibility results in hierarchical argumentation

structures of an arbitrary depth. Possible extension of the
Module correctness argument by introducing additional
premises is illustrated in Figure 3.

Convincing arguments can be used to build trust, because
they demonstrate trustworthiness. Such arguments we call
trust cases. For example, a convincing (supported by
evidence) argument that a service is secure increases trust
in the service. The evidence supporting such argument
could include: protective security measures used,

certification procedures passed, penetration tests results,
operating data, development practices used and so on.

In such case, the strategy of argumentation is modified to:
argumentation by referring to test results, test coverage
and testers’ competencies with the assumption that
adequate configuration control is in place.

In our research we have particular interest in two different
types of trust cases: assurance cases which focus on
demonstrating assurance of some chosen (and considered
important) property (like safety, security, privacy,
dependability, reliability etc.) and conformance cases
where the focus is on demonstrating conformity with
some predefined set of requirements (given in standards,
norms, directives, regulations etc.).

The primary objects of interest for developing trust cases
are ICT products, services and processes, however the
scope of applicability of trust cases it very broad and
includes all situations where human or technical objects
establish trust relationships by exchanging arguments
demonstrating their mutual trustworthiness.

3 Argument representation
The main challenge is to decide about the argument
model and the corresponding language of expressing
arguments to provide for adequate expressive power,
understandability and scalability of arguments.

The model used in NOR-STA is presented in Figure 4.

Figure 4 Argument model in NOR-STA

According to the model of Figure 4, the nodes (elements)
of an argument are represented by different graphical
icons. The icons can have textual descriptions (fitting to a
single line) and in addition can have richer descriptions
accessible after selecting a given node. The hierarchy of
argumentation develops from left to right, as a set of
structured lines, each line marked by a proper icon. For
instance, the example Module correctness argument can
be, following the model of Figure 4, represented as in
Figure 5.

4 Communication and co-operation

To fulfil their role of supporting building and establishing
trust, arguments need to be easily communicated between
the interested parties. This leads to the requirement of
controlled argument sharing with the objective to provide
easy access by the authorized parties and simultaneously

Figure 3 Extended Module correctness argument

J. Górski 221

Ada User Journal Volume 40, Number 4, December 2019

to provide adequate protection against unauthorized
accesses. Different roles can be identified while accessing
an argument, for instance argument developer, argument
assessor, argument viewer, argument administrator and so
on. Each of these roles can be refined according to the
needs, for instance we can distinguish different sub-roles
of argument developer: those responsible for logic part of
the argument and those responsible for the epistemic part
(suppliers of evidence). Different roles may also be
associated with different views at the argument, for
instance an auditor of a conformance case can see the
standard requirements and the associated evidence in a
form which best supports his/her task of assessing
conformance with the standard.

The above considerations led to key decisions related to
the NOR-STA system:

 Deploying NOR-STA in accordance with the
SaaS (Software-as-a-Service) model.

 Managing access control in accordance with the
RBAC (Role-Based Access Control) model.

 Providing different views to support different
roles the users play with respect to a given
argument.

5 Argument assessment

Argument assessment is necessary in different scenarios,
like decision making, consensus building or disputes
resolution.

Both, logic and epistemic parts of an argument are
subjected to assessment. The assessment involves
appraisal of the ‘compelling power’ of an argument. The
assessment results can be selected from a two-value scale
{accept, reject} like in case of a mathematical proof, or
from a more complex space distinguishing different levels
of acceptance/rejection and the related uncertainty.
Consequently, we can have different argument
assessment mechanisms which can be applied with
respect to the same argumentation structure.

Referring to our Module correctness argument, the logic
related question is: do successful tests of right coverage
really demonstrate that the module meets its
requirements?. And the epistemic question is: do we
really have positive test results and do the tests
adequately cover the requirements?

Answering positively to the logic question we confirm
that meeting the requirements by a software module can
be demonstrated by developing an adequate test plan,
running the corresponding tests and receiving positive
results of the tests. Note that if accepted, such
argumentation strategy can be reused with respect to other
software modules as well.

If we still doubt about the answer to the logic question,
we can modify the argumentation strategy by adding
additional premises. For instance, in case of our example
argument, the additional premises could be: Assumption:
adequate configuration management in place and Claim:
adequate competencies of testers (as shown in Figure 3).

Answering positively to the epistemic question means that
satisfactory evidence has been provided demonstrating
that the assertion (represented by a given fact) is true in
the considered context. For instance, the fact: test results
are positive can be demonstrated by providing the report
from tests whereas the assertion test coverage is adequate
can be demonstrated by providing the test plan and the
result of the analysis of this plan against the relevant set
of requirements.

Depending on the applied assessment mechanism, the
results of assessment are selected from different scales.
An example of an advanced assessment mechanism can
be the mechanism based on Dempster-Shafer belief
functions implemented in NOR-STA, which supports the
two dimensional space: Decision={rejectable, opposable,
tolerable, acceptable} and Confidence={sure, very high,
high, low, very low, uncertain} from which the assessor
selects his/her assessments. The details of this assessment
mechanism can be found in [3].

From the experience we have so far with the NOR-STA
system, different application domains may require

Figure 5 Module correctness argument in NOR-STA

222 Using Evidence-Based Arguments to Support Dependabi l i ty Assurance

Volume 40, Number 4, December 2019 Ada User Journal

different argumentation assessment mechanisms and
therefore it is essential that the tools supporting
application of evidence-based argumentation were able to
switch between different mechanisms depending on a
particular usage context. Presently, the NOR-STA system
implements some nine different argumentation
assessment mechanisms and its architecture is open to
easily absorb the new ones, if needed.

Let us consider a task of assessing a complex argument
(multiple levels of the argumentation hierarchy and a
large number of facts supported by related evidence). In
most cases assessment of the epistemic part can be split
into a number of independent (local) assessments: each
fact can be considered in isolation and the assessor
assesses to which extent the submitted evidence supports
this fact (for instance, to which extent the submitted
report from testing demonstrates that the results of tests
are positive). The assessment of the logic part can also be
localized, i.e. each argumentation strategy can be assessed
in isolation by looking at its conclusion and its premises.
The problem becomes more complex if we try to
propagate (local) assessments of facts towards the
assessments of claims which depend on these facts. In
case of more advanced assessment mechanisms, manual
realisation of this task can be very laborious and error
prone. The solution is to define the aggregation rules
which can then be implemented and performed
automatically. For instance, such rules for the Dempster-
Shafer based mechanism implemented in NOR-STA are
documented in [3]. Having the aggregation of local
assessments automated, we can assess ‘large’ arguments
with a reasonable effort (NOR-STA users have such
experience with arguments up to several thousands of
nodes).

Another important issue is the way of presenting the
argument assessment results. As arguments are (mostly)
exchanged between people, it is of particular importance
that the assessment results are presented in a human-
friendly way and that they support tasks performed by the
users. In our experience, using colours to distinguish
different values from the argument assessment scale
proven to be particularly effective (basic colours: red
meaning rejection, green meaning acceptance and yellow
meaning uncertainty). These basic colours can be then
mixed to distinguish more fine values, while using more
advanced assessment mechanisms. This way of
visualization not only communicates the overall
assessment (the assessment of the top claim of the
argument) but also provides for easy identification of the
‘weak’ parts of the argumentation and supports decisions
concerning improvement of the considered argument.

6 Size and change management
Arguments can be complex structures composed of a
large number of nodes and integrating large number of
pieces of evidence. Argument can also have a long
lifespan during which the argument is subjected to
changes and modifications. For instance, consider a
conformance argument demonstrating that a given

organisation is conformant with ISO27001 or a safety
argument related to an autonomous vehicle. The scope of
changes will include both, the structure and the evidence
and the arguments will be subjected to different
assessments (for instance, self-assessment, third party
assessment, repeated assessment after certificate
expiration and so on).

6.1 Operating ‘large’ arguments

Large arguments are difficult to handle and to understand
(what does it mean ’large’? From NOR-STA users we
have reports about arguments up to 8000 nodes).
Representing hierarchies of this size in a graphical form
causes problems with visualizing the hierarchy within the
limits of a computer screen, inserting textual descriptions
in graphical symbols and showing dependencies between
nodes in a readable way. The NOR-STA way of
representing the hierarchy from left-to-right (instead of
from top-to-bottom) and representing each node in a
single line is advantageous for large arguments (an
analogy can be the commonly accepted way of presenting
file directory structure as the left-to-right hierarchy
instead of presenting it as a vertical graphical structure).

6.2 Managing massive evidence

A realistic argument (for instance, demonstrating
conformance with a selected standard or demonstrating
safety of a new technology to be applied off-shore) will
integrate many different documents which contain
evidence supporting the argumentation. These can be
electronic documents of any format (textual, graphics,
video, audio etc.) and the documents can reside in
different locations with different access protocols (web
pages, ftp, svn and so on). It is necessary to access these
documents either in their target repositories or,
alternatively, to provide for dedicated and adequately
protected customized repositories. In many cases, the
documents can be large (for instance, a design
documentation of a medical device) and the evidence we
want to refer to is a selected part of such document. In
such case it is advantageous to have a possibility to refer
to this particular part instead of referencing the whole
document.

Often the evidence referred to in the argumentation is
subjected to stringent security constraints (examples are
personal data, trade secrets, reputation related data and so
on). Therefore, while providing support for evidence-
based arguments it is necessary to implement and to
demonstrate conformance with (sometimes very
demanding) security objectives which need to be met and
continuously maintained.

6.3 Change management
Argument structure, the supporting evidence and
argument assessments can be subjected to changes and
modifications. This results in a continuous evolution of
the whole argumentation and calls for an adequate change
management mechanisms.

At the NOR-STA tool level, the following mechanisms
proven their usefulness.

J. Górski 223

Ada User Journal Volume 40, Number 4, December 2019

Accountability of changes where each modification
introduced to the argumentation structure and to the
assessments is recorded in the argument history providing
for the identification of the responsible user.

Baseline mechanism where baseline is a (named)
‘snapshot’ of the current state of the whole argument.
Such baseline can be later used as a well-defined
reference (for instance, a full contents of the conformance
argument which has been third-party assessed to obtain a
formal certificate).

Rollback mechanism which provides access to the full
history of changes and enables to roll-back to any
previous moment from the history, if necessary (for
instance, to choose an alternative way of developing the
argument or to recover from a disaster).

7 Fitting into user business context

Assurance and conformance arguments have multiple
stakeholders and it is important that these stakeholders
can access the argument with their corresponding access
rights. Therefore managing different user accounts and
user access rights is necessary and the role of
administrator of these accounts needs to be distinguished.

The users may maintain multiple arguments where each
argument can have a different concern (for instance,
conformance cases related to different standards,
assurance arguments related to different products,
arguments related to different objectives and so on).
Therefore, it is necessary to provide for different
‘working spaces’ of different arguments and to support
grouping arguments according to different criteria (for
instance, different products, different standards, different
assurance objectives, different organizational departments
and so on).

The NOR-STA system supports users and user rights
management and provides means for introducing structure
into the set of different arguments. Each argument is
maintained in its project (a sort of ‘working space’) where
it undergoes its evolution. The projects can be arbitrarily
organized into folders and the folders structure is
hierarchical (resembling the file directory structure of
operating systems). This mechanism provides for
sufficient flexibility of organizing different arguments
into a structure which meets expectations of user
organisation. Purposeful grouping of projects into folders
also helps in enforcing common access policies with
respect to ‘similar’ arguments.

Assurance (or conformance) case can be treated as an
electronic document which maintains a convincing
argumentation that the user organization achieves some
important objectives (for instance, meeting the safety
requirements by its product or being conformant with
selected standards). In the present business contexts
however, it is often required that such information is
presented in a more ‘traditional’ form, for instance as
printed documents of predefined structure. Therefore the
issue of reports generation cannot be neglected.

The solution applied in NOR-STA is to provide for a
number of pre-defined reports of the metrics related to an
argument and reports presenting the contents of the whole
argument (in pdf and in doc formats) and in addition to
this to provide for integrating with commonly accessible
tools, like Excel, which support different forms of data
presentation. Integration through XML/HTML data and
XLS scripts to process XML data provide for high
flexibility in generating reports in different structures and
formats.

Figure 6 presents an example report generated from NOR-
STA, where the Module correctness argument (shown in
Figure 5) is presented in the GSN notation [4].

Figure 6 GSN representation of Module correctness
argument

8 Integration
Evidence-based argument is not being used in isolation.
Instead, it has to be integrated within the broader context
to which the argument is expected to bring an added
value. In particular, this context can include other systems
supporting the users’ tasks and various repositories which
store documents that are vital to achieving business
objectives of the user organisation. These documents,
produced by business processes (Design, V&V, QA, HR
and others) are the sources of evidence which is referred
to by the argument demonstrating achievement of the
assurance/conformance goals of the organisation.

In NOR-STA system, the key to integration with other
systems is the API (Application Program Interface)
implemented as a set of web services which cover full
functionality of NOR-STA. This provides a technical base
for integration with selected external systems or services,
according with the needs. Examples are Single Sign On
(SSO), Active Directory Federation Services (ADFS),
Azure B2C or Siemens Teamcenter.

Another technical base for integration is XML based
export/import of the whole argument which can then be
processed by dedicated applications, if needed. In
particular, this provides for argument contents
exchangeability with other tools supporting evidence-
based argumentation.

9 Argument structuring and reuse

Evidence-based arguments can be structured following
different (not necessarily orthogonal) decomposition

224 Using Evidence-Based Arguments to Support Dependabi l i ty Assurance

Volume 40, Number 4, December 2019 Ada User Journal

criteria. Examples are: risks based decomposition where
the argument addresses relevant risks and demonstrates
that they are adequately mitigated or architecture/design
model based decomposition where the argument follows
the structure of the considered system, its subsystems and
modules and demonstrates their selected properties.

More support is needed for automatic derivation of
assurance case structure from the results of (standardized)
risk analyses [5] or from the architectural/design models
of a system [6].

Argumentation reuse has the potential of significant
reduction of development effort by standardization of
typical substructures recurring in arguments. A NOR-
STA represented inventory of design patterns of
arguments can be found in [7]. A particular pattern
supporting the reuse of conformance cases is called
conformance template [8]. This is the logic part of the
argument which reflects the structure of the requirements
of a selected standard. As long as the corresponding
standard remain unchanged this logic part can be reused
in in each conformance case which demonstrates
conformity with the standard.

If the standard changes, however (and all ‘living’
standards undergo evolution), the changes need to be
reflected in the conformance template and then
propagated to all conformance arguments that were
created following the template. NOR-STA supports such
automatic propagation of changes introduced to a
conformance template. The intention is to maintain
consistency between the (changing) standard and its
(multiple) applications in various target contexts.

10 Composability
Assurance/conformance cases are being used in different
contexts. For instance, a component produced by its
manufacturer is being delivered with its assurance case
and after being sold to different buyers, is used in
different systems. The developer of the assurance case of
the target system would be interested to refer to the
component assurance case and to reuse its assessment
results. The questions arising in such scenario include:
how to interface the component related assurance case to
the system related assurance case, how to pass the
assessment results of the component related assurance
case and what if this result is context dependent (the
assessment of the component related assurance case can
be different depending on the target system context) and
so on.

Presently, in NOR-STA system there are two mechanisms
supporting composability of assurance/conformance
cases: explicit representation of assumptions and
required/provided interfaces.

Distinguishing a separate node type for representing
assumptions (see Figure 4) provides for explicit
enumeration of the assumptions conditioning a given
evidence-based argument and protects against
assumptions overlooking and omissions. In Figure 3 we
have an explicit assumption that the module is being

tested assuming that adequate configuration control is in
place which prevents against situations where, for
instance, the tests were performed according to an invalid
test plan. While using the Module correctness argument
within the context of the system embedding the module,
we can verify if this assumption is still valid before
accepting the result of the assessment of this argument.

NOR-STA also supports explicit declarations of interfaces
between assurance/conformance case components.
Consider an extended version of the assurance case of our
example software module shown in Figure 3. The premise
adequate competencies of testers is a claim which needs
to be further demonstrated. Assume that this claim has
been demonstrated by a separate Tester competencies
argument which by declaring its provided interface make
this claim and its assessment visible to the outside world.
Inside the module, the claim is demonstrated by, for
instance, using CV-s of the testers as the supporting
evidence.

If the argument shown in Figure 3 declares as its required
interface the claim adequate competencies of testers and
if the two interfaces (the provided one and the required
one) are bound together, then the two modules (the
Module correctness argument and the Tester
competencies argument) form a single argument
independently of if the Tester competencies argument is
also used in other contexts. The results of the assessment
of the tester competencies will be automatically
propagated to each assurance case which is bound with
the Tester competencies argument through the
provided/required interfaces.

11 Conclusions
Argument is a focal point situated between different
stakeholders and addressing their concerns. By
exchanging arguments the users can develop mutual trust
that their concerns are being addressed with the
satisfactory assurance.

In this presentation we have briefly characterized some of
the main challenges and the related decisions which were
made during development and deployment of NOR-STA
– a system supporting development, assessment and
maintenance of evidence-based arguments in different
application contexts.

Presently, NOR-STA is used commercially in different
domains, including medical, oil and gas, automotive,
flight control and others. The short-term strategy of
further development is customer-driven and follows the
needs of current and prospective users. Equally important
is also the long-term strategy which looks into the trends
and tries to identify the future challenges, even if not yet
articulated by the present customers. Two challenges can
be considered as examples.

Firstly, better support for composability of arguments, not
only at the syntactic level (provided/required interfaces)
but also at the semantic level (matching the contexts
within which arguments maintain their validity).

Secondly, continuous assessment of an argument which
follows the changes in the evidence and automatically

J. Górski 225

Ada User Journal Volume 40, Number 4, December 2019

reflects these changes in the assessment of the argument.
This could for instance support the concept of continuous
certification as opposed to the present practices of
repeated certification based on a predefined schedule
(which is being criticized as inadequate for, for instance,
security certificates in a very dynamically changing
landscape of security threats).

Acknowledgement

Research, development and commercial deployment of
NOR-STA had multiple contributors. In particular, the
contribution of the following colleagues is to be
acknowledged (in alphabetic order): dr Łukasz Cyra,
Jakub Czyżnikiewicz (programmer), dr Aleksander
Jarzębowicz, dr Jakub Miler, dr Andrzej Wardziński,
Michał Witkowicz (programmer).

References

[1] Arevide sp. z o.o., www.argevide.com

[2] Challenges in providing support for management of
evidence based arguments,

https://www.argevide.com/wp-content/uploads/2016/05/
Argevide-WP3-Challenges.pdf

[3] L. Cyra, and J. Górski (2011), Support for Argument
Structures Review and Assessment, Reliability
Engineering and System Safety (96), Elsevier, pp.
26-37.

[4] Goal Structuring Notation Community Standard,
Version 2 (2018), https://scsc.uk/r141B:1?t=1

[5] A Wardzinski and P. Jones (2017), Uniform Model
Interface for Assurance Case Integration with System
Models, Computer Safety, Reliability, and Security,
Springer, pp. 39-51.

[6] R Hawkins, I. Habli, D. Kolovos, R Paige, T. Kelly
(2015), Weaving an Assurance Case from Design: A
Model-Based Approach, IEEE Xplore.

[7] M. Szczygielska and A. Jarzębowicz (2018),
Assurance Case Patterns On-line Catalogue, In:
Advances in Dependability Engineering of Complex
Systems. Springer, IND 141625.

226

Using SPARK to Ensure System to Software
Integrity: A Case Study

T. Naks
AdaCore Estonia, Maealuse 2/1, 12618 Tallinn, Estonia;
Tallinn University of Technology; email: naks@adacore.com

M. A. Aiello, S. T. Taft
AdaCore Inc, 150 W. 30th Street, New York, NY 10001, USA; email: {aiello, taft}@adacore.com

Abstract

This paper describes work in progress on a workflow
that supports consistent property-preservation proofs
from early stages of system requirement specifications
down to software requirements and final implementa-
tion. This workflow, called System-to-Software Integrity
(SSI), demonstrates that the implemented software satis-
fies constraints defined in system requirements. In this
paper, we demonstrate two important building blocks
of this workflow. First, SysML to Simulink translation,
which translates system level property specifications to
Simulink, where it is easy to perform design of the con-
trol software. Second, Simulink to SPARK translation,
which supports both checking the consistency of system-
level property specifications as well as verification of
property preservation in the software design.

The approach is demonstrated on a simple example of a
car cruise control simulator.

Keywords: SPARK, SysML, Simulink, System-to-
Software Integrity, observer, property preservation.

1 Introduction
Specification languages that incorporate contracts such as
preconditions, postconditions, and invariants have been in
existence for many years. Examples include the Z notation
from Jean-Raymond Abrial [1], TLA and TLA+ from Leslie
Lamport [2] and Alloy from Daniel Jackson [3]. Certain
programming languages, programming language extensions,
or software-development refinement toolsets have incorpo-
rated such contracts directly into their syntax, including Eif-
fel [4], SPARK (an Ada subset) [5], Ada 20121, Frama-C (C
+ ACSL) [6], and the Java Modeling Language (JML)2. In
other cases, specification languages have been intended to be
stand-alone specifications, with tools designed to help verify
desirable properties, such as functional correctness, safety, or
security at a level above the programming level [2,3]. SpeAR
(Specification and Analysis of Requirements) is such a sys-
tem based on “past” LTL [7], and AADL with AGREE and
Resolute is another [8]. Model-level verification is generally

1https://www.iso.org/standard/61507.html
2https://www.openjml.org

based on compositional Assume/Guarantee reasoning, using
a model checker [7, 8, 9].

Relatively few systems have been developed where specifica-
tions are carried across levels. The B Method, developed by
the originator of the Z notation, was specifically focused on
using a systematic refinement process to go from specifica-
tions to the final code, but this is essentially a manual process,
though aided by tools [10]. Using code generation to enforce
and/or transform contracts to a lower-level representation is a
newer area of research. Approaches based on AADL, SPARK,
Simulink3, and AdaCore’s QGen4 code generator have been
part of some of this research [11, 12]. Other research has
focused on preserving and analysing other properties, such
as code coverage [13] and real-time properties [14]. Some at-
tempts have been made to unify analysis across the modeling
and programming levels [15, 16].

The current work is motivated by the integration problems
in distributed projects where components are developed by
different stakeholders. We are looking for an approach, which
allows to pass relevant subset of requirements to each stake-
holder in a form that is unambiguous and amendable to formal
verification. The main novelty of the approach lies in apply-
ing the same set of property specifications in heterogeneous
development environment with multiple languages.

2 The Workflow
The approach presented in this paper assumes a top-down
workflow in which the initial capture of system requirements
is done in SysML5, followed by algorithm design in Simulink
and implementation in C or Ada. However, we find the tools
supporting this workflow are also useful in bottom-up or
mixed processes.

In the first step of top-down development, the modeler de-
scribes the structure of an application (including components,
interfaces, and interconnections) in the form of SysML Inter-
nal Block Diagrams and requirements in the form of SysML
Requirement blocks. At the end of the specification step, the
system requirements are fully defined and connected to the
components that satisfy each requirement.

3https://www.mathworks.com/products/simulink.html
4https://www.adacore.com/qgen
5https://www.omg.org/spec/SysML

Volume 40, Number 4, December 2019 Ada User Jour na l

T. Naks, M. A. A ie l lo, S. T. Taf t 227

Figure 1: Main steps of the workflow

The next step is formalization of the requirements. This ac-
tivity consists of identifying system-level properties in the
textual requirements and rewriting them as constraints. We
use SPARK as the constraint language, to simplify the trans-
formation and verification workflow.

After the formalization step, our tooling helps to convert
the components and flows from Internal Block Diagrams to
Simulink models that are annotated with synchronous ob-
servers derived from constraints. This step relies on certain
restrictions on the semantics of SysML blocks, which are
discussed later in this paper.

SysML to Simulink conversion produces a subsystem hierar-
chy that reflects the interfaces and connectors defined in the
SysML model. The developer then fills this skeleton with al-
gorithms and validates the algorithms by simulation. Finally,
when the algorithms are completed and the simulation passes
with selected input data, the Simulink to SPARK bridge gen-
erates code from the Simulink model and converts observers
to SPARK pre- and postconditions. The conversion is similar
to the transformation developed in [17], where observers in
Simulink are translated first to Lustre and then further to C.
In our case we do the translation as one step. GNATprove,
SPARK’s prover, analyzes this code via the QGen Verifier
tool, which traces findings in proofs back to the model. This
verification step can be used even when the final implementa-
tion language is C. In this case, one uses intermediate SPARK
code, which is completely hidden by the QGen Verifier tool,
for model verification; once verification is completed, the
QGen code generator can be used for obtaining the final im-
plementation in C.

3 The Case-study
This paper builds on a case study designing a demonstrator
board with a cruise control simulator for a car. The application
consists of a simplified model of car powertrain dynamics
(inspired by [18]), a cruise control system, and user interface
for manual control of the car.

The case study demonstrates the full application lifecycle
from high-level requirements down to implementation. The
final application runs on an STM32F4 board and has a physi-
cal interface controlling the application.

Figure 2: Cruise control simulator components

4 SysML to Simulink
SysML enables systems engineers to collect and organize
information about different aspects of a cyber-physical sys-
tem in one integrated model that describes the relationships
between different parts of that system. Later in development,
during software design and validation of specified behavior,
languages with more dedicated semantics should be used.

The approach taken in this paper relies on Simulink as an
algorithm design and simulation tool. The workflow comple-
ments the existing transformations with axiomatically defined
interface contracts. After defining the system architecture and
collecting requirements, the next step is formalization of the
requirements. This is done by rewriting the requirements as
constraints using the SPARK language and annotating them
as Precondition or Postcondition. In other words, we classify
the constraints as either assumptions or guarantees.

Figure 3: Refinement of requirements with constraints

The early prototypes of our SysML to Simulink conversion
tool were based on mappings defined specifically for the
QGen tool. We are now working on harmonizing the trans-
lations with the recent OMG SysPhS6 standard for linking
SysML and simulation environments.

6https://www.omg.org/spec/SysPhS

Ada User Jour na l Vo lume 40, Number 4, December 2019

228 Using SPARK to Ensure System to Sof tware In tegr i ty : A Case Study

For formalization of the requirements, we considered two lan-
guages: the Object Constraint Language (OCL)7 and SPARK.
OCL links naturally with SysML, allowing it to reference
elements in properties. While the resulting strong binding
between the two languages provides the advantage of clearer
specifications, it also requires the models to be more detailed.
Our vision is that the first manifestation of requirement-based
constraints is rather loosely coupled. The refinement of the
constraints happens later, when it is possible to validate them
on Simulink models. Given that support for the standard OCL
is already built in to case tools supporting SysML, and chang-
ing the semantics would be confusing, we decided to rely on
SPARK from the beginning of the workflow.

Importantly, in our use of SPARK, we provide a more ax-
iomatic basis to enable modelers to state high-level properties
directly at the level of requirements. This approach allows
us to talk about behavior even before the behavior has been
fully defined. Thus by using a different language, we achieve
greater flexibility while simultaneously setting the stage for
early, high-level analysis.

Constraints are allocated to components indirectly through
requirement blocks, as shown in Figure 3. The transformation
from SysML to Simulink converts blocks to Subsystems,
Ports to subsystem ports, and constraints to observers. In the
case study, constraints attached to the ControlSubsystem are
attached to corresponding Simulink subsystem as observers,
as shown in Figure 4.

Figure 4: Control subsystem with observers

5 Simulink to SPARK
The observers composed from the constraints in the SysML
model are already executable and can be used for monitoring
the simulation once the subsystems expressing functional
blocks are complete. However, our final goal is to prove
the compliance of the developed algorithms with the design
constraints. We do this proof by converting the whole model
to SPARK and using GNATprove. During the conversion, the
observer subsystems are converted to pre- and postconditions
according to their original marking in SysML.

7https://www.omg.org/spec/OCL

From the example in Figure 4, the property ToggleOnOff is
implemented in Simulink as shown in Figure 5.

Figure 5: Simulink diagram implementing the ToggleOnOff ob-
server

This property says that when the brake is not active and the
toggle button is pressed, the system will toggle its enable
state. The check for the brake status is critical, as the cruise
control system should not be enabled if the brake is active.

QGen translates the property from Simulink to SPARK like
this:

function check
(CC_Toggle : Boolean;
CC_Enabled : Boolean;
BrakeValue : Integer_16;
CC_Enabled_Old : Boolean) return Boolean is

(if BrakeValue <= 0 and then CC_Toggle then
(if CC_Enabled_Old then not (CC_Enabled)
else CC_Enabled)

else True);

The observer function is attached as a postcondition to the
function generated for the ControlSubsystem by the QGen
code generator that describes one execution (one step) of the
controller. After conversion, we use GNATProve to show that
the property holds for the code generated from the model. It
is interesting to note that the observer is stateful in Simulink
(the UnitDelay block connected to the input “CC_Enabled”)
whereas the postcondition is not. Transformation associates
the single-step memory to previous computing step and uses
‘Old for obtaining the value.

procedure comp
(ThrottleValueSet : Integer_16;
BrakeValue : Integer_16;
CC_Toggle : Boolean;
CC_Enabled : out Boolean;
−− PARAMETERS OF OTHER PORTS NOT SHOWN −−
State : in out controlSubsystem_State)

with Post =>
(ToggleOnOff.check

(CC_Toggle, CC_Enabled,
BrakeValue, CC_Enabled’Old));

This approach is somewhat limited, however, and assumes
both that the value produced in the output of a computation
step is not modified by other processes between two comput-
ing steps and and also that past values are not required for
input parameters. We are currently working on an extension
to this process that will allow access to the full memory of
the observed subprogram. This work, as well as the details of
the proof, are out of scope for the current paper.

Volume 40, Number 4, December 2019 Ada User Jour na l

T. Naks, M. A. A ie l lo, S. T. Taf t 229

6 Conclusions
This paper demonstrates a workflow for transforming property
specifications from a high-level architectural model specified
in SysML to Simulink and then from Simulink to SPARK.
Once the SPARK code is generated, it is possible to examine
the code with static analyzers and proof checkers. The auto-
mated workflow from models to code enables the propagation
of verification results back to the model, so that they can be
used for either correcting the model or refining constraints.
Such an integrated approach offers several advantages:

First, we do not expect a full behavioral specification from
the systems engineer. The primary goal of the SysML model
is to describe the architecture and data flows between dif-
ferent components. Property specifications are attached to
architectural components and appear first as loosely coupled
constraints. The consistency between different constraints is
checked later.

Second, we couple the SysML and Simulink design by trans-
ferring the constraints to Simulink as observers and automat-
ing the step verifying the compliance of the behavioral speci-
fication with the observers.

Third, we use the same generated code both as the means of
model verification as well as the means of final implementa-
tion. There is no danger that the properties verified on the
model are lost in the course of implementation.

Finally, we use of SPARK for property specifications at all
levels, from SysML to program code, which ensures consis-
tency of verification results. Although the Simulink uses a set
of blocks for executing the observers, the creation of these
blocks (and, in future work, also back-propagation of mod-
ifications) is fully automated: one can work with the same
language throughout the whole process.

There are several opportunities for extending this work. Cur-
rently, we are focusing on two topics:

First, we are working on improving the support for reasoning
about the past states of the observed model.

Second, we are exploring possibilities to improve the success
of automatic proof.

References
[1] J. Abrial, “Data semantics,” in Data Base Manage-

ment, Proceeding of the IFIP Working Conference Data
Base Management, Cargèse, Corsica, France, April 1-5,
1974., pp. 1–60, 1974.

[2] L. Lamport, “The temporal logic of actions,” ACM Trans.
Program. Lang. Syst., vol. 16, pp. 872–923, May 1994.

[3] D. Jackson, “Alloy: A lightweight object modelling
notation,” ACM Trans. Softw. Eng. Methodol., vol. 11,
pp. 256–290, Apr. 2002.

[4] B. Meyer, Object-oriented software construction, vol. 2.
Prentice hall New York, 1988.

[5] B. Carre, “Program analysis and verification,” in High-
integrity software, pp. 176–197, Springer, 1989.

[6] M. Delahaye, N. Kosmatov, and J. Signoles, “Com-
mon specification language for static and dynamic anal-
ysis of c programs,” in Proceedings of the 28th An-
nual ACM Symposium on Applied Computing, pp. 1230–
1235, ACM, 2013.

[7] A. W. Fifarek, L. G. Wagner, J. A. Hoffman, B. D.
Rodes, M. A. Aiello, and J. A. Davis, “Spear v2. 0:
Formalized past ltl specification and analysis of require-
ments,” in NASA Formal Methods Symposium, pp. 420–
426, Springer, 2017.

[8] E. T. McGee and J. D. McGregor, “Composition of
proof-carrying architectures for cyber-physical systems,”
in Proceedings of the 19th International Conference
on Software Product Line, SPLC ’15, (New York, NY,
USA), pp. 419–426, ACM, 2015.

[9] D. Balasubramanian, G. Pap, H. Nine, G. Karsai,
M. Lowry, C. Păsăreanu, and T. Pressburger, “Rapid
property specification and checking for model-based
formalisms,” in 2011 22nd IEEE International Sympo-
sium on Rapid System Prototyping, pp. 121–127, IEEE,
2011.

[10] J.-R. Abrial, “The b-book,” 1996.

[11] J. Hugues and C. Garion, “Leveraging ada 2012 and
spark 2014 for assessing generated code from aadl mod-
els,” in High Integrity Language Technology, HILT 2014,
(Portland, US), pp. 39–46, 2014.

[12] M. Bordin, C. Comar, E. Falis, F. Gasperoni, Y. Moy,
E. Richa, and J. Hugues, “System to software integrity:
A case study,” in Embedded Real-Time Software and
Systems 2014, (, FR), 2014.

[13] R. Kirner, “Towards preserving model coverage and
structural code coverage,” EURASIP Journal on Embed-
ded Systems, vol. 2009, no. 1, p. 127945, 2009.

[14] I. Dragomir, I. Ober, and C. Percebois, “Contract-based
modeling and verification of timed safety requirements
within sysml,” Software & Systems Modeling, vol. 16,
pp. 587–624, May 2017.

[15] M. Broy, K. Havelund, and R. Kumar, “Towards a uni-
fied view of modeling and programming,” in Interna-
tional Symposium on Leveraging Applications of Formal
Methods, pp. 238–257, Springer, 2016.

[16] V. Bonfiglio, L. Montecchi, F. Rossi, P. Lollini, A. Patar-
icza, and A. Bondavalli, “Executable models to support
automated software fmea,” in 2015 IEEE 16th Interna-
tional Symposium on High Assurance Systems Engineer-
ing, pp. 189–196, IEEE, 2015.

[17] A. Dieumegard, P.-L. Garoche, T. Kahsai, A. Taillar, and
X. Thirioux, “Compilation of synchronous observers as
code contracts,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing, SAC ’15, (New
York, NY, USA), pp. 1933–1939, ACM, 2015.

[18] “Engine timing model with closed loop control,
https://se.mathworks.com/help/simulink/slref/engine-
timing-model-with-closed-loop-control.html,” accessed
2019-04-30.

Ada User Jour na l Vo lume 40, Number 4, December 2019

230

Scenario-Based Validation & Verification, the
ENABLE-S3 Approach

Joan J. Valls, Miguel García-Gordillo, Sergio Sáez
Instituto Tecnológico de Informática, Valencia, Spain; email: {jvalls, miguelgarcia, ssaez}@iti.es

Abstract

Automated systems can be found on many current vehi-
cles, either land, air or maritime. The reliability, safety
and robustness of these systems is extremely important,
hence validation approaches need to adapt to the ever-
evolving necessities of the industry. The ENABLE-S3
architecture addresses the problem of extensive testing
by introducing a set of tools and methodologies that can
be used to build up a testing environment for different
domains. In this manuscript, a special focus is given
to the solution developed for the Reconfigurable Video
Processor from the aerospace domain.

Keywords: ENABLE-S3, validation, verification, sce-
nario.

1 Introduction
Advances in the development of automated systems can be
assessed with the millions of test kilometers that have already
been travelled by automated vehicles on public roads. These
kind of technologies are leading to improvements in safety, in
a more environmental friendly and efficient driving, as well as
reducing the number of accidents. Similar statements can also
be said for other highly Automated Cyber Physical Systems
(ACPS).

Demonstrating the reliability, safety, and robustness of this
technology is an arduous task that requires a thorough analy-
sis of the system behaviour under all conceivable situations
and potential environmental conditions. There is a lack of
cost-effective, commonly accepted verification & validation
(V&V) methods. This has been identified as the main road-
block for product homologation, certification and later com-
mercialisation. For instance, some studies [1] state that more
than 100 million km of road driving are required to prove
that an automated vehicle is statistically as safe as a manually
driven one.

In the current digital age, products of the aerospace industry
have to fulfill the needs of the user, hence it needs to keep up
with the pace of technological developments. Even though
aerospace products - specifically satellites and aircrafts - have
a very long lifetime, they need to show higher flexibility
and better performance in their usage. New solutions are
expected to be cheaper, reliable and reach the market in less
time. In the case of satellites, for example, this is due to
the pressure of NewSpace [2]. The use of Commercial Off-
The-Shelf (COTS) components is one of the most evaluated

ways to achieve better performance and lower costs. However,
their applicability needs to be tested and adapted, e.g. to the
space environment, and their suitability in terms of safety
and security needs to be checked, e.g. in aerial transport.
In the ENABLE-S3 project a lot of effort has been put into
addressing the problem in extensive testing these components
to guarantee that a sufficient confidence in its reliability and
security is achieved. New approaches in system validation
are in demand.

The remainder of this manuscript is organised as follows:
Section 2 introduces the architecture and methodologies de-
veloped during the ENABLE-S3 project. Section 3 presents
the difficulties encountered in the aerospace domain and in
the Reconfigurable Video Processor use case, particularly.
Section 4 describes the scenario-based virtual validation &
verification approach followed in the use case and summarises
the test framework to evaluate the physical system. Finally,
Section 5 offers some concluding remarks.

2 ENABLE-S3 Approach

Figure 1: ENABLE-S3 validation toolchain architecture

The aim of the ENABLE-S3 project is to provide the required
means for the verification & validation of ACPS. The solu-
tion pursued in the project is the identification of relevant
scenarios, the automatic derivation of manageable sets of test
cases from scenarios as well as the application of automated
virtual V&V approaches in combination with physical test-
ing. A consortium of 68 industry and research partners from
different application domains (automotive, aerospace, rail,
maritime, health and farming) have joined their forces to de-
velop the required technology bricks. Due to this diversity of

Volume 40, Number 4, December 2019 Ada User Jour na l

J. J. Va l ls, M. Garc ía-Gord i l lo, S. Sáez 231

Figure 2: ENABLE-S3 testing environment in the aerospace use case

partners and application domains, the project does not aim
for a single common, generic software solution. The idea
pursued was the development of a common methodology, a
basic verification and validation toolchain architecture (Fig-
ure 1) and a set of reusable technology bricks, which can
be used to build up a testing environment for use cases in
different industry domains (Figure 2). The complete results
of the project have been published [3]. The remainder of
this manuscript summarises the work done in the aerospace
domain use case. More detailed information on this use case
can be found in [4].

3 Aerospace Domain Use Case
The main focus of the aerospace domain use case is the im-
provements in the validation and verification processes of a
Reconfigurable Video Processor (RVP) that will be sent to
space missions.

One of the main problems of autonomy in space applications
is that once a mission is in orbit it is very difficult, even
neigh impossible, to replace a processing module on board.
Application-Specific Integrated Circuits (ASICs) and antifuse-
based FPGAs are the most common solutions for the vast
majority of space digital systems. Problems related to these
technologies are the non-recurring engineering costs and the
lack of flexibility that is demanded in the NewSpace which
is currently being defined. For that reason, SRAM-based FP-
GAs that serve as programmable devices with shorter design
cycles and reduced NRE could alleviate the aforementioned
inconveniences. Additionally, modern FPGAs also offer the
possibility to be reprogrammed on-the-fly which makes them
more interesting for remote long-term space missions.

However, in space missions, there are some unique environ-
mental challenges that need to be accounted for and that
may have a large impact on the utilization of these technolo-
gies. Despite the high performance, flexibility and low design
costs, the volatile nature of SRAM-based FPGAs makes them

highly susceptible to radiation effects. When a particle hits
and SRAM-based device, the content of one or several cells
may change. When this event happens, the implemented
functionality may also change which can have catastrophic
consequences. Hence, commercial parts employing these
FPGAs cannot provide a reliable hardware for space envi-
ronment since they have not been designed following secure
radiation-hardened and fault-tolerant design processes.

The ARTICo3 architecture [5] is a hardware-based process-
ing architecture for high-performance embedded reconfig-
urable computing. It uses Dynamic and Partial Reconfigu-
ration (DPR) in SRAM-based FPGAs as its technological
foundation. The architecture supports and enables run-time
adaptable implementations of data-parallel algorithms. Two
different types of parallelism can be exploited using AR-
TICo3: (1) by using several replicas of the same hardware
accelerator it provides data-level parallelism, and (2) by using
different hardware accelerators it enables task-level paral-
lelism. Although these features offer fault tolerance in the
reconfigurable partition, additional mechanisms are required
in a safety-critical context, as the space scenario of the use
case.

To correct transient faults in memories, some techniques,
generally called scrubbers, are utilised. In the RVP they have
been implemented in different layers: real-time processors
(ARM Cortex R5), platform management unit (PMU), and
dedicated hardware cores inside the FPGA.

A wide range of Cyber-Physical Systems (CPS) applications
can be developed with the ARTICo3 framework. The appli-
cations should support HW/SW partitioning, so that certain
tasks can be offloaded to and executed in hardware accelera-
tors. Two algorithms have been implemented in regards to the
use case, which follow the requirements of the framework.

On-board image compression techniques are mandatory in
space remote sensing missions to reduce data size prior to

Ada User Jour na l Vo lume 40, Number 4, December 2019

232 Scenar io-Based Val idat ion & Ver i f i ca t ion, the ENABLE-S3 Approach

Figure 3: Art2kitekt Scheduling Simulation Tool

sending them to ground stations where they are processed. In
this case, a lossy extension of the Consultative Committee
for Space Data Systems 123.0-B-1 Lossless Multispectral
and Hyperspectral Image Compression algorithm has been
developed [6]. The algorithm provides a trade-off between
its compression efficiency and the design complexity. The
output data constitute a variable-length encoded bitstream
from which the original image can be fully recovered. It
uses a scheme based on prediction and entropy coding of the
resultant prediction residuals, i.e. the differences between
each input sample and its corresponding prediction value.

Guidance, Navigation and Control engines will allow au-
tonomous navigation of spacecrafts, including traveling to
planets or asteroids surfaces, orbiting around those stellar
bodies, etc. Accurate positioning is required to enable pin-
point landing ability. Several vision-based navigation algo-
rithms have been implemented, and since they are compu-
tationally intensive, the hardware acceleration that can be
obtained thanks to the accelerators in ARTICo3 will be es-
sential. Specifically the algorithms that have been developed
are: Absolute Navigation Algorithm, Relative Navigation
Algorithm, and Stereo Vision Algorithm.

4 Scenario-based virtual V&V
Since the RVP for space missions cannot be validated under
real conditions, a scenario-based virtual validation campaign
is performed. This virtual V&V campaign aligns to the fol-
lowing main objectives of ENABLE-S3:

• reduction of expensive testing time in nuclear facilities;

• optimization of the test setup through lab testing and
prior to real radiation testing;

• strengthen critical parts of the design in early stages of
the development;

• optimization of the component qualification effort.

4.1 Model-in-the-Loop
First step of the validation will be done at the model level. The
RVP is modelled and analysed in order to discard unfeasible
scenarios early on. A test scenario is planned, inspired by
the different stages a spacecraft may encounter during a real
space mission. The model includes the adaption capabilities
of the RVP, i.e. the recovery mechanism/fault mitigation
systems and the reconfiguration mechanisms to handle the
different operational modes and its transitions.

4.1.1 Platform and application models
The art2kitekt tool suite is used to assist in the V&V process,
more concretely, its modelling features that help in the design
process of high integrity systems with real-time constraints.

A collection of components such as processors, memories,
buses and devices are offered by the framework and allows
the engineer to build an heterogeneous system that suits their
needs. The desired system model is built by creating instances
of defined component types (e.g. the user can define their
own processor types) and by connecting them through buses.
The current version of the framework allows the instantiation
of processing devices, i.e. components that are not processors
but which are able to execute code (e.g. an accelerator). This
also includes the programmable devices part of the ARTICo3
architecture.

The specification model that describes the application con-
sists of a series of independent execution flows comprised
of several activities. In some contexts they are referred to as
end-to-end flows and tasks. These flows have different activa-
tion patterns, i.e. either a periodic activation or an sporadic
activation after certain event has been issued. Each flow has
several activities that model the inner functionality and the
precedence relationships between them. All activities can be
refined from coarse to fine-grain modelling as the engineer
considers necessary.

Volume 40, Number 4, December 2019 Ada User Jour na l

J. J. Va l ls, M. Garc ía-Gord i l lo, S. Sáez 233

4.1.2 Scheduling Simulation Tool
Schedulability analysis is one of the most important evalua-
tions of a system, especially in hard real-time systems [7, 8],
in which missing a deadline can lead to catastrophic conse-
quences. There are several formal techniques to analyse the
worst-case response time of tasks [9]. In some scenarios,
these techniques do not always provide exact solutions, for
example in distributed hard real-time systems [10]. They
work with assumptions such as all tasks being independent
or requiring some restrictions in order to apply them, hence
results are pessimistic. This, in turn, brings the inefficient
use of the computing power of real-time systems in order to
guarantee the feasibility of its schedulability.

A complementary approach to performing off-line analysis
with formal techniques is the evaluation of the real-time sys-
tem through simulation of its real-time behaviour. Although
simulation cannot assure the validation of a system, it can
help with the study and understanding of its behaviour and
limits. Some of the advantages offered by simulation that
make for an interesting tool are:

• there is no probe effect (no disturbance) on the system
due to instrumentation, which can be problematic in
real-time systems;

• the engineer can replay scenarios with ease in order to
evaluate how changing the studied tasks, or even the
executing platform, may affect the results;

• the effect of non-static or non predictable events can be
studied.

A new scheduling simulation tool has been integrated into
the art2kitekt framework, a screenshot of which is depicted
in Figure 3. The implemented tool adapts to the specific
requirement of the use case. For instance, it has the capability
of simulating non periodic events such as the presence of a
fault in the system due to radiation. Also, the tool incorporates
functional modes and its mode changes, in order to represent
and analyse the different behaviour of the system during each
of its mission phases, since it is essential to guarantee the
fulfilment of the deadlines not only during each operational
mode, but also during the transitions between them. In this
manner, the engineer can model several scenarios to have a
more detailed analysis and this leads to a reduction of the test
procedure by detecting unfeasible scenarios in early stages of
the development.
4.2 Hardware-in-the-Loop
In the next steps, the aforementioned simulation models
must be implemented using functional software for testing
in the final hardware. The model components are step by
step replaced by software components (SiL, Software-in-
the-Loop) and executed in the real hardware components
(HiL, Hardware-in-the-Loop), and finally, the overall system
is tested. This methodology requires a flexible and safety
simulation framework with the capability of communicating
with the hardware platform, complying with the real-time re-
quirements of the System Under Test (SUT). This framework
should help in integrating the different technology bricks in-
volved in the tests and in collecting the results provided by
them.

4.2.1 Test Framework
The ENABLE-S3 architecture defines the generic test frame-
work that is comprised of the test execution platform and
the test management. Different applications are involved in
these processes and are coordinated by art2kitekt, in order to
generate the test scenarios and to execute the SUT with the
required test configurations.

Figure 4 depicts the validation platform in the aerospace use
case that has been developed over a board based on a Xilinx
Zynq Ultrascale+ MPSoC. It is composed of (1) a Real-Time
Processing Unit (RPU), (2) a Programmable Logic FPGA-
based unit (PL), and (3) a general Application Processing Unit
(APU). The RPU and the PL are in charge of executing the
SUT, and the APU is responsible of executing the embedded
part of the Test System (TS). Both, the SUT and the TS,
coexist in the same system but running in different domains.

A bidirectional communication protocol between the TS and
the SUT has been implemented thanks to the capabilities
of the MPSoC: the shared memory and the Inter Processor
Interrupt device. With the aim of sending large messages
between processors using a zero-copy approach and a low-
latency transmission. This communication permits (1) to
configure the SUT, (2) to coordinate the test execution with
the Test System, and (3) to collect the output measures to
allow later processing and visualization.

The test scenario is composed of several Application Pro-
cesses (APs) running in the TS processor, that are connected
with their counterpart in the SUT processor. The different APs
involved in the tests are the gateway between the SUT and
the external applications, in charge of simulating the sensors
and the data providers necessary to generate the scenarios.
Thanks to this architecture, the TS provides an interface to
help in the integration of independent test applications.

Furthermore, the system coordinates the different APs and
the SUT, using a common command interface, that permits to
configure the whole system with the same parameters and to
coordinate its execution. The TS coordinator, based on a state
machine approach, allows the application to be commanded,
waiting for them and avoiding APs from breaking the test
timing.

In the aforementioned test platform, art2kitekt offers both,
the low level architecture to build the test system, and the user
interface to configure the scenarios and to visualise the test
results. This tool suite has the goal of helping the engineer to
control the system in the whole V&V process.
4.2.2 Monitoring Tool
Observing the behaviour of a real-time system helps the en-
gineer in several ways in the V&V process. In early phases
of the development, observed execution time, mixed with
the estimated one, can be used to analyse the system and to
ensure the fulfilment of the temporal constraints. In addition,
comparing the observation with the expected behaviour helps
to find incorrect implementations and to improve the initial
model.

The art2kitekt toolsuite has been extended to provide a run-
time monitoring tool [11] with the capability of collecting

Ada User Jour na l Vo lume 40, Number 4, December 2019

234 Scenar io-Based Val idat ion & Ver i f i ca t ion, the ENABLE-S3 Approach

Figure 4: Test framework architecture

statistics of the SUT, of processing them, and of displaying
the results in a unified interface.

This new service, integrated into the Test Framework (see
section 4.2.1), has been made with the purpose (1) of find-
ing system events not taken into account in the initial model,
(2) of obtaining a better approximation of the system perfor-
mance, and (3) of computing the observed temporal behaviour,
defined by the Observed Worst-Case Execution Time and the
Observed Worst-Case Response Time.

The monitoring tool allows the engineer to discard unfea-
sible temporal configurations of the SUT and to define the
component implementations to be optimised. It also allows
collecting application specific data, such as fault conditions
or the use of shared resources, with the aim of validating the
system executions.

An intrusive but small overhead software technique has been
developed to collect the necessary data and to compute the
temporal information of the test executions. A trace recorder
component must be added to the SUT in order to be able to
store the different temporal events and the time when they
have been executed. The implementation complies with the
Test Framework interfaces and with its internal communica-
tion protocol.
4.2.3 External applications
In order to build the overall test scenario, external applications
are connected to the test framework using the APs interface.
They must provide the necessary information to simulate the
environment or to analyse the output data, that can be used in
a close-loop simulation or to verify the system behaviour.

Fault Injector The possibility of injecting real faults in
the FPGA, according to the expected failure obtained by
analyzing the radiation environment, allows the evaluation
of the behaviour of the designs installed in the SUT in the
different stages of development. The fault injector permits the
development of test set-ups adapted to the failures expected.

This, in turn, reduces the number of visits to the BEAM,
the testing time, and, in general, provides robustness against
radiation to the design.

The Fault Injection Engine is a mix of the hardware on the
actual device in which the engineer wants to inject faults and
a software, which is capable of controlling this hardware. Ver-
ification and validation are essential steps in the development
process of any autonomous system and as such represent key
targets of ENABLE-S3.

Image server The on-board image compression algorithm,
implemented in the exposed use case, must be connected to
a real camera, provider of the hyperspectral images to be
compressed. In order to emulate this behaviour, an hyperspec-
tral image server is connected to the test framework via AP,
working as an input sensor from the point of view of the SUT.

DL-Simulator The vision-based navigation algorithms in-
tegrated in the SUT needs, not only the hyperspectral images
provided by the image server, but also the spacecraft sensors
data, in order to execute the navigation filter and to manage
the control actuators. For this reason, a specific space simula-
tor (DL-Simulator) has been integrated in close-loop into the
test system using the APs, providing the data of the emulated
sensors to the SUT and using the actuator signals generated by
the on-board navigation to manage the simulated spacecraft.

5 Concluding Remarks
The developments achieved in the aerospace use cases in
ENABLE-S3 allow testing the applicability and suitability of
COTS extensively. Moreover, evaluating their performance,
by simulating the physical environment and assessing the
safe and secure placing before testing under real conditions,
reduces the cost of test campaigns and to acquire a greater
knowledge about the behaviour of the system. This opens
the possibility of new more flexible developments, with high

Volume 40, Number 4, December 2019 Ada User Jour na l

J. J. Va l ls, M. Garc ía-Gord i l lo, S. Sáez 235

performance and at a lower cost than using the traditional
approach of aerospace.

Acknowledgements
This work has been conducted within the ENABLE-S3 project
that has received funding from the ECSEL Joint Undertaking
under grant agreement No 692455. This joint undertaking
receives support from the European Unions HORIZON 2020
research and innovation programme and Austria, Denmark,
Germany, Finland, Czech Republic, Italy, Spain, Portugal,
Poland, Ireland, Belgium, France, Netherlands, United King-
dom, Slovakia, Norway.

References
[1] H. Winner and W. Wachenfeld, “Absicherung automatis-

chen Fahrens, 6,” FAS-Tagung München, Munich, vol. 9,
2013.

[2] G. Martin, “NewSpace: The emerging commercial
space industry,” tech. rep., NASA Ames Research Cen-
ter, 2015.

[3] A. Leitner, D. Watzenig, and J. Ibanez-Guzman, Valida-
tion and Verification of Automated Systems: Results of
the ENABLE-S3 Project. Springer International Publish-
ing, 2019.

[4] L. Armesto Caride, A. Rodríguez, A. Pérez Garcia,
S. Sáez, J. Valls, Y. Barrios, A. J. Sanchez Clemente,
D. González Arjona, Á. J.-P. Herrera, and F. Veljković,
Reconfigurable Video Processor for Space, pp. 231–249.
Validation and Verification of Automated Systems: Re-
sults of the ENABLE-S3 Project, Springer International
Publishing, 2019.

[5] A. Rodríguez, J. Valverde, J. Portilla, A. Otero,
T. Riesgo, and E. de la Torre, “FPGA-Based High-
Performance Embedded Systems for Adaptive Edge

Computing in Cyber-Physical Systems: The ARTICo3
Framework,” Sensors, vol. 18, no. 6, p. 1877, 2018.

[6] R. Guerra, M. Díaz, Y. Barrios, S. López, and
R. Sarmiento, “A Hardware-Friendly Algorithm for the
On-Board Compression of Hyperspectral Images,” in
2018 9th Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS),
pp. 1–5, IEEE, 2018.

[7] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and
A. K. Mok, “Real time scheduling theory: A histori-
cal perspective,” Real-time systems, vol. 28, no. 2-3,
pp. 101–155, 2004.

[8] G. C. Buttazzo, Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications,
vol. 24. Springer Science & Business Media, 2011.

[9] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G.
Harbour, A Practitioner’s Handbook for Real-time Anal-
ysis. Norwell, MA, USA: Kluwer Academic Publishers,
1993.

[10] K. Tindell and J. Clark, “Holistic schedulability analysis
for distributed hard real-time systems,” Microprocess.
Microprogram., vol. 40, pp. 117–134, Apr. 1994.

[11] M. García-Gordillo, J. J. Valls, and S. Sáez, “Hetero-
geneous Runtime Monitoring for Real-Time Systems
with art2kitekt,” in 2019 24th IEEE International Con-
ference on Emerging Technologies and Factory Automa-
tion (ETFA), pp. 266–273, Sep. 2019.

Ada User Jour na l Vo lume 40, Number 4, December 2019

236

Volume 40, Number 4, December 2019 Ada User Journal

Maintaining Trust in VANETs Using Blockchain
Ravi Tomar

School of Computer Science, University of Petroleum and Energy Studies, Dehradun, India; email:
ravitomar7@gmail.com

Sarishma
M. Tech. Computer Science and Engineering Faculty of Technology, Uttarakhand Technical University,
Dehradun, India; email: sarishmasingh@gmail.com

Abstract

Vehicular ad-hoc networks are networks formed by
fast moving vehicles which come in contact
momentarily and exchange information. Since it’s an
ad-hoc network, it becomes difficult to maintain trust,
security and authenticity of information being
exchanged in the network. In this paper, we leverage
the concepts of blockchain to maintain trust in the
network. Since blockchain provides a tamperproof,
decentralized mechanism to store data, we use it to
store information related to events such as collision,
accident, SOS etc. The information stored on
blockchain can be used to validate it at later points of
time so as to minimize the false benefit cases by use of
Proof of Location certificates. The proposed system
has the potential to increase the trust of end users in
VANETs. It can also be integrated into the design of
future vehicles because of its ease of implementation.
The paper also discusses the benefits and constraints
of the proposed model along with the related future
work.

Keywords: Vehicular Ad-hoc Networks, blockchain,
Proof of Location.

1 Introduction

Information and Communication Technology have
penetrated all the major spheres of human life in the recent
times. Vehicular networks form one such case where
vehicles are being equipped with smart devices so as to
enable exchange of information between vehicles.
Exchanging right information at right time may lead to
numerous benefits such as saving human lives, reducing
traffic overhead, decrease in resource consumption etc. In a
vehicular ad-hoc network, vehicles act as collectors as well
as disseminators of information and connect to one another
in an ad-hoc manner [1]. The vehicles are fast moving,
highly dynamic entities which restrict the time of contact
between vehicles. This time restriction leads to compromise
with respect to security in the network. The information is
passed between vehicles but there is hardly enough time to
authenticate and validate the identification of the sender
and the information sent. This constitutes as one of the
serious drawbacks when it comes to VANETs.

Concept of blockchain was first introduced in 2008 by
Satoshi Nakamoto [2] in a white paper. Around 2012, its

applications revolutionized the digital transaction
environment and soon transformed itself into one of the
securest mechanisms to do business. Blockchain can be
thought of as a data structure which stores data in a
timestamped manner making it tamperproof as data once
written cannot be changed at later points of time. Today
blockchain finds application in fields such as health,
finance, asset management, logistics, industries, Internet of
things, ownership rights [3], etc.

Vehicular ad-hoc networks are commanding a great deal of
research in the current scenario as they will give way to
what we call as Intelligent Transport Systems. However,
securing the network and validating the information still
remains a challenge. Considering the many benefits of
using blockchain, in this paper we propose to implement it
with respect to Vehicular ad-hoc networks. The aim is to
make the networks more secure, information more reliable
and to identify malicious nodes or outliers. We propose a
detailed system model which will work on an algorithm to
tailor the blockchain concept with respect to VANET’s
needs. We also propose potential applications of the
concept which can help in significant reduction of
monetary losses occurring due to false cases and behavior
of users.

The rest of the paper is organized as follows: Section II
outlines the related work where we focus upon the work
already which has been done on the topic. Section III and
IV covers the background of Vehicular ad-hoc networks
and Blockchain respectively. Section V gives our proposed
work along with assumptions, system model and the
associated algorithm. Section VI covers the main
applications where the concept can be utilized. The benefits
of the proposed work and the challenges are presented in
Section VII. Future work which can be done in the area is
then given in Section VIII, after which the paper is
concluded.

2 Related Work

In this section, we explore the previous work done in the
field of integration of VANETs and Blockchain. VANETs
as well as Blockchain have attracted tremendous research
focus on an individual basis but not much has been done in
the grey area where both can be integrated. Some of the
work which has been done include:

R. Tomar, Sar ishma 237

Ada User Journal Volume 40, Number 4, December 2019

 R. Shrestha et al. [4] propose a real world public
blockchain which focuses on trustworthiness of nodes
by adjusting the factor everytime nodes misbehave or
generate false information.

 B. Leiding et al. [5] proposes Traffic Regulation
Application where traffic regulation can take place
using blockchain via Ethereum’s programming
languages. The vehicle can drive autonomously by
basing itself entirely on the information available on
blockchain. This will also enable punishing of
misbehaving vehicles and imbibe more regulated
driving. They also propose paying of vehicle tax via
blockchain which can maintain payment records more
efficiently. Many countries require payment of annual
vehicle taxes or other bills. Ethereum linked accounts
can be used from which automatic deduction can take
place.

 W. Liu et al. [6] propose a blockchain based system
named as BARS which provides an established trust
model for VANETs. It also gives a reputation
evaluation algorithm which tells about the reputation
of the vehicles.

 P. K. Sharma et al. [7] propose SmartPay which uses
the blockchain to assist the vehicle’s driver by assisting
him/her in running errands like refuelling, shopping
groceries etc. The payments and routes are decided
beforehand via carefully drafted smart contracts.

 M. Singh et al. [8] present a reward based system
where vehicles are rewarded with credit points which
can be later used to pay financial bills online.

 SmartShare is a real time ride sharing application [7]
which uses the Block-VN model to provide shared
rides. The idea is to utilize the private transport
frameworks so as to leverage wasted space, seats and
payload space.

 Rakesh Shrestha et al. [9] propose the creation of a
local blockchain which can store node trustworthiness
and message trustworthiness of the network.

3 Blockchain

The concept of Blockchain was introduced by Satoshi
Nakamoto [2] in a white paper in 2008. It was implemented
in cryptocurrency and economic transaction domain as it
solves the double spending problem through which it
gained immense popularity [3]. Currently, use of
blockchain has expanded to many dimensions such as
healthcare, asset management, financial and non financial
applications, smart contracts, government policies [10] etc.

Blockchain refers to the chain of blocks which works as a
distributed ledger in a decentralized environment. It is a
form of data structure where data once stored cannot be
erased or tempered with. Block serves as a fundamental
unit which stores records or transactions in a timestamped
manner. Each block has only one parent block. The first
block of the blockchain is called as Genesis block [11]
which has no parent. The transactions (or events or records)

are accumulated over a time window and are then mined as
a block. Mined block contains hash value of its previous
block thereby making it a connected chain. Each block also
contains a Merkle tree root hash [12] which is a hash value
of all the cumulated transactions. This makes it even more
difficult to alter data contained in blockchain as any change
will lead to change in the overall hash value of the blocks
which can be easily detected.

Block contains [3] a block header and a block body. Header
comprises of block version, merkle tree root hash,
timestamp, nonce and parent block hash value. Body of the
block contains all the transactions in a chronological
manner along with a transaction counter. Blockchain uses
asymmetric cryptography to authenticate transactions. Each
user is issued a pair of private and public keys where
former is used to sign a transaction and latter is used to
verify the transaction.

Another key concept in working of blockchain is of
attaining consensus among nodes as to which block should
be mined. All the nodes or most of them should agree on
one block before mining. Blockchain offers many
approaches to reach consensus such as Proof of Work [2],
Proof of Stake [13], Practical Byzantine Fault Tolerance
[14], Delegated Proof of Stake [13], Ripple [15],
Tendermint [16], etc.

The most popular among these is Proof of Work where a
node which wants to mine a block has to solve a
computation intensive problem first. When a node spends
considerable amount of time in solving the problem, then
we assume that the node is safe and is not likely to attack
the blockchain. Thus by showing Proof of Work, the node
is allowed to mine the block to the blockchain. Key
characteristics of blockchain include decentralization,
auditability, transparency, security, integrity, security,
tamper proof etc.

4 VANETs

VANET stands for vehicular ad-hoc networks which are
derived from the concept of Mobile Ad-hoc Networks.
VANETs are more dynamic in nature than MANETs.
Stationary or fast moving vehicles come together in an ad-
hoc manner to form VANETs. Characteristics of VANETs
such as dynamic topology, very less time of contact,
routing of information etc. make it somewhat difficult to
manage. VANETs have come up as an emerging base for
the development of Intelligent Transport Systems [17].

There are three main components associated with vehicles
in a VANET. First is On Board Unit or OBU which is
typically mounted on the vehicle for information exchange
between other OBUs and Road Side Units (RSUs).
Communication is done via short range wireless
communications such as Dedicated Short Range
Communication (DSRC) or WAVE (Wireless Access in
Vehicular Environments). Second component is
Autonomous Unit or AU which utilizes the information
accumulated by the OBU. It might be mounted along with
OBU or can be a separate mobile device such as handheld
devices or laptops. Third component is Road Side Units or

238 Maintaining Trust in VANETs Using Blockchain

Volume 40, Number 4, December 2019 Ada User Journal

RSUs which are stationary infrastructure units used to
store, forward, exchange information and to assist vehicles
in other activities.

VANETs have gained popularity because they have the
potential to make use of the vast amount of data which they
sense while they move. By exchanging this data, they can
make the user experience much better and can lead the way
to autonomous learning behaviour of vehicles. However
data dissemination has been a big challenge for VANETs,
primarily because of a very short duration of contact among
vehicles, during which they have to exchange data. This
time restriction takes a heavy toll on security of the
network and the data.

5 Proposed blockchain based VANET

We propose a system whereby events such as road
accident, hazards, traffic jams, rash driving etc. are
recorded by vehicles and the exact information is stored on
the blockchain in the form of time-stamped blocks. We
propose maintaining two blockchain’s, one on the vehicle
itself which will record every activity and the other on the
geographical level which will be maintained at the cloud
end. The blockchain will be geographically maintained
either at a country level or at region level.

The country area can be divided into major regions
depending upon the number of vehicles running on road.
As information pertaining to one region might not be of
much use to other regions, we can maintain regional
blockchain’s efficiently [9]. There definitely is a trade-off
when it comes to maintaining two blockchain’s at different
ends. Optimization of these blockchain’s is left as a future
work to be done in this area.

For vehicles migrating from one region to other, a small
buffer area can be created to check for the information.
Floating genesis block can also help in getting updated
blockchain when vehicles move from one region to
another. The information is validated at various stages
before mining the block. Since data once written on a
blockchain cannot be rolled back, we can use it at later
points of time for data validation and checking.

In order to implement the proposed system, there are some
areas which need clarification. We give the details with
respect to following features:

 Participating Network: A fast changing network made
of vehicles where vehicles will act as nodes. Each node
will act either as an endorser or a committer.

 Integration with existing system: The functionality of
BCU can be performed by OBU as it has the required
resources to assume the role. However, the security
might be compromised if this happens. Installation of a
new unit – Blockchain Unit with strict data entry and
exit rules will provide a more secure mechanism for
the operation of the system. BCU will be designed
such that tampering with its code is extremely difficult.

 Actors and their role: The main actors in the system
will be vehicles (endorser and committer), Road Side

Units, Regulating Authority, Cloud end storage and
back-end analysis modules. The vehicles will act in
one of the following roles at a time: Endorsers are the
vehicles which are an active party to the event. They
will be the ones who will initiate the transaction. The
transaction will contain the parameters related to the
current state of the vehicles. RSU will record the
endorsed transactions. Committers are the vehicles
who will receive the transaction broadcasted by the
endorsers. They will then commit to the transaction
and sign it using their own key. The transaction is then
again broadcasted. RSU will record the committed
transactions and issue a location certificate in the form
of Proof of Location (PoL) to all the committers who
sent a signed transaction.

 Rules associated: Any vehicle can assume only one
role at a time. Block mining will depend on the density
of the region around the RSU. RSU will act as an
ordering service and will be responsible for
chronological ordering of transactions.

 Validation of data: The data will be validated at three
stages. Firstly by the committers who will commit only
when the data is correct. Second by the RSU who will
analyze all the transaction before making the decision
of block mining. Thirdly, the data can be cross checked
by the analysis modules present at the cloud storage.

 Data added/appended at which stages: Data will be
added to the endorser blockchain unit when a
transaction is endorsed. Committers will add the data
in both the cases, if they commit or if they don’t
commit. This way the data about the vehicle reporting
false event information will be recorded. The data will
be stored at the regional blockchain in a permanent
manner in the form of blocks.

 Permission access: Trust Level is the factor which
identifies which vehicles are trustworthy and which
ones are malicious. After crossing a threshold value of
Trust Level, the vehicle will have to drop out of the
endorsing role and contact the regulating authority for
further action.

5.1 Assumptions

There are some assumptions which are listed below
followed by a detailed system model and the associated
algorithm for the same.

We assume that all the vehicles can communicate with the
in-range vehicles and are connected to the internet.
Vehicles have a unique ID issued by a trusted authority
along with a pair of public and private keys. The messages
exchanged are time-stamped and digitally signed. We
assume that each vehicle is equipped with Geographical
Positioning System (GPS), On-Board Unit and a custom
made Blockchain Unit (BCU). We also assume that the
Road Side Units are not malicious in nature, or to the very
least two out of three are not malicious in nature. We
assume there is a central storage repository on cloud which
is in synchronization with Vehicle Regulation authority.

R. Tomar, Sar ishma 239

Ada User Journal Volume 40, Number 4, December 2019

5.2 System model

All the vehicles will be associated with a Vehicle ID, pair
of public-private keys and a parameter - trust level.
Vehicles will constantly sense and store the environment
variables in their OBUs in a temporary manner. Parameters
from this information are sent as beacons to neighboring
vehicles. BCU will remain in sync with the OBU and will
store the records permanently. Sensing and storing will
continue as long as no event occurs. When an event occurs
such as a traffic jam, a collision or a hazard, the
information sensed will be sent by the vehicles to the
nearest Road Side Unit(s).

The information here will work as a transaction for the
blockchain. The variables sensed will be sent to BCU by
the OBU which will be responsible to generate the
transaction. The transaction will contain the digital
signature, vehicle ID, sensed parameters, timestamp and a
hash of sensed values to avoid tampering by other vehicles.
The transaction will of the following form:

 TrVID = (info, x, y, z, s1, s2, dir, r, ts, ds, hID) Where,
x, y, z are the location coordinates.

 ‘s1, s2 ‘ and dir represent initial speed, current speed
and direction of motion, respectively.

 ‘r’ represents the region in which the vehicle is present.
Value of r can be varied for various locations,
depending upon the classification of regions.

 ‘ts’ and ‘ds’ represent timestamp and digital signaturr,
respectively.

 ‘hID’ is the hash value of the entire transactions being
sent.

Vehicles assuming the role of endorsers will be the ones
who will broadcast the transaction. RSU will record it and
issue location certificates as PoL to them. Committers will
also receive the same transaction; they will check the data
and commit to the transaction by signing it. Then again,
they will broadcast the transaction to RSU. This data will
be crosschecked by the RSU. First step is to check whether
the location of the vehicle is correct or not. After receiving
the information, RSU will issue the PoL certificate to the
vehicle. This will work as a verification mechanism for the
vehicle which will then append this certificate to its own
personal Blockchain residing on the BCU. Location
certificate issued by RSU acts as a digital proof for the
vehicle which certifies that the vehicle was present at the
geographical position when the event occurred.

RSU will wait for ‘n’ time so that it receives information
update from all the vehicles that are nearby. The maximum
value of n will be 30 minutes. However depending upon the
density of vehicles in the area, this value of time will
reduce significantly. Once the time window closes, RSU
will analyze all the transactions. If the data sent by the
vehicles matches with one another, then RSU assumes that
event has indeed happened. If the information received
does not match and is contradicting then the information is
mined depicting it was falsely stated by the vehicles along

with their Vehicle IDs. If the data is found to be correct, it
mines the information on to the cloud based regional
Blockchain. If the data is found to be inconsistent, then it is
discarded and the trust level of associated vehicles is
decremented. Trust level of each vehicle is calculated as:

TL= m/(m+n)

If the reported event is correct then m is incremented by 1
else n is incremented by 1 [4].

The blockchain can be updated whenever the vehicles join
the network or when they change the operating regions. A
floating genesis block will be made available at all the
RSUs through which vehicles can access the current
blockchain.

5.3 Algorithm

 RSU constantly listens to beacons and packets
exchanged.

 Whenever a Vehicle is turned ON, BCU unit is turned
ON; beacons are sent to all the neighbours

 RSU senses the number of vehicles per unit area
according to the beacons received and calculates n as

 n = h (area / number of vehicles)

where h is a constant of proportionality

 When any event happens,
 Nodes in direct participation assume the role

of endorsers.
 Endorsers sense the data via OBU.
 OBU passes this data to BCU.
 BCU generates a new transaction as

TrVID = (info, x, y, z, s1, s2, dir, r, ts, ds, hID).
 BCU sends it to OBU and OBU broadcasts it

to its neighbourhood.
 Other nodes either commit to the transaction

or they don’t
o Committers compare the information by

passing it to their own BCUs.
o Committers assigns Y or N value for

correct or incorrect information
respectively and then sign it using their
key(SignVID).

o After signing, another hash is calculated
to avoid tampering with the information.

o TrVID = (info, x, y, z, s1, s2, dir, r, ts, ds,
hID , (Y/N) SignVID, hID).

o RSU on receiving it, sends a PoL to the
associated VID.

o Committer sends this PoL to the BCU
which appends its to its own blockchain.

 After ‘n’ time window is over, RSU pushes the data
onto cloud whereby further analysis takes place.

 Trust Level of vehicles is generated and passed to RSU
by the cloud server backend applications.

 RSU updates its blockchain and beacons other vehicles
to update their blockchain as well.

 RSU senses the environment again, calculates the value
of ‘n’ and the cycle repeats.

240 Maintaining Trust in VANETs Using Blockchain

Volume 40, Number 4, December 2019 Ada User Journal

6 Applications of the proposed work

The concept of blockchain integrated to VANETs provides
us with more secure and reliable VANETs. We thus present
some applications where this concept can be used to yield
maximum benefit.

1. Insurance companies: Insurance companies issue credit
to those users who satisfy their terms and conditions.
Many times, users use fake details in order to avail the
benefits from the companies. This leads to monetary
losses on behalf of companies. Also at times, genuine
users suffer because too much inspection is done
before offering credit. By using blockchain, the details
of the accident can be verified in a quick and reliable
manner. This will lead to faster delivery of credit to
genuine users, declining of credit to false cases and
overall there will be considerable monetary benefit to
the insurance companies.

2. Theft detection: As the vehicle will be having a
Vehicle ID which will update its information via RSU
onto the blockchain, we can easily locate the vehicles
which are stolen. The design of BCU is such that it
serves as a storage for every event and when the stolen
vehicle tuned on, its location will reflect on to the
blockchain from where we can easily track it.

3. Prediction of false behaviour: Vehicles report
information on a periodic basis and by using
blockchain we can monitor their behavior over a
period of time. By analyzing this information stored on
cloud, we can know which nodes have behaved
maliciously.

4. Clearing paths for ambulance or other emergency
services: When some emergency event happens, it is
sensed and updated to blockchain via RSUs. This
information can be passed on to other vehicles and
RSUs so that they clear the path for ambulance or
other vehicles needing assistance.

5. Traffic violation and surveillance information: Cloud
offers virtually unlimited storage and by using analysis
algorithms we can monitor the traffic violations carried
out by users. We can also extract surveillance from the
collected information by using data mining or other
algorithms.

6. Vehicle Tax and credit: Some countries charge a
vehicle tax on vehicles on a yearly basis. By using
blockchain, the bills can be directly issued to their
accounts. Also credit can be offered on a yearly basis
to nodes which report correct information throughout
the year.

7 Benefits and challenges
The proposed system paves a way forward to disseminate
information with least number of false behaviour nodes.
Following are some of the benefits of our proposed system.

1. Security: Blockchain provides enhanced level of
security as the data is signed by private key of the user
and verified using the corresponding public key. This

makes it impossible for the user to deny that they
passed the information at later points of time.
Moreover, information once mined cannot be changed.
To alter the information, one has to change hash value
of all the blocks in a limited time which is nearly
impossible to achieve.

2. Scalability: As the time interval ‘n’ is calculated on the
basis of density of vehicles, the system can easily scale
with respect to the number of the vehicles.

3. Accountability: Inability of a user to deny that they
passed the information makes this system more
accountable to use.

4. Transparency: All of the transactions/ information are
public and can be checked or verified by anyone,
anytime.

The challenges associated with such a system are as
follows:

1. Sybil attack: Sybil attack occurs when an entire group
of users become malicious and start reporting false
information. These users may be owned by one
attacker or multiple attackers.

2. Restricted contact time: Limited window of time to
analyze the information by individual BCU of the
vehicles.

3. Prediction of behavior: The mobility patterns and
behavior of nodes can be easily predicted by analyzing
the information stored on blockchain. This is a severe
threat as it concerns with personal information of the
user.

8 Future work
The proposed system here has covered many of the security
related aspects in case of information dissemination in
VANETs. However there are some aspects which need
further work.

 Designing of an entire unit such as Blockchain Unit as
proposed is a rewarding challenge where much more
functionality and services can be added to it. It can
serve as a black box, similar to the ones found in
aircrafts. This can act as a single dedicated information
point.

 Also, how the analysis of information will take place at
cloud server is a challenge. Defining elaborately about
which parameters to sense and carrying out analysis
from it is another possible future work direction.

 How to divide the regions amongst a state or country is
another question. It can be answered in terms of
density of vehicles or roads or events etc. Formulating
a complete solution for the same is still needed so that
the entire system becomes more integrated.

 Choosing which information dissemination algorithm
to use is another potent question. We can deploy
different algorithms for different areas and demands.

R. Tomar, Sar ishma 241

Ada User Journal Volume 40, Number 4, December 2019

9 Conclusion
Blockchain has found application in nearly every domain in
the past couple of years due to its simple yet profound
concept. We used the concept of blockchain to make
VANETs more secure in functioning. A blockchain based
system for VANETs is proposed which greatly enhances
the security of information being exchanged among
vehicles. The paper gives a wholesome coverage of the
system along with its applications, benefits, and challenges.

References
[1] A. Singhal, Sarishma, and R. Tomar (2017), Intelligent

accident management system using IoT and cloud
computing, Proc. 2nd Int. Conf. Next Gener. Comput.
Technol. NGCT 2016, pp. 89–92.

[2] N. Satoshi and S. Nakamoto (2008), Bitcoin: A Peer-
to-Peer Electronic cash system, Bitcoin, p. 9.

[3] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang
(2017), An Overview of Blockchain Technology:
Architecture, Consensus, and Future Trends, Proc. -
2017 IEEE 6th Int. Congr. Big Data, BigData Congr.
2017, pp. 557–564.

[4] R. Shrestha, R. Bajracharya, and S. Y. Nam (2018),
Blockchain-based Message Dissemination in VANET,
Proc. 2018 IEEE 3rd Int. Conf. Comput. Commun.
Secur. ICCCS 2018, pp. 161–166.

[5] B. Leiding, P. Memarmoshrefi, and D. Hogrefe (2016),
Self-managed and blockchain-based vehicular ad-hoc
networks, pp. 137–140.

[6] W. Liu, Z. Lu, Z. Liu, Q. Wang, and G. Qu (2018), A
Privacy-Preserving Trust Model Based on Blockchain
for VANETs, IEEE Access, vol. 6, pp. 45655–45664.

[7] P. K. Sharma, S. Y. Moon, and J. H. Park (2017),
Block-VN: A distributed blockchain based vehicular
network architecture in smart city, J. Inf. Process.
Syst., vol. 13, no. 1, pp. 184–195.

[8] M. Singh and S. Kim (2018), Trust Bit: Reward-based
intelligent vehicle commination using blockchain
paper, IEEE World Forum Internet Things, WF-IoT
2018 - Proc., vol. 2018–Janua, pp. 62–67.

[9] R. Shrestha, R. Bajracharya, A. P. Shrestha, and S. Y.
Nam (2019), A new-type of blockchain for secure
message exchange in VANET, Digit. Commun.
Networks.

[10] K. Christidis and M. Devetsikiotis (2016), Blockchains
and Smart Contracts for the Internet of Things, IEEE
Access, vol. 4, pp. 2292–2303.

[11] F. Schuh and D. Larimer (2017), Bitshares 2.0:
General Overview, Cryptonomex, vol. 3268, pp. 0–16.

[12] B. Gassend, D. Clarke, M. Van Djik, S. Devadas, and
E. Suh (2003), Caches and merkle trees for efficient
memory authentication, HPCA (High Perform.
Comput. Archit. Symp., pp. 1–14.

[13] A. Kiayias, I. Konstantinou, A. Russell, B. David
(2016), A Provably Secure Proof-of-Stake Blockchain
Protocol, IACR Cryptol. …, pp. 1–27.

[14] M. Castro and B. Liskov (1999), Authenticated
Byzantine fault tolerance without public-key
cryptography, System, no. June, pp. 1–12.

[15] D. Schwartz, N. Youngs, and A. Britto (2014), The
Ripple protocol consensus algorithm, Ripple Labs Inc
White Pap., pp. 1–8.

[16] J. Kwon (2014), TenderMint : Consensus without
Mining, Https://Tendermint.Com/Docs, vol. 6, p. 10.

[17] I. Y. Y. Hsu, M. Wódczak, R. G. White, T. Zhang, and
T. R. Hsing (2010), Challenges, approaches, and
solutions in intelligent transportation systems, ICUFN
2010 - 2nd Int. Conf. Ubiquitous Futur. Networks, pp.
366–371.

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

243

Towards a Formally Verified Space Mission
Software Using SPARK

Neto, P., Tojal, J., Veríssimo, J.
Critical Software, SA., Coimbra, Portugal; email: {pmneto, jj-tojal, jverissimo}@criticalsoftware.com

Melo de Sousa, S.
LISP - University of Beira Interior, Covilhã, Portugal; email: desousa@di.ubi.pt

Abstract

This paper discusses the use of formal verification tech-
niques supported by Correct-by-Construction tools for
the development of Safety Mission Critical systems in
an industrial context. In particular, the document intro-
duces the implementation, verification and validation
of the ExoMars Trace Gas Orbiter (TGO) central soft-
ware that was implemented by Critical Software, SA. in
cooperation with Thales Alenia Space for the European
Space Agency (ESA) Mars exploration mission. The
pre-existing TGO Ada code has been reworked for the
need of this project in the SPARK programming lan-
guage where, along with a strongly typed system, static
analysis and deductive verification toolset were used to
ensure security and correctness properties.

Keywords: Safety Mission Critical Systems, Formal
Methods, Formal Verification, Correct-by-Construction,
Design-by-Contract, SPARK.

1 Introduction
A failure in a Safety Mission Critical system can result in
loss of life, injury, environmental damage, mission objectives
failed, and severe economic losses. There is an increased
assurance need of properties such as Reliability, Safety and
Security to enhance the system capabilities to prevent such
disasters.

Regarding to the Reliability we have of systems, this prop-
erty is the probability that a system will be operational for
a specific period of time, and Safety and Security are di-
rectly linked to the reliability that is associated with the im-
plemented system. Safety is a property that ensures that the
system will operate flawlessly and Security is the property
that states that, despite malfunctions or external threats that
may occur, the system is protected and always maintains the
proper operating level.

The consequences of the aforementioned failures translate
into high costs, increasing the need to introduce new method-
ologies to assure the critical properties for system reliability.
However, these available methodologies are usually discarded
when such high quality seal is not required, and, that, for two
reasons. The first one is the perception of its cost. Formally

ensuring the reliability, the safety and the security of a crit-
ical software system is perceived as a time consuming and
complex task. The second reason, perhaps the source of the
first, is the lack of formal verification experts (or expertise) in
usual critical system development teams.

For companies operating in the field of critical systems soft-
ware development, there is a normative need for the knowl-
edge and the use of techniques for formal code verification
and validation such as Model Checking, Theorem Proving
and Design-by-Contract. At Critical Software, SA., the most
frequently used technique to date for code verification and
validation is software testing. A technique that can sometimes
become costly due to the late error detection process. The ob-
jective of this work is the study of a methodology that can be
implemented in the Safety Mission Critical systems develop-
ment process in order to substantially reduce some of the costs
of software testing. The technique to be applied, Design-by-
Contract, is a formal code verification methodology usually
performed by static analysis and deductive verification tools
that will allow the detection of errors during the implementa-
tion stage where their correction will be less expensive and,
thus partially reducing the costs of software testing activities,
in addition to the stronger assurance they provide.

With this goal in mind, the work developed throughout this
investigation was to test the SPARK tool commonly used for
the formal verification of programs implemented in Ada. The
verified code was the central software of ExoMars TGO that
is part of an ESA mission to the exploration of the Martian
atmosphere where, the main goal is the measurement of its
methane levels. ExoMars TGO central software has been
implemented in the Ada language by Critical Software, SA.
in partnership with Thales Alenia Space.

2 Design-by-Contract
The Design-by-Contract [1] software development paradigm
proposes that the implementation should be accompanied by
the requirements at the level of each program unit, with a
similar granularity to unit testing. These requirements are
called contracts and are of two types. A function or code unit
has an entry contract and an exit contract. The entry contract
(also known as Pre-condition) specifies what conditions (the
relation between input data) the code unit expects to meet
at the beginning in order to operate as expected. The exit

Ada User Jour na l Vo lume 40, Number 4, December 2019

244 Towards a For mal ly Ver i f ied Space Miss ion Sof tware us ing SPARK

contract (also known as Post-Condition) specifies in which
state the program unit leaves the manipulated data (including
the returned data) when it returns the hand.

Programming environments that allow the use of this
paradigm use formal verification methods that can compare
contracts with code and thus define which mathematical prop-
erties (essentially logical and arithmetic conditions) must be
verified for formal agreement between the contracts and what
that programmatic units perform. When these conditions are
determined, it is possible to resort to theorem provers who
try (as more automatically as possible) to prove or on the
contrary refute (with explicit counter example) that these con-
ditions are met. Formally relating Pre-Conditions and Post-
Conditions under the action of the code usually hit theoretical
limits (decidability issues) and then the whole machinery
needs help in the form of extra logical/relational information
(referred as invariants, variants or assertions) inserted by the
programmer in key places in the code under scrutiny (loops,
function calls, non-trivial arithmetic operations, etc.).

For example, consider the code in Listing 2. This exposes
only the specification of SPARK contracts for a program that
looks for the highest value, for a given position range received
by parameter, from an integer vector with a defined range (1 to
1000). We have Min_L and Max_L which are the minimum
and maximum limits, respectively, of the required range and
Max_V is the returned value.

Arr : Int_Array (1 .. 1000);

procedure Max_Val_In(Min_L, Max_L : in Positive;
Max_V : out Integer)

with
SPARK_Mode,
Pre => Min_L in Arr’Range and Max_L in Arr’Range

and Min_L <= Max_L,
Post => (for all I in Min_L .. Max_L => Max_V >= Arr(I))

and (for some I in Min_L .. Max_L => Max_V = Arr(I)) ;

The Pre-Condition specifies that both limits must be within
the range set for the vector in order to not attempt invalid
positions accesses of the vector. Moreover, to define a valid
range the minimum limit must be less than or equal to the
maximum limit. The Post-Condition checks whether the
returned value is actually the largest integer within that range
in the vector and whether it is a value belonging to the vector
in the defined range.

3 SPARK
SPARK [2] is a language that allows formal verification of
Ada code using the Design-by-Contract approach. The tool
allows to annotate the Ada code with the contracts already
mentioned in their defined syntax and later uses its verification
tool which, with the help of external provers, tries to prove
the integrity of the programs. The latest version, SPARK
2014, has integrated a new verification tool that performs
static analysis, GNATProve [3], which is aided by Why3 [4]
in the programs proof. As depicted in Figure 1, annotations
are translated to WhyML and later Proof Obligations are
generated which will be proved by external provers such as
CVC4 [5], Z3 [6] and Alt-Ergo [7]. SPARK’s work is divided
into two analyzes, Flow Analysis and Code Verification.

Figure 1: GNATProve Deductive Verification. [8]

The main concerns of Flow Analysis are data, detecting cases
that may raise possible exceptions during execution, such as
the use of pointers, alias cases, and side effects to behavior
required for functions. Furthermore, it automatically checks
if variables and objects are correctly declared, instantiated
and updated. It also proves the correct flow of information
between programs using special contracts that allow to define
the use of global data and their dependencies.

Code Verification is the analysis that proves the integrity of
the program. Firstly, SPARK detects the possibility of errors
occurring during program execution such as division by zero,
overflows, violation of the intervals defined for a given data
type, among others. There are two possibilities for the issue
of a warning, either the code is really wrong and has to be
changed or SPARK has issued a false alarm that can easily
be proved by using contracts to set certain properties that are
not well known by the tool. Secondly, SPARK uses contracts
to prove the functional correctness of the program, that is,
whether it behaves according to the conditions specified in
the Post-Condition.

The use of SPARK can be divided into 5 levels:

• Stone – Valid SPARK code;

• Bronze – Correct data initialization and flow;

• Silver – Absence of run-time errors;

• Gold – Proof of critical properties;

• Platinum – Proof of full functional properties;

According with the results of the last Altran UK industrial
projects they summarize in [9], Figure 2, some recommenda-
tions of SPARK application compared with different levels
of assurance defined by two of the most common software
integrity scales (Design Assurance Level (DAL) defined in
DO-178B and Software Integrity Level (SIL) defined in IEC
61508).

Figure 2: Technical Planning Guidelines for the Application of
SPARK. [9]

Note: The required integrity of the higher levels of these
scales is assured if there is at least SPARK application at the
SILVER level, as we can see in the Black region.

Volume 40, Number 4, December 2019 Ada User Jour na l

P. Neto, J. To ja l , J. Ver íss imo, S. Melo de Sousa 245

4 ExoMars TGO
In ExoMars, as in all other satellite systems, there are five dif-
ferent systems, as shown in the Mission Application Software
layer (Red) of the system architecture, Figure 3. The systems
are described as follows:

• Guidance Navigation Control - Implements the func-
tions to manage all three modes (Guidance, Navigation,
Control);

• Solar Array Drive Mechanism - Implements the ser-
vices that control the motors of the satellite solar panels;

• Antenna Pointing Mechanism - Implements the ser-
vices that control the motors that define the systems
antenna position

• Thermal Regulation - Implements the services for
spacecraft thermal regulation;

• Entry, Descent Module - Implements the functions to
control the payload that will separate from the spacecraft
and land on the surface of Mars;

Figure 3: ExoMars TGO Architecture.

For this case study only the temperature regulation system was
considered. The TR’s function is to compute the spacecraft
physical components average temperatures and to activate (or
deactivate) heaters to hold the temperature within the recom-
mended thresholds for each hardware component, which can
differ between very high or very negative values depending
on the orientation of that component relative to the sun or
shadow.

5 SPARK Analysis of TR
The TR system performs a cyclic task that constantly regu-
lates the temperature of the hardware components, Figure 4.
The cyclic task processing depends on the following main
components:

• Failure Detection, Isolation and Recovery (FDIR);

• Thermal Regulation;

• Command List;

Figure 4: TR Cyclic Task.

In order to accomplish the cyclic task SPARK analysis, all of
its dependencies full correctness shall be proved beforehand.

As the original code to be analysed was not implemented with
SPARK methodologies in mind, some of its implementation
features are not supported by the tool. Thus, the viable ap-
proach was to retain these features, dissociating from SPARK
the functions and/or features not compatible in well marked
external interfaces, without influencing the initial behavior of
programs.The analysis was then performed in order to ensure
the required execution behaviour along with the correct flow
of data and the absence of runtime errors. Ultimately, the
main goal has always been to achieve SPARK highest level
of integrity, Platinum.

6 Results
Stone, Bronze, Silver and Gold levels have been achieved
with very positive rates. About the results at the Stone level,
one note, that was not possible to perform flow analysis on
all system subprograms due to SPARK constraints.

The result of this work ensured the integrity of the system in
the Gold level order. The attempt to achieve the maximum
SPARK integrity level, Platinum, was not fulfilled. It was not
possible to prove the full correctness of the code in the time
span the verification team had to do this task. In this time
span, the team had to acquire the expertise in SPARK and
its verification mechanisms. Another important point is the
early use of SPARK in the development process over Ada. In
fact, as a result of the following exercise, we have advocated
the development team to use several programming styles
that ease code modularity and, incidentally, the verification
process. Finally, and as already stated, such task requires
some expertise of the team and is clearly challenging. Aiming
the Platinum level is not recommended when the team is at
an early stage of SPARK adoption [10]. Having said that, the
full correctness proof of the TR module is, by the opinion of
the authors, possible, nothing theoretically challenging where
exposed.

From the formal verification effort and extensive code analy-
sis it was also possible to prepare an audit where some minor

Ada User Jour na l Vo lume 40, Number 4, December 2019

246 Towards a For mal ly Ver i f ied Space Miss ion Sof tware us ing SPARK

details were identified that should be considered in future
developments, which will help towards a produced code opti-
mization.

7 Conclusions
The verification process described in this document further
added a seal of quality to the high levels of confidence that
had already been given to the software implemented with
the verification and validation process performed by Critical
Software and the fact that it has been working very well since
system deployment until now. The final results allowed us to
conclude that this work has ensured a software quality level
equivalent to the required by the highest levels of DO-178B
and IEC 61508 standards, according to the table in Figure 2.

The final results of this work increased knowledge to the com-
pany through the use of formal code verification techniques
such as Design-by-Contract, as well as a set of recommen-
dations to be considered in the process of developing future
projects. This project was just the beginning of a journey that
encouraged the company to continue with formal methods re-
search. The acquisition of knowledge in this area is important
for the company to somehow be able to reduce some costs in
software validation and still be prepared for all development
phases required by the strictest standards in Safety Mission
Critical systems development.

References
[1] B. Meyer, “Applying design-by-contract,” Computer,

vol. 25, pp. 40–51, Oct 1992.

[2] J. W. McCormick and P. C. Chapin, Building High In-
tegrity Applications with SPARK. Cambridge University
Press, 2015.

[3] J. Guitton, J. Kanig, and Y. Moy, “Why hi-lite ada?,” in
Boogie 2011 First International Workshop on Interme-
diate Language Verification, p. 27, Citeseer, 2011.

[4] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich,
“Why3 Shepherd your herd of provers,” in Boogie 2011
First International Workshop on Intermediate Verifica-
tion Languages, pp. 53–64, 2011.

[5] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-
vanović, T. King, A. Reynolds, and C. Tinelli, “Cvc4,”
in International Conference on Computer Aided Verifi-
cation, pp. 171–177, Springer, 2011.

[6] L. De Moura and N. Bjørner, “Z3: An efficient smt
solver,” in International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems,
pp. 337–340, Springer, 2008.

[7] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala,
S. Lescuyer, and A. Mebsout, “The alt-ergo automated
theorem prover,” http://alt-ergo.lri.fr, 2008.

[8] D. Hauzar, C. Marché, and Y. Moy, Counterexamples
from proof failures in the SPARK program verifier. PhD
thesis, Inria, 2016.

[9] C. Dross, G. Foliard, T. Jouanny, L. Matias, S. Matthews,
J.-M. Mota, Y. Moy, P. Pignard, and R. Soulat, “Climb-
ing the software assurance ladder - practical formal veri-
cation for reliable software,” in AVOCS Pre-proceedings,
July 2018.

[10] T. AdaCore, “Implementation guidance for the adoption
of spark,” 2018.

Volume 40, Number 4, December 2019 Ada User Jour na l

 247

Ada User Journal Volume 40, Number 4, December 2019

Call for Contributions

Topics: Ada, Programming Languages, Software
Engineering Issues and Reliable Software
Technologies in general.

Contributions: Refereed Original Articles, Invited
Papers, Proceedings of workshops and panels and
News and Information on Ada and reliable software
technologies.

More information available on the

Journal web page at

http://www.ada-europe.org/auj

Online archive of past issues at http://www.ada-europe.org/auj/archive/

Ada User Journal

248

Volume 40, Number 4, December 2019 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

