

Ada User Journal Volume 41, Number 3, September 2020

ADA
USER
JOURNAL

Volume 41

Number 3

September 2020

Contents
Page

Editorial Policy for Ada User Journal 120

Editorial 121

Quarterly News Digest 122

Conference Calendar 149

Forthcoming Events 156

Special Contribution

 J. Cousins

“An Overview of Ada 202x” 159

Articles from the 20th International Real-Time Ada Workshop (IRTAW'2020)

 L. M. Pinho, S. Royuela, E. Quiñones

“Real-Time Issues in the Ada Parallel Model with OpenMP” 177

 J. Garrido, D. Pisonero Fuentes, J. A de la Puente, J. Zamorano

“Vectorization Challenges in Digital Signal Processing” 183

Puzzle

 J. Barnes

“The Problem of the Nested Squares” 187

In memoriam: Ian Christopher Wand 188

Ada-Europe Associate Members (National Ada Organizations) 190

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

122

Volume 41, Number 3, September 2020 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 122
Ada in Education 122
Ada-related Resources 125
Ada-related Tools 125
Ada-related Products 127
Ada and Operating Systems 128
Ada and Other Languages 130
Ada Practice 130

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. --arm]

Preface by the News
Editor

Dear Reader,

This number brings again important news
for Open Source enthusiasts from the
GNAT front. A survey was conducted by
AdaCore to gather feedback on the idea of
discontinuing the Community Editions in
favor of better supporting the FSF-
maintained version packaged by various
Linux distributions. You can read
reactions about this idea in thread [1].

The Jupyter notebooks for Ada by Maxim
Reznik (first reported here in AUJ 41.2)
are quickly taking shape: a series of
interactive tutorials demonstrating new
features of Ada 202x is already available
on-line, with 10 entries at the time of this
writing. Find more about these in [2], and
of course visit them with your browser to
witness their potential first-hand.

If you would like to go down memory
lane, two threads about operating systems
(supporting or implemented in Ada)
contain juicy bits in the Ada and
Operating Systems section. Or, if you
prefer to look forward to hypothetical
future Ada features, a large discussion
emerged from the embers of an old thread
proposing solutions to the automatic
storage of indefinite types [3].

I ask for your indulgence for closing this
preface with a project I started and
actively develop (in collaboration, chiefly,
with Fabien Chouteau from AdaCore):
Alire (after Ada Library Repository), a
package manager for Ada and SPARK
has entered public beta, and debuts in this
issue [4]. As of this writing, Alire indexes
130 libraries and executable projects that
you can immediately retrieve and build
with GNAT without a care in the world
about having to go hunting for
dependencies. (A technical paper about an
early version of Alire was published in
AUJ 39.3.)

Sincerely,
Alejandro R. Mosteo.

[1] “Survey on the Future of GNAT
Community Edition”, in Ada Practice.

[2] “Ada 2020 Jupyter Notebooks”, in
Ada and Education.

[3] “Proposal: Auto-allocation of
Indefinite Objects”, in Ada Practice.

[4] “Repositories of Open Source
Software”, in Ada-related Resources.

Ada and Education

Ada 2020 Jupyter Notebooks

From: Maxim Reznik
<reznikmm@gmail.com>

Subject: Ada 2020 Jupyter notebooks
Date: Wed, 2 Sep 2020 06:28:07 -0700
Newsgroups: comp.lang.ada

I'm going to write a series of Jupyter
notebooks about Ada 2020 support in
GNAT Community Edition 2020.

First two are there:

- Ada 2020: 'Image attribute for any type

- Ada 2020: Redefining the 'Image
attribute

https://github.com/reznikmm/
ada-howto/tree/ce-2020

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Wed, 2 Sep 2020 23:49:46 -0700

Nice idea, this is a nice way to teach Ada
indeed.

New(?) Intros to Ada and
Spark on adacore.com

From: Paul Rubin
<no.email@nospam.invalid>

Subject: new(?) intros to Ada and Spark on
adacore.com

Date: Wed, 02 Sep 2020 23:50:01 -0700
Newsgroups: comp.lang.ada

I don't remember seeing these here before.
They look promising:
https://learn.adacore.com/courses/
courses.html:

- Introduction to Ada

- Introduction to SPARK

- Ada for the C++ or Java Developer

- SPARK Ada for the MISRA C
Developer

- Introduction to GNAT Toolchain

https://learn.adacore.com/courses/
intro-to-ada/index.html

https://learn.adacore.com/courses/
intro-to-spark/index.html

https://learn.adacore.com/courses/
Ada_For_The_CPP_Java_Developer/
index.html

https://learn.adacore.com/courses/
SPARK_for_the_MISRA_C_Developer/
index.html

https://learn.adacore.com/courses/
GNAT_Toolchain_Intro/index.html

Solutions to J. McCormick
Book

From: Werner Aeschbacher
<aeschbaw@ieee.org>

Subject: Training Ada
Date: Wed, 23 Sep 2020 11:43:08 -0700
Newsgroups: comp.lang.ada

Does anybody have the solutions to the
exercises of the book "Building Parallel,
Embedded, and Real-Time Applications
with Ada" from John W. McCormick
et al ?

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 23 Sep 2020 12:58:45 -0700

Is there a claim that a solution set was
published someplace? Your best bet
might be to contact the authors.

mailto:amosteo@unizar.es

Ada and Educat ion 123

Ada User Journal Volume 41, Number 3, September 2020

Sometimes with textbooks (say in
mathematics), there is a solutions book
available only to instructors, so they can
assign homework problems from the
textbook and check students' answers
against the solutions book.

I have the textbook you mention. It looks
good but I haven't gotten around to
reading much of it. If there's a particular
exercise you're interested in, I might like
to give it a try.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 23 Sep 2020 16:37:52 -0500

> Your best bet might be to contact the
authors.

Agreed. John McCormick is still involved
in Ada (he was on an ARA meeting this
morning), so I'd expect he'd be able to
give you some information.

Solutions to J. English Book

From: Jack Davy
<jules1.davy@gmail.com>

Subject: Learning Ada
Date: Tue, 15 Sep 2020 03:36:34 -0700
Newsgroups: comp.lang.ada

I've just started learning Ada and am
using the book "Ada95: The Craft of
Object Oriented Programming", by John
English. I know there are plenty of other
resources such as the one on AdaCore,
which covers Ada 2012, but I like the
style and flow of this book. Anyway, I
was wondering whether anyone in the
group has the answers to the end of
chapter exercises? The author has now
retired and the link to them is dead.

Thanks in Advance!

From: Anders Wirzenius
<anders.wirzenius@netikka.fi>

Date: Tue, 15 Sep 2020 17:31:57 +0300

Maybe this helps:

http://archive.adaic.com/docs/craft/
craft.html

From: Jack Davy
<algojack@tutanota.com>

Date: Tue, 15 Sep 2020 08:07:07 -0700

Thanks Anders, but I already found that
link. The download has the code for the
book, but no answers. I guess it's not
important, I just thought it would be nice
to see some sample solutions.

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Tue, 15 Sep 2020 17:54:35 +0200

I don't have an answer to your exact
question but there is no shortage of
"sample solutions" in Ada on
https://rosettacode.org/wiki/Category:Ada

HTH

PS. I still consider John English's book to
be the best introduction to Ada.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 15 Sep 2020 18:01:56 +0100

Try here: https://www.dropbox.com/s/
8k4xxpj5a67s752/adacraft.tar.gz?dl=0

Nothing like being a pack rat! My hard
disk copy is dated 2012-8-25, but I don't
know when I retrieved it, must have been
several computers ago. Internal dates up
to 2001-07-27. Readme says examples
tested with GNAT 3.13p!

From: Simon Wright
<simon@pushface.org>

Date: Tue, 15 Sep 2020 18:07:13 +0100

Actually, they are at adaic.com:
http://archive.adaic.com/docs/craft/
craft.html, see the third bullet point.

From: Jack Davy
<algojack@tutanota.com>

Date: Tue, 15 Sep 2020 12:03:46 -0700

@ Ludovic, thanks for the link to
rosettacode; very good source of
examples. And good to hear that you rate
the book highly. There don't seem to be
many books on Ada, but there is a very
recent one for beginners which I will
probably get to fill in the gaps not covered
by "The Craft".
https://www.apress.com/gp/book/
9781484254271

@ Simon, thanks, but I already have that
file. It contains all the code in the book
but not the answers to the end of chapter
questions.

By the way, I see the author also wrote a
GUI library for Ada called JEWL, the
files for which I have also downloaded.
Pity it's for Windows only. I'm a Linux
user although I do have Win XP on
VirtualBox, but I don't believe the current
GNAT compiler will run on it.

From: Gautier write-only
<gautier_niouzes@hotmail.com>

Date: Tue, 15 Sep 2020 12:28:20 -0700

Other sample sources:

Ada resources:

 - https://sourceforge.net/directory/
language:ada/

 - https://www.adaic.org/ada-resources/

Small samples are embedded in the LEA
editor (you can run it from Wine):

https://sourceforge.net/projects/l-e-a/

From the menu: Action / Code sample.
Choose your sample. Hit F9 for running.

Some samples stem from Rosetta Code
BTW :-)

From: Jerry Petrey <gpetrey@cox.net>
Date: Tue, 15 Sep 2020 16:00:08 -0700

> By the way, I see the author also wrote
a GUI library for Ada called JEWL [...]

Yes, his JEWL package is great. I used it
many times to create Windows GUI apps
and still use it some. I talked to John a
number of times - he was very helpful.
His book is one of the best!

From: Paul Rubin
<no.email@nospam.invalid>

Date: Tue, 15 Sep 2020 18:23:18 -0700

> [...] there is a very recent one for
beginners which I will probably get to
fill in the gaps not covered by "The
Craft".https://www.apress.com/gp/book
/9781484254271

I haven't examined that book directly but
based on the preview and blurb, it does
seem to be beginner oriented, thus likely
to have gaps of its own. If you're trying to
fill gaps, you probably want something
more complete and advanced.

I semi-recently got another book that
looks very good, though it's still sitting
around without my having read much of
it: Analysable Real-Time Systems:
Programmed in Ada, by Andy Wellings
and Alan Burns. It is basically an updated
reprint of an older book by the same
authors, self-published in paperback, so it
is a good value.

From: Jack Davy
<algojack@tutanota.com>

Date: Wed, 16 Sep 2020 00:13:22 -0700

@ Gautier, thanks for the links. When I
get Windows 7 on VirtualBox I'll give the
LEA editor a try, I'm not so keen on using
Wine, it's a bit hit & miss. Also since I
learned Vim a few years ago no other
editors really do it for me, unless they
have Vim bindings ;).

@ Paul, I was thinking that the beginner's
Apress book would fill in the gaps
regarding Ada 2012 specifically, which as
I understand it has changed from previous
versions mainly in regard to OOP; I'm
assuming I won't need to unlearn anything
if I learn the basics from an Ada 95 book.
The real-time stuff would be over my
head at this point I think, and not really
something I had in mind when
considering Ada, although I do have a
background in electronics, and see that
there is Ada compiler for AVR on
AdaCore.

The more I look at this language the more
I wonder why it isn't more popular.
Maybe people just don't like the pascalish
syntax, but that never put me off because
I learned Turbo Pascal at Uni (25 years
ago) and more recently Free
Pascal/Lazarus. Never was much of a fan
of the curly bracket languages.

From: Jack Davy
<algojack@tutanota.com>

Date: Wed, 16 Sep 2020 00:32:32 -0700

I found an impressive list of 'Things to
like about Ada' posted by a C/C++ career
programmer on the AVR freaks forum (in
reply #13) :

124 Ada and Educat ion

Volume 41, Number 3, September 2020 Ada User Journal

https://www.avrfreaks.net/forum/
i-didnt-know-you-could-get-ada-avr

My main reason for wanting to learn Ada
is the last on his list: "Promotes a
professional, anti-hacker mentality. By
being unforgiving the language promotes
the valuable discipline of specifying and
writing code more exactly, without the
temptations of slipping into bit-twiddling
or other programming habits that subvert
(and often break) the data or code models.
When proper programming discipline is
not enforced by the language then it must
be voluntary, and in those cases discipline
can and inevitably will slip, but when the
language enforces much of that discipline
then there are no easy ways to avoid it,
and the resulting code is higher in quality
and faster to develop."

Maybe that's why Ada isn't more popular
- being disciplined isn't easy, and hacking
is more fun. But I've learned the hard way
that it's actually much more satisfying
when your programs are bug-free and
work properly the first time you run them.
Any language which enforces more
thinking and less trial-and-error coding is
a winner in my book.

From: Gautier write-only
<gautier_niouzes@hotmail.com>

Date: Wed, 16 Sep 2020 02:13:54 -0700

> @ Gautier, thanks for the links. When I
get Windows 7 on VirtualBox I'll give
the LEA editor a try, I'm not so keen on
using Wine, it's a bit hit & miss.

No worries, you can access the same
samples (and the same compiler) without
LEA, built on your preferred operating
system.

>- https://hacadacompiler.sourceforge.io/
(source code here: https://sourceforge.net/
p/hacadacompiler/code/HEAD/tree/,
mirrored here:
https://github.com/zertovitch/hac)

Mutatis mutandis, you get there the
"tpc.exe" equivalent, whereas LEA is the
"turbo.exe" :-)

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Wed, 16 Sep 2020 12:55:58 +0200

> The more I look at this language the
more I wonder why it isn't more
popular. [...]

I wasn't there when it happened but I read
that early Ada 83 compilers were buggy,
slow and outrageously expensive because
marketed only at one captive customer,
the US DoD. (In their defence, Ada is a
particularly difficult language to
implement well, orders of magnitude
more so than Pascal or C). The vendors
never really tried to sell Ada development
tools outside the military, despite hype
that Ada was the language of the future.
At around the same time, C++ used the
opposite strategy of selling cheap

compilers, with the additional advantage
of backward compatibility with C, so they
won market share. Turbo Pascal was a
contender back then but only on DOS and
Windows, so it ultimately lost to C++,
possibly in no small part because of
Borland's refusal to abide by any portable
standard. And then Sun marketed Java
aggressively with a zero-cost compiler
and promises of ultimate portability, and
stole the show.

The Ada landscape changed dramatically
when the first Free Software Ada 95
compiler, GNAT, arrived, but the damage
to the reputation of Ada was very hard to
overcome. An entire generation of
military and corporate programmers,
frustrated by the early compilers, became
managers and dismissed Ada out of hand
for decades. They and their prejudices
have started to retire in the past few years
and I think this is one factor in the current
renaissance of Ada.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 16 Sep 2020 13:09:54 +0200

> I wasn't there when it happened but [...]

I mostly agree with your analysis, except
the last part. The problem is that the
culture of programming and overall
education became so low that it is no
more a race against C++. C++ itself is in
defense and losing against languages and
practices so overwhelmingly bad that
even C looks as a shining beacon. Winter
is coming.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Wed, 16 Sep 2020 17:01:41 +0200

> The more I look at this language the
more I wonder why it isn't more
popular.

Ada is a language for engineering
software. Since 98% of developers are
unable to do that, Ada will never be
popular as long as such people are
allowed to develop software.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 16 Sep 2020 14:29:56 -0700

> @ Paul, I was thinking that the
beginner's Apress book would fill in the
gaps regarding Ada 2012 specifically,
which as I understand it has changed
from previous versions mainly in
regard to OOP

I think Ada 95 OOP is not really used
very much, and the changes in Ada 2012
are things like contracts, and built-in
SPARK syntax. You could also look at
the online book "Ada Distilled" which is
about Ada 95. I found it an ok way to get
started, though I never really progressed
beyond that.

> I do have a background in electronics,
and see that there is an Ada compiler

for AVR on AdaCore.

I don't know the current state of that, but
some years ago it was rather hard to use
or parts were missing or whatever. These
days, the AVR is in decline since it is so
limited. Everyone uses ARM or maybe
soon RISC-V processors even for tiny
embedded stuff.

> The more I look at this language the
more I wonder why it isn't more
popular. Maybe people just don't like
the pascalish syntax

Tooling, libraries, language verbosity, etc.
As pure language, though, it is still
mysterious to me what Rust offers that
Ada doesn't.

Today, for most programming, "systems
languages" including Ada, C, C++, and
Rust are all imho somewhat niche. Unless
you are dealing with specialized problems
(such as embedded or OS's), computers
have almost unbounded resources. So it's
easier to get your work done using
languages with automatic memory
management, unbounded arithmetic, etc.

The main cost is consuming more
machine resources and losing some
timing determinism, but most of the time
you can live with both of those. Ada is
best for more demanding applications
which usually involve realtime or high
reliability constraints.

From: Mart van de Wege
<mvdwege@gmail.com>

Date: Fri, 18 Sep 2020 08:53:20 +0200

> Ada is a language for engineering
software. [...]

I use it for hobby stuff, for quick solutions
(like generating RPG characters). Does
not feel like engineering to me.

But what I do like is the elegance of the
language, and the ability to describe my
problem domain using distinct types.

The 'verbosity' does not bother me. I'm a
fluent touch typist, Using the shift key to
type braces slows me more than typing
out statements to delineate blocks.

The only real nit I have with Ada is that it
does not have closures.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Fri, 18 Sep 2020 12:00:47 +0200

> I use it for hobby stuff, for quick
solutions (like generating RPG
characters). Does not feel like
engineering to me.

I do similar things, too, but I always have
a design in mind, and usually start with
pkg, task, & PO specs and subprogram
declarations, so I suspect that after doing
this for so long I can engineer simple
problems in my head. Presumably others
with similar experience or who are better
than I do the same.

Ada-related Tools 125

Ada User Journal Volume 41, Number 3, September 2020

Ada-related Resources

[Delta counts are from Apr 6th to Jul
20th. --arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Mon, 02 Nov 2020 18:41:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 3_025 (+75) members [1]

- Reddit: 4_720 (+634) members [2]

- Stack Overflow: 1_924 (+60)
 questions [3]

- Freenode: 90 (+2) users [4]

- Gitter: 64 (+8) people [5]

- Telegram: 90 (+11) users [6]

- Twitter: 67 (+14) tweeters [7]

 92 (+27) unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&net=freeno
de

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Mon, 02 Nov 2020 18:41:21 +0100
To: Ada User Journal readership

[This issue sees a newcomer, the Alire
package manager project, debuting with
130 Ada projects ready to use. --arm]

Rosetta Code: 747 (=) examples [1]

 37 (=) developers [2]

GitHub: 729 (+77) developers [3]

Sourceforge: 276 (+1) projects [4]

Open Hub: 212 (=) projects [5]

Alire:130 (new!) crates [6]

Bitbucket: 88 (-2) repositories [7]

Codelabs: 52 (+1) repositories [8]

AdaForge: 8 (=) repositories [9]

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Mon, 20 Jul 2020 09:38:21 +0100
To: Ada User Journal readership

[From this number on, positive ranking
changes mean to go up in the ranking.
This issue sees the addition of the PYPL
ranking, which is computed by analyzing
how often language tutorials are searched
on Google. The IEEE ranking has seen no
updates through 2020, and will be likely
dropped soon if this situation persists.
--arm]

- TIOBE Index: 39 (+4) 0.35%
(+0.07%) [1]

- PYPL Index: 19 (new!) 0.62%
(+0.3%) [2]

- IEEE Spectrum (general): 43 (=)
Score: 24.8 [3]

- IEEE Spectrum (embedded): 13 (=)
Score: 24.8 [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2019

Ada Reference Manual
2020.1

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Ada Reference Manual info format
2020.1 released.

Date: Fri, 17 Jul 2020 10:23:15 -0700
Newsgroups: comp.lang.ada

ada-ref-man 2020.1 is now available in
GNU ELPA.

This includes Ada 202x draft 25, as well
as Ada 2012. GNAT Community 2020
has some support for some of the new
language features in Ada 202x.

There is also now a searchable info index,
containing the entries in the ARM Index.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sat, 18 Jul 2020 22:40:16 -0500

Sounds good, but keep in mind this is a
moving target. Draft 26 should be
available next week. :-)

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Fri, 31 Jul 2020 17:55:47 -0500

> Sounds good, but keep in mind this is a
moving target. Draft 26 should be
available next week. :-)

My primary computer died (now fixed,
knock on wood), and we've since had an
ARG meeting, so this new draft will be
delayed a couple of weeks. Shouldn't be
too far in the future, though.

Ada-related Tools

SweetAda 0.1C-0.1F

From: gabriele.galeotti.xyz@gmail.com
Subject: SweetAda 0.1c released
Date: Tue, 7 Jul 2020 14:30:36 -0700
Newsgroups: comp.lang.ada

I've just released SweetAda 0.1c.

Windows toolchains now have libstdc++
included.

The RISCV32 and RISCV64 toolchains
are now deprecated, because they end up
the same. So there is now a generic
RISCV toolchain. It behaves like the
other two, you have just to specify the
correct CPU. GCC switches that activate
the 64-bit mode are "-march=rv64imafdc"
and "-mabi=lp64d". Obviously there is the
correspondent RTS target.

The RISCV support is a little bit usable, if
you pick the QEMU-RISC-V-32
platform, it runs Ada code and does some
primitive I/O in the IOEMU window,
stimulating a LED and an 8-bit port.

I've tested Insight and it works very well,
breakpoints and other things seem ok.

Other minor adjustments here and there.

I saw in the log that many users still try to
download from a non-existent directory,
i.e., sweetada.org/software/.... Please
update your links, the correct directory is
sweetada.org/packages/....

Thanks for your patience, I am also
working on documentation.

From: gabriele.galeotti.xyz@gmail.com
Subject: SweetAda 0.1e released
Date: Wed, 22 Jul 2020 11:03:04 -0700
Newsgroups: comp.lang.ada

Hi all. I've just released SweetAda 01.e.

Go to http://www.sweetada.org and
download the archive.

126 Ada-related Tools

Volume 41, Number 3, September 2020 Ada User Journal

RTS and LibGCC packages are still valid
@ 0.1c.

- general cleanup and cosmetics

- general infrastructure improvements

- QEMU-RISC-V-32 target can do serial
output in a terminal

- IntegratorCP target uses LCD VGA

- Malta MIPS target uses a VGA PCI
board

- handling of directories in the cpus
hierarchy, which allows selective unit
overriding

- Insight can be called as a toolchain
component

- IOEMU configuration files are now
fully consistent

Next days I will concentrate on generic
low-level CPU support, documentation,
and restructuring of some redundant units.
Let me know, feedback is highly
appreciated.

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda 0.1f released
Date: Wed, 19 Aug 2020 15:40:58 -0700
Newsgroups: comp.lang.ada

Hi all, I've just released the 0.1f version of
SweetAda.

- general cleanup and cosmetics

- general infrastructure improvements

- the VGA text driver is now unified
across platforms; it is actually used by
PC-x86, PC-x86-64 and MIPS Malta

- the ugly handling of network packets
(Amiga/FS-UAE and PC-x86) is re-
routed to a PBUF FIFO handler (the
management is still far from ideal, but is
not tied to the ISR like before)

- various I/O have now correct aspect
specifiers; in particular some hardware
registers with specific sizes are now
correctly handled without premature
optimizations

- AVR is now part of SweetAda and so 2
platforms exist: ArduinoUno and a
QEMU emulator (both ATmega328P);

 the AVR support is primitive and
incomplete, but, with an ArduinoUno
board, is sufficient to start up the Ada
infrastructure and is able to pulse the
onboard LED;

 note that programming is performed by
means of the AVRDUDE tool, so you
should use a version suitable for your
environment;

 otherwise you could use the IHEX .hex
output file with your preferred tool;

 the QEMU-AVR platform can be used
with GDB or Insight to trace the
execution of code;

- runsweetada and IOEMU library now
correctly show in argv dumps the

launched executable instead of a
"NULL" tag

- the parser inside the IOEMU library
now expose in the .cfg file a variable
(LASTPID) that carries the PID of the
last launched executable (see QEMU-
AVR/qemu.cfg)

There is also a new release of all QEMU
emulators, at version 5.1.0.

Please note that the Linux version is
linked with the SDL2 library instead of
the previous GTK+3.

You can find everything at
http://www.sweetada.org

GWindows 31-Jul-2020

From: gautier_niouzes@hotmail.com
Subject: Ann: GWindows release, 31-Jul-

2020
Date: Fri, 31 Jul 2020 11:01:11 -0700
Newsgroups: comp.lang.ada

GWindows is a full Microsoft Windows
Rapid Application Development
framework for programming GUIs
(Graphical User Interfaces) with Ada.

GWindows works with the GNAT
development system (could be made pure
Ada with some effort).

Changes to the framework are detailed in
gwindows/changes.txt or in the News
forum on the project site.

In a nutshell (since last announcement
here):

 - a few features from the extensions
GWindows.Common_Controls.
Ex_List_View and
GWindows.Common_Controls.
Ex_TV_Generic have been moved to
parent package and respective parent
types for broader use

 - fix: a few records for binding with the
Windows API were erroneously 32-bit
only

GWindows Project site:
https://sf.net/projects/gnavi/

GWindows GitHub clone:
https://github.com/zertovitch/gwindows

TASH Sources

From: mockturtle <framefritti@gmail.com>
Subject: TASH sources?
Date: Mon, 3 Aug 2020 02:16:15 -0700
Newsgroups: comp.lang.ada

I wanted to try to use the Ada Tcl/Tk
binding TASH [1], but the download page
has links to www.adatcl.com that sends
me to some chinese-written site. I guess
www.adatcl.com expired?

Does someone know where I can find the
sources of TASH?

Please note that, for reasons too long to be
explained here, I am not interested in

alternatives to TASH, unless they are
Tcl/Tk bindings.

Thank you in advance.

[1] http://tcladashell.sourceforge.net/
index.htm

From: mockturtle <framefritti@gmail.com>
Date: Mon, 3 Aug 2020 02:28:20 -0700

I am replying to my own post... Deep
down in the Google results I found a
github version of TASH

https://github.com/simonjwright/
tcladashell

Despite the different name it seems like
the original sourceforge TASH (or a
fork?) revived on github

From: Simon Wright
<simon@pushface.org>

Date: Mon, 03 Aug 2020 14:38:58 +0100

> Do someone know where I can find the
sources of TASH?

I altered the project page on SF to point to
the new Github site, but forgot about the
project web pages. Sorry.

I've been moving my projects to Github;
it's a far more pleasant and performant
environment, I find.

> [1] http://tcladashell.sourceforge.net/
index.htm

This page now points you to
https://github.com/simonjwright/
tcladashell

From: Simon Wright
<simon@pushface.org>

Date: Mon, 03 Aug 2020 14:40:27 +0100

> Despite the different name it seems like
the original sourceforge TASH (or a
fork?) revived on github

I thought it was the same name?

Anyway, the project has moved to Github,
under the same management :-)

From: gautier_niouzes@hotmail.com
Date: Mon, 3 Aug 2020 06:53:18 -0700

There is also on GitHub:
https://github.com/thindil/tashy ("TASHY
is short from Tcl Ada SHell Younger").

SI Units Checked and
Unchecked

From: AdaMagica
<christ-usch.grein@t-online.de>

Subject: SI Units Checked and Unchecked -
Completela overhauled version

Date: Thu, 13 Aug 2020 05:24:06 -0700
Newsgroups: comp.lang.ada

Simplified design now available:

http://archive.adaic.com/tools/CKWG/
Dimension/SI.html

Ada-related Products 127

Ada User Journal Volume 41, Number 3, September 2020

The choice of using dimension checking
or not is now made via a generic signature
package. The user interface is unchanged.

Resource to Source

From: <s@srin.me>
Subject: Ann: Resource to source
Date: Thu, 27 Aug 2020 12:09:17 -0700
Newsgroups: comp.lang.ada

Tool "resource" is available - (MIT
License) at:
https://gitlab.com/cpp8/bindata

This tool can take resource files, graphics,
audio etc. and convert them into Ada (or
C) source code and it can be compiled and
included in the binary.

Developed for pedagogic reasons
(https://github.com/RajaSrinivasan/assign
ments/blob/master/resource.pdf) but
hoping it will be useful to the community.

Simple Components 4.51

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components for Ada
4.51 IEEE 754-2008 Decimal

Date: Mon, 31 Aug 2020 15:28:14 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes (1 September 2020) to the
version 4.50:

- The HTTP client behavior changed not
to close connection when keep alive flag
is set unless the server explicitly
requests closing it;

- Non-standard request headers added to
the HTTP implementation: X-
Requested-By, X-Requested-With, X-
XSRF-TOKEN, X-CSRF-TOKEN;

- The package IEEE_754.Decimal32 was
added. The package implements IEEE
754-2008 decimal32 format;

- The package IEEE_754.Decimal64 was
added. The package implements IEEE
754-2008 decimal64 format;

- The package IEEE_754.Decimal128
was added. The package implements
IEEE 754-2008 decimal128 format;

- An implementation of 128-bit integers
was added to the package IEEE_754;

- The package IEEE_754.Edit was added;

- The package provides strings formatting
facilities for 128-bit integers;

- Fallback time zone names changes in the
package GNAT.Sockets.
Connection_State_Machine.
ELV_MAX_Cube_Client.Time_Zones.

Image_Random

From: PragmAda Software Engineering
<pragmada@pragmada.
x10hosting.com>

Subject: [Ann] Image_Random
Date: Thu, 3 Sep 2020 17:17:03 +0200
Newsgroups: comp.lang.ada

Image_Random: True random numbers
from a digital camera (under Linux with
the GNAT compiler) is now available in
case anyone finds it useful.

https://github.com/jrcarter/
Image_Random

MP Music Player

From: PragmAda Software Engineering
<pragmada@pragmada.
x10hosting.com>

Subject: [Ann] MP
Date: Tue, 15 Sep 2020 22:11:30 +0200
Newsgroups: comp.lang.ada

MP, a Music Player based on the Gnoga
audio widget, is available at
https://github.com/jrcarter/MP

Ada-related Products

PTC ObjectAda V10.2 for
Windows

[This PTC announcement and the
following companion were already
published in the previous AUJ number,
although by date they properly belong in
this number, so here they are again.
--arm]

From: Shawn Fanning
<sfanning@ptc.com>

Subject: Product Release Announcement –
PTC ObjectAda V10.2 for Windows

Date: Mon, 27 Jul 2020 16:39:05 -0700
Newsgroups: comp.lang.ada

On July 22, 2020, PTC announced the
availability of version 10.2 of our
ObjectAda for Windows and
ObjectAda64 for Windows products. This
new product release provides full support
for Ada 2012 language features and
represents the completion of the phased
implementation strategy PTC adopted for
Ada 2012 language feature support within

the ObjectAda technology. With
ObjectAda for Windows version 10.2, the
ObjectAda compiler conforms to the Ada
Conformity Assessment Test Suite
(ACATS) version 4.1Q and adds several
new features not present in the previous
release (ObjectAda version 10.1 released
in May 2019) including support for
storage subpools and the
Default_Storage_Pool pragma, execution
time enforcement of type invariants, and
complete support for new Ada expression
forms.

The new installation approach introduced
with ObjectAda for Windows v10.x
allows ObjectAda to be used with the
latest releases of Microsoft’s Visual
Studio tools and the Windows 10 SDK.
ObjectAda version 10.2 includes version
4.0.0 of the ObjectAda Ada Development
Toolkit (ADT) Eclipse interface which
supports Eclipse 2020-03 (4.15) or later.
All of these upgrades combined make
ObjectAda for Windows version 10.2 a
solid, modern, and effective toolset for
development of mission-critical
application code in the Ada language.
ObjectAda version 10.2 supports Ada 95,
Ada 2005, and Ada 2012 compiler
operation modes to provide compatibility
with previous versions.

Additional information about ObjectAda
version 10.2 is available within the
Product Release Announcement which
can be downloaded from
https://www.ptc.com/products/
developer-tools/objectada.

Customers with active subscription
licenses for ObjectAda for Windows
v10.x or ObjectAda64 for Windows v10.x
are entitled to a no-charge upgrade to
v10.2.

If you are not currently using ObjectAda
and wish to learn more or if you are using
an earlier release of ObjectAda and wish
to upgrade, register your request at
https://www.ptc.com/en/products/develop
er-tools/objectada/contact-sales.

PTC ApexAda V5.2
Embedded for
Linux/ARMv8 64-bit

From: Shawn Fanning
<sfanning@ptc.com>

Subject: Product Release Announcement –
PTC ApexAda v5.2 Embedded for
Linux/Armv8 64-bit

Date: Mon, 27 Jul 2020 16:42:37 -0700
Newsgroups: comp.lang.ada

On May 19, 2020 PTC announced the
release of the PTC ApexAda v5.2
Embedded for Linux/Armv8 64-bit
product. This product is the initial product
offering based on a new 64-bit code
generator for ApexAda for the Armv8 64-
bit (aarch64) architecture and is our latest

128 Ada and Operat ing Systems

Volume 41, Number 3, September 2020 Ada User Journal

release supporting 64-bit embedded
application development.

The host operating system for this product
is Intel x64 Red Hat Enterprise Linux
v7.x/v8.x (or CentOS equivalent)
distribution. Using the Linaro GNU cross-
development toolchain for 64-bit Armv8
Cortex-A processors on the Linux/Intel64
host, PTC ApexAda supports the
generation of Ada 95 / Ada 2005
application images that execute on
ARMv8-A 64-bit (aarch64) processors
(for example Arm Cortex A53, A57, A72)
running 64-bit embedded Linux
distributions. Examples of embedded
Linux distributions which can be
supported are openSUSE Leap v15.1,
SUSE Linux Enterprise Server for Arm
v15.1, Ubuntu Server 20.04, Wind River
Linux and other Yocto-derived Linux
distributions with a 64-bit kernel.
Reference hardware used for the
development and test of ApexAda was the
Raspberry Pi 3 Model B/B+. (Raspberry
Pi 4 Model B with its larger 4GB RAM
configuration and other boards such as the
VPX-1703 from Curtiss-Wright Defense
Solutions can also be supported by
ApexAda.)

Included with the 64-bit embedded
compiler is the PTC® ApexAda v5.2 64-
bit compiler for Linux native application
development. Also included is the
integrated ApexAda 64-bit C/C++
compiler which facilitates seamless
development of mixed-language
applications written in Ada, C, and C++.
ApexAda V5.2 Embedded compilers
provide a complete cross-development
toolchain hosted from Linux distributions
including RedHat Enterprise Edition,
CentOS, and SUSE. A complete
description of PTC ApexAda v5.2
Embedded for Linux/Armv8 64-bit is
available within the Product Release
Announcement which can be downloaded
from https://www.ptc.com/products/
developer-tools/apexada .

The addition of the new code generation
capability for 64-bit Armv8 processors to
ApexAda opens up a whole new
landscape for embedded application
development using ApexAda. PowerPC
processors have for a long time been a
design choice for our aerospace and
defense customers due to their balance of
performance, cost, and power
characteristics. Intel processors have
offered many of our customers increased
performance at a cost of additional
complexity and power requirements.
Driven by the mobile consumer market,
Arm processors provide high performance
and low power advantages over Intel
processors. We think these advantages
combined with the flexibility provided by
embedded Linux distributions and the
availability of low-cost and high-
performance consumer-grade
development boards as well as ruggedized

64-bit Arm boards will provide
substantial benefits to our customers
looking to modernize existing deployed
applications while mitigating risks
through continued use of the same time-
proven and industrial-strength ApexAda
compiler technology. The 64-bit Armv8
(aarch64) processors are now well-known
and proven processors with a long
lifecycle and there are multiple 64-bit
Linux distributions available which run
on these processors. Follow-on products
leveraging the new ApexAda 64-bit
Armv8 (aarch64) code generation
capability for other real-time operating
systems are under development with
prioritization based on customer interest
and requirements.

If you would like to receive additional
information about the new PTC ApexAda
v5.2 Embedded for Linux/Intel64 to
Linux/Armv8 64-bit product or wish to be
contacted by a PTC Developer Tools sales
representative regarding evaluations,
upgrades and associated pricing, register
your request at
https://www.ptc.com/en/products/develop
er-tools/objectada/contact-sales.

Ada and Operating
Systems

UNIX OS Written in Ada

From: gdotone@gmail.com
Subject: is there a version of unix written in

Ada
Date: Fri, 24 Jul 2020 15:11:47 -0700
Newsgroups: comp.lang.ada

Is there a UNIX-like OS written
completely in Ada?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 25 Jul 2020 11:47:35 +0300

The short answer is "no".

There have certainly been operating
systems written in Ada -- the OS for the
Nokia MPS-10 minicomputer is an
example.

There are several real-time kernels and
similar low-level SW components written
in Ada, but probably they do not qualify
as "Unix-like", depending on what you
mean by that term.

Why do you ask?

From: Stéphane Rivière <stef@genesix.fr>
Date: Sat, 25 Jul 2020 11:36:57 +0200

See OS section of
https://github.com/ohenley/awesome-ada

> There have certainly been operating
systems written in Ada -- the OS for the
Nokia MPS-10 minicomputer is an
example.

Wasn't aware, thanks! Find that... Very
few refs on the net...

https://dl.acm.org/doi/abs/10.1145/
989798.989799

From: Jesper Quorning
<jesper.quorning@gmail.com>

Date: Sat, 25 Jul 2020 07:43:15 -0700

> is there a unix like OS written
completely in Ada?

Do not know if it is unix-like, but this [1]
looks active. Maybe he needs help..

My own dream was to port GNU/Hurd to
Ada while renaming it to something not
hurding so much.

[1] https://github.com/ajxs/cxos

From: Andreas Zuercher
<ZUERCHER_Andreas@outlook.com>

Date: Sat, 25 Jul 2020 12:20:25 -0700

> is there a unix like OS written
completely in Ada?

In 1981, there in fact was one that had 2
public releases with work in progress on
Version 3: iMAX-432, depending on how
puritanical one wishes to be about what is
or is not Unix-like. (iMAX-432 was far
more Unix-like than, say, MVS-like or
CP/M-like.)

If anyone has an inside negotiating track
at Intel (or the contracting firm that Intel
hired to develop it), perhaps they would
be willing to open-source the old
iMAX432 operating system that was
released for the iAPX432 processor that
was designed from the ground up to have
an Ada-centric instruction set. Although it
was more Multics-esque than Unix-
esque* and although it was written
specifically for the iAPX432 (and thus
had much iAPX432-only assembly
language), it should be relatively easily
transliterable into other ISAs because the
iAPX432 ISA more closely resembles
Java bytecode, LLVM bitcode, and C#
CIL/MSIL than other rudimentary
machine codes of that era, due to being
object-based/OO-lite in the hardware's
machine code (which is what doomed the
iAPX432 in the early 1980s: it was so
complex that it required 3 separate IC dies
in 3 separate ceramic packages, and it ran
relatively hot).

* Conversely, both Multics & our modern
Unix are nowadays birds of the same
feather despite the multi-decade
dislocation in time from each other, due to
both having:

1) multiple threads per address space;

2) multiple DLLs per address-space;

3) multiple memory-mapped files (i.e.,
mmap(2) in Unixes versus snapping
segment-files in Multics);

4) IPC based on multiple threads or
multiple processes pending on a single
message-queue;

Ada and Operat ing Systems 129

Ada User Journal Volume 41, Number 3, September 2020

5) soft real-time thread scheduling
priorities in addition to time-sharing
scheduling priorities;

and

6) a GNU-esque long-form whole-words
and short-form abbreviated-letters of
each hyphenated command-line flag

are birds of much the same father, as
opposed to 1970s-era spartan Unix that
abhorred all of these multiplicities, hence
AT&T's uni-based name in AT&T's

1970-divorce-from-MIT's/GE's/AT&
T's/Honeywell's-Project-MAC in defiance
of Project MAC's multi-based name,
because the tongue-in-cheek humor of
Unix's name as eunuchs is Multics
castrated. Eschewing singleton this and
singleton that, Unix nowadays is no
longer a castrated eunuch, due to
reintroducing a cousin-like variant of
nearly every multiplicity feature of
Multics other than the multiple rings
(unless one counts VM hypervisors
nowadays as reintroducing a cousin of
that one too).

https://en.wikipedia.org/wiki/IMAX_432

From: Stéphane Rivière <stef@genesix.fr>
Date: Sun, 26 Jul 2020 21:45:50 +0200

> I remember someone was writing an OS
in Ada, but I do not remember who
was, nor the name of the project, nor if
it was unix-ish.

In the very old archive
https://stef.genesix.org/aide/
aide-src-1.04.zip you will find:

- The last RTEMS 3.2.1 Ada sources
(yes... old RTEMS releases are offered
in two flavors: Ada and C) comes with
docs & manuals.

- the Ada sos-os Ada series (based from
edu-os in C)

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Mon, 27 Jul 2020 00:15:52 +0200

> - The last RTEMS 3.2.1 Ada sources
(yes... old RTEMS releases are offered
in two flavors : Ada and C) comes with
docs & manuals.

Marte OS implements Minimal Real-
Time POSIX.13 in Ada, so it should be
Unix-like.

https://marte.unican.es/

The same group recently announced
M2OS, which is also in Ada, but not
Unix-like.

https://m2os.unican.es/

From: Stéphane Rivière <stef@genesix.fr>
Date: Mon, 27 Jul 2020 09:40:05 +0200

> In 1981, there in fact was one that had 2
public releases with work in progress
on Version 3: iMAX-432, depending on
how puritanical one wishes to be about

what is or is not Unix-like. (iMAX-432
was far more Unix-like than, say,
MVS-like or CP/M-like.)

Very interesting Andreas, thanks for this
part of Ada and CPU history...

From: Stéphane Rivière <stef@genesix.fr>
Date: Mon, 27 Jul 2020 09:40:04 +0200

> The same group recently announced
M2OS, which is also in Ada, but not
Unix-like.

> https://m2os.unican.es/

Not aware of that, Thanks Jeffrey

I will test that, the Toolchain is Linux
based and includes GDB...

From: nobody in particular
<nobody@devnull.org>

Date: Mon, 27 Jul 2020 14:58:36 +0000

> If anyone has an inside negotiating
track at Intel (or the contracting firm
that Intel hired to develop it), perhaps
they would be willing open-source the
old iMAX432 operating system that
was released for the iAPX432
processor that was designed from the
ground up to have an Ada-centric
instruction set.

I guess it could be worthwhile contacting
Steve Lionel who recently retired from
Intel after working for DEC, COMPAQ,
HP, on Fortran compilers. He has a blog
site, I'll not post the details here so as not
to encourage automated spam. Doctor
Fortran is his nickname.

Ada on OpenVMS Retake

From: gérard Calliet
<gerard.calliet@pia-sofer.fr>

Subject: Ada on OpenVMS, where to have a
new beginning

Date: Mon, 17 Aug 2020 19:14:17 +0200
Newsgroups: comp.lang.ada

I participated in a GNAT Ada build for
Itanium OpenVMS (https://github.com/
AdaLabs/gnat-vms) a few years ago. It is
based on a GCC 4.7.3 .

I'm coming back to this work to maintain
it and make it evolve, in a general
approach of making Ada available in
OpenVMS environments (VAX, Alpha,
Itanium, and soon x86).
(http://www.vmsadaall.org/index.php/en/)

For VAX and Alpha we have at least
DEC Ada and Alsys Ada. On Itanium I
have to maintain GNAT Ada on GCC.
For x86 I have to base on the GNAT Ada
front end for LLVM, since VSI ports
VMS to x86 (https://vmssoftware.com/
updates/state-of-the-port/) basing the
compilers on LLVM.

I know that AdaCore dropped commercial
support for GNAT Ada on OpenVMS in
2015. It's not the commercial reasons that
interest me.

In approaching this project again, I would
like to know as much as possible about
how far AdaCore's people or helpers have
come in their developments for
OpenVMS, what problems they have
dealt with in the GCC upgrades they have
resolved, only considered, and those they
have seen as too difficult and blocking.
The question arises as well for the
upgrades (with for example around this
time the transition of the GCC build to
C++) as for the evolution of the debug
management.

If the answers raise confidentiality issues,
I don't want to put anyone in trouble, but
I'm looking for indications on who to
negotiate with.

It's not impossible that AdaCore's people
were among the last to develop GCC for
OpenVMS Itanium. They may also be
able to inform me about the build of the C
and C++ part for GCC OpenVMS. I think
indeed to associate to my efforts for Ada
the exploration of the availability of a
C++ GCC for Itanium OpenVMS.

This resumption of [this] project is quite
at its beginning. My goal is to open as
much as possible the work and its results
to a collaborative work, in Open Source
standards. One of my first tasks will be to
update the current repository to allow
opened development.

From: Andreas Zeurcher
<ZUERCHER_Andreas@outlook.com>

Date: Mon, 17 Aug 2020 11:56:56 -0700

For those interested, a hobbyist license of
OpenVMS is available from VMS
Software, Inc., which is the new owners
of VMS instead of HPE. There is also a
free Alpha emulator for Windows 10 as
well.

https://training.vmssoftware.com/hobbyist

From: nobody in particular
<nobody@devnull.org>

Date: Tue, 18 Aug 2020 18:49:13 +0000

It is unlikely yet perhaps Steve Lionel
will have some info on this. Although he
was not involved with Ada (to my
knowledge) he was a fixture in the
compiler community for Fortran and
probably more, at DEC, COMPAQ, and
HP over a long period and might be able
to identify likely suspects to contact.

This year the VMS port to Intel X86 was
finally completed

https://vmssoftware.com/updates/
state-of-the-port/

https://sciinc.com/remotevms/
vms_techinfo/vms_news/
OpenVMSOnX86-64.asp

I remember a lengthy discussion in the
VMS newsgroup many years ago
regarding the future of Ada on VMS. I
believe the guys at the above companies
were involved. I think the conclusion was

130 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

they would not or could not handle it in-
house and I believe the Ada they had on
VMS was only 95. There were
murmurings that they would try to find
somebody to do it but I did not hear that
AdaCore ever released anything.

Thank you, I'll follow this thread with
interest.

Ada and Other
Languages

CLU and Alphard
Grammars

From: Oliver Kellogg
<olivermkellogg@gmail.com>

Subject: CLU and Alphard grammars
available in HTML

Date: Thu, 23 Jul 2020 15:02:09 -0700
Newsgroups: comp.lang.ada

The research languages CLU and Alphard
had some influence on the design of Ada
[1].

The available grammar documents [2], [3]
are in Postscript or PDF format, in the
case of Alphard in a somewhat hard to
read typeface due to being scanned from
the original document.

For an HTML version of the grammars,
see

http://okellogg.de/proglang/
CLU-syntax.html

http://okellogg.de/proglang/
alphard-collected-syntax.html

 [1] Ada 83 LRM section 1.3

See e.g. http://archive.adaic.com/
standards/83lrm/html/lrm-01-03.html

[2] CLU Reference Manual Appendix A

See e.g. http://okellogg.de/proglang/
CLU-syntax.pdf

[3] An informal definition of Alphard

See e.g. http://okellogg.de/proglang/
An_informal_definition_of_Alphard.pdf

From: "oliverm...@gmail.com"
<olivermkellogg@gmail.com>

Date: Wed, 19 Aug 2020 13:27:33 -0700

Update:

Translation of the full "Informal
Definition of Alphard" document to
HTML is in progress, see

http://okellogg.de/proglang/
an-informal-definition-of-alphard.html

100% completion ETA is within the next
few weeks.

Ada Practice

Ada on Apple's New
Processors Licensing
Concerns

[The thread started with compiler backend
concerns, but most of it evolved towards
licensing issues in view of the
optimizations that the Apple Store may
perform to intermediate code. As is often
the case with licensing arguments, no
entirely satisfactory consensus was
reached on the actual situation, and any
conclusions in any case should be vetted
by qualified experts. One possible
takeaway, as Fabien Chateau summarizes
in one of his posts, is that the GNAT-
LLVM frontend opens many possibilities
that did not exist before, which is a net
positive in any case.

The complete thread can be found at
https://groups.google.com/g/comp.lang.ad
a/c/lHQQfRATKno --arm]

From: Jerry <list_email@icloud.com>
Subject: Ada on Apple's new processors
Date: Mon, 22 Jun 2020 15:53:00 -0700
Newsgroups: comp.lang.ada

Apple is beginning its third nightmare
transition to a new processor family.
What does this mean for Ada on macOS?

Can we hope for a native compiler
anytime soon? We will have Rosetta 2
until we don't. (Original Rosetta lasted for
two OS generations and then it was taken
away.) I could tell you the story of
needing to run a small PowerPC program
to set up a slightly old Apple WiFi device
a couple years ago. Buy Parallels. Call
Apple and send $30 to get Snow Leopard
Server--that's 10.6. Virtualize Snow
Leopard Server on Parallels to run the
WiFi set-up program in Rosetta.)

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Tue, 23 Jun 2020 03:42:46 -0700

> Apple is beginning its third nightmare
transition to a new processor family.
What does this mean for Ada on
macOS?

> Can we hope for a native compiler
anytime soon?

I suppose native toolchain will be based
on LLVM, thus it will allow to use GNAT
LLVM on new processors.

 [A large discussion is omitted at this
point on the implications of GCC code
generation in regard to the Runtime
Library Exception (RLE) clause of
GPLv3. However, as later was pointed
out, GNAT LLVM does not have any
relation to GCC.

Arnaud Charlet from AdaCore eventually
jumped in to clarify the status of GNAT

LLVM licensing, which re-sparked a
somewhat more focused discussion in
relation to the original topic, which
follows. --arm]

From: charlet@adacore.com
Date: Thu, 25 Jun 2020 00:21:01 -0700

> The compiler links to GNAT-LLVM,
the runtime doesn't.

> Pretty sure that the AdaCore people said
it won't fall under GPL.

That's correct, there is no issue here. The
GNAT LLVM compiler is a tool and is
licensed under GPLv3, which is just fine
and the proper license for a tool. The
runtime which is linked with your
executable comes from the gcc.gnu.org
repository and contains the GCC
RunTime exception license.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Thu, 25 Jun 2020 10:55:39 +0100

> That's correct, there is no issue here.
[...]

Can you confirm that using FSF GNAT
with GNAT-LLVM (GPLv3) does or
does not enable the IR clause in the
GPLv3?

From: charlet@adacore.com
Date: Thu, 25 Jun 2020 03:14:31 -0700

> Can you confirm that using FSF GNAT
with GNAT-LLVM (GPLv3) does or
does not enable the IR clause in the
GPLv3?

It does not and in any case, invoking this
clause is a red herring since as explained
in the license, the concern and what's not
allowed is using an intermediate
representation and feed it to a proprietary
(non-GPL-compatible) software to e.g.
optimize it or further process it. LLVM is
a GPL-compatible Software, so this is
irrelevant.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 25 Jun 2020 12:03:14 +0100

> It does not and in any case, invoking
this clause is a red herring since as
explained in the license, the concern
and what's not allowed is using an
intermediate representation and feed it
to a proprietary (non-GPL-compatible)
software to e.g. optimize it or further
process it.

Optikos has (at last) made clear his
concerns about this: if it is indeed the case
that Apple requires App Store developers
to deliver bitcode for further proprietary
optimizations then there might be an
issue.

Depends on whether LLVM IR (which I
understand is logically equivalent to
bitcode) can count as target code? I've
seen it described as LLVM assembler ...

Ada Pract ice 131

Ada User Journal Volume 41, Number 3, September 2020

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Thu, 25 Jun 2020 12:25:59 +0100

> [...] further proprietary optimizations
[...] might be an issue.

> Depends on whether LLVM IR [...] can
count as target code?

Indeed. The only thing I've found so far is
this:

https://thenextweb.com/apple/2015/06/17/
apples-biggest-developer-news-at-wwdc-
that-nobodys-talking-about-bitcode/

Quote from near the top:

'This means that apps can automatically
“take advantage of new processor
capabilities we might be adding in the
future, without you re-submitting to the
store.”'

From the apple docs it links to at the top:

"Bitcode is an intermediate representation
of a compiled program. Apps you upload
to App Store Connect that contain bitcode
will be compiled and linked on the App
Store. Including bitcode will allow Apple
to re-optimize your app binary in the
future without the need to submit a new
version of your app to the App Store. "

So, it looks like he [Andreas Zuercher,
aka Optikos --arm] is right.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Tue, 30 Jun 2020 04:16:38 -0700

> this later closed-source processing of
the app by Apple for nonjailbroken
ARM-based Macs and iDevices to
distribute via the App Store seems to
violate terms of at least the RLE
[Runtime Library Exception] if not
GPLv3 too.

The Apple app store is incompatible with
the GPL since long ago:
https://www.fsf.org/blogs/licensing/
more-about-the-app-store-gpl-
enforcement

I don't see anything new here.

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Tue, 30 Jun 2020 05:28:45 -0700

>

> The Apple app store is incompatible
with the GPL since long ago:
https://www.fsf.org/blogs/licensing/mor
e-about-the-app-store-gpl-enforcement

Yes, when the developer's app is GPLed,
the App Store's terms and the GPL's terms
are mutually incompatible. Historically,
GPLing an app would have been by
developer choice (unless somehow
violating the RLE which was rare in
practice because using garden-variety
unmodified IR-unadorned GNAT, GCC,
and so forth resulted in an Eligible
Compilation Process in RLE).

> I don't see anything new here.

What is new here is that there appear to
be well-reasoned ways (e.g., the Wide
legal theory along this thread [that LLVM
IR is a kind of IR code according to the
RLE --arm]) that GNAT-LLVM could
•force• a developer's app to [be] GPLed
against the developer's will by easy-to-
enact-in-GNAT-LLVM violations of the
RLE's terms that cause the Compilation
Process to not achieve the stricter Eligible
Compilation Process definition, due to
Apple's closed-source manipulations of
LLVM IR bitcode.

Perhaps the work-around is that GNAT-
LLVM-based developers of apps should
•never• submit LLVM IR bitcode to
Apple's App Store's app-intake procedure.
In the past as far back as 2015, submitting
bitcode instead of machine code was
optional. It is unclear with the new ARM-
based Macs, whether that optionality will
continue in the future, or whether that
optionality has already been curtailed.

(Conversely, under the Narrow legal
theory along this thread [that LLVM IR is
equivalent to assembly code and not an
actual IR for RLE purposes --arm], your
claim is correct, nothing has changed: if
an app-developer doesn't want to suffer
the mutual incompatibility of the GPL and
Apple App Store, then don't choose GPL
as the license for the app, because despite
its name LLVM IR bitcode is merely
assembly language which is unregulated
by RLE.)

From: charlet@adacore.com
Date: Tue, 30 Jun 2020 07:35:03 -0700

> We need clarification on whether the
translation from GCC's IR to LLVM's
IR invokes this clause. I'm not sure if
GNAT final IR before the GNAT-
LLVM backend is GENERIC or
GIMPLE.

GNAT LLVM doesn't use nor depend on
GCC at all: it goes directly from the
GNAT tree to LLVM bitcode, there is
never any GENERIC nor GIMPLE in
sight by design and never can be (unlike
with the old DraggonEgg FWIW).

> I've had a quick look in GNAT-LLVM
and I cannot see any flags enabling the
output of GCC's IR, only LLVM's IR.

See above.

By the way the reason I haven't answered
other messages is mainly because I am
not familiar with Apple's specific
constraints here, so I'd rather not make
any statement about them rather than
making wrong statements and you
shouldn't draw any conclusion from the
fact that I haven't replied to some of the
messages in this thread.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Tue, 30 Jun 2020 15:46:43 +0100

> GNAT LLVM doesn't use nor depend
on GCC at all: it goes directly from the
GNAT

Ok, makes sense.

> tree to LLVM bitcode, there is never
any GENERIC nor GIMPLE in sight by
design and never can be (unlike with
the old DraggonEgg FWIW).

But, GNAT is 1 part of GCC and the
GPLv3 mentions IR, what constitutes the
IR? Surely it covers the Ada AST IR?

Does the GPL infect across the different
IR boundaries?

[...]

From: Simon Wright
<simon@pushface.org>

Date: Tue, 30 Jun 2020 21:01:59 +0100

> GNAT LLVM doesn't use nor depend
on GCC at all: it goes directly from the
GNAT tree to LLVM bitcode, there is
never any GENERIC nor GIMPLE in
sight by design and never can be
(unlike with the old DraggonEgg
FWIW).

It seems to me that there's a lot of
argument about things which can't or
won't be changed.

AdaCore have produced GNAT-LLVM as
a proof of concept, aimed really at targets
not supported by GCC but of interest to
AdaCore's customers.

GNAT-LLVM code itself is (C) AdaCore,
and is GPLv3. The gcc/ada code is (C)
FSF, and is GPLv3.

No change there.

The current build takes the RTS from FSF
GCC, though clearly it could take it from
elsewhere (e.g. some bare metal RTS).

That RTS is (C) FSF, GPLv3 + runtime
exception.

Some here have thought, Aha! LLVM,
RTS with runtime exception, people could
produce apps for iOS!!!!

Then, cold reality strikes: it looks as
though there's a conflict between the
actual terms of the runtime exception and
Apple's requirements for code to be
submitted to the App Store (it needs to be
in LLVM IR or equivalent); the code
would very likely lose the protection of
the runtime license umbrella.

Now, guys, given that there's Apple on
one side standing on a mountain of money
and a prickly attitude to what they'll
accept for their app store, and on the other
side a very much smaller developer
community, who's going to risk going to
court to put a GNAT app on to the App
Store?

Whether you could make such an app and
run it on iPhones privately, without going

132 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

through Apple & the App Store, I don't
know. I'm sure the NSA can.

[...]

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Tue, 30 Jun 2020 21:20:27 +0100

>> By that point, there should be a strong
track record of technical knowledge
regarding Apple's bitcode submission
policies to the App Store to relay to the
attorneys so that they can simply turn
the legal crank to make a
decision/adjustments of whether/how
GNAT-LLVM is to transition out of
experimental status.

> I'd have thought that AdaCore's
response to this idea would be to ask
where you got the idea that iOS & the
App Store would feature as a candidate
target.

I'm developing SDLAda, there are mobile
targets. I don't see why Ada shouldn't.
Jesus, even COBOL can compile to
mobile according to an article I read a
while ago. If AdaCore and Ada users
want people not thinking that Ada is an
ancient language, then it needs to wake
up, smell the coffee and get on mobile.

From: Wesley Pan
<wesley.y.pan@gmail.com>

Date: Tue, 30 Jun 2020 15:07:05 -0700

> I'm developing SDLAda, there are
mobile targets. I don't see why Ada
shouldn't. [...]

I COMPLETELY agree with Luke! We
need Ada to expand to things like mobile,
gaming, and other "more exciting"
markets to help attract the new
generations of software engineers and to
stay relevant in the public's eyes. The
gaming industry alone rivals that of
Hollywood. By the end of 2019, GTA 5
sold more than 100 million copies
worldwide, earning its publisher more
than $6 billion on a $265 million
development budget. That's not chump
change. How can members of the Ada
community ever really jump into such
industries if the same issues like the
license keep coming up as roadblocks?!

I'm not in any way suggesting the Ada
community give up its focus on the safety
and reliability angle. Those are very
important too. But, if you were to have
affordable/free Ada tools for
mobile/gaming on one side, and
expensive tools for the next-gen Mars
rover on the other side, which do you
think would attract more end users?

BTW, even the new "cool" Rust language
is being used to develop apps for mobile.
Ada apps....?

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Tue, 30 Jun 2020 21:46:47 -0700

> I'd have thought that AdaCore's
response to this idea would be to ask
where you got the idea that iOS & the
App Store would feature as a candidate
target.

Gee, either

a) we all concurrently pulled it out of thin
air via overactive imagination as you
imply,

or

b) the following extant events & facts
transpired:

At least an engineer at AdaCore (if not
AdaCore speaking as an organization)
wrote the following on the GNAT-LLVM
repository's README.md:

“[GNAT-LLVM] is a work-in-progress
research project that's not meant for and
shouldn't be used for industrial purposes.
It's meant to show the feasibility of
generating LLVM ••bitcode•• for Ada.”
(emphasis added)

LLVM.org did not organically produce
bitcode out of their own volition. Bitcode
was Apple's idea, Apple's design,
contributed by Apple to benefit primarily
Apple as a strategic technology to
facilitate Apple's OS-optimization &
processor-switcheroo goals without Apple
begging all app developers to resubmit a
plethora of minor-variation apps every
time Apple has a bright idea or Big New
Thing. So when GNAT-LLVM's
README.md is explicitly calling out
bitcode emission as the A#1 top-priority
reason for GNAT-LLVM to exist, by
using that very term bitcode, it is quite
clear that the intended reading of
README.md is referring to the Apple-
Apple-Appleness of bitcode since bitcode
was announced at Apple's Worldwide
Developer Conference in June 2015 as a
key technology related to App Store
submission and downstream proprietary
processing by Apple post-submission:

https://TheNextWeb.com/apple/2015/06/
17/apples-biggest-developer-news-at-
wwdc-that-nobodys-talking-about-bitcode

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Wed, 1 Jul 2020 02:23:29 -0700

> Gee, either

> a) we all concurrently pulled it out of
thin air via overactive imagination as
you imply,

> or

> b) the following extant events & facts
transpired:

The answer is a).

> it is quite clear that the intended reading
of README.md is referring to the
Apple-Apple-Appleness of bitcode
since bitcode was announced at Apple's
Worldwide Developer Conference in

June 2015 as a key technology related
to App Store submission and
downstream proprietary processing by
Apple post-submission:

It seems like you focus too much on
details of a simple README. LLVM
bitcode is sometimes used to talk about
the general LLVM IR.

The example use cases mentioned by the
README are bringing more tooling to
the Ada ecosystem, for instance with
KLEE, or "connecting the GNAT front-
end to the LLVM code generator".

It took time and effort to publish GNAT-
LLVM on GitHub, and AdaCore had
absolutely no obligation to do so. To be
honest, I am personally a bit disappointed
to see such a long discussion on what is
allegedly not possible to do with GNAT-
LLVM (and was absolutely not possible
before anyway), rather than all the
possibilities that GNAT-LLVM opens.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 01 Jul 2020 12:03:10 +0100

> It took time and effort to publish
GNAT-LLVM on GitHub, and
AdaCore had absolutely no obligation
to do so. To be honest, I am personally
a bit disappointed to see such a long
discussion on what is allegedly not
possible to do with GNAT-LLVM (and
was absolutely not possible before
anyway), rather than all the possibilities
that GNAT-LLVM opens.

Personally, I thank AdaCore for making
such an interesting project available.

A couple of postings down Jeffrey Carter
quoted this, which seems apt in the
current context:

 "Propose to an Englishman any
principle, or any instrument, however
admirable, and you will observe that the
whole effort of the English mind is
directed to find a difficulty, a defect, or an
impossibility in it. If you speak to him of
a machine for peeling a potato, he will
pronounce it impossible: if you peel a
potato with it before his eyes, he will
declare it useless, because it will not slice
a pineapple."

 Charles Babbage

From: Wesley Pan
<wesley.y.pan@gmail.com>

Date: Thu, 2 Jul 2020 17:51:36 -0700

> It took time and effort to publish
GNAT-LLVM on GitHub [...]

Hi Fabien,

That's a fair point. As with any compiler
related development (and software in
general), I'm sure the amount of time and
effort it took to create GNAT-LLVM was
significant. Aside from the licensing
issue/debate, it is a really great
contribution to the Ada community and I

Ada Pract ice 133

Ada User Journal Volume 41, Number 3, September 2020

hope it becomes production quality in the
very near future.

AdaCore is the main (if not only)
company that continues to make
innovative and very helpful tools related
to Ada (e.g. libadalang and LearnAda).
As you pointed out, AdaCore was not
obligated to make such contributions.
GNAT-LLVM could very well have been
kept in closed doors to only further
AdaCore's internal development.

When news about GNAT-LLVM first
came out, I for one thought it would
finally allow people to create IOS apps in
Ada and to further the adoption of the
language. Sadly, not sure that will ever
happen now...

From: gautier_niouzes@hotmail.com
Date: Fri, 3 Jul 2020 04:08:00 -0700

> It took time and effort to publish
GNAT-LLVM on GitHub [...]

There is a bias here: the people discussing
on comp.lang.ada tend to be busy...
discussing on comp.lang.ada - and less
busy doing actual programming. Chatting
and programming are incompatible
activities IMHO. At least you cannot do
both at exactly the same time...

From: Simon Wright
<simon@pushface.org>

Date: Thu, 02 Jul 2020 10:54:27 +0100

> "The LLVM code representation is
designed to be used in three different
forms: as an in-memory compiler IR, as
an on-disk bitcode representation
(suitable for fast loading by a Just-In-
Time compiler), and as a human
readable assembly language
representation", which to me precisely
matches "data in any format that is used
as a compiler intermediate
representation, or used for producing a
compiler intermediate representation".

On thinking about this further, I can't help
wondering whether this is deliberate.

From: antispam@math.uni.wroc.pl
Date: Fri, 3 Jul 2020 17:18:40 +0000

> On thinking about this further, can't
help wondering whether this is
deliberate.

Why doubt? FSF clearly did not want
what Apple is doing now. Apple
understood this well, left GCC
development and started promoting
LLVM. FSF lawyers formulated
appropriate licencing language. So the
remaining question is if they did a good
job. Basically folks here are searching for
a loophole. Loopholes happen, but FSF
was careful, so do not bet on this.

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Fri, 3 Jul 2020 11:31:33 -0700

> Why doubt? [...]

These have been my exact concurring
conclusions as well for over 2 years now,
when I back then ceased coding up my
own variant resembling what is now
known as GNAT-LLVM. Some of my
design/coding work was hinted at in
multiple of my postings here on c.l.a.
back then. I figured out these ••chilling
effects•• on my own over 2 years ago.

Question about Best
Practices with Numerical
Functions

From: mockturtle <framefritti@gmail.com>
Subject: Question about best practices with

numerical functions
Date: Fri, 3 Jul 2020 22:30:52 -0700
Newsgroups: comp.lang.ada

I have a question about the best way to
manage a potential loss of precision in a
numerical function. This is a doubt that
came to my mind while writing a piece of
software; now I solved the specific
problem, but the curiosity remains.

Let me explain.

Recently I needed to write an
implementation of the Lambert W
function (is the function that given y finds
x such that x*exp(x)=y). This function
cannot be expressed with elementary
functions and the algorithm I found
basically solves the equation in an
iterative way. Of course, if you fix the
maximum number of iterations, it can
happen that the convergence is not fast
enough and you obtain a result that is
potentially less precise than what you
would expect.

I was wondering how to manage such a
non convergence case. Please note that I
am supposing that I am writing a
"general" function that could be used in
many different programs. If the function
was specific for a single program, then I
would choose the line of action (e.g.,
ignore, log a warning or raise an
exception) depending on the needs of the
specific program.

(Incidentally, it turned out that the
implementation converges nicely for any
value of interest; nevertheless, the
curiosity remains...)

I can see few line of actions that would
make sense

[1] Raise an exception.

Maybe this is a bit too drastic since there
are cases where a moderate loss of
precision does not matter (this was my
case, i just needed one or two decimal
digits)

[2] Let the function have an optional
"precision" parameter and raise an
exception if the precision goes below that

[3] Let the function return a record with a
field Value with the actual result and a
field Error with the estimated precision.

This would make the code a bit heavier
since instead of calling

X := Lambert(Y);

you would say

X := Lambert(Y).Value;

Not really a huge deal, however...

[4] Print a warning message to standard
error or some logging system and go on.

This sounds like the worst option to me.
The message could be overlooked and,
moreover, it supposes there is some
logging facilities or that the standard error
is available for logging... Remember that
the function should be general, to be used
in any program.

[5] ???

Any suggestions?

Thank you in advance

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Sat, 4 Jul 2020 09:50:57 +0200

> [5] ???

[5] Interval computations is the best way
to handle rounding errors:

https://en.wikipedia.org/wiki/
Interval_arithmetic

An Ada implementation is here:

http://www.dmitry-kazakov.de/ada/
intervals.htm

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Sat, 4 Jul 2020 05:45:57 -0500

Most Fortran Lapack use INFO code.

"All documented routines have a
diagnostic argument INFO that indicates
the success or failure of the computation,
as follows:

INFO = 0: successful termination

INFO < 0: illegal value of one or more
arguments -- no computation performed

INFO > 0: failure in the course of
computation"

https://www.netlib.org/lapack/lug/
node138.html

So you could follow that.

[...]

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 6 Jul 2020 10:02:39 -0700

> [5] ???

> Any suggestions?

One way to do this would be to use fixed-
point types:

134 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

(1) Convert your input to the fixed-point
that has a "good enough" delta for the
precision you want.

(2) Run the algorithm.

(3) Convert back to your normal value-
type.

This assumes you're using floating-point
or integers, but one nice thing about
fixed-point is that it has a bounded error
when dealing with operations, unlike
floating-point. -- I remember some years
ago seeing a bug report dealing with
floating-point, where the particular error
simply couldn't have happened with
fixed-point.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 7 Jul 2020 00:23:06 +0200

> One way to do this would be to use
fixed-point types:

Rounding error is bounded in both cases.
Fixed-point has same error regardless of
the values involved in the operations.
Floating-point has error depending on the
values.

I would say that floating-point error
would be roughly the same for addition,
subtraction and multiplication, provided
fixed-point does not overflow. It will be
hugely better for division.

Using fixed-point arithmetic has only
sense for a few marginal cases of
rounding.

Furthermore converting many algorithms
to fixed-point might turn quite non-trivial
as you will have to ensure absence of
overflows and underflows. Where
floating-point computation just would
lose some precision, fixed-point will
catastrophically fail.

General Circular Buffer

From: Daniel
<danielnorberto@gmail.com>

Subject: General circular buffer example
not tied to any specific type

Date: Sat, 4 Jul 2020 10:00:26 -0700
Newsgroups: comp.lang.ada

Hello, any theoretical example of buffer I
can find is always tied to a specific type.

I'm looking for any example of Ravenscar
buffer able to use any type of data at the
same time.

I suppose it will need to serialize all data
and manipulate it as a group of bytes.

Does anybody know any example of this
written in Ada?

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Sat, 4 Jul 2020 19:25:22 +0200

Ring buffer of indefinite elements would
be OK. As an element you can use this:

 type Item (Size : Stream_Element_Count)

 is record

 Data : Stream_Element_Array (1..Size);

 end record;

Instantiate the generic buffer with this
type. Use stream attributes to
serialize/deserialize.

Alternatively you can do it with
Storage_Element in the above and use a
fake storage pool to store/restore objects.
Or a combination "for X'Address use Y"
with pragma Import (Ada, X);

If the type set is somewhat statically
known you can use a variant record as an
element too.

In some cases you can have a ring buffer
of type tags and a set of ring buffers. For
each type tag you would keep values in a
separate ring buffer.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Thu, 24 Sep 2020 06:39:43 +0200

> Does anybody knows any example of
this written in Ada?

Hmmm, you know, Ada is a strongly
typed language, therefore what you put in
a buffer must have a well defined type.

There are two possibilities:

1) If you can accept several buffers, one
for each type, make it generic and
instantiate it as many times as you need

2) Make a buffer of Stream_Elements,
and use the streaming attributes ('Read,
'Write) to turn any type into stream
elements.

Ada.Streams.Stream_IO can also be
handy in some cases.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 25 Sep 2020 15:32:01 +0100

As J-P has said, you could use 'Write and
'Read (or better, 'Output and 'Input) to
write to a stream.

The beginnings of an alternative, which I
last worked on a while ago, is at [1]; it's
an Ada implementation of part of
MessagePack[2] (boolean, integer, float,
string). Still a way to go!

Writing arbitrary data to a stream using
'Write/'Output suffers from the
disadvantage that the reading side won't
know what to expect unless you have
some protocol in place. This
Message_Pack doesn't eliminate this at
all.

For a while, I supported a scheme where
all the data to be transmitted had to be
instances of a tagged type e.g. Base; as far
as I can remember, you output the data
using Base'Class'Output and read it in
using Base'Class'Input.

[1] https://sourceforge.net/u/
simonjwright/msgpack-ada/code/
ci/master/tree/

[2] https://en.wikipedia.org/wiki/
MessagePack

Fixed vs Float Precision and
Conversions

From: Björn Lundin
<b.f.lundin@gmail.com>

Subject: Fixed vs float and precision and
conversions

Date: Tue, 7 Jul 2020 23:10:20 +0200
Newsgroups: comp.lang.ada

I've for years run an interface towards
external part on a raspberry pi that
communicates with JSON over http
(JSONRPC2)

the versions are [...]

I have found this reliable but suddenly I
have got some rounding troubles. Or I
perhaps just discovered it now.

I have a fixed type

 type Fixed_Type is delta 0.001 digits 18;

but JSON does not support that. So I get
floats instead. I use gnatcoll.json as parser
by the way

[Skipped example that boils down to
converting a float to a fixed point type.
--arm]

The message (JSON) contains a value
5.10 (in a float), but that is converted
(sometimes I think) to the fixed_type
variable with value 5.099. This gets me
into trouble further down in the code.

So - What should I do instead?

should I express my Fixed_Type in
another way?

I need to be able to express 6.5 % (0.065)
which I could not with type Fixed_Type
is delta 0.01 digits 18;

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 8 Jul 2020 00:30:29 +0300

According to RM 4.6(31), conversion to a
decimal fixed-point type does not round,
but truncates toward zero if the operand is
not a multiple of the "small" of the target
type, which is usually the case here if
Floats are base-two.

You should perhaps change the
conversion (Target := Fixed_Type(Tmp))
to round, by doing Target :=
Fixed_Point'Round (Tmp).

Note, I haven't tried it.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Wed, 8 Jul 2020 20:10:35 +0200

The main reason for asking was to see if I
got the whole concept of fixed types
wrong or not.

Ada Pract ice 135

Ada User Journal Volume 41, Number 3, September 2020

I did expect 'You should do this or that
one-liner' as Niklas proposed. I did not get
that to work though.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 8 Jul 2020 21:21:45 +0300

> I did expect 'You should do this or that
one-liner' as Niklas proposed. I did not
get that to work though

Oh. What happened when you tried? How
did it fail?

From: Shark8
<onewingedshark@gmail.com>

Date: Tue, 7 Jul 2020 14:58:40 -0700

> but JSON does not support that. So I get
floats instead.

This is a limitation of JSON, IIUC: all
numeric are IEE754 floats -- see:
https://www.json.org/json-en.html

If you have access to both sides of the
serialization, you could define an
intermediate serialization say a string of
"Fixed_Type#value#" where 'value' is the
string-representation you need. -- You can
extract the value by indexing on the '#'
characters, extracting the portion in
between, and feeding that via
Fixed_Type'Value(
EXTRACTED
_SUBSTRING), and produce it via
"Fixed_Type#" & Fixed_Type'Image(
fp_value) & '#'.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 8 Jul 2020 20:36:47 +0200

> The main reason for asking was to see if
I got the whole concept of fixed types
wrong or not.

Fixed-point is conceptually a scaled
integer. You should deal with it
accordingly. [It could be a bit surprising
in Ada where conversion to integer
rounds. In most languages conversion to
integer truncates]

[...]

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Wed, 8 Jul 2020 21:39:20 +0200

> Oh. What happened when you tried?
How did it fail?

I did a test routne like below, but realized
that Float(5.10) - which was converted to
Fixed_Type(5.099) is a valid fixed_type
of course.

so

 Fix1 := Fixed_Type(Flt);

or

 Fix2 := Fixed_Type'Round(Flt);

does not really matter, since both may
return 5.099 when given 5.10

[...]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 8 Jul 2020 23:34:46 +0300

> I did a test routine like below, but
realized that Float(5.10) - which was
converted to Fixed_Type(5.099) is a
valid fixed_type of course.

No, see below. You are confusing decimal
(base-10) reals with binary (base-2) floats.
[...] The point is that Float'(5.10) is not
exactly 5.10, because base-2 floats cannot
represent decimal fractions exactly. Since
the result, as you showed in your first
post, of converting (with truncation)
Float'(5.10) to Fixed_Type is 5.099, the
actual (binary) value of Float'(5.10) is a
little less than 5.10, so the truncation
gives 5.099 instead of 5.100.

But Fixed_Type'Round (Float'(5.10)) will
always give 5.100.

[...]

Binary Search SPARK Proof

From: mockturtle <framefritti@gmail.com>
Subject: My new post on dev.to about

SPARK
Date: Thu, 9 Jul 2020 07:16:20 -0700
Newsgroups: comp.lang.ada

first a bit of disclaimer: this is about a
recent post of mine on dev.to I post this
here since I think that maybe someone in
this group could be interested.

Recently I wrote a small binary search
procedure for a software of mine. Since I
always wanted to start using SPARK, I
thought that this could be a nice small
problem to start playing around with
SPARK. The post on dev.to is about my
experience.

If you are curious

https://dev.to/pinotattari/
proving-the-correctness-of-a-binary-
search-procedure-with-spark-ada-34id

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Thu, 9 Jul 2020 08:27:16 -0700

I shared it on reddit:
https://www.reddit.com/r/programming/
comments/ho4zzp/
proving_the_
correctness_of_a_binary_search/

Go upvote :)

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Thu, 9 Jul 2020 18:35:39 +0200

> Recently I wrote a small binary search
procedure for a software of mine.

This is good, but why did you write it
from scratch? Why not start with an
available, reusable binary search? Then
you would have a proven, generally
useful component.

This is an interesting pedagogical
example, but the actual algorithm is too
specialized to be of general use.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 09 Jul 2020 21:00:18 +0100

Interesting!

I thought to have a bit of a play with it,
and I found that neither CE 2019 nor CE
2020 will prove as is, including "assertion
might fail, cannot prove Bottom < Top";
but it proves just fine with

 type Element_Type is new Integer;

or

 subtype Element_Type is Integer;

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 10 Jul 2020 06:17:21 +0200

Hmmm... The following O(N**2)
function:

function Is_Sorted (Table : Array_Type)

return Boolean

 is (for all L in Table'Range =>

 (for all M in Table'Range =>

 (if L > M then Table (L) > Table (M))))

 with Ghost;

can be changed to a O(N) function:

function Is_Sorted (Table : Array_Type)

return Boolean

 is (for all L in Table'First .. Table'Last -1

 => Table (L) < Table (L+1))

 with Ghost;

From: Paul Rubin
<no.email@nospam.invalid>

Date: Thu, 09 Jul 2020 23:04:03 -0700

> Hmmm.. The following O(N**2)
function: [...] can be changed to a O(N)
function [...]

Should it matter? The code is never
executed. It's only used as a specification
for the theorem prover.

By the way, Riccardo, thanks for posting
that. It was impressive to see that an
executable-looking spec like that could be
proved automatically with the help of just
a few pragmas. I hadn't posted yet
because I haven't yet had a chance to try
building and playing with the program.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 10 Jul 2020 09:47:16 +0200

> Should it matter? The code is never
executed.

For Spark, no (although I think that the
simpler version is more understandable).
But if you run it through an Ada compiler
with assertions on, then it will make a
difference.

136 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

One Discriminated Task per
CPU

From: Olivier Henley
<olivier.henley@gmail.com>

Subject: 'Number_Of_CPUs' tasks creation,
with discriminants, running
simultaneously.

Date: Mon, 20 Jul 2020 06:51:12 -0700
Newsgroups: comp.lang.ada

My goal is to distribute similar work
across multiple tasks. Incidentally, I want
those tasks to start simultaneously, each
task having some 'indexed' work
(discriminants), and ideally block from
main until they are done with their
workload.

I got this working by declaring the tasks
individually. What I would like to achieve
is to leverage 'System.Multiprocessors.
Number_Of_CPUs' for the number of
tasks created. What is the idiomatic way
of achieving what I want?

I tried with an array of tasks, but the
problem becomes I do not know either
how to start them simultaneously with
parameterization or coordinate their exit
point with main.

I am lurking for the most 'clean/simple'
solution possible.

You can see the actual working code
fixed at 8 tasks here:
https://github.com/ohenley/xph_covid19/
blob/master/src/xph_covid19.adb#
L280-L287

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Mon, 20 Jul 2020 19:45:54 +0200

For simple parameterization, you can use
a discriminant with a default that is a
function call:

subtype Task_ID is Integer range

 0 .. System.Multiprocessors.

 Number_Of_CPUs;

subtype Valid_Task_ID is Task_ID range

 1 .. Task_ID'Last;

Last : Task_ID := 0;

function Next_ID return Valid_Task_ID is

begin

 Last := Last + 1;

 return Last;

end Next_ID;

task type T (ID : Valid_Task_ID := Next);

type T_Set is array (Valid_Task_ID) of T;

Worker : T_Set;

Each Worker (i) will have its ID
determined during elaboration, and they
will all start at the "begin" that follows the
declaration of Worker. The order of the
discriminants is arbitrary; there is no
guarantee that Worker (I) will have ID of
I. Elaboration is sequential, so each
Worker will have a unique ID.

(I think Ada 2X will allow a way to insure
that the ID equals the index, but I'm not
sure how it will work.)

To block a subprogram until the Worker
tasks all complete, declare them in a block
statement:

Create_Workers : declare

 Worker : T_Set;

begin

 null;

end Create_Workers;

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Mon, 20 Jul 2020 13:31:45 -0700

> The order of the discriminants is
arbitrary; there is no guarantee that
Worker (I) will have ID of I.
Elaboration is sequential, so each
Worker will have a unique ID.

As long as all the tasks get a unique ID, I
am fine.

Function as a discriminant at elaboration
... should have thought about it but it
looks like I am missing some wisdom
points.

Thank you Jeffrey.

From: onox <denkpadje@gmail.com>
Date: Wed, 22 Jul 2020 12:05:01 -0700

Another way is to use an extended return:

spec:

 type Worker;

 task type Worker_Task (Data : not null

 access constant Worker);

 type Worker is limited record

 ID : Positive;

 T : Worker_Task (Worker'Access);

 end record;

 type Worker_Array is array (Positive

 range <>) of Worker;

 function Make_Workers return

 Worker_Array;

 body:

 function Make_Workers return

 Worker_Array is

 begin

 return Result : Worker_Array

 (1 .. Positive (Count)) do

 for Index in Result'Range loop

 Result (Index).ID := Index;

 end loop;

 end return;

 end Make_Workers;

 Workers : constant Worker_Array :=

 Make_Workers;

 pragma Unreferenced (Workers);

Two Ada 2012 Vendors

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Subject: Two Ada-12 Vendors
Date: Thu, 23 Jul 2020 14:13:35 +0200
Newsgroups: comp.lang.ada

It appears that PTC ObjectAda 10.x is an
Ada-12 compiler, making two vendors
with Ada-12 compilers*. Only took 8
years.

https://www.ptc.com/-/media/Files/PDFs/
Developer-Tools/PTC-ObjectAda-64-for-
Windows-10_1_RB.pdf

*An Ada-12 compiler implements at least
the entire core language of ISO/IEC
8652:2012. Please don't clutter this thread
with posts about compilers that don't meet
this definition.

From: Dirk Craynest
<dirk@orka.cs.kuleuven.be>

Date: Thu, 23 Jul 2020 17:24:39 -0000

>https://www.ptc.com/-
/media/Files/PDFs/Developer-
Tools/PTC-ObjectAda-64-for-
Windows-10_1_RB.pdf

The above PDF is an announcement from
May 27, 2019, and mentioned that the
"release expands the support for Ada
2012 language features to include the
complete set of Ada 2012 container
packages and support for the associated
Ada 2012 language constructs required by
those packages". Hence a partial Ada
2012 implementation.

But perhaps even more interesting, PTC
announced yesterday, July 22, 2020, the
release of PTC ObjectAda for Windows
Version 10.2: https://developer-tools-
us.ptc.com/Announcements/Products/Obj
ectAda/1000/10.2/RB-20200722-
ObjectAda%20for%20Windows%20V10.
2.pdf

And the subtitle of that announcement
reads: "New native Ada compiler release
provides complete Ada 2012 language
support".

A small extract from the text:

 <start_quote>

 "ObjectAda for Windows version 10.2
represents the completion of the phased
implementation strategy PTC adopted for
Ada 2012 language feature support within
the ObjectAda technology.", stated Shawn
Fanning, Software Development Director
at PTC. "With ObjectAda for Windows
version 10.2, the ObjectAda compiler
conforms to the Ada Conformity
Assessment Test Suite (ACATS) version
4.1Q and adds several new features
including support for storage subpools
and the Default_Storage_Pool pragma,
execution time enforcement of type
invariants, and complete support for new
Ada expression forms.

<end_quote>

For more information, see the PDF at the
2nd URL above.

Dirk

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

Ada Pract ice 137

Ada User Journal Volume 41, Number 3, September 2020

Survey on the Future of
GNAT Community Edition

From: Wesley Pan
<wesley.y.pan@gmail.com>

Subject: AdaCore's survey regarding the
future of GNAT Community Edition

Date: Fri, 24 Jul 2020 14:42:16 -0700
Newsgroups: comp.lang.ada

I just discovered this via Ada Planet...

Link to the Google Docs survey:
https://docs.google.com/forms/d/e/
1FAIpQLSet9x3UNUFmfWt5v-
8Jb7dW8BgKiJxyEMJ_TFm0G2UJKx5O
mQ/viewform

Reddit discussion:
https://www.reddit.com/r/ada/comments/
hwgbwa/survey_on_the_future_of_gnat_
community/

Survey summary reproduced below...

GNAT Ecosystem Community Survey

Hello Ada supporters,

We are writing this message here to
present, discuss and get feedback on a
plan that we at AdaCore want to put in
place. Over the next couple of years, we
want to experiment with an evolution of
the GNAT ecosystem and would like your
help.

So far, there are three grand families of
GNAT releases:

 - GNAT Pro: An AdaCore release with
professional support and high level
quality assurance. Available on many
different targets (PowerPC, Leon,
vxWorks, etc.).

 - GNAT Community: An AdaCore
release with a lower level of quality
assurance, less targets, and a pure GPL
license for the run-time.

 - GNAT FSF: community built compiler
from the FSF source tree. Available
from Linux distributions or Msys2 on
Windows, for instance.

Moving forward, we are looking to
simplify the situation and remove GNAT
Community from the picture.

The plan is to reach a point where
AdaCore would not release GNAT
Community compilers and instead instruct
non-professional users to use GNAT FSF
builds. We would still keep making
GNAT Studio and SPARK releases, and
libraries such as AWS and xmlada will be
available in the Alire package manager
(http://alire.ada.dev). With this plan we
also want to invest some more time to
help the maintainers of GNAT packages
in Linux, BSD, or Windows (msys2)
distributions, for instance, and potentially
contribute when necessary. Our intention
is to contribute to various communities
building GNAT packages so that what can
be done today with GNAT Community

will be doable tomorrow from these
community-led builds.

Why are we working on this plan?

We have noticed that GNAT
Community's pure GPL license on the
run-time is seen as a barrier to new Ada
users. More specifically, understanding
the consequences of the GPL licence is
complex. The result is that newcomers
will often be introduced to Ada/SPARK
by a legal licence discussion rather than
looking at the value of the technology.
This will, understandably, scare people
off.

On top of this, we are witnessing a
widespread misunderstanding around the
openness of the Ada language and the
GNAT compiler, some people seem to
think that Ada and GNAT are proprietary
technologies. We see this phenomenon as
detrimental to the growth of the Ada
community. Of course this
misunderstanding will not fade in a
couple days, but we think that removing
GNAT Community will make the
situation clearer and will allow us to
better communicate on the situation of the
Ada compiler ecosystem.

Besides general comments and discussion
around this plan, we would appreciate
your feedback in this survey form. Please
help us spread the word. The more
feedback we get, the more we will be able
to move in the right direction.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 24 Jul 2020 19:17:30 -0700

Interesting that they did _not_ post about
this survey in this newsgroup. I guess
we're just _so_ yesterday ...

From: Stéphane Rivière <stef@genesix.fr>
Date: Sat, 25 Jul 2020 12:35:39 +0200

Many thanks Wesley!!!

Fascinating... (C) Spock

Finally, we're back to the previous
situation without the GPL barrier...

GNAT 3.15p was born again ;)

All the arguments given are exactly those
I addressed to AdaCore at the highest
level at the time (may be about 15 years
ago?)...

Originally, GNAT was funded precisely
to be available to everyone, including
commercial use.

I answered their survey, in a constructive
way, of course.

Very good news.

From: Stéphane Rivière <stef@genesix.fr>
Date: Sat, 25 Jul 2020 12:35:43 +0200

> Interesting that they did _not_ post
about this survey in this newsgroup. I
guess we're just _so_ yesterday ...

I deeply agree! NGs are so (too?)
efficient.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Mon, 27 Jul 2020 01:36:37 -0700

> Interesting that they did _not_ post
about this survey in this newsgroup. I
guess we're just _so_ yesterday ...

I was going to do it this week ;)

From: DrPi <314@drpi.fr>
Date: Mon, 27 Jul 2020 10:07:48 +0200

What about Ada for microcontrollers?

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Mon, 27 Jul 2020 01:38:35 -0700

> What about Ada for microcontrollers?

With this plan arm-elf and riscv-elf
toolchain will be available for Linux and
Windows at least.

I am doing a lot of microcontroller
programming myself so don't worry about
that :)

From: foo wong
<crap@spellingbeewinnars.org>

Date: Wed, 29 Jul 2020 02:44:08 -0700

[...]

I just wanted to say that I am very happy
to read this thread.

I have written several disparaging posts
about AdaCore and my take on the
situation was:

 - GNAT Pro: professional support, more
targets.

 - GNAT Community: Lower level of
quality assurance, less targets, and a
pure GPL license for the run-time for a
demoware experience

 - GNAT FSF: least quality assurance
designed to push users to the community
build or Pro ASAP

I hope I was wrong all along and either
way, the future just got a little brighter as
AdaCore's two offerings will now be
suitable for free or non-free software.

I don't believe that there is anything
illegal about re-distributing GNAT Pro so
if the gap in quality was so large between
Pro and FSF, I think one paying customer
might take pity on us eventually and
release Pro to the world and reset the gap
for a while.

With dark days setting in for the avionics
industry (for a while at least), maybe
AdaCore will eventually reconsider and
will release Pro as their FSF offering to
broaden their user base.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 29 Jul 2020 17:44:30 +0100

138 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

> I have written several disparaging posts
about AdaCore and my take on the
situation was: [...]

IMO you've been wrong all along, at least
so far as the quality is concerned.
Assurance, yes; number of targets, yes;
support, yes.

> [...] I think one paying customer might
take pity on us eventually and release
Pro to the world and reset the gap for a
while.

I wouldn't have done this; but we were
stuck on an old release for a long time, so
wouldn't have helped.

> With dark days setting in for the
avionics industry (for a while at least),
maybe AdaCore will eventually
reconsider and will release Pro as their
FSF offering to broaden their user base.

The only difference between the pro
compiler and FSF is a few months.

From: Kevin K <kevink4@gmail.com>
Date: Sat, 15 Aug 2020 09:38:23 -0700

I hadn't seen this before today. The main
impediment to me with the free version
compared to the community edition is that
with the community edition AdaCore took
a set of packages that build together
correctly. I tried to build a set of
components from the free version (gcc 8.2
and later), gprbuild, etc. At the time, the
other important components didn't all
build successfully. Some components
were ahead of others. So I wasn't able to
build, for example, gps.

From: Roger Mc
<rogermcm2@gmail.com>

Date: Sat, 15 Aug 2020 19:24:06 -0700

> I hadn't seen this before today. The
main impediment to me with the free
version compared to the community
edition is that with the community
edition AdaCore took a set of packages
that build together correctly. [...]

Unfortunately, the AdaCore community
2020 edition doesn't include gps so I am
currently using the community 2020 tool-
chain and gps from community 2019. I
did try to build gps from the current
AdaCore community source but was
unsuccessful. The main problem being
that AdaCore seems to be in the midst of
doing the necessary upgrade from Python
2 to Python3. I did attempt to do Python3
modifications myself but eventually got to
a stage where I could proceed no further.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Sun, 16 Aug 2020 03:42:11 +0100

> I hadn't seen this before today. The
main impediment to me with the free
version compared to the community
edition is that with the community
edition AdaCore took a set of packages
that build together correctly. [...]

You'll have that issue on FSF because
AdaCore don't tag for FSF releases like
they should.

Having CE available is a massive
mistake, one which they are realising far
too late, imo.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 16 Aug 2020 11:08:18 +0100

> Unfortunately, the AdaCore community
2020 edition doesn't include gps

I _think_ this is on macOS? i.e. Linux,
Windows include it? (presumably under
its new name GNATstudio (modulo
capitalisation))

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sun, 16 Aug 2020 05:08:13 -0700

> > Unfortunately, the AdaCore
community 2020 edition doesn't
include gps

> I _think_ this is on macOS? i.e. Linux,
Windows include it? (presumably under
its new name GNATstudio (modulo
capitalisation))

Windows has <gnat>/bin/gnatstudio.exe

From: Roger Mc
<rogermcm2@gmail.com>

Date: Sun, 16 Aug 2020 05:54:29 -0700

> I _think_ this is on macOS? i.e. Linux,
Windows include it? (presumably under
its new name GNATstudio (modulo
capitalisation))

Yes. My system is macOS.

The source for GPS doesn't appear
available from the AdaCore community
version for any platform?

The source that I tried to build from was
obtained from GIT.

I can only find GNATstudio under Ada
core pro. Is it available elsewhere?

From: Stéphane Rivière <stef@genesix.fr>
Date: Mon, 17 Aug 2020 10:51:34 +0200

> You'll have that issue on FSF because
AdaCore don't tag for FSF releases like
they should.

> Having CE available is a massive
mistake, one which they are realising
far too late, imo.

Fully agree.

For the records, GVD (Gnu Visual
Debugger) was buildable (under
Windows¹ or Linux) but I _never_
succeeded to build GPS...

¹ For the now deprecated AIDE
https://stef.genesix.org/aide/aide.html

From: Simon Wright
<simon@pushface.org>

Date: Wed, 19 Aug 2020 15:29:00 +0100

> I did try to build gps from the current
AdaCore community source but was

unsuccessful. The main problem being
that AdaCore seem to be in the midst of
doing the necessary upgrade from
Python 2 to Python3. I did attempt to
do Python3 modifications myself but
eventually got to a stage where I could
proceed no further

I've reached the same stage. I can manage
some of the 2-to-3 fixes (not the one in
gobject-introspection, though), but the
real problem for me is that there isn't a
consistent complete set of sources, and
some aren't provided on the AdaCore
community site (e.g. pygobject, langkit,
libadalang, libadalang-tools,
ada_language_server). And, so far as I
can see, langkit (20.2) isn't consistent with
libadalang (20.2). And, my Python venv
has got screwed.

Netflix & Twitter.

From: Andreas Zeurcher
<ZUERCHER_Andreas@outlook.com>

Date: Wed, 19 Aug 2020 11:09:35 -0700

> I've reached the same stage. [...]

If multiple well-skilled people cannot
build a GPL-licensed source code with the
source code as provided and instructions
as provided, wouldn't that be a black-&-
white flagrant violation of the GPL? The
natural conclusion seems to be: either the
source code provided mismatched or the
narrative instructions to build were
omitting some secret-sauce, either of
which was an unintentional or intentional
preventative of success. The
unintentionality versus intentionality
would be able to be determined only after
the fact by observing the root-cause of the
preventative of successful building once
that root cause is discovered/reported.
This irreproducibility is both notable and
highly interesting.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 19 Aug 2020 21:11:31 +0200

> If multiple well-skilled people cannot
build a GPL-licensed source code with
the source code as provided and
instructions as provided, wouldn't that
be a black-&-white flagrant violation of
the GPL?

What else you expect when GTK and
Python are used? GTK is practically
impossible to bootstrap. Python is full of
bugs and incompatibilities. On top of that
for some mysterious reason AdaCore
decided to use config scripts. No wonder
it is a nightmare anywhere outside Linux.

If you think that commercial code
delivered in sources is any better, you are
wrong. Building from sources working
out of the box is a rare exception. Most
vendors simply check out the code from
the repository and send it to you. They
have no resources or desire to supply you
with a working toolchain tailored for your

Ada Pract ice 139

Ada User Journal Volume 41, Number 3, September 2020

targets, nor have they necessary
knowledge anyway.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Wed, 19 Aug 2020 21:21:20 +0100

> [...] No wonder it is a nightmare
anywhere outside Linux.

I build on Linux and see my previous
comment.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 19 Aug 2020 21:17:43 +0100

> [...] This irreproducibility is both
notable and highly interesting.

Well - I have every sympathy with people
who make a binary release and then move
on in staggered stages, aiming for another
binary release in a year's time. The sort of
problem you encounter is that the the
version of gobject-introspection on the
CE site won't compile with Python 3.8.5,
because of the removal of the
DL_EXPORT macro that was deprecated
with Python 2.3; while libadalang
requires Python 3.8.5. The latest glib
uses Yet Another Build Tool
(meson/ninja), and the script doesn't
export a header required by gtk-3.14+ ...
it's not so much DLL Hell as a version
compatibility tightrope.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Wed, 19 Aug 2020 21:19:50 +0100

> If multiple well-skilled people cannot
build a GPL-licensed source code with
the source code as provided and
instructions as provided [...]

Every component from AdaCore is an
absolute fucker to build.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 19 Aug 2020 21:50:29 +0100

> Every component from AdaCore is an
absolute fucker to build.

The "front-line" components (gnatcoll*,
gprbuild, xmlada & friends) build pretty
reliably for me, even taking the master
branch.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Wed, 19 Aug 2020 22:35:07 +0100

> The "front-line" components (gnatcoll*,
gprbuild, xmlada & friends) build
pretty reliably for me, even taking the
master branch.

That's only after you work out which
commit to build, after many attempts at
building.

From: <steve@cunningsystems.com>
Date: Wed, 19 Aug 2020 23:12:07 -0700

> I think that I also found this.
Sometimes, the master worked,
occasionally the stable (?) worked but

I'd sometimes (often?) have to resort to
an earlier build to achieve success!

Note that the libadalang/master and
langkit/master repositories are often out
ahead of gps/master. You'll have better
luck if you build them from stable
branches, then gps/master should build.

Similarly spark2014/master is often ahead
of FSF gcc/master. gcc/master is usually
in sync with spark2014/fsf branch.

From: Roger Mc
<rogermcm2@gmail.com>

Date: Wed, 19 Aug 2020 22:42:24 -0700

> [...] the real problem for me is that there
isn't a consistent complete set of
sources [...]

I think I managed to do all the Python 3
conversions but couldn't get linking to
work.

I recall that getting the prerequisites built
was a challenge and found that if I
changed anything in any of them I'd have
to go back and start building them from
scratch again. Worse, I seem to recall that
for at least one of them, probably langkit,
I'd have to delete it and reload it from its
archive file.

It's comforting to find that many of the
opinions expressed in this thread are
similar to my own.

 [Around this point, the thread veers off
towards Python specifics, although with a
relation to Ada features. --arm]

From: Roger Mc
<rogermcm2@gmail.com>

Date: Wed, 19 Aug 2020 22:48:34 -0700

> What else you expect when GTK and
Python are used? [...]

Incredibly, Python seems to be the
language of choice for "teaching" the
now-defunct discipline of software
development, even by leading universities
as far as I can discover.

Most of the rules of disciplined software
development seem to have been discarded
long ago. In particular, the maintainability
aspect seems to have disappeared.

From: Stéphane Rivière <stef@genesix.fr>
Date: Thu, 20 Aug 2020 08:43:13 +0200

> Incredibly, Python seems to be the
language of choice for "teaching" the
now-defunct discipline of software
development, even by leading
universities as far as I can discover.

It's not incredible. It's led to 737max
failure, It's Idiocracy.

RM about Idiocracy could be the movie
Idiocracy. I urge you to see it. Its
nickname is: the movie which has become
a documentary. It's delightfully vulgar but
above all incredibly relevant and funny.

https://en.wikipedia.org/wiki/Idiocracy

In any case, AdaCore's iechoice of python
is miserable. It would have been wiser, if
there was a need for a scripting language,
to implement a subset of Ada (like
Gautier de Montmollin HAL :) For the
doc, they even abandoned GNU/Texinfo
for Python...

Moreover, the GPS code has always been
problematic. I remember the first versions
where a very large portion of the code
was in C because they had integrated a
full version of an old version of berkeley
DB...

From: Vincent Diemunsch
<vincent.diemunsch@gmail.com>

Date: Mon, 31 Aug 2020 07:54:43 -0700

> In any case, AdaCore's choice of python
is miserable. It would have been

> wiser, if there was a need for a scripting
language, to implement a

> subset of Ada (like Gautier de
Montmollin HAL :) For the doc, they
even

> abandoned GNU/Texinfo for Python...

I agree.

And they also used Python for libadalang:
"libadalang is using the Langkit
framework as a basis, and is at the time of
writing the main project developed using
it. The language specification, while
embedded in Python syntax, is mostly its
own language, the Langkit DSL, that is
used to specify the part of Ada syntax and
semantics that are of interest to us."

I wonder if it would have been possible to
create a library of objects directly in Ada,
somehow equivalent in features to
Python's Objects, but with the advantage
of strong typing and a compilation to
native instructions. It would require a
major use of interfaces, one for each
Python's built-in type class, but it would
have been a foundation for many other
applications.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Tue, 1 Sep 2020 11:22:04 -0700

> And they also used Python for
libadalang [...]

> I wonder if it would have been possible
to create a library of objects directly in
Ada, somehow equivalent in features to
Python's Objects, but with the
advantage of strong typing [...]

Langkit uses the advanced features of
Python to create a Domain Specific
Language (DSL) for defining Abstract
Syntax Trees. The DSL also defines much
of the user API for accessing the syntax
tree after parsing. You could accomplish
something similar by using a grammar
generator (WisiToken or Langkit :) to
create a parser for the desired DSL (as
WisiToken does), but then defining the
API would be done separately, and the
correspondence between the API and the

140 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

syntax tree maintained manually (ie error-
prone). I think Python is a good choice for
this application - there are probably other
languages with similar features that could
have been used, but Ada is not one.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 1 Sep 2020 20:59:52 +0200

> Langkit uses the advanced features of
Python to create a Domain Specific
Language (DSL) for defining Abstract
Syntax Trees.

Which is a big mistake, as well. Each
intermediate is yet another point of error.

> I think Python is a good choice for this
application - there are probably other
languages with similar features that
could have been used, but Ada is not
one.

I doubt there could exist applications for
languages like Python. Anyway, GPS is
demonstratively not.

I also do not believe in heavily scripted
IDEs. I certainly do not want GPS
becoming Emacs. Any usability GPS has,
comes from not being Emacs, or, for that
matter, Visual Studio with its horrific VB
scripts.

Proposal: Auto-allocation of
Indefinite Objects

From: Yannick Moy <moy@adacore.com>
Subject: Re: Proposal: Auto-allocation of

Indefinite Objects
Date: Mon, 27 Jul 2020 00:47:30 -0700
Newsgroups: comp.lang.ada

[This thread continues from AUJ 41.2, on
the topic of having a mechanism to
transparently allocate indefinite objects as
if they were definite, e.g., as record
members. --arm]

Hi Stephen,

> My proposal is that it should
(sometimes?) be possible to declare
objects of indefinite types such as
String and have the compiler
automatically declare the space for
them without the programmer having to
resort to access types.

I agree with the goal.

> Benefits:

>

> 1. Easier, especially for
newbies/students.

> 2. Safer due to reduced use of access
types.

> 3. Remove the need to have definite and
indefinite versions of generic units.

I agree with 2 only if we can combine this
with safe handling of aliasing. It would be
terrible to have such a feature lead to
unsafe code if you somehow copy the
pointer. Also, for strings that's possibly

not the only change needed. What you'd
like really is to be able to reassign the
string to some larger/smaller string, like
you do when using Unbounded_String.

On 2020-04-04, Jeffrey R. Carter wrote:

> the ARG is aware of them and has
chosen to take no action. That seems
unlikely to change.

On the other hand, AdaCore has launched
a project to collect/discuss
ideas/suggestions/problems regarding the
evolution of Ada and SPARK:
https://github.com/AdaCore/
ada-spark-rfcs

Feel free to open an Issue there on that
topic.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Mon, 27 Jul 2020 11:21:16 +0200

> I agree with the goal.

You have it already. It's called
Unbounded_String.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 27 Jul 2020 11:49:28 +0200

> You have it already. It's called
Unbounded_String.

Not really.

1. Unbounded_String is a compromise
needed when the string length changes
during its life. The great majority of
cases allocate [and initialize] a string
just once. [addressed to be the cases
when using a discriminant does not
work]

2. There is nothing for arrays that are not
strings and for other indefinite types.
E.g.:

 type Node_Type is record

 Item : new Element_Type'Class;

 Prev : Node_Ptr_Type;

 Next : Node_Ptr_Type;

 end record;

3. There is nothing for serialization and
marshaling objects logically containing
strings and other indefinite types.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Mon, 27 Jul 2020 17:48:40 -0000

> My proposal is that it should
(sometimes?) be possible to declare
objects of indefinite types such as
String and have the compiler
automatically declare the space for
them [...]

In one sense we already have this ... in
that we can do this in a Declare block,
where stack allocation is a practical
implementation.

But what about cases where (for whatever
reason) we want it allocated on the heap?

In another sense we have it as JP Rosen
said, for the specific example
Unbounded_String.

Is there any way we could generalise the
(storage, access and lifetime aspects of)
Unbounded_String for unconstrained
arrays and discriminated records in such a
way that Unbounded_String can be a
simple instantiation of one of these?

But without the full flexibility (or
overhead) of controlled types. So,
somewhere in between, as:

1. Controlled type
+ 2. Unconstrained Array or
 + Discriminated Record
 + 3. Unbounded String (instance of 2)

2) can be implemented internally using
pointers, but externally appears to be a
data object, just like Unbounded_String
does, with similar semantics.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 27 Jul 2020 22:02:57 +0200

> 2) can be implemented internally using
pointers, but externally appears to be a
data object, just like Unbounded_String
does, with similar semantics.

No, the point is that Unbounded_String is
exactly opposite to what is required. In no
case it should appear as an object of a
different type!

Compare access to string P with
unbounded string U:

 for I in P'Range loop -- This is OK

 P(J) := 'a' -- This is OK

Now would you do:

 To_String (U) (J) := 'a' -- Garbage!

What if the original object must be a
class-wide object, task, protected object,
limited object etc?

Ada's access types delegate all operations
to the target object, except assignment.
This is the key property that the proposal
in my view must retain.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Mon, 27 Jul 2020 22:31:34 +0200

> Is there any way we could generalise
the (storage, access and lifetime aspects
of) Unbounded_String [...]

Ada.Strings.Unbounded can be
considered a combination of
Ada.Containers.Indefinite_Holders
instantiated for String and
Ada.Containers.Vectors instantiated with
Positive and Character, with some
additional operations added.

The To_String and
To_Unbounded_String operations of
Unbounded_String are similar to the
Element and Replace_Element operations
of Holder, which do not exist for Vector.

Ada Pract ice 141

Ada User Journal Volume 41, Number 3, September 2020

The indexed operations of
Unbounded_String are similar to the
indexed operations of Vector, which do
not exist for Holder.

If Ada.Containers.Vectors had an
additional generic formal type

 type Fixed is array (Index_Type range

 <>) of Element_Type;

and 2 new operations

 function To_Fixed (From : Vector)

 return Fixed;

 function To_Vector (From : Fixed)

 return Vector;

then we wouldn't need
Ada.Strings.Unbounded.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Tue, 28 Jul 2020 14:28:53 -0000

> No, the point is that Unbounded_String
is exactly opposite to what is required.
In no case it should appear as an object
of a different type! [...]

> To_String (U) (J) := 'a' -- Garbage!

That wasn't the aspect of Unbounded I
was getting at. I agree ... garbage.

What I meant was that Unbounded doesn't
load New, dereferencing, deallocation etc
onto the programmer, but hides the access
details, and our indefinite type should do
the same (the compiler can probably to a
better job than the programmer anyway).

I'm suggesting something more like the
C++ reference, signalling (perhaps by
adding a reserved word "indefinite") that
fixed size allocation won't work; and
implementation is more in line with a
controlled type but with system-provided
Initialise,Adjust,Finalize providing the
required operations (no need for the
programmer to provide them).

A : String := "hello" -- a definite string

P : access String := new String'("hello");

Q : indefinite String := "hello";

...

 begin

 for I in P'Range loop -- This is OK

 P(J) := 'a'; -- This is OK

 Q(J) := 'a'; -- also OK. But index out of

 --range would raiseConstraint Error

...

 Q := "hello_world"; -- deallocates,

 -- allocates with new bounds

...

 end; -- deallocate Q here.

It follows that "indefinite" cannot also be
"aliased" unless we want to implement
smart pointers. For simplicity I'd suggest
disallowing "aliased indefinite" on the
grounds that "access" can (should) be
used instead.

Records (including tagged, class wide,
discriminated) should work the same, but

probably with shallow copy on
assignment if they contain access types.

If there is no re-allocation (no different
size assignment) the compiler is free to
substitute direct (stack) storage instead of
heap allocation and implicit access types.
So for example instead of

 A : constant String := "done";

 ...

 loop

 declare

 P : String := Get_Line;

 begin

 exit when P = A;

 end;

 end loop;

 A : constant String := "done";

 Q : indefinite String;

 ...

 loop

 Q := Get_Line;

 exit when Q = A;

 end loop;

the implementation can be either an
implicit declare block or an implicit
access type. However, where Q has
several reassignments within a block, and
the compiler can't determine the size, an
implicit access type must be used. (If it
can, it can warn that "indefinite " is
unnecessary).

> What if the original object must be a
class-wide object, task, protected
object, limited object etc?

> Ada's access types delegate all
operations to the target object, except
assignment. This is the key property
that the proposal in my view must
retain.

Indefinite can also be applied to records
(discriminated, class wide, etc) here the
size is indeterminate and may vary on
reassignment. Assignment would always
be shallow copy (where the record
contained access types).

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 28 Jul 2020 16:59:09 +0200

> I'm suggesting something more like the
C++ reference, signalling (perhaps by
adding a reserved word "indefinite")
that fixed size allocation won't work;

Equivalent of C++ reference in Ada is
renaming.

> Q : indefinite String := "hello";

I think the keyword is misleading. Maybe
this:

 Q : new String := "hello";

And I don't like initialization. It was a
mistake to have limited return. The syntax
must stress that all initialization is strictly
in-place. No copies involved because the
pool is fixed.> ...

> begin

> Q := "hello_world"; --
deallocates, allocates with new bounds

> ...

> end; -- deallocate Q here.

The rule could be "same pool" as of the
container. In the case of a block, the pool
is the stack. In the case of a record
member, the pool is the pool of where the
record itself is allocated. So that you
could allocate all [the full] object in the
same pool.

> It follows that "indefinite" cannot also
be "aliased" unless we want to

> implement smart pointers. For
simplicity I'd suggest disallowing
"aliased

> indefinite" on the grounds that "access"
can (should) be used instead.

It makes sense, but there are use cases for
having it aliased:

 X : indefinite T;

 Y : indefinite S (X'Access);

 -- Access discriminant

[...]

> Assignment would always be shallow
copy (where the record contained
access types).

That would be inconsistent. IMO, it
should be a deep copy, provided such a
component would not make the type
limited, of which I am not sure.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Wed, 29 Jul 2020 15:33:33 -0000

> Equivalent of C++ reference in Ada is
renaming.

OK. Not quite sure how complete the
correspondence between reference and
renaming is, but I can see similarities.

[...]

> The rule could be "same pool" as of the
container. In the case of a block, the
pool is the stack. In the case of a record
member, the pool is the pool of where
the record itself is allocated. So that
you could allocate all object in the
same pool.

Looks like a good rule. Saves the
compiler having to plant deallocations if
the whole pool is to be de-allocated.

[...]

>> Assignment would always be shallow
copy (where the record contained
access types).

> That would be inconsistent. IMO, it
should be a deep copy, provided such a
component would not make the type
limited, of which I am not sure.

Honest question: Inconsistent with what?
I suggested shallow copy just for
simplicity, and for no (ahh) deeper reason.

142 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

But again, I'm probably missing
something.

Thank you for your thoughts. I don't
know if this is worth developing into an
AI.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 29 Jul 2020 18:20:24 +0200

[...]

In general, there are two close but not
equivalent objectives: one is handling
indefinite components of records; another
is a transparent holder object integrated
into the language (without generic mess).

Your use case is about the latter. My is
rather the former.

I doubt it is possible to unite both
objectives in a single AI.

On 29/07/2020 17:33, Brian Drummond
wrote:

> I suggested shallow copy just for
simplicity, and for no (ahh) deeper
reason. But again, I'm probably missing
something.

If you make a shallow copy of

 type Node_Type is record

 Item : new Element_Type;

 Prev : Node_Ptr_Type;

 Next : Node_Ptr_Type;

 end record;

you create a dangling pointer should the
original node disappear. A deep copy
would create a new target for new Item.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 30 Jul 2020 20:28:32 +0200

 [...]

> The compiler should be able to
determine if [...] the use of Q (the
indefinite type) is equivalent to a
Declare block (i.e. can be on the stack;
new stack frame in each iteration; no
relocation ever required) or not.

I don't want the compiler deciding where
Q is allocated, especially because this
could break things:

1. Large object moved to the stack

2. Lock-free code starting using heap lock
when moved from the stack.

The mechanism should be transparent. I
do not like Unbounded_String for many
reasons. Fiddling with the heap is one of
them. I do not know which heuristic it
uses to reduce reallocation and how much
extra memory it takes under which
circumstances.

[...]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sun, 9 Aug 2020 19:31:06 -0500

> I don't like compiler relocating objects.
If the pool is a stack (or heap organized
as a stack) it might be unable to do this.

This is not that hard to deal with.
Janus/Ada handles discriminant-
dependent components of mutable objects
this way: they are allocated on the stack,
but if they have to be reallocated they
move to the heap.

I note that the original idea already exists
for discriminant-dependent components --
that's a bit more painful to use but hardly
difficult. The main issue is that most
compilers fail to support these
components properly, using some sort of
max-size implementation unconditionally
rather than switching to a pool-based
implementation when the max size is too
large. I've never understood why Ada
compilers were allowed to make such a
limitation (it becomes a major limitation
when working on non-embedded
programs), while similar limitations on
case statements and aggregates are not
allowed.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sun, 9 Aug 2020 19:39:31 -0500

> I don't want the compiler deciding
where Q is allocated, especially
because this could break things:

> 1. Large object moved to the stack

The compiler is buggy IMHO if this
breaks something. Any compiler has to be
able to deal with objects that exceed the
maximum stack frame, and move those to
somewhere that they will fit (or reject
completely).

Yes, most compilers are buggy this way
(including mine in a few cases). So what?

> 2. Lock-free code starting using heap
lock when moved from the stack.

Expecting a compiler not to use the heap
is silly in any case (outside of the
No_Heap restriction - use that in
Janus/Ada and the compiler refuses to do
anything outside of elementary types).
The compiler is supposed to be making
the programmer's life easier, not adding
new hurdles.

> I do not know which heuristic it uses to
reduce reallocation and how much extra
memory it takes under which
circumstances.

That's the idea of such mechanisms. If
you really need control, you do not use
these abstractions and instead write the
stuff yourself explicitly using access types
and the like.

Otherwise, you use containers and
unbounded strings, and they do what they
do. There's no free lunch. But the need to
be explicit should be very rare - the main
problem is programmers with insufficient
trust that a compiler will do the right
thing.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 10 Aug 2020 10:57:44 +0200

> That's the idea of such mechanisms. If
you really need control, you do not use
these abstractions and instead write the
stuff yourself explicitly using access
types and the like.

Right, that is my take on the proposal. If I
am ready to compromise on #1 and #2, I
can use an abstraction hiding pool access.
Otherwise I want a language construct
being more safe than raw access types.

> Otherwise, you use containers and
unbounded strings, and they do what
they do.

No, from the abstraction point of view
they do not. They indeed abstract the
memory allocation aspect, but they do
that at the cost of *everything* else.
Unbounded_String is no string anymore.
Container is neither array nor record type.
Unbounded_String must be converted
forth and back. For containers I must use
ugly hacks like iterators to make them
resemble arrays and records introducing
whole levels of complexity to fight
through every time the compiler or I miss
something.

In most cases I prefer to keep a clear array
or record interface at the expense of
manual memory management.

> There's no free lunch.

I think with a better type system there
could be a whole banquet. (:-))

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 10 Aug 2020 10:58:20 +0200

> Janus/Ada handles discriminant-
dependent components of mutable
objects this way: they are allocated on
the stack, but if they have to be
reallocated they move to the heap.

What do you do if such an object is
allocated via pool-specific access type?

[...]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 19 Aug 2020 19:10:27 -0500

> I think with a better type system there
could be a whole banquet. (:-))

Maybe. but IMHO a better type system
would get rid of arrays and strings
altogether and only have
containers/records of various sorts. The
complexity of having both solving the
same problems (not very well in the case
of arrays/strings) doesn't buy much. I
suspect that a user-defined "." as you've
proposed elsewhere would eliminate most
of the rest of the problems (and unify
everything even further).

Ada Pract ice 143

Ada User Journal Volume 41, Number 3, September 2020

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 19 Aug 2020 19:13:15 -0500

> What you do if such an object is
allocated via pool-specific access type?

The whole object goes in that pool. The
entire mechanism in Janus/Ada is built
around pools - the stack is represented by
a pool object as well as various other
pools to support the mechanism.

[...]

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 20 Aug 2020 19:49:34 +0200

> The whole object goes in that pool. [...]

OK, but then you are back to the problem
that you do not know how that pool
works. The user pool might require a
certain order of objects inside it and your
interference with relocation will break it.

[...]

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 20 Aug 2020 19:49:44 +0200

> [...] IMHO a better type system would
get rid of arrays and strings altogether
and only have containers/records [...]

But records and arrays are needed as
building blocks of containers. How would
you get rid of them?

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Thu, 20 Aug 2020 16:19:52 -0400

>But records and arrays are needed as
building blocks of containers.

And likely needed for any embedded or
low-level work where they are mapped to
things like (GP) I/O ports or such...

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 20 Aug 2020 18:25:46 -0500

> [...] The user pool might require a
certain order of objects inside it and
your interference with relocation will
break it.

Such a pool does not implement the
interface as defined in 13.11. It's OK of
course to write a pool that depends on
implementation-specific properties (I've
done it many times), but such a pool is not
usable with portable Ada code. If the pool
allows any sort of allocation at any time,
then it will work just fine with the
Janus/Ada implementation.

[...]

Note that this is the reason that Ada
doesn't support specifying the pool used
by a container. It would not be reasonable
to restrict the allocations in any way, so
implementation-dependent pool designs
would not work.

[...]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 20 Aug 2020 18:30:07 -0500

> But records and arrays are needed as
building blocks of containers. How
would you get rid of them?

There's no reason that a compiler couldn't
"build-in" a simple bounded vector
container as the basic building block. We
already do that for things like
Ada.Exceptions, Unchecked_Conversion,
and Unchecked_Deallocation, so it's no
harder to do that for a vector. (Probably
would need some sort of fixed vector for
interfacing purposes as well, to deal with
other language's and/or system's memory
layout.)

One could do something similar for
records, although I would probably leave
them as in Ada and just allow user-
definition of "." (via a getter/setter pair).

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 20 Aug 2020 18:33:40 -0500

> And likely needed for any embedded or
low-level work where they are mapped
to things like (GP) I/O ports or such...

Yes, a fixed vector container would be
needed for interfacing (probably wouldn't
use it for anything else). But there's no
reason that can't be provided as a
container, so long as representation
guarantees (esp. Component_Size) are
included. Remember that containers (in
Ada 202x) have indexing, aggregates, and
all of the useful basic operations. The
stuff that's missing is the same stuff that
adds a vast amount of complexity to Ada
(and possibilities for bugs) - hardly
anyone would miss it.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 21 Aug 2020 08:46:07 +0200

> There's no reason that a compiler
couldn't "build-in" a simple bounded
vector container as the basic building
block.

That simply replaces the word "array"
with four words "simple bounded vector
container." The construct is still there and
it is still built-in. The syntax and usability
are drastically worse, though.

> One could do something similar for
records, although I would probably
leave them as in Ada and just allow
user-definition of "." (via a getter/setter
pair).

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 21 Aug 2020 09:08:46 +0200>

>> I meant that if you used a pool behind
the scenes for local objects you could
do that task-specific eliminating
interlocking.

> Whether that would be worthwhile
would depend on how expensive the
locking is.

It could be very expensive on a multi-core
architecture. I also think about scenarios
when the object is used inside a protected
action. I would not like to see any pool
interaction in an interrupt handler!

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sat, 22 Aug 2020 23:48:13 -0500

> That simply replaces the word "array"
with four words "simple bounded
vector container." The construct is still
there and it is still built-in. The syntax
and usability are drastically worse,
though.

??? The syntax of use is the same (as it is
in Ada 2012). Declaration would be an
instance, about the same length and
wordiness as an array declaration. Yes,
junk like slices, settable/retrievable
bounds, and built-in operations that are
rarely used would be gone, but so would
the rather substantial overhead that those
things entail. There'd be a lot more
flexibility in implementation, which
would allow better implementations.

Virtually every array that I write has a
fixed size (capacity really) and a usage
high-water mark (a "length"). Having that
generated automatically would be usually
better than having to reinvent it literally
every time I program something. (And as
you've noticed repeatedly, Ada's type
abstraction isn't good enough to make it
practical to build anything reusable to do
that.)

>> I would probably leave them as in Ada
and just allow user-definition of "."

???

The basic idea would be to eliminate the
huge number of special cases that exist in
Ada resolution and essentially make
everything a subprogram call at its
heart. Ada did that for enumeration
literals and that model makes sense for
pretty much everything: object usage,
indexing, selection, etc. It would be much
easier to prove that resolution is doing the
right thing (I don't think that would be
practically possible for Ada).

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sat, 22 Aug 2020 23:52:30 -0500

> Really? I would miss array conversions,
slices, equivalence of same length
index ranges, constrained array
subtypes etc.

Those things are mostly useful for making
work for programmers. Note that I'm
assuming that Strings are a completely
separate abstraction - a UTF-8 string is
not an array and shouldn't be treated as
one. (Indexing of individual characters
being very expensive.) Fixed constrained

144 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

arrays would be available for interfacing
(they're not really useful for much else).
Note that a bounded vector is allocated
statically, so there's no extra cost to using
it (unlike an unbounded vector or string).

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sun, 23 Aug 2020 00:03:01 -0500

> [...] I also think about scenarios when
the object is used inside a protected
action. I would not like to see any pool
interaction in an interrupt handler!

Interrupt handlers shouldn't be doing
anything other than unblocking tasks. I
think it is a mistake to allow anything else
(as there are always problems with race
conditions if you do so). So no heap
possibilities as very little is going on.

Available Ada Compilers

From: gdotone@gmail.com
Subject: Is there another ada compiler
Date: Sun, 2 Aug 2020 19:22:10 -0700
Newsgroups: comp.lang.ada

Is there another Ada compiler other than
AdaCore?

From: gautier_niouzes@hotmail.com
Date: Mon, 3 Aug 2020 00:54:26 -0700

Check here: http://unzip-ada.sf.net/
#adacomp

or here https://www.adaic.org/
ada-resources/pro-tools-services/

for instance.

If you are looking for another *open-
source* compiler, but rather incomplete:

https://hacadacompiler.sourceforge.io/

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 3 Aug 2020 06:51:54 -0700

RR Software has Janus/Ada.

PTC has ObjectAda and ApexAda.

Green Hills has an Ada compiler.

DDC-I has a compiler.

IBM used to have a compiler. (I'm not
sure they do any more.)

There's also work being done on some
open source compilers like HAC or my
own Byron.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Mon, 3 Aug 2020 15:29:34 +0100

> RR Software has Janus/Ada.

> PTC has ObjectAda and ApexAda.

> Green Hills has an Ada compiler.

> DDC-I has a compiler.

> IBM used to have a compiler. (I'm not
sure they do any more.)

They sold it.

All the above are commercial and cost
£££££'s

> There's also work being done on some
open source compilers like HAC or my
own Byron.

HAC is not going to be a full compiler, so
it's really worth mentioning.

Byron's not anywhere near close to
generating assembly.

In answer to the OP's question, no, there
isn't another open source compiler.

From: nobody in particular
<nobody@devnull.org>

Date: Mon, 3 Aug 2020 15:18:36 +0000

> RR Software has Janus/Ada.

Honest company run by good guy Randy
Brukhard, who is a long time participant
on the newsgroup. Unfortunately, not
available on the platform I wanted it for.
Hobbyist-friendly.

> PTC has ObjectAda and ApexAda.

There was a recent announcement here in
the newsgroup, unfortunately without any
pricing. Pricing is also not found on the
PTC website. In the past, Aonix did have
a hobbyist compiler but I haven't seen it
for years.

> Green Hills has an Ada compiler.

Huge money and the salesman I spoke
with displayed significant disdain when I
turned out to be an individual rather than
a company. Did not disclose pricing.
However, in speaking with another
participant off-list, I was given some
sense of the pricing.

> DDC-I has a compiler.

Not sure if anything past '83 is supported.
But do check if you're interested. I believe
JOVIAL is also available from DDC-I.

> IBM used to have a compiler. (I'm not
sure they do any more.)

It was sold to a company in Washington,
D.C. which I believe still sells the Ada 95
compiler. I don't believe they support any
additional standards after 95. I'm sorry, I
can't remember the name.

I attempted to get a hobbyist distribution
to run on the Hercules z/Architecture
emulator (which also supports MVS,
MVS/ESA, and OS/390) but was not
successful. Appeared to be a reasonable
guy and the product was well integrated
in MVS/ESA but probably not generally
useful to most people in this newsgroup.
If it is, would be worth identifying the
company and starting a dialog.

Lastly, we should mention gcc-ada which
was still out there for Linux and Solaris
last I looked, and even for some unusual
platforms like Solaris SPARC. The
SPARC platform maintainer was very
helpful and I got a copy at some point, I
can't remember but I think around gcc5.

There used to be GNAT 3.15p (last non-
GPL) release but it was cruelly excised
from all servers and download sites when
AdaCore happened.

We should note, GNAT / AdaCore were
created on the backs of American
taxpayers via a grant to New York
University. Unfortunately, the taxpayers
got the shaft and a profitable business was
born to continue the fun.

From: Micronian Coder
<micronian2@gmail.com>

Date: Mon, 3 Aug 2020 10:37:05 -0700

Just because a compiler is not free does
not mean it is not relevant to someone. In
addition, the OP did _not_ specifically
ask for an open source compiler. They
asked if there are other compilers.
Hobbyists generally want a free compiler,
so by default GNAT is the one that is
used. For companies who want
commercial support and are fine with
paying money, then the other options are
perfectly fine.

Of the commercial ones listed, Janus/Ada
is the more affordable one for an
individual willing to spend money (see
http://www.rrsoftware.com/html/company
inf/prices.htm), especially if they are a
student
(http://www.rrsoftware.com/html/compan
yinf/educ.htm). While it's not as up to
date as GNAT in terms of Ada2012
support, it's still enough to develop
software with (note: Windows only which
is fine for many people and can probably
run on Wine for Linux users). Judging by
Randy's posts in this group, one can
expect good support from RRSoftware.

I should point out that PTC is known to
provide free access to their compilers if it
is for developing *open source* Ada
software. Gautier has confirmed this on
Reddit
(https://www.reddit.com/r/ada/comments/
hw33kr/ptc_objectada_for_windows_vers
ion_102_outprovides/fyzgpss?utm_source
=share&utm_medium=web2x). So there
is potential

From: gautier_niouzes@hotmail.com
Date: Mon, 3 Aug 2020 14:44:43 -0700

> We should note, GNAT / AdaCore were
created on the backs of American
taxpayers via a grant to New York
University. [...]

It's called public-private partnership ;-)

See Tesla or SpaceX for other examples.
Is it so bad?

BTW, weren't most early Ada vendors
essentially financed by the US DoD?

As a consolation, consider that the
American taxpayers have become (at least
for a while) minority contributors to the
US budget...

Ada Pract ice 145

Ada User Journal Volume 41, Number 3, September 2020

From: Andreas Zuercher
<ZUERCHER_Andreas@outlook.com>

Date: Mon, 3 Aug 2020 17:23:59 -0700

> We should note, GNAT / AdaCore were
created on the backs of American
taxpayers via a grant to New York
University. [...]

Well, I am not usually in the habit of
saying nice things about GNAT, but let us
compare FSF's GCC GNAT with FSF's
GCC CHILL. Ada and CHILL are fierce
competitor languages: one from NATO
military and the other from ITU-T
telecom, where Ada trended a little more
toward Wirth family of languages as
inspiration whereas CHILL trended a
little more toward PL/I as inspiration.
Both languages had a 2-decade mandate
to be utilized in their respective industrial
sectors, but each's mandate had
evaporated by the latter half of the 1990s.

Ada had AdaCore arise through several
mergers as the for-profit support company
for open-source software, analogous to
Cygnus Solutions during the 1990s, and
its acquirer RedHat until this day. CHILL
had a different business model entirely.
CHILL compilers were produced by the
telecom companies that were self-
mandated to use CHILL. If Ada had that
business model, Raytheon would have
authored its own compiler, Lockheed-
Martin would have authored its own
compiler, Boeing would have authored its
own compiler, Airbus would have
authored its own compiler, and so forth.
Eventually the telecom companies in
Europe fatigued of the effort needed to
write a compiler for an evolving language
standard (ITU-T Z.200 and ISO 9496), so
2 of them (Alcatel or Siemens, IIRC)
outsourced their internal compiler
development to Per Bothner, who
eventually landed at Cygnus Solutions,
after University of Wisconsin at Madison
(years after Randy). Eventually, Cygnus
Solutions convinced FSF to allow their
CHILL compiler into GCC.

Shortly after FSF GCC admitted CHILL
into its compiler suite, RedHat bought
Cygnus Solutions and nearly all of the
European telecom companies were
finalizing the financially painful
governmental reform where PTTs (postal-
telephone-telegraph agencies of
governments) were divesting their
relationship with the equipment
manufacturers—much like AT&T
divested WesternElectric/Lucent and Bell
Canada no longer had Northern Telecom
as favorite-son supplier during much the
same 1990s time period. Long story short,
when FSF pleaded for someone anyone to
update GCC CHILL to GCC 3.X
internals, no one stepped forward to fund
the effort with money, and most
especially no one donated source code as
in-kind support. GCC CHILL as
donorware ended as of GCC 2.95.

Whatever or however one might critique
FSF GNAT versus AdaCore GNAT Pro
differences or delays or never achieving
perfect congruence among any pairwise
matching of any of their releases, GNAT's
viability to continue maintenance &
evolution is far better that CHILL's
donorware-based approach that failed
miserably under the same FSF GCC
umbrella during the same time period. So
matters could be far far worse than they
are.

PolyORB and the DSA
Annex

From: tonyg <tonythegair@gmail.com>
Subject: Polyorb abd the DSA Annex
Date: Mon, 3 Aug 2020 04:04:27 -0700
Newsgroups: comp.lang.ada

I just tried to build the git cloned copy of
PolyORB (failed on the configure!) with
the 2020 community version of GNAT. It
said I had no GNAT Ada compiler. It was
on the path and it pointed to the gcc
compiler on the path. Are they
compatible? Is there still a PolyORB
"enthusiast" list ?

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Mon, 3 Aug 2020 12:40:32 +0100

Distributed annex is being removed from
GNAT due to "lack of customer interest."

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 3 Aug 2020 06:47:12 -0700

This is pretty sad, and IMO, stupid; the
ability to [relatively] easily make
distributed applications via DSA is a
killer feature and, in conjunction with
Ada2020 'parallel' blocks/loops would
make for a very attractive system.

IOW, the "lack of customer interest" is an
excuse to shoot themselves in the foot.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 3 Aug 2020 16:16:13 +0200

The reality is a bit more complex.

Distributed Annex is based on RPC.

Ada is largely used in the field
applications, embedded, real-time. RPC
are pretty much useless there, as well as
in massively parallel applications.

For service-oriented sluggish applications
RPC might be OK, but CORBA is a
blocker there, because static
topology/configuration is too rigid for
such applications. (Static topology is less
and less tolerated in the former as well)

P.S. I have an almost ready distributed
Annex implementation based on inter
process communication (no network,
same box), but I have no information how
to dock it into GNAT.

Dynamic Variable Creation
a la PHP

From: Ian Douglas <ian@vionia.com>
Subject: Newbie question # 2
Date: Thu, 6 Aug 2020 11:40:35 -0700
Newsgroups: comp.lang.ada

I did try Google search and assorted
books but could not find an answer.

In PHP, let's say we have a variable $fruit
which contains the string "banana".

In PHP, if I do $$fruit, then it creates a
variable $banana, which I can then do
things with.

Does Ada support any such concept of
taking the contents of one variable and
using THAT as a variable?

I'm reading in a file which has the name
of an object followed by some properties
so I want to use the name as a variable ...

File is something I created, so it's not
some random stuff, and the variables will
be existing already.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 06 Aug 2020 19:56:23 +0100

I'd think of a record type to contain the
properties, and then a map from object
name to properties:

 type Properties is record

 Length : Positive;

 Width : Positive;

 end record;

 package Object_Maps is new

Ada.Containers.Indefinite_Ordered_Maps

 (Key_Type => String,

 Element_Type => Properties);

 Objects : Object_Maps.Map;

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 6 Aug 2020 22:20:11 +0300

> In PHP, let's say we have a variable
$fruit which contains the string
"banana". If I do $$fruit, then it creates
a variable $banana, which I can then do
things with.

Fortran has a similar feature,
NAMELIST, for reading values into
variables also named in the input. It can
also be used for output.

Ada does not have such a feature.

[...]

From: Ian Douglas <ian@vionia.com>
Date: Thu, 6 Aug 2020 12:41:53 -0700

> I'd think of a record type to contain the
properties, and then a map from object
name to properties:

Yes, the variables are actually records.

> package Object_Maps is new
Ada.Containers.Indefinite_Ordered_Ma
ps

146 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

Okay that's a new construct I haven't
come across yet. Let me see what I can
dig up on that.

From: Ian Douglas <ian@vionia.com>
Date: Thu, 6 Aug 2020 12:45:04 -0700

> Ada does not have such a feature.

I figured as much, probably "unsafe
programming practice" at the end of the
day.

[...]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 6 Aug 2020 23:08:00 +0300

> I figured as much, probably "unsafe
programming practice" at the end of the
day.

I wouldn't say so. I think "namelist" input
is a perfectly reasonable function to have
in some programs, and is not particularly
unsafe in any way -- if the programmer
can limit the set of variables that can be
named and changed by such input, which
is the case in Fortran (and also in our
various suggestions for implementing it in
Ada).

PHP is (I believe) an interpreted
language, so the symbol table is around at
run-time, which makes it easy for PHP to
support variables that refer to any other
variable by its symbolic name. This can
make "namelist" input in PHP unsafe,
since the input can change any variable --
including variables that the programmer
did not intend to be changeable in this
way.

Ada is usually compiled, and the symbol
table is not present when the compiled
program runs, so it would be harder to
implement a "namelist" input/output
feature. But not impossible, as Fortran
shows.

Ada on Beaglebone Black

From: Ricardo Brandão
<rbrandao.br@gmail.com>

Subject: Running ADA on Beaglebone Black
Date: Sun, 9 Aug 2020 07:39:58 -0700
Newsgroups: comp.lang.ada

I've just acquired a Beaglebone black and
I'm trying to run a simple program in Ada.

I tried to install GNAT but apt-get install
GNAT or anything similar doesn't work.

I didn't find any place with the repository,
nor any tutorial.

How is the best way to run Ada in the
BBB?

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Sun, 9 Aug 2020 17:58:54 +0200

What distribution? APT suggests Debian
or Ubuntu. In any case I would do a full
upgrade to the latest version of either.

Under Debian buster you should do

 apt install gnat-8

Under Ubuntu it would be

 apt install gnat-10

And also:

 apt install gprbuild

If these do not work check
/etc/apt/sources.list

From: Philip Munts
<philip.munts@gmail.com>

Date: Sun, 9 Aug 2020 10:17:12 -0700

Depending on what you want to
accomplish (i.e. whether it needs the full
Debian OS), and whether you are willing
and able to do cross-compilation, I think
that MuntsOS
(https://github.com/pmunts/muntsos) is
the easiest way to develop and run Ada
programs on a BeagleBone or Raspberry
Pi.

I have found that installing and
maintaining and especially configuring
I/O with Debian on a BeagleBone to be a
pain in the nether regions. In contrast, I
have attempted to make MuntsOS as easy
to use as possible. Its only real downside
is that it requires cross-toolchains running
on a Linux (preferably Debian or Ubuntu)
development host. Windows Subsystem
for Linux (WSL1 or WSL2) works
perfectly well for the development host,
though.

From: Ricardo Brandão
<rbrandao.br@gmail.com>

Date: Sun, 9 Aug 2020 12:56:35 -0700

> APT suggests Debian or Ubuntu. In any
case I would do a full upgrade to the latest
version of either.

Yes, I ran sudo apg-get update and GNAT
appear in apt-cache search gnat

> Under Debian buster you should do

> apt install gnat-8

> And also:

> apt install gprbuild

I ran these commands and worked fine.

Thank you so much

MITRE's Top-25 List of
2020 Software-bug
Categories

From: Andreas Zuercher
<ZUERCHER_Andreas@outlook.com>

Subject: MITRE's top-25 list of 2020
software-bug categories

Date: Sat, 22 Aug 2020 09:31:13 -0700
Newsgroups: comp.lang.ada

https://www.bleepingcomputer.com/news/
security/mitre-shares-this-years-top-25-
most-dangerous-software-bugs/

Proper intended usage of Ada-specific
features mitigates 9 of them, including a
few that hit interpreted scripting
languages hard. Others of the 25 are
design-level almost independent of
programming language. Still others of the
25 are cavalier/insufficient WWW-
oriented string-processing or SQL string-
processing or director-filename string-
processing that could be conceivably done
just as badly in Ada.

Conversely, if HOLWG were still
pursuing their language-design goals
today, certainly this MITRE* report
would shape the design of an evolving
GreenGreenerGreenest language today,
instead of Ada solving primarily
yesteryear's programming/software-
engineering challenges well.

* defense contractor

From: Shark8
<onewingedshark@gmail.com>

Date: Tue, 25 Aug 2020 12:09:47 -0700

The interesting portion, in tabular form.

Rank - ID - Name - Score

1 CWE-79 Improper Neutralization of
Input During Web Page Generation
('Cross-site Scripting') 46.82

2 CWE-787 Out-of-bounds Write 46.17

3 CWE-20 Improper Input Validation
33.47

4 CWE-125 Out-of-bounds Read 26.50

5 CWE-119 Improper Restriction of
Operations within the Bounds of a
Memory Buffer 23.73

6 CWE-89 Improper Neutralization of
Special Elements used in an SQL
Command ('SQL Injection') 20.69

7 CWE-200 Exposure of Sensitive
Information to an Unauthorized Actor
19.16

8 CWE-416 Use After Free 18.87

9 CWE-352 Cross-Site Request Forgery
(CSRF) 17.29

10 CWE-78 Improper Neutralization of
Special Elements used in an OS
Command ('OS Command Injection')
16.44

11 CWE-190 Integer Overflow or
Wraparound 15.81

12 CWE-22 Improper Limitation of a
Pathname to a Restricted Directory ('Path
Traversal') 13.67

13 CWE-476 NULL Pointer Dereference
8.35

14 CWE-287 Improper Authentication
8.17

15 CWE-434 Unrestricted Upload of File
with Dangerous Type 7.38

Ada Pract ice 147

Ada User Journal Volume 41, Number 3, September 2020

16 CWE-732 Incorrect Permission
Assignment for Critical Resource 6.95

17 CWE-94 Improper Control of
Generation of Code ('Code Injection')
6.53

18 CWE-522 Insufficiently Protected
Credentials 5.49

19 CWE-611 Improper Restriction of
XML External Entity Reference 5.33

20 CWE-798 Use of Hard-coded
Credentials 5.19

21 CWE-502 Deserialization of
Untrusted Data 4.93

22 CWE-269 Improper Privilege
Management 4.87

23 CWE-400 Uncontrolled Resource
Consumption 4.14

24 CWE-306 Missing Authentication for
Critical Function 3.85

25 CWE-862 Missing Authorization 3.77

From: Andreas Zuercher
<ZUERCHER_Andreas@outlook.com>

Date: Tue, 25 Aug 2020 12:43:13 -0700

> Would 've been nice if you'd have also
given the examples and how Ada
solved them.

I am not going to write an entire textbook
here on c.l.a, but here are the nine of the
top twenty-five subcategories that I
consider Ada diligently trying to mitigate
or eliminate when properly utilized:

• 2nd-most frequent: CWE-787 Out-of-
bounds Write

• 3rd-most frequent: CWE-20 Improper
Input Validation

• 4th-most frequent: CWE-125 Out-of-
bounds Read

• 5th-most frequent: CWE-119 Improper
Restriction of Operations within the
Bounds of a Memory Buffer

• 8th-most frequent: CWE-416 Use After
Free

• 11th-most frequent: CWE-190 Integer
Overflow or Wraparound

• 13th-most frequent: CWE-476 NULL
Pointer Dereference

• 17th-most frequent: CWE-94 Improper
Control of Generation of Code ('Code
Injection')

• 23rd-most frequent: CWE-400
Uncontrolled Resource Consumption

There are 1,248 Common Weakness
Enumerations (CWEs) that MITRE lobs
against software development (instead of
against hardware development), so you
can peruse the 26th through 1,248th if you
so desire. Query 699 is the one for
looking at the full inventory of
subcategories of software defects. These
1,248 subcategories (and the
aforementioned top-25 subcategories) fall
into 40 more-macroscopic broader
categories.

https://cwe.mitre.org/data/definitions/
699.html

I claim that next-gen Ada (AdaNG,
pronounced “a dang” as in do we give a
dang or not) would use these 1,248
categories as measuring stick of
expressibility of software-engineering
correctness, just as HOLWG's Green and
Ada used Steelman as measuring stick of
the ability to express software-
engineering correctness.

