
��������	
�	���������

����	������	���	���	�������������	������	���	���	�����������
��	�����������	���������

��������
��������	����	������
 ���������	 �����
!����������	�"����

#�����	 �����
�����
�������	
�

��������	�
�����������

��������	����	���
$%��	&����������	'�������	��	(��)����

�����	
���������������������	��
��
������	����������	�����������������������
	���������

�������	�������	��
�������
������������������
������� �!���
�
�� ���	!��	���"������#���	��$	#	����%	#������� ���	�#

��**��
���"��
��

�������&�����������'�����%(�����

&�	�������+	&�	 ����������	(��

,$,
,$$
,-.
,/0

,/.

,11

,23

,21

,22

��
4���
5�����

��
4���
5����� 6�����	-,

���
��	3
#�����
��	$%$%

Editor in Chief
António Casimiro University of Lisbon, Portugal

AUJ_Editor@Ada-Europe.org

Ada-Europe Board
Tullio Vardanega (President) Italy
University of Padua

Dirk Craeynest (Vice-President) Belgium
Ada-Belgium & KU Leuven

Dene Brown (General Secretary) United Kingdom
SysAda Limited

Ahlan Marriott (Treasurer) Switzerland
White Elephant GmbH

Luís Miguel Pinho (Ada User Journal) Portugal
Polytechnic Institute of Porto

António Casimiro (Ada User Journal) Portugal
University of Lisbon

Ada-Europe General Secretary
Dene Brown Tel: +44 2891 520 560
SysAda Limited Email: Secretary@Ada-Europe.org
Signal Business Center URL: www.ada-europe.org
2 Innotec Drive
BT19 7PD Bangor
Northern Ireland, UK

Information on Subscriptions and Advertisements
Ada User Journal (ISSN 1381-6551) is published in one volume of four issues. The Journal is provided free of
charge to members of Ada-Europe. Library subscription details can be obtained direct from the Ada-Europe General
Secretary (contact details above). Claims for missing issues will be honoured free of charge, if made within three
months of the publication date for the issues. Mail order, subscription information and enquiries to the Ada-Europe
General Secretary.

For details of advertisement rates please contact the Ada-Europe General Secretary (contact details above).

Ada User Journal Editorial Board
Luís Miguel Pinho Polytechnic Institute of Porto, Portugal
Associate Editor lmp@isep.ipp.pt

Jorge Real Universitat Politècnica de València, Spain
Deputy Editor jorge@disca.upv.es

Patricia López Martínez Universidad de Cantabria, Spain
Assistant Editor lopezpa@unican.es

Kristoffer N. Gregertsen SINTEF, Norway
Assistant Editor kristoffer.gregertsen@sintef.no

Dirk Craeynest KU Leuven, Belgium
Events Editor Dirk.Craeynest@cs.kuleuven.be

Alejandro R. Mosteo Centro Universitario de la Defensa, Zaragoza, Spain
News Editor amosteo@unizar.es

Ada User Journal Volume 41, Number 3, September 2020

ADA
USER
JOURNAL

Volume 41

Number 3

September 2020

Contents
Page

Editorial Policy for Ada User Journal 120

Editorial 121

Quarterly News Digest 122

Conference Calendar 149

Forthcoming Events 156

Special Contribution

 J. Cousins

“An Overview of Ada 202x” 159

Articles from the 20th International Real-Time Ada Workshop (IRTAW'2020)

 L. M. Pinho, S. Royuela, E. Quiñones

“Real-Time Issues in the Ada Parallel Model with OpenMP” 177

 J. Garrido, D. Pisonero Fuentes, J. A de la Puente, J. Zamorano

“Vectorization Challenges in Digital Signal Processing” 183

Puzzle

 J. Barnes

“The Problem of the Nested Squares” 187

In memoriam: Ian Christopher Wand 188

Ada-Europe Associate Members (National Ada Organizations) 190

Ada-Europe Sponsors Inside Back Cover

120

Volume 41, Number 3, September 2020 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and

December. Copy date is the last day of

the month of publication.

Aims

Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics,

such as reliable software technologies,

are welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

Refereed original articles on technical

matters concerning Ada and related

topics.

Invited papers on Ada and the Ada

standardization process.

Proceedings of workshops and panels

on topics relevant to the Journal.

Reprints of articles published

elsewhere that deserve a wider

audience.

News and miscellany of interest to the

Ada community.

Commentaries on matters relating to

Ada and software engineering.

Announcements and reports of

conferences and workshops.

Announcements regarding standards

concerning Ada.

Reviews of publications in the field of

software engineering.

Further details on our approach to

these are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will

be relayed to the authors at the

discretion of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues

The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups

to find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be

of interest to them.

Reprinted Articles

While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it

a wider audience. This includes papers

published in North America that are

not easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries

We publish commentaries on Ada and

software engineering topics. These

may represent the views either of

individuals or of organisations. Such

articles can be of any length –

inclusion is at the discretion of the

Editor.

Opinions expressed within the Ada

User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports

We are happy to publicise and report

on events that may be of interest to our

readers.

Reviews

Inclusion of any review in the Journal

is at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to

print reviews submitted from

elsewhere at the discretion of the

Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be

rapid. Currently, accepted papers

submitted electronically are typically

published 3-6 months after submission.

Items of topical interest will normally

appear in the next edition. There is no

limitation on the length of papers,

though a paper longer than 10,000

words would be regarded as

exceptional.

 121

Ada User Journal Volume 41, Number 3, September 2020

Editorial

I would like to start this editorial by commenting on the delays that have been affecting the publication of the Ada User

Journal during this year. This has been unfortunate, but justified by the exceptional pandemic situation that we have been

living, which, among other effects, disrupted our well established printing process and somehow interfered with our plans

concerning the contents to include in the journal, namely due to the cancellation of several events and hence the lack of

material. We have been working to recover the delay and we believe that we will achieve this goal very soon. For certain, all

the past issues (March and June) will be printed, and we expect that they will start arriving at your mailboxes early in 2021.

In this issue we are happy to include a special contribution prepared by Jeff Cousins, providing a very complete overview of

Ada 202X, which is now almost completely finalised. This may serve as an excellent reference document for all those that

use the language and follow its evolution and improvements to better suit developer needs and other requirements.

Then we also publish two articles that were accepted to the 20th International Real-Time Ada Workshop (IRTAW'2020).

Although the event ended up being firstly postponed and then cancelled due to the COVID-19 situation, the authors of

submitted papers were invited to prepare contributions to the AUJ, which we now bring to you. The first paper, authored by

Luis Miguel Pinho (from the Polytechnic Institute of Porto, Portugal) and by Sara Royuela and Eduardo Quiñones (from the

Barcelona Supercomputing Center, Spain), goes well with the special contribution referred above, as it addresses real-time

issues in the mapping of parallel language features to the OpenMP tasking model, a possibility considered in Ada 202X (see

Section 2 of that article). The second paper is by a team from the Polytechnic University of Madrid, including Jorge Garrido,

David Pisonero, Juan Zamorano and Juan A. de la Puente, who analyse the support for vectorization existing in some

programming languages and propose a possible extension to Ada for enhanced vectorization support.

As usual, this issue includes the Quarterly News Digest, prepared by Alejandro R. Mosteo, and the Calendar section, prepared

by Dirk Craeynest. In addition to these two sections that have been an integral part of the AUJ for a long time, the issue

includes the third puzzle prepared by John Barnes, which we may consider as a permanent section of the AUJ, as long as

John Barnes will be willing to entertain and surprise us with his challenges. This time, the puzzle is about nested squares, and

is not an easy one! The solution to the Greek Cross problem brought to you in the previous issue is also provided.

We close this editorial with the sad note that Ian Christopher Wand left us last July. Although I did not personally know Ian

Wand, I learned that he was a very reputed computer scientist, recognized by his peers, with important contributions to the

Ada community. This issue includes an In memoriam prepared by Ian Pyle and other colleagues.

 Antonio Casimiro

Lisboa

September 2020

 Email: AUJ_Editor@Ada-Europe.org

mailto:AUJ_Editor@Ada-Europe.org

122

Volume 41, Number 3, September 2020 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 122
Ada in Education 122
Ada-related Resources 125
Ada-related Tools 125
Ada-related Products 127
Ada and Operating Systems 128
Ada and Other Languages 130
Ada Practice 130

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. --arm]

Preface by the News
Editor

Dear Reader,

This number brings again important news
for Open Source enthusiasts from the
GNAT front. A survey was conducted by
AdaCore to gather feedback on the idea of
discontinuing the Community Editions in
favor of better supporting the FSF-
maintained version packaged by various
Linux distributions. You can read
reactions about this idea in thread [1].

The Jupyter notebooks for Ada by Maxim
Reznik (first reported here in AUJ 41.2)
are quickly taking shape: a series of
interactive tutorials demonstrating new
features of Ada 202x is already available
on-line, with 10 entries at the time of this
writing. Find more about these in [2], and
of course visit them with your browser to
witness their potential first-hand.

If you would like to go down memory
lane, two threads about operating systems
(supporting or implemented in Ada)
contain juicy bits in the Ada and
Operating Systems section. Or, if you
prefer to look forward to hypothetical
future Ada features, a large discussion
emerged from the embers of an old thread
proposing solutions to the automatic
storage of indefinite types [3].

I ask for your indulgence for closing this
preface with a project I started and
actively develop (in collaboration, chiefly,
with Fabien Chouteau from AdaCore):
Alire (after Ada Library Repository), a
package manager for Ada and SPARK
has entered public beta, and debuts in this
issue [4]. As of this writing, Alire indexes
130 libraries and executable projects that
you can immediately retrieve and build
with GNAT without a care in the world
about having to go hunting for
dependencies. (A technical paper about an
early version of Alire was published in
AUJ 39.3.)

Sincerely,
Alejandro R. Mosteo.

[1] “Survey on the Future of GNAT
Community Edition”, in Ada Practice.

[2] “Ada 2020 Jupyter Notebooks”, in
Ada and Education.

[3] “Proposal: Auto-allocation of
Indefinite Objects”, in Ada Practice.

[4] “Repositories of Open Source
Software”, in Ada-related Resources.

Ada and Education

Ada 2020 Jupyter Notebooks

From: Maxim Reznik
<reznikmm@gmail.com>

Subject: Ada 2020 Jupyter notebooks
Date: Wed, 2 Sep 2020 06:28:07 -0700
Newsgroups: comp.lang.ada

I'm going to write a series of Jupyter
notebooks about Ada 2020 support in
GNAT Community Edition 2020.

First two are there:

- Ada 2020: 'Image attribute for any type

- Ada 2020: Redefining the 'Image
attribute

https://github.com/reznikmm/
ada-howto/tree/ce-2020

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Wed, 2 Sep 2020 23:49:46 -0700

Nice idea, this is a nice way to teach Ada
indeed.

New(?) Intros to Ada and
Spark on adacore.com

From: Paul Rubin
<no.email@nospam.invalid>

Subject: new(?) intros to Ada and Spark on
adacore.com

Date: Wed, 02 Sep 2020 23:50:01 -0700
Newsgroups: comp.lang.ada

I don't remember seeing these here before.
They look promising:
https://learn.adacore.com/courses/
courses.html:

- Introduction to Ada

- Introduction to SPARK

- Ada for the C++ or Java Developer

- SPARK Ada for the MISRA C
Developer

- Introduction to GNAT Toolchain

https://learn.adacore.com/courses/
intro-to-ada/index.html

https://learn.adacore.com/courses/
intro-to-spark/index.html

https://learn.adacore.com/courses/
Ada_For_The_CPP_Java_Developer/
index.html

https://learn.adacore.com/courses/
SPARK_for_the_MISRA_C_Developer/
index.html

https://learn.adacore.com/courses/
GNAT_Toolchain_Intro/index.html

Solutions to J. McCormick
Book

From: Werner Aeschbacher
<aeschbaw@ieee.org>

Subject: Training Ada
Date: Wed, 23 Sep 2020 11:43:08 -0700
Newsgroups: comp.lang.ada

Does anybody have the solutions to the
exercises of the book "Building Parallel,
Embedded, and Real-Time Applications
with Ada" from John W. McCormick
et al ?

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 23 Sep 2020 12:58:45 -0700

Is there a claim that a solution set was
published someplace? Your best bet
might be to contact the authors.

mailto:amosteo@unizar.es

Ada and Educat ion 123

Ada User Journal Volume 41, Number 3, September 2020

Sometimes with textbooks (say in
mathematics), there is a solutions book
available only to instructors, so they can
assign homework problems from the
textbook and check students' answers
against the solutions book.

I have the textbook you mention. It looks
good but I haven't gotten around to
reading much of it. If there's a particular
exercise you're interested in, I might like
to give it a try.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 23 Sep 2020 16:37:52 -0500

> Your best bet might be to contact the
authors.

Agreed. John McCormick is still involved
in Ada (he was on an ARA meeting this
morning), so I'd expect he'd be able to
give you some information.

Solutions to J. English Book

From: Jack Davy
<jules1.davy@gmail.com>

Subject: Learning Ada
Date: Tue, 15 Sep 2020 03:36:34 -0700
Newsgroups: comp.lang.ada

I've just started learning Ada and am
using the book "Ada95: The Craft of
Object Oriented Programming", by John
English. I know there are plenty of other
resources such as the one on AdaCore,
which covers Ada 2012, but I like the
style and flow of this book. Anyway, I
was wondering whether anyone in the
group has the answers to the end of
chapter exercises? The author has now
retired and the link to them is dead.

Thanks in Advance!

From: Anders Wirzenius
<anders.wirzenius@netikka.fi>

Date: Tue, 15 Sep 2020 17:31:57 +0300

Maybe this helps:

http://archive.adaic.com/docs/craft/
craft.html

From: Jack Davy
<algojack@tutanota.com>

Date: Tue, 15 Sep 2020 08:07:07 -0700

Thanks Anders, but I already found that
link. The download has the code for the
book, but no answers. I guess it's not
important, I just thought it would be nice
to see some sample solutions.

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Tue, 15 Sep 2020 17:54:35 +0200

I don't have an answer to your exact
question but there is no shortage of
"sample solutions" in Ada on
https://rosettacode.org/wiki/Category:Ada

HTH

PS. I still consider John English's book to
be the best introduction to Ada.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 15 Sep 2020 18:01:56 +0100

Try here: https://www.dropbox.com/s/
8k4xxpj5a67s752/adacraft.tar.gz?dl=0

Nothing like being a pack rat! My hard
disk copy is dated 2012-8-25, but I don't
know when I retrieved it, must have been
several computers ago. Internal dates up
to 2001-07-27. Readme says examples
tested with GNAT 3.13p!

From: Simon Wright
<simon@pushface.org>

Date: Tue, 15 Sep 2020 18:07:13 +0100

Actually, they are at adaic.com:
http://archive.adaic.com/docs/craft/
craft.html, see the third bullet point.

From: Jack Davy
<algojack@tutanota.com>

Date: Tue, 15 Sep 2020 12:03:46 -0700

@ Ludovic, thanks for the link to
rosettacode; very good source of
examples. And good to hear that you rate
the book highly. There don't seem to be
many books on Ada, but there is a very
recent one for beginners which I will
probably get to fill in the gaps not covered
by "The Craft".
https://www.apress.com/gp/book/
9781484254271

@ Simon, thanks, but I already have that
file. It contains all the code in the book
but not the answers to the end of chapter
questions.

By the way, I see the author also wrote a
GUI library for Ada called JEWL, the
files for which I have also downloaded.
Pity it's for Windows only. I'm a Linux
user although I do have Win XP on
VirtualBox, but I don't believe the current
GNAT compiler will run on it.

From: Gautier write-only
<gautier_niouzes@hotmail.com>

Date: Tue, 15 Sep 2020 12:28:20 -0700

Other sample sources:

Ada resources:

 - https://sourceforge.net/directory/
language:ada/

 - https://www.adaic.org/ada-resources/

Small samples are embedded in the LEA
editor (you can run it from Wine):

https://sourceforge.net/projects/l-e-a/

From the menu: Action / Code sample.
Choose your sample. Hit F9 for running.

Some samples stem from Rosetta Code
BTW :-)

From: Jerry Petrey <gpetrey@cox.net>
Date: Tue, 15 Sep 2020 16:00:08 -0700

> By the way, I see the author also wrote
a GUI library for Ada called JEWL [...]

Yes, his JEWL package is great. I used it
many times to create Windows GUI apps
and still use it some. I talked to John a
number of times - he was very helpful.
His book is one of the best!

From: Paul Rubin
<no.email@nospam.invalid>

Date: Tue, 15 Sep 2020 18:23:18 -0700

> [...] there is a very recent one for
beginners which I will probably get to
fill in the gaps not covered by "The
Craft".https://www.apress.com/gp/book
/9781484254271

I haven't examined that book directly but
based on the preview and blurb, it does
seem to be beginner oriented, thus likely
to have gaps of its own. If you're trying to
fill gaps, you probably want something
more complete and advanced.

I semi-recently got another book that
looks very good, though it's still sitting
around without my having read much of
it: Analysable Real-Time Systems:
Programmed in Ada, by Andy Wellings
and Alan Burns. It is basically an updated
reprint of an older book by the same
authors, self-published in paperback, so it
is a good value.

From: Jack Davy
<algojack@tutanota.com>

Date: Wed, 16 Sep 2020 00:13:22 -0700

@ Gautier, thanks for the links. When I
get Windows 7 on VirtualBox I'll give the
LEA editor a try, I'm not so keen on using
Wine, it's a bit hit & miss. Also since I
learned Vim a few years ago no other
editors really do it for me, unless they
have Vim bindings ;).

@ Paul, I was thinking that the beginner's
Apress book would fill in the gaps
regarding Ada 2012 specifically, which as
I understand it has changed from previous
versions mainly in regard to OOP; I'm
assuming I won't need to unlearn anything
if I learn the basics from an Ada 95 book.
The real-time stuff would be over my
head at this point I think, and not really
something I had in mind when
considering Ada, although I do have a
background in electronics, and see that
there is Ada compiler for AVR on
AdaCore.

The more I look at this language the more
I wonder why it isn't more popular.
Maybe people just don't like the pascalish
syntax, but that never put me off because
I learned Turbo Pascal at Uni (25 years
ago) and more recently Free
Pascal/Lazarus. Never was much of a fan
of the curly bracket languages.

From: Jack Davy
<algojack@tutanota.com>

Date: Wed, 16 Sep 2020 00:32:32 -0700

I found an impressive list of 'Things to
like about Ada' posted by a C/C++ career
programmer on the AVR freaks forum (in
reply #13) :

124 Ada and Educat ion

Volume 41, Number 3, September 2020 Ada User Journal

https://www.avrfreaks.net/forum/
i-didnt-know-you-could-get-ada-avr

My main reason for wanting to learn Ada
is the last on his list: "Promotes a
professional, anti-hacker mentality. By
being unforgiving the language promotes
the valuable discipline of specifying and
writing code more exactly, without the
temptations of slipping into bit-twiddling
or other programming habits that subvert
(and often break) the data or code models.
When proper programming discipline is
not enforced by the language then it must
be voluntary, and in those cases discipline
can and inevitably will slip, but when the
language enforces much of that discipline
then there are no easy ways to avoid it,
and the resulting code is higher in quality
and faster to develop."

Maybe that's why Ada isn't more popular
- being disciplined isn't easy, and hacking
is more fun. But I've learned the hard way
that it's actually much more satisfying
when your programs are bug-free and
work properly the first time you run them.
Any language which enforces more
thinking and less trial-and-error coding is
a winner in my book.

From: Gautier write-only
<gautier_niouzes@hotmail.com>

Date: Wed, 16 Sep 2020 02:13:54 -0700

> @ Gautier, thanks for the links. When I
get Windows 7 on VirtualBox I'll give
the LEA editor a try, I'm not so keen on
using Wine, it's a bit hit & miss.

No worries, you can access the same
samples (and the same compiler) without
LEA, built on your preferred operating
system.

>- https://hacadacompiler.sourceforge.io/
(source code here: https://sourceforge.net/
p/hacadacompiler/code/HEAD/tree/,
mirrored here:
https://github.com/zertovitch/hac)

Mutatis mutandis, you get there the
"tpc.exe" equivalent, whereas LEA is the
"turbo.exe" :-)

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Wed, 16 Sep 2020 12:55:58 +0200

> The more I look at this language the
more I wonder why it isn't more
popular. [...]

I wasn't there when it happened but I read
that early Ada 83 compilers were buggy,
slow and outrageously expensive because
marketed only at one captive customer,
the US DoD. (In their defence, Ada is a
particularly difficult language to
implement well, orders of magnitude
more so than Pascal or C). The vendors
never really tried to sell Ada development
tools outside the military, despite hype
that Ada was the language of the future.
At around the same time, C++ used the
opposite strategy of selling cheap

compilers, with the additional advantage
of backward compatibility with C, so they
won market share. Turbo Pascal was a
contender back then but only on DOS and
Windows, so it ultimately lost to C++,
possibly in no small part because of
Borland's refusal to abide by any portable
standard. And then Sun marketed Java
aggressively with a zero-cost compiler
and promises of ultimate portability, and
stole the show.

The Ada landscape changed dramatically
when the first Free Software Ada 95
compiler, GNAT, arrived, but the damage
to the reputation of Ada was very hard to
overcome. An entire generation of
military and corporate programmers,
frustrated by the early compilers, became
managers and dismissed Ada out of hand
for decades. They and their prejudices
have started to retire in the past few years
and I think this is one factor in the current
renaissance of Ada.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 16 Sep 2020 13:09:54 +0200

> I wasn't there when it happened but [...]

I mostly agree with your analysis, except
the last part. The problem is that the
culture of programming and overall
education became so low that it is no
more a race against C++. C++ itself is in
defense and losing against languages and
practices so overwhelmingly bad that
even C looks as a shining beacon. Winter
is coming.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Wed, 16 Sep 2020 17:01:41 +0200

> The more I look at this language the
more I wonder why it isn't more
popular.

Ada is a language for engineering
software. Since 98% of developers are
unable to do that, Ada will never be
popular as long as such people are
allowed to develop software.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 16 Sep 2020 14:29:56 -0700

> @ Paul, I was thinking that the
beginner's Apress book would fill in the
gaps regarding Ada 2012 specifically,
which as I understand it has changed
from previous versions mainly in
regard to OOP

I think Ada 95 OOP is not really used
very much, and the changes in Ada 2012
are things like contracts, and built-in
SPARK syntax. You could also look at
the online book "Ada Distilled" which is
about Ada 95. I found it an ok way to get
started, though I never really progressed
beyond that.

> I do have a background in electronics,
and see that there is an Ada compiler

for AVR on AdaCore.

I don't know the current state of that, but
some years ago it was rather hard to use
or parts were missing or whatever. These
days, the AVR is in decline since it is so
limited. Everyone uses ARM or maybe
soon RISC-V processors even for tiny
embedded stuff.

> The more I look at this language the
more I wonder why it isn't more
popular. Maybe people just don't like
the pascalish syntax

Tooling, libraries, language verbosity, etc.
As pure language, though, it is still
mysterious to me what Rust offers that
Ada doesn't.

Today, for most programming, "systems
languages" including Ada, C, C++, and
Rust are all imho somewhat niche. Unless
you are dealing with specialized problems
(such as embedded or OS's), computers
have almost unbounded resources. So it's
easier to get your work done using
languages with automatic memory
management, unbounded arithmetic, etc.

The main cost is consuming more
machine resources and losing some
timing determinism, but most of the time
you can live with both of those. Ada is
best for more demanding applications
which usually involve realtime or high
reliability constraints.

From: Mart van de Wege
<mvdwege@gmail.com>

Date: Fri, 18 Sep 2020 08:53:20 +0200

> Ada is a language for engineering
software. [...]

I use it for hobby stuff, for quick solutions
(like generating RPG characters). Does
not feel like engineering to me.

But what I do like is the elegance of the
language, and the ability to describe my
problem domain using distinct types.

The 'verbosity' does not bother me. I'm a
fluent touch typist, Using the shift key to
type braces slows me more than typing
out statements to delineate blocks.

The only real nit I have with Ada is that it
does not have closures.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Fri, 18 Sep 2020 12:00:47 +0200

> I use it for hobby stuff, for quick
solutions (like generating RPG
characters). Does not feel like
engineering to me.

I do similar things, too, but I always have
a design in mind, and usually start with
pkg, task, & PO specs and subprogram
declarations, so I suspect that after doing
this for so long I can engineer simple
problems in my head. Presumably others
with similar experience or who are better
than I do the same.

Ada-re lated Tools 125

Ada User Journal Volume 41, Number 3, September 2020

Ada-related Resources

[Delta counts are from Apr 6th to Jul
20th. --arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Mon, 02 Nov 2020 18:41:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 3_025 (+75) members [1]

- Reddit: 4_720 (+634) members [2]

- Stack Overflow: 1_924 (+60)
 questions [3]

- Freenode: 90 (+2) users [4]

- Gitter: 64 (+8) people [5]

- Telegram: 90 (+11) users [6]

- Twitter: 67 (+14) tweeters [7]

 92 (+27) unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&net=freeno
de

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Mon, 02 Nov 2020 18:41:21 +0100
To: Ada User Journal readership

[This issue sees a newcomer, the Alire
package manager project, debuting with
130 Ada projects ready to use. --arm]

Rosetta Code: 747 (=) examples [1]

 37 (=) developers [2]

GitHub: 729 (+77) developers [3]

Sourceforge: 276 (+1) projects [4]

Open Hub: 212 (=) projects [5]

Alire:130 (new!) crates [6]

Bitbucket: 88 (-2) repositories [7]

Codelabs: 52 (+1) repositories [8]

AdaForge: 8 (=) repositories [9]

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Mon, 20 Jul 2020 09:38:21 +0100
To: Ada User Journal readership

[From this number on, positive ranking
changes mean to go up in the ranking.
This issue sees the addition of the PYPL
ranking, which is computed by analyzing
how often language tutorials are searched
on Google. The IEEE ranking has seen no
updates through 2020, and will be likely
dropped soon if this situation persists.
--arm]

- TIOBE Index: 39 (+4) 0.35%
(+0.07%) [1]

- PYPL Index: 19 (new!) 0.62%
(+0.3%) [2]

- IEEE Spectrum (general): 43 (=)
Score: 24.8 [3]

- IEEE Spectrum (embedded): 13 (=)
Score: 24.8 [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2019

Ada Reference Manual
2020.1

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Ada Reference Manual info format
2020.1 released.

Date: Fri, 17 Jul 2020 10:23:15 -0700
Newsgroups: comp.lang.ada

ada-ref-man 2020.1 is now available in
GNU ELPA.

This includes Ada 202x draft 25, as well
as Ada 2012. GNAT Community 2020
has some support for some of the new
language features in Ada 202x.

There is also now a searchable info index,
containing the entries in the ARM Index.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sat, 18 Jul 2020 22:40:16 -0500

Sounds good, but keep in mind this is a
moving target. Draft 26 should be
available next week. :-)

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Fri, 31 Jul 2020 17:55:47 -0500

> Sounds good, but keep in mind this is a
moving target. Draft 26 should be
available next week. :-)

My primary computer died (now fixed,
knock on wood), and we've since had an
ARG meeting, so this new draft will be
delayed a couple of weeks. Shouldn't be
too far in the future, though.

Ada-related Tools

SweetAda 0.1C-0.1F

From: gabriele.galeotti.xyz@gmail.com
Subject: SweetAda 0.1c released
Date: Tue, 7 Jul 2020 14:30:36 -0700
Newsgroups: comp.lang.ada

I've just released SweetAda 0.1c.

Windows toolchains now have libstdc++
included.

The RISCV32 and RISCV64 toolchains
are now deprecated, because they end up
the same. So there is now a generic
RISCV toolchain. It behaves like the
other two, you have just to specify the
correct CPU. GCC switches that activate
the 64-bit mode are "-march=rv64imafdc"
and "-mabi=lp64d". Obviously there is the
correspondent RTS target.

The RISCV support is a little bit usable, if
you pick the QEMU-RISC-V-32
platform, it runs Ada code and does some
primitive I/O in the IOEMU window,
stimulating a LED and an 8-bit port.

I've tested Insight and it works very well,
breakpoints and other things seem ok.

Other minor adjustments here and there.

I saw in the log that many users still try to
download from a non-existent directory,
i.e., sweetada.org/software/.... Please
update your links, the correct directory is
sweetada.org/packages/....

Thanks for your patience, I am also
working on documentation.

From: gabriele.galeotti.xyz@gmail.com
Subject: SweetAda 0.1e released
Date: Wed, 22 Jul 2020 11:03:04 -0700
Newsgroups: comp.lang.ada

Hi all. I've just released SweetAda 01.e.

Go to http://www.sweetada.org and
download the archive.

126 Ada-re lated Tools

Volume 41, Number 3, September 2020 Ada User Journal

RTS and LibGCC packages are still valid
@ 0.1c.

- general cleanup and cosmetics

- general infrastructure improvements

- QEMU-RISC-V-32 target can do serial
output in a terminal

- IntegratorCP target uses LCD VGA

- Malta MIPS target uses a VGA PCI
board

- handling of directories in the cpus
hierarchy, which allows selective unit
overriding

- Insight can be called as a toolchain
component

- IOEMU configuration files are now
fully consistent

Next days I will concentrate on generic
low-level CPU support, documentation,
and restructuring of some redundant units.
Let me know, feedback is highly
appreciated.

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda 0.1f released
Date: Wed, 19 Aug 2020 15:40:58 -0700
Newsgroups: comp.lang.ada

Hi all, I've just released the 0.1f version of
SweetAda.

- general cleanup and cosmetics

- general infrastructure improvements

- the VGA text driver is now unified
across platforms; it is actually used by
PC-x86, PC-x86-64 and MIPS Malta

- the ugly handling of network packets
(Amiga/FS-UAE and PC-x86) is re-
routed to a PBUF FIFO handler (the
management is still far from ideal, but is
not tied to the ISR like before)

- various I/O have now correct aspect
specifiers; in particular some hardware
registers with specific sizes are now
correctly handled without premature
optimizations

- AVR is now part of SweetAda and so 2
platforms exist: ArduinoUno and a
QEMU emulator (both ATmega328P);

 the AVR support is primitive and
incomplete, but, with an ArduinoUno
board, is sufficient to start up the Ada
infrastructure and is able to pulse the
onboard LED;

 note that programming is performed by
means of the AVRDUDE tool, so you
should use a version suitable for your
environment;

 otherwise you could use the IHEX .hex
output file with your preferred tool;

 the QEMU-AVR platform can be used
with GDB or Insight to trace the
execution of code;

- runsweetada and IOEMU library now
correctly show in argv dumps the

launched executable instead of a
"NULL" tag

- the parser inside the IOEMU library
now expose in the .cfg file a variable
(LASTPID) that carries the PID of the
last launched executable (see QEMU-
AVR/qemu.cfg)

There is also a new release of all QEMU
emulators, at version 5.1.0.

Please note that the Linux version is
linked with the SDL2 library instead of
the previous GTK+3.

You can find everything at
http://www.sweetada.org

GWindows 31-Jul-2020

From: gautier_niouzes@hotmail.com
Subject: Ann: GWindows release, 31-Jul-

2020
Date: Fri, 31 Jul 2020 11:01:11 -0700
Newsgroups: comp.lang.ada

GWindows is a full Microsoft Windows
Rapid Application Development
framework for programming GUIs
(Graphical User Interfaces) with Ada.

GWindows works with the GNAT
development system (could be made pure
Ada with some effort).

Changes to the framework are detailed in
gwindows/changes.txt or in the News
forum on the project site.

In a nutshell (since last announcement
here):

 - a few features from the extensions
GWindows.Common_Controls.
Ex_List_View and
GWindows.Common_Controls.
Ex_TV_Generic have been moved to
parent package and respective parent
types for broader use

 - fix: a few records for binding with the
Windows API were erroneously 32-bit
only

GWindows Project site:
https://sf.net/projects/gnavi/

GWindows GitHub clone:
https://github.com/zertovitch/gwindows

TASH Sources

From: mockturtle <framefritti@gmail.com>
Subject: TASH sources?
Date: Mon, 3 Aug 2020 02:16:15 -0700
Newsgroups: comp.lang.ada

I wanted to try to use the Ada Tcl/Tk
binding TASH [1], but the download page
has links to www.adatcl.com that sends
me to some chinese-written site. I guess
www.adatcl.com expired?

Does someone know where I can find the
sources of TASH?

Please note that, for reasons too long to be
explained here, I am not interested in

alternatives to TASH, unless they are
Tcl/Tk bindings.

Thank you in advance.

[1] http://tcladashell.sourceforge.net/
index.htm

From: mockturtle <framefritti@gmail.com>
Date: Mon, 3 Aug 2020 02:28:20 -0700

I am replying to my own post... Deep
down in the Google results I found a
github version of TASH

https://github.com/simonjwright/
tcladashell

Despite the different name it seems like
the original sourceforge TASH (or a
fork?) revived on github

From: Simon Wright
<simon@pushface.org>

Date: Mon, 03 Aug 2020 14:38:58 +0100

> Do someone know where I can find the
sources of TASH?

I altered the project page on SF to point to
the new Github site, but forgot about the
project web pages. Sorry.

I've been moving my projects to Github;
it's a far more pleasant and performant
environment, I find.

> [1] http://tcladashell.sourceforge.net/
index.htm

This page now points you to
https://github.com/simonjwright/
tcladashell

From: Simon Wright
<simon@pushface.org>

Date: Mon, 03 Aug 2020 14:40:27 +0100

> Despite the different name it seems like
the original sourceforge TASH (or a
fork?) revived on github

I thought it was the same name?

Anyway, the project has moved to Github,
under the same management :-)

From: gautier_niouzes@hotmail.com
Date: Mon, 3 Aug 2020 06:53:18 -0700

There is also on GitHub:
https://github.com/thindil/tashy ("TASHY
is short from Tcl Ada SHell Younger").

SI Units Checked and
Unchecked

From: AdaMagica
<christ-usch.grein@t-online.de>

Subject: SI Units Checked and Unchecked -
Completela overhauled version

Date: Thu, 13 Aug 2020 05:24:06 -0700
Newsgroups: comp.lang.ada

Simplified design now available:

http://archive.adaic.com/tools/CKWG/
Dimension/SI.html

Ada-re lated Products 127

Ada User Journal Volume 41, Number 3, September 2020

The choice of using dimension checking
or not is now made via a generic signature
package. The user interface is unchanged.

Resource to Source

From: <s@srin.me>
Subject: Ann: Resource to source
Date: Thu, 27 Aug 2020 12:09:17 -0700
Newsgroups: comp.lang.ada

Tool "resource" is available - (MIT
License) at:
https://gitlab.com/cpp8/bindata

This tool can take resource files, graphics,
audio etc. and convert them into Ada (or
C) source code and it can be compiled and
included in the binary.

Developed for pedagogic reasons
(https://github.com/RajaSrinivasan/assign
ments/blob/master/resource.pdf) but
hoping it will be useful to the community.

Simple Components 4.51

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components for Ada
4.51 IEEE 754-2008 Decimal

Date: Mon, 31 Aug 2020 15:28:14 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes (1 September 2020) to the
version 4.50:

- The HTTP client behavior changed not
to close connection when keep alive flag
is set unless the server explicitly
requests closing it;

- Non-standard request headers added to
the HTTP implementation: X-
Requested-By, X-Requested-With, X-
XSRF-TOKEN, X-CSRF-TOKEN;

- The package IEEE_754.Decimal32 was
added. The package implements IEEE
754-2008 decimal32 format;

- The package IEEE_754.Decimal64 was
added. The package implements IEEE
754-2008 decimal64 format;

- The package IEEE_754.Decimal128
was added. The package implements
IEEE 754-2008 decimal128 format;

- An implementation of 128-bit integers
was added to the package IEEE_754;

- The package IEEE_754.Edit was added;

- The package provides strings formatting
facilities for 128-bit integers;

- Fallback time zone names changes in the
package GNAT.Sockets.
Connection_State_Machine.
ELV_MAX_Cube_Client.Time_Zones.

Image_Random

From: PragmAda Software Engineering
<pragmada@pragmada.
x10hosting.com>

Subject: [Ann] Image_Random
Date: Thu, 3 Sep 2020 17:17:03 +0200
Newsgroups: comp.lang.ada

Image_Random: True random numbers
from a digital camera (under Linux with
the GNAT compiler) is now available in
case anyone finds it useful.

https://github.com/jrcarter/
Image_Random

MP Music Player

From: PragmAda Software Engineering
<pragmada@pragmada.
x10hosting.com>

Subject: [Ann] MP
Date: Tue, 15 Sep 2020 22:11:30 +0200
Newsgroups: comp.lang.ada

MP, a Music Player based on the Gnoga
audio widget, is available at
https://github.com/jrcarter/MP

Ada-related Products

PTC ObjectAda V10.2 for
Windows

[This PTC announcement and the
following companion were already
published in the previous AUJ number,
although by date they properly belong in
this number, so here they are again.
--arm]

From: Shawn Fanning
<sfanning@ptc.com>

Subject: Product Release Announcement –
PTC ObjectAda V10.2 for Windows

Date: Mon, 27 Jul 2020 16:39:05 -0700
Newsgroups: comp.lang.ada

On July 22, 2020, PTC announced the
availability of version 10.2 of our
ObjectAda for Windows and
ObjectAda64 for Windows products. This
new product release provides full support
for Ada 2012 language features and
represents the completion of the phased
implementation strategy PTC adopted for
Ada 2012 language feature support within

the ObjectAda technology. With
ObjectAda for Windows version 10.2, the
ObjectAda compiler conforms to the Ada
Conformity Assessment Test Suite
(ACATS) version 4.1Q and adds several
new features not present in the previous
release (ObjectAda version 10.1 released
in May 2019) including support for
storage subpools and the
Default_Storage_Pool pragma, execution
time enforcement of type invariants, and
complete support for new Ada expression
forms.

The new installation approach introduced
with ObjectAda for Windows v10.x
allows ObjectAda to be used with the
latest releases of Microsoft’s Visual
Studio tools and the Windows 10 SDK.
ObjectAda version 10.2 includes version
4.0.0 of the ObjectAda Ada Development
Toolkit (ADT) Eclipse interface which
supports Eclipse 2020-03 (4.15) or later.
All of these upgrades combined make
ObjectAda for Windows version 10.2 a
solid, modern, and effective toolset for
development of mission-critical
application code in the Ada language.
ObjectAda version 10.2 supports Ada 95,
Ada 2005, and Ada 2012 compiler
operation modes to provide compatibility
with previous versions.

Additional information about ObjectAda
version 10.2 is available within the
Product Release Announcement which
can be downloaded from
https://www.ptc.com/products/
developer-tools/objectada.

Customers with active subscription
licenses for ObjectAda for Windows
v10.x or ObjectAda64 for Windows v10.x
are entitled to a no-charge upgrade to
v10.2.

If you are not currently using ObjectAda
and wish to learn more or if you are using
an earlier release of ObjectAda and wish
to upgrade, register your request at
https://www.ptc.com/en/products/develop
er-tools/objectada/contact-sales.

PTC ApexAda V5.2
Embedded for
Linux/ARMv8 64-bit

From: Shawn Fanning
<sfanning@ptc.com>

Subject: Product Release Announcement –
PTC ApexAda v5.2 Embedded for
Linux/Armv8 64-bit

Date: Mon, 27 Jul 2020 16:42:37 -0700
Newsgroups: comp.lang.ada

On May 19, 2020 PTC announced the
release of the PTC ApexAda v5.2
Embedded for Linux/Armv8 64-bit
product. This product is the initial product
offering based on a new 64-bit code
generator for ApexAda for the Armv8 64-
bit (aarch64) architecture and is our latest

128 Ada and Operat ing Systems

Volume 41, Number 3, September 2020 Ada User Journal

release supporting 64-bit embedded
application development.

The host operating system for this product
is Intel x64 Red Hat Enterprise Linux
v7.x/v8.x (or CentOS equivalent)
distribution. Using the Linaro GNU cross-
development toolchain for 64-bit Armv8
Cortex-A processors on the Linux/Intel64
host, PTC ApexAda supports the
generation of Ada 95 / Ada 2005
application images that execute on
ARMv8-A 64-bit (aarch64) processors
(for example Arm Cortex A53, A57, A72)
running 64-bit embedded Linux
distributions. Examples of embedded
Linux distributions which can be
supported are openSUSE Leap v15.1,
SUSE Linux Enterprise Server for Arm
v15.1, Ubuntu Server 20.04, Wind River
Linux and other Yocto-derived Linux
distributions with a 64-bit kernel.
Reference hardware used for the
development and test of ApexAda was the
Raspberry Pi 3 Model B/B+. (Raspberry
Pi 4 Model B with its larger 4GB RAM
configuration and other boards such as the
VPX-1703 from Curtiss-Wright Defense
Solutions can also be supported by
ApexAda.)

Included with the 64-bit embedded
compiler is the PTC® ApexAda v5.2 64-
bit compiler for Linux native application
development. Also included is the
integrated ApexAda 64-bit C/C++
compiler which facilitates seamless
development of mixed-language
applications written in Ada, C, and C++.
ApexAda V5.2 Embedded compilers
provide a complete cross-development
toolchain hosted from Linux distributions
including RedHat Enterprise Edition,
CentOS, and SUSE. A complete
description of PTC ApexAda v5.2
Embedded for Linux/Armv8 64-bit is
available within the Product Release
Announcement which can be downloaded
from https://www.ptc.com/products/
developer-tools/apexada .

The addition of the new code generation
capability for 64-bit Armv8 processors to
ApexAda opens up a whole new
landscape for embedded application
development using ApexAda. PowerPC
processors have for a long time been a
design choice for our aerospace and
defense customers due to their balance of
performance, cost, and power
characteristics. Intel processors have
offered many of our customers increased
performance at a cost of additional
complexity and power requirements.
Driven by the mobile consumer market,
Arm processors provide high performance
and low power advantages over Intel
processors. We think these advantages
combined with the flexibility provided by
embedded Linux distributions and the
availability of low-cost and high-
performance consumer-grade
development boards as well as ruggedized

64-bit Arm boards will provide
substantial benefits to our customers
looking to modernize existing deployed
applications while mitigating risks
through continued use of the same time-
proven and industrial-strength ApexAda
compiler technology. The 64-bit Armv8
(aarch64) processors are now well-known
and proven processors with a long
lifecycle and there are multiple 64-bit
Linux distributions available which run
on these processors. Follow-on products
leveraging the new ApexAda 64-bit
Armv8 (aarch64) code generation
capability for other real-time operating
systems are under development with
prioritization based on customer interest
and requirements.

If you would like to receive additional
information about the new PTC ApexAda
v5.2 Embedded for Linux/Intel64 to
Linux/Armv8 64-bit product or wish to be
contacted by a PTC Developer Tools sales
representative regarding evaluations,
upgrades and associated pricing, register
your request at
https://www.ptc.com/en/products/develop
er-tools/objectada/contact-sales.

Ada and Operating
Systems

UNIX OS Written in Ada

From: gdotone@gmail.com
Subject: is there a version of unix written in

Ada
Date: Fri, 24 Jul 2020 15:11:47 -0700
Newsgroups: comp.lang.ada

Is there a UNIX-like OS written
completely in Ada?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 25 Jul 2020 11:47:35 +0300

The short answer is "no".

There have certainly been operating
systems written in Ada -- the OS for the
Nokia MPS-10 minicomputer is an
example.

There are several real-time kernels and
similar low-level SW components written
in Ada, but probably they do not qualify
as "Unix-like", depending on what you
mean by that term.

Why do you ask?

From: Stéphane Rivière <stef@genesix.fr>
Date: Sat, 25 Jul 2020 11:36:57 +0200

See OS section of
https://github.com/ohenley/awesome-ada

> There have certainly been operating
systems written in Ada -- the OS for the
Nokia MPS-10 minicomputer is an
example.

Wasn't aware, thanks! Find that... Very
few refs on the net...

https://dl.acm.org/doi/abs/10.1145/
989798.989799

From: Jesper Quorning
<jesper.quorning@gmail.com>

Date: Sat, 25 Jul 2020 07:43:15 -0700

> is there a unix like OS written
completely in Ada?

Do not know if it is unix-like, but this [1]
looks active. Maybe he needs help..

My own dream was to port GNU/Hurd to
Ada while renaming it to something not
hurding so much.

[1] https://github.com/ajxs/cxos

From: Andreas Zuercher
<ZUERCHER_Andreas@outlook.com>

Date: Sat, 25 Jul 2020 12:20:25 -0700

> is there a unix like OS written
completely in Ada?

In 1981, there in fact was one that had 2
public releases with work in progress on
Version 3: iMAX-432, depending on how
puritanical one wishes to be about what is
or is not Unix-like. (iMAX-432 was far
more Unix-like than, say, MVS-like or
CP/M-like.)

If anyone has an inside negotiating track
at Intel (or the contracting firm that Intel
hired to develop it), perhaps they would
be willing to open-source the old
iMAX432 operating system that was
released for the iAPX432 processor that
was designed from the ground up to have
an Ada-centric instruction set. Although it
was more Multics-esque than Unix-
esque* and although it was written
specifically for the iAPX432 (and thus
had much iAPX432-only assembly
language), it should be relatively easily
transliterable into other ISAs because the
iAPX432 ISA more closely resembles
Java bytecode, LLVM bitcode, and C#
CIL/MSIL than other rudimentary
machine codes of that era, due to being
object-based/OO-lite in the hardware's
machine code (which is what doomed the
iAPX432 in the early 1980s: it was so
complex that it required 3 separate IC dies
in 3 separate ceramic packages, and it ran
relatively hot).

* Conversely, both Multics & our modern
Unix are nowadays birds of the same
feather despite the multi-decade
dislocation in time from each other, due to
both having:

1) multiple threads per address space;

2) multiple DLLs per address-space;

3) multiple memory-mapped files (i.e.,
mmap(2) in Unixes versus snapping
segment-files in Multics);

4) IPC based on multiple threads or
multiple processes pending on a single
message-queue;

Ada and Operat ing Systems 129

Ada User Journal Volume 41, Number 3, September 2020

5) soft real-time thread scheduling
priorities in addition to time-sharing
scheduling priorities;

and

6) a GNU-esque long-form whole-words
and short-form abbreviated-letters of
each hyphenated command-line flag

are birds of much the same father, as
opposed to 1970s-era spartan Unix that
abhorred all of these multiplicities, hence
AT&T's uni-based name in AT&T's

1970-divorce-from-MIT's/GE's/AT&
T's/Honeywell's-Project-MAC in defiance
of Project MAC's multi-based name,
because the tongue-in-cheek humor of
Unix's name as eunuchs is Multics
castrated. Eschewing singleton this and
singleton that, Unix nowadays is no
longer a castrated eunuch, due to
reintroducing a cousin-like variant of
nearly every multiplicity feature of
Multics other than the multiple rings
(unless one counts VM hypervisors
nowadays as reintroducing a cousin of
that one too).

https://en.wikipedia.org/wiki/IMAX_432

From: Stéphane Rivière <stef@genesix.fr>
Date: Sun, 26 Jul 2020 21:45:50 +0200

> I remember someone was writing an OS
in Ada, but I do not remember who
was, nor the name of the project, nor if
it was unix-ish.

In the very old archive
https://stef.genesix.org/aide/
aide-src-1.04.zip you will find:

- The last RTEMS 3.2.1 Ada sources
(yes... old RTEMS releases are offered
in two flavors: Ada and C) comes with
docs & manuals.

- the Ada sos-os Ada series (based from
edu-os in C)

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Mon, 27 Jul 2020 00:15:52 +0200

> - The last RTEMS 3.2.1 Ada sources
(yes... old RTEMS releases are offered
in two flavors : Ada and C) comes with
docs & manuals.

Marte OS implements Minimal Real-
Time POSIX.13 in Ada, so it should be
Unix-like.

https://marte.unican.es/

The same group recently announced
M2OS, which is also in Ada, but not
Unix-like.

https://m2os.unican.es/

From: Stéphane Rivière <stef@genesix.fr>
Date: Mon, 27 Jul 2020 09:40:05 +0200

> In 1981, there in fact was one that had 2
public releases with work in progress
on Version 3: iMAX-432, depending on
how puritanical one wishes to be about

what is or is not Unix-like. (iMAX-432
was far more Unix-like than, say,
MVS-like or CP/M-like.)

Very interesting Andreas, thanks for this
part of Ada and CPU history...

From: Stéphane Rivière <stef@genesix.fr>
Date: Mon, 27 Jul 2020 09:40:04 +0200

> The same group recently announced
M2OS, which is also in Ada, but not
Unix-like.

> https://m2os.unican.es/

Not aware of that, Thanks Jeffrey

I will test that, the Toolchain is Linux
based and includes GDB...

From: nobody in particular
<nobody@devnull.org>

Date: Mon, 27 Jul 2020 14:58:36 +0000

> If anyone has an inside negotiating
track at Intel (or the contracting firm
that Intel hired to develop it), perhaps
they would be willing open-source the
old iMAX432 operating system that
was released for the iAPX432
processor that was designed from the
ground up to have an Ada-centric
instruction set.

I guess it could be worthwhile contacting
Steve Lionel who recently retired from
Intel after working for DEC, COMPAQ,
HP, on Fortran compilers. He has a blog
site, I'll not post the details here so as not
to encourage automated spam. Doctor
Fortran is his nickname.

Ada on OpenVMS Retake

From: gérard Calliet
<gerard.calliet@pia-sofer.fr>

Subject: Ada on OpenVMS, where to have a
new beginning

Date: Mon, 17 Aug 2020 19:14:17 +0200
Newsgroups: comp.lang.ada

I participated in a GNAT Ada build for
Itanium OpenVMS (https://github.com/
AdaLabs/gnat-vms) a few years ago. It is
based on a GCC 4.7.3 .

I'm coming back to this work to maintain
it and make it evolve, in a general
approach of making Ada available in
OpenVMS environments (VAX, Alpha,
Itanium, and soon x86).
(http://www.vmsadaall.org/index.php/en/)

For VAX and Alpha we have at least
DEC Ada and Alsys Ada. On Itanium I
have to maintain GNAT Ada on GCC.
For x86 I have to base on the GNAT Ada
front end for LLVM, since VSI ports
VMS to x86 (https://vmssoftware.com/
updates/state-of-the-port/) basing the
compilers on LLVM.

I know that AdaCore dropped commercial
support for GNAT Ada on OpenVMS in
2015. It's not the commercial reasons that
interest me.

In approaching this project again, I would
like to know as much as possible about
how far AdaCore's people or helpers have
come in their developments for
OpenVMS, what problems they have
dealt with in the GCC upgrades they have
resolved, only considered, and those they
have seen as too difficult and blocking.
The question arises as well for the
upgrades (with for example around this
time the transition of the GCC build to
C++) as for the evolution of the debug
management.

If the answers raise confidentiality issues,
I don't want to put anyone in trouble, but
I'm looking for indications on who to
negotiate with.

It's not impossible that AdaCore's people
were among the last to develop GCC for
OpenVMS Itanium. They may also be
able to inform me about the build of the C
and C++ part for GCC OpenVMS. I think
indeed to associate to my efforts for Ada
the exploration of the availability of a
C++ GCC for Itanium OpenVMS.

This resumption of [this] project is quite
at its beginning. My goal is to open as
much as possible the work and its results
to a collaborative work, in Open Source
standards. One of my first tasks will be to
update the current repository to allow
opened development.

From: Andreas Zeurcher
<ZUERCHER_Andreas@outlook.com>

Date: Mon, 17 Aug 2020 11:56:56 -0700

For those interested, a hobbyist license of
OpenVMS is available from VMS
Software, Inc., which is the new owners
of VMS instead of HPE. There is also a
free Alpha emulator for Windows 10 as
well.

https://training.vmssoftware.com/hobbyist

From: nobody in particular
<nobody@devnull.org>

Date: Tue, 18 Aug 2020 18:49:13 +0000

It is unlikely yet perhaps Steve Lionel
will have some info on this. Although he
was not involved with Ada (to my
knowledge) he was a fixture in the
compiler community for Fortran and
probably more, at DEC, COMPAQ, and
HP over a long period and might be able
to identify likely suspects to contact.

This year the VMS port to Intel X86 was
finally completed

https://vmssoftware.com/updates/
state-of-the-port/

https://sciinc.com/remotevms/
vms_techinfo/vms_news/
OpenVMSOnX86-64.asp

I remember a lengthy discussion in the
VMS newsgroup many years ago
regarding the future of Ada on VMS. I
believe the guys at the above companies
were involved. I think the conclusion was

130 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

they would not or could not handle it in-
house and I believe the Ada they had on
VMS was only 95. There were
murmurings that they would try to find
somebody to do it but I did not hear that
AdaCore ever released anything.

Thank you, I'll follow this thread with
interest.

Ada and Other
Languages

CLU and Alphard
Grammars

From: Oliver Kellogg
<olivermkellogg@gmail.com>

Subject: CLU and Alphard grammars
available in HTML

Date: Thu, 23 Jul 2020 15:02:09 -0700
Newsgroups: comp.lang.ada

The research languages CLU and Alphard
had some influence on the design of Ada
[1].

The available grammar documents [2], [3]
are in Postscript or PDF format, in the
case of Alphard in a somewhat hard to
read typeface due to being scanned from
the original document.

For an HTML version of the grammars,
see

http://okellogg.de/proglang/
CLU-syntax.html

http://okellogg.de/proglang/
alphard-collected-syntax.html

 [1] Ada 83 LRM section 1.3

See e.g. http://archive.adaic.com/
standards/83lrm/html/lrm-01-03.html

[2] CLU Reference Manual Appendix A

See e.g. http://okellogg.de/proglang/
CLU-syntax.pdf

[3] An informal definition of Alphard

See e.g. http://okellogg.de/proglang/
An_informal_definition_of_Alphard.pdf

From: "oliverm...@gmail.com"
<olivermkellogg@gmail.com>

Date: Wed, 19 Aug 2020 13:27:33 -0700

Update:

Translation of the full "Informal
Definition of Alphard" document to
HTML is in progress, see

http://okellogg.de/proglang/
an-informal-definition-of-alphard.html

100% completion ETA is within the next
few weeks.

Ada Practice

Ada on Apple's New
Processors Licensing
Concerns

[The thread started with compiler backend
concerns, but most of it evolved towards
licensing issues in view of the
optimizations that the Apple Store may
perform to intermediate code. As is often
the case with licensing arguments, no
entirely satisfactory consensus was
reached on the actual situation, and any
conclusions in any case should be vetted
by qualified experts. One possible
takeaway, as Fabien Chateau summarizes
in one of his posts, is that the GNAT-
LLVM frontend opens many possibilities
that did not exist before, which is a net
positive in any case.

The complete thread can be found at
https://groups.google.com/g/comp.lang.ad
a/c/lHQQfRATKno --arm]

From: Jerry <list_email@icloud.com>
Subject: Ada on Apple's new processors
Date: Mon, 22 Jun 2020 15:53:00 -0700
Newsgroups: comp.lang.ada

Apple is beginning its third nightmare
transition to a new processor family.
What does this mean for Ada on macOS?

Can we hope for a native compiler
anytime soon? We will have Rosetta 2
until we don't. (Original Rosetta lasted for
two OS generations and then it was taken
away.) I could tell you the story of
needing to run a small PowerPC program
to set up a slightly old Apple WiFi device
a couple years ago. Buy Parallels. Call
Apple and send $30 to get Snow Leopard
Server--that's 10.6. Virtualize Snow
Leopard Server on Parallels to run the
WiFi set-up program in Rosetta.)

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Tue, 23 Jun 2020 03:42:46 -0700

> Apple is beginning its third nightmare
transition to a new processor family.
What does this mean for Ada on
macOS?

> Can we hope for a native compiler
anytime soon?

I suppose native toolchain will be based
on LLVM, thus it will allow to use GNAT
LLVM on new processors.

 [A large discussion is omitted at this
point on the implications of GCC code
generation in regard to the Runtime
Library Exception (RLE) clause of
GPLv3. However, as later was pointed
out, GNAT LLVM does not have any
relation to GCC.

Arnaud Charlet from AdaCore eventually
jumped in to clarify the status of GNAT

LLVM licensing, which re-sparked a
somewhat more focused discussion in
relation to the original topic, which
follows. --arm]

From: charlet@adacore.com
Date: Thu, 25 Jun 2020 00:21:01 -0700

> The compiler links to GNAT-LLVM,
the runtime doesn't.

> Pretty sure that the AdaCore people said
it won't fall under GPL.

That's correct, there is no issue here. The
GNAT LLVM compiler is a tool and is
licensed under GPLv3, which is just fine
and the proper license for a tool. The
runtime which is linked with your
executable comes from the gcc.gnu.org
repository and contains the GCC
RunTime exception license.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Thu, 25 Jun 2020 10:55:39 +0100

> That's correct, there is no issue here.
[...]

Can you confirm that using FSF GNAT
with GNAT-LLVM (GPLv3) does or
does not enable the IR clause in the
GPLv3?

From: charlet@adacore.com
Date: Thu, 25 Jun 2020 03:14:31 -0700

> Can you confirm that using FSF GNAT
with GNAT-LLVM (GPLv3) does or
does not enable the IR clause in the
GPLv3?

It does not and in any case, invoking this
clause is a red herring since as explained
in the license, the concern and what's not
allowed is using an intermediate
representation and feed it to a proprietary
(non-GPL-compatible) software to e.g.
optimize it or further process it. LLVM is
a GPL-compatible Software, so this is
irrelevant.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 25 Jun 2020 12:03:14 +0100

> It does not and in any case, invoking
this clause is a red herring since as
explained in the license, the concern
and what's not allowed is using an
intermediate representation and feed it
to a proprietary (non-GPL-compatible)
software to e.g. optimize it or further
process it.

Optikos has (at last) made clear his
concerns about this: if it is indeed the case
that Apple requires App Store developers
to deliver bitcode for further proprietary
optimizations then there might be an
issue.

Depends on whether LLVM IR (which I
understand is logically equivalent to
bitcode) can count as target code? I've
seen it described as LLVM assembler ...

Ada Pract ice 131

Ada User Journal Volume 41, Number 3, September 2020

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Thu, 25 Jun 2020 12:25:59 +0100

> [...] further proprietary optimizations
[...] might be an issue.

> Depends on whether LLVM IR [...] can
count as target code?

Indeed. The only thing I've found so far is
this:

https://thenextweb.com/apple/2015/06/17/
apples-biggest-developer-news-at-wwdc-
that-nobodys-talking-about-bitcode/

Quote from near the top:

'This means that apps can automatically
“take advantage of new processor
capabilities we might be adding in the
future, without you re-submitting to the
store.”'

From the apple docs it links to at the top:

"Bitcode is an intermediate representation
of a compiled program. Apps you upload
to App Store Connect that contain bitcode
will be compiled and linked on the App
Store. Including bitcode will allow Apple
to re-optimize your app binary in the
future without the need to submit a new
version of your app to the App Store. "

So, it looks like he [Andreas Zuercher,
aka Optikos --arm] is right.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Tue, 30 Jun 2020 04:16:38 -0700

> this later closed-source processing of
the app by Apple for nonjailbroken
ARM-based Macs and iDevices to
distribute via the App Store seems to
violate terms of at least the RLE
[Runtime Library Exception] if not
GPLv3 too.

The Apple app store is incompatible with
the GPL since long ago:
https://www.fsf.org/blogs/licensing/
more-about-the-app-store-gpl-
enforcement

I don't see anything new here.

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Tue, 30 Jun 2020 05:28:45 -0700

>

> The Apple app store is incompatible
with the GPL since long ago:
https://www.fsf.org/blogs/licensing/mor
e-about-the-app-store-gpl-enforcement

Yes, when the developer's app is GPLed,
the App Store's terms and the GPL's terms
are mutually incompatible. Historically,
GPLing an app would have been by
developer choice (unless somehow
violating the RLE which was rare in
practice because using garden-variety
unmodified IR-unadorned GNAT, GCC,
and so forth resulted in an Eligible
Compilation Process in RLE).

> I don't see anything new here.

What is new here is that there appear to
be well-reasoned ways (e.g., the Wide
legal theory along this thread [that LLVM
IR is a kind of IR code according to the
RLE --arm]) that GNAT-LLVM could
•force• a developer's app to [be] GPLed
against the developer's will by easy-to-
enact-in-GNAT-LLVM violations of the
RLE's terms that cause the Compilation
Process to not achieve the stricter Eligible
Compilation Process definition, due to
Apple's closed-source manipulations of
LLVM IR bitcode.

Perhaps the work-around is that GNAT-
LLVM-based developers of apps should
•never• submit LLVM IR bitcode to
Apple's App Store's app-intake procedure.
In the past as far back as 2015, submitting
bitcode instead of machine code was
optional. It is unclear with the new ARM-
based Macs, whether that optionality will
continue in the future, or whether that
optionality has already been curtailed.

(Conversely, under the Narrow legal
theory along this thread [that LLVM IR is
equivalent to assembly code and not an
actual IR for RLE purposes --arm], your
claim is correct, nothing has changed: if
an app-developer doesn't want to suffer
the mutual incompatibility of the GPL and
Apple App Store, then don't choose GPL
as the license for the app, because despite
its name LLVM IR bitcode is merely
assembly language which is unregulated
by RLE.)

From: charlet@adacore.com
Date: Tue, 30 Jun 2020 07:35:03 -0700

> We need clarification on whether the
translation from GCC's IR to LLVM's
IR invokes this clause. I'm not sure if
GNAT final IR before the GNAT-
LLVM backend is GENERIC or
GIMPLE.

GNAT LLVM doesn't use nor depend on
GCC at all: it goes directly from the
GNAT tree to LLVM bitcode, there is
never any GENERIC nor GIMPLE in
sight by design and never can be (unlike
with the old DraggonEgg FWIW).

> I've had a quick look in GNAT-LLVM
and I cannot see any flags enabling the
output of GCC's IR, only LLVM's IR.

See above.

By the way the reason I haven't answered
other messages is mainly because I am
not familiar with Apple's specific
constraints here, so I'd rather not make
any statement about them rather than
making wrong statements and you
shouldn't draw any conclusion from the
fact that I haven't replied to some of the
messages in this thread.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Tue, 30 Jun 2020 15:46:43 +0100

> GNAT LLVM doesn't use nor depend
on GCC at all: it goes directly from the
GNAT

Ok, makes sense.

> tree to LLVM bitcode, there is never
any GENERIC nor GIMPLE in sight by
design and never can be (unlike with
the old DraggonEgg FWIW).

But, GNAT is 1 part of GCC and the
GPLv3 mentions IR, what constitutes the
IR? Surely it covers the Ada AST IR?

Does the GPL infect across the different
IR boundaries?

[...]

From: Simon Wright
<simon@pushface.org>

Date: Tue, 30 Jun 2020 21:01:59 +0100

> GNAT LLVM doesn't use nor depend
on GCC at all: it goes directly from the
GNAT tree to LLVM bitcode, there is
never any GENERIC nor GIMPLE in
sight by design and never can be
(unlike with the old DraggonEgg
FWIW).

It seems to me that there's a lot of
argument about things which can't or
won't be changed.

AdaCore have produced GNAT-LLVM as
a proof of concept, aimed really at targets
not supported by GCC but of interest to
AdaCore's customers.

GNAT-LLVM code itself is (C) AdaCore,
and is GPLv3. The gcc/ada code is (C)
FSF, and is GPLv3.

No change there.

The current build takes the RTS from FSF
GCC, though clearly it could take it from
elsewhere (e.g. some bare metal RTS).

That RTS is (C) FSF, GPLv3 + runtime
exception.

Some here have thought, Aha! LLVM,
RTS with runtime exception, people could
produce apps for iOS!!!!

Then, cold reality strikes: it looks as
though there's a conflict between the
actual terms of the runtime exception and
Apple's requirements for code to be
submitted to the App Store (it needs to be
in LLVM IR or equivalent); the code
would very likely lose the protection of
the runtime license umbrella.

Now, guys, given that there's Apple on
one side standing on a mountain of money
and a prickly attitude to what they'll
accept for their app store, and on the other
side a very much smaller developer
community, who's going to risk going to
court to put a GNAT app on to the App
Store?

Whether you could make such an app and
run it on iPhones privately, without going

132 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

through Apple & the App Store, I don't
know. I'm sure the NSA can.

[...]

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Tue, 30 Jun 2020 21:20:27 +0100

>> By that point, there should be a strong
track record of technical knowledge
regarding Apple's bitcode submission
policies to the App Store to relay to the
attorneys so that they can simply turn
the legal crank to make a
decision/adjustments of whether/how
GNAT-LLVM is to transition out of
experimental status.

> I'd have thought that AdaCore's
response to this idea would be to ask
where you got the idea that iOS & the
App Store would feature as a candidate
target.

I'm developing SDLAda, there are mobile
targets. I don't see why Ada shouldn't.
Jesus, even COBOL can compile to
mobile according to an article I read a
while ago. If AdaCore and Ada users
want people not thinking that Ada is an
ancient language, then it needs to wake
up, smell the coffee and get on mobile.

From: Wesley Pan
<wesley.y.pan@gmail.com>

Date: Tue, 30 Jun 2020 15:07:05 -0700

> I'm developing SDLAda, there are
mobile targets. I don't see why Ada
shouldn't. [...]

I COMPLETELY agree with Luke! We
need Ada to expand to things like mobile,
gaming, and other "more exciting"
markets to help attract the new
generations of software engineers and to
stay relevant in the public's eyes. The
gaming industry alone rivals that of
Hollywood. By the end of 2019, GTA 5
sold more than 100 million copies
worldwide, earning its publisher more
than $6 billion on a $265 million
development budget. That's not chump
change. How can members of the Ada
community ever really jump into such
industries if the same issues like the
license keep coming up as roadblocks?!

I'm not in any way suggesting the Ada
community give up its focus on the safety
and reliability angle. Those are very
important too. But, if you were to have
affordable/free Ada tools for
mobile/gaming on one side, and
expensive tools for the next-gen Mars
rover on the other side, which do you
think would attract more end users?

BTW, even the new "cool" Rust language
is being used to develop apps for mobile.
Ada apps....?

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Tue, 30 Jun 2020 21:46:47 -0700

> I'd have thought that AdaCore's
response to this idea would be to ask
where you got the idea that iOS & the
App Store would feature as a candidate
target.

Gee, either

a) we all concurrently pulled it out of thin
air via overactive imagination as you
imply,

or

b) the following extant events & facts
transpired:

At least an engineer at AdaCore (if not
AdaCore speaking as an organization)
wrote the following on the GNAT-LLVM
repository's README.md:

“[GNAT-LLVM] is a work-in-progress
research project that's not meant for and
shouldn't be used for industrial purposes.
It's meant to show the feasibility of
generating LLVM ••bitcode•• for Ada.”
(emphasis added)

LLVM.org did not organically produce
bitcode out of their own volition. Bitcode
was Apple's idea, Apple's design,
contributed by Apple to benefit primarily
Apple as a strategic technology to
facilitate Apple's OS-optimization &
processor-switcheroo goals without Apple
begging all app developers to resubmit a
plethora of minor-variation apps every
time Apple has a bright idea or Big New
Thing. So when GNAT-LLVM's
README.md is explicitly calling out
bitcode emission as the A#1 top-priority
reason for GNAT-LLVM to exist, by
using that very term bitcode, it is quite
clear that the intended reading of
README.md is referring to the Apple-
Apple-Appleness of bitcode since bitcode
was announced at Apple's Worldwide
Developer Conference in June 2015 as a
key technology related to App Store
submission and downstream proprietary
processing by Apple post-submission:

https://TheNextWeb.com/apple/2015/06/
17/apples-biggest-developer-news-at-
wwdc-that-nobodys-talking-about-bitcode

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Wed, 1 Jul 2020 02:23:29 -0700

> Gee, either

> a) we all concurrently pulled it out of
thin air via overactive imagination as
you imply,

> or

> b) the following extant events & facts
transpired:

The answer is a).

> it is quite clear that the intended reading
of README.md is referring to the
Apple-Apple-Appleness of bitcode
since bitcode was announced at Apple's
Worldwide Developer Conference in

June 2015 as a key technology related
to App Store submission and
downstream proprietary processing by
Apple post-submission:

It seems like you focus too much on
details of a simple README. LLVM
bitcode is sometimes used to talk about
the general LLVM IR.

The example use cases mentioned by the
README are bringing more tooling to
the Ada ecosystem, for instance with
KLEE, or "connecting the GNAT front-
end to the LLVM code generator".

It took time and effort to publish GNAT-
LLVM on GitHub, and AdaCore had
absolutely no obligation to do so. To be
honest, I am personally a bit disappointed
to see such a long discussion on what is
allegedly not possible to do with GNAT-
LLVM (and was absolutely not possible
before anyway), rather than all the
possibilities that GNAT-LLVM opens.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 01 Jul 2020 12:03:10 +0100

> It took time and effort to publish
GNAT-LLVM on GitHub, and
AdaCore had absolutely no obligation
to do so. To be honest, I am personally
a bit disappointed to see such a long
discussion on what is allegedly not
possible to do with GNAT-LLVM (and
was absolutely not possible before
anyway), rather than all the possibilities
that GNAT-LLVM opens.

Personally, I thank AdaCore for making
such an interesting project available.

A couple of postings down Jeffrey Carter
quoted this, which seems apt in the
current context:

 "Propose to an Englishman any
principle, or any instrument, however
admirable, and you will observe that the
whole effort of the English mind is
directed to find a difficulty, a defect, or an
impossibility in it. If you speak to him of
a machine for peeling a potato, he will
pronounce it impossible: if you peel a
potato with it before his eyes, he will
declare it useless, because it will not slice
a pineapple."

 Charles Babbage

From: Wesley Pan
<wesley.y.pan@gmail.com>

Date: Thu, 2 Jul 2020 17:51:36 -0700

> It took time and effort to publish
GNAT-LLVM on GitHub [...]

Hi Fabien,

That's a fair point. As with any compiler
related development (and software in
general), I'm sure the amount of time and
effort it took to create GNAT-LLVM was
significant. Aside from the licensing
issue/debate, it is a really great
contribution to the Ada community and I

Ada Pract ice 133

Ada User Journal Volume 41, Number 3, September 2020

hope it becomes production quality in the
very near future.

AdaCore is the main (if not only)
company that continues to make
innovative and very helpful tools related
to Ada (e.g. libadalang and LearnAda).
As you pointed out, AdaCore was not
obligated to make such contributions.
GNAT-LLVM could very well have been
kept in closed doors to only further
AdaCore's internal development.

When news about GNAT-LLVM first
came out, I for one thought it would
finally allow people to create IOS apps in
Ada and to further the adoption of the
language. Sadly, not sure that will ever
happen now...

From: gautier_niouzes@hotmail.com
Date: Fri, 3 Jul 2020 04:08:00 -0700

> It took time and effort to publish
GNAT-LLVM on GitHub [...]

There is a bias here: the people discussing
on comp.lang.ada tend to be busy...
discussing on comp.lang.ada - and less
busy doing actual programming. Chatting
and programming are incompatible
activities IMHO. At least you cannot do
both at exactly the same time...

From: Simon Wright
<simon@pushface.org>

Date: Thu, 02 Jul 2020 10:54:27 +0100

> "The LLVM code representation is
designed to be used in three different
forms: as an in-memory compiler IR, as
an on-disk bitcode representation
(suitable for fast loading by a Just-In-
Time compiler), and as a human
readable assembly language
representation", which to me precisely
matches "data in any format that is used
as a compiler intermediate
representation, or used for producing a
compiler intermediate representation".

On thinking about this further, I can't help
wondering whether this is deliberate.

From: antispam@math.uni.wroc.pl
Date: Fri, 3 Jul 2020 17:18:40 +0000

> On thinking about this further, can't
help wondering whether this is
deliberate.

Why doubt? FSF clearly did not want
what Apple is doing now. Apple
understood this well, left GCC
development and started promoting
LLVM. FSF lawyers formulated
appropriate licencing language. So the
remaining question is if they did a good
job. Basically folks here are searching for
a loophole. Loopholes happen, but FSF
was careful, so do not bet on this.

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Fri, 3 Jul 2020 11:31:33 -0700

> Why doubt? [...]

These have been my exact concurring
conclusions as well for over 2 years now,
when I back then ceased coding up my
own variant resembling what is now
known as GNAT-LLVM. Some of my
design/coding work was hinted at in
multiple of my postings here on c.l.a.
back then. I figured out these ••chilling
effects•• on my own over 2 years ago.

Question about Best
Practices with Numerical
Functions

From: mockturtle <framefritti@gmail.com>
Subject: Question about best practices with

numerical functions
Date: Fri, 3 Jul 2020 22:30:52 -0700
Newsgroups: comp.lang.ada

I have a question about the best way to
manage a potential loss of precision in a
numerical function. This is a doubt that
came to my mind while writing a piece of
software; now I solved the specific
problem, but the curiosity remains.

Let me explain.

Recently I needed to write an
implementation of the Lambert W
function (is the function that given y finds
x such that x*exp(x)=y). This function
cannot be expressed with elementary
functions and the algorithm I found
basically solves the equation in an
iterative way. Of course, if you fix the
maximum number of iterations, it can
happen that the convergence is not fast
enough and you obtain a result that is
potentially less precise than what you
would expect.

I was wondering how to manage such a
non convergence case. Please note that I
am supposing that I am writing a
"general" function that could be used in
many different programs. If the function
was specific for a single program, then I
would choose the line of action (e.g.,
ignore, log a warning or raise an
exception) depending on the needs of the
specific program.

(Incidentally, it turned out that the
implementation converges nicely for any
value of interest; nevertheless, the
curiosity remains...)

I can see few line of actions that would
make sense

[1] Raise an exception.

Maybe this is a bit too drastic since there
are cases where a moderate loss of
precision does not matter (this was my
case, i just needed one or two decimal
digits)

[2] Let the function have an optional
"precision" parameter and raise an
exception if the precision goes below that

[3] Let the function return a record with a
field Value with the actual result and a
field Error with the estimated precision.

This would make the code a bit heavier
since instead of calling

X := Lambert(Y);

you would say

X := Lambert(Y).Value;

Not really a huge deal, however...

[4] Print a warning message to standard
error or some logging system and go on.

This sounds like the worst option to me.
The message could be overlooked and,
moreover, it supposes there is some
logging facilities or that the standard error
is available for logging... Remember that
the function should be general, to be used
in any program.

[5] ???

Any suggestions?

Thank you in advance

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Sat, 4 Jul 2020 09:50:57 +0200

> [5] ???

[5] Interval computations is the best way
to handle rounding errors:

https://en.wikipedia.org/wiki/
Interval_arithmetic

An Ada implementation is here:

http://www.dmitry-kazakov.de/ada/
intervals.htm

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Sat, 4 Jul 2020 05:45:57 -0500

Most Fortran Lapack use INFO code.

"All documented routines have a
diagnostic argument INFO that indicates
the success or failure of the computation,
as follows:

INFO = 0: successful termination

INFO < 0: illegal value of one or more
arguments -- no computation performed

INFO > 0: failure in the course of
computation"

https://www.netlib.org/lapack/lug/
node138.html

So you could follow that.

[...]

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 6 Jul 2020 10:02:39 -0700

> [5] ???

> Any suggestions?

One way to do this would be to use fixed-
point types:

134 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

(1) Convert your input to the fixed-point
that has a "good enough" delta for the
precision you want.

(2) Run the algorithm.

(3) Convert back to your normal value-
type.

This assumes you're using floating-point
or integers, but one nice thing about
fixed-point is that it has a bounded error
when dealing with operations, unlike
floating-point. -- I remember some years
ago seeing a bug report dealing with
floating-point, where the particular error
simply couldn't have happened with
fixed-point.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 7 Jul 2020 00:23:06 +0200

> One way to do this would be to use
fixed-point types:

Rounding error is bounded in both cases.
Fixed-point has same error regardless of
the values involved in the operations.
Floating-point has error depending on the
values.

I would say that floating-point error
would be roughly the same for addition,
subtraction and multiplication, provided
fixed-point does not overflow. It will be
hugely better for division.

Using fixed-point arithmetic has only
sense for a few marginal cases of
rounding.

Furthermore converting many algorithms
to fixed-point might turn quite non-trivial
as you will have to ensure absence of
overflows and underflows. Where
floating-point computation just would
lose some precision, fixed-point will
catastrophically fail.

General Circular Buffer

From: Daniel
<danielnorberto@gmail.com>

Subject: General circular buffer example
not tied to any specific type

Date: Sat, 4 Jul 2020 10:00:26 -0700
Newsgroups: comp.lang.ada

Hello, any theoretical example of buffer I
can find is always tied to a specific type.

I'm looking for any example of Ravenscar
buffer able to use any type of data at the
same time.

I suppose it will need to serialize all data
and manipulate it as a group of bytes.

Does anybody know any example of this
written in Ada?

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Sat, 4 Jul 2020 19:25:22 +0200

Ring buffer of indefinite elements would
be OK. As an element you can use this:

 type Item (Size : Stream_Element_Count)

 is record

 Data : Stream_Element_Array (1..Size);

 end record;

Instantiate the generic buffer with this
type. Use stream attributes to
serialize/deserialize.

Alternatively you can do it with
Storage_Element in the above and use a
fake storage pool to store/restore objects.
Or a combination "for X'Address use Y"
with pragma Import (Ada, X);

If the type set is somewhat statically
known you can use a variant record as an
element too.

In some cases you can have a ring buffer
of type tags and a set of ring buffers. For
each type tag you would keep values in a
separate ring buffer.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Thu, 24 Sep 2020 06:39:43 +0200

> Does anybody knows any example of
this written in Ada?

Hmmm, you know, Ada is a strongly
typed language, therefore what you put in
a buffer must have a well defined type.

There are two possibilities:

1) If you can accept several buffers, one
for each type, make it generic and
instantiate it as many times as you need

2) Make a buffer of Stream_Elements,
and use the streaming attributes ('Read,
'Write) to turn any type into stream
elements.

Ada.Streams.Stream_IO can also be
handy in some cases.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 25 Sep 2020 15:32:01 +0100

As J-P has said, you could use 'Write and
'Read (or better, 'Output and 'Input) to
write to a stream.

The beginnings of an alternative, which I
last worked on a while ago, is at [1]; it's
an Ada implementation of part of
MessagePack[2] (boolean, integer, float,
string). Still a way to go!

Writing arbitrary data to a stream using
'Write/'Output suffers from the
disadvantage that the reading side won't
know what to expect unless you have
some protocol in place. This
Message_Pack doesn't eliminate this at
all.

For a while, I supported a scheme where
all the data to be transmitted had to be
instances of a tagged type e.g. Base; as far
as I can remember, you output the data
using Base'Class'Output and read it in
using Base'Class'Input.

[1] https://sourceforge.net/u/
simonjwright/msgpack-ada/code/
ci/master/tree/

[2] https://en.wikipedia.org/wiki/
MessagePack

Fixed vs Float Precision and
Conversions

From: Björn Lundin
<b.f.lundin@gmail.com>

Subject: Fixed vs float and precision and
conversions

Date: Tue, 7 Jul 2020 23:10:20 +0200
Newsgroups: comp.lang.ada

I've for years run an interface towards
external part on a raspberry pi that
communicates with JSON over http
(JSONRPC2)

the versions are [...]

I have found this reliable but suddenly I
have got some rounding troubles. Or I
perhaps just discovered it now.

I have a fixed type

 type Fixed_Type is delta 0.001 digits 18;

but JSON does not support that. So I get
floats instead. I use gnatcoll.json as parser
by the way

[Skipped example that boils down to
converting a float to a fixed point type.
--arm]

The message (JSON) contains a value
5.10 (in a float), but that is converted
(sometimes I think) to the fixed_type
variable with value 5.099. This gets me
into trouble further down in the code.

So - What should I do instead?

should I express my Fixed_Type in
another way?

I need to be able to express 6.5 % (0.065)
which I could not with type Fixed_Type
is delta 0.01 digits 18;

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 8 Jul 2020 00:30:29 +0300

According to RM 4.6(31), conversion to a
decimal fixed-point type does not round,
but truncates toward zero if the operand is
not a multiple of the "small" of the target
type, which is usually the case here if
Floats are base-two.

You should perhaps change the
conversion (Target := Fixed_Type(Tmp))
to round, by doing Target :=
Fixed_Point'Round (Tmp).

Note, I haven't tried it.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Wed, 8 Jul 2020 20:10:35 +0200

The main reason for asking was to see if I
got the whole concept of fixed types
wrong or not.

Ada Pract ice 135

Ada User Journal Volume 41, Number 3, September 2020

I did expect 'You should do this or that
one-liner' as Niklas proposed. I did not get
that to work though.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 8 Jul 2020 21:21:45 +0300

> I did expect 'You should do this or that
one-liner' as Niklas proposed. I did not
get that to work though

Oh. What happened when you tried? How
did it fail?

From: Shark8
<onewingedshark@gmail.com>

Date: Tue, 7 Jul 2020 14:58:40 -0700

> but JSON does not support that. So I get
floats instead.

This is a limitation of JSON, IIUC: all
numeric are IEE754 floats -- see:
https://www.json.org/json-en.html

If you have access to both sides of the
serialization, you could define an
intermediate serialization say a string of
"Fixed_Type#value#" where 'value' is the
string-representation you need. -- You can
extract the value by indexing on the '#'
characters, extracting the portion in
between, and feeding that via
Fixed_Type'Value(
EXTRACTED
_SUBSTRING), and produce it via
"Fixed_Type#" & Fixed_Type'Image(
fp_value) & '#'.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 8 Jul 2020 20:36:47 +0200

> The main reason for asking was to see if
I got the whole concept of fixed types
wrong or not.

Fixed-point is conceptually a scaled
integer. You should deal with it
accordingly. [It could be a bit surprising
in Ada where conversion to integer
rounds. In most languages conversion to
integer truncates]

[...]

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Wed, 8 Jul 2020 21:39:20 +0200

> Oh. What happened when you tried?
How did it fail?

I did a test routne like below, but realized
that Float(5.10) - which was converted to
Fixed_Type(5.099) is a valid fixed_type
of course.

so

 Fix1 := Fixed_Type(Flt);

or

 Fix2 := Fixed_Type'Round(Flt);

does not really matter, since both may
return 5.099 when given 5.10

[...]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 8 Jul 2020 23:34:46 +0300

> I did a test routine like below, but
realized that Float(5.10) - which was
converted to Fixed_Type(5.099) is a
valid fixed_type of course.

No, see below. You are confusing decimal
(base-10) reals with binary (base-2) floats.
[...] The point is that Float'(5.10) is not
exactly 5.10, because base-2 floats cannot
represent decimal fractions exactly. Since
the result, as you showed in your first
post, of converting (with truncation)
Float'(5.10) to Fixed_Type is 5.099, the
actual (binary) value of Float'(5.10) is a
little less than 5.10, so the truncation
gives 5.099 instead of 5.100.

But Fixed_Type'Round (Float'(5.10)) will
always give 5.100.

[...]

Binary Search SPARK Proof

From: mockturtle <framefritti@gmail.com>
Subject: My new post on dev.to about

SPARK
Date: Thu, 9 Jul 2020 07:16:20 -0700
Newsgroups: comp.lang.ada

first a bit of disclaimer: this is about a
recent post of mine on dev.to I post this
here since I think that maybe someone in
this group could be interested.

Recently I wrote a small binary search
procedure for a software of mine. Since I
always wanted to start using SPARK, I
thought that this could be a nice small
problem to start playing around with
SPARK. The post on dev.to is about my
experience.

If you are curious

https://dev.to/pinotattari/
proving-the-correctness-of-a-binary-
search-procedure-with-spark-ada-34id

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Thu, 9 Jul 2020 08:27:16 -0700

I shared it on reddit:
https://www.reddit.com/r/programming/
comments/ho4zzp/
proving_the_
correctness_of_a_binary_search/

Go upvote :)

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Thu, 9 Jul 2020 18:35:39 +0200

> Recently I wrote a small binary search
procedure for a software of mine.

This is good, but why did you write it
from scratch? Why not start with an
available, reusable binary search? Then
you would have a proven, generally
useful component.

This is an interesting pedagogical
example, but the actual algorithm is too
specialized to be of general use.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 09 Jul 2020 21:00:18 +0100

Interesting!

I thought to have a bit of a play with it,
and I found that neither CE 2019 nor CE
2020 will prove as is, including "assertion
might fail, cannot prove Bottom < Top";
but it proves just fine with

 type Element_Type is new Integer;

or

 subtype Element_Type is Integer;

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 10 Jul 2020 06:17:21 +0200

Hmmm... The following O(N**2)
function:

function Is_Sorted (Table : Array_Type)

return Boolean

 is (for all L in Table'Range =>

 (for all M in Table'Range =>

 (if L > M then Table (L) > Table (M))))

 with Ghost;

can be changed to a O(N) function:

function Is_Sorted (Table : Array_Type)

return Boolean

 is (for all L in Table'First .. Table'Last -1

 => Table (L) < Table (L+1))

 with Ghost;

From: Paul Rubin
<no.email@nospam.invalid>

Date: Thu, 09 Jul 2020 23:04:03 -0700

> Hmmm.. The following O(N**2)
function: [...] can be changed to a O(N)
function [...]

Should it matter? The code is never
executed. It's only used as a specification
for the theorem prover.

By the way, Riccardo, thanks for posting
that. It was impressive to see that an
executable-looking spec like that could be
proved automatically with the help of just
a few pragmas. I hadn't posted yet
because I haven't yet had a chance to try
building and playing with the program.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 10 Jul 2020 09:47:16 +0200

> Should it matter? The code is never
executed.

For Spark, no (although I think that the
simpler version is more understandable).
But if you run it through an Ada compiler
with assertions on, then it will make a
difference.

136 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

One Discriminated Task per
CPU

From: Olivier Henley
<olivier.henley@gmail.com>

Subject: 'Number_Of_CPUs' tasks creation,
with discriminants, running
simultaneously.

Date: Mon, 20 Jul 2020 06:51:12 -0700
Newsgroups: comp.lang.ada

My goal is to distribute similar work
across multiple tasks. Incidentally, I want
those tasks to start simultaneously, each
task having some 'indexed' work
(discriminants), and ideally block from
main until they are done with their
workload.

I got this working by declaring the tasks
individually. What I would like to achieve
is to leverage 'System.Multiprocessors.
Number_Of_CPUs' for the number of
tasks created. What is the idiomatic way
of achieving what I want?

I tried with an array of tasks, but the
problem becomes I do not know either
how to start them simultaneously with
parameterization or coordinate their exit
point with main.

I am lurking for the most 'clean/simple'
solution possible.

You can see the actual working code
fixed at 8 tasks here:
https://github.com/ohenley/xph_covid19/
blob/master/src/xph_covid19.adb#
L280-L287

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Mon, 20 Jul 2020 19:45:54 +0200

For simple parameterization, you can use
a discriminant with a default that is a
function call:

subtype Task_ID is Integer range

 0 .. System.Multiprocessors.

 Number_Of_CPUs;

subtype Valid_Task_ID is Task_ID range

 1 .. Task_ID'Last;

Last : Task_ID := 0;

function Next_ID return Valid_Task_ID is

begin

 Last := Last + 1;

 return Last;

end Next_ID;

task type T (ID : Valid_Task_ID := Next);

type T_Set is array (Valid_Task_ID) of T;

Worker : T_Set;

Each Worker (i) will have its ID
determined during elaboration, and they
will all start at the "begin" that follows the
declaration of Worker. The order of the
discriminants is arbitrary; there is no
guarantee that Worker (I) will have ID of
I. Elaboration is sequential, so each
Worker will have a unique ID.

(I think Ada 2X will allow a way to insure
that the ID equals the index, but I'm not
sure how it will work.)

To block a subprogram until the Worker
tasks all complete, declare them in a block
statement:

Create_Workers : declare

 Worker : T_Set;

begin

 null;

end Create_Workers;

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Mon, 20 Jul 2020 13:31:45 -0700

> The order of the discriminants is
arbitrary; there is no guarantee that
Worker (I) will have ID of I.
Elaboration is sequential, so each
Worker will have a unique ID.

As long as all the tasks get a unique ID, I
am fine.

Function as a discriminant at elaboration
... should have thought about it but it
looks like I am missing some wisdom
points.

Thank you Jeffrey.

From: onox <denkpadje@gmail.com>
Date: Wed, 22 Jul 2020 12:05:01 -0700

Another way is to use an extended return:

spec:

 type Worker;

 task type Worker_Task (Data : not null

 access constant Worker);

 type Worker is limited record

 ID : Positive;

 T : Worker_Task (Worker'Access);

 end record;

 type Worker_Array is array (Positive

 range <>) of Worker;

 function Make_Workers return

 Worker_Array;

 body:

 function Make_Workers return

 Worker_Array is

 begin

 return Result : Worker_Array

 (1 .. Positive (Count)) do

 for Index in Result'Range loop

 Result (Index).ID := Index;

 end loop;

 end return;

 end Make_Workers;

 Workers : constant Worker_Array :=

 Make_Workers;

 pragma Unreferenced (Workers);

Two Ada 2012 Vendors

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Subject: Two Ada-12 Vendors
Date: Thu, 23 Jul 2020 14:13:35 +0200
Newsgroups: comp.lang.ada

It appears that PTC ObjectAda 10.x is an
Ada-12 compiler, making two vendors
with Ada-12 compilers*. Only took 8
years.

https://www.ptc.com/-/media/Files/PDFs/
Developer-Tools/PTC-ObjectAda-64-for-
Windows-10_1_RB.pdf

*An Ada-12 compiler implements at least
the entire core language of ISO/IEC
8652:2012. Please don't clutter this thread
with posts about compilers that don't meet
this definition.

From: Dirk Craynest
<dirk@orka.cs.kuleuven.be>

Date: Thu, 23 Jul 2020 17:24:39 -0000

>https://www.ptc.com/-
/media/Files/PDFs/Developer-
Tools/PTC-ObjectAda-64-for-
Windows-10_1_RB.pdf

The above PDF is an announcement from
May 27, 2019, and mentioned that the
"release expands the support for Ada
2012 language features to include the
complete set of Ada 2012 container
packages and support for the associated
Ada 2012 language constructs required by
those packages". Hence a partial Ada
2012 implementation.

But perhaps even more interesting, PTC
announced yesterday, July 22, 2020, the
release of PTC ObjectAda for Windows
Version 10.2: https://developer-tools-
us.ptc.com/Announcements/Products/Obj
ectAda/1000/10.2/RB-20200722-
ObjectAda%20for%20Windows%20V10.
2.pdf

And the subtitle of that announcement
reads: "New native Ada compiler release
provides complete Ada 2012 language
support".

A small extract from the text:

 <start_quote>

 "ObjectAda for Windows version 10.2
represents the completion of the phased
implementation strategy PTC adopted for
Ada 2012 language feature support within
the ObjectAda technology.", stated Shawn
Fanning, Software Development Director
at PTC. "With ObjectAda for Windows
version 10.2, the ObjectAda compiler
conforms to the Ada Conformity
Assessment Test Suite (ACATS) version
4.1Q and adds several new features
including support for storage subpools
and the Default_Storage_Pool pragma,
execution time enforcement of type
invariants, and complete support for new
Ada expression forms.

<end_quote>

For more information, see the PDF at the
2nd URL above.

Dirk

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

Ada Pract ice 137

Ada User Journal Volume 41, Number 3, September 2020

Survey on the Future of
GNAT Community Edition

From: Wesley Pan
<wesley.y.pan@gmail.com>

Subject: AdaCore's survey regarding the
future of GNAT Community Edition

Date: Fri, 24 Jul 2020 14:42:16 -0700
Newsgroups: comp.lang.ada

I just discovered this via Ada Planet...

Link to the Google Docs survey:
https://docs.google.com/forms/d/e/
1FAIpQLSet9x3UNUFmfWt5v-
8Jb7dW8BgKiJxyEMJ_TFm0G2UJKx5O
mQ/viewform

Reddit discussion:
https://www.reddit.com/r/ada/comments/
hwgbwa/survey_on_the_future_of_gnat_
community/

Survey summary reproduced below...

GNAT Ecosystem Community Survey

Hello Ada supporters,

We are writing this message here to
present, discuss and get feedback on a
plan that we at AdaCore want to put in
place. Over the next couple of years, we
want to experiment with an evolution of
the GNAT ecosystem and would like your
help.

So far, there are three grand families of
GNAT releases:

 - GNAT Pro: An AdaCore release with
professional support and high level
quality assurance. Available on many
different targets (PowerPC, Leon,
vxWorks, etc.).

 - GNAT Community: An AdaCore
release with a lower level of quality
assurance, less targets, and a pure GPL
license for the run-time.

 - GNAT FSF: community built compiler
from the FSF source tree. Available
from Linux distributions or Msys2 on
Windows, for instance.

Moving forward, we are looking to
simplify the situation and remove GNAT
Community from the picture.

The plan is to reach a point where
AdaCore would not release GNAT
Community compilers and instead instruct
non-professional users to use GNAT FSF
builds. We would still keep making
GNAT Studio and SPARK releases, and
libraries such as AWS and xmlada will be
available in the Alire package manager
(http://alire.ada.dev). With this plan we
also want to invest some more time to
help the maintainers of GNAT packages
in Linux, BSD, or Windows (msys2)
distributions, for instance, and potentially
contribute when necessary. Our intention
is to contribute to various communities
building GNAT packages so that what can
be done today with GNAT Community

will be doable tomorrow from these
community-led builds.

Why are we working on this plan?

We have noticed that GNAT
Community's pure GPL license on the
run-time is seen as a barrier to new Ada
users. More specifically, understanding
the consequences of the GPL licence is
complex. The result is that newcomers
will often be introduced to Ada/SPARK
by a legal licence discussion rather than
looking at the value of the technology.
This will, understandably, scare people
off.

On top of this, we are witnessing a
widespread misunderstanding around the
openness of the Ada language and the
GNAT compiler, some people seem to
think that Ada and GNAT are proprietary
technologies. We see this phenomenon as
detrimental to the growth of the Ada
community. Of course this
misunderstanding will not fade in a
couple days, but we think that removing
GNAT Community will make the
situation clearer and will allow us to
better communicate on the situation of the
Ada compiler ecosystem.

Besides general comments and discussion
around this plan, we would appreciate
your feedback in this survey form. Please
help us spread the word. The more
feedback we get, the more we will be able
to move in the right direction.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 24 Jul 2020 19:17:30 -0700

Interesting that they did _not_ post about
this survey in this newsgroup. I guess
we're just _so_ yesterday ...

From: Stéphane Rivière <stef@genesix.fr>
Date: Sat, 25 Jul 2020 12:35:39 +0200

Many thanks Wesley!!!

Fascinating... (C) Spock

Finally, we're back to the previous
situation without the GPL barrier...

GNAT 3.15p was born again ;)

All the arguments given are exactly those
I addressed to AdaCore at the highest
level at the time (may be about 15 years
ago?)...

Originally, GNAT was funded precisely
to be available to everyone, including
commercial use.

I answered their survey, in a constructive
way, of course.

Very good news.

From: Stéphane Rivière <stef@genesix.fr>
Date: Sat, 25 Jul 2020 12:35:43 +0200

> Interesting that they did _not_ post
about this survey in this newsgroup. I
guess we're just _so_ yesterday ...

I deeply agree! NGs are so (too?)
efficient.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Mon, 27 Jul 2020 01:36:37 -0700

> Interesting that they did _not_ post
about this survey in this newsgroup. I
guess we're just _so_ yesterday ...

I was going to do it this week ;)

From: DrPi <314@drpi.fr>
Date: Mon, 27 Jul 2020 10:07:48 +0200

What about Ada for microcontrollers?

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Mon, 27 Jul 2020 01:38:35 -0700

> What about Ada for microcontrollers?

With this plan arm-elf and riscv-elf
toolchain will be available for Linux and
Windows at least.

I am doing a lot of microcontroller
programming myself so don't worry about
that :)

From: foo wong
<crap@spellingbeewinnars.org>

Date: Wed, 29 Jul 2020 02:44:08 -0700

[...]

I just wanted to say that I am very happy
to read this thread.

I have written several disparaging posts
about AdaCore and my take on the
situation was:

 - GNAT Pro: professional support, more
targets.

 - GNAT Community: Lower level of
quality assurance, less targets, and a
pure GPL license for the run-time for a
demoware experience

 - GNAT FSF: least quality assurance
designed to push users to the community
build or Pro ASAP

I hope I was wrong all along and either
way, the future just got a little brighter as
AdaCore's two offerings will now be
suitable for free or non-free software.

I don't believe that there is anything
illegal about re-distributing GNAT Pro so
if the gap in quality was so large between
Pro and FSF, I think one paying customer
might take pity on us eventually and
release Pro to the world and reset the gap
for a while.

With dark days setting in for the avionics
industry (for a while at least), maybe
AdaCore will eventually reconsider and
will release Pro as their FSF offering to
broaden their user base.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 29 Jul 2020 17:44:30 +0100

138 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

> I have written several disparaging posts
about AdaCore and my take on the
situation was: [...]

IMO you've been wrong all along, at least
so far as the quality is concerned.
Assurance, yes; number of targets, yes;
support, yes.

> [...] I think one paying customer might
take pity on us eventually and release
Pro to the world and reset the gap for a
while.

I wouldn't have done this; but we were
stuck on an old release for a long time, so
wouldn't have helped.

> With dark days setting in for the
avionics industry (for a while at least),
maybe AdaCore will eventually
reconsider and will release Pro as their
FSF offering to broaden their user base.

The only difference between the pro
compiler and FSF is a few months.

From: Kevin K <kevink4@gmail.com>
Date: Sat, 15 Aug 2020 09:38:23 -0700

I hadn't seen this before today. The main
impediment to me with the free version
compared to the community edition is that
with the community edition AdaCore took
a set of packages that build together
correctly. I tried to build a set of
components from the free version (gcc 8.2
and later), gprbuild, etc. At the time, the
other important components didn't all
build successfully. Some components
were ahead of others. So I wasn't able to
build, for example, gps.

From: Roger Mc
<rogermcm2@gmail.com>

Date: Sat, 15 Aug 2020 19:24:06 -0700

> I hadn't seen this before today. The
main impediment to me with the free
version compared to the community
edition is that with the community
edition AdaCore took a set of packages
that build together correctly. [...]

Unfortunately, the AdaCore community
2020 edition doesn't include gps so I am
currently using the community 2020 tool-
chain and gps from community 2019. I
did try to build gps from the current
AdaCore community source but was
unsuccessful. The main problem being
that AdaCore seems to be in the midst of
doing the necessary upgrade from Python
2 to Python3. I did attempt to do Python3
modifications myself but eventually got to
a stage where I could proceed no further.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Sun, 16 Aug 2020 03:42:11 +0100

> I hadn't seen this before today. The
main impediment to me with the free
version compared to the community
edition is that with the community
edition AdaCore took a set of packages
that build together correctly. [...]

You'll have that issue on FSF because
AdaCore don't tag for FSF releases like
they should.

Having CE available is a massive
mistake, one which they are realising far
too late, imo.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 16 Aug 2020 11:08:18 +0100

> Unfortunately, the AdaCore community
2020 edition doesn't include gps

I _think_ this is on macOS? i.e. Linux,
Windows include it? (presumably under
its new name GNATstudio (modulo
capitalisation))

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sun, 16 Aug 2020 05:08:13 -0700

> > Unfortunately, the AdaCore
community 2020 edition doesn't
include gps

> I _think_ this is on macOS? i.e. Linux,
Windows include it? (presumably under
its new name GNATstudio (modulo
capitalisation))

Windows has <gnat>/bin/gnatstudio.exe

From: Roger Mc
<rogermcm2@gmail.com>

Date: Sun, 16 Aug 2020 05:54:29 -0700

> I _think_ this is on macOS? i.e. Linux,
Windows include it? (presumably under
its new name GNATstudio (modulo
capitalisation))

Yes. My system is macOS.

The source for GPS doesn't appear
available from the AdaCore community
version for any platform?

The source that I tried to build from was
obtained from GIT.

I can only find GNATstudio under Ada
core pro. Is it available elsewhere?

From: Stéphane Rivière <stef@genesix.fr>
Date: Mon, 17 Aug 2020 10:51:34 +0200

> You'll have that issue on FSF because
AdaCore don't tag for FSF releases like
they should.

> Having CE available is a massive
mistake, one which they are realising
far too late, imo.

Fully agree.

For the records, GVD (Gnu Visual
Debugger) was buildable (under
Windows¹ or Linux) but I _never_
succeeded to build GPS...

¹ For the now deprecated AIDE
https://stef.genesix.org/aide/aide.html

From: Simon Wright
<simon@pushface.org>

Date: Wed, 19 Aug 2020 15:29:00 +0100

> I did try to build gps from the current
AdaCore community source but was

unsuccessful. The main problem being
that AdaCore seem to be in the midst of
doing the necessary upgrade from
Python 2 to Python3. I did attempt to
do Python3 modifications myself but
eventually got to a stage where I could
proceed no further

I've reached the same stage. I can manage
some of the 2-to-3 fixes (not the one in
gobject-introspection, though), but the
real problem for me is that there isn't a
consistent complete set of sources, and
some aren't provided on the AdaCore
community site (e.g. pygobject, langkit,
libadalang, libadalang-tools,
ada_language_server). And, so far as I
can see, langkit (20.2) isn't consistent with
libadalang (20.2). And, my Python venv
has got screwed.

Netflix & Twitter.

From: Andreas Zeurcher
<ZUERCHER_Andreas@outlook.com>

Date: Wed, 19 Aug 2020 11:09:35 -0700

> I've reached the same stage. [...]

If multiple well-skilled people cannot
build a GPL-licensed source code with the
source code as provided and instructions
as provided, wouldn't that be a black-&-
white flagrant violation of the GPL? The
natural conclusion seems to be: either the
source code provided mismatched or the
narrative instructions to build were
omitting some secret-sauce, either of
which was an unintentional or intentional
preventative of success. The
unintentionality versus intentionality
would be able to be determined only after
the fact by observing the root-cause of the
preventative of successful building once
that root cause is discovered/reported.
This irreproducibility is both notable and
highly interesting.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 19 Aug 2020 21:11:31 +0200

> If multiple well-skilled people cannot
build a GPL-licensed source code with
the source code as provided and
instructions as provided, wouldn't that
be a black-&-white flagrant violation of
the GPL?

What else you expect when GTK and
Python are used? GTK is practically
impossible to bootstrap. Python is full of
bugs and incompatibilities. On top of that
for some mysterious reason AdaCore
decided to use config scripts. No wonder
it is a nightmare anywhere outside Linux.

If you think that commercial code
delivered in sources is any better, you are
wrong. Building from sources working
out of the box is a rare exception. Most
vendors simply check out the code from
the repository and send it to you. They
have no resources or desire to supply you
with a working toolchain tailored for your

Ada Pract ice 139

Ada User Journal Volume 41, Number 3, September 2020

targets, nor have they necessary
knowledge anyway.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Wed, 19 Aug 2020 21:21:20 +0100

> [...] No wonder it is a nightmare
anywhere outside Linux.

I build on Linux and see my previous
comment.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 19 Aug 2020 21:17:43 +0100

> [...] This irreproducibility is both
notable and highly interesting.

Well - I have every sympathy with people
who make a binary release and then move
on in staggered stages, aiming for another
binary release in a year's time. The sort of
problem you encounter is that the the
version of gobject-introspection on the
CE site won't compile with Python 3.8.5,
because of the removal of the
DL_EXPORT macro that was deprecated
with Python 2.3; while libadalang
requires Python 3.8.5. The latest glib
uses Yet Another Build Tool
(meson/ninja), and the script doesn't
export a header required by gtk-3.14+ ...
it's not so much DLL Hell as a version
compatibility tightrope.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Wed, 19 Aug 2020 21:19:50 +0100

> If multiple well-skilled people cannot
build a GPL-licensed source code with
the source code as provided and
instructions as provided [...]

Every component from AdaCore is an
absolute fucker to build.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 19 Aug 2020 21:50:29 +0100

> Every component from AdaCore is an
absolute fucker to build.

The "front-line" components (gnatcoll*,
gprbuild, xmlada & friends) build pretty
reliably for me, even taking the master
branch.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Wed, 19 Aug 2020 22:35:07 +0100

> The "front-line" components (gnatcoll*,
gprbuild, xmlada & friends) build
pretty reliably for me, even taking the
master branch.

That's only after you work out which
commit to build, after many attempts at
building.

From: <steve@cunningsystems.com>
Date: Wed, 19 Aug 2020 23:12:07 -0700

> I think that I also found this.
Sometimes, the master worked,
occasionally the stable (?) worked but

I'd sometimes (often?) have to resort to
an earlier build to achieve success!

Note that the libadalang/master and
langkit/master repositories are often out
ahead of gps/master. You'll have better
luck if you build them from stable
branches, then gps/master should build.

Similarly spark2014/master is often ahead
of FSF gcc/master. gcc/master is usually
in sync with spark2014/fsf branch.

From: Roger Mc
<rogermcm2@gmail.com>

Date: Wed, 19 Aug 2020 22:42:24 -0700

> [...] the real problem for me is that there
isn't a consistent complete set of
sources [...]

I think I managed to do all the Python 3
conversions but couldn't get linking to
work.

I recall that getting the prerequisites built
was a challenge and found that if I
changed anything in any of them I'd have
to go back and start building them from
scratch again. Worse, I seem to recall that
for at least one of them, probably langkit,
I'd have to delete it and reload it from its
archive file.

It's comforting to find that many of the
opinions expressed in this thread are
similar to my own.

 [Around this point, the thread veers off
towards Python specifics, although with a
relation to Ada features. --arm]

From: Roger Mc
<rogermcm2@gmail.com>

Date: Wed, 19 Aug 2020 22:48:34 -0700

> What else you expect when GTK and
Python are used? [...]

Incredibly, Python seems to be the
language of choice for "teaching" the
now-defunct discipline of software
development, even by leading universities
as far as I can discover.

Most of the rules of disciplined software
development seem to have been discarded
long ago. In particular, the maintainability
aspect seems to have disappeared.

From: Stéphane Rivière <stef@genesix.fr>
Date: Thu, 20 Aug 2020 08:43:13 +0200

> Incredibly, Python seems to be the
language of choice for "teaching" the
now-defunct discipline of software
development, even by leading
universities as far as I can discover.

It's not incredible. It's led to 737max
failure, It's Idiocracy.

RM about Idiocracy could be the movie
Idiocracy. I urge you to see it. Its
nickname is: the movie which has become
a documentary. It's delightfully vulgar but
above all incredibly relevant and funny.

https://en.wikipedia.org/wiki/Idiocracy

In any case, AdaCore's iechoice of python
is miserable. It would have been wiser, if
there was a need for a scripting language,
to implement a subset of Ada (like
Gautier de Montmollin HAL :) For the
doc, they even abandoned GNU/Texinfo
for Python...

Moreover, the GPS code has always been
problematic. I remember the first versions
where a very large portion of the code
was in C because they had integrated a
full version of an old version of berkeley
DB...

From: Vincent Diemunsch
<vincent.diemunsch@gmail.com>

Date: Mon, 31 Aug 2020 07:54:43 -0700

> In any case, AdaCore's choice of python
is miserable. It would have been

> wiser, if there was a need for a scripting
language, to implement a

> subset of Ada (like Gautier de
Montmollin HAL :) For the doc, they
even

> abandoned GNU/Texinfo for Python...

I agree.

And they also used Python for libadalang:
"libadalang is using the Langkit
framework as a basis, and is at the time of
writing the main project developed using
it. The language specification, while
embedded in Python syntax, is mostly its
own language, the Langkit DSL, that is
used to specify the part of Ada syntax and
semantics that are of interest to us."

I wonder if it would have been possible to
create a library of objects directly in Ada,
somehow equivalent in features to
Python's Objects, but with the advantage
of strong typing and a compilation to
native instructions. It would require a
major use of interfaces, one for each
Python's built-in type class, but it would
have been a foundation for many other
applications.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Tue, 1 Sep 2020 11:22:04 -0700

> And they also used Python for
libadalang [...]

> I wonder if it would have been possible
to create a library of objects directly in
Ada, somehow equivalent in features to
Python's Objects, but with the
advantage of strong typing [...]

Langkit uses the advanced features of
Python to create a Domain Specific
Language (DSL) for defining Abstract
Syntax Trees. The DSL also defines much
of the user API for accessing the syntax
tree after parsing. You could accomplish
something similar by using a grammar
generator (WisiToken or Langkit :) to
create a parser for the desired DSL (as
WisiToken does), but then defining the
API would be done separately, and the
correspondence between the API and the

140 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

syntax tree maintained manually (ie error-
prone). I think Python is a good choice for
this application - there are probably other
languages with similar features that could
have been used, but Ada is not one.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 1 Sep 2020 20:59:52 +0200

> Langkit uses the advanced features of
Python to create a Domain Specific
Language (DSL) for defining Abstract
Syntax Trees.

Which is a big mistake, as well. Each
intermediate is yet another point of error.

> I think Python is a good choice for this
application - there are probably other
languages with similar features that
could have been used, but Ada is not
one.

I doubt there could exist applications for
languages like Python. Anyway, GPS is
demonstratively not.

I also do not believe in heavily scripted
IDEs. I certainly do not want GPS
becoming Emacs. Any usability GPS has,
comes from not being Emacs, or, for that
matter, Visual Studio with its horrific VB
scripts.

Proposal: Auto-allocation of
Indefinite Objects

From: Yannick Moy <moy@adacore.com>
Subject: Re: Proposal: Auto-allocation of

Indefinite Objects
Date: Mon, 27 Jul 2020 00:47:30 -0700
Newsgroups: comp.lang.ada

[This thread continues from AUJ 41.2, on
the topic of having a mechanism to
transparently allocate indefinite objects as
if they were definite, e.g., as record
members. --arm]

Hi Stephen,

> My proposal is that it should
(sometimes?) be possible to declare
objects of indefinite types such as
String and have the compiler
automatically declare the space for
them without the programmer having to
resort to access types.

I agree with the goal.

> Benefits:

>

> 1. Easier, especially for
newbies/students.

> 2. Safer due to reduced use of access
types.

> 3. Remove the need to have definite and
indefinite versions of generic units.

I agree with 2 only if we can combine this
with safe handling of aliasing. It would be
terrible to have such a feature lead to
unsafe code if you somehow copy the
pointer. Also, for strings that's possibly

not the only change needed. What you'd
like really is to be able to reassign the
string to some larger/smaller string, like
you do when using Unbounded_String.

On 2020-04-04, Jeffrey R. Carter wrote:

> the ARG is aware of them and has
chosen to take no action. That seems
unlikely to change.

On the other hand, AdaCore has launched
a project to collect/discuss
ideas/suggestions/problems regarding the
evolution of Ada and SPARK:
https://github.com/AdaCore/
ada-spark-rfcs

Feel free to open an Issue there on that
topic.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Mon, 27 Jul 2020 11:21:16 +0200

> I agree with the goal.

You have it already. It's called
Unbounded_String.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 27 Jul 2020 11:49:28 +0200

> You have it already. It's called
Unbounded_String.

Not really.

1. Unbounded_String is a compromise
needed when the string length changes
during its life. The great majority of
cases allocate [and initialize] a string
just once. [addressed to be the cases
when using a discriminant does not
work]

2. There is nothing for arrays that are not
strings and for other indefinite types.
E.g.:

 type Node_Type is record

 Item : new Element_Type'Class;

 Prev : Node_Ptr_Type;

 Next : Node_Ptr_Type;

 end record;

3. There is nothing for serialization and
marshaling objects logically containing
strings and other indefinite types.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Mon, 27 Jul 2020 17:48:40 -0000

> My proposal is that it should
(sometimes?) be possible to declare
objects of indefinite types such as
String and have the compiler
automatically declare the space for
them [...]

In one sense we already have this ... in
that we can do this in a Declare block,
where stack allocation is a practical
implementation.

But what about cases where (for whatever
reason) we want it allocated on the heap?

In another sense we have it as JP Rosen
said, for the specific example
Unbounded_String.

Is there any way we could generalise the
(storage, access and lifetime aspects of)
Unbounded_String for unconstrained
arrays and discriminated records in such a
way that Unbounded_String can be a
simple instantiation of one of these?

But without the full flexibility (or
overhead) of controlled types. So,
somewhere in between, as:

1. Controlled type
+ 2. Unconstrained Array or
 + Discriminated Record
 + 3. Unbounded String (instance of 2)

2) can be implemented internally using
pointers, but externally appears to be a
data object, just like Unbounded_String
does, with similar semantics.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 27 Jul 2020 22:02:57 +0200

> 2) can be implemented internally using
pointers, but externally appears to be a
data object, just like Unbounded_String
does, with similar semantics.

No, the point is that Unbounded_String is
exactly opposite to what is required. In no
case it should appear as an object of a
different type!

Compare access to string P with
unbounded string U:

 for I in P'Range loop -- This is OK

 P(J) := 'a' -- This is OK

Now would you do:

 To_String (U) (J) := 'a' -- Garbage!

What if the original object must be a
class-wide object, task, protected object,
limited object etc?

Ada's access types delegate all operations
to the target object, except assignment.
This is the key property that the proposal
in my view must retain.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Mon, 27 Jul 2020 22:31:34 +0200

> Is there any way we could generalise
the (storage, access and lifetime aspects
of) Unbounded_String [...]

Ada.Strings.Unbounded can be
considered a combination of
Ada.Containers.Indefinite_Holders
instantiated for String and
Ada.Containers.Vectors instantiated with
Positive and Character, with some
additional operations added.

The To_String and
To_Unbounded_String operations of
Unbounded_String are similar to the
Element and Replace_Element operations
of Holder, which do not exist for Vector.

Ada Pract ice 141

Ada User Journal Volume 41, Number 3, September 2020

The indexed operations of
Unbounded_String are similar to the
indexed operations of Vector, which do
not exist for Holder.

If Ada.Containers.Vectors had an
additional generic formal type

 type Fixed is array (Index_Type range

 <>) of Element_Type;

and 2 new operations

 function To_Fixed (From : Vector)

 return Fixed;

 function To_Vector (From : Fixed)

 return Vector;

then we wouldn't need
Ada.Strings.Unbounded.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Tue, 28 Jul 2020 14:28:53 -0000

> No, the point is that Unbounded_String
is exactly opposite to what is required.
In no case it should appear as an object
of a different type! [...]

> To_String (U) (J) := 'a' -- Garbage!

That wasn't the aspect of Unbounded I
was getting at. I agree ... garbage.

What I meant was that Unbounded doesn't
load New, dereferencing, deallocation etc
onto the programmer, but hides the access
details, and our indefinite type should do
the same (the compiler can probably to a
better job than the programmer anyway).

I'm suggesting something more like the
C++ reference, signalling (perhaps by
adding a reserved word "indefinite") that
fixed size allocation won't work; and
implementation is more in line with a
controlled type but with system-provided
Initialise,Adjust,Finalize providing the
required operations (no need for the
programmer to provide them).

A : String := "hello" -- a definite string

P : access String := new String'("hello");

Q : indefinite String := "hello";

...

 begin

 for I in P'Range loop -- This is OK

 P(J) := 'a'; -- This is OK

 Q(J) := 'a'; -- also OK. But index out of

 --range would raiseConstraint Error

...

 Q := "hello_world"; -- deallocates,

 -- allocates with new bounds

...

 end; -- deallocate Q here.

It follows that "indefinite" cannot also be
"aliased" unless we want to implement
smart pointers. For simplicity I'd suggest
disallowing "aliased indefinite" on the
grounds that "access" can (should) be
used instead.

Records (including tagged, class wide,
discriminated) should work the same, but

probably with shallow copy on
assignment if they contain access types.

If there is no re-allocation (no different
size assignment) the compiler is free to
substitute direct (stack) storage instead of
heap allocation and implicit access types.
So for example instead of

 A : constant String := "done";

 ...

 loop

 declare

 P : String := Get_Line;

 begin

 exit when P = A;

 end;

 end loop;

 A : constant String := "done";

 Q : indefinite String;

 ...

 loop

 Q := Get_Line;

 exit when Q = A;

 end loop;

the implementation can be either an
implicit declare block or an implicit
access type. However, where Q has
several reassignments within a block, and
the compiler can't determine the size, an
implicit access type must be used. (If it
can, it can warn that "indefinite " is
unnecessary).

> What if the original object must be a
class-wide object, task, protected
object, limited object etc?

> Ada's access types delegate all
operations to the target object, except
assignment. This is the key property
that the proposal in my view must
retain.

Indefinite can also be applied to records
(discriminated, class wide, etc) here the
size is indeterminate and may vary on
reassignment. Assignment would always
be shallow copy (where the record
contained access types).

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 28 Jul 2020 16:59:09 +0200

> I'm suggesting something more like the
C++ reference, signalling (perhaps by
adding a reserved word "indefinite")
that fixed size allocation won't work;

Equivalent of C++ reference in Ada is
renaming.

> Q : indefinite String := "hello";

I think the keyword is misleading. Maybe
this:

 Q : new String := "hello";

And I don't like initialization. It was a
mistake to have limited return. The syntax
must stress that all initialization is strictly
in-place. No copies involved because the
pool is fixed.> ...

> begin

> Q := "hello_world"; --
deallocates, allocates with new bounds

> ...

> end; -- deallocate Q here.

The rule could be "same pool" as of the
container. In the case of a block, the pool
is the stack. In the case of a record
member, the pool is the pool of where the
record itself is allocated. So that you
could allocate all [the full] object in the
same pool.

> It follows that "indefinite" cannot also
be "aliased" unless we want to

> implement smart pointers. For
simplicity I'd suggest disallowing
"aliased

> indefinite" on the grounds that "access"
can (should) be used instead.

It makes sense, but there are use cases for
having it aliased:

 X : indefinite T;

 Y : indefinite S (X'Access);

 -- Access discriminant

[...]

> Assignment would always be shallow
copy (where the record contained
access types).

That would be inconsistent. IMO, it
should be a deep copy, provided such a
component would not make the type
limited, of which I am not sure.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Wed, 29 Jul 2020 15:33:33 -0000

> Equivalent of C++ reference in Ada is
renaming.

OK. Not quite sure how complete the
correspondence between reference and
renaming is, but I can see similarities.

[...]

> The rule could be "same pool" as of the
container. In the case of a block, the
pool is the stack. In the case of a record
member, the pool is the pool of where
the record itself is allocated. So that
you could allocate all object in the
same pool.

Looks like a good rule. Saves the
compiler having to plant deallocations if
the whole pool is to be de-allocated.

[...]

>> Assignment would always be shallow
copy (where the record contained
access types).

> That would be inconsistent. IMO, it
should be a deep copy, provided such a
component would not make the type
limited, of which I am not sure.

Honest question: Inconsistent with what?
I suggested shallow copy just for
simplicity, and for no (ahh) deeper reason.

142 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

But again, I'm probably missing
something.

Thank you for your thoughts. I don't
know if this is worth developing into an
AI.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 29 Jul 2020 18:20:24 +0200

[...]

In general, there are two close but not
equivalent objectives: one is handling
indefinite components of records; another
is a transparent holder object integrated
into the language (without generic mess).

Your use case is about the latter. My is
rather the former.

I doubt it is possible to unite both
objectives in a single AI.

On 29/07/2020 17:33, Brian Drummond
wrote:

> I suggested shallow copy just for
simplicity, and for no (ahh) deeper
reason. But again, I'm probably missing
something.

If you make a shallow copy of

 type Node_Type is record

 Item : new Element_Type;

 Prev : Node_Ptr_Type;

 Next : Node_Ptr_Type;

 end record;

you create a dangling pointer should the
original node disappear. A deep copy
would create a new target for new Item.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 30 Jul 2020 20:28:32 +0200

 [...]

> The compiler should be able to
determine if [...] the use of Q (the
indefinite type) is equivalent to a
Declare block (i.e. can be on the stack;
new stack frame in each iteration; no
relocation ever required) or not.

I don't want the compiler deciding where
Q is allocated, especially because this
could break things:

1. Large object moved to the stack

2. Lock-free code starting using heap lock
when moved from the stack.

The mechanism should be transparent. I
do not like Unbounded_String for many
reasons. Fiddling with the heap is one of
them. I do not know which heuristic it
uses to reduce reallocation and how much
extra memory it takes under which
circumstances.

[...]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sun, 9 Aug 2020 19:31:06 -0500

> I don't like compiler relocating objects.
If the pool is a stack (or heap organized
as a stack) it might be unable to do this.

This is not that hard to deal with.
Janus/Ada handles discriminant-
dependent components of mutable objects
this way: they are allocated on the stack,
but if they have to be reallocated they
move to the heap.

I note that the original idea already exists
for discriminant-dependent components --
that's a bit more painful to use but hardly
difficult. The main issue is that most
compilers fail to support these
components properly, using some sort of
max-size implementation unconditionally
rather than switching to a pool-based
implementation when the max size is too
large. I've never understood why Ada
compilers were allowed to make such a
limitation (it becomes a major limitation
when working on non-embedded
programs), while similar limitations on
case statements and aggregates are not
allowed.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sun, 9 Aug 2020 19:39:31 -0500

> I don't want the compiler deciding
where Q is allocated, especially
because this could break things:

> 1. Large object moved to the stack

The compiler is buggy IMHO if this
breaks something. Any compiler has to be
able to deal with objects that exceed the
maximum stack frame, and move those to
somewhere that they will fit (or reject
completely).

Yes, most compilers are buggy this way
(including mine in a few cases). So what?

> 2. Lock-free code starting using heap
lock when moved from the stack.

Expecting a compiler not to use the heap
is silly in any case (outside of the
No_Heap restriction - use that in
Janus/Ada and the compiler refuses to do
anything outside of elementary types).
The compiler is supposed to be making
the programmer's life easier, not adding
new hurdles.

> I do not know which heuristic it uses to
reduce reallocation and how much extra
memory it takes under which
circumstances.

That's the idea of such mechanisms. If
you really need control, you do not use
these abstractions and instead write the
stuff yourself explicitly using access types
and the like.

Otherwise, you use containers and
unbounded strings, and they do what they
do. There's no free lunch. But the need to
be explicit should be very rare - the main
problem is programmers with insufficient
trust that a compiler will do the right
thing.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 10 Aug 2020 10:57:44 +0200

> That's the idea of such mechanisms. If
you really need control, you do not use
these abstractions and instead write the
stuff yourself explicitly using access
types and the like.

Right, that is my take on the proposal. If I
am ready to compromise on #1 and #2, I
can use an abstraction hiding pool access.
Otherwise I want a language construct
being more safe than raw access types.

> Otherwise, you use containers and
unbounded strings, and they do what
they do.

No, from the abstraction point of view
they do not. They indeed abstract the
memory allocation aspect, but they do
that at the cost of *everything* else.
Unbounded_String is no string anymore.
Container is neither array nor record type.
Unbounded_String must be converted
forth and back. For containers I must use
ugly hacks like iterators to make them
resemble arrays and records introducing
whole levels of complexity to fight
through every time the compiler or I miss
something.

In most cases I prefer to keep a clear array
or record interface at the expense of
manual memory management.

> There's no free lunch.

I think with a better type system there
could be a whole banquet. (:-))

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 10 Aug 2020 10:58:20 +0200

> Janus/Ada handles discriminant-
dependent components of mutable
objects this way: they are allocated on
the stack, but if they have to be
reallocated they move to the heap.

What do you do if such an object is
allocated via pool-specific access type?

[...]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 19 Aug 2020 19:10:27 -0500

> I think with a better type system there
could be a whole banquet. (:-))

Maybe. but IMHO a better type system
would get rid of arrays and strings
altogether and only have
containers/records of various sorts. The
complexity of having both solving the
same problems (not very well in the case
of arrays/strings) doesn't buy much. I
suspect that a user-defined "." as you've
proposed elsewhere would eliminate most
of the rest of the problems (and unify
everything even further).

Ada Pract ice 143

Ada User Journal Volume 41, Number 3, September 2020

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 19 Aug 2020 19:13:15 -0500

> What you do if such an object is
allocated via pool-specific access type?

The whole object goes in that pool. The
entire mechanism in Janus/Ada is built
around pools - the stack is represented by
a pool object as well as various other
pools to support the mechanism.

[...]

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 20 Aug 2020 19:49:34 +0200

> The whole object goes in that pool. [...]

OK, but then you are back to the problem
that you do not know how that pool
works. The user pool might require a
certain order of objects inside it and your
interference with relocation will break it.

[...]

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 20 Aug 2020 19:49:44 +0200

> [...] IMHO a better type system would
get rid of arrays and strings altogether
and only have containers/records [...]

But records and arrays are needed as
building blocks of containers. How would
you get rid of them?

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Thu, 20 Aug 2020 16:19:52 -0400

>But records and arrays are needed as
building blocks of containers.

And likely needed for any embedded or
low-level work where they are mapped to
things like (GP) I/O ports or such...

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 20 Aug 2020 18:25:46 -0500

> [...] The user pool might require a
certain order of objects inside it and
your interference with relocation will
break it.

Such a pool does not implement the
interface as defined in 13.11. It's OK of
course to write a pool that depends on
implementation-specific properties (I've
done it many times), but such a pool is not
usable with portable Ada code. If the pool
allows any sort of allocation at any time,
then it will work just fine with the
Janus/Ada implementation.

[...]

Note that this is the reason that Ada
doesn't support specifying the pool used
by a container. It would not be reasonable
to restrict the allocations in any way, so
implementation-dependent pool designs
would not work.

[...]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 20 Aug 2020 18:30:07 -0500

> But records and arrays are needed as
building blocks of containers. How
would you get rid of them?

There's no reason that a compiler couldn't
"build-in" a simple bounded vector
container as the basic building block. We
already do that for things like
Ada.Exceptions, Unchecked_Conversion,
and Unchecked_Deallocation, so it's no
harder to do that for a vector. (Probably
would need some sort of fixed vector for
interfacing purposes as well, to deal with
other language's and/or system's memory
layout.)

One could do something similar for
records, although I would probably leave
them as in Ada and just allow user-
definition of "." (via a getter/setter pair).

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 20 Aug 2020 18:33:40 -0500

> And likely needed for any embedded or
low-level work where they are mapped
to things like (GP) I/O ports or such...

Yes, a fixed vector container would be
needed for interfacing (probably wouldn't
use it for anything else). But there's no
reason that can't be provided as a
container, so long as representation
guarantees (esp. Component_Size) are
included. Remember that containers (in
Ada 202x) have indexing, aggregates, and
all of the useful basic operations. The
stuff that's missing is the same stuff that
adds a vast amount of complexity to Ada
(and possibilities for bugs) - hardly
anyone would miss it.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 21 Aug 2020 08:46:07 +0200

> There's no reason that a compiler
couldn't "build-in" a simple bounded
vector container as the basic building
block.

That simply replaces the word "array"
with four words "simple bounded vector
container." The construct is still there and
it is still built-in. The syntax and usability
are drastically worse, though.

> One could do something similar for
records, although I would probably
leave them as in Ada and just allow
user-definition of "." (via a getter/setter
pair).

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 21 Aug 2020 09:08:46 +0200>

>> I meant that if you used a pool behind
the scenes for local objects you could
do that task-specific eliminating
interlocking.

> Whether that would be worthwhile
would depend on how expensive the
locking is.

It could be very expensive on a multi-core
architecture. I also think about scenarios
when the object is used inside a protected
action. I would not like to see any pool
interaction in an interrupt handler!

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sat, 22 Aug 2020 23:48:13 -0500

> That simply replaces the word "array"
with four words "simple bounded
vector container." The construct is still
there and it is still built-in. The syntax
and usability are drastically worse,
though.

??? The syntax of use is the same (as it is
in Ada 2012). Declaration would be an
instance, about the same length and
wordiness as an array declaration. Yes,
junk like slices, settable/retrievable
bounds, and built-in operations that are
rarely used would be gone, but so would
the rather substantial overhead that those
things entail. There'd be a lot more
flexibility in implementation, which
would allow better implementations.

Virtually every array that I write has a
fixed size (capacity really) and a usage
high-water mark (a "length"). Having that
generated automatically would be usually
better than having to reinvent it literally
every time I program something. (And as
you've noticed repeatedly, Ada's type
abstraction isn't good enough to make it
practical to build anything reusable to do
that.)

>> I would probably leave them as in Ada
and just allow user-definition of "."

???

The basic idea would be to eliminate the
huge number of special cases that exist in
Ada resolution and essentially make
everything a subprogram call at its
heart. Ada did that for enumeration
literals and that model makes sense for
pretty much everything: object usage,
indexing, selection, etc. It would be much
easier to prove that resolution is doing the
right thing (I don't think that would be
practically possible for Ada).

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sat, 22 Aug 2020 23:52:30 -0500

> Really? I would miss array conversions,
slices, equivalence of same length
index ranges, constrained array
subtypes etc.

Those things are mostly useful for making
work for programmers. Note that I'm
assuming that Strings are a completely
separate abstraction - a UTF-8 string is
not an array and shouldn't be treated as
one. (Indexing of individual characters
being very expensive.) Fixed constrained

144 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

arrays would be available for interfacing
(they're not really useful for much else).
Note that a bounded vector is allocated
statically, so there's no extra cost to using
it (unlike an unbounded vector or string).

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sun, 23 Aug 2020 00:03:01 -0500

> [...] I also think about scenarios when
the object is used inside a protected
action. I would not like to see any pool
interaction in an interrupt handler!

Interrupt handlers shouldn't be doing
anything other than unblocking tasks. I
think it is a mistake to allow anything else
(as there are always problems with race
conditions if you do so). So no heap
possibilities as very little is going on.

Available Ada Compilers

From: gdotone@gmail.com
Subject: Is there another ada compiler
Date: Sun, 2 Aug 2020 19:22:10 -0700
Newsgroups: comp.lang.ada

Is there another Ada compiler other than
AdaCore?

From: gautier_niouzes@hotmail.com
Date: Mon, 3 Aug 2020 00:54:26 -0700

Check here: http://unzip-ada.sf.net/
#adacomp

or here https://www.adaic.org/
ada-resources/pro-tools-services/

for instance.

If you are looking for another *open-
source* compiler, but rather incomplete:

https://hacadacompiler.sourceforge.io/

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 3 Aug 2020 06:51:54 -0700

RR Software has Janus/Ada.

PTC has ObjectAda and ApexAda.

Green Hills has an Ada compiler.

DDC-I has a compiler.

IBM used to have a compiler. (I'm not
sure they do any more.)

There's also work being done on some
open source compilers like HAC or my
own Byron.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Mon, 3 Aug 2020 15:29:34 +0100

> RR Software has Janus/Ada.

> PTC has ObjectAda and ApexAda.

> Green Hills has an Ada compiler.

> DDC-I has a compiler.

> IBM used to have a compiler. (I'm not
sure they do any more.)

They sold it.

All the above are commercial and cost
£££££'s

> There's also work being done on some
open source compilers like HAC or my
own Byron.

HAC is not going to be a full compiler, so
it's really worth mentioning.

Byron's not anywhere near close to
generating assembly.

In answer to the OP's question, no, there
isn't another open source compiler.

From: nobody in particular
<nobody@devnull.org>

Date: Mon, 3 Aug 2020 15:18:36 +0000

> RR Software has Janus/Ada.

Honest company run by good guy Randy
Brukhard, who is a long time participant
on the newsgroup. Unfortunately, not
available on the platform I wanted it for.
Hobbyist-friendly.

> PTC has ObjectAda and ApexAda.

There was a recent announcement here in
the newsgroup, unfortunately without any
pricing. Pricing is also not found on the
PTC website. In the past, Aonix did have
a hobbyist compiler but I haven't seen it
for years.

> Green Hills has an Ada compiler.

Huge money and the salesman I spoke
with displayed significant disdain when I
turned out to be an individual rather than
a company. Did not disclose pricing.
However, in speaking with another
participant off-list, I was given some
sense of the pricing.

> DDC-I has a compiler.

Not sure if anything past '83 is supported.
But do check if you're interested. I believe
JOVIAL is also available from DDC-I.

> IBM used to have a compiler. (I'm not
sure they do any more.)

It was sold to a company in Washington,
D.C. which I believe still sells the Ada 95
compiler. I don't believe they support any
additional standards after 95. I'm sorry, I
can't remember the name.

I attempted to get a hobbyist distribution
to run on the Hercules z/Architecture
emulator (which also supports MVS,
MVS/ESA, and OS/390) but was not
successful. Appeared to be a reasonable
guy and the product was well integrated
in MVS/ESA but probably not generally
useful to most people in this newsgroup.
If it is, would be worth identifying the
company and starting a dialog.

Lastly, we should mention gcc-ada which
was still out there for Linux and Solaris
last I looked, and even for some unusual
platforms like Solaris SPARC. The
SPARC platform maintainer was very
helpful and I got a copy at some point, I
can't remember but I think around gcc5.

There used to be GNAT 3.15p (last non-
GPL) release but it was cruelly excised
from all servers and download sites when
AdaCore happened.

We should note, GNAT / AdaCore were
created on the backs of American
taxpayers via a grant to New York
University. Unfortunately, the taxpayers
got the shaft and a profitable business was
born to continue the fun.

From: Micronian Coder
<micronian2@gmail.com>

Date: Mon, 3 Aug 2020 10:37:05 -0700

Just because a compiler is not free does
not mean it is not relevant to someone. In
addition, the OP did _not_ specifically
ask for an open source compiler. They
asked if there are other compilers.
Hobbyists generally want a free compiler,
so by default GNAT is the one that is
used. For companies who want
commercial support and are fine with
paying money, then the other options are
perfectly fine.

Of the commercial ones listed, Janus/Ada
is the more affordable one for an
individual willing to spend money (see
http://www.rrsoftware.com/html/company
inf/prices.htm), especially if they are a
student
(http://www.rrsoftware.com/html/compan
yinf/educ.htm). While it's not as up to
date as GNAT in terms of Ada2012
support, it's still enough to develop
software with (note: Windows only which
is fine for many people and can probably
run on Wine for Linux users). Judging by
Randy's posts in this group, one can
expect good support from RRSoftware.

I should point out that PTC is known to
provide free access to their compilers if it
is for developing *open source* Ada
software. Gautier has confirmed this on
Reddit
(https://www.reddit.com/r/ada/comments/
hw33kr/ptc_objectada_for_windows_vers
ion_102_outprovides/fyzgpss?utm_source
=share&utm_medium=web2x). So there
is potential

From: gautier_niouzes@hotmail.com
Date: Mon, 3 Aug 2020 14:44:43 -0700

> We should note, GNAT / AdaCore were
created on the backs of American
taxpayers via a grant to New York
University. [...]

It's called public-private partnership ;-)

See Tesla or SpaceX for other examples.
Is it so bad?

BTW, weren't most early Ada vendors
essentially financed by the US DoD?

As a consolation, consider that the
American taxpayers have become (at least
for a while) minority contributors to the
US budget...

Ada Pract ice 145

Ada User Journal Volume 41, Number 3, September 2020

From: Andreas Zuercher
<ZUERCHER_Andreas@outlook.com>

Date: Mon, 3 Aug 2020 17:23:59 -0700

> We should note, GNAT / AdaCore were
created on the backs of American
taxpayers via a grant to New York
University. [...]

Well, I am not usually in the habit of
saying nice things about GNAT, but let us
compare FSF's GCC GNAT with FSF's
GCC CHILL. Ada and CHILL are fierce
competitor languages: one from NATO
military and the other from ITU-T
telecom, where Ada trended a little more
toward Wirth family of languages as
inspiration whereas CHILL trended a
little more toward PL/I as inspiration.
Both languages had a 2-decade mandate
to be utilized in their respective industrial
sectors, but each's mandate had
evaporated by the latter half of the 1990s.

Ada had AdaCore arise through several
mergers as the for-profit support company
for open-source software, analogous to
Cygnus Solutions during the 1990s, and
its acquirer RedHat until this day. CHILL
had a different business model entirely.
CHILL compilers were produced by the
telecom companies that were self-
mandated to use CHILL. If Ada had that
business model, Raytheon would have
authored its own compiler, Lockheed-
Martin would have authored its own
compiler, Boeing would have authored its
own compiler, Airbus would have
authored its own compiler, and so forth.
Eventually the telecom companies in
Europe fatigued of the effort needed to
write a compiler for an evolving language
standard (ITU-T Z.200 and ISO 9496), so
2 of them (Alcatel or Siemens, IIRC)
outsourced their internal compiler
development to Per Bothner, who
eventually landed at Cygnus Solutions,
after University of Wisconsin at Madison
(years after Randy). Eventually, Cygnus
Solutions convinced FSF to allow their
CHILL compiler into GCC.

Shortly after FSF GCC admitted CHILL
into its compiler suite, RedHat bought
Cygnus Solutions and nearly all of the
European telecom companies were
finalizing the financially painful
governmental reform where PTTs (postal-
telephone-telegraph agencies of
governments) were divesting their
relationship with the equipment
manufacturers—much like AT&T
divested WesternElectric/Lucent and Bell
Canada no longer had Northern Telecom
as favorite-son supplier during much the
same 1990s time period. Long story short,
when FSF pleaded for someone anyone to
update GCC CHILL to GCC 3.X
internals, no one stepped forward to fund
the effort with money, and most
especially no one donated source code as
in-kind support. GCC CHILL as
donorware ended as of GCC 2.95.

Whatever or however one might critique
FSF GNAT versus AdaCore GNAT Pro
differences or delays or never achieving
perfect congruence among any pairwise
matching of any of their releases, GNAT's
viability to continue maintenance &
evolution is far better that CHILL's
donorware-based approach that failed
miserably under the same FSF GCC
umbrella during the same time period. So
matters could be far far worse than they
are.

PolyORB and the DSA
Annex

From: tonyg <tonythegair@gmail.com>
Subject: Polyorb abd the DSA Annex
Date: Mon, 3 Aug 2020 04:04:27 -0700
Newsgroups: comp.lang.ada

I just tried to build the git cloned copy of
PolyORB (failed on the configure!) with
the 2020 community version of GNAT. It
said I had no GNAT Ada compiler. It was
on the path and it pointed to the gcc
compiler on the path. Are they
compatible? Is there still a PolyORB
"enthusiast" list ?

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Mon, 3 Aug 2020 12:40:32 +0100

Distributed annex is being removed from
GNAT due to "lack of customer interest."

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 3 Aug 2020 06:47:12 -0700

This is pretty sad, and IMO, stupid; the
ability to [relatively] easily make
distributed applications via DSA is a
killer feature and, in conjunction with
Ada2020 'parallel' blocks/loops would
make for a very attractive system.

IOW, the "lack of customer interest" is an
excuse to shoot themselves in the foot.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 3 Aug 2020 16:16:13 +0200

The reality is a bit more complex.

Distributed Annex is based on RPC.

Ada is largely used in the field
applications, embedded, real-time. RPC
are pretty much useless there, as well as
in massively parallel applications.

For service-oriented sluggish applications
RPC might be OK, but CORBA is a
blocker there, because static
topology/configuration is too rigid for
such applications. (Static topology is less
and less tolerated in the former as well)

P.S. I have an almost ready distributed
Annex implementation based on inter
process communication (no network,
same box), but I have no information how
to dock it into GNAT.

Dynamic Variable Creation
a la PHP

From: Ian Douglas <ian@vionia.com>
Subject: Newbie question # 2
Date: Thu, 6 Aug 2020 11:40:35 -0700
Newsgroups: comp.lang.ada

I did try Google search and assorted
books but could not find an answer.

In PHP, let's say we have a variable $fruit
which contains the string "banana".

In PHP, if I do $$fruit, then it creates a
variable $banana, which I can then do
things with.

Does Ada support any such concept of
taking the contents of one variable and
using THAT as a variable?

I'm reading in a file which has the name
of an object followed by some properties
so I want to use the name as a variable ...

File is something I created, so it's not
some random stuff, and the variables will
be existing already.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 06 Aug 2020 19:56:23 +0100

I'd think of a record type to contain the
properties, and then a map from object
name to properties:

 type Properties is record

 Length : Positive;

 Width : Positive;

 end record;

 package Object_Maps is new

Ada.Containers.Indefinite_Ordered_Maps

 (Key_Type => String,

 Element_Type => Properties);

 Objects : Object_Maps.Map;

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 6 Aug 2020 22:20:11 +0300

> In PHP, let's say we have a variable
$fruit which contains the string
"banana". If I do $$fruit, then it creates
a variable $banana, which I can then do
things with.

Fortran has a similar feature,
NAMELIST, for reading values into
variables also named in the input. It can
also be used for output.

Ada does not have such a feature.

[...]

From: Ian Douglas <ian@vionia.com>
Date: Thu, 6 Aug 2020 12:41:53 -0700

> I'd think of a record type to contain the
properties, and then a map from object
name to properties:

Yes, the variables are actually records.

> package Object_Maps is new
Ada.Containers.Indefinite_Ordered_Ma
ps

146 Ada Pract ice

Volume 41, Number 3, September 2020 Ada User Journal

Okay that's a new construct I haven't
come across yet. Let me see what I can
dig up on that.

From: Ian Douglas <ian@vionia.com>
Date: Thu, 6 Aug 2020 12:45:04 -0700

> Ada does not have such a feature.

I figured as much, probably "unsafe
programming practice" at the end of the
day.

[...]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 6 Aug 2020 23:08:00 +0300

> I figured as much, probably "unsafe
programming practice" at the end of the
day.

I wouldn't say so. I think "namelist" input
is a perfectly reasonable function to have
in some programs, and is not particularly
unsafe in any way -- if the programmer
can limit the set of variables that can be
named and changed by such input, which
is the case in Fortran (and also in our
various suggestions for implementing it in
Ada).

PHP is (I believe) an interpreted
language, so the symbol table is around at
run-time, which makes it easy for PHP to
support variables that refer to any other
variable by its symbolic name. This can
make "namelist" input in PHP unsafe,
since the input can change any variable --
including variables that the programmer
did not intend to be changeable in this
way.

Ada is usually compiled, and the symbol
table is not present when the compiled
program runs, so it would be harder to
implement a "namelist" input/output
feature. But not impossible, as Fortran
shows.

Ada on Beaglebone Black

From: Ricardo Brandão
<rbrandao.br@gmail.com>

Subject: Running ADA on Beaglebone Black
Date: Sun, 9 Aug 2020 07:39:58 -0700
Newsgroups: comp.lang.ada

I've just acquired a Beaglebone black and
I'm trying to run a simple program in Ada.

I tried to install GNAT but apt-get install
GNAT or anything similar doesn't work.

I didn't find any place with the repository,
nor any tutorial.

How is the best way to run Ada in the
BBB?

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Sun, 9 Aug 2020 17:58:54 +0200

What distribution? APT suggests Debian
or Ubuntu. In any case I would do a full
upgrade to the latest version of either.

Under Debian buster you should do

 apt install gnat-8

Under Ubuntu it would be

 apt install gnat-10

And also:

 apt install gprbuild

If these do not work check
/etc/apt/sources.list

From: Philip Munts
<philip.munts@gmail.com>

Date: Sun, 9 Aug 2020 10:17:12 -0700

Depending on what you want to
accomplish (i.e. whether it needs the full
Debian OS), and whether you are willing
and able to do cross-compilation, I think
that MuntsOS
(https://github.com/pmunts/muntsos) is
the easiest way to develop and run Ada
programs on a BeagleBone or Raspberry
Pi.

I have found that installing and
maintaining and especially configuring
I/O with Debian on a BeagleBone to be a
pain in the nether regions. In contrast, I
have attempted to make MuntsOS as easy
to use as possible. Its only real downside
is that it requires cross-toolchains running
on a Linux (preferably Debian or Ubuntu)
development host. Windows Subsystem
for Linux (WSL1 or WSL2) works
perfectly well for the development host,
though.

From: Ricardo Brandão
<rbrandao.br@gmail.com>

Date: Sun, 9 Aug 2020 12:56:35 -0700

> APT suggests Debian or Ubuntu. In any
case I would do a full upgrade to the latest
version of either.

Yes, I ran sudo apg-get update and GNAT
appear in apt-cache search gnat

> Under Debian buster you should do

> apt install gnat-8

> And also:

> apt install gprbuild

I ran these commands and worked fine.

Thank you so much

MITRE's Top-25 List of
2020 Software-bug
Categories

From: Andreas Zuercher
<ZUERCHER_Andreas@outlook.com>

Subject: MITRE's top-25 list of 2020
software-bug categories

Date: Sat, 22 Aug 2020 09:31:13 -0700
Newsgroups: comp.lang.ada

https://www.bleepingcomputer.com/news/
security/mitre-shares-this-years-top-25-
most-dangerous-software-bugs/

Proper intended usage of Ada-specific
features mitigates 9 of them, including a
few that hit interpreted scripting
languages hard. Others of the 25 are
design-level almost independent of
programming language. Still others of the
25 are cavalier/insufficient WWW-
oriented string-processing or SQL string-
processing or director-filename string-
processing that could be conceivably done
just as badly in Ada.

Conversely, if HOLWG were still
pursuing their language-design goals
today, certainly this MITRE* report
would shape the design of an evolving
GreenGreenerGreenest language today,
instead of Ada solving primarily
yesteryear's programming/software-
engineering challenges well.

* defense contractor

From: Shark8
<onewingedshark@gmail.com>

Date: Tue, 25 Aug 2020 12:09:47 -0700

The interesting portion, in tabular form.

Rank - ID - Name - Score

1 CWE-79 Improper Neutralization of
Input During Web Page Generation
('Cross-site Scripting') 46.82

2 CWE-787 Out-of-bounds Write 46.17

3 CWE-20 Improper Input Validation
33.47

4 CWE-125 Out-of-bounds Read 26.50

5 CWE-119 Improper Restriction of
Operations within the Bounds of a
Memory Buffer 23.73

6 CWE-89 Improper Neutralization of
Special Elements used in an SQL
Command ('SQL Injection') 20.69

7 CWE-200 Exposure of Sensitive
Information to an Unauthorized Actor
19.16

8 CWE-416 Use After Free 18.87

9 CWE-352 Cross-Site Request Forgery
(CSRF) 17.29

10 CWE-78 Improper Neutralization of
Special Elements used in an OS
Command ('OS Command Injection')
16.44

11 CWE-190 Integer Overflow or
Wraparound 15.81

12 CWE-22 Improper Limitation of a
Pathname to a Restricted Directory ('Path
Traversal') 13.67

13 CWE-476 NULL Pointer Dereference
8.35

14 CWE-287 Improper Authentication
8.17

15 CWE-434 Unrestricted Upload of File
with Dangerous Type 7.38

Ada Pract ice 147

Ada User Journal Volume 41, Number 3, September 2020

16 CWE-732 Incorrect Permission
Assignment for Critical Resource 6.95

17 CWE-94 Improper Control of
Generation of Code ('Code Injection')
6.53

18 CWE-522 Insufficiently Protected
Credentials 5.49

19 CWE-611 Improper Restriction of
XML External Entity Reference 5.33

20 CWE-798 Use of Hard-coded
Credentials 5.19

21 CWE-502 Deserialization of
Untrusted Data 4.93

22 CWE-269 Improper Privilege
Management 4.87

23 CWE-400 Uncontrolled Resource
Consumption 4.14

24 CWE-306 Missing Authentication for
Critical Function 3.85

25 CWE-862 Missing Authorization 3.77

From: Andreas Zuercher
<ZUERCHER_Andreas@outlook.com>

Date: Tue, 25 Aug 2020 12:43:13 -0700

> Would 've been nice if you'd have also
given the examples and how Ada
solved them.

I am not going to write an entire textbook
here on c.l.a, but here are the nine of the
top twenty-five subcategories that I
consider Ada diligently trying to mitigate
or eliminate when properly utilized:

• 2nd-most frequent: CWE-787 Out-of-
bounds Write

• 3rd-most frequent: CWE-20 Improper
Input Validation

• 4th-most frequent: CWE-125 Out-of-
bounds Read

• 5th-most frequent: CWE-119 Improper
Restriction of Operations within the
Bounds of a Memory Buffer

• 8th-most frequent: CWE-416 Use After
Free

• 11th-most frequent: CWE-190 Integer
Overflow or Wraparound

• 13th-most frequent: CWE-476 NULL
Pointer Dereference

• 17th-most frequent: CWE-94 Improper
Control of Generation of Code ('Code
Injection')

• 23rd-most frequent: CWE-400
Uncontrolled Resource Consumption

There are 1,248 Common Weakness
Enumerations (CWEs) that MITRE lobs
against software development (instead of
against hardware development), so you
can peruse the 26th through 1,248th if you
so desire. Query 699 is the one for
looking at the full inventory of
subcategories of software defects. These
1,248 subcategories (and the
aforementioned top-25 subcategories) fall
into 40 more-macroscopic broader
categories.

https://cwe.mitre.org/data/definitions/
699.html

I claim that next-gen Ada (AdaNG,
pronounced “a dang” as in do we give a
dang or not) would use these 1,248
categories as measuring stick of
expressibility of software-engineering
correctness, just as HOLWG's Green and
Ada used Steelman as measuring stick of
the ability to express software-
engineering correctness.

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

 149

Ada User Journal Volume 41, Number 3, September 2020

Conference Calendar
Dirk Craeynest

KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. Where available, the status of events is
indicated with the following markers: "(v)" = event is held online, and "(h)" = event is held in a hybrid form (i.e. partially
online).

2020

October 06-09

(v)

20th International Conference on Runtime Verification (RV'2020). Los Angeles, California, USA.

Topics include: monitoring and analysis of the runtime behaviour of software and hardware systems.

Application areas include cyber-physical systems, safety/mission critical systems, enterprise and

systems software, cloud systems, autonomous and reactive control systems, health management and

diagnosis systems, and system security and privacy.

October 19-24

(h)

18th International Symposium on Automated Technology for Verification and Analysis

(ATVA'2020). Hanoi, Vietnam. Topics include: theoretical and practical aspects of automated analysis,

verification, and synthesis; program analysis and software verification; analytical techniques for safety,

security, and dependability; testing and runtime analysis based on verification technology; analysis and

verification of parallel and concurrent systems; verification in industrial practice; applications and case

studies; automated tool support etc.

October 24-28

(v)

13th IEEE International Conference on Software Testing, Verification and Validation

(ICST'2020). Porto, Portugal. ICST'2020 was postponed from 23-27 March to 24-28 October. Topics

include: manual testing practices and techniques, security testing, model based testing, test automation,

static analysis and symbolic execution, formal verification and model checking, software reliability,

testability and design, testing and development processes, testing in specific domains (such as

embedded, concurrent, distributed, ..., and real-time systems), testing/debugging tools, empirical

studies, experience reports, etc.

October 26-27

(v)

14th International Conference on Verification and Evaluation of Computer and Communication

Systems (VECoS'2020), Xi'an, China. VECoS'2020 was moved from 22-25 September in Xi'an, China,

to 26-27 October in a virtual event format. Topics include: formal verification and evaluation

approaches, methods and techniques, especially those developed for concurrent and distributed

hardware/software systems, such as abstraction techniques, compositional verification, correct-by-

construction design, rigorous system design, model-checking, performance and robustness evaluation,

QoS evaluation, planning and deployment, dependability assessment techniques, RAMS (Reliability-

Availability-Maintainability-Safety) assessment, verification & validation of IoT, verification &

validation of safety-critical systems, worst-case execution time analysis, etc. Application areas include:

communication protocols, cyber-physical systems, high-performance computing, internet of things,

logistics systems, programming languages, real-time and embedded operating systems,

telecommunication systems, etc.

November 02-06

(v)

IEEE International Conference on Software Architecture (ICSA'2020), Salvador, Brazil.

ICSA'2020 was postponed from 16-20 March to 2-6 November. Topics include: model driven

engineering for continuous architecting; component-based software engineering; architecture

evaluation and quality aspects of software architectures; refactoring and evolving architecture design

decisions and solutions; architecture frameworks and architecture description languages; linking

architecture to requirements and/or implementation; reusable architectural solutions; software

architecture for legacy systems and systems integration; architecting families of products; software

architects roles and responsibilities; training, education, and certification of software architects;

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html

150 Conference Calendar

Volume 41, Number 3, September 2020 Ada User Journal

industrial experiments and case studies; technical debt management; software architecture design,

evaluation, documentation, conformance, and reconstruction; etc.

November 08-13

(v)

28th ACM Joint European Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE'2020). San Francisco, California, USA. Topics include: agile

software development; component-based software engineering; configuration management and

deployment; cyber physical systems; debugging; dependability, safety, and reliability; education;

embedded software; emerging domains of software; empirical software engineering; formal methods;

middleware, frameworks, and APIs; mining software engineering repositories; model-driven

engineering; parallel, distributed, and concurrent systems; program analysis; program comprehension;

program repair; programming languages; refactoring; reverse engineering; safety-critical systems;

scientific computing; security, privacy and trust; software architecture; software economics and

metrics; software evolution and maintenance; software modeling and design; software process;

software product lines; software reuse; software testing; software visualization; specification and

modeling languages; tools and environments; traceability; validation and verification; etc.

November 09-12

(v)

32nd International Conference on Software Engineering Education and Training (CSEET'2020).

Munich, Germany. CSEET'2020 was first postponed from 28-31 July to 9-12 November, and later

moved to a virtual event format. Topics include: Teaching formal methods (TFM), Teaching "real

world" SE practices (TRW), Software quality assurance education (SQE), Global and distributed SE

education (GDE), Open source in education (OSE), Cooperation between Industry and Academia

(CIA), Training models in industry (TMI), Continuous education (CED), Methodological aspects of SE

education (MAE), etc. Deadline for early registration: October 18, 2020.

November 09-13

(v)

23rd Ibero-American Conference on Software Engineering (CIbSE'2020), Curitiba, Brazil.

CIbSE'2020 was first postponed from 4-8 May to 16-20 November, but then replaced by a virtual event

on 9-13 November. Event includes Software Engineering Track (SET) and Experimental Software

Engineering Track (ESELAW).

☺ November 15-17

(v)
34th European Conference on Object-Oriented Programming (ECOOP'2020). Berlin, Germany.

ECOOP'2020 was moved from 13-17 July in Berlin, Germany, to 15-17 November in a virtual event

format. Topics include: design, implementation, optimization, analysis, and theory of programs,

programming languages, and programming environments.

☺ November 15-20

(v)

ACM Conference on Systems, Programming, Languages, and Applications: Software for

Humanity (SPLASH'2020). Chicago, USA. Topics include: all aspects of software construction, at the

intersection of programming, languages, and software engineering. Deadline for early registration:

October 21, 2020.

Nov 15-20

(v)

13th ACM SIGPLAN International Conference on Software Language Engineering

(SLE'2020). Topics include: areas ranging from theoretical and conceptual contributions,

to tools, techniques, and frameworks in the domain of software language engineering;

software language engineering rather than engineering a specific software language;

software language design and implementation software language validation software

language integration and composition software language maintenance (software

language reuse, language evolution, language families and variability); domain-specific

approaches for any aspects of SLE (design, implementation, validation, maintenance)

empirical evaluation and experience reports of language engineering tools (user studies

evaluating usability, performance benchmarks, industrial applications); etc.

☺ November 16-17

(v)

ACM SIGAda's High Integrity Language Technology Workshop on Safe Languages and

Technologies for Structured and Efficient Parallel and Distributed/Cloud Computing

(HILT'2020), Chicago, Illinois, USA. Co-located with SPLASH 2020. Sponsored by ACM SIGAda.

Topics include: practical use of High Integrity languages, technologies, and methodologies in

construction of safe, structured, highly parallel and/or distributed/cloud applications; safe and

productive languages and frameworks for development of structured parallel and/or distributed

applications (e.g. Rust, Concurrent Collections, Ada 202X, Parsl); practical tools for applying static

analysis and formal methods to parallel and/or distributed/cloud applications (e.g. SPARKProver, Java

Pathfinder); etc. Deadline for submissions: October 9, 2020 (nominations for SIGAda 2020 Awards).

November 16-20

(v)

16th International Conference on integrated Formal Methods (iFM'2020), Lugano, Switzerland.

Topics include: recent research advances in the development of integrated approaches to formal

modelling and analysis; all aspects of the design of integrated techniques, including language design,

Conference Calendar 151

Ada User Journal Volume 41, Number 3, September 2020

verification and validation, automated tool support and the use of such techniques in software

engineering practice. Includes paper presentation on "Generating SPARK from Event-B Models".

Deadline for registration: November 9, 2020.

November 18-20

(v)

27th Static Analysis Symposium (SAS'2020), Chicago, Illinois, USA. Topics include: all aspects of

static analysis, such as abstract interpretation, data flow analysis, debugging, emerging applications,

model checking, program optimizations and transformations, program verification, security analysis,

tool environments and architectures, type checking, etc.

November 25-27

(v)

21st International Conference on Product-Focused Software Process Improvement

(PROFES'2020). Turin, Italy. Topics include: experiences, ideas, innovations, as well as concerns

related to professional software development and process improvement driven by product and service

quality needs.

November 25-27

(v)

23rd Brazilian Symposium on Formal Methods (SBMF'2020), Ouro Preto, MG, Brazil. Topics

include: applications of formal methods to software development, code generation testing,

maintenance, evolution, reuse, ...; specification and modelling languages (such as logic and semantics

for specification or/and programming languages, formal methods for timed, real-time, hybrid, or/and

safety-critical systems, formal methods for cyber-physical systems, ...); theoretical foundations (such as

type systems, models of concurrency, security, ...); verification and validation (such as abstraction,

modularization or/and refinement techniques, static analysis, model checking, theorem proving,

software certification, correctness by construction); experience reports on teaching formal methods, on

industrial application of formal methods.

Nov 29 - Dec 03

(v)

18th Asian Symposium on Programming Languages and Systems (APLAS'2020), Fukuoka, Japan.

Topics include: design of languages and type systems; domain-specific languages; compilers,

interpreters, abstract machines; program analysis, verification, model-checking; software security;

concurrency and parallelism; tools and environments for programming and implementation; etc.

Nov 30 - Dec 04

(v)

17th International Colloquium on Theoretical Aspects of Computing (ICTAC'2020), Macao

S.A.R., China. Topics include: semantics of programming languages; theories of concurrency; theories

of distributed computing; models of objects and components; timed, hybrid, embedded and cyber-

physical systems; static analysis; software verification; software testing; model checking and

automated theorem proving; interactive theorem proving; verified software, formalized programming

theory; etc.

☺ December 01-04

(v)

41st IEEE Real-Time Systems Symposium (RTSS'2020). Houston, Texas, USA.

December 01-04

(h)

27th Asia-Pacific Software Engineering Conference (APSEC'2020), Singapore. Topics include: agile

methodologies; component-based software engineering; configuration management and deployment;

cyber-physical systems and Internet of Things; debugging and fault localization; embedded real-time

systems; formal methods; middleware, frameworks, and APIs; model-driven and domain-specific

engineering; open source development; parallel, distributed, and concurrent systems; programming

languages and systems; refactoring; reverse engineering; security, reliability, and privacy; software

architecture, modelling and design; software comprehension and traceability; software engineering

education; software engineering tools and environments; software maintenance and evolution; software

product-line engineering; software reuse; software repository mining; testing, verification, and

validation; etc. Deadline for submissions: September 30 - October 15, 2020 (workshop papers),

October 2, 2020 (posters).

December 02-04

(v)

19th International Conference on Software Reuse (ICSR'2020). Hammamet, Tunisia. ICSR'2020

was postponed from 9-11 November to 2-4 December, and moved to a virtual event format. Theme:

"Reuse in emerging software engineering practices". Topics include: new and innovative research

results and industrial experience reports dealing with all aspects of software reuse within the context of

the modern software development landscape. Deadline for submissions: August 15, 2020 (paper

abstracts), August 18, 2020 (full papers), October 2, 2020 (workshops, tutorials, Doctoral Symposium).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

152 Conference Calendar

Volume 41, Number 3, September 2020 Ada User Journal

December 10-14

(v)

18th International Conference on High Performance Computing & Simulation (HPCS'2020),

Barcelona, Spain. HPCS'2020 was postponed from 26-30 October to 10-14 December, and moved to a

virtual event format. Event includes: symposium on Formal Approaches to Parallel and Distributed

Systems (4PAD'2020); workshops on Dependable and Resilient Many-Core and Exascale Computing

(DRMEC 2020), Advances in Parallel Programming Models and Frameworks for the Multi-/Many-

core Era (APPMM 2020), Modeling and Simulation of Parallel and Distributed Systems (MSPDS

2020); etc. Deadline for registration: October 28, 2020.

 Dec 10-14

(v)

3rd Special Session on Compiler Architecture, Design and Optimization

(CADO'2020). Topics include: integration of language features, representations,

optimizations, and runtime support for parallelism; auto-parallelization; compiler-

support for parallelism mapping, task scheduling, memory management, data

distribution and synchronization, ...; compiler support for multi-core architectures,

GPUs, CGRAs, FPGAs, and accelerators; code generation, optimization, synthesis and

verification; platforms, tools, debuggers, and profilers; distributed computing and

communication avoiding algorithms; etc.

December 11-13 14th International Symposium on Theoretical Aspects of Software Engineering (TASE'2020),

Hangzhou City, China. TASE'2020 was postponed from 15-17 July to 11-13 December. Topics

include: theoretical aspects of software engineering, such as abstract interpretation, component-based

software engineering, cyber-physical systems, distributed and concurrent systems, embedded and real-

time systems, formal verification and program semantics, integration of formal methods, language

design, model checking and theorem proving, model-driven engineering, object-oriented systems,

program analysis, reverse engineering and software maintenance, run-time verification and monitoring,

software architectures and design, software testing and quality assurance, software safety, security and

reliability, specification and verification, type systems, tools exploiting theoretical results, etc.

December 11-14 20th IEEE International Conference on Software Quality, Reliability and Security (QRS'2020),

Macau, China. QRS'2020 was postponed from 27-31 July in Vilnius, Lithuania to 11-14 December in

Macau, China. Topics include: reliability, security, availability, and safety of software systems;

software testing, verification, and validation; program debugging and comprehension; fault tolerance

for software reliability improvement; modeling, prediction, simulation, and evaluation; metrics,

measurements, and analysis; software vulnerabilities; formal methods; operating system security and

reliability; benchmark, tools, industrial applications, and empirical studies; etc.

☺ December 17-19

(v)

18th IEEE International Symposium on Parallel and Distributed Processing with Applications

(ISPA'2020), Exeter, UK. Deadline for early registration: November 17, 2020.

2021

January 18-20

(v)

16th International Conference on High Performance and Embedded Architecture and

Compilation (HiPEAC'2021). Budapest, Hungary. Topics include: computer architecture,

programming models, compilers and operating systems for embedded and general-purpose systems.

January 19-21 13th Software Quality Days (SWQD'2021), Vienna, Austria. Topics include: improvement of

software development methods and processes, testing and quality assurance of software and software-

intensive systems, domain specific quality issues (such as embedded, medical, automotive systems),

novel trends in software quality, etc.

February 01-05

(v)

19th Australasian Symposium on Parallel and Distributed Computing (AusPDC'2021), Australia.

Topics include: all areas of parallel and distributed computing; multi-core systems; GPUs and other

forms of special purpose processors; middleware and tools; parallel programming models, languages

and compilers; runtime systems; resource scheduling and load balancing; reliability, security, privacy

and dependability; etc. Deadline for submissions: October 18, 2020.

☺ Feb 27 - Mar 03

(v)

26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP'2021). Seoul, South Korea. Deadline for submissions: October 23, 2020 (workshops, tutorials).

Feb 27 - Mar 03

(v)

30th ACM SIGPLAN 2021 International Conference on Compiler Construction (CC'2021), Seoul,

South Korea. Co-located with CGO, HPCA, and PPoPP. Topics include: processing programs in the

most general sense (analyzing, transforming or executing input that describes how a system operates,

including traditional compiler construction as a special case); compilation and interpretation techniques

Conference Calendar 153

Ada User Journal Volume 41, Number 3, September 2020

(including program representation, analysis, and transformation; code generation, optimization, and

synthesis; the verification thereof); run-time techniques (including memory management, virtual

machines, and dynamic and just-in-time compilation); programming tools (including refactoring

editors, checkers, verifiers, compilers, debuggers, and profilers); techniques, ranging from

programming languages to micro-architectural support, for specific domains such as secure, parallel,

distributed, embedded or mobile environments; design and implementation of novel language

constructs, programming models, and domain-specific languages. Deadline for submissions: November

8, 2020 (abstracts), November 10, 2020 (full papers), January 5, 2021 (artifacts).

March 04-06 25th International Conference on Engineering of Complex Computer Systems (ICECCS'2020),

Singapore. ICECCS'2020 was postponed from 28-31 October 2020 to 4-6 March 2021. Topics include:

all areas related to complex computer-based systems, including the causes of complexity and means of

avoiding, controlling, or coping with complexity, such as verification and validation, security and

privacy of complex systems, model-driven development, reverse engineering and refactoring, software

architecture, design by contract, agile methods, safety-critical and fault-tolerant architectures, real-time

and embedded systems, systems of systems, cyber-physical systems and Internet of Things (IoT), tools

and tool integration, industrial case studies, etc.

March 09-12

(v)

28th IEEE Conference on Software Analysis, Evolution, and Reengineering (SANER'2021),

Honolulu, Hawaii, USA. Topics include: theory and practice of recovering information from existing

software and systems; software analysis, parsing, and fact extraction of multi-language systems;

mining software repositories; empirical studies in software re-engineering, maintenance, and evolution;

software architecture evolution; software maintenance and re-engineering economics; software release

engineering, continuous integration and delivery; evaluation and assessment of reverse engineering and

re-engineering tools; software analysis and comprehension; education related issues; etc. Deadline for

submissions: October 15, 2020 (main research track abstracts, workshop proposals), October 22, 2020

(main research track Papers), November 12, 2020 (ERA track abstracts, tool track and industry track

abstracts, RENE track abstracts, late breaking ideas abstracts, late breaking ideas papers), November

19, 2020 (ERA track papers, tool track and industry track papers, RENE track papers), November 20,

2020 (journals first track papers).

March 10-12

(v)

29th Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP'2021), Valladolid, Spain. Deadline for paper submissions: October 4, 2020.

March 22-26

(v)

36th ACM Symposium on Applied Computing (SAC'2021), Gwangju, Korea.

 Mar 22-26

(v)

Software Verification and Testing Track (SVT'2021). Topics include: new results

in formal verification and testing, technologies to improve the usability of formal

methods in software engineering, applications of mechanical verification to large

scale software, model checking, correct by construction development, model-based

testing, software testing, static and dynamic analysis, abstract interpretation, analysis

methods for dependable systems, software certification and proof carrying code,

fault diagnosis and debugging, verification and validation of large scale software

systems, real world applications and case studies applying software testing and

verification, etc. Deadline for submissions: October 12, 2020 (regular papers,

student research competition research abstracts).

 Mar 22-26

(v)

Embedded Systems Track (EMBS'2021). Topics include: the application of both

novel and well-known techniques to the embedded systems development. Deadline

for submissions: October 12, 2020 (full papers).

☺ Mar 22-26

(v)

Track on Programming Languages (PL'2021). Topics include: technical ideas and

experiences relating to implementation and application of programming languages,

such as compiling techniques, domain-specific languages, garbage collection,

language design and implementation, languages for modeling, model-driven

development, new programming language ideas and concepts, practical experiences

with programming languages, program analysis and verification, etc.

Mar 22-26

(v)

16th Track on Dependable, Adaptive, and Secure Distributed Systems

(DADS'2021). Topics include: Dependable, Adaptive, and secure Distributed

Systems (DADS); modeling, design, and engineering of DADS; foundations and

formal methods for DADS; etc.

154 Conference Calendar

Volume 41, Number 3, September 2020 Ada User Journal

March 27

(h)

IEEE International Conference on Code Quality (ICCQ'2021), Moscow, Russia. Topics include:

static analysis, program verification, bug detection, and software maintenance. Deadline for

submissions: December 4, 2020 (papers).

March 27 - April 1

(h)

24th European Joint Conferences on Theory and Practice of Software (ETAPS'2021),

Luxembourg, Luxembourg. Events include: ESOP (European Symposium on Programming), FASE

(Fundamental Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and

Computation Structures), TACAS (Tools and Algorithms for the Construction and Analysis of

Systems), SV-COMP (the 10th Competition on Software Verification). Deadline for submissions:

October 15, 2020 (papers).

☺ April 07-09

(h)

29th International Conference on Real-Time Networks and Systems (RTNS'2021), Nantes, France.

Topics include: real-time applications design and evaluation (automotive, avionics, space, railways,

telecommunications, process control, multimedia), real-time aspects of emerging smart systems (cyber-

physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks

modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)

analysis, security, ...), software technologies for real-time systems (model-driven engineering,

programming languages, compilers, WCET-aware compilation and parallelization strategies,

middleware, Real-time Operating Systems (RTOS), ...), formal specification and verification, real-time

distributed systems, etc. Deadline for submissions: November 27, 2020.

April 12-15

(h)

27th International Working Conference on Requirements Engineering: Foundation for Software

Quality (REFSQ'2021), Essen, Germany. Deadline for submissions: November 9, 2020 (research

paper abstracts), November 16, 2020 (research papers).

April 12-16

(v)

14th IEEE International Conference on Software Testing, Verification and Validation

(ICST'2021), Porto de Galinhas, Brazil. Topics include: manual testing practices and techniques,

security testing, model based testing, test automation, static analysis and symbolic execution, formal

verification and model checking, software reliability, testability and design, testing and development

processes, testing in specific domains (such as embedded, concurrent, distributed, ..., and real-time

systems), testing/debugging tools, empirical studies, experience reports, etc. Deadline for submissions:

October 5, 2020 (abstracts), October 12, 2020 (papers), December 10, 2020 (journal-first

presentations).

April 17-23

(h)

12th ACM/SPEC International Conference on Performance Engineering (ICPE'2021), Rennes,

France. Deadline for submissions: October 16, 2020 (research abstracts, industrial/experience abstracts,

workshops), October 23, 2020 (research papers, industrial/experience papers), December 14, 2020

(artifact registration), December 21, 2020 (artifact submission), January 20, 2021 (posters, demos,

tutorials, work-in-progress papers).

May 18-21 14th Cyber-Physical Systems and Internet of Things Week (CPS Week'2021), Nashville,

Tennessee, USA. Event includes: 5 top conferences, HSCC, ICCPS, IPSN, RTAS, and IoTDI, multiple

workshops, tutorials, competitions and various exhibitions from both industry and academia. Deadline

for submissions: October 26, 2020 (papers).

☺ May 18-21 27th IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS'2021). Topics include: systems research related to embedded systems and

time-sensitive systems, ranging from traditional hard real-time systems to embedded

systems without explicit timing requirements; papers describing original systems,

applications, case studies, methodologies, and algorithms that contribute to the state

of practice in design, implementation, verification, and validation of embedded

systems or time-sensitive systems. Deadline for submissions: October 26, 2020

(papers)..

May 19-21

(h)

9th International Conference on Fundamentals of Software Engineering (FSEN'2021), Tehran,

Iran. Topics include: all aspects of formal methods, especially those related to advancing the

application of formal methods in the software industry and promoting their integration with practical

engineering techniques; software specification, validation, and verification; software architectures and

their description languages; integration of formal and informal methods; component-based systems;

cyber-physical software systems; model checking and theorem proving; software verification; CASE

tools and tool integration; industrial applications; etc. Deadline for submissions: October 18, 2020

(abstracts), October 30, 2020 (papers).

Conference Calendar 155

Ada User Journal Volume 41, Number 3, September 2020

May 23-29 43rd International Conference on Software Engineering (CSE'2021), Madrid, Spain. Topics

include: the full spectrum of Software Engineering, such as testing and analysis (software testing,

program analysis, validation and verification, fault localization, formal methods, programming

languages), empirical software engineering (mining software repositories, software ecosystems, ...),

software evolution (evolution and maintenance, debugging, program comprehension, API design and

evolution, configuration management, release engineering and DevOps, software reuse, refactoring,

reverse engineering, ...), social aspects of software engineering (human aspects of software

engineering, agile methods and software processes, software economics, ethics in software

engineering, ...), requirements, modeling, and design (requirements engineering, modeling and model-

driven engineering, software architecture and design, tools and environments, variability and product

lines, parallel, distributed, and concurrent systems, ...), dependability (software security, privacy,

reliability and safety, performance, embedded / cyber-physical systems, ...), etc. Deadline for

submissions: October 1, 2020 (IEEE TCSE Harlan Mills Award nominations).

May 24-28

(h)

13th NASA Formal Methods Symposium (NFM'2021), Norfolk, Virginia, USA. Topics include:

challenges and solutions for achieving assurance for critical systems; formal verification, model

checking, and static analysis techniques; theorem proving; techniques and algorithms for scaling

formal methods; design for verification and correct-by-design techniques; experience report of

application of formal methods in industry; use of formal methods in education; applications of formal

methods in the development of autonomous systems, safety-critical systems, concurrent and distributed

systems, cyber-physical, embedded, and hybrid systems, ...; etc. Deadline for submissions: November

27, 2020 (abstracts), December 4, 2020 (papers).

 June 07-11 25th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2021 aka Ada-Europe 2021). Santander, Spain. AEiC'2020 was
postponed from 8-12 June 2020 to 7-11 June 2021. Sponsored by Ada-Europe.

☺ July 12-16 35th European Conference on Object-Oriented Programming (ECOOP'2021), Aarhus, Denmark.

Topics include: design, implementation, optimization, analysis, testing, verification, and theory of

programs, programming languages, and programming environments. Deadline for submissions:

October 13, 2020 (ACM Transactions on Programming Languages and Systems journal first papers),

November 2, 2020 (Science of Computer Programming journal first papers), January 11, 2021

(papers).

October 10-15 Embedded Systems Week 2021 (ESWEEK'2021). Shanghai, China. The venues for ESWEEK 2020

and 2021 were swapped. ESWEEK 2020 was held in Hamburg, Germany from September 20-25,

2020, and ESWEEK 2021 will be held in Shanghai, China from October 10-15, 2021. Includes

CASES'2021 (International Conference on Compilers, Architectures, and Synthesis for Embedded

Systems), CODES+ISSS'2021 (International Conference on Hardware/Software Codesign and System

Synthesis), EMSOFT'2021 (International Conference on Embedded Software).

November 20-26 24th International Symposium on Formal Methods (FM'2021), Beijing, China. Topics include:

formal methods in a wide range of domains including software, computer-based systems, systems-of-

systems, cyber-physical systems, security, human-computer interaction, manufacturing, sustainability,

energy, transport, smart cities, and healthcare; formal methods in practice (industrial applications of

formal methods, experience with formal methods in industry, tool usage reports, experiments with

challenge problems); tools for formal methods (advances in automated verification, model checking,

and testing with formal methods, tools integration, environments for formal methods, and experimental

validation of tools); formal methods in software and systems engineering (development processes with

formal methods, usage guidelines for formal methods, and method integration); etc. Deadline for

submissions: April 30, 2021 (abstracts), May 6, 2021 (full papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

25th Ada-Europe
International Conference on

Reliable Software Technologies
(AEiC 2021)

7-11 June 2021, Santander, Spain

Conference Chair
Michael González Harbour
Universidad de Cantabria, Spain

mgh@unican.es

Program Chairs
Mario Aldea Rivas
Universidad de Cantabria, Spain

aldeam@unican.es

J. Javier Gutiérrez García
Universidad de Cantabria, Spain

gutierjj@unican.es

Work-in-Progress Chair
Kristoffer Nyborg Gregertsen
SINTEF Digital, Norway

kristoffer.gregertsen@sintef.no

Tutorial & Workshop Chair
Jorge Garrido Balaguer
Universidad Politécnica de Madrid, Spain

jorge.garrido@upm.es

Industrial Chair
Patricia Balbastre Betoret
Universitat Politècnica de València, Spain

patricia@ai2.upv.es

Exhibition & Sponsorship Chair
Ahlan Marriott
White Elephant GmbH, Switzerland

software@white-elephant.ch

Publicity Chair
Dirk Craeynest
Ada-Belgium & KU Leuven, Belgium

dirk.craeynest@cs.kuleuven.be

In cooperation with

SIGAda, SIGPLAN, SIGBED
(approval pending)

 and

General Information
The 25th Ada-Europe International Conference on Reliable Software Technologies (AEiC
2021 aka Ada-Europe 2021) will take place in Santander, Spain. The conference
schedule includes a technical program, vendor exhibition and parallel tutorials and
workshops.

Despite the COVID-19 situation which led to the cancellation of the previous edition of
the conference, there is a firm commitment to celebrate the 2021 edition in any case.
The initial goal is to have a mixed model with both in-person and remote participation. If
the situation so requires it, the conference would be held as a full virtual event.

The 2021 edition of the conference continues the major revamp of the in-person
registration fees introduced in 2019, redesigned to extend participation from industry
and academia, and to reward contributors, especially but not solely, students and post-
doc researchers.

Schedule

7 January 2021 Submission of journal-track papers, industrial presentation outlines,
and tutorial and workshop proposals

19 March 2021 Notification of journal-track paper presentations, industrial
presentations, tutorials and workshops

31 March 2021 Submission of Work-in-Progress (WiP) papers and Invited
Presentation proposals

30 April 2021 Notification of acceptance for WiP papers and Invited Presentations

Topics
The conference is a leading international forum for providers, practitioners and
researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and
maintenance of long-lived, high-quality software systems for a challenging variety of
application domains. The program will allow ample time for keynotes, Q&A sessions
and discussions, and social events. Participants include practitioners and researchers
from industry, academia and government organizations active in the promotion and
development of reliable software technologies. Should the situation allow it, the
presenters will be given the choice of in-person or virtual participation.

The topics of interest for the conference include but are not limited to:

 Design and Implementation of Real-Time and Embedded Systems,
 Design and Implementation of Mixed-Criticality Systems,
 Theory and Practice of High-Integrity Systems,
 Software Architectures for Reliable Systems,
 Methods and Techniques for Quality Software Development and Maintenance,
 Ada Language and Technologies,
 Mainstream and Emerging Applications with Reliability Requirements,
 Achieving and Assuring Safety in Machine Learning Systems,
 Experience Reports on Reliable System Development,
 Experiences with Ada.

Refer to the conference website for the full list of topics.

www.ada-europe.org/conference2021
(C) Pachi Hondal

(C) RMR

Call for Journal-Track Papers
The journal-track papers submitted to the conference are full-length papers that must describe mature research work on the
conference topics. They must be original and shall undergo anonymous peer review.
Accepted journal-track papers will get a presentation slot within a technical session of the conference and they will be published in an
open-access special issue of the Journal of Systems Architecture (Q2 in the JCR and SJR ranks) with no additional costs to
authors. The corresponding authors shall submit their work by 7 January 2021 via the Special Issue web page:
https://www.journals.elsevier.com/journal-of-systems-architecture/call-for-papers/special-issue-on-reliable-software-technologies-aeic2021.
Submitted papers must follow the guidelines provided in the "Guide-for-Authors" of the JSA (https://www.elsevier.com/journals/journal-
of-systems-architecture/1383-7621/guide-for-authors). In particular, JSA does not impose any restriction on the format or extension of
the submissions.

Call for WiP-Track Papers
The Work-in-Progress papers (WiP-track) are short (4-page) papers describing evolving and early-stage ideas or new research
directions. They must be original and shall undergo anonymous peer review. The corresponding authors shall submit their work by 31
March 2021, via https://easychair.org/conferences/?conf=aeic2021, strictly in PDF and following the Ada User Journal style
(http://www.ada-europe.org/auj/).
Authors of accepted WiP-track papers will get a presentation slot within a regular technical session of the conference and will also be
requested to present a poster. The papers will be published in the Ada User Journal as part of the proceedings of the Conference.
The conference is listed in the principal citation databases, including DBLP, Scopus, Web of Science, and Google Scholar. The Ada
User Journal is indexed by Scopus and by EBSCOhost in the Academic Search Ultimate database.

Call for Industrial Presentations
The conference seeks industrial presentations that deliver insightful information value but may not sustain the strictness of the
review process required for regular papers. The authors of industrial presentations shall submit their proposals, in the form of a short
(one or two pages) abstract, by 7 January 2021, via https://easychair.org/conferences/?conf=aeic2021, strictly in PDF and following
the Ada User Journal style (http://www.ada-europe.org/auj/).
The Industrial Committee will review the submissions anonymously and make recommendations for acceptance. The abstract of the
accepted contributions will be included in the conference booklet, and authors will get a presentation slot within a regular technical
session of the conference.
These authors will also be invited to expand their contributions into articles for publication in the Ada User Journal, as part of the
proceedings of the Industrial Program of the Conference.

Awards
Ada-Europe will offer an honorary award for the best presentation. All journal-track and industrial presentations are eligible.

Call for Invited Presentations
The invited presentations are intended to allow researchers to present paramount research results that are relevant to the
conference attendees. There will be no publication associated to these presentations, which may include previously published works,
relevant new tools, methods or techniques.
The invited presentations will be allocated a presentation slot. Presentations can be delivered remotely to facilitate the participation.
The Program Committee will select invited presentation proposals that may be submitted by e-mail to one of the Program Chairs as a
one-page summary of the proposed presentation, along with the information and/or links required to show the relevance of the
covered topic.

Call for Educational Tutorials
The conference is seeking tutorials in the form of educational seminars including hands-on or practical demonstrations. Proposed
tutorials can be from any part of the reliable software domain, they may be purely academic or from an industrial base making use of
tools used in current software development environments. We are also interested in contemporary software topics, such as IoT and
artificial intelligence and their application to reliability and safety.
Tutorial proposals shall include a title, an abstract, a description of the topic, an outline of the presentation, the proposed duration (half
day or full day), and the intended level of the tutorial (introductory, intermediate, or advanced). All proposals should be submitted by e-
mail to the Educational Tutorial Chair.
The authors of accepted full-day tutorials will receive a complimentary conference registration. For half-day tutorials, this benefit is
halved. The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops
Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half- or full-day events,
to be scheduled at either end of the conference days. Workshop proposals should be submitted by e-mail to the Workshop Chair. The
workshop organizer shall also commit to producing the proceedings of the event, for publication in the Ada User Journal.

Call for Exhibitors
The commercial exhibition will span the core days of the main conference. As an alternative to the traditional physical exhibition,
virtual exhibition activities will be possible. Vendors and providers of software products and services should contact the Exhibition
Chair for information and for allowing suitable planning of the exhibition space and time.

Special Registration Fees
Authors of accepted contributions and all students will enjoy reduced registration fees. In addition, there will be low registration fees
for virtual participants.

Venue
Santander is a nice tourist city in the north of Spain, with a well-connected airport and at a 100 km drive from Bilbao airport.
The conference venue and hotel is the Bahia Hotel in the city center and beside Santander bay.

(C) Antoni Cutiller y Roig(C) We are content (C) Gob. Cantabria

158

Volume 41, Number 3, September 2020 Ada User Journal

Call for Contributions

Topics: Ada, Programming Languages, Software

Engineering Issues and Reliable Software

Technologies in general.

Contributions: Refereed Original Articles, Invited

Papers, Proceedings of workshops and panels and

News and Information on Ada and reliable software

technologies.

More information available on the

Journal web page at

http://www.ada-europe.org/auj

Online archive of past issues at http://www.ada-europe.org/auj/archive/

Ada User Journal

 159

Ada User Journal Volume 43, Number 3, September 2020

An Overview of Ada 202x

Jeff Cousins CEng FIET

Member and former chair of the Ada Rapporteur; email: jeffrey.cousins@btinternet.com

1 Introduction

Let us begin with why do we need another revision, when

Ada has been used to successfully deliver so many projects

around the world, indeed across the solar system?

The world has moved on. The most significant external

factor has probably been the growth of the number of cores

on a processor. Making use of the first multi-core

processors was relatively easy for Ada compared with other

languages as tasking had been included from the outset.

Maybe latent timing problems would emerge when tasks

were truly running on different processors instead of just

pretending to, but these problems were small scale

compared with, say, elaboration order problems when

moving between different vendors' compilers.

These days a processor may have dozens of cores, maybe in

the future it will be hundreds. Thus the first improvement

given in the list of instructions (see below) from WG 9 (the

ISO/IEC Working Group responsible for Ada), to the Ada

Rapporteur Group (ARG), was finer grained control of

parallelism.

The ARG follows the following instructions from WG 9,

extracted from ISO/IEC JTC 1/SC 22/WG 9 N571:

"The ARG is requested to pay particular attention to the

following two categories of improvements:

A. Improvements that will maintain or improve Ada's

advantages, especially in those user domains

where safety and security are prime concerns;

B. Improvements that will remedy shortcomings in

Ada.

Improvements of special interest in these categories are:

• Improving the capabilities of Ada on multi-core

and multi-threaded architectures;

• Improving the ability to write and enforce

contracts for Ada entities (for instance, via

preconditions);

• Improving the use and functionality of the

predefined containers;

• Improving support for Unicode in the language

and predefined libraries.

These are all examples of improvements in category A,

except for the last which is an example of an improvement

in category B.”

New real-time features have also arisen, primarily from

recommendations from the series of International Real-

Time Ada Workshops (IRTAW).

As always, there is the balancing act to be struck between

keeping the language stable and backwardly compatible,

and adding new features to keep with the times.

Thanks again to John Barnes for his review comments.

Notes:

1) The alternative number is only given for those AIs with

more than one alternative.

2) Contemporary English is used where possible, but where

a word is quoted from the RM, then of necessity the US

spelling is used.

2 Parallelism

Although parallelism may be the first improvement on the

list, the parallelism features may be the hardest of the new

features to add, so unfortunately they may be the last ones

to be implemented.

OpenMP is a promising platform to use for the parallelism

features though. It already provides facilities for C, C++

and Fortran. A logical thread of control could be mapped

on to an OpenMP lightweight thread. OpenMP has made

similar design decisions to Ada 202x. For example, if either

an exception is propagated out of a logical thread of

control, or there is an explicit transfer of control out of a

logical thread of control, then an attempt is made to cancel

all logical threads of control within the construct.

Some of the new Ada features are clearly inspired by

existing SPARK 2014 features, especially Global-in and

global-out annotations (AI12-0079-3), but generalising

these to cover the whole of the Ada language, not just the

SPARK subset, has been far from trivial.

2.1 Parallel constructs and the need to consider
potential blocks and conflicts over the access to
global data

Parallel operations (AI12-0119) is the prime AI for

satisfying the first instruction from WG 9 to the ARG, i.e.

"Improving the capabilities of Ada on multi-core and multi-

threaded architectures". Two parallel constructs are

provided, namely parallel blocks and parallel loops.

A parallel block consists of a set of concurrent activities

each specified by a handled sequence of statements,

separated by the reserved word and, analogous to the

syntax for a select statement where the alternatives are

separated by the reserved word or.

A parallel loop defines a loop body which is designed such

that the various iterations of the loop can run concurrently.

The implementation is expected to group the iterations into

"chunks" to avoid creating an excessive number of physical

threads of control, but each iteration is nevertheless

160 An Overv iew of Ada 202x

Volume 41, Number 3, Septembre 2020 Ada User Journal

considered for most purposes as its own separate logical

thread of control.

Both constructs start with the new reserved word parallel

to clearly indicate that these constructs are designed for

parallel execution. The implementation might still not

execute the constructs in parallel, but the intent is that if

multiple processors are available, some or all of them

should be allocated to the execution of the construct.

An example of using parallel blocks when searching a

binary tree:

type Expression is tagged null record;

 -- Components will be added by each extension

type Expr_Ptr is access all Expression'Class;

type Binary_Operation is new Expression with

 record

 -- An internal node in an Expression tree

 Left, Right : Expr_Ptr;

 end record;

procedure Traverse (T : Expr_Ptr) is

begin

 -- Recurse down the binary tree

 if T /= null and then

 T.all in Binary_Operation'Class then

 parallel do

 Traverse (T.Left);

 and

 Traverse (T.Right);

 and

 Ada.Text_IO.Put_Line ("Processing " &

 Ada.Tags.Expanded_Name (T'Tag));

 end do;

 end if;
end Traverse;

An example of using parallel blocks when searching a

string for a particular character:

function Search (S : String;

 Char : Character) return Boolean is

begin

 if S'Length <= 1000 then

 -- Sequential scan

 return (for some C of S => C = Char);

 else

 -- Parallel divide and conquer

 declare

 Mid : constant Positive := S'First + S'Length/2 – 1;

 begin

 parallel do

 for C of S(S'First .. Mid) loop

 if C = Char then

 return True; -- Terminates enclosing "do"

 end if;

 end loop;

 and

 for C of S(Mid + 1 .. S'Last) loop

 if C = Char then

 return True; -- Terminates enclosing "do"

 end if;

 end loop;

 end do;

 -- Not found

 return False;

 end;

 end if;

end Search;

An example of using a parallel loop when initialising a

two-dimensional Boolean array:

parallel for I in Grid'Range(1) loop

 Grid(I, 1) := (for all J in Grid'Range(2) =>

 Grid(I,J) = True);

end loop;

It is intended that the parallel constructs use lightweight

threading so as to incur fewer overheads than tasking. To

reduce implementation complexity and reduce the risk of

deadlock, blocking is not allowed in a parallel construct,

thus it is a bounded error to invoke an operation that is

potentially blocking during the execution of a parallel

construct. The compiler may complain if a parallel

sequence calls a potentially blocking operation. It may also

complain if parallel sequences have conflicting global side-

effects.

Whereas Parallel operations (AI12-0119) provides the

mechanism for iterating in parallel over the elements of an

array, Parallel Container Iterators (AI12-0266) provides

the equivalent mechanism for iterating over containers. The

optional reserved word parallel may be placed before a for

statement for its iterator form, not just its loop parameter

form. The interfaces in Ada.Containers.Iterator_Interfaces

are extended to include two new interfaces, a parallel

iterator interface, and a reversible parallel iterator interface.

The of form of a parallel loop should be similar whether it

is an array (which can be multi-dimensional) or a container

being iterated over, e.g. for a multi-dimensional array:

type Matrix is array

 (Integer range <>, Integer range <>) of Real;

Board : Matrix (1 .. 8, 1 .. 8);

parallel for Element of Board loop

 Element := Element * 2.0;

 -- Double each element of the two-dimensional array

 -- Board

end loop;

2.2 Nonblocking and data race checks

Data race and non-blocking checks for parallel constructs

(AI12-0267), amended by Revise the conflict check policies

to ensure compatibility (AI12-0298), provides the rules to

check for blocking operations and for race conditions

within parallel constructs. A "data race" occurs when two

concurrent activities attempt to access the same data object

without appropriate synchronization and at least one of the

accesses updates the object. Such "conflicting" concurrent

activities are considered erroneous. The first AI introduces

the notion of Conflict Check policies, to control the degree

of checking for potential data races.

J. Cous ins 161

Ada User Journal Volume 41, Number 3, September 2020

It is important that the default for the new parallel

constructs is that all possible conflicts are checked, but for

backward compatibility we want the default for tasking

constructs to be no checks. Thus the pragma

Conflict_Check_Policy permits two separate policies, one

for parallel constructs, and one for tasking. The policies for

parallel constructs include:

• No_Parallel_Conflict_Checks

• Known_Parallel_Conflict_Checks

• All_Parallel_Conflict_Checks

and similarly the policies for tasking include:

• No_Tasking_Conflict_Checks

• Known_Tasking_Conflict_Checks

• All_Tasking_Conflict_Checks.

The default policy is:

pragma Conflict_Check_Policy

 (All_Parallel_Conflict_Checks,

 No_Tasking_Conflict_Checks);

If the checking policies for parallel constructs and tasking

are the same then the pragma may just take one parameter,

thus:

pragma Conflict_Check_Policy (No_Conflict_Checks);

which is shorthand for:

pragma Conflict_Check_Policy

 (No_Parallel_Conflict_Checks,

 No_Tasking_Conflict_Checks);

Similarly for the policies Known_Conflict_Checks and

All_Conflict_Checks.

2.3 Defining Nonblocking

Nonblocking subprograms (AI12-0064-2) adds the aspect

Nonblocking and the attribute Nonblocking to Ada. These

allow specifying and querying the blocking status of a

subprogram. If a subprogram is declared to be non-

blocking, the Ada compiler will attempt to verify that it

does not execute any potentially blocking operations.

Potentially blocking operations include select, accept,

entry call, delay and abort statements, creating or

activating a task, or calling something else which in turn

calls one of these.

The deadlock case may not be detectable at compile time

though, in which case the runtime check of pragma

Detect_Blocking can be used.

Note that the Nonblocking aspect may be specified for

generic formal parameters.

Rather than specify the Nonblocking aspect for many

individual subprograms, it can be specified for a package,

protected type, task or generic, in which case it sets the

default for everything within. Indeed for a protected type,

it may not be specified for individual operations within.

The Nonblocking aspect is fixed as False for an entry, and

as True for a predefined operator of an elementary type, as

one might expect.

Contracts for container operations (AI12-0112) then uses

the Nonblocking aspect to specify the non-blocking status

for the predefined Containers.

Specifying Nonblocking for Language-Defined Units (AI12-

0241) then uses the Nonblocking aspect to specify the non-

blocking status for the remainder of Ada's own units (that

is, child units of packages Ada and System).

Nonblocking for Unchecked_Deallocation is wrong (AI12-

0319) tidies up some of the details of the Nonblocking

aspect. An object coming into or out of existence is not

always a passive affair: if it is of a controlled type, then it

may have Initialize, Adjust and Finalize procedures; there

might be default initialisation of record components, which

could call a function; and if on the heap there will be

Allocate, Deallocate, and Storage_Size subprograms. For a

type to be non-blocking, whichever of these are applicable

need to be non-blocking too. (Default initialisation of

scalars is not of concern as the Default_Value aspect may

only have a static value.)

The standard storage pool(s) are defined to be non-

blocking. For a user-defined storage pool to be non-

blocking, its Allocate, Deallocate, and Storage_Size

subprograms must also be non-blocking. The

Unchecked_Deallocation generic invokes a Finalize

procedure, so for an instance of it to be non-blocking it

must be instantiated with a non-blocking type.

Fixes for Nonblocking (AI12-0374-2) clarifies what

happens for generic instantiations. At the point of

instantiation, the Nonblocking aspects of the actual generic

parameters are "and"-ed with the Nonblocking aspects of

the operations within the generic. Thus a non-blocking

generic can be instantiated with blocking actuals, in which

case the instance will allow blocking. If the instance is

required to be non-blocking, then the specific instance can

be declared as such.

Also, the Nonblocking aspect may be specified on subtypes,

not just types, so that predicates on some subtypes of a

given type may call a blocking operation and predicates on

some other subtypes of the type may not.

The Nonblocking aspect should also account for

preconditions, postconditions, predicates and type

invariants applicable to the call of the subprogram.

Fixups for Global annotations (AI12-0380) (which, despite

the name, is mostly applicable to both the Nonblocking

aspect and the Global annotations) provides finer grain

control regarding the use of generic formal parameters and

dispatching calls, in optional Annex H for High Integrity

Systems.

Normally entities declared within a generic unit are

presumed to make use of all the generic formal parameters.

This AI adds aspect Use_Formal followed by a list of

which generic formal parameters are actually used

(enclosed by round brackets and comma-separated if more

than one), the reserved word null for none, or the reserved

word all for all of them (which is the default anyway).

162 An Overv iew of Ada 202x

Volume 41, Number 3, Septembre 2020 Ada User Journal

Normally dispatching calls are checked using the applicable

Global’Class aspects. This AI adds aspect Dispatching

followed a list of dispatching calls (enclosed by round

brackets and comma-separated if more than one, and each

followed by the name of an object also enclosed by round

brackets) that may potentially be called, for which the

caller of the original subprogram will account for any

globals accessed.

For example:

type T is tagged private

 with Input => Stream_Input;

procedure Fill (X : out T'Class;

 Str : aliased in out

 Ada.Streams.Root_Stream_Type'Class)

 with Global => in Debug,

 Dispatching =>

 (T'Input (X), Display (X), Read (Str));

.. -- That was the spec of Fill; the body is below

procedure Fill (X : out T'Class;

 Str : aliased in out

 Ada.Streams.Root_Stream_Type'Class) is

begin

 X := T'Input (Str'Access);

 if Debug then

 Display (X);

 end if;

end Fill;

2.4 Defining access to global data

Global-in and global-out annotations (AI12-0079-3) allow

the programmer to specify what global data a subprogram

uses, in a manner that is similar to that by which

subprogram parameters are specified. Specifying the "side

effects" (i.e. effects other than via a parameter) of a

subprogram makes it easier for static analysis tools to

reason. For example:

type Operating_Mode_Type is

 (Initialising, Normal, Fallback, Shutting_Down);

type Status_Type is (Success, Inaccurate, Failed);

Data_Table : …;

Operating_Mode : Operating_Mode_Type;

Status : Status_Type;

procedure Process_Data_Table

 with

 Global => (in => Operating_Mode;

 out => Status;

 in out => Data_Table);

This should be fairly familiar to SPARK 2005 users, since

as we are extending the language proper, we may revert to

using the reserved words in, out and in out rather than the

SPARK 2014 terms Input, Output and In_Out.

The Global'Class aspect can be specified for a dispatching

subprogram, giving an upper bound on the set of global

variables that any subprogram dispatched to may access.

For each mode there can be a list of global variables

(comma-separated if more than one), the reserved word all

for all global variables, or the reserved word synchronized

for all synchronized variables (i.e. tasks, protected objects

and atomic objects, the implication being that accesses to

them are thread-safe). (Meaning of Global when there is no

mode (AI12-0375) tweaks the syntax to use semicolons to

separate the list of variables for each mode as in the

examples above).

The intention is that although advanced users may impose

stricter requirement on themselves, the typical user should

have to specify few, if any, global aspects. Thus the global

aspect for a library unit usually defaults to "Unspecified",

i.e. read and write of an unspecified set of global variables

(sounds a bit like Rumsfeld's "known unknowns"!),

although to null for Pure library units, i.e. no read or write

of any global variable. For other entities, the global aspect

defaults to that of the enclosing library unit.

Besides covering any global variables accessed by the body

of the subprogram, the global aspect should also cover

those accessed by any preconditions, postconditions,

predicates and type invariants. Global variables accessed by

other subprograms that the subprogram calls should

normally also be identified, though if the other subprogram

is passed in as an access-to-subprogram parameter then it is

up to the caller of the original subprogram to take account

of the effects of whatever subprogram it passes in. If an

access-to-variable value is created then presumably the

variable that it designates is going to be written, and if an

access-to-constant value is created then presumably the

constant that it designates is going to be read, so these

accesses should be identified too. However, the core

language does not check accesses to objects reached via

dereferences of access values, or via a generic formal

parameter.

Optional Annex H, for High Integrity Systems, adds

restriction No_Unspecified_Globals, disallowing the Global

and Global’Class for a library-level entity from being set or

defaulting to Unspecified, thereby forcing the specification

of Global. It also adds the restriction No_Hidden_

Indirect_Globals, requiring that any accesses to objects

reached via dereferences of access values are identified. For

example:

package P is

 type G is private;

 type Ref (Data : access T) is null record;

 Glob : G;

 ...

 function F (C : aliased in out Container;

 Pos : Cursor) return Ref

 with Global => in Glob;

 ...

private

 type G is record

 Info : access T;

 end record;

end P;

J. Cous ins 163

Ada User Journal Volume 41, Number 3, September 2020

package body P is

 ...

 function F (C : aliased in out Container;

 Pos : Cursor) return Ref is

 begin

 return Ref'(Data => Glob.Info);

 -- Error!

 -- The above returns a writable reference to

 -- Glob.Info.all, but Glob is of mode in, and

 -- Glob.Info.all is reachable from Glob.

 end F;

 ...

end P;

Optional Annex H allows the global aspect to be specified

for subtypes and certain generic formal parameters.

Optional Annex H also provides an extension for dealing

with "handles", for example the File_Type of Text_IO or the

Generator of Discrete_Random. Hence, in:

procedure Put (File : in File_Type; Item : in String);

the File parameter is of mode in as the parameter itself isn't

modified, yet the state associated with the file is modified.

This can now be indicated using an overriding global mode,

thus:

procedure Put (File : in File_Type; Item : in String)

 with Global => overriding in out File;

Fixups for Global annotations (AI12-0380) provides finer

grain control regarding the use of generic formal

parameters and dispatching calls, in optional Annex H. See

the preceding section on Defining Nonblocking for details.

Contracts for container operations (AI12-0112) then uses

the global annotations mechanism to specify the Global

aspect for the predefined Containers.

Default Global aspect for language-defined units (AI12-

0302) then uses the global annotations mechanism to

specify the Global aspect for the remainder of Ada's own

units (that is, child units of packages Ada and System).

For most language-defined packages (that are not Pure) an

explicit value of "synchronized in out <unit_name>" (i.e.

read and write of the set of global variables that are tasks,

protected objects, or atomic objects, of the containing

package) is added.

But where some unknown, unsynchronised variable holds

state (such as Current_Input or Current_Output for Text_IO)

then only "in out <unit_name>" can be stated. This would

mean that two concurrent subprogram calls using either

Current_Input or Current_Output would be considered to

conflict.

Some parameters may be "handles", for example the

File_Type of Text_IO, which even if of mode in may be

used by a subprogram to update state. For these the value

will be "overriding in out <param>".

2.5 Reduction

Reduction expressions are another new form of expression,

added by Ada 202x, on top of those already added by Ada

2012 (e.g. if expressions, case expressions, quantified

expressions). Before the parallel forms can be described,

the sequential forms have to be described. These make use

of Container aggregates; generalized array aggregates

(AI12-0212) (see the Containers and Iterators section),

which in turn makes use of Index parameters in array

aggregates (AI12-0061) (see the Others section), so first a

preview of them.

Index parameters in array aggregates (AI12-0061) allows a

loop parameter to be used in an array aggregate, for

example:

subtype Index_Type is Positive range 1 .. 10;

type Array_Type is array (Index_Type) of Positive;

Squares_Array : Array_Type :=

 (for I in Index_Type => I * I);

Container aggregates; generalized array aggregates (AI12-

0212) introduces container aggregates for initialising

containers, using square brackets not round brackets

(parentheses), and allowing square brackets as an

alternative to round brackets for array aggregates.

Iteration is possible within the container aggregate, for

example to create a set whose elements all have double the

value of the corresponding elements of another set:

Doubles_Set : My_Set := [for Item of X => Item * 2];

Map-Reduce attribute (AI12-0262) provides a mechanism

to take a stream of values – a "value sequence"- from an

aggregate, and repeatedly apply the same operation to

combine the values to produce a single result. Examples

include adding a sequence of squares for "sum of squares"

or multiplying a sequence of numbers when calculating a

factorial. An initial value is required, usually something

neutral that has no effect on the result, such as 0 for

addition or 1 for multiplication. A parallel version is

provided, though if the combining operation is something

simple such as addition then the overhead of managing the

parallelism is likely to outweigh any performance benefit of

performing the additions in parallel. Some examples:

-- A reduction expression that outputs the

-- sum of squares

Put_Line ("Sum of Squares is" & Integer'Image

 ([for I in 1 .. 10 => I**2]'Reduce("+", 0));

-- An expression function that returns its result as

-- a Reduction Expression

function Factorial (N : Natural) return Natural is

 ([parallel for J in 1..N => J]'Reduce("*", 1));

It is important to note that the values are not put in some

temporary array then combined, but are combined "on the

fly" as each value is produced.

Shorthand Reduction Expressions for Objects (AI12-0242)

provides a shorthand for cases where the object is an array

or iterable container. For example:

164 An Overv iew of Ada 202x

Volume 41, Number 3, Septembre 2020 Ada User Journal

Sum : constant Integer := A'Reduce("+", 0);

is short for:

Sum : constant Integer :=

 [for Value of A => Value]'Reduce("+", 0);

Similarly:

Sum : constant Integer := A'Parallel_Reduce("+", 0);

is short for:

Sum : constant Integer :=

 [parallel for Value of A => Value]'Reduce("+", 0);

2.6 Control over the degree of parallelism

Explicit chunk definition for parallel loops (AI12-0251-1)

gives the user control of the degree of parallelism, for

example if processing 100 elements of an array on a 20

core machine one may wish to have 10 logical threads of

control (potentially executing on one core each) each

processing a group of 10 elements. Such a group is referred

to as a "chunk".

The optional chunk specification is placed, enclosed by

round brackets, after the reserved word parallel.

In the more complicated form, an identifier is given that

can be used within the parallel construct, for instance:

declare

 Partial_Sum : array (1 .. Max_CPUs_To_Use) of

 Integer := (others => 0);

begin

 parallel (Chunk in Partial_Sum'Range)

 for I in Arr'Range loop

 declare

 Z : Integer;

 begin

 Z := some_complicated_computation;

 ... -- Complex machinations

 Partial_Sum (Chunk) := @ + Arr (I)**2 * Z;

 ... -- Other stuff that also happens in this

 ... -- very complicated loop ...

 end;

 end loop;

 Sum := Partial_Sum'Reduce ("+", 0);

end;

This makes uses of a reduction expression, as described

above, and @ is a shorthand for the left hand side (see the

Others section).

In the simpler form, just the maximum number of logical

threads of control to be created to execute the loop is given:

parallel (Max_CPUs_To_Use) for I in Arr'Range loop

 A (I) := B (I) + C (I);

end loop;

2.7 An example of the features working together

Not directly related to parallelism, Index parameters in

array aggregates (AI12-0061) is also used in the example

below as it is just such a useful new feature.

-- AI12-0241 Specifying Nonblocking for

-- Language-Defined Units

-- AI12-0079-3 Global-in and global-out annotations –

-- default Global => null" (i.e. no read or write of any --

-- global variable) for Pure packages

-- package Ada.Numerics.Generic_Elementary_Functions

-- with Pure, Nonblocking is

-- function Sqrt (X : Float_Type’Base) return

-- Float_Type’Base;

-- ...

with Ada.Numerics.Elementary_Functions;

-- …

declare

 Max_CPUs_To_Use : constant := 10;

 Max : constant := 100;

 subtype Range_Type is Positive range 1 .. Max;

 type Float_Array_Type is

 array (Range_Type) of Float;

 type Positive_Array_Type is

 array (Range_Type) of Positive;

 -- AI12-0061 Index parameters in array aggregates

 -- modified by Container aggregates; generalized array

 -- aggregates (AI12-0212) to use []

 Numbers : constant Positive_Array_Type :=

 [for I in Range_Type => I];

 Squares : Positive_Array_Type;

 Square_Roots : Float_Array_Type;

 Sum_Of_Squares : Integer;

 -- AI12-0064-2 - Nonblocking subprograms

 -- AI12-0079-3 Global-in and global-out annotations

 function Square (P : Positive) return Positive

 with Nonblocking, Global => null;

 function Square (P : Positive) return Positive is

 (P**2);

begin

 -- Ignoring any risk of overflows…

 -- AI12-0119 Parallel operations

 -- Iteration over the elements of an array

 -- AI12-0251-1 Explicit chunk definition for parallel

 -- loops

 parallel (Max_CPUs_To_Use)

 for I in Range_Type loop

 Squares (I) := Square (I);

 Square_Roots (I) :=

 Ada.Numerics.Elementary_Functions.Sqrt (Float (I));

 end loop;

 -- AI12-0242 Shorthand Reduction Expressions for

 -- Objects (dependent on AI12-0262 Map-Reduce

 -- attribute)

 Sum_Of_Squares := Squares'Reduce ("+", 0);

end;

3 Contracts

Ada 83 introduced the generic contract model, whereby a

contract is imposed on the types that can be used to

instantiate a unit. Parameter modes, and subtypes with

constraints, also dating from Ada 83, can be regarded as

forms of contract. Ada 2012 added new forms:

J. Cous ins 165

Ada User Journal Volume 41, Number 3, September 2020

preconditions, postconditions, type invariants and subtype

predicates. Ada 202x adds further forms: aspect

Nonblocking states that no potentially blocking operation

should be called; global-in and global-out annotations to

describe the use of global objects. Ada 202x also offers

improvements to the existing forms of contract. One of the

key benefits of contracts is that they allow checking by

static analysis tools.

3.1 Defining Nonblocking

This form of contract is covered in the Parallelism section

above since the driving reason for adding it was safe

parallelism.

3.2 Defining access to global data

This is also covered in the Parallelism section above as

again the driving reason for adding it was safe parallelism,

but it is more generally useful, for dataflow analysis, for

example, or simply documenting behaviour that some

coding standards would ask for in a comment.

3.3 Contracts for container operations (AI12-
0112)

The checks to be performed upon entry to a container’s

subprograms are now expressed using Ada 2012

preconditions rather than English.

Checking of the preconditions by the containers’ users can

be suppressed using:

pragma Suppress (Containers_Assertion_Check);

The aspects Nonblocking (AI12-0064-2) and Global (AI12-

0079-3) are included in the contracts.

3.4 Pre- and Postcondition support

Partial aggregate notation (AI12-0127) introduces a new

syntactic form of aggregate, the delta_aggregate. This

allows one to update one or more fields of a composite

object without having to specify every field. This will be

particularly useful for postconditions, where one might

want to check that only certain fields of a composite

parameter had changed, for example:

procedure Twelfth (D : in out Date)

 with Post => D = (D'Old with delta Day => 12);

The values of the Year and Month components of the delta

aggregate are the same as those of D'Old but the Day

component is 12.

Stable properties of abstract data types (AI12-0187) adds

the new aspect Stable_Properties to simplify the

description of properties of an abstract data type (ADT), by

making it easy to specify properties that are usually

unchanged by most of the operations of the ADT. The

classic example is the Mode of a file, which is unchanged

by all of the operations other than Create/Open/Close/

Reset (and Set_Mode for streams). The stable properties

are automatically included in the postconditions of all the

primitive operations of the ADT, decreasing clutter and

increasing the information that provers can use.

The aspect Stable_Properties can be given on a partial view

or on a full type with no partial view, and also on primitive

subprograms. The subprogram version can be used to

override the type version when necessary for specific

primitive subprograms of the type. The aspect is also

applicable to class-wide versions.

The aspect is followed by a list of the stable property

functions (comma-separated if more than one) for the

primitive subprogram(s). Syntax for Stable_Properties

aspects (AI-0285) tweaks the syntax so that the list is

enclosed by round brackets, in the form of a positional

aggregate, to avoid possible ambiguity in a list of aspects.

The postcondition(s) of the subprogram are modified with

an item that verifies that the property is unchanged for each

parameter of the appropriate type, unless that property is

already referenced in the explicit postcondition (or

inherited postcondition, in the case of class-wide

postconditions).

To expand on the example of the Mode of a file, suppose

that we wish many subprograms to behave as if they have a

postcondition as in:

procedure Put (File : in File_Type; Str : in String)

 with Pre => Mode(File) /= In_File,

 Post => Mode(File) = Mode(File)'Old;

Then rather than having to repeat this postcondition for

numerous subprograms, if Ada.Text_IO could be rewritten

in the form:

package Ada.Text_IO is

 type File_Type is private

 with Stable_Properties => (Is_Open, Mode);

…

then the declaration of Put could simply be:

 procedure Put (File : in File_Type; Item : in String)

 with Pre => Mode(File) /= In_File;

since we have stated that the Mode is a stable property.

(Sadly we cannot change Ada.Text_IO – this is just an

illustrative example for the future!)

Pre/Post for access-to-subprogram types (AI12-0220)

allows Pre and Post aspects for access-to-subprogram

types, so that contract information is available when calling

a subprogram indirectly via an access value, as well as (or

even instead of) when called directly. For example, to

check that a parameter is even:

type T1 is access procedure (X : Integer)

 with Pre => X mod 2 = 0;

procedure Foo (X : Integer) is ... end;

…

 Ptr1 : T1 := Foo'Access;

begin

 Ptr1.all (222); -- Precondition check performed

Declare expressions (AI12-0236). As the power of

expressions has grown, some felt that it would help to allow

local constants and object renamings within an expression,

166 An Overv iew of Ada 202x

Volume 41, Number 3, Septembre 2020 Ada User Journal

to avoid repeated subexpressions. For example, the

postcondition for Fgetc could be clarified from:

(if Stream.The_File (Stream.Cur_Position'Old) =

 EOF_Ch

 then Stream.Cur_Position = Stream.Cur_Position'Old

 and then Result = EOF

 elsif Stream.The_File (Stream.Cur_Position'Old) =

 ASCII.LF

 then Stream.Cur_Position = Stream.Cur_Position'Old

 and then Result = Character'Pos (ASCII.LF)

 else

 Stream.Cur_Position = Stream.Cur_Position'Old + 1

 and then Result = Character'Pos (Stream.The_File

 (Stream.Cur_Position'Old)))

to:

(declare

 Old_Pos : constant Position :=

 Stream.Cur_Position'Old;

 The_Char : constant Character :=

 Stream.The_File(Old_Pos);

 Pos_Unchg : constant Boolean :=

 Stream.Cur_Position = Old_Pos;

 begin

 (if The_Char = EOF_Ch

 then Pos_Unchg and then Result = EOF

 elsif The_Char = ASCII.LF

 then Pos_Unchg and then Result =

 Character'Pos(ASCII.LF)

 else

 Stream.Cur_Position = Old_Pos + 1

 and then Result = Character'Pos (The_Char)))

This uses the reserved words declare and begin, as for a

block, but not end, as it is only used within parentheses.

Making 'Old more flexible (AI12-0280-2). Currently the

following is illegal as the A.all in A.all'Old is "potentially

unevaluated":

procedure Proc (A : access Integer)

 with Post =>

 (if A /= null then (A.all'Old > 1 and A.all > 1));

This is now relaxed. Thinking less of what it may not be

possible to evaluate, but more of what CAN be evaluated in

advance, the term "known on entry" is introduced to cover

such expressions (the most obvious example being a static

expression), and if it is possible to tell on entry to a

subprogram that an X'Old need not be evaluated then it isn't.

In the example, A is an in parameter of an elementary type

(which includes access types) so it is passed by copy and

cannot change, so if A is null on entry then A.all'Old would

not be evaluated.

3.5 Aspects for Generic Formal Parameters

Previously, language-defined aspects were not allowed for

generic formal parameters, but now several are allowed:

As mentioned in the Parallelism section, Nonblocking

subprograms (AI12-0064-2) allows the Nonblocking aspect

to be specified for generic formal parameters, and Fixes for

Nonblocking (AI12-0374-2) clarifies that, at the point of

instantiation, the Nonblocking aspects of the actual generic

parameters are "and"-ed with the Nonblocking aspects of

the operations within the generic.

The new aspect for types, Default_Initial_Condition

(Default_Initial_Condition for types AI12-0265 – see

below) is allowed on generic formal private types.

Contracts for generic formal parameters (AI12-0272)

allows Pre and Post on generic formal (nonabstract)

subprograms. For example:

generic

 type Foo is ...

 with function Reduce (Obj : Foo) return Integer

 with Post => Reduce'Result in –9 .. 9;

package Gen is

 ...

end Gen;

Atomic, Volatile, and Independent generic formal types

(AI12-0282). The aspects Atomic, Volatile, Independent,

Atomic_Components, Volatile_Components, and

Independent_Components can now be specified for generic

formal types. The actual type must have a matching

specification, though for backward compatibility reasons

the actual types can be Atomic, etc., without the formal

types necessarily matching.

3.6 Defaults for generic formal types (AI12-0205)

This provides easier and more natural generic instantiation.

It uses the reserved words or use. For example:

generic

 type Item_Type is private;

 type Item_Count is range <> or use Natural;

 -- New syntax using or use

 with function "=" (L, R : in Item_Type)

 return Boolean;

package Lists is

 ...

end Lists;

This allows the instantiator to be able to provide a type for

the Item_Count, but it can simply be omitted in ordinary

circumstances (in which case Natural would be used).

3.7 Default_Initial_Condition for types (AI12-
0265)

A new contract aspect, Default_Initial_Condition, may be

specified for a private type (or private extension). This is

useful for checking that the default initialisation of an

object has been performed as expected. After the successful

default initialization of an object of the type, a default

initial condition check is performed. In the case of a

controlled type, the check is performed after the call to the

type's Initialize procedure. For example:

package Sets is

 type Set is private

 with Default_Initial_Condition => Is_Empty (Set);

 function Is_Empty (S : Set) return Boolean;

J. Cous ins 167

Ada User Journal Volume 41, Number 3, September 2020

 ...

end Sets;

3.8 Aspect No_Return for functions reprise
(AI12-0269)

The aspect No_Return may now be specified for functions,

not just procedures, but the reason that such a function

never returns must be that it raises an exception (rather than

containing an endless loop). As for procedures, there will

be a check at compile time that the function does not

contain any explicit return statements, and a check at run-

time that it does not run into the final end.

4 Containers and Iterators

4.1 Stable Containers to reduce tampering checks
(AI12-0111)

This attempts to address performance concerns about Ada

containers, whilst maintaining their safety. Each container

is given a nested package named Stable. This has similar

contents to the parent package, but provides a variant of the

container type that cannot grow or shrink, and omits

operations that might tamper with elements of the

container. Such a container can be created by calling the

Copy function, or by creating a stabilised view of a normal

container. The operations of the Stable package do not

perform tampering checks as they are not needed, because

the operations that tamper with elements have been

omitted. The tampering checks are considered to incur the

main performance overhead.

4.2 Contracts for container operations (AI12-
0112)

As described in the Contracts section, the checks to be

performed upon entry to a container’s subprograms are now

expressed using Ada 2012 preconditions rather than

English. The aspects Nonblocking (AI12-0064-2) and Global

(AI12-0079-3) are included in the contracts.

The new aspect Allows_Exit (see Loop-body as anonymous

procedure, AI12-0189 below) is applied to the container

Iterate procedures.

All container operations now have versions with the

container as the first parameter, thus allowing prefix

notation to be used. The new versions include Element,

Query_Element, Next and Previous for vectors and lists;

Key, Element, Query_Element, Next and (if ordered)

Previous for maps; Element, Query_Element, Next and (if

ordered) Previous for sets; and Subtree_Node_Count,

Element, Query_Element, Next_Sibling and Previous_

Sibling for multiway trees. If the cursor points to a different

container to the one given, then Program_Error is raised.

Consider the following example:

package String_Indexes is

 new Indefinite_Hashed_Maps (Key_Type => String,

 …

 My_Index : constant String_Indexes.Map :=

 String_Indexes.Empty_Map;

function Long_Strings_Count

 (The_Index : String_Indexes.Map;

 Min_Length : Positive) return Natural is

 Count : Natural := 0;

begin

 for My_Cursor in The_Index.Iterate loop

 if String_Indexes.Key (Position =>

 My_Cursor)'Length >= Min_Length then

 Count := Count + 1;

 end if;

 end loop;

 return Count;

end Long_Strings_Count;

Note the incongruous mixing of OO-style prefix notation in

The_Index.Iterate and traditional notation in

String_Indexes.Key. In Ada 202x the latter can be replaced

by The_Index.Key.

4.3 Use subtype_indication in generalized
iterators (AI12-0156)

Ada 2012 added the ability to simplify:

Vec : Int_Vectors.Vector;

...

for I in Vec.Iterate loop

 Vec(I) := Vec(I) + 1;

end loop;

to:

Vec : Int_Vectors.Vector;

...

for E : T of Vec loop

 E := E + 1;

end loop;

where the optional : T acts as a comment to the reader that

the subtype of element E is T (and the compiler verifies this

comment). An optional subtype indication – though of the

cursor not the element – can now also be given for the

original in form of the loop, i.e.:

for I : Index in Vec.Iterate loop

 Vec(I) := Vec(I) + 1;

end loop;

where Index is the subtype of the loop parameter.

4.4 Indefinite Holders

Bounded_Indefinite_Holders (AI12-0254) adds a new

container type, Bounded_Indefinite_Holder, which allows

the storage of a (single) class-wide object without the use

of dynamic memory allocation, for use in safety critical

environments. Rather than having a bounded indefinite

variant of every container, it is envisaged that this holder

container would be used as a building block, e.g. in a

container of such holder containers.

Compared with the existing Indefinite_Holder, there is an

additional generic parameter:

168 An Overv iew of Ada 202x

Volume 41, Number 3, Septembre 2020 Ada User Journal

Max_Element_Size_in_Storage_Elements :

 Storage_Count;

If this is exceeded, Program_Error is raised.

Swap for Indefinite_Holders (AI12-0350) adds a Swap

operation to both Indefinite_Holder and the new

Bounded_Indefinite_Holder. For the former this avoids the

overhead of copying the element (and any associated

Adjust/Finalize).

procedure Swap (Left, Right : in out Holder)

 …

4.5 Loop-body as anonymous procedure (AI12-
0189)

A loop body can be used to specify the implementation of a

procedure to be passed as the actual for an access-to-

subprogram parameter, when used in the context of a

special kind of for-loop statement, whose iterator_

specification is given by a procedure_iterator.

This can be used for iterating over Directories and

Environment variables, or iterating through a map-like

container over the keys. Dedicated mechanisms were

proposed for these (AI12-0009 and AI12-0188,

respectively), but it was considered more useful to add a

more general mechanism. For example:

for (Name, Val) of Ada.Environment_Variables.Iterate

 (<>) loop

-- "(<>)" is optional because it is the last parameter

 Put_Line (Name & " => " & Val);

end loop;

for (C : Cursor) of My_Map.Iterate loop

 Put_Line (My_Key_Type'Image (Key (C)) & " => " &

 My_Element_Type'Image (Element (C)));

end loop;

An exit, return, goto, or other transfer of control out of the

loop is only allowed if the named procedure has new aspect

Allows_Exit with value True. Even if Allows_Exit is False,

the loop can still end prematurely due to the propagation of

an exception.

Bounded errors associated with procedural iterators (AI12-

0326-2) extends this to make it a bounded error for an

Allows_Exit subprogram to call the loop body procedure

from an abort-deferred operation (unless the whole

loop_statement was within this same abort-deferred

operation), as this would interfere with implementing a

transfer of control.

It is also adds the reserved word parallel to the syntax for

procedural iterators, and makes it a bounded error to call a

loop-body procedure from multiple logical threads of

control unless parallel is specified.

4.6 Container aggregates

Currently, it is quite tedious to initialise a container, one

has to create it as an empty container and then add elements

one at a time, as in:

X : My_Set := Empty_Set;

Include (X, 1);

Include (X, 2);

Include (X, 3);

Container aggregates; generalized array aggregates (AI12-

0212) adds positional container aggregates. These allow the

above to be replaced by simply:

X : My_Set := [1, 2, 3];

Note that this uses square brackets not round brackets

(parentheses). This allows the use of [] to indicate an empty

container, analogous to "" indicating an empty string.

This is achieved using the new aspect Aggregate to indicate

the appropriate function for returning an empty container of

the particular container type, and also the appropriate

procedure for adding an element to the particular container

type.

For example:

type Set is tagged private

 with -- Ada 2012 has these

 Constant_Indexing => Constant_Reference,

 Default_Iterator => Iterate,

 Iterator_Element => Element_Type,

 … -- but this is new

 Aggregate => (Empty => Empty,

 Add_Unnamed => Include),

 …

Originally an Empty_<Container> constant was asked for in

AI12-0212, but Empty function for Container aggregates

(AI12-0339) tweaked this such that now an Empty function

is given instead, so as to allow a Capacity parameter for

those container types that have the notation of capacity (e.g.

Vectors).

Add_Unnamed requires a two parameter procedure for

adding a single element. As the existing Append procedures

of vectors and lists required a third, Count, parameter,

Contracts for container operations (AI12-0112) added a

procedure without the Count parameter (at the time called

Append_One) to the Vectors container, and List containers

need Append_One (AI12-0391) did the same for the

Doubly_Link_Lists container. Ambiguities associated with

Vector Append and container aggregates (AI12-0400) then

decided it was cleaner for the new procedures to be

overloadings of Append, and to remove the default for

Count (of := 1) from the original Append procedures.

Iteration is also possible within the container aggregate, for

example to create a set whose elements all have double the

value of the corresponding elements of another set:

Doubles_Set : My_Set := [for Item of X => Item * 2];

Note that this uses similar syntax to that introduced by

Index parameters in array aggregates (AI12-0061) (see the

Others section).

And – prepare yourself for a shock! – array aggregates are

also allowed to use square brackets as an alternative to

round brackets (parentheses). This is to emphasise the

J. Cous ins 169

Ada User Journal Volume 41, Number 3, September 2020

similarity in characteristics between containers and arrays,

allow the use of [] for an empty array, and allow the use of

positional notation for a single element array. Remember

that

 Two_Array : array (1 .. 2) of Positive := (1, 2);

is allowed, but not :

 One_Array : array (1 .. 1) of Positive := (1);

Unfortunately introducing aggregates for containers

introduced an ambiguity – for the Append, Insert and

Prepend operations of vectors and lists, if the element type

is a record then it is unclear whether it is an element or

another vector or list that is being added. Ambiguities

associated with Vector Append and container aggregates

(AI12-0400) renames the operations for adding a list to

Append_List, Insert_List and Prepend_List, and similarly

for vectors. Note that this is a backward incompatibility.

4.7 Iterator filters (AI12-0250)

When iterating through a container, it is often required to

filter the results to only return those values that meet some

condition. This feature makes use of the keyword when, for

example:

S : constant Set :=

 (for E of C when E mod 2 = 1 => E);

to obtain all the odd elements of Container C.

4.8 Parallel Container Iterator filters (AI12-0266)

This is covered in the Parallelism section above.

5 Internationalisation

5.1 Additional internalization of Ada (AI12-0021)

This adds child packages Wide_File_Names and

Wide_Wide_File_Names for each I/O package (i.e.

Sequential_IO, Direct_IO, Text_IO and Stream_IO),

containing just those operations that take a filename as a

parameter, and Wide_ and Wide_Wide_ versions of

Ada.Directories, Ada.Command_Line and also of

Ada.Environment_Variables.

6 Real-Time

A number of AIs were discussed by, or arose from, the 19th

International Real-Time Ada Workshop, as reported on in

the Vol. 39, No. 2, March 2018 edition of the AUJ:

• Thread-safe Ada libraries (AI12-0139). This was

subsequently dropped;

• Deadline Floor Protocol (AI12-0230);

• Compare-and-swap for atomic objects (AI12-

0234);

• Admission Policy Defined for Acquiring a

Protected Object Resource (AI12-0276);

• Dispatching Needs More Dispatching Points

(AI12-0279);

• CPU Affinity for Protected Objects (AI12-0281);

• Atomic and Volatile generic formal types (AI12-

0282).

IRTAW also proposed an extended version of the

Ravenscar profile called Jorvik.

6.1 Defining Nonblocking

This is covered in the Parallelism section above as the

driving reason for adding it was safe parallelism, but it is

more generally useful, for timing analysis or deadlock

avoidance, for example, or simply documenting behaviour

that some coding standards would ask for in a comment.

6.2 Exact size access to parts of composite atomic
objects (AI12-0128)

Memory accesses to subcomponents of an atomic

composite object must read or write the entire object. For

example:

type Status is

 record

 Ready : Boolean;

 Length : Integer range 0 .. 15;

 end record;

for Status use

 record

 Ready at 0 range 0 .. 0;

 Length at 0 range 1 .. 5;

 end record;

Status_Register : Status

 with Address => ...,

 Size => 32,

 Atomic => True;

if Status_Register.Ready then -- Reads entire register

 null;

end if;

Status_Register.Length := 10; -- Prereads entire register,

 -- then writes entire register.

This is useful for controlling accesses to memory mapped

device registers, which often require reads or writes to be to

the entire register.

6.3 Max_Entry_Queue_Length aspect for entries
(AI12-0164)

The new aspect Max_Entry_Queue_Length for an entry

declaration specifies the maximum number of callers

allowed on that entry. This facilitates timing analysis and

should be useful for new restricted tasking profiles besides

Ravenscar.

Violation of this restriction results in the raising of

Program_Error at the point of the call or requeue.

The value specified for the Max_Entry_Queue_Length

aspect for an entry must be no higher than any specified for

the corresponding type, and both must be no higher than the

Max_Entry_Queue_Length partition-wide restriction. These

are checked at compilation.

170 An Overv iew of Ada 202x

Volume 41, Number 3, Septembre 2020 Ada User Journal

6.4 Deadline Floor Protocol (AI12-0230)

This updates the EDF (Earliest Deadline First) policy in

line with the latest thinking from the IRTAW Workshops.

It now uses the Deadline Floor Protocol (DFP) in

preference to the Stack Resource Protocol (SRP). This

should not result in any backward compatibility problems

as it is believed that currently no Ada implementations

support EDF.

6.5 Atomic Operations

A family of atomic operations is added to optional Annex C

Systems Programming by Compare-and-swap for atomic

objects (AI12-0234), Support for Arithmetic Atomic

Operations and Test and Set (AI12-0321) and Add a

modular atomic arithmetic package (AI12-0364).

In systems where processors communicate via shared

memory, there are two common methods of

synchronisation. Thus "Compare-and-swap" atomically

compares the contents of a memory location with a given

value and, only if they are the same, modifies the contents

of that memory location to a given new value. "Test-and-

set" modifies the contents of a memory location and returns

its old value in a single atomic operation. These can then be

used to construct spin locks. Such instructions are often

available in the hardware. This AI makes them available in

a more portable manner, assuming of course that the

underlying hardware provides them. Note that which

instructions can be performed atomically can vary even

between processors in the same family.

These AIs add a number of library packages, namely

 System.Atomic_Operations.Test_And_Set,

and the generic packages

 System.Atomic_Operations.Exchange,

 System.Atomic_Operations.Integer_Arithmetic,

 System.Atomic_Operations.Modular_Arithmetic

The last three packages are generic so that they can be

instantiated with an actual of the appropriate size for the

memory architecture in use.

Compare-and-swap:

generic

 type Atomic_Type is private with Atomic;

package System.Atomic_Operations.Exchange

 with Pure, Nonblocking is

 function Atomic_Exchange

 (Item : aliased in out Atomic_Type;

 Value : Atomic_Type) return Atomic_Type

 with Convention => Intrinsic;

 function Atomic_Compare_And_Exchange

 (Item : aliased in out Atomic_Type;

 Prior : aliased in out Atomic_Type;

 Desired : Atomic_Type) return Boolean

 with Convention => Intrinsic;

 function Is_Lock_Free (Item : aliased Atomic_Type)

 return Boolean

 with Convention => Intrinsic;

end System.Atomic_Operations.Exchange;

Atomic_Exchange atomically assigns the value of Value to

Item, and returns the previous value of Item.

Atomic_Compare_And_Exchange first evaluates the value

of Prior. It then performs the following steps as part of a

single indivisible operation:

• evaluates the value of Item;

• compares the value of Item with the value of Prior;

• if equal, assigns Item the value of Desired;

• otherwise, makes no change to the value of Item.

After these steps, if the value of Item and Prior did not

match, Prior is assigned the original value of Item, and the

function returns False. Otherwise, Prior is unaffected and

the function returns True.

Is_Lock_Free returns whether all the operations of the child

package can be provided lock-free for a given object.

An example of a spin lock using Atomic_Exchange:

 type Atomic_Boolean is new Boolean with Atomic;

 package Exchange is

 new Atomic_Operations.Exchange

 (Atomic_Type => Atomic_Boolean);

 Lock : aliased Atomic_Boolean := False;

...

begin -- Some critical section, trying to get the lock:

 -- Acquire the lock

 while Exchange.Atomic_Exchange

 (Item => Lock, Value => True) loop

 null;

 end loop;

 ... -- Do stuff

 Lock := False; -- Release the lock

end;

For non-preemptive scheduling, it might be appropriate to

call Ada.Dispatching.Yield rather than having a null

statement.

Test-and-set:

package System.Atomic_Operations.Test_And_Set

 with Pure, Nonblocking is

 type Test_And_Set_Flag is

 mod<implementation-defined>

 with Atomic, Default_Value => 0,

 Size => <Implementation-Defined>;

 function Atomic_Test_And_Set

 (Item : aliased in out Test_And_Set_Flag)

 return Boolean

 with Convention => Intrinsic;

 procedure Atomic_Clear

 (Item : aliased in out Test_And_Set_Flag)

 with Convention => Intrinsic;

J. Cous ins 171

Ada User Journal Volume 41, Number 3, September 2020

 function Is_Lock_Free

 (Item : aliased Test_And_Set_Flag) return Boolean

 with Convention => Intrinsic;

end System.Atomic_Operations.Test_And_Set;

Atomic_Test_And_Set performs an atomic test-and-set

operation on Item. Item is set to some implementation-

defined non-zero value. The function returns True if the

previous contents were non-zero, and otherwise returns

False.

Atomic_Clear performs an atomic clear operation on Item.

After the operation, Item contains zero.

An example of a spin lock using Atomic_Test_And_Set:

begin -- Some critical section, trying to get the lock:

 -- Acquire the lock

 while Atomic_Test_And_Set (Item => Lock) loop

 null;

 end loop;

 ... -- Do stuff

 Atomic_Clear (Item => Lock); -- Release the lock

end;

Atomic arithmetic:

generic

 type Atomic_Type is range <> with Atomic;

package System.Atomic_Operations.Integer_Arithmetic

 with Pure, Nonblocking is

 procedure Atomic_Add

 (Item : aliased in out Atomic_Type;

 Value : Atomic_Type)

 with Convention => Intrinsic;

 procedure Atomic_Subtract

 (Item : aliased in out Atomic_Type;

 Value : Atomic_Type)

 with Convention => Intrinsic;

 function Atomic_Fetch_And_Add

 (Item : aliased in out Atomic_Type;

 Value : Atomic_Type) return Atomic_Type

 with Convention => Intrinsic;

 function Atomic_Fetch_And_Subtract

 (Item : aliased in out Atomic_Type;

 Value : Atomic_Type) return Atomic_Type

 with Convention => Intrinsic;

 function Is_Lock_Free (Item : aliased Atomic_Type)

 return Boolean

 with Convention => Intrinsic;

end System.Atomic_Operations.Arithmetic;

As one might expect, Atomic_Add and Atomic_Subtract

atomically perform add and subtract, whereas

Atomic_Fetch_And_Add and Atomic_Fetch_And_Subtract

additionally return the original value of the Item.

Modular arithmetic:

in this case, the package

 System.Atomic_Operations.Modular_Arithmetic

has the same declaration as

 System.Atomic_Operations.Integer_Arithmetic,

except that the formal parameter is:

type Atomic_Type is mod <> with Atomic;

6.6 Admission policy defined for acquiring a
protected object resource (AI12-0276)

On multiprocessor systems, a spin lock is typically used to

gain access to a protected object in order to execute a

protected action. Most multiprocessor locking algorithms

prescribe that if there is more than one request competing

for the same resource, the requests are served in FIFO

order. This bounds the time it takes for a lower priority task

to gain access to a protected object. With Ravenscar all

tasks are statically allocated to processors, and if each

protected object used by tasks on different processors is

given a high ceiling priority then the blocking time for each

task can be computed.

Previously the language did not presume any ordering or

queuing for tasks competing to start a protected action, this

AI adds:

pragma Admission_Policy (FIFO_Spinning);

to specify that FIFO_Spinning is used. A task will inherit

the ceiling priority of the protected object. Other,

implementation-defined, Admission_Policies may also be

specified.

6.7 Nonpreemptive dispatching needs more
dispatching points (AI12-0279)

In non-preemptive dispatching there needs to be sufficient

points where rescheduling can occur, so as to restrict the

amount of time that a low priority task can block a higher

priority task. If the low priority task "gets lucky" and the

entries it calls are open, and suspension objects true, it can

be some time before a rescheduling point occurs.

The solution to this is to define a Yield aspect that can be

specified for a subprogram. If a reschedule has not occurred

within a call of the subprogram, then one is inserted at the

return from the subprogram.

6.8 CPU Affinity for Protected Objects (AI12-
0281)

This allows the CPU aspect to be applied to a protected

type, not just a task type. If all tasks that invoke protected

operations of a protected object are on the same CPU as the

protected object then it is possible for the runtime to avoid

the overhead of acquiring a lock, and also avoid the risk of

deadlock.

A Program_Error is raised if a task on one CPU attempts to

invoke a protected operation of a protected object on

another CPU.

6.9 Atomic, Volatile, and Independent generic
formal types (AI12-0282)

This is covered in the Contracts section above.

172 An Overv iew of Ada 202x

Volume 41, Number 3, Septembre 2020 Ada User Journal

6.10 Jorvik Profile (AI12-0291)

The new Jorvik profile is less restrictive than the Ravenscar

profile, but still allows timing and storage analyses. Most of

the restrictions are the same, but restrictions

 No_Implicit_Heap_Allocations,

 No_Relative_Delay,

 Max_Protected_Entries => 1,

 No_Dependence => Ada.Calendar

 No_Dependence => Ada.Synchronous_Barriers

are omitted and the restriction Simple_Barriers is replaced

by the weaker Pure_Barriers.

Restriction Pure_Barriers (AI12-0290) defines Pure_

Barriers. Such barriers do not have to be simple Boolean

local variables, but can be more complex Boolean

expressions, as long as they do not have side effects,

exceptions, or recursion. Additionally, the ’Count attribute

is allowed in entry barriers, not just protected entry barriers.

6.11 Fixes for Atomic and Volatile (AI12-0363)

’Access may not be taken of a non-atomic subcomponent of

an atomic object.

The nesting of atomic objects gives much scope for

confusion, but to disallow them would be backwardly

incompatible, so a new aspect Full_Access_Only is added.

This can be applied to atomic and volatile types and objects

to indicate that no atomic (or full access) objects are

permitted as subcomponents. If any subcomponent of a full

access object is accessed, then the whole object has to be

accessed, by an atomic read followed by an atomic write.

An Atomic aspect of True now additionally indicates that

Volatile and Independent are True.

7 Others

The heading "Others" is not meant to imply that the

features in this section are less important; indeed this

section includes some of the most useful new features of

Ada 202x. They are likely to be amongst the first to be

implemented, and the first that programmers will want to

use.

Some of the changes are to tidy up inconsistencies in the

language, such as Missing operations of static string types

(AI12-0201) and Make objects more consistent (AI12-

0226).

7.1 'Image for all types (AI12-0020)

It must be a shock to programmers coming from other

languages, such as Python, that in Ada one couldn't directly

output the value of a composite, but had to laboriously

write one's own routine to do it field by field, then repeat if

there was nesting of composites. Such a mechanistic

process is more efficiently performed by a compiler than a

programmer. And remember that, prior to Add

Object’Image (AI12-0124), included in the Ada 2012

Technical Corrigendum, there was also the tedium of

having to look up the subtype for an object and use

My_Subtype’Image (My_Object) to obtain the image of an

object.

This AI adds the attribute 'Image for all types. It should be

a boon for debugging.

Following on from this, Image attributes of language-

defined types (AI12-0304) requires that 'Image works for

the language defined container types. This uses the new []

array aggregate syntax from Container aggregates;

generalized array aggregates (AI12-0212). For Maps it

uses the form of a named array aggregate, e.g.:

[Key1 => Value1, Key2 => Value2]

for Trees the form is a positional array aggregate, e.g.:

[[1, 2] , [111, 222, 333]]

for null containers the form is a null array aggregate, i.e.:

[]

7.2 The Fortran Annex needs updating to support
Fortran 2008 (AI12-0058)

The Fortran section of mandatory Annex B has been

updated to support Fortran 2008, in particular better support

for double precision complex arithmetic. Permissions

corresponding to non-standard extensions, or

implementation advice that is now considered to be bad

practice, have been removed.

7.3 Object_Size attribute (AI12-0059)

Users have been after this since 1983! S'Object_Size

denotes the size of an object of subtype S. It can be

specified, but must be specified to a value that the compiler

is able to allocate (usually an entire storage unit for most

implementations).

S'Object_Size is an improvement on S'Size (which cannot

be redefined without breaking existing code). Reading 'Size

is not terribly useful as it just gives the theoretical

minimum number of bits required for a value of a given

range, not the number of bits that the compiler is actually

going to allocate to an object of the type. Specifying S'Size

just gives a minimum, the compiler may allocate more.

7.4 Index parameters in array aggregates (AI12-
0061)

Consider:

subtype Index is Positive range 1 .. 10;

type Array_Type is array (Index) of Positive;

Squares_Array : Array_Type := (for I in Index => I * I);

This provides a means of creating an aggregate when the

element type is limited, provides a better means of

initialising an array with a type invariant, and should be

useful for everyday programming.

7.5 Static expression functions (AI12-0075)

The aspect Static is introduced. It can only be applied to an

expression function, and requests that it be regarded as a

static function.

J. Cous ins 173

Ada User Journal Volume 41, Number 3, September 2020

If called in a context that requires the expression function

to be static, such as in a static expression, then its actual

parameters need to be static. For example, if we declare:

function If_Then_Else (Flag : Boolean;

 X, Y : Integer) return Integer is

 (if Flag then X else Y) with Static;

and then attempt to declare:

X : constant := If_Then_Else (True, 37, 1 / 0); -- Error.

we get an error at compile time since 1/0 is not a static

expression.

7.6 Aggregates and variant parts (AI12-0086)

A discriminant that controls a variant can now be non-static

if the subtype of the discriminant is static and all values

belonging to that subtype select the same variant. For

example:

type Enum is (Aa, Bb, Cc, ..., Zz);

subtype S is Enum range Dd .. Hh;

type Rec (D : Enum) is record

 case D is

 when S => Foo,

 Bar : Integer;

 when others =>

 null;

 end case;

end record;

function Make (D : S) return Rec is

begin

 return (D => D, Foo => 123, Bar => 456);

end;

7.7 Add @ as an abbreviation for the LHS of an
assignment (AI12-0125-3)

This new feature, which proved to be rather controversial

with those who are used to Ada being verbose, uses a single

character placeholder for the left hand side of an

assignment.

My_Package.My_Array(I).Field :=

 My_Package.My_Array(I).Field + 1;

could be shortened to:

My_Package.My_Array(I).Field := @ + 1;

The above is similar in function to the += of the C family

of languages. The Ada feature is more powerful though,

being able to handle expressions such as series expansions.

Here are a couple of examples:

My_Package.My_Array(I).Field :=

 My_Package.My_Array(I).Field ** 3 +

 My_Package.My_Array(I).Field ** 2 +

 My_Package.My_Array(I).Field;

could be shortened to:

My_Package.My_Array(I).Field := @ ** 3 + @ ** 2 + @;

and:

My_Package.My_Array(I).Field :=

 Natural'Min (My_Package.My_Array(I).Field, 1000);

could be shortened to:

My_Package.My_Array(I).Field := Natural'Min (@, 1000);

7.8 Aggregates of Unchecked_Unions using
named notation (AI12-0174)

Given that it is generally regarded as good practice to use

named notation rather than positional notation, it was

somewhat bizarre that Unchecked_Unions only allowed the

latter. Both are now allowed. For example:

type Data_Kind is (C_int, C_char);

type C_Variant (Format : Data_Kind := C_int) is record

 case Format is

 when C_int =>

 int_Val : C.int;

 when C_char =>

 char_Val : C.char;

 end case;

end record

 with Unchecked_Union, Convention => C;

Int1 : C_Variant := (C_int, 12); -- Always OK

Int2 : C_Variant := (Format => C_int, int_Val => 12);

 -- Was illegal, now OK

7.9 Preelaborable packages with address clauses
(AI12-0175)

Packages with aspect Preelaborate can now contain certain

simple functions known to the compiler, i.e. an instance of

Unchecked_Conversion, a function declared in

System.Storage_Element, or the functions To_Pointer and

To_Address declared in an instance of

System.Address_to_Access_Conversions. This allows the

declaring of objects with an address clause within a

preelaborable package, which can be very useful for small

embedded systems.

7.10 Missing operations of static string types
(AI12-0201)

Relational operators and type conversions of static string

types are now static.

Static membership tests for strings, e.g. S in "abc", were

already allowed; static equality tests for strings, e.g. S =

"abc", are now also allowed.

7.11 Big Numbers

Predefined Big numbers support (AI12-0208) defines a

package Big_Numbers and various child packages to

support arbitrary precision arithmetic.

Changes to Big_Integer and Big_Real (AI12-0366) updates

this in the light of implementation experience.

In order to make Big Numbers easier to use, User-defined

numeric literals (AI12-0249) allows the user to define

numeric literals to be used with a (non-numeric) type, using

aspects Integer_Literal and Real_Literal to identify a

function that will do the interpretation. For example:

174 An Overv iew of Ada 202x

Volume 41, Number 3, Septembre 2020 Ada User Journal

type Big_Integer is private

 with Integer_Literal => Big_Integer_Value;

function Big_Integer_Value (S : String)

 return Big_Integer;

...

Y : Big_Integer := -3;

This is equivalent to:

Y : Big_Integer := - Big_Integer_Value ("3");

Named Numbers and User-Defined Numeric Literals

(AI12-0394) extends this to allow named numbers to be

used with user-defined literals.

User-defined string literals (AI12-0295) allows the user to

define string literals to be used with a non-string type, using

aspect String_Literal to identify a function that will do the

interpretation. For example:

type Varying_String is private

 with String_Literal => To_Varying_String;

function To_Varying_String (Source :

 Wide_Wide_String)

 return Varying_String;

...

X : constant Varying_String := "This is a test";

This is equivalent to:

X : constant Varying_String :=

 To_Varying_String

 (Wide_Wide_String'("This is a test"));

7.12 Objects, Values, Conversions and Renaming

There are several AIs that aim to make Ada more consistent

in its treatment of type conversions and qualified

expressions, objects and values.

A qualified expression makes a predicate check (AI12-

0100).

In Ada 2012, both a type conversion and a qualified

expression perform a range check (if there is a constraint),

but only the former performs a predicate check (if enabled).

In Ada 202x both perform both checks. For example:

subtype Even is Natural

 with Dynamic_Predicate => Even mod 2 = 0;

Var : Natural;

Three : constant Natural := 3;

Var := Even(Three); -- Predicate check, thus raises

 -- Assertion_Error

Var := Even'(Three); -- Previously no predicate check,

 -- now is.

Make objects more consistent (AI12-0226).

In Ada 2012 a type conversion between two tagged types

(termed a view conversion) gives an object, which can be

renamed, whereas a type conversion between two untagged

types (termed a value conversion) gives a value, which

cannot. In Ada 202x a value conversion of an object is

added to the list of things deemed to be an object, making it

consistent with a qualified expression. If we have

Max : constant Natural := 10;

then the following are now all legal:

Ren1 : Natural renames Max;

-- Legal

Ren2 : Natural renames Natural'(Max);

-- Qualified expression, legal

Ren3 : Natural renames Natural(Max);

-- Value conversion, was illegal, now legal

Renaming values (AI12-0383) takes this further by allowing

values to be renamed anyway, besides objects.

Make subtype_mark optional in object renames (AI12-

0275).

This makes the subtype optional in object renaming

declarations. The expression will be correctly typed as long

as the right hand object can be resolved to only one specific

type.

It has long been an irritant that writing a renaming

declaration required looking up the subtype of the object,

and giving the subtype can be misleading anyway. The

reader may be surprised to find that the following is valid

Ada:

 subtype My_Subtype is Integer range 3 .. 5;

 subtype Garbage_Subtype is Integer range -19 .. -7;

 X : My_Subtype;

 Y : Garbage_Subtype renames X;

begin

 case Y is

 when 3 .. 5 =>

 pragma Assert (Y in 3 .. 5);

 end case;

The subtype given in the renaming merely has to be a

subtype of the same type as the object being renamed. The

constraints, null exclusions, and predicates of the subtype

given in the renaming are ignored; instead they are taken

from the subtype of the object being renamed. Note that the

case statement has to have alternatives for each possible

value of the subtype of X, not of the supposed subtype of Y.

Requiring the subtypes to match has been considered in the

past, but obscure problems have always prevented this. For

backward compatibility reasons the subtype may still be

given, but it is (usually) no longer required.

Renaming of a qualified expression of a variable (AI12-

0401).

Ada 2012 allows a qualified expression to be renamed

(though possibly this had not been implemented by anyone

until recently). In the following, three subtypes are

involved:

 subtype Subtype_1 is Integer range …;

 subtype Subtype_2 is Integer range …;

 subtype Subtype_3 is Integer range …;

 X : Subtype_1;

 Y : Subtype_2 renames Subtype_3’(X);

J. Cous ins 175

Ada User Journal Volume 41, Number 3, September 2020

As described under Make subtype_mark optional in object

renames (AI12-0275), Subtype_2 is largely irrelevant.

Typically, a qualified expression is used to confirm which

type is meant when there is a possible ambiguity, as in:

type Traffic_Light is (Red, Amber, Green);

type Gemstones is (Amber, Ruby, Topaz);

… Traffic_Lights’(Amber) …

… Gemstones’(Amber) …

But in the above it is not a case of X being renamed, and

Subtype_3’ just being there to confirm the type; instead it is

the whole qualified expression Subtype_3’(X) that is the

object being renamed. Thus Y takes its constraints, null

exclusions, and predicates from Subtype_3. This could be

problematic if Subtype_3 has a narrower range than

Subtype_1, as in the following:

 X : Natural := …;

 Y : Positive renames Positive’(X);

begin

 X := 0; -- Alert!!

 case Y is

 when 1 .. Positive’Last =>

 pragma Assert (Y > 0);

 end case;

X is set to a value outside of the range of Y, effectively

bypassing the range check at the time of renaming, which is

meant to be a one-off affair, and not have to be repeated at

each subsequent use of Y.

To fix this hole, Renaming of a qualified expression of a

variable (AI12-0401) requires Subtype_3 to match either

Subtype_1 or its base type (in this case, Integer). Note that

the converse problem of writing a value to Y outside of the

range of X does not arise as a qualified expression gives a

constant (i.e. read-only) view.

7.13 Attributes for fixed point types (AI12-0362)

An implementation is permitted to support Floor, Ceiling,

and rounding attributes for fixed point types. The AI came

in rather late in the day to mandate support, but there is

sufficient support to add something.

8 Conclusion

Ada 202x will bring Ada into a new decade. May many

more projects be delivered successfully using it!

 177

Ada User Journal Volume 41, Number 3, September 2020

Real-time Issues in the Ada Parallel Model with

OpenMP

Luis Miguel Pinho

Polytechnic Institute of Porto, Portugal; lmp@isep.ipp.pt

Sara Royuela, Eduardo Quiñones

Barcelona Supercomputing Center, Spain; {sara.royuela,eduardo.quinones}@bsc.es

Abstract

The current proposal for the next revision of the Ada
language considers the possibility to map the
language parallel features to an underlying OpenMP
runtime. As previously presented, and discussed in
previous workshops, the works on fine-grain
parallelism in Ada map well to the OpenMP tasking
model for parallelism. Nevertheless, and although the
general model of integration, and the semantic
constructs are already reflected in the proposed
revision of the standard, the integration of these new
features with the Real-Time Systems Annex of Ada is
still not complete. This paper presents an overview of
what is supported and the still open issues.

1 Introduction

The existent proposal to extend Ada with a fine-grained

parallelism model is based on the notion of logical threads

of control: A single task, when within the context of a

parallel construct, can represent multiple logical threads of

control which can proceed in parallel (LRM 202X, ch. 9)

[1]. In this revision of the language, parallel constructs can

be found as parallel loops (LRM 5.5) and parallel bocks

(LRM 5.6.1), as well as reduction expressions (LRM

4.5.10) and iterators (LRM 5.5.2) [1]. This structured

approach to parallelism implements a fully-strict fork-join

model, as defined in the tasklet model [2].

In parallel to the development of the Ada language

specification, works have been made that demonstrate the

suitability of the OpenMP tasking model 1 to support the

parallel features of Ada [3], a topic which has been

discussed in the last IRTAW workshop [4]. Recently this

proposal has gained attraction, and a prototype

implementation is validating the possibility [5].

Nevertheless, although the current draft of the Ada 202X

standard already includes the parallelism support, and there

exists validation with a prototype implementation, the use

of the parallel features together with the Real-Time

Systems Annex of Ada is still unclear. In order to allow

1 The term task in OpenMP is not related to Ada tasks, as OpenMP tasks

are lightweight parts of the code that can be executed in parallel by worker

threads.

that the parallel features are used in a real-time application,

care must be taken that (i) the language model allows for a

correct execution according to the LRM Annex D

specifications, and (ii) the OpenMP and Ada runtimes are

correctly integrated.

It is already too late to propose changes to the Real-Time

Systems Annex to accommodate the use of the fine-grain

parallel features, therefore this paper starts a process to

analyse how this can be later performed (e.g., via a

technical report). It is nevertheless important to determine

if it is not necessary to update the annex taking into

consideration that a task can now represent multiple logical

threads of control. Note that in many places of the standard,

the word task is replaced by the logical threads of control,

but in Annex D only a note is made (LRM D2.1 4/5) [1].

On the other hand, the growing demand for high-

performance computing in embedded systems (e.g.,

autonomous driving) is pushing the use of high-level

parallel programming models, such as OpenMP, to exploit

embedded hardware. For that reason, there is a significant

effort in the OpenMP community to extend the use of

OpenMP to uses other than High-Performance Computing,

such as MPSoCs [6,7]. In this line, a discussion forum

within the OpenMP Architecture Review Board has been

made available to tackle the topics regarding real-time

systems, considering timing constraints and functional

safety.

Overall, the plan is to continue working in the real-time

interactions between Ada and OpenMP, in parallel to the

real-time OpenMP work, with the objective of proposing a

technical report to be included in Ada 203X (or before).

Note, nevertheless, that the open issues, and potential

solutions, are also applicable to non-OpenMP

implementations of the Ada parallel model.

2 System Model

The integration of real-time and parallelism in Ada is a

complex task, due to the complexity of the Ada

concurrency model, and the richness of its real-time

features. Therefore, in the current work we are assuming a

simplified Ada runtime, as well as the restriction to use

only the OpenMP tasking model (no use of OpenMP

threading constructs).

178 Real- t ime Issues in the Ada Paral le l Model wi th OpenMP

Volume 41, Number 3, September 2020 Ada User Journal

Therefore, the work considers architectures based on both

homogenous and heterogenous processors, restricted to:

1. Homogenous processors, with a multicore real-time

Operating System (OS), supporting global scheduling,

with a single ready queue across processors.

2. Heterogenous processors, with homogenous host

processors (using an OS as in 1) and a heterogenous

fabric, which is either opaque to OpenMP, and is

treated as an independent accelerator (using message

passing), or also managed by an OpenMP runtime,

with a minimal or eventually with no OS.

The plan is to later remove these restrictions, supporting

other models, in particular with partitioned scheduling (one

fixed-priority scheduler per core, with no thread migration),

and EDF and server-based scheduling in the host part of

heterogenous processors.

3 Current Status

The current work on implementing the proposed parallel

model for Ada includes the implementation on top of a

generalized lightweight parallel model, which can be

mapped to OpenMP (or other implementations). Figure 1

shows the high-level architecture of the approach used by

AdaCore in their prototype implementation [5]. There, the

Ada 202X parallel model is automatically transformed by

the compiler into generic calls of an intermediate API

implemented in System.Parallelism. This API uses the

System.LWT module to initialize and finalize parallel

regions, as well as to implement the specific light-weight

thread support, currently for (a) OpenMP, (b) a work-

stealing approach, and (c) a storage approach (for reducing

the heap usage).

In this approach, Ada tasks with no parallelism are mapped

to just one thread, and each Ada task enclosing a parallel

region is associated with a thread pool provided by

OpenMP to execute the fine-grain parallel constructs

(Figure 2). This implementation entails a limitation on the

overall scheduling of the application, and this is related to

how OpenMP defines parallel regions. In this regard, the

team of threads that is associated to each parallel region in

OpenMP, constitutes a black box for the rest of teams in

OpenMP [8], as well as for the Ada scheduler. This may

cause the execution to be non-conforming with specific

real-time requirements, such as keeping a work-conserving

strategy, or ensuring a priority-driven scheduler. Different

solutions have been proposed to tackle this issue, some

involving alterations to the OpenMP specification to avoid

the black-box nature of OpenMP teams [9], another

enforcing specific implementations of the OpenMP

specification regarding the mapping to the underlying

resources [10], and finally, and most relevant to this work,

another offering a specific templated execution that forces a

unique OpenMP team of threads to be accessed from any

Ada task [11]. The prototype implementation propagates

Ada priorities to the threads created for the OpenMP

parallel, which allows to solve this problem.

System.LWTSystem.Parallelism

System.LWT.OpenMP System.LWT.StorageSystem.LWT.WorkStealing

libgomp(GCC)

Ada parallel code

Compiler
Automatic
transformation

User code
Ada SW components
OpenMP SW components

Figure 1. Ada parallel model implementation by AdaCore.

Figure 1. Model of an Ada application with 4 tasks: 2 with no parallel constructs, and 2 with parallel constructs.

OpenMP
thread

pool

Operating
System

Task to thread
OpenMP scheduing

OS thread
scheduling

Ada
seq
task

Ada
seq
task

OpenMP
thread

pool

Ada parallel
task

Ada parallel
task

L. M. Pinho, S . Royuela, E. Quiñones 179

Ada User Journal Volume 41, Number 3, September 2020

Additionally, the presented approach assumes that each

OpenMP thread is mapped 1-to-1 to operating system

threads, which is typically the case (e.g., GCC’s libgomp)

since threads are reused only when there is no nested

parallelism and between consecutive parallel regions. This

mapping allows to simplify analysis and implementation (it

makes an Ada task enclosed in a defined set of threads).

At the same time, several works have tackled the OpenMP

standard considering Real-time restrictions in two

directions: time predictability and functional safety.

Regarding the former, the suitability of the OpenMP

tasking model to derive timing guarantees based on a Task

Dependency Graph (TDG) has been proved [12], the timing

behaviour of both tied and untied tasks has been

characterized [13] [14], and the OpenMP specification has

been analysed and provided with augmentations to support

the features needed in critical real-time systems [8].

Regarding the latter, the functional safety of the OpenMP

4.5 specification has also been analysed [15], and several

works tackle different aspects such as correctness,

including race conditions [16] and deadlocks [17],

resiliency [18] and programmability [19] [20].

4 Issues which have been addressed

The impact of fine-grained parallelism in the Ada

specification has been discussed for several years, in

particular in the context of the IRTAW Workshop [4].

Several of the issues which have been discussed are already

addressed in the proposed Ada 2020X standard [1].

Parallelism inside protected actions

One of the recurrent issues was what would happen in

parallel code would be executed whilst the Ada task was

executing a protected action. This has been addressed, and

the solution is to force that all logical threads of control

created inside a protected action are executed (in an

arbitrary order) by the logical thread of control which is

executing the protected action (LRM 9.5.1) [1]. This, in

fact, makes the execution sequential.

Potentially blocking operations

The execution of a potentially blocking operation inside

parallel code was a subject of intense discussion, and one

of the main challenges in supporting fine-grained

parallelism. Although a solution was proposed [21], the

adopted approach was to disallow these operations, and

handle this situation as a bounded error (LRM5.1-18/5) [1].

This makes use of the new Nonblocking aspect in Ada

202X.

Abort and transfer of control

Another issue which was discussed several times was what

would happen in the case of task cancelling. The approach

(LRM 5.1-16/5 and 17/5) [1] is to attempt to cancel all

logical threads of control, and prevent new ones to be

started. Note that the specification allows deferring the

cancel further than an abort deferred operation, but not the

creation of new parallel constructs. Parallel constructs are

not abort-deferred operation, but abort must be made as

soon as an abort completion point is reached (LRM 9.8)

[1]: for parallel constructs this is where a new logical

thread of control would be created or the end of the parallel

construct. Both Ada and OpenMP allow for cancelation to

be checked in specific predefined points (OpenMP parallel

regions can only be cancelled by means of cancellation

constructs, i.e., cancel and cancellation point). Hence, in

order to be able to stop the parallel computation in an

OpenMP region the compiler can insert cancellation points

in places where it is safe to abort the operation without

affecting the correctness of the application.

Shared variables

The parallel access to shared variables is addressed both

considering the rules for unsynchronized access to

variables (LRM 9.10) [1], and access to Atomic and Volatile

objects (LRM C.6) [1]. Ada already had the notion of

concurrent activities accessing shared data, which were

only necessary to be updated to consider logical threads of

control instead of tasks. Note that this also includes access

to task attributes, which were already required to use locks

(LRM C7.2) [1].

Exceptions

From the point of view of the model presented in this

paper, exceptions are in fact handled as a transfer of control

issue. If some exception is raised and handled inside the

code being executed in one OpenMP thread, then there is

no impact, as it is handled inside this thread. If,

nevertheless, it is propagated outside of the parallel

construct, it is necessary to cancel the execution in the

other threads (which is made as noted for the transfer of

control). If several exceptions are raised, an arbitrary one

can be selected (LRM 5.1 16/5) [1] (the AdaCore

implementation selects the “first” that informs the runtime

[5]).

5 Real-time systems

Real-time systems impose different requirements regarding

the scheduling, which are also affected by the use of

parallel regions inside tasks.

Task priorities

The priority model which is specified in Annex D (LRM

D.1) [1] specifies that each Ada task is provided with a

Priority aspect that defines a degree of urgency, and that,

except when explicitly noted, should be used to determine

the next task to execute: processors are allocated to the

ready task with the highest priority value. OpenMP also has

a notion of priority, but that is only used as a hint, and a

recommendation for the execution of OpenMP tasks

(OpenMP specification, 2.10.1) [22].

Nevertheless, the current model of mapping OpenMP

threads 1-to-1 to operating system threads, allows to

address this difference, if the priority of the Ada task is

propagated to the underlying OS threads. In this case,

OpenMP priorities are hidden due to the black-box nature

of task-to-thread mapping. All threads from the same

thread pool would have the same priority (the priority of

180 Real- t ime Issues in the Ada Paral le l Model wi th OpenMP

Volume 41, Number 3, September 2020 Ada User Journal

the Ada task), thus the semantics of Ada priority would be

kept, and analysis is possible to guarantee real-time

requirements.

It is nevertheless important to note that there are works

proposing that OpenMP task priorities are made global to

all thread pools, and that priority becomes more than just a

recommendation [8]. But in this case, it is possible to

propagate the Ada task priorities to OpenMP tasks

priorities, thus still maintaining the semantics of Ada

priorities.

Dynamic changes to priorities

Priority in Ada may change in two different conditions

(LRM D.1 19/3-24) [1]:

- The base priority of a task is changed through a

Set_Priority procedure call.

- The active priority of a task changes due to priority

inheritance (e.g., when accessing a protected object).

Either changes to the base priority or active priority must

be taken into consideration for the execution in a parallel

construct. This can happen, for instance, if a task changes

its priority (or has its priority changed) with Set_Priority

while executing parallel code (thus, actually executing in

more than one thread), or if one of the “branches” of the

parallel construct executes a call to a protected object with

a ceiling priority higher than the current active priority of

the task.

For the case of changing the base priority of the task, with

Set_Priority, the proposal is to extend the current

specification so that the change of the priority is only

performed outside of the parallel construct. Currently, in a

single processor, Set_Priority needs to be executed as soon

as the task is outside of a protected action. For

multiprocessors, an implementation needs to document the

conditions that may delay the change. Note that this is

stronger than the current approach for deferring transfer of

control, which cannot be delayed past the creation of new

logical threads of control. In this case, it would need to be

deferred completely to the end of the parallel construct.

This can be specified in the Dynamic priorities section of

the LRM (D.5.1).

Priority inheritance is used to guarantee the correctness of

access to shared protected objects (other sources of priority

inheritance, e.g., task activation or accepting entry calls,

cannot exist when executing in a parallel construct). In this

case, when accessing a protected object with e ceiling

priority higher than its current active priority, the task

inherits the ceiling priority of the object. Although this still

needs careful analysis, a potential approach is to change

only the active priority of the parallel “branch” executing

the protected action, thus allowing a task to have more than

one active priority at a time (replacing task by logical

thread of control in section D.3 of the LRM, and allowing

for multiple active priorities in section D.1). Note that

currently a task only has one active priority, therefore if a

logical thread of control accesses a protected object, all

parallel logical threads need to change.

Other dispatching models

Ada specifies not only preemptive priority-driven

scheduling, but other different models:

- Non-preemptive dispatching.

- Round-robin dispatching.

- Earliest Deadline First (EDF) dispatching.

For non-preemptive dispatching, as the Yield procedures

are specified as Nonblocking => False, they cannot be

called from within a parallel construct. Therefore, parallel

code is always non-preemptible 2.

For Round-robin dispatching, the main issue is if a

quantum is defined per task, or per logical thread of

control. As it is currently specified, it is per task, which

means that when the quantum is exhausted, all logical

threads of control of that task need to also be moved to the

tail of the ready queue. The main issue is how to account

for the parallel execution time, and the accuracy of

determining it has exhausted. This is similar to execution

time timers, therefore the discussion is left for that section.

For EDF dispatching, the same approach as used for

priorities can be used. If the underlying operating system

supports EDF, the relative deadline of an Ada task needs to

be propagated to the OS thread. OpenMP tasks have no

deadlines, but again the mapping of OpenMP tasks to

threads is treated as a black-box from the OS scheduling

point of view.

Moreover, with the addition of parallel capabilities, other

dispatching models may be interesting to explore:

- Limited preemptive dispatching: OpenMP executes

OpenMP tasks in the threads non-preemptively. This is

mainly to reduce preemption overhead, as well as

reduce caching issues, as it is assumed that preempting

while a computation is taking place increases the risk

of invalidating cache lines being used by that

computation. Due to that, a specific implementation of

a lightweight OpenMP runtime [23] and OS [24]

propagates the preemption points of OpenMP tasks to

the underlying OS threads so that threads are only

preempted at these points.

- For more dynamic parallel real-time systems, server-

based scheduling is an interesting approach to support

real-time applications. In this case, the need to account

for execution budget becomes fundamental.

Execution time timers

Ada Annex D has several capabilities to handle execution

time control (D.14), and in particular it allows to set

handlers when a task or a group of tasks has used a specific

2 Note that it is not explicit, in a multiprocessor setting, if Yield in one of
the processors affects that processor only. If global scheduling is being

used, there is only one dispatcher, but other processors may be executing

non-preemptive tasks. Yield forces a task dispatching point, but it is

implicit that only the processor where it is executed is affected.

L. M. Pinho, S . Royuela, E. Quiñones 181

Ada User Journal Volume 41, Number 3, September 2020

amount of CPU time. When in a parallel setting, a task may

be executing in more than one CPU at a time, therefore the

implementation of an execution time timer needs to

consider the execution time in all CPUs where the task is

executing 3, which means that the detection of execution

time expiration may not be immediate.

Several different solutions exist (e.g., to account only for

execution time in the CPU where the task has set the

handler, to disregard execution time accounting for parallel

tasks, to consider that the execution time accounting is for

each parallel thread independently). Nevertheless, budgets

may be required to be per task, and in this case, the

execution time needs to accumulate from different CPUs.

This can be performed only at specific points in the parallel

code (e.g., the same as used for cancelation polling), which

means some loss of accuracy.

Asynchronous Task Control and Preemptive Abort

Preemptive Abort (LRM D.6) specifies that in a single

processor an abort is completed immediately at the first

point that is outside of an abort-deferred operation. This is

more restrictive than for the general case (LRM 9.8), but

possible in a single processor. For the multiprocessor case,

the only requirement is that an implementation document

any further delay.

The Asynchronous Task Control (LRM D.11) specifies the

behaviour in terms of the notion of the held priority.

Similar to inherited priorities, it is necessary to understand

if this reflects in the logical thread of control, or the whole

task. The latter case is potentially the preferred one, which

means that if it is accepted that a task may have multiple

active priorities (see Dynamic changes to priorities above),

then the held priority must be made clear as affecting all

active priorities of a task.

Multiprocessor dispatching domains

The notion of dispatching domains is used in Annex D to

specify the set of processors where a task may execute.

This allows to specify from a fully global scheduling (all

tasks may execute in all processors with a single ready

queue) to fully partitioned scheduling (each task is

statically assigned to one particular CPU, and each CPU

has a separate, even if conceptual, ready queue).

However, when going into a parallel setting, there is

another dimension, which is the fact that an Ada task may

be executing in several processors, but it may be relevant to

disallow migrations between the processors (a computation

which starts in a specific core always continues in this

core). This model is applicable to the case where the Ada

task has a set of threads available for the parallel execution,

with each one of these threads pinned to one core. The

current support for dispatching domains does not allow

such model, since if a task is able to execute in more than

3 This does not happen for group execution time budgets, since these are

per CPU (precisely to avoid the multiprocessor accounting of execution

time).

one core, there is a single ready queue in the domain, and

worker threads may migrate from core to core.

Therefore, a possibility is to extend the current model with

a Logical_Thread_of_Control object added to the

Assign_Task procedure, which will provide the information

on the allocation of underlying threads per CPU, as well as

if migration is allowed.

Control of the underlying runtime (number of OpenMP

tasks and worker threads)

Although analysis exists that can extract an extended task

dependency graph of a code with OpenMP tasking

annotations [25], and that therefore can be applied to Ada

parallel code, one important issue for real-time is the

possibility to define the number of worker threads of a

parallel construct, as well as the parallel load in each

thread. For the latter, parallel blocks are not an issue (as the

number of parallel “branches” is fixed), but in parallel

loops it is necessary to specify the amount of parallelism to

provide. The current draft of the standard allows to specify

the maximum number of chunks (LRM 5.5) [1] of a loop,

but not a minimum, or a specific number.

Concerning the former, although not in the draft standard,

the current prototype implementation [5] allows to specify

the number of threads a task will have available for

parallelism. However, this will be a per Ada task number,

which will be fixed, and no possibility exists to specify in a

particular loop, iterator or block, the actual number of

threads to be used.

Acknowledgements

This work was supported by the Spanish Ministry of

Science and Innovation under contract TIN2015-65316-P

and by the European Union’s Horizon 2020 Research and

Innovation Programme under grant agreements No 825473

and No 871669.

References

[1] Ada Rapporteur Group, “Ada Reference Manual, 202x

Edition, Draft 26,” 2020. [Online]. Available:

http://www.ada-auth.org/standards/2xrm/html/RM-

TTL.html. [Accessed September 2020].

[2] L. M. Pinho, B. Moore and S. Michell, “Parallelism in

Ada: status and prospects” in International Conference

on Re-liable Software Technologies – Ada-Europe

2014, LNCS 8454, Springer, 2014.

[3] S. Royuela, C. Martorell, E. Q. X and L. M. Pinho,

“OpenMP tasking model for Ada: safety and

correctness” in 22nd International Conference on

Reliable Software Technologies (Ada-Europe 2017),

pp 184-200. Vienna, Austria, 2017.

[4] L. M. Pinho and T. Vardanega, “Session Summary:

Parallel Programming,” in IRTAW 2018, Ada Lett. 38,

1, 58–60, 2018. DOI:https://doi.org/10.1145/

3241950.3241960, 2018.

[5] S. T. Taft, “Report on Ada 202X light-weight

parallelism features” 2020.

182 Real- t ime Issues in the Ada Paral le l Model wi th OpenMP

Volume 41, Number 3, September 2020 Ada User Journal

[6] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A.

Shrivastava and A. Gatherer, “Implementing OpenMP

on a High-Performance Embedded Multicore

MPSoC,” in International Symposium on Parallel &

Distributed Processing, 2009.

[7] A. Marongiu, P. Burgio and L. Benini, “Supporting

OpenMP on a Multi-cluster Embedded MPSoC,”

Microprocessors and Microsystems, vol. 35, no. 8, pp.

668-682, 2011.

[8] M. A. Serrano, S. Royuela and E. Quiñones, “Towards

an OpenMP Specification for Critical Real-Time

Systems,” in International Workshop on OpenMP

(IWOMP), 2018.

[9] M. Garcia, J. Corbalan, R. M. Badia and J. Labarta, “A

Dynamic Load Balancing Approach with

SMPSuperscalar and MPI,” in Facing the Multicore-

Challenge II, 2012.

[10] S. Royuela, M. A. Serrano, M. Garcia-Gasulla, S. M.

Bellido, J. Labarta and E. Quiñones, “The Cooperative

Parallel: A Discussion about Run-time Schedulers for

Nested Parallelism,” in International Workshop on

OpenMP (IWOMP), 2019.

[11] S. Royuela, L. M. Pinho and E. Quiñones, “Enabling

Ada and OpenMP Runtimes Interoperability through

Template-based Execution,” Journal of Systems

Architecture, vol. 105, 2020.

[12] R. Vargas, E. Quiñones and A. Maronjiu, “OpenMP

and Time Predictability: A Possible Union?” in

Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2015.

[13] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M.

Bertogna and E. Quiñones, “Timing Characterization

of OpenMP4 Tasking Model,” in International

Conference on Compilers, Architecture and Synthesis

for Embeded Systems (CASES), 157-166.

[14] J. Sun, N. Guan, Y. Wang, Q. He and W. Yi, “Real-

time Scheduling and Analysis of OpenMP Task

Systems With Tied Tasks,” in IEEE Real-Time

Systems Symposium (RTSS), 2017.

[15] S. Royuela, A. Durán, M. A. Serrano, E. Quiñones and

X. Martorell, “A Functional Safety OpenMP* for

Critical Real-time Embedded Systems,” in

International Workshop on OpenMP (IWOMP), 2017.

[16] U. Banerjee, B. Bliss, Z. Ma and P. Petersen, “A

Theory of Data Race Detection,” in Workshop on

Parallel and Distributed Systems: Testing and

Debugging, 2006.

[17] D. Kroenig, D. Poetzel, P. Schrammel and B. Watcher,

“Sound Static Analysis for C/Pthreads,” in IEEE/ACM

International Conference on Automated Software

Engineering, 2016.

[18] M. Wong, M. Klemm, A. Duran, T. Mattson, G. Haab,

B. R. de Supinski and A. Churbanov, “Towards an

Error Model for OpenMP,” in International Workshop

on OpenMP, 2010.

[19] S. Royuela, A. Duran, C. Liao and D. J. Quinlan,

“Auto-scoping for OpenMP Tasks,” in International

Workshop on OpenMP (IWOMP), 2012.

[20] S. Royuela, A. Durán and X. Martorell, “Compiler

Automatic Discovery of OmpSs Task Dependencies”

2012.

[21] L. M. Pinho, B. Moore, S. Michell and S. T. Taft, “An

Execution Model for Fine-Grained Parallelism in

Ada,” in Proceedings of the 20th Ada-Europe

International Conference on Reliable Software

Technologies, Madrid Spain, June 22-26, 2015.

[22] OpenMP Architecture Review Board, “OpenMP

Application Programming Interface” 2018.

[23] A. Marongiu, G. Tagliavini and E. Quiñones,

“OpenMP Runtime,” in High-Performance and Time-

Predictable Embedded Computing, 2018.

[24] C. Scordino, E. Guidieri, B. Morelli, A. Marongiu, G.

Tagliavini and P. Gai, “Embedded Operating

Systems,” in High-Performance and Time-Predictable

Embedded Computing, 2018.

[25] M. A. Serrano, S. Royuela, A. Marongiu and E.

Quinones, “Predictable Parallel Programming,” in

High-Performance and Time-Predictable Embedded

Computing, 2018.

[26] M. A. Serrano, S. Royuela and E. Quiñones, “Towards

an OpenMP Specification for Critical Real-time

Systems,” in International Workshop on OpenMP

(IWOMP), 2018.

[27] AdaCore, “GitHub - AdaCore/gnat-llvm: LLVM based

GNAT compiler” 2020. [Online]. Available:

https://github.com/AdaCore/gnat-llvm.

[28] S. Royuela, R. Ferrer, D. Caballero and X. Martorell,

“Compiler analysis for OpenMP tasks correctness,” in

International Conference on Computing Frontiers

(CF), 2015.

[29] B. Moore, L. M. Pinho, S. Michell, “Tasklettes – a

Fine Grained Parallelism for Ada on Multicores,” in

International Conference on Reliable Software

Technologies – Ada-Europe 2013, LNCS 7896,

Springer, 2013.

183

Vectorization Challenges in Digital Signal
Processing ∗

Jorge Garrido, David Pisonero, Juan Zamorano, Juan A. de la Puente
Sistemas de Tiempo Real e Ingeniería de Servicios Telemáticos (STRAST)
Information Processing and Telecommunications Centre (IPTC)
Universidad Politécnica de Madrid (UPM); email: str@dit.upm.es

Abstract

The paper analyses the support for vectorization that
can be found in some programming languages, and the
ways it could also be used in Ada. A proposal for an
Ada extension for enhanced vectorization support is
included.

1 Introduction

The vector processing capabilities of current mainstream
general-purpose CPUs enable signal processing applications
to be implemented on low-cost platforms, thus making such
systems easier to maintain and build from COTS components.
Most vector processing architectures implement the SIMD
(single instruction – multiple data) concept of parallelism,
where an operation is performed on multiple array elements
at the same time. A well-known example is the sets of Intel
x86 MMX, SSE and AVX instructions [1].

Some common algorithms which can be efficiently imple-
mented on SIMD architectures include Kalman filters [2, 3]
and Fast Fourier Transforms (FFT) [4, 5], as well as many
other algorithms commonly used in signal processing and
control systems. Such algorithms are often used in embedded
real-time systems with high integrity requirements, where
Ada is the primary choice as a programming language. There-
fore, it seems to be worth exploring the use of Ada on vector
architectures.

In the rest of this paper we provide a preliminary view
in that direction. Section 2 introduces the current support
for vectorization in programming languages, including auto-
vectorization, guided vectorization, and low-level vectoriza-
tion, as well as some performance measurements for a simple
example using these approaches. The support for vectoriza-
tion in Ada is examined in section 3, and a proposal is made
for an Ada extension providing further support for vectoriza-
tion. Finally, conclusions are drawn in section 4.

∗This work has been partially funded by the Spanish National R&D&I
plan (project PRECON-I4, TIN2017-86520-C3-2-R).

2 Current vectorization support
Current vectorization alternatives and support can be catego-
rized following different criteria. One of these criteria is the
abstraction level.

• Auto vectorization: vectorization is fully controlled by
the compiler, normally upon user request. gcc and icc
support auto vectorization using the -03 flag.

• Guided vectorization: the programmer provides partial
information on where and how to vectorize with either
pragmas or hints.

• Low level vectorization: the programmer directly calls
vector instructions either via intrinsics or assembly in-
structions. C++ provides classes for manipulating com-
mon data types.

Alternatively, for certain applications such as signal process-
ing there are libraries with optimized functions using vector-
ization, among other techniques. One example of this is the
Intel R© Math Kernel Library [6].

In the rest of this section a brief insight on relevant examples
of each previously mentioned approach will be provided,
along with an example based on a sum of two arrays. Finally,
a performance comparison among presented approaches will
be provided based on measured execution times of given
examples.

2.1 Auto vectorization

Several compilers incorporate nowadays vectorization as part
of the automatic optimization procedures. This approach
eases the adoption of vectorization, in particular for legacy
code or for inexperienced users. Its main drawbacks are the
loss of control over the implementation and the time and
space required for compilation, since, unless the processor
microarchitecture is known a priori and declared using com-
piler switches, most compilers rely on generating different
versions for the same function, including different vectoriza-
tion alternatives.

Among the compilers supporting auto vectorization are gcc
and icc which do so via the −O3 (gcc) and −O2 and −O3 (icc)
flags. icc also includes a reporting feature, which provides the
user with information about which sections of code have been

Ada User Jour na l Vo lume 41, Number 3, September 2020

184 Vector iza t ion Chal lenges in Dig i ta l S igna l Process ing

vectorized, and which could be vectorized but present diffi-
culties preventing the vectorization (such as data not properly
aligned).

Listing 1 presents the example that will be used in the rest
of the document. The code tests the performance of a sum
of vectors. In this case as auto vectorization is used, this
presented code is plain C++ and results obtained compiling
with gcc and −O2 flag will serve as a reference for comparison
purposes, while results with −O3 (and icc −O2) will showcase
the speedup using vectorization.

Listing 1: Running example implementation in plain C++.

float[] add(float vinA[], float vinB[],
int count) {
vout[count];
for(int index = 0; index < count; index++) {

vout[index] = vinA[index] + vinB[index] ;
}
return vout;

}

2.2 Guided vectorization
Guided vectorization provides the user with higher control
over the vectorization optimization. This control is expressed
via pragmas or specific syntax, including reserved words
and extended array notation. Languages that natively incor-
porate guided vectorization include Julia or R. C inspired
languages also providing means for vectorization are ISPC
and OpenCL. The former has the advantage of being designed
to be integrated into C-based programs by just linking with
the generated .o files. The latter, while also based in C, uses a
Just-In-Time compilation mechanism to provide both task and
data parallelism as well as native support for GPU allocation
of chunks.

Listing 2 presents the running example implementation of
the vector sum using ISPC. This code, as mentioned before,
is compiled using the ispc compiler to produce a .o file to
be later linked with the program accessing the function. In
this code, the foreach statement provides the compiler the
domain of integer range on which the function is going to
execute. It can include a multi-dimensional domain separated
by commas (eg: foreach (j = 0 ... height , i = 0 ... width)), but
can not contain break statements.

Listing 2: Example implementation using Intel R© ISPC.

export void add(uniform float vinA[],
uniform float vinB[], uniform float vout[],
uniform int count) {
foreach (index = 0 ... count) {
// Load the appropriate input value for this program instance .

float vA = vinA[index];
float vB = vinB[index];

// And write the result to the output array .
vout[index] = vA + vB;

}
}

Another alternative from Intel R© is CilkTM. For what regards
to vectorization, it follows what its called the array notation,
providing explicit data parallelism.

Listing 3: Example implementation using Intel R© CilkTMarray
notation.

float[] add(float vinA[], float vinB[],
int count) {
float vout[count];
vout[0:count] = vinA[0:count] + vinB[0:count];
return vout;

}
// or just C[:] = A[:] + B [:]; if A and B are statically allocated

Finally, both the Intel R© icc compiler and OpenMP accept
vectorization hints from the user in the form of pragmas [7,8].
Furthermore, the latter allows combining vectorization and
parallel instructions in for loops.

2.3 Low level vectorization

Finally, Intel R© also does offer the possibility of having full
control over the vectorization via intrinsics [9]. Intrinsics,
provide access to vectorized functions and data types. This
includes different (power of two-length) data types and basic
functions for arithmetics, bit manipulation, math functions,
cryptography, among others.

Listing 4: Example implementation using Intel R© intrinsics.

float[] add(float vinA[], float vinB[],
int count) {
float vout[count];

for (int i=0; i<count; i+=16){
__mm512 Avec = _mm512_load_ps (vinA+i);
__mm512 Bvec = _mm512_load_ps (vinB+i);
Avec = _mm512_add_ps (Avec,Bvec);
_mm512_store_ps(vout+i, Avec);

}
return vout;

}

A more legible code than that of Listing4 can be achieved
using the C++ vector class library [10].

Listing 5: Example implementation using C++ vector class li-
brary.

float[] add(float vinA[], float vinB[],
int count) {
float vout[count];

for (int i=0; i<count; i+=16){
F32vec16 *Avec = (F32vec16*) (vinA+i);
F32vec16 *Bvec = (F32vec16*) (vinB+i);
F32vec16 *Ovec = (F32vec16*) (vout+i);

*Ovec = *Avec + *Bvec;
}
return vout;

}

Main drawback of this approach is that the user is fully re-
sponsible for the correctness and efficiency of the solution.
In particular, the user is responsible for the "peel loop" (it-
erations until data is aligned) and "remainder loop" for data
exceeding power of two size.

Volume 41, Number 3, September 2020 Ada User Jour na l

J.Garr ido, D. P isonero, J. Zamorano, J.A. de la Puente 185

2.4 Performance

Table 1 presents the average execution time of the example
with a relevant number of elements under different configura-
tions. As can be seen, the use of SIMD instructions produces
a notable improvement as it halves the execution time for
the example. Among vectorized approaches, performance-
specific guided vectorization of ISPC provides roughly a 10%
improvement over the auto vectorization approaches. Intrin-
sics provide an extra ∼3% of execution time reduction.

3 Vectorization in Ada
3.1 Current support for vectorization in Ada pro-

grams

Ada applications can nowadays benefit from vector instruc-
tions. This can be achieved following different approaches.
One approach is to link the Ada application with specific
pieces of code developed with languages and tools provid-
ing guided or low-level vectorization using Ada interfac-
ing functionality. This has been done importing and link-
ing the ISPC vector function in Listing 2, producing the re-
sults shown in Table 2. The other potential approach is to
rely on the compiler to automatically produce vector instruc-
tions when appropriate flags are passed. Results of a native
Ada implementation compiled with gnat 8 and −O3 flag (and
−O2) for comparison are also presented in Table 2. Finally,
gnat includes an implementation defined pragma Loop_Optimize
which accepts Ivdep | No_Unroll | Unroll | No_Vector | Vector as
optimization hints. For this pragma to take effect, relevant
switches (−funroll−loops −ftree−vectorize) are still required.

As can be seen, measured times are similar to those of Table 1
with Ada vectorization (both automatic with the −O3 flag and
using the pragma), producing slightly worst results, partic-
ularly when the number of elements is not a power of two.
It does, however, also roughly halve the execution time of
vectorized code.

Despite the execution time improvement resulting of these
approaches, none of them match Ada standards in the main
strengths of the language in its application domains. Im-
porting code generated with vector-specific languages and
compilers increases the number of code pieces and tools sub-
ject to verification and certification. Just relying on auto
vectorization undermines user influence on performance and
low-level, potentially platform-based, control of execution.

Finally, using a compiler defined pragma for requesting the
vectorization itself can cause portability issues and limits the
expressiveness to provide more refined vector optimization
hints.

3.2 Proposal
Following the adoption of the parallel execution model and
parallel loop, the language can also benefit from vectorization
support. In particular, and following the parallel model, a
native guided vectorization approach could be aligned with
the language design goals and provide sufficient support for
Ada traditional areas of application, such as signal processing.

We propose the reserved word vector to be used at the iteration
scheme of for loop statements to indicate the user request for
the use of SIMD instructions inside the loop when available.

Listing 6: Example implementation using Ada vector proposal.

vector
for I in V_Out’Range loop

V_Out (I) := V_In_A(I) + V_In_B(I);
end loop;

Same as OpenCL and OpenMP, a for loop could also be both
paralleled and vectorized, potentially defining a number of
chunks. parallel precedes vector since what can be vectorized
is the data processed by each chunk.

Listing 7: Example implementation using Ada vector proposal
and parallel notation.

declare
subtype Chunk_Number is Natural range 1 .. 8;

begin
parallel (Chunk in Chunk_Number) vector
for I in V_Out’Range loop

V_Out (I) := V_In_A(I) + V_In_B(I);
end loop;

end;

Control over vectorization could be refined by means of im-
plementation defined pragmas. In contrast to current gnat
implementation, icc and/or OpenMP include hints on the
average, maximum, minimum or exact number of iterations,
vector length, if remainders are to be also vectorized or not, or
to produce an error at compile time if the loop can not be vec-
torized among others. These optimization parameters are es-
sential to produce efficient implementations of math-intensive
applications such as real-time FFT-based signal processing
and could foster the development of new application-specific
high-performance Ada libraries .

Table 1: Summary of average time executions of running example. Values are average of 100,000 executions and are expressed in µs.

Test GCC -O2 GCC -O3 ICC -O2 ICC -O3 ISPC Intrinsics
500.000 elements 260 113 111 110 102 100
524.288 (219) elements 275 125 122 118 111 108

Table 2: Summary of average time executions of Ada-based example implementations. Values are average of 100,000 executions and
are expressed in µs.

Test Ada -O2 Ada ISPC Ada vectorization
500.000 elements 249 107 126
524.288 (219) elements 351 129 129

Ada User Jour na l Vo lume 41, Number 3, September 2020

186 Vector iza t ion Chal lenges in Dig i ta l S igna l Process ing

4 Conclusions
The Ada language is well known for its rich tasking model,
strong typing and native support for many low level program-
ming features. Recently, the language has benefited from the
adoption of multiprocessor platforms and related updates in
the tasking model. Next language revision will also incorpo-
rate parallel execution of instructions within a for loop.

In this paper the state of the art with regards to parallel execu-
tion of instructions over array-stored data, taking advance of
vector instructions present in modern processors, is reviewed.
This review is enriched with an example highlighting the
performance increase that can be obtained using these instruc-
tions. Then, current Ada support for vector instructions is
analyzed, finding potential areas of improvement. Finally,
a language extension is proposed to enhance and formalize
this support while being consistent with the adopted parallel
model.

References
[1] H. Amiri and A. Shahbahrami, “SIMD programming

using Intel vector extensions,” Journal of Parallel and
Distributed Computing, vol. 135, pp. 83 – 100, 2020.

[2] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” ASME Journal of Basic Engineer-
ing, vol. 82, no. 1, pp. 35–45, 1960.

[3] S. Gorbunov, U. Kebschull, I. Kisel, V. Lindenstruth,
and W. Müller, “Fast SIMDized Kalman filter based
track fit,” Computer Physics Communications, vol. 178,
no. 5, pp. 374–383, 2008.

[4] J. W. Cooley and J. W. Tukey, “An algorithm for the
machine calculation of complex Fourier series,” Math-
ematics of Computation, vol. 19, no. 90, pp. 297–301,
1965.

[5] J. W. Cooley, P. A. Lewis, and P. D. Welch, “The fast
Fourier transform and its applications,” IEEE Transac-
tions on Education, vol. 12, no. 1, pp. 27–34, 1969.

[6] “Intel math kernel library.” https://software.
intel.com/en-us/mkl. Accessed: 2020-02-04.

[7] “Intel R© C++ compiler 19.1 developer guide and
reference - intel-specific Pragma Reference -
SIMD.” https://software.intel.com/en-
us/cpp-compiler-developer-guide-and-
reference-simd. Accessed: 2020-02-04.

[8] “OpenMP 5.0 API Specification - 2.9.3 SIMD
Directives.” https://www.openmp.org/spec-
html/5.0/openmpsu42.html. Accessed: 2020-
02-04.

[9] “Intel R© intrinsics guide.” https://software.
intel.com/sites/landingpage/
IntrinsicsGuide. Accessed: 2020-02-04.

[10] “Intel R© C++ compiler 19.1 developer guide
and reference - C++ classes and SIMD opera-
tions.” https://software.intel.com/en-
us/cpp-compiler-developer-guide-
and-reference-c-classes-and-simd-
operations. Accessed: 2020-02-04.

Volume 41, Number 3, September 2020 Ada User Jour na l

 187

Ada User Journal Volume 41, Number 3, Septembre 2020

The Problem of the Nested Squares

John Barnes

11 Albert Road, Caversham, Reading, RG4 7AN, UK; Tel: +44 118 9474125; email: john@jbinformatics.co.uk

Hello readers

We start by considering the solution to the problem about a

Greek Cross given last time.

The problem was to divide a Greek cross into two equal

small crosses as in the diagram below. The question is

where are the points A and B? The Boys' Own Paper for

January 1918 said that B is at the midpoint of the short side,

which is correct. It also claimed that A is one-third of the

way along the end. However, that is not correct. So where

is A?

There are various ways of tackling this using a dash of

tiresome trigonometry. They often use the formula for the

tangent of the sum of two angles which one might (or might

not) remember is

 tan (A + B) = (tan A + tan B) / (1 – tan A × tan B)

But there is a cunning trick involving imagining cutting a

lump off the diagram and moving it to a different place.

Thus we take the quarter part from the top, rotate it, and

then stick it on the left end to give the diagram below:

It fits because q is exactly half way along the side edge of

the big cross. So pqrs is a square and ACE is a straight line.

Now the triangles ABC and ADE are similar. Therefore

 BC = AB × DE / AD

If the side of the original cross is 2a, we see that AB = 5a,

AD = 7a, and DE = a. Hence BC = 5a/7 and therefore the

point C is 5/14 of the distance from B to F. Remember that

the BOP said one third which is 5/15. A near miss!

The next puzzle is about integers and squares. I mentioned

this at the Ada-Europe conference in Stockholm in 2012

where the banquet was in a market. Gosh that was nearly

10 years ago.

Take a square and put an integer at each corner. Now put

the difference between the integers on each side in the

middle of the side and join the middles of the sides to

together. We now have an inner small square with integers

at each corner. Repeat the process until we have zero at all

the corners.

The diagram shows the situation after the first inner square

is drawn and the final position with all zeroes.

In this example it took five iterations to get all zeroes. The

question is what is the maximum number of iterations

required? It is easier to contemplate if we write them out as

follows

 1 7 8 10

 6 1 2 9

 3 5 1 7

 2 4 6 4

 2 2 2 2

 0 0 0 0

This curious problem is not as easy as it might look. I am

grateful to my old college friend Rodney Baxter of the

University of Canberra for interesting discussions on this

and related matters.

An auxiliary question is what has the following cubic

equation to do with this puzzle?

 x3 – 3x2 – x – 1 = 0

and what are the roots?

188

Volume 41, Number 3, Septembre 2020 Ada User Journal

In memoriam: Ian Christopher Wand

Ian C Wand, Computer Scientist, was born on 10 December

1941 and died on 17 July 2020.

His team wrote the York Ada compiler. Under his

leadership, the Computer Science Department at York

matured, and gained international recognition.

Later he served as Deputy Vice-Chancellor of the

University, playing an important part in setting up the Hull

York Medical School.

He retired in 2002. Ian Wand is survived by his wife, Helen,

children Paul and Celia, and their families.

Ian Wand was an all-round Computer Scientist, who, like

all of his generation, came from another subject: in his

case, Physics. He was born in Lincolnshire in 1941, studied

Physics at the University of Leicester, obtaining his PhD in

1962. In 1965, he became a Lecturer there in Radio

Physics, with an interest in ionospheric propagation, which

led him to discover the fascination of computers and to start

in the new subject.

His central interest was the study of Programming

Languages with their compilers and programming support

systems, and the discipline of programming, that became

the subject now known as Software Engineering. He started

working in computing in 1969 at the IBM Research

Laboratories at Hursley in Hampshire and Yorktown

Heights in the USA. He started on PL/I (IBM's new

programming language) but also learned about the newest

international programming language of the time, Algol-68.

He found that a compiler for Algol-68 was being developed

at Cambridge.

He was appointed as a lecturer at York in 1972, and

brought a copy of that Algol-68C compiler which he

adapted for the Elliott (later ICL) 4130 here. The compiler

generated code for a virtual machine, so the transfer

involved porting the compiler itself (written in BCPL) and

also converting the virtual machine code to 4130 machine

code.

By present standards, the start of the Department of

Computer Science at York was extraordinary – originally

set up to provide the Computing Service for the whole

University, the department initially taught only

Computation as a subsidiary subject, but after becoming

Computer Science in 1973 progressively expanded its

coverage to teach the whole subject and begin research

activities. (This was in spite of a general feeling, even at the

highest levels of the University, that the study of computers

was but one step removed from the study of lawnmowers.)

Ian, having already established himself as a successful

lecturer and researcher, immediately extended his interest

to other programming languages and their compilers.

Thus, when the focus of the Department moved to Real-

Time Systems, he enthusiastically took up work on Modula

(by N. Wirth) and, with a research grant from the SERC in

1975 entitled “Real-time programming language” led a

team that made a compiler for Modula on the PDP-11. As

the department grew, Ian was central in developing the

syllabus for a full Computer Science degree, and in

expanding the research on Real-Time Systems. He also

excelled in managing the research staff.

As a result of his contributions to European studies of real-

time programming, Ian was invited by Jean Ichbiah to

comment on the developing Green language, and was

awarded a major research grant in 1980 to study

“Computing facilities for research in software technology”

– which meant writing a compiler for Ada! (Ian Wand is

recorded in the 1983 Ada manual as one of many people

having had a constructive influence on the language). The

York Ada Compiler (formally the University of York Ada

Workbench Compiler System, YAWCS), was validated on

18/19 August 1986 and was the only one of its kind

produced entirely within the UK.

With the benefit of his extensive understanding of Software

Engineering, the compiler Wand's team produced [J. R.

Firth, C. H. Forsyth, & I. C. Wand: “The Compilation of

Ada”, Software – Practice and Experience, Volume 26,

Issue 8, Pages 863-909, August 1996] was small, and easy

to move from machine to machine. It can compile very

large programs, involving many units and libraries, and

integrates well with the UNIX environment. The compiler

In Memoriam: Ian Chr istopher Wand 189

Ada User Journal Volume 41, Number 3, Septembre 2020

was written in C, and has been ported to six different

architectures and validated under four different versions of

the Validation Test Suite; it has been used widely

academically and is sold commercially. The principal

technical innovations of the York Ada compiler were the

use of software tools to construct some of the syntax‐based

parts of the system, and use of a machine description and

tree automata to support portable code generation. Colin

Runciman recalls that the possibility of rewriting the

compiler in Ada was considered, but not pursued. By 1982,

early versions of the compiler were used by other academic

teams as a platform for experimental research in concurrent

and distributed systems, also to support intensive courses in

the novel aspects of programming in Ada.

In 1983, when the department was split to separate the

conflicting interests of teaching the subject and providing

computing facilities for the rest of the university, Ian Wand

was ideally placed to take over as Head of Computer

Science, so that Ian Pyle could concentrate on the

Computing Service. Ian Wand proved to be a superb

administrator, and as Head of Department, he nurtured the

process of building the Department as it grew to maturity,

with the size, scale and reputation it enjoys today, from six

to more than thirty teaching staff. He was appointed to a

personal chair in 1984. Ian was also the founder and course

director of the Department’s advanced MSc courses in

Safety Critical Systems Engineering (which involved

lectures on Spark) in 1994, and in Software Engineering in

1997.

He understood immediately the importance of a strong

research environment (even before research assessment

exercises, for which he would later become a superb panel

chair, were envisaged), and used the Department’s research

reputation to attract large numbers of well-taught, able

students. He was able to navigate the world of the

University without any desire for self-aggrandisement, but

through the deployment of logical arguments designed to

attract more staff, students, money and reputation to the

benefit of the subject and Department he loved. Ian was

instrumental in raising its level of research from gleams in

the eye to its present eminence, and was a member of many

committees of SERC, the DTI, IEE and BCS, representing

the Department, the University, or the discipline of

Computer Science in the UK.

The Department’s top rating in the Research Assessment

Exercises (of 1996 and 2001) owes much to Ian’s early and

continuing efforts and leadership.

When no longer Head of Department in 1992, Ian spent a

year at the Joint Research Centre of the European

Communities, ISPRA, Italy. He made two visits to Japan to

evaluate Japanese Software Engineering (1990 and 1994).

As Deputy Vice Chancellor – part-time at that point – his

many contributions included leading research selectivity

exercises across campus, investigating forensically the

IAAS, and both helping to establish and then implementing

the successful plan for the Hull York Medical School. After

seven years as Pro and then Deputy Vice-Chancellor, Ian

retired from the University, finally and completely, in

September 2002. In November 2002, he was awarded an

Emeritus Chair by the Senate of the University of York. He

continued to live in York for several years but then moved

to Woking for family reasons.

Ian married Helen (née Parkinson) in 1965. Helen was a

teacher of English. They have two children Paul and Celia,

who were brought up in York and now have their own

families: Paul and Alison have four children: Alexander,

Eleanor (Ellie), Adam and Alice; Celia and Darien have

three boys: Max, Sam and Joe.

Ian and Helen visited Italy frequently, to keep in touch with

the friends they made there; they took their summer

holidays in Orkney by way of contrast and to escape global

warming.

Ian was a great colleague, always involved, interested,

wise, caring, compassionate and dedicated to the

University; and his love of good music was proverbial. Ian

(piano), Paul (piano) and Celia (violin) were all excellent

amateur musicians, so one must not see Ian as having

nothing to do when he was not doing a little light

consultancy to keep his hand in. Even in retirement Ian

retained a keen interest in the fortunes of Computer Science

as an academic discipline, the health of the university

sector as a whole, and York in particular. He was never

partisan, but only interested in understanding the logic of

any situation and its consequences.

By coincidence, Ian Wand’s birthday was the same as that

of Ada Lovelace (you couldn’t make it up!). The end came

in 2020, not caused by the Corona virus, although

arrangements were hindered by it. Ian Wand was diagnosed

with Amyloidosis in March, and treated with

chemotherapy, but died on July 17. The funeral was limited

to his close family (Paul was unable to travel from Canada)

and held on August 5.

Ian Wand is remembered with appreciation and affection

by his colleagues. He was a rare and special person, a

wonderful colleague and true friend. We shall always

remember him. It is hoped to hold a commemoration for his

life and work when Covid permits. His legacy is the

successful and thriving Computer Science Department at

the University of York.

Ian C Pyle (editor), Bill Freeman, Neil Audsley,

Helen Byard, John Barnes, Colin Runciman and Sir

Ron Cooke.

Contact Ian Pyle at: St Giles Road, Skelton, York

YO30 1XR; email: ian.pyle@cantab.net

190

Volume 41, Number 3, Septembre 2020 Ada User Journal

National Ada Organizations

Ada-Belgium

attn. Dirk Craeynest

c/o KU Leuven

Dept. of Computer Science

Celestijnenlaan 200-A

B-3001 Leuven (Heverlee)

Belgium

Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard

Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland

Dr. Hubert B. Keller

Karlsruher Institut für Technologie (KIT)

Institut für Angewandte Informatik (IAI)

Campus Nord, Gebäude 445, Raum 243

Postfach 3640

76021 Karlsruhe

Germany

Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France

attn: J-P Rosen

115, avenue du Maine

75014 Paris

France
URL: www.ada-france.org

Ada-Spain

attn. Sergio Sáez

DISCA-ETSINF-Edificio 1G

Universitat Politècnica de València

Camino de Vera s/n

E46022 Valencia

Spain

Phone: +34-963-877-007, Ext. 75741

Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland

c/o Ahlan Marriott

Altweg 5

8450 Andelfingen

Switzerland

Phone: +41 52 624 2939

e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

http://www.ada-france.org/
http://www.adaspain.org/

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch

Ada-Europe Sponsors

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

46 Rue d’Amsterdam
F-75009 Paris, France
Contact: Jamie Ayre
sales@adacore.com
www.adacore.com

27 Rue Rasson
B-1030 Brussels, Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

22 St. Lawrence Street
Southgate

Bath BA1 1AN, United Kingdom
Contact: Stuart Matthews

sparkinfo@altran.com
www.altran.co.uk

1090 Rue René Descartes
13100 Aix en Provence, France

Contact: Patricia Langle
patricia.langle@systerel.fr

www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki, Finland

Contact: Niklas Holsti
niklas.holsti@tidorum.fi

www.tidorum.fi

3271 Valley Centre Drive,
Suite 300

San Diego, CA 92069, USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

United Kingdom
Contact: Chris Nettleton

nettelton@xgc.com
www.xgc.com

Signal Business Centre
2 Innotec Drive, Bangor
North Down BT19 7PD
Northern Ireland, UK

enquiries@sysada.co.uk
www.sysada.co.uk

Millennium Tower, floor 41
Handelskai 94-96
A-1200 Austria

Contact: Massimo Bombino
sales@at.vector.com

www.vector.com

