

Ada User Journal Volume 41, Number 4, December 2020

ADA
USER
JOURNAL

Volume 41

Number 4

December 2020

Contents
Page

Editorial Policy for Ada User Journal 192

Editorial 193

Quarterly News Digest 195

Conference Calendar 224

Forthcoming Events 232

Special Contribution

 P. Rogers

“From Ada to Platinum SPARK: A Case Study” 235

Proceedings of the "HILT 2020 Workshop on Safe Languages and Technologies for Structured

and Efficient Parallel and Distributed/Cloud Computing"

 T. Taft

“A Layered Mapping of Ada 202X to OpenMP” 251

 J. Verschelde

“Parallel Software to Offset the Cost of Higher Precision” 255

Puzzle

 J. Barnes

“Shrinking Squares and Colourful Cubes” 261

In memoriam: William Bail 263

Ada-Europe Associate Members (National Ada Organizations) 264

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

 195

Ada User Journal Volume 41, Number 4, December 2020

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 195
Ada-related Events 195
Ada and Education 196
Ada-related Resources 196
Ada-related Tools 197
Ada-related Products 199
Ada and Operating Systems 200
Ada and Other Languages 201
Ada Practice 202
Obituary 221

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

As I write these lines I have the FOSDEM
livestream on my second monitor. This
brings me to the first topic that I want to
highlight in this issue: sadly, during last
quarter we knew [1] of the passing of
fellow Adaist Vinzent “Jellix” Höfler. I
“devirtualized” him precisely at
FOSDEM’20, where he cracked a joke
during my demo that was producing lots
of “No C sources found in this project”
warnings. To this, he had to say (filtered
by my memory): “I don’t see the
problem.”

As for regular discussions, this time
around I selected a few interesting and
sometimes amusing heated debates. We
have a couple of technical rabbit holes,
about the finer details of protected actions
syntax (that started from an innocent-
looking question about logging [2]) and
properties of real-time clocks and
durations [3]. Did you know that
Duration’Range can legally be as short as
a day? I am a bit ashamed to admit I did
not. Also, an often-seen observation about
array indexing syntax from an Ada
newcomer led to many strongly-held
opinions on the merits (or lack thereof) of
some aspects of Ada syntax [4] that led us

as far as when Ada prototypes had
parentheses for subprograms without
arguments.

To conclude, during this period also took
place the Advent of Code, a scored
competition in which a programming
puzzle a day is presented for you to solve
in your favorite language. A few members
of c.l.a. took the bait and this led to some
interesting exchanges of ideas around the
solutions in a large number of threads
which I have strived to summarize for you
[5].

Sincerely,
Alejandro R. Mosteo.

[1] “Tragic News about Vinzent Hoefler”,
in Obituary.

[2] “Logging and Protected Actions”, in
Ada Practice.

[3] “Starting time of Real-time Clock”, in
Ada Practice.

[4] “Ada Syntax Questions”, in Ada
Practice.

[5] “Advent of Code” and “Advent of
Code Thread Compilation”, in Ada
Practice.

Ada-related Events

ACM HILT 2020 at
SPLASH 2020

[Event already in the past, for the record.
—arm]

From: Richard Wai
<ric.wai88@gmail.com>

Subject: ACM HILT 2020 (High Integrity
Language Technologies) at SPLASH
2020 - Nov 16 & 17

Date: Sun, 1 Nov 2020 19:56:24 -0800
Newsgroups: comp.lang.ada

Hey everyone, just a reminder that the 6th
HILT workshop this year is on Nov 16 &
17, and is part of the larger SPLASH
2020 conference (2020.spashcon.org).
Unsurprisingly, this year's workshop will
be fully virtual.

HILT 2020 focuses on the growing
importance of large-scale, highly parallel,
distributed and/or cloud applications.

For Ada specifically, we have talks on:

- A layered mapping of Ada 202X parallel
constructs to OpenMP (Tucker Taft),

- Experience integrating FAA's NextGen
ERAM (mostly Ada) with SWIM
(Mixed languages) (Brian Kleinke,
Leidos)

- A highly parallel multiple double
precision polynomial solver framework
in Ada (PHC Pack - Prof. Jan
Verschelde of UoI at Chicago)

- A cloud-native/HPC-centric
hyperscaling framework for Ada, and a
supporting Ada-specific exokernel OS
(Yours truly)

Please check out the workshop's website
(https://2020.splashcon.org/home/
hilt-2020) if you are interested in
attending.

CfC 25th Ada-Europe Conf.
on Reliable Software
Technologies

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC 25th Ada-Europe Conf. on
Reliable Software Technologies

Date: Sun, 6 Dec 2020 11:39:55 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

[CfC is included in the Forthcoming
Events Section —arm]

Ada-Europe 2021
Conference - Extended 14
January Deadline

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada-Europe 2021 Conference -
EXTENDED 14 January deadline

Date: Thu, 31 Dec 2020 15:54:46 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

The Ada-Europe 2021 Conference
organizers decided to provide more time
for authors to prepare their contributions.
The deadline for most submissions is
extended to Thursday 14 January 2020.
2 weeks remain!

[CfC is included in the Forthcoming
Events Section —arm]

mailto:amosteo@unizar.es

196 Ada-related Resources

Volume 41, Number 4, December 2020 Ada User Journal

Happy Birthday, Lady Ada

From: AdaMagica
<christ-usch.grein@t-online.de>

Subject: Happy birthday, Lady Ada
Date: Wed, 9 Dec 2020 19:00:53 -0800
Newsgroups: comp.lang.ada

Primeval times when Babbage dwelt:

not were bit nor byte

nor operating system,

not hardware below

nor above software,

abyss abundant,

but computer nowhere.

And lo, there was Ada,

and Ada separated the numbers

and split them,

in Zero and One did she split them.

Continuation see:
https://www.ada-deutschland.de/sites/
default/files/AdaTourCD/AdaTourCD
2004/Ada%20Magica/20.html

From: Simon Wright
<simon@pushface.org>

Date: Thu, 10 Dec 2020 10:08:56 +0000

> in Zero and One did she split them.

The Analytical Engine was a decimal
machine

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Thu, 10 Dec 2020 02:52:06 -0800

> The Analytical Engine was a decimal
machine

That's OK.

I know Babbage's engine came before
Zuse, C++ came after Ada.

But an ode need not be historically
correct. Would you claim Edda is
historically correct?

Ár var alda, þat er Ymir bygði,
Vara sandr né sær né svalar unnir;
iorð fannz æva né upphiminn,
gap var ginnunga, enn gras hvergi.

Translate this and it will give about the
same as the first verse above.

Ada and Education

Strategies for Teaching Ada

[Cont. from “Strategies for Teaching
Ada” in AUJ 41-2, June 2020 —arm]

From: Norman Worth
<nworth@comcastnospam.net>

Subject: Re: Beginning Ada Programming,
by Andrew T. Shvets (2020)

Date: Mon, 2 Nov 2020 14:14:03 -0700
Newsgroups: comp.lang.ada

>> There's nothing wrong with using
integer to start off and then moving
onto defined types.

> Yes there is! (see my paper at the last
Ada-Europe). The first message when
you teach Ada is that it is all about
defining proper types. You have to start
by fighting bad habits from other
languages.

One of the most difficult things for
programmers to graft these days is the
concept and proper use of types, which is
key to Ada. Ada makes this even more
complicated with the very useful
attributes of private and limited types.
Unless a text clearly conveys the use of
types and illustrates it throughout, it is
useless for teaching people Ada. Since
this is a foreign concept to most current
programmers, illustrations and good
exercises are needed, too.

Compare this text to Barnes, which most
of us use as a quick reference.

From: Shark8
<onewingedshark@gmail.com>

Date: Thu, 12 Nov 2020 13:24:57 -0800

> So I can't learn Ada from docs online?

You can. But the best Ada resources are
books and the Language Reference.

(The Language Reference is dry, but very
readable compared to some of the other
standards I've come across.)

Also, the compiler itself is typically very
good because of generally high-quality
error messages.

From: Chris Townley
<news@cct-net.co.uk>

Date: Thu, 12 Nov 2020 22:31:59 +0000

> Also, the compiler itself is typically
very good because of generally high-
quality error messages.

Although the errors can be very confusing
sometimes, if you make a big mistake…

Ada-related Resources

[Delta counts are from Nov 2nd to Feb
2nd. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Tue, 02 Feb 2021 17:31:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 3_078 (+53) members [1]

- Reddit: 5_233 (+513) members [2]

- Stack Overflow:1_973 (+49)
 questions [3]

- Freenode: 85 (-5) users [4]

- Gitter: 66 (+2) people [5]

- Telegram: 108 (+18) users [6]

- Twitter: 60 (-7) tweeters [7]
 95 (+3) unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&
net=freenode

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Mon, 02 Nov 2020 18:41:21 +0100
To: Ada User Journal readership

Rosetta Code: 761 (+14) examples [1]
 37 (=) developers [2]

GitHub: 755 (+26) developers [3]

Sourceforge: 278 (+2) projects [4]

Open Hub: 212 (=) projects [5]

Alire: 146 (+16) crates [6]

Bitbucket: 88 (-2) repositories [7]

Codelabs: 52 (=) repositories [8]

AdaForge: 8 (=) repositories [9]

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Mon, 20 Jul 2020 09:38:21 +0100
To: Ada User Journal readership

Ada-related Tools 197

Ada User Journal Volume 41, Number 4, December 2020

[Positive ranking changes mean to go up
in the ranking. The IEEE ranking has
published its 2020 edition. —arm]

- TIOBE Index: 32 (+7) 0.4%
(+0.05%) [1]

- PYPL Index: 19 (=) 0.65% (+0.3%)[2]

- IEEE Spectrum (general): 39 43 (+4)
Score: 32.8 24.8 [3]

- IEEE Spectrum (embedded): 12 13 (+1)
Score: 32.8 24.8 [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2020

Ada-related Tools

Zip-Ada v.57

From: gautier_niouzes@hotmail.com
Subject: Ann: Zip-Ada v.57
Date: Fri, 2 Oct 2020 09:57:42 -0700
Newsgroups: comp.lang.ada

New in v.57 [rev. 799]:

 - UnZip: fixed bad decoding case for the
Shrink (LZW) format, on some data
compressed only by PKZIP up to v.1.10,
release date 1990-03-15.

 - Zip.Create: added
Zip_Entry_Stream_Type for doing
output streaming into Zip archives.

 - Zip.Compress: Preselection method
detects Audacity files (.aup, .au) and
compresses them better.

Zip-Ada is a pure Ada library for dealing
with the Zip compressed archive file
format. It supplies:

 - compression with the following sub-
formats ("methods"): Store, Reduce,
Shrink (LZW), Deflate and LZMA

 - decompression for the following sub-
formats ("methods"): Store, Reduce,
Shrink (LZW), Implode, Deflate,
Deflate64, BZip2 and LZMA

 - encryption and decryption (portable Zip
2.0 encryption scheme)

 - unconditional portability - within limits
of compiler's provided integer types and
target architecture capacity

 - input archive to decompress can be any
kind of indexed data stream

 - output archive to build can be any kind
of indexed data stream

 - input data to compress can be any kind
of data stream

 - output data to extract can be any kind of
data stream

 - cross format compatibility with the
most various tools and file formats
based on the Zip format: 7-zip, Info-
Zip's Zip, WinZip, PKZip, Java's JARs,

OpenDocument files, MS Office 2007+,
Google Chrome extensions, Mozilla
extensions, E-Pub documents and many
others

 - task safety: this library can be used ad
libitum in parallel processing

 - endian-neutral I/O

Main site & contact info:

 http://unzip-ada.sf.net

Project site & subversion repository:

 https://sf.net/projects/unzip-ada/

GitHub clone with git repository:

 https://github.com/zertovitch/zip-ada

GNAT CE 2020, arm-eabi,
for macOS

From: Simon Wright
<simon@pushface.org>

Subject: GNAT CE 2020, arm-eabi, for
macOS

Date: Tue, 06 Oct 2020 16:59:05 +0100
Newsgroups: comp.lang.ada

There were few downloads of this from
the AdaCore site, so they've not produced
a 2020 edition. This is my attempt at that
missing edition!

At https://sourceforge.net/projects/
gnuada/files/GNAT_GPL%20Mac%20
OS%20X/2020-arm-eabi-darwin-bin/

Simple Components v4.51

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components for Ada
v4.51

Date: Sun, 18 Oct 2020 08:43:41 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- Memory leak fixed in the package
Generic_Unbounded_Ptr_Array;

- Bug fix in data selector initialization (in
the package
GNAT.Sockets.Connection_State_Mach
ine);

- An exception-free variant of Put was
added to the Generic_Indefinite_FIFO
package;

- ModBus TCP/IP implementation bug fix
(the package
GNAT.Sockets.Connection_State_Mach
ine.MODBUS_Client);

- Code modified to work around GCC
10.0.1 optimization bug.

Simple Components v4.53

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple components v4.53
Date: Sun, 13 Dec 2020 10:02:03 +0100
Newsgroups: comp.lang.ada

[...]

Changes to the previous version:

 - Get_Reader_Timeout,
Set_Reader_Timeout, Wait_For_Tasks
were added to the package
GNAT.Sockets.Server.Blocking;

 - JSON parser fixed to accept empty
objects {} and empty array [];

 - OpenSSL bindings were extended;

 - The procedure Next_Unbiased was
added to the package
Generic_Random_Sequence.

Ahven 2.8

From: Tero Koskinen
<tero.koskinen@iki.fi>

Subject: ANN: Ahven 2.8
Date: Sun, 18 Oct 2020 21:47:38 +0300
Newsgroups: comp.lang.ada

Ahven version 2.8 is now available from
https://www.ahven-framework.com/

Direct links to tar.gz and zip packages:

* https://www.ahven-framework.com/
releases/ahven-2.8.tar.gz

* https://www.ahven-
framework.com/releases/ahven-2.8.zip

Ahven is a simple unit test library (or a
framework) for Ada programming
language. It is loosely modelled after
JUnit and some ideas are taken from
AUnit. Ahven is free software distributed
under permissive ISC license and should
work with any Ada 95, 2005, or 2012
compiler.

Version 2.8 is a minor maintenance
release. The changes are:

* Source code repository of Ahven is now
hosted at

 Sourcehut:
https://hg.sr.ht/~tkoskine/ahven

* Improvements to Janus/Ada build
scripts

* Improvements to GNAT build scripts

* Minor documentation updates

198 Ada-related Tools

Volume 41, Number 4, December 2020 Ada User Journal

HAC v.0.076

From: gautier_niouzes@hotmail.com
Subject: Ann: HAC v.0.076
Date: Sat, 24 Oct 2020 00:38:57 -0700
Newsgroups: comp.lang.ada

HAC (HAC Ada Compiler) is a small,
quick, open-source Ada compiler,
covering a subset of the Ada language.

You find below the changes since the last
post about HAC in this forum.

Links to the project and contact (tracing
;-)) addresses are available from the blog
posts cited below.

0.071 Discrete type range is stored in type
definition; "subtype T1 is T2;"

0.072 Subtype_Indication (e.g. "for B in
Boolean loop", "array (States) of Prob")

https://gautiersblog.blogspot.com/2020/
06/hac-v0072-subtype-indication.html

0.073 The VM can be aborted via the
Feedback procedure

0.074 Types: Time and Duration

0.075 Added Ada.Calendar-like functions

https://gautiersblog.blogspot.com/2020/
10/hac-v0075-time-functions-goodies-
for.html

0.076 Added Ada.Directories-like
subprograms

https://gautiersblog.blogspot.com/2020/
10/hac-v0076-adadirectories-like.html

XNAdaLib 2020 Binaries for
macOS Catalina

From: Blady <p.p11@orange.fr>
Subject: [ANN] XNAdaLib 2020 binaries for

macOS Catalina including GTKAda and
more.

Date: Sun, 25 Oct 2020 10:11:49 +0100
Newsgroups: comp.lang.ada

This is XNAdaLib 2020 built on macOS
10.15 Catalina for Native Quartz with
GNAT Community 2020 including:

- GTKAda 20.2
(www.adacore.com/gtkada) with GTK+
3.24.20 (www.gtk.org) complete,

- Glade 3.22.1 (glade.gnome.org),

- GnatColl 20.2
(github.com/AdaCore/gnatcoll),

- Florist mid-2020a (github.com/Blady-
Com/florist),

- AdaCurses 6.2 (invisible-island.net/
ncurses/ncurses-Ada95.html),

- Gate3 0.5c
(sourceforge.net/projects/lorenz),

- Components 4.50 (www.dmitry-
kazakov.de/ada/components.htm),

- AICWL 3.24 (www.dmitry-
kazakov.de/ada/aicwl.htm),

- Zanyblue 1.4.0
(zanyblue.sourceforge.net),

- PragmARC mid-2020
(pragmada.x10hosting.com/pragmarc.
htm),

- GNOGA 1.6-beta (www.gnoga.com),

- SparForte 2.3.1 (sparforte.com),

- Alire 0.6.1 (alire.ada.dev), NEW

and as side libraries:

- Template Parser 20.2,

- gtksourceview 3.24.4,

- GNUTLS 3.6.14,

- GMP 6.1.2,

- make 4.2.1,

- Python 2.7.17.

XNAdaLib binaries have been post on
Source Forge:

https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2020-catalina

Report preferably all comments to
MacAda.org mailing list:

http://macada.org/macada/Contacts.html

See list archive:

https://hermes.gwu.edu/archives/
gnat-osx.html

From: Simon Wright
<simon@pushface.org>

Date: Sun, 25 Oct 2020 09:39:41 +0000

Great stuff, just a couple of comments -

> - Python 2.7.17.

Not maintained since 1 Jan. There are
excellent downloads of 3 (currently 3.9)
at python.org.

> Report preferably all comments to
MacAda.org mailing list:

> http://macada.org/macada/
Contacts.html

Gives a (Korean?) 404.

You can subscribe at
https://hermes.gwu.edu/cgi-bin/
wa?A0=GNAT-OSX

RFC UXStrings Package.

From: Blady <p.p11@orange.fr>
Subject: RFC UXStrings package.
Date: Wed, 11 Nov 2020 21:18:17 +0100
Newsgroups: comp.lang.ada

UXStrings is now a standalone library
available on Github.

https://github.com/Blady-Com/UXStrings

Comments on specifications are welcome.

A first implementation POC is provided.
UTF-8 encoding is chosen for internal
representation. The Strings_Edit library is
used for UTF-8 encoding management.

http://www.dmitry-kazakov.de/ada/
strings_edit.htm

This implementation which is only to
demonstrate the possible usages of
UXString has many limitations as for
instance there is no memory deallocation.
Only a few API are implemented.

A test program is also provided with some
features working.

See readme for full details.

https://github.com/Blady-Com/
UXStrings/blob/master/readme.md

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Fri, 27 Nov 2020 00:38:56 -0800

There are few more options to forget
about encodings and related issues:

New AdaCore's VSS
https://github.com/AdaCore/VSS

Old Matreshka's League
http://forge.ada-ru.org/matreshka

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 27 Nov 2020 11:05:08 +0000
> There are few more options to forget

about encodings and related issues:

My very basic utf-8 string -
https://github.com/Lucretia/uca

Ada-12 Version of
PragmARC

From: PragmAda Software Engineering
<pragmada@pragmada.x10hosting.com>
Subject: [Ann] Ada-12 Version of the

PragmAda Reusable Components
Date: Sun, 1 Nov 2020 19:20:42 +0100
Newsgroups: comp.lang.ada

Now that there are 2 (count 'em!) Ada-12
compilers*, an Ada-12 version of the
PragmARCs is available at
https://github.com/jrcarter/PragmARC

In addition to making use of Ada-12
features, this version has a restructured
package hierarchy and is released under
the 3-clause BSD license.

These have only been compiled with the
GNAT compiler. Feedback from those
with access to the other compiler would
be welcome.

*Defined as a compiler that implements
the entire Ada-12 core language.

SweetAda 0.1g

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda 0.1g released
Date: Sun, 15 Nov 2020 13:16:55 -0800
Newsgroups: comp.lang.ada

I've just released SweetAda 0.1g.

Ada-related Products 199

Ada User Journal Volume 41, Number 4, December 2020

This is a maintenance release, and
introduces new toolchains based on
Binutils 2.35, GCC 10.2.0 and GDB 10.1.

Along with new tools, the basic support
libraries, e.g., GMP, MPFR, MPC, and all
auxiliary libraries were used at the highest
stable version during the builds.

Sorry for a significant delay in releasing,
but it is very time-consuming to keep
everything in-sync, especially when
toolchains change. Neither I had the time
to complete the manual, I'll try to do that
in the near future.

SweetAda itself gets few changes:

- due to a deeper Ada code analysis, the
new compiler front-end showed possible
superfluous aspects; they are removed
and warnings made silent

- slightly better menu scripts

- echo_log() and echo_log_error()
functions in Bash scripts are now
renamed as log_print() and
log_print_error()

- minor changes and typos here and there

Of course, LibGCC and RTS packages
are synchronized with new toolchains, so
download them as well.

I am working on Insight too, hopefully
packages will be available ASAP, but it is
still at 20200417 timestamp. Please note
that if you install Insight, it will overwrite
the standard GDB executable, and you're
stuck at 9.1. GPRbuild remains at
20200417 timestamp as well.

I discovered a mismatch in QEMU for
Linux 20200817 targeted for ARM, AVR,
AArch64, x86 and M68k CPUs, where
executables end up being objects for an
OS X platform, because of bad naming.
This is now corrected. Sorry for that,
please re-download the following
packages:

qemu-aarch64-20200817L.tar.xz

qemu-arm-20200817L.tar.xz

qemu-avr-20200817L.tar.xz

qemu-i386-20200817L.tar.xz

qemu-m68k-20200817L.tar.xz

Furthermore, QEMU for Windows
packages lack libffi-6.dll. This is now
corrected. Please re-download

qemu-<every_cpu>-20200817W.zip (or
place a libffi-6.dll library taken from a
random MinGW64 package, along the
QEMU executable).

Find everything at
https://www.sweetada.org.

By the way, the connection to SweetAda
website is now completely secure. Many
thanks to the Certbot team.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Mon, 16 Nov 2020 12:51:39 -0800

I suggest that an announcement like this
should include, at or near the top of the
article, a brief description of what
SweetAda is.

From the web site:

SweetAda is a lightweight development
framework whose purpose is the
implementation of Ada-based software
systems.

[...]

AdaStudio-2021 Release
01/01/2021 Free Edition

From: Leonid Dulman
<leonid.dulman@gmail.com>

Subject: Announce : AdaStudio-2021
release 01/01/2021 free edition

Date: Wed, 30 Dec 2020 00:51:09 -0800
Newsgroups: comp.lang.ada

I'm pleased to announce AdaStudio-2021.

In the new AdaStudio release it was
added Qt6Ada support for new
framework Qt-6.0.0.

I added some packages from Qt-5.15.0
open source (qtcharts qtconnectivity
qtgraphicaleffects qtimageformats
qttexttospeech qtlocation qtlottie
qtmultimedia qtsensors qtserialbus
qtserialport qtwebchannel)

Qt6ada version 6.0.0 open source and
qt6base.dll, qt6ext.dll (win64),
libqt6base.so, libqt6txt.so(x86-64) built
with Microsoft Visual Studio 2019
x64bin Windows, gcc x86-64 in Linux.

Package tested with GNAT gpl 2020 Ada
compiler in Windows 64bit, Linux x86-64
Debian 10.0

I built Qt6 binaries for win64 and x86-64
and include them into AdaStudio-2021
(qt6ada directory)

Known problems:

1) for quick3d and quickcontrols2 plugins
I have got unresolved entry points
ml_registr_types_QtQuick3D(), so some
examples do not work properly.

2) in Linux multimedia plugins do not
built properly and services do not work
(qtavada works fine)

3) webengine does not work and it is not
added to qt6ada

Qt 6 is a new long time project and I hope
to solve these problems in the next
release.

Qt6Ada is built under а GNU GPLv3
license: https://www.gnu.org/licenses/
lgpl-3.0.html.

Qt6Ada and VTKAda for Windows,
Linux (Unix) is available from

https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio

web page or Google drive

https://drive.google.com/folderview?
id=0B2QuZLoe-
yiPbmNQRl83M1dTRVE&usp=sharing
(google drive. It can be mounted as virtual
drive or directory or viewed with Web
Browser)

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.docx"

The latest hacker attacks will force many
companies to reconsider technologies
based on scripting languages such as
Python, Ruby, Perl, JavaScript and others,
in which it is much easier to replace code
than in translated modules. Therefore,
interest in a language such as Ada should
greatly increase.

If you have any problems or questions, let
me know.

Ada-related Products

Adalog's "Back to Quality"
Program

From: J-P. Rosen <rosen@adalog.fr>
Subject: [Ann] Adalog's "Back to Quality"

program
Date: Sat, 24 Oct 2020 09:03:33 +0200
Newsgroups: comp.lang.ada

Adalog annonces the "Back to quality"
program.

Thanks to our experience and advanced
tools, we offer technical assistance to
relieve your technical dept by fixing non-
conformities to your coding standard that
you never have time to fix by yourself.

For more details, see:
https://adalog.fr/en/btq_program.html
or write to info@adalog.fr

State Preserving Fault
Tolerance for Ada
Applications

From: Thomas Wetmore
<tom.wetmore@gmail.com>

Subject: State Preserving Fault Tolerance
for Ada Applications

Date: Wed, 9 Dec 2020 13:37:51 -0800
Newsgroups: comp.lang.ada

Our small startup has developed a new
software fault tolerant (FT) architecture,
implemented as an SDK and library, that
we are currently adapting for use with
Ada and SPARK. It will enable
developers to create true state preserving,
fault tolerant Ada applications by either
developing new or modifying existing
code. The architecture provides additional
levels of availability and security by
providing resilience against both

200 Ada and Operat ing Systems

Volume 41, Number 4, December 2020 Ada User Journal

 hardware failures and software anomalies
(attacks). The port will enable Ada users
to create FT Ada applications that can be
adapted for most COTS h/w - s/w
platforms. Such applications can even be
run on heterogeneous, geographically
distributed configurations - using bare
metal, virtual machines, or containers.

Note that this new application-based FT
software technology was created by our
veteran computer design engineers who
have developed multiple generations of
fault tolerant systems currently in world-
wide use. The Ada implementation of the
technology is being created by a veteran
Ada expert who has been developing with
Ada since its inception.

We are looking for users with whom we
can collaborate to 1) provide needs input,
2) assist with QC & real-world use case
testing, and/or 3) create prototypes and/or
proofs of concept. Please let me know if
you are interested in learning more and
we will be glad to share additional
information.

Ada and Operating
Systems

Developing on a Mac

From: Marius Amado-Alves
<amado.alves@gmail.com>

Subject: Developing on a Mac
Date: Wed, 14 Oct 2020 09:39:58 -0700
Newsgroups: comp.lang.ada

I searched but could not find it. How to
develop Ada programs on a Mac today
(Catalina)? GNAT CE 2020 for Mac has
no GPS anymore. Must one use Xcode?
How to make Xcode Ada-aware and
integrate it with GNAT? Some other Ada-
aware IDE for Mac?

From: Simon Wright
<simon@pushface.org>

Date: Wed, 14 Oct 2020 20:02:59 +0100

> How to develop Ada programs on a
Mac today (Catalina)? GNAT CE 2020
for Mac has no GPS anymore.

If you want GPS the best bet is probably
to use the GPS from GNAT CE 2019 with
the new compiler. Have CE 2020 bin first
on your PATH, then explicitly call up
gps: I just used /opt/gnat-ce-2019/bin/gps.

There is a port of GNAT Studio to
Catalina[1], but ISTR it's not all working
100%?

> Must one use Xcode? How to make
Xcode Ada-aware and integrate it with
GNAT?

Last time I heard, Xcode is proprietary
and closed, and no one has ever reported
extending it for Ada. But of course I
haven't been looking.

> Some other Ada-aware IDE for Mac?

Emacs[2], with ada-mode[3]].

[1] https://sourceforge.net/projects/
gnuada/files/GNAT_GPL%20Mac%20
OS%20X/2020-catalina/GNATStudio-
20.2-a.dmg/download

[2] https://emacsformacosx.com

[3] https://www.nongnu.org/ada-mode/
ada-mode.html

From: Simon Wright
<simon@pushface.org>

Date: Thu, 15 Oct 2020 10:35:39 +0100

> How to develop Ada programs on a
Mac today (Catalina)?

[...]

> Some other Ada-aware IDE for Mac?

Just announced:

https://github.com/thindil/vim-ada/
releases/tag/v10.0

https://github.com/thindil/Ada-Bundle

From: Jerry <list_email@icloud.com>
Date: Thu, 15 Oct 2020 16:41:40 -0700

> How to develop Ada programs on a
Mac today (Catalina)?

Some of the following is kind of vague
but I hope it is useful. Many listers will
know much more.

One time a long time ago someone (on
this list?) made Xcode work with Ada. It
was fantastic. Even a debugger IIRC. But
apparently Apple likes to change the
underpinnings and after some time Xcode
ceased to work with Ada. (There also is or
was a FPC Pascal way with Xcode that
was even more capable but I haven't
checked into that for a long time.)

There also used to be Carbon bindings to
Ada, possibly made by the same person.
(The words "Blady" and "Pascal" come to
mind for this person.) They were on the
macada.org web site which doesn't seem
to do much these days, as well as being
linked from AdaPower. Of course the
Carbon API has been long-deprecated but
I'm sure it is still used. (How does
Microsoft keep Word et al working on
Macs?)

It's not a full IDE in some opinions but
Visual Studio Code runs on Macs, even
my now-ancient 2008 PowerBook and
macOS 10.11.6. There is an Ada plug-in
but make sure you get the right one. I
think this plug-in might be supported by
AdaCore. And there's something about an
Ada Language Server. I don't really
understand all of this. I've tried to get this
running but the instructions are minimal
so it is taking more effort than it should.
(Why are installation instructions so
frequently written assuming that you
already know how to install stuff?)

IntelliJ IDEA CE also has an Ada plug-in.

I guess Eclipse has an Ada plug-in as
well. I think AdaCore supports this but
I'm not sure if the Mac version is well-
supported.

None of the above except Xcode is a
native Mac app so you'll have to deal with
a certain amount of cross-platform-
turdism. I would happily pay hundreds of
$US for a native Mac Ada IDE but that
will never happen. The previously-
mentioned Xcode hack was close enough,
though.

There are lots of text editors that aren't too
bad. I have used Textmate with its Ada
plug-in (bundle) which I've modified for
my own purposes for many years. Not an
IDE but it does have the capability to link
from parsed error reports back to your
code. Textmate was a leader in this area
and its bundle architecture has been used
by several other editors.

Sorry if this is all a little sketchy.

Now for something OT. If you are doing
technical work in Ada and want to store
or examine or plot results, I have made
Igor Pro (wavemetrics.com) work with
Ada. This is a fantastic arrangement. It's
almost as nimble as working in a
notebook (think Jupyter or Jupyter Lab)
but you get the awesomeness of Igor Pro
to plot, post-process, and document.

From: Blady <p.p11@orange.fr>
Date: Fri, 16 Oct 2020 22:21:30 +0200

> There also used to be Carbon bindings
to Ada, possibly made by the same
person.

If I remember well, the Carbon bindings
were provided by James E. Hopper from a
Pascal to Ada translation with p2ada of
Apple Carbon API in Pascal. Though
Carbon may still work, Apple wasn't
maintaining the Pascal API, but only the
C API.

Thus Ada Carbon Bindings weren't used
anymore as far as I know. I provided
some Xcode support to Ada but after, as
you said, Xcode was no more
customizable.

You'll find here some historical material:

https://blady.pagesperso-orange.fr/
alpha.html

Ada on QNX

From: DrPi <314@drpi.fr>
Subject: Ada on QNX
Date: Thu, 10 Dec 2020 08:50:53 +0100
Newsgroups: comp.lang.ada

Anyone has cross-compiled Ada for QNX
SDP 6.6.0 (ARM target)?

From: Quentin Ochem
<qochem@gmail.com>

Date: Thu, 10 Dec 2020 08:03:48 -0800

Hi Nicolas,

Ada and Other Languages 201

Ada User Journal Volume 41, Number 4, December 2020

FWIW, there's an AdaCore port that has
been done specifically targeting
QNX/ARM. If you want to discuss, feel
free to drop me an e-mail
(ochem@adacore.com).

From: DrPi <314@drpi.fr>
Date: Fri, 11 Dec 2020 10:49:57 +0100

Yes, I know. I've been in contact with
someone from Adacore about 2 years ago.
But the port is for QNX SDP 7.0.0 and
later only.

It seems that there is provision for a QNX
compilation in FSF GNAT. Not sure of
that and not tried to go this way yet.

Read/Write Access to UNIX
Character Devices

From: philip.munts@gmail.com
Subject: Read/write access to Unix

character devices
Date: Sun, 20 Dec 2020 20:59:28 -0800
Newsgroups: comp.lang.ada

Lately I have been working with Unix
(really Linux, FreeBSD, and OpenBSD)
character devices (these happen to be
USB raw HID devices, but the problem is
more general than that). The way these
work is that each hardware device has a
character device node file in /dev/, like
/dev/hidraw1. You open the file for both
read and write access. Then you can send
a command to the device by writing a
binary blob and get a response by
subsequently reading a binary blob. For
what I am doing, it is important not to
block on reads forever if there is no
response forthcoming, so I need at least
read timeouts.

So far, I have been binding the C library
functions open(), close(), read(), write(),
and poll() with pragma Import. That
works, but I have wondered if there is
some way of accomplishing the same
thing more portably. The packages
GNAT.Sockets and
GNAT.Serial_Communicatons can be
viewed as special case solutions, but I
would like a general solution.

What I would really like is
Ada.Sequential_IO with InOut_File and a
timeout mechanism, perhaps like the
select() wrapper in GNAT.Sockets.

So far I haven't found anything in the
Ada. or GNAT. that supports InOut_File
semantics (other than Direct_IO) let alone
timeouts. Does anybody have any
suggestions?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Dec 2020 19:23:08 -0600

I would use Stream_IO for this, but you'd
need help from your implementer to get
timeouts/nonblocking I/O. If they have
them, they'd be some sort of Form
parameter (that's what the typically
ignored Form parameter is for).

Stream_IO is a lot more flexible that
Sequential_IO and Direct_IO. (Some
implementations implement those older
Ada 83 packages in terms of Stream_IO.)

Ada and Other
Languages

Importing Python Library
into Ada

From: Roger Mc
<rogermcm2@gmail.com>

Subject: Import Python library into an Ada
package?

Date: Thu, 3 Dec 2020 23:36:13 -0800
Newsgroups: comp.lang.ada

Is it possible to import a Python library,
such as graphviz, into an Ada package?
So far I have only been able to find
information on exporting Ada to Python.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 4 Dec 2020 11:23:21 +0100

I am not sure what you mean. Python is
not a compiled language, so formally
speaking a Python library is not a library
and you cannot import it in the sense of
linking it to your application and calling
subprograms from it using certain calling
conventions.

If you rather meant whether you could
execute a Python script from Ada while
passing parameters to it and taking results
from, yes you can. If that script were a
part of some Python module, yes you can
load it and once loaded call (interpret)
functions from the module.

P.S. Before you proceed, Python is a huge
mess and interfacing it is a pain in the ...
So you should consider if Graphviz is
worth the effort. If you find a GTK or Qt
library that is doing approximately the
same, that would be a wiser choice, IMO.

From: Roger Mc
<rogermcm2@gmail.com>

Date: Fri, 4 Dec 2020 03:37:53 -0800

Many thanks for your prompt response
and comments Dmitry; they are well
appreciated with some of the contents
somewhat expected.

I think that I misused the term " Python
library"; I think "Python module" is what
I should have used.

In this context, in Python, is a module a
script? I'll investigate this.

[...]

The project that I am embarking on is to
use Ada for an on-line course in machine
learning that uses Python as its teaching
platform. The importing that I was
contemplating concerns special machine
learning Python modules used in the
course.

Of course, the alternative is for me to
translate the Python modules into Ada
which is something I've done in the past;
generally, in my opinion, yielding much
better and more readable code. Again,
thanks for your very helpful comments
which, hopefully, have focused my mind
on the way ahead.

Regarding your comment that "Python is
a huge mess" and my own opinion of
Python; I am mortified that Python seems
to have become the standard language for
teaching computer programming and,
particularly, that it seems to be the choice
of leading university computer science
courses. It seems that the old well-
established rules of quality computer
program design have been completely
abandoned by these institutions.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 4 Dec 2020 15:22:46 +0200

> Is it possible to import a Python library,
such as graphviz, into an Ada package?

If you mean the Graphviz tool-set,
https://en.wikipedia.org/wiki/Graphviz,
that seems to be written in C and to be
open source. You should be able to call
Graphviz functions from Ada in the same
way as one calls any C code from Ada.
The Python module you refer to is
probably just a binding from Python to
the C code in Graphviz.

If you want to use Graphviz just to draw
automatically laid-out graphs, there is
another way, that I have used: make the
Ada program write out the graph
definition as a text file in the "dot"
language, and then invoke the "dot"
program from Graphviz to lay out and
draw the graph into some graphical
format. However, it may be troublesome
to make this method work interactively --
I was satisfied with non-interactive post-
processing of the "dot" file generated by
my Ada program.

From: gautier_niouzes@hotmail.com
Date: Fri, 4 Dec 2020 05:41:08 -0800

As a side note, there is a cool utility called
DePlo (https://sites.google.com/site/
depplot/ , sources here :
https://launchpad.net/deplo) that creates a
dependency graph of Ada units from the
.ali files that GNAT produces when
building a project.

This graph is in Graphviz's DOT format.

And indeed, graphviz is not specific to
Python. The sources are in C, and the
Web site mentions bindings to: guile, perl,
python, ruby, C#, tcl .

From: Simon Wright
<simon@pushface.org>

Date: Fri, 04 Dec 2020 13:55:15 +0000

> Regarding your comment that "Python
is a huge mess" and my own opinion of
Python; [...]

202 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

I'd certainly agree that interfacing to
Python from Ada is a huge mess
(specifically, unsupported hand
management of garbage collection, as you
have to do if invoking Python objects).

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 4 Dec 2020 19:32:58 +0100

> If you want to use Graphviz just to draw
automatically laid-out graphs [...]

And if you really just want to draw graphs
- and can use another tool - gnuplot can
be controlled by spawning it and sending
commands on stdin via pipes.

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Fri, 4 Dec 2020 22:12:11 +0100

> Is it possible to import a Python library,
such as graphviz, into an Ada package?

gnatcoll.python + a lot of binding work

From: Roger Mc
<rogermcm2@gmail.com>

Date: Fri, 4 Dec 2020 13:19:10 -0800

> gnatcoll.python + a lot of binding work

I have been trying to figure out how to
use gnatcoll.python. Unfortunately it
doesn't seem to provide any supporting
documentation.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 5 Dec 2020 00:17:12 +0100

> Unfortunately it doesn't seem to provide
any supporting documentation.

What about this:
https://docs.adacore.com/
gnatcoll-docs/scripting.html

I have a rudimentary Python bindings
independent of GNATColl, which I use to
run Python scripts from Ada. They were
designed to load Python dynamically, I
did not want to make the application
dependent on Python installed. If you
want, you can use them as a template.
There is no documentation, but the code
using them. But as I said, better not... (:-))

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 5 Dec 2020 10:38:10 +0100

> I would really appreciate seeing your
"rudimentary Python bindings ".

Download sources of this:

http://www.dmitry-kazakov.de/ada/
max_home_automation.htm

The project is large. Only these packages
are related to Python:

1. Py is the bindings

2. Py.Load_Python_Library is an OS-
dependent part for loading Python
dynamically from a DLL (Linux or
Windows)

3. Py.ELV_MAX_Cube is an
implementation of a Python module in
Ada. I.e. calling Ada from Python.

4. MAX_Control_Page contains a task
that periodically runs a Python script.
I.e. calling Python from Ada.

Ada Practice

Logging and Protected
Actions

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: Re: is there a version of unix
written in Ada

Date: Thu, 1 Oct 2020 11:28:10 +0200
Newsgroups: comp.lang.ada

[...] BTW, I still do not know how to
design an Ada-conform tracing/logging
facility such that you could trace/log from
anywhere, protected action included, and
without knowing statically which
protected object is involved.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 1 Oct 2020 11:59:58 +0200

> BTW, I still do not know how to design
an Ada-conform tracing/logging facility
such that you could trace/log from
anywhere [...]

Did you have a look at package Debug?

(https://www.adalog.fr/en/components
#Debug)

It features, among others, a trace routine
which is guaranteed to not be potentially
blocking.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 1 Oct 2020 12:21:46 +0200

> It features, among others, a trace routine
which is guaranteed to not be
potentially blocking.

It calls a protected operation on a
different protected object, yes, this is non-
blocking, and I considered the same, but
is this legal? Maybe I am wrong, but I
have an impression that walking away to
another object is not OK. Or is that
limited to protected entries only?

Another issue is having two different
calls: Trace and protected Trace. If one is
used instead of another, you have a
ticking bomb in the production code. I
remember that there was a GNAT pragma
to catch it, but it was a run-time check, so
it just replaced one type of explosive with
another.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 1 Oct 2020 14:38:27 +0300

> It calls a protected operation on a
different protected object, yes, this is
non-blocking [...], but is this legal?

Yes.

If the program is using ceiling-priority-
based protection, the priority of the
calling object must be less or equal to the
priority of the called object.

> Or is that limited to protected entries
only?

An entry call is potentially blocking and
therefore not allowed in a protected
operation.

> Another issue is having two different
calls: Trace and protected Trace. If one
is used instead of another, you have a
ticking bomb in the production code.

I assume that is a "feature" of the
referenced Debug package, not of the
basic method it uses to implement a
logging facility.

I haven't looked at the Debug package,
but I would have suggested a logging
facility that consists of:

1. A FIFO queue of log entries
implemented in a protected object of
highest priority. The object has a
procedure "Write_Log_Entry".

2. A task that empties the FIFO queue
into a log file. The task calls an entry of
the FIFO protected object to get a log
entry from the queue, but executes the
file-writing operations in task context,
not in a protected operation.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 1 Oct 2020 13:48:26 +0200

> I remember that there was a GNAT
pragma to catch it, but it was a run-time
check

Well, just use AdaControl with the rule:

check Potentially_Blocking_Operations;

;-)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 1 Oct 2020 14:51:54 +0200

> If the program is using ceiling-priority-
based protection, the priority of the
calling object must be less or equal to
the priority of the called object.

My mental picture was protected
procedure calls executed concurrently on
different cores of a multi-core processor.
Would that sort of implementation be
legal?

If so, then let there be protected procedure
P1 of the object O1 and P2 of O2. If P1
and P2 call to P3 of O3 that would be a
problem. Ergo either wandering or
concurrent protected protected calls must
be illegal.

> 1. A FIFO queue of log entries
implemented in a protected object of
highest priority. The object has a
procedure "Write_Log_Entry".

Ada Pract ice 203

Ada User Journal Volume 41, Number 4, December 2020

Yes, that was what I thought and what
Debug.adb does. However Debug.adb
allocates the body of the FIFO element in
the pool. I would rather use my
implementation of indefinite FIFO which
does not use pools. I don't want
allocators/deallocators inside protected
stuff.

> 2. A task that empties the LIFO queue
into a log file.

A simpler approach is to flush the queue
by the first call to an unprotected variant
of Trace. I believe Debug.adb does just
this.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 1 Oct 2020 16:18:58 +0200

> My mental picture was protected
procedure calls executed concurrently
on different cores of a multi-core
processor. Would that sort of
implementation be legal?

No. Protected objects guarantee that only
one task at a time can be inside (ignoring
functions). Multi-cores don't come into
play.

> I don't want allocators/deallocators
inside protected stuff.

As surprising as it may seem,
allocators/deallocators are NOT
potentially blocking operations. But I
understand your concerns...

> A simpler approach is to flush the queue
by the first call to an unprotected
variant of Trace. I believe Debug.adb
does just this.

Yes. Moreover, there is a Finalize of a
controlled object to make sure that no
trace is lost if the program terminates
without calling any (unprotected) Trace.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 1 Oct 2020 18:38:12 +0300

> My mental picture was protected
procedure calls executed concurrently
on different cores of a multi-core
processor. Would that sort of
implementation be legal?

If the protected procedures belong to
different protected objects, yes it is legal.
But not if they belong to the same object,
as J-P noted.

Note that the ordinary form of the ceiling-
priority-locking method does not work for
multi-cores, because a task executing at
the ceiling priority of a protected object
does not prevent the parallel execution of
other tasks (on other cores) at the same or
lower priority.

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 1 Oct 2020 19:37:01 +0200

[...] Now let's continue the example. What
happens when the calling paths are:

O1.P1 --> O3.P3 --> O2.Q
O2.P2 --> O3.P3 --> O2.Q

Let Q1.P1 blocks Q2.P2 on an attempt to
enter O3.P3:

O1.P1 --> O3.P3
O2.P2 --> blocked

Then O3.P3 calls O2.Q:

O1.P1 --> O3.P3 --> O2.Q
|
O2.P2 --> blocked V

This will either re-enter O2 or deadlock.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 1 Oct 2020 17:10:10 -0500

[...]

A task has to wait to get access to a PO.
This is *not* blocking, it is not allowed to
do anything else during such a period.
(This is why protected operations are
supposed to be fast!). It's canonically
implemented with a spin-lock, but in
some cases one can use lock-free
algorithms instead.

For a single core, one can use ceiling
locking instead (and have no waiting), but
that model seems almost irrelevant on
modern machines.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 1 Oct 2020 17:13:14 -0500

> [...] you have a problem when two
independently running protected
procedures of *different* objects call a
procedure of a third object. You must
serialize these calls, and that is
effectively blocking.

Not really: blocking implies task
scheduling (and possible preemption and
priority inversion), whereas no scheduling
happens on a protected call. There's just a
possible wait. It's a subtle difference,
admittedly, but it makes a world of
difference to analysis.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 2 Oct 2020 07:36:07 +0200

To continue on Randy's response: mutual
exclusion is not blocking. "Blocking" (as
in "potentially blocking operation")
means "being put on a queue", i.e. when
the waiting time is potentially unbounded.
The waiting time due to mutual exclusion
is bounded by the execution time of the
protected operation, and then can be
included in the execution time of the
waiting task. (In reality, it can be slightly
more complicated, but the idea is that it is
bounded).

[...]

In summary, the model of PO is two
levels:

1) mutual exclusion, which is not
"blocking"

2) for entries: queuing, which is
"blocking"

Once you realize this, it should make this
whole thread clearer....

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 2 Oct 2020 08:56:38 +0200

> mutual exclusion is not blocking.
"Blocking" (as in "potentially blocking
operation") means "being put on a
queue", i.e. when the waiting time is
potentially unbounded.

It would be a poor definition, because
deadlock is not bounded as well. If
jumping from one protected object to
another is legal, we can construct a
deadlock out of mutual exclusion. We
also have a situation when multiple tasks
executing protected procedures are
awaiting their turn to enter a procedure of
some object. They will continue (if not
deadlocked) in some order, which is
obviously a queue.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 2 Oct 2020 09:42:02 +0200

> It would be a poor definition, because
deadlock is not bounded as well. If
jumping from one protected object to
another is legal, we can construct a
deadlock out of mutual exclusion.

But this would necessarily involve an
"external call to the same protected
object", which is defined as a potentially
blocking operation. Note that AdaControl
is quite powerful at detecting that
situation (by following the call graph).

> We also have a situation when multiple
tasks executing protected procedures
are awaiting their turn to enter a
procedure of some object. They will
continue (if not deadlocked) in some
order, which is obviously a queue.

No, it can be implemented with a spin
lock. It is bounded by the number of
waiting tasks x service time. You don't
have to wait for some unpredictable
barrier.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 2 Oct 2020 22:14:49 -0500

> But this would necessarily involve an
"external call to the same protected
object", which is defined as a
potentially blocking operation.

Note that such an operation doesn't really
block, it is a deadlocking operation; Ada
lumped it into "potentially blocking" in
order to save some definitional overhead.
(A mistake, in my view, it should simply
have been defined to raise Program_Error
or maybe Tasking_Error.) "Potentially
blocking", in normal use, means
something else.

204 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 1 Oct 2020 17:21:01 -0500

> O2.P2 --> O3.P3 --> O2.Q

This latter path is always going to
deadlock, since the second call to O2 is
necessarily an external call (you're inside
of O3, not O2). An external call has to get
the lock for the protected object, and since
the lock is already in use, that will never
proceed.

[If O3 was nested in O2, then the second
call to O2 could be internal. But in that
case, the first path would be impossible as
O1 could not see O3 to call it.]

Remember that the decision as to whether
a call is internal or external is purely
syntactic: if a protected object is given
explicitly in the call, one needs to trigger
the mutual exclusion mechanisms again.
The only time one doesn't need to do that
is when the call does not include the
object (that is, directly from the body of
an operation).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 2 Oct 2020 08:55:56 +0200

> This latter path is always going to
deadlock, since the second call to O2 is
necessarily an external call

Is that implementation or requirement?
The lock can be task-re-entrant.

> Remember that the decision as to
whether a call is internal or external is
purely syntactic: if a protected object is
given explicitly in the call, one needs to
trigger the mutual exclusion
mechanisms again.

Even when the object in the call is
statically known to be the same?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 2 Oct 2020 22:09:19 -0500

> Is that implementation or requirement?
The lock can be task-re-entrant.

Language requirement. An external call
requires a separate mutual exclusion. If
Detect_Blocking is on, then
Program_Error will be raised. Otherwise,
any pestilence might happen.

> Even when the object in the call is
statically known to be the same?

Yes. An external call *always* gets the
lock again. I believe that was made the
rule to make it obvious as to what will
happen based on the form of call.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 3 Oct 2020 08:42:03 +0200

> Yes. An external call *always* gets the
lock again. I believe that was made the
rule to make it obvious as to what will
happen based on the form of call.

I mean this:

 protected body O is

 procedure P1 is

 begin

 ...

 end P1;

 procedure P2 is

 begin

 P1; -- OK

 O.P1; -- Deadlock or Program_Error

 end P2;

 end O;

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 3 Oct 2020 10:44:59 +0300

> I mean this:

>

> protected body O is

> procedure P1 is

> begin

> ...

> end P1;

> procedure P2 is

> begin

> P1; -- OK

> O.P1; -- Deadlock or
Program_Error

That is an internal call, so no deadlock
nor error.

See RM 9.5(4.e), which is this exact case.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 3 Oct 2020 10:16:15 +0200

> That is an internal call, so no deadlock
nor error.

I.e. it is *not* based on the syntax of the
call.

Anyway the rather disappointing result is
that protected procedures may deadlock
(or Program_Error) in a legal program.

So my initial disinclination to jump from
one protected object to another is
reasonable advice. Or at least the order in
which protected objects are navigated
must be the same.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 3 Oct 2020 13:44:47 +0300

> I.e. it is *not* based on the syntax of the
call.

At least not on /that/ syntactical
difference.

> Anyway the rather disappointing result
is that protected procedures may
deadlock (or Program_Error) in a legal
program.

Legal programs can run into all sorts of
problems, starting with use-before-
elaboration.

> So my initial disinclination to jump
from one protected object to another is
reasonable advice.

Quite conservative advice, though.

> Or at least the order in which protected
objects are navigated must be the same.

I would say that it is advisable to arrange
the POs (or PO types) in a layered
architecture and make inter-PO calls only
from a higher-layer PO to a lower-layer
PO.

GDNative Thick Binding
Design

From: Michael Hardeman
<mhardeman25@gmail.com>

Subject: GDNative thick binding design
Date: Thu, 15 Oct 2020 14:08:19 -0700
Newsgroups: comp.lang.ada

I'm working on a binding to the Godot
game engine for Ada.

Project link here: https://github.com/
MichaelAllenHardeman/gdnative_ada

Once the game engine has loaded your
dynamic library it will call the function
*_nativescript_init (where * is the
symbol_prefix defined in the library
resource config file). This function is
responsible for registering objects, object
methods, and allocating any memory
needed.

What I want to discuss here is that I'm a
bit at a loss as to how to design a thick
binding wrapper around this object
registration pattern. So let me describe the
pattern.

I have a very simple example translated
from C using the thin binding here:
https://github.com/MichaelAllenHardema
n/gdnative_ada/blob/master/examples/gdn
ative_c_example/src/simple.adb#L44

The objects must have a name, but may or
may not override the constructor/
destructor life cycle functions (which you
pass in during registration)

There are

https://docs.godotengine.org/en/stable/
classes/class_object.html#class-object

There is kind of a hierarchy at play as
well:

the Node type extends Object

https://docs.godotengine.org/en/stable/
classes/class_node.html#node

and has addition life cycle events like
_process (callback on each frame)
https://docs.godotengine.org/en/stable/
classes/class_node.html#
class-node-method-process

Ada Pract ice 205

Ada User Journal Volume 41, Number 4, December 2020

Now I don't even know where to start
defining something nice in Ada that
would match this pattern and would hide
all the nastiness from the C binding. I
kind of want the tagged record hierarchy
structure, with overriding functions, but it
should only register methods with godot
you've overridden. How would I know
what methods have been overridden? I
feel like I need some kind of generic or
helper functions?

I'm hoping some more experienced people
might have some suggestions?

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 16 Oct 2020 07:38:05 +0100

> I'm working on a binding to the Godot
game engine for Ada.

Ok, so what you have now is a gcc
generated binding, which isn't the nicest
to work with.

What you really need to do is to start by
wrapping up the thin inside a thick
binding such that the plug-ins only use the
thick binding and that any of the calls
such as simple_constructor are wrapped,
i.e.

Godot.Make(Instance :
Godot.Root_Class; parameters...) -> calls
simple_constructor(Instance.Internal_Poi
nter, parameters). Use overloads for this
kind of stuff.

The way I bind to C is like this:

1) If it's a simple function that takes no
parameters and returns nothing, then
bind directly.

2) If it's a simple return type, use an
expression function to bind.

3) Anything else gets a thick binding.

4) Types are mapped onto the C ones, so I
lift out the definition from the thin
binding and put it in the root package of
the thick. I also rename so there's less
repetitive stuff like
GODOT_VARIANT_* and I case
properly, this will be difficult for
situations where identifiers are Ada
keywords, so rename to something else
completely if you have to, just document
the change.

Essentially you want all the C nastiness
inside the thick binding.

Look at SDLAda for some ideas, but this
was done by hand. Anything generated by
GCC needs to be hand massaged to be
nicer imo.

From: Michael Hardeman
<mhardeman25@gmail.com>

Date: Fri, 16 Oct 2020 09:39:17 -0700

Thanks for the detailed reply.
Unfortunately I think I didn't get my
question across correctly.

I'm pretty familiar with most of the basic
stuff I can do in Ada. I'm not asking for
general advice on making a thick binding,
I'm asking for help with one specific data
structure/pattern.

What is the best way to make Ada
types/functions that wrap a particular
thing:

I just pushed a work in progress branch
where you can see what I'm struggling
with:

https://github.com/
MichaelAllenHardeman/gdnative_ada/
blob/feature/adventure_game/examples/
adventure_game/src/engine_hooks.adb
#L29

https://github.com/
MichaelAllenHardeman/gdnative_ada/
blob/feature/adventure_game/examples/
adventure_game/src/example_object.adb
#L90

Is it possible to create a type (tagged
record maybe) whose dispatching
methods automatically register in some
way?

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 16 Oct 2020 19:09:13 +0100

> Is it possible to create a type (tagged
record maybe) who's dispatching
methods automatically register in some
way?

If you mean call Register(Context); on
construction of the object, then have you
looked at the factory stuff?

http://www.ada-auth.org/standards/
12rm/html/RM-3-9.html#I2118

From: Michael Hardeman
<mhardeman25@gmail.com>

Date: Fri, 16 Oct 2020 11:28:30 -0700

not when the object is constructed. I was
wondering if something like the following
were possible:

package GDNative.Thick.Objects is

 type Object is abstract tagged private;

 -- create abstract or null subprograms for

 -- each subprogram here:

 -- https://docs.godotengine.org/en/stable/

 -- classes/class_object.html#class-object

 function Name (Self : in Object'class)

return Wide_String is abstract;

procedure Initialize (Self : in out

Object'class) is null;

 -- etc...

private

 type Object is abstract tagged null

record;

end;

But I need some way of knowing here:
https://github.com/
MichaelAllenHardeman/gdnative_ada/
blob/feature/adventure_game/examples/
adventure_game/src/engine_hooks.adb
#L28

what all the types that extend that object
tagged type are, and what all the null
methods they've chosen to override are.
Kind of like the Java Class() style
introspection.

I'm sure there must be some way of doing
it better tho, with generics? I'm just not
creative enough to see the solution atm.

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 16 Oct 2020 19:31:56 +0100

> But I need some way of knowing here:
https://github.com/MichaelAllenHarde
man/gdnative_ada/blob/feature/adventu
re_game/examples/adventure_game/src
/engine_hooks.adb#L28

That's what the generic constructor would
allow.

> what all the types that extend that object
tagged type are, and what all the null
methods they've chosen to override are.
Kind of like the Java Class() style
introspection.

>

> I'm sure there must be some way of
doing it better tho, with generics? I'm
just not creative enough to see the
solution atm.

You can't know what the null methods
are. Why do you even need to know?

I'm probably not understanding this, tbf.

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Sat, 17 Oct 2020 03:09:04 -0700

> package GDNative.Thick.Objects is

> type Object is abstract tagged private;

>

> -- create abstract or null subprograms
for each subprogram here:

> --
https://docs.godotengine.org/en/stable/c
lasses/class_object.html#class-object

> function Name (Self : in Object'class)
return Wide_String is abstract;

> procedure Initialize (Self : in out
Object'class) is null;

> -- etc...

>

> private

> type Object is abstract tagged null
record;

> end;

I do not know what you are trying to do,
but I see a basic misunderstanding here
wrt keyword abstract on operations. It has
two fundamentally different purposes:

* When used on a primitive operation of a
non-tagged type, it makes an inherited

206 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

operation disappear, i.e. this operation
does no longer exist, e.g.:

 type T is range -42..42;

 function "/" (L, R: T'Base) return T'Base

 is abstract;

* When used on a primitive operation of a
tagged type, this operation is dispatching
and must be overridden for derived types;
e.g.

 type T is abstract tagged private;

 procedure Op(X:T) is abstract;

 type T1 is new T with private;

 procedure Op(X:T1);

Now your

 function Name (Self : in Object'class)

 return Wide_String is abstract;

is a classwide operation, not a primitive
operation, so it cannot be overridden. It is
not a primitive operation of any type, so it
just declares that such an operation cannot
exist - a rather useless declaration.

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Sun, 18 Oct 2020 22:21:38 +0200

My usual path is:

1) find bindings in other languages and
try to understand their intention.

2) Generate a 1:1 binding to the C API
since that will provide a sound ground
(this is an 100% automatic process).

3) Write the high-level binding trying to
mimic other language bindings while
keeping an Ada twist to it,

With a minor effort I managed to do step
one and two but step three is the hard one.
Have a look on https://github.com/
Ada-bindings-project/godot

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 21 Oct 2020 07:59:00 +0100
>> I'm probably not understanding this,

tbf.

>

 > Can you explain the Generic
Constructor some more? I need to use it
now, but I can't exactly figure it out. I
found this example:
https://www.adacore.com/gems/ada-
gem-19 but I have no idea how they can
use the 'Input attribute as the
constructor function. It doesn't match
the signature requested by the generic
at all.

>

> I have a simple example I was trying to
get working: https://ideone.com/f5bpr9

> Do you think you could help me
understand where I'm going wrong
here?

>

I've never used it, but this might help

https://www.adaic.org/resources/
add_content/standards/05rat/html/
Rat-2-6.html

From: Michael Hardeman
<mhardeman25@gmail.com>

Date: Sun, 25 Oct 2020 20:38:36 -0700

https://github.com/
MichaelAllenHardeman/gdnative_ada

I've done an initial pass on the thick
binding. [...]

Still, as is, it's pretty nice to use. It only
takes just a tiny bit of user code to get an
object registered and running a function
on each frame.

https://github.com/
MichaelAllenHardeman/gdnative_ada/
tree/master/examples/adventure_game/src

Windows GUI Frameworks

From: DrPi <314@drpi.fr>
Subject: Which GUI framework?
Date: Thu, 29 Oct 2020 19:48:36 +0100
Newsgroups: comp.lang.ada

I'd like to create a PC (Windows) GUI
program. This program needs to be able to
create many Windows and tabs in one of
them. A working thread receives data
from a serial line and sends messages to
the GUI to print received content.

I know the most common way is to use
GtkAda. The problem is I'm an Ada
beginner and I never used Gkt. So, the
effort is double.

I have a quite good knowledge of
wxWidgets since I have used wxPython
for years. I thought I could use wxAda but
it seems the project is dead.

Any other binding to wxWidgets that I'm
not aware of?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 29 Oct 2020 20:23:55 +0100

> Any other binding to wxWidgets that
I'm not aware of?

If that is only Windows (are you
serious?), you do not need any. Simply
use Windows GDI API directly. They are
callable from Ada more or less out of the
box because Windows handles all objects
internally as graphic resources.

There are Win32Ada thin bindings, but it
is incomplete and most of the time you do
not need it.

The Microsoft's way of defining and using
types is so idiotic that no reasonably
usable thin Ada bindings are possible. I
just declare an Ada counterpart new as
appropriate with parameters of types I
want in order to avoid casting types.

In short, Windows GDI is ugly but it is
native and task-safe. (GtkAda is neither)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 29 Oct 2020 15:45:09 -0500

> If that is only Windows you do not need
any. Simply use Windows GDI API
directly. [...] There are Win32Ada thin
bindings, but it is incomplete and most
of the time you do not need it.

For Win32, both Claw
(www.rrsoftware.com) and GWindows
provide thick Ada bindings. Much easier
to use than raw Win32.

From: DrPi <314@drpi.fr>
Date: Fri, 30 Oct 2020 10:37:13 +0100

> If that is only Windows (are you
serious?),

Did I say that? ;)

I currently do my dev on a Windows
machine but a cross-platform framework
is welcome.

> In short, Windows GDI is ugly but it is
native and task-safe. (GtkAda is
neither)

Windows GDI... I used it a long time ago.
Not my best memory.

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 30 Oct 2020 09:52:11 +0000

> know the most common way is to use
GtkAda. The problem is I'm an Ada
beginner and I never used Gtk. So, the
effort is double.

Gtk isn't all that pleasant either.

> I have a quite good knowledge of
wxWidgets since I have used wxPython
for years. I thought I could use wxAda
but it seems the project is dead.

Yup, I agree that wxWidgets is much
simpler as it was based on MFC, only
portable.

At this time wxAda is dead on my hdd
right now and not going to be resurrected
until I get some money coming in.

> Any other binding to wxWidgets that
I'm not aware of?

No, both efforts were abandoned as it was
too much work. I have a start to a
generator, but like I said, it's not
happening right now.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 30 Oct 2020 10:54:54 +0100

> I currently do my dev on a Windows
machine but a cross-platform
framework is welcome.

Cross-platform would be:

1. GTK (GtkAda)

2. Qt (not sure about the project name)

3. HTTP (Gnoga)

Ada Pract ice 207

Ada User Journal Volume 41, Number 4, December 2020

From: Chris M Moore
<zmower@ntlworld.com>

Date: Fri, 30 Oct 2020 11:36:27 +0000

> Cross-platform would be:

Or Tk via https://github.com/
simonjwright/tcladashell
(or https://github.com/thindil/tashy
but I've not used that).

From: Jeffrey R. Carter
Date: Fri, 30 Oct 2020 13:31:45 +0100

Gnoga
(https://sourceforge.net/projects/gnoga/) is
all Ada (not a binding) and platform
independent.

From: DrPi <314@drpi.fr>
Date: Sat, 31 Oct 2020 12:20:41 +0100

Gnoga is very interesting when the GUI is
remotely run.

I think using such a system locally is
nonsense (very resource hungry).

From: DrPi <314@drpi.fr>
Date: Sat, 31 Oct 2020 12:14:46 +0100

Binding to C++ libraries is a problem.

In the Python world, there are many ways
to achieve this.

If I remember well, the author of
wxPython has written its own binding
system for version 3. Before version 3, he
used a "standard" one but with many
manual patches.

PySide (Python binding for Qt) authors
also have written their own binding
system after using one that was not
fulfilling their needs.

It's a pity since I like wxWidgets' way of
working.

From: DrPi <314@drpi.fr>
Date: Sat, 31 Oct 2020 17:30:15 +0100

Do you know SWIG (http://swig.org/)?

SWIG manages C++ bindings to many
languages... but not Ada. However, SWIG
tools might be of interest, like the tree
parser outputting xml. Maybe SWIG can
be modified to manage Ada. Just an idea.
But not my skills.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 31 Oct 2020 16:35:26 +0000

> Do you know SWIG (http://swig.org/)?

I know of it and no thanks. My generator
would actually be simpler.

Publisher/Subscriber for
Ada

From: DrPi <314@drpi.fr>
Subject: PubSub
Date: Sat, 31 Oct 2020 18:58:03 +0100
Newsgroups: comp.lang.ada

Another question indirectly concerning
GUI programming:

Does an Ada "PubSub" package exist?

Something like this:
https://pypubsub.readthedocs.io/en/v4.0.3/

Search on Alire returned no result.

Global search on the internet is "polluted"
by many Ada answers.

From: Jeffrey R. Carter
Date: Sat, 31 Oct 2020 19:23:55 +0100

> Global search on the internet is
"polluted" by many Ada answers.

There's Google custom search for Ada
programming topics at
https://thindil.github.io/adasearch/
and the Ada-specific search from the
AdaIC at
https://www.adaic.org/ada-resources/
ada-on-the-web/

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Oct 2020 19:38:09 +0100

> Another question indirectly concerning
GUI programming: Does a Ada
"PubSub" package exist?

Yes. We have a commercial middleware
100% in Ada. We use that thing in
automation and control systems.
Naturally, it provides publisher/subscriber
services, distributed or not with controlled
QoS. That is so to say horizontal
communication between applications or
tasks. It also has a vertical communication
aspect abstracting hardware/protocols
from application. E.g. you can
publish/subscribe to a MQTT topic, or to
an EtherCAT object, or to a CANOpen
dictionary object etc without even
knowing if that’s really the thing,
something else or another application.

Having said that, for horizontal
communication inside a single process
you do not need that in Ada. Many things
done for other languages are not needed
in Ada.

Ada protected objects and tasks provide
much more efficient, safer (typed) and
easier to use way to communicate
between tasks.

From: DrPi <314@drpi.fr>
Date: Sun, 1 Nov 2020 11:36:37 +0100

> Ada protected objects and tasks provide
much more efficient, safer (typed) and
easier to use way to communicate
between tasks.

What I'm looking for is not inter-task
communication. It is some sort of
message dispatcher (which is not thread
safe). It is like a GUI event manager but
for custom events.

A simple description here:
https://wiki.wxpython.org/WxLibPubSub

This is very useful when using a GUI
since it allows to directly send messages
to windows/dialogs/controls.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 1 Nov 2020 12:18:20 +0100

> It is some sort of message dispatcher
(which is not thread safe). It is like a
GUI event manager but for custom
events.

You do not need that stuff. Even less if
that is not task safe. In the context of the
same task, it is just a call. You need no
marshalled arguments because the call is
synchronous and it must be synchronous
because it is the same task. The very term
"event" makes no sense if the task that
emits it is the task that consumes it.

> This is very useful when using a GUI
since it allows to directly send
messages to windows/dialogs/controls.

It is not useful, it is a mess, e.g. in GTK.

Anyway, the standard Ada library
contains implementation of FIFO queues.
If you want it 1-n rather than 1-1 use a
blackboard instead of a FIFO.

Dueling Compilers

From: Jeffrey R. Carter
Subject: Dueling Compilers
Date: Wed, 25 Nov 2020 15:08:40 +0100
Newsgroups: comp.lang.ada

Consider the package

with Ada.Containers.Bounded_

Doubly_Linked_Lists;

generic

 type E is private;

package Preelaborable is

package EL is new

 Ada.Containers.Bounded_

 Doubly_Linked_Lists (

 Element_Type => E);

end Preelaborable;

Two Ada-12 compilers give different
results on this. Compiler G accepts it
without problem. Compiler O rejects it
with the error message preelaborable.ads:
Error: line 6 col82 LRM:10.2.1(11.8/2), If
a pragma Preelaborable_Initialization has
been applied to the generic formal, the
corresponding actual type must have
preelaborable initialization AFAICT from
the ARM, the generic formal
Element_Type of Ada.Containers.
Bounded_Doubly_Linked_Lists does not
have pragma Preelaborable_Initialization
applied to it. However, the type List,
which probably has [sub]components of
Element_Type, does.

Which compiler is correct? What is the
intent of the ARM?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 25 Nov 2020 20:19:34 -0600

I'd say both compilers are wrong, in that
the RM clearly has a bug here and one of
the implementers should have complained
about it to the ARG long ago. :-)

208 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

I'd suggest you post this question to Ada-
Comment so that it gets on the ARG's
radar.

(I'll call Preelaborable_Initialization "PI"
in the following for my sanity. :-)

It's clear from 10.2.1 that a type with
pragma PI which has components of a
generic formal type has to have
components that have a type with PI. It
isn't possible to initialize such
components without a function call, so the
other possibility does not exist. The
Bounded containers are designed such
that there are components of the element
type (more accurately, a component of an
array of the element type). In order for
there to be such a component, the formal
type must have PI. Ergo, anybody for a
bounded container written in Ada is
necessarily illegal. This is a problem that
someone should have brought up at the
ARG.

Since it is not required to write language-
defined package bodies in Ada, one could
imagine that both compilers are correct in
the sense that they are using some non-
Ada language to implement the
containers. But that is a fiction in the case
of the containers (every implementation I
know of is in Ada), and in any case, we
intended the containers to be
implementable in Ada. If they are not,
that is a bug.

I don't know what the fix ought to be:
adding PI to the formal private type
would work, but it would reduce the
usability of the containers in non-
preelaborated contexts. Similarly,
removing the PI from the container would
work, but would reduce the usability of
the containers in preelaborated contexts.
Both seem pretty bad.

I'd be in favor of removing PI and
Preelaboration in general from the
language (it serves no purpose other than
to encourage implementers to make
optimizations that they should make
anyway - the other intentions don't work
or are better handled with other
mechanisms), but I doubt that I'd get any
support for that.

So this will have to be an ARG question -
- I can't answer it definitively.

P.S. If you post this question to Ada-
Comment, do me a favor and post this
analysis along with it. That will save me
having to reproduce it later.

From: Jeffrey R. Carter
Date: Fri, 27 Nov 2020 08:32:41 +0100

> Ergo, anybody for a bounded container
written in Ada is necessarily illegal.

I think both compilers are doing macro-
expansion of generics, so a generic is only
really compiled when it is instantiated.
Presumably any test code used actual

parameters that the compiler could tell
were PI, so they compiled OK.

> adding PI to the formal private type
would work, but it would reduce the
usability of the containers in non-
preelaborated contexts. Similarly,
removing the PI from the container
would work, but would reduce the
usability of the containers in
preelaborated contexts. Both seem
pretty bad.

I presumed that leaving PI on the
container was an oversight.

> So this will have to be an ARG question
-- I can't answer it definitively.

OK, I'll research the format of
submissions to Ada-Comment and send it
in.

> P.S. If you post this question to Ada-
Comment, do me a favor and post this
analysis along with it. That will save
me having to reproduce it later.

I would have done that anyway. Thanks
for confirming my suspicion that
something is rotten in Denmark.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 27 Nov 2020 20:35:57 -0600

> I think both compilers are doing macro-
expansion of generics, so a generic is
only really compiled when it is
instantiated.

That would be an incorrect
implementation of generic units in Ada.
One has to enforce the language rules
only knowing the guaranteed properties of
the formal types (knowing nothing about
the actual). There is a later legality
recheck in the specification of an
instance, but that would be irrelevant in
this case since the generic unit already is
illegal.

> I presumed that leaving PI on the
container was an oversight.

It definitely is intended, if the unit is
Preelaborated, we definitely want any
private types in it to be PI (lest they be
unable to be used in Preelaborated units.

From: Jeffrey R. Carter
Date: Thu, 17 Dec 2020 21:22:50 +0100

For those who are interested, this became
AI12-0409-1, approved 2020-12-09

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 18 Dec 2020 20:00:02 -0600

> For those who are interested, this
became AI12-0409-1, approved 2020-
12-09

For what it's worth, that approval included
moving most of AI12-0399-1 to this AI,
and making this AI a Binding
Interpretation so it applies to Ada 2012 as
well. We agreed not to require in the

ACATS that implementations define the
Preelaborable_Initialization aspect (if
they have some other existing way to do
this, that's fine by us for Ada 2012), but
they can if they want. We will insist that
bounded containers have P_I if the
element type has P_I, and that they can be
instantiated if the element type does not
have P_I.

Advent of Code

From: John Perry <john.perry@usm.edu>
Subject: Advent of Code
Date: Fri, 27 Nov 2020 19:12:21 -0800
Newsgroups: comp.lang.ada

Does anyone know about Advent of
Code, and has anyone ever participated
for Ada? It's typically a sequence of
programming puzzles posed as an Advent
calendar: one for each new day.

 https://adventofcode.com/2020/about

Older examples are here:

 https://adventofcode.com/2020/events

I had thought of it, but I don't have too
much time. Some languages maintain
their own mini-communities and
leaderboards, and it might be a way to
raise Ada's profile (or even SPARK'S?).

From: Jeremy Grosser
<jeremy@synack.me>

Date: Sat, 28 Nov 2020 19:36:48 -0800

I did Advent of Code in Ada last year. I
got distracted by other projects and didn't
finish it, but found it to be a very good
way to learn with focused problems. My
solutions are up on GitHub if you're
curious, but knowing what I know now,
they're far from optimal and some parts
are definitely in need of refactoring.

https://github.com/JeremyGrosser/advent

From: Bojan Petrovic
<bojan_petrovic@fastmail.fm>

Date: Sun, 29 Nov 2020 15:03:45 +0100

I solved a couple of challenges from the
last year's AoC in both Ada and Rust, just
to get a feel for the differences between
them in a puzzle solving context:

https://github.com/ALPHA-60/
advent-of-code-2019

I've been organising a weekly recreational
coding workshop at my company for the
last couple of years, and we've been
solving Project Euler and Codility tasks. I
stopped doing it in March because of the
Covid-19 situation, but we'll reboot it
online on December 1st, when AoC 2020
starts, though our schedule will remain
the same - one AoC problem per week.

A while ago we did some interview
question exercises on #Ada Telegram
group, so maybe we can do it again there.

From: John Perry <john.perry@usm.edu>
Date: Mon, 30 Nov 2020 23:08:29 -0800

Ada Pract ice 209

Ada User Journal Volume 41, Number 4, December 2020

Well, the first day wasn't too bad. It took
me an hour, mainly because I'm not as
familiar with Ada as I'd like. Once I re-
learned file input & remembered the
declare clause, it was quick.

I'll follow Jeremy Grosser's example and
post my solutions to GitHub, too.

https://github.com/johnperry-math/
AoC2020.git

From: Max Reznik <reznik@adacore.com>
Date: Tue, 1 Dec 2020 03:37:06 -0800

Someone posted on reddit:
https://www.reddit.com/r/ada/comments/
k4fn9w/anyone_else_participating_in_
advent_of_code/

From: gautier_niouzes@hotmail.com
Date: Wed, 2 Dec 2020 12:51:04 -0800

Thanks John for the reminder about the
Advent of Code. It's lots of fun!

Just before starting with today's puzzle, I
had the idea of programming the solution
with HAC (and the LEA editor). The
quick edition-compilation-run cycle of
HAC is an advantage for this contest.
However, today, I was not quick enough
to get points. Perhaps another day?

Links to my solutions are at the end of the
following post:
https://gautiersblog.blogspot.com/2020/
12/advent-of-code-2020-with-hac-and-
lea.html

From: Max Reznik <reznik@adacore.com>
Date: Wed, 2 Dec 2020 13:29:43 -0800

I gathered a list of GitHub repositories
from this topic on a page, if someone
wants to see all of them in one place.

https://github.com/reznikmm/
ada-howto/tree/advent-2020

I also provided mine Ada solutions as
Jupyter Notebooks. You can read them in
Markdown or launch in the browser with
"launch | binder" button.

Have fun :)

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 02 Dec 2020 14:59:18 -0800

> Just before starting with today's puzzle,
I had the idea of programming the
solution with HAC (and the LEA
editor). The quick edition-compilation-
run cycle of HAC is an advantage for
this contest.

On these small files, can you really tell
the difference in speed between GNAT
and HAC? or (insert other favorite editor,
mine is Emacs) and LEA? For me,
everything is instantaneous.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Mon, 14 Dec 2020 09:43:05 -0800

> On these small files, can you really tell
the difference in speed between GNAT
and HAC? or (insert other favorite
editor, mine is Emacs) and LEA? For
me, everything is instantaneous.

From GNAT Studio I get a range of 1.5
sec (an i5 PC @2.9 GHz) to 9 sec (a
lightweight laptop) for building
aoc_2020_12.adb (almost a benchmark
for easy puzzles ;-)).

On the same source, I run hac -v2
aoc_2020_12.adb:

Compilation finished in 0.000335500
seconds.

Part 1: Manhattan distance of the ship to
(0,0): 1631 (1631.0)

Part 2: Manhattan distance of the ship to
(0,0): 58606 (58606.0)

VM interpreter done after 0.008894500
seconds.

So, for this kind of puzzle, it makes a
difference (correct solution to part 1 was
sent at 00:11:01).

But agreed, it's quite rare.

Especially on today's puzzle, I didn't even
consider using HAC...

From: John Perry <john.perry@usm.edu>
Date: Mon, 14 Dec 2020 13:56:02 -0800

What follows is a long way of saying
"Thank you." :-)

I spend about 2 hours on each puzzle,
which probably doesn't speak well of my
programming prowess (I've programmed
for decades, so I can't really say it's
because I'm learning Ada). Somehow I
enjoy it enough to come back day after
day.

The puzzles themselves are usually easy
(to me), and most of the ones with a non-
trivial solution can probably be solved
trivially, with one exception. At least the
mathematics has gotten a little more
sophisticated; I used the Chinese
Remainder Theorem recently, which I got
a kick out of implementing in Ada as a
one-line function (not including a support
function to compute a modular inverse). I
noticed that Maxim used Fermat's Little
Theorem.

I sometimes roll my eyes at the puzzles,
but the one thing I've really enjoyed so far
is how each new puzzle has nudged me to
learn a different Ada feature with each
new puzzle. I'd spend a lot less time on it
if I allowed myself to use a computer
algebra system, but the point is to learn
Ada, and the really nice surprise has been
how people have helped out, some of
them even commenting directly on
GitHub.

Advent of Code Thread
Compilation

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Advent of Code Thread
Compilation

Date: Fri, 05 Feb 2021 17:59:27 +0100
To: Ada User Journal Readership

[This is a special message in that I am
directly writing it to the Ada User Journal
readership. Besides the previous thread on
Advent of Code, there were a number of
threads for each day. These threads refer
to unstated off-groups problems and the
discussion is too informal and disjointed
to make a coherent post-hoc read, even
after summarizing. For that reason, I am
not including these threads as-is in the
Digest. For the interested readers, I have
compiled all the related threads in the
newsgroup at the end of this message.

There are nonetheless some interesting
tidbits and snippets discussing Ada
features, libraries and resources that, even
without context, may be useful pointers to
follow. I am keeping these in the
following messages, with the title of the
thread they belong to. —arm]

Day 2: https://groups.google.com/g/
comp.lang.ada/c/ASTsQiya1yQ/m/
sx27Sb3XAgAJ

Day 3: https://groups.google.com/g/
comp.lang.ada/c/zsZV1RSf01c/m/
Fl7CTEB2AAAJ

Day 4: https://groups.google.com/g/
comp.lang.ada/c/7CmcyU37SkA/m/
aI2k3YxfAwAJ

Day 5: https://groups.google.com/g/
comp.lang.ada/c/aOF1sirDOiY/m/
GEDagaqpAwAJ

Day 6: https://groups.google.com/g/
comp.lang.ada/c/co9hjh6F1Ng/m/
xbdMecnjAwAJ

Day 8: https://groups.google.com/g/
comp.lang.ada/c/jxx-4c2hPng/m/
3EO7rO30BAAJ

Day 10: https://groups.google.com/g/
comp.lang.ada/c/Z4mmw_t94Ls/m/
X2MG3IDfAQAJ

Day 11: https://groups.google.com/g/
comp.lang.ada/c/BIBRIl7iirw/m/
1tO_250LAgAJ

Day 12: https://groups.google.com/g/
comp.lang.ada/c/lqb0iuLXm5E/m/
FVGVnyNlAgAJ

Day 17: https://groups.google.com/g/
comp.lang.ada/c/lqb0iuLXm5E/m/
FVGVnyNlAgAJ

Day 19: https://groups.google.com/g/
comp.lang.ada/c/lqb0iuLXm5E/m/
FVGVnyNlAgAJ

210 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

Day 23: https://groups.google.com/g/
comp.lang.ada/c/lqb0iuLXm5E/m/
FVGVnyNlAgAJ

Day 25: https://groups.google.com/g/
comp.lang.ada/c/zcMzC_q9KmA/m/
Aa7iA3q4BAAJ

From: John Perry <john.perry@usm.edu>
Subject: Advent of Code Day 2
Date: Wed, 2 Dec 2020 15:45:25 -0800
Newsgroups: comp.lang.ada

> ...I should have used Gnatcoll.regexp.

I was wondering if there was a pattern
matching library I could use, and had
wanted to ask that, but forgot.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 03 Dec 2020 03:52:47 -0800

'Reduce is a new Ada 2020 attribute

(www.ada-auth.org/standards/2xrm/html/
RM-4-5-10.html); it can sum an array.

From: John Perry <john.perry@usm.edu>
Subject: Advent of Code Day 3
Date: Sat, 5 Dec 2020 07:11:06 -0800

> Day 4 task is dull :)

>

> https://github.com/reznikmm/ada-
howto/blob/advent-2020/md/04/04.md

Flourishes like this:

 return Passport (byr .. pid) =

 (byr .. pid => True);

illustrate idioms that I really want to
learn, thanks for sharing.

From: John Perry <john.perry@usm.edu>
Subject: Advent of Code day 5
Date: Sat, 5 Dec 2020 09:57:00 -0800

According to the Internet (And Therefore
It Is True (TM)) the A380 can seat up 853
people. My problem had up to 894 seats,
with the first 5 missing, so it wasn't that
far beyond the realm of reason.

Then again, I don't know if anyone would
want to fly an A380 configured for 853
people.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Advent of Code day 5
Date: Sun, 06 Dec 2020 08:21:24 -0800

> and ran it through cut/sort/uniq

Next time, try
ada.containers.generic_array_sort;

http://www.ada-auth.org/standards/2xrm/
html/RM-A-18-26.html

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Advent of Code day 5
Date: Sun, 06 Dec 2020 08:27:54 -0800

> Next time, try
ada.containers.generic_array_sort;

> http://www.ada-
auth.org/standards/2xrm/html/
RM-A-18-26.html

Or
Doubly_Linked_Lists.Generic_Sorting:

http://www.ada-auth.org/standards/2xrm/
html/RM-A-18-3.html

From: Randy Brukardt
<randy@rrsoftware.com>

Subject: Advent of Code Day 7
Date: Mon, 7 Dec 2020 17:44:44 -0600

> Entry: Bag_Entry := (Quantity => 10);

>

> However, GNAT says this is invalid
[...]

In Ada 2005 and later, write:

 Entry: Bag_Entry := (Quantity => 10,

 Description => <>);

In an aggregate, <> means a default
initialized component. Following the Ada
Way TM ;-), one has to explicitly ask for
a default initialized component - just
leaving it out might have been a mistake
or intended -- neither the compiler nor a
reader can tell. The above is clearly
intended.

From: Jeffrey R. Carter
Subject: Advent of Code Day 7
Date: Tue, 8 Dec 2020 12:25:54 +0100

>

> type Bag_Entry is record

> Description: Bag_Description := "
";

Humans are notoriously bad at counting
things, and even worse at counting things
they can't see, so this kind of literal can be
a source of errors, especially during
modification. (At least with Ada these
tend to be compiler errors, not run-time
errors.)

Of course, Ada offers a Better Way. You
can write

 Description: Bag_Description :=

 (Bag_Description'range => ' ');

or

 Description: Bag_Description :=

 (others => ' ');

and be proof against any changes to
Bag_Description's bounds.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Advent of Code Day 10
Date: Fri, 11 Dec 2020 09:04:27 -0800

> My answer was able to fit in a
Long_Long_Integer on my machine.
But, due to a bug, I did play with the
Big_Integers package. It worked well,
and I'd recommend taking a look at it
for upcoming

Yes; GNAT Community 2020 with -
gnat2020 and -gnatX supports
Ada.Numerics.Big_Integer. I updated my
solution to use that.

From: Jeffrey R. Carter
Subject: Advent of Code Day 10
Date: Sat, 12 Dec 2020 23:25:41 +0100

> hmm. I got constraint error when I used
Long_Integer; maybe that's not 64 bits?
Using Ada.Big_Numbers.Big_Integers
was a good exercise anyway.

That sounds like C thinking. If you need
64 bits, say so, don't hope that optional
language-defined types will be big
enough.

type S is range -(2 ** 63) + 1 .. 2 ** 63 - 1;

type U is mod 2 ** 64;

I used

type U is mod

 System.Max_Binary_Modulus;

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Advent of Code Day 17
Date: Fri, 18 Dec 2020 11:47:59 -0800

> Advent of Code hasn't been a
complete waste of time. ;-)

Far from that: now the major part of the
test suite for HAC stems from AoC:

[Omitted output of 27 successful tests for
HAC, 15 of them being Advent of Code
entries. —arm]

Starting Time of Real-time
Clock

From: Simon Wright
<simon@pushface.org>

Subject: Ada.Real_Time.Time_First
Date: Wed, 09 Dec 2020 12:30:44 +0000
Newsgroups: comp.lang.ada

I opened an issue[1] on Cortex GNAT
RTS, saying

 You’d expect
Ada.Real_Time.Time_First to be quite a
long time before any possible value of
Ada.Real_Time.Clock; but in fact the
system starts with Clock equal to
Time_First.

On the other hand, I had written

Last_Flight_Command_Time :

Ada.Real_Time.Time

:= Ada.Real_Time.Time_First;

 ...

 Quad_Is_Flying :=

 Ada.Real_Time.To_Duration (Now -

 Last_Flight_Command_Time)

 < In_Flight_Time_Threshold;

but Now - Last_Flight_Command_Time
is going to be quite small, to start with, so
Quad_Is_Flying is going to be True when
it shouldn't be.

The workaround I used was

Ada Pract ice 211

Ada User Journal Volume 41, Number 4, December 2020

 Quad_Is_Flying :=

 Last_Flight_Command_Time /=

 Ada.Real_Time.Time_First

 and then

 Ada.Real_Time.To_Duration (Now -

 Last_Flight_Command_Time)

 < In_Flight_Time_Threshold;

In other words, I was using Time_First as
a flag to indicate that
Last_Flight_Command_Time was invalid.

What would your standard pattern for this
sort of problem be? Especially
considering that if I make Time_First a
large negative number I'll get the opposite
problem, e.g. predicting ahead for a very
large interval, possibly even leading to
numeric overflows.

I'm thinking of a Time type with the
concept of validity, possibly built round

type Time (Valid : Boolean := False) is

record

 case Valid is

 when True => Value :

 Ada.Real_Time.Time;

 when False => null;

 end case;

 end record;

and addition, etc. with appropriate
preconditions.

(not so sure about the discriminated
record, might be more trouble than it's
worth)

[1] https://github.com/simonjwright/*
cortex-gnat-rts/issues/33

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 9 Dec 2020 14:16:10 +0100

> What would your standard pattern for
this sort of problem be?

I would use Next_Time instead of
Last_Time:

Next_Flight_Command_Time : Time :=

Time_First;

begin

 loop

 Now := Clock;

 if Now >= Next_Flight_Command_Time

then

 Fire_All_Rockets;

 Next_Flight_Command_Time :=

 Next_Flight_Command_Time +

 In_Flight_Time_Threshold;

 end if;

 end loop;

exception

 when Constraint_Error =>

 -- the End of Times!

 Put_Line ("Thank you for your

 cooperation!");

 Fire_Death_Star;

 Self_Destroy;

end;

From: Simon Wright
<simon@pushface.org>

Date: Wed, 09 Dec 2020 20:07:32 +0000

> I would use Next_Time instead of
Last_Time:

Great idea; the name isn't right in my
context, but the method applies very well.
(It's the time by which the next flight
command has to have been given before
we decide we're not flying anymore. I
plead that (a) this logic seems not to be
our Earth logic, (b) it's a translation from
someone's C, (c) the original code has a
comment expressing doubt)

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 9 Dec 2020 16:21:02 +0200

> I opened an issue[1] on Cortex GNAT
RTS, saying

>

> You’d expect
Ada.Real_Time.Time_First to be quite
a long time before

> any possible value of
Ada.Real_Time.Clock; but in fact the
system

> starts with Clock equal to Time_First.

I don't see any reason for expecting
Time_First to be far in the past relative to
program start. In fact, RM D.8(19) says
"For example, [the start of Time] can
correspond to the time of system
initialization".

Contrariwise, it could be useful to know
that Clock actually starts from
Time_First, because I have often needed a
"Start_Time" object that records the
Clock at the start of the program, and it
would be much simpler to use Time_First,
if Time_First is known to equal the initial
Clock.

> Quad_Is_Flying :=

> Ada.Real_Time.To_Duration (Now
- Last_Flight_Command_Time)

> < In_Flight_Time_Threshold;

If Time_First, as the initial value of
Last_Flight_Command_Time, would
really be in the far past compared to Now,
that computation risks overflowing the
range of Duration, which may be as small
as one day (86_400 seconds), RM
9.6(27).

> The workaround I used was [...] I was
using Time_First as a flag to indicate
that Last_Flight_Command_Time was
invalid.

Even that can still overflow Duration, if
more than one day can pass since the last
flight command.

> What would your standard pattern for
this sort of problem be?

You have two problems: your assumption
about Time_First (or perhaps it's not an
assumption, if you make your own RTS)
and the possible overflow of Duration.

To indicate an invalid
Last_Flight_Command_Time, I would
either use a discriminated type wrapping a
Time value that depends on a Valid
discriminant, as you suggested, or just
have a Boolean flag, say
Flight_Commands_Given that is initially
False. I would use the discriminated type
only if there is more than one such
variable or object in the program.

For the overflow, I suggest changing the
comparison to

 Now < Last_Flight_Command_Time

 + To_Time_Span

 (In_Flight_Time_Threshold)

assuming that
Last_Flight_Command_Time is valid in
the sense we are discussing. That will
overflow only when
Last_Flight_Command_Time approaches
Time_Last, and the program is likely to
fail then anyway.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 09 Dec 2020 20:16:24 +0000

[...] This conversation has been very
valuable, particularly in the case of other
similar tests. I suspect, though, that "are
we still flying?" is a question that'll take
more thinking to resolve!

Possible to Recover Default
Value of Scalar Type?

From: reinert <reinkor@gmail.com>
Subject: Possible to recover default value of

scalar type?
Date: Sun, 13 Dec 2020 01:54:40 -0800
Newsgroups: comp.lang.ada

Assume the following code:

type A_Type is new Natural range 0..9 with

Default_Value => 9;

A : A_Type;

Is it later on here possible to get access to
the default value (9)? If A was a
component of a record, one could get it
"9" via

 some_record'(others =><>).A

But more directly? [Without declaring a
variable, as is made clear in some omitted
posts. —arm]

From: AdaMagica
 <christ-usch.grein@t-online.de>

Date: Mon, 14 Dec 2020 01:01:21 -0800

I do not really understand the problem. It
seems you want to be able to access the
default value like so:

N: Natural := Natural(A_Type'Default_Value);

This is not possible. There is no
corresponding attribute 'Default_Value.

212 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

If this presents a real problem, submit it to
Ada comment stating why this is
important.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Dec 2020 10:38:40 +0100

> If this presents a real problem, submit it
to Ada comment stating why this is
important.

It could in the cases like this:

 procedure Library_Foo (Bar : Baz :=

 Baz'Default_Value)

You can declare constants in some places,
but not at the library level. But in any
case, being forced to declare a constant
each time you need to get at the default
value?

The same problem arises with container
generics. If you have an array keeping
container elements, logically freed
elements need to be "destroyed" in some
way. The default type value would be that
thing as well as a default for
Null_Element, if used.

I think that all non-limited types one
could declare uninitialized, must have
S'Default_Value equal to the default value
the compiler would use. And it should
produce same warnings uninitialized
values do:

 Put_Line (String (1..10)'Default_Value);

 -- print garbage

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Mon, 14 Dec 2020 07:56:29 -0800

> procedure Library_Foo (Bar : Baz :=
Baz'Default_Value)

Suppose type Baz has no default value
aspect. Then a call to Library_Foo
without parameter would use what?

A solution could be that the attribute is
illegal if there is no aspect. The compiler
knows.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Dec 2020 17:31:29 +0100

> Suppose type Baz has no default value
aspect. Then a call to Library_Foo
without parameter would use what?

The default used by the compiler in this:

 declare

 Bar : Baz;

 begin

with an appropriate warning of course.

[It was a language design bug to allow
implicitly uninitialized variables in the
first place. Declarations like above should
have been illegal.]

> A solution could be that the attribute is
illegal if there is no aspect. The
compiler knows.

I would argue that if

 declare

 Bar : Baz;

 begin

is legal, then it must be logically
equivalent to:

 declare

 Bar : Baz := Baz'Default_Value;

 begin

From: Simon Wright
<simon@pushface.org>

Date: Mon, 14 Dec 2020 18:24:54 +0000

> [It was a language design bug to allow
implicitly uninitialized variables in the
first place. Declarations like above
should have been illegal.]

There is an argument that you should only
initialise variables at the point of
declaration if you know what value they
should take; so that the compiler can
detect the use of uninitialised variables.

If you always initialize variables, even if
you don't know what value they should
take, the compiler can't help you if you
forget to assign the correct value.

Personally I always try hard not to declare
an uninitialised variable.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Dec 2020 19:53:23 +0100

> There is an argument that you should
only initialise variables at the point of
declaration if you know what value
they should take; so that the compiler
can detect the use of uninitialised
variables.

I think Robert Dewar argued that
variables must be declared in the
narrowest possible scope. Which would
imply that at the beginning of that scope
you should know the value, because it
would be the first use of the variable.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 14 Dec 2020 19:21:53 -0600

> N: Natural :=
Natural(A_Type'Default_Value);

We considered an attribute like that, but it
becomes a semantic problem if the type
doesn't have a Default_Value and you are
in a context where you don't know (such
as for a generic formal type). I vaguely
remember some other semantic problem,
but I don't remember the details. These
things could be worked out, but it seemed
messy.

I've long wanted <> to work as it does in
aggregates generally (if that existed, I'd
also have a restriction to require all
objects to be initialized; that would
provide an encouragement to initialize as
many objects as possible; right now, the
iffy thing (not initializing) is the easiest).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 14 Dec 2020 19:26:10 -0600

> procedure Library_Foo (Bar : Baz :=
Baz'Default_Value)

I would have suggested to write this as:

 procedure Library_Foo (Bar : Baz := <>)

since this is the syntax used in aggregates
(and why should aggregates have all the
fun??).

> Put_Line (String
(1..10)'Default_Value); -- print garbage

The above isn't a legal attribute prefix in
any case (can't slice a type). And you
don't need to because this is clearly an
aggregate (which is legal in Ada 2012):

 Put_Line (String'(1..10 => <>));

 -- print garbage

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 14 Dec 2020 19:27:39 -0600

> The compiler knows.

Not always. Never forget generics. One
would hope to be able to use this on
generic formal types, as most of them are
going to have default values (at least in
new code).

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 15 Dec 2020 07:47:32 +0100

> I think Robert Dewar argued that
variables must be declared in the
narrowest possible scope.

Not applicable if your variable is used in a
loop:

 V : Integer;

begin

 loop

 Get (V);

 exit when V =0;

 -- do something with V

 end loop;

Clearly, initializing V makes no sense.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 15 Dec 2020 08:23:33 +0100

> Not applicable if your variable is used
in a loop

 loop

 declare

 V : constant Integer := Get;

 begin

 exit when V = 0;

 -- do something with V

 end;

 end loop;

It is related to another long standing issue
with returning values (multiple values)
from functions and functions with in out
parameters (resolved recently).

[...]

Ada Pract ice 213

Ada User Journal Volume 41, Number 4, December 2020

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 15 Dec 2020 08:35:32 +0100

>> Put_Line (String
(1..10)'Default_Value); -- print garbage

> The above isn't a legal attribute prefix
in any case (can't slice a type).

I mean a subtype.

> And you don't need to because this is
clearly an aggregate (which is legal in
Ada 2012):

> Put_Line (String'(1..10 => <>)); --
print garbage

Yes, I would prefer the box notation too.
However having a proper name would has
some advantages too:

 subtype S is T range T'Default_Value -

 100..T'Default_Value + 100;

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 16 Dec 2020 18:43:56 -0600

> subtype S is T range T'Default_Value
- 100..T'Default_Value + 100;

If box was generally allowed, you could
qualify it to get this effect:

 subtype S is T range T'(<>) - 100 .. T'(<>)

 + 100; -- Not Ada, but should be IMHO. :-)

and it's shorter, too. Of course, if T
doesn't have a default value, neither of the
above is a good idea. :-)

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 15 Dec 2020 10:07:02 +0100

> V : constant Integer := Get;

Well, you can push anything in a
function, but it's not always
clear/readable/simpler...

> V : Integer := <>; -- Invented syntax
for explicit lack of initialization

That would make more sense: make
initialization required, and say so if you
don't care.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 16 Dec 2020 18:48:06 -0600

> Clearly, initializing V makes no sense.

Saying that you *meant* to have an
uninitialized value does make sense,
though:

 V : Integer := <>;

 -- Not Ada, but should be IMHO.

Whenever something is omitted, one
never knows whether it was on purpose or
a mistake. You get similar issues when
"else" is omitted (RR's style guide only
allows that in very specific
circumstances). It's unfortunate that Ada
doesn't have a positive way to indicate
default initialization, outside of
aggregates.

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Tue, 15 Dec 2020 10:14:59 -0800

Just a story about my work (long ago):

Our coding standard required for every
type declaration a default value that
indicated an uninitialised value:

type T is ...

Nd_T : constant T := ...; -- Nd: not defined

X: T := Nd_T; -- required

The idea was that this Nd value should be
thus that it would be likely to produce an
exception when used in an expression.
Also any change of this value should have
absolutely no effect on the code. In any
case, at some time it was decided that the
Nd value for numeric types was 0. The
effect: It was no longer possible to see
whether in a declaration like

X: T := Nd_T;

denoted a truly undefined value or a
concrete and correct initial value.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 16 Dec 2020 18:53:06 -0600

> It was no longer possible to see whether
in a declaration [...] this value denoted a
truly undefined value or a concrete and
correct initial value.

Typically, values like this, at least those
used in debuggers, use some permutation
of 16#DEADBEEF# since it is obvious in
data dumps, and is a rather unlikely value
to be intended. The next version of
Janus/Ada will initialize all
"uninitialized" objects to this value unless
you tell it not to. (Essentially, a version of
Normalize_Scalars, except that these days
it doesn't make much sense for that not to
be the default. Optimization can remove
most unneeded initializations, and if they
are actually needed, it's better to have a
known dubious value than stack garbage.)

Ada Syntax Questions

From: DrPi <314@drpi.fr>
Subject: Ada syntax questions
Date: Thu, 17 Dec 2020 23:39:44 +0100
Newsgroups: comp.lang.ada

Ada claims to have a better syntax than
other languages. I'm fine with, but...

1) What about array indexing ?

In some other languages, arrays are
indexed using square brackets. In Ada,
parentheses are used for function calls and
for array indexing. In the code "status :=
NewStatus(some_var);", you can't tell if
NewStatus is a function or an array.

2) In Ada, a function without arguments is
called without any parentheses.

In the code "status := NewStatus;", you
can't tell if NewStatus is a function or a
variable.

For my knowledge, are there good
reasons for these syntaxes?

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Date: Thu, 17 Dec 2020 15:18:34 -0800

1) This allows you to replace your array
with a function with the same name,
which takes the subscript as an argument
and returns a value, without touching your
client code. Think about an expensive
lookup table -vs- a simple function which
computes your data. Do not see this as an
ambiguity but rather a nice uniformity of
calling something for a value.

2) Nearly the same, but in another context
and without an argument. "NewStatus"
could be, e.g., a constant, as long as types
match.

From: Jeffrey R. Carter
Date: Fri, 18 Dec 2020 09:26:39 +0100

> 1) What about array indexing?

 The requirements for the language
included a restricted set of characters for
source code that did not include brackets.
So that is the primary reason parentheses
are used.

However, both arrays and functions are
often used as maps, and so an after-the-
fact rationalization is that using the same
syntax for both array indexing and
function calls makes it easy to switch
between the two.

> 2) In Ada, a function without arguments
is called without any parentheses.

> In the code "status := NewStatus;", you
can't tell if NewStatus is a function or a
variable.

That's because Newstatus is a terrible
name. If you'd used New_Status there
would be no confusion.

Seriously: Ada 80 required empty
parentheses for a subprogram call with no
explicit parameters. During the review
process that resulted in Ada 83, these
were universally reviled and so were
eliminated.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 18 Dec 2020 10:18:45 +0100

1. Separation of interface and
implementation. Being an array or
function is an implementation detail of a
map or a named entity.

Another example is pointer dereferencing.
In Ada X.A is the same as P.A. In C you
have X.A vs P->A.

Yet another one. All instances of
parameterization in Ada deploy ()
parentheses. In C++ it would be <>, [], (),
depending on semantically irrelevant
context.

2. Languages that like C use bottom-up
matching are forced to distinguish certain

214 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

things prematurely on the syntax level.
This is also the reason why you cannot
use the result type to distinguish
signatures in C++, but you can in Ada.
Thus in C++ you would have something
as disgusting as

 123ull

while in Ada it is just

 123

Long time ago anything but strictly
bottom-up matching was considered too
complicated or impossible. So artificial
distinctions like () vs [] were invented and
then promoted into orthodoxy.

From: Mart van de Wege
<mvdwege@gmail.com>

Date: Fri, 18 Dec 2020 17:55:56 +0100

> 1) What about array indexing ?

Why would you care? It is obvious that
NewStatus will return something based on
the value of some_var. How it does that,
by array dereference or function call
should make no difference to the caller;
they are only interested in the final value
of status.

Or another look at it: array indexing is
effectively a function call anyway. It is
"return value of array_base + index".

> 2) In Ada, a function without arguments
is called without any parentheses.

Again, why would you care how
NewStatus returns a value? Either by
returning the value of a function or by
dereferencing a variable, all you're
interested in is the value assigned to
status.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 18 Dec 2020 18:38:27 +0100

> 2) In Ada, a function without arguments
is called without any parentheses.

As others have stated, why do you care?

I often mock up a function with a
constant, add a pragma
compile_time_warning/error ("fix
implementation later") and only later
write the body of the function. And that is
the only code change - I don't need to add
an useless empty pair of () just because it
is a function to all the callers

> For my knowledge, are there good
reasons for these syntaxes?

Yes

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 18 Dec 2020 21:35:37 +0200

> Ada claims to have a better syntax than
other languages.

I would say the claim is that the Ada
syntax was rationally designed to have
certain properties, which are desired by

certain users (us Ada programmers) so it
is "better" for us, although some aspects
are subjective for sure.

In addition to what others have said, here
are some further comments on

the examples you gave:

> 1) What about array indexing?

There are proposals to allow [] as well as
(), mainly to increase familiarity for new
Ada users.

> 2) In Ada, a function without arguments
is called without any parentheses.

Parameterless functions are rare, and
properly so.

Parameterless procedures are much more
common. Writing

 Frobnicate_Widget();

is longer than

 Frobnicate_Widget;

and seems to have no advantages over the
shorter form.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 18 Dec 2020 15:09:19 -0800

> 1) What about array indexing?

This is true.

You seem to be implying this is bad;
why?

> 2) In Ada, a function without arguments
is called without any parentheses.

This is true.

You seem to be implying this is bad;
why?

> For my knowledge, are there good
reasons for these syntaxes?

Yes. See the Ada Rationale: http://ada-
auth.org/standards/rationale12.html

From: DrPi <314@drpi.fr>
Date: Sat, 19 Dec 2020 12:50:40 +0100

Thanks all for your answers.

 > Why would you care?

Calling a function can have side effects.
Accessing an array or a variable can't
have side effects.

> You seem to be implying this is bad;
why?

Reading the code can't tell you the writer's
intentions.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 19 Dec 2020 13:40:25 +0100

> Calling a function can have side effects.
Accessing an array or a variable can't
have side effects.

Untrue. Both array and variable access
have side effects on the registers, on the
cache, on the process memory paging, in
the form of exception propagation etc.
Even direct effects on the outside world
are possible when using machine memory
load instructions. E.g. on some hardware
reading memory at the specific address
location means physical serial input.

All these effects are either desired parts of
the implementation or else bugs to be
fixed. If desired, why do you care?

> Reading the code can't tell you the
writer's intentions.

What intentions? Unless you are talking
about the intention to deploy a specific
machine instruction, function or array
gives you no clue. But even then. PDP-11
FORTRAN IV used subprogram calls to
implement basically everything,
elementary arithmetic operations. If the
function is inlined, where is any call?
Functions can be tabulated into lookup
tables. Arrays can be compressed into
functions.

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Sat, 19 Dec 2020 09:01:53 -0800

> Calling a function can have side effects.
Accessing an array or a variable can't
have side effects.

The declaration of the function is a
contract about pre and post conditions,
albeit in Ada incomplete. In SPARK, the
contract is firm. As a user of the function,
you have to believe the programmer that
he follows the contract. If the
implementation needs a side effect, so be
it.

If on the other hand you are a maintainer
or are chasing a bug, you have to check
the requirements first, not the body of the
function. This comes later.

> Reading the code can't tell you the
writer's intentions.

The intentions are in the requirements (or
in the accompanying comments, you hope
they are up to date and not wrong). If
there are none, good luck.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Sat, 19 Dec 2020 09:13:56 -0800

> Untrue. Both array and variable access
have side effects on the registers, on the
cache, on the process memory paging,
in the form of exception propagation
etc.

Dmitry, DrPi here is referring to side-
effects as viewed from the functional-
programming paradigm's perspective.
Some programming languages have a
"pure" designator (usually the keyword:
pure) that assures that this subroutine and
all invoked subroutines therein are pure
(i.e., have no FP side effects).

Ada Pract ice 215

Ada User Journal Volume 41, Number 4, December 2020

The side effects of which you speak are at
the machine-code level: e.g.,
setting/clearing comparison flag(s),
setting/clearing carry flag, setting/clearing
overflow/underflow flag(s), evictions
from L1/L2/L3 cache, (on RISC
processors) latching an address in
preparation of a load/store, and so forth.
None of these are externally observable
side effects from FP's perspective above
the machine-code level. DrPi's FP goals
are valid.

> > Reading the code can't tell you the
writer's intentions.

> What intentions?

The intentions of the Ada programmer to
design an overtly FP-pure or either an
overtly FP-impure subroutine or an FP-
impure subroutine by happenstance.
Subroutine here is preferably a function,
preferably at that a single-parameter
function (for ability to utilize over a
century of mathematical-analysis
techniques). Ada is showing its 1970s
vintage by unfortunately omitting overtly
expressing FP pureness as a fundamental
principle (among a few other FP features).
DrPi's FP goals are valid.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 19 Dec 2020 18:49:08 +0100

> The side effects of which you speak are
at the machine-code level

Memory paging is pretty much
observable.

What you are saying is a question of
contracts. The contract must include all
effects the user may rely on. The contract
of a function may include observable
effects or have none (to some extent).

If contracts were indeed relevant to the
syntax then functions without contracted
side effects must have been called using []
instead of ().

No? Then it is not about the contracts.

>>> Reading the code can't tell you the
writer's intentions.

>> What intentions?

> The intentions of the Ada programmer
to design an overtly FP-pure or either
an overtly FP-impure subroutine or an
FP-impure subroutine by happenstance.

Intentions are constraints expressed by
contracts. Everything else is
implementation details.

Ada programmers are not motivated by
pureness of a subroutine. These are totally
irrelevant. What is relevant is the strength
of the contract. Functions without side
effects are preferable just because they
have weakest preconditions and strongest
postconditions. Side effects weaken
postconditions.

For the clients these are of no interest,
even less to deserve a different syntax.
The user must simply obey the contract
whatever it be, ignoring the
implementation as much as possible.

Ada's unified syntax is a great help here. I
quite often replace arrays and variables
with functions. It would be great if literals
were fully equivalent to parameterless
functions.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Sat, 19 Dec 2020 10:40:53 -0800

> No? Then it is not about the contracts.

As witnessed by your final sentence
quoted below and multiple other replies
along this thread, the key tactical
advantage of Ada's usage parentheses for
array indexing is to accomplish a
switcheroo days, weeks, months, years, or
decades later: to substitute a function
invocation later for what was formerly an
array index. Cute trick. Advantageous in
some situations. But for people like DrPi
who seek contractual assurance of FP-
purity of (all?) invoked functions (and
overt declaration of impurity of other
functions), Ada's 1) implicit switcheroo
there in unfortunate combination with
Ada's 2) lack of flamboyantly advertising
impurity in the replacement function does
in fact violate the purity portion of the
contract that the mere offset-into-array
implementation had—and indeed
•overtly• declared in its specification as a
mere offset-into-array operation-of-
unquestionable-purity.

It is okay for a 1970s Ada to not foresee
this, because FP was not a mainstream
programming practice back then. (But,
btw, it is not as okay for there to be a lack
of HOLWGn each decade since the 1980s
to revisit whether HOLWG1 forgot
anything, where n>1, n∈ℤ.) This 1970s
faux pas in letting a silent slip-streamed
switcheroo into the core contract-
definition declaration mechanism of Ada
(not comments! btw, tisk tisk) is merely
some tarnish that an AdaNG (next-
generation Ada) would fix: e.g., by
mandating that all functions (and
procedures?) shall be overtly declared &
enforced to be pure or impure, which
would then mean that only pure functions
could substitute for array indexing is the
()-based switcheroo on which so many
replies in this thread hang their hat. And
DrPi would enjoy seeing the compile-time
errors emerge when some cavalier
programmer over yonder changed an
array index to an •impure• function
invocation as contract violation. The cute
implicit switcheroo isn't evil, but the lack
of compile-time detection of impurity in
the switcherooed function is what is evil.
(While drinking tea as none of my
business as the meme goes,) I actually
claim that Ada's usage of parentheses for
array indexing was merely happenstance

copying the Fortran-PL/I-PL/1-Simula-
PL/P-PL/M/CHILL heritage popular in
the 1970s*, which itself mimicked
mathematics' usage of parentheses around
each matrix. Because there was no way
to represent mathematics' subscripts as the
notation for indexing, the next best
punctuation for matrix/vector indexing
was borrowed: parentheses.

* as opposed to the ALGOL58's,
ALGOL60's, ALGOL68's, BCPL's, C's
square brackets, so the big split was
somewhere around 1957 for FORTRAN
(and whichever predecessor languages
influenced it) and 1958 for ALGOL58
(and whichever predecessor languages
influenced it), as opposed to APL's ⍳ iota
which uses neither parentheses nor square
brackets to pull out an element since 1966

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 19 Dec 2020 20:37:31 +0100

> [...] the key tactical advantage of Ada's
usage parentheses for array indexing is
to accomplish a switcheroo

Not substitute, but to provide whatever
implementation necessary. In fact Ada is
limited in terms of abstractions. There
still exist things which cannot be
implemented by user-defined
subprograms. Ideally there should be
none. Whatever syntax sugar, there
should be always a possibility to back it
by a user-provided primitive operation.

> But for people like DrPi who seek
contractual assurance of FP-purity of
(all?) invoked functions (and overt
declaration of impurity of other
functions),

If they are unsatisfied with the higher
abstraction level of Ada, they can switch
to lower-level languages where
implementation details are exposed in
syntax. The best we can do is to explain
why such exposure is a bad idea.

[Conceptually Ada has nothing to do
with FP and I sincerely hope it never
will.]

> This 1970s faux pas [...] is merely some
tarnish that an AdaNG would fix

This would be highly undesired. On the
contrary impure array implementations
are all OK to implement various heuristics
and caching schemes on the container
side. In fact, Ada moved in that direction
already by providing crude user-defined
array indexing. Clearly as hardware
evolves towards parallel architectures
with partitioned memory, low-level arrays
will be less frequently exposed in
interfaces. Comparing older and newer
Ada code we can see that trend of moving
away from plain arrays.

Furthermore, purity of implementation is
not contract, per definition of. Purity is a
non-functional requirement.

216 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

There is only few areas of interest for
such:

1. Compile-time evaluation/initialization
of static objects and constraints.

2. Optimization, especially in the cases of
fine grained parallelism.

In any case there is no reason to reflect
that in the syntax, whatsoever.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Sat, 19 Dec 2020 14:11:59 -0800

> If they are unsatisfied with the higher
abstraction level of Ada, they can
switch to lower-level languages where
implementation details are exposed in
syntax.

No, Dmitry, that is where you are wrong.
In this regard, Ada is the lower-level,
grungier, cruder, uncouther programming
language, closer to assembly language or
ALGOL60. Languages that have a pure
keyword (or equivalent elective
designator for compile-time purity
enforcement throughout a call-tree of
subroutines) are the ones that are high-
level, cleaner, more-sophisticated, more-
refined programming languages, closer to
the lofty heaven of mathematics. This is
actually a sad commentary on software
engineering as a professed practice that
we cannot even agree which
programming-language feature-sets are
higher-level versus lower-level, grungier
versus cleaner, cruder versus more
sophisticated, and uncouther versus more
refined.

There is no good reason for Ada to lack
all of the mechanisms to support FP
(other than historical happenstance, then
being substantially frozen in a Steelman
mindset without any follow-on
Stainlessman (arguably Ada95's,
Ada2005's, Ada2012's would-be set of
requirements that they have incrementally
grown into) then Silverman (arguably
SPARK's would-be set of requirements
that is an ever-closer-to-finished work-in-
progress) then Iridiumman then Goldman
then Palladiummand then Platinumman
evermore sophisticated requirements for a
best-practices programming language to
live up to as humankind's understanding
of programming, system engineering,
software engineering, and mathematics
advances over time).

> Furthermore, purity of implementation
is not contract, per definition of. Purity
is a non-functional requirement.

So is all of Ada's rich typing/subtypes.
Ada is simply capable of expressing some
categories of nonfunctional requirements
of the design (e.g., rich typing) but not
other more-modern categories of
nonfunctional requirement (e.g., a pure
keyword).

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sat, 19 Dec 2020 13:51:35 -0800

> Reading the code can't tell you the
writer's intentions.

That's what comments and design
documents are for.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Sat, 19 Dec 2020 14:20:52 -0800

> > Reading the code can't tell you the
writer's intentions.

> That's what comments and design
documents are for.

For decades, assembly-language
programmers said the same thing about
structured-programming feature-set as
being representable in mere comments &
design documents. For decades, C
programmers said the same thing about
Ada's and C++'s and now Rust's feature-
sets as being representable in mere
comments & design documents.
Arguably, the entire history of
programming from Fortran (1957) and
ALGOL (1958) forward is to encode the
designer's intentions in source code that is
vetted by a compiler instead of merely
letting comments and design documents
bit-rot as the declarative & imperative
source code marches onward in the flow
of time during initial greenfield
completion (after all the “then a miracle
occurs” on the blackboard sketches
become rubber meeting road) and then
during maintenance (as the design
incrementally changes).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 20 Dec 2020 09:47:50 +0100

> No, Dmitry, that is where you are
wrong. In this regard, Ada is the lower-
level, grungier, cruder, uncouther
programming language, closer to
assembly language or ALGOL60.

Then we disagree on the definition of
higher level. Mine is the level of
abstraction away from calculus toward the
problem space entities.

[...]

> So is all of Ada's rich typing/subtypes.
Ada is simply capable of expressing
some categories of nonfunctional
requirements of the design (e.g., rich
typing) but not other more-modern
categories of nonfunctional requirement
(e.g., a pure keyword).

The abstract datatype (in its original
sense, rather than as abstract type in Ada)
is meant to be a part of abstraction
expressing the problem space. Purity of
whatever implementation has nothing to
do with the problem space. It is a design
artifact.

Moreover, from the standpoint of
programming paradigm, the whole
procedural decomposition is lower level
than OO decomposition done in terms of
types and sets of types.

FP sits firmly in the procedural world.
Even ignoring all fundamental flaws of
FP concept, you will find no interest in FP
from my side.

From: DrPi <314@drpi.fr>
Date: Sun, 20 Dec 2020 15:10:47 +0100

>> Reading the code can't tell you the
writer's intentions.

> That's what comments and design
documents are for.

A good IDE with code analysis showing
you object declaration/use is very useful.
Especially when comments are out of
sync with the code.

I'm surprised that no modern
tool/language allows the programmer to
embed a "complete" documentation in
source files. I'm not talking about
comments formatted to suit a specific tool
convention, like Python or Perl doc-
strings. I'm talking about embedding
schematics, drawings, bitmaps,
mathematical equations, etc directly in the
source code. Or maybe the reverse:
embed source code in standard document.
Like javascript in SVG files. Why not a
.odt file with code sections? Ok, a specific
file format would be better. Of course, the
editor should be specific. No more a
simple text editor.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Sun, 20 Dec 2020 08:53:36 -0800

> Then we disagree on the definition of
higher level. Mine is the level of
abstraction away from calculus toward
the problem space entities.

Ada's inexpressiveness of imprecision of
vagueness of misrepresenting design
intent in this regard (of inability to
compile-time enforce purity of
subroutines) is clearly not abstraction. It
is mere self-imposed blindness, ignoring
the purity-enforcement topic altogether.
Assembly language and Ada have the
same inability to overtly express and
enforce a declaration of FP-purity. Other
languages have a pure keyword or
equivalent for subroutines (i.e., functions,
procedures, lambdas, coroutines,
generators) to overtly express compile-
time-enforced purity of the subroutine not
making modifications to any data outside
of its parameter data and callstack-based
transient data. Clearly when a
programming language (i.e., Ada) and
assembly language share the same lack of
feature, they are the more-primitive.
Clearly when other pure-keyword-
equipped programming languages can
facilitate & enforce a higher civilization
to capture the finer points of a

Ada Pract ice 217

Ada User Journal Volume 41, Number 4, December 2020

mathematical description of the problem
domain via a rule-declaration & compile-
time enforcement that assembly language
lacks, they are higher-order and less
primitive. There is no valid definition of
“higher-order programming language”
that permits assembly language's lack of a
pure keyword (or equivalent purity-
enforcement mechanism) to be a higher-
order language than, say, Scala with a
pure keyword. Dmitry, your line of
reasoning here of what constitutes a
higher-order language is preposterous!

From: Stéphane Rivière <stef@genesix.fr>
Date: Tue, 22 Dec 2020 11:05:10 +0100

> Ada's inexpressiveness of imprecision
of vagueness of misrepresenting design
intent in this regard (of inability to .../...

Thanks for your message. It makes my
day. I'm not fluent as you in english, nor
in Ada concepts (I just use it with joy),
but let me express my admiration for
assertions such as:

> Assembly language and Ada have the
same inability to overtly express and
enforce a declaration of FP-purity.

Although this thought also plunges me
into an abyss of reflection:

> Ada's inexpressiveness of imprecision
of vagueness of misrepresenting design
intent in this regard (of inability to
compile-time enforce purity of
subroutines) is clearly not abstraction.

There remains a mystery.

Why does your message remind me of
this scene from another genius, Stanley
Kubrick?
https://www.youtube.com/watch?
v=iAHJCPoWCC8

No need to answer me, I don't have your
skills to debate it. Just be assured that this
post is not mocking and more expressing
amazement.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Dec 2020 18:58:51 -0600

>Ada's inexpressiveness of imprecision of
vagueness of misrepresenting design
intent in this regard (of inability to
compile-time enforce purity of
subroutines) ...

Which Ada? Ada 202x has Global aspects
specifically for this purpose, and they are
compile-time enforced. Methinks are you
simply looking to troll Ada rather than
any serious intent.

There's no implementation of Global yet,
sadly. Hopefully coming soon.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Mon, 21 Dec 2020 18:39:45 -0800

> Ada 202x has Global aspects
specifically for this purpose, and they
are compile-time enforced.

This is very good news. I will need to
investigate those AIs further. I take it
from your wording that Global aspects are
a general mechanism that a codebase
could use to implement e.g. the purity
check that FP seeks. If a general
mechanism, it will be interesting to
foresee what other categories of axioms
can be enforced/assured beyond purity.
Btw, I botched my example of extant
programming languages in a prior
comment that has a purity check on a call
tree. D has it currently, but it has been
proposed but not yet incorporated into
Scala.

> Methinks are you simply looking to
troll Ada rather than any serious intent.

No, absolutely not, at least not in the
pejorative [sense] that your wording
implies. As a system-engineer •critic• of
finding the flaws in the system at large, I
am always performing gap analysis on
current Ada versus desired state of a
universal programming language, using a
technique not unlike FMEA. At some
level you are coincidentally correct: I am
negatively disappointed with Ada as
much as C++ as much as Scala as much
as D as much as Kotlin as much as Swift
as much as C# as much as OCaml, but in
different ways and to different degrees for
each language.

For example, I admire so many portions
of Ada, especially its declarative rich
typing expressivity and its 35-year lead in
accomplishing much of what C++20 will
finally get with their oft-pursued concept
feature. Conversely, it is sad that few
people realize that Ada has had much of
the new whizbang C++20 concept feature
for 35 years.

It is as if Ada is a mostly superior product
whose salesmen don't consummate as
many sales contracts as they ought. It is
useful to study in depth precisely why the
superior product partially fails to achieve
its potential glory.

One of the most interesting successes of
Ada is that its user community seems to
have fairly consistently utilized the vast
majority of the features of the language
on a regular basis. Despite C++'s
perceived popularity by comparison, each
C++ codebase utilizes 10% of C++, but
worse it is a different 10% of C++ utilized
for each different codebase with vast
rivalry between codebases regarding
which portions of C++ are God's gift to
humankind and which portions of C++
are uncouth. Hence, C++'s perceived
popularity is more of a mirage than it first
appears because there is no one C++ that
is popular, but rather a hundred subsets of
C++, 75 of which are intensely unpopular
to each of the others and 24 of which are

eye-rollingly barely tolerable to each of
the others.

As no small achievement, Ada achieves
Scott McNealy's “all the wood behind one
arrow” vastly more than, say, C++'s or
D's everything-and-the-kitchen-sink
pandering to me-too-isms. Scala/JVM,
Scala/Native, Scala/OO, and Scala/FP are
constantly in a multi-way tug-of-war of
sorts (actually 2 orthogonal tugs-of-wars
at 2 different ontological levels) that again
isn't “all the wood behind one arrow” that
Ada better achieves than Scala (so far).

> There's no implementation of Global
yet, sadly. Hopefully coming soon.

It will be interesting to see the furthest
push-the-limits extent of applicability of
Global aspects.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Sun, 20 Dec 2020 13:59:20 -0800

I've never found any of the arguments in
favor of using parentheses for array
indexing convincing, and I've never liked
the way Ada does it. But of course the
decision was made in the early 1980s, and
it can't be changed now.

At least part of the reason was that Ada
needed to be used on systems that didn't
have '[' and ']' in their character sets. I
don't know to what extent that necessity
has been used as an after the fact
rationalization.

Function calls and array indexing can be
substituted for one another in *some*
circumstances, but not in all. But they
really are very different things. A
function call executes user-written code,
and may have side effects; an array
indexing expression refers to an object.
An array indexing expression can appear
on the LHS of an assignment; a function
call can't.

If Ada had originally used '[' and ']' for
array indexing, I doubt that anyone would
be complaining that it would have been
better to use '(' and ')' (other than some
Fortran programmers, I suppose).

Why not use parentheses for record
components, Object(Component) rather
than Object.Component Doesn't the same
argument apply?

> There are proposals to allow [] as well
as (), mainly to increase familiarity for
new Ada users.

Ick. The only thing more confusing than
using () for array indexing would be
allowing either () or [] at the
programmer's whim. (Well, not the only
thing; I'm sure I could come up with
something even worse.)

> Parameterless procedures are much
more common. Writing

> Frobnicate_Widget();

218 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

> is longer than

> Frobnicate_Widget;

> and seems to have no advantages over
the shorter form.

I wouldn't have expected the designers of
Ada to be concerned about saving two
characters.

I see your point about procedure calls. A
statement consisting of an identifier
followed by a semicolon can only be a
procedure call (I think), so there's no
ambiguity. My mild dislike for the
function call syntax is that it needlessly
treats the zero-parameter case as special.

There could also be some potential
ambiguities, though I'm not aware of any
actual ambiguous cases in Ada. In some
languages, the name of a function not
followed by parentheses refers to the
function itself (or its address) and does
not call it. I can easily imagine an
attribute for which Func'Attribute could
sensibly refer either to the function Func
itself or to the value returned by calling it.

Again, if Ada 83 had required empty
parentheses on parameterless procedure
and function calls, I'm skeptical that
anyone would now be arguing that it was
a bad decision.

And again, it would be impossible to
change it without breaking existing code.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 21 Dec 2020 09:08:30 +0100

> Function calls and array indexing can
be substituted for one another in
some circumstances, but not it all.

IMO the only circumstances violating this
substitutability are language design bugs
and deficiencies:

- Passing array elements in in-out mode

- Assigning array elements

- Multidimensional indices

- Slices

all these must be substitutable with user-
defined subprograms.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Dec 2020 19:04:43 -0600

> Function calls and array indexing can
be substituted for one another in
some circumstances, but not it all.

This is false in modern languages with
user-defined indexing (Ada and C++
included), since what looks like array
indexing can actually be implemented
with a function call.

Not having variable returning functions is
a flaw in Ada, IMHO. These days, I think
there are still too many special cases in
Ada. If I was starting today, () would be a
function call, and . would be selection/

dereferencing, and there would not be
anything else (which means getting rid of
type conversions, array indexing and
slicing, and anything else I've forgotten
about). Compilers are smart enough to
generate better code when they know
something about the function involved
(including if it is that of a predefined
container). Doing that would allow
overloading to be more general and to
allow for the complication of variable
returning functions.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 22 Dec 2020 09:00:14 +0100

> If I was starting today, () would be a
function call, and . would be
selection/dereferencing, and there
would not be anything else

But you cannot get rid of X(...) syntax,
where X is an object. It is not only
indexing, e.g. in declarations:

 X : T (Y);

Then what is wrong with indexing? It
should simply apply to all types [from
some predefined class]:

 X (...) ::= CALL (<index-operation>, X, ...)

 (...) ::= CALL (<aggregate-operation>, ...)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 22 Dec 2020 19:23:51 -0600

> Then what is wrong with indexing?

Nothing is "wrong" with it, it is just
redundant. As others have noted here,
both indexes and function calls represent
a mapping. What's the point of having two
ways to represent a mapping? In an Ada-
like language, there's no syntax nor
semantic difference.

Ada (and most other languages) are full of
redundant stuff. Simplify the basics and
then one has more room for interesting
stuff (static analysis, parallel execution,
etc.).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 23 Dec 2020 09:59:46 +0100

>> But you cannot get rid of X(...) syntax,
where X is an object.

> That's a prefixed view, of course. No
one would want to get rid of that.

Hmm, where is the operation? A prefixed
view is

 <expression>.<operation>(...)

Indexing is

 <expression>(...)

In particular:

 "abc"(1)

>> It is not only indexing, e.g. in
declarations:

>> X : T (Y);

> That's not an expression and is not
resolved (that is, there is no possible
overloading).

I see no fundamental difference between
"first-class" expressions and type-
expressions.

>> Then what is wrong with indexing?

> Nothing is "wrong" with it, it is just
redundant. As others have noted here,
both indexes and function calls
represent a mapping. What's the point
of having two ways to represent a
mapping? In an Ada-like language,
there's no syntax nor semantic
difference.

Both are mappings, but unless you make
functions first-class citizens there exist
language level differences between a
function and a container object.

> Ada (and most other languages) are full
of redundant stuff. Simplify the basics
and then one has more room for
interesting stuff (static analysis, parallel
execution, etc.).

Yes, but I would rather keep all this stuff
in the language making it overridable
primitive operations.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 23 Dec 2020 22:06:03 -0600

> Hmm, where is the operation? A
prefixed view is

> <expression>.<operation>(...)

> Indexing is

> <expression>(...)

I neglected to mention that what Ada calls
objects are also function calls in this
proposed generalization. (Much like
enumeration literals are in Ada.) So for
static semantics (that is, compile-time),
pretty much everything is a function call.
This gets rid of the anomalies associated
with constants (which don't overload and
thus hide more than a parameterless
function - which is otherwise the same
thing); combined with variable-returning
functions, everything is overloadable and
treated the same in expressions. Almost
no special cases (operators still require
some special casing, but we can make
them always visible which would
eliminate more issues).

Clearly a compiler for this language
(which can't be Ada, unfortunately, way
too incompatible) would special-case
some kinds of built-in functions for things
like objects and indexing. But that doesn't
need to hair up the semantic model, just
the implementations.

>> Ada (and most other languages) are
full of redundant stuff. Simplify the
basics and then one has more room for

Ada Pract ice 219

Ada User Journal Volume 41, Number 4, December 2020

interesting stuff (static analysis, parallel
execution, etc.).

> Yes, but I would rather keep all this
stuff in the language making it
overridable primitive operations.

Yeah, you don't plan to formally describe
nor implement this language, so you don't
really care about how complex it gets. :-)
Well, at least not until performance
suffers. Ada is reaching the limit of what
can be done without substantial
incompatibility. If we're going to allow
that, we need to start with a cleaner base,
and part of that is getting rid of
redundancies.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 24 Dec 2020 10:37:10 +0100

> I neglected to mention that what Ada
calls objects are also function calls in
this proposed generalization.

Well, you must stop the recursion
somewhere. It is fine to treat access to
objects as calls, e.g. to getter/setter, or to
indexation, or to dereferencing, but you
must finish at some point with something
spelled as a call to a subprogram. In the
case of a subprogram call you are already
there. With "objects" you need a few hops
to get there.

[...]

> Ada is reaching the limit of what can be
done without substantial
incompatibility. If we're going to allow
that, we need to start with a cleaner
base, and part of that is getting rid of
redundancies.

We see that differently. So far new
features were added on top which
naturally leads to the mess we observe.
The problem is lack of generalization not
inconsistency. If the new Ada cannot
express the old messy, but consistent Ada,
then this new Ada is not general enough
and it will arrive at the same amount of
mess sooner or later.

Getting Integers from
Strings

From: John Perry <john.perry@usm.edu>
Subject: Help parsing the language manual

on Get'ing integers from Strings
Date: Sun, 20 Dec 2020 16:11:43 -0800
Newsgroups: comp.lang.ada

Sorry if the subject is unclear. I recently
tried to use

 Get(S, Value, Last);

...in a program where Value was a Natural
and S has the value "29: 116 82 | 119 24".
GNAT gave me a Data_Error.

I don't understand why. [...]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 21 Dec 2020 09:44:30 +0200

[...]

It seems that the Get procedure
understands ':' as a base indicator, as in

 "12#44#" works, Value = 52, Last = 6.

 "12#44" fails with Data_Error.

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 21 Dec 2020 08:57:36 +0100

[...]

 Colon: is a replacement character for #
(see allowable replacements of
characters). So it might think of 29: 116
as a malformed base-29 number with
wrong base and missing closing:.

[...]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 21 Dec 2020 10:06:47 +0200

I see, an "obsolescent feature" in RM J.2.
I learn something new every day (I hope).

Ok, so no bug.

From: Jeffrey R. Carter
Date: Mon, 21 Dec 2020 10:40:17 +0100

> I see, an "obsolescent feature" in RM
J.2.

Yes. I never worked with a system that
required such substitutions, even in 1984
when it was not an obsolescent feature,
but as we can see, it's important to be
aware of them.

These days they are sometimes used for
obfuscation.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Dec 2020 19:11:32 -0600

> Yes. I never worked with a system that
required such substitutions, even in
1984 when it was not an obsolescent
feature, but as we can see, it's important
to be aware of them.

I believe that restriction had to do with
certain keypunches. But hardly anyone
used keypunches even in 1981. (The
Unisaur computer that our CS compiler-
construction class used still had a few
keypunches, but they had mostly
transitioned to terminals by that time. I
think that was the last class to use the
Unisaur; they just had installed some
VAX 780s for research and they soon got
some for student use as well. My first few
programming classes at UW used the
Unisaurs keypunches.) I think that
requirement was obsolete by the time Ada
was completed (it probably wasn't when
the Ada design was started).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Dec 2020 19:19:44 -0600

> Perhaps RM-A.10.8(8) should be
clarified/corrected.

For what it's worth, we once tried to do
that, but couldn't come to an agreement on
precisely what to change the wording to.
As a change is not critical, we didn't make
one. The ACATS has long had tests in
this area that require something subtly
different than the wording requires, and it
didn't make any sense to change them
(since presumably all implementers are
passing them, rather than strictly
following the RM wording).

In any case, the ":" replacement trips up
people from time-to-time, as pretty much
no one remembers it. I recall we had to
change some piece of new syntax because
the possibility of a colon in a number
made it ambiguous.

On the Future of the
Distributed Systems Annex

From: Rod Kay <rodakay5@gmail.com>
Subject: 2dsa | !2dsa?
Date: Tue, 22 Dec 2020 12:00:48 -0800
Newsgroups: comp.lang.ada

I've heard that the Distributed Systems
Annex (DSA) may be dropped from the
Ada standard soon. Can anyone confirm
this?

I've been using the PolyORB
implementation of DSA for some time
and find it very useful. The way in which
it abstracts away socket 'plumbing' details
makes for very simple/understandable
comms.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 22 Dec 2020 19:32:37 -0600

> I've heard that the Distributed
Systems Annex (DSA) may be dropped
from the Ada standard soon. Can
anyone confirm this?

Annex E remains in the proposed Ada
202x standard.

Compiler support, of course, is up to
vendors. Dunno if anyone is still
supporting it.

> I've been using the PolyORB
implementation of DSA for some time
and find it very useful. The way in
which it abstracts away socket
'plumbing' details makes for very
simple/understandable comms.

That was the promise, not sure it ever
really was realized. Since the Annex was
weakened enough that third-party support
isn't really possible anymore (necessary to
allow it to be used with current
middleware), it's really a vendor-specific
thing these days.

220 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 23 Dec 2020 09:44:26 +0100

> Compiler support, of course, is up to
vendors. Dunno if anyone is still
supporting it.

It should be moved to the user level. As
specified in the Annex there seems no
obvious way to provide a user-defined
transport for DSA, and there seems no
way to have different implementations of
DSA in the same program.

[...]

> [...] it's really a vendor-specific thing
these days.

Yes, I always wished to include DSA
support based on various communication
protocols I have implemented in Ada,
rather than plain sockets. E.g. I have a
ready-to-go DSA implementation for
interprocess communication over shared
memory, but no idea how to make GNAT
aware of it. Or AQMP and ASN.1 look
like a straightforward candidate as a DSA
transport as they have detailed type
description systems to map Ada objects.

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Thu, 24 Dec 2020 04:02:24 -0800

I forked an older (Garlic) GNAT DSA
implementation and found it quite
hackable. :)

My idea is to implement a
WebSocket/WebRTC transport and
compile it by GNAT-LLVM to
WebAssembly to have distributed Ada
applications in a browser. I have a
working proof of concept demo already :)

https://github.com/reznikmm/garlic/tree/
web_socket

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 24 Dec 2020 14:30:54 +0100

> I forked an older (Garlic) GNAT DSA
implementation and found it quite
hackable. :)

My question is how to proceed without
GLADE/Garlic etc. I have DSA
implemented, e.g. System.RPC. I need
GNAT to accept it as such.

In a more distant perspective I need a
work-around of stream attributes. They
are non-portable, so there must be an
option to replace them for DSA and/or
provide a non-stream parameter
marshaling when the transport is a higher-
level protocol, e.g. CANopen, EtherCAT,
ASN.1, AMQP etc. For these you must
map Ada types into the types defined by
the protocol. Without this DSA is pretty
much pointless.

From: Rod Kay <rodakay5@gmail.com>
Date: Sun, 27 Dec 2020 11:34:10 -0800

Is it likely that the ARG might address the
aforementioned issues?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 28 Dec 2020 17:41:39 -0600

>Is it likely that the ARG might address
the aforementioned issues?

As of now, it doesn't appear that there
would be any point. Annex E is an
optional annex, and so far as we're aware,
no compiler vendor has any plans for
increasing support for that annex. So the
ARG could change the annex but it seems
unlikely that any changes would make it
into implementations. (We've been told
not to expect even the implementation of
bugs fixes included in Ada 202x, even
from the vendor that originally requested
the bug fixes.)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 29 Dec 2020 15:56:35 +0100

>> Is it likely that the ARG might address
the aforementioned issues?

> As of now, it doesn't appear that there
would be any point.

Why should there be any vendor support
in the first place? Why not to redefine it
as a set of abstract tagged types allowing
custom user implementations like storage
pools and streams do?

The idea of having an IDL, statically
assigned partitions, linking everything
together before start is not the way the
distributed systems are designed and work
today. CORBA died for a reason.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 29 Dec 2020 16:51:19 +0100

> Would the compiler still need any
support for this or would it just be a set
of interfaces at library level?

Yes, because the idea is to have remote
objects and remote calls looking exactly
the same as local objects and local calls.

So the compiler must translate a call to an
RPC to a call to some user primitive
operation like System.RPC does. The
operation would have a controlling
parameter "connection" or "remote
partition". The actual input values of the
original call must be marshaled, e.g. as an
output stream. The output values and the
result will be returned via an input stream
and deserialized from there into the actual
parameters/result or else into a remote
exception occurrence to re-raise locally if
that was the outcome.

Here lie a lot of problems. First is non-
portability of stream attributes. Second is
lack of support for bulky transfers and
multiplexing. It is highly desirable that
the output stream could be written in
chunks as well as reading the input
stream. E.g. if you pass large objects or if

you want to multiplex RPCs made from
different tasks rather than interlock them
(which for synchronous RPC would result
in catastrophic performance).

The current Annex E is very crude to
allow efficient, low-latency, real-time
implementations.

P.S. If Ada supported delegation,
introspection and getter/setter interface,
then, probably, all remote call/objects
stuff could be made at the library level.
But for now, compiler magic is needed.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 31 Dec 2020 17:43:39 -0600

> Why should there be any vendor
support in the first place? Why not to
redefine it as a set of abstract tagged
types allowing custom user
implementations like storage pools and
streams do?

Marshalling/unmarshalling surely require
vendor support, and there has to be a
standard interface for the marshalling
stuff to talk to. That to me was always the
value of Annex E. My understanding is
that there is not much interest in doing
any work at all, even to correct the
mistakes in the existing definitions.

In any case, Storage_Pools and Streams
are some of the most expensive features
of Ada to support. That's not a model for
"lightweight" support of anything.

My advice would be to talk to your
vendor if you feel strongly about this sort
of support.

Easiest Way to Use Regular
Expressions?

From: reinert <reinkor@gmail.com>
Subject: Easiest way to use redular

expressions?
Date: Sun, 27 Dec 2020 00:20:11 -0800
Newsgroups: comp.lang.ada

I made the following hack to match a
string with a regular expression (using a
named pipe and grep under linux):

[Omitted example of spawning a process
and capturing the output. —arm]

OK, I assume it somehow breaks the
philosophy on Ada and
security/reliability. Could someone
therefore show a better and more simple
way to do this? gnat.expect?

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 27 Dec 2020 09:36:49 +0100

AdaControl uses Gnat.Regpat, and is
quite happy with it...

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sun, 27 Dec 2020 03:14:47 -0800

> AdaControl uses Gnat.Regpat, and is
quite happy with it...

Obituary 221

Ada User Journal Volume 41, Number 4, December 2020

GNAT.Regpat is a package I wrote 18
years ago or so (time flies..), basically
manually translating C code from the Perl
implementation of regular expressions.
Nowadays, I think it would be better to
write a small binding to the pcre library
(which has quite a simple API, so the
binding should not be too hard). This will
provide much better performance, support
for unicode, and a host of regexp features
that are not supported by GNAT.Regpat.

Never did that while I was working for
AdaCore because we would have ended
up with too many regexp packages (there
is also GNAT.Regexp, which is very
efficient but limited in features because it
is based on a definite state machine).

I think libpcre might even be distributed
with gcc nowadays, although I did not
double-check so might be wrong.

This binding would be a nice small
project for someone who wants to get
started with writing Ada bindings

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Mon, 28 Dec 2020 05:58:06 -0800

The Matreshka library has rather
advanced regexp engine with full Unicode
support

https://forge.ada-ru.org/matreshka/wiki/
League/Regexp

From: Jeffrey R. Carter
Date: Mon, 28 Dec 2020 22:07:24 +0100

You can use PragmARC.Matching.
Regular_Expression or its instantiation for
Character and String, PragmARC.
Matching.Character_Regular_Expression

https://github.com/jrcarter/PragmARC/
tree/Ada-12

Renames Usage

From: DrPi <314@drpi.fr>
Subject: renames usage
Date: Thu, 31 Dec 2020 12:48:25 +0100
Newsgroups: comp.lang.ada

One can read here
https://github.com/AdaCore/svd2ada/
blob/master/src/descriptors-field.adb#L83
this line:

Tag : String renames

Elements.Get_Tag_Name (Child);

Is it equivalent to the following line?

Tag: String:= Elements.Get_Tag_Name

(Child);

From: John Perry <john.perry@usm.edu>
Date: Thu, 31 Dec 2020 04:10:21 -0800

No. Assignment copies the object, and
changes to the copy don't affect the
original, while renaming obtains a
reference to the object. [...]

From: Gautier write-only address
<gautier_niouzes@hotmail.com>

Date: Thu, 31 Dec 2020 04:33:30 -0800

> Tag : String renames
Elements.Get_Tag_Name (Child);

> Is it equivalent to the following line ?

> Tag : String :=
Elements.Get_Tag_Name (Child);

Since the temporary object containing the
result of the call
"Elements.Get_Tag_Name (Child)" is not
accessible anywhere else, the effect is the
same.

But, perhaps in some implementations,
the "renames" accesses that temporary
object, which means the memory
containing it must not be freed until Tag
is out of scope. Perhaps it is even
required. Any compiler specialist here?

From: Jeffrey R. Carter
Date: Thu, 31 Dec 2020 15:49:04 +0100

> Tag : String renames
Elements.Get_Tag_Name (Child);

> Is it equivalent to the following line ?

> Tag : String :=
Elements.Get_Tag_Name (Child);

No. A function result is a constant, so the
1st version gives you a constant. The
second gives you a variable with the same
value.

From: DrPi <314@drpi.fr>
Date: Thu, 31 Dec 2020 16:55:34 +0100

> No. A function result is a constant, so
the 1st version gives you a constant.
The second gives you a variable with
the same value.

Good to know.

What disturbed me was the function call
associated with "renames".

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 31 Dec 2020 19:48:43 +0100

> What disturbed me was the function call
associated with "renames".

Renaming a call to a function does not
rename it in some functional-
programming manner. It renames only the
result of.

So if you do

 X : Float renames Random (Seed);

 Y : array (1..10) of Float := (others => X);

That would not give you ten pseudo-
random numbers. But this will:

 Z : array (1..10) of Float := (others =>

 Random (Seed));

Obituary

Tragic News about Vinzent
Hoefler

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Tragic news about Vinzent Hoefler
Date: Wed, 28 Oct 2020 11:09:09 -0000
Newsgroups: comp.lang.ada

Dear all,

Many of you may know Vinzent Höfler.

I am sad to pass the most tragic news that
Vinzent died last Wednesday 21
October...

Below is the message Vinzent's wife
Katja Saranen asked me earlier today to
share with the Ada community.

He was active in various forums and
newsgroups as Vinzent aka "Jellix" aka
"JeLlyFish.software@gmx.net" aka
"ada.rocks@jlfencey.com" aka
"vinzent@heisenbug.eu". He worked on
professional as well as open-source Ada
projects, was a member and participated
in events of ACM SIGAda, Ada-Europe
and Ada-Belgium, and helped with
several recent Ada DevRooms at
FOSDEM events.

I first met Vinzent what seems an eternity
ago at the SIGAda 2002 conference in
Houston. Our paths crossed many times
since, until five years ago he became an
"Ada" colleague at Eurocontrol.

I will miss Vinzent, as a colleague, as a
like-minded spirit on various issues, and
most of all as an intelligent human being.
I will miss our interesting discussions: we
had too few...

Dirk

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

Message from Katja Saranen, Wed Oct 28
2020:

**

With the deepest sorrow I have to share
with you a devastating tragedy.

Our beloved Vinzent has left this world,
he is not with us anymore.

Vinzent "Jellix" Saranen (Höfler,
Fritzsche)

09.01.1974 - 21.10.2020

Unspeakable loss for so many. A father,
son, brother, grandfather, husband, friend,
colleague and much more.

The love of my life. My soulmate. My
person. My husband. My safe place.
Incredible, wonderful, beautiful, weird,
intelligent, talented. So special in so many
ways.

222 Obi tuary

Volume 41, Number 4, December 2020 Ada User Journal

We were supposed to grow old together
and move to wilderness. I was not
supposed to outlive you. I was not
supposed to face the world without you. I
don't know yet how am I even expected to
keep going without you on my side.

This is not a farewell. You're not gone.
Love is not any less. You're always with
me until we meet again. Love you,
forever.

starlingc/katja

"Death is that state in which one exists
only in the memory of others, which is

why it is not an end. No goodbyes. Just
good memories. Hailing frequencies
closed, sir."

(Star Trek TNG; Tasha Yar)

There will be no funeral or grave. He has
been cremated yesterday and next
summer I will take his ashes to the place
where he was happiest and where he
wanted to go to grow old. For a place to
remember him, you can go to nature
anywhere and you'll always be close.
Memorial(s) will be planned at later time,
I am not able to now.

From: Shark8
<onewingedshark@gmail.com>

Date: Wed, 28 Oct 2020 07:24:32 -0700

Tragic news indeed.

Sorry to see him go.

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Wed, 28 Oct 2020 11:35:56 -0700

> Tragic news indeed.

> Sorry to see him go.

Rest in peace. Sincere condolences.

