

Ada User Journal Volume 42, Number 1, March 2021

ADA
USER
JOURNAL

Volume 42

Number 1

March 2021

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 28

Forthcoming Events 36

Proceedings of the "HILT 2020 Workshop on Safe Languages and Technologies for Structured

and Efficient Parallel and Distributed/Cloud Computing"

 M. Klemm, E. Quiñones, T. Taft, D. Ziegenbein, S. Royuela

“The OpenMP API for High Integrity Systems: Moving Responsibility from Users to Vendors” 39

 R. Wai

“XERIS/APEX: Hyperscaling with Ada” 43

 B. Kleinke

“Challenges and Lessons Learned Introducing an Evolving Open Source Technology into an

Established Legacy Ada and C++ Program” 48

 K. Chard, Y. Babuji, A. Woodard, B. Clifford, Z. Li, M. Hategan, I. Foster, M. Wilde, D. S. Katz

“Extended Abstract: Productive Parallel Programming with Parsl” 51

 T. Taft, K. Chard, J. Munns, R. Wai

“Language Support for Parallel and Distributed Computing” 55

Puzzle

 J. Barnes

“Cubes and Pyramids” 59

Ada-Europe Associate Members (National Ada Organizations) 60

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

4

Volume 42, Number 1, March 2021 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 4
Ada-related Events 4
Ada-related Resources 7
Ada-related Tools 8
Ada Practice 13

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

The newsgroup has been very active in
this period, so I must apologize for any
threads with ellipsis in the part that you
were finding most engaging, or if some of
your answers are missing. On the bright
side, c.l.a. is livelier than ever in recent
memory, despite claims of NNTP being a
thing of the past.

I begin my personal highlights with
“Quick Inverse Square Root” [1] which,
with the prompt of an Ada
implementation, explores the fascinating
origins of a numerical approximation
algorithm found in an old C game engine
and a key mysterious magic number. One
contributor even reported a short thesis
about it, which is also well worth the read
if you find the topic interesting.

The newsgroup is not strange to strong
opinions, and in this instance Randy
Brukardt vehemently argued against raw
arrays [2, 3] and interface usefulness [4],
which led to involved debates on the
appropriate levels of abstraction for
certain data structures, orthogonality
problems, and more. Coming from a
compiler maker and ARG member, these
opinions sure cannot leave one
indifferent.

Finally, older (but, according to the
thread, not simpler) times were revisited
in a discussion about the possibility of
adapting an Ada compiler for the 8051
chip [5]. Interesting points were made

about its complexity and how useful can
be a system with as little RAM as 64K.

Sincerely,
Alejandro R. Mosteo.

[1] “Quick Inverse Square Root”, in Ada
Practice.

[2] “Lower Bounds of Strings”, in Ada
Practice.

[3] “Array from Static Predicate on
Enumerated Type”, in Ada Practice

[4] “Simple Example on Interfaces”, in
Ada Practice.

[5] “Targeting the 8051 with Ada”, in
Ada Practice.

Ada-related Events

Ada at Online FOSDEM
2021 - 6-7 February 2021

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada at online FOSDEM 2021 - 6-7
February 2021

Date: Fri, 5 Feb 2021 06:58:50 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Hello everyone,

Some of you might be interested in the
information below...

Dirk.Craeynest

Dirk.Craeynest@cs.kuleuven.be
(for Ada-Belgium/Ada-Europe/
SIGAda/WG9)

Ada at online FOSDEM 2021 -
6-7 February 2021

#AdaFOSDEM #AdaProgramming
#FOSDEM2020

http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/21/
210206-fosdem.html

"FOSDEM is a free event for software
developers to meet, share ideas and
collaborate. Every year, thousands of
developers of free and open source
software from all over the world gather at
the event in Brussels. In 2021, they will
gather online. No registration necessary."
{quoted from https://fosdem.org/2021}

Although, as announced previously, there
is no Ada Developer Room at FOSDEM

2021, we are pleased there will be some
Ada-related content after all.

In short:

* AdaCore announced on Twitter: "Like
previous years, we will participate in
FOSDEM on Feb 6-7, 2021. AdaCore
engineers will give two talks in the
Safety and Open Source devroom!
Check out the full blog post for more
details.

* Egil Høvik pointed out on LinkedIn:
"Someone did Advent of Code with a
new language each day, one of which is
Ada."

* There's a talk on Ada Lovelace and the
first computer program.

The information in this message is also
available at the URL above.

The dedicated FOSDEM pages mentioned
there include links to the live stream and
chat rooms for each presentation at the
time of the event. Also useful is the link
to the latest FOSDEM 2021 news,
including info on attending a talk at
FOSDEM 2021.

More about the presentations:

* "Adding contracts to the GCC GNAT
Ada standard libraries" - to strengthen
analysis provided by formal verification
tools

 by Joffrey Huguet

 Saturday 6 February 2021 11:00-11:30

 Safety and Open Source devroom

 The guarantees provided by SPARK, an
open-source formal proof tool for Ada,
and its analysis are only as strong as the
properties that were initially specified.
In particular, use of third-party libraries
or the Ada standard libraries may
weaken the analysis, if the relevant
properties of the library API are not
specified. We progressively added
contracts to some of the GCC GNAT
Ada standard libraries to enable users to
prove additional properties when using
them, thus increasing the safety of their
programs. In this talk, I will present the
different levels of insurance those
contracts can provide, from preventing
some run-time errors to occur, to
describing entirely their action.

* "Proving heap-manipulating programs
with SPARK" - The SPARK open-
source proof tool for Ada now supports
verifying pointer-based algorithms

mailto:amosteo@unizar.es

Ada-re lated Events 5

Ada User Journal Volume 42, Number 1, March 2021

thanks to an ownership policy inspired
by Rust

 by Claire Dross

 Saturday 6 February 2021 13:30-14:30

 Safety and Open Source devroom

 SPARK is an open-source tool for
formal verification of the Ada language.
Last year, support for pointers, aka
access types, was added to SPARK. It
works by enforcing an ownership policy
somewhat similar to the one used in
Rust. It ensures in particular that there is
only one owner of a given data at all
time, which can be used to modify it.
One of the most complex parts for
verification is the notion of borrowing. It
allows to transfer the ownership of a part
of a data-structure, but only for a limited
time. Afterward ownership returns to the
initial owner. In this talk, I will explain
how this can be achieved and, in
particular, how we can describe in the
specification the relation between the
borrower and the borrowed object at all
times.

* "25 languages in 25 days"

 by Peter Eisentraut

 Sunday 7 February 2021 13:00-13:20

 Lightning Talks

 I did the Advent of Code 2020 with a
different programming language every
day, so instead of having to visit 25
developer rooms, you can just listen to
me for my lightning summary.

* "Ada Lovelace and The Very First
Computer Program"

 by Steven Goodwin

 Sunday 7 February 2021 17:00-17:40

 Retrocomputing devroom

 We all know that Ada Lovelace is
credited as the first computer
programmer. But what did she write?
What did it do? And how does it work?
We look at the program, its function,
and break it down line-by-line so you
can understand the origins of our entire
industry. After all, it doesn't get any
more retro than this! In this talk,
developer, geek, and digital
archaeologist, Steven Goodwin, breaks
down the very first program ever written
to explain what it does and how it
works. He goes on to simulate it within a
JavaScript version of Babbage's
analytical engine, rewriting it piece-by-
piece until it looks like modern code,
and thereby demonstrate what features
of current languages we now all take for
granted. He finishes up with a discussion
on the controversy surrounding her
involvement in computing, aiming to
answer the question once and for all -
"Was she really the first programmer?"

 (V20210204.1)

CfC Ada-Europe 2021
Virtual Conference -
31 Mar Deadline!

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC Ada-Europe 2021 Virtual
Conference - 31 Mar deadline!

Date: Sun, 7 Feb 2021 18:04:14 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

*** UPDATED Call for Contributions -
VIRTUAL EVENT ***

25th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2021)

7-11 June 2021, online

www.ada-europe.org/conference2021

Organized by University of Cantabria and
Ada-Europe in cooperation with ACM
SIGAda, SIGPLAN, SIGBED and the

Ada Resource Association (ARA)

*** Extended DEADLINE
31 MARCH 2021 AoE ***

#AEiC2021 ##AdaEurope
AdaProgramming

News

- AEiC 2021 will be a virtual-only event.

- Deadline for Industrial Presentation
outlines and Tutorial proposals is
extended to 31 March 2021.

General Information

The 25 Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2021 aka Ada-
Europe 2021), initially scheduled to take
place in Santander, Spain, will be held
online from the 7th to the 11th of June,
2021. The conference schedule includes a
technical program, vendor exhibition and
parallel tutorials and workshops.

Despite the COVID-19 situation which
led to the cancellation of the previous
edition of the conference, there is a firm
commitment to celebrate the 2021 edition
in any case. The organizing committee
estimates that the conditions for a safe in-
person conference will not be met in June
2021. Consequently, the AEiC 2021
Conference will be a virtual-only event.

Schedule

14 January 2021: Submission of journal-
track papers, and workshop proposals
(CLOSED)

19 March 2021 Notification of acceptance
for journal-track paper presentations and
workshops 31 March 2021 Submission of
Work-in-Progress (WiP) papers, industrial
presentation outlines, and tutorial and
invited presentation proposals

30 April 2021 Notification of acceptance
for WiP papers, industrial presentation
outlines, and tutorial and invited
presentations

Topics

The conference is a leading international
forum for providers, practitioners and
researchers in reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
challenging variety of application
domains. The program will have
keynotes, Q&A sessions and discussions,
and virtual social events. Participants
include practitioners and researchers from
industry, academia and government
organizations active in the promotion and
development of reliable software
technologies.

The topics of interest for the conference
include but are not limited to:

- Design and Implementation of Real-
Time and Embedded Systems: Real-
Time Scheduling, Design Methods and
Techniques, Architecture Modelling,
HW/SW Co-Design, Reliability and
Performance;

- Design and Implementation of Mixed-
Criticality Systems: Scheduling
Methods, Mixed-Criticality
Architectures, Design Methods,
Analysis Methods;

- Theory and Practice of High-Integrity
Systems: Medium to Large-Scale
Distribution, Fault Tolerance, Security,
Reliability, Trust and Safety, Languages
Vulnerabilities;

- Software Architectures for Reliable
Systems: Design Patterns, Frameworks,
Architecture-Centered Development,
Component-based Design and
Development;

- Methods and Techniques for Quality
Software Development and
Maintenance: Requirements
Engineering, Model-driven Architecture
and Engineering, Formal Methods, Re-
engineering and Reverse Engineering,
Reuse, Software Management Issues,
Compilers, Libraries, Support Tools;

- Ada Language and Technologies:
Compilation Issues, Runtimes,
Ravenscar, Profiles, Distributed
Systems, SPARK;

- Mainstream and Emerging Applications
with Reliability Requirements:
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation,
Cloud Environments, Smart Energy
Systems, Serious Games, etc;

- Achieving and Assuring Safety in
Machine Learning Systems;

6 Ada-re lated Events

Volume 42, Number 1, March 2021 Ada User Journal

- Experience Reports in Reliable System
Development: Case Studies and
Comparative Assessments, Management
Approaches, Qualitative and
Quantitative Metrics;

- Experiences with Ada: Reviews of the
Ada 2012 language features,
implementation and use issues,
positioning in the market and in the
software engineering curriculum,
lessons learned on Ada Education and
Training Activities with bearing on any
of the conference topics.

Call for Journal-Track Papers

The journal-track papers submitted to the
conference are full-length papers that
must describe mature research work on
the conference topics. They must be
original and shall undergo anonymous
peer review.

Accepted journal-track papers will get a
presentation slot within a technical
session of the conference and they will be
published in an open-access special issue
of the Journal of Systems Architecture
(Q2 in the JCR and SJR ranks) with no
additional costs to authors. The
corresponding authors shall submit their
work by 14 January 2021 via the Special
Issue web page:
https://www.journals.elsevier.com/
journal-of-systems-architecture/
call-for-papers/special-issue-on-reliable-
software-technologies-aeic2021.

Submitted papers must follow the
guidelines provided in the "Guide-for-
Authors" of the JSA
(https://www.elsevier.com/journals/
journal-of-systems-architecture/
1383-7621/guide-for-authors). In
particular, JSA does not impose any
restriction on the format or extension of
the submissions.

Call for WiP-Track Papers

The Work-in-Progress papers (WiP-track)
are short (4-page) papers describing
evolving and early-stage ideas or new
research directions. They must be original
and shall undergo anonymous peer
review. The corresponding authors shall
submit their work by 31 March 2021, via
https://easychair.org/conferences/?conf=a
eic2021, strictly in PDF and following the
Ada User Journal style (http://www.ada-
europe.org/auj/).

Authors of accepted WiP-track papers
will get a presentation slot within a
regular technical session of the
conference and will also be requested to
present a poster. The papers will be
published in the Ada User Journal as part
of the proceedings of the Conference. The
conference is listed in the principal
citation databases, including DBLP,
Scopus, Web of Science, and Google
Scholar. The Ada User Journal is indexed

by Scopus and by EBSCOhost in the
Academic Search Ultimate database.

Call for Industrial Presentations

The conference seeks industrial
presentations that deliver insightful
information value but may not sustain the
strictness of the review process required
for regular papers. The authors of
industrial presentations shall submit their
proposals, in the form of a short (one or
two pages) abstract, by 31 March 2021,
via https://easychair.org/conferences/?
conf=aeic2021, strictly in PDF and
following the Ada User Journal style
(http://www.ada-europe.org/auj/).

The Industrial Committee will review the
submissions anonymously and make
recommendations for acceptance. The
abstract of the accepted contributions will
be included in the conference booklet, and
authors will get a presentation slot within
a regular technical session of the
conference.

These authors will also be invited to
expand their contributions into articles for
publication in the Ada User Journal, as
part of the proceedings of the Industrial
Program of the Conference.

Awards

Ada-Europe will offer an honorary award
for the best presentation. All journal-track
and industrial presentations are eligible.

Call for Invited Presentations

The invited presentations are intended to
allow researchers to present paramount
research results that are relevant to the
conference attendees. There will be no
publication associated to these
presentations, which may include
previously published works, relevant new
tools, methods or techniques. The invited
presentations will be allocated a
presentation slot.

The Program Committee will select
invited presentation proposals that may be
submitted by e-mail to one of the Program
Chairs as a one-page summary of the
proposed presentation, along with the
information and/or links required to show
the relevance of the covered topic.

Call for Educational Tutorials

The conference is seeking tutorials in the
form of educational seminars including
hands-on or practical demonstrations.
Proposed tutorials can be from any part of
the reliable software domain, they may be
purely academic or from an industrial
base making use of tools used in current
software development environments. We
are also interested in contemporary
software topics, such as IoT and artificial
intelligence and their application to
reliability and safety.

Tutorial proposals shall include a title, an
abstract, a description of the topic, an

outline of the presentation, the proposed
duration (half day or full day), and the
intended level of the tutorial
(introductory, intermediate, or advanced).
All proposals should be submitted by e-
mail to the Educational Tutorial Chair.

The Ada User Journal will offer space for
the publication of summaries of the
accepted tutorials.

Call for Workshops

Workshops on themes that fall within the
conference scope may be proposed.
Proposals may be submitted for half- or
full-day events, to be scheduled at either
end of the conference days. Workshop
proposals should be submitted by e-mail
to the Workshop Chair. The workshop
organizer shall also commit to producing
the proceedings of the event, for
publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the
core days of the main conference. As an
alternative to the traditional physical
exhibition, a virtual room will be
provided for exhibition activities.
Vendors and providers of software
products and services should contact the
Exhibition Chair for information and for
allowing suitable planning of the
exhibition space and time.

Organizing Committee

* Conference Chair

Michael González Harbour, Universidad
de Cantabria, Spain
mgh at unican.es

* Program Chairs

Mario Aldea Rivas, Universidad de
Cantabria, Spain
aldeam at unican.es

J. Javier Gutiérrez, Universidad de
Cantabria, Spain
gutierjj at unican.es

* Work-in-Progress Chair

Kristoffer Nyborg Gregertsen, SINTEF
Digital, Norway
kristoffer.gregertsen at sintef.no

* Tutorial & Workshop Chair

Jorge Garrido Balaguer, Universidad
Politécnica de Madrid, Spain
jorge.garrido at upm.es

* Industrial Chair

Patricia Balbastre Betoret, Universitat
Politècnica de València, Spain
patricia at ai2.upv.es

* Exhibition & Sponsorship Chair

Ahlan Marriott, White Elephant GmbH,
Switzerland
software at white-elephant.ch

Ada-re lated Resources 7

Ada User Journal Volume 42, Number 1, March 2021

* Publicity Chair

Dirk Craeynest, Ada-Belgium & KU
Leuven, Belgium
dirk.craeynest at cs.kuleuven.be

*** Program Committee

Mario Aldea Rivas, Univ. de Cantabria,
ES

Johann Blieberger, Vienna Univ. of
Technology, AT

Bernd Burgstaller, Yonsei Univ., KR

Daniela Cancila, CEA LIST, FR

António Casimiro, Univ. Lisboa, PT

Xiaotian Dai, University of York, UK

Juan A. de la Puente, Univ. Pol. de
Madrid, ES

Barbara Gallina, Mälardalen Univ., SE

Marisol García Valls, Univ. Politècnica
de València, ES

J. Javier Gutiérrez, Univ. de Cantabria,
ES

Jérôme Hugues, CMU/SEI, USA

Patricia López Martínez, Univ. de
Cantabria, ES

Lucía Lo Bello, DIEEI - Univ. degli Studi
di Catania, ES

Kristina Lundqvist, Malardalen
University, SE

Kristoffer Nyborg Gregertsen, SINTEF
Digital, NO

Laurent Pautet, Telecom ParisTech, FR

Luís Miguel Pinho, CISTER/ISEP, PT

Jorge Real, Univ. Politècnica de València,
ES

José Ruiz, AdaCore, FR

Sergio Sáez, Univ. Politècnica de
València, ES

Frank Singhoff, Univ. de Bretagne
Occidentale, FR

Tucker Taft, AdaCore, USA

Elena Troubitsyna, Åbo Akademi Uni., FI

Santiago Urueña, GMV, ES

Tullio Vardanega, Univ. of Padua, IT

*** Industrial Committee

Patricia Balbastre, Univ. Politècnica de
València, ES

Dirk Craeynest, Ada-Belgium & KU
Leuven, BE

Ahlan Marriott, White Elephant, CH

Maurizio Martignano, Spazio IT, IT

Silvia Mazzini, Intecs, IT

Laurent Rioux, Thales R&T, FR

Jean-Pierre Rosen, Adalog, FR

Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 25th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), and Warsaw,
Poland ('19).

Information on previous editions of the
conference can be found at
http://www.ada-europe.org/confs/ae.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2021 Publicity
Chair (aka Ada-Europe 2021)

Dirk.Craeynest@cs.kuleuven.be

* 25th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2021)

* June 7-11, 2021 * online event *
www.ada-europe.org/conference2021 **

(V3.1)

Ada-related Resources

[Delta counts are from Feb 2nd to Apr
26th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Mon, 26 Apr 2021 22:51:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn:3_119 (+41) members [1]

- Reddit: 6_426 (+1_931) members1 [2]

- Stack Overflow: 2_048 (+75)
 questions [3]

- Freenode: 94 (+9) users [4]

- Gitter: 75 (+9) people [5]

- Telegram: 121 (+13) users [6]

- Twitter: 43 (-17) tweeters [7]

 74 (-21) unique tweets [7]

1Probably caused in part by confusion
with the ADA cryptocurrency.

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/details.php
?room=%23ada&net=freenode

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Mon, 26 Apr 2021 22:51:21 +0100
To: Ada User Journal readership

Rosetta Code: 811 (+50) examples [1]

 38 (+1) developers [2]

GitHub: 76311 (+8) developers [3]

Sourceforge: 273 (-5) projects [4]

Open Hub: 214 (+2) projects [5]

Alire: 156 (+10) crates [6]

Bitbucket: 89 (+1) repositories [7]

Codelabs: 52 (=) repositories [8]

AdaForge: 8 (=) repositories [9]

1This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?q=language
%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Mon, 26 Apr 2021 22:51:21 +0100
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. The IEEE ranking deltas

https://netsplit.de/channels/details.php
https://github.com/search?q=language

8 Ada-re lated Tools

Volume 42, Number 1, March 2021 Ada User Journal

are in regard to the 2019 edition, as it is
updated annually. —arm]

- TIOBE Index: 30 (+2) 0.49%
 (+0.04%) [1]

- PYPL Index: 17 (+2) 0.8% (+0.15%) [2]

- IEEE Spectrum (general): 39 (+4)
Score: 32.8 (+8.0) [3]

- IEEE Spectrum (embedded): 12 (+1)
Score: 32.8 (+8.0) [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2020

Ada-related Tools

HAC v.0.085

From: Gautier
<gautier_niouzes@hotmail.com>

Subject: Ann: HAC v.0.085
Date: Fri, 1 Jan 2021 08:18:15 -0800
Newsgroups: comp.lang.ada

HAC (HAC Ada Compiler) is a small,
quick, open-source Ada compiler,
covering a subset of the Ada language.
HAC is itself fully programmed in Ada.

Web site: http://hacadacompiler.sf.net/

Source repository #1:
https://sf.net/p/hacadacompiler/
code/HEAD/tree/

Source repository #2:
https://github.com/zertovitch/hac

* Improvements:

- HAC_Integer (internal name in
HAC_Sys.Defs), i.e. HAC's Integer
type, is now 64 bit.

- HAC_Float (i.e. `Real` in HAC
programs) has now System.Max_Digits
digits accuracy.

- Added range constraints, like: ` subtype
Answer_Range is Character range
'a' .. 'z' `.

- Added membership test, like:
` x [not] in a .. b `.

- Several additions to HAC_Pack.

- Better I/O error handling.

- The whole system (Compiler and VM
run-time) builds on both GNAT and
ObjectAda64.

* Fixes ([hand_washing] all bugs stem
from SmallAda [/hand_washing]):

- Recursive calls to main procedure were
mistaken as calls to "standard"
procedures in HAC_Pack.

- Block identification used main
program's identifier instead of its
nesting.

- EXIT statement on FOR loop implied
stack corruption for several nested FOR
loops.

- EXIT statements within IF statements
didn't work properly.

- Priority levels in expressions were not
conform to the Ada Reference Manual's.
Most visible change: needless brackets
can now be removed around logical
expressions.

* Test suite: added new 19 programs to
the 12 existing tests.

- The 19 source files are named
exm/aoc/2020/aoc_2020_*.adb,
solutions to the Advent of Code 2020
puzzles.

From: Gautier
<gautier_niouzes@hotmail.com>

Date: Sun, 3 Jan 2021 02:53:40 -0800

> Maybe too early to ask, but is there an
overview of what is implemented and
not implemented?

Not too early at all! Here is an excerpt of
doc/hac.txt which summarizes the current
subset supported:

 - You can define your own data types:
enumerations, records, arrays (and
every combination of records and
arrays).

 - Only constrained types are supported
(unconstrained types are Ada-only types
and not in the "Pascal subset" anyway).

 - The "String" type (unconstrained) is
implemented in a very limited way. So
far you can only define fixed-sized
constants, variables, types, record fields
with it, like: Digitz: constant String
(1..10) := "0123456789"; ... output them
with Put, Put_Line, do comparisons and
concatenations with expressions of the
VString variable-length string type. For
general string manipulation, the most
practical way with the current versions
of HAC is to use the VString's.

 - There are no pointers (access types)
and nor heap allocation, but you will be
surprised how far you can go without
pointers!

 - Subprograms names cannot be
overloaded, although some
predefined subprograms, including
operators, of the Standard or the
HAC_Pack package, are overloaded
many times, like "Put", "Get", "+", "&",
...

 - Programmable modularity (packages
or subprograms that you can "with") is
not yet implemented.

 - Generics are not yet implemented.

 - Tasks are implemented, but not
working yet.

 - Small parts of the standard Ada library
are available through the HAC_Pack
package. You can see the currently

available items in the specification,
src/hac_pack.ads .

To get a "tangible" idea, you can look at
the examples in the "exm" directory (run
../hac gallery.adb for a show), and the
"exm/aoc/2020" directory. There is also
stuff in "test", but programs there are not
meaningful.

> Detail: all procedures need "with
hac_pack; use hac_pack;"?

So far, yes. When modularity is
implemented it will change...

From: Gautier
<gautier_niouzes@hotmail.com>

Date: Thu, 7 Jan 2021 11:18:24 -0800

> Detail: all procedures need "with
hac_pack; use hac_pack;"?

Actually not anymore, now (rev. #400+)
you can write things like:

with HAC_Pack;

procedure Hello is

 procedure Prefixed is

 begin

 HAC_Pack.Put("Hello");

 end;

 procedure Using_Use is

 use HAC_Pack;

 begin

 Put(" World!");

 end;

begin

 Prefixed;

 Using_Use;

end;

 :-)

LEA v.0.76

From: Gautier
<gautier_niouzes@hotmail.com>

Subject: Ann: LEA v.0.76
Date: Fri, 1 Jan 2021 09:11:10 -0800
Newsgroups: comp.lang.ada

LEA is a Lightweight Editor for Ada

Web site: http://l-e-a.sf.net/

Source repository #1:
https://sf.net/p/l-e-a/code/HEAD/tree/

Source repository #2:
https://github.com/zertovitch/lea

Improvements:

 - when no subwindow is open, Ctrl-W
closes app

 - Ctrl-H opens search & replace box

 - new files have CR end-of-line's

 - console I/O box scrolls to last line

 - interaction with HAC: improved
ergonomy of Text input boxes

 - improved ergonomy of the
"comment/uncomment selection"
command

Ada-re lated Tools 9

Ada User Journal Volume 42, Number 1, March 2021

 - embeds HAC (HAC Ada Compiler)
v.0.085

Features:

 - multi-document

 - multiple undo's & redo's

 - multi-line edit, rectangular selections

 - color themes, easy to switch

 - duplication of lines and selections

 - syntax highlighting

 - parenthesis matching

 - bookmarks

Currently available on Windows.

Gtk or other implementations are
possible: the LEA_Common[.*] packages
are pure Ada, as well as HAC.

Enjoy!

GWindows Release, 01-Jan-
2021

From: Gautier
<gautier_niouzes@hotmail.com>

Subject: Ann: GWindows release, 01-Jan-
2021

Date: Fri, 1 Jan 2021 12:24:57 -0800
Newsgroups: comp.lang.ada

GWindows is a full Microsoft Windows
Rapid Application Development
framework for programming GUIs
(Graphical User Interfaces) with Ada.
GWindows works with the GNAT
development system (could be made pure
Ada with some effort).

Changes to the framework are detailed in
gwindows/changes.txt or in the News
forum on the project site.

In a nutshell (since last announcement
here):

 391: GWindows.Common_Controls.
List_View: added Ensure_Visible.

 387: (contrib) GWin_Util package:
added Explorer_Context_Menu.

 385: GWindows.Windows.MDI: added
function Count_MDI_Children.

 384: (contrib) Added GWin_Util
package.

...and in gwindows\samples\drawing, a
new demo: Game_of_Life_Interactive
(you create life with mouse clicks :-)

GWindows Project site:

https://sf.net/projects/gnavi/

GWindows GitHub clone:

https://github.com/zertovitch/gwindows

Enjoy!

SweetAda 0.1h

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda 0.1h released
Date: Tue, 5 Jan 2021 09:37:13 -0800
Newsgroups: comp.lang.ada

I've just released SweetAda 0.1h.

SweetAda is lightweight development
framework to create Ada systems on a
wide range

of machines. Please refer to
https://www.sweetada.org.

Release notes

- There is now a primitive SFP (Small-
FootPrint) runtime, does nothing very
interesting so far, only allows non-trivial
exception declarations and floating-point
validation; when I will implement the
Secondary Stack, things should start to
be far better

- RTS and PROFILE items are now
lowercased, as well as RTS directory
names

- RTS for MIPS* targets is tuned with -
G0, you should use this in your target
compiler setup

- RTS for SH* targets is tuned with -fno-
leading-underscore, you should use this
in your target compiler setup

- the Bits library unit now exposes
BigEndian and LittleEndian static
booleans

- new procedure Print (Interfaces.C.char)
in Console library unit

- Tcl will be the default scripting
language for complex tasks, it is
strongly advised to install it in your
machine (Windows users could
download the tcltk.zip package) since
script files will be gradually replaced, at
least those too heavy for a shell

- as just said, the "createtxtrecord" tool in
S/390 and the scripts for the creation of
bootable PC floppy/hard disk images are
now written quick-and-dirty in Tcl, but
they should be widely usable and
requires no external OS utilities support

- IDE driver sets LBA mode, and FAT
(read-only) works with LBA logical
sectors

- MBR library unit to recognize partitions
(very minimal, only 1st partition
detected)

- menu.bat now shows automatically a
usage if an incorrect action was supplied

- libutils provides a createsymlink shell
script to create symbolic (soft) links in
an OS-transparent way, use it by
referencing $(CREATESYMLINK) in
the Makefiles; this substitutes a physical
copy of files in non-Linux machines
during subplatform-specific installation;
however, in Windows machines it

requires PowerShell elevation rights in
order to avoid bloated warning
messages, so adjust your OS settings;
the good news are that is now possible
to edit subplatform-specific files without
lose your changes whenever you restart
from scratch with a "createkernelcfg"
build cycle

- Makefile cleanups, there are no scattered
shell-dependent bloated constructs,
except for the trivial ones, and they are
now concentrated logically in few
places; the build system should tolerate
even spaces in pathnames (very bad
practice, though)- delete unnecessary
functions and variables in Makefiles

- reordering of gnat1 debug switches in
Makefile.tc.in, corrected -gnatdt switch
description

- reordering of configuration dump in
Makefile

- reordering/deletion/tuning of compiler
switches in various platforms

- new target MSP432P401R, very
minimal, only blinks the on-board LED

- DE10-Lite NiosII target now performs
stack setup and calls the low-level
adainit function in startup.S, so that
proper runtime elaboration happens

- AVR targets can now use aggregates
(see explanation below)

- ArduinoUno does not specify the path to
AVRDUDE executable, this is now
delegated to the run script

- the S/390 target specifies a correct
emulation mode in linking objects so
that there are no more problems during
processing

- typos, cosmetics and minor adjustments

Quick notes

As the release notes outlined, SweetAda
should run on a bare 64-bit host system
which supports, dependently on your
target CPU setup, symbolic (soft) links
and (optionally) Tcl/Tk. This is normal
for Linux, Windows and OS X, so no
concerns should arise. If you do not want
to install the tcltk package I am providing
from the SweetAda site, then download a
package from your vendor, and specify
the path to the tclsh executable in the top-
level configuration.in.

The reason behind this is promptly
understood: Tcl is a long-time HL
language used in industrial automation
and is currently used as a scripting tool in
large applications like Xilinx Vivado,
Altera Quartus and others. Also
OpenOCD uses an embedded version that
drives its user interface, so it is at least
advisable to have a look, especially if you
are working with SoC, embedded
softcores or you are playing with JTAG
programming on the bare metal.

10 Ada-re lated Tools

Volume 42, Number 1, March 2021 Ada User Journal

To use SFP, please change settings in the
top-level configuration.in:

RTS := sfp

PROFILE := sfp

USE_LIBADA := Y

Remember, you can change RTS at your
will after a "make clean" or
"menu.[sh|bat] clean".

Please do not rely on low-level layout of
the filesystem hierarchies. When SFP
runtime will be (hopefully) working,
many files could be symlinks or separate
units in order to switch between ZFP and
SFPs. More precisely, low-level
subprograms could start to declare private
exceptions and interrupt-related RTS
units, and this will prevent the use of a
ZFP (which does NOT use anything from
the compiler library, and this requires
absolute care).

About aggregates in AVR targets. The
problem is, aggregates could be Ada static
RO objects, and so the back-end can
legitimately allocate them in the .rodata
section. Historically, .rodata section is
quite often linked together with the .text,
but unfortunately, AVR is an Harvard
machine with separate address spaces, and
the .rodata section should stay together
with data sections in an executable image.
Relocating Flash ROM .rodata in RAM
during startup obviously is a no-op.
Placing .rodata in RAM prevents the read-
only behaviour, though. The ideal
solutions could be to place .rodata in
EEPROM, but this introduces a level of
complexity that I see of little concernment
so far. So the current decision is to place
.rodata in RAM, and warn you about try
to overwrite static data (it will require
intimate knowledge of dereferencing
machine-code objects, furthermore,
objects are nevertheless hardly traceable,
and this a very esotic, non-Ada, non-sense
bad practice, so trying to do that implies
hugely problems in other areas).

Last thing, as I've updated toolchains
(without change timestamps), you are
encouraged to re-download them, since
exists the possibility that previous targets
have problems in the GNAT/GCC
wrappers, and do not emit compilation
messages of dependent units during
"brief", non-VERBOSE mode, as well as
not generating Ada intermediate files nor
assembler listing thereof. If you don't care
about visual outputs or assembler
analysis, simply ignore this.

As usual, download the three packages
core, RTS and LibGGC (since many
changes are system-wide), and please
save your work before overwriting the
filesystem.

Happy new year.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Thu, 7 Jan 2021 17:26:43 -0000

Good to see the MSP432!

I'm in the process (well, was ... must get
back to it!) of updating the old MSP430
Ada system, now using the TI supplied
GCC toolkit. This is a much easier build
than the old one, and the official MSP430
backend has improved from the last time I
looked at it a few years ago.

I must add taking a look at SweetAda to
my task list...

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Date: Thu, 7 Jan 2021 10:33:12 -0800

I see you wrote about MSP430. Maybe
you already know that MSP432 is a whole
different thing, being an ARM-Cortex
based chip. The MSP430 is instead a
proprietary TI line of cores, which
SweetAda does not support. Just to avoid
misunderstandings -- apologize if I write
something already clear to you.

That being said, I'll try to slowly work on
MSP432. Next releases maybe will come
with more peripherals I/O declarations to
make the target barely usable. I use a
MSP432P401R board, if you want to
physically download code from the
SweetAda environment via USB, you
have to install OpenOCD, it's pretty
simple by taking a look at the scripts.

Let me know and best regards,

SweetAda 0.2

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda 0.2 released
Date: Thu, 21 Jan 2021 09:24:20 -0800
Newsgroups: comp.lang.ada

I've just released SweetAda 0.2.

SweetAda is a lightweight development
framework to create Ada systems on a
wide range of machines. Please refer to
https://www.sweetada.org.

Release notes

- Makefile is now optimized and does not
perform a bind phase every time; note,
this requires an updated gnat-wrapper,
please download a fresh copy of the
toolchain

- Makefile "all-clean" target renamed as
"distclean" (and so do all variables
starting with "ALL_CLEAN...")

- Makefile: added GNATLS tool, deleted
unnecessary variables, added .h
dependencies in clibrary build, deleted
C++ toolchain variables in
Makefile.tc.in

- Makefile: double-quoted some file
references which lead to errors if

SweetAda lays in a path directory which
contains spaces

- there is a new "share" directory, which
contains various auxiliary files, in order
to centralize sparse and/or duplicated
files

- AVR ATmega328P targets specify now
an emulation mode during linking
objects so that the final ELF object has
correct flags; this prevents, e.g., QEMU-
AVR from exiting prematurely

- QEMU-AVR: startup.S #undef's
__AVR_ENHANCED__ because
QEMU isn't yet able to fully emulate
ELPM instructions

- STM32F769I (disco) ARM-CortexM7,
new target; only able to blink a LED
(needs OpenOCD to communicate with
the target from inside SweetAda)

- PC-x86-64 uses Tcl scripts for FD/HD
booting in QEMU

- upgraded SPARCstation5 and
DECstation5000, which missed the new
$(SYMLINK) script

- Dreamcast target produces a CD-ROM
image suitable to create a physical CDI

- S/390 can IPL SweetAda from DASD
devices (thanks to Hercules'
DASDLOAD -- you need it)

- S/390 createtxtrecord.tcl script now
renamed as S360obj.tcl

- typos, cosmetics and minor adjustments

Quick notes

It is important to download also a fresh
copy of the toolchain, because the
changes will be triggered by an upgrade
in the GNAT/GCC wrappers.

As usual, download the three packages
core, RTS and LibGGC (since many
changes are system-wide), and please
save your work before overwriting the
filesystem.

Ada Wav File Library v2.0.0

From: gustho...@gmail.com
<gusthoff.ada@gmail.com>

Subject: Ann: Ada Wav File Library v2.0.0
Date: Thu, 7 Jan 2021 12:08:54 -0800
Newsgroups: comp.lang.ada

The Wav File Library v2.0.0, an open-
source Ada library, has just been released:

https://github.com/Ada-Audio/
audio_wavefiles/releases/tag/2.0.0

This library contains a Wav File Reader
& Writer written in Ada 2012. It supports
reading and writing of wav files,
including the following features:

- Mono, stereo and multichannel audio.

- Audio samples with following bit
depths: 16/24/32/64-bit PCM; 32/64-bit
floating-point PCM

Ada-re lated Tools 11

Ada User Journal Volume 42, Number 1, March 2021

- Wave-Format-Extensible format
(WAVE_FORMAT_EXTENSIBLE)

This library also includes support for
PCM buffers in floating-point and fixed-
point formats, as well as the automatic
conversion between the data types used
for the PCM buffer and the wavefile,
which might have different formats
(floating-point or fixed-point) or varying
precision (e.g., 16 bits or 64 bits).

A detailed list of changes and new
features can be found here:

https://github.com/Ada-Audio/
audio_wavefiles/blob/2.0.0/
CHANGELOG.md

A cookbook / tutorial can be found here:

https://github.com/Ada-Audio/
audio_wavefiles/blob/2.0.0/cookbook/
cookbook.md

Simple Components v4.55

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components v
Date: Wed, 13 Jan 2021 13:01:54 +0100
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- The packages
Universally_Unique_Identifiers and
Universally_Unique_Identifiers.Edit
were added to support UUID;

- Reboot procedure was added to the
package
GNAT.Sockets.Connection_State_Mach
ine.ELV_MAX_Cube_Client.

Dotenv v1.0

From: Heziode
<heziode@protonmail.com>

Subject: Dotenv - first release
Date: Fri, 22 Jan 2021 16:34:42 +0100
Newsgroups: comp.lang.ada

I have just released Dotenv: 1.0.0

Dotenv allows you to load environment
variables from `.env` files.

For more information, please refer to:
https://github.com/Heziode/ada-dotenv

UXStrings (UXS_20210207)

From: Blady <p.p11@orange.fr>
Subject: [ANN] UXStrings package

available (UXS_20210207).
Date: Mon, 8 Feb 2021 12:22:12 +0100
Newsgroups: comp.lang.ada

UXStrings is now available on Github
with the whole API implemented (version
UXS_20210207 [1]).

The objectives are Unicode and dynamic
length support for strings, those are closed
to VSS [2] from AdaCore.

However, the UXStrings API is inspired
from Ada.Strings.Unbounded in order to
minimize adaptation work from existing
Ada source codes. Gnoga and Zanyblue
has been adapted to UXString with
success, see Gnoga announcement [3].

This is a first implementation POC. UTF-
8 encoding is chosen for internal
representation. The Strings_Edit [4]
library is used for UTF-8 encoding
management. It has not been intensively
tested but this implementation is to
demonstrate the possible usages of
UXString. A test program is also provided
with some features demonstrated [5].

See readme [6] for full details.

Comments especially on specifications [7]
are welcome and others too ;-)

Enjoy, Pascal.

[1] https://github.com/Blady-Com/
UXStrings/releases/tag/
UXS_20210207

[2] https://github.com/AdaCore/VSS

[3] https://sourceforge.net/p/gnoga/
mailman/message/37199377/

[4] http://www.dmitry-kazakov.de/ada/
strings_edit.htm

[5] https://github.com/Blady-Com/
UXStrings/blob/master/tests/
test_uxstrings.adb

[6] https://github.com/Blady-Com/
UXStrings/blob/master/readme.md

[7] https://github.com/Blady-Com/
UXStrings/blob/master/src/
uxstrings1.ads

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 11 Feb 2021 00:19:25 -0800

There is clearly a need here, given the
number of implementations out there. I
had also implemented
GNATCOLL.Strings 4 years ago, with
similar goals to yours:

 - unicode support (via generic formal
parameters and traits packages, so you
can use UTF8, UTF16, ... internally)

 - unbounded strings (with optional copy-
on-write)

 - task safety (using traits to choose what
kind of counter to use)

 - performance (small-string
optimization: no memory alloc for
strings of 18 characters or less)

 - extended API (all missing subprograms
from Ada.Strings.Unbounded)

 - extensive testing

I must admit I am not sure why AdaCore
chose to write VSS instead of improving
one of their string implementations
(ada.strings.unbounded,
gnatcoll.strings,...) My initial idea had
been that it would be possible to provide a
nice generic package, highly configurable
via traits, on top of which we could
reimplement ada.strings.unbounded,
ada.strings.bounded,...) but I left AdaCore
before that could be accomplished.

I took a look at VSS and find the API
confusing. Your API UXString is at least
much clearer (if lacking doc at the
moment :-)

I am hoping that the work on Alire (Ada
package manager) will ultimately help us
find one implementation that is good
enough for everyone, and could ultimately
become part of the language.

From: Blady <p.p11@orange.fr>
Date: Sat, 6 Mar 2021 19:13:24 +0100

UXStrings is now available with Alire
(https://alire.ada.dev/crates/uxstrings), in
your Alire project, just add UXStrings
dependency:

% alr with uxstrings

Thus you can import the UXStrings
package in your programs.

Pascal.

PS: for French readers, while referencing
UXStrings on Alire, I make the
opportunity to write a short howto with
ALire:

https://blady.pagesperso-orange.fr/
a_savoir.html#alire

AShell v1.0

From: Rod Kay <rodakay5@gmail.com>
Subject: Version 1.0 Release of aShell
Date: Tue, 16 Feb 2021 12:33:37 -0800
Newsgroups: comp.lang.ada

A component to aid in writing shell-like
applications in Ada.

https://github.com/charlie5/aShell

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 17 Feb 2021 10:04:41 +0200

I suppose I could find out by looking
more deeply into the component (which
looks nice in the README), but I'm lazy

12 Ada-re lated Tools

Volume 42, Number 1, March 2021 Ada User Journal

today, so I ask: do you have a way of
capturing the standard-error stream from a
process, in addition to the standard-output
stream?

From: Rod Kay <rodakay5@gmail.com>
Date: Thu, 18 Feb 2021 03:18:36 -0800

With the process 'Start' subprograms, you
can provide your own input/output/error
pipes. If not provided they default to the
standard pipes.

 function Start (Command : in String;

 Working_Directory : in String := ".";

 Input : in Pipe := Standard_Input;

 Output : in Pipe := Standard_Output;

 Errors: in Pipe := Standard_Error;

 Pipeline : in Boolean := False)

 return Process;

The ''Results_Of' function returns
'Command_Results' which provides
access to data from both the Output_Pipe
and the Error_Pipe.

In hindsight, this is not adequate. I will
review over the weekend and attempt a
better solution.

From: Jeffrey R. Carter
Date: Wed, 17 Feb 2021 12:05:17 +0100

Is this compiler and OS independent?

From: Rod Kay <rodakay5@gmail.com>
Date: Thu, 18 Feb 2021 03:29:35 -0800

Atm, the code uses Florist for 'POSIX'
and one function from 'GNAT.OS_Lib'.

Florist appears to be gnat-specific ...

"FLORIST, an Ada application
program interface for operating system
services for use with the GNAT compiler
and the Gnu Ada Runtime Library
(GNARL)."

I have no means of testing on Windows. I
hope that it may be possible to use with
cygwin or a similar compatibility layer.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 18 Feb 2021 16:06:00 +0200

> Florist appears to be gnat-specific ...

Florist is an implementation of a standard
for Ada-POSIX bindings,
https://www.iso.org/standard/34354.html,
so the Florist API should not be GNAT-
specific.

However, the implementation of Florist
may depend on the underlying system,
including the Ada compiler and the OS.

Using the Florist API, rather than using
GNAT libraries or OS functions directly,
should increase the potential portability.
Actual portability will depend on the
existence of implementations, for the
target system, of Florist or other
realizations of the standard Ada-POSIX
binding.

From: Mgr <mgrojo@gmail.com>
Date: Sat, 20 Feb 2021 23:58:37 +0100

> Florist is an implementation of a
standard for Ada-POSIX bindings [...]

Some time ago, I gathered some
information about compilers providing
support of the Ada-POSIX standard for
this Wikibooks article.

https://en.wikibooks.org/wiki/
Ada_Programming/Platform/POSIX

From: Jeffrey R. Carter
Date: Thu, 18 Feb 2021 12:57:02 +0100

What is the advantage over using the
compiler-supplied libraries to do these
things?

From: Rod Kay <rodakay5@gmail.com>
Date: Fri, 19 Feb 2021 01:07:25 -0800

Ability to provide input data.

Ability to provide input/output/error
pipes.

Ability to pipeline processes.

Several convenience functions to simplify
the above.

Potential for increased portability.

AShell v1.1

From: Rod Kay <rodakay5@gmail.com>
Subject: Version 1.1 Release of aShell.
Date: Tue, 23 Feb 2021 15:39:42 -0800
Newsgroups: comp.lang.ada

- Factored out command code into a
separate package.

- Simplified the specs.

- Added better error handling.

- Added several tests.

- Improvements for pipelines.

XNAdaLib 2021 Future
Contents

From: Blady <p.p11@orange.fr>
Subject: XNAdaLib 2021 futur contents.
Date: Sun, 14 Mar 2021 10:39:31 +0100
Newsgroups: comp.lang.ada

I'm preparing XNAdaLib

(https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2020-catalina)

2021 binaries for macOS Big Sur, the
target content is:

- GTKAda 21.2

- GnatColl 21.2

- Florist latest

- AdaCurses 6.2

- Gate3 0.5c

- Components 4.55

- AICWL 3.24

- Zanyblue 1.4.0

- PragmARC latest

- GNOGA 1.6

- SparForte 2.4

- Alire 1.0.0

- Template Parser 21.2.

The GNAT compiler version should be
Community 2021 when AdaCore will
release it.

Is this packaging useful for you? Which
packages are you using?

Feel free to send your wishes of missing
Ada packages.

Thanks for your feedback, Pascal.

SparForte 2.4 Released

From: Ken Burtch <koburtch@gmail.com>
Subject: ANN: SparForte 2.4 released
Date: Sat, 20 Mar 2021 06:00:21 -0700
Newsgroups: comp.lang.ada

SparForte 2.4 Released.

SparForte is my Ada-based open source
shell, programming language and web
template engine. This release includes:

 19 new features and examples

 26 fixes (including the 1 from version
2.3.1)

 5 changes

Version 2.4 has been tested on Linux,
FreeBSD and Raspberry Pi.

The focus of this release was on
command line and shell improvements.

The download links are available at the
SparForte website. Please fill in the
download poll so I know who is interested
in the project.

https://www.sparforte.com/index.html

There is a blog article for the major
features:

https://www.pegasoft.ca/coder/
coder_january_2021.html

Not mentioned in the blog, --colour/--
color will enable colour text and UTF-8
graphics in SparForte's messages. There is
an equivalent pragma to enable it through
a .sparforte_profile login file. It gives
SparForte a more modern look.

I don't follow comp.lang.ada so follow up
with any issues by email.

SparForte is a hobby and a volunteer
project. I do not earn money from it.

Thanks and enjoy.

Status of AdaControl

From: J-P. Rosen <rosen@adalog.fr>
Subject: Status of AdaControl
Date: Fri, 26 Mar 2021 18:14:57 +0100
Newsgroups: comp.lang.ada

Ada Pract ice 13

Ada User Journal Volume 42, Number 1, March 2021

It's been a long time since the latest public
release of AdaControl. But let me
reassure my fellow users: AdaControl
development and improvement never
ceased, and Adalog is very active about it.

The latest wavefront versions are
available on SourceForge
(https://sourceforge.net/projects/
adacontrol/) and GitHub
(https://github.adalog.fr).

There is an issue with the community
edition though: Last year, AdaCore
separated the ASIS generator from the
regular compiler - it is a new program
called asis-gcc.

asis-gcc is part of a package called
Asistools which is distributed only to Pro
users. It is not part of the CE edition. This
does not affect only AdaControl:
gnatcheck has also been removed.

There is no problem for Pro users, and our
own supported users receive updates
regularly.

Debian and FSF-Gnat users, as well as
users who stay with CE2019, will still be
able to compile AdaControl, however it
may crash sometimes due to not
incorporating fixes for the latest issues
that were discovered with the new
features of AdaControl. These have been
reported to AdaCore (and fixed).

However, we are not able to provide a
compiled version for CE2020 users,
which is what prevents us from making a
complete release. We are investigating
solutions for these CE users that we, at
Adalog, want to continue to fully support
without restrictions!

From: Simon Wright
<simon@pushface.org>

Date: Fri, 26 Mar 2021 21:13:39 +0000

> There is an issue with the community
edition though

FSF GCC 11 doesn't support ASIS either.

This will mean no gnatmetric, gnatpp,
gnatstub, gnattest for macOS users, at
least until I can escape the branch hell
that's stopping me building libadalang!

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 26 Mar 2021 23:25:57 +0200

> There is no problem for Pro users, ...

Well, last time I asked, as a Pro user,
AdaCore wanted extra lucre for the ASIS
tools. So, a little problem...

Ada Practice

Re: Renames Usage

[Continues from “Renames Usage” in
AUJ 41-4, December 2021, about the
finer details of renamings. —arm]

From: Drpi <314@drpi.fr>
Subject: Re: renames usage
Date: Fri, 1 Jan 2021 13:39:39 +0100
Newsgroups: comp.lang.ada

Reading all the answers, I understand
that:

 X : Float renames Random (Seed);

is equivalent to :

 X : constant Float := Random (Seed);

From: Jeffrey R. Carter
Date: Fri, 1 Jan 2021 15:46:39 +0100

Technically, the renames gives a name to
the anonymous temporary object returned
by the function. The constant declaration
makes a constant copy of it. So they're
equivalent, but not identical.

However, the compiler is free to optimize
the copy away, and I'd be surprised if
there are any compilers that don't (except
GNAT with -O0).

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sat, 2 Jan 2021 17:00:13 +0100

Also remember that limited types do not
permit copying, whether constant or not.
Renaming avoids having to move an
object at all:

[Example shortened by me. —arm]

 task type Nail; -- A limited type

 type Nail_Reference is access Nail;

 function Random_Pick return

Nail_Reference;

 declare

 Choice : Nail renames Random_Pick.all;

From: Simon Wright
<simon@pushface.org>

Date: Sat, 02 Jan 2021 17:22:27 +0000

Another reason for renaming [...] would
be remembering a view conversion.
[Example removed. —arm]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 2 Jan 2021 21:19:49 -0600

> [...] However, the compiler is free to
optimize the copy away, and I'd be
surprised if there are any compilers that
don't (except GNAT with -O0).

In [the case of a scalar return], the "copy"
is a register, and it would be hard (and
pointless) to eliminate that. It's more
interesting for a function that returns a
composite object, and in that case your
answer is correct. Note that you can tell if
a copy is made if there is a controlled
component in the object.

One thing we've learned in language
design is that nothing is ever exactly
equivalent to something else. There is
always subtle differences. Typical
programmers can ignore such stuff, but
not language designers.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 1 Jan 2021 14:20:05 +0100

You must keep in mind that renaming
ignores subtype constraints. So:

 X : Integer := -1;

 Y : Positive renames X;

 -- Let's fool ourselves

begin

Put_Line ("A positive number " &

Integer'Image (Y));

Will happily print "A positive number -1."

Quick Inverse Square Root

From: Matt Borchers
<mattborchers@gmail.com>

Subject: Quick inverse square root
Date: Sat, 2 Jan 2021 14:26:30 -0800
Newsgroups: comp.lang.ada

I'm sure many of you have seen the Fast
Inverse SquareRoot algorithm from the
open source Quake III engine. I just
encountered it a few days ago. Here it is,
a bit reduced, from the original source:

 //C code from Quake III engine

 float Q_rsqrt(float number)

 {

 long i;

 float x2, y;

 const float threehalfs = 1.5F;

 x2 = number * 0.5F;

 y = number;

 i = *(long *) &y;

 i = 0x5f3759df - (i >> 1);

 y = *(float *) &i;

 y = y * (threehalfs - (x2 * y * y));

 return y;

 }

It is interesting how much clearer the Ada
code version is:

 with Interfaces; use Interfaces;

 function QUICK_INVERSE_SQRT

 (a : FLOAT) return FLOAT is

 y : FLOAT := a;

 i : UNSIGNED_32;

 for i'Address use y'Address;

 begin

 i := 16#5F3759DF# - shift_right(i, 1);

 return y * (1.5 - (0.5 * a * y * y));

 end QUICK_INVERSE_SQRT;

The magic hexadecimal number is
calculated from the formula:

 3/2 * 2**23 * (127 - mu) where mu is a
constant close to 0.043.

My question is that I am trying to get this
to work for Long_Float but I'm not having
any luck. I would expect that everything
should be the same in the algorithm
except for the types (Float -> Long_Float
and Unsigned_32 -> Unsigned_64) and
the "magic" hexadecimal number that
should be calculated from the same
formula but adjusted for the Long_Float
bit layout.

14 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

 3/2 * 2**52 * (1023 - mu) where mu is
the identical constant as used for Float
case.

This doesn't seem to work and I haven't
been able to find my error. I'm sure it is
something silly. Does anybody have a
suggestion?

A second question I have is how to make
this a generic for any Floating point type.
I can only think that I have to provide
three things: not only the obvious Float
type, but also the Unsigned type of the
same size, as well as the hex constant.

 generic

 type F is digits <>;

 type U is mod <>;

 magic : U;

 function G_Q_INV_SQRT(a : F) return

F;

I write the body like this:

 function G_Q_INV_SQRT(a : F)

 return F is

 y : F := a;

 i : U;

 for i'Address use y'Address;

 begin

 i := magic - shift_right(i, 1);

 return y * (1.5 - (0.5 * a * y * y));

 end G_Q_INV_SQRT;

 function QUICK_INVERSE_SQRT is

 new G_Q_INV_SQRT(FLOAT,

 UNSIGNED_32, 16#5F3759DF#);

This won't compile because the type U is
not valid for the call to "shift_right".
How do I overcome this obstacle?

Once that is overcome, is there a way I
can eliminate having to pass in the
unsigned type along with the floating
point type? That seems like the
programmer would require internal
knowledge to make use of the generic.
Any thoughts on how to get the compiler
to compute the magic number in the
generic at compile time?

From: Jeffrey R. Carter
Date: Sun, 3 Jan 2021 00:18:11 +0100

> This won't compile because the type U
is not valid for the call to "shift_right".
How do I overcome this obstacle?

Make it an explicit generic formal
function parameter:

 with function Shift_Right (...) return ...;

> Once that is overcome, is there a way I
can eliminate having to pass in the
unsigned type along with the floating
point type?

You would want to make use of the
attributes of floating point types in ARM
A.5.3

http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-A-5-3.html

Whether these provide the information
you need is another question. I don't see

how you could declare the modular type
in the generic.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 3 Jan 2021 11:58:38 +0100

> [Original code]

This is not equivalent to C code, you have
likely a typo error.

The formula you wrote above cannot be
right. In effect, the factor y calculated
from the exponent must be numerically
the same for both float (IEEE 754 single-
precision floating-point) and double
(IEEE 754 single-precision floating-
point). Which is apparently not. You
should get the exponent multiplied by the
same power of 2 as for float. For double, I
make a wild guess, you should replace
right shift by 1 with right shift by 30 = 32-
2.

General notes.

1. C code relies on float being IEEE 754
single-precision floating-point number
with endianness opposite to integer
endianness numbers. The exponent
must land in the integer's MSB. This is
clearly non-portable.

2. The approximation is very crude. I am
too lazy to estimate its precision within
the intended range, which is what? [0,
1]?

3. Ergo, making it generic has no sense.

4. If you port it to Ada, add assertions
validating endianness and floating-
point format.

From: Matt Borchers
<mattborchers@gmail.com>

Date: Sun, 3 Jan 2021 14:31:15 -0800

Thank you Jeff and Dmitry. I have a
generic functioning now.

Jeff,

Using attributes I was able to come up
with a magic number using:

magic : constant U := U(3.0 / 2.0 *

2.0**(F'Machine_Mantissa - 1) *

(F(F'Machine_Emax - 1) - 0.043));

[...]

When people tell me that they use C for
its low-level power and simplicity, like bit
manipulations, and claim that other
languages can't match C in that sense, I
like to show them just how much better
Ada can be -- aside from all the other
benefits we all know. Eliminating the
generic, I think the main algorithm is
much clearer in the Ada version.

Here's my final code which seems to work
well enough on my machine. The
compiler required me to instantiate the
generic with different names and then use
renames for the function in the package
specification.

 with INTERFACES; use INTERFACES;

 generic

 type F is digits <>;

 type U is mod <>;

 with function SHIFT_RIGHT(n : U;

 amount : NATURAL) return U;

function G_QUICK_INVERSE_SQRT

 (a : F) return F;

 function G_QUICK_INVERSE_SQRT

 (a : F) return F is

 magic : constant U := U(1.5 *

 2.0**(F'Machine_Mantissa - 1) *

 (F(F'Machine_Emax - 1) - 0.043));

 y : F := a;

 i : U;

 for i'Address use y'Address;

 begin

 i := magic - shift_right(i, 1);

 return y * (1.5 - (0.5 * a * y * y));

 end G_QUICK_INVERSE_SQRT;

 function QINVSQRT is

 new G_QUICK_INVERSE_SQRT(

 LONG_FLOAT,

 UNSIGNED_64, shift_right);

 function QUICK_INVERSE_SQRT(

 a : LONG_FLOAT) return

 LONG_FLOAT renames

 QINVSQRT;

 function QINVSQRT is

 new G_QUICK_INVERSE_SQRT(

 FLOAT, UNSIGNED_32,

 shift_right);

 function QUICK_INVERSE_SQRT(

 a : FLOAT) return FLOAT

 renames QINVSQRT;

From: Jeffrey R. Carter
Date: Mon, 4 Jan 2021 00:47:13 +0100

Glad to have been of help.

Regarding the unsigned type, it seems this
only works if F'Size = 32 or 64, so you
could write versions that use
Unsigned_32 and Unsigned_64, and then
make your generic function do

if F'Size = 32 then

 return QISR32 (A);

elsif F'Size = 64 then

 return QISR64 (A);

else

 raise Program_Error with "F'Size must be

 32 or 64";

end if;

But I don't understand why this exists. In
what way is it better than the (inverse)
Sqrt operation of the FPU?

From: Matt Borchers
<mattborchers@gmail.com>

Date: Sun, 3 Jan 2021 19:50:03 -0800

[...]

> But I don't understand why this exists.
In what way is it better than the (inverse)
Sqrt operation of the FPU?

I mentioned first that this code comes
from the Quake III engine. There must
have been a purpose for it then or maybe

Ada Pract ice 15

Ada User Journal Volume 42, Number 1, March 2021

it was never called but left in the source
code. There are many videos about it on
YouTube. I'm not really a low-level
graphics guy, but I think it was intended
to operate on the unit vector for intense
graphics operations.

I think this algorithm would work on any
floating point type with a bit layout
similar to the IEEE-754 standard
regardless of how many bits were
allocated to the exponent and mantissa.

I don't have any personal use for it. It
seemed like an easy example to show how
Ada code can be simpler and just as
powerful as C. I tried to turn it into a
generic just as an exercise in trying to
eliminate the modular type from the
generic interface after I realized that two
types were required that were related only
in bit size. [...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 4 Jan 2021 13:13:00 +0100

> I haven't got the slightest idea for which
range this function should be applied,
but for sure not for the complete Float
range.

It appears to be the Newton method with a
heuristic used to choose the starting point.
The description is here:
https://en.wikipedia.org/wiki/
Fast_inverse_square_root

It also mentions a hack for double
precision IEEE 754 floats.

P.S. The method makes no sense to
implement or use on modern hardware.

From: Egil H H <ehh.public@gmail.com>
Date: Mon, 4 Jan 2021 05:39:33 -0800

For anyone interested, there's a discussion
on the algorithm in this paper:

https://cs.uwaterloo.ca/~m32rober/
rsqrt.pdf

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Thu, 7 Jan 2021 17:49:32 -0000

> As computers get faster, storage gets
larger, and code libraries get bigger, it
is unfortunate that most programmers
do not need to be as clever as they once
were required to be.

> Thanks for finding and sharing the PDF
paper! I'm amazed someone could
write so many pages on this.

Having spent quite some time elsewhere
getting sqrt down to a single clock cycle
(throughput: 8 cycle latency) it doesn't
surprise me at all. (The name Terje
Mathisen comes to mind for assembly
language implementations)

The odd coding (non use of union, strange
use of intermediate variables) may well
have been the result of compiler code
generation limitations; the "better" form

may have compiled to a few more
instructions or run a little more slowly;
not a good thing for a gamer on limited
hardware!

Have you benchmarked the pretty Ada
version against the original C ... or against
a straightforward float operation on
modern hardware?

Lower Bounds of Strings

From: Stephen Davies
<joviangm@gmail.com>

Subject: Lower bounds of Strings
Date: Tue, 5 Jan 2021 03:04:31 -0800
Newsgroups: comp.lang.ada

I'm sure this must have been discussed
before, but the issue doesn't seem to have
been resolved and I think it makes Ada
code look ugly and frankly reflects poorly
on the language.

I'm referring to the fact that any
subprogram with a String parameter, e.g.
Expiration_Date, has to use something
like Expiration_Date
(Expiration_Date'First ..
Expiration_Date'First + 1) to refer to the
first two characters rather than simply
saying Expiration_Date (1..2).

Not only is it ugly, but it's potentially
dangerous if code uses the latter and
works for ages until one day somebody
passes a slice instead of a string starting at
1 (yes, compilers might generate
warnings, but that doesn't negate the
issue, imho).

There must be many possible solutions,
without breaking compatibility for those
very rare occasions where code actually
makes use of the lower bound of a string.

e.g. Perhaps the following could be made
legal and added to Standard:

subtype Mono_String is String (1 .. <>);

One question with this would be whether
or not to allow procedure bodies to
specify parameters as Mono_String when
the corresponding procedure declaration
uses String.

From: Luke A. Guest
<laguest@archeia.com>

Date: Tue, 5 Jan 2021 12:24:44 +0000

> [...] it makes Ada code look ugly and
frankly reflects poorly on the language.

Wrong. It highlights how poor
programmers are, especially from other
languages which love to hardcode
numbers.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 5 Jan 2021 21:08:55 -0600

IMHO, "String" shouldn't be an array at
all. In a UTF-8 world, it makes little sense
to index into a string - it would be

expensive to do it based on characters
(since they vary in size), and dangerous to
do it based on octets (since you could get
part of a character).

The only real solution is to never use
String in the first place. A number of
people are building UTF-8 abstractions to
replace String, and I expect those to
become common in the coming years.

Indeed, (as I've mentioned before) I
would go further and abandon arrays
altogether -- containers cover the same
ground (or could easily) -- the vast
complication of operators popping up
much after type declarations, assignable
slices, and supernull arrays all waste
resources and cause oddities and dangers.
It's a waste of time to fix arrays in Ada --
just don't use them.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 6 Jan 2021 10:13:06 +0100

> IMHO, "String" shouldn't be an array at
all. [...]

It will not work. There are no useful
integral operations defined on strings. It is
like arguing that an image is not an array
of pixels because you could distort objects
in there when altering individual pixels.

> The only real solution is to never use
String [...]

This will never happen. Ada standard
library already has lots of integral
operations defined on strings. They are
practically never used. The UTF-8 (or
whatever encoding) abstraction thing
simply does not exist.

[...]

Array implementation is a fundamental
building block of computing. That does
not go either. Of course you could have
two languages, one with arrays to
implement containers and one without
them for end users. But this is neither Ada
philosophy nor a concept for any good
universal-purpose language.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 6 Jan 2021 18:17:45 -0600

> [...] Array implementation is a
fundamental building block of
computing.

Surely. But one does not need the
nonsense of requiring an underlying
implementation (which traditional arrays
do) in order to get that building block.
You always talk about this in terms of an
"interface", which is essentially the same
idea. One cannot have any sort of non-
contiguous or persistent arrays with the
Ada interface, since operations like
assigning into slices are impossible in
such representations. One has to give
those things up in order to have an

16 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

"interface" rather than the concrete form
for Ada arrays.

I prefer to not call the result an array,
since an array implies a contiguous in-
memory representation. Of course, some
vectors will have such a representation,
but that needs to be a requirement only for
vectors used for interfacing. (And those
should be used rarely.)

[...]

Sometimes, one has to step back and look
at the bigger picture and not always at the
way things have always been done.
Arrays (at least as defined in Ada) have
outlived their usefulness.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Thu, 14 Jan 2021 03:38:28 -0800

> I'm referring to the fact that any
subprogram with a String parameter,
e.g. Expiration_Date, has to use
something like Expiration_Date
(Expiration_Date'First ..
Expiration_Date'First + 1) to refer to
the first two characters rather than
simply saying Expiration_Date (1..2).

I really do not see the problem here. If I
want the first element, I write X(X'First).
Where's the problem?

In his paper about model railroads,
http://www.cs.uni.edu/~mccormic/RealTi
me/, John McCormick came to the
conclusion that one of the reasons why
Ada was so successful was the fact that
indices had not to start with 0 resp. 1, i.e.
they may bear meaning. In such cases, it
is absolute nonsense to slide slices to the
first index value.

Also for enumeration indices, sliding does
not make sense.

So why is the bad habit dangerous to
think that the first element must have
index one (or zero)? For me, this is a non
sequitur.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 14 Jan 2021 13:27:18 +0100

> Also for enumeration indices, sliding
does not make sense.

Sliding does not make sense for any type
of index.

Again, people are confusing indices
(cardinal) with positions (ordinal). These
are distinct concepts and different types.
E.g. A'Length is an ordinal numeral and
thus has the type Universal_Integer.
A'First is a cardinal numeral and is of the
index type.

> So why is the bad habit dangerous to
think that the first element must have
index one (or zero)? For me, this is a
non sequitur.

The first element may have no index at
all, e.g. the first element of a list, the first
character read from the input stream etc.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Thu, 14 Jan 2021 05:31:57 -0800

> So why is the bad habit dangerous to
think that the first element must have
index one (or zero)? For me, this is a
non sequitur.

Ah, what I really wanted to say: This is a
bad and dangerous habit to think indices
must start with 0 or 1.

From: Jeffrey R. Carter
Date: Thu, 14 Jan 2021 15:02:24 +0100

> Also for enumeration indices, sliding
does not make sense.

The trouble is that this is not really
discussing arrays. It's discussing
sequences, implemented by arrays, such
as String.

1-D arrays are often used to implement
sequences. In arrays used as sequences,
the indices are meaningless, and slicing,
sliding, and sorting are often appropriate.
As the indices are meaningless, it makes
sense for them to be integers with a fixed
lower bound of 1, since that is how we
typically talk about positions in
sequences. However, there are also many
cases when it's useful to be able to have
slices of sequences with a different lower
bound, so remembering to use 'First is
still important. Array types used as
sequences are often unconstrained.

The other use of arrays (1- and
multidimensional) is as maps. In arrays as
maps, the indices are meaningful, and
slicing, sliding, and sorting are usually
inappropriate. Array types used as maps
are usually constrained.

Ada's Vector containers are really
variable-length sequences.

In designing a new language, it might be
useful to keep these two concepts
separate.

[...]

From: Stephen Davies
<joviangm@gmail.com>

Date: Fri, 15 Jan 2021 02:24:40 -0800

> I really do not see the problem here. If I
want the first element, I write
X(X'First). Where's the problem?

Long_String_Name(1..2)

is much nicer than

Long_String_Name(

 Long_String_Name'First..

 Long_String_Name'First+1)

subtype Some_Range is Positive

range 4..5;

Some_String(Some_Range)

-- erroneous if Some_String'First/=1

I think the root of the problem is that Ada
Strings almost always start at 1 (note that
the functions in Ada.Strings.Fixed all
return Strings that start at 1), so the cases
when they don't are at best annoying, and
potentially erroneous.

[...]

From: Jeffrey R. Carter
Date: Fri, 15 Jan 2021 12:48:25 +0100

> I think the root of the problem is that
Ada Strings almost always start at 1

There are many cases where having String
values with a lower bound other than 1 is
more convenient, clearer, and less error
prone than if all String values have a
lower bound of 1. For example

loop

 exit when End_Of_File;

 declare

 Line : constant String := Get_Line;

 begin

 Idx := 0;

 loop

 Idx := Index (Line

 (Idx + 1 .. Line'Last), Pattern);

 exit when Idx = 0;

 Put_Line (Item => Idx'Image);

 end loop;

 end;

end loop;

where Index is Ada.Strings.Fixed.Index.
Even without comments and descriptive

loop and block names, this is reasonably
clear.

Compare that to a language where the
slice slides to have a lower bound of 1
(because Index takes a String, which
always has a lower bound of 1), and you'll
see that it is more complex, less clear, and
has more opportunities for error than
current Ada.

A string, being a sequence, should usually
have a lower bound of 1, but a decent
language needs to also allow string values
with other lower bounds. Maybe
something like

type String_Base is array

 (Positive range <>) of Character;

subtype String is String_Base

 (Positive range 1 .. <>);

Slices would be String_Base, not String,
and Index would take String_Base.

From: Stephen Davies
<joviangm@gmail.com>

Date: Fri, 15 Jan 2021 06:00:43 -0800

> type String_Base is array (Positive
range <>) of Character;

> subtype String is String_Base (Positive
range 1 .. <>);

I wish it had been this way since the
beginning. That way, in those rare
instances where code is really using the
variable lower-bound, the use of
String_Base would make the intention

Ada Pract ice 17

Ada User Journal Volume 42, Number 1, March 2021

clear. Alas, adopting this now would
break that code.

From: Jeffrey R. Carter
Date: Fri, 15 Jan 2021 16:12:37 +0100

> I wish it had been this way since the
beginning.

We have that now, with the substitutions

 String_Base => String

 String => type S1 (Length : Natural) is

 record

 Value : String (1 .. Length);

 end record;

or

 subtype S1 is String with

 Dynamic_Predicate => S1'First = 1;

From: Stephen Davies
<joviangm@gmail.com>

Date: Fri, 15 Jan 2021 09:22:43 -0800

> subtype S1 is String with
Dynamic_Predicate => S1'First = 1;

Like I said before, I want Sliding, not
bounds checking. I guess most Usenet
discussions eventually end up going
around in circles.

From: Jeffrey R. Carter
Date: Fri, 15 Jan 2021 22:10:08 +0100

Then you would probably prefer the
record version. Neither is perfect, but
both, with appropriate conversion
functions, give you the effect you want
with current Ada.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sat, 16 Jan 2021 10:30:16 +0100

> Long_String_Name(1..2) is much nicer
than

>
Long_String_Name(Long_String_Nam
e'First..Long_String_Name'First+1)

Avoid literals for indexing.

Of course, that makes them all the more
popular. "On which side are you on 1 vs 0
for The First?" (Discussion starts...)

From: Stephen Davies
<joviangm@gmail.com>

Date: Sat, 16 Jan 2021 05:13:49 -0800

> "On which side are you on 1 vs 0 for
The First?"

I like that Ada gives the choice of
"Positive range <>" or "Natural range
<>".

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 18 Jan 2021 23:48:38 -0600

> Also, a Slide function [that returns the
same string ensuring it is 1-based] does
not work for "out" and "in out"
parameters.

Thank god. Slices passed as in out
parameters are the bane of the compiler-

writers existence, and outside of types
like String, have a very expensive
implementation. On common machines
like the x86, copying an arbitrary bit
string from one location to another is not
an easy operation to perform. (Remember,
one can slice packed arrays, arrays of
controlled objects, and other nasty cases.
And with the sort of interface others here
are proposing, you'd have to do it for
various discontiguous representations,
too.)

This way leads to madness -- at least of
compiler implementers. ;-)

Record Initialisation
Question

From: Drpi <314@drpi.fr>
Subject: Record initialisation question
Date: Sat, 9 Jan 2021 10:30:04 +0100
Newsgroups: comp.lang.ada

I'm working on a µP BSP [microprocessor
board support package]. The boot
sequence of this µP requires byte
structures located in FLASH memory. For
example:

 type t_Dcd_Header is record

 Tag : Unsigned_8 := 16#D2#;

 Length : Unsigned_16 := 4; -- Length in

 -- byte of the DCD structure (this header

 -- included)

 Version : Unsigned_8 := 16#41#;

 end record

 with Object_Size => 32,

 Bit_Order =>

System.Low_Order_First;

 for t_Dcd_Header use record

 Tag at 0 range 0 .. 7;

 Length at 0 range 8 .. 23;

 Version at 0 range 24 .. 31;

 end record;

The t_Dcd_Header is part of t_Dcd
record.

The Length field of t_Dcd_Header must
contain the length of t_Dcd.

 Dcd : constant t_Dcd :=

 (Dcd_Header => (Length => ???,

 -- Length of Dcd

 others => <>),

 ...

);

Is there a way to automatically set Length
? Dcd goes in a dedicated .txt section.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 10 Jan 2021 21:30:01 +0200

[Several possibilities are discussed
involving static expressions, but the main
obstacle turns out to be avoiding
elaboration code. —arm]

>> Have you ensured that the
construction of the Dcd object requires
no elaboration code? Most Flash
memories cannot be written in the same
way as RAM, so even if that .txt section

is not write-protected, normal RAM-
oriented elaboration code would not be
able to write into Flash.

> I'm aware of this (I'm an electronics
guy). I'll add a "pragma
No_Elaboration_Code_All;" when I'm
ready.

Better add it now, because if you add it
later, the compiler may then complain that
it cannot implement the Dcd aggregate
without elaboration code, and you will
have to work around that somehow.

A good while ago, a colleague had a
problem where a large constant array
aggregate would require elaboration code
if written in named form (Index => Value,
Index => Value, ...), and it was necessary
to write it in positional form (Value,
Value, ...) to get rid of the elaboration
code. It can be tricky, so it is better to be
warned early of any problems.

From: Drpi <314@drpi.fr>
Date: Mon, 11 Jan 2021 18:46:34 +0100

I added "pragma
No_Elaboration_Code_All;" to my code
and... all records are rejected.

The boot data structure (in FLASH
memory) is composed of several records.
They are linked by their addresses. When
a record contains an address, initializing it
with a "non static number" value makes
the compiler complain (with
No_Elaboration_Code_All set).

You were right. I have to find a
workaround.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 11 Jan 2021 22:58:57 +0200

> I added "pragma
No_Elaboration_Code_All;" to my
code and... all records are rejected.

Ah, too bad.

The problem is that "static" in Ada means
"known at compile time", while
addresses, although static in execution,
are generally not known until link time. A
case where assembly language is more
powerful :-(

> I have to find a workaround.

If addresses are the only problem, and you
are in control of the flash memory lay-out,
you might be able to define static Ada
constant expressions that compute
("predict") the addresses of every boot
data structure record. But those
expressions would need to use the sizes of
the records, I think, and unfortunately the
'Size of a record type is not a static
expression (IIRC), and that may hold also
for the GNAT-specific
'Max_Size_In_Storage_Units.

From: Drpi <314@drpi.fr>
Date: Thu, 14 Jan 2021 14:07:29 +0100

18 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

> The problem is that "static" in Ada
means "known at compile time", while
addresses, although static in execution,
are generally not known until link time.
A case where assembly language is
more powerful :-(

Or C :(

I use the manufacturer C code generated
by their tool as reference. In C,
initializing a structure element with an
address is not a problem.

[...]

I can redefine the records with UInt32
instead of System.Address. The problem
is: What is the expression to convert from
Address to UInt32 without using a
function?

From: Jeffrey R. Carter
Date: Thu, 14 Jan 2021 15:07:54 +0100

You can use an overlay (usually not
recommended):

Addr : constant Address := ...;

U32 : constant Unsigned_32 with Import,

Convention => Ada, Address =>

Addr’Address;

You can also use an untagged union (also
not usually recommended), which I would
need to look up.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 14 Jan 2021 16:27:09 +0200

> [...] In C, initializing a structure element
with an address is not a problem.

The C compiler emits a relocatable
reference to the addressed object, and the
linker replaces it with the absolute
address. An Ada compiler should be able
to do the same thing when the address of
a statically allocated object is used to
initialize another statically allocated
object, assuming that the initialization
expression is simple enough to require no
run-time computation. Perhaps part of the
reason why that does not happen is that
System.Address is a private type, and
might not be an integer type.

Do you (or someone) know if the C
language standard guarantees that such
initializations will be done by the linker,
and not by the C start-up code that is
analogous to Ada elaboration code?

[...]

But my suggestion did not involve such
conversions: I assumed that you would be
able to compute, using static universal-
integer expressions, the addresses for all
your flash objects, and use those directly
in the record aggregates. This assumes
that you are able to define the lay-out of
all the stuff in the flash. You might then
also specify the 'Address of each flash
object, using those same universal-integer
expressions.

Something like this (not tested with a
compiler):

 Flash_Start : constant := 16#500#;

 Obj_A_Addr : constant := Flash_Start;

 Obj_B_Addr : constant := Obj_A_Addr +

16#234#;

 -- Here 16#234# is supposed to be the

size of Obj_A, so that

 -- Obj_B follows Obj_A in flash.

 Obj_A : constant Dcd_T := (

 Next => Obj_B_Addr,

 ...);

 for Obj_A'Address use

 System.Storage_Elements.

 To_Address (Obj_A_Addr);

From: Paul Rubin
Date: Thu, 14 Jan 2021 08:59:04 -0800

> Do you (or someone) know if the C
language standard guarantees that such
initializations will be done by the
linker, and not by the C start-up code
that is analogous to Ada elaboration
code?

I don't remember it being required by the
standard, but I remember there was some
pain in the standardization process trying
to make those kinds of address
initializations flexible while still being
doable at link time. The original proposal
had fancier capabilities than the final
standard did, because during discussions
it emerged that the fancy features couldn't
straightforwardly be implemented with
the linkers that people expected to use.

Specify Priority of Main
Program

From: Simon Wright
<simon@pushface.org>

Subject: Specify priority of main program
Date: Sat, 23 Jan 2021 17:55:13 +0000
Newsgroups: comp.lang.ada

GNAT allows you to specify the main
program's priority (actually, I suspect it'd
allow it on any parameterless library-level
procedure, but only the one actually used
as main will count);

 procedure Main with Priority => 6 is

This is handy for embedded code where
you don't want to waste the environment
task's stack space but need to run that
code at a non-default priority.

However, I can't see this use in the ARM;
is it an extension?

If it's not a GNAT extension, what would
the ARG view be likely to be for similar
permission for Storage_Size (and
Secondary_Stack_Size, but that is
definitely a GNAT extension)?

From: Simon Wright
<simon@pushface.org>

Date: Sat, 23 Jan 2021 21:45:11 +0000

Found it now: ARM D.1(18).

This isn't mentioned in Annex J,
Language Defined Aspects: (46),

 "Priority of a task object or type, or
priority of a protected object or type; the
priority is not in the interrupt range. See
D.1."

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 26 Jan 2021 20:52:50 -0600

[...]

>> If it's not a GNAT extension, what
would the ARG view be likely to be for
similar permission for Storage_Size
(and Secondary_Stack_Size, but that is
definitely a GNAT extension)?

I don't think the definition of
Storage_Size would work out-of-the-box
for a subprogram, since there wouldn't be
an obvious place for it to get evaluated.
So there's more work here than just
slapping "for a subprogram" on the
header. (Priority has to be static for a
subprogram, and there is an additional
rule explaining where it applies.)

But I don't see any other reason that
Storage_Size shouldn't be allowed for a
main subprogram. Probably it would take
someone asking... :-)

Simple Example on
Interfaces

From: Mario Blunk
<marioblunk.alere@gmail.com>

Subject: Simple example on interfaces
Date: Mon, 25 Jan 2021 08:08:05 -0800
Newsgroups: comp.lang.ada

I'm trying to solve a problem of multiple
inheritance. It seems to me that an
interface could be the solution although
[interfaces are] still a mystery for me.

[A particular example omitted. The part
of the conversation I have selected deals
with general interface ideas, not
depending on the particular example.
—arm]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 25 Jan 2021 23:06:09 +0100

[...]

Ada interface is a type that has interface
and no implementation. (It is a silly idea
inherited from Java.)

[...]

There exist various dirty tricks to emulate
full multiple inheritance but no universal
solution. If you really need full multiple
inheritance, choose the most important
path of implementations and make types
along its proper types. Other paths if
simple, could be tricked using

- Mix-in inheritance

Ada Pract ice 19

Ada User Journal Volume 42, Number 1, March 2021

- Generic packages to automate
implementation of interfaces

- Memory pools to inject implementation

Nothing of these is good. They basically
work only if the depths of the secondary
inheritance paths are 1.

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 26 Jan 2021 10:37:12 +0100

> Ada interface is a type that has interface
and no implementation. (It is a silly
idea inherited from Java.)

To make it look a little less silly, think of
it as a promise: a type that implements an
interface promises to provide a certain
number of operations.

Then you can define algorithms that work
on any type that fulfills the promises.

To me, the big benefit of interfaces is that
it is NOT inheritance; you say that your
type provides some operations, without
needing to classify it with an is-a
relationship.

(I can hear screamings of pure-OO people
who will not agree with me ;-)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 26 Jan 2021 11:25:37 +0100

> To make it look a little less silly, think
of it as a promise

I agree. I meant that Ada 95 had that
already:

 type Interface is abstract tagged null

 record;

There was no need to introduce it as a
separate concept. I think the real reason
was laziness. Vendors did not want to
implement full multiple inheritance.
Adding a simple constraint on the base
types looked bad and also breached
privacy:

 type Is_It_Interface is abstract tagged

 private;

 private

 type Is_It_Interface is abstract tagged

 null record;

> To me, the big benefit of interfaces is
that it is NOT inheritance; you say that
your type provides some operations,
without needing to classify it with an
is-a relationship.

But you do. When you say that T provides
F that in other words means T *is-a*
member of a class that provides F.
Interface is merely a formalization of that.

> (I can hear screamings of pure-OO
people who will not agree with me ;-))

OO muddied a lot of water. To me things
are quite pragmatic. How do I spell in the
language the fact that Long_Integer is an
integer? If Integer is an integer and
Long_Integer is an integer can I write a
program that works on integers? Can it be

the *same* program for each instance of?
Simple, natural questions.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Tue, 26 Jan 2021 03:15:01 -0800

> How do I spell in the language the fact
that Long_Integer is an integer?

This is what generics are for (since Ada
83).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 26 Jan 2021 12:53:19 +0100

Right, generics is a form of
polymorphism (static one). Generics have
interfaces and these form classes.

[...]

P.S. Comparing generics to overloading,
generics offer some re-use, and some
degree of formalization at the cost of
producing huge mess, while overloading
does none.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Tue, 26 Jan 2021 08:46:05 -0800

> at the cost of producing huge mess

I know you don't like generics. I do not
see a huge mess.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 26 Jan 2021 20:44:43 +0100

> I know you don't like generics. I do not
see a huge mess.

When something goes wrong it is almost
impossible to figure what. Contracts are
mostly implicit. They are not enforced
upon compilation. Instantiation errors
nobody can really predict. On top of that
is uncontrollable namespace pollution.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 26 Jan 2021 22:34:13 +0100

[...]

Generic packages and their formal
parameters are organized in a directed
acyclic graph like:

 A D

/ \/|

B C |

\ / |

 E |

 \ /

 F

rather than a tree. You want to instantiate
the whole graph in a single shot. You do
not want to manually specify constraints
on generic formal parameters when some
of them travel by several paths as D into
F.

BTW, observe similarity with
diamond/rhombus MI. That MI has some
problems generics do not have is a big lie.

But in my view generics are beyond
salvation. The idea is inherently weakly
typed. Ada's generic contracts are too
loose to be safe and too rigid for usability
of C++ templates.

From: Jeffrey R. Carter
Date: Mon, 25 Jan 2021 18:00:53 +0100

"IMHO, Interfaces are worthless."

Randy Brukardt

From: philip...@gmail.com
<philip.munts@gmail.com>

Date: Tue, 26 Jan 2021 17:48:03 -0800

> "IMHO, Interfaces are worthless."

 find interfaces to be extremely valuable
for abstracting I/O devices. For example
in my Linux Simple I/O Library, there is
code equivalent to the following (the
actual code is different, as I sucked a lot
of common boilerplate for I/O device
interfaces into a generic package that is
instantiated for each data item type):

package GPIO is

 type Direction is (Input, Output);

 type PinInterface is interface;

 type Pin is access all PinInterface'Class;

 procedure Put(Self : PinInterface;

 state : Boolean);

 function Get(Self : PinInterface)

 return Boolean;

end GPIO;

I've probably defined a dozen packages
that implement GPIO pins using
everything from Linux kernel services to
web servers. Every one of them contains
a function like this:

 function Create(...) return GPIO.Pin;

This allows code like the following:

 GPIO1 : GPIO.Pin :=

GPIO.libsimpleio.Create

(RaspberryPi.GPIO18, GPIO.Output);

 GPIO2 : GPIO.Pin := GPIO.HTTP.Create

("http://foo.munts.net", 5, GPIO.Output);

 GPIO3 : GPIO.Pin :=

GPIO.RemoteIO.Create

(server, 7, GPIO.Output);

This allows GPIO pins scattered far and
near throughout the known universe to be
treated exactly the same, even collected
into an array or container.

I very seldom implement more than one
interface in a type definition though,
unless a single device has multiple
sensors (temperature and humidity, for
instance).

Microsoft's .Net uses this scheme
pervasively, though I originally learned it
in Ada and later applied the same thinking
to .Net, Free Pascal, Java, Python, and
C++ (and other languages).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 26 Jan 2021 21:36:53 -0600

> "IMHO, Interfaces are worthless."

20 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

> Randy Brukardt

To qualify that a bit, they're worthless to
me (and I suspect, most people). For me,
at least, OOP's benefits are mainly found
in implementation inheritance, which is
not available for Interfaces. You have to
use abstract types to get those benefits.

For a single program, an interface doesn't
buy anything, because it is very unlikely
that you'll have more than one
implementation of the interface in use.
(Think the queue interface in Annex A.)
So using dispatching just adds
complication but no benefit; most likely
you'll statically bind everything anyway.

Which pretty much leaves reusable code.
Here, dispatching probably does have
some benefit. But you can get similar
benefits from generic units with formal
derived type parameters. The problem is
that interface dispatching is quite
expensive (not just the indexing of single
inheritance dispatching, but also some
sort of lookup of the appropriate table).
Whereas the generic solution does most of
the binding at compile-time.

It may be my optimizer guru background,
but indirect calls are pretty much
unoptimizable. Ergo, the cost of
dispatching is even worse than it appears
on the surface, given that valuable
optimizations like inlining, partial
evaluation (currying), and all of the things
that they enable aren't possible. So if the
code performance matters, ultimately the
interfaces will have to go. (Of course, if it
doesn't matter, one shouldn't be
warping a design for performance
reasons. But it is *hard* to get rid of
interfaces that are too expensive, so I
think it makes most sense to be sparing
with their use.)

Ultimately, I think one should only use
interfaces IFF there is a clear reuse case
where the substantial cost of dispatching
is not a concern. For me, that is
approximately never, but of course your
mileage may vary.

From: Shark8
<onewingedshark@gmail.com>

Date: Wed, 27 Jan 2021 15:04:09 -0800

> Ultimately, I think one should only use
interfaces IFF there is a clear reuse case
where the substantial cost of
dispatching is not a concern. For me,
that is approximately never, but of
course your mileage may vary.

It makes sense to use them in the internals
of the compiler. Perhaps not a single-
language compiler, but certainly a
multilanguage one like GCC. An
argument could be made for a single-
language compiler in an environment like
described in the DIANA reference-
manual's rationale, where the DIANA-
structure was meant to be passed around

to things like pretty-printers and static-
analyzers and code-generators.

You could make an argument that it
would be useful for code-generators, too.
I was contemplating using something like
a hybrid of IEEE694 and 3AC last year...
but that's a bit of a tangent.

https://standards.ieee.org/standard/
694-1985.html

3AC = Three Address Code

GPS/GNAT Studio Code
Completion Bug

From: John Perry <john.perry@usm.edu>
Subject: GPS/Gnat Studio: Code completion

with other projects
Date: Sun, 31 Jan 2021 17:52:42 -0800
Newsgroups: comp.lang.ada

Suppose I've developed a package A,
saved as a project. Now I'm working on
package B. I make A available by
specifying it in my gpr file, either as a
with statement or by adding it to
Source_Dirs. In package B I have the
statement "with A;".

At this point, while I edit package B,
GNAT Studio will code-complete any
entity of package B, as well as any entity
from the Ada standard library, but it won't
code-complete entities from package A,
such as A.Some_Feature.

How do I get GNAT Studio to do that?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 1 Feb 2021 08:51:58 +0100

It is a bug introduced in the latest version.
Cross-referencing (it seems more than just
auto-completion affected) across
packages worked fine in earlier GPS
versions.

From: Rod Kay <rodakay5@gmail.com>
Date: Tue, 2 Feb 2021 15:00:20 -0800

You might try this ...

To enable 'Find All References' =>
Append 'GPS.LSP.ADA_SUPPORT=no'
to ~/.gnatstudio/traces.cfg

... it should help with finding references
and refactoring.

From: Jérôme Haguet
<j.haguet@cadwin.com>

Date: Fri, 12 Feb 2021 04:32:07 -0800

> Wow, that worked. Can you explain
why? I don't see the connection at all. (I
don't know what "GPS.LSP" means,
either.)

You can find information in GNAT
Studio Release Notes

https://docs.adacore.com/gps-docs/
release_notes/build/singlehtml/index.html
#document-relnotes_20

Specifying Only 'First of
Array Index

From: Mehdi Saada
<00120260a@gmail.com>

Subject: specifying only 'First of an index in
an array

Date: Wed, 3 Feb 2021 09:47:14 -0800
Newsgroups: comp.lang.ada

Is there a way, on nominal or genetic
array type definition (I mean in generic
specifications), to ensure that
Index_type'First is always the same, but
that arrays can still grow?

Something like (certainly wrong): type
my_type is array (Scalar_type range
scalar_type'first .. <>) ?

That or I suppose I can wrap a function
around that type and make it private to
avoid range incompatibilities...

From: Jeffrey R. Carter
Date: Wed, 3 Feb 2021 22:45:17 +0100

This was discussed here recently referring
specifically to strings.

Since these are sequences, the index
should be numeric with a lower bound of
1.

Ada has had a way to do this since Ada
83:

type T_Base is array (Positive range <>) of

Element;

type T (Length : Natural) is record

 Value : T_Base (1 .. Length);

end record;

Ada 12 also adds the possibility of

subtype T is T_Base with

 Dynamic_Predicate => T'First = 1;

There is also the possibility of using a
Vector for this.

The record has the advantage that sliding
works, and the disadvantage that you have
to put .Value in a lot of places.

The predicate has the advantage that it is
an array type and objects can be indexed
directly, and the disadvantage that sliding
doesn't work.

Vectors have the advantage that the length
can vary, and the disadvantages that
slicing doesn't exist and conversions
between Vector and T_Base are more
complex than for the other forms.

Unreferenced Parameters

From: Simon Wright
<simon@pushface.org>

Subject: Unreferenced parameters
Date: Wed, 03 Feb 2021 18:20:09 +0000
Newsgroups: comp.lang.ada

In gps-editors.ads:1492, in GNAT Studio,
I have

Ada Pract ice 21

Ada User Journal Volume 42, Number 1, March 2021

 overriding function Expand_Tabs

 (This : Dummy_Editor_Buffer;

 Line : Editable_Line_Type;

 Column : Character_Offset_Type)

 return Visible_Column_Type is (0);

and FSF GCC 10.1.0 says
gps-editors.ads:1494:07: warning: formal
parameter "Line" is not referenced
gps-editors.ads:1495:07: warning: formal
parameter "Column" is not referenced
which is clearly the case (how does it
know that it's OK not to reference This? it
must check the context).

The compilation is set to treat warnings as
errors (-gnatwe) so I need to suppress
these warnings.

I could do so with pragma Warnings (Off,
"formal*not referenced");

I have done so by renaming the
parameters Dummy_Line,
Dummy_Column.

But is there a way of using aspect or
pragma Unreferenced? Putting pragma
Unreferenced after the function definition
doesn't work.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 3 Feb 2021 21:12:15 -0600

We (the ARG) recently added an
allowance for aspect specifications on
parameters and a few other constructs.
The reason in part was because we didn't
want to restrict where implementation-
defined aspects can be placed, and the
motivating case was aspect Unreferenced.

So I'd guess that you can put the aspect
directly on the parameters in the usual
way (but that may require a compiler not
available yet; the change was approved in
Sept [AI12-0395-1] and Oct [AI12-0398-
1]). So, I'd expect the following to work
(eventually):

 overriding function Expand_Tabs

 (This : Dummy_Editor_Buffer with

 Unreferenced;

 Line : Editable_Line_Type with

 Unreferenced;

 Column : Character_Offset_Type with

 Unreferenced) return

 Visible_Column_Type is (0);

Array from Static Predicate
on Enumerated Type

From: Matt Borchers
<mattborchers@gmail.com>

Subject: array from static predicate on
enumerated type

Date: Fri, 12 Mar 2021 12:49:27 -0800
Newsgroups: comp.lang.ada

Say, for example, I define a static
predicate on a sub-type of an enumerated
type, like:

type LETTERS is (A, B, C, D, E, F, G, H, I ,

J, K);

subtype CURVED is LETTERS

 with Static_Predicate CURVED in

 B | C | D | G | J;

What I want is an array over CURVED
(using CURVED as the index), but since
attributes 'First and 'Last (and thus
'Range) is not allowed, this cannot be
done.

Also, I am restricted in that the order of
LETTERS cannot be rearranged.

Has anybody come up with a clever data
structure to make sub-types with
predicates easy and sensible for indexing
(not iterating)?

I only need read access [...]

From: Jeffrey R. Carter
Date: Fri, 12 Mar 2021 23:16:29 +0100

It sounds as if you want a map, for which
one of the map containers in the standard
library would be appropriate.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 12 Mar 2021 23:41:53 +0100

> subtype CURVED is LETTERS

> with Static_Predicate CURVED in B
| C | D | G | J;

Do not use this thing, because its semantic
is basically a lie as it violates contracts of
other operations of the type, like 'Succ.

Using formal speak, CURVED is not
substitutable for LETTERS in too many
cases to be any useful.

This applies to any arbitrary constraints
you could impose using a predicate. They
break things. Do not ever consider them
as an option.

From: Matt Borchers
<mattborchers@gmail.com>

Date: Fri, 12 Mar 2021 18:06:22 -0800

I pretty much agree with Dmitry on this.
The usefulness of this is very, very low
without better support from the language
itself. However, Dmitry, if programmers
should not consider a feature of a
language as an option for a solution, then
it begs the question on the quality of the
language, quality of the compiler, or
questions the abilities of caretakers of
Ada. Don't get me wrong, however, I
think Ada is exceptional.

I thought I read that 'Pred and 'Succ do
work as one would expect for the
Predicated sub-type, but I did not try them
as I did not need them.

I did read the entire rationale and
'First_Valid and 'Last_Valid would allow
the programmer to create an array with a
range that guarantees inclusion of all
enumerated values of the statically
predicated sub-type. But, this leaves
holes in the array as wasted memory. My
actual use case is hundreds of enumerated
values and the sub-types have very few
values each. Think of a case like a

Unicode table where you might want to
classify characters into small non-
contiguous groups and these characters
may be far apart from one another.

I do want a map or hash table, but in this
case, I was hoping that Ada would handle
the mapping for me such that I did not
have to instantiate such a complexity for a
simple example. I was a bit surprised
after discovering Static_Predicate that the
Ada language syntax was essentially
useless in dealing with it in a consistent
way.

I like the idea of creating non-contiguous
enumerated sub-types. I've found that I
often want to do it and must seriously
consider design decisions like
enumeration order that really should not
be something that is that important to
program design. I think that if the
language lets you define them, then the
rest of the supporting syntax of the
language should also support them even if
there is a small penalty of a double look-
up through a mapping table.

I had a simple case many years ago with
Ada 95, I think, when I was implementing
a checkers game. I wanted an
enumeration of 5 items for the piece that
occupied a square.

 type PIECE is (EMPTY, RED, BLACK,

 RED_KING, BLACK_KING);

 p : PIECE;

This was a nice order because I could use
the language syntax to determine if a
piece was a King.

 subtype KING is PIECE range

 RED_KING..BLACK_KING;

 if p in KING then...

However, I had to write a function to
determine if a piece was Red or Black and
thus different calling syntax. The other
order option was:

 type PIECE is (EMPTY, RED,

 RED_KING, BLACK, BLACK_KING);

This order was nice because the language
let me easily determine the Color of a
piece.

 subtype REDS is PIECE range

 RED..RED_KING;

 subtype BLACKS is PIECE range

 BLACK..BLACK_KING;

 if p in REDS then...

but I'd have to write a function to
determine if a piece was a King and still
different calling syntax.

Unfortunately, back then, the programmer
couldn't have it both ways though it
would've been very convenient. It
appears that Static_Predicate solves this
problem because "in" is updated to work
with the Predicate. So if this works, why
was it decided that the rest of the
language syntax be inconsistent? Surely a
map table would have sufficed with a

22 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

slight performance penalty, but for the
sake of language consistency you let the
programmer decide. I can imagine an
internally compiled map table would be
much faster than the instantiation of the
Map or Hash Container package.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 12 Mar 2021 22:55:51 -0600

>I do want a map or hash table, but in this
case, I was hoping that Ada would
handle the mapping for me

Ada is not some sort of magic wand.
What you want requires a complex data
structure, and using an array (as defined
in Ada) for it is not practical (mainly
because of the slice operation of which
I've complained previously).

>...such that I did not have to instantiate
such a complexity for a simple
example.

Ada was designed to provide high-quality
(that is, fast) code. If you want a language
with a high degree of abstraction -- Ada
isn't it. And in such a language, you
wouldn't have arrays (in the Ada sense) at
all - you would only have maps and
sequences.

And if you think a single instance is "such
complexity", I have no idea what you
would want -- a map instance is simpler to
write than an array type declaration (and
much simpler under the covers). Do
you also never use
Unchecked_Deallocation?? It's harder to
instantiate than an Ordered_Map.

>I was a bit surprised after discovering
Static_Predicate that the Ada language
syntax was essentially useless in
dealing with it in a consistent way.

I was in favor of set constraints rather
than Static_Predicates, mainly because of
the value problems Dmitry commented
on. But even those would have been
illegal in arrays -- an array makes a lousy
way to describe a map.

Anyway, subtypes with Static Predicates
work for case statements, memberships,
and for loops; they're only disallowed for
arrays. I don't think anyone should be
writing an array in a modern language
(outside of interfacing to something
outside of that language) - it's a mixed up
data structure that only makes sense
because of historical reasons.

> I like the idea of creating non-
contiguous enumerated sub-types.

Static predicates do that fine. Just don't
use them with obsolete data structures. :-)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 13 Mar 2021 09:04:51 +0100

[Bracketed comments in this post are
from the author. —arm]

> I pretty much agree with Dmitry on this.
[...]

Subtyping is a very difficult problem.
When a new type is created by
constraining [*] this necessarily breaks
things.

Ada 83 was very careful to limit that to
ranges and discriminant values. That
breaks, sure, but the damage is minor and
can be controlled [by the programmer]. In
contrast, an arbitrary constraint [as well as
arbitrary extension] is like a carpet
bombing.

My view, as a programmer, is that
features of type algebra [which subtyping
by constraining is] must be carefully
limited to enable massive language
support in detection of substitutability
issues at *compile* time. Features must
be reasonably safe to use.

From: Matt Borchers
<mattborchers@gmail.com>

Date: Mon, 15 Mar 2021 07:11:23 -0700

So, what I'm taking away from this
discussion is that instantiating a Map is
pretty much the best option when using a
sub-type with a Static_Predicate to map a
parent value to a sub-type.

[...]

It seems like the Ada community is
always chasing higher adoption and better
recognition of the Ada language. If the
community truly wants this, then Ada
needs to be accessible as a general
purpose language with very few surprises.
I evangelize for Ada when I can but I am
of the opinion that language rules like
these only frustrate people when they
create seemingly inconsistent usability.
There may be a good technical reason to
break the behavior, but in this example
and in my opinion, the technical excuse is
not good enough when there is a very
simple solution that the programmer
should not have to implement. My 2
cents.

From: Matt Borchers
<mattborchers@gmail.com>

Date: Mon, 15 Mar 2021 07:16:56 -0700

> Just don't use them with obsolete data
structures. :-)

I can't tell if you are being facetious? If
not, can you give me some reasons on
why you think arrays are obsolete data
structures? To me, they remain one of the
basic building blocks of all programs.

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 15 Mar 2021 10:53:18 -0700

> I can't tell if you are being facetious?
[...]

But they *AREN'T* maps, nor are they
functions... despite the tendency to think
of them as nails for your hammer (Array),
this really isn't the case... and now that

Ada has
Ada.Containers.Indefinite_Ordered_Maps
it really is an obsolete data-structure for
mapping in most cases. (Exceptions exist
for things like finite-state machines and
virtual-machine instruction-sets where
you're working with a uniform/near-
uniform collection and/or things like
embedded.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 16 Mar 2021 01:58:06 -0500

> can you give me some reasons on why
you think arrays are obsolete data
structures?

If you're talking *representation*, then
surely arrays are the root of everything.
But a general purpose programming
language should hide representation
issues as much as possible. For most uses,
how a data structure is implemented is
irrelevant; you want to ask for the
fundamental data.structure that you need
and let the implementation choose the
best implementation to meet your needs.

And an array is not a fundamental data
structure: those are bags and sequences
and maps (and trees and graphs, but those
aren't relevant here). Arrays have features
of all of these, as well as some others --
they're not a fundamental data structure at
all.

Moreover, Ada in particular merges in
additional features that have little to do
with data structures, and end up with a
mixed up mess where one gets surprises
from super-null arrays and arrays whose
lower isn't 'First and holey arrays and
other such nonsense.

For instance, the primary reason that Ada
cannot have holey arrays is because of the
slice (mis)feature, in particular because a
slice can be assigned and (worse) passed
as an in out parameter. If one has holey
arrays, one also would expect to have
holey slices (else the language would be
quite inconsistent). But implementing a
holey slice is problematic. For parameter
passing, pretty much the only way to
implement that would be to provide a
call-back subprogram with every
parameter that knows how to write each
index of the slice. But that would be a
classic distributed overhead -- it would be
incurred for *every* array parameter
since one can always create a holey slice
of an array -- even of a type that is not
itself holey. That would make passing
strings and other arrays *much* more
expensive.

[Example making the point omitted.
—arm]

The point is that holey arrays are a
massive can of worms, and it's impossible
to have a consistent language if
discontiguous subtypes exist. Tucker likes
to say that sometimes language design is

Ada Pract ice 23

Ada User Journal Volume 42, Number 1, March 2021

like a bump under a carpet -- you can
move the bump around, but you can't get
rid of it without ripping out the carpet and
starting over (with a different language
design). This is one of those cases.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 18 Mar 2021 12:15:30 +0200

 [about "sparse" enumeration subtypes
defined by static predicates, and arrays
indexed by such subtypes]

>>> Nevertheless, it still feels like an
unfinished feature as it is now.

>> It is not unfinished. It is irreparably
broken.

> And this does not make for good
advertising for Ada.

Matt, you should be aware that Dmitry
has strong opinions about language and
program design that are not shared by all
Ada users and Ada proponents.

To be sure, Ada is showing some of its
age. Updates of the Ada standards have
made extensive additions to the language,
while taking great pains to remain mostly
upwards compatible, not only in syntax
and semantics but also in wider usability
goals such as remaining competitive for
hard-real-time embedded systems and
safety-critical systems where
implementation overheads and
implementation complexity must be held
down. This inevitably means that new
high-level features such as static
predicates cannot always be fully
orthogonal to other features of the
language.

There have been suggestions and
discussion here of an "Ada successor"
language, and Dmitry in particular thinks
that the type system should be completely
overhauled for such a new language.
Unfortunately there seems to be no
demand from any large potential user
group for such a language, or if there is
demand, it is being satisfied mostly by
new "grass-roots" languages such as Rust.

I have some hope that the swiftly growing
scope and impact of malware and SW
security breaches will prompt a major
effort to develop computer systems,
including programming languages, which
are provably secure and incorruptible, and
perhaps that will be an opportunity for an
Ada successor language.

From: Jeffrey R. Carter
Date: Fri, 19 Mar 2021 01:49:39 +0100

> I wish I had the transcript from the Ada
Group's discussions on this topic. It
must have been a good one. Do they
keep transcripts of their discussions? If
so, does anybody know where to find
them?

http://www.ada-auth.org/arg.html

You probably want ai05-0153-1 at

http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ai05s/ai05-0153-
1.txt?rev=1.15&raw=N

From: Matt Borchers
<mattborchers@gmail.com>

Date: Mon, 22 Mar 2021 18:07:21 -0700

Thanks Jeff. This is going to take a while
to get through and it is heavy reading. I
had no idea this subject has been
fermenting for 12+ years. However, in
only the tiny portion I've read so far it
seems a few commenters of high repute
share some of my sentiments -- which
only makes me 12 years late to the party
of the losing side. :)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 22 Mar 2021 22:43:48 -0500

To get as complete as possible a picture of
how some Ada feature came to be, you
need to not only read the AI and
especially its e-mail, but also the meeting
minutes associated with that AI. We now
have an index for that purpose on Ada-
Auth.org, the Ada 2005 AI version is
found at:

http://www.ada-auth.org/
AI05-VOTING.HTML

Unfortunately, for Ada 2012, a lot of
design occurred in unofficial phone
meetings. No minutes were produced for
those meetings, and so far as I know the
only existing material is the notes I have
kept on my hard disk. If I ever get some
time, I want to get a version of those on-
line so this sort of research can work
usefully for Ada 2012. (Ideally in the
format that the indexing tool can pick up
and put into those indexes.)

Note that all three AI05-0153-x versions
were involved, so it is useful to read all of
them. (There also was some cross-AI
discussions, which is probably beyond
anyone's ability to find, at least for fun.)

Ada Style and "Early
Return"

From: John Mccabe
<john@mccabe.org.uk>

Subject: Ada and "early return" -
opinion/practice question

Date: Mon, 15 Mar 2021 09:46:37 -0700
Newsgroups: comp.lang.ada

I hope this isn't a FAQ (it's hard to find
relevant articles) but can someone guide
me on the 'normal' treatment in Ada style
of what appears to be referred to (by
C/C++ programmers) as early-return.

For example, you have a C++ function
(pseudo code sort of thing):

<sometype> fn(<some parameters>)

{

 if (<some undesirable condition 1>)

 {

 return <something bad happened 1>;

 }

 if (<some undesirable condition 2>)

 {

 return <something bad 2>;

 }

 if (<some undesirable condition 3>)

 {

 return <something bad 3>;

 }

 // Only get here if everything's good...

 <do some real stuff>

 return <something good>;

}

I've probably mentioned this before, but
it's a long time since I used Ada in anger
and I don't remember seeing stuff like that
when I did use Ada a lot; does anyone
write stuff like that in Ada?

When I first learnt to program properly it
was using Pascal with, as I remember it,
only one return from a function being
allowed, so over the years I've mostly
looked at positive conditions and indented
stuff, pulling the stuff in the middle out
into its own procedure or function where
appropriate, but you see so many people
defending this style in C/C++ that I
wonder whether it really is defensible?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 15 Mar 2021 18:02:09 +0100

I see nothing wrong with it. [...]

P.S. The old mantra of structured
programming was one entry, one exit.
This is why some argued for single return
while storing result code in a variable.
Clearly adding a result variable would
reduce readability rather than improve it.

P.P.S. One could debate exception vs.
return code, but this is another story for
another day.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 15 Mar 2021 10:31:27 -0700

Sometimes I write code that way,
sometimes I have a Result variable that
gets set along the way. The latter mostly
when Result is a container of some sort,
and parts of it get set at different points.

I would tend to use an exception for
"something bad", but that depends on the
overall design.

There are various maintenance issues on
both sides; the summary is "editing
existing code is a pain" :(.

From: Jeffrey R. Carter
Date: Mon, 15 Mar 2021 19:37:02 +0100

[In reply to the original post. —arm]

Other than the use of exceptions rather
than a return code, this is a standard idiom
in Ada. It's much easier to read and
understand than the Pascal approach, just
as a "loop and a half" is much clearer with
an exit than the Pascal approach.

24 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

I seem to recall Robert Dewar arguing for
this style on here many years ago.

From: John Mccabe
<john@mccabe.org.uk>

Date: Mon, 15 Mar 2021 11:54:01 -0700

> I seem to recall Robert Dewar arguing
for this style on here many years ago.

From what I remember of Robert (RIP), I
suspect he probably argued against it at
some point as well, depending on who he
was arguing with :-)

Elaboration Code,
Aggregates

From: Simon Wright
<simon@pushface.org>

Subject: Elaboration code, aggregates
Date: Sun, 28 Mar 2021 20:41:25 +0100
Newsgroups: comp.lang.ada

In June 2020, Luke A. Guest was having
trouble with getting the compiler to place
constant data into the data section without
elaboration code.

https://groups.google.com/g/
comp.lang.ada/c/
B2NA-qjCJuM/m/4ykywZWZAgAJ

Can be found as “Putting Data in the .data
Section”, in AUJ 41-2, June 2020. —arm]

During preliminary work for FSF GCC
11, I found that this ARM interrupt vector
(which used to compile happily without
needing elaboration code) no longer
would:

https://github.com/simonjwright/
cortex-gnat-rts/blob/master/
stm32f4/adainclude/startup.adb#L231

[Example removed as it is equivalent to
the one following. —arm]

and Arduino Due clock startup didn't:

https://github.com/simonjwright/
cortex-gnat-rts/blob/master/
arduino-due/adainclude/
startup-set_up_clock.adb#L48

PMC_Periph.CKGR_MOR :=

(KEY => 16#37#,

 MOSCXTEN => 1, -- main crystal

 -- oscillator enable

 MOSCRCEN => 1, -- main on-chip rc osc.

 -- enable

 MOSCXTST => 8, -- startup time

 others => <>);

On investigating, it turns out that FSF
GCC 11 **AND** GNAT CE 2020 have
lost the ability to assign aggregates as a
whole; instead, they assign the record
components one-by-one.

The reason for the Arduino Due failure is
that the PMC hardware requires that each
write to the CKGR_MOR register contain
that value of KEY! so the sequence is

read the register (KEY is always returned
as 0)

overwrite the KEY field
write the register back
read the register, KEY is 0
overwrite the MOSCXTEN field
write the register back, KEY is 0 so
inoperative
etc (including the 'others => <>'
components).

Bug report raised:

https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=99802

From: Andreas Zeurcher
<zuercher_andreas@outlook.com>

Date: Mon, 29 Mar 2021 11:49:06 -0700

Turn-around time from submission to
general-availability of a released fix can
be quite long in FSF GNAT or
Community Edition. (Paid-support for
GNAT Pro at AdaCore can be more
prompt, I hear.)

From: Simon Wright
<simon@pushface.org>

Date: Mon, 29 Mar 2021 20:03:42 +0100

Maybe, but this is accepted as a
regression and Eric is on it! :impressed:

Paid support can be very prompt. We
were at the stage where our Systems
Engineer couldn't accept a compiler
change, so wavefronts wouldn't have
helped, but workrounds were indeed
prompt.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 30 Mar 2021 08:08:34 +0100

Now fixed on GCC mainline.

Cross-compiler for
Embedded Linux on
ARMv7?

From: John Mccabe
<john@nospam.mccabe.org.uk>

Subject: Are there any cross-compiler for
Embedded Linux on ARMv7?

Date: Mon, 29 Mar 2021 17:16:42 -0000
Newsgroups: comp.lang.ada

Kind of as it says in the subject; I'm aware
there's a GNAT Pro release that seems to
target Embedded Linux on ARM, but are
there any others?

I'm assuming the GNAT offering covers
ARMv7 on the basis their bare-metal one
packaged in the Community Edition does,
but maybe it doesn't!

I saw some information on a PTC
ApexAda one but what I read gives the
impression it may be ARMv8 only,
maybe not though!

If anyone knows more about this, any info
they can give me would be very much
appreciated; at this point I'm particularly
interested in ARM A9 support, and at
least Ada 2005, preferably 2012.

Also, does anyone know what AdaCore's
like (or any other vendors, for that matter)
if you ask for pricing/evaluation? We've
been using C++ at work for ages, but I'm
quite interested in seeing whether it would
be at all feasible to move, at least partly,
to Ada because C++ gets on my nerves :-)
Sadly though, as we're busy and it would
be an "on the side" evaluation, I've not got
much time to 'play' with it, so the duration
would be pretty much be open-ended, and
I could do without people hassling me
every few weeks to buy their products
when the chances are I've managed about
10 minutes with it between calls...

Hope you don't mind me asking here; I
know there are some great guys from
various vendors here, so...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 29 Mar 2021 20:26:47 +0200

We are using GNAT Pro cross compiler
with Yokto and Debian, though I presume
it will work with any distribution.

You need no evaluation. Simply install
Debian, Ubuntu or Fedora on a reasonable
ARM board 2GB or more. Use the native
GNAT FSF compiler there to build your
executable. Transfer it to the target board.
Enjoy.

Once you are ready, go and buy GNAT
Pro.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Mon, 29 Mar 2021 21:06:32 -0000

Thanks for that info Dmitry. We're using
Petalinux on custom hardware with a
Xilinx Zynq-7000 (dual-core ARM A9),
so it would be nice to run it on the real
thing to work out how we'd deal with
some of the FPGA interfaces and so on, if
we were to purchase.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 29 Mar 2021 23:40:46 +0200

If you plan to run Linux there I see no
reason why you could not use the native
ARM compiler for evaluation. A cross
compiler would change little or nothing in
that case.

We are using a cross compiler for our
custom target boards because it can be
hosted on a powerful x86 machine instead
of a sluggish ARM which also tends to
crash under load or freeze when it goes
into the swap.

Otherwise, nothing changes. We can
perfectly well compile everything using
GNAT FSF on an ODROID-XU4. It
would only take a week instead of a day
to build…

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 30 Mar 2021 20:12:36 +0200

Ada Pract ice 25

Ada User Journal Volume 42, Number 1, March 2021

> The Zynq-7000 we're using is a dual-
core ARM A9 (as I mentioned) running
at between 866MHz. As far as I can see
the ODROID XU4 has quad-A15s at
2GHz + quad-A7s at 1.4GHz, with
2GB RAM. So, if you imagine the
"week instead of a day" thing, then take
into account the dual-core vs 8-core,
866MHz vs 2.0GHz/1.4GHz, 1.0GB vs
2.0GB, and RAM filesystem (ok,
admittedly we have got 4GB flash on
there, but...), perhaps a native ARM
compiler isn't going to be a very
effective evaluation tool :-)

One of our target boards is only 512M
RAM single core.

The trick is to build on ODROID, but to
run on the target.

Our code basis is huge, which is why it
takes so long to build. For a sizable
project ODROID is OK. When I compile
my private stuff it takes 12+ hours to
recompile everything on a Raspberry Pi 3,
and only 3-4 on an ODROID.

The main problem is to figure out the
gprbuild -j<n> switch. -j0 will likely run
you into the swap with 8 kernels and
many generics. ARM Linux becomes
unstable when swapping.

If you invest in writing a good mock for
your hardware, you could develop and
test mostly on an x86. Only the
integration tests would require building
on the ODROID and running on the
target.

From: Andreas Zeurcher
<zuercher_andreas@outlook.com>

Date: Mon, 29 Mar 2021 11:46:20 -0700

> Also, does anyone know what
AdaCore's like (or any other vendors,
for that matter) if you ask for
pricing/evaluation?

The sales staff is pleasant to deal with, but
you might get sticker shock at the prices
that they charge for non-GPLed supported
products. As far as evaluation, I think
that you are looking at it with the GPLed
Community Edition, that is something
that you should ask the salesman to see
whether there is in fact any evaluation
period for specific targets that are non-
GPLed-only, not part of Community
Edition.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Mon, 29 Mar 2021 21:14:30 -0000

> The sales staff is pleasant to deal with,

That's good to know.

> but you might get sticker shock at the
prices that they charge for non-GPLed
supported products.

Possibly. It's been a long time since I
knew the sort of prices these things go
for, but it was in the thousands of dollars

range then. It might still shock me though
:-)

[...]

As far as evaluation goes, they do have a
form that mentions it but it's the duration
thing that would be an issue. I've tried to
cultivate an interest in Ada amongst my
colleagues (actually, my line manager's
mostly done FPGA stuff using VHDL so
some of the bits I've shown him have been
'familiar'), but we don't have anyone free
to concentrate on evaluating something
exclusively.

Targeting the 8051 with Ada

From: Mockturtle
<framefritti@gmail.com>

Subject: Adapting an Ada compiler to
generate 8051 code (Again?! ;-)

Date: Tue, 30 Mar 2021 02:04:41 -0700
Newsgroups: comp.lang.ada

for a project related to a possible start-up,
we need to program a Flash controller that
has a 8051 core (as many other
controllers). I would like using Ada for
that, but I discovered (also by browsing
c.l.a.) that there is no Ada compiler
producing 8051 code.

I am considering involving some
university colleagues of mine to start a
project aimed at having an Ada compiler
for 8051, possibly leveraging some
existing compiler. According to some
posts read here, I understand that it is not
totally impossible, if we are willing to
accept some limitations.

I did not study (yet) in detail the 8051, but
as I understand it is a small 8-bit
processor, with flash memory for code
and data and a small amount of RAM
onboard (but maybe this depends on the
specific controller). My knowledge about
compilers is superficial, but I guess we
should give up to some Ada features like

[List of runtime-based Ada features
omitted. —arm]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 30 Mar 2021 11:56:34 +0200

I think the efforts would be better
invested in recycling all existing 8051
cores. Make the planet greener! (:-))

Honestly, there is little useful one could
do in 64K. Remember what one famous
thinker and epidemiologist said about
640K? (640K is 10 times more than 64K)

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Tue, 30 Mar 2021 13:40:51 +0300

> [Original post. —arm]

I advise against that approach. The 8051
architecture is far too limited and quirky
(and ancient) to waste such a major effort
on.

However, you might have a look at the
HAC compiler. As I understand it, it
generates code for a virtual machine, and
it might be easier to implement that
virtual machine in 8051 code than it
would be to generate 8051 code from the
compiler.

[...]

I think you have two options:

1. Use HAC and implement the HAC VM
in 8051 code, either in C or in assembler.

2. Pay for the AdaCore Ada-to-C
compiler and use an 8051 C compiler as a
back end.

[...]

There are some free 8051 C compilers
(for example SDCC, Small Device C
Compiler), but most professional
programming for the 8051 uses
commercial compilers such as the
ARM/Keil compiler or the IAR compiler.
You could try SDCC first, but if you get
problems with e.g. using too much
internal RAM, the commercial compilers
might help.

I have often wished that there would be
Ada compilers for more microcontrollers,
but I understand why there aren't. An
Ada-to-C compiler seems the most
promising route.

From: Gautier
<gautier_niouzes@hotmail.com>

Date: Tue, 30 Mar 2021 04:24:48 -0700

> Honestly, there is little useful one could
do in 64K.

Well it depends...

On one hand there will never be enough
memory (and cores) for the famous
thinker's operating system just to run idle.

On the other hand you had some decades
ago computers with everything stuffed in
64KB. For instance: a 16KB ROM with
an OS, a BASIC interpreter, I/O, floating-
point computations, etc.; 48KB RAM
including the video memory. You had
cool games and even a multi-window
word processor on such a machine...

From: Mockturtle
<framefritti@gmail.com>

Date: Tue, 30 Mar 2021 04:27:59 -0700

> Honestly, there is little useful one could
do in 64K.

Well, the old ZX Spectrum with its 48K
RAM extension (I and my brother said
when we extended the RAM: "What are
we going to do with all this memory?" :-D
) used just 64K and you could do nice
stuff. The first release of Turbo Pascal
(editor and compiler integrated) was a
.COM, limited by design to 64K.

I agree that it is easier to work without
this limitation, but also the job of a flash
microcontroller is not very complex.

26 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 30 Mar 2021 14:01:34 +0200

> Well, old ZX Spectrum with its 48K
RAM [...]

I remember the glorious time when 1K
weighted 1kg (:-))

When I started, I and my pal worked
together on a 256K machine in two time
sharing terminal sessions. That was RSX-
11M. These days almost every executable
begins at 5-10M.

From: Paul Rubin
Date: Tue, 30 Mar 2021 12:16:46 -0700

> for a project related to a possible start-
up, we need to program a Flash
controller that has a 8051 core (as many
other controllers).

Can you possibly avoid that? There are
many microcontrollers that GCC has back
ends for, so you could use GNAT. E.g. I
think GNAT for the AVR is a thing. Of
course even at the low end, ARM is
everywhere now, and that is even easier.

Besides the approaches other people have
mentioned, I don't know if there are any
really large obstacles to targeting GCC to
the 8051, or to some kind of VM that the
8051 can simulate, since you don't care
about performance. If you do care about
performance, you won't be using an 8051
in the first place ;-).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 31 Mar 2021 18:06:42 -0500

> Honestly, there is little useful one could
do in 64K.

Gee, the early versions of Janus/Ada were
hosted in 48K. Apparently, a compiler
is nothing useful??? ;-)

We studied this problem back in the day
(30+ years ago) The problem is the 8051
architecture, which doesn't have a usable
stack or the instructions to make one. You
would have to avoid recursion and any
long chain of calls. Not sure whether the
result would program much like Ada, it
would be much closer to Fortran 66.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 31 Mar 2021 18:14:44 -0500

> I have often wished that there would be
Ada compilers for more
microcontrollers, but I understand why
there aren't. An Ada-to-C compiler
seems the most promising route.

Send $$$. ;-) This was a project that was
ideally suited for the Janus/Ada compiler
suite, but we never were able to find a
customer for it. The problem is always
that the first customer has to pay a
substantial part of the development; later
customers don't have to pay that freight.
(Back in the "waiver" days we considered
doing it for the "fun" of making DoD-
types have to find better excuses to avoid
Ada than a compiler not existing for it,
but the likely ROI wasn't there to
convince the angel investors to go along
with the idea.)

