

Editor in Chief
António Casimiro University of Lisbon, Portugal

AUJ_Editor@Ada-Europe.org

Ada-Europe Board
Tullio Vardanega (President) Italy
University of Padua

Dirk Craeynest (Vice-President) Belgium
Ada-Belgium & KU Leuven

Dene Brown (General Secretary) United Kingdom
SysAda Limited

Ahlan Marriott (Treasurer) Switzerland
White Elephant GmbH

Luís Miguel Pinho (Ada User Journal) Portugal
Polytechnic Institute of Porto

António Casimiro (Ada User Journal) Portugal
University of Lisbon

Ada-Europe General Secretary
Dene Brown Tel: +44 2891 520 560
SysAda Limited Email: Secretary@Ada-Europe.org
Signal Business Center URL: www.ada-europe.org
2 Innotec Drive
BT19 7PD Bangor
Northern Ireland, UK

Information on Subscriptions and Advertisements
Ada User Journal (ISSN 1381-6551) is published in one volume of four issues. The Journal is provided free of
charge to members of Ada-Europe. Library subscription details can be obtained direct from the Ada-Europe General
Secretary (contact details above). Claims for missing issues will be honoured free of charge, if made within three
months of the publication date for the issues. Mail order, subscription information and enquiries to the Ada-Europe
General Secretary.

For details of advertisement rates please contact the Ada-Europe General Secretary (contact details above).

Ada User Journal Editorial Board
Luís Miguel Pinho Polytechnic Institute of Porto, Portugal
Associate Editor lmp@isep.ipp.pt
Jorge Real Universitat Politècnica de València, Spain
Deputy Editor jorge@disca.upv.es
Patricia López Martínez Universidad de Cantabria, Spain
Assistant Editor lopezpa@unican.es
Kristoffer N. Gregertsen SINTEF, Norway
Assistant Editor kristoffer.gregertsen@sintef.no
Dirk Craeynest KU Leuven, Belgium
Events Editor Dirk.Craeynest@cs.kuleuven.be
Alejandro R. Mosteo Centro Universitario de la Defensa, Zaragoza, Spain
News Editor amosteo@unizar.es

Ada User Journal Volume 42, Number 1, March 2021

ADA
USER
JOURNAL

Volume 42

Number 1

March 2021

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 28

Forthcoming Events 36

Proceedings of the "HILT 2020 Workshop on Safe Languages and Technologies for Structured
and Efficient Parallel and Distributed/Cloud Computing"

 M. Klemm, E. Quiñones, T. Taft, D. Ziegenbein, S. Royuela
“The OpenMP API for High Integrity Systems: Moving Responsibility from Users to Vendors” 39

 R. Wai
“XERIS/APEX: Hyperscaling with Ada” 43

 B. Kleinke
“Challenges and Lessons Learned Introducing an Evolving Open Source Technology into an
Established Legacy Ada and C++ Program” 48

 K. Chard, Y. Babuji, A. Woodard, B. Clifford, Z. Li, M. Hategan, I. Foster, M. Wilde, D. S. Katz
“Extended Abstract: Productive Parallel Programming with Parsl” 51

 T. Taft, K. Chard, J. Munns, R. Wai
“Language Support for Parallel and Distributed Computing” 55

Puzzle

 J. Barnes
“Cubes and Pyramids” 59

Ada-Europe Associate Members (National Ada Organizations) 60

Ada-Europe Sponsors Inside Back Cover

2

Volume 42, Number 1, March 2021 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and December.
Copy date is the last day of the month of
publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics, such
as reliable software technologies, are
welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the field
of software engineering.

Further details on our approach to these
are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will be
relayed to the authors at the discretion
of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups to
find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be of
interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it a

wider audience. This includes papers
published in North America that are not
easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These may
represent the views either of individuals
or of organisations. Such articles can be
of any length – inclusion is at the
discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report on
events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal is
at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to print
reviews submitted from elsewhere at
the discretion of the Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be rapid.
Currently, accepted papers submitted
electronically are typically published 3-
6 months after submission. Items of
topical interest will normally appear in
the next edition. There is no limitation
on the length of papers, though a paper
longer than 10,000 words would be
regarded as exceptional.

 3

Ada User Journal Volume 42, Number 1, March 2021

Editorial

I would like to start this editorial by wishing all a great new year of 2021, which we all hope to be at least better than 2020,
allowing us to regain the possibility of moving around freely and somehow regain most of what has been lost due to the COVID-
19 pandemic situation.

In this issue we bring you the remaining papers that constitute the Proceedings of the HILT 2020 Workshop on Safe Languages
and Technologies for Structured and Efficient Parallel and Distributed/Cloud Computing. I would like to note that these
proceedings have also been published in the sister publication ACM Ada Letters (in its Volume 40, Number 2), with which we
have a running agreement for sharing contents.

The first paper presents the contributions of several authors to a panel entitled “The OpenMP API for High Integrity Systems:
Moving Responsibility from Users to Vendors”. The panel was moderated by Sara Royuela, post-doctoral researcher at the
Barcelona Supercomputing Center, and the contributors were Michael Klemm (OpenMP ARB), Eduardo Quiñones (Barcelona
Supercomputing Center), Tucker Taft (AdaCore) and Dirk Ziegenbein (Bosch).

The second paper, by Richard Wai, from ANNEXI-STRAYLINE, presents XERIS/APEX, an Ada Generic Package whose
objective is to “bring Ada’s natural aptitude for modularity and large-scale systems to the nascent microservices architecture
of modern hyperscale applications”.

Then we continue with a paper entitled “Challenges and Lessons Learned Introducing an Evolving Open Source Technology
into an Established Legacy Ada and C++ Program”, by Brian Kleinke, who is Software Architect at Leidos, working on En
Route Air Modernization (ERAM) Program. The open source technology that is referred in the paper title is the Fuse
framework, which was introduced into ERAM.

We then present a paper on Parsl, which is a parallel programming library for Python that aims to make it easy to specify
parallelism in programs. The paper is authored by Kyle Chard and several of his colleagues from the University of Chicago,
Mike Wilde from ParallelWorks, and Daniel S. Katz from the University of Illinois at Urbana-Champaign.

Finally, the last paper provides the contributions of several authors to another panel, in this case on “Language Support for
Parallel and Distributed Computing”. The panel moderator was Tucker Taft, from AdaCore, and the panelists were Kyle Chard
(U. Chicago), James Munns (Ferrous Systems), and Richard Wai (ANNEXI-STRAYLINE).

In this issue we also include, as usual, the Quarterly News Digest, prepared by Alejandro R. Mosteo, and the Calendar section,
prepared by Dirk Craeynest. The issue closes with the solution for the coloured cubes puzzle from last issue, and a new puzzle
prepared by John Barnes, about square pyramids. If you don’t know what a square pyramid is, then have fun finding the answer
and solving the puzzle.

 Antonio Casimiro
Lisboa

March 2021
 Email: AUJ_Editor@Ada-Europe.org

4

Volume 42, Number 1, March 2021 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 4
Ada-related Events 4
Ada-related Resources 7
Ada-related Tools 8
Ada Practice 13

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor
Dear Reader,

The newsgroup has been very active in
this period, so I must apologize for any
threads with ellipsis in the part that you
were finding most engaging, or if some of
your answers are missing. On the bright
side, c.l.a. is livelier than ever in recent
memory, despite claims of NNTP being a
thing of the past.

I begin my personal highlights with
“Quick Inverse Square Root” [1] which,
with the prompt of an Ada
implementation, explores the fascinating
origins of a numerical approximation
algorithm found in an old C game engine
and a key mysterious magic number. One
contributor even reported a short thesis
about it, which is also well worth the read
if you find the topic interesting.

The newsgroup is not strange to strong
opinions, and in this instance Randy
Brukardt vehemently argued against raw
arrays [2, 3] and interface usefulness [4],
which led to involved debates on the
appropriate levels of abstraction for
certain data structures, orthogonality
problems, and more. Coming from a
compiler maker and ARG member, these
opinions sure cannot leave one
indifferent.

Finally, older (but, according to the
thread, not simpler) times were revisited
in a discussion about the possibility of
adapting an Ada compiler for the 8051
chip [5]. Interesting points were made

about its complexity and how useful can
be a system with as little RAM as 64K.

Sincerely,
Alejandro R. Mosteo.

[1] “Quick Inverse Square Root”, in Ada
Practice.

[2] “Lower Bounds of Strings”, in Ada
Practice.

[3] “Array from Static Predicate on
Enumerated Type”, in Ada Practice

[4] “Simple Example on Interfaces”, in
Ada Practice.

[5] “Targeting the 8051 with Ada”, in
Ada Practice.

Ada-related Events

Ada at Online FOSDEM
2021 - 6-7 February 2021

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada at online FOSDEM 2021 - 6-7
February 2021

Date: Fri, 5 Feb 2021 06:58:50 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Hello everyone,

Some of you might be interested in the
information below...

Dirk.Craeynest

Dirk.Craeynest@cs.kuleuven.be
(for Ada-Belgium/Ada-Europe/
SIGAda/WG9)

Ada at online FOSDEM 2021 -
6-7 February 2021

#AdaFOSDEM #AdaProgramming
#FOSDEM2020

http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/21/
210206-fosdem.html

"FOSDEM is a free event for software
developers to meet, share ideas and
collaborate. Every year, thousands of
developers of free and open source
software from all over the world gather at
the event in Brussels. In 2021, they will
gather online. No registration necessary."
{quoted from https://fosdem.org/2021}

Although, as announced previously, there
is no Ada Developer Room at FOSDEM

2021, we are pleased there will be some
Ada-related content after all.

In short:

* AdaCore announced on Twitter: "Like
previous years, we will participate in
FOSDEM on Feb 6-7, 2021. AdaCore
engineers will give two talks in the
Safety and Open Source devroom!
Check out the full blog post for more
details.

* Egil Høvik pointed out on LinkedIn:
"Someone did Advent of Code with a
new language each day, one of which is
Ada."

* There's a talk on Ada Lovelace and the
first computer program.

The information in this message is also
available at the URL above.

The dedicated FOSDEM pages mentioned
there include links to the live stream and
chat rooms for each presentation at the
time of the event. Also useful is the link
to the latest FOSDEM 2021 news,
including info on attending a talk at
FOSDEM 2021.

More about the presentations:

* "Adding contracts to the GCC GNAT
Ada standard libraries" - to strengthen
analysis provided by formal verification
tools

 by Joffrey Huguet

 Saturday 6 February 2021 11:00-11:30

 Safety and Open Source devroom

 The guarantees provided by SPARK, an
open-source formal proof tool for Ada,
and its analysis are only as strong as the
properties that were initially specified.
In particular, use of third-party libraries
or the Ada standard libraries may
weaken the analysis, if the relevant
properties of the library API are not
specified. We progressively added
contracts to some of the GCC GNAT
Ada standard libraries to enable users to
prove additional properties when using
them, thus increasing the safety of their
programs. In this talk, I will present the
different levels of insurance those
contracts can provide, from preventing
some run-time errors to occur, to
describing entirely their action.

* "Proving heap-manipulating programs
with SPARK" - The SPARK open-
source proof tool for Ada now supports
verifying pointer-based algorithms

Ada-related Events 5

Ada User Journal Volume 42, Number 1, March 2021

thanks to an ownership policy inspired
by Rust

 by Claire Dross

 Saturday 6 February 2021 13:30-14:30

 Safety and Open Source devroom

 SPARK is an open-source tool for
formal verification of the Ada language.
Last year, support for pointers, aka
access types, was added to SPARK. It
works by enforcing an ownership policy
somewhat similar to the one used in
Rust. It ensures in particular that there is
only one owner of a given data at all
time, which can be used to modify it.
One of the most complex parts for
verification is the notion of borrowing. It
allows to transfer the ownership of a part
of a data-structure, but only for a limited
time. Afterward ownership returns to the
initial owner. In this talk, I will explain
how this can be achieved and, in
particular, how we can describe in the
specification the relation between the
borrower and the borrowed object at all
times.

* "25 languages in 25 days"

 by Peter Eisentraut

 Sunday 7 February 2021 13:00-13:20

 Lightning Talks

 I did the Advent of Code 2020 with a
different programming language every
day, so instead of having to visit 25
developer rooms, you can just listen to
me for my lightning summary.

* "Ada Lovelace and The Very First
Computer Program"

 by Steven Goodwin

 Sunday 7 February 2021 17:00-17:40

 Retrocomputing devroom

 We all know that Ada Lovelace is
credited as the first computer
programmer. But what did she write?
What did it do? And how does it work?
We look at the program, its function,
and break it down line-by-line so you
can understand the origins of our entire
industry. After all, it doesn't get any
more retro than this! In this talk,
developer, geek, and digital
archaeologist, Steven Goodwin, breaks
down the very first program ever written
to explain what it does and how it
works. He goes on to simulate it within a
JavaScript version of Babbage's
analytical engine, rewriting it piece-by-
piece until it looks like modern code,
and thereby demonstrate what features
of current languages we now all take for
granted. He finishes up with a discussion
on the controversy surrounding her
involvement in computing, aiming to
answer the question once and for all -
"Was she really the first programmer?"

 (V20210204.1)

CfC Ada-Europe 2021
Virtual Conference -
31 Mar Deadline!

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC Ada-Europe 2021 Virtual
Conference - 31 Mar deadline!

Date: Sun, 7 Feb 2021 18:04:14 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

*** UPDATED Call for Contributions -
VIRTUAL EVENT ***

25th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2021)

7-11 June 2021, online

www.ada-europe.org/conference2021

Organized by University of Cantabria and
Ada-Europe in cooperation with ACM
SIGAda, SIGPLAN, SIGBED and the

Ada Resource Association (ARA)

*** Extended DEADLINE
31 MARCH 2021 AoE ***

#AEiC2021 ##AdaEurope
AdaProgramming

News

- AEiC 2021 will be a virtual-only event.

- Deadline for Industrial Presentation
outlines and Tutorial proposals is
extended to 31 March 2021.

General Information

The 25 Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2021 aka Ada-
Europe 2021), initially scheduled to take
place in Santander, Spain, will be held
online from the 7th to the 11th of June,
2021. The conference schedule includes a
technical program, vendor exhibition and
parallel tutorials and workshops.

Despite the COVID-19 situation which
led to the cancellation of the previous
edition of the conference, there is a firm
commitment to celebrate the 2021 edition
in any case. The organizing committee
estimates that the conditions for a safe in-
person conference will not be met in June
2021. Consequently, the AEiC 2021
Conference will be a virtual-only event.

Schedule

14 January 2021: Submission of journal-
track papers, and workshop proposals
(CLOSED)

19 March 2021 Notification of acceptance
for journal-track paper presentations and
workshops 31 March 2021 Submission of
Work-in-Progress (WiP) papers, industrial
presentation outlines, and tutorial and
invited presentation proposals

30 April 2021 Notification of acceptance
for WiP papers, industrial presentation
outlines, and tutorial and invited
presentations

Topics

The conference is a leading international
forum for providers, practitioners and
researchers in reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
challenging variety of application
domains. The program will have
keynotes, Q&A sessions and discussions,
and virtual social events. Participants
include practitioners and researchers from
industry, academia and government
organizations active in the promotion and
development of reliable software
technologies.

The topics of interest for the conference
include but are not limited to:

- Design and Implementation of Real-
Time and Embedded Systems: Real-
Time Scheduling, Design Methods and
Techniques, Architecture Modelling,
HW/SW Co-Design, Reliability and
Performance;

- Design and Implementation of Mixed-
Criticality Systems: Scheduling
Methods, Mixed-Criticality
Architectures, Design Methods,
Analysis Methods;

- Theory and Practice of High-Integrity
Systems: Medium to Large-Scale
Distribution, Fault Tolerance, Security,
Reliability, Trust and Safety, Languages
Vulnerabilities;

- Software Architectures for Reliable
Systems: Design Patterns, Frameworks,
Architecture-Centered Development,
Component-based Design and
Development;

- Methods and Techniques for Quality
Software Development and
Maintenance: Requirements
Engineering, Model-driven Architecture
and Engineering, Formal Methods, Re-
engineering and Reverse Engineering,
Reuse, Software Management Issues,
Compilers, Libraries, Support Tools;

- Ada Language and Technologies:
Compilation Issues, Runtimes,
Ravenscar, Profiles, Distributed
Systems, SPARK;

- Mainstream and Emerging Applications
with Reliability Requirements:
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation,
Cloud Environments, Smart Energy
Systems, Serious Games, etc;

- Achieving and Assuring Safety in
Machine Learning Systems;

6 Ada-related Events

Volume 42, Number 1, March 2021 Ada User Journal

- Experience Reports in Reliable System
Development: Case Studies and
Comparative Assessments, Management
Approaches, Qualitative and
Quantitative Metrics;

- Experiences with Ada: Reviews of the
Ada 2012 language features,
implementation and use issues,
positioning in the market and in the
software engineering curriculum,
lessons learned on Ada Education and
Training Activities with bearing on any
of the conference topics.

Call for Journal-Track Papers

The journal-track papers submitted to the
conference are full-length papers that
must describe mature research work on
the conference topics. They must be
original and shall undergo anonymous
peer review.

Accepted journal-track papers will get a
presentation slot within a technical
session of the conference and they will be
published in an open-access special issue
of the Journal of Systems Architecture
(Q2 in the JCR and SJR ranks) with no
additional costs to authors. The
corresponding authors shall submit their
work by 14 January 2021 via the Special
Issue web page:
https://www.journals.elsevier.com/
journal-of-systems-architecture/
call-for-papers/special-issue-on-reliable-
software-technologies-aeic2021.

Submitted papers must follow the
guidelines provided in the "Guide-for-
Authors" of the JSA
(https://www.elsevier.com/journals/
journal-of-systems-architecture/
1383-7621/guide-for-authors). In
particular, JSA does not impose any
restriction on the format or extension of
the submissions.

Call for WiP-Track Papers

The Work-in-Progress papers (WiP-track)
are short (4-page) papers describing
evolving and early-stage ideas or new
research directions. They must be original
and shall undergo anonymous peer
review. The corresponding authors shall
submit their work by 31 March 2021, via
https://easychair.org/conferences/?conf=a
eic2021, strictly in PDF and following the
Ada User Journal style (http://www.ada-
europe.org/auj/).

Authors of accepted WiP-track papers
will get a presentation slot within a
regular technical session of the
conference and will also be requested to
present a poster. The papers will be
published in the Ada User Journal as part
of the proceedings of the Conference. The
conference is listed in the principal
citation databases, including DBLP,
Scopus, Web of Science, and Google
Scholar. The Ada User Journal is indexed

by Scopus and by EBSCOhost in the
Academic Search Ultimate database.

Call for Industrial Presentations

The conference seeks industrial
presentations that deliver insightful
information value but may not sustain the
strictness of the review process required
for regular papers. The authors of
industrial presentations shall submit their
proposals, in the form of a short (one or
two pages) abstract, by 31 March 2021,
via https://easychair.org/conferences/?
conf=aeic2021, strictly in PDF and
following the Ada User Journal style
(http://www.ada-europe.org/auj/).

The Industrial Committee will review the
submissions anonymously and make
recommendations for acceptance. The
abstract of the accepted contributions will
be included in the conference booklet, and
authors will get a presentation slot within
a regular technical session of the
conference.

These authors will also be invited to
expand their contributions into articles for
publication in the Ada User Journal, as
part of the proceedings of the Industrial
Program of the Conference.

Awards

Ada-Europe will offer an honorary award
for the best presentation. All journal-track
and industrial presentations are eligible.

Call for Invited Presentations

The invited presentations are intended to
allow researchers to present paramount
research results that are relevant to the
conference attendees. There will be no
publication associated to these
presentations, which may include
previously published works, relevant new
tools, methods or techniques. The invited
presentations will be allocated a
presentation slot.

The Program Committee will select
invited presentation proposals that may be
submitted by e-mail to one of the Program
Chairs as a one-page summary of the
proposed presentation, along with the
information and/or links required to show
the relevance of the covered topic.

Call for Educational Tutorials

The conference is seeking tutorials in the
form of educational seminars including
hands-on or practical demonstrations.
Proposed tutorials can be from any part of
the reliable software domain, they may be
purely academic or from an industrial
base making use of tools used in current
software development environments. We
are also interested in contemporary
software topics, such as IoT and artificial
intelligence and their application to
reliability and safety.

Tutorial proposals shall include a title, an
abstract, a description of the topic, an

outline of the presentation, the proposed
duration (half day or full day), and the
intended level of the tutorial
(introductory, intermediate, or advanced).
All proposals should be submitted by e-
mail to the Educational Tutorial Chair.

The Ada User Journal will offer space for
the publication of summaries of the
accepted tutorials.

Call for Workshops

Workshops on themes that fall within the
conference scope may be proposed.
Proposals may be submitted for half- or
full-day events, to be scheduled at either
end of the conference days. Workshop
proposals should be submitted by e-mail
to the Workshop Chair. The workshop
organizer shall also commit to producing
the proceedings of the event, for
publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the
core days of the main conference. As an
alternative to the traditional physical
exhibition, a virtual room will be
provided for exhibition activities.
Vendors and providers of software
products and services should contact the
Exhibition Chair for information and for
allowing suitable planning of the
exhibition space and time.

Organizing Committee

* Conference Chair

Michael González Harbour, Universidad
de Cantabria, Spain
mgh at unican.es

* Program Chairs

Mario Aldea Rivas, Universidad de
Cantabria, Spain
aldeam at unican.es

J. Javier Gutiérrez, Universidad de
Cantabria, Spain
gutierjj at unican.es

* Work-in-Progress Chair

Kristoffer Nyborg Gregertsen, SINTEF
Digital, Norway
kristoffer.gregertsen at sintef.no

* Tutorial & Workshop Chair

Jorge Garrido Balaguer, Universidad
Politécnica de Madrid, Spain
jorge.garrido at upm.es

* Industrial Chair

Patricia Balbastre Betoret, Universitat
Politècnica de València, Spain
patricia at ai2.upv.es

* Exhibition & Sponsorship Chair

Ahlan Marriott, White Elephant GmbH,
Switzerland
software at white-elephant.ch

Ada-related Resources 7

Ada User Journal Volume 42, Number 1, March 2021

* Publicity Chair

Dirk Craeynest, Ada-Belgium & KU
Leuven, Belgium
dirk.craeynest at cs.kuleuven.be

*** Program Committee

Mario Aldea Rivas, Univ. de Cantabria,
ES

Johann Blieberger, Vienna Univ. of
Technology, AT

Bernd Burgstaller, Yonsei Univ., KR

Daniela Cancila, CEA LIST, FR

António Casimiro, Univ. Lisboa, PT

Xiaotian Dai, University of York, UK

Juan A. de la Puente, Univ. Pol. de
Madrid, ES

Barbara Gallina, Mälardalen Univ., SE

Marisol García Valls, Univ. Politècnica
de València, ES

J. Javier Gutiérrez, Univ. de Cantabria,
ES

Jérôme Hugues, CMU/SEI, USA

Patricia López Martínez, Univ. de
Cantabria, ES

Lucía Lo Bello, DIEEI - Univ. degli Studi
di Catania, ES

Kristina Lundqvist, Malardalen
University, SE

Kristoffer Nyborg Gregertsen, SINTEF
Digital, NO

Laurent Pautet, Telecom ParisTech, FR

Luís Miguel Pinho, CISTER/ISEP, PT

Jorge Real, Univ. Politècnica de València,
ES

José Ruiz, AdaCore, FR

Sergio Sáez, Univ. Politècnica de
València, ES

Frank Singhoff, Univ. de Bretagne
Occidentale, FR

Tucker Taft, AdaCore, USA

Elena Troubitsyna, Åbo Akademi Uni., FI

Santiago Urueña, GMV, ES

Tullio Vardanega, Univ. of Padua, IT

*** Industrial Committee

Patricia Balbastre, Univ. Politècnica de
València, ES

Dirk Craeynest, Ada-Belgium & KU
Leuven, BE

Ahlan Marriott, White Elephant, CH

Maurizio Martignano, Spazio IT, IT

Silvia Mazzini, Intecs, IT

Laurent Rioux, Thales R&T, FR

Jean-Pierre Rosen, Adalog, FR

Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 25th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), and Warsaw,
Poland ('19).

Information on previous editions of the
conference can be found at
http://www.ada-europe.org/confs/ae.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2021 Publicity
Chair (aka Ada-Europe 2021)

Dirk.Craeynest@cs.kuleuven.be

* 25th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2021)

* June 7-11, 2021 * online event *
www.ada-europe.org/conference2021 **

(V3.1)

Ada-related Resources
[Delta counts are from Feb 2nd to Apr
26th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Mon, 26 Apr 2021 22:51:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn:3_119 (+41) members [1]

- Reddit: 6_426 (+1_931) members1 [2]

- Stack Overflow: 2_048 (+75)
 questions [3]

- Freenode: 94 (+9) users [4]

- Gitter: 75 (+9) people [5]

- Telegram: 121 (+13) users [6]

- Twitter: 43 (-17) tweeters [7]

 74 (-21) unique tweets [7]
1Probably caused in part by confusion
with the ADA cryptocurrency.

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/details.php
?room=%23ada&net=freenode

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Mon, 26 Apr 2021 22:51:21 +0100
To: Ada User Journal readership

Rosetta Code: 811 (+50) examples [1]

 38 (+1) developers [2]

GitHub: 76311 (+8) developers [3]

Sourceforge: 273 (-5) projects [4]

Open Hub: 214 (+2) projects [5]

Alire: 156 (+10) crates [6]

Bitbucket: 89 (+1) repositories [7]

Codelabs: 52 (=) repositories [8]

AdaForge: 8 (=) repositories [9]
1This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?q=language
%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Mon, 26 Apr 2021 22:51:21 +0100
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. The IEEE ranking deltas

8 Ada-related Tools

Volume 42, Number 1, March 2021 Ada User Journal

are in regard to the 2019 edition, as it is
updated annually. —arm]

- TIOBE Index: 30 (+2) 0.49%
 (+0.04%) [1]

- PYPL Index: 17 (+2) 0.8% (+0.15%) [2]

- IEEE Spectrum (general): 39 (+4)
Score: 32.8 (+8.0) [3]

- IEEE Spectrum (embedded): 12 (+1)
Score: 32.8 (+8.0) [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2020

Ada-related Tools

HAC v.0.085

From: Gautier
<gautier_niouzes@hotmail.com>

Subject: Ann: HAC v.0.085
Date: Fri, 1 Jan 2021 08:18:15 -0800
Newsgroups: comp.lang.ada

HAC (HAC Ada Compiler) is a small,
quick, open-source Ada compiler,
covering a subset of the Ada language.
HAC is itself fully programmed in Ada.

Web site: http://hacadacompiler.sf.net/

Source repository #1:
https://sf.net/p/hacadacompiler/
code/HEAD/tree/

Source repository #2:
https://github.com/zertovitch/hac

* Improvements:

- HAC_Integer (internal name in
HAC_Sys.Defs), i.e. HAC's Integer
type, is now 64 bit.

- HAC_Float (i.e. `Real` in HAC
programs) has now System.Max_Digits
digits accuracy.

- Added range constraints, like: ` subtype
Answer_Range is Character range
'a' .. 'z' `.

- Added membership test, like:
` x [not] in a .. b `.

- Several additions to HAC_Pack.

- Better I/O error handling.

- The whole system (Compiler and VM
run-time) builds on both GNAT and
ObjectAda64.

* Fixes ([hand_washing] all bugs stem
from SmallAda [/hand_washing]):

- Recursive calls to main procedure were
mistaken as calls to "standard"
procedures in HAC_Pack.

- Block identification used main
program's identifier instead of its
nesting.

- EXIT statement on FOR loop implied
stack corruption for several nested FOR
loops.

- EXIT statements within IF statements
didn't work properly.

- Priority levels in expressions were not
conform to the Ada Reference Manual's.
Most visible change: needless brackets
can now be removed around logical
expressions.

* Test suite: added new 19 programs to
the 12 existing tests.

- The 19 source files are named
exm/aoc/2020/aoc_2020_*.adb,
solutions to the Advent of Code 2020
puzzles.

From: Gautier
<gautier_niouzes@hotmail.com>

Date: Sun, 3 Jan 2021 02:53:40 -0800

> Maybe too early to ask, but is there an
overview of what is implemented and
not implemented?

Not too early at all! Here is an excerpt of
doc/hac.txt which summarizes the current
subset supported:

 - You can define your own data types:
enumerations, records, arrays (and
every combination of records and
arrays).

 - Only constrained types are supported
(unconstrained types are Ada-only types
and not in the "Pascal subset" anyway).

 - The "String" type (unconstrained) is
implemented in a very limited way. So
far you can only define fixed-sized
constants, variables, types, record fields
with it, like: Digitz: constant String
(1..10) := "0123456789"; ... output them
with Put, Put_Line, do comparisons and
concatenations with expressions of the
VString variable-length string type. For
general string manipulation, the most
practical way with the current versions
of HAC is to use the VString's.

 - There are no pointers (access types)
and nor heap allocation, but you will be
surprised how far you can go without
pointers!

 - Subprograms names cannot be
overloaded, although some
predefined subprograms, including
operators, of the Standard or the
HAC_Pack package, are overloaded
many times, like "Put", "Get", "+", "&",
...

 - Programmable modularity (packages
or subprograms that you can "with") is
not yet implemented.

 - Generics are not yet implemented.

 - Tasks are implemented, but not
working yet.

 - Small parts of the standard Ada library
are available through the HAC_Pack
package. You can see the currently

available items in the specification,
src/hac_pack.ads .

To get a "tangible" idea, you can look at
the examples in the "exm" directory (run
../hac gallery.adb for a show), and the
"exm/aoc/2020" directory. There is also
stuff in "test", but programs there are not
meaningful.

> Detail: all procedures need "with
hac_pack; use hac_pack;"?

So far, yes. When modularity is
implemented it will change...

From: Gautier
<gautier_niouzes@hotmail.com>

Date: Thu, 7 Jan 2021 11:18:24 -0800

> Detail: all procedures need "with
hac_pack; use hac_pack;"?

Actually not anymore, now (rev. #400+)
you can write things like:

with HAC_Pack;

procedure Hello is
 procedure Prefixed is
 begin
 HAC_Pack.Put("Hello");
 end;
 procedure Using_Use is
 use HAC_Pack;
 begin
 Put(" World!");
 end;
begin
 Prefixed;
 Using_Use;
end;

 :-)

LEA v.0.76

From: Gautier
<gautier_niouzes@hotmail.com>

Subject: Ann: LEA v.0.76
Date: Fri, 1 Jan 2021 09:11:10 -0800
Newsgroups: comp.lang.ada

LEA is a Lightweight Editor for Ada

Web site: http://l-e-a.sf.net/

Source repository #1:
https://sf.net/p/l-e-a/code/HEAD/tree/

Source repository #2:
https://github.com/zertovitch/lea

Improvements:

 - when no subwindow is open, Ctrl-W
closes app

 - Ctrl-H opens search & replace box

 - new files have CR end-of-line's

 - console I/O box scrolls to last line

 - interaction with HAC: improved
ergonomy of Text input boxes

 - improved ergonomy of the
"comment/uncomment selection"
command

Ada-related Tools 9

Ada User Journal Volume 42, Number 1, March 2021

 - embeds HAC (HAC Ada Compiler)
v.0.085

Features:

 - multi-document

 - multiple undo's & redo's

 - multi-line edit, rectangular selections

 - color themes, easy to switch

 - duplication of lines and selections

 - syntax highlighting

 - parenthesis matching

 - bookmarks

Currently available on Windows.

Gtk or other implementations are
possible: the LEA_Common[.*] packages
are pure Ada, as well as HAC.

Enjoy!

GWindows Release, 01-Jan-
2021

From: Gautier
<gautier_niouzes@hotmail.com>

Subject: Ann: GWindows release, 01-Jan-
2021

Date: Fri, 1 Jan 2021 12:24:57 -0800
Newsgroups: comp.lang.ada

GWindows is a full Microsoft Windows
Rapid Application Development
framework for programming GUIs
(Graphical User Interfaces) with Ada.
GWindows works with the GNAT
development system (could be made pure
Ada with some effort).

Changes to the framework are detailed in
gwindows/changes.txt or in the News
forum on the project site.

In a nutshell (since last announcement
here):

 391: GWindows.Common_Controls.
List_View: added Ensure_Visible.

 387: (contrib) GWin_Util package:
added Explorer_Context_Menu.

 385: GWindows.Windows.MDI: added
function Count_MDI_Children.

 384: (contrib) Added GWin_Util
package.

...and in gwindows\samples\drawing, a
new demo: Game_of_Life_Interactive
(you create life with mouse clicks :-)

GWindows Project site:

https://sf.net/projects/gnavi/

GWindows GitHub clone:

https://github.com/zertovitch/gwindows

Enjoy!

SweetAda 0.1h

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda 0.1h released
Date: Tue, 5 Jan 2021 09:37:13 -0800
Newsgroups: comp.lang.ada

I've just released SweetAda 0.1h.

SweetAda is lightweight development
framework to create Ada systems on a
wide range

of machines. Please refer to
https://www.sweetada.org.

Release notes

- There is now a primitive SFP (Small-
FootPrint) runtime, does nothing very
interesting so far, only allows non-trivial
exception declarations and floating-point
validation; when I will implement the
Secondary Stack, things should start to
be far better

- RTS and PROFILE items are now
lowercased, as well as RTS directory
names

- RTS for MIPS* targets is tuned with -
G0, you should use this in your target
compiler setup

- RTS for SH* targets is tuned with -fno-
leading-underscore, you should use this
in your target compiler setup

- the Bits library unit now exposes
BigEndian and LittleEndian static
booleans

- new procedure Print (Interfaces.C.char)
in Console library unit

- Tcl will be the default scripting
language for complex tasks, it is
strongly advised to install it in your
machine (Windows users could
download the tcltk.zip package) since
script files will be gradually replaced, at
least those too heavy for a shell

- as just said, the "createtxtrecord" tool in
S/390 and the scripts for the creation of
bootable PC floppy/hard disk images are
now written quick-and-dirty in Tcl, but
they should be widely usable and
requires no external OS utilities support

- IDE driver sets LBA mode, and FAT
(read-only) works with LBA logical
sectors

- MBR library unit to recognize partitions
(very minimal, only 1st partition
detected)

- menu.bat now shows automatically a
usage if an incorrect action was supplied

- libutils provides a createsymlink shell
script to create symbolic (soft) links in
an OS-transparent way, use it by
referencing $(CREATESYMLINK) in
the Makefiles; this substitutes a physical
copy of files in non-Linux machines
during subplatform-specific installation;
however, in Windows machines it

requires PowerShell elevation rights in
order to avoid bloated warning
messages, so adjust your OS settings;
the good news are that is now possible
to edit subplatform-specific files without
lose your changes whenever you restart
from scratch with a "createkernelcfg"
build cycle

- Makefile cleanups, there are no scattered
shell-dependent bloated constructs,
except for the trivial ones, and they are
now concentrated logically in few
places; the build system should tolerate
even spaces in pathnames (very bad
practice, though)- delete unnecessary
functions and variables in Makefiles

- reordering of gnat1 debug switches in
Makefile.tc.in, corrected -gnatdt switch
description

- reordering of configuration dump in
Makefile

- reordering/deletion/tuning of compiler
switches in various platforms

- new target MSP432P401R, very
minimal, only blinks the on-board LED

- DE10-Lite NiosII target now performs
stack setup and calls the low-level
adainit function in startup.S, so that
proper runtime elaboration happens

- AVR targets can now use aggregates
(see explanation below)

- ArduinoUno does not specify the path to
AVRDUDE executable, this is now
delegated to the run script

- the S/390 target specifies a correct
emulation mode in linking objects so
that there are no more problems during
processing

- typos, cosmetics and minor adjustments

Quick notes

As the release notes outlined, SweetAda
should run on a bare 64-bit host system
which supports, dependently on your
target CPU setup, symbolic (soft) links
and (optionally) Tcl/Tk. This is normal
for Linux, Windows and OS X, so no
concerns should arise. If you do not want
to install the tcltk package I am providing
from the SweetAda site, then download a
package from your vendor, and specify
the path to the tclsh executable in the top-
level configuration.in.

The reason behind this is promptly
understood: Tcl is a long-time HL
language used in industrial automation
and is currently used as a scripting tool in
large applications like Xilinx Vivado,
Altera Quartus and others. Also
OpenOCD uses an embedded version that
drives its user interface, so it is at least
advisable to have a look, especially if you
are working with SoC, embedded
softcores or you are playing with JTAG
programming on the bare metal.

10 Ada-related Tools

Volume 42, Number 1, March 2021 Ada User Journal

To use SFP, please change settings in the
top-level configuration.in:

RTS := sfp

PROFILE := sfp

USE_LIBADA := Y

Remember, you can change RTS at your
will after a "make clean" or
"menu.[sh|bat] clean".

Please do not rely on low-level layout of
the filesystem hierarchies. When SFP
runtime will be (hopefully) working,
many files could be symlinks or separate
units in order to switch between ZFP and
SFPs. More precisely, low-level
subprograms could start to declare private
exceptions and interrupt-related RTS
units, and this will prevent the use of a
ZFP (which does NOT use anything from
the compiler library, and this requires
absolute care).

About aggregates in AVR targets. The
problem is, aggregates could be Ada static
RO objects, and so the back-end can
legitimately allocate them in the .rodata
section. Historically, .rodata section is
quite often linked together with the .text,
but unfortunately, AVR is an Harvard
machine with separate address spaces, and
the .rodata section should stay together
with data sections in an executable image.
Relocating Flash ROM .rodata in RAM
during startup obviously is a no-op.
Placing .rodata in RAM prevents the read-
only behaviour, though. The ideal
solutions could be to place .rodata in
EEPROM, but this introduces a level of
complexity that I see of little concernment
so far. So the current decision is to place
.rodata in RAM, and warn you about try
to overwrite static data (it will require
intimate knowledge of dereferencing
machine-code objects, furthermore,
objects are nevertheless hardly traceable,
and this a very esotic, non-Ada, non-sense
bad practice, so trying to do that implies
hugely problems in other areas).

Last thing, as I've updated toolchains
(without change timestamps), you are
encouraged to re-download them, since
exists the possibility that previous targets
have problems in the GNAT/GCC
wrappers, and do not emit compilation
messages of dependent units during
"brief", non-VERBOSE mode, as well as
not generating Ada intermediate files nor
assembler listing thereof. If you don't care
about visual outputs or assembler
analysis, simply ignore this.

As usual, download the three packages
core, RTS and LibGGC (since many
changes are system-wide), and please
save your work before overwriting the
filesystem.

Happy new year.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Thu, 7 Jan 2021 17:26:43 -0000

Good to see the MSP432!

I'm in the process (well, was ... must get
back to it!) of updating the old MSP430
Ada system, now using the TI supplied
GCC toolkit. This is a much easier build
than the old one, and the official MSP430
backend has improved from the last time I
looked at it a few years ago.

I must add taking a look at SweetAda to
my task list...

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Date: Thu, 7 Jan 2021 10:33:12 -0800

I see you wrote about MSP430. Maybe
you already know that MSP432 is a whole
different thing, being an ARM-Cortex
based chip. The MSP430 is instead a
proprietary TI line of cores, which
SweetAda does not support. Just to avoid
misunderstandings -- apologize if I write
something already clear to you.

That being said, I'll try to slowly work on
MSP432. Next releases maybe will come
with more peripherals I/O declarations to
make the target barely usable. I use a
MSP432P401R board, if you want to
physically download code from the
SweetAda environment via USB, you
have to install OpenOCD, it's pretty
simple by taking a look at the scripts.

Let me know and best regards,

SweetAda 0.2

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda 0.2 released
Date: Thu, 21 Jan 2021 09:24:20 -0800
Newsgroups: comp.lang.ada

I've just released SweetAda 0.2.

SweetAda is a lightweight development
framework to create Ada systems on a
wide range of machines. Please refer to
https://www.sweetada.org.

Release notes

- Makefile is now optimized and does not
perform a bind phase every time; note,
this requires an updated gnat-wrapper,
please download a fresh copy of the
toolchain

- Makefile "all-clean" target renamed as
"distclean" (and so do all variables
starting with "ALL_CLEAN...")

- Makefile: added GNATLS tool, deleted
unnecessary variables, added .h
dependencies in clibrary build, deleted
C++ toolchain variables in
Makefile.tc.in

- Makefile: double-quoted some file
references which lead to errors if

SweetAda lays in a path directory which
contains spaces

- there is a new "share" directory, which
contains various auxiliary files, in order
to centralize sparse and/or duplicated
files

- AVR ATmega328P targets specify now
an emulation mode during linking
objects so that the final ELF object has
correct flags; this prevents, e.g., QEMU-
AVR from exiting prematurely

- QEMU-AVR: startup.S #undef's
__AVR_ENHANCED__ because
QEMU isn't yet able to fully emulate
ELPM instructions

- STM32F769I (disco) ARM-CortexM7,
new target; only able to blink a LED
(needs OpenOCD to communicate with
the target from inside SweetAda)

- PC-x86-64 uses Tcl scripts for FD/HD
booting in QEMU

- upgraded SPARCstation5 and
DECstation5000, which missed the new
$(SYMLINK) script

- Dreamcast target produces a CD-ROM
image suitable to create a physical CDI

- S/390 can IPL SweetAda from DASD
devices (thanks to Hercules'
DASDLOAD -- you need it)

- S/390 createtxtrecord.tcl script now
renamed as S360obj.tcl

- typos, cosmetics and minor adjustments

Quick notes

It is important to download also a fresh
copy of the toolchain, because the
changes will be triggered by an upgrade
in the GNAT/GCC wrappers.

As usual, download the three packages
core, RTS and LibGGC (since many
changes are system-wide), and please
save your work before overwriting the
filesystem.

Ada Wav File Library v2.0.0

From: gustho...@gmail.com
<gusthoff.ada@gmail.com>

Subject: Ann: Ada Wav File Library v2.0.0
Date: Thu, 7 Jan 2021 12:08:54 -0800
Newsgroups: comp.lang.ada

The Wav File Library v2.0.0, an open-
source Ada library, has just been released:

https://github.com/Ada-Audio/
audio_wavefiles/releases/tag/2.0.0

This library contains a Wav File Reader
& Writer written in Ada 2012. It supports
reading and writing of wav files,
including the following features:

- Mono, stereo and multichannel audio.

- Audio samples with following bit
depths: 16/24/32/64-bit PCM; 32/64-bit
floating-point PCM

Ada-related Tools 11

Ada User Journal Volume 42, Number 1, March 2021

- Wave-Format-Extensible format
(WAVE_FORMAT_EXTENSIBLE)

This library also includes support for
PCM buffers in floating-point and fixed-
point formats, as well as the automatic
conversion between the data types used
for the PCM buffer and the wavefile,
which might have different formats
(floating-point or fixed-point) or varying
precision (e.g., 16 bits or 64 bits).

A detailed list of changes and new
features can be found here:

https://github.com/Ada-Audio/
audio_wavefiles/blob/2.0.0/
CHANGELOG.md

A cookbook / tutorial can be found here:

https://github.com/Ada-Audio/
audio_wavefiles/blob/2.0.0/cookbook/
cookbook.md

Simple Components v4.55

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components v
Date: Wed, 13 Jan 2021 13:01:54 +0100
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- The packages
Universally_Unique_Identifiers and
Universally_Unique_Identifiers.Edit
were added to support UUID;

- Reboot procedure was added to the
package
GNAT.Sockets.Connection_State_Mach
ine.ELV_MAX_Cube_Client.

Dotenv v1.0

From: Heziode
<heziode@protonmail.com>

Subject: Dotenv - first release
Date: Fri, 22 Jan 2021 16:34:42 +0100
Newsgroups: comp.lang.ada

I have just released Dotenv: 1.0.0

Dotenv allows you to load environment
variables from `.env` files.

For more information, please refer to:
https://github.com/Heziode/ada-dotenv

UXStrings (UXS_20210207)

From: Blady <p.p11@orange.fr>
Subject: [ANN] UXStrings package

available (UXS_20210207).
Date: Mon, 8 Feb 2021 12:22:12 +0100
Newsgroups: comp.lang.ada

UXStrings is now available on Github
with the whole API implemented (version
UXS_20210207 [1]).

The objectives are Unicode and dynamic
length support for strings, those are closed
to VSS [2] from AdaCore.

However, the UXStrings API is inspired
from Ada.Strings.Unbounded in order to
minimize adaptation work from existing
Ada source codes. Gnoga and Zanyblue
has been adapted to UXString with
success, see Gnoga announcement [3].

This is a first implementation POC. UTF-
8 encoding is chosen for internal
representation. The Strings_Edit [4]
library is used for UTF-8 encoding
management. It has not been intensively
tested but this implementation is to
demonstrate the possible usages of
UXString. A test program is also provided
with some features demonstrated [5].

See readme [6] for full details.

Comments especially on specifications [7]
are welcome and others too ;-)

Enjoy, Pascal.

[1] https://github.com/Blady-Com/
UXStrings/releases/tag/
UXS_20210207

[2] https://github.com/AdaCore/VSS

[3] https://sourceforge.net/p/gnoga/
mailman/message/37199377/

[4] http://www.dmitry-kazakov.de/ada/
strings_edit.htm

[5] https://github.com/Blady-Com/
UXStrings/blob/master/tests/
test_uxstrings.adb

[6] https://github.com/Blady-Com/
UXStrings/blob/master/readme.md

[7] https://github.com/Blady-Com/
UXStrings/blob/master/src/
uxstrings1.ads

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 11 Feb 2021 00:19:25 -0800

There is clearly a need here, given the
number of implementations out there. I
had also implemented
GNATCOLL.Strings 4 years ago, with
similar goals to yours:

 - unicode support (via generic formal
parameters and traits packages, so you
can use UTF8, UTF16, ... internally)

 - unbounded strings (with optional copy-
on-write)

 - task safety (using traits to choose what
kind of counter to use)

 - performance (small-string
optimization: no memory alloc for
strings of 18 characters or less)

 - extended API (all missing subprograms
from Ada.Strings.Unbounded)

 - extensive testing

I must admit I am not sure why AdaCore
chose to write VSS instead of improving
one of their string implementations
(ada.strings.unbounded,
gnatcoll.strings,...) My initial idea had
been that it would be possible to provide a
nice generic package, highly configurable
via traits, on top of which we could
reimplement ada.strings.unbounded,
ada.strings.bounded,...) but I left AdaCore
before that could be accomplished.

I took a look at VSS and find the API
confusing. Your API UXString is at least
much clearer (if lacking doc at the
moment :-)

I am hoping that the work on Alire (Ada
package manager) will ultimately help us
find one implementation that is good
enough for everyone, and could ultimately
become part of the language.

From: Blady <p.p11@orange.fr>
Date: Sat, 6 Mar 2021 19:13:24 +0100

UXStrings is now available with Alire
(https://alire.ada.dev/crates/uxstrings), in
your Alire project, just add UXStrings
dependency:

% alr with uxstrings

Thus you can import the UXStrings
package in your programs.

Pascal.

PS: for French readers, while referencing
UXStrings on Alire, I make the
opportunity to write a short howto with
ALire:

https://blady.pagesperso-orange.fr/
a_savoir.html#alire

AShell v1.0

From: Rod Kay <rodakay5@gmail.com>
Subject: Version 1.0 Release of aShell
Date: Tue, 16 Feb 2021 12:33:37 -0800
Newsgroups: comp.lang.ada

A component to aid in writing shell-like
applications in Ada.

https://github.com/charlie5/aShell

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 17 Feb 2021 10:04:41 +0200

I suppose I could find out by looking
more deeply into the component (which
looks nice in the README), but I'm lazy

12 Ada-related Tools

Volume 42, Number 1, March 2021 Ada User Journal

today, so I ask: do you have a way of
capturing the standard-error stream from a
process, in addition to the standard-output
stream?

From: Rod Kay <rodakay5@gmail.com>
Date: Thu, 18 Feb 2021 03:18:36 -0800

With the process 'Start' subprograms, you
can provide your own input/output/error
pipes. If not provided they default to the
standard pipes.

 function Start (Command : in String;
 Working_Directory : in String := ".";
 Input : in Pipe := Standard_Input;
 Output : in Pipe := Standard_Output;
 Errors: in Pipe := Standard_Error;
 Pipeline : in Boolean := False)
 return Process;

The ''Results_Of' function returns
'Command_Results' which provides
access to data from both the Output_Pipe
and the Error_Pipe.

In hindsight, this is not adequate. I will
review over the weekend and attempt a
better solution.

From: Jeffrey R. Carter
Date: Wed, 17 Feb 2021 12:05:17 +0100

Is this compiler and OS independent?

From: Rod Kay <rodakay5@gmail.com>
Date: Thu, 18 Feb 2021 03:29:35 -0800

Atm, the code uses Florist for 'POSIX'
and one function from 'GNAT.OS_Lib'.

Florist appears to be gnat-specific ...

"FLORIST, an Ada application
program interface for operating system
services for use with the GNAT compiler
and the Gnu Ada Runtime Library
(GNARL)."

I have no means of testing on Windows. I
hope that it may be possible to use with
cygwin or a similar compatibility layer.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 18 Feb 2021 16:06:00 +0200

> Florist appears to be gnat-specific ...

Florist is an implementation of a standard
for Ada-POSIX bindings,
https://www.iso.org/standard/34354.html,
so the Florist API should not be GNAT-
specific.

However, the implementation of Florist
may depend on the underlying system,
including the Ada compiler and the OS.

Using the Florist API, rather than using
GNAT libraries or OS functions directly,
should increase the potential portability.
Actual portability will depend on the
existence of implementations, for the
target system, of Florist or other
realizations of the standard Ada-POSIX
binding.

From: Mgr <mgrojo@gmail.com>
Date: Sat, 20 Feb 2021 23:58:37 +0100

> Florist is an implementation of a
standard for Ada-POSIX bindings [...]

Some time ago, I gathered some
information about compilers providing
support of the Ada-POSIX standard for
this Wikibooks article.

https://en.wikibooks.org/wiki/
Ada_Programming/Platform/POSIX

From: Jeffrey R. Carter
Date: Thu, 18 Feb 2021 12:57:02 +0100

What is the advantage over using the
compiler-supplied libraries to do these
things?

From: Rod Kay <rodakay5@gmail.com>
Date: Fri, 19 Feb 2021 01:07:25 -0800

Ability to provide input data.

Ability to provide input/output/error
pipes.

Ability to pipeline processes.

Several convenience functions to simplify
the above.

Potential for increased portability.

AShell v1.1

From: Rod Kay <rodakay5@gmail.com>
Subject: Version 1.1 Release of aShell.
Date: Tue, 23 Feb 2021 15:39:42 -0800
Newsgroups: comp.lang.ada

- Factored out command code into a
separate package.

- Simplified the specs.

- Added better error handling.

- Added several tests.

- Improvements for pipelines.

XNAdaLib 2021 Future
Contents

From: Blady <p.p11@orange.fr>
Subject: XNAdaLib 2021 futur contents.
Date: Sun, 14 Mar 2021 10:39:31 +0100
Newsgroups: comp.lang.ada

I'm preparing XNAdaLib

(https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2020-catalina)

2021 binaries for macOS Big Sur, the
target content is:

- GTKAda 21.2

- GnatColl 21.2

- Florist latest

- AdaCurses 6.2

- Gate3 0.5c

- Components 4.55

- AICWL 3.24

- Zanyblue 1.4.0

- PragmARC latest

- GNOGA 1.6

- SparForte 2.4

- Alire 1.0.0

- Template Parser 21.2.

The GNAT compiler version should be
Community 2021 when AdaCore will
release it.

Is this packaging useful for you? Which
packages are you using?

Feel free to send your wishes of missing
Ada packages.

Thanks for your feedback, Pascal.

SparForte 2.4 Released

From: Ken Burtch <koburtch@gmail.com>
Subject: ANN: SparForte 2.4 released
Date: Sat, 20 Mar 2021 06:00:21 -0700
Newsgroups: comp.lang.ada

SparForte 2.4 Released.

SparForte is my Ada-based open source
shell, programming language and web
template engine. This release includes:

 19 new features and examples

 26 fixes (including the 1 from version
2.3.1)

 5 changes

Version 2.4 has been tested on Linux,
FreeBSD and Raspberry Pi.

The focus of this release was on
command line and shell improvements.

The download links are available at the
SparForte website. Please fill in the
download poll so I know who is interested
in the project.

https://www.sparforte.com/index.html

There is a blog article for the major
features:

https://www.pegasoft.ca/coder/
coder_january_2021.html

Not mentioned in the blog, --colour/--
color will enable colour text and UTF-8
graphics in SparForte's messages. There is
an equivalent pragma to enable it through
a .sparforte_profile login file. It gives
SparForte a more modern look.

I don't follow comp.lang.ada so follow up
with any issues by email.

SparForte is a hobby and a volunteer
project. I do not earn money from it.

Thanks and enjoy.

Status of AdaControl

From: J-P. Rosen <rosen@adalog.fr>
Subject: Status of AdaControl
Date: Fri, 26 Mar 2021 18:14:57 +0100
Newsgroups: comp.lang.ada

Ada Pract ice 13

Ada User Journal Volume 42, Number 1, March 2021

It's been a long time since the latest public
release of AdaControl. But let me
reassure my fellow users: AdaControl
development and improvement never
ceased, and Adalog is very active about it.

The latest wavefront versions are
available on SourceForge
(https://sourceforge.net/projects/
adacontrol/) and GitHub
(https://github.adalog.fr).

There is an issue with the community
edition though: Last year, AdaCore
separated the ASIS generator from the
regular compiler - it is a new program
called asis-gcc.

asis-gcc is part of a package called
Asistools which is distributed only to Pro
users. It is not part of the CE edition. This
does not affect only AdaControl:
gnatcheck has also been removed.

There is no problem for Pro users, and our
own supported users receive updates
regularly.

Debian and FSF-Gnat users, as well as
users who stay with CE2019, will still be
able to compile AdaControl, however it
may crash sometimes due to not
incorporating fixes for the latest issues
that were discovered with the new
features of AdaControl. These have been
reported to AdaCore (and fixed).

However, we are not able to provide a
compiled version for CE2020 users,
which is what prevents us from making a
complete release. We are investigating
solutions for these CE users that we, at
Adalog, want to continue to fully support
without restrictions!

From: Simon Wright
<simon@pushface.org>

Date: Fri, 26 Mar 2021 21:13:39 +0000

> There is an issue with the community
edition though

FSF GCC 11 doesn't support ASIS either.

This will mean no gnatmetric, gnatpp,
gnatstub, gnattest for macOS users, at
least until I can escape the branch hell
that's stopping me building libadalang!

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 26 Mar 2021 23:25:57 +0200

> There is no problem for Pro users, ...

Well, last time I asked, as a Pro user,
AdaCore wanted extra lucre for the ASIS
tools. So, a little problem...

Ada Practice

Re: Renames Usage

[Continues from “Renames Usage” in
AUJ 41-4, December 2021, about the
finer details of renamings. —arm]

From: Drpi <314@drpi.fr>
Subject: Re: renames usage
Date: Fri, 1 Jan 2021 13:39:39 +0100
Newsgroups: comp.lang.ada

Reading all the answers, I understand
that:

 X : Float renames Random (Seed);

is equivalent to :

 X : constant Float := Random (Seed);

From: Jeffrey R. Carter
Date: Fri, 1 Jan 2021 15:46:39 +0100

Technically, the renames gives a name to
the anonymous temporary object returned
by the function. The constant declaration
makes a constant copy of it. So they're
equivalent, but not identical.

However, the compiler is free to optimize
the copy away, and I'd be surprised if
there are any compilers that don't (except
GNAT with -O0).

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sat, 2 Jan 2021 17:00:13 +0100

Also remember that limited types do not
permit copying, whether constant or not.
Renaming avoids having to move an
object at all:

[Example shortened by me. —arm]

 task type Nail; -- A limited type
 type Nail_Reference is access Nail;

 function Random_Pick return
Nail_Reference;

 declare
 Choice : Nail renames Random_Pick.all;

From: Simon Wright
<simon@pushface.org>

Date: Sat, 02 Jan 2021 17:22:27 +0000

Another reason for renaming [...] would
be remembering a view conversion.
[Example removed. —arm]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 2 Jan 2021 21:19:49 -0600

> [...] However, the compiler is free to
optimize the copy away, and I'd be
surprised if there are any compilers that
don't (except GNAT with -O0).

In [the case of a scalar return], the "copy"
is a register, and it would be hard (and
pointless) to eliminate that. It's more
interesting for a function that returns a
composite object, and in that case your
answer is correct. Note that you can tell if
a copy is made if there is a controlled
component in the object.

One thing we've learned in language
design is that nothing is ever exactly
equivalent to something else. There is
always subtle differences. Typical
programmers can ignore such stuff, but
not language designers.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 1 Jan 2021 14:20:05 +0100

You must keep in mind that renaming
ignores subtype constraints. So:

 X : Integer := -1;
 Y : Positive renames X;
 -- Let's fool ourselves
begin

Put_Line ("A positive number " &
Integer'Image (Y));

Will happily print "A positive number -1."

Quick Inverse Square Root

From: Matt Borchers
<mattborchers@gmail.com>

Subject: Quick inverse square root
Date: Sat, 2 Jan 2021 14:26:30 -0800
Newsgroups: comp.lang.ada

I'm sure many of you have seen the Fast
Inverse SquareRoot algorithm from the
open source Quake III engine. I just
encountered it a few days ago. Here it is,
a bit reduced, from the original source:

 //C code from Quake III engine

 float Q_rsqrt(float number)
 {
 long i;
 float x2, y;
 const float threehalfs = 1.5F;
 x2 = number * 0.5F;
 y = number;
 i = *(long *) &y;
 i = 0x5f3759df - (i >> 1);
 y = *(float *) &i;
 y = y * (threehalfs - (x2 * y * y));
 return y;
 }

It is interesting how much clearer the Ada
code version is:

 with Interfaces; use Interfaces;
 function QUICK_INVERSE_SQRT
 (a : FLOAT) return FLOAT is
 y : FLOAT := a;
 i : UNSIGNED_32;
 for i'Address use y'Address;
 begin
 i := 16#5F3759DF# - shift_right(i, 1);
 return y * (1.5 - (0.5 * a * y * y));
 end QUICK_INVERSE_SQRT;

The magic hexadecimal number is
calculated from the formula:

 3/2 * 2**23 * (127 - mu) where mu is a
constant close to 0.043.

My question is that I am trying to get this
to work for Long_Float but I'm not having
any luck. I would expect that everything
should be the same in the algorithm
except for the types (Float -> Long_Float
and Unsigned_32 -> Unsigned_64) and
the "magic" hexadecimal number that
should be calculated from the same
formula but adjusted for the Long_Float
bit layout.

14 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

 3/2 * 2**52 * (1023 - mu) where mu is
the identical constant as used for Float
case.

This doesn't seem to work and I haven't
been able to find my error. I'm sure it is
something silly. Does anybody have a
suggestion?

A second question I have is how to make
this a generic for any Floating point type.
I can only think that I have to provide
three things: not only the obvious Float
type, but also the Unsigned type of the
same size, as well as the hex constant.

 generic
 type F is digits <>;
 type U is mod <>;
 magic : U;
 function G_Q_INV_SQRT(a : F) return
F;

I write the body like this:

 function G_Q_INV_SQRT(a : F)
 return F is
 y : F := a;
 i : U;
 for i'Address use y'Address;
 begin
 i := magic - shift_right(i, 1);
 return y * (1.5 - (0.5 * a * y * y));
 end G_Q_INV_SQRT;
 function QUICK_INVERSE_SQRT is
 new G_Q_INV_SQRT(FLOAT,
 UNSIGNED_32, 16#5F3759DF#);

This won't compile because the type U is
not valid for the call to "shift_right".
How do I overcome this obstacle?

Once that is overcome, is there a way I
can eliminate having to pass in the
unsigned type along with the floating
point type? That seems like the
programmer would require internal
knowledge to make use of the generic.
Any thoughts on how to get the compiler
to compute the magic number in the
generic at compile time?

From: Jeffrey R. Carter
Date: Sun, 3 Jan 2021 00:18:11 +0100

> This won't compile because the type U
is not valid for the call to "shift_right".
How do I overcome this obstacle?

Make it an explicit generic formal
function parameter:

 with function Shift_Right (...) return ...;

> Once that is overcome, is there a way I
can eliminate having to pass in the
unsigned type along with the floating
point type?

You would want to make use of the
attributes of floating point types in ARM
A.5.3

http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-A-5-3.html

Whether these provide the information
you need is another question. I don't see

how you could declare the modular type
in the generic.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 3 Jan 2021 11:58:38 +0100

> [Original code]

This is not equivalent to C code, you have
likely a typo error.

The formula you wrote above cannot be
right. In effect, the factor y calculated
from the exponent must be numerically
the same for both float (IEEE 754 single-
precision floating-point) and double
(IEEE 754 single-precision floating-
point). Which is apparently not. You
should get the exponent multiplied by the
same power of 2 as for float. For double, I
make a wild guess, you should replace
right shift by 1 with right shift by 30 = 32-
2.

General notes.

1. C code relies on float being IEEE 754
single-precision floating-point number
with endianness opposite to integer
endianness numbers. The exponent
must land in the integer's MSB. This is
clearly non-portable.

2. The approximation is very crude. I am
too lazy to estimate its precision within
the intended range, which is what? [0,
1]?

3. Ergo, making it generic has no sense.

4. If you port it to Ada, add assertions
validating endianness and floating-
point format.

From: Matt Borchers
<mattborchers@gmail.com>

Date: Sun, 3 Jan 2021 14:31:15 -0800

Thank you Jeff and Dmitry. I have a
generic functioning now.

Jeff,

Using attributes I was able to come up
with a magic number using:

magic : constant U := U(3.0 / 2.0 *
2.0**(F'Machine_Mantissa - 1) *
(F(F'Machine_Emax - 1) - 0.043));

[...]

When people tell me that they use C for
its low-level power and simplicity, like bit
manipulations, and claim that other
languages can't match C in that sense, I
like to show them just how much better
Ada can be -- aside from all the other
benefits we all know. Eliminating the
generic, I think the main algorithm is
much clearer in the Ada version.

Here's my final code which seems to work
well enough on my machine. The
compiler required me to instantiate the
generic with different names and then use
renames for the function in the package
specification.

 with INTERFACES; use INTERFACES;
 generic
 type F is digits <>;
 type U is mod <>;
 with function SHIFT_RIGHT(n : U;
 amount : NATURAL) return U;

function G_QUICK_INVERSE_SQRT
 (a : F) return F;

 function G_QUICK_INVERSE_SQRT
 (a : F) return F is
 magic : constant U := U(1.5 *
 2.0**(F'Machine_Mantissa - 1) *
 (F(F'Machine_Emax - 1) - 0.043));
 y : F := a;
 i : U;
 for i'Address use y'Address;
 begin
 i := magic - shift_right(i, 1);
 return y * (1.5 - (0.5 * a * y * y));
 end G_QUICK_INVERSE_SQRT;

 function QINVSQRT is
 new G_QUICK_INVERSE_SQRT(
 LONG_FLOAT,
 UNSIGNED_64, shift_right);
 function QUICK_INVERSE_SQRT(
 a : LONG_FLOAT) return
 LONG_FLOAT renames
 QINVSQRT;
 function QINVSQRT is
 new G_QUICK_INVERSE_SQRT(
 FLOAT, UNSIGNED_32,
 shift_right);

 function QUICK_INVERSE_SQRT(
 a : FLOAT) return FLOAT
 renames QINVSQRT;

From: Jeffrey R. Carter
Date: Mon, 4 Jan 2021 00:47:13 +0100

Glad to have been of help.

Regarding the unsigned type, it seems this
only works if F'Size = 32 or 64, so you
could write versions that use
Unsigned_32 and Unsigned_64, and then
make your generic function do

if F'Size = 32 then
 return QISR32 (A);
elsif F'Size = 64 then
 return QISR64 (A);
else
 raise Program_Error with "F'Size must be
 32 or 64";
end if;

But I don't understand why this exists. In
what way is it better than the (inverse)
Sqrt operation of the FPU?

From: Matt Borchers
<mattborchers@gmail.com>

Date: Sun, 3 Jan 2021 19:50:03 -0800

[...]

> But I don't understand why this exists.
In what way is it better than the (inverse)
Sqrt operation of the FPU?

I mentioned first that this code comes
from the Quake III engine. There must
have been a purpose for it then or maybe

Ada Pract ice 15

Ada User Journal Volume 42, Number 1, March 2021

it was never called but left in the source
code. There are many videos about it on
YouTube. I'm not really a low-level
graphics guy, but I think it was intended
to operate on the unit vector for intense
graphics operations.

I think this algorithm would work on any
floating point type with a bit layout
similar to the IEEE-754 standard
regardless of how many bits were
allocated to the exponent and mantissa.

I don't have any personal use for it. It
seemed like an easy example to show how
Ada code can be simpler and just as
powerful as C. I tried to turn it into a
generic just as an exercise in trying to
eliminate the modular type from the
generic interface after I realized that two
types were required that were related only
in bit size. [...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 4 Jan 2021 13:13:00 +0100

> I haven't got the slightest idea for which
range this function should be applied,
but for sure not for the complete Float
range.

It appears to be the Newton method with a
heuristic used to choose the starting point.
The description is here:
https://en.wikipedia.org/wiki/
Fast_inverse_square_root

It also mentions a hack for double
precision IEEE 754 floats.

P.S. The method makes no sense to
implement or use on modern hardware.

From: Egil H H <ehh.public@gmail.com>
Date: Mon, 4 Jan 2021 05:39:33 -0800

For anyone interested, there's a discussion
on the algorithm in this paper:

https://cs.uwaterloo.ca/~m32rober/
rsqrt.pdf

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Thu, 7 Jan 2021 17:49:32 -0000

> As computers get faster, storage gets
larger, and code libraries get bigger, it
is unfortunate that most programmers
do not need to be as clever as they once
were required to be.

> Thanks for finding and sharing the PDF
paper! I'm amazed someone could
write so many pages on this.

Having spent quite some time elsewhere
getting sqrt down to a single clock cycle
(throughput: 8 cycle latency) it doesn't
surprise me at all. (The name Terje
Mathisen comes to mind for assembly
language implementations)

The odd coding (non use of union, strange
use of intermediate variables) may well
have been the result of compiler code
generation limitations; the "better" form

may have compiled to a few more
instructions or run a little more slowly;
not a good thing for a gamer on limited
hardware!

Have you benchmarked the pretty Ada
version against the original C ... or against
a straightforward float operation on
modern hardware?

Lower Bounds of Strings

From: Stephen Davies
<joviangm@gmail.com>

Subject: Lower bounds of Strings
Date: Tue, 5 Jan 2021 03:04:31 -0800
Newsgroups: comp.lang.ada

I'm sure this must have been discussed
before, but the issue doesn't seem to have
been resolved and I think it makes Ada
code look ugly and frankly reflects poorly
on the language.

I'm referring to the fact that any
subprogram with a String parameter, e.g.
Expiration_Date, has to use something
like Expiration_Date
(Expiration_Date'First ..
Expiration_Date'First + 1) to refer to the
first two characters rather than simply
saying Expiration_Date (1..2).

Not only is it ugly, but it's potentially
dangerous if code uses the latter and
works for ages until one day somebody
passes a slice instead of a string starting at
1 (yes, compilers might generate
warnings, but that doesn't negate the
issue, imho).

There must be many possible solutions,
without breaking compatibility for those
very rare occasions where code actually
makes use of the lower bound of a string.

e.g. Perhaps the following could be made
legal and added to Standard:

subtype Mono_String is String (1 .. <>);

One question with this would be whether
or not to allow procedure bodies to
specify parameters as Mono_String when
the corresponding procedure declaration
uses String.

From: Luke A. Guest
<laguest@archeia.com>

Date: Tue, 5 Jan 2021 12:24:44 +0000

> [...] it makes Ada code look ugly and
frankly reflects poorly on the language.

Wrong. It highlights how poor
programmers are, especially from other
languages which love to hardcode
numbers.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 5 Jan 2021 21:08:55 -0600

IMHO, "String" shouldn't be an array at
all. In a UTF-8 world, it makes little sense
to index into a string - it would be

expensive to do it based on characters
(since they vary in size), and dangerous to
do it based on octets (since you could get
part of a character).

The only real solution is to never use
String in the first place. A number of
people are building UTF-8 abstractions to
replace String, and I expect those to
become common in the coming years.

Indeed, (as I've mentioned before) I
would go further and abandon arrays
altogether -- containers cover the same
ground (or could easily) -- the vast
complication of operators popping up
much after type declarations, assignable
slices, and supernull arrays all waste
resources and cause oddities and dangers.
It's a waste of time to fix arrays in Ada --
just don't use them.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 6 Jan 2021 10:13:06 +0100

> IMHO, "String" shouldn't be an array at
all. [...]

It will not work. There are no useful
integral operations defined on strings. It is
like arguing that an image is not an array
of pixels because you could distort objects
in there when altering individual pixels.

> The only real solution is to never use
String [...]

This will never happen. Ada standard
library already has lots of integral
operations defined on strings. They are
practically never used. The UTF-8 (or
whatever encoding) abstraction thing
simply does not exist.

[...]

Array implementation is a fundamental
building block of computing. That does
not go either. Of course you could have
two languages, one with arrays to
implement containers and one without
them for end users. But this is neither Ada
philosophy nor a concept for any good
universal-purpose language.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 6 Jan 2021 18:17:45 -0600

> [...] Array implementation is a
fundamental building block of
computing.

Surely. But one does not need the
nonsense of requiring an underlying
implementation (which traditional arrays
do) in order to get that building block.
You always talk about this in terms of an
"interface", which is essentially the same
idea. One cannot have any sort of non-
contiguous or persistent arrays with the
Ada interface, since operations like
assigning into slices are impossible in
such representations. One has to give
those things up in order to have an

16 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

"interface" rather than the concrete form
for Ada arrays.

I prefer to not call the result an array,
since an array implies a contiguous in-
memory representation. Of course, some
vectors will have such a representation,
but that needs to be a requirement only for
vectors used for interfacing. (And those
should be used rarely.)

[...]

Sometimes, one has to step back and look
at the bigger picture and not always at the
way things have always been done.
Arrays (at least as defined in Ada) have
outlived their usefulness.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Thu, 14 Jan 2021 03:38:28 -0800

> I'm referring to the fact that any
subprogram with a String parameter,
e.g. Expiration_Date, has to use
something like Expiration_Date
(Expiration_Date'First ..
Expiration_Date'First + 1) to refer to
the first two characters rather than
simply saying Expiration_Date (1..2).

I really do not see the problem here. If I
want the first element, I write X(X'First).
Where's the problem?

In his paper about model railroads,
http://www.cs.uni.edu/~mccormic/RealTi
me/, John McCormick came to the
conclusion that one of the reasons why
Ada was so successful was the fact that
indices had not to start with 0 resp. 1, i.e.
they may bear meaning. In such cases, it
is absolute nonsense to slide slices to the
first index value.

Also for enumeration indices, sliding does
not make sense.

So why is the bad habit dangerous to
think that the first element must have
index one (or zero)? For me, this is a non
sequitur.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 14 Jan 2021 13:27:18 +0100

> Also for enumeration indices, sliding
does not make sense.

Sliding does not make sense for any type
of index.

Again, people are confusing indices
(cardinal) with positions (ordinal). These
are distinct concepts and different types.
E.g. A'Length is an ordinal numeral and
thus has the type Universal_Integer.
A'First is a cardinal numeral and is of the
index type.

> So why is the bad habit dangerous to
think that the first element must have
index one (or zero)? For me, this is a
non sequitur.

The first element may have no index at
all, e.g. the first element of a list, the first
character read from the input stream etc.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Thu, 14 Jan 2021 05:31:57 -0800

> So why is the bad habit dangerous to
think that the first element must have
index one (or zero)? For me, this is a
non sequitur.

Ah, what I really wanted to say: This is a
bad and dangerous habit to think indices
must start with 0 or 1.

From: Jeffrey R. Carter
Date: Thu, 14 Jan 2021 15:02:24 +0100

> Also for enumeration indices, sliding
does not make sense.

The trouble is that this is not really
discussing arrays. It's discussing
sequences, implemented by arrays, such
as String.

1-D arrays are often used to implement
sequences. In arrays used as sequences,
the indices are meaningless, and slicing,
sliding, and sorting are often appropriate.
As the indices are meaningless, it makes
sense for them to be integers with a fixed
lower bound of 1, since that is how we
typically talk about positions in
sequences. However, there are also many
cases when it's useful to be able to have
slices of sequences with a different lower
bound, so remembering to use 'First is
still important. Array types used as
sequences are often unconstrained.

The other use of arrays (1- and
multidimensional) is as maps. In arrays as
maps, the indices are meaningful, and
slicing, sliding, and sorting are usually
inappropriate. Array types used as maps
are usually constrained.

Ada's Vector containers are really
variable-length sequences.

In designing a new language, it might be
useful to keep these two concepts
separate.

[...]

From: Stephen Davies
<joviangm@gmail.com>

Date: Fri, 15 Jan 2021 02:24:40 -0800

> I really do not see the problem here. If I
want the first element, I write
X(X'First). Where's the problem?

Long_String_Name(1..2)

is much nicer than

Long_String_Name(
 Long_String_Name'First..
 Long_String_Name'First+1)
subtype Some_Range is Positive
range 4..5;
Some_String(Some_Range)
-- erroneous if Some_String'First/=1

I think the root of the problem is that Ada
Strings almost always start at 1 (note that
the functions in Ada.Strings.Fixed all
return Strings that start at 1), so the cases
when they don't are at best annoying, and
potentially erroneous.

[...]

From: Jeffrey R. Carter
Date: Fri, 15 Jan 2021 12:48:25 +0100

> I think the root of the problem is that
Ada Strings almost always start at 1

There are many cases where having String
values with a lower bound other than 1 is
more convenient, clearer, and less error
prone than if all String values have a
lower bound of 1. For example

loop
 exit when End_Of_File;
 declare
 Line : constant String := Get_Line;
 begin
 Idx := 0;
 loop
 Idx := Index (Line
 (Idx + 1 .. Line'Last), Pattern);
 exit when Idx = 0;
 Put_Line (Item => Idx'Image);
 end loop;
 end;
end loop;

where Index is Ada.Strings.Fixed.Index.
Even without comments and descriptive

loop and block names, this is reasonably
clear.

Compare that to a language where the
slice slides to have a lower bound of 1
(because Index takes a String, which
always has a lower bound of 1), and you'll
see that it is more complex, less clear, and
has more opportunities for error than
current Ada.

A string, being a sequence, should usually
have a lower bound of 1, but a decent
language needs to also allow string values
with other lower bounds. Maybe
something like

type String_Base is array
 (Positive range <>) of Character;
subtype String is String_Base
 (Positive range 1 .. <>);

Slices would be String_Base, not String,
and Index would take String_Base.

From: Stephen Davies
<joviangm@gmail.com>

Date: Fri, 15 Jan 2021 06:00:43 -0800

> type String_Base is array (Positive
range <>) of Character;

> subtype String is String_Base (Positive
range 1 .. <>);

I wish it had been this way since the
beginning. That way, in those rare
instances where code is really using the
variable lower-bound, the use of
String_Base would make the intention

Ada Pract ice 17

Ada User Journal Volume 42, Number 1, March 2021

clear. Alas, adopting this now would
break that code.

From: Jeffrey R. Carter
Date: Fri, 15 Jan 2021 16:12:37 +0100

> I wish it had been this way since the
beginning.

We have that now, with the substitutions

 String_Base => String
 String => type S1 (Length : Natural) is
 record
 Value : String (1 .. Length);
 end record;

or

 subtype S1 is String with
 Dynamic_Predicate => S1'First = 1;

From: Stephen Davies
<joviangm@gmail.com>

Date: Fri, 15 Jan 2021 09:22:43 -0800

> subtype S1 is String with
Dynamic_Predicate => S1'First = 1;

Like I said before, I want Sliding, not
bounds checking. I guess most Usenet
discussions eventually end up going
around in circles.

From: Jeffrey R. Carter
Date: Fri, 15 Jan 2021 22:10:08 +0100

Then you would probably prefer the
record version. Neither is perfect, but
both, with appropriate conversion
functions, give you the effect you want
with current Ada.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sat, 16 Jan 2021 10:30:16 +0100

> Long_String_Name(1..2) is much nicer
than

>
Long_String_Name(Long_String_Nam
e'First..Long_String_Name'First+1)

Avoid literals for indexing.

Of course, that makes them all the more
popular. "On which side are you on 1 vs 0
for The First?" (Discussion starts...)

From: Stephen Davies
<joviangm@gmail.com>

Date: Sat, 16 Jan 2021 05:13:49 -0800

> "On which side are you on 1 vs 0 for
The First?"

I like that Ada gives the choice of
"Positive range <>" or "Natural range
<>".

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 18 Jan 2021 23:48:38 -0600

> Also, a Slide function [that returns the
same string ensuring it is 1-based] does
not work for "out" and "in out"
parameters.

Thank god. Slices passed as in out
parameters are the bane of the compiler-

writers existence, and outside of types
like String, have a very expensive
implementation. On common machines
like the x86, copying an arbitrary bit
string from one location to another is not
an easy operation to perform. (Remember,
one can slice packed arrays, arrays of
controlled objects, and other nasty cases.
And with the sort of interface others here
are proposing, you'd have to do it for
various discontiguous representations,
too.)

This way leads to madness -- at least of
compiler implementers. ;-)

Record Initialisation
Question

From: Drpi <314@drpi.fr>
Subject: Record initialisation question
Date: Sat, 9 Jan 2021 10:30:04 +0100
Newsgroups: comp.lang.ada

I'm working on a µP BSP [microprocessor
board support package]. The boot
sequence of this µP requires byte
structures located in FLASH memory. For
example:

 type t_Dcd_Header is record
 Tag : Unsigned_8 := 16#D2#;
 Length : Unsigned_16 := 4; -- Length in
 -- byte of the DCD structure (this header
 -- included)
 Version : Unsigned_8 := 16#41#;
 end record
 with Object_Size => 32,
 Bit_Order =>
System.Low_Order_First;
 for t_Dcd_Header use record
 Tag at 0 range 0 .. 7;
 Length at 0 range 8 .. 23;
 Version at 0 range 24 .. 31;
 end record;

The t_Dcd_Header is part of t_Dcd
record.

The Length field of t_Dcd_Header must
contain the length of t_Dcd.

 Dcd : constant t_Dcd :=
 (Dcd_Header => (Length => ???,
 -- Length of Dcd
 others => <>),
 ...
);

Is there a way to automatically set Length
? Dcd goes in a dedicated .txt section.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 10 Jan 2021 21:30:01 +0200

[Several possibilities are discussed
involving static expressions, but the main
obstacle turns out to be avoiding
elaboration code. —arm]

>> Have you ensured that the
construction of the Dcd object requires
no elaboration code? Most Flash
memories cannot be written in the same
way as RAM, so even if that .txt section

is not write-protected, normal RAM-
oriented elaboration code would not be
able to write into Flash.

> I'm aware of this (I'm an electronics
guy). I'll add a "pragma
No_Elaboration_Code_All;" when I'm
ready.

Better add it now, because if you add it
later, the compiler may then complain that
it cannot implement the Dcd aggregate
without elaboration code, and you will
have to work around that somehow.

A good while ago, a colleague had a
problem where a large constant array
aggregate would require elaboration code
if written in named form (Index => Value,
Index => Value, ...), and it was necessary
to write it in positional form (Value,
Value, ...) to get rid of the elaboration
code. It can be tricky, so it is better to be
warned early of any problems.

From: Drpi <314@drpi.fr>
Date: Mon, 11 Jan 2021 18:46:34 +0100

I added "pragma
No_Elaboration_Code_All;" to my code
and... all records are rejected.

The boot data structure (in FLASH
memory) is composed of several records.
They are linked by their addresses. When
a record contains an address, initializing it
with a "non static number" value makes
the compiler complain (with
No_Elaboration_Code_All set).

You were right. I have to find a
workaround.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 11 Jan 2021 22:58:57 +0200

> I added "pragma
No_Elaboration_Code_All;" to my
code and... all records are rejected.

Ah, too bad.

The problem is that "static" in Ada means
"known at compile time", while
addresses, although static in execution,
are generally not known until link time. A
case where assembly language is more
powerful :-(

> I have to find a workaround.

If addresses are the only problem, and you
are in control of the flash memory lay-out,
you might be able to define static Ada
constant expressions that compute
("predict") the addresses of every boot
data structure record. But those
expressions would need to use the sizes of
the records, I think, and unfortunately the
'Size of a record type is not a static
expression (IIRC), and that may hold also
for the GNAT-specific
'Max_Size_In_Storage_Units.

From: Drpi <314@drpi.fr>
Date: Thu, 14 Jan 2021 14:07:29 +0100

18 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

> The problem is that "static" in Ada
means "known at compile time", while
addresses, although static in execution,
are generally not known until link time.
A case where assembly language is
more powerful :-(

Or C :(

I use the manufacturer C code generated
by their tool as reference. In C,
initializing a structure element with an
address is not a problem.

[...]

I can redefine the records with UInt32
instead of System.Address. The problem
is: What is the expression to convert from
Address to UInt32 without using a
function?

From: Jeffrey R. Carter
Date: Thu, 14 Jan 2021 15:07:54 +0100

You can use an overlay (usually not
recommended):

Addr : constant Address := ...;
U32 : constant Unsigned_32 with Import,
Convention => Ada, Address =>
Addr’Address;

You can also use an untagged union (also
not usually recommended), which I would
need to look up.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 14 Jan 2021 16:27:09 +0200

> [...] In C, initializing a structure element
with an address is not a problem.

The C compiler emits a relocatable
reference to the addressed object, and the
linker replaces it with the absolute
address. An Ada compiler should be able
to do the same thing when the address of
a statically allocated object is used to
initialize another statically allocated
object, assuming that the initialization
expression is simple enough to require no
run-time computation. Perhaps part of the
reason why that does not happen is that
System.Address is a private type, and
might not be an integer type.

Do you (or someone) know if the C
language standard guarantees that such
initializations will be done by the linker,
and not by the C start-up code that is
analogous to Ada elaboration code?

[...]

But my suggestion did not involve such
conversions: I assumed that you would be
able to compute, using static universal-
integer expressions, the addresses for all
your flash objects, and use those directly
in the record aggregates. This assumes
that you are able to define the lay-out of
all the stuff in the flash. You might then
also specify the 'Address of each flash
object, using those same universal-integer
expressions.

Something like this (not tested with a
compiler):

 Flash_Start : constant := 16#500#;
 Obj_A_Addr : constant := Flash_Start;
 Obj_B_Addr : constant := Obj_A_Addr +
16#234#;
 -- Here 16#234# is supposed to be the
size of Obj_A, so that
 -- Obj_B follows Obj_A in flash.

 Obj_A : constant Dcd_T := (
 Next => Obj_B_Addr,
 ...);

 for Obj_A'Address use
 System.Storage_Elements.
 To_Address (Obj_A_Addr);

From: Paul Rubin
Date: Thu, 14 Jan 2021 08:59:04 -0800

> Do you (or someone) know if the C
language standard guarantees that such
initializations will be done by the
linker, and not by the C start-up code
that is analogous to Ada elaboration
code?

I don't remember it being required by the
standard, but I remember there was some
pain in the standardization process trying
to make those kinds of address
initializations flexible while still being
doable at link time. The original proposal
had fancier capabilities than the final
standard did, because during discussions
it emerged that the fancy features couldn't
straightforwardly be implemented with
the linkers that people expected to use.

Specify Priority of Main
Program

From: Simon Wright
<simon@pushface.org>

Subject: Specify priority of main program
Date: Sat, 23 Jan 2021 17:55:13 +0000
Newsgroups: comp.lang.ada

GNAT allows you to specify the main
program's priority (actually, I suspect it'd
allow it on any parameterless library-level
procedure, but only the one actually used
as main will count);

 procedure Main with Priority => 6 is

This is handy for embedded code where
you don't want to waste the environment
task's stack space but need to run that
code at a non-default priority.

However, I can't see this use in the ARM;
is it an extension?

If it's not a GNAT extension, what would
the ARG view be likely to be for similar
permission for Storage_Size (and
Secondary_Stack_Size, but that is
definitely a GNAT extension)?

From: Simon Wright
<simon@pushface.org>

Date: Sat, 23 Jan 2021 21:45:11 +0000

Found it now: ARM D.1(18).

This isn't mentioned in Annex J,
Language Defined Aspects: (46),

 "Priority of a task object or type, or
priority of a protected object or type; the
priority is not in the interrupt range. See
D.1."

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 26 Jan 2021 20:52:50 -0600

[...]

>> If it's not a GNAT extension, what
would the ARG view be likely to be for
similar permission for Storage_Size
(and Secondary_Stack_Size, but that is
definitely a GNAT extension)?

I don't think the definition of
Storage_Size would work out-of-the-box
for a subprogram, since there wouldn't be
an obvious place for it to get evaluated.
So there's more work here than just
slapping "for a subprogram" on the
header. (Priority has to be static for a
subprogram, and there is an additional
rule explaining where it applies.)

But I don't see any other reason that
Storage_Size shouldn't be allowed for a
main subprogram. Probably it would take
someone asking... :-)

Simple Example on
Interfaces

From: Mario Blunk
<marioblunk.alere@gmail.com>

Subject: Simple example on interfaces
Date: Mon, 25 Jan 2021 08:08:05 -0800
Newsgroups: comp.lang.ada

I'm trying to solve a problem of multiple
inheritance. It seems to me that an
interface could be the solution although
[interfaces are] still a mystery for me.

[A particular example omitted. The part
of the conversation I have selected deals
with general interface ideas, not
depending on the particular example.
—arm]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 25 Jan 2021 23:06:09 +0100

[...]

Ada interface is a type that has interface
and no implementation. (It is a silly idea
inherited from Java.)

[...]

There exist various dirty tricks to emulate
full multiple inheritance but no universal
solution. If you really need full multiple
inheritance, choose the most important
path of implementations and make types
along its proper types. Other paths if
simple, could be tricked using

- Mix-in inheritance

Ada Pract ice 19

Ada User Journal Volume 42, Number 1, March 2021

- Generic packages to automate
implementation of interfaces

- Memory pools to inject implementation

Nothing of these is good. They basically
work only if the depths of the secondary
inheritance paths are 1.

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 26 Jan 2021 10:37:12 +0100

> Ada interface is a type that has interface
and no implementation. (It is a silly
idea inherited from Java.)

To make it look a little less silly, think of
it as a promise: a type that implements an
interface promises to provide a certain
number of operations.

Then you can define algorithms that work
on any type that fulfills the promises.

To me, the big benefit of interfaces is that
it is NOT inheritance; you say that your
type provides some operations, without
needing to classify it with an is-a
relationship.

(I can hear screamings of pure-OO people
who will not agree with me ;-)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 26 Jan 2021 11:25:37 +0100

> To make it look a little less silly, think
of it as a promise

I agree. I meant that Ada 95 had that
already:

 type Interface is abstract tagged null
 record;

There was no need to introduce it as a
separate concept. I think the real reason
was laziness. Vendors did not want to
implement full multiple inheritance.
Adding a simple constraint on the base
types looked bad and also breached
privacy:

 type Is_It_Interface is abstract tagged
 private;
 private
 type Is_It_Interface is abstract tagged
 null record;

> To me, the big benefit of interfaces is
that it is NOT inheritance; you say that
your type provides some operations,
without needing to classify it with an
is-a relationship.

But you do. When you say that T provides
F that in other words means T *is-a*
member of a class that provides F.
Interface is merely a formalization of that.

> (I can hear screamings of pure-OO
people who will not agree with me ;-))

OO muddied a lot of water. To me things
are quite pragmatic. How do I spell in the
language the fact that Long_Integer is an
integer? If Integer is an integer and
Long_Integer is an integer can I write a
program that works on integers? Can it be

the *same* program for each instance of?
Simple, natural questions.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Tue, 26 Jan 2021 03:15:01 -0800

> How do I spell in the language the fact
that Long_Integer is an integer?

This is what generics are for (since Ada
83).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 26 Jan 2021 12:53:19 +0100

Right, generics is a form of
polymorphism (static one). Generics have
interfaces and these form classes.

[...]

P.S. Comparing generics to overloading,
generics offer some re-use, and some
degree of formalization at the cost of
producing huge mess, while overloading
does none.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Tue, 26 Jan 2021 08:46:05 -0800

> at the cost of producing huge mess

I know you don't like generics. I do not
see a huge mess.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 26 Jan 2021 20:44:43 +0100

> I know you don't like generics. I do not
see a huge mess.

When something goes wrong it is almost
impossible to figure what. Contracts are
mostly implicit. They are not enforced
upon compilation. Instantiation errors
nobody can really predict. On top of that
is uncontrollable namespace pollution.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 26 Jan 2021 22:34:13 +0100

[...]

Generic packages and their formal
parameters are organized in a directed
acyclic graph like:

 A D

/ \/|
B C |
\ / |
 E |
 \ /
 F

rather than a tree. You want to instantiate
the whole graph in a single shot. You do
not want to manually specify constraints
on generic formal parameters when some
of them travel by several paths as D into
F.

BTW, observe similarity with
diamond/rhombus MI. That MI has some
problems generics do not have is a big lie.

But in my view generics are beyond
salvation. The idea is inherently weakly
typed. Ada's generic contracts are too
loose to be safe and too rigid for usability
of C++ templates.

From: Jeffrey R. Carter
Date: Mon, 25 Jan 2021 18:00:53 +0100

"IMHO, Interfaces are worthless."

Randy Brukardt

From: philip...@gmail.com
<philip.munts@gmail.com>

Date: Tue, 26 Jan 2021 17:48:03 -0800

> "IMHO, Interfaces are worthless."

 find interfaces to be extremely valuable
for abstracting I/O devices. For example
in my Linux Simple I/O Library, there is
code equivalent to the following (the
actual code is different, as I sucked a lot
of common boilerplate for I/O device
interfaces into a generic package that is
instantiated for each data item type):

package GPIO is
 type Direction is (Input, Output);
 type PinInterface is interface;
 type Pin is access all PinInterface'Class;
 procedure Put(Self : PinInterface;
 state : Boolean);
 function Get(Self : PinInterface)
 return Boolean;
end GPIO;

I've probably defined a dozen packages
that implement GPIO pins using
everything from Linux kernel services to
web servers. Every one of them contains
a function like this:

 function Create(...) return GPIO.Pin;

This allows code like the following:

 GPIO1 : GPIO.Pin :=
GPIO.libsimpleio.Create
(RaspberryPi.GPIO18, GPIO.Output);
 GPIO2 : GPIO.Pin := GPIO.HTTP.Create
("http://foo.munts.net", 5, GPIO.Output);
 GPIO3 : GPIO.Pin :=
GPIO.RemoteIO.Create
(server, 7, GPIO.Output);

This allows GPIO pins scattered far and
near throughout the known universe to be
treated exactly the same, even collected
into an array or container.

I very seldom implement more than one
interface in a type definition though,
unless a single device has multiple
sensors (temperature and humidity, for
instance).

Microsoft's .Net uses this scheme
pervasively, though I originally learned it
in Ada and later applied the same thinking
to .Net, Free Pascal, Java, Python, and
C++ (and other languages).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 26 Jan 2021 21:36:53 -0600

> "IMHO, Interfaces are worthless."

20 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

> Randy Brukardt

To qualify that a bit, they're worthless to
me (and I suspect, most people). For me,
at least, OOP's benefits are mainly found
in implementation inheritance, which is
not available for Interfaces. You have to
use abstract types to get those benefits.

For a single program, an interface doesn't
buy anything, because it is very unlikely
that you'll have more than one
implementation of the interface in use.
(Think the queue interface in Annex A.)
So using dispatching just adds
complication but no benefit; most likely
you'll statically bind everything anyway.

Which pretty much leaves reusable code.
Here, dispatching probably does have
some benefit. But you can get similar
benefits from generic units with formal
derived type parameters. The problem is
that interface dispatching is quite
expensive (not just the indexing of single
inheritance dispatching, but also some
sort of lookup of the appropriate table).
Whereas the generic solution does most of
the binding at compile-time.

It may be my optimizer guru background,
but indirect calls are pretty much
unoptimizable. Ergo, the cost of
dispatching is even worse than it appears
on the surface, given that valuable
optimizations like inlining, partial
evaluation (currying), and all of the things
that they enable aren't possible. So if the
code performance matters, ultimately the
interfaces will have to go. (Of course, if it
doesn't matter, one shouldn't be
warping a design for performance
reasons. But it is *hard* to get rid of
interfaces that are too expensive, so I
think it makes most sense to be sparing
with their use.)

Ultimately, I think one should only use
interfaces IFF there is a clear reuse case
where the substantial cost of dispatching
is not a concern. For me, that is
approximately never, but of course your
mileage may vary.

From: Shark8
<onewingedshark@gmail.com>

Date: Wed, 27 Jan 2021 15:04:09 -0800

> Ultimately, I think one should only use
interfaces IFF there is a clear reuse case
where the substantial cost of
dispatching is not a concern. For me,
that is approximately never, but of
course your mileage may vary.

It makes sense to use them in the internals
of the compiler. Perhaps not a single-
language compiler, but certainly a
multilanguage one like GCC. An
argument could be made for a single-
language compiler in an environment like
described in the DIANA reference-
manual's rationale, where the DIANA-
structure was meant to be passed around

to things like pretty-printers and static-
analyzers and code-generators.

You could make an argument that it
would be useful for code-generators, too.
I was contemplating using something like
a hybrid of IEEE694 and 3AC last year...
but that's a bit of a tangent.

https://standards.ieee.org/standard/
694-1985.html

3AC = Three Address Code

GPS/GNAT Studio Code
Completion Bug

From: John Perry <john.perry@usm.edu>
Subject: GPS/Gnat Studio: Code completion

with other projects
Date: Sun, 31 Jan 2021 17:52:42 -0800
Newsgroups: comp.lang.ada

Suppose I've developed a package A,
saved as a project. Now I'm working on
package B. I make A available by
specifying it in my gpr file, either as a
with statement or by adding it to
Source_Dirs. In package B I have the
statement "with A;".

At this point, while I edit package B,
GNAT Studio will code-complete any
entity of package B, as well as any entity
from the Ada standard library, but it won't
code-complete entities from package A,
such as A.Some_Feature.

How do I get GNAT Studio to do that?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 1 Feb 2021 08:51:58 +0100

It is a bug introduced in the latest version.
Cross-referencing (it seems more than just
auto-completion affected) across
packages worked fine in earlier GPS
versions.

From: Rod Kay <rodakay5@gmail.com>
Date: Tue, 2 Feb 2021 15:00:20 -0800

You might try this ...

To enable 'Find All References' =>
Append 'GPS.LSP.ADA_SUPPORT=no'
to ~/.gnatstudio/traces.cfg

... it should help with finding references
and refactoring.

From: Jérôme Haguet
<j.haguet@cadwin.com>

Date: Fri, 12 Feb 2021 04:32:07 -0800

> Wow, that worked. Can you explain
why? I don't see the connection at all. (I
don't know what "GPS.LSP" means,
either.)

You can find information in GNAT
Studio Release Notes

https://docs.adacore.com/gps-docs/
release_notes/build/singlehtml/index.html
#document-relnotes_20

Specifying Only 'First of
Array Index

From: Mehdi Saada
<00120260a@gmail.com>

Subject: specifying only 'First of an index in
an array

Date: Wed, 3 Feb 2021 09:47:14 -0800
Newsgroups: comp.lang.ada

Is there a way, on nominal or genetic
array type definition (I mean in generic
specifications), to ensure that
Index_type'First is always the same, but
that arrays can still grow?

Something like (certainly wrong): type
my_type is array (Scalar_type range
scalar_type'first .. <>) ?

That or I suppose I can wrap a function
around that type and make it private to
avoid range incompatibilities...

From: Jeffrey R. Carter
Date: Wed, 3 Feb 2021 22:45:17 +0100

This was discussed here recently referring
specifically to strings.

Since these are sequences, the index
should be numeric with a lower bound of
1.

Ada has had a way to do this since Ada
83:

type T_Base is array (Positive range <>) of
Element;
type T (Length : Natural) is record
 Value : T_Base (1 .. Length);
end record;

Ada 12 also adds the possibility of

subtype T is T_Base with
 Dynamic_Predicate => T'First = 1;

There is also the possibility of using a
Vector for this.

The record has the advantage that sliding
works, and the disadvantage that you have
to put .Value in a lot of places.

The predicate has the advantage that it is
an array type and objects can be indexed
directly, and the disadvantage that sliding
doesn't work.

Vectors have the advantage that the length
can vary, and the disadvantages that
slicing doesn't exist and conversions
between Vector and T_Base are more
complex than for the other forms.

Unreferenced Parameters

From: Simon Wright
<simon@pushface.org>

Subject: Unreferenced parameters
Date: Wed, 03 Feb 2021 18:20:09 +0000
Newsgroups: comp.lang.ada

In gps-editors.ads:1492, in GNAT Studio,
I have

Ada Pract ice 21

Ada User Journal Volume 42, Number 1, March 2021

 overriding function Expand_Tabs
 (This : Dummy_Editor_Buffer;
 Line : Editable_Line_Type;
 Column : Character_Offset_Type)
 return Visible_Column_Type is (0);

and FSF GCC 10.1.0 says
gps-editors.ads:1494:07: warning: formal
parameter "Line" is not referenced
gps-editors.ads:1495:07: warning: formal
parameter "Column" is not referenced
which is clearly the case (how does it
know that it's OK not to reference This? it
must check the context).

The compilation is set to treat warnings as
errors (-gnatwe) so I need to suppress
these warnings.

I could do so with pragma Warnings (Off,
"formal*not referenced");

I have done so by renaming the
parameters Dummy_Line,
Dummy_Column.

But is there a way of using aspect or
pragma Unreferenced? Putting pragma
Unreferenced after the function definition
doesn't work.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 3 Feb 2021 21:12:15 -0600

We (the ARG) recently added an
allowance for aspect specifications on
parameters and a few other constructs.
The reason in part was because we didn't
want to restrict where implementation-
defined aspects can be placed, and the
motivating case was aspect Unreferenced.

So I'd guess that you can put the aspect
directly on the parameters in the usual
way (but that may require a compiler not
available yet; the change was approved in
Sept [AI12-0395-1] and Oct [AI12-0398-
1]). So, I'd expect the following to work
(eventually):

 overriding function Expand_Tabs
 (This : Dummy_Editor_Buffer with
 Unreferenced;
 Line : Editable_Line_Type with
 Unreferenced;
 Column : Character_Offset_Type with
 Unreferenced) return
 Visible_Column_Type is (0);

Array from Static Predicate
on Enumerated Type

From: Matt Borchers
<mattborchers@gmail.com>

Subject: array from static predicate on
enumerated type

Date: Fri, 12 Mar 2021 12:49:27 -0800
Newsgroups: comp.lang.ada

Say, for example, I define a static
predicate on a sub-type of an enumerated
type, like:

type LETTERS is (A, B, C, D, E, F, G, H, I ,
J, K);
subtype CURVED is LETTERS

 with Static_Predicate CURVED in
 B | C | D | G | J;

What I want is an array over CURVED
(using CURVED as the index), but since
attributes 'First and 'Last (and thus
'Range) is not allowed, this cannot be
done.

Also, I am restricted in that the order of
LETTERS cannot be rearranged.

Has anybody come up with a clever data
structure to make sub-types with
predicates easy and sensible for indexing
(not iterating)?

I only need read access [...]

From: Jeffrey R. Carter
Date: Fri, 12 Mar 2021 23:16:29 +0100

It sounds as if you want a map, for which
one of the map containers in the standard
library would be appropriate.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 12 Mar 2021 23:41:53 +0100

> subtype CURVED is LETTERS

> with Static_Predicate CURVED in B
| C | D | G | J;

Do not use this thing, because its semantic
is basically a lie as it violates contracts of
other operations of the type, like 'Succ.

Using formal speak, CURVED is not
substitutable for LETTERS in too many
cases to be any useful.

This applies to any arbitrary constraints
you could impose using a predicate. They
break things. Do not ever consider them
as an option.

From: Matt Borchers
<mattborchers@gmail.com>

Date: Fri, 12 Mar 2021 18:06:22 -0800

I pretty much agree with Dmitry on this.
The usefulness of this is very, very low
without better support from the language
itself. However, Dmitry, if programmers
should not consider a feature of a
language as an option for a solution, then
it begs the question on the quality of the
language, quality of the compiler, or
questions the abilities of caretakers of
Ada. Don't get me wrong, however, I
think Ada is exceptional.

I thought I read that 'Pred and 'Succ do
work as one would expect for the
Predicated sub-type, but I did not try them
as I did not need them.

I did read the entire rationale and
'First_Valid and 'Last_Valid would allow
the programmer to create an array with a
range that guarantees inclusion of all
enumerated values of the statically
predicated sub-type. But, this leaves
holes in the array as wasted memory. My
actual use case is hundreds of enumerated
values and the sub-types have very few
values each. Think of a case like a

Unicode table where you might want to
classify characters into small non-
contiguous groups and these characters
may be far apart from one another.

I do want a map or hash table, but in this
case, I was hoping that Ada would handle
the mapping for me such that I did not
have to instantiate such a complexity for a
simple example. I was a bit surprised
after discovering Static_Predicate that the
Ada language syntax was essentially
useless in dealing with it in a consistent
way.

I like the idea of creating non-contiguous
enumerated sub-types. I've found that I
often want to do it and must seriously
consider design decisions like
enumeration order that really should not
be something that is that important to
program design. I think that if the
language lets you define them, then the
rest of the supporting syntax of the
language should also support them even if
there is a small penalty of a double look-
up through a mapping table.

I had a simple case many years ago with
Ada 95, I think, when I was implementing
a checkers game. I wanted an
enumeration of 5 items for the piece that
occupied a square.

 type PIECE is (EMPTY, RED, BLACK,
 RED_KING, BLACK_KING);
 p : PIECE;

This was a nice order because I could use
the language syntax to determine if a
piece was a King.

 subtype KING is PIECE range
 RED_KING..BLACK_KING;
 if p in KING then...

However, I had to write a function to
determine if a piece was Red or Black and
thus different calling syntax. The other
order option was:

 type PIECE is (EMPTY, RED,
 RED_KING, BLACK, BLACK_KING);

This order was nice because the language
let me easily determine the Color of a
piece.

 subtype REDS is PIECE range
 RED..RED_KING;
 subtype BLACKS is PIECE range
 BLACK..BLACK_KING;
 if p in REDS then...

but I'd have to write a function to
determine if a piece was a King and still
different calling syntax.

Unfortunately, back then, the programmer
couldn't have it both ways though it
would've been very convenient. It
appears that Static_Predicate solves this
problem because "in" is updated to work
with the Predicate. So if this works, why
was it decided that the rest of the
language syntax be inconsistent? Surely a
map table would have sufficed with a

22 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

slight performance penalty, but for the
sake of language consistency you let the
programmer decide. I can imagine an
internally compiled map table would be
much faster than the instantiation of the
Map or Hash Container package.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 12 Mar 2021 22:55:51 -0600

>I do want a map or hash table, but in this
case, I was hoping that Ada would
handle the mapping for me

Ada is not some sort of magic wand.
What you want requires a complex data
structure, and using an array (as defined
in Ada) for it is not practical (mainly
because of the slice operation of which
I've complained previously).

>...such that I did not have to instantiate
such a complexity for a simple
example.

Ada was designed to provide high-quality
(that is, fast) code. If you want a language
with a high degree of abstraction -- Ada
isn't it. And in such a language, you
wouldn't have arrays (in the Ada sense) at
all - you would only have maps and
sequences.

And if you think a single instance is "such
complexity", I have no idea what you
would want -- a map instance is simpler to
write than an array type declaration (and
much simpler under the covers). Do
you also never use
Unchecked_Deallocation?? It's harder to
instantiate than an Ordered_Map.

>I was a bit surprised after discovering
Static_Predicate that the Ada language
syntax was essentially useless in
dealing with it in a consistent way.

I was in favor of set constraints rather
than Static_Predicates, mainly because of
the value problems Dmitry commented
on. But even those would have been
illegal in arrays -- an array makes a lousy
way to describe a map.

Anyway, subtypes with Static Predicates
work for case statements, memberships,
and for loops; they're only disallowed for
arrays. I don't think anyone should be
writing an array in a modern language
(outside of interfacing to something
outside of that language) - it's a mixed up
data structure that only makes sense
because of historical reasons.

> I like the idea of creating non-
contiguous enumerated sub-types.

Static predicates do that fine. Just don't
use them with obsolete data structures. :-)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 13 Mar 2021 09:04:51 +0100

[Bracketed comments in this post are
from the author. —arm]

> I pretty much agree with Dmitry on this.
[...]

Subtyping is a very difficult problem.
When a new type is created by
constraining [*] this necessarily breaks
things.

Ada 83 was very careful to limit that to
ranges and discriminant values. That
breaks, sure, but the damage is minor and
can be controlled [by the programmer]. In
contrast, an arbitrary constraint [as well as
arbitrary extension] is like a carpet
bombing.

My view, as a programmer, is that
features of type algebra [which subtyping
by constraining is] must be carefully
limited to enable massive language
support in detection of substitutability
issues at *compile* time. Features must
be reasonably safe to use.

From: Matt Borchers
<mattborchers@gmail.com>

Date: Mon, 15 Mar 2021 07:11:23 -0700

So, what I'm taking away from this
discussion is that instantiating a Map is
pretty much the best option when using a
sub-type with a Static_Predicate to map a
parent value to a sub-type.

[...]

It seems like the Ada community is
always chasing higher adoption and better
recognition of the Ada language. If the
community truly wants this, then Ada
needs to be accessible as a general
purpose language with very few surprises.
I evangelize for Ada when I can but I am
of the opinion that language rules like
these only frustrate people when they
create seemingly inconsistent usability.
There may be a good technical reason to
break the behavior, but in this example
and in my opinion, the technical excuse is
not good enough when there is a very
simple solution that the programmer
should not have to implement. My 2
cents.

From: Matt Borchers
<mattborchers@gmail.com>

Date: Mon, 15 Mar 2021 07:16:56 -0700

> Just don't use them with obsolete data
structures. :-)

I can't tell if you are being facetious? If
not, can you give me some reasons on
why you think arrays are obsolete data
structures? To me, they remain one of the
basic building blocks of all programs.

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 15 Mar 2021 10:53:18 -0700

> I can't tell if you are being facetious?
[...]

But they *AREN'T* maps, nor are they
functions... despite the tendency to think
of them as nails for your hammer (Array),
this really isn't the case... and now that

Ada has
Ada.Containers.Indefinite_Ordered_Maps
it really is an obsolete data-structure for
mapping in most cases. (Exceptions exist
for things like finite-state machines and
virtual-machine instruction-sets where
you're working with a uniform/near-
uniform collection and/or things like
embedded.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 16 Mar 2021 01:58:06 -0500

> can you give me some reasons on why
you think arrays are obsolete data
structures?

If you're talking *representation*, then
surely arrays are the root of everything.
But a general purpose programming
language should hide representation
issues as much as possible. For most uses,
how a data structure is implemented is
irrelevant; you want to ask for the
fundamental data.structure that you need
and let the implementation choose the
best implementation to meet your needs.

And an array is not a fundamental data
structure: those are bags and sequences
and maps (and trees and graphs, but those
aren't relevant here). Arrays have features
of all of these, as well as some others --
they're not a fundamental data structure at
all.

Moreover, Ada in particular merges in
additional features that have little to do
with data structures, and end up with a
mixed up mess where one gets surprises
from super-null arrays and arrays whose
lower isn't 'First and holey arrays and
other such nonsense.

For instance, the primary reason that Ada
cannot have holey arrays is because of the
slice (mis)feature, in particular because a
slice can be assigned and (worse) passed
as an in out parameter. If one has holey
arrays, one also would expect to have
holey slices (else the language would be
quite inconsistent). But implementing a
holey slice is problematic. For parameter
passing, pretty much the only way to
implement that would be to provide a
call-back subprogram with every
parameter that knows how to write each
index of the slice. But that would be a
classic distributed overhead -- it would be
incurred for *every* array parameter
since one can always create a holey slice
of an array -- even of a type that is not
itself holey. That would make passing
strings and other arrays *much* more
expensive.

[Example making the point omitted.
—arm]

The point is that holey arrays are a
massive can of worms, and it's impossible
to have a consistent language if
discontiguous subtypes exist. Tucker likes
to say that sometimes language design is

Ada Pract ice 23

Ada User Journal Volume 42, Number 1, March 2021

like a bump under a carpet -- you can
move the bump around, but you can't get
rid of it without ripping out the carpet and
starting over (with a different language
design). This is one of those cases.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 18 Mar 2021 12:15:30 +0200

 [about "sparse" enumeration subtypes
defined by static predicates, and arrays
indexed by such subtypes]

>>> Nevertheless, it still feels like an
unfinished feature as it is now.

>> It is not unfinished. It is irreparably
broken.

> And this does not make for good
advertising for Ada.

Matt, you should be aware that Dmitry
has strong opinions about language and
program design that are not shared by all
Ada users and Ada proponents.

To be sure, Ada is showing some of its
age. Updates of the Ada standards have
made extensive additions to the language,
while taking great pains to remain mostly
upwards compatible, not only in syntax
and semantics but also in wider usability
goals such as remaining competitive for
hard-real-time embedded systems and
safety-critical systems where
implementation overheads and
implementation complexity must be held
down. This inevitably means that new
high-level features such as static
predicates cannot always be fully
orthogonal to other features of the
language.

There have been suggestions and
discussion here of an "Ada successor"
language, and Dmitry in particular thinks
that the type system should be completely
overhauled for such a new language.
Unfortunately there seems to be no
demand from any large potential user
group for such a language, or if there is
demand, it is being satisfied mostly by
new "grass-roots" languages such as Rust.

I have some hope that the swiftly growing
scope and impact of malware and SW
security breaches will prompt a major
effort to develop computer systems,
including programming languages, which
are provably secure and incorruptible, and
perhaps that will be an opportunity for an
Ada successor language.

From: Jeffrey R. Carter
Date: Fri, 19 Mar 2021 01:49:39 +0100

> I wish I had the transcript from the Ada
Group's discussions on this topic. It
must have been a good one. Do they
keep transcripts of their discussions? If
so, does anybody know where to find
them?

http://www.ada-auth.org/arg.html

You probably want ai05-0153-1 at

http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ai05s/ai05-0153-
1.txt?rev=1.15&raw=N

From: Matt Borchers
<mattborchers@gmail.com>

Date: Mon, 22 Mar 2021 18:07:21 -0700

Thanks Jeff. This is going to take a while
to get through and it is heavy reading. I
had no idea this subject has been
fermenting for 12+ years. However, in
only the tiny portion I've read so far it
seems a few commenters of high repute
share some of my sentiments -- which
only makes me 12 years late to the party
of the losing side. :)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 22 Mar 2021 22:43:48 -0500

To get as complete as possible a picture of
how some Ada feature came to be, you
need to not only read the AI and
especially its e-mail, but also the meeting
minutes associated with that AI. We now
have an index for that purpose on Ada-
Auth.org, the Ada 2005 AI version is
found at:

http://www.ada-auth.org/
AI05-VOTING.HTML

Unfortunately, for Ada 2012, a lot of
design occurred in unofficial phone
meetings. No minutes were produced for
those meetings, and so far as I know the
only existing material is the notes I have
kept on my hard disk. If I ever get some
time, I want to get a version of those on-
line so this sort of research can work
usefully for Ada 2012. (Ideally in the
format that the indexing tool can pick up
and put into those indexes.)

Note that all three AI05-0153-x versions
were involved, so it is useful to read all of
them. (There also was some cross-AI
discussions, which is probably beyond
anyone's ability to find, at least for fun.)

Ada Style and "Early
Return"

From: John Mccabe
<john@mccabe.org.uk>

Subject: Ada and "early return" -
opinion/practice question

Date: Mon, 15 Mar 2021 09:46:37 -0700
Newsgroups: comp.lang.ada

I hope this isn't a FAQ (it's hard to find
relevant articles) but can someone guide
me on the 'normal' treatment in Ada style
of what appears to be referred to (by
C/C++ programmers) as early-return.

For example, you have a C++ function
(pseudo code sort of thing):

<sometype> fn(<some parameters>)
{
 if (<some undesirable condition 1>)
 {

 return <something bad happened 1>;
 }
 if (<some undesirable condition 2>)
 {
 return <something bad 2>;
 }
 if (<some undesirable condition 3>)
 {
 return <something bad 3>;
 }
 // Only get here if everything's good...
 <do some real stuff>
 return <something good>;
}

I've probably mentioned this before, but
it's a long time since I used Ada in anger
and I don't remember seeing stuff like that
when I did use Ada a lot; does anyone
write stuff like that in Ada?

When I first learnt to program properly it
was using Pascal with, as I remember it,
only one return from a function being
allowed, so over the years I've mostly
looked at positive conditions and indented
stuff, pulling the stuff in the middle out
into its own procedure or function where
appropriate, but you see so many people
defending this style in C/C++ that I
wonder whether it really is defensible?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 15 Mar 2021 18:02:09 +0100

I see nothing wrong with it. [...]

P.S. The old mantra of structured
programming was one entry, one exit.
This is why some argued for single return
while storing result code in a variable.
Clearly adding a result variable would
reduce readability rather than improve it.

P.P.S. One could debate exception vs.
return code, but this is another story for
another day.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 15 Mar 2021 10:31:27 -0700

Sometimes I write code that way,
sometimes I have a Result variable that
gets set along the way. The latter mostly
when Result is a container of some sort,
and parts of it get set at different points.

I would tend to use an exception for
"something bad", but that depends on the
overall design.

There are various maintenance issues on
both sides; the summary is "editing
existing code is a pain" :(.

From: Jeffrey R. Carter
Date: Mon, 15 Mar 2021 19:37:02 +0100

[In reply to the original post. —arm]

Other than the use of exceptions rather
than a return code, this is a standard idiom
in Ada. It's much easier to read and
understand than the Pascal approach, just
as a "loop and a half" is much clearer with
an exit than the Pascal approach.

24 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

I seem to recall Robert Dewar arguing for
this style on here many years ago.

From: John Mccabe
<john@mccabe.org.uk>

Date: Mon, 15 Mar 2021 11:54:01 -0700

> I seem to recall Robert Dewar arguing
for this style on here many years ago.

From what I remember of Robert (RIP), I
suspect he probably argued against it at
some point as well, depending on who he
was arguing with :-)

Elaboration Code,
Aggregates

From: Simon Wright
<simon@pushface.org>

Subject: Elaboration code, aggregates
Date: Sun, 28 Mar 2021 20:41:25 +0100
Newsgroups: comp.lang.ada

In June 2020, Luke A. Guest was having
trouble with getting the compiler to place
constant data into the data section without
elaboration code.

https://groups.google.com/g/
comp.lang.ada/c/
B2NA-qjCJuM/m/4ykywZWZAgAJ

Can be found as “Putting Data in the .data
Section”, in AUJ 41-2, June 2020. —arm]

During preliminary work for FSF GCC
11, I found that this ARM interrupt vector
(which used to compile happily without
needing elaboration code) no longer
would:

https://github.com/simonjwright/
cortex-gnat-rts/blob/master/
stm32f4/adainclude/startup.adb#L231

[Example removed as it is equivalent to
the one following. —arm]

and Arduino Due clock startup didn't:

https://github.com/simonjwright/
cortex-gnat-rts/blob/master/
arduino-due/adainclude/
startup-set_up_clock.adb#L48

PMC_Periph.CKGR_MOR :=
(KEY => 16#37#,
 MOSCXTEN => 1, -- main crystal
 -- oscillator enable
 MOSCRCEN => 1, -- main on-chip rc osc.
 -- enable
 MOSCXTST => 8, -- startup time
 others => <>);

On investigating, it turns out that FSF
GCC 11 **AND** GNAT CE 2020 have
lost the ability to assign aggregates as a
whole; instead, they assign the record
components one-by-one.

The reason for the Arduino Due failure is
that the PMC hardware requires that each
write to the CKGR_MOR register contain
that value of KEY! so the sequence is

read the register (KEY is always returned
as 0)

overwrite the KEY field
write the register back
read the register, KEY is 0
overwrite the MOSCXTEN field
write the register back, KEY is 0 so
inoperative
etc (including the 'others => <>'
components).

Bug report raised:

https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=99802

From: Andreas Zeurcher
<zuercher_andreas@outlook.com>

Date: Mon, 29 Mar 2021 11:49:06 -0700

Turn-around time from submission to
general-availability of a released fix can
be quite long in FSF GNAT or
Community Edition. (Paid-support for
GNAT Pro at AdaCore can be more
prompt, I hear.)

From: Simon Wright
<simon@pushface.org>

Date: Mon, 29 Mar 2021 20:03:42 +0100

Maybe, but this is accepted as a
regression and Eric is on it! :impressed:

Paid support can be very prompt. We
were at the stage where our Systems
Engineer couldn't accept a compiler
change, so wavefronts wouldn't have
helped, but workrounds were indeed
prompt.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 30 Mar 2021 08:08:34 +0100

Now fixed on GCC mainline.

Cross-compiler for
Embedded Linux on
ARMv7?

From: John Mccabe
<john@nospam.mccabe.org.uk>

Subject: Are there any cross-compiler for
Embedded Linux on ARMv7?

Date: Mon, 29 Mar 2021 17:16:42 -0000
Newsgroups: comp.lang.ada

Kind of as it says in the subject; I'm aware
there's a GNAT Pro release that seems to
target Embedded Linux on ARM, but are
there any others?

I'm assuming the GNAT offering covers
ARMv7 on the basis their bare-metal one
packaged in the Community Edition does,
but maybe it doesn't!

I saw some information on a PTC
ApexAda one but what I read gives the
impression it may be ARMv8 only,
maybe not though!

If anyone knows more about this, any info
they can give me would be very much
appreciated; at this point I'm particularly
interested in ARM A9 support, and at
least Ada 2005, preferably 2012.

Also, does anyone know what AdaCore's
like (or any other vendors, for that matter)
if you ask for pricing/evaluation? We've
been using C++ at work for ages, but I'm
quite interested in seeing whether it would
be at all feasible to move, at least partly,
to Ada because C++ gets on my nerves :-)
Sadly though, as we're busy and it would
be an "on the side" evaluation, I've not got
much time to 'play' with it, so the duration
would be pretty much be open-ended, and
I could do without people hassling me
every few weeks to buy their products
when the chances are I've managed about
10 minutes with it between calls...

Hope you don't mind me asking here; I
know there are some great guys from
various vendors here, so...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 29 Mar 2021 20:26:47 +0200

We are using GNAT Pro cross compiler
with Yokto and Debian, though I presume
it will work with any distribution.

You need no evaluation. Simply install
Debian, Ubuntu or Fedora on a reasonable
ARM board 2GB or more. Use the native
GNAT FSF compiler there to build your
executable. Transfer it to the target board.
Enjoy.

Once you are ready, go and buy GNAT
Pro.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Mon, 29 Mar 2021 21:06:32 -0000

Thanks for that info Dmitry. We're using
Petalinux on custom hardware with a
Xilinx Zynq-7000 (dual-core ARM A9),
so it would be nice to run it on the real
thing to work out how we'd deal with
some of the FPGA interfaces and so on, if
we were to purchase.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 29 Mar 2021 23:40:46 +0200

If you plan to run Linux there I see no
reason why you could not use the native
ARM compiler for evaluation. A cross
compiler would change little or nothing in
that case.

We are using a cross compiler for our
custom target boards because it can be
hosted on a powerful x86 machine instead
of a sluggish ARM which also tends to
crash under load or freeze when it goes
into the swap.

Otherwise, nothing changes. We can
perfectly well compile everything using
GNAT FSF on an ODROID-XU4. It
would only take a week instead of a day
to build…

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 30 Mar 2021 20:12:36 +0200

Ada Pract ice 25

Ada User Journal Volume 42, Number 1, March 2021

> The Zynq-7000 we're using is a dual-
core ARM A9 (as I mentioned) running
at between 866MHz. As far as I can see
the ODROID XU4 has quad-A15s at
2GHz + quad-A7s at 1.4GHz, with
2GB RAM. So, if you imagine the
"week instead of a day" thing, then take
into account the dual-core vs 8-core,
866MHz vs 2.0GHz/1.4GHz, 1.0GB vs
2.0GB, and RAM filesystem (ok,
admittedly we have got 4GB flash on
there, but...), perhaps a native ARM
compiler isn't going to be a very
effective evaluation tool :-)

One of our target boards is only 512M
RAM single core.

The trick is to build on ODROID, but to
run on the target.

Our code basis is huge, which is why it
takes so long to build. For a sizable
project ODROID is OK. When I compile
my private stuff it takes 12+ hours to
recompile everything on a Raspberry Pi 3,
and only 3-4 on an ODROID.

The main problem is to figure out the
gprbuild -j<n> switch. -j0 will likely run
you into the swap with 8 kernels and
many generics. ARM Linux becomes
unstable when swapping.

If you invest in writing a good mock for
your hardware, you could develop and
test mostly on an x86. Only the
integration tests would require building
on the ODROID and running on the
target.

From: Andreas Zeurcher
<zuercher_andreas@outlook.com>

Date: Mon, 29 Mar 2021 11:46:20 -0700

> Also, does anyone know what
AdaCore's like (or any other vendors,
for that matter) if you ask for
pricing/evaluation?

The sales staff is pleasant to deal with, but
you might get sticker shock at the prices
that they charge for non-GPLed supported
products. As far as evaluation, I think
that you are looking at it with the GPLed
Community Edition, that is something
that you should ask the salesman to see
whether there is in fact any evaluation
period for specific targets that are non-
GPLed-only, not part of Community
Edition.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Mon, 29 Mar 2021 21:14:30 -0000

> The sales staff is pleasant to deal with,

That's good to know.

> but you might get sticker shock at the
prices that they charge for non-GPLed
supported products.

Possibly. It's been a long time since I
knew the sort of prices these things go
for, but it was in the thousands of dollars

range then. It might still shock me though
:-)

[...]

As far as evaluation goes, they do have a
form that mentions it but it's the duration
thing that would be an issue. I've tried to
cultivate an interest in Ada amongst my
colleagues (actually, my line manager's
mostly done FPGA stuff using VHDL so
some of the bits I've shown him have been
'familiar'), but we don't have anyone free
to concentrate on evaluating something
exclusively.

Targeting the 8051 with Ada

From: Mockturtle
<framefritti@gmail.com>

Subject: Adapting an Ada compiler to
generate 8051 code (Again?! ;-)

Date: Tue, 30 Mar 2021 02:04:41 -0700
Newsgroups: comp.lang.ada

for a project related to a possible start-up,
we need to program a Flash controller that
has a 8051 core (as many other
controllers). I would like using Ada for
that, but I discovered (also by browsing
c.l.a.) that there is no Ada compiler
producing 8051 code.

I am considering involving some
university colleagues of mine to start a
project aimed at having an Ada compiler
for 8051, possibly leveraging some
existing compiler. According to some
posts read here, I understand that it is not
totally impossible, if we are willing to
accept some limitations.

I did not study (yet) in detail the 8051, but
as I understand it is a small 8-bit
processor, with flash memory for code
and data and a small amount of RAM
onboard (but maybe this depends on the
specific controller). My knowledge about
compilers is superficial, but I guess we
should give up to some Ada features like

[List of runtime-based Ada features
omitted. —arm]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 30 Mar 2021 11:56:34 +0200

I think the efforts would be better
invested in recycling all existing 8051
cores. Make the planet greener! (:-))

Honestly, there is little useful one could
do in 64K. Remember what one famous
thinker and epidemiologist said about
640K? (640K is 10 times more than 64K)

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Tue, 30 Mar 2021 13:40:51 +0300

> [Original post. —arm]

I advise against that approach. The 8051
architecture is far too limited and quirky
(and ancient) to waste such a major effort
on.

However, you might have a look at the
HAC compiler. As I understand it, it
generates code for a virtual machine, and
it might be easier to implement that
virtual machine in 8051 code than it
would be to generate 8051 code from the
compiler.

[...]

I think you have two options:

1. Use HAC and implement the HAC VM
in 8051 code, either in C or in assembler.

2. Pay for the AdaCore Ada-to-C
compiler and use an 8051 C compiler as a
back end.

[...]

There are some free 8051 C compilers
(for example SDCC, Small Device C
Compiler), but most professional
programming for the 8051 uses
commercial compilers such as the
ARM/Keil compiler or the IAR compiler.
You could try SDCC first, but if you get
problems with e.g. using too much
internal RAM, the commercial compilers
might help.

I have often wished that there would be
Ada compilers for more microcontrollers,
but I understand why there aren't. An
Ada-to-C compiler seems the most
promising route.

From: Gautier
<gautier_niouzes@hotmail.com>

Date: Tue, 30 Mar 2021 04:24:48 -0700

> Honestly, there is little useful one could
do in 64K.

Well it depends...

On one hand there will never be enough
memory (and cores) for the famous
thinker's operating system just to run idle.

On the other hand you had some decades
ago computers with everything stuffed in
64KB. For instance: a 16KB ROM with
an OS, a BASIC interpreter, I/O, floating-
point computations, etc.; 48KB RAM
including the video memory. You had
cool games and even a multi-window
word processor on such a machine...

From: Mockturtle
<framefritti@gmail.com>

Date: Tue, 30 Mar 2021 04:27:59 -0700

> Honestly, there is little useful one could
do in 64K.

Well, the old ZX Spectrum with its 48K
RAM extension (I and my brother said
when we extended the RAM: "What are
we going to do with all this memory?" :-D
) used just 64K and you could do nice
stuff. The first release of Turbo Pascal
(editor and compiler integrated) was a
.COM, limited by design to 64K.

I agree that it is easier to work without
this limitation, but also the job of a flash
microcontroller is not very complex.

26 Ada Pract ice

Volume 42, Number 1, March 2021 Ada User Journal

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 30 Mar 2021 14:01:34 +0200

> Well, old ZX Spectrum with its 48K
RAM [...]

I remember the glorious time when 1K
weighted 1kg (:-))

When I started, I and my pal worked
together on a 256K machine in two time
sharing terminal sessions. That was RSX-
11M. These days almost every executable
begins at 5-10M.

From: Paul Rubin
Date: Tue, 30 Mar 2021 12:16:46 -0700

> for a project related to a possible start-
up, we need to program a Flash
controller that has a 8051 core (as many
other controllers).

Can you possibly avoid that? There are
many microcontrollers that GCC has back
ends for, so you could use GNAT. E.g. I
think GNAT for the AVR is a thing. Of
course even at the low end, ARM is
everywhere now, and that is even easier.

Besides the approaches other people have
mentioned, I don't know if there are any
really large obstacles to targeting GCC to
the 8051, or to some kind of VM that the
8051 can simulate, since you don't care
about performance. If you do care about
performance, you won't be using an 8051
in the first place ;-).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 31 Mar 2021 18:06:42 -0500

> Honestly, there is little useful one could
do in 64K.

Gee, the early versions of Janus/Ada were
hosted in 48K. Apparently, a compiler
is nothing useful??? ;-)

We studied this problem back in the day
(30+ years ago) The problem is the 8051
architecture, which doesn't have a usable
stack or the instructions to make one. You
would have to avoid recursion and any
long chain of calls. Not sure whether the
result would program much like Ada, it
would be much closer to Fortran 66.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 31 Mar 2021 18:14:44 -0500

> I have often wished that there would be
Ada compilers for more
microcontrollers, but I understand why
there aren't. An Ada-to-C compiler
seems the most promising route.

Send $$$. ;-) This was a project that was
ideally suited for the Janus/Ada compiler
suite, but we never were able to find a
customer for it. The problem is always
that the first customer has to pay a
substantial part of the development; later
customers don't have to pay that freight.
(Back in the "waiver" days we considered
doing it for the "fun" of making DoD-
types have to find better excuses to avoid
Ada than a compiler not existing for it,
but the likely ROI wasn't there to
convince the angel investors to go along
with the idea.)

28

Volume 42, Number 1, March 2021 Ada User Journal

Conference Calendar
Dirk Craeynest
KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. Where available, the status of events is
indicated with the following markers: "(v)" = event is held online, "(h)"= event is held in a hybrid form (i.e. partially online).

2021

 April 07-09
(v)

29th International Conference on Real-Time Networks and Systems (RTNS'2021), Nantes, France.
Topics include: real-time applications design and evaluation (automotive, avionics, space, railways,
telecommunications, process control, multimedia), real-time aspects of emerging smart systems (cyber-
physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks
modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)
analysis, security, ...), software technologies for real-time systems (model-driven engineering,
programming languages, compilers, WCET-aware compilation and parallelization strategies,
middleware, Real-time Operating Systems (RTOS), ...), formal specification and verification, real-time
distributed systems, etc.

April 12-15
(v)

27th International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2021), Essen, Germany.

April 12-16
(v)

14th IEEE International Conference on Software Testing, Verification and Validation (ICST'2021),
Porto de Galinhas, Brazil. Topics include: manual testing practices and techniques, security testing,
model based testing, test automation, static analysis and symbolic execution, formal verification and
model checking, software reliability, testability and design, testing and development processes, testing
in specific domains (such as embedded, concurrent, distributed, ..., and real-time systems),
testing/debugging tools, empirical studies, experience reports, etc.

April 19-23
(v)

12th ACM/SPEC International Conference on Performance Engineering (ICPE'2021), Rennes,
France.

May 11-13
(v)

ACM International Conference on Computing Frontiers 2021 (CF'2021), Catania, Sicily, Italy.
Topics include: embedded, IoT, and Cyber-Physical Systems; large-scale system design and networking;
system software, compiler technologies, and programming languages; fault tolerance and resilience
(solutions for ultra-large and safety-critical systems, e.g. infrastructure, airlines; hardware and software
approaches in adverse environments such as space); security (methods, system support, and hardware for
protecting against malicious code; ...); etc.

May 18-21
(v)

14th Cyber-Physical Systems and Internet of Things Week (CPS Week'2021), Nashville, Tennessee,
USA. Event includes: 5 top conferences, HSCC, ICCPS, IPSN, RTAS, and IoTDI, multiple workshops,
tutorials, competitions and various exhibitions from both industry and academia.

 May 18-21 27th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS'2021). Topics include: systems research related to embedded systems and time-
sensitive systems, ranging from traditional hard real-time systems to embedded
systems without explicit timing requirements; papers describing original systems,
applications, case studies, methodologies, and algorithms that contribute to the state of
practice in design, implementation, verification, and validation of embedded systems
or time-sensitive systems.

Conference Calendar 29

Ada User Journal Volume 42, Number 1, March 2021

May 19-21
(h)

9th International Conference on Fundamentals of Software Engineering (FSEN'2021), Tehran, Iran.
Topics include: all aspects of formal methods, especially those related to advancing the application of
formal methods in the software industry and promoting their integration with practical engineering
techniques; software specification, validation, and verification; software architectures and their
description languages; integration of formal and informal methods; component-based systems; cyber-
physical software systems; model checking and theorem proving; software verification; CASE tools and
tool integration; industrial applications; etc.

May 23-29
(v)

43rd International Conference on Software Engineering (ICSE'2021), Madrid, Spain. Topics include:
the full spectrum of Software Engineering, such as testing and analysis (software testing, program
analysis, validation and verification, fault localization, formal methods, programming languages),
empirical software engineering (mining software repositories, software ecosystems, ...), software
evolution (evolution and maintenance, debugging, program comprehension, API design and evolution,
configuration management, release engineering and DevOps, software reuse, refactoring, reverse
engineering, ...), social aspects of software engineering (human aspects of software engineering, agile
methods and software processes, software economics, ethics in software engineering, ...), requirements,
modeling, and design (requirements engineering, modeling and model-driven engineering, software
architecture and design, tools and environments, variability and product lines, parallel, distributed, and
concurrent systems, ...), dependability (software security, privacy, reliability and safety, performance,
embedded / cyber-physical systems, ...), etc.

 May 18-21
(v)

9th International Conference on Formal Methods in Software Engineering
(FormaliSE'2021). Topics include: approaches and tools for verification and validation;
application of formal methods to specific domains, e.g., autonomous, cyber-physical,
and IoT systems; scalability of formal methods applications; integration of formal
methods within the software development lifecycle; model-based software engineering
approaches; formal methods in a certification context; formal approaches for safety and
security-related issues; usability of formal methods; guidelines to use formal methods in
practice; case studies developed/analyzed with formal approaches; experience reports on
the application of formal methods to real-world problems; etc.

 May 19-21
(v)

4th International Conference on Technical Debt (TechDebt'2021). Topics include:
technical debt management and decision making; tools and indicators for identifying
technical debt; technical debt remediation strategies, methods, and tools; experiences,
approaches and tools for teaching technical debt topics in academic courses or industrial
training; etc.

 May 23
(v)

3rd International Workshop on Robotics Software Engineering (RoSE'2021), Topics
include: analysis of challenges in robotic software engineering; challenges for defining
and integrating domain-specific languages for the design of robotic systems; best
practices in engineering robotic software; variability, modularity, and reusability in
robotic software; validation and verification of robotic software; processes and tools
supporting the engineering and development of robotic systems; state-of-the-art research
projects, innovative ideas, and field-based studies in robotic software engineering;
lessons learned in the engineering and deployment of large-scale, real-world integrated
robot; etc.

May 24-28
(v)

13th NASA Formal Methods Symposium (NFM'2021), Norfolk, Virginia, USA. Topics include:
challenges and solutions for achieving assurance for critical systems; formal verification, model
checking, and static analysis techniques; theorem proving; techniques and algorithms for scaling formal
methods; design for verification and correct-by-design techniques; experience report of application of
formal methods in industry; use of formal methods in education; applications of formal methods in the
development of autonomous systems, safety-critical systems, concurrent and distributed systems, cyber-
physical, embedded, and hybrid systems, ...; etc.

 June 01-03
(v)

24th IEEE International Symposium On Real-Time Distributed Computing (ISORC'2021), Daegu,
South Korea. Topics include: all aspects of object/component/service-oriented real-time distributed
computing (ORC) technology; real-time distributed computing; Internet of Things (IoT); real-time
scheduling theory; resilient cyber-physical systems; autonomous systems (e.g., autonomous driving);
optimization of time-sensitive applications; applications based on ORC technology, for example, medical
devices, intelligent transportation systems, industrial automation systems and industry 4.0, smart grids,
...; etc. Deadline for submissions: April 5, 2021 (posters, demos).

30 Conference Calendar

Volume 42, Number 1, March 2021 Ada User Journal

 June 07-11
(v)

25th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2021 aka Ada-Europe 2021). Santander, Spain. AEiC'2020 was
postponed from 8-12 June 2020 to 7-11 June 2021, then moved to a hybrid and later
to a full virtual event format. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGPLAN, SIGBED, and the Ada Resource Association (ARA).

June 21-23
(v)

25th International Conference on Evaluation and Assessment in Software Engineering
(EASE'2021), Trondheim, Norway. Topics include: assessing the benefits/costs associated with using
chosen development technologies; empirical studies using qualitative, quantitative, and mixed methods;
evaluation and comparison of techniques and models; replication of empirical studies and families of
studies; software technology transfer to industry; etc.

June 21-25
(v)

Software Technologies: Applications and Foundations (STAF'2021). Bergen, Norway. STAF'2020
was postponed from 22-26 June 2020 to 21-25 June 2021, and then moved to a full virtual event format.
Deadline for submissions: April 16-27, 2021 (workshop abstracts), April 23 - May 4, 2021 (workshop
papers).

 June 21-25
(v)

15th International Conference on Tests And Proofs (TAP'2021). Topics include:
many aspects of verification technology, including foundational work, tool
development, and empirical research; the connection between proofs (and other static
techniques) and testing (and other dynamic techniques); verification and analysis
techniques combining proofs and tests; program proving with the aid of testing
techniques; deductive techniques supporting the automated generation of test vectors
and oracles, and supporting novel definitions of coverage criteria; program analysis
techniques combining static and dynamic analysis; testing and runtime analysis of
formal specifications; verification of verification tools and environments; applications
of test and proof techniques in new domains, such as security, configuration
management, learning; combined approaches of test and proof in the context of formal
certifications (Common Criteria, CENELEC, ...); case studies, tool and framework
descriptions, and experience reports about combining tests and proofs; etc.

June 28 - July 02
(v)

15th ACM International Conference on Distributed Event-Based Systems (DEBS'2021), Milan,
Italy. Topics include: systems dealing with collecting, detecting, processing and responding to events
through distributed middleware and applications; models, architectures and paradigms (trustworthy
event-based systems, real-time analytics, ...); systems and software (distributed programming, security,
reliability and resilience, ...); applications (Internet-of-Things, cyber-physical systems, healthcare and
logistics, ...); etc.

July 07-09
(v)

33rd Euromicro Conference on Real-Time Systems (ECRTS'2021), Modena, Italy. Topics include: all
aspects of timing requirements in computer systems; elements of time-sensitive computer systems, such
as operating systems, hypervisors, middlewares and frameworks, programming languages and compilers,
runtime environments, ...; classic worst-case execution time (WCET) analysis; formal methods for the
verification and validation of real-time systems; the interplay of timing predictability and other non-
functional qualities such as reliability, security, quality of control, scalability, ...; foundational scheduling
and predictability questions, such as schedulability analysis, locking and non-blocking synchronization
protocols, computational complexity, ...; etc.

 July 12-13
(v)

14th International Symposium on High-Level Parallel Programming and applications
(HLPP'2021), Cluj-Napoca, Romania. Topics include: high-level parallel programming and tools; high-
level parallelism in programming languages; efficient code generation, auto-tuning and optimization for
parallel and distributed programs; model-driven software engineering for parallel and distributed
systems; applications of parallel and distributed systems using high-level languages and tools; teaching
experience with high-level tools and methods for parallel and distributed computing; etc. Deadline for
submissions: April 11, 2021 (abstracts), April 18, 2021 (papers).

 July 12-16 35th European Conference on Object-Oriented Programming (ECOOP'2021), Aarhus, Denmark.
Topics include: design, implementation, optimization, analysis, testing, verification, and theory of
programs, programming languages, and programming environments. Deadline for submissions: May 24,
2021 (nominations for Dahl-Nygaard prizes).

Conference Calendar 31

Ada User Journal Volume 42, Number 1, March 2021

 July 13
(v)

23rd Workshop on Formal Techniques for J(ust-about-any) Programs
(FTfJP'2021). Topics include: current and novel techniques for formal reasoning about
programs, language design and semantics, type systems, concurrency and new
application domains, specification and verification of program properties, program
analysis (static or dynamic), security pearls (programs or proofs), etc. Deadline for
submissions: April 26, 2021.

July 12-16
(v)

45th Annual IEEE Conference on Computers, Software and Applications (COMPSAC'2021),
Madrid, Spain. Deadline for submissions: April 1, 2021 (student competition), April 21, 2021 (worskhop
papers).

 July 12-16 1st IEEE International Workshop on Software Engineering for Industrial Cyber-
Physical Systems (SE4ICPS'2021). Topics include: middleware design for industrial
IoT/CPS; software design theory for IoT/CPS; formal Methods for IoT/CPS; safety-
critical cyber-physical software systems; software quality attributes of IoT/CPS; fault-
tolerant IoT/CPS; testing, validation, verification, simulation, and visualization of
IoT/CPS; IoT/CPS engineering Methods and Tools; etc. Deadline for submissions: May
1, 2021 (papers).

 August 18-20
(v)

27th IEEE International Conference on Embedded Real-Time Computing Systems and
Applications (RTCSA'2021), Internet. Topics include: real-time scheduling, timing analysis, formal
methods for temporal guarantees, programming languages and run-time systems, middleware systems,
applications and case studies of IoT and CPS, cyber-physical co-design, medical CPS, multi-core
embedded systems, fault tolerance and security, etc.

 August 23-27
(v)

25th International Conference on Formal Methods for Industrial Critical Systems (FMICS'2021),
Paris, France. Co-located with CONCUR'2021 and FORMATS'2021. Topics include: case studies and
experience reports on industrial applications of formal methods, focusing on lessons learned or
identification of new research directions; methods, techniques and tools to support automated analysis,
certification, debugging, descriptions, learning, optimisation and transformation of complex, distributed,
real-time, embedded, mobile and autonomous systems; verification and validation methods that address
shortcomings of existing methods with respect to their industrial applicability (e.g., scalability and
usability issues); impact of the adoption of formal methods on the development process and associated
costs; application of formal methods in standardisation and industrial forums. Deadline for submissions:
May 7, 2021 (abstracts), May 14, 2021 (papers).

August 23-27 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE'2021), Athens, Greece. Deadline for submissions: May 1 - June
4, 2021 (workshop papers).

 Aug 30 - Sep 03 27th International European Conference on Parallel and Distributed Computing (Euro-Par'2021),
Lisbon, Portugal. Topics include: all flavors of parallel and distributed processing, such as compilers,
tools and environments, scheduling and load balancing, theory and algorithms for parallel and distributed
processing, parallel and distributed programming, interfaces, and languages, multicore and manycore
parallelism, etc.

September 02-05
(v)

16th Federated Conference on Computer Science and Information Systems (FedCSIS'2021), Sofia,
Bulgaria. Event includes: Scalable Computing (12th Workshop WSC'21), Cyber Security, Privacy and
Trust (2nd International Forum NEMESIS'21), Cyber-Physical Systems (8th Workshop IWCPS-8),
Software Engineering (41th IEEE Workshop SEW-41), Advances in Programming Languages (8th
Workshop WAPL'21), Recent Advances in Information Technology (7th Doctoral Symposium DS-
RAIT'21), etc. Deadline for submissions: May 24, 2021 (papers), June 14, 2021 (position papers).

September 07-10
(h)

40th International Conference on Computer Safety, Reliability and Security (SafeComp'2021),
York, UK. Deadline for submissions: May 3-24, 2021 (workshop papers).

September 08-11
(v)

14th International Conference on the Quality of Information and Communications Technology
(QUATIC'2021), Faro, Portugal. Topics include: all quality aspects in ICT systems engineering and
management; quality in ICT process, product and applications domains; practical studies; etc. Tracks on
ICT verification and validation, safety, security and privacy, model-driven engineering, quality in cyber-
physical systems, software evolution, evidence-based software quality engineering, software quality

32 Conference Calendar

Volume 42, Number 1, March 2021 Ada User Journal

education and training, etc. Deadline for submissions: April 20, 2021 (ICT Verification and Validation
Track papers), May 25, 2021 (short papers).

September 21-23
(h)

20th International Conference on Intelligent Software Methodologies, Tools and Techniques
(SOMET'2021), Cancun, Mexico. Topics include: state-of-art and new trends on software
methodologies, tools and techniques; software methodologies, and tools for robust, reliable, non-fragile
software design; software developments techniques and legacy systems; software evolution techniques;
agile software and lean methods; formal methods for software design; software maintenance; software
security tools and techniques; formal techniques for software representation, software testing and
validation; software reliability; Model Driven Development (DVD), code centric to model centric
software engineering; etc.

October 10-15
(v)

Embedded Systems Week 2021 (ESWEEK'2021). Shanghai, China. The venues for ESWEEK 2020
and 2021 were swapped. ESWEEK 2020 was to be held in Hamburg, Germany from September 20-25,
2020. ESWEEK 2021 would be held in Shanghai, China from October 10-15, 2021, but then moved to
a virtual event format. Includes CASES'2021 (International Conference on Compilers, Architectures, and
Synthesis for Embedded Systems), CODES+ISSS'2021 (International Conference on
Hardware/Software Codesign and System Synthesis), EMSOFT'2021 (International Conference on
Embedded Software). Deadline for submissions: April 2, 2021 (journal track abstracts), April 9, 2021
(journal track full papers), April 16, 2021 (workshops), April 30, 2021 (tutorials, special sessions), June
4, 2021 (Work-in-Progress papers).

 Oct 10-15
(v)

ACM SIGBED International Conference on Embedded Software (EMSOFT'2021).
Topics include: the science, engineering, and technology of embedded software
development; research in the design and analysis of software that interacts with physical
processes; results on cyber-physical systems, which integrate computation, networking,
and physical dynamics. Deadline for submissions: April 2, 2021 (Journal-Track
abstracts), April 9, 2021 (Journal-Track full papers), June 4, 2021 (Work-in-Progress
submissions).

 Oct 10-15
(v)

International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS'2021). Topics include: system-level design, hardware/software co-
design, modeling, analysis, and implementation of modern Embedded Systems, Cyber-
Physical Systems, and Internet-of-Things, from system-level specification and
optimization to system synthesis of multi-processor hardware/software
implementations. Deadline for submissions: April 2, 2021 (Journal-Track abstracts),
April 9, 2021 (Journal-Track full papers), June 4, 2021 (Work-in-Progress submissions).

 Oct10-15
(v)

International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES'2021). Topics include: latest advances in compilers and architectures
for high-performance, low-power, and domain-specific embedded systems; compilers
for embedded systems: multi- and many-core processors, GPU architectures,
reconfigurable computing including FPGAs and CGRAs, security, reliability, and
predictability (secure architectures, hardware security, and compilation for software
security; architecture and compiler techniques for reliability and aging; modeling,
design, analysis, and optimization for timing and predictability; validation, verification,
testing & debugging of embedded software); etc. Deadline for submissions: April 2,
2021 (Journal-Track abstracts), April 9, 2021 (Journal-Track full papers), June 4, 2021
(Work-in-Progress submissions).

October 11-14
(h)

21st International Conference on Runtime Verification (RV'2021), Los Angeles, California, USA.
Topics include: monitoring and analysis of runtime behaviour of software and hardware systems.
Application areas include cyber-physical systems, safety/mission critical systems, enterprise and systems
software, cloud systems, autonomous and reactive control systems, health management and diagnosis
systems, and system security and privacy, among others. Deadline for submissions: May 13, 2021
(abstracts), May 20, 2021 (papers, tutorials).

October 11-15
(h)

15th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2021), Bari, Italy. ESEM'2020 was postponed from 8-9 October 2020 to 2021. Deadline for
submissions: April 12, 2021 (technical paper abstracts), April 19, 2021 (technical papers), June 21, 2021
(emerging results and vision papers), August 9, 2021 (Journal-First papers, industry talks).

Conference Calendar 33

Ada User Journal Volume 42, Number 1, March 2021

 October 17-22
(h)

ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2021), Chicago, Illinois, USA. Topics include: all aspects of software construction
and delivery, at the intersection of programming, languages, and software engineering. Deadline for
submissions: April 16, 2021 (OOPSLA research papers), April 25, 2021 (SAS - 28th Static Analysis
Symposium), May 8, 2021 (Onward! research papers), May 22, 2021 (Onward! essays), June 2, 2021
(DLS - Dynamic Languages Symposium), June 16, 2021 (APLAS - Asian symposium on Programming
Languages And Systems), June 21, 2021 (SLE - 13th International ACM SIGPLAN Conference on
Software Language Engineering), July 5, 2021 (GPCD - 20th International Conference on Generative
Programming: Concepts & Experiences), July 16, 2021 (student research competition), July 16, 2021
(SPLASH-E), August 15, 2021 (SPLASH posters). Deadline for early registration: September 17, 2021.

 Oct 17-19 14th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2021), Topics include: areas ranging from theoretical and conceptual
contributions, to tools, techniques, and frameworks in the domain of software language
engineering; software language engineering rather than engineering a specific software
language; software language design and implementation; software language validation;
software language integration and composition; software language maintenance
(software language reuse, language evolution, language families and variability);
domain-specific approaches for any aspects of SLE (design, implementation, validation,
maintenance); empirical evaluation and experience reports of language engineering tools
(user studies evaluating usability, performance benchmarks, industrial applications); etc.
Deadline for submissions: July 5, 2021 (abstracts), July 9, 2021 (papers), September 15,
2021 (artifacts).

October 17-22 28th Static Analysis Symposium (SAS'2021), Chicago, Illinois, USA. In conjunction with
SPLASH'2021. Topics include: static analysis as fundamental tool for program verification, bug
detection, compiler optimization, program understanding, and software maintenance. Deadline for
submissions: April 25, 2021 (papers), April 29, 2021 (artifacts).

October 18-22 19th International Symposium on Automated Technology for Verification and Analysis
(ATVA'2021), Gold Coast, Australia. Topics include: theoretical and practical aspects of automated
analysis, synthesis, and verification of hardware, software, and machine learning (ML) systems; program
analysis and software verification; analytical techniques for safety, security, and dependability; testing
and runtime analysis based on verification technology; analysis and verification of parallel and
concurrent systems; verification in industrial practice; applications and case studies; automated tool
support; etc. Deadline for submissions: April 9, 2021 (full papers).

November 15-19
(v)

36th IEEE/ACM International Conference on Automated Software Engineering (ASE'2021),
Melbourne, Australia. Topics include: foundations, techniques, and tools for automating the analysis,
design, implementation, testing, and maintenance of large software systems; testing, verification, and
validation; software analysis; empirical software engineering; maintenance and evolution; software
security and trust; program comprehension; software architecture and design; reverse engineering and
re-engineering; model-driven development; specification languages; software product line engineering;
etc. Deadline for submissions: April 16, 2021 (research track abstracts), April 23, 2021 (research papers),
June 11, 2021 (tutorials, New Ideas and Emerging Results (NIER) track, Late Breaking Results track,
tool demos).

November 20-26
(v)

24th International Symposium on Formal Methods (FM'2021), Beijing, China. Topics include: formal
methods in a wide range of domains including software, computer-based systems, systems-of-systems,
cyber-physical systems, security, human-computer interaction, manufacturing, sustainability, energy,
transport, smart cities, and healthcare; formal methods in practice (industrial applications of formal
methods, experience with formal methods in industry, tool usage reports, experiments with challenge
problems); tools for formal methods (advances in automated verification, model checking, and testing
with formal methods, tools integration, environments for formal methods, and experimental validation
of tools); formal methods in software and systems engineering (development processes with formal
methods, usage guidelines for formal methods, and method integration); etc. Deadline for submissions:
April 30, 2021 (abstracts), May 6, 2021 (full papers).

November 22-23 15th International Conference on Verification and Evaluation of Computer and Communication
Systems (VECoS'2021), Beijing, China. Topics include: formal verification and evaluation approaches,
methods and techniques, especially those developed for concurrent and distributed hardware/software
systems; abstraction techniques; compositional verification; correct-by-construction design; rigorous

34 Conference Calendar

Volume 42, Number 1, March 2021 Ada User Journal

system design; model-checking; performance and robustness evaluation; QoS evaluation, planning and
deployment; dependability assessment techniques; RAMS (Reliability-Availability-Maintainability-
Safety) assessment; model-based security assessment; verification & validation of IoT and of safety-
critical systems; assessment for real-time systems; worst-case execution time analysis; etc. Application
areas include: communication protocols, cyber-physical systems, high-performance computing, internet
of things, logistics systems, mixed criticality systems, programming languages, real-time and embedded
operating systems, telecommunication systems, etc. Deadline for submissions: June 21, 2021 (papers).

November 25-26 22nd International Conference on Product-Focused Software Process Improvement
(PROFES'2021), Turin, Italy. Topics include: experiences, ideas, innovations, as well as concerns related
to professional software development and process improvement driven by product and service quality
needs. Deadline for submissions: July 5, 2021 (full research paper abstracts), July 12, 2021 (full research
papers), July 16, 2021 (short papers, industry papers), August 9, 2021 (Journal-First papers).

December 06-09
(v)

28th Asia-Pacific Software Engineering Conference (APSEC'2021), Taiwan. Topics include: agile
methodologies; component-based software engineering; cyber-physical systems and Internet of Things;
debugging and fault localization; embedded real-time systems; formal methods; middleware,
frameworks, and APIs; model-driven and domain-specific engineering; open source development;
parallel, distributed, and concurrent systems; programming languages and systems; refactoring; reverse
engineering; security, reliability, and privacy; software architecture, modelling and design; software
comprehension and traceability; software engineering education; software engineering tools and
environments; software maintenance and evolution; software product-line engineering; software reuse;
software repository mining; testing, verification, and validation; etc. Deadline for submissions: July 1,
2021 (technical/SEIP research paper abstracts), July 8, 2021 (technical/SEIP research papers), July 15,
2021 (workshops), August 19, 2021 (ERA - Early Research Achievements papers), October 7, 2021
(poster papers).

December 06-10
(v)

24th Brazilian Symposium on Formal Methods (SBMF'2021), Campina Grande, PB, Brazil. Topics
include: development, dissemination, and use of formal methods for the construction of high-quality
computational systems; applications of formal methods to software design, development, code
generation, testing, maintenance, evolution, reuse, ...; specification and modelling languages (logic and
semantics for specification or/and programming languages; formal methods for timed, real-time, hybrid,
or/and safety-critical systems; formal methods for cyber-physical systems; ...); theoretical foundations
(type systems models of concurrency, security, ...); verification and validation (abstraction,
modularization or/and refinement techniques, static analysis, model checking, theorem proving, software
certification, correctness by construction); experience reports on teaching formal methods, on industrial
application of formal methods. Deadline for submissions: July 23, 2021 (abstracts), July 30, 2021 (full
papers).

 Dec 07-10 42nd IEEE Real-Time Systems Symposium (RTSS'2021), Taipei, Taiwan. Topics include: addressing
some form of real-time requirements such as deadlines, response times or delays/latency; real-time
system track (middleware, compilers, tools, scheduling, QoS support, testing and debugging, design and
verification, modeling, WCET analysis, performance analysis, fault tolerance, security, system
experimentation and deployment experiences, ...); design and application track (cyber-physical systems
design methods, tools chains, security and privacy, performance analysis, robustness and safety, analysis
techniques and tools, ...; architecture description languages and tools; Internet of Things (IoT) aspects of
scalability, interoperability, reliability, security, middleware and programming abstractions, protocols,
modelling, analysis and performance evaluation, ...); etc. Deadline for submissions: May 27, 2021
(regular papers), June 1, 2021 (Hot Topic Day event proposal, industry challenge contributions), August
31, 2021 (brief presentations), September 7, 2021 (*RTSS@Work demos).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2022

January 17-19 17th International Conference on High Performance and Embedded Architecture and

Compilation (HiPEAC'2022), Budapest, Hungary. Topics include: computer architecture, programming
models, compilers and operating systems for embedded and general-purpose systems. Deadline for
submissions: June 18, 2021 (workshops, tutorials).

Conference Calendar 35

Ada User Journal Volume 42, Number 1, March 2021

April 02-07 25th European Joint Conferences on Theory and Practice of Software (ETAPS'2022), Munich,
Germany. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline for
submissions: May 31, 2020 (satellite events).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

The 25th Ada‐Europe International Conference on Reliable Software Technologies (AEiC 2021), initially scheduled to
take place in Santander, Spain, will be held online from the 7th to the 10th of June 2021, using the underline.io
conference platform. The conference program includes parallel tutorials on Monday 7th, and a technical program and
vendor exhibition from Tuesday to Thursday. The conference also includes breaks and virtual social events that will
allow networking among the participants.

OVERVIEW OF THE WEEK

The program runs between 12:30 and 18:30 CEST, to allow participation from different time zones. For full details and
up‐to‐date information, see the conference web page: http://www.ada‐europe.org/conference2021

KEYNOTE TALKS

In each of the three main conference days, a keynote will be delivered to address hot topics of relevance in the
conference scope, with ample time for questions and answers. The keynotes will be:
• Ángel Conde, Data Analytics and Artificial Intelligence team leader at IKERLAN (Spain), who will present his work

on Software reliability in the Big Data era with an industry‐minded focus.
• Alfons Crespo, who is with the Institute of Automation and Industrial Informatics of the Universitat Politècnica de

València (Spain), will give an answer to the question Why a hypervisor‐based approach is the best alternative for
mixed‐criticality systems.

• Tucker Taft, who is Director of Language Research at AdaCore (USA), will talk on A sampling of Ada 2022.

Monday 7th Tuesday 8th Wednesday 9th Thursday 10th

Welcome Social Event Ice‐Breaking Social Event
and Opening

Welcome Social Event Welcome Social Event

5 Parallel Tutorials

Technical Session 3:
Autonomous systems

Technical Session 5:
Validation and verification tools

Technical Session 1:
Scheduling and mixed‐
criticality systems

Work‐in‐Progress Session
Technical Session 6: Emerging
applications with reliability
requirementsKeynote 1

Keynote 2 Keynote 3
Technical Session 2:
Software modeling

Technical Session 4:
Ada issues and Ravenscar

 Technical Session 7:
Safety challenges

Social Event

Social Event
Best Presentation Award,
Closing Session and Party

Ice‐Breaking Social
Event

25th Ada‐Europe

INTERNATIONAL CONFERENCE ON

7‐10 June 2021, Virtual Event

RELIABLE SOFTWARE TECHNOLOGIES

AEiC 2021

TECHNICAL SESSIONS

Given the current sanitary situation and the need to resort to a virtual format for the conference, we will all
experience the advantages and benefits of exploring new formats. The technical sessions are designed with the
flipped‐conference concept, where the audience can access the pre‐recorded presentation materials in advance and
the live sessions are devoted to short presentations of the highlights of each contribution, allowing ample time for
questions and answers with the presenter. The recorded materials will also be available for some time after their
sessions. The technical sessions include papers submitted to the journal track that are heading towards final
acceptance and open‐access publication, together with industrial, invited and vendor presentations.

WORK‐IN‐PROGRESS SESSION

The Work‐in‐Progress session contains contributions of evolving and early‐stage ideas, or new research directions.
They are presented in a special session consisting of a round of very short presentations of the highlights of each
contribution, followed by a poster session in the same virtual space where the breaks are held.

EXHIBITION

From Tuesday to Thursday the conference platform will provide access to virtual booths where participants will be
able to find information on the conference exhibitors and chat with them or request meetings. The virtual break
lounge where the breaks and social events will take place will also have a space for meeting with the exhibitors.

TUTORIALS

Five four‐hour parallel tutorials are offered on Monday 7th:
• TU‐1: Programming mobile robots with ROS2 and the RCLAda Ada client library, by Alejandro R. Mosteo
• TU‐2: Introduction to the development of safety critical software, by Jean‐Pierre Rosen
• TU‐3: Parallel programming with Ada and OpenMP, by Sara Royuela, S. Tucker Taft and Luis Miguel Pinho
• TU‐4: Timing verification from UML & MARTE design models: techniques & tools, by Laurent Rioux, Julio Medina

and Shuai Li
• TU‐5: Programming shared memory computers, by Jan Verschelde

SOCIAL PROGRAM

The virtual conference platform will offer a space under the gather.town environment to allow informal and lively
gathering of the participants. This space may have different areas, such as rooms, tables, and corners where a
participant can approach to talk though videoconferencing with participants in the same virtual area. This facility will
be used for the breaks, poster session, exhibition and social events. Particular themes for some of the social events will
be announced in the conference platform and in the web page.

FURTHER INFORMATION

Participation for the full event, including tutorials, is free for Ada‐Europe members and only 60€ for all others.
Registration is required for all. The conference web page gives full and up‐to‐date details on the program, the
registration process and the virtual platform: http://www.ada‐europe.org/conference2021

AEIC 2021 SPONSORS

The conference is supported and sponsored by Ada‐Europe, in cooperation with SIGAda, SIGPLAN, SIGBED and with ARA.

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

39

The OpenMP API for High Integrity Systems:
Moving Responsibility from Users to Vendors

Michael Klemm
OpenMP ARB, Germany; email: michael.klemm@openmp.org

Eduardo Quiñones
Barcelona Supercomputing Center, Barcelona, Spain; email: eduardo.quinones@bsc.es

Tucker Taft
AdaCore, Lexington, MA, USA; email: taft@adacore.com

Dirk Ziegenbein
Bosch, Renningen, Germany; email: dirk.ziegenbein@de.bosch.com

Sara Royuela
Barcelona Supercomputing Center, Barcelona, Spain; email: sara.royuela@bsc.es

Abstract

OpenMP is traditionally focused on boosting perfor-
mance in HPC systems. However, other domains are
showing an increasing interest in the use of OpenMP
by virtue of key aspects introduced in recent versions
of the specification: the tasking model, the accelera-
tor model, and other features like the requires and
the assumes directives, which allow defining certain
contracts. One example is the safety-critical embedded
domain, where several efforts have been initiated to-
wards the adoption of OpenMP. However, the OpenMP
specification states that “application developers are re-
sponsible for correctly using the OpenMP API to pro-
duce a conforming program”, being not acceptable in
high integrity systems, where aspects such as reliability
and resiliency have to be ensured at different levels of
criticality. In this scope, programming languages like
Ada propose a different paradigm by exposing fewer fea-
tures to the user, and leaving the responsibility of safely
exploiting the full underlying architecture to the com-
piler and the runtime systems, instead. The philosophy
behind this kind of model is to move the responsibility
of producing correct parallel programs from users to
vendors.

In this panel, actors from different domains involved in
the use of parallel programming models for the devel-
opment of high-integrity systems share their thoughts
about this topic.

Keywords: CPS, Safety, Productivity, OpenMP, Ada.

1 Parallelism in High-Integrity Systems
There is a dramatic increase of the required performance
in Cyber-Physical Systems (CPSs) and Real-Time systems,

such as those implementing advanced automotive applica-
tions. This pushes more demanding designs, which integrate
components with multiple levels of criticality into heteroge-
neous platforms featuring multiple cores and accelerators like
GPUs and FPGAs [1]. In this context, the use of parallel
programming models to effectively exploit the underlying
resources is of paramount importance.

Putting questions about functional safety aside, we can iden-
tify the three ‘P’s that target different aspects of developing
software for embedded systems. Productivity is an important
aspect to consider when integrating a parallel model into a
high-integrity system. Equally important are performance
and portability to achieve the best possible solution.

In addition, the following aspects are relevant to different
roles in the (software) product development cycle:

– High Level: For the domain expert, it is important to
describe the behavior of the system in a deterministic
and portable way, decoupling the functional development
from the final deployment. For this purpose, the system
model design is usually based on Model-Driven Engi-
neering (MDE) techniques that include Domain Specific
Modeling Languages (like AMALTHEA [2]). These lan-
guages provide an understandable model that matches
the specific domain, but they are unaware of the specific
parallel Application Program Interface (API) underneath.

– Middle Level: At the implementation level, programming
languages targeting high-integrity systems, like Ada [3],
provide mechanisms for parallelism but leave the orches-
tration of the parallel execution to the compiler and the
runtime. At this level, the compiler has to provide enough
intelligence to automatically optimize the code without
exposing too many low-level details to the programmer.
However, for maximum efficiency these languages should
be able to take advantage of low-level APIs if needed. The

Ada User Jour na l Vo lume 42, Number 1, March 2021

40 The OpenMP API for High In tegr i ty Systems

implementation of the Ada202X parallel model on top of
OpenMP [4] is an example of a high-level programming
language exploiting the lightweight thread scheduling ca-
pabilities of a lower-level API without exposing its unsafe
features. Overall, this is a suitable approach for tools that
aim at being certifiable at some level.

– Low Level: For the performance expert, languages like
the OpenMP API [5] expose many features to control
the details of the execution while still being easier to ap-
ply than other low-level parallel APIs like CUDA and
OpenCL. However, these models are typically geared to-
wards High-Performance Computing (HPC), as it is the
case of the OpenMP API. As a consequence, it does not
(yet) support resilience mechanisms that are needed to
handle execution errors properly. The latest specifications,
however, do include features that can help in the develop-
ment of safer OpenMP programs, such as the assumes
and the requires directives, allowing the programmer
to define certain contracts.

A holistic development environment would be desirable to
provide transformations from the highest level to the lowest
level. Alas, today, there is a gap between the system descrip-
tion provided at the higher level, and the capabilities provided
by current parallel APIs such as the OpenMP API. Research
initiatives such as the AMPERE EU H2020 project [6] are
exploring the (semi-)automatic transformation of DSMLs to
OpenMP directives, in order to orchestrate the parallel execu-
tion of CPSs from the automotive and the railway domains
in heterogeneous systems, including many-cores, GPUs and
FPGAs.

1.1 From the DSML to the parallel API
To illustrate how the tools used in each level of the devel-
opment cycle are adapted to the specific needs, we use the
application design represented in Figure 1a. The application
contains two tasks, Task1 and Task2, where Task2 is triggered
by Task1. Task1 is further decomposed in several functionali-
ties that expose parallelism, while Task2 describes a unique
sequential functionality.

A DSML such as AMALTHEA, captures the system descrip-
tion as a series of processes, or tasks. Tasks contain an activity
graph defining the functionalities, or runnables, and synchro-
nizations, such as inter-process events, performed within the
task. Finally, runnables can also define accesses to data, or la-
bels, among others. Figure 1b shows the AMALTHEA model
corresponding to the system description in Figure 1a.

The description level provided by AMALTHEA matches the
coarse-grained concurrency features exposed by high-level
languages like Ada, by means of tasking and synchroniza-
tion features. Furthermore, the parallel model proposed for
Ada 202X allows also to exploit fine-grained structured paral-
lelism. These capabilities are shown in Figure 2, including an
Ada implementation of the model presented in Figure 1b.

Nonetheless, some functionalities may expose dynamic and
unstructured behaviors that cannot be represented with the
constrained parallel model proposed for Ada. In such cases,
the use of flexible APIs like OpenMP allows the definition of

Task 1

Parallel
functionality
(runnable 1)

Task 2

Sequential
functionality
(runnable 2)

M

write

read

(a) Application design.

(b) AMALTHEA software model.

Figure 1: Application modelling with AMALTHEA

1 task body Task1 is
2 Next : Calendar.Time := Start;
3 procedure runnable1 is
4 -- Only structured parallelism
5 parallel
6 for I in M’Range loop
7 ...
8 end loop;
9 end runnable1;

10 begin
11 delay (Start - Calendar.Clock);
12 loop
13 runnable1;
14 Task2.runnable2;
15 Next := Next + Period;
16 delay (Next - Calendar.Clock);
17 end loop;
18 end Task1;

1 task body Task2 is
2 procedure runnable2 is
3 -- Sequential execution
4 ...
5 end runnable2;
6 begin
7 loop
8 select
9 accept runnable2 do

10 ...
11 end runnable2;
12 or
13 terminate;
14 end select;
15 end loop;
16 end Task2;

Figure 2: Ada coarse- and fine-grained parallelism.

1 // Structured example
2 void runnable1 () {
3 #pragma omp taskloop num_tasks(NT) shared(M)
4 for (int i=0; i<Msize; ++i) {
5 ...
6 }
7 }
8

9 // Unstructured example
10 void runnable1 () {
11 for (int i=0; i<Msize; i++) {
12 #pragma omp task depend(inout:M[i]) \
13 shared(M) firstprivate(i)
14 ...
15 }
16 for (int i=0; i<Msize; i++) {
17 for (int j=i; j<Msize; j++) {
18 #pragma omp task depend(in:M[i]) depend(out:M[j]) \
19 shared(M) firstprivate(i,j)
20 ...
21 }
22 }
23 }

Figure 3: OpenMP fine-grained descriptive parallelism.

more complex parallel structures. Figure 3 shows an exam-
ple of structured and unstructured parallel functionalities de-
scribed with the OpenMP tasking model in C. The structured
version of runnable1 mimics the behavior implemented with
Ada in Figure 2. On the contrary, the unstructured OpenMP
version cannot be implemented with Ada. Furthermore, char-
acteristics like the data-sharing attributes of the variables (i.e.,

Volume 42, Number 1, March 2021 Ada User Jour na l

M. Klemm, E. Quiñones, T. Taf t , D. Z iegenbein , S. Royuela 41

the shared and firstprivate clauses) or the number
of concurrent entities (i.e., the num_tasks clause) to be
spawned in a parallel loop, can only be defined in OpenMP,
while Ada leaves this responsibility in the compiler and the
runtime.

2 Suitability of the Abstraction Layers to
Support Safe Parallelism

In the recent years, there have been several initiatives to
facilitate the development of safety and high-integrity systems
targeting parallel architectures.

At the higher level, DSMLs allow describing the system be-
havior using an easily understandable and deterministic model
that fits each specific domain. As an example, the Logical
Execution Time (LET) abstraction has been used as an un-
derlying deterministic model of computation in the DSMLs
targeting the automotive domain, as it nicely decouples the
functional behavior description from the detailed deployment
onto multi-core platforms [7]. Furthermore, the use of auto-
matic code generators transforming the model descriptions
into code increases productivity and eases the verification and
validation processes in parallel architectures.

At the middle level, SPARK is a well-defined subset of Ada in-
tended for the development of applications demanding safety
and security. Interestingly, AdaCore recently released a qual-
ifiable code generator from Simulink to SPARK for formal
verification [8]. Although it is not yet supported, the inten-
tion of the tool is to incorporate information from the system
model level into contracts at the SPARK level, with the objec-
tive of enhancing the detection of data races and deadlocks,
two of the most important sources of errors in parallel execu-
tion. For detecting data races, contracts include characteristics
such as mode of access to any global data (input vs. output vs.
in-out) as well as atomicity of access; for detecting deadlocks,
contracts indicate whether an operation is nonblocking.

The programming model can provide relevant information
to the compiler in order to perform conflict checking. Lan-
guages such as SPARK are built following this philosophy
and, as a result, they are being used in high-integrity systems,
including a steer by wire application and NVIDIA firmware
modules. However, general programming languages like C
and C++ limit the ability of the compiler to perform conflict
checking, due to the use of pointers and other complexities.
These languages are nonetheless wide-spread in the automo-
tive domain, which uses models like AUTOSAR to represent
relevant information about e.g., the task-level parallelism as
meta-data, enabling some verification of the system.

The automotive industry is particularly interested in the
coarse-grained parallelism at the system-design level. This is
because individual components usually cannot be modified
as they are legacy code. Nonetheless, it is quite common to
reuse components that typically run on accelerator devices.
Two major aspects to consider about parallel programming
are: a) the productivity of the parallel framework, including
its effectiveness in exploiting heterogeneous environments,
and b) the capability of the parallel programming model to
match the model described at design level.

At the lower level, the OpenMP API is a good candidate
to implement automotive software for many reasons, in-
cluding its tasking and accelerator models, its proven time-
predictability [9], as well as its internal functional safety [10].
However, several features are missing for it to be adopted in
high-integrity systems. One reason is that the OpenMP API
was never intended to be used in an environment where func-
tional safety at the application level was one of the primary
design goals. There have been attempts to include an error
model on top of OpenMP [11, 12], but there are restrictions
determined by the base languages, i.e., C/C++ and Fortran,
on what mechanisms can be used for error handling.

An important challenge when moving the OpenMP API to
the embedded domain is to show the clear benefits that com-
pensate the potential risk of losing performance due to the
embedded requirements, without conflicting with the use of
OpenMP in its primary HPC domain. Fortunately, there is a
differentiation between the parallel programming model and
its implementation. The Ada parallelism model implemented
on top of the OpenMP runtime is defining a subset of the
features of the OpenMP API that can be used. Nonetheless,
complexity is problematic at any level, and every line of code
is another line to prove that is safe. So, for the OpenMP API
to be used in safety critical systems, there is a need to identify
a subset of OpenMP that is rich enough to be useful and small
enough such that it can be certified. This will further allow
interoperability and portability across applications and plat-
forms as well as aid composability of software components.
The OpenMP specification already contains the foundation
to support restricted versions of the language by means of
the requires (version 5.0) and the assumes (version 5.1)
directives, among others.

Acknowledgments
This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 871669. We would also like to express our
gratitude to the organizers of the HILT workshop.

References
[1] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and

M. Wolf, “Special Session: Future Automotive Sys-
tems Design: Research Challenges and Opportunities,”
in 2018 International Conference on Hardware/Soft-
ware Codesign and System Synthesis (CODES+ISSS),
(Torino, Italy), June 2018.

[2] Eclipse, “APP4MC.” https://www.eclipse.org/app4mc/,
2020.

[3] L. M. Pinho, B. Moore, S. Michell, and S. T. Taft, “An
Execution Model for Fine-Grained Parallelism in Ada,”
in Ada-Europe International Conference on Reliable
Software Technologies, pp. 196–211, Springer, 2015.

[4] S. T. Taft, “A Layered Mapping of Ada 202X to
OpenMP,” in HILT Workshop on Safe Languages and
Technologies for Structured and Efficient Parallel and
Distributed/Cloud Computing, 2020.

Ada User Jour na l Vo lume 42, Number 1, March 2021

42 The OpenMP API for High In tegr i ty Systems

[5] OpenMP ARB, “OpenMP Application Program
Interface v5.1.” https://www.openmp.org/wp-
content/uploads/OpenMP-API-Specification-5-1.pdf,
2020.

[6] E. Quiñones, S. Royuela, C. Scordino, P. Gai, L. M.
Pinho, L. Nogueira, J. Rollo, T. Cucinotta, A. Biondi,
A. Hamann, et al., “The AMPERE Project: A Model-
driven development framework for highly Parallel and
EneRgy-Efficient computation supporting multi-criteria
optimization,” in 23rd International Symposium on Real-
Time Distributed Computing (ISORC), pp. 201–206,
IEEE, 2020.

[7] D. Ziegenbein and A. Hamann, “Timing-aware con-
trol software design for automotive systems,” in 2015
52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), (San Francisco, USA), June 2015.

[8] AdaCore, “QGen.” https://www.adacore.com/qgen,
2020.

[9] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu,
M. Bertogna, and E. Quiñones, “Timing characteriza-

tion of OpenMP4 tasking model,” in 2015 International
Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), pp. 157–166, 2015.

[10] S. Royuela, A. Duran, M. A. Serrano, E. Quiñones, and
X. Martorell, “A Functional Safety OpenMP for Critical
Real-Time Embedded Systems,” in Scaling OpenMP for
Exascale Performance and Portability (B. R. de Supin-
ski, S. L. Olivier, C. Terboven, B. M. Chapman, and
M. S. Müller, eds.), (Cham), pp. 231–245, Springer
International Publishing, 2017.

[11] A. Duran, R. Ferrer, J. Costa, M. Gonzàlez, X. Mar-
torell, E. Ayguadé, and J. Labarta, “A Proposal for Error
Handling in OpenMP,” Intl. Journal of Parallel Pro-
gramming, vol. 35, pp. 393–416, August 2007.

[12] M. Wong, M. Klemm, A. Duran, T. Mattson, G. Haab,
B. de Supinski, and A. Churbanov, “Towards an Er-
ror Model for OpenMP,” in Proceedings of the 6th In-
ternational Workshop on OpenMP, (Tsukuba, Japan),
pp. 70–82, June 2010. LNCS 6132.

Volume 42, Number 1, March 2021 Ada User Jour na l

 43

Ada User Journal Volume 42, Number 1, March 2021

XERIS/APEX: Hyperscaling with Ada

Richard Wai, ANNEXI-STRAYLINE
richard@annexi-strayline.com

The naïve microservices model

Modern day cloud native applications have become broadly
representative of distributed systems in the wild. However,
unlike traditional distributed system models with
conceptually static designs, cloud-native systems emphasize
dynamic scaling and on-line iteration (continuous
integration). Cloud-native systems tend to be architected
around a networked collection of distinct programs
(“microservices”) that can be added, removed, and updated
in real-time.

Typically, distinct containerized programs constitute
individual microservices that then communicate among the
larger distributed application through heavy-weight
protocols. Popular communication stacks exchange JSON or
XML objects over HTTP(S), via TCP(TLS), and incur
significant overhead, particularly when using small size
message sizes. Additionally, interpreted/JIT/VM-based
languages such as JavaScript (NodeJS/Deno), Java, and
Python are dominant in modern microservice programs.
These language technologies, along with the high-overhead
messaging, can impose superlinear cost increases (hardware
demands) on scale-out, particularly towards hyperscale
and/or with latency-sensitive workloads.

Micromanagement

The microservices model generally promises three core
opportunities: scaling, modularity, and continuous
integration.

The opportunity for scaling is mainly attributed to
containerization and is less opportune in practice. The
heavy-weight nature of microservice intercommunication
compounds with the complexity of container orchestration,
yielding superlinear cost growth when factored by the scale-
out magnitude.

The opportunity for modularity is not exclusive to the
microservices paradigm. The appearance of this opportunity
is likely associated with the unsophisticated abstraction and
modular programming features of common microservices
languages. Microservices can appear to improve on this
problem by forcing a stable API specification and
encouraging more careful design of, and changes to, those
APIs.

Finally, and perhaps most realistic, is the opportunity for
continuous integration and iteration. The architectural
presentation of the microservices model, excluding
orchestration and communication, resembles Ada’s concept
of separate compilation. With a stable external API, and a
standard “calling convention” (JSON->HTTP->TCP),
individual microservices resemble Ada

packages/subsystems, and can be more safely modified in
isolation, and with minimized impact on other microservices
that compose the larger application.

The growing relevance of Ada

In the increasingly software driven world, the challenges
faced by extreme complexity, large teams, and the growing
reliance on software is becoming ever more important, and
ever-more universal. Common software errors, as well as
difficulty of maintenance, impose unpredictable and often
unsustainable costs in both time and money. Ada’s ability to
contain and detect the most common errors, together with its
emphasis on maintainability, readability, and modularity,
provides perpetual cost and schedule benefits that can easily
outperform other language technologies when deploying
long-lived, frequently iterated applications.

Besides the structural benefits of Ada, many of the popular
languages in the microservices and cloud-native industry are
fundamentally single-threaded (JavaScript and Python). As
the industry grips with the “power wall” physical limitations
for single-threaded CPU performance, concurrency and
parallelization are critical to future scale-out. Though the
microservices model is implicitly concurrent between
individual microservices, this is not sufficiently fine-grained
at hyperscale workloads. At such scales, concurrent
languages such as Java, Go, Rust, or even C++ prevail.
However, Ada has among the most robust, mature, and
proven concurrency features of any modern procedural
language. Being a compiled language, Ada sits comfortably
among Go, Rust, and C++, in raw performance, with total
safety arguably greater than any of its peers.

Towards a scalable, modular execution
environment for Ada

When developing a long-lived, distributed application that
must meet all modern demands of scale and continuous
integration, a highly capable, flexible, safe, performant,
concurrent, maintainable, standardized language is an
obvious advantage.

Using Ada to implement traditional containerized
microservices is trivial. However, doing so fails to fully
harness Ada’s explicit design focus on the development of
very large systems, among other strengths like concurrency
and strong typing.

XERIS/APEX ultimately seeks to implement an Ada-
specific execution environment that provides a common,
distributed communications layer, and an optional
exokernel. The goal of XERIS/APEX is to bring Ada’s
natural aptitude for modularity and large-scale systems to the
nascent microservices architecture of modern hyperscale

44 XERIS/APEX: Hyperscal ing with Ada

Volume 42, Number 1, March 2021 Ada User Journal

applications. Together with Ada’s strong encapsulation and
separate-compilation features, XERIS/APEX is designed to
enable modern iterative and continuous development
approaches for hyper-scale Ada applications that can scale
autonomously.

XERIS/APEX presents itself to the Ada programmer as the
communications layer via a single, stable generic package.
The optional exokernel exists at a layer below the Ada
Runtime, and does not expose any extra semantics. The
communications framework layer itself is designed for
autonomous scaling, fault recovery, and continuous
integration, and is implemented with a fully lock-free shared
memory work-stealing message passing design optimized
for RDMA and cache-coherent fabrics.

For more traditional static distributed system designs, the
XERIS/APEX communications layer was specifically
designed to be an efficient candidate for Ada’s Annex E E.5
“Partition Communication Subsystem”, allowing Annex E
distributed Ada applications to be easily grafted onto the
XERIS/APEX environment.

An efficient lock-free shared memory
protocol optimized for multiprocessing and
RDMA

Conceptually, the XERIS/APEX communications layer is
structured as a globally addressable collection of conceptual
arrays (“Grids”) of user-defined types (“Units”). Each Grid
can be “spliced” into by any number of “Tracks”. Tracks
generally represent distributed queues for Units on the
associated Grid. Grids and Tracks are identified with
separate 128-bit identifiers, within separate non-hierarchical
global address spaces.

Physically, a Grid is composed of collection of
interconnected, indivisible compute-memory complexes
termed “Theaters”. In most cases, a Theater is a physical
machine, a NUMA region within a physical machine, or a
virtualized machine (or container). Every Theater may be
connected to an inter-Theater interconnect of some kind that
allows Grid Units to be marshalled from peer Theaters. All
peer Theaters that are discoverable from a given Theater
constitutes the “Tier Horizon”, which is the view of a “Tier”
from a Theater.

Architectural Diagram

Each Theater may contain one or more “Marshal” partitions
that are responsible for peer Theater discovery, and for
stealing Units from peer Theaters when local Tracks become
starved. Marshalling is completely agnostic to the
communications or fabric mediums available but is
specifically designed for direct, unmediated rDMA
interactions with the peer Theater’s Grids and Tracks. This
means that starved Theaters can steal Units from peer
Theaters with no Theater-to-Theater communications
overhead, or processing resources consumed on the peer
Theater.

Each Theater is only required to know about Grid and Tracks
that are spliced into from partitions local to that Theater. This
means that Theater capability can be very heterogenous
across a Tier Horizon, from very large systems, to
application specific components, to edge microcontrollers.

Within a Theater, Grids occupy a shared memory region
visible to all (Ada) partitions running within that Theater.
Every task within every partition of a Theater has
independent access to all active Grids and Tracks within that
Theater and can independently “bring-up” additional Grids
and Tracks. All operations on the Tier Horizon are lock-free
and contention is bounded by the total number of tasks
operating within a Theater. All Tier Horizon operations are
fully preemptable.

generic
 type Unit_Type is private;

 ID : Grid_ID;
 Capacity: Positive;

package XERIS.Tier_Horizon.Grid is

 type Commission_Track is private;
 type Distribution_Track is private;

 function Splice (ID : Track_ID;
 Split_Tolerant: Boolean := False;
 Restricted : Boolean := False)
 return Commission_Track;

 function Splice (ID : Track_ID;
 Split_Tolerant : Boolean := False;
 Restricted : Boolean := False)
 return Distribution_Track;

The primary generic Tier Horizon Grid interface

From the perspective of an Ada program, Units obtained
from a Track or allocated from a Grid are returned via a
limited controlled Ada reference type. The reference type
provides safe, direct access to the Unit’s shared memory.
Units are only freed (default) or enqueued again upon
finalization of the reference type. The Ada language rules
ensure that the Tier Horizon user interface is mostly “fool
proof”, and highly auditable (erroneous use requires
‘Unchecked’). Copies of a reference type cannot be made by
the user, and the accessibility level of the precludes the user
from maintaining an access value to the unit for longer than

R. Wai 45

Ada User Journal Volume 42, Number 1, March 2021

the reference itself. If a unit is not scheduled for re-dispatch,
it is simply freed at finalization. This approach mitigates
opportunities for race conditions, or memory leaks.

Commission Tracks for atomic message
passing

Each Track may operate in one of two paradigms:
Commission or Distribution. A Commission Track is for
atomic message passing, while a Distribution Track
resembles a publish-subscribe/fan-out model.

Commission Tracks are implemented as lockless FIFO
queues, and each Grid Unit dequeued becomes exclusively
owned by the task that dequeues it. Units that are dequeued
from a Commission Queue are identical to those newly
allocated from the associated Grid and may be re-dispatched
to any Track of the same Grid. The dispatch (enqueuing)
process is tied to Ada finalization semantics, allowing for the
use of Ada reference types to provide safe read-write access
to a commissioned Unit.

type Commissioned_Unit (Unit: access Unit_Type)
is limited private with
 Implicit_Dereference => Unit;

 function Initiate return Commissioned_Unit with
 Post => Initiate'Result.Unit /= null;

 function Initiate (Timeout: Duration) return
 Commissioned_Unit;

 function Commission
 (Track: in out Commission_Track) return
 Commissioned_Unit with
 Post => Commission'Result.Unit /= null;

 function Commission
 (Track : in out Commission_Track;
 Timeout : in Duration)
 return Commissioned_Unit;

 procedure Schedule_Dispatch
 (Unit : in out Commissioned_Unit;
 Track : in out Comission_Track);

 procedure Schedule_Proposal
 (Unit : in out Commissioned_Unit;
 Track : in out Distribution_Track;
 Release : in Release_Generation);

Basic Commission Track interface

Commission Tracks aim to provide an extremely efficient
message passing for both very large messages, and low
latency messages through RDMA optimizations that take
full advantage of next-generation fabrics such as converged
ethernet, Infiniband, and cash-coherent/COMA externalized
chip interconnects such as RISC-V’s OmniXtend.

declare
 use Service_Grid;

 Work_Item: Commissioned_Unit :=
 Commission (Inbound);
 Begin
 -- We now have ownership of a new work item
 -- from the Inbound_Queue Track

 if Verify (Work_Item) then
 case Work_Item.Lane is
 when Alpha => Schedule_Dispatch
 (Work_Item, Alpha_Lane);
 when Bravo => Schedule_Dispatch
 (Work_Item, Bravo_Lane);
 when Charlie => Schedule_Dispatch
 (Work_Item, Charlie_Lane);
 end case;
 end if;

 -- Otherwise the item will be discarded

 exception
 when e: others =>
 Work_Item.Error := To_Bounded_String
 (Exception_Information(e));
 Schedule_Dispatch (Work_Item,
 Aborted_Work_Queue);
 end;

Example of a verification and re-route step consuming from
an input Track

Distribution Tracks for pub-sub semantics
and efficient fan-out

type Distributed_Unit (Unit: access constant Unit_Type)
 is limited private with
 Implicit_Dereference => Unit;

 type Fanout_Setup_Function is not null access
 function (Unit: Commissioned_Unit)
 return Release_Generation;

function Fanout_Initiate
 (Set_Up: Fanout_Setup_Function)
 return Distributed_Unit;

function Fanout_Initiate
 (Set_Up: Fanout_Setup_Function;
 Source: Commission_Track)
 return Distributed_Unit;

 function Fanout_Initiate
 (Set_Up: Fanout_Setup_Function;
 Timeout: Duration) return Distributed_Unit;

 function Release (Unit: Distributed_Unit) return
 Release_Generation;

46 XERIS/APEX: Hyperscal ing with Ada

Volume 42, Number 1, March 2021 Ada User Journal

 function Current_Unit (Track: in out Distribution_Track)
 return Distributed_Unit;

 procedure Redistribute (Unit : in out Distributed_Unit;
 Track: in out Distribution_Track'Class);

 function Wait_Update
 (Track: in out Distribution_Track;
 From: in Release_Generation)
 return Distributed_Unit with
 Post => Wait_Update'Result.Unit /= null;

Basic Distribution Track interface

Distribution Tracks maintain single, atomic Unit reference,
and a Track-specific monotonically increasing 128-bit
“release” generation value. The “Current Unit” of a
Distribution Track can only ever be replaced by a Unit that
has a greater release generation value. Outdated Units that
are replaced are tracked by reference counting and remain
accessible until the last reader has released it, at which point
the Unit is freed.

Distribution Tracks provide advanced features for highly
efficient fan-out, as single Units may be published to
multiple tracks simultaneously. For Theater-local fan-out,
the operation has extremely low overhead at scale. For inter-
Theater communication, the fan-out capabilities can be used
to filter and distribute work sets efficiently, and often in a
parallelizable way.

There are two fundamental design considerations that
constrict the communications framework. Firstly, it must be
capable of supporting a full implementation of. Secondly, it
should provide the simplest and safest possible direct
interface for the implementation of custom high-
performance user-defined distributed message passing
models.

task body Fast_Filtered_Fanout is
 use Telemetry_Grid;
 function Setup (Unit: Commissioned_Unit)
 return Release_Generation is (Unit.Cycle);

 begin
 loop
 declare
 Parcel: Distributed_Unit := Fanout_Initate
 (Source => Input_Track,
 Set_Up => Setup'Access);
 begin
 parallel for F of Filters loop
 if F.Match (Parcel) then
 Redistribute (Parcel, F.Output_Track);
 end if;
 end loop;
 end;
 end loop;
 end Fast_Filtered_Fanout;

Example of a parallelized fan-out task that filters and
distributes an input telemetry Unit

Updating a Distribution Track causes the Marshal to attempt
to push the same update to any eligible peer Theaters within
the Tier Horizon. For RDMA or COMA fabrics, this can be
done directly without mediation from the peer systems.

Autonomous scaling

The Grid and Track address space together with the Tier
Horizon concept is designed to accommodate the iterative
architecting of very large systems with unbounded
complexity, with a heterogeneous collection of individual
programs (partitions) broadly resembling the microservices
pattern. Each component – a partition – should be engineered
for dynamic, unbounded replicated within a Tier.

If constructed around the XERIS/APEX communication’s
layer, all Theater s and partitions can be both replicated and
destroyed dynamically without requiring programmer
intervention to drain or prime queues or to perform load
balancing. Each Theater autonomously discovers peer
Theaters, steals work (Units) from discovered peers as
needed. This allows for automated replication and
destruction at all levels from tasks, to partitions, to theaters,
to entire Tiers.

Within a Theater, Track queue level monitoring can drive
autonomous scaling algorithms that either replicate or
destroy task pools or partitions. At the Tier level, similar
Track queue level and inter-Theater marshalling activity can
inform orchestration mechanisms to autonomously replicate
or destroy entire Theaters in real-time.

Existing established infrastructure, such as container
orchestration and public cloud platforms, can be
manipulated directly by Tier scaling agents within the
system, allowing autonomous self-configuration at all levels.

Continuous integration and iterative
growth in complexity

Since each Theater maintains its own set of Grids and
Tracks, and knows only about peer Theaters that are
discoverable, the Tier Horizon geometry can be
architecturally subdivided by boundary Theaters, or
dynamically through the intentional or unintentional “Split
Horizon” conditions.

At an architectural level, very large systems can be logically
separated into Tiers more formally by synthesizing a
Horizon (a “Tier Shock”) via one or more multi-Marshal
Theaters. These specialized Marshalls filter specific
Gird/Track pairs on physically/logically distinct
interconnects (such as separate network interfaces). The
typical architectural pattern would be to present an entire
Tier (a “lower” Tier) as a single Grid to the “higher” Tier.
Within the “lower” Tier, the entire Grid/Track address space
may be reused for purposes totally distinct from the “higher”
Tier. This Tier mechanism is recursive, and supports a
system of theoretically unlimited complexity, and
particularly systems built iteratively. Importantly, Tier
Shock formation can occur dynamically, and thus both
continually and iteratively.

R. Wai 47

Ada User Journal Volume 42, Number 1, March 2021

A Split Horizons condition occurs when a Theater’s Grid and
Track version and/or geometry differs from that of one or
more accessible peer Theaters. When a Theater discovers
this condition during discovery, it will not attempt to marshal
any Units to the conflicting peer Theater, effectively
isolating itself. This mechanism ensures safety, as well as
providing a path for gradual upgrading of large systems.
Newer versions of components may be added to the system
without any need to change Grid or Track IDs. In fact, Grid
and Track IDs should be a feature of the system architecture,
rather than a dynamic property. Since Theaters within a Tier
will only ever marshal Units between compatible Grids,
piecemeal upgrades result in non-destructive automatic
partitioning of new components into parallel Tiers. When the
new Tier is fully upgraded and functioning as expected, the
older Tier can be isolated and destroyed safely, and without
any disruption to the larger system.

These two properties, Tier Shock formation and Split
Horizon conditions, permit a system to be iterated on, and
even gradually re-architected, while it remains online. Using
Ada’s powerful separate compilation features, modern
continuous integration practices can be made both extremely
efficient, and extremely reliable.

Optional bare-metal and IoT exokernel

By leveraging the richness and formalized specification of
the Ada Runtime, XERIS/APEX is developed with an
optional Ada-specific exokernel that supports a complete
Ada Runtime support environment with the XERIS/APEX
communications layer support.

Without the exokernel, the XERIS/APEX environment can
be hosted within an existing operating environment (such as
Linux or FreeBSD), giving access to drivers, persistent
storage, and third-party libraries.

The exokernel is initially intended for critical components,
maximized performance, specialized accelerators, or
embedded use cases. From the perspective of the Ada
partition, the hosted and exokernel environments are

identical. Both the hosted and exokernel configurations can
compose transparently to form a heterogeneous system.

The exokernel supplies fundamental services to support the
XERIS/APEX communications layer, and an Ada runtime.
These services include memory management, scheduling,
and synchronization primitives. Memory management
covers partitioning, the Ada Standard storage pool, and
XERIS/APEX shared memory regions. Scheduling and
synchronization primitives are Ada-specific and are intended
for exclusive use by the Ada Runtime. The scheduler is
Annex D (Real-Time Systems) compliant and capable of
providing managed Light-Weight Thead (LWT) pools for
the implementation of Ada 202X parallel features.

As an exokernel, all drivers are implemented through any
number of regular partitions that are notified and scheduled
by the exokernel as per the Annex C and D specifications for
interrupt support and prioritization. Inter-partition
communication with driver partitions would be implemented
through the Tier Horizon mechanism. This approach
conveniently minimizes copying for IO drivers, and also
allows the potential for Tier Horizon-wide access to devices.

The exokernel is implemented almost exclusively in Ada,
besides a minimal use of machine code insertions. The initial
targets architectures are RISC-V (32/64-bit) and ARM
(32/64-bit).

The path forward

The XERIS/APEX execution environment, including the
exokernel, will be freely available under a 3-clause BSD
license. The first systems based on XERIS/APEX (in a
hosted configuration) are expected to be in production
sometime in Q1 of 2021. We expect a publicly available beta
release (source release) shortly thereafter. Initial reference
marshal partitions will be layered on top of libfabric.

Please monitor our blog at annexi-strayline.com/blog, or our
github page at github.com/annexi-strayline to track the
availability of the upcoming open source beta release.

48

Volume 42, Number 1, March 2021 Ada User Journal

Challenges and Lessons Learned Introducing an
Evolving Open Source Technology into an
Established Legacy Ada and C++ Program
Brian Kleinke
ERAM Chief Software Architect, Leidos

When the Federal Aviation Administration (FAA) launched
the System Wide Information Management (SWIM)
initiative, the FAA had the goal of using the same portable,
open infrastructure across all participating systems in the
National Airspace System (NAS). Around 2008 for SWIM
Segment 1, the FAA chose Iona Software’s Free/Open
Source Software (FOSS) based bundle, which was known
and supported under the Fuse brand. The FAA obtained the
licenses used by programs, including EnRoute Automation
Modernization (ERAM), through Iona, which was later
acquired by Progress and RedHat. The Fuse packages are
provided by the SWIM Program Office in the SWIM COTS
Repository located at the FAA’s William J. Hughes
Technical Center. The ERAM-required SWIM Segment 1
function is packaged as the ERAM SWIM Application
Service (ESAS) Computer Software Configuration Item
(CSCI). The purpose of ESAS is to accept messages from
Traffic Flow Management System (TFMS) and send them
on to the ERAM flight processor. TFMS provides large-scale
aircraft reroutes to avoid inclement weather and traffic
congestion.

This paper relays some of the ERAM experience with the
introduction of the Fuse framework into ERAM’s large
Efficiency and Safety Critical Ada and C++ system
including:

 Development challenges

 External forces such as the rapid evolution of FOSS

 Maintenance challenges in a long-life National
Airspace System (NAS) critical system

 Testing

 Performance

Development challenges

ERAM is an Ada/C++ near real-time system using a
purpose-built middleware with a DO278 Level C compliant
process. ESAS is designed to interface with the core ERAM
function and is written in Java, rather than Ada or C++. This
decision was based on the SWIM middleware mandate from

Copyright 2020 Leidos. All rights reserved

1 https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/
html/apache_cxf_development_guide/cxfjbfuse

the FAA and technically preferred because Java excels at the
processing of XML and many libraries are available. Key
among these libraries is cxf1, which facilitates standing up
an endpoint using a Web Service Definition Language
(WSDL) accessible via a web server endpoint. Almost 80%
of the approximate 2.1 million source lines of code present
in ERAM is composed of Ada and C/C++ and just over 20%
is composed of scripting languages, leaving under 1% made
up of Java. It is a management challenge to correctly staff a
small sub-team using a different primary language and
middleware from the rest of the system. Best practice coding
standards and inspection or analysis tools existed for Ada
and C++; adopting Java with the Fuse stack in the
operational ERAM environment required augmenting the
standards and toolsets. To close this gap, Jenkins, later
renamed Hudson, and Clover were brought into the baseline
and customized for our standards and workflow in parallel
to the tools used for Ada/C++. ESAS is the only place where
any significant Java is used in the operational portion of the
ERAM system. Formal Software Design Documents (SDDs)
on ERAM conform to an FAA specified Data Item
Description (DID) per the contract Statement of Work
(SOW). ESAS’s design document is produced using the site
report options in a maven build similar to how other systems
produce Javadoc. This differs from the rest of ERAM, which
uses an Artisan2 model to build a Word document. However,
ESAS continues to use Artisan to generate diagrams – just at
a much smaller scale than the other CSCIs. It is important to
note that ERAM requirements include providing the system
support functions within the system. ESAS SDD generation
involves unique steps at each formal publication required.
The alternative tool assisted format was accepted by the
FAA and works well to convey the design of the Leidos code
and its use of Fuse. In addition to the difference in production
tools, the unique inter-dependencies upon CAS for the ESAS
implementation also is conveyed in this SDD. ERAM as a
whole uses FlightDeck™ (FDK) – a custom middleware
platform designed for near real-time applications. Open
Services Gateway initiative (OSGI), which is the basis for
ESAS with JBoss Fuse 6.1, is loaded in the Java Virtual
Machine and doesn’t directly talk to other FDK applications

2 Artisan Studio has been rebranded PTC Integrity Modeler
https://support.ptc.com/help/modeler/r9.0/en/index.html#page/Integrity_M
odeler/rtsme/whats_new_8_2.htm

B. Kleinke 49

Ada User Journal Volume 42, Number 1, March 2021

without specific code written to communicate between the
two. ESAS uses a Java Management Bean that is accessed
by code running outside ESAS that then talks to the ERAM
monitor and control function.

External forces

Fuse was still in the development and maturing phase,
including key areas that ERAM required, when ESAS
development was initiated. As new Fuse versions were
released, each providing more features, the rollout didn’t
match the order of the ESAS planned development needs
1:1. For example, client-side certificates were not available
until a later release, and earlier releases did not expose lower
level interfaces as alternatives. This led to replans within the
ESAS and ERAM development cycles. These features could
not be completed until ERAM updated to later Fuse versions.
Product licensing and our development philosophy became
an issue when Red Hat bought FuseSource in 2012-20133
and repackaged and rebranded the offering as JBoss Fuse.
This required migration in order to maintain support as Fuse
4 went end-of-life in 2012. In the evaluation of options to
determine a replacement for the end of life Progress
Software sourced Fuse Stack, WebLogic was considered, but
because the WebLogic framework is even larger than JBoss
Fuse, it would have increased memory and processor
requirements and required more work to port the existing
code. The conclusion was to step up to JBoss Fuse 6.1. The
original ESAS team was relatively small and developed in-
demand skills, and the team had scattered during the period
with no work leading up to the port. With skills popular in
the industry, the attrition rate was higher for this team than
for areas with traditional languages. It took several extra
labor months for the next team of developers to appropriately
learn ESAS and Fuse in order to migrate the system. A large
part of the learning curve included navigating how Fuse with
spring uses .xml files to wire up the components. Without
the prior developers and working on a project focused on
Ada and C++, nothing analogous to this spring wiring was
comparable, and much of this skill had to be re-learned.
Fortunately, the existing project design documentation, code
commentary and test drivers provided enough information to
allow the team to make progress and complete the port.

During the JBoss upgrade, we learned that planned changes
were coming in a future version. Spring was to be replaced
with OSGi Blueprint and sources indicated the
implementation of blueprint works best in a Karaf container.
However, the step up is non-trivial4. Commercial off the
shelf (COTS) or FOSS products often have the advantage of
providing a set of features that a program can integrate with
easier and usually cheaper than developing the same features
internally. The flip side of this is that the program has little
to no control over the feature set these COTS or FOSS
provide. They could deprecate critical features. This will add
a cost for any step-up that should be included in the plan as
a possible future expense, how likely will depend upon the

3 https://www.redhat.com/en/about/press-releases/
 red-hat-to-acquire-fuseso

COTS or FOSS being used –the more cutting edge the
underlying tech is, the more likely this could happen.

As part of the upgrade, FAA has asked us to minimize the
number of installed copies of Fuse (and thus ESAS) to the
minimum number of boxes, and on a yearly basis we are
required to report the number of boxes and cores on those
boxes. This is consistent with Red Hat’s statement: “A Red
Hat subscription is required for ’each and every instance or
installation’, in whole or in part, of a JBOSS product being
used in your environment”5 On ERAM, the Mean Time To
Repair (MTTR) of certain processors was a key requirement
and all of the operational software was bundled into a single
“release” to minimize the amount of time to restore service.
For example, everything is on a library disk. The disk needs
to be placed into the processor and set the processor’s
identity. Since more than 95% of the ERAM processors do
not run ESAS or Fuse, the updated license model was not
cost effective for the FAA without a change to how the
software was packaged. Capability was added to support
identification of the processor roles on which the ESAS
function needs to execute to limited distribution to only those
processors in the background after a library disk had been
utilized. This change allowed for a substantial reduction in
the support license instances for Fuse and provides a general
ERAM mechanism for potential future use. This experience
reinforced the need for careful review of the COTS and
FOSS support licenses specifics at each upgrade instance.

Maintenance challenges in a long-life
National Airspace System (NAS) Safety
Critical System

 As noted, the original development team was relatively
small compared to the larger project staff. At its peak, ESAS
systems engineers and software developers totaled less than
15 people, compared to hundreds on the rest of ERAM. The
use of “popular industry tools” was key to establishing the
team leadership with subcontractors. It also gave the team
more marketable skills – a double edged sword. Over time,
the funding and associated workload shifted into other areas
of the ERAM system. With minimal work required in ESAS,
the subsequent staffing levels reduced accordingly. This
results in a knowledge ramp-up time when new workload
arises. ERAM has a sufficient development staff to leverage
engineers to support workload shifts, including ESAS. The
initial ESAS development provided the ability for TFMS to
send messages to any of the 20 ERAM centers in the lower
48 states and receive a response. A future release to evolve
to a broader scope, including a publication or subscription
service, did not materialize due to shifting funding and
priorities.

ESAS or Fuse is currently used in ERAM to interface with
external systems for pre-departure and airborne re-route
requests from the FAA’s TFMS (Traffic Flow Management
System). Given that this is an external interface, change is

4 https://stackoverflow.com/questions/45255680/migrating-from-spring-
dm-spring-3-to-blueprint-spring-4-on-karaf

5 https://access.redhat.com/support/policy/updates/jboss_notes

50 Introducing an Evolving Open Source Technology into a Legacy Ada and C++ Program

Volume 42, Number 1, March 2021 Ada User Journal

controlled and requires cross program coordination and
potentially backward compatible versioning support. Thus
far, while there has been evolution of synchronous reply
element details such as providing more specifics regarding
the condition of failure or rejection, all changes have been
within the bounds of the existing WSDL. The use of a
WSDL is recommended as it provides a clear contract with
any external service. A well-defined but extensible WSDL
that allows function evolution without requiring changes to
the types defined by the WSDL is a key recommendation.
The ERAM and TFMS interface has had the contents of a
few of the data fields expanded, but it’s always been within
the bounds of the original definitions.

In the near future, ERAM Sustainment efforts include
Technology Refresh of the hardware platform and operating
system on which the ESAS function executes, triggering a
need to reconsider which, if any, of the system layers of the
JBoss Fuse system will be utilized. Like the Java community
at large, new JBoss Fuse versions bring in new features that
impact CPU and memory, even if the features will not be
used. Staying current with the product is required for
security patches and to ensure product support and that the
currently used JBoss Fuse 6.1 will go end of life on January
31, 2022. Engineering analysis is ongoing to determine the
best course of action for ERAM. Discoveries in the
migration from initial implementation to JBoss Fuse 6.1 in
2014 inform considerations for the pending update. These
include memory and CPU usage. JBoss Fuse 6.1 uses a
larger memory footprint than Fuse 4. The updated ESAS
application consumed more memory, resulting in issues
pertaining to the number of applications that could
concurrently run when executing test and training use cases.
For live ATC Operations, ESAS is the main application on a
redundant pair of servers at a site providing nationwide
service to all 20 ERAM centers. Each of the 20 ERAM
centers need to train controllers on the ESAS functions and
test new software releases. However, standing up dedicated
servers isn’t cost effective. The Fuse framework is resource
intensive at startup and impacts the performance of other
applications on the older server it is running on prior to the
upcoming tech refresh. TFMS simulations have to insert a
pause to allow the system to stabilize or the first injected
message will fail. Each of these lifecycle aspects will be
taken into account during the engineering effort of the
replacement system.

Testing

Java Virtual Machine as a runtime engine differs
exponentially from an Ada or C++ program. Unit tests are
easy to develop and execute in Java. Because ESAS is
ERAM’s only OSGI container, it was easy to automate

statement, segment and decision coverage using Junit. With
this automation, every test is automatically run against every
change, helping drive up the code quality. However, we had
to integrate all of these tools into our process bearing the full
startup cost for a new language.

Performance

A Java Virtual Machine (JVM) does garbage collection and
Fuse adds many extra processes to the runtime. For ERAM
applications based on the purpose-built middleware, the
threads of execution are well understood; the program has
subject matter experts, such as the middleware authors, that
know how to interpret an application at run time. The JVM
is vastly different and the extra processes that come with the
use of Fuse demand different expertise to test, verify and
debug issues with system function. Since ESAS function is
small relative to overall ERAM system size, the support
contract with Red Hat is important should internal detailed
knowledge be required. Finally, performance becomes
harder to predict as JVM garbage collection is a “black box.”
This creates challenges, as the performance characteristics
of a SWIM server can’t be judged using the same
assumptions and modeling used with an Ada and C++ based
program.

Conclusions

We have learned the development challenges when working
with emerging COTS or FOSS and recommend allowing
time for these products to mature before introducing them
into a large embedded program. For 24x7x365 embedded
systems, the use of Java requires understanding how it uses
resources different than other languages. Using COTS or
FOSS needs to include a risk assessment of the chance a key
feature defining the COTS or FOSS may be deprecated over
the lifetime of a system. Java brings with it Junit, which
makes it easy for any Java program to be extremely well-
tested. Using continuous integration software is simple and
should be in any plan for a high-availability system. The use
of WSDL’s to provide an abstraction for external interfaces,
combined with matching Java libraries, make the system
extensible and allow verification that the messages conform
to the WSDL. Programs should consider all environments in
which any JVM applications run and the impact a memory
heavy Java program may have on other applications.

For ERAM, the story is not over. ESAS is running 24 hours
a day with a very low Problem Tracking and Resolution
(PTR) rate. The team will be using this accumulated
knowledge while engineering the next generation of the
ESAS functions within the ERAM program.

51

Extended Abstract: Productive Parallel
Programming with Parsl

Kyle Chard, Yadu Babuji, Anna Woodard, Ben Clifford, Zhuozhao Li, Mihael Hategan, Ian Foster
University of Chicago

Mike Wilde
ParallelWorks

Daniel S. Katz
University of Illinois at Urbana-Champaign

Abstract

Parsl is a parallel programming library for Python that
aims to make it easy to specify parallelism in programs
and to realize that parallelism on arbitrary parallel and
distributed computing systems. Parsl relies on devel-
opers annotating Python functions—wrapping either
Python or external applications—to indicate that these
functions may be executed concurrently. Developers
can then link together functions via the exchange of
data. Parsl establishes a dynamic dependency graph
and sends tasks for execution on connected resources
when dependencies are resolved. Parsl’s runtime system
enables different compute resources to be used, from
laptops to supercomputers, without modification to the
Parsl program.

1 Introduction
As we approach the limitations of sequential processing
power, computer architectures are becoming increasingly par-
allel and distributed. Unfortunately, parallel and distributed
computing has a reputation for being complex, frail, and un-
safe. To address the needs of a diverse developer community
new programming languages, libraries, and tools are needed
to better enable productive, safe, robust and portable parallel
and distributed programming.

Python has established itself as one of the most productive
programming languages as it is easy to use and has a thriving
user community and ecosystem of libraries and tools. As
a result, Python has been broadly adopted in industry and
academia. However, one of the most well-known limitations
of Python is its use of the Global Interpreter Lock (GIL) that
limits concurrent execution of threads— and the resulting
implications with respect to parallelization. Overcoming this
limitation has been the focus of many Python libraries, for ex-
ample, Python’s multiprocessing library allows applications
to spawn new processes for execution before they are rejoined
to the master process upon completion. While multiprocess-
ing addresses the need for concurrent execution on a node, it
does not support execution in a distributed setting.

Parsl is a Python library that augments Python to enable pro-
ductive, safe, robust and portable parallel and distributed
programming. Parsl’s productivity stems from its simple
extensions to Python in which developers express opportuni-
ties for concurrent execution using function decorators. At
runtime, Parsl establishes a dynamic dependency graph com-
prised of tasks (i.e., calls to Python functions) with edges
representing shared input/output data between tasks. Parsl
encodes this information as a Directed Acyclic Graph (DAG),
which it uses to implement a safe concurrency model in which
tasks are only executed when their dependencies (e.g., input
data dependencies) are met. When the program executes,
Parsl manages the execution of function invocations on var-
ious computing resources, from laptops to supercomputers.
Parsl tracks task execution, detects exceptions, retries tasks
when they fail, and is able to overcome various faults (e.g.,
node failure, task failure). Finally, to enable programs to be
moved between different systems, Parsl separates program
implementation from runtime configuration thereby enabling
developers to load a system-specific Python configuration
object at runtime.

In this extended abstract we highlight Parsl’s productive pro-
gramming model. Further details of Parsl’s implementation
and runtime model is available in prior publications [1, 2, 3]

2 Parsl Programming Model
Parsl augments Python with constructs to enable specification
of parallelism in Python programs. Parsl uses these constructs
to establish a dynamic dependency graph via which it can
determine a safe and portable execution plan.

2.1 Parsl Apps
At the core of the Parsl model are Parsl apps—decorated
Python functions that wrap either pure Python code
(python_app) or external applications that can be invoked
via the shell (bash_app). Listing 1 shows how Parsl apps
can be used to print “Hello world”. Parsl apps are executed
asynchronously and thus they must include all context needed
for execution. For example, dependencies must be imported
in the app and required data must be explicitly passed via
arguments. The Parsl bash_app uses the return statement to
specify the Bash command to be executed.

Ada User Jour na l Vo lume 42, Number 1, March 2021

52 Extended Abst rac t : Product ive Para l le l Programming wi th Pars l

@python_app

def hello():

return 'Hello world'

@bash_app

def hello():

return 'echo "Hello world"'

Listing 1: Hello world Python and Bash apps.

@python_app

def hello ():

import time

time.sleep(5)

return 'Hello World!'

app_future = hello()

Check if the app future is resolved

print('Done: {}'.format(app_future.done()))

Wait for the future to resolve

print('Result: {}'.format(app_future.result()))

Listing 2: Invocation of a Parsl app will return a future to the
calling program. The future can be used to retrieve the result
when the app completes executing.

2.2 Futures
As Parsl apps are executed asynchronously, and perhaps on
remote resources with variable delays, it would be inefficient
for the Python program to wait for the app to complete execu-
tion. Instead, Parsl supports concurrent execution as follows.
Whenever a Parsl program calls an app, Parsl will create a
new task in its dependency graph and immediately return a
future in lieu of that function’s result(s). The program will
not block and can continue immediately through execution.
At some point, for example when the task’s dependencies
are met and there is available computing capacity, Parsl will
execute the task. Upon completion, Parsl will set the value
of the future to contain the task’s output. Listing 2 shows
an example of the future being returned from the invocation
of the hello app. Parsl’s futures also provide methods for
inspecting the current status and accessing the result.

Parsl allows futures to be passed as input to other Parsl apps,
thereby creating a dependency between the app that produces
the future and the app that consumes that future. Parsl moni-
tors these dependencies and as futures are resolved it deter-
mines what dependent apps may now be executed.

2.3 Data
Parsl supports the exchange of both Python objects and ex-
ternal files between Parsl apps. To enable portability, and
simplify use, Parsl aims to abstract execution location by en-
suring that apps may access the same input arguments and
files irrespective of where the app is executed.

Listing 3 illustrates how apps can communicate using stan-
dard Python parameter passing and return statements. Parsl

@python_app

def communicate(name):

return 'hello {0}'.format(name)

r = communicate('bob')

print(r.result())

Listing 3: App communication via Python arguments.

from parsl.data_provider.files import File

@python_app

def sort_numbers(in_file):

with open(in_file.filepath, 'r') as f:

strs = [n.strip() for n in f.readlines()]

strs.sort()

return strs

unsorted_file = File(

'https://raw.githubusercontent.com/Parsl/' +

'parsl-tutorial/master/input/unsorted.txt')

f = sort_numbers(unsorted_file)

print (f.result())

Listing 4: App communication via files. In this case a remote file
is passed to an app that sorts the contents of that file.

enables passing of primitive types, files, and other complex
types that can be serialized (e.g., numpy array, scikit-learn
model).

Listing 4 shows how Parsl apps can communicate via files.
Parsl defines a file object to abstract file location and rela-
tive paths for file access. A file may be passed as an input
argument to an app or returned from an app after execution.
Parsl’s data management features support automatic transfer
(i.e., staging) of files between the main Parsl program, worker
nodes, or external data storage systems. Input files can be
passed as regular input arguments. When executing within an
app, the filepath attribute of a File can be used to determine
the location of the file on the execution system’s file system.
Output file objects must also be specified at app invocation
such that Parsl can track the creation of the file and subsequent
staging back to the main program or other executing apps.
Output files are specified with the app’s outputs parameter.

2.4 Configuration
Parsl separates program logic from execution configuration,
enabling programs to be developed in a way that is agnostic
of execution environment. Configuration is expressed in a
Python object (Listing 5) which is loaded at runtime. The
configuration object enables developers to introspect permissi-
ble options, validate configurations, and dynamically modify
configurations during execution. The configuration speci-
fies details of the provider, executors, connection channel,
allocation size, and data management options.

Volume 42, Number 1, March 2021 Ada User Jour na l

K. Chard et a l . 53

3 Related Work
Considerable prior work has explored methods for supporting
parallelism in applications. We briefly review methods that
are offered as domain specific languages, as libraries in an
existing language, and as language-independent frameworks.

There are a number of domain specific languages and work-
flow systems that support the orchestrated execution of task
dependency graphs. Systems, such as Pegasus [4] implement
a static DAG model in which developers define the structure of
the program in a custom representation and then they execute
it via the workflow system. Python-based workflow systems
such as FireWorks [5], Apache Airflow [6], and Luigi [7]
provide similar capabilities within Python. Swift [8] and
NextFlow [9] implement their own DSL which is evaluated
to generate a DAG.

Most well-known programming languages offer a range of
libraries designed to support parallel and distributed execu-
tion. In Python, Dask [10] supports parallel data analytics
via custom implementation of common Python libraries (e.g.,
Pandas) and a general distributed runtime for execution on
clusters. FaaS systems, such as funcX [11], often use similar
methods for distributed execution.

Other systems take a language-independent approach to de-
veloping parallel and distributed applications. Concurrent
Collections [12] implements a language-independent way of
encoding parallelism in different host languages. Developers
identify data and control dependencies, and encode these de-
pendencies in a graph. The graph is executed by translating
the specification to code for a specific runtime system (e.g.,
in C++, Java, and .NET). OpenMP [13] provides a set of
language- and platform-independent directives for augment-
ing an application and parallelizing execution on nodes. It is
often combined with MPI for distributed execution.

4 Summary
Parsl offers a productive way of implementing portable par-
allel and distributed programs in Python. The benefit of ex-
tending Python with simple extensions has enabled a diverse
range of developers to leverage Parsl in various domains and
use cases. The modular configuration and execution model
allows Parsl programs to be moved between different parallel
and distributed computing environments. In prior work we
have shown that Parsl can execute millions of tasks, scale to
more than 250,000 workers across more than 8000 nodes, and
process upward of 1200 tasks per second [1].

Acknowledgments
Parsl is supported by NSF award ACI-1550588 and DOE
contract DE-AC02-06CH11357.

References
[1] Y. Babuji, A. Woodard, Z. Li, D. Katz, B. Clifford,

R. Kumar, L. Lacinski, R. Chard, J. Wozniak, I. Foster,
M. Wilde, and K. Chard, “Parsl: Pervasive parallel pro-
gramming in Python,” in 28th ACM International Sym-
posium on High-Performance Parallel and Distributed
Computing (HPDC), 2019.

from parsl.con�g import Con�g
from parsl.channels import LocalChannel
from parsl.providers import SlurmProvider
from parsl.executors import HighThroughputExecutor
from parsl.launchers import SrunLauncher
from parsl.addresses import address_by_hostname

con�g = Con�g(
executors=[

HighThroughputExecutor(
label="frontera_htex",
address=address_by_hostname(),
max_workers=56,
provider=SlurmProvider(

channel=LocalChannel(),
nodes_per_block=128,
init_blocks=1,
partition='normal',
launcher=SrunLauncher(),

)
)

]
)

Listing 5: Parsl configuration for running on TACC’s Frontera
supercomputer.

[2] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford,
I. Foster, M. Wilde, and K. Chard, “Scalable parallel pro-
gramming in python with parsl,” in Proceedings of the
Practice and Experience in Advanced Research Com-
puting on Rise of the Machines (Learning), PEARC ’19,
pp. 22:1–22:8, ACM, 2019.

[3] Y. Babuji, K. Chard, I. Foster, D. Katz, M. Wilde,
A. Woodard, and J. Wozniak, “Parsl: Scalable paral-
lel scripting in python,” in 10th International Workshop
on Science Gateways (IWSG), 2018.

[4] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan,
P. Maechling, R. Mayani, W. Chen, R. da Silva, et al.,
“Pegasus, a workflow management system for science
automation,” Future Generation Computer Systems,
vol. 46, pp. 17–35, 2015.

[5] A. Jain, S. Ong, W. Chen, B. Medasani, X. Qu,
M. Kocher, M. Brafman, G. Petretto, G. Rignanese,
et al., “Fireworks: A dynamic workflow system de-
signed for high-throughput applications,” Concurrency
and Computation: Practice and Experience, vol. 27,
no. 17, pp. 5037–5059, 2015.

[6] Airflow Project, “Airflow,” 2019. https://airflow.

apache.org/. Accessed Sep 1, 2020.

[7] Luigi Team, “Luigi.” https://github.com/spotify/

luigi. Accessed Sep 1, 2020.

[8] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S.
Katz, and I. Foster, “Swift: A language for distributed
parallel scripting,” Parallel Computing, vol. 37, no. 9,
pp. 633–652, 2011.

Ada User Jour na l Vo lume 42, Number 1, March 2021

54 Extended Abst rac t : Product ive Para l le l Programming wi th Pars l

[9] P. Di Tommaso, M. Chatzou, E. Floden, P. Barja,
E. Palumbo, and C. Notredame, “Nextflow enables re-
producible computational workflows,” Nature Biotech-
nology, vol. 35, no. 4, p. 316, 2017.

[10] Dask Development Team, Dask: Library for dynamic
task scheduling, 2016.

[11] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard,
B. Blaiszik, I. Foster, and K. Chard, “funcx: A federated
function serving fabric for science,” ACM, Jun 2020.

[12] M. Burke, K. Knobe, R. Newton, and V. Sarkar, Con-
current Collections Programming Model, pp. 364–371.
Boston, MA: Springer US, 2011.

[13] L. Dagum and R. Menon, “Openmp: an industry stan-
dard api for shared-memory programming,” Compu-
tational Science & Engineering, IEEE, vol. 5, no. 1,
pp. 46–55, 1998.

Volume 42, Number 1, March 2021 Ada User Jour na l

 55

Ada User Journal Volume 42, Number 1, March 2021

Language Support for Parallel and Distributed
Computing
Tucker Taft, Kyle Chard, James Munns and Richard Wai

Language constructs that support parallel computing are
relatively well recognized at this point, with features such as
parallel loops (optionally with reduction operators), divide-
and-conquer parallelism, and general parallel blocks. But
what language features would make distributed computing
safer and more productive? Is it helpful to be able to specify
on what node a computation should take place, and on what
node data should reside, or is that overspecification? We
don’t normally expect a user of a parallel programming
language to specify what core is used for a given iteration of
a loop, nor which data should be moved into which core’s
cache. Generally the compiler and the run-time manage the
allocation of cores, and the hardware worries about the
cache. But in a distributed world, communication costs can
easily outweigh computation costs in a poorly designed
application. This panel will discuss various language
features, some of which already exist to support parallel
computing, and how they could be enhanced or generalized
to support distributed computing safely and efficiently.

Our panel members are familiar with many of these issues:

 Kyle Chard, University of Chicago and Argonne
National Laboratory: “The past decade has seen a
major transformation in the nature of programming as
the need to make efficient use of parallel hardware is
now inescapable. As the parallel programming
community both grows and becomes yet more diverse
there is a crucial need for high level language features
that enable productivity, portability, safety, and
usability. To strike a balance between usability and
performance we need to focus on ways to raise the
level of abstraction, making parallelism more
accessible to developers in their working
environments, and automating complex runtime
decisions where possible, even if this comes at the
expense of performance and/or functionality.”

 James Munns, founder Ferrous Systems: “I can speak
broadly around Rust’s capability to make certain
aspects easier, such as serialization, state handling,
error management, etc. Good distributed computing
relies on safe and effective concurrent computing, so
Rust’s features such as the Rayon library for light-
weight threading, as well as Rust’s more conventional
heavy-weight threading support, provide a basis for
moving into the distributed computing realm.”

 Richard Wai, founder Annexi-Strayline: “The rapidly
changing and diverse space of distributed computing
imposes complex challenges, particularly to language-
defined specification of behavior. We should consider
what safety threats arise from high communication

costs. The real safety threat may be in the management
and coordination of a large distributed codebase, where
changes in one partition could potentially propagate
serious defects out into the larger system, with
unpredictable outcomes. There also seems to be a
movement towards expanding the NUMA concept (or
COMA) to distributed systems through rDMA fabrics
and other similar architectures. This could mean a
future where heterogenous systems share a cache-
coherent global address space. We should consider
how languages might scale to such system
architectures, particularly in the parallel processing
domain. How might a parallel loop behave over a
cache-coherent fabric - particularly if the elements of
the iterated data are disbursed?”

 Tucker Taft (moderator), VP and Director of Language
Research, AdaCore: “My career has been focused on
the design of programming languages that can enhance
the effectiveness and productivity of developers
building large, high-performance, safe, secure, correct,
and often real-time software-intensive systems. In the
meantime, the hardware world has moved from
relatively simple, single-processor, single-machine
systems, through multi-core and many-core machines,
on to heterogeneous and distributed networks of multi-
core nodes with GPUs and FPGAs, cooperating to
solve otherwise intractable problems. Programming
languages have lagged behind this evolution, meaning
that today’s programmer is generally confronted with
all of this complexity. In some sense we have lost our
high-level languages for developing software for these
new systems, and are effectively back to doing
machine-level programming, where now we worry
about individual messages and data placement, much
like the old assembly languages where we worried
about individual machine instructions and machine
registers. The question is can we regain a high-level
model for doing distributed computing, but still
achieve the performance achievable by “machine-
level” distributed computing?”

Panelist Discussion

Tucker Taft
Parallel programming features now exist in many languages,
often with syntactic support for parallel loops, parallel
blocks, map/reduce, etc. Less common is compile-time
detection of possible data races, but we would argue that that
is critical to making parallel computing widely accessible
and productive.

56 Language Support for Paral le l and Distr ibuted Computing

Volume 42, Number 1, March 2021 Ada User Journal

Increasing numbers of cores have to some extent made up
for the loss of pure GHz scaling, which ended about 15 years
ago. But nevertheless, when the number of cores on a single
node approaches 50, bottlenecks begin to appear, as memory
bandwidth becomes a larger challenge. Even with good load
balancing across multiple cores, there comes a time when
better results can be produced only by going to a distributed
model, where memory is no longer being physically shared
across all of the cores, but instead you have multiple
multicore nodes communicating over a network.

In the parallel programming model, computation typically
goes back and forth between sequential stages of the
algorithm and parallel stages of the algorithm. One could
imagine a straightforward generalization of this to the
distributed computing world, where at the point that all local
cores become fully occupied, work items are farmed out to
other nodes, with results being returned to the "main" node
as the work items are executed by the "helper" nodes.
Unfortunately, the amount of communication and other
overhead for this kind of "just-in-time" distribution can
outweigh the savings from sharing the work. An alternative
approach is to have multiple nodes active from the
beginning, with each redundantly performing the sequential
stages locally, and then as the algorithm scales up, each node
performing its own "shard" of the work, with the initial
division of labor agreed upon with a relatively small amount
of inter-node communication at the beginning of the
distributed computation. Although there would be more
redundant computation, the amount of inter-node
communication and associated delaying dependences could
go down significantly, resulting in overall improved
throughput. Work items could still be shared to balance the
load dynamically, but there would likely be less context that
would need to be communicated, since all nodes have done
the sequential "setup" for the parallel computation locally.

Our current research focus is designing a programming
language where this sort of symmetric distributed computing
model is built in. The programmer will be able to define their
algorithms at a high enough level, while reusing or creating
application-specific distributed data structures to support the
algorithms, so that the compiler can automatically distribute
the program across the available computing resources.

Kyle Chard
Distributed computing is increasingly necessary due to
Moore's Law limitations, but also because computation
needs are getting more complex, with interest in using not
just multiple cores and GPUs, but new Tensor Processing
Units, FPGAs, etc. Even on a single supercomputer, there
can be multiple kinds of nodes, each of which has its own
peculiar strengths and weaknesses.

Because our clients are scientists from many different
disciplines, they tend to worry less about absolute
performance, and to care more about usability, productivity,
portability, robustness, understandability, reproducibility,
etc. These days there are some fairly intuitive building
blocks for doing parallelism, but helping our clients to scale

up across multiple nodes, including heterogeneous nodes, is
where we find the challenges.

The Parsl system is built on Python as a base, which provides
ease of learning for our clients, while providing flexible
building blocks for distributing computations across many
nodes, and many kinds of nodes. When moving to a
distributed execution environment, we need to help our
clients navigate the issues associated with location
abstraction, such as the various execution environments,
schedulers, infrastructure, and container support. We also
need to help them with data abstraction, so their data is
available and accessible where it is needed, using shared
memory, files, serialized objects, etc. And finally, there are
scheduling issues, to avoid resource bottlenecks and balance
the varying performance of the nodes. Any sort of network
communication by itself imposes challenges, in terms of lost
messages, delays, node failures, etc., making debugging
extraordinarily difficult in some cases. Creating resilient
distributed computations for which the clients can reason
about correctness, and can share with colleagues and expect
some degree of reproducibility, become major challenges,
and remain a focus of the ongoing Parsl development.

With regard to the specific question posed by the moderator
"Would we ever want to specify explicit placement of data
for a distributed computation?" -- after looking at various
systems that provide a fine-grained level of control over data
placement, we have concluded that the answer for our
clientele is probably "No." Most of our clients already do a
rather bad job of estimating resource loads of the various
parts of their application, so expecting them to optimize data
placement with explicit declarations is almost certainly
overspecification, and probably not helping with overall
performance. Perhaps this panel can talk explicitly about
how such data placement decisions might be automated to
some extent, using, for example, static analysis or on-the-fly
adaptation.

James Munns
Rust has language-based features that can help at the low
level to ensure that parallel and distributed computations are
safe, such as: Send (serializable), Sync (sharable), and other
relevant traits which characterize the data structures being
manipulated; ownership and borrowing which enhance
safety and reduce the need for synchronization; and
application-specific macros which allow the language to be
extended in a modular fashion without forcing the
potentially painful switch to a completely domain-specific
language.

At the higher level, there are frameworks that can simplify
the job of creating a parallel or distributed application. For
example, the Rayon framework makes it possible to turn a
basic iterator into a parallel iterator with just a small change
to the syntax. Such an iterator will automatically distribute
the iteration across multiple cores using a work-stealing
scheduler. As another example, a framework called RTIC
uses macros to introduce an SRP (Stack Resource Policy)
based approach to managing concurrency, so that most of the
program can continue to use normal Rust idioms, but

T. Taft , K. Chard, J .Munns, R. Wai 57

Ada User Journal Volume 42, Number 1, March 2021

application- or domain-specific semantics can be layered on
top where appropriate. This helps avoid the "uncanny valley"
where you have a completely domain-specific language that
might look familiar but acts quite differently.

Richard Wai
I see distributed computing as an architectural challenge,
where you want to build an application that lives indefinitely
in the cloud, with ongoing communication between different
elements of the application. We can manage the complexity
of such a system by defining an underlying infrastructure
based on queuing, where all elements can see the same
queues, and can balance the computation between the
various elements by monitoring queues to detect which ones
are empty, or which ones are becoming overloaded.

Language are most helpful if they provide features or
libraries that are sufficiently orthogonal that you can build
well-defined components on top, and support automatic
scaling via work sharing and work stealing.

Second round of discussion

Tucker Taft
When designing a distributed programming language (or any
systems programming language), I think it is helpful to
recognize that there are (at least) three levels of developers:
domain experts, focused on the problem to be solved; data
structure experts, focused on providing the abstractions that
can support efficient and safe construction of a distributed
program; and underlying infrastructure experts, who tend to
think in terms of sockets and messages, processor and
memory constraints, special communication hardware, etc.
Ideally, the language should be able to accommodate all of
these kinds of developers, whether they are different groups
of people, or the same person wearing different hats on
different days.

Some of the challenges: the top-level person doesn't want to
write any more than they need to to define their algorithm.
You want to be able to allow a tuning expert to enhance
performance, without breaking the algorithm. And you want
to allow the data structure expert the tools to build high-
performance distributed data structures, and to provide a
pleasant and robust interface for the domain expert to utilize.

Another challenge -- you want to to allow automatic
"elasticity" so the system can, on the fly, scale up or down,
based on load. Alternatively, a more "batch" approach based
on monitoring of one execution to determine better
parameters to use for future executions, which can work well
for situations where essentially the same calculation is to be
performed repeatedly, just with new data as input.

Kyle Chard
I agree with the recognition of there being three different
roles, and for the importance of achieving a separation of
concerns -- the end user has their algorithm; they are very
happy with it, and don't want the tuning expert to poke
around in it. They want to come to someone who understands
HPC resources, and make it run better, scale perfectly, etc.
Currently, we provide a lot of hand tuning here, but we are

very interested in making this more automated. We currently
do the same things over and over; perhaps we as a
community can figure out how to automate some of this, so
that we can satisfy most of the needs of users like ours, even
if the high-performance computing folks will still require
manual crafting of clever components at every level.

I like the description that Richard described of an underlying
system level. It would be great if we could agree upon and
share some of these lower-level capabilities, rather than each
of us reinventing the wheel.

James Munns
It is important to keep in mind the difference between
"simple" and "easy." Easy at the user level -- very easy to
push the button -- might work well for one particular
problem, but might be overspecialized to that problem,
unnecessarily complex under the covers, and not designed to
support incremental and robust evolution. I think it is more
important to keep the system simple, without
overspecializing, balancing user concerns against
abstraction complexity, and making it possible for users to
graduate into deeper involvement in the underlying
infrastructure. It is not helpful to take on a "Don't look
behind the curtain" attitude -- it should be possible for the
"high level" programmer to look beneath the covers and have
some chance of understanding and enhancing the supporting
infrastructure.

In general, we should not enforce a stratification of
engineers, which can pigeonhole them too much.

Tuck: Just to Clarify -- the point I was hoping to make was
that the same language should be usable both for defining
new abstractions, and for using them. I agree we don't want
to pigeon-hole people into one role or another -- we do want
to avoid a "priesthood," so we should make lower levels
accessible to the programmer who is typically focused on the
higher level.

Richard Wai
I am focused on abstraction -- which is near and dear to my
heart -- and am pulling away from pure HPC. I am focused
on a huge system that has a lot of people engaged with it with
different responsibilities. The system is always growing,
with various people implementing some things at a low
level, that are then used at a higher level. A lot of languages
are "mute" on the ability to properly abstract logic in a way
that someone else can use it safely. How can I write contracts
in the language that can ensure proper usage, rather than just
write comments that say, for example, "don't pass a null
value here"? Once you have defined a very strong interface,
then it is safe to dig down from that interface layer and break
the implementation into components, to manage the growing
complexity. It is super important that the language itself
supports the safety of these abstractions.

James: I completely agree that we want to encode invariants
of the abstraction into the language itself, so the program
won't compile if the user goes off the rails. So we can ask,
"did it compile," rather than "did you read this comment?".

58 Language Support for Paral le l and Distr ibuted Computing

Volume 42, Number 1, March 2021 Ada User Journal

Richard: Let me jump into this for a moment -- the compiler
should be very strict. In Ada you have a "private package" to
modularize the implementation, but not make it available to
the user. This represents a higher-level kind of structure.
Similarly, Ada provides a "limited" type, which the user is
not allowed to copy, and you can go further to disallow them
from creating new objects. These kinds of high-level
structural contracts can define how library can be used, and
provide safety because they are language defined and
enforced by the compiler.

James: I completely agree with the value of public and
private modules, public and private data members, etc. There
is no "void *" cast into some arbitrary pointer type. We use
zero-size types, for example, to represent hardware devices,
which allow only one task to ever grab one of those devices.
A human doesn't have to check it at manual code-review
time. Rust makes it possible to "build a hammer that you can
only hold by the handle" -- with compiler errors that can
teach you how to use it properly.

Tuck: It is great when the compiler becomes a tutor. Some
folks coming from a more permissive language can find this
hard: "All the compiler does is complain." But if you are
building a really complex system, things in the language that
are not directly related to distributed computing nevertheless
can make the construction both safer and simpler.

Question (Rob Bocchino): Sometimes doesn't tuning require
that you change the algorithm? For example, turn a bunch of
short reads and writes into larger chunks of input or output?
Tuck: We try to raise the level of the language, so you are
not overspecifying. It is easy to over specify, not because
you want to, but because you have to. Kyle: Biotools often
have this problem -- small reads and writes which work great
on someone's laptop, but can bring a supercomputer to its
knees. There are various kinds of tuning, and you are right
that some things need to be changed to achieve performance
goals.

Summing up

Kyle: We do try to hide a lot of the complexity from our
users. Embedding the safety in the language is great. We are
using Python, and are now trying to "MyPy" our whole code
base, but it is not easy after-the-fact. For our community, it
is about ease of use and productivity.

James: Totally agree with Kyle. There is no replacement for
systems engineering. Programming language design --
someone is going to want to do something really weird.
Programming languages are just a tool. That being said,
programming languages can do a lot. I might use Rust one
day, Python another day. Don't try to overuse a single tool.

Richard: I am pretty much in agreement with everyone. But
I'll take a Devil's Advocate role here. There is no magic
bullet. What we are seeing when we are dealing with the
complexity of these systems to some extent grows out of the
history of software development, which to some extent came
from a hacker culture -- do this fancy thing, and get it done
as soon as I can. Fix by coming up with a new fancy thing.
When applying this to a distributed context, it is important
to have not just the language support for structure I
mentioned. The language features by themselves won't
magically solve all the problem. You also need a language
base that is standardized and stable, with a coherent
framework. Continual reinvention is not always the best
answer, because it tends to make things built on top that
much more unstable.

Tuck: I think we all agree that it is possible to bring parallel
and distributed computing to a wider audience, and the
programming language can be a key player in addressing this
challenge. But we aren't there yet. Perhaps in a couple of
years we will reconvene and have a couple of true safe and
productive distributed computing languages to talk about.

 59

Ada User Journal Volume 42, Number 1, March 2021

Cubes and Pyramids
John Barnes
11 Albert Road, Caversham, Reading, RG4 7AN, UK; Tel: +44 118 9474125; email: john@jbinformatics.co.uk

Hello readers

The basic question last time was how many ways can one
colour a cube with six different colours, one colour on each
face? The answer is of course 30. Choose a colour for the
base then the top can be chosen in 5 ways. The remaining
four colours around the sides can be arranged in 6 ways (put
one colour at the front then the remaining 3 can be arranged
in 3! = 6 ways). So the result is 5 times 6 = 30.

It is quite easy to make a set of 30 such cubes plus one extra
so that two are the same. Then annoy friends by asking them
to find the two that are the same. The approach taken can
range from a methodical one to furious futility.

The supplementary question was to take any one of the cubes
and from the remaining 29 find 8 that can be put together 2
by 2 by 2 to make a large cube that matches the one single
cube with the internal touching faces matching as well.

Rather than just colour the cubes we can also number the
faces with ordinary numerals 1 to 6. The initial cube has 6
opposite 1, 5 opposite 2, and 4 opposite 3. (There are just
two ways to do this and are mirror images.) The cubes are
best presented as nets. So the initial cube is

with the base = 1; top = 6; front = 5; back = 2, left = 3, and
right = 4.

The eight other cubes that can be put together 2 by 2 by 2 are
then as depicted below with the left group of 4 being the
bottom plane and the right group the top plane.

Amazingly, there is another solution which uses exactly the
same group of 8 cubes but arranged differently, thus

In this solution the individual cubes are all oriented
differently so it is not obvious that they are the same group
of 8 cubes. Moreover, they are in exactly the reverse order,
the back four become the front four and the bottom four
become the top four.

This puzzle was originally devised by Major P A MacMahon
(1854–1929).

In the case of ordinary dice where the 1 is always opposite
the 6 and so on, taking into account that the 2 and 3 can slope
either way and the six can be 2 by 3 or 3 by 2 there are in
fact sixteen kinds of dice.

And now for a problem concerning square pyramids. This is
puzzle 138 from Amusements in Mathematics by H E
Dudeney. The essence is that soldiers are asked to pile their
canonballs into square pyramids such that the number of
balls in each pyramid is itself a square. Each layer of a square
pyramid comprises a square number of balls. The first few
pyramidal numbers are 1, 5, 14, 30, 55 as shown here.

Thus 1+4 = 5, 5+9 = 14, 14+16 = 30, 30+25 = 55 and so on.
Note that 1 is of course a square number so the first
pyramidal number that is also a square is simply 1. A young
lieutenant suggests that is the answer, just lay the balls out
one at a time. But the general is not amused.

So what is the second pyramidal number that is also a square
number?

60

Volume 42, Number 1, March 2021 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels, Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

1090 Rue René Descartes
13100 Aix en Provence, France

Contact: Patricia Langle
patricia.langle@systerel.fr

www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki, Finland

Contact: Niklas Holsti
niklas.holsti@tidorum.fi

www.tidorum.fi

3271 Valley Centre Drive,
Suite 300

San Diego, CA 92069, USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

Signal Business Centre
2 Innotec Drive, Bangor
North Down BT19 7PD
Northern Ireland, UK

enquiries@sysada.co.uk
www.sysada.co.uk

Corso Sempione 68
20154 Milano

Italy
Contact: Massimo Bombino

massimo.bombino@vector.com
www.vector.com

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

United Kingdom
Contact: Chris Nettleton

nettelton@xgc.com
www.xgc.com

22 St. Lawrence Street
Southgate, Bath BA1 1AN

United Kingdom
www.capgemini.com

46 Rue d’Amsterdam
F-75009 Paris, France
Contact: Jamie Ayre
sales@adacore.com
www.adacore.com

4545 E. Shea Blvd. #210
Phoenix, AZ 85028

USA
Contact: Laurent Meilleur

sales@ddci.com
www.ddci.com

