

Ada User Journal Volume 42, Number 2, June 2021

ADA
USER
JOURNAL

Volume 42

Number 2

June 2021

Contents
Page

Editorial Policy for Ada User Journal 62

Editorial 63

Quarterly News Digest 64

Conference Calendar 94

Forthcoming Events 99

Articles from the AEiC 2021 Work-In-Progress Session

 A. Amurrio, E. Azketa, M. Aldea Rivas, J. J. Gutiérrez

“How Windows Size and Number Can Influence the Schedulability of Hierarchically-Scheduled

Time-Partitioned Distributed Real-Time Systems” 101

 C. Castagna, D. Cancila, A. Cammi

“Adoption of ACPS in Nuclear Reactor Analysis” 105

 J. S. Kimmet

“Auto-generated Coherent Data Store for Concurrent Modular Embedded Systems” 109

 M. Aldea Rivas, H. Pérez Tijero

“M2OS for Arduino Uno: Ada Tasks and Arduino Libraries Working Together” 113

 F. Siebert

“Fuzion – Safety through Simplicity” 117

 H. Pérez Tijero, D. García Prieto, J. J. Gutiérrez

“First Steps Towards an IEEE 802.1AS Clock for EDF Scheduling in Distributed

Real-Time Systems” 121

Puzzle

 J. Barnes

“Pyramids, Reduction Expressions, and Final Puzzles” 125

Ada-Europe Associate Members (National Ada Organizations) 126

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

64

Volume 42, Number 2, June 2021 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 64
Ada-related Events 64
Ada Semantic Interface

Specification 67
Ada and Education 68
Ada-related Resources 68
Ada-related Tools 69
Ada and Operating Systems 77
Ada and Other Languages 77
Ada Practice 80

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

This period saw the celebration of the
Ada-Europe conference, after a year of
hiatus, and only in virtual form. This is
cause for celebration and a signal of hope
for Adaists to meet again in the future in
this close-knit event where one can
mingle with newcomers, old faces, and
the “guiding lights” of the language alike.
Announcements about the event, for the
record, are found in this number [1].

Another yearly moment of excitement for
the Ada open source community is the
release of the GNAT Community Edition,
which we witnessed at the end of May
[2]. And, speaking of open source
communities, I will mention the mass
exodus from the Freenode chat network
due to a change in ownership and policies.
The dwellers of #ada have chosen, on the
20th anniversary of the channel, the
Libera Chat network as a new home. The
thread announcing the news [3] is also a
reminiscence about other venerable
technologies that, like IRC and Usenet,
still are going around.

In another curious development, a mostly
off-topic thread that had seen its last post
in 2014 was somehow revived, and I
cannot resist reading about the computing

anecdotes of times long past, in this case
framed in a “Pascal vs C” context [4].

The polemic topic about Ada itself in this
number was Unicode, or Ada lackluster
support thereof, according to some.
Opinions, hopes for a brighter future, and
insights on how it came to be in its
present form are discussed in [5].

Sincerely,
Alejandro R. Mosteo.

[1] “Ada-Europe Int. Conf. on Reliable
Software Technologies, AEiC 2021”,
in Ada-related Events.

[2] “GNAT CE 2021”, in Ada-related
Tools.

[3] “Ada IRC Channel Migrates to Libera
Chat”, in Ada Practice.

[4] “Pascal vs C Language Families”, in
Ada and Other Languages.

[5] “Ada and Unicode”, in Ada Practice.

Ada-related Events

Ada-Europe Int. Conf. on
Reliable Software
Technologies, AEiC 2021

[Past event, for the record. —arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada-Europe Int.Conf. Reliable
Software Technologies, AEiC 2021

Date: Tue, 27 Apr 2021 17:46:30 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Call for Participation

*** PROGRAM SUMMARY ***

25th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2021)

7-10 June 2021, Virtual Event

www.ada-europe.org/conference2021

Organized by University of Cantabria and
Ada-Europe in cooperation with

ACM SIGAda, SIGPLAN, SIGBED
and the Ada Resource Association (ARA)

#AEiC2021 #AdaEurope
#AdaProgramming

General Information

The 25th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2021), initially
scheduled to take place in Santander,
Spain, will be held online from the 7th to
the 10th of June 2021, using the
underline.io conference platform.

The conference program includes parallel
tutorials on Monday 7th, and a technical
program and vendor exhibition from
Tuesday to Thursday. The conference also
includes breaks and virtual social events
that will allow networking among the
participants.

Overview of the Week

Monday 7th

- Welcome Social Event

- 5 Parallel Tutorials

- Ice-Breaking Social Event

Tuesday 8th

- Ice-Breaking Social Event and Opening

- Techn. Session 1: Scheduling and
mixed-criticality systems

- Keynote 1

- Techn. Session 2: Software modeling

- Social Event

Wednesday 9th

- Welcome Social Event

- Techn. Session 3: Autonomous systems

- Work-in-Progress Session

- Keynote 2

- Techn. Session 4: Ada issues and
Ravenscar

- Social Event

Thursday 10th

- Welcome Social Event

- Techn. Session 5: Validation and
verification tools

- Techn. Session 6: Emerging applications
with reliability requirements

- Keynote 3

- Techn. Session 7: Safety challenges

- Best Presentation Award, Closing
Session and Party

The program runs between 12:30 and
18:30 CEST, to allow participation from
different time zones. For full details and

mailto:amosteo@unizar.es

Ada-re lated Events 65

Ada User Journal Volume 42, Number 2, J une 2021

up-to-date information, see the conference
web page: http://www.ada-europe.org/
conference2021

Keynote Talks

In each of the three main conference days,
a keynote will be delivered to address hot
topics of relevance in the conference
scope, with ample time for questions and
answers. The keynotes will be:

- Ángel Conde, Data Analytics and
Artificial Intelligence team leader at
IKERLAN (Spain), who will present his
work on "Software reliability in the Big
Data era with an industry-minded
focus".

- Alfons Crespo, who is with the Institute
of Automation and Industrial
Informatics of the Universitat
Politècnica de València (Spain), will
give an answer to the question "Why
hypervisor-based approach is the best
alternative for mixed-criticality
systems".

- Tucker Taft, who is Director of
Language Research at AdaCore (USA),
will talk on "A sampling of Ada 2022".

Technical Sessions

Given the current sanitary situation and
the need to resort to a virtual format for
the conference, we will all experience the
advantages and benefits of exploring new
formats. The technical sessions are
designed with the flipped-conference
concept, where the audience can access
the pre-recorded presentation materials in
advance and the live sessions are devoted
to short presentations of the highlights of
each contribution, allowing ample time
for questions and answers with the
presenter. The recorded materials will
also be available for some time after their
sessions. The technical sessions include
papers submitted to the journal track that
are heading towards final acceptance and
open-access publication, together with
industrial, invited and vendor
presentations.

Work-in-Progress Session

The Work-in-Progress session contains
contributions of evolving and early-stage
ideas, or new research directions. They
are presented in a special session
consisting of a round of very short
presentations of the highlights of each
contribution, followed by a poster session
in the same virtual space where the breaks
are held.

Exhibition

From Tuesday to Thursday the conference
platform will provide access to virtual
booths where participants will be able to
find information on the conference
exhibitors and chat with them or request
meetings. The virtual break lounge where
the breaks and social events will take

place will also have a space for meeting
with the exhibitors.

Tutorials

Five four-hour parallel tutorials are
offered on Monday 7th:

- TU-1: Programming mobile robots with
ROS2 and the RCLAda Ada client
library, by Alejandro R. Mosteo

- TU-2: Introduction to the development
of safety critical software, by Jean-
Pierre Rosen

- TU-3: Parallel programming with Ada
and OpenMP, by Sara Royuela,
S. Tucker Taft, Luis Miguel Pinho

- TU-4: Timing verification from UML &
MARTE design models: techniques &
tools, by Laurent Rioux, Julio Medina
and Shuai Li

- TU-5: Programming shared memory
computers, by Jan Verschelde

Social Program

The virtual conference platform will offer
a space under the gather.town
environment to allow informal and lively
gathering of the participants. This space
may have different areas, such as rooms,
tables, and corners where a participant
can approach to talk through
videoconferencing with participants in the
same virtual area. This facility will be
used for the breaks, poster session,
exhibition and social events. Particular
themes for some of the social events will
be announced in the conference platform
and in the web page.

Further Information

Participation for the full event, including
tutorials, is free for Ada-Europe members
and only 60 EUR for all others.
Registration is required for all. The
conference web page will shortly give full
and up-to-date details on the program, the
registration process and the virtual
platform: http://www.ada-
europe.org/conference2021

AEiC 2021 Sponsors

- AdaCore: https://www.adacore.com/

- Ellidiss: https://www.ellidiss.com/

- PTC: http://www.ptc.com/
developer-tools

- Universidad de Cantabria:
https://web.unican.es/en/

- Vector: https://www.vector.com/at/en/

The conference is supported and
sponsored by

- Ada-Europe:
http://www.ada-europe.org/

and organized in cooperation with

- ACM SIGAda: http://www.sigada.org/

- ACM SIGBED: https://sigbed.org/

- ACM SIGPLAN:
http://www.sigplan.org/

- ARA:
https://www.adaic.org/community/

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2021 Publicity
Chair (aka Ada-Europe 2021)

Dirk.Craeynest@cs.kuleuven.be

(V4.1)

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Fri, 30 Apr 2021 07:59:16 -0000

Registration site for AEiC2021 is online:
registration.ada-europe.org.

Register now for the 25th Ada-Europe
Int'l Conference on Reliable Software
Technologies!

Press Release - AEiC 2021,
Ada-Europe Reliable Softw.
Technol.

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Press Release - AEiC 2021, Ada-
Europe Reliable Softw. Technol.

Date: Sun, 30 May 2021 16:22:28 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

FINAL Call for Participation

*** UPDATED Program Summary ***

25th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2021)

7-10 June 2021, Virtual Event

www.ada-europe.org/conference2021

*** Check out tutorials! ***

www.ada-europe.org/conference2021/
tutorials.html

*** Don't miss the thematic social events
on Tuesday and Wednesday ***

*** Full Program available on the
conference web site ***

*** Register now! ***

#AEiC2021 #AdaEurope
#AdaProgramming

Press release:

25th Ada-Europe Int'l Conference on
Reliable Software Technologies
International experts meet in virtual
conference hosted by Underline
Santander, Spain (31 May 2021) - Ada-

66 Ada-re lated Events

Volume 42, Number 2, June 2021 Ada User Journal

Europe together with the University of
Cantabria, Spain organize from 7 to 10
June 2021 the 25th Ada-Europe
International Conference on Reliable
Software Technologies (AEiC 2021). The
conference was initially scheduled to take
place in Santander, Spain. According to
the safety and sanitary measures under the
COVID-19 pandemic, this year the
conference will be a virtual event, hosted
by Underline (https://underline.io). The
event is in cooperation with the Ada
Resource Association (ARA), and with
ACM's Special Interest Groups on Ada
(SIGAda), on Embedded Systems
(SIGBED) and on Programming
Languages (SIGPLAN).

The Ada-Europe series of conferences has
over the years become a leading
international forum for providers,
practitioners and researchers in reliable
software technologies. These events
highlight the increased relevance of Ada
in general and in safety- and security-
critical systems in particular, and provide
a unique opportunity for interaction and
collaboration between academics and
industrial practitioners.

This year's conference offers 5 tutorials, 3
keynotes, a technical program of 7
sessions with refereed papers, invited and
industrial presentations, a work-in-
progress session, an industrial exhibition
and vendor presentations, and a social
program.

Five parallel tutorials are scheduled on
Monday, targeting different audiences:

- "Programming mobile robots with ROS2
and the RCLAda Ada client library", by
Alejandro R. Mosteo;

- "Introduction to the development of
safety critical software", by Jean-Pierre
Rosen;

- "Parallel programming with Ada and
OpenMP", by Sara Royuela, S. Tucker
Taft, Luis Miguel Pinho;

- "Timing verification from UML &
MARTE design models: techniques &
tools", by Laurent Rioux, Julio Medina
and Shuai Li;

- "Programming shared memory
computers", by Jan Verschelde.

Tutorial registration is complementary for
conference participants.

The industrial exhibition opens Tuesday
under the Expo area in the virtual
platform and also in the Lounge, which is
the networking area. It runs until the end
of Thursday afternoon. Exhibitors include
AdaCore, PTC Developer Tools, and
Ada-Europe. All conference participants
are invited to the exhibition as well as to
the virtual social events.

Three eminent speakers have been invited
to deliver a keynote at each of the core
conference days:

- Ángel Conde, Data Analytics and
Artificial Intelligence team leader at
IKERLAN (Spain), who will present his
work on "Software reliability in the Big
Data era with an industry-minded
focus";

- Alfons Crespo, who is with the Institute
of Automation and Industrial
Informatics of the Universitat
Politècnica de València (Spain), will
give an answer to the question "Why
hypervisor-based approach is the best
alternative for mixed-criticality
systems";

- Tucker Taft, who is Director of
Language Research at AdaCore (USA),
will talk on "A sampling of Ada 2022".

The technical program from Tuesday to
Thursday presents 13 refereed technical
papers and 5 invited, 6 industrial and 4
vendor presentations in sessions on:

- Scheduling and mixed-criticality
systems,

- Software modeling,

- Autonomous systems,

- Ada issues and Ravenscar,

- Validation and verification tools,

- Emerging applications with reliability
requirements,

- Safety challenges.

In addition, there is a work-in-progress
session including 8 presentations and
associated posters.

Peer-reviewed papers have been
submitted to a special issue of the Journal
of Systems Architecture and are heading
towards final acceptance as open-access
publications. Industrial and work-in-
progress presentations, together with
tutorial abstracts, will be offered
publication in the Ada User Journal, the
quarterly magazine of Ada-Europe.

The social program is hosted in a space
under the gather.town environment that
allows informal and lively gathering of
the participants. This space has different
areas, such as rooms, tables, and corners
where a participant can approach to talk
through videoconferencing with
participants in the same virtual area. This
facility will be used for the breaks, poster
session, exhibition and social events.
Don't miss the thematic social events at
the end of each core conference day.

The Best Presentation Award will be
offered during the Closing session.

The full program is available on the
conference web site. Online registration is
still possible.

Latest updates:

The "Final Program" is available at
www.ada-europe.org/conference2021
/final-program.pdf.

Check out the tutorials in the PDF
program, or in the schedule at

www.ada-europe.org/conference2021/
tutorials.html.

Registration fees are lower than ever and
the registration process is done on-line.
Don't delay for all details, select
"Registration" at www.ada-europe.org/
conference2021 or go directly to
https://registration.ada-europe.org.

The technical sessions are designed with
the flipped-conference concept, where the
audience can access pre-recorded
presentation materials in advance. The
live sessions are devoted to short
presentations of the highlights of each
contribution, allowing ample time for
questions and answers with the presenter.
The recorded materials will also be
available for some time after their
sessions.

The program runs between 12:30 and
18:30 CEST, to allow participation from
different time zones. For more info and
latest updates see the conference web site
at www.ada-europe.org/conference2021.

AEiC 2021 is sponsored by AdaCore
(www.adacore.com), Ellidiss
(www.ellidiss.com), PTC Developer
Tools (www.ptc.com/developer-tools),
Universidad de Cantabria
(web.unican.es/en), and Vector
(www.vector.com/at/en).

Help promote the conference by
advertising it.

Recommended Twitter hashtags:
#AdaEurope and/or #AEiC2021.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2021 Publicity
Chair (aka Ada-Europe 2021),

Dirk.Craeynest@cs.kuleuven.be

* 25th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2021)

* June 7-10, 2021 * online event *
www.ada-europe.org/conference2021 **

(V6.1)

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Sun, 6 Jun 2021 10:11:09 -0000

If you plan to attend one of the
#AEiC2021 #tutorials on Mon 7 Jun,
don't forget to check the prerequisites:
you may have to download material
preferably before the tutorial starts.

See you at #AdaEurope's
#OnlineConference soon!

Ada Semant ic Interface Spec if icat ion 67

Ada User Journal Volume 42, Number 2, J une 2021

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Thu, 10 Jun 2021 07:43:05 -0000

#AEiC2021 #AdaEurope
#OnlineConference #AdaProgramming

Don't miss today's keynote!

Tucker Taft will present "A sampling of
Ada 2022"

Abstract:

The forthcoming Ada 2022 revision of the
Ada standard includes significant new
features, which together make the
language more expressive and productive
in a multicore context, while enhancing
its safety and support for more complete
abstractions with formal contracts.

This talk will introduce these key new
features with a series of examples:

- parallel loops and blocks, coupled with
static detection of data races and
potential blocking

- iterator syntax for incorporating filters
and user-defined iterator procedures-
libraries for atomic operations, including
fetch-and-add and compare-and-swap

- aggregates, literals, images, and map-
reduce for user-defined types

- libraries for arbitrary precision integer
and rational arithmetic

- more expressive contracts using delta
aggregates and declare expressions

- the Jorvik profile as the next step up
from the Ravenscar profile

Call for Paper in CodeLand

From: Mockturtle
<framefritti@gmail.com>

Subject: Call for Paper in CodeLand
Date: Sat, 26 Jun 2021 09:04:37 -0700
Newsgroups: comp.lang.ada

I just "tripped over" a CFP for the event
CodeLand (link at the end). They accept
proposals for 15-minutes pre-recorded
video talk; deadline 20th of July.

CodeLand's primary audience is early-
career programmers and their mentors.
Among the themes I see "Technical Deep
Dives" and "Path to Programmer" that
could maybe be suitable for something
Ada-related.

Is maybe someone interested in proposing
something? I am going to think about it...

Summary of the most important info

* When: September 23-24, 2021

* How: virtual only, pre-recorded video

* Deadline: July 20, 2021 at 11:59pm
UTC.

* Acceptance/reject date: August 17,
2021.

* Themes

 - Code for Good

 - Early-career confidence

 - Open source strong

 - Path to programmer

 - Technical deep dives

* More info:
https://cfp.codelandconf.com/events/
codeland-2021

Accepted speakers will be asked to
participate in a panel session (suggested
but not required). They should be
prepared to answer moderated attendee
questions about their talk.

New Competition:
Ada/SPARK Crate of the
Year Award

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Subject: New competition: Ada/SPARK
Crate Of The Year Award

Date: Mon, 28 Jun 2021 03:11:38 -0700
Newsgroups: comp.lang.ada

I am happy to announce AdaCore's new
programming competition: The
Ada/SPARK Crate Of The Year Award!

The announcement is here:
https://blog.adacore.com/announcing-the-
first-ada-spark-crate-of-the-year-award

And you can register here:
https://github.com/AdaCore/
Ada-SPARK-Crate-Of-The-Year

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Wed, 30 Jun 2021 04:44:18 -0700

A candidate project must be on github?
(fair enough)

Any Alire crate project must be on
github?

Thanks.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Wed, 30 Jun 2021 05:47:49 -0700

For the Alire community index, your crate
can either be in tarball format and hosted
anywhere you want, or it can be a commit
in a git repo in which case we ask you to
host it on GitHub, SourceForge, GitLab or
Bitbucket.

Ada Semantic Interface
Specification (ASIS)

ASIS and libadalang

From: J-P. Rosen <rosen@adalog.fr>
Subject: ASIS for Gnat (was: Any chance of

programming a web frontend in Ada
2012?

Date: Wed, 9 Jun 2021 07:02:40 +0200
Newsgroups: comp.lang.ada

> I did some progress in this direction, but
ASIS4GNAT is abandoned and my
project is suspended.

ASIS4GNAT is not abandoned, it is just
not part of the CE edition. Pro users have
access to it.

Please drop me a note if you have
developed an ASIS tool, or are using an
ASIS-based tool. With enough protests,
we may convince AdaCore to make
ASIS4GNAT available to the community.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 11 Jun 2021 11:47:12 -0700

> ASIS4GNAT is not abandoned, it is just
not part of the CE edition. Pro users
have access to it.

On the other hand, if you are starting a
new project, libadalang is a better choice.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 11 Jun 2021 22:31:25 +0200

> On the other hand, if you are starting a
new project, libadalang is a better
choice.

What makes you think so?

By all means, compare the specifications
of an ASIS package (Asis.Statements,
Asis.Declarations) to Libadalang.Analysis
and see which one is more usable...

From: Rod Kay <rodakay5@gmail.com>
Date: Sat, 12 Jun 2021 20:47:29 +1000

> Please drop me a note if you have
developed an ASIS tool [...]

I switched from ASIS to libadalang for an
Ada IDE project also, since I thought
ASIS was abandoned.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 12 Jun 2021 16:04:19 +0200

If you want to analyze code while it is
being typed, as is common in an IDE,
Libadalang is certainly the way to go.

If you want to make sophisticated analysis
tools, it's another story. Hopefully, my
paper at AE will soon be available...

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 14 Jun 2021 05:37:57 -0700

Oh, I am looking forward to reading it.

BTW, I really liked your "Memory
Management in Ada 2012" video; I've
used it as a reference several times to
explain to Rust-people that Ada is safer
than expected because pointers aren't
required for a lot of things, and so you
don't have to worry about null-exclusion.

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Tue, 15 Jun 2021 14:40:41 -0700

Is JGNAT reliable, updated, available?

Thanks.

68 Ada-re lated Resources

Volume 42, Number 2, June 2021 Ada User Journal

From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 16 Jun 2021 10:41:31 +0200

> Is JGNAT

>reliable,

I didn' try it enough to answer this

> updated,

No. The latest version is 2013. Another
one of the useful stuff abandoned by
AdaCore.

> available?

Yes, from Adacore's community
download page.

Ada and Education

Exercism.io Needs Ada

From: Bruce Axtens
<bruce.axtens@gmail.com>

Subject: Exercism.io needs Ada
Date: Sat, 19 Jun 2021 13:30:37 +0800
Newsgroups: comp.lang.ada

In case anyone is looking to encourage
people to learn and use Ada, Exercism.io
is a good place to learn. Lots of languages
already but Ada isn't one of them.
Become a maintainer or a mentor.

Maintainer: https://exercism.io/
become-a-maintainer

Mentor: https://exercism.io/
become-a-mentor#more-info

Bruce Axtens, vbnet maintainer and
students of about 26 languages none of
which are, sadly, Ada.

From: Andreas Zeurcher
<zuercher_andreas@outlook.com>

Date: Mon, 28 Jun 2021 13:42:03 -0700

Since you are a maintainer of another
language (Visual Basic .Net), what is the
precise sequence of steps that one would
need to perform to become the 1st
maintainer of a new presence of Ada in
Exercism.io? I think that the 1st
maintainer is specifically the person who
bootstraps up a new language's presence
on exercism.io, correct? Apparently, the
sequence of steps might begin:

1) Practice being a newbie student of
some arbitrary existing(-on-
exercism.io) language's exercises to get
the feel for how exercism.io is
supposed to operate.

then

2) Contact another language's maintainer
to be the 1st maintainer of Ada's fresh
presence on exercism.io.

Are there more steps than that? For
example, must the 1st maintainer recruit a
separate 1st mentor or must the 1st
maintainer act also as 1st mentor? Are
those 2 steps perfectly stated or are they
botched somehow? Does some sort of

vetting occur for the quality of a
maintainer at time of volunteering that
could cause the 1st maintainer to be
rejected? Does some sort of vetting for
the desirability of a programming
language occur up at exercism.io
“corporate” that could cause Ada itself
(independent of the 1st maintainer) to be
rejected? It seems that Ada and
(AdaSubset-with-) SPARK would be 2
separate languages on exercism.io
(otherwise it gets confusing), correct?
Why doesn't exercism.io have an overt
webpage that answers these questions for
how to bootstrap up a language's new
presence on exercism.io (as this seems to
be a separate & distinct topic to becoming
the 2nd-or-subsequent-mentor that does
have its own webpage explanation
already)?

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Tue, 29 Jun 2021 06:06:56 -0700

Should not the first step be an evaluation
of this site by a programming master?
Maybe this has been done; if so, please
inform.

Ada-related Resources

[Delta counts are from Apr 26th to Jul
22th. —arm]

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Wed, 22 Jul 2021 11:13:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 3_161 (+42) members [1]

- Reddit: 7_104 (+6781) members [2]

- Stack Overflow: 2_087 (+39)
 questions [3]

- Libera.Chat: 76 (new²) users [4]

- Freenode: 15 (-79²) users [5]

- Gitter: 86 (+11) people [6]

- Telegram: 128 (+7) users [7]

- Twitter: 75 (+32) tweeters [8]

 74 (=) unique tweets [8]

1 Probably caused in part by confusion
with the ADA cryptocurrency.

² Freenode has suffered a mass exodus
due to a change in ownership. Most
channels have migrated to Libera.Chat.

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/details.php
?room=%23ada&net=Libera.Chat

[5] https://netsplit.de/channels/details.php
?room=%23ada&net=freenode

[6] https://gitter.im/ada-lang

[7] https://t.me/ada_lang

[8] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Wed, 22 Jul 2021 11:13:21 +0100
To: Ada User Journal readership

Rosetta Code: 827 (+16) examples [1]

 38 (=) developers [2]

GitHub: 7631 (=) developers [3]

Sourceforge: 275 (+2) projects [4]

Open Hub: 214 (=) projects [5]

Alire: 171 (+15) crates [6]

Bitbucket: 89 (=) repositories [7]

Codelabs: 52 (=) repositories [8]

AdaForge: 8 (=) repositories [9]

1 This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Wed, 22 Jul 2021 11:13:21 +0100
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. The IEEE ranking deltas
are in regard to the 2019 edition, as it is
updated annually. —arm]

- TIOBE Index: 28 (+2) 0.48%
 (-0.01%) [1]

https://netsplit.de/channels/details.php
https://netsplit.de/channels/details.php

Ada-re lated Tools 69

Ada User Journal Volume 42, Number 2, J une 2021

- PYPL Index: 18 (-1) 0.75%
 (-0.06%) [2]

- IEEE Spectrum (general): 39 (+4)
 Score: 32.8 (+8.0) [3]

- IEEE Spectrum (embedded): 12 (+1)
 Score: 32.8 (+8.0) [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2020

Ada Domain Names

From: Heziode
<heziode@protonmail.com>

Subject: Ada domain names: who holds
what, and for which purpose?

Date: Thu, 24 Jun 2021 20:03:39 +0200
Newsgroups: comp.lang.ada

By curiosity, I have checked if there is
some domain name related to Ada
language. I mean, domains that can be
officially used to represent the language
(even though according to Wikipedia, it is
adaic.org. Keep in mind, I am doing this
out of curiosity).

I was being surprised to discover that
several domains, that could be used as an
"official" website (like *lang.org, *-
lang.org, *.codes, where "*" is the
language name), is bought but not used,
and not in sales.

Here is a table of my few research:

Domain: Owner: Registered: Country: State

ada-lang.com : AdaCore : 2016/09/20 : FR*

adalang.com: ? : 2014/03/30 : US : Florida

ada-lang.org : ? : 2020/02/11 : US : WA

adalang.org : ? : 2020/02/12 : US : WA

ada.codes : Steve Arnold : 2014/04/23 : US :
CA

* Point on "thinkx.net", so DNS issue
with wrong IP?

We can see that "ada-lang.org" and
"adalang.org" seem to be bought by the
same person/entity, but these domains are
not used, and not in sales. Looks like
domain retention.

Does anyone know who is behind these
domains?

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 24 Jun 2021 19:27:45 +0100

Steve is nerdboy on irc/github.

The Ada Lang one seems to be her name
as there is a photo on the contact page.

There is learn/getadanow.com which is
David Botton's.

Ada-related Tools

SweetAda 0.3 through 0.8

[Six consecutive announcements have
been merged in a single thread. —arm]

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda 0.3 released
Date: Tue, 6 Apr 2021 09:09:52 -0700
Newsgroups: comp.lang.ada

I've just released SweetAda 0.3.

SweetAda is a lightweight development
framework to create Ada systems on a
wide range of machines. Please refer to
https://www.sweetada.org.

First of all, please re-download toolchain
packages; although timestamps do not
change, they contain updated versions of
GCC/GNAT wrappers which are
essentials for a properly working build
system which should have reached a
stabilization point, and it seems rather
efficient and free from major issues.

Release notes

- due to changes in RTSes, switch -gnatp
(pragma Suppress (All_Checks)) is
again commented out (Makefile.tc.in), to
bring in exception processing; re-enable
it if the final object is too big for your
setup

- initial implementation of a secondary
stack in the SFP RTS (not fully
operational yet)

- strict compiler conformance, -gnatE and
-gnato are defaults in Makefile.tc.in

- suppress No_Elaboration_Code in
gnat.adc

- console.ali was not dragged in under
GPRbuild mode and is missing in some
configurations, which could lead to
undefined references

- build.gpr/configure.gpr now correctly
process implicit .ali units

- configure.ads (auto-generated from
configuration.in) is pragma Pure

- a kernel link phase is performed if linker
script changed

- Makefile now has two more targets:
"session-start" and "session-end"; like
"run" and "debug" targets, they are
associated with shell commands that you
can define in the platform
configuration.in and can be useful for
starting and ending JTAG servers,
remote communication, and so on; these
targets have nothing special, the names
are only placeholders and their purposes
are completely defined by the shell
commands carried on; see an example in
the new platform FRDM-KL46Z, where
the commands respectively define an
OpenOCD server startup and shutdown
action

- Makefile.tc.in could specify -gsplit-
dwarf; thus you can find *.dwo DWARF
files in the object directory

- still more Makefiles tweaks: now there
should be no problem building in
GPRbuild mode; furthermore, "make
createkernelcfg" forces a distclean

- menu-dialog.sh is standardized and
behaves like menu.[bat|sh], so there are
now separate items "createkernelcfg"
and "configure" (previously there was a
single "configure" item which executed
them sequentially)

- elftool has a new command switch to
find a symbol value: elftool -c
findsymbol= which returns the symbol
value; it is used, e.g., in the FRDM-
KL46Z platform to automatically find
the _start address in the executable
image and instruct OpenOCD to run the
target with a properly resume address;
see an example as outlined in
.../platforms/FRDM-KL46Z/
runopenocd.tcl

- mbr can read other partitions beyond the
first

- mbr partition read could cause a
misaligned access with some CPUs, so
an assignment is replaced with a
memory copy

- Dreamcast code runs on a real device,
not just in the GXemul emulator; this
requires:

- a HIT-0400 "BroadBand Adapter"
Ethernet module

- a CDI CD-ROM burned with
"Dreamcast CDI Burner" https://alex-
free.github.io/dcdib/

- a dc-tool-ip utility http://napalm-
x.thegypsy.com/adk/dc/dcload-
ip/index.html

 (the dc-tool-ip utility will be soon
replaced by a Tcl script)

- MicroBlaze has now udivsi3 and
umodsi3 LibGCC assembler routines

- MemecFX12 and Spartan3E platforms
now have Tcl scripts to build, download
and execute SweetAda kernel

- new target: FRDM-KL46Z
Freescale/NXP ARM-CortexM0 board
(a.k.a. "Freedom"), only able to blink a
LED (needs OpenOCD to communicate
with the target from inside SweetAda)

- FS-UAE platform renamed as Amiga-
FS-UAE

- typos, cosmetics and minor adjustments

Quick notes

As usual, download the three packages
core, RTS and LibGGC (since many
changes are system-wide), and please
save your work before overwriting the
filesystem.

70 Ada-re lated Tools

Volume 42, Number 2, June 2021 Ada User Journal

Subject: SweetAda 0.4 released
Date: Tue, 27 Apr 2021 03:53:57 -0700

I've just released SweetAda 0.4. [...]

Release notes

- SweetAda has a new toolchain, armeb-
sweetada-eabi, to handle big-endian
ARMs (previously this was not
necessary since ZFP does not link
against libraries); affected target is
DigiConnectME — and eventually your
own experimental target; ARM BE
targets now not need to specify big-
endian switches anymore, but they
should explicitly specify armeb-
sweetada-eabi as the toolchain name in
the platform configuration.in, i.e.:
TOOLCHAIN_NAME :=
$(TOOLCHAIN_NAME_ARMeb)
whilst ARM LE takes the default
toolchain

- the non-optimized versions of
divsi3/modsi3 for MicroBlaze were not
selected; this is now corrected

- the download script for Dreamcast —
bba.tcl — is now written in Tcl (note:
requires Tcl UDP extension) and thus
does not require the dc-tool-ip utility,
quick'n'dirty, no error checking yet; if it
is difficult to install a Tcl extensions,
then stuck yourself with dc-tool-ip by
just uncommenting its exec line, and do
an exit

- remove useless return statements in
various Tcl scripts

- use Bits.BigEndian/LittleEndian
booleans in llutils unit

- ATmega328P has more MCU
definitions (not complete yet)

- ArduinoUno:

- XTAL clock frequency is specified in
configure.ads

- ZFP profile is forced in configuration.in
to avoid problems with a small foot-
print memory, thus overriding the
settings in the top-level configuration.in

- BSP does nothing; tests moved in
application/test-ArduinoUno

- FRDM-KL46Z has more definitions;
ZFP profile is forced in configuration.in
to avoid problems with a small foot-
print memory, thus overriding the
settings in the top-level configuration.in

- bits.ads: some Bits_XX_Mask
corrected; added Bits_XX_RMask

- now RTSes have, in every CPU target,
two more files: 1) Makefile.srcs.in, the
list of source files used (not of particular
use so far, just a reference);

2) Makefile.rts.in, contains CPU-wide
switches (i.e., not dependent on the
multilib selected) used during the RTS
build; those switches, which normally
are empty, are automatically imported in
the master Makefile and added to the
target platform CPU, thus assuring that

the compiler agrees on both RTS code
and SweetAda/user code; as a
consequence of this, there is no more
need to specify, e,g, "-fno-leading-
underscore" in SuperH/SH4 targets, and
MIPS targets inherit automatically a -G0
switch (they are the only switches which
are actually used in the RTS for those
targets)

- QEMU-MIPS was based on "mips"
machine; this machine does not exist
anymore in current QEMU and so the
platform is now based on "mipssim",
what changes is just the UART16450
base I/O address in monitor.S

- Nios II Terasic DE10-Lite now has a Tcl
front-end (programmer.tcl) which
automatically downloads the SOF
bitstream and executes the SweetAda
code by means of Quartus command-
line utilities and jtagd daemon

- Nios II Terasic DE10-Lite exposes a
configuration setup that explains
practically how to override core units,
i.e., it invalidates last_chance_handler in
the core directory and redefines the
same subprogram package in its own
directory, so to avoid dragging in the
entire console package (which is used by
the standard implementation of
last_chance_handler)

- all Tcl scripts that handle the download
of code on a physical target board are
possibly renamed to a standardized
"programmer.tcl"

- menu-dialog.sh now always shows
warnings (previously it used to show
warnings only if the build failed due to
hard errors)

- typos, cosmetics and minor adjustments

Subject: SweetAda 0.5 released
Date: Tue, 4 May 2021 04:09:43 -0700

[...]

Release notes

- The SFP RTS now gets Ada.Tags
installed, and so it should be possible to
use Ada tagged types

- there are no more multiple
Makefile.rts.in scattered in every
multilib directory, only a single file is
stored in the RTS root path of the
toolchain target

- Master Makefile does not export
FPU_MODEL, corrected

- new target: Synergy-S5D9 ARM-
CortexM4 board, only able to blink a
LED (needs OpenOCD to communicate
with the target from inside SweetAda)

- LibGCC now has
adddi3/subdi3/negdi2/mulsi3/muldi3
implemented in pure Ada (although a bit
superfluous, since in most cases these
subprograms will be overridden by
CPU's own LibGCC assembly routines)

- The MVME162-510A platform has now
a little Tcl script to download a
SweetAda S-record image by means of
162-Bug on-board monitor
communication; very simple script (and
at 19200 also very slow for big images,
but good enough for testing)

- the hard disk images for some platforms
(Amiga-FS-UAE, Malta, PC-x86, etc)
got accidentally deleted, they are now
re-integrated for testing purposes

- removed superfluous conversion in
Address_Displacement

- drivers/PC: PIC_Init has now
Vector_Offset_Master/Slave input
parameters and can be used also from
non-x86 targets

- Malta MIPS: use PIC code from PC unit
rather than an ad-hoc piece of code

- drivers/PC: PIT_Counter0_Init has an
input Count parameter

- drivers/PC: unit does not depend on
configure.ads anymore, and so the entire
drivers branch should be CPU-
independent

- typos, cosmetics and minor adjustments

Subject: ANN: SweetAda 0.6 released
Date: Wed, 19 May 2021 09:56:18 -0700

[...]

Release notes

- spurious entry
core/last_chance_directory was not
removed in the configuration.in for the
core complex, and this causes a build
failure in GPRbuild mode, corrected

- Makefile.tc.in: new
ADAC_SWITCHES_WARNING
switches: -gnatw.q - (Activate warnings
on questionable layout of record types) -
gnatw_r - (Activate warnings for out-of-
order record representation clauses)
(unused)

- Makefile.tc.in: added
DISABLE_STACK_USAGE flag (some
targets do not support stack usage
computation, can be set from platform-
level configuration.in)

- menu-dialog.sh remains in menu until
you exit explicitly (e.g., by pressing
double-ESC), so you can perform
various actions sequentially; if instead
you specify an action as an argument in
the command line then the behaviour is
unchanged, exiting at once after
execution

- qemu-ifup.sh/qemu-ifdown.sh are now a
single common copy in libutils
directory; Dreamcast
makeip.tcl/scramble.tcl are now merged
in makecdrom.tcl; pc-x86-bootX.tcl
moved as a single copy in share
directory

- package Definitions is now placed in
modules directory

Ada-re lated Tools 71

Ada User Journal Volume 42, Number 2, J une 2021

- more error checking in various Tcl
scripts

- initial cleanup of cpus branch file layout,
removed duplicate files

- new target: SiFive HiFive1 Rev B, only
able to blink the on-board RGB LEDs
(needs OpenOCD to download the
executable)

- Synergy-S5D9: bsp.ads got accidentally
deleted, corrected

- Synergy-S5D9: added SCI definitions so
that it can output something on SCI
(UART mode, very primitive)

- partial rewriting of the NE2000 driver,
more register definitions

- removed all ugly, unpleasant, ill-
designed temporary code from
exceptions.adb in PC-x86 interrupt
handling (which now processes, e.g.,
raw TCP/IP traffic from
applications.adb); the same in Amiga-
FS-UAE

- some changes in Ethernet FIFO queue to
make it more efficient

- ATmega328P (ArduinoUno): more
register definitions, timers and general
purpose registers; added some low-level
templates; deleted unuseful subprogram
in proprietary core unit and its
dependency on console

- drivers/pc:

 - revised 8254 PIT; PIT_Counter0_Init
now uses MODE 2 (rate generator)
instead of MODE 3 (square wave
generator) as a system timer

 - simple stub for RTC handling

 - IrqX renamed to PIC_IrqX

 - Irq0 aliased to PIT_Interrupt

 - Irq8 aliased to RTC_Interrupt

- added -mno-red-zone to GCC switches
in x86-64

- use rounding instead of floor integer
division when computing timing counts,
where appropriate

There is also a new release of QEMU
emulator — 20210517 — providing
QEMU 6.0.0 for Linux and Windows
platforms, and QEMU 5.2.0 for OS X.
The OS X version should work on El
Capitan (tested on a VM, someone
reported problems on later versions).

Subject: ANN: SweetAda 0.7 released
Date: Tue, 1 Jun 2021 13:18:02 -0700

[...]

Release notes

- updated targets in master Makefile ("all"
was tagged default instead of "help");
the targets "kernel_info" and
"kernel_libinfo" are now exposed
(kernel_libinfo produces listings of
library objects even if the kernel build is
not successful)

- added implicit dependencies for console
unit

- elftool will emit spaces instead of TABs
when performing an ELF section dump,
this will be noted in the next toolchain
release

- the linker script filename can now be
declared in the platform configuration.in
by specifying "LD_SCRIPT:=
<linker_script_filename>", otherwise it
takes a default "linker.lds"

- the C library now implements Ada stubs
for malloc/free/calloc/realloc, so C code
can call these Ada subprograms via
stdlib wrappers; this has also the benefit
of resolve references to malloc() when
secondary stack tries to return heavy
(i.e., unconstrained) objects, but be sure
to add "USE_LIBGCC := Y" and
"USE_CLIBRARY := Y" to the
configuration.in file, either the generic
one in the top-level directory, or the
platform-dependent one

- SFP RTS: a-except: Raise_Exception
calls Last_Chance_Handler

- SFP RTS: added Ada.Assertions (for
pragma Assert you need to turn on -
gnata in the "Ada Run-Time Checks
switches" section of Makefile.tc.in)

- core/bits: added
BITZERO/BITONE/BITL/BITH/BITO
FF/BITON declarations

- core/console: Print (Boolean), emits "T"
or "F"

- core/llutils: HexDigit_To_U8 uses a
case instead of longer ifs

- modules/definitions: added a few
definitions

- added various Volatile_Full_Access
aspects here and there

- corrected some section wildcards in
linker scripts for ARM platforms

- x86_64 lacks some low-level CPU
subprograms (but they are empty
anyway) and so the build could fail with
unresolved objects, added

- new libutils/libopenocd.tcl file, useful
for small OpenOCD function helpers

- Digi Connect ME (NET+ARM
NS7520): some more register
definitions; adopted a Tcl script as front-
end to OpenOCD

- Synergy S5D9: OpenOCD cfg file
renamed to standard "openocd.cfg"

- Synergy S5D9: more register
definitions, SCI almost completely
parameterized

- platform Spartan3E renamed as
Spartan3E-SK

- new target: Avnet Xilinx Spartan-3A
Evaluation Kit (Spartan3A-EK,
MicroBlaze v7.00.b), only able to blink
a LED; the programmer.tcl front-end
will download the bitstream by directly
interfacing with the on-board Cypress

PSoC via USB protocol (no external
tools needed in a Linux environment)

- targets involving OpenOCD
(DigiConnectME, FRDM-KL46Z,
HiFive1, MSP432P401R, STM32F769I,
Synergy-S5D9) now should specify in
the platform configuration.in the
OpenOCD prefix (in Windows is the
installation directory, i.e., that which is
the parent of bin/, etc); the default is the
*nix path "/usr/local"

- in the top-level directory there are the
two files .cproject and .project for
Eclipse CDT; no big deal since you
have absolutely no Ada support, but if
you import the project and configure the
*.adb and *.ads files as textual source
files, you could do a make build cycle,
with error signalling (clicking on the
error shown in console should redirect
you to the offending source line)

- typos, cosmetics and minor adjustments

Subject: ANN: SweetAda 0.8 released
Date: Mon, 14 Jun 2021 07:46:15 -0700

[...]

Release notes @
https://www.sweetada.org/
release_notes.html.

Downloads available @
https://sourceforge.net/projects/sweetada.

Release notes

- ADA_MODE defaults to ADA20
(-gnat2020)

- now the RTS is not a single common
archive, instead every target CPU has its
own — i.e. you have to download
sweetada-rts-<target>-0.8.tar.gz; this
way you avoid to waste bandwidth
downloading a large RTS for, e.g., the
AVR, when you don't need it

- adjusted Lock_Type definitions
according to Ada 2020

- Tcl scripts: use "eq"/"ne" in place of
"=="/"!="

- corrected a misinterpretation in the
libopenocd.tcl proc version_numeric

- various programmer.tcl front-ends do
not inherited OPENOCD_PREFIX,
corrected

- change "adapter_khz" to "adapter speed"
in OpenOCD configurations

- NiosII RTS has -mgpopt=none switch,
so it is inherited in those kind of
platforms

- NiosII lacks interrupt subprograms
declaration (body still TBD), declared

- adjusted linker scripts in NiosII
platforms (Altera10M50GHRD, DE10-
Lite)

- DigiConnectME has ARM vectors
template in llkernel.s

- adjusted some values in VGA low-level
register programming; the package now

72 Ada-re lated Tools

Volume 42, Number 2, June 2021 Ada User Journal

can setup graphic mode 12h
(640x480x16)

- burned in an EPROM, SweetAda
correctly startups in a DECstation
5000/133 and output messages on the
SCC8530 serial port, blinking also the
rear LEDs

- added/removed some
Volatile_Full_Access aspects and
cleaned up record layouts that don't need
it (they are placed in the object
definition instead)

- every CPUs has eventually an empty
LibGCC package spec (which overrides
thecore one); this enforces a catch of
package (mis-)using, which cause the
compiler to flag an error (should you try
to use it when the CPU really does not
need it)

- corrected a Makefile target dependency
(output listings could be out-of-synch if
"make postbuild" is not explicitly called)

- typos, cosmetics and minor adjustments

Quick notes

As usual, download the three packages
core, RTS and LibGCC (since many
changes are system-wide), and please
save your work before overwriting the
filesystem.

GNAT LLVM, ACATS

From: Simon Wright
<simon@pushface.org>

Subject: GNAT LLVM, ACATS
Date: Wed, 07 Apr 2021 11:58:11 +0100
Newsgroups: comp.lang.ada

I recently had success building
GNAT_LLVM on macOS: see notes here
[1].

Running ACATS 4.1 U via the ACATS
Grading tools as patched for llvm-gnat
[2], I get impressively successful results:
out of 4092 tests, GCC 11.0.1 of 2021-03-
31 has

Result: Overall, B-Tests, C-Tests, L-
Tests, Other Tests

[...]

Total Failed: 44, 30, 14, 0, 0

Total Not-Applicable: 35, 0, 35, 0, 0

Total Special: 182, 141, 21, 10, 10

Total Passed: 3831, 1272, 2420, 61, 78

(L-tests "check that all library unit
dependencies within a program are
satisfied before the program can be bound
and executed, that circularity among units
is detected, or that pragmas that apply to
an entire partition are correctly
processed". 'Special' means human
inspection needed.)

whereas llvm-gnat, built from the same
GCC sources, has

Result: Overall, B-Tests, C-Tests, L-
Tests, Other Tests

 [...]

Total Failed: 48, 31, 17, 0, 0

Total Not-Applicable: 35, 0, 35, 0, 0

Total Special: 184, 141, 23, 10, 10

Total Passed: 3825, 1271, 2415, 61, 78

[1] https://github.com/AdaCore/gnatllvm/
issues/20#issuecomment-809400426

[2] https://github.com/simonjwright/
ACATS-grading/tree/llvm

HAC V.0.095

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Ann: HAC v.0.095
Date: Wed, 7 Apr 2021 12:23:53 -0700
Newsgroups: comp.lang.ada

HAC (HAC Ada Compiler) is a small,
quick, open-source Ada compiler,
covering a subset of the Ada language.
HAC is itself fully programmed in Ada.

Web site: http://hacadacompiler.sf.net/

Source repositories:

 #1 svn: https://sf.net/p/hacadacompiler/
code/HEAD/tree/trunk/

 #2 git: https://github.com/zertovitch/hac

* Improvements since v.0.085:

Modularity: HAC recursively compiles all
units needed to build a main program.
Currently only procedures and functions
bodies are supported - no packages yet, no
separate specifications.

An example can be found in
exm/unit_a.adb

Enjoy!

From: Stéphane Rivière <stef@genesix.fr>
Date: Thu, 8 Apr 2021 10:26:00 +0200

Well done Gautier!

In our company, we now use HAC here to
replace many big Bash scripts in our
servers cluster spread in 3 european DC.
Big gain of productivity and
maintainability.

Incidentally, HAC is up to 7 times faster
than Bash for a much lower resource
consumption. Surprising when you see the
poverty of the syntax and semantics of
Bash.

UXStrings 20210405

From: Blady <p.p11@orange.fr>
Subject: [ANN] UXStrings package

available (UXS_20210405).
Date: Sun, 11 Apr 2021 10:45:53 +0200
Newsgroups: comp.lang.ada

A second POC implementation for
UXStrings is provided. The source code

files end with the number 2 as for instance
"uxstrings2.ads".
https://github.com/Blady-Com/
UXStrings/blob/master/src/uxstrings2.ads

A GNAT project file "uxstrings2.gpr" is
provided with some naming conventions
for both packages UXString and
UXStrings.Text_IO.

Some API have been added to support
ASCII 7 bits encoding for both version
UXStrings 1 and 2. ASCII is a subset of
UTF-8 thus no change with the internal
UTF-8 representation.

However, in addition to UXStrings 1
implementation, the API is now aware if
content is full ASCII. On one hand, this
permits to access directly to the position
of one character without iterating on
UTF-8 characters. Thus this is a time
improvement when content is full ASCII.
On the other hand, when content is
changing the API checks if the new
content is full ASCII. Thus this is a time
penalty when changes are not full ASCII.

English contents as programming text
files are composed of lines in majority
full ASCII but they may have some lines
with characters out of the ASCII set.
UXStrings is dealing with both.

Available on GitHub
(https://github.com/Blady-Com/
UXStrings) and also on Alire
(https://alire.ada.dev/crates/
uxstrings.html).

Feedback is welcome on the actual time
improvement on your real use cases.

RAPID New Maintainer

From: Thomas
<fantome.forums.tdecontes@
free.fr.invalid>

Subject: RAPID
Date: Mon, 12 Apr 2021 18:56:52 +0200
Newsgroups: comp.lang.ada

Hi :-)

courtesy Oliver Kellogg, I'm officially the
new RAPID maintainer :-)

I would like to know if there still exist
some RAPID users :-)

I also would like to know if there are
some users of other platforms than Unix
or Windows who would like to use
RAPID, even if it doesn't work until now.

I see that GtkAda supports at least
Solaris/SPARC platform, in addition to
Unix and Windows, but if no one is
interested I won't waste time on a specific
portability. Tell me :-)

RAPID maintainer

http://savannah.nongnu.org/projects/rapid/

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 12 Apr 2021 10:58:22 -0700

Ada-re lated Tools 73

Ada User Journal Volume 42, Number 2, J une 2021

I'm on Windows and Solaris and Linux
here, we might get Macintosh from long-
term visitors.

From: Thomas
<fantome.forums.tdecontes@
 free.fr.invalid>

Date: Mon, 12 Apr 2021 20:04:51 +0200

ok :-)

What's your relation with RAPID? (Are
you a user? Are you interested? ...)

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 12 Apr 2021 13:01:00 -0700

Not a user, currently.

But interested, and having a nice cross-
platform common-UI would make things
a lot nicer for some prospective software-
upgrades at work.

One such possible nicety would be a
universal administration tool, another
would be a data-management/-analysis
tool for visiting scientists, another
possibility would be decoupling several
control-programs (codebases in
everything from C to VB to C#) used to
operate the instrumentation here from
their host-systems and increase
portability.

SparForte 2.4.1

From: Ken Burtch <koburtch@gmail.com>
Subject: ANN: SparForte 2.4.1 Released
Date: Sat, 1 May 2021 05:13:35 -0700
Newsgroups: comp.lang.ada

SparForte 2.4.1 has been released. This
mainly contains fixes for the new tab
completion system.

SparForte is my Ada-based shell,
scripting language and web template
engine.

SparForte can be downloaded at
https://www.sparforte.com

The change log is located at
https://www.sparforte.com/news/2021/
news_may2021.html

SparForte is a hobby and relies on
contributions from volunteers.

Simple Components v4.56

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components v4.56
Date: Sun, 2 May 2021 14:55:01 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-

random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the version 4.55:

- The packages Persistent.Streams and
Persistent.Streams.Dump were added to
implement streams backed by a fail-safe
file;

- ELV/e-Q3 MAX! cube client was
changed to work around cube firmware
problems.

GCC 11.1.0 for MacOS

From: Simon Wright
<simon@pushface.org>

Subject: ANN: GCC 11.1.0 for macOS
Date: Sun, 02 May 2021 17:28:09 +0100
Newsgroups: comp.lang.ada

GCC 11.1.0 x86_64-apple-darwin for
macOS is available at:
https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
11.1.0/native

The release no longer supports ASIS.

Libadalang and tools (gnatmetric, gnatpp,
gnatstub, gnattest) are included.

Please note:

* This release is made as an installer
package. Because I don't have a signing
ID, you can't double-click on it; instead,
right-button, Open, and ignore the
warnings. Sorry.

* In the past, I've included modified
versions of the compiler specs files. This
time, such a modified specs file wouldn't
run on El Capitan, so I've supplied the
compiler as-built; if you're on Mojave or
later, you need to set SDKROOT to pick
up the place where Apple provides them.
This means that the compiler won't
automatically look in /usr/local/include
(affects C, C++) or /usr/local/lib (affects
all languages).

See the release notes at Sourceforge.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 10 Jun 2021 17:21:57 +0100

This release contains versions of gnatstub,
gnattest, gnatpp and gnatmetric which fail
to load:

$ /opt/gcc-11.1.0/bin/gnattest —help

dyld: Library not loaded:
@rpath/libgnarl-11.dylib

Referenced from:
/opt/gcc-11.1.0/bin/gnattest

Reason: image not found

Abort trap: 6

Workaround: export
DYLD_FALLBACK_LIBRARY_PATH
=/opt/gcc-11.1.0/lib/gcc/
x86_64-apple-darwin15/11.1.0/adalib

You may not be aware that gprbuild now
lets you specify building standalone static
libraries "for Library_Interface use (list-
of-units);"

- this doesn't work on macOS, and in fact
cannot work, because it uses features of
binutils object binaries that aren't
available in Mach-O. The effect of this
is that a static link against such a library
will fail if the library involves any
tasking. If you try to fix this by using the
relocatable version, and then move the
executable, it won't find the GNAT
runtime dylibs.

I wonder why the GNAT runtime dylibs
are all the way down there without a
symlink in $prefix/lib?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 2 May 2021 18:54:25 +0200

Thanks Simon!

As a side note. The version 11 brings new
incompatibilities breaking old code. In
some cases X'Access is no longer
accepted and needs to be replaced by
X'Unchecked_Access.

I am too lazy to analyze whether that is a
bug or feature, just be aware.

I dare say that every Ada style guideline
should require 'Unchecked_Access
everywhere. The issue became a
permanent maintenance nightmare.

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 3 May 2021 10:29:38 +0200

> The release no longer supports ASIS.

That's unfortunate. Actually, GNAT FSF
could be a good opportunity to continue
support for ASIS.

> Libadalang and tools (gnatmetric,
gnatpp, gnatstub, gnattest) are included.

But I guess not gnatcheck, since it needs
ASIS.

From: Simon Wright
<simon@pushface.org>

Date: Mon, 03 May 2021 12:14:11 +0100

> But I guess not gnatcheck, since it
needs ASIS.

gnatcheck isn't in any of the recent
releases of CE. [1], see the [Tools] section
at the end, says it's not.

The [Tools] section also says ASIS is
available as an add-on. But it says that
about GNATtest.

[1] https://www.adacore.com/gnatpro/
comparison

74 Ada-re lated Tools

Volume 42, Number 2, June 2021 Ada User Journal

From: Luke A. Guest
<laguest@archeia.com>

Date: Mon, 3 May 2021 11:46:51 +0100

> That's unfortunate. Actually, GNAT
FSF could be a good opportunity to
continue support for ASIS.

Why? ASIS is dead, even the WG don't
bother anymore.

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 3 May 2021 13:50:38 +0200

> Why? ASIS is dead, even the WG don't
bother anymore.

Many tools depend on ASIS, and there
might well be an update of the standard. It
is still supported by GnatPro (and PTC).

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Mon, 03 May 2021 16:16:50 +0100

> GCC 11.1.0 x86_64-apple-darwin for
macOS is available at:

Thanks for that Simon.

My KDF9 emulator (~25KSLOC of Ada
2012) compiles and runs correctly, but the
(stripped) object code is about 10% bigger
and runs about 10% slower than a version
compiled with GNAT CE 2020.

Is an Apple Silicon compiler a reasonable
thing to hope for in the not too distant
future? (Hint 8-)

From: Simon Wright
<simon@pushface.org>

Date: Mon, 03 May 2021 16:44:36 +0100

Sorry to hear that.

> Is an Apple Silicon compiler a
reasonable thing to hope for in the not
too distant future? (Hint 8-)

Work is in progress, but not so far by me
since I don't own any Apple Silicon :-(

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Tue, 04 May 2021 10:47:53 -0700

> I am too lazy to analyze whether that is
a bug or feature, just be aware.

I had a similar issue upgrading from
GNAT Community 2020 to GNAT Pro
21. The GNAT compiler has gotten
smarter about enforcing accessibility
rules.

Since those rules are there to prevent
dangling references, they should be
respected; I fixed my code to compile
with 'Access.

It is a pain that GNAT didn't get this
totally correct the first time around, but
that's life.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 4 May 2021 22:12:42 +0200

> I had a similar issue upgrading from
GNAT Community 2020 to GNAT Pro
21.

Alas.

> Since those rules are there to prevent
dangling references, they should be
respected; I fixed my code to compile
with 'Access.

For example:

 declare

 Location : Abstract_Layer'Class

 renames

 Abstract_Layer'Class (Under.all);

 begin

 ...

 if Location'Access =

 Location.Widget.Bottom then

This does not compile anymore. Clearly
there cannot be any dangling references
here.

Recent changes broke a lot of code
involving comparisons of access types,
especially if an anonymous access type is
involved. Among them are cases when
even 'Unchecked_Access does not help.
So, one should resort to awful 'Address
instead.

The situation is quite dire. I would even
suggest introducing a built-in operation to
compare an object with an access, e.g.

 P'Refers (X) -- True if P points to X

since comparison of access types became
too volatile.

> It is a pain that GNAT didn't get this
totally correct the first time around, but
that's life.

I am not a language lawyer to judge. My
impression that in practice accessibility
rules significantly reduce safety and code
quality rather than add it.

AdaStudio-2021 Release
07/05/2021 Free Edition

From: Leonid Dulman
<leonid.dulman@gmail.com>

Subject: Announce : AdaStudio-2021
release 07/05/2021 free edition

Date: Fri, 7 May 2021 00:05:38 -0700
Newsgroups: comp.lang.ada

I'm pleased to announce AdaStudio-2021
new release, based on Qt-6.1.0-
everywhere extended with modules:
qtconnectivity qtgraphicaleffect qtlocatio
qtmultimedia qtsensors qtserialbus
qtserialport qtwebchannel qtgamepad
(qtscript and qtwebengine - work in
progress).

Qt 6 is a new long-term project and I hope
to solve these problems in next releases.

 Qt6ada version 6.1.0 open source and
qt6base.dll, qt6ext.dll (win64),
libqt6base.so, libqt6txt.so(x86-64) built
with Microsoft Visual Studio 2019 x64bin
Windows, gcc x86-64 in Linux.

Package tested with GNAT gpl 2020 Ada
compiler in Windows 64bit, Linux x86-64
Debian 10.4

Qt-6.1.0 everywhere opensource prebuilt
binaries for win64 and x86-64 are
included into AdaStudio-2021.

In new AdaStudio release was added new
module qt6opencvada based on OpenCV
4.5.2 for camera capture, recording,
transmit and receive.

qt6opencvada supports face detection and
recognition. OpenCV-4.5.2 binaries
prebuilt for win64 and x86-64 and
included to AdaStudio.

AdaStudio-2021 includes the following
modules: qt6ada,vtkada,qt6avada,
qt6cvada and voice recognizer.

Qt6Ada is built under аGNU
GPLv3аlicense
https://www.gnu.org/licenses/
lgpl-3.0.html.

Qt6Ada modules for Windows, Linux
(Unix) is available from Google drive
https://drive.google.com/folderview?id=0
B2QuZLoe-yiPbmNQRl83M1dTRVE
&usp=sharing
(It can be mounted as virtual drive with
ExpandDrive
(https://www.expandrive.com/
download-expandrive/)), go to Adastudio
directory and load index.html to browser.

[Removed list of all file contents. —arm]

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.docx"

If you have any problems or questions, let
me know.

Leonid(leonid.dulman@gmail.com)

Gnoga 1.6a and 2.1-beta.
From: Blady <p.p11@orange.fr>
Subject: [ANN] Gnoga version 1.6a and

2.1-beta.
Date: Sat, 22 May 2021 10:07:46 +0200
Newsgroups: comp.lang.ada

Gnoga
(https://sourceforge.net/projects/gnoga)
version 1.6a has been released on SF GIT:
https://sourceforge.net/p/gnoga/code/ci/
dev_1.6/tree

Zipped source code is also available on:
https://sourceforge.net/projects/gnoga/
files

See HISTORY for details:
https://sourceforge.net/p/gnoga/code/ci/
dev_1.6/tree/HISTORY

Gnoga version V2.1-beta has been
released on SF GIT branch dev_2.1:
https://sourceforge.net/p/gnoga/code/ci/
dev_2.1/tree

This version 2.1 is at the same
functionality level as 1.6 with in addition
the support of dynamic Unicode strings

https://drive.google.com/folderview?id=0B2QuZLoe-yiPbmNQRl83M1dTRVE
https://drive.google.com/folderview?id=0B2QuZLoe-yiPbmNQRl83M1dTRVE

Ada-re lated Tools 75

Ada User Journal Volume 42, Number 2, J une 2021

via the UXStrings library
(https://github.com/Blady-Com/
UXStrings).

See HISTORY for details:
https://sourceforge.net/p/gnoga/code/ci/
dev_2.1/tree/HISTORY

V2.1 has been tested (demos, tests,
tutorials) with GNAT Community 2020
on macOS 11.2 with Safari 14.

I propose that new features will be added
only on this version.

Bug fixes will still be added on version
1.6.

Volunteers are welcome to test it further
on their own configuration.

Some testing on Windows and Linux
configuration will be appreciated.

Contributors are welcome.

Feel free to report detailed issues on
Gnoga list or create tickets on SF:

https://sourceforge.net/p/gnoga/mailman/

https://sourceforge.net/p/gnoga/tickets/

Regards, Pascal.

https://blady.pagesperso-orange.fr

GNAT CE 2021

From: Adamagica
<christ-usch.grein@t-online.de>

Subject: GNAT CE 2021 is out
Date: Thu, 27 May 2021 10:37:58 -0700
Newsgroups: comp.lang.ada

Just downloaded, no problems so far.
Heureka.

From: Adamagica
 <christ-usch.grein@t-online.de>

Date: Sat, 29 May 2021 10:17:12 -0700

There is a problem in the implementation
of the new Reduce attribute. The
Roman_Number example in RM
4.2.1(15/5ff) does not work. GNAT uses
the wrong subtype for the Accum
subtype. It's been reported.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Wed, 2 Jun 2021 13:40:03 -0700

Regarding the Windows version: each
time I call gprbuild on a project,
everything is recompiled, in place of an
incremental compilation (normally, only
the Ada files that were modified since last
build are recompiled). Did anyone else
notice that?

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Tue, 08 Jun 2021 10:54:05 -0700

I see something similar but different
(since 2019); no sources are recompiled,
but everything is linked again, which in
my builds is slow.

Assuming you are seeing the same thing,
if you keep repeating the same build, it
eventually finishes. If you look in
*.bexch, after each build you will see one
more gpr hash added; I gather they should
all be added the first time. So the number
of builds needed is the number of *.gpr
you 'with', transitively. After that, each
source code change only requires one
build; changes to *.gpr (and some other
things?) reset all the gpr hashes.

I have not reported this to AdaCore; I
don't have access to a support contract for
Windows. It would make sense to report it
to the community channel.

From: Stephane Carrez
<stephane.carrez@gmail.com>

Date: Fri, 11 Jun 2021 11:59:24 -0700

> Regarding the Windows version: each
time I call gprbuild on a project,
everything is recompiled [...]

I'm jumping at the end of your battle....

I've observed some small differences in
the way compilation options are handled
by gprbuild. In particular the
Builder.Default_Switches and
Compiler.Default_Switches were the
source of a problem as far as I'm
concerned. Not systematic but this
resulted in your observed behavior.

From time to time I'm having the problem
you mention and in most cases it was
related to some incorrect definition in one
of my GNAT projects. When this happens
I use one of -vl or -vm options. And
then... I lose a lot of time to spot the issue
:-)

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Wed, 16 Jun 2021 09:24:37 -0700

> When this happens I use one of -vl or -
vm options.

Actually my issue is very similar to one
that appeared with GNAT GPL 2017 (see
"GNAT GPL 2017 incremental
compilation"). It is related to
configuration pragma files. At the time
the solution was to have in the .gpr
project file compiler options expressed
like

 "-gnatec=" & project'Project_Dir &
"debug.pra"

because gprbuild doesn't run in the same
directory as GNAT since the GPL 2017
version. Now (four GPL/CE versions
later) it's a bit trickier since gprbuild
doesn't find the configuration pragma file
at its correct place, even though GNAT
does.

The verbosity switch (-vm) was helpful to
confirm that (gprbuild shows reasons for
recompilation). Thanks for the reminder!

PragmAda Reusable
Components

From: Pragmada Software Engineering
<pragmada@
 pragmada.x10hosting.com>

Subject: [Reminder] The PragmAda
Reusable Components

Date: Tue, 1 Jun 2021 09:39:29 +0200
Newsgroups: comp.lang.ada

The PragmARCs are a library of (mostly)
useful Ada reusable components provided
as source code under the GMGPL or BSD
3-Clause license at
https://github.com/jrcarter/PragmARC.

This reminder will be posted about every
six months so that newcomers become
aware of the PragmARCs. I presume that
those who want notification when the
PragmARCs are updated have used
Github's notification mechanism to
receive them, so I no longer post update
announcements. Anyone who wants to
receive notifications without using
Github's mechanism should contact me
directly.

Archlinux 'gcc-ada-debug'
AUR Package.

From: Rod Kay <rodakay5@gmail.com>
Subject: ANN: Archlinux 'gcc-ada-debug'

AUR package.
Date: Fri, 11 Jun 2021 11:47:01 +1000
Newsgroups: comp.lang.ada

A gcc-ada-debug package has been added
to the Archlinux AUR. It is identical to
the official gcc-ada package except that
debug symbols have not been stripped.

This allows for setting breakpoints on the
standard exceptions of the Ada runtime
library in GDB, as opposed to seeing a
message such as 'Your Ada runtime
appears to be missing debug information".

Ada Resource Embedder for
C, Ada and Go

From: Stephane Carrez
<stephane.carrez@gmail.com>

Subject: ANN: Ada Resource Embedder for
C, Ada and Go

Date: Fri, 11 Jun 2021 06:30:42 -0700
Newsgroups: comp.lang.ada

I created a new tool to allow embedding
any file in an Ada, C or Go binary. While
embedding files, you can apply some
transformations such as running a
Javascript minifier (closure), compressing
the file, encrypting it, ... The tool
generates Ada, C or Go files that you
compile with your program. In its
simplest form, you can access the
embedded content as a:

type Content_Access is access constant

Ada.Streams.Stream_Element_Array;

76 Ada-re lated Tools

Volume 42, Number 2, June 2021 Ada User Journal

So the generated code only depends on
Ada.Streams.

There are many modes that are explained
in the documentation. For an overview,
have a look at:

https://blog.vacs.fr/vacs/blogs/post.html?
post=2021/06/11/
Advanced-Resource-Embedder

And don't hesitate to fork, hack, and
submit pull requests to:

https://github.com/stcarrez/
resource-embedder

Well, for me it was a fun project :-)

Stephane

Ps: Go has a `go:embed` but It was fun to
write the Go generator :-)

From: Stéphane Rivière
<stef@genesix.org>

Date: Fri, 11 Jun 2021 15:51:52 +0200

Hi Stephane,

This is typically what I needed to improve
my current AIDE v2 project (Ada Instant
Development Environment - source
GNAT CE 2019 2020 2021 - target
Debian / Ubuntu with subtarget station
(with GNATStudio, HAC, libs, debug
aware RTS, and goodies) or server (bare
minimal).

Many thanks!!!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 11 Jun 2021 18:19:15 +0200

I considered embedding into relocatable
libraries similar to Windows' resource,
e.g. for versioning plugins etc., but then
decided to use an easier and more
universal method.

I simply put an Ada constructing function
into the library. The function is exported.
The address returned by GetProcAddress
or dlsym goes to Unchecked_Conversion
to an access to subprogram, and here you
are.

The obvious advantage of this method
over embedding is that the object can be
tagged of any derived type, which no
embedding can do. And you can add
whatever further initialization or checks
you might need.

From: Stephane Carrez
<stephane.carrez@gmail.com>

Date: Fri, 11 Jun 2021 10:32:56 -0700

Can you elaborate a little? I don't see what
you put in your Ada constructing
function. I do see how you use it but not
how and where you put the original
content or file.

Let's suppose you have some
documentation file 'config/example.conf'.
How would you integrate it in a binary
with your solution?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 11 Jun 2021 20:25:55 +0200

> I don't see what you put in your Ada
constructing function. I do see how you
use it but not how and where you put
the original content or file.

In my case I do not deal with files, it is
always objects. In the simplest case it
could be a record type like:

 type Library_Data is record

 Do_This : not null access procedure;

 Get_That : not null access function

 return That'Class;

 end record;

That the library provides.

> Let's suppose you have some
documentation file
'config/example.conf'.

The documentation would be an object
ready for rendering. Say the
documentation renderer is a GTK text
view widget. Then that would require a
text buffer:

 type Library_Data is record

 Do_This : not null access procedure;

 Get_That : not null access function

 return That'Class;

 Documentation : not null

 Gtk_Text_Buffer;

 end record;

The caller will drop the text buffer
Documentation into a Gtk_Text_View
widget to show the documentation.

I usually use programmatically generated
content. E.g. HTML documentation
would be a set of subprograms with
parameters that put a portion of HTML
into a stream/string. I then decorate their
output as necessary, e.g. <tr>...</tr> if
that must be a table cell etc.

The point is that documentation is almost
never a static text, but has all sorts of
parameters the provider does not know in
advance.

From: Stephane Carrez
<stephane.carrez@gmail.com>

Date: Fri, 11 Jun 2021 11:44:29 -0700

Thanks Dimitry for the clarification.

Different requirements lead to different
solutions.

With ARE, I want to embed a Javascript
file (such as jQuery), minify it with
closure, compress it with gzip and make it
available as raw content so that the web
server can service it without reading any
file. The content being accessible through
either an Ada generated variable or
through a function, it is mapped in
memory (we avoid an open, read, close
system call plus the gzip stuff) and the
server only has to return the buffer
content.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 11 Jun 2021 21:53:07 +0200

Same here. In the case of an integrated
HTTP server I simply store the HTTP
pages as a set of string constants and
functions generating dynamic portions of.
The HTTP server uses no external files.
Most pages never exist in any moment of
time, because the server generates
portions of them and sends away chunks
as soon as possible. For this reason I do
not compress any pages. It would waste
too much resources on a small embedded
system and does not really matter for a
large PC.

From: Stephane Carrez
<stephane.carrez@gmail.com>

Date: Fri, 11 Jun 2021 23:15:30 -0700

> Same here. [...]

Not the same. ARE takes a static content
and converts it in an Ada source that you
compile.

Compression can help even on embedded
systems because it reduces the size of data
transfer. A jquery-3.4.1.js file is around
273K. Minified by closure it is reduced to
89K. If you also compress it, it reduces to
31K.

On slow networks these size reductions
make a difference.

There is no waste of resources because
the compression is made during the build
process not at runtime.

I would say the opposite: what you get is
smaller in size.

From: Stéphane Rivière
<stef@genesix.org>

Date: Sat, 12 Jun 2021 14:03:41 +0200

> Your projects are very interesting, can I
have the link for AIDE?

Github is coming - watch
https://github.com/sowebio in july

Alpha is here
https://stef.genesix.org/pub/ada/aide

Don't read v2.14 but v0.14 :) The v1 was
a completely different beast. I just keep
the numbering...

aide - binary

aide-2.14.zip - sources

v20-0.3.zip is the GP library used for
AIDE

All this stuff is KISS¹ but very usable :)

sow - AIDE for Debian & Ubuntu Manual
v34.pdf - read issues and to do list at the
end. You should *wait for v2.15* release
to test it, even the 'big view' already
works. I have a few bugs to fix for a 'full
flown experience' :)

sow - v20 Ada Library User Manual
v28.pdf - API ref (a must read to

Ada and Other Languages 77

Ada User Journal Volume 42, Number 2, J une 2021

understand AIDE code) and more
(methodology101 for kids and new
coders). HAC Ada Compiler User Manual
v82.pdf manual for HAC (HAC is
included in AIDE. It's a very capable Ada
subset interpreter, replacing Bash on all
our servers cluster) HAC is a Gautier de
Montmollin project (refs in doc). HAC is
seven times faster than Bash, more
productive and strongly typed!

¹ According to the "Keep It Simple
Stupid" theory

GNAT CE 2021 for Intel
MacOS

From: Simon Wright
<simon@pushface.org>

Subject: ANN: GNAT CE 2021 for Intel
macOS

Date: Thu, 17 Jun 2021 17:25:45 +0100
Newsgroups: comp.lang.ada

GNAT CE 2021, built for macOS El
Capitan .. Big Sur, at Sourceforge:
https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2021-x86_64-darwin-bin/

Github (scroll down to the Assets
section): https://github.com/simonjwright/
distributing-gcc/releases/tag/gnat-ce-2021

Status of AdaControl (Cont.)

[See “Status of AdaControl” in AUJ 42-1,
March 2021. —arm]

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Re: Status of AdaControl
Date: Sun, 9 May 2021 13:41:19 -0700
Newsgroups: comp.lang.ada

In the following blog post, you can find
installation notes for using GNAT CE
2019 - just for the purpose of running
AdaControl free edition!

https://gautiersblog.blogspot.com/2021/04
/cleaning-up-hac-sources-with-
adacontrol.html

A bit tedious, but doable. Hopefully the
community will see again in the future,
from time to time, updated snapshots with
GNAT, ASIS and AdaControl
"synchronized"...

The post also shows a demonstration of
AdaControl "in action". Amazing tool!

Ada and Operating
Systems

Ada Is Back on VMS

From: Vms Ada Alliance
<contact@vmsadaall.org>

Subject: Ada is back on VMS
Date: Mon, 3 May 2021 17:42:26 +0200
Newsgroups: comp.lang.ada

Hello,

For whom the information is unknown,
VMS itself is back since 2014. The
company VSI (VMS Software Inc.
Vmssoftware.com) negotiated with HP to
give it support and future. Since this
decision, VSI gives quality support to
VMS on Alpha and Itanium hardware,
and now the port to x86 and virtualization
is about to be completed. Restricted Early
Adopter Kits can be obtained, which run
on Oracle Virtual Boxes or vmware. A
full field test will begin in June, and the
production release will be here at the end
of this year.

For us, more important, the information is
that Ada is back on VMS.

It had always been available on Alpha
(and VAX) as DEC Ada, and is still there.
It had been on Itanium until the end of
2014, as a GNAT Ada GCC
implementation, supported by Adacore.
AdaCore ended its support at the end of
2014, and we organized a rebuild from
FSF sources, with the help of David
Sauvage, AdaLabs. This build is
presented here (https://github.com/
AdaLabs/gnat-vms). On our side we can
provide the binaries for users who can
guarantee they have a professionnel or
hobbyist licence for VMS (*) (the build
uses VMS headers). (have a look here:
http://www.vmsadaall.org/index.php/en/).
The pia-sofer company (Play It Again
SOFtwarE Renew, piasofer.fr) offers
support for the package.

The novelty is that we can now think of a
future of Ada on VMS, on x86. VSI
organized its set of compilers using
LLVM as the back end, version 10. And
there is on github a prototype of a GNAT
Ada front end for LLVM. So, we have
just to test how to make them interact. It’s
not a trivial project, but truly exciting.

We are just at the beginning of this work,
and we’ll inform on this group how we
are progressing.

For sure everyone is invited to participate.
It’s a little bit difficult to get an Itanium,
where you could test our build. Some
itaniums are available via users club
initiatives (not yet in France, but the users
club vmsgenerations has a project on
that). It’s easier to get a free Alpha
emulator (for example here:
http://www.migrationspecialties.com/Free
AXP.html). And you can get a hobbyist
licence by VSI for both
(https://vmssoftware.com/community/
community-license). Important, we do
think, to remember all the VMSisms
before getting in the project. To test the
GNAT Ada front end on Linux is
straightforward, and it is also a
preliminary work before porting on VMS
(https://github.com/AdaCore/gnat-llvm).
We don’t know when VSI will offer
hobbyist licenses on VMS x86. Everyone

who is thrilled to test some VMS x86 (and
on Ada compiler) can contact us, and
we’ll organize vpn accesses
(contact@vmsadaall.org).

Our particular effort is about universality.
We think it’s very important to address
the cultural continuity of Ada on VMS
from VAX to x86. There are a lot of good
things written for Ada on VMS we have
to reuse (for example for debug). And
because the more modern solutions are
around AdaCore solutions, it is important
to understand similarities and differences
between GNAT Ada on GCC and GNAT
Ada on LLVM.

It’s a community effort. We hope VSI
and/or AdaCore will get involved in the
return of Ada on VMS. And we know
there has always been a good
collaboration between AdaCore and
communities. But companies have their
constraints, while individuals or Open
Source structures can be immediately
reactive. Perhaps also it is a sort of
guarantee for users when a community is
there.

Don’t hesitate to contact us:
contact@vmsadaall.org

(*) It is a fullfledged 4.3.7 version, with
all its GNAT tools. And we give in the
same package the gcc C compiler and the
gcc C++ compiler (of that version). We
are working on the libstdc++-v3 (also
here, every help welcomed, including just
testing).

Ada and Other
Languages

Pascal vs C Language
Families

[Out of the blue a thread last seen in 2014
(!) was resurrected. It is an interesting yet
mostly off-topic talk full of anecdotes
about early compilers. —arm]

From: Paul Rubin
<no.email@nospam.invalid>

Subject: Re: why the pascal family of
languages (Pascal, Ada, Modula-
2,2,Oberon, Delphi, Algol,...) failed
compared to the C family?

Date: Thu, 27 May 2021 09:00:16 -0700
Newsgroups: comp.lang.ada

>>Algol 60 did not have a defined I/O.

> <?> Just curious -- do you mean the
I/O was all by linked in

> function/subroutines rather than being
keywords in the language?

Yeah, something like that. But there were
successful Algol 60 implementations,
including on Burroughs and Univac
mainframes. C. A. R. Hoare supposedly
called Algol 60 "a language so far ahead
of its time, that it was not only an

78 Ada and Other Languages

Volume 42, Number 2, June 2021 Ada User Journal

improvement on its predecessors, but also
on nearly all its successors.

>>I/O in Pascal was flawed.

> Well... It probably worked quite well
in the original OS...

It wasn't just the I/O:

http://doc.cat-v.org/bell_labs/why_pascal/

Borland Turbo Pascal was very popular
and apparently practical, though. I never
used it but I have the impression that it
(like most deployed Pascal
implementations) somehow supplied
workarounds to the limitations described
in the paper above.

These were interesting:

* Things Turbo Pascal is Smaller Than:

 https://prog21.dadgum.com/116.html

* Personal History of compilation speed
part 2 (scroll down for the part about
Turbo Pascal):

 https://prog21.dadgum.com/47.html

The binary of Turbo Pascal was
eventually released for no cost download,
but apparently the source code was never
released. That is disappointing based on
how cool the above articles make it
sound.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Thu, 27 May 2021 13:53:29 -0400

> It wasn't just the I/O: http://doc.cat-
v.org/bell_labs/why_pascal/

I believe the original goal for Pascal was
to be a teaching language for algorithm
development, and wasn't meant to be a
real application programming language.
Heck -- the earlier VMS Pascal required
one to link into the FORTRAN libraries if
one needed things like sin()/cos()
functions.

> it (like most deployed Pascal
implementations) somehow supplied
workarounds to the limitations
described in the paper above.

Which made it a "lock-in" language -- it
wasn't Pascal as defined by Wirth and
UCSD. One had to use compatible
hardware (Windows, as I recall). Not
much use when writing a satellite control
(ground station) system on a VAX/Alpha
machine (and yes, one such WAS written
in VMS Pascal*... A few years later the
new version was on HPUX [or whatever
they called it] written in C -- they went
from PDP-11 assembly to VAX Pascal to
HP C)

>The binary of Turbo Pascal was
eventually released for no cost
download

I believe Turbo Pascal evolved into
Borland's Delphi, which added OOP
features. Now Embarcadero... And

available in a "community edition"
https://www.embarcadero.com/products/d
elphi/starter (interesting: they allow either
Delphi OR C++Builder community
editions, but not both on a computer [time
for virtual machine images <G>])
Community license needs to be renewed
annually (though is a free download as I
read the site). OUCH -- Professional level
is $1600 to start, and $400/year renewal
(the initial $1600 is "perpetual", the
$400/year is a subscription for
updates/upgrades)

>disappointing based on how cool the
above articles make it sound.

It feels bloated to me, but there is
FreePascal with the Lazarus IDE.

My last Python exposure was on my TRS-
80 model 4; Alcor Pascal (under a
RatShack license name -- Model 3 was a
pure Alcor release). It had the odd feature
of allowing one to manually edit the
"object" files. Once one learned the
structure (they were ASCII) one could
cut&paste functions/subroutines).

http://www.trs-80.org/alcor-pascal/

I seem to recall having Blaise II (editor)
configured to work like VMS EDT (a bit
of a trick, as the numeric pad only had 3
PF keys, not the 4 found on a VT100)

The realtime group did a survey of
languages when they upgraded from the
PDPs -- choices were VMS assembly,
FORTRAN77, Pascal, and C. We had
something like 30 people in the realtime
group, and 70 people in the rest of the
program skilled in F77. They tossed out C
as error-prone, F77 as "old", assembly as
"why change processor, then", and argued
that many graduates at the time were
learning Turbo Pascal in college.

When I saw the evaluation email, I sent
back one that pointed out that Turbo
Pascal had a lot of add-ons that would not
be meaningful in a Wirth level Pascal
(VMS did allow separate compilation, and
linking to libraries written in other
languages -- DEC had a common set of
built-ins to define passing arguments as
value/reference/descriptor so one could
match the convention of the library
language). I also pointed out that, having
ignored the expertise of the 80+ F77
programmers, and gone the mile to
choose Pascal, they might have fallen
onto their faces and picked DEC VMS
Ada -- a language designed for realtime
processing...

A few years later, the department
manager confessed that Pascal had been a
mistake (I believe the lead realtime
programmer had threatened to leave if
Pascal was not picked -- manager caved
in).

From: Wilson
<winslowleon171@gmail.com>

Date: Thu, 27 May 2021 19:47:12 -0400

> Can we all blame this success of the C
family of languages on Dennis Ritchie
and Brian Kernighan brilliance and it
being used for Unix? Another reason
that C became so widespread was cost.
In the 1970s many organizations
(including universities) used the PDP
11 series of computers because they
were cheap hardware.

Their OS for the PDP 11 on the other
hand cost thousands of dollars per
computer whereas C and UNIX were free.
This was a bargain most owners found
irresistible. Many schools made UNIX
and C their standard educational
language. This in turn generated
graduates who only knew C putting
pressure on employers to use C. Alas, it
quickly became a self-feeding runaway
success.

In short, a free lunch is hard to turn down
no matter what comes with it.

From: John Perry <john.perry@usm.edu>
Date: Thu, 27 May 2021 17:34:07 -0700

> Borland Turbo Pascal was very popular
and apparently practical, though.

I used Turbo Pascal in college 40 years
ago, and yes! it did supply workarounds.
Later I realized they looked a lot like
features of Modula-2 (also by Wirth) and
of Ada. Wikipedia tells me (And
Therefore It Is True (TM) ;-)) that some
of them come from UCSD Pascal.

This next paragraph is from memory,
which may be corrupted, and I may have
misunderstood it first, so don't take it too
seriously, but: people who paid attention
to what Wirth said and wrote about
compiler design were able to produce
small and fast compilers. Somewhere you
can find a report written by one of Wirth's
students about how they tried to modify
one of their compilers to use a tree instead
of a fixed-size array with linear search for
the symbol table. Everyone except Wirth
was sure that the tree would be both better
and more useful, and everyone except
Wirth turned out to be wrong. As I say, if
it interests anyone I'm sure an online
search will find it (but it might not be
trivial, which is why I'm not doing it now
myself).

> The binary of Turbo Pascal was
eventually released for no cost
download, but apparently the source
code was never released. That is
disappointing based on how cool the
above articles make it sound.

FreePascal is an open-source
reimplementation of Turbo Pascal. It
boasts many of the speed advantages that
Turbo Pascal has. I've never used it
beyond occasionally downloading &
playing with it, then forgetting about it.

From: Shark8
<onewingedshark@gmail.com>

Date: Fri, 28 May 2021 05:37:48 -0700

Ada and Other Languages 79

Ada User Journal Volume 42, Number 2, J une 2021

That story comes from the paper "Oberon:
The Overlooked Jewel" —
https://www.semanticscholar.org/paper/
Oberon-The-Overlooked-Jewel-Franz/
d48becdaf5c3d962e2778f804e8c64d292d
e408b—

> In order to find the optimal cost/benefit
ratio, Wirth used a highly intuitive
metric, the origin of which is unknown
to me but that may very well be Wirth’s
own invention. He used the compiler’s
self-compilation speed as a measure of
the compiler’s quality. Considering that
Wirth’s compilers were written in the
languages they compiled, and that
compilers are substantial and non-
trivial pieces of software in their own
right, this introduced a highly practical
benchmark that directly contested a
compiler's complexity against its
performance. Under the self-
compilation speed benchmark, only
those optimizations were allowed to be
incorporated into a compiler that
accelerated it by so much that the
intrinsic cost of the new code addition
was fully compensated.

> And true to his quest for simplicity,
Wirth continuously kept improving his
compilers according to this metric, even
if this meant throwing away a perfectly
workable, albeit more complex
solution. I still vividly remember the
day that Wirth decided to replace the
elegant data structure used in the
compiler’s symbol table handler by a
mundane linear list. In the original
compiler, the objects in the symbol
table had been sorted in a tree data
structure (in identifier lexical order) for
fast access, with a separate linear list
representing their declaration order.
One day Wirth decided that there really
weren’t enough objects in a typical
scope to make the sorted tree cost-
effective. All of us Ph.D. students were
horrified: it had taken time to
implement the sorted tree, the solution
was elegant, and it worked well – so
why would one want to throw it away
and replace it by something simpler,
and even worse, something as prosaic
as a linear list? But of course, Wirth
was right, and the simplified compiler
was both smaller and faster than its
predecessor.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 28 May 2021 15:28:48 +0200

I remember that Turbo Pascal had only
one error message, something like
"Syntax error in expression" with, God
forbid, no column number.

Otherwise yes, it was pretty fast, much
faster than MS-DOS C/C++ compilers of
the time, Borland's own C++ including.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Fri, 28 May 2021 07:49:44 -0700

> The binary of Turbo Pascal was
eventually released for no cost
download, but apparently the source
code was never released.

Perhaps source code was not *officially*
released but you find it easily on the Web
(for TP 6.0) :-).

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Fri, 28 May 2021 08:01:10 -0700

Interestingly, the HAC Ada Compiler
(https://hacadacompiler.sourceforge.io/,
https://github.com/zertovitch/hac) is a
distant descendent of Pascal-S by Wirth
and identifiers are searched linearly via a
linked list.

And yes, the compiler is very fast :-).

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 28 May 2021 12:22:10 -0700

> Perhaps source code was not
officially released but you find it
easily on the Web (for TP 6.0) :-).

Very interesting I did find what I think
you are referring to, though it is much
larger than the old versions. It's weird
that it looks like an official Borland
release of some kind (complete with
postal address for tech support). I didn't
realize they had ever let that out. Anyway,
thanks for the tip. The compiler proper
seems to be about 25KLOC of almost
entirely uncommented assembly code,
plus Pascal headers. I will see if I can
understand any of it. I wonder if it might
be a disassembly, or otherwise obfuscated
by Borland (by stripping comments) for
the purpose of the release.

Sometime back I looked rather hard for
the source code of TP (any version) and I
found something claiming to be TP source
code, but was actually something like a
Windows wrapper. But this is different.

I think someone might have also
published a disassembly of a released TP
2.0 binary, but I'm more interested in the
original source as a historical artifact,
rather than something to actually use and
run in this day and age.

The comparable and amazing for the era
BDS C was released as source code here:
https://www.bdsoft.com/resources/
bdsc.html

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 30 May 2021 17:12:50 +0100

> Otherwise yes, it was pretty fast, much
faster than MS-DOS C/C++

Apparently, they were fast because the
Turbo compilers didn't do optimisations
due to the limitations of the machines.

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Sun, 30 May 2021 20:00:00 +0100

They were fast only by comparison with
very slow compilers. I remember, around
1987, someone telling me in astonishment
that Turbo ran at 2KSLOC/minute. I was
unimpressed, as I had worked on a
compiler that ran at 20KSLOC/min a
decade earlier.

The 20KSLOC compiler ran on a
1.5MIPS machine.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Mon, 31 May 2021 20:34:18 -0700

Yes, but 1) 20KSLOC per what unit of
time, 2) what language did it compile 1.5
mips is probably faster than a PC-XT
(8088) but slower than a PC-AT (80286).
I remember being impressed with the
speed of Turbo C on the 386 that I used
for a while. I never used Turbo Pascal.
CP/M and the original PC were somewhat
before my time.

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Tue, 01 Jun 2021 12:23:30 +0100

> Yes, but 1) 20KSLOC per what unit of
time,

Per minute, as I said originally.

> 2) what language did it compile?

Pascal.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Tue, 01 Jun 2021 09:46:06 -0700

Ok, but that's maybe 5x slower than
Turbo Pascal, which compiled 1000s of
LOC per second on machines of that
class.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 2 Jun 2021 16:38:59 +0200

> May I ask what is meant by
"comparable machines"?

Around the end of 80's we used the
dhrystone benchmark to compare
machines.

> Here's why I ask: it can't have been a
machine based on the Intel 8088,
because that wasn't available until
1979. An elderly embedded engineer I
know says that the CPU used in the PC
series, at least the early PC's (8088 &
286) was a terrible CPU. He likes to
joke how his <1MHz 6809-based
"Trash 80 Color Computer" at $500
could run circles around the >4MHz
8088-based IBM at $1500.

That is my recollection too. I remember
that an elderly 1MHz PDP-11
outperformed 12MHz 286. But the
instruction set of PDP-11 was eons ahead
of the 286's mess.

> So I'm curious if you know the basis of
the claim that it was comparable
hardware: clock speed, RAM, etc.It is
simply that C compilers were garbage

80 Ada Pract ice

Volume 42, Number 2, June 2021 Ada User Journal

 that time. C is a difficult language to
compile compared to Turbo Pascal,
especially using the methods that were
popular then.

The only decent C compiler I remember
from that time was DEC VAX C.

Even advanced machines like Motorola
68k, HP had horrific C compilers. (Sun's
SPARC C was somewhat better.) The first
thing to do was to bootstrap an early GCC
on these machines, because the standard
compilers were insufferable. I carried the
sources with me on a tape (maybe even on
a reel, I do not remember). That was fun.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 02 Jun 2021 18:26:10 +0100

> Even advanced machines like Motorola
68k, HP had horrific C compilers.

HP salesman: "Our compiler supports
ANSI C (except for function prototypes)"

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Wed, 02 Jun 2021 19:13:06 +0100

> May I ask what is meant by
"comparable machines"?

Machines that ran other programs at about
the same speed, I specifically had in mind
the Whetstone and the Ackermann
function benchmarks.

> Here's why I ask: it can't have been a
machine based on the Intel 8088,
because that wasn't available until
1979.

The 20KSLOC/min compiler ran on an
ICL 1906S, which had a Whetstone rating
of ~800 KWIPS.

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Date: Wed, 2 Jun 2021 12:17:07 -0700

> But the Pascal family of languages
(including Ada) have clearly failed to
become popular, at least compared to
the C-family (C, C++, C#,)

>

> The question is why did this happen?

By chance.

Most of the time a concept/idea is simply
too ahead-of-time, or misunderstood.

In the 80s, there was P-code on the Apple
II. It was beautiful and fast. But it was too
early.

25 years later, Java bytecode came out,
exactly the same thing, a cheeky clone.

It was a success (at least, commercially).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 2 Jun 2021 18:11:10 -0500

P-code existed on a lot of machines; there
was even a hardware CPU version of it.

At least one of the early Ada compilers
was built for as well.

> 25 years later, Java bytecode came out,
exactly the same thing, a cheeky clone.
It was a success (at least,
commercially).

Given all of the above, p-code was a
relative success as well. It just died out
for whatever reason before Java came
around doing approximately the same
thing. (Quite possibly the possibility of
practical just-in-time compilation made
Java stick around longer than p-code.)

But the reality of it is that the hype
machine got behind Java for whatever
reason, but never really did behind Ada or
p-code.

(Note that the intermediate code used by
Janus/Ada was based on the ideas of p-
code [with Ada-specific stuff like
exception handling and tasking]; code at
the level has a number of advantages. We
never built an interpreter for it although it
would be possible.)

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 02 Jun 2021 16:40:52 -0700

In the 80s, there was P-code on the Apple
II... 25 years later, Java bytecode came
out, exactly the same thing, a cheeky
clone.

The JVM isn't really comparable to P-
code. It is a lot fancier, including features
for multithreading and for garbage
collection.

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Date: Wed, 2 Jun 2021 18:04:44 -0700

Well, obviously they put into the thing
those mandatory features, plus 25 years of
technological advantages (the P-code had
to run on a 64kB, 1-MHz 6502), but the
base concept is nearly the same, a stack-
based VM.

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Date: Wed, 2 Jun 2021 18:29:09 -0700

> Given all of the above, p-code was a
relative success as well.

I understand. No doubt that also the pcode
was successful, but it is a pity that it
couldn't make the point in the 90s, at least
on microcomputer-class machines.

Still talking about the Apple II, I think
one of the reasons is that it was way too
complicated for the average user, with no
less than 5 thick manuals and an
underlying OS like the UCSD that was a
radical departure in those times.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Thu, 03 Jun 2021 12:51:19 -0400

> it is a pity that [p-code] couldn't make
the point in the 90s, at least on
microcomputer-class machines.

Faster processors, and the
"standardization" on IBM's architecture,
may have contributed... Since there was
only "one" machine the portability of P-
code (same object files, just provide a
new interpreter layer for different
architecture) wasn't a factor anymore.

> an underlying OS like the UCSD that
was a radical departure in those times.

While the UCSD compiler was
reasonable, the UCSD OS that went with
it was a bit of a pain. All files had to be
contiguous (no jumping to the next free
sector), so one ended up periodically
compressing the disk so files were at the
front and all free-space consolidated. That
also meant only one open output file per
floppy drive, as output files opened in the
largest contiguous free-space.

Ada Practice

Unreachable Branches in
Case Statements

From: Reinert <reinkor@gmail.com>
Subject: Did I find a bug here?
Date: Thu, 1 Apr 2021 23:15:22 -0700
Newsgroups: comp.lang.ada

Assume this simple program:

procedure test0 is

 type A_Type is (A,B,C);

 subtype A_sub_Type is A_Type with

 Static_Predicate => A_sub_Type in A | B;

 X : A_type := A;

 Y : A_sub_Type := A;

begin

 case A_sub_Type(X) is

 when A => null;

 when B => null;

 when others => null; -- ???? Should the

 -- compiler complain here?

 end case;

end test0;

Should the compiler complain about
"when others => null"? My compiler does
not (running debian 10 updated, gnat-8).

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 2 Apr 2021 09:30:34 +0200

A case statement is allowed to have
alternatives that cover no value. A
friendly compiler can warn you that "this
branch covers no value", but what you
wrote is not illegal (and sometimes useful,
if you have variants of your software that
use slightly different definitions of the
type).

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 2 Apr 2021 11:33:11 +0300

Recent discussion in ISO SC22 WG9,
about the Ada part of the ISO

Ada Pract ice 81

Ada User Journal Volume 42, Number 2, J une 2021

"programming language vulnerabilities"
document, brought out that if the selecting
expression (here AB_Type(X)) in a case
statement or case expression has an
invalid representation (for example, is an
uninitialized variable with an out-of-range
value), an Ada compiler is required to
raise Constraint_Error if there is no
"others" alternative, but if there is an
"others" alternative the compiler can
instead let execution proceed to that
alternative without raising
Constraint_Error.

In effect, "others" can cover all values,
even those that are outside the nominal
subtype of the selecting expression. See
RM 5.4(12) and 5.4(13).

So if the programmer is worried about
such cases (invalid representations from
uninitialized variables or other causes
such as Unchecked_Conversion), they can
add an apparently unnecessary "others"
alternative even if the other alternatives
already cover all valid values. However,
note that the compiler may choose to raise
Constraint_Error even if there is an
"others" alternative; RM 5.4 (10.d). To
avoid that uncertainty, the program can
perform an explicit 'Valid check before
the case statement.

From: Reinert <reinkor@gmail.com>
Date: Fri, 2 Apr 2021 22:46:02 -0700

.....snip...

> values. However, note that the compiler
may choose to raise

Could AB_Type(X) in "case
AB_Type(X) is" function as such a valid
check?

I try as much as possible to avoid "others"
to make the compiler point out or to
remind (in my large programs) where to
add (or check for) possible alternatives in
case I extend the value range of a
variable. Then it may happen I need to put
in for example something like "when A |
B | C => null;" instead of "others".

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 3 Apr 2021 08:41:32 +0200

> Could AB_Type(X) in "case
AB_Type(X) is" function as such a
valid check?

Yes, but I recommend "case
AB_Type'(X) is", i.e. a qualification
rather than a conversion.

For the record:

A conversion carries the message: Take a
value of type A and get the corresponding
value from type B.

A qualification carries the message: I
assume that the value belongs to (sub)type
A.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 3 Apr 2021 11:18:47 +0300

> Le 03/04/2021 à 07:46, reinert a écrit :

>> Could AB_Type(X) in "case
AB_Type(X) is" function as such a
valid check?

> Yes,

I believe not. The use of X as an argument
to a type conversion is an "evaluation" of
X, by RM 4.6(28), which can be a
bounded error by RM 13.9.1(9) if X'Valid
is False.

That bounded error can lead to an
exception or simply to continued
execution with the invalid value.

> but I recommend "case AB_Type'(X)
is", i.e. a qualification rather than a
conversion.

That also requires an evaluation of X, by
RM 4.7(4), and again can be a bounded
error if X'Valid is False.

The use of X in X'Valid is explicitly
defined to mean that X is "read" but is not
"evaluated", RM 13.9.2(12)(13). So it
seems to be the only safe way to check for
validity.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 3 Apr 2021 14:37:08 +0200

> I believe not. The use of X as an
argument to a type conversion is an
"evaluation" of X [...]

Hmm, yes. I was thinking about
eliminating "when others" because the
intended range was covered. If you want
to check for invalid values, 'Valid is the
only way to go (that's why it was added to
the language!)

Ada IRC Channel Migrates
to Libera Chat

From: Rod Kay <rodakay5@gmail.com>
Subject: [ANN] Ada IRC channel on

Freenode
Date: Wed, 7 Apr 2021 18:44:44 +1000
Newsgroups: comp.lang.ada

About twice a year we try to advertise the
#ada channel on the Freenode IRC
network. Celebrating its twentieth
birthday this year, the channel continues
to be active and friendly. These days it
averages about 80 users at a time, large
enough to support lively and informative
discussions but small enough so it's not a
madhouse.

Topics range all over the map, from
building the latest GNAT to writing an
OS in Ada to daily Ada programming
issues to how to use PolyORB to use the
Distributed Systems Annex. The stated
topic is discussing Ada in the context of
free and open-source software, but
commercial users are equally welcome.

So fire up your favorite IRC client and
come join us. The network is homed at
irc.freenode.net, but has servers all over

the world. Visit www.freenode.net on the
web for details. Hope to see you soon!

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Wed, 7 Apr 2021 08:54:08 -0000

> About twice a year we try to advertise
the #ada channel on the Freenode IRC
network.

Wow! It's like a blast from the past; I've
just started (re)using usenet and IRC's still
around! Does anyone still use Gopher and
Veronica? :-)

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Wed, 07 Apr 2021 11:39:01 -0400

> Does anyone still use Gopher and
Veronica? :-)

I believe the Mother Gopher was killed
off some years ago. However, there seem
to be some 300 servers still out there
based on links from Wikipedia.

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 7 Apr 2021 18:43:10 +0100

There are still gopher's out there, I think
one might even be Ada related. Never
heard of Veronica.

From: Jeffrey R. Carter
Date: Wed, 7 Apr 2021 20:24:11 +0200

Veronica was a successor to Jughead,
which was a successor to Archie, a tool
for indexing and searching FTP archives.

From: Shark8
<onewingedshark@gmail.com>

Date: Wed, 7 Apr 2021 12:01:16 -0700

> Does anyone still use Gopher and
Veronica? :-)

I have a friend who does retro-computing
and, IIRC, he's got a Gopher server
running.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Thu, 8 Apr 2021 14:28:34 -0000

> I have a friend who does retro-
computing and, IIRC, he's got a Gopher
server running.

Weirdo ;-)

From: Rod Kay <rodakay5@gmail.com>
Date: Thu, 27 May 2021 08:21:48 +1000

Due to a hostile, commercial takeover of
Freenode, the #ada IRC channel has
moved to the 'irc.libera.chat' server.

Different Public and Private
Type Views

From: Drpi <314@drpi.fr>
Subject: GtkAda : Trying to derive a widget
Date: Thu, 8 Apr 2021 21:27:51 +0200
Newsgroups: comp.lang.ada

[The thread initially dealt with an
ambiguity issue, but I have trimmed it

82 Ada Pract ice

Volume 42, Number 2, June 2021 Ada User Journal

down to the part about type views which I
find more relevant. —arm]

I'm trying to create a GtkAda widget
derived from a standard widget.

-- debug_panel.ads

with Gtk.Scrolled_Window;

use Gtk.Scrolled_Window;

with Gtk.Text_View;

use Gtk.Text_View;

package Debug_Panel is

 type Debug_Panel_Record is new

 Gtk_Scrolled_Window_Record

 with private;

 -- [...]

private

 type Debug_Panel_Record is new

 Gtk_Scrolled_Window_Record

 with record

 Text : Gtk_Text_View;

 end record;

end Debug_Panel;

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 9 Apr 2021 00:27:26 +0200

[...]

P.S. When you create new widget it is
better to use a more general ancestor
hiding insufficient details, e.g.

 type Debug_Panel_Record is

 new Gtk.Widget.Gtk_Widget_Record

 with private;

 ...

private

 type Debug_Panel_Record is

 new Gtk.Scrolled_Window.

 Gtk_Scrolled_Window_Record with

 record

 ...

 end record;

This makes the code less fragile if you
later decide to choose another container
widget for the base.

From: Drpi <314@drpi.fr>
Date: Fri, 9 Apr 2021 07:28:46 +0200

> P.S. When you create new widget it is
better to use a more general ancestor
hiding insufficient details

I'm surprised it is possible to write such a
thing in Ada. What does the compiler do
with this?

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 9 Apr 2021 08:12:19 +0200

> I'm surprised it is possible to write such
a thing in Ada.

There is no problem, since
Gtk.Scrolled_Window.
Gtk_Scrolled_Window_Record is a
descendant of
Gtk.Widget.Gtk_Widget_Record. There
is no lie: a Debug_Panel_Record IS A
Gtk_Widget_Record. The private view
has more information: it actually IS A
Gtk_Scrolled_Window_Record, but the

extra properties are not accessible outside
from the package body.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 9 Apr 2021 08:18:28 +0200

> I'm surprised it is possible to write such
a thing in Ada.

The public view is Gtk_Widget_Record
[with no record members], the full view is
Gtk_Scrolled_Window_Record [with
record members you specified].

From: Drpi <314@drpi.fr>
Date: Fri, 9 Apr 2021 13:32:03 +0200

>There is no lie: a Debug_Panel_Record
IS A Gtk_Widget_Record. The private
view has more information: it actually
IS A Gtk_Scrolled_Window_Record,
but the extra properties are not
accessible outside from the package
body.

Ok. That's interesting. One more thing
learned today :)

Importing Types at Run
Time

From: Daniel Norte Moraes
<danielcheagle@gmail.com>

Subject:How get/use a 'type' from a Ada
shared library loaded at run time
(plugin)?

Date: Thu, 15 Apr 2021 01:48:17 -0700
Newsgroups: comp.lang.ada

Hi All!

How to use Ada 'type(s)' from a library
loaded at run time (dlopen &Cia)? Are
they possible?

My main need is to declare variables from
these types or and make dispatching calls
based on these types.

Any help is welcome.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 15 Apr 2021 11:28:24 +0200

> How to use Ada 'type(s)' from a library
loaded at run time (dlopen &Cia)? Are
they possible?

Like any other type.

You should not forget to initialize the
library though. The library project should
normally have

 for Library_Auto_Init use "false";

because otherwise it would likely
deadlock under Windows [if you wish to
make your project portable]. Under Linux
I am not sure if it deadlocks, never tested
for that.

> My main need is to declare variables
from these types or and make
dispatching calls based on these types.

You cannot declare variables of types
declared in a dynamically loaded library

for the obvious reason that you cannot
dynamically refer to a package from the
library.

But you can dispatch on a class-wide
object which specific type is declared in a
dynamically loaded library.

For example you can call a dynamically
loaded constructing function that returns
T'Class where T is declared outside the
library and then dispatch to an overridden
primitive operation of S derived from T
inside the library.

To my understanding library initialization
expands dispatching tables with all tagged
types declared in the library.

P.S. What happens on finalization is an
intriguing question. I would rather never
attempt to unload an Ada library...

Official Ada Logo/Icon

From: Heziode
<heziode@protonmail.com>

Subject: Does Ada have an official
logo/icon?

Date: Thu, 15 Apr 2021 14:43:20 +0200
Newsgroups: comp.lang.ada

By reading an article, I visited the official
website of JWT (JavaScript Web Token):
https://jwt.io

On this website, they list implementations
in different languages, particularly Ada.
However, I have never seen this logo for
Ada language.

So, the question is: Does Ada have an
official logo/icon?

After some research, there does not seem
to be a "really official" logo, but just
recommendation (see
http://getadanow.com/#mascot)

Unchecked_Deallocation
Usefulness

[Although the original post addressed
another issue, I have trimmed the thread
to a particular side topic about the
usefulness of Unchecked_Deallocation.
—arm]

From: Drpi <314@drpi.fr>
Subject: Unchecked_Deallocation with

tagged types
Date: Sat, 17 Apr 2021 23:45:27 +0200
Newsgroups: comp.lang.ada

I have the following types :

 type t_Element_Record is tagged null

 record;

 type t_Str_Record (Str_Length : Natural)

 is new t_Element_Record with private;

Do I have to create a
Unchecked_Deallocation procedure for
each tagged type or only one for the root
tagged type (and the compiler manages
the effective tagged type)?

Ada Pract ice 83

Ada User Journal Volume 42, Number 2, J une 2021

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sun, 18 Apr 2021 01:46:07 -0700

Side note: did anyone already suggest a
new keyword: unchecked_free and a
special statement:

 unchecked_free Some_Pointer;

?

From: Jeffrey R. Carter
Date: Sun, 18 Apr 2021 11:09:59 +0200

> unchecked_free Some_Pointer;

For every access variable P, there could
exist the attribute procedure

 P'Free;

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 18 Apr 2021 12:13:25 +0200

> For every access variable P, there could
exist the attribute procedure

>

> P'Free;

I like the idea of attaching it to a variable
rather than to type.

I remember the claim that originally
making it a generic procedure with an
indigestible name was meant as a barrier
for lazy programmers. Plus some
considerations regarding garbage
collection lurked in the subconscious.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 18 Apr 2021 12:20:56 +0200

> P'Free;

Which would defeat the goal of
Unchecked_Deallocation.

Ada (or more precisely Ichbiah) chose to
deallocate through an instantiation of a
generic for good reason. Deallocation is a
place where many problems can come
from, it is important to be able to trace
where they are. The current solution
forces you to put "with
Unchecked_Deallocation" on top of every
module that deallocates, therefore telling
the reader that there is some danger in it,
and making it easier to find where all the
deallocations happen.

Now, I know that in those days, ease of
writing is considered more important than
ease of reading and long term
maintenance...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 18 Apr 2021 12:34:39 +0200

> [...]The current solution forces you to
put "with Unchecked_Deallocation" on
top of every module that deallocates,
[...]

No, that does not work. If we are
supposed to search for all calls to
deallocate, then attribute 'Free is much
easier to look after than first looking for

"with Unchecked_Deallocation", then for
an instantiation of it with the types in
question and then for the name of the
instance.

> Now, I know that in those days, ease of
writing is considered more important
than ease of reading and long term
maintenance...

Yes, but dangling pointers is a more
complex problem, that effortlessly passes
brief code inspections. I agree with you in
general, but disagree in this case. *IF*
pointers are used *THEN*
Unchecked_Deallocation only obfuscates
things rather than helps.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 18 Apr 2021 17:14:12 +0200

> [...] much easier to look after than first
looking for "with
Unchecked_Deallocation"

meant it the other way round: if the
module has no "with
unchecked_deallocation", you know it
does not deallocate anything, without
looking at the entire body.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sun, 18 Apr 2021 08:23:40 -0700

Not at all: the instantiation can be defined
in another package - and it is often the
case - with any name (Free, Dispose, ...).
So actually with the present way it is
difficult to track where unchecked
deallocation is used, plus it is tedious for
the programmers. The P'Free attribute or
the "unchecked_free P;" statement would
be straightforward to track.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 18 Apr 2021 17:53:11 +0200

Well, P'Free can also be in another
package... Of course, we are talking here
only about the direct, actual deallocation.

If you want to precisely know where
deallocation is used, use AdaControl (for
any solution). If you want to be confident
that there is no direct deallocation in a
module, the generic wins.

And after all, the attribute only saves you
one line of code... (OK, two if you count
the "with" ;-))

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 20 Apr 2021 21:35:59 +0200

> OTOH, an Ada follow-on would most
likely have access types with automatic
deallocation as proposed by Tucker in
one of the many AIs on ownership. So
using any form of explicit deallocation
would be discouraged (as would the use
of raw pointer types).

I do not understand how that could work,
it sounds like a halting problem to me, but
anyway, where is a problem? Add a
whole new hierarchy of access types
independent of the existing one.

From: Jeffrey R. Carter
Date: Tue, 20 Apr 2021 22:32:16 +0200

> 'Free makes more sense in a new
language (an Ada follow-on).

Right. I don't think it would be a good
idea to add it to Ada.

But I think a new language should not
have pointers at all.

No more radical than not having arrays.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 21 Apr 2021 00:10:40 +0300

> But I think a new language should not
have pointers at all. No more radical
than not having arrays.

It seems to me that a language without
arrays and pointers would be very
difficult to use in an embedded, real-time,
close-to-HW context. So we would lose
the nice wide-spectrum nature of Ada.

From: Jeffrey R. Carter
Date: Wed, 21 Apr 2021 10:35:45 +0200

I don't see that pointers are needed for
such S/W.

Brukardt has recently been discussing the
idea that a high-level language such as
Ada should not have arrays, which is why
I referenced it. Such a language might not
be convenient for such systems.

But the idea is that arrays are a low-level
implementation feature that are usually
used to implement higher-level
abstractions, such as sequences and maps.
A language without arrays would have
direct support for such abstractions. My
experience is that most uses of arrays in
embedded, real-time S/W are also for
such abstractions, so it would probably
not be too great a problem.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 21 Apr 2021 12:11:07 +0200

> I don't see that pointers are needed for
such S/W.

Try to load and bind a relocatable library
without pointers.

> A language without arrays would have
direct support for such abstractions.

That is not enough, even if providing such
abstractions were viable. Which is not,
because they would be far more complex
than array abstraction and resolve none of
the problems array abstraction has. E.g.
container subtypes constrained to
subtypes of elements and/or subtypes of
keys.

Array is a simplest case of container. If
you cannot handle arrays, how do you
hope to handle maps?

Then see above, and explain how an
opaque map will deal with a shared
memory mapped into the process address

84 Ada Pract ice

Volume 42, Number 2, June 2021 Ada User Journal

space? Or what would be the primitive
operation Write of Root_Stream_Type?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 23 Apr 2021 19:49:24 -0500

> It seems to me that a language without
arrays and pointers would be very
difficult to use in an embedded, real-
time, close-to-HW context.

It's important that a new language have a
way to interface to existing hardware and
software. So there has to be something
that maps to C arrays and pointers (and
the equivalent for hardware). But that
doesn't necessarily have to be something
that is used outside of interfacing. An Ada
example is Unchecked_Unions -- they
exist for interfacing but shouldn't be used
otherwise. A fixed vector type and a raw
general access type would do the trick,
but those could be something that are
almost never used outside of interfacing
packages.

Ada and Unicode

From: Drpi <314@drpi.fr>
Subject: Ada and Unicode
Date: Sun, 18 Apr 2021 00:03:11 +0200
Newsgroups: comp.lang.ada

Hi,

I have a good knowledge of Unicode:
code points, encoding... What I don't
understand is how to manage Unicode
strings with Ada. I've read part of ARM
and did some tests without success.

I managed to be partly successful with
source code encoded in Latin-1. Any
other encoding failed. Any way to use
source code encoded in UTF-8? In some
languages, it is possible to set a tag at the
beginning of the source file to direct the
compiler which encoding to use. I wasn't
successful using -gnatW8 switch. But
maybe I made too many tests and my
brain was scrambled.

Even with source code encoded in Latin-
1, I've not been able to manage Unicode
strings correctly.

What's the way to manage Unicode
correctly?

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 18 Apr 2021 01:02:06 +0100

It's a mess imo. I've complained about it
before. The official stance is that the
standard defines that a compiler should
accept the ISO equivalent of Unicode and
that a compiler should implement a
flawed system, especially UTF-8 types,
http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-A-4-11.html

Unicode is a bit painful, I've messed about
with it to some degree here:
https://github.com/Lucretia/uca.

There are other attempts:

1. http://www.dmitry-kazakov.de/
ada/strings_edit.htm

2. https://github.com/reznikmm/
matreshka (very heavy, many layers)

3. https://github.com/Blady-Com/
UXStrings

I remember getting an exception
converting from my unicode_string to a
wide_wide string for some reason ages
ago.

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Mon, 19 Apr 2021 01:29:35 -0700

> Any way to use source code encoded in
UTF-8?

Yes, with GNAT just use "-gnatW8" for
compiler flag (in command line or your
project file):

-- main.adb:

with Ada.Wide_Wide_Text_IO;

procedure Main is

 Привет : constant Wide_Wide_String :=

 "Привет";

begin

 Ada.Wide_Wide_Text_IO.Put_Line

 (Привет);

end Main;

$ gprbuild -gnatW8 main.adb

$./main

Привет

> In some languages, it is possible to set a
tag at the beginning of the source file to
direct the compiler which encoding to
use.

You can do this by putting the
Wide_Character_Encoding pragma (This
is a GNAT specific pragma) at the top of
the file. Take a look:

-- main.adb:

pragma Wide_Character_Encoding
(UTF8);

with Ada.Wide_Wide_Text_IO;

procedure Main is

 Привет : constant Wide_Wide_String :=

 "Привет";

begin

 Ada.Wide_Wide_Text_IO.Put_Line

 (Привет);

end Main;

$ gprbuild main.adb

$./main

Привет

> What's the way to manage Unicode
correctly?

You can use Wide_Wide_String and
Unbounded_Wide_Wide_String type to
process Unicode strings. But this is not
very handy. I use the Matreshka library
for Unicode strings. It has a lot of features
(regexp, string vectors, XML, JSON,
databases, Web Servlets, template engine,
etc.).

URL: https://forge.ada-ru.org/matreshka

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 19 Apr 2021 02:08:35 -0700

> Any way to use source code encoded in
UTF-8 ?

 for Switches ("non_ascii.ads")

 use ("-gnatiw", "-gnatW8");

from the GNAT user guide, 4.3.1
Alphabetical List of All Switches:

`-gnati`c''

 Identifier character set (`c' =
1/2/3/4/8/9/p/f/n/w). For details of the
possible selections for `c', see *note
Character Set Control: 4e.

This applies to identifiers in the source
code

`-gnatW`e''

 Wide character encoding method
(`e'=n/h/u/s/e/8).

This applies to string and character
literals.

> What's the way to manage Unicode
correctly?

There are two issues: Unicode in source
code, that the compiler must understand,
and Unicode in strings, that your program
must understand.

(I've never written a program that dealt
with utf strings other than file names).

 -gnati8 tells the compiler that the source
code uses utf-8 encoding.

-gnatW8 tells the compiler that string
literals use utf-8 encoding.

package Ada.Strings.UTF_Encoding
provides some facilities for dealing with
utf. It does _not_ provide walking a string
by code point, which would seem
necessary.

We could be more helpful if you show
what you are trying to do, you've tried,
and what errors you got.

From: Drpi <314@drpi.fr>
Date: Mon, 19 Apr 2021 11:28:34 +0200

> pragma Wide_Character_Encoding
(UTF8);

 Wide and Wide_Wide characters and
UTF-8 are two distinct things. Wide and
Wide_Wide characters are supposed to
contain Unicode code points (Unicode
characters). UTF-8 is a stream of bytes,
the encoding of Wide or Wide_Wide
characters. What's the purpose of "pragma
Wide_Character_Encoding (UTF8);"?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 19 Apr 2021 11:34:26 +0200

> -gnati8 tells the compiler that the source
code uses utf-8 encoding.

>

Ada Pract ice 85

Ada User Journal Volume 42, Number 2, J une 2021

> -gnatW8 tells the compiler that string
literals use utf-8 encoding.

Both are recipes for disaster, especially
the second. IMO the source must be
strictly ASCII 7-bit. It is less dangerous to
have UTF-8 or Latin-1 identifiers, they
could be at least checked, except when
used for external names. But string literals
would be a ticking bomb.

If you need a wider set than ASCII, use
named constants and integer literals. E.g.

 Celsius : constant String := Character'Val

(16#C2#) & Character'Val (16#B0#) & 'C';

From: Simon Wright
<simon@pushface.org>

Date: Mon, 19 Apr 2021 12:15:29 +0100

> воскресенье, 18 апреля 2021 г. в
01:03:14 UTC+3, DrPi:

>> Any way to use source code encoded
in UTF-8?

> Yes, with GNAT just use "-gnatW8" for
compiler flag

But don't use unit names containing
international characters, at any rate if
you're (interested in compiling on)
Windows or macOS:

https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=81114

From: Luke A. Guest
<laguest@archeia.com>

Date: Mon, 19 Apr 2021 12:50:40 +0100

> But don't use unit names containing
international characters,

There's no such thing as "character" any
more and we need to move away from
that. Unicode has the concept of a code
point which is 32 bit and any "character"
as we know it, or glyph, can consist of
multiple code points.

In my lib, nowhere near ready (whether it
will be I don't know), I define octets,
Unicode_String (utf-8 string) which is an
array of octets and Code_Points which an
iterator produces as it iterates over those
strings. I was intending to have an iterator
for grapheme clusters and other units.

From: Luke A. Guest
<laguest@archeia.com>

Date: Mon, 19 Apr 2021 12:56:34 +0100

> There are two issues: Unicode in source
code, that the compiler must
understand, and Unicode in strings, that
your program must understand.

And this is where the Ada standard gets it
wrong, in the encodings package re utf-8.

Unicode is a superset of 7-bit ASCII not
Latin 1. The high bit in the leading octet
indicates whether there are trailing octets.
See https://github.com/Lucretia/uca/blob/
master/src/uca.ads#L70 for the data
layout. The first 128 "characters" in
Unicode match that of 7-bit ASCII, not 8-

bit ASCII, and certainly not Latin 1.
Therefore this:

package Ada.Strings.UTF_Encoding

 ...

 subtype UTF_8_String is String;

 ...

end Ada.Strings.UTF_Encoding;

Was absolutely and totally wrong.

...and, before someone comes back with
"but all the upper half of latin 1" are
represented and have the same values."
Yes, they do, in Code points which is a 32
bit number. In UTF-8 they are encoded as
2 octets!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 19 Apr 2021 14:52:43 +0200

> subtype UTF_8_String is String;

> Was absolutely and totally wrong.

It is a practical solution. Ada type system
cannot express differently
represented/constrained
string/array/vector subtypes. Ignoring
Latin-1 and using String as if it were an
array of octets is the best available
solution.

From: Luke A. Guest
<laguest@archeia.com>

Date: Mon, 19 Apr 2021 14:00:39 +0100

They're different types and should be
incompatible, because, well, they are.
What does Ada have that allows for this
that other languages don't? Oh yeah!
Types!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 19 Apr 2021 15:10:49 +0200

They are subtypes, differently
constrained, like Positive and Integer.
Operations are the same, values are
differently constrained. It does not make
sense to consider ASCII 'a', Latin-1 'a',
UTF-8 'a' different. It is the same glyph
differently encoded. Encoding is a
representation aspect, ergo out of the
interface!

BTW, subtype is a type.

From: Luke A. Guest
<laguest@archeia.com>

Date: Mon, 19 Apr 2021 14:15:24 +0100

> They are subtypes, differently
constrained, like Positive and Integer.

No they're not. They're subtypes only and
therefore compatible. The UTF string isn't
constrained in any other ways.

> It is the same glyph differently encoded.

As I already said in Unicode the glyph is
not part of Unicode. The single code point
character concept doesn't exist anymore.

> BTW, subtype is a type.

subtype is a compatible type.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 19 Apr 2021 15:31:28 +0200

> [...]

> subtype is a compatible type.

Ada subtype is both a sub- and supertype,
i.e. substitutable [or so the compiler
thinks] in both directions. A derived
tagged type is substitutable in only one
direction.

Neither is fully "compatible", because
otherwise there would be no reason to
have an exactly same thing.

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Mon, 19 Apr 2021 06:18:22 -0700

> What's the way to manage Unicode
correctly?

Ada doesn't have good Unicode support.
:(So, you need to find a suitable set of
"workarounds".

There are few different aspects of
Unicode support need to be considered:

1. Representation of string literals. If you
want to use non-ASCII characters in
source code, you need to use -gnatW8
switch and it will require use of
Wide_Wide_String everywhere.

2. Internal representation during
application execution. You are forced
to use Wide_Wide_String at the
previous step, so it will be
UCS4/UTF32.

3. Text encoding/decoding on
input/output operations. GNAT allows
to use UTF-8 by providing some magic
string for Form parameter of Text_IO.

It is hard to say that it is a reasonable set
of features for the modern world. To fix
some of the drawbacks of the current
situation we are developing a new text
processing library, known as VSS.

https://github.com/AdaCore/VSS

At the current stage it provides encoding
independent API for text manipulation,
encoders and decoders API for I/O, and
JSON reader/writer; regexp support
should come soon.

Encoding independent API means that
applications always use Unicode
characters to process text, independently
from the real encoding used to store
information in memory (UTF-8 is used
for now, UTF-16 will be added later for
interoperability with Windows API and
WASM). Coders and encoders allow
translation from/to different encodings
when applications exchange information
with the world.

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 19 Apr 2021 15:24:36 +0200

> They're different types and should be
incompatible, because, well, they are.

86 Ada Pract ice

Volume 42, Number 2, June 2021 Ada User Journal

They are not so different. For example,
you may read the first line of a file in a
string, then discover that it starts with a
BOM, and thus decide it is UTF-8.

BTW, the very first version of this AI had
different types, but the ARG felt that it
would just complicate the interface for the
sake of abusive "purity".

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Mon, 19 Apr 2021 06:50:42 -0700

What's the purpose of "pragma
Wide_Character_Encoding (UTF8);"?

This pragma specifies the character
encoding to be used in program source
text...

https://docs.adacore.com/gnat_rm-docs/
html/gnat_rm/gnat_rm/
implementation_defined_pragmas.html#
pragma-wide-character-encoding

I would suggest also this article to read:

https://two-wrongs.com/
unicode-strings-in-ada-2012

From: Drpi <314@drpi.fr>
Date: Mon, 19 Apr 2021 17:48:18 +0200

> Code points which is a 32 bit number.
In UTF-8 they are encoded as 2 octets!

A code point has no size. Like universal
integers in Ada.

From: Drpi <314@drpi.fr>
Date: Mon, 19 Apr 2021 18:07:32 +0200

> They're different types and should be
incompatible, because, well, they are

I agree.

In Python2, encoded and "decoded"
strings are of same type "str". Bad design.

In Python3, "decoded" strings are of type
"str" and encoded strings are of type
"bytes" (byte array). Both are different
things and can't be assigned one to the
other. Much more clear for the
programmer. It should be the same in
Ada. Different types.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 20 Apr 2021 14:06:26 -0500

> They're different types and should be
incompatible

If they're incompatible, you need an
automatic way to convert between
representations, since these are all views
of the same thing (an abstract string type).
You really don't want 35 versions of Open
each taking a different string type.

It's the fact that Ada can't do this that
makes Unbounded_Strings unusable
(well, barely usable). Ada 202x fixes the
literal problem at least, but we'd have to
completely abandon Unbounded_Strings
and use a different library design in order
for it to allow literals. And if you're going
to do that, you might as well do

something about UTF-8 as well -- but
now you're going to need even more
conversions. Yuck.

I think the only true solution here would
be based on a proper abstract Root_String
type. But that wouldn't work in Ada, since
it would be incompatible with all of the
existing code out there. Probably would
have to wait for a follow-on language.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 20 Apr 2021 14:13:30 -0500

> BTW, the very first version of this AI
had different types, but the ARG felt
that it would just complicate the
interface for the sake of abusive
"purity".

Unfortunately, that was the first instance
that showed the beginning of the end for
Ada. If I remember correctly (and I may
not ;-), that came from some people who
were wedded to the Linux model where
nothing is checked (or IMHO, typed). For
them, a String is simply a bucket of
octets. That prevented putting an
encoding of any sort of any type on file
names ("it should just work on Linux,
that's what people expect"). The rest
follows from that.

Those of us who care about strong typing
were disgusted, the result essentially does
not work on Windows or macOS (which
do check the content of file names - as
you can see in GNAT compiling units
with non-Latin-1 characters in their
names), and I don't really expect any
recovery from that.

Accessibility Rules and
Aliased Parameters

From: Simon Wright
<simon@pushface.org>

Subject: GCC 11 bug? lawyer needed
Date: Mon, 03 May 2021 17:08:20 +0100
Newsgroups: comp.lang.ada

This code results in the error shown:

 1. package Aliased_Tagged_Types is

 2.

 3. type T is tagged null record;

 4.

 5. function P (Param : aliased T)

 return Boolean

 6. is (False);

 7.

 8. function F (Param : T) return

 Boolean

 9. is (Param.P);

 |

 >>> actual for explicitly aliased formal is

too short lived

 10.

 11. end Aliased_Tagged_Types;

The compiler code that results in this
error is at sem_ch4.adb:1490, and was
introduced for Ada202x accessibility
checking reasons.

-- Check whether the formal is aliased
-- and if the accessibility level of the
-- actual is deeper than the accessibility
-- level of the enclosing subprogram to
-- which the current return statement
-- applies.

 [...]

 if Is_Explicitly_Aliased (Form)

 and then Is_Entity_Name (Act)

 and then Static_Accessibility_Level

 (Act, Zero_On_Dynamic_Level)

 > Subprogram_Access_Level

 (Current_Subprogram)

 then

 Error_Msg_N ("actual for explicitly aliased

 formal is too" & " short lived", Act);

 end if;

For those interested, this issue affects
Alire.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 4 May 2021 22:54:43 -0500

We spent a lot of time and effort in the
ARG talking about this case (see AI12-
0402-1). The Ada 2012 RM does indeed
say this case is illegal. The reason is that
aliased parameters are designed so that
one can return part of them in the return
object of the function. And a normal
parameter is assumed to be local (since its
accessibility is unknown) - that means it
is too local for an aliased parameter of a
function that is used in some non-local
way (including being returned from a
non-local function).

However, since one cannot return a part
of a parameter for a function that returns
an elementary type (other than
anonymous access returns, which have
special rules anyway), we added an
exception to the rules for that case in Ada
202x. (We tried a number of more liberal
exceptions, but they were complex and
had [unlikely] holes.) So the most current
rule is that the call of P is legal.

That wasn't decided until the December
ARG meeting, so it happened after the
GNATPro 21 release (and I expect that
the GNAT CE is derived from that
version). And I'd guess that in Ada 2012
mode, this check would remain as it is
(the change was not made retroactively -
not sure why).

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Wed, 5 May 2021 03:01:06 -0700

> And a normal parameter is assumed to
be local (since its accessibility is
unknown) - that means it is too local for
an aliased parameter of a function that
is used in some non-local way

RM 3.10(9/3): Finally, a formal parameter
or generic formal object of a tagged type
is defined to be aliased.

RM 6.4.1(6/3): If the formal parameter is
an explicitly aliased parameter, the type

Ada Pract ice 87

Ada User Journal Volume 42, Number 2, J une 2021

of the actual parameter shall be tagged or
the actual parameter shall be an aliased
view of an object.

Both of these conditions are fulfilled here.

There are many more places about
explicitly aliased parameters in the RM.
I've read them all. It left me wondering.

I do not see what aliasing a tagged
parameter buys. A parameter of a tagged
typed is aliased per se, or do I misread the
RM.

I'm having big problems trying to
understand the RM.

I will try to grock the AI.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Wed, 5 May 2021 09:10:01 -0700

> I will try to grock the AI.

Hm, I'm still confused. Can anyone please
come up with some examples that explain
what this is all about?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 5 May 2021 19:39:11 -0500

> Can anyone please come up with some
examples that explain what this is all
about?

See 6.4.1(6/3): there is an accessibility
check on the actual parameter of an
aliased parameter. This allows an aliased
parameter to have the accessibility of the
return object of a function, rather than
local accessibility. There's a bunch of
rules in 3.10.2 that combine to have the
right effect.

You see the result in an operation like
"Reference" in the containers. If you
have:

 function Foo (A : in out Container;

 Idx : in Natural) return access Element;

then an implementation of:

 function Foo (A : in out Container)

 return access Element is

 begin

 return A.Data(Idx)'Access; -- (1)

 end Foo;

(1) is illegal, as A has local to Foo
accessibility, while the anonymous access
has the accessibility of the return object
(the point of call), which is necessarily
outside of Foo.

You can change (1) to:

 return A.Data(Idx)'Unchecked_Access;

 -- (1)

but now you can create a dangling
pointer, for instance if Foo is assigned to
a library-level access type and the actual
for A is not library-level.

But you can change the parameter to
"aliased", then the accessibility check is
moved to the call site (where it must

always succeed for the vast majority of
calls). There's no accessibility check at (1)
in that case (which could be at best a
dynamic check, which is a correctness
hazard, and also has an overhead cost).
And you still have the safety of not being
able to create a dangling pointer.

It is a bit weird that this property is tied to
"aliased" parameters. This property came
first, and we discussed the syntax to use
for a long time. Eventually it was decided
to call them "aliased" parameters, but of
course that meant it was necessary to
generalize the usages.

This special rule does have the downside
of being able to fail in some safe cases,
like the one noted by the OP. That doesn't
happen for procedures, since aliased
parameters have no special semantics for
procedures. We decided to remove the
special semantics for functions for which
it is impossible to return a part of the
parameter (that is, any elementary-
returning function), as that special
semantics provides no benefit in such a
case (but it does have a cost).

I agree that the original author of that
program should not have used "aliased" in
the way that they did (they don't need the
special semantics), but we realize that
some people would prefer to *explicitly*
mark things as aliased when they are
going to take 'Access (and not worry
about the type of the parameter -- after all,
it could change). That is, they don't want
to depend on the implicit behavior of
tagged types -- or perhaps they don't even
know about it. Which leads to the
problem that occurs here, as "aliased" has
slightly different meanings for functions
(now just composite functions) and
procedures.

Since this is real code that didn't work as
expected, it seemed to make sense to
reduce the problem with a minor language
tweak.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Thu, 6 May 2021 06:07:23 -0700

Thank you, Randy, for the nice
explanation. There're still some hazy
places, but I begin to see the big picture.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 06 May 2021 21:02:54 +0100

The original code, from the Alire project,
had (I've edited it slightly)

 package Holders is new

 Ada.Containers.Indefinite_Holders

 (Node'Class);

 type Tree is new Holders.Holder

 and ...

 function Root (This : Tree) return

 Node'Class is (This.Constant_Reference);

where that Constant_Reference is
inherited (eventually) from
Ada.Containers.Indefinite_Holders.
Holder,

 function Constant_Reference

 (Container : aliased Holder) return

 Constant_Reference_Type;

 pragma Inline (Constant_Reference);

Shame it had to be there.

I've just tried splattering 'aliased'
wherever the compiler told me it was
needed; it's now spreading into other
packages. Ugh.

The solution might just be using
composition rather than inheritance.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 6 May 2021 22:51:43 +0200

> The solution might just be using
composition rather than inheritance.

In my experience mixing handles with
target types does not work anyway
regardless of the accessibility rules mess.

I tend to use interfaces instead:

 type Abstract_Node_Interface is interface

 ...;

Then both the handle and the target type
implement Abstract_Node_Interface. The
target type goes into hiding, the client
needs not to see it.

This requires manual delegation in all
primitive operations of handles:
dereference + call. But in the end it pays
off. Especially with trees, because in
mutator operations I can check the
reference count of the node and choose to
clone it (and maybe the subtree) if there
are multiple external handles to it.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 6 May 2021 18:59:28 -0500

> function Constant_Reference

> (Container : aliased Holder) return
Constant_Reference_Type;

> pragma Inline (Constant_Reference);

Constant_Reference is the case for which
these semantics were designed. Hard to
avoid it there. ;-)

Note that by returning Node'Class rather
than an elementary type, you don't get to
use the new rule tweak. Since all tagged
types are by-reference (not by copy), the
"Root" routine has to return the object that
it has, which ultimately is part of Tree. So
you actually need "aliased" on Root, since
you are (ultimately) returning a part of the
formal parameter (and which could
become dangling if you pass in an object
which is too local).

> I've just tried splattering 'aliased'
wherever the compiler told me it was
needed; it's now spreading into other
packages. Ugh.

88 Ada Pract ice

Volume 42, Number 2, June 2021 Ada User Journal

I think you need to make a copy of the
return object somewhere; the obvious
answer is to replace function
Constant_Reference with function
Element. Of course, if the return object is
large enough, that could be expensive.
(That doesn't work if you want to write
the node, but the use of
Constant_Reference doesn't allow that
anyway, so in this case it doesn't matter.)

> The solution might just be using
composition rather than inheritance.

Yeah, or using handles more as Dmitry
says. In any case, it seems like some
redesign is necessary.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 08 May 2021 11:17:18 +0100

> I think you need to make a copy of the
return object somewhere; the obvious
answer is to replace function
Constant_Reference with function
Element.

That appears to be a fine workaround!
Thanks!

Stacktraces on Raspberry Pi

From: Björn Lundin
<b.f.lundin@gmail.com>

Subject: stacktrace gan on raspberry pi
Date: Mon, 10 May 2021 18:01:50 +0200
Newsgroups: comp.lang.ada

Hi!

I got a raspberry pi 4 - 8 Gb, with

Ubuntu 20.04 LTS on.

I use the GNAT provided by apt -

ubuntu@ubuntu:~/svn/wcs-
std/target/message$ gnatls -v

GNATLS 9.3.0

Copyright (C) 1997-2019, Free Software
Foundation, Inc.

I seem to get some info out on a crash [...]
but addr2line gives

ubuntu@ubuntu:~/svn/wcs-
std/target/message$ addr2line -e

./message_utility 0xaaaab8fc2b84
0xaaaab8fc5924 0xaaaab900c364
0xaaaab90024dc 0xaaaab8fbab48
0xaaaab8fbe364 0xaaaab8fb9848
0xffffa687c08c 0xaaaab8fb9898

??:0

[Repeated for every address. —arm]

??:0

Is stacktracing not implemented (which I
suspect it is not) or is there another tool to
use? (like atos on macos)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 11 May 2021 13:17:26 +0200

AFAIK and all necessary disclaimers...

You cannot get trace under GNAT ARM,
because this is what we recently requested
for our GNAT Pro ARM cross compiler.
AdaCore confirmed the issue and fixed it
for us.

So, in some near future it might arrive at
the FSF GNAT.

Proliferation of Reserved
Words

From: Jeffrey R. Carter
Subject: Proliferation of Reserved Words
Date: Mon, 31 May 2021 22:51:56 +0200
Newsgroups: comp.lang.ada

Ada 83 (in)famously had 63 reserved
words, which was considered a lot at the
time (languages like C and Pascal had
about half that). Considering only those
related to tasking, there were 7:

abort accept do entry select task terminate

Yet many of these have similar/related
meanings, and perhaps some overloading
would have been a good idea.

entry and accept ... do go hand in hand.
One could replace accept with something
like an entry body, eliminating 2 reserved
words.

An entry is very like a procedure, so one
could use procedure instead. It might be
necessary to distinguish between a "task
procedure" (declared in a task spec) and a
"normal procedure" (declared anywhere
else). Another reserved word eliminated.

abort/terminate are pretty much the same
thing. We could eliminate abort and just
use terminate. (One could argue for using
end, but given how often "end Name;"
appears when not terminating a task, that
would be confusing.)

So we're left with select, task, and
terminate, less than half as many. I
haven't looked in detail at the others, but
presumably some reduction is possible
there.

Ada 95 added protected and requeue.
Some Ada-83 compilers implemented
"passive tasks" that were similar to
protected objects; formalizing that would
have required defining pragma Passive,
leaving no need for protected.

There may be a need for requeue, but I've
only used it to work around the
limitations on what a protected action
may do, so I'm skeptical.

ISO/IEC 8652:2007 added synchronized.
I think that could have simply reused task.

Ada 12 didn't expand this set of reserved
words.

Ada 2X proposes adding parallel. Again, I
think reusing task ("task begin" and "task
loop") would be fine.

So we will have 11 tasking-related
reserved words (unless I've missed some),
but we only need select, task, and
terminate (and maybe requeue), nearly a
factor of 4 difference.

Maybe Ada 3X will add concurrent, and
then there won't be any tasking terms that
aren't reserved words.

What do others think? Should Ada have
made a greater effort at overloading
reserved words from the beginning?
Should we belatedly object to adding
parallel when we have so many choices
already? Or is having a large set of
reserved words, many of them with
similar meanings, a good thing?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 31 May 2021 23:27:49 +0200

I believe that most reserved keywords can
be simply unreserved. Actually there is no
syntactic necessity except for a few. The
rest is kept reserved for the sake of
regularity only.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 1 Jun 2021 00:54:31 -0500

At least twice it was proposed that Ada
have "keywords", identifiers with special
meaning in the syntax but that were not
reserved. The last time (and I forget
precisely when that was), the ARG had a
slight majority in favor of unreserved
keywords as well as reserved words.
However, it was resoundly rejected at the
WG 9 level. At that time, WG 9 still
voted by countries, and it turned out that
pretty much everyone in favor of
unreserved keywords were from North
America. Most Europeans were appalled.
Of course, that meant a WG 9 vote with 2
in favor and a large number against.

So whenever you think there are too many
reserved words in Ada, be assured that it
was repeatedly suggested that they not all
be reserved, but certain countries would
not allow it. At this point, we've given up,
since it really would not help much - the
majority of words that likely ever be
reserved already are (it would most likely
matter if a new proposal tried to reserve
some commonly used term - "yield" came
up some proposals for Ada 202x that
didn't go anywhere).

Jeff Carter should note the 8 different
uses for "with" in the syntax before he
accuses anyone of not reusing reserved
words in Ada. It's just the case that it's
hard to write something meaningful with
the existing reserved words (we almost
always try).

"parallel" is an interesting case. In my
world view, it is wildly different from a
task, because it is *checked*, does not
block or *synchronize* with another
thread (all synchronization is via objects
or completion), is automatically created

Ada Pract ice 89

Ada User Journal Volume 42, Number 2, J une 2021

(in looping constructs) and therefore
requires substantial less care than writing
a task. There is another world-view
where essentially the checking is not
worthwhile and ergo must be suppressed,
that performance matters to the point at
which a compiler isn't allowed to make
choices, and essentially requires *more*
care than a task. In that second world-
view, parallel constructs are either
harmful or worthless. But even there,
having a keyword makes it a lot easier to
avoid them than trying to figure out which
libraries to block. :-)

From: Paul Rubin
<no.email@nospam.invalid>

Date: Tue, 01 Jun 2021 00:40:50 -0700

> At least twice it was proposed that Ada
have "keywords", identifiers with
special meaning in the syntax but that
were not reserved.

I remember this as a fundamental decision
of PL/I that made PL/I quite hard to parse
using the automata-based methods
developed not long afterwards. I don't
know what consequences that had for
PL/I or anything else, if any. But I think
it was retrospectively considered a
mistake. It's a lot easier to separate
parsing and scanning if you can have
reserved words.

OTOH I know that C compilers
sometimes (usually?) handle typedefs by
having the parser tell the scanner to treat
the typedef name as keyword-like, after it
sees that a typedef has been defined.

From: Jeffrey R. Carter
Date: Tue, 1 Jun 2021 11:51:44 +0200

> At least twice it was proposed that Ada
have "keywords", identifiers with
special meaning in the syntax but that
were not reserved.

Unreserved keywords are one approach,
though I'm not aware if they come with
any negatives. Then the question becomes
which reserved words could become
unreserved keywords. (This can be
restricted to reserved words related to
tasking/concurrency to avoid going
through all the reserved words.)

> At that time, WG 9 still voted by
countries

Does that imply that the voting has since
changed and such a proposal might now
be accepted?

> Jeff Carter should note the 8 different
uses for "with" in the syntax before he
accuses anyone of not reusing reserved
words in Ada.

I agree that the ARG has done a good job
in reusing reserved words in many cases,
"with" being the most obvious. I
concentrated on tasking/concurrency
reserved words since that seems to be an
exception.

From: Robin Vowels
<robin.vowels@gmail.com>

Date: Thu, 3 Jun 2021 01:48:29 -0700

>> At least twice it was proposed that
Ada have "keywords", identifiers with
special meaning in the syntax but that
were not reserved.

> I remember this as a fundamental
decision of PL/I that made PL/I quite
hard to parse using the automata-based
methods developed not long afterwards.
I don't know what consequences that
had for PL/I or anything else, if any.
But I think it was retrospectively
considered a mistake.

It was definitely never considered a
mistake in PL/I. Not having reserved
words means that you do not have to steer
clear of using any particular words when
you design a program. It also means that a
program will continue to compile even
when new keywords are introduced into
the language. Over the years, new
keywords were introduced into PL/I,
without invalidating existing programs.

Reserved words are the bane of COBOL.

GNAT in Homebrew

From: Simon Wright
<simon@pushface.org>

Subject: Homebrew, GNAT
Date: Tue, 01 Jun 2021 09:04:41 +0100
Newsgroups: comp.lang.ada

Homebrew (https://brew.sh) is a package
manager for macOS.

Since releasing GCC 11.1.0 for macOS
(at Sourceforge and now Github[1]),
people have been saying what a good idea
it would be to have it in Homebrew.

I understand that a binary (pre-built)
component for Homebrew is called a
"cask". If someone who knows how to
build a "cask" wants to do so for
GCC+Ada I would help, but for the
moment that’s as far as it goes.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 01 Jun 2021 17:10:03 +0100

> Since releasing GCC 11.1.0 for macOS
(at Sourceforge and now Github[1]),

[1] https://github.com/simonjwright/
building-gcc-macos-
native/releases/tag/gcc-11.1.0.1

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Wed, 02 Jun 2021 00:02:36 +0100

How does that relate to GNAT CE 2021?
I see that AdaCore have not released a
version for macOS.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 02 Jun 2021 09:51:15 +0100

No; and apparently GNAT CE 2021 is
going to be the last CE release for any
target.

It is possible to build CE 2021 for macOS
(I and another on the GNAT-OSX mailing
list are disagreeing somewhat on how to
configure for this), but at some point we
have to bite the bullet.

What I'm not sure of is gnatprove. If the
compiler sources don't match what
gnatprove expects you'll get build failures
or, at best, runtime failures. And how far
could you trust it even if it appeared to
work?

Of course, if you need to trust it you'll be
happy to pay.

From: Mark Lorenzen
<mark.lorenzen@gmail.com>

Date: Thu, 3 Jun 2021 22:55:56 -0700

> No; and apparently GNAT CE 2021 is
going to be the last CE release for any
target.

Why do you say that? Can you provide
any sources?

From: Simon Wright
<simon@pushface.org>

Date: Fri, 04 Jun 2021 08:38:10 +0100

> Why do you say that? Can you provide
any sources?

Of course, I may be macOS-biased here
:-)

Remarks at [1],

 "We see a majority in favor or
recommending GNAT FSF.

 "The result is less clear for the removal
of GNAT community. The comments
along the answers show that people
against this are worried about the ease of
use. So we are going to work on that
aspect."

 "We don't expect anyone to build
GCC/GNAT themselves, and that is why
part of our plan is to help maintainers of
OS distribution make good GNAT
package."

 "AdaCore will continue to provide the
SPARK toolset on Linux and Windows.
There is no runtime coming with the
toolset, so no possible license confusion,
it's only an analysis tool!" [[Can we run
Linux apps in Docker on a Mac? looks
possible, and might I think be an OK
solution for gnatprove given the above.
M1 macs??]]

and [2],

 "Most likely this version of the compiler
will be the last in the GNAT Community
Edition release chain. In the future, the
compiler collected from open source GCC
texts can be installed using a batch
manager Alire."

[1]

90 Ada Pract ice

Volume 42, Number 2, June 2021 Ada User Journal

https://www.reddit.com/r/ada/comments/
j6oz6i/results_of_the_survey_on_the_
future_of_gnat/

[2] https://www.altusintel.com/
public-yy39qc/

From: Mark Lorenzen
<mark.lorenzen@gmail.com>

Date: Fri, 4 Jun 2021 03:08:16 -0700

Thank you very much. It looks like
AdaCore will provide builds of FSF GCC
to distro maintainers instead of
distributing GNAT as CE. That's fine - as
long as I don't have to build GNAT
myself from the FSF distro :-)

Ada Lovelace Pint Glass

From: Anatoly Chernyshev
<achernyshev@gmail.com>

Subject: Ada Lovelace Pint Glass
Date: Fri, 4 Jun 2021 03:51:38 -0700
Newsgroups: comp.lang.ada

I'm sure many of you will like the idea of
having a beer glass dedicated to lady Ada:

https://cognitive-surplus.com/collections/
beer-glasses/products/
ada-lovelace-pint-glass-1

Web Frontend in Ada 2012

From: Marius Amado-Alves
<amado.alves@gmail.com>

Subject: Any chance of programming a web
frontend in Ada 2012?

Date: Tue, 8 Jun 2021 01:56:14 -0700
Newsgroups: comp.lang.ada

It seems that currently the only languages
web browsers execute reliably are
JavaScript and JBC (Java Byte Code),
with WASM (Web Assembly) soon to
join the group.

Is there a way to program a web frontend
in Ada 2012, maybe by translation to one
of the above languages?

(Preferably with a binding to the DOM
and the BOM.)

(Maybe via LLVM? GNAT already
generates LLVM, right?)

Thanks a lot.

From: Jeffrey R. Carter
Date: Tue, 8 Jun 2021 11:21:23 +0200

Have you looked at Gnoga?
https://sourceforge.net/projects/gnoga/

From: Max Reznik <reznik@adacore.com>
Date: Tue, 8 Jun 2021 02:35:26 -0700

Indeed, there is a project to run Ada in the
browser using WebAssembly. It's named
AdaWebPack[1].

It provides a toolchain based on GNAT
LLVM and a customized runtime.

The runtime has some restrictions for
now, such as no exception handling due to
current state of WebAssembly. The

toolchain building could be complicated,
so the project provides a Docker image.

The project provides the simplest example
(See online: https://www.ada-ru.org/
files/wasm/index.html).

This site (in Russian) uses it to provide
some construction calculations
https://mycalcs.ru/

Also take a look a short blog post:
https://blog.adacore.com/android-
application-with-ada-and-webassembly

I think, you can reach the author on the
Telegram channel https://t.me/ada_lang

[1] https://github.com/godunko/
adawebpack

Grom: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Tue, 8 Jun 2021 07:45:00 -0700

> Have you looked at Gnoga?
https://sourceforge.net/projects/gnoga/

Yes. Looks great and reliable. Quick read
of the well written user_guide (I must be
rainman cause I spotted this typo:
Gnoga.Gui.Element.Canvas)

Looks too complicated for my present
needs, but definitely a reference to keep.
Thanks, Jeff.

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Tue, 8 Jun 2021 08:01:20 -0700

A number of ideas keep tickling my mind
on how to do this. One is using ASIS to
translate Ada to JavaScript, a kind of Ada
compiler with Javascript as the target
language.

From: Max Reznik <reznik@adacore.com>
Date: Tue, 8 Jun 2021 08:22:53 -0700

Speaking about "a single language" for
frontend and backend. There was an idea
to port Annex E (DSA) to AdaWebPack
and use it as a communication channel
between a web server written in Ada and
WebAssembly client part.

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Tue, 8 Jun 2021 09:26:57 -0700

> A number of ideas keep tickling my
mind on how to do this. One is using
ASIS to translate Ada to JavaScript, a
kind of Ada compiler with Javascript as
the target language.

I made some progress in this direction,
but ASIS4GNAT is abandoned and my
project is suspended. The only user I have
moved to AdaWebPack :)

The source code of the translator is part of
the Matreshka project.

https://forge.ada-ru.org/matreshka/
wiki/Web/A2JS

There is GitHub mirror:

https://github.com/reznikmm/matreshka

From: Shark8
<onewingedshark@gmail.com>

Date: Thu, 10 Jun 2021 06:33:55 -0700

> Speaking about "a single language" for
frontend and backend. There was an
idea to port Annex E (DSA) to
AdaWebPack and use it as a
communication channel between a web
server written in Ada and
WebAssembly client part.

I've been advocating this idea [well
similar, I'm not a fan of WASM] for years
now. Seriously: The DSA has the
potential to be the Ada equivalent of
being the "killer app" or "killer feature"
for getting use.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Thu, 10 Jun 2021 17:44:18 -0700

> A number of ideas keep tickling my
mind on how to do this. One is using
ASIS to translate Ada to JavaScript, a
kind of Ada compiler with Javascript as
the target language.

It's unclear to me why anyone would want
to do this, since it combines the
disadvantages of both Javascript
(interpreted, non-deterministic execution)
and Ada (manual memory management
etc.)

If you want to use a typed language that
gets translated into Javascript, you might
be better off using Purescript
(purescript.org) or even something like
Agda.

Ada to WASM might make more sense
than Ada to Javascript, of course.

Going beyond Ada 2022

From: Stephen Davies
<joviangm@gmail.com>

Subject: Adacore Blog - Going Beyond Ada
2022

Date: Tue, 8 Jun 2021 06:28:35 -0700
Newsgroups: comp.lang.ada

The following may be of interest (I was
pleased to see fixed lower bounds being
considered):

https://blog.adacore.com/
going-beyond-ada-2022

From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 9 Jun 2021 07:11:43 +0200

Of course, everyone is welcome with
helping the evolution of Ada. But I
remind the community that there is the
Ada-Comment list (http://www.ada-
auth.org/comment.html) which is open to
the public.

I'm afraid that this initiative of AdaCore is
another step in trying to control the
language.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Wed, 9 Jun 2021 08:10:49 -0700

Ada Pract ice 91

Ada User Journal Volume 42, Number 2, J une 2021

What troubles me is this statement:

<quote>What happens afterwards

...

Finally, a member of the AdaCore team
will give a final decision about the RFC’s
inclusion in GNAT, and potential
submission to the ARG if
necessary.</quote>

Sounds like creating dialects. RFCs
implemented in GNAT, but not submitted
to ARG. What a mess!

Ada is not owned by AdaCore!

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 09 Jun 2021 09:33:10 -0700

It sounded like the RFCs platform is
intended to experimentally test proposed
new features, which sounds better than
standardizing them without testing them
first. And hasn't GNAT always has had
extensions beyond the ARM Is this
anything new?

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Wed, 9 Jun 2021 13:53:10 -0700

Yes, extensions as allowed in the RM -
impl-defined pragmas, attributes...

But not extensions with new syntax.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 10 Jun 2021 04:13:26 -0700

I must admit I do not see the grudge here.
As I understand it, the goal is indeed to
test proposals in practice, before they
make it to the standard. There has been a
number of evolutions to the language that
are not so convenient to use, for instance,
or not flexible enough. Having a
prototype implementation for people to
play with is a nice idea (and what most
other languages do in practice). AdaCore
does not propose to control the language.
As far as I can tell, these prototypes (like
early implementation of what is already in
Ada 2020) are generally controlled via the
-gnatX switch. If you do not use that, then
you do not have access to those new
proposals either.

This is akin to implementing some pre-
processing tool (for instance using ASIS
or libadalang) to test those prototypes,
except it might be easier to do directly in
the compiler for AdaCore. But nothing
prevents anyone from writing such a
preprocess to test their own proposals.

The language remains controlled by the
standard, and although there is a large
number of AdaCore employees in the
ARG, that's not all of it. The ada-
comment list has another purpose than
discussing tentative evolution to the
language (and email doesn't lend itself too
well to that purpose anyway).

From: Andreas Zeurcher
<zuercher_andreas@outlook.com>

Date: Sun, 13 Jun 2021 13:29:44 -0700

> I must admit I do not see the grudge
here.

Complaint or concern (for the welfare of
Ada) should be the word there. Grudge is
a loaded term of long-term hatred, which
by definition is absent in this •newly•-
arisen topic of 2 competing RFC-esque
nonemail
commentary/planning/consensus-building
forums (ARG's versus AdaCore's). By
having 2 competing consensus-building
forums, clearly not all the wood can ever
truly be behind one arrow in the
consensus building, to paraphrase Scott
McNealy.

 > As I understand it, the goal is indeed to
test proposals in practice, before they
make it to the standard.

Your wording implies the fundamental
danger: If AdaCore productizes a
particular design & implementation prior
to even submitting an AI to ARG (as
“making it to the standard”s body), then
the ARG is implicitly compelled to accept
or veto, at the wholesale level, the
•entirety• of AdaCore's work on this
proposed feature

1) when a quite-different alternative
might have been wiser and better for
Ada or

2) when course-correction at a key point
of departure where AdaCore went off-
course might have been wiser.

> There has been a number of evolutions
to the language that are not so
convenient to use, for instance, or not
flexible enough. Having a prototype
implementation for people to play with
is a nice idea

“Having a prototype implementation for
people to play with is a nice idea” ••only
as long as it remains playing nice &
fairly•• at the ARG. As soon as ARG
effectively/practically cannot veto &
reject some prototype from AdaCore as a
partially- or fully-misguided rotten-egg
brain-fart, then AdaCore could utilize this
technique to try to occlude & preclude all
dissenting views in ARG.

> (and what most other languages do in
practice).

C++ for example rarely if ever has cases
where some core-language feature
appeared in GCC or Clang prior to having
at least one N-series proposal submitted to
the ISO14889 committee (and indeed, not
only submitted, but achieving some
degree of partial consensus, at least
factionally). For example, Clang has
automated reference counting (ARC) only
in Objective-C-based modes of operation
(including in only certain Objective-C-
centric situations of Objective-C++), not
in C++ proper. Likewise with Microsoft's

C++/CLI and C++/CX keeping evolution
to the core language separate from the
committee-draft-proposal-centric main
language—a few nonstandard pragma-
esque attributes here & there
notwithstanding.

Comparing an ISO/IEC-standardized
language's process to, say, Python's is
disingenuous, because Python is a
language historically with a benevolent
dictator-individual and a normative
reference-implementation interpreter as
1st-class citizen from which all other
Python interpreters or compilers are
expected to conform meticulously as 2nd-
class citizens. Scala (versus Scala Native)
operates much the same way as Python, in
this reference-implementation-as-1st-
class-citizen-all-others-2nd-class-citizens
regard. Certainly what Ada community
might fear is a situation where AdaCore's
GNAT is the 1st-class citizen reference-
implementation to which all other Ada
compilers must conform downstream as
mere 2nd-class citizens, where Ada would
become the Python model and the Scala-
ScalaNative model.

> AdaCore does not *propose* to control
the language.

(emphasis added)

Not all control schemes in the history of
humankind have been publicly announced
a priori ahead of time, even by slip-of-the-
tongue leaks, let alone full-fledged well-
crafted well-publicized proposals.
Indeed, some firm control schemes really
are pure innocence (not even control
schemes at all) at their early stages, only
to occur by happenstance as time marches
onward (to be realized in historical
analysis in retrospect) as quite pernicious
after the fact.

> As far as I can tell, these prototypes
(like early implementation of what is
already in Ada 2020) are generally
controlled via the -gnatX switch. If you
do not use that, then you do not have
access to those new proposals either.

>

> This is akin to implementing some pre-
processing tool (for instance using
ASIS or libadalang) to test those
prototypes, except it might be easier to
do direcly in the compiler for AdaCore.

The problem is not implementing
industrial-practice prototypes ••of ARG's
proposed AIs•• in the GNAT compiler (or
any other vendor's compiler). The
problem is implementing •nonAIs• (other
than pragmas and pragma-esque
constructs) in the compiler that then are
later harshly utilized as established
industrial practice to standardize as close
to verbatim from the GNAT
implementation as possible, given that no
other compiler's design of that feature is
as mature. Indeed, ISO/IEC rules
strongly favor homologizing •existing•

92 Ada Pract ice

Volume 42, Number 2, June 2021 Ada User Journal

industrial practice over a standards body
pontificating any fresh creativity not yet
seen in industrial practice. Homologize is
the actual term-of-art there, as utilized
throughout ISO, IEC, EU, UN, and other
let's-just-get-along international bodies.
Any fresh creativity by ARG competing
with AdaCore's establish industrial
practice goes against the entire concept of
homologizing unless ARG (or whichever
let's-all-just-get-along homologizing
body) can demonstrate that fresh
creativity is absolutely necessary, due to
insurmountable impracticalities of
endorsement of (one of) the existing
industrial practice(s) or blending the
multiple industrial practices (of which
there likely would be none from the other
Ada vendors at the time of debate &
standardization of the AI).

> But nothing prevents anyone from
writing such a preprocess to test their
own proposals.

>

> The language remains controlled by the
standard, and although there is a large
number of AdaCore employees in the
ARG, that's not all of it. The ada-
comment list has another purpose that
discussing tentative evolution to the
language (and email doesn't lend itself
too well to that purpose anyway).

Then why doesn't AdaCore simply utilize
ARG's existing forum of discussion
instead of having their own competing
forum? It seems that only 2 are needed:

①ARG's comment forum and ②email. It
seems that 3 are not needed; it seems that
3's a crowd: 🄰AdaCore's comment forum
and 🄱ARG's comment forum and 🄲email.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Mon, 14 Jun 2021 10:35:03 -0000

> C++ for example rarely if ever has
cases where some core-language
feature appeared in GCC or Clang prior
to having at least one N-series proposal
submitted to the ISO14889 committee

FWIW, though, the C++ committee
appear to think it's acceptable to strangle
the specification of certain features based
on whether or not it makes it hard for a
specific compiler to implement.

A few weeks ago I had reason to look into
the justification for something in C++ that
appeared, to me, to be stupid and illogical,
and the reasoning was because "clang
does something this way and, if we took
the sensible approach for this feature, it
would mean clang would have to
massively change".

So now the C++ world is saddled with a
specification that's compromised by
specific implementations.

I've been trying to find the discussion I
had about this with some of my
colleagues at work; if I do, I'll let you
know what it is!

However, this is, basically, a potential
risk with the AdaCore RFC approach; if

they forward the feature to the ARG and
the ARG comes back with "well, nice, but
it would be better if it did this", and
AdaCore say "but that would be too hard
for us now", then what happens?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 14 Jun 2021 17:50:26 -0500

> AdaCore say "but that would be too
hard for us now", then what happens?

This is a double-edged sword, of course;
if something is hard to implement (even if
better), it might never get adopted at all
(look at Algol 68 for a historical example
of a committee ignoring practical
considerations).

And this sort of thing has occurred as far
back as Ada 9x: various Ada 9x proposals
were withdrawn because of opposition
from implementers (especially DEC,
which never actually built an Ada 95
compiler). Perhaps it would have been
better if those proposals had gone
forward, but that's hard to say. It's also
possible that those proposals would have
prevented construction of some Ada 95
compilers.

My point is that there needs to be a
balance; one should not let one
implementer or one group dictate
everything, but one cannot ignore
implementers either. (A corollary to that:
the implementers should not ignore the
ARG, either! That happened to some
degree with Ada 202x.)

