

Editor in Chief
António Casimiro University of Lisbon, Portugal

AUJ_Editor@Ada-Europe.org

Ada-Europe Board
Tullio Vardanega (President) Italy
University of Padua

Dirk Craeynest (Vice-President) Belgium
Ada-Belgium & KU Leuven

Dene Brown (General Secretary) United Kingdom
SysAda Limited

Ahlan Marriott (Treasurer) Switzerland
White Elephant GmbH

Luís Miguel Pinho (Ada User Journal) Portugal
Polytechnic Institute of Porto

António Casimiro (Ada User Journal) Portugal
University of Lisbon

Ada-Europe General Secretary
Dene Brown Tel: +44 2891 520 560
SysAda Limited Email: Secretary@Ada-Europe.org
Signal Business Center URL: www.ada-europe.org
2 Innotec Drive
BT19 7PD Bangor
Northern Ireland, UK

Information on Subscriptions and Advertisements
Ada User Journal (ISSN 1381-6551) is published in one volume of four issues. The Journal is provided free of
charge to members of Ada-Europe. Library subscription details can be obtained direct from the Ada-Europe General
Secretary (contact details above). Claims for missing issues will be honoured free of charge, if made within three
months of the publication date for the issues. Mail order, subscription information and enquiries to the Ada-Europe
General Secretary.

For details of advertisement rates please contact the Ada-Europe General Secretary (contact details above).

Ada User Journal Editorial Board
Luís Miguel Pinho Polytechnic Institute of Porto, Portugal
Associate Editor lmp@isep.ipp.pt
Jorge Real Universitat Politècnica de València, Spain
Deputy Editor jorge@disca.upv.es
Patricia López Martínez Universidad de Cantabria, Spain
Assistant Editor lopezpa@unican.es
Kristoffer N. Gregertsen SINTEF, Norway
Assistant Editor kristoffer.gregertsen@sintef.no
Dirk Craeynest KU Leuven, Belgium
Events Editor Dirk.Craeynest@cs.kuleuven.be
Alejandro R. Mosteo Centro Universitario de la Defensa, Zaragoza, Spain
News Editor amosteo@unizar.es

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

ADA
USER
JOURNAL

Volume 42

Numbers 3-4

September –

December 2021

Contents
Page

Editorial Policy for Ada User Journal 128

Editorial 129

Quarterly News Digest 130

Conference Calendar 170

Forthcoming Events 179

Articles from the AEiC 2021 Work-In-Progress Session

 K. Nyborg Gregertsen
“Ember: An Embedded Robotics Library in SPARK” 185

 D. García Villaescusa, M. Aldea Rivas, M. González Harbour
“Queuing Ports for Mesh Based Many-Core Processors” 189

AEiC 2021 Industrial Presentations

 A. Marriot, U. Maurer
“More Ada in Non-Ada Systems” 193

 M. Martignano
“Static Analysis for Ada, C/C++ and Python: Different Languages, Different Needs” 199

 J-P. Rosen
“ASIS vs. LibAdalang: A Comparative Assesment” 203

Ada-Europe Associate Members (National Ada Organizations) 208

Ada-Europe Sponsors Inside Back Cover

128

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and December.
Copy date is the last day of the month of
publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics, such
as reliable software technologies, are
welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the field
of software engineering.

Further details on our approach to these
are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will be
relayed to the authors at the discretion
of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups to
find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be of
interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it a

wider audience. This includes papers
published in North America that are not
easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These may
represent the views either of individuals
or of organisations. Such articles can be
of any length – inclusion is at the
discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report on
events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal is
at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to print
reviews submitted from elsewhere at
the discretion of the Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be rapid.
Currently, accepted papers submitted
electronically are typically published 3-
6 months after submission. Items of
topical interest will normally appear in
the next edition. There is no limitation
on the length of papers, though a paper
longer than 10,000 words would be
regarded as exceptional.

 129

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

Editorial

I would like to start this editorial with a note about this issue being a double issue. The decision of merging the September and
December issues of the AUJ into a single issue (AUJ 42-3-4) was mainly motivated by the fact that we wanted to get back on
track concerning the timeliness of the production and delivery of the journal. Our readers certainly understand that the COVID-
19 pandemic, which continued throughout 2021, had a negative impact on the number of events taking place and hence on the
amount of publishable material. Therefore, while we were able to solve the problems faced in 2020 concerning printing the
journal, we struggled to collect good articles to include in the journal.

I would also like to report that we will continue sending the AUJ copies directly from Portugal to all subscribers, leveraging
the experience with the last issue, which we believe was very positive.

In this issue we conclude the publication of the proceedings of the AEiC 2021 Work-In-Progress (WiP) Session and include
three papers that are extended versions of Industrial Presentations given also at AEiC 2021. In concrete, the first paper is entitled
“Ember: An Embedded Robotics Library in SPARK” and is authored by K. Gregertsen, from SINTEF Digital, in Norway. The
paper presents a library named Ember, which is intended for high-integrity embedded robotics and GNC applications developed
in SPARK 2014 with formal verification. Then, the WiP Session proceedings are closed with a contribution from the University
of Cantabria, an article entitled “Queuing Ports for Mesh Based Many-Core Processors”, authored by D. G. Villaescusa, M. A.
Rivas and M. G. Harbour. The article describes the implementation of Queuing Ports, which are a communication mechanism
for many-core architectures to allow tasks running in different cores to communicate in a synchronized fashion. The three
papers derived from Industrial Presentations follow. Firstly, a paper entitled “More Ada in Non-Ada Systems”, by A. Marriot
and U. Maurer, from White Elephant GmbH in Switzerland, which advocates the relevance of using code written in Ada to
supplement existing code written in other languages. Then, M. Martignano, from Spazio IT in Italy, writes about “Static analysis
for Ada, C/C++ and Python: Different Languages, Different Needs”. Finally, J-P. Rosen, from Adalog in France, contributes
with a paper entitled “ASIS vs. LibAdalang: A Comparative Assesment”, which “compares the origins, features, and status of
two different tools intended to facilitate static analysis of Ada programs: ASIS and LibAdalang”, as expressed by the author.

The News Digest and the Calendar and Events sections are included as usual, but in this issue they cover a longer period,
corresponding to the second half of 2021. As usual, these sections are prepared, respectively, by Alejandro R. Mosteo and by
Dirk Craeynest. Last but not the least, I would like to call your particular attention to an article that we include as Forthcoming
Event announcement, which calls the Ada community to participate in the Google Summer of Code (GSoC) programme. This
article was prepared by Fernando Oleo Blanco, an open source and Ada enthusiast, and provides information on how to
participate.

 Antonio Casimiro
Lisboa

December 2021
 Email: AUJ_Editor@Ada-Europe.org

130

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 130
Ada-related Events 130
Ada and Education 131
Ada-related Resources 133
Ada-related Tools 141
Ada-related Products 146
Ada and Operating Systems 147
Ada and Other Languages 150
Ada Practice 153

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor
Dear Reader,

This period has been particularly rich with
maintenance-related woes. See, for
example, how the removal of features to
ease maintenance burden can also be a
problem for long-time users, in this case
in an ASIS-related discussion with
interesting points about the differences in
LibAdalang philosophy [1]. Similarly, the
troubles with building and packaging
large and mixed-language codebases are
discussed in relation to GNAT Studio [2],
and the efforts to port GNAT to NetBSD
are described in detail in [3].

For my fellow bookworms out there, two
interesting topics can be found in this
number: a generous person offered its
complete Ada collection [4], providing a
exhaustive bibliography worth taking note
of, and we got to see a few scanned pages
of an old manual in the quest to find a
complete Janus/Ada for CP/M online
manual [5].

Sincerely,
Alejandro R. Mosteo.

[1] “Challenging a GCC Patch”, in Ada-
related Resources.

[2] “Building GNAT Studio 2021 from
Sources”, in Ada Practice.

[3] “Porting Ada to NetBSD”, in Ada and
Other Languages.

[4] “Ada Books Giveaway”, in Ada-
related Resources.

[5] “Janus/Ada 1.5 CP/M Manual”, in
Ada-related Products.

Ada-related Events

30th Anniversary of 1st Ada-
Belgium Seminar

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: 30th anniversary of 1st Ada-
Belgium Seminar

Date: Sun, 3 Oct 2021 14:47:18 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

Today, October 3rd, 2021, marks the 30th
anniversary of the first public event
organized by the (then still forming) Ada-
Belgium non-profit organization, a half-
day Seminar.

A page was created on the Ada-Belgium
web-site to present some historic
information on that event, retrieved from
various archives.

URL: www.cs.kuleuven.be/~dirk/
ada-belgium/events/91/911003-abs.html

Enjoy!

Dirk Craeynest, Ada-Belgium President

CfC 26th Ada-Europe Int.
Conf. Reliable Software
Technologies

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC 26th Ada-Europe Int. Conf.
Reliable Software Technologies

Date: Wed, 20 Oct 2021 19:38:04 -0000
Newsgroups: comp.lang.ada,fr.

comp.lang.ada,comp.lang.misc

[CfC is included in the Forthcoming
Events Section —arm]

CfP - Ada Developer Room
at FOSDEM 2022, Online

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfP - Ada Developer Room at
FOSDEM 2022, online

Date: Sun, 5 Dec 2021 10:52:30 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

Call for Presentations

11th Ada Developer Room at FOSDEM
2022

Sunday 6 February 2022, Online,
Everywhere

www.cs.kuleuven.be/~dirk/
ada-belgium/events/22/

220206-fosdem.html

Organized in cooperation with Ada-
Belgium and Ada-Europe

The Ada FOSDEM community is pleased
to announce the 11th edition of the Ada
DevRoom This time, however, it will take
place online on the 6th of February. This
edition of the Ada DevRoom is organized
in cooperation with Ada-Belgium [1] and
Ada-Europe [2].

General Information about FOSDEM

FOSDEM [3], the Free and Open source
Software Developers' European Meeting,
is a free and non-commercial two-day
weekend event organized early each year
in Brussels, Belgium. This year, for
obvious reasons, it has been turned into an
online event, just like last year. It is
highly developer-oriented and brings
together 8000+ participants from all over
the world. No registration is necessary.

The goal is to provide open source
developers and communities a place to
meet with other developers and projects,
to be informed about the latest
developments in the open source world, to
attend interesting talks and presentations
on various topics by open source project
leaders and committers, and to promote
the development and the benefits of open
source solutions.

Ada Programming Language and
Technology

Awareness of safety and security issues in
software systems is ever increasing.
Multi-core platforms are now abundant.
These are some of the reasons that the
Ada programming language and
technology attracts more and more
attention, among others due to Ada's
support for programming by contract and
for multi-core targets. The latest Ada
language definition was updated early
2016. Work on new features is ongoing,
such as improved support for fine-grained

Ada and Educat ion 131

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

parallelism, and will result in a new Ada
standard scheduled for 2022. Ada-related
technology such as SPARK provides a
solution for the safety and security aspects
stated above.

More and more tools are available, many
are open source, including for small and
recent platforms. Interest in Ada keeps
further increasing, also in the open source
community, from which many exciting
projects have been started.

Ada Developer Room

FOSDEM is an ideal fit for an Ada
Developer Room. On the one hand, it
gives the general open source community
an opportunity to see what is happening in
the Ada community and how Ada can
help to produce reliable and efficient open
source software. On the other hand, it
gives open source Ada projects an
opportunity to present themselves, get
feedback and ideas, and attract
participants to their project and
collaboration between projects.

At previous FOSDEM events, the Ada-
Belgium non-profit organization
organized successful Ada Developer
Rooms, offering a full day program in
2006 [4], a two-day program in 2009 [5],
and full day programs in 2012-2016 [6-
10], and in 2018-2020 [11-13]. An
important goal is to present exciting Ada
technology and projects, including people
outside the traditional Ada community.
This edition is no different, and since it
will take place online, we hope to attract
people from all over the world.

Call for Presentations

We would like to schedule technical
presentations, tutorials, demos, live
performances, project status reports,
discussions, etc in the Ada Developer
Room.

Do you have a talk you want to give?

Do you have a project you would like to
present?

Would you like to get more people
involved with your project?

The Ada organizers call on you to:

- discuss and help organize the details,
subscribe to the Ada-FOSDEM mailing
list [14];

- for bonus points, be a speaker: the Ada-
FOSDEM mailing list is the place to be!

- don't hesitate to propose a topic that you
would like to present to the community,
we are eager to know what you have in
store for us!

We're inviting proposals that are related to
Ada software development, and include a
technical oriented discussion. You're not
limited to slide presentations, of course.
Be creative. Propose something fun to

share with people so they might feel some
of your enthusiasm for Ada!

Speaking slots should be 15 or 30
minutes, plus 5 or 10 minutes resp. for
Q&A, if the same schedule as last year is
followed. However, this schedule is
flexible and can be modified for longer
talks. For example, a long technical talk
can be transformed into a 45 minutes talk,
plus time for Q&A. Depending on
interest, we might also have a session
with lightning presentations (e.g. 5
minutes each), and/or an informal
discussion session.

Note that all talks will be streamed live
(audio+video) and should be prerecorded.
After the streaming of the talk, a live
Q&A session will take place. By
submitting a proposal, you agree to being
recorded and streamed. You also agree
that the contents of your talk will be
published under the same license as all
FOSDEM content, a Creative Commons
(CC-BY) license.

Submission Guidelines

Your proposal must be submitted to the
FOSDEM Pentabarf system [15]. If you
already had an account from previous
years, please, reuse it. If, for whatever
reason, you cannot use Pentabarf, you can
also submit your proposal by messaging
the Ada-FOSDEM mailing list [14]. If
needed, feel free to contact us at the Ada-
FOSDEM Mailing list or at <irvise (at)
irvise.xyz> (without spaces).

Please include:

- your name, affiliation, contact info;

- the title of your talk (be descriptive and
creative);

- a short descriptive and attractive
abstract;

- potentially pointers to more information;

- a short bio and photo.

See programs of previous Ada DevRooms
(URLs below) for presentation examples,
as well as for the kind of info we need.

Here is the slightly flexible schedule that
we will follow:

- December 26, 2021: end of the
submission period. Remember, we only
need the information in the list above.
You do not have to submit the entire talk
by this date. Try to submit your proposal
as early as possible. It is better to submit
half of the details early than all late, so
do not wait for the last minute. If you
are a bit late, submit it to Pentabarf and
message <irvise (at) irvise.xyz> directly.

- December 31, 2021 - January 2, 2022:
announcement of accepted talks.

- January 15, 2022: your talk should be
recorded and uploaded to the Pentabarf
platform.

- February 6, 2022: Ada-Devroom day!

We look forward to lots of feedback and
proposals!

Regards,
The Ada-FOSDEM team

Main organiser: Fernando Oleo Blanco
<irvise (at) irvise.xyz>

Second in command: Ludovic Brenta
<ludovic (at) ludovic-brenta.org>

 [1] http://www.cs.kuleuven.be/~dirk/
ada-belgium

 [2] http://www.ada-europe.org

 [3] https://fosdem.org

 [4] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/06/
060226-fosdem.html

 [5] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/09/
090207-fosdem.html

 [6] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/12/
120204-fosdem.html

 [7] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/13/
130203-fosdem.html

 [8] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/14/
140201-fosdem.html

 [9] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/15/
150131-fosdem.html

[10] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/16/
160130-fosdem.html

[11] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/18/
180203-fosdem.html

[12] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/19/
190202-fosdem.html

[13] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/
200201-fosdem.html

[14] http://listserv.cc.kuleuven.be/
archives/adafosdem.html

[15] https://penta.fosdem.org/
submission/FOSDEM22

(V20211205.1)

Ada and Education

"Hello World" as a First
Exercise

From: Richard Iswara
<haujekchifan@gmail.com>

Subject: Why "Hello World" as a first
exercise?

Date: Fri, 30 Jul 2021 13:17:46 +0700
Newsgroups: comp.lang.ada

132 Ada and Educat ion

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

Why is it most of the courses of
introduction to programming or
programming language use a "Hello
World" kind of program as a demo or first
exercise?

Why not do a proper input loop as a
showcase or a first exercise? With an
input loop procedure you get:

1. How to read and output an input.

2. Show the if-then-else structure.

3. Show the loop structure.

4. Show error messages and how to
properly handle it.

5. On Ada in particular you are showing
the type system.

6. If it is a subprogram then an input loop
shows how to do and call the
subprograms.

And last but not least it teaches and
reinforces to the student how to think
about safety in programming.

So why a useless look at me, ain't I cool
"Hello World"?

Sorry I had to vent after an unsatisfying
exchange over at arstechnica.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 30 Jul 2021 02:57:35 -0700

The actual exercise is to (if necessary) get
the compiler and tools installed, make the
source file, invoke the compiler, and run
the executable. Depending on the
environment, this can be quite a serious
challenge. Going from there to a more
complicated program is simple by
comparison.

I believe the "hello world" meme started
with Brian Kernighan's 1970s-era tutorial
for the then-new C language, but I could
be wrong about that.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Fri, 30 Jul 2021 02:57:56 -0700

You're right, this Hello World doesn't tell
anything about the language, its syntax,
semantics, what these have to do with
safety. But you find this nonsense, as you
say, everywhere.

But how to begin? The opinions vary.
They depend on the audience - beginner,
experienced...

I say: Give them a simple problem and
ask: What kind of (numeric) type do you
need to fulfil the needs of the solution.

Others disagree: It's too complicated for a
beginner to say "type Meter_Rod is range
0 .. 2_000;", just use Integer for the
beginning.

The question is: How to avoid bad habits
from other languages from the beginning?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 30 Jul 2021 18:06:21 -0500

> Why is it that most of the courses of
introduction to programming or
programming language use a "Hello
World" kind of program as a demo or
first exercise?

Because the problem isn't about
programming at all, but rather getting
through all of the admistrivia needed to
actually run a program. Starting with a
canned program of some kind is simply
the best plan.

My first actual programming class spent
the first two or three sessions on the
administrative things: where is the
computer center? How do you use a
keypunch? (I admittedly am showing my
age here; but at least we were the second
last semester to use the keypunches.) How
to submit a card deck? What magic
incantations are needed to get the
computer to accept a card desk? Where to
find your results afterwards (this being a
batch system)? Etc. The actual program
was very secondary to all of that (I don't
remember what it was, but we had to key
it and submit the results — in order to
prove that we understood all of the
admistrivia).

Obviously, there are differences from then
to today, but there still is a lot of
admistrivia — both in an academic
environment and also at home. (How to
use the IDE? How to build a program?
How to capture the results? Etc.) So it is
very valuable for any student to prove that
they understand how to enter and build a
trivial program before they turn to
actually learning about fundamentals. The
flow of any type of course gets
interrupted every time someone has
problems building a program — the
sooner they understand that, the better.

"Hello World" isn't the most interesting
program, but it has the advantage of being
very short and applicable in most contexts
(for instance, it makes sense both in GUI
and text environments). And it also shows
a primitive way of doing debugging,
something that every student will need to
know almost from the beginning.

Janus/Ada uses a slightly larger program
as an installation test at the end of
installation. (At least if you read the
installation guide — I wonder how many
do? It just sorts a bunch of numbers and
displays them to the screen. It's not really
a useful example, but it does prove that
the Janus/Ada system and the things it
depends upon are all installed properly. It
doesn't pay to write a program until you
are sure of that!

I note that a similar issue happens in a lot
of elementary education. I vividly
remember that the first word in the first
book that we read when learning to read

started with an entire page devoted to
"Tom" (and a line drawing of a boy). No
verb or action or abstraction of any kind.
Hardly useful text but valuable in getting
the new readers introduced to the idea of
text associated with pictures having the
same meaning.

The point being that there is a lot of stuff
unrelated to the topic at hand that needs to
be navigated to learn just about any
concept. The sooner that that stuff can be
dealt with, the better.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Fri, 30 Jul 2021 21:28:06 -0400

> My first actual programming class spent
the first two or three sessions on the
administrative things: where is the
computer center? How do you use a
keypunch? [...]

Sounds like my college... Here are the
three 029 keypunches... Here's how to
program a drum card to simplify entering
code... Here's the minimum JCL to run
FORTRAN(-IV) (Sigma CP/V had two
FORTRAN compilers — the traditional
compiler outputting a relocatable object
[ROM] file, to be followed by a linker
outputting a load module [commonly
called a LMN file]; the OS didn't use file
extensions, so our practice was to name
the source S:xxx, object O:xxx,
executable L:xxx. The other compiler was
FLAG — FORTRAN Load And Go —
compile/link/execute with one
invocation). Turn in the card deck to the
operators, here. Come back later to pick
up your printed output.

It wasn't until my second year that we
were given access to the Hazeltine
terminals, along with accounts that had
some modicum of disk storage associated
with them. The BASIC class got
something like 30 "granules" — about
15kB; others got 100-200 "granules".

CP/V somehow combined time-share (we
had something like 50 terminals scattered
over campus and a few high schools with
dial-up lines), Batch Processing, and (not
of use to a college installation)
supposedly /real-time/ operations.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 31 Jul 2021 20:16:45 -0500

> Sounds like my college... [...]

Ah. We had a very advanced self-service
card reader for simple jobs. You put your
card deck in, pushed a large button,
watched a very impressive swooshing of
cards about, and then went and stood
around a desk-sized printer with lots of
other people waiting for a page with your
user name in very large letters to head a
printout, rip it off (preferably leaving
anyone else’s that was attached — didn't
always happen), and go read the output to
see what you did. The original compile-

Ada-related Resources 133

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

execute-debug-repeat cycle (more like
run-read-punch new cards-repeat cycle).

They had a few Decwriters, but only
upper classmen got to use them (and they
wasted tons of paper). Real terminals
showed up the next year — by the time of
the compiler construction class, most of
the classes had moved to PDP/11s (way
slower), but the compiler construction
was still on the mainframe. But almost
everything was done on the terminals
(Janus/Ada never was on punched cards,
thank goodness). We had to buy one of
those huge computer tapes to rescue our
source code and use another lab's
capability to transfer that to floppies in
order to move our work to the CP/M
computer on which RRS was born. A lot
more engineering went into that sort of
issue than today (probably a good thing).

From: Richard Iswara
<haujekchifan@gmail.com>

Date: Sat, 31 Jul 2021 10:06:17 +0700

> Because the problem isn't about
programming at all [...]

Fair points. Obviously now it's a lot
different than it was, so why don't
textbooks and online instructions,
especially those with online IDE, don't
evolve their approach?

I still think that students should be trained
and challenged to think carefully about
the implications of their programs. One of
the reservations I have about those online
courses or code solutions sites is how
many don't consider documentations and
coding safely as part of their grades.
Skills alone do not suffice in the "real
world", communications matter also. How
many hours of training after the students
graduate will be wasted by their
employers to teach them to consider their
codes carefully. That is IF (that's the big
question) the employers do any kind of
training or mentoring. Why isn't that kind
of consideration taught and trained until it
becomes a habit during the students'
education?

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Sat, 31 Jul 2021 19:37:11 -0700

> So why a useless look at me, ain't I cool
"Hello World"?

All those things you listed absolutely
should be covered — but only *after* the
"Hello World" exercise.

The first time someone with no
programming experience tries to write,
compile, and run a program, *something*
will very likely go wrong. Maybe they'll
omit a semicolon, or misspell an
identifier, or invoke the compiler without
a required option. And they're likely to be
shown a terse error message that might
not direct them to the right way to fix it.

By making the first program something
trivial that can reasonably be entered
verbatim, you eliminate several sources of
errors. If the student double checks that
the source file exactly matches what's in
the textbook and it doesn't run, it's
substantially easier to diagnose the
problem.

Once the student gets "Hello, World"
working correctly, if the second program
uses some of the features you mention
and *that* doesn't work, they'll know that
the problem is something in the difference
between the first and second programs.

You might try a more ambitious first
program if you're an experienced
programmer trying out a new language,
but even then I'll probably try "Hello
World" before I try FizzBuzz.

Ada-related Resources
[Delta counts are from Jul 22th to Nov
1st. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Wed, 22 Jul 2021 11:13:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 3_214 (+53) members [1]

- Reddit: 7_648 (+5441) members [2]

- Stack Overflow: 2_125 (+38)
 questions [3]

- Libera.Chat²: 75 (-1) concurrent
 users [4]

- Gitter: 91 (+5) people [5]

- Telegram: 130 (+2) users [6]

- Twitter: 227 (+152) tweeters [7]

 276 (+202) unique tweets [7]
1 Probably caused in part by confusion
with the ADA cryptocurrency.

² Freenode has been dropped as no data
can be obtained anymore.

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Wed, 22 Jul 2021 11:13:21 +0100
To: Ada User Journal readership

Rosetta Code: 846 (+19) examples [1]

 38 (=) developers [2]

GitHub: 7631 (=) developers [3]

Sourceforge: 273 (-2) projects [4]

Open Hub: 214 (=) projects [5]

Alire: 195 (+24) crates [6]

Bitbucket: 88 (-1) repositories [7]

Codelabs: 53 (+1) repositories [8]

AdaForge: 8 (=) repositories [9]
1 This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Wed, 22 Jul 2021 11:13:21 +0100
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 31 (-3) 0.42%
 (-0.06%) [1]

- PYPL Index: 17 (+1) 0.94%
 (+0.19%) [2]

- IEEE Spectrum (general): 31 (+8)
 Score: 38.8 (+6.0) [3]

- IEEE Spectrum (embedded): 9 (+3)
 Score: 38.8 (+6.0) [3]

[1] https://www.tiobe.com/tiobe-index/

134 Ada-related Resources

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/
top-programming-languages/

AdaControl on Twitter

From: J-P. Rosen <rosen@adalog.fr>
Subject: AdaControl on Twitter
Date: Wed, 1 Sep 2021 17:29:06 +0200
Newsgroups: comp.lang.ada

I have created an account on Twitter for
discussing issues related to AdaControl:
@AdaControl_prog

(Sorry, @Adacontrol was already taken
by a person whose first name is Ada...)

Ada Books Giveaway

From: Michael Feldman
<mikefeldman915@gmail.com>

Subject: Giving away a lot of Ada books
Date: Fri, 3 Sep 2021 16:53:48 -0700
Newsgroups: comp.lang.ada

Dear Colleagues,

I hope you are all well and ready for the
fall, whatever it might bring in these
uncertain times.

My wife Ruth and I are moving from
Portland to Berkeley in the near future
(yes, our son and his family live there —
he is a professor at Cal Berkeley); our
new flat will have many advantages, but
alas, not nearly enough space for all our
books, papers, and media.

I'm writing in the hope of finding new
homes for (i.e. giving away) any or all of
my large set of books on Ada. I've been
collecting these since Ada's beginning in
the early 1980s; I think I have all (or very
nearly) the Ada books ever published.
The list is included below.

Please email me if you're interested in any
of these. Ruth has very kindly offered to
work with you on the shipping logistics;
we ask only that you reimburse us for the
shipping costs. Overseas mailing has
become such an expensive hassle that I'd
prefer the destinations to be in the U.E.

Book dealers don't usually have the
understanding or respect for the content of
these books, so they have little to no sale
value. But they might well have real value
to people in the Ada community who
know the field. Unfortunately, I fear my
options might come down to saying
farewell to these treasures on their way to
the landfill. I hope not!

Best regards to you and yours; please stay
out of COVID's way!

Michael Feldman
Professor Emeritus of Computer Science
The George Washington University
Washington, DC 20052
mfeldman@gwu.edu

==========
Books on the Ada Programming
Language (and related topics)
===========

Ada: Berger Tests of Programming
Proficiency

AdaTEC Conference 1982

Airiau, R., et al. VHDL: du Langage à la
Modernisation

Alsys. Safety Critical Handbook (1994)

Asplund, L. ed. Ada-Europe '98
Proceedings

Audsley, N. Ada Yearbook Millennium
Edition

Ausnit, C. et al. Ada in Practice

Baker, L. VHDL Programming

Barnes, J. High Integrity Ada (1997)

Barnes, J. Programming in Ada 95

Barnes, J. Programming in Ada. (2e, 3e,
4e)

Beidler, J. Data Structures and
Algorithms (1997)

Ben-Ari, M. Ada for Software Engineers
(1998)

Ben-Ari, M. Principles of Concurrent and
Distributed Programming (1990)

Ben-Ari, M. Principles of Concurrent
Programming (1982)

Benjamin, G. Ada Minimanual (to
accompany Appleby, Programming
Languages)

Bergé, J-M et al. Ada avec le Sourire

Booch, G. and D. Bryan. Software
Engineering with Ada. (3rd edition)

Booch, G. Object-Oriented Analysis &
Design, 2nd ed. (1994)

Booch, G. Software Components with
Ada.

Bover, D.C.C., K.J. Maciunas, and M.J.
Oudshoorn. Ada: A First Course in
Programming and Software Engineering.

Bray, G. and D. Pokrass. Understanding
Ada.

Breguet, P. and L Zaffalon.
Programmation séquentielle avec Ada 95
(in French)

Bryan, D.L., and G.O. Mendal. Exploring
Ada, Volumes 1.and 2.

Buhr, R. Practical Visual Techniques in
System Design with Applications to Ada.

Burns, A. and A. Wellings. Concurrency
in Ada, 2nd ed. (1998)

Burns, A. and A. Wellings. Real-Time
Systems and Programming Languages,
2nd ed.

Burns, A. and A. Wellings. Real-Time
Systems and Programming Languages,
3rd ed. (2001)

Burns, A. and G. Davies. Concurrent
Programming (1993)

Burns, A. Concurrent Programming in
Ada.

Burns, Alan and Wellings, Andy.
Concurrency in Ada.

Caverly, P. and P. Goldstein. Introduction
to Ada.

Cherry, G. Parallel Programming in ANSI
Standard Ada

Clark, R. Programming in Ada: a First
Course.

Cohen, N. Ada as a Second Language.

Computer Language, March 1989
(compilers)

Cooling, J.E. et al. Introduction to Ada

Crawford, B.S. Ada Essentials

Culwin, F. Ada: a Developmental
Approach. (2nd ed)

Dale, N., D. Weems, and J. McCormick.
Programming and Problem Solving with
Ada. D. C. Heath, 1994.

Dale, N., S. Lilly, and J. McCormick. Ada
plus Data Structures.

Defense Electronics, March 1984 - first
Ada compilers

DeLillo, N. J. A First Course in Computer
Science with Ada.

Denev, N. Programming (in Bulgarian)

DISA Symposium on Ada Success in MIS
(1992)

Dorchak, S. and P. Rice. Writing
Readable Ada

Downes, V. and S. Goldsack.
Programming Embedded Systems with
Ada.

Embedded Systems Programming, Nov.
1995 (Ada 05 issue)

English, J. Ada 95: the Craft of Object-
Oriented Programming (1997)

Feldman, M. Concepts of Concurrent
Programming (1990)

Feldman, M. Language and System
Support for Concurrent Programming
(1990)

Feldman, M.B. Data Structures with Ada.

Feldman, M.B. Software Construction
and Data Structures with Ada 95 (1996)

Feldman, M.B., and E.B. Koffman. Ada:
Problem Solving and Program Design.

Feldman/Koffman Ada 95 (1st printing,
3rd printing)

Ada-related Resources 135

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

Freedman, R. Programming Concepts
with the Ada Language.

Gabrini, P. Introduction au Génie Logiciel
et à la Programmation avec Ada (in
French)

Gauthier, M. Ada: a Professional Course.

Gauthier, M. Ada: Un Apprentissage (in
French).

Gehani, N. Ada: an Advanced
Introduction (2nd edition).

Gehani, N. Ada: Concurrent
Programming (2nd edition).

Gehani, N. and A. McGettrick.
Concurrent Programming (1988)

Gehani, N. and W.D. Roome. The
Concurrent C Programming Language
(1989)

Gilpin, G. Ada: a Guided Tour and
Tutorial.

Glynn, G. Ada Yearbook 1998

Gonzalez, D. Ada Programmer's
Handbook

Habermann, A. and D. Perry. Ada for
Experienced Programmers.

Hardy, N. Ada Yearbook 1996

Hibbard, P. et al. Studies in Ada style

Hillam, Bruce. Introduction to Abstract
Data Types Using Ada.

HOPL-II Forum on the History of
Computing preprints (1993)

IBM Software Engineering Exchange,
Oct. 1980 (Ada edition)

IBM Systems Journal 1991, 25th
anniversary of APL

Jones, D. Ada in Action

Jonston, S. Ada 95 for C and C++
Programmers (1997)

K.U. Leuven Dept. of CS Report 91-92

Krell, B. Developing with Ada

Lamprecht, G. Introduction to Simula-67
(1983)

Lindsey, E.R. The Encyclopedic
Dictionary of Ada terms

Lomuto, N. Problem-Solving Methods
with Examples in Ada.

Lopes, A.V. Ada 95 (in Portuguese)

Lundqvist, K. Distributed Computing and
Safety-Critical System in Ada (diss.)

Mayoh, B. Problem Solving with Ada.

Miller, N.E. and C.G. Petersen. File
Structures with Ada.

Motet, G. et al. Design of Dependable
Ada Software

Musser, D. and A. Stepanov. The Ada
Generic Library

Naiditch, D.H. Rendezvous with Ada 95

Naiditch, D.J. Rendezvous with Ada

National Academy of Sciences, Ada and
Beyond (1997)

Naur, P. and B. Randell. NATO
Conference on Software Engrg (1969)

Nielsen, K. Object-Oriented Design with
Ada

Nissen, J. and P. Wallis. Portability and
Style in Ada.

Nyberg, K. (editor) The Annotated Ada
Reference Manual. (2nd edition)

Olsen, E. and S. Whitehill. Ada for
Programmers.

Perminov, O. Programming in Ada (in
Russian)

Price, D. Introduction to Ada.

Pyle, I. The Ada Programming Language.

Rosen, J-P and Kruchten, P. Doctoral
Theses on Ada/Ed

Rosen, J-P. Méthodes de Génie Logiciel
avec Ada 95 (in French)

Saib, S. Ada: an Introduction.

Sanden, B. Software Systems
Construction with Examples in Ada

Savitch, W.J. and C.G. Petersen. Ada: an
Introduction to the Art and Science of
Programming.

Saxon, J.A., and R.E. Fritz. Beginning
Programming with Ada

Schneider, G.M., and S.C. Bruell.
Concepts in Data Structures and Software
Development (with Ada Supplement by P.
Texel).

Shumate, K. Understanding Ada. (2nd
edition)

Shumate, K. Understanding Concurrency
with Ada.

SIGCSE Bulletin June 1991

SIGPLAN Notices June 1979 (A) Ada
Proposed Rationale

SIGPLAN Notices June 1979 (A) Ada
Proposed Reference Manual

Skansholm, J. Ada 95 from the Beginning
(3rd ed)

Skansholm, J. Ada from the Beginning.
(2nd ed.)

Smith, M. Object-Oriented Software in
Ada 95 (1996)

Software Productivity Consortium, Ada
95 Quality and Style (1995)

SpAda

Stein, D. Ada: a Life and a Legacy (1985)

Stratford-Collins, M.J. Ada: a
Programmer's Conversion Course (in
Chinese)

Strohmeier, A. Ada Software Components
(1992)

Stubbs, D., and N. Webre. Data Structures
with Abstract Data Types and Ada

Tedd, M. et al. Ada for Multi-
microprocessors

Texel, P. Introductory Ada. (1986)

Thiess, H. Minimal Ada

Toole, A. Ada, the Enchantress of
Numbers (2 copies) (1998)

Tremblay, J-P et al. Programming in Ada
(1990)

US Navy Ada Implementation Guide

Vasilescu, E. Ada Programming with
Applications.

Volper, D., and M. Katz. Introduction to
Programming Using Ada.

Wallach, Y. Parallel Processing and Ada

Watt, D.A., B.A. Wichmann, and W.
Findlay. Ada Language and Methodology.

Wegner, P. Programming with Ada.

Weiss, M.A. Data Structures and
Algorithms in Ada.

Wheeler, D. Ada 95, the Lovelace
Tutorial (1997)

Young, S. An Introduction to Ada.

Zaffalon, L. and P. Breguet.
Programmation Concurrente et temps réel
avec Ada 95 (in French)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 3 Sep 2021 22:28:50 -0500

Good to hear from you again.

It must have taken a long time to simply
list all of these; thanks for not throwing
these away.

I have quite a collection of Ada books
here, but you have me beat by a long way.

I'd be interested in Norm Cohen's Ada as
a Second Language; at one point, we gave
our copy to a newly hired person to study
and they never brought it back. (Most of
the early textbooks we had multiple
copies of; we used to sell Ada books to
our customers and still have a few
leftovers that were not sold.) E-mail me if
you haven't given it to someone else.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sun, 05 Sep 2021 11:15:54 -0700

The University of California at Berkeley
library (https://www.lib.berkeley.edu/

136 Ada-related Resources

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

there's a link to a "contact us" page) might
want some of these. If not, take them to
your local library; they might just trash
them, but they might also end up on a
shelf somewhere ...

Challenging a GCC Patch

From: J-P. Rosen <rosen@adalog.fr>
Subject: How to challenge a GCC patch?
Date: Mon, 27 Sep 2021 12:06:56 +0200
Newsgroups: comp.lang.ada

AdaCore has introduced a patch in FSF
GCC to remove ASIS support.

AdaCore is free to do what they want with
their own version of GCC. However,
removing a useful feature from the FSF
version with the goal to promote their
own, in-house tool is clearly against the
spirit of free software.

Does anybody know the procedures set by
the FSF to challenge a patch?

From: Stéphane Rivière
<stef@genesix.org>

Date: Mon, 27 Sep 2021 13:23:38 +0200

> AdaCore has introduced a patch in FSF
GCC to remove ASIS support.

This is all the more surprising since it
seems to me that ASIS is still in GNAT
Pro. What a lack of fairness.

> Does anybody know the procedures set
by the FSF to challenge a patch?

Unfortunately no

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 27 Sep 2021 16:18:30 +0200

> This is all the more surprising since it
seems to me that ASIS is still in GNAT
Pro. What a lack of fairness.

ASIS is no more in the mainstream gcc,
it's in a special version, forked from the
main branch, called asis-gcc.

See the instructions on running
AdaControl for details:
https://www.adacontrol.fr

From: Simon Wright
<simon@pushface.org>

Date: Mon, 27 Sep 2021 13:48:30 +0100

> AdaCore has introduced a patch in FSF
GCC to remove ASIS support. [...]

It's not just the patch(es), it's any
subsequent changes to affected parts of
the compiler.

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 27 Sep 2021 16:20:05 +0200

> It's not just the patch(es), it's any
subsequent changes to affected parts of
the compiler.

Right, if they want to contribute further
patches, they'll have to keep it ASIS
compatible. That's not a reason to divert
gcc to support their own private interests.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Mon, 27 Sep 2021 23:55:38 -0700

I must admit I fail to see your point in this
thread: as far as I know, ASIS has never
worked for recent versions of the
language (standard was never updated),
and AdaCore doesn't not evolve it
anymore. Yes, that unfortunately means
that tools like AdaControl will stop
working at some point (you can certainly
distribute prebuilt binaries for a while, but
for anyone using new language
constructs, what happens?). This being
open-source software, you could adopt the
maintenance of ASIS yourself (or ask
other people in the Ada community to
help with that). But this is of course a
significant endeavor (then again, if you
are not ready to do that yourself, why
would you expect a commercial company
like AdaCore to do it on your behalf?)

ASIS has not disappeared. It is still (and
forever) in the history of the gcc tree. It is
just not available on the main branch
anymore because there are no more
maintainers for it. Just like a lot of
obsolete platforms no longer supported by
gcc itself, or by the Linux kernel for
instance. This is the way open-source
software lives and dies.

Going back to a more technical
discussion, would you highlight why a
library like libadalang is not appropriate
for AdaControl. I have developed a few
code-generation tools based on it. To me,
the main issue is the bad documentation,
which leaves a lot of trial-and-error to
find which nodes are relevant when.
Besides that, it seems to be fine with any
code I have sent its way. Maybe, rather
than trying to maintain your own ASIS
patches, it would be nice to develop an
ASIS API that uses libadalang underneath
(I do not know much about ASIS to be
honest, so this might be a stupid
suggestion).

From: Arnaud Charlet
<charlet@adacore.com>

Date: Tue, 28 Sep 2021 00:38:32 -0700

> AdaCore has introduced a patch in FSF
GCC to remove ASIS support.

We have removed ASIS support first in
our own trunk of GNAT, and then 6
months later we have removed it from the
GCC FSF trunk, so talking about lack of
fairness is, well, unfair.

Why? Because ASIS is no longer
maintained as an internal standard and
hasn't evolved beyond Ada 95 because
there was not enough support in the
community and among vendors, so we've
ended up maintaining it on our own for
many years, which lately has become too
large a burden. In addition, maintaining
ASIS tree generation in GNAT has been
also a challenge and a resource drain
because each time we make a change in

the GNAT front-end, this may break
ASIS and we may have to make difficult
investigation and changes and sometimes
almost impossible changes because there
are conflicts between the need of a code
generator (GNAT for GCC or LLVM)
and the need of an Ada analysis library
(ASIS).

So we've decided to address this burden
by moving tree generation for ASIS in a
separate branch, so that this maintenance
burden on GCC trunk would disappear.

This has been done both in AdaCore's tree
where ASIS now resides on a separate
branch, and in GCC FSF where the tree
generation is available in GCC 10.x and
works well here, and is available for the
community to contribute and maintain for
as long as needed.

From: Stéphane Rivière
<stef@genesix.org>

Date: Wed, 29 Sep 2021 18:26:04 +0200

> We have removed ASIS support first in
our own trunk of GNAT, and then 6
months later we have removed it from
the GCC FSF trunk, so talking about
lack of fairness is, well, unfair.

I deeply endorse your maintenance and
code evolution concerns.

The lack of 'fairness' (my apologies if you
find that word a bit strong) is that GNAT
Pro users are suddenly the only ones who
can use ASIS, while a unique tool like
Adacontrol (for code control quality) has
always been available equally to the Free
and Pro communities...

> Why? Because ASIS is no longer
maintained as an internal standard and
hasn't evolved beyond Ada 95 because
there was not enough support in the
community and among

Thanks Arno for these explanations...

We all know about Adacore's
commitment to the Free Software
community. The latest versions of
GNATStudio, which has never been so
reliable and user-friendly, are just one
example among others.

However, the initial problem persists and
cannot be solved quickly.

Should Adacontrol users find a
relationship using GNAT-Pro to release
the tools needed to continue using
Adacontrol?

Maybe AdaCore could reconsider its
decision to keep ASIS for the Pro
community only and release it again, at
least temporarily, to give the Libre
community some time to find a
sustainable solution?

This could be an intermediate solution,
pending a possible port of Adacontrol to
libadalang (or any other satisfying way).

Ada-related Resources 137

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

Perhaps AdaCore could help the
community and Jean-Pierre in this
process? (targeted help, improved
documentation, etc.)?

Thanks again for participating in this
thread. It is very interesting to talk with a
representative of the most essential Ada
contributor to Libre software.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Wed, 29 Sep 2021 12:04:07 -0700

> The lack of 'fairness' (my apologies if
you find that word a bit strong) is that
GNAT Pro users are suddenly the only
ones who can use ASIS [...]

I might have misunderstood Arno's point,
but my understanding is that AdaCore no
longer makes any patch for ASIS. So
whatever pro customers have access to
(and ASIS was always a paying addon),
the community also has access to by
downloading the latest available sources.

The GNAT Pro compiler apparently is
losing the capability to generate the tree
information, just like the free version of
the compiler. If you want to use ASIS, my
understanding is that you would have to
do a separate "compilation" pass using the
compiler from the dedicated branch just
for the purpose of generating the tree files
(and you can discard all the object files it
perhaps generates at the same time). Then
you can run ASIS tools.

This is for sure a pain for AdaControl
maintainers and users, no one disputes
that. On the other hand, if tree generation
was indeed getting in the way of compiler
improvements that benefit everyone, I, for
one, am happy to see the change.

> Perhaps AdaCore could help the
community and Jean-Pierre in this
process? (targeted help, improved
documentation, etc.)?

I suggested in an early message that
perhaps the community could build an
ASIS API on top of libadalang, if there is
a need for that.

I also suggested that libadalang
documentation should be improved, I
definitely agree with that one!

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 30 Sep 2021 00:29:10 +0100

> I suggested in an early message that
perhaps the community could build an
ASIS API on top of libadalang, if there
is a need for that.

Freely available ISO ASIS spec would
help here.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 08:23:17 +0200

> Freely available iso asis spec would
help here.

Actually, it is. Apart from ISO verbiage,
all the interesting parts of the ASIS
standard are put as comments in the
corresponding ASIS packages.

Moreover, AdaCore kept this good habit
for all the newly introduced features that
support up to Ada 2012, which would
make retrofitting them into an updated
ASIS standard quite easy.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 07:57:26 +0200

> Why? Because ASIS is no longer
maintained as an internal standard and
hasn't evolved beyond Ada 95 [...]

The ASIS standard has not been updated,
but AdaCore did a great job of evolving
its ASIS implementation to support all
new features up to Ada2012. It would be
easy to add these improvements to a
revised ASIS standard, and a New Work
Item will be proposed to ISO to that
effect.

Anyway, this issue of ASIS not being an
up-to-date standard is a red herring, since
LibAdalang is NOT a standard, and
presumably never will.

> so we've ended up maintaining it on our
own for many years, which lately has
become too large a burden.

This is plain wrong. You don't maintain
ASIS "on your own", there are customers
who pay a support contract for ASIS.

> [...] So we've decided to address this
burden by moving tree generation for
ASIS in a separate branch, so that this
maintenance burden on GCC trunk
would disappear.

We are talking about FSF-GNAT here.
AFAIK, asis-gcc has not been pushed to
FSF-GNAT.

> This has been done both in AdaCore's
tree where ASIS now resides on a
separate branch, and in GCC FSF
where the tree generation is available in
GCC 10.x and works well here, and is
available for the community to
contribute and maintain for as long as
needed.

But this means that users of ASIS will be
stuck to GCC 10.x, or will have to handle
two versions of gcc at the same time,
which is an endless source of burden.
Why don't you make asis-gcc available to
the community? It doesn't require any
extra cost, since it is available to paying
customers!

Anyway, my question was about how to
challenge a patch. I estimate that this
patch is unfortunate, you argue that it is
necessary. Let the GCC governance
decide; AdaCore doesn't rule GCC.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 08:19:30 +0200

> I might have misunderstood Arno's
point, but my understanding is that

AdaCore no longer makes any patch for
ASIS.

No, ASIS is still maintained (although as
LTM) for paying customers.

> So whatever pro customers have access
to (and ASIS was always a paying
addon), the community also has access
to by downloading the latest available
sources.

No, asis-gcc is not distributed by
AdaCore.

> If you want to use ASIS, [...] you would
have to do a separate "compilation"
pass using the compiler from the
dedicated branch just for the purpose of
generating the tree files [...] Then you
can run ASIS tools.

Not really. Compile-on-the-fly is still
working with asis-gcc (AdaControl is
working like that).

> This is for sure a pain for AdaControl
maintainers and users, no one disputes
that. On the other hand, if tree
generation was indeed getting in the
way of compiler improvements that
benefit everyone, I, for one, am happy
to see the change.

I'm afraid this is a red herring. I rather
think that AdaCore has a hard time
convincing people of moving from the
well defined, carefully designed ASIS to
the terrible mess of LibAdalang.

To anybody interested in that issue: don't
take my word for it. Please read the
specification of any ASIS module, and
compare it to the libadalang.analysis
package.

Personally, I will never trust an interface
that documents that I should expect a
character literal on the LHS of an
assignment statement!

Another example: it's only very recently
(not sure if it is already in GitHub) that
LibAdalang considered the case of a
variable declaration with multiple names.
How do you explain such an omission
after 5 years of development?

>> Perhaps AdaCore could help the
community and Jean-Pierre in this
process? (targeted help, improved
documentation, etc.)?

I have had a tool partner's agreement with
AdaCore, and until recently they have
been very helpful. But the whole design
of LibAdalang is not appropriate for deep
static analysis, and it is an error to believe
that it could replace ASIS. OTOH, it has
plenty of useful features for other use
cases not covered by ASIS, like handling
of incomplete/incorrect code, no question
about that.

> I suggested in an early message that
perhaps the community could build an
ASIS API on top of libadalang, if there
is a need for that.

138 Ada-related Resources

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

In the beginning of LibAdalang, AdaCore
suggested doing that, but they abandoned
it.

> I also suggested that libadalang
documentation should be improved, I
definitely agree with that one!

Unfortunately, the whole design (and
especially the typing system) of
Libadalang makes it much more difficult
to use than ASIS.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 08:44:49 +0200

> I must admit I fail to see your point in
this thread: as far as I know, ASIS has
never worked for recent versions of the
language (standard was never updated),
and AdaCore doesn't not evolve it
anymore.

Your information is not up-to-date.
AdaCore has evolved its ASIS
implementation to fully support up to Ada
2012, and there will be a proposal to
renew the ASIS standard at ISO.

Claiming that ASIS is obsolete and has
not evolved since 95 is pure FUD
propagated by AdaCore. Anybody can
download AdaCore's latest
implementation and check that Ada 2012
is fully supported.

> Yes, that unfortunately means that tools
like AdaControl will stop working at
some point [...]

AdaControl fully supports Ada 2012.
Many new features of Ada 202x use
aspects, which are fully supported. The
main syntactic addition is the "parallel"
constructs, but few people will need it,
and AdaCore said once that they would
not support it.

> [...] why would you expect a
commercial company like AdaCore to
do it on your behalf?

Because that commercial company has
customers who pay for that.

[...]

> [...] would you highlight why a library
like libadalang is not appropriate for
AdaControl. [...]

1) the typing system. Yes, the typing
system of ASIS is surprising at first
sight, but extremely convenient to use.
I suspect that the designers of
LibAdalang never studied the rationale
behind ASIS choices when they
decided to make that huge hierarchy of
tagged types that brings no more static
checks (you still need checks at run-
time that elements are appropriate for
their usage), but makes a lot of things
more difficult. As an example, there are
plenty of simple loops in AdaControl
that would need to be changed to
recursive calls of special functions (one
for each loop).

2) Missing features. A casual look-up
showed a number of queries that I
could not find. I reported to AdaCore,
the response was: "yes, that's a good
idea, we'll add that later".

3) Unfriendly interface. It's not only lack
of documentation, the "P_" and "F_"
convention makes everything harder to
read, and is of no benefit to the user.
Moreover, it is a matter of
implementation that surfaces to the
specification - very bad. Where ASIS
strictly follows the terms and structure
of the ARM, LibAdalang uses
abbreviated names that do not even
correspond to the usual Ada
vocabulary. And this cannot be fixed
without a major, incompatible, rework.

From: Arnaud Charlet
<charlet@adacore.com>

Date: Thu, 30 Sep 2021 00:29:26 -0700

> We are talking about FSF-GNAT here.
AFAIK, asis-gcc has not been pushed
to FSF-GNAT.

What you call "asis-gcc" is a Pro version.
We've never pushed any Pro version to
FSF-GNAT, and there has never been any
guarantee of correspondence between
GNAT Pro and FSF-GNAT, so what you
are demanding today for ASIS is
unreasonable and unnecessary.

So assuming you are asking instead for
some FSF version "close to asis-gcc", this
version is available in the GCC 10.x
branch, and similarly to asis-gcc which is
on a long term, low changes branch at
AdaCore, GCC 10.x is in the same state
today. If you want an executable called
"asis-gcc" then make a symbolic link
from gcc (10.x) to asis-gcc and you have
it.

> But this means that users of ASIS will
be stuck to GCC 10.x, or will have to
handle two versions of gcc at the same
time, which is an endless source of
burden.

The same is true for Pro users, no
difference here: Pro users need to use
GNAT x to compile, and ASIS-GCC y to
generate trees. So what you are
complaining about isn't different between
Pro and community users, and making
asis-gcc Pro available won't change that.

So to recap: you are asking for a
Community version of "asis-gcc Pro": this
version is available, it's GCC 10.x (10.3
being the latest available to date). And
yes, it's a different version to generate
trees than to compile Ada: the same is
true for Pro users and they do not have
specific issues with that.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 09:52:36 +0200

> So to recap: you are asking for a
Community version of "asis-gcc Pro":
this version is available, it's GCC 10.x
[...]

But it's not available from AdaCore's
community page. For most users,
downloading and building from an FSF
site is way too complicated. Call it asis-
gcc or not, what is needed is a simple way
to install ASIS support.

(Making a tree generator separate from
the compiler is for me another error,
although I can live with it. One of the
main benefits of ASIS is that the ASIS
program has the same view of the code as
the compiler - but that's a separate issue).

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 30 Sep 2021 08:53:06 +0100

> Moreover, AdaCore kept this good
habit for all the newly introduced
features that support up to Ada 2012,
which would make retrofitting them
into an updated ASIS standard quite
easy.

Are they GPL'd and where are they?

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 10:13:58 +0200

Yes. Here is a copy of the copyright
notice of every ASIS module:

-- This specification is adapted from the
-- Ada Semantic Interface Specification
-- Standard (ISO/IEC 15291) for use with
-- GNAT. In accordance with the
-- copyright of that document, you can
-- freely copy and modify this
-- specification, provided that if you
-- redistribute a modified version, any
-- changes that you have made are clearly
-- indicated.

-- This specification also contains
-- suggestions and discussion items
-- related to revising the ASIS Standard
-- according to the changes proposed for
-- the new revision of the Ada standard.
-- The copyright notice above, and the
-- license provisions that follow apply
-- solely to these suggestions and
-- discussion itemas that are separated by
-- the corresponding comment sentinels

[More standard GPL 2 text omitted. —
arm]

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 10:16:22 +0200

> Are they GPL'd and where are they?

You can find them in the specifications of
the various packages, with sentinels (as
indicated in my previous message).
Another excerpt:

-- Suggestions related to changing this
-- specification to accept new Ada
-- features as defined in incoming
-- revision of the Ada Standard
-- (ISO 8652) are marked by following
comment sentinels:

-- --|A2005 start

-- ... the suggestion goes here ...

Ada-related Resources 139

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

-- --|A2005 end

-- and the discussion items are marked by
-- the comment sentinels of the form:

-- --|D2005 start

-- ... the discussion item goes here ...

-- --|D2005 end

(and the same goes for 2012).

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 30 Sep 2021 09:26:12 +0100

> Yes. Here is a copy of the copyright
notice of every ASIS module:

And that's an issue, why not release them
PD or BSD? I've seen the ASIS specs
before and I'm certain they are not GPL'd,
just like the packages in the Ada RM.

From: Arnaud Charlet
<charlet@adacore.com>

Date: Thu, 30 Sep 2021 01:21:35 -0700

> But it's not available from AdaCore's
community page. For most users,
downloading and building from an FSF
site is way too complicated. Call it asis-
gcc or not, what is needed is a simple
way to install ASIS support.

We have decided in any case to stop
creating and distributing GNAT
Community binaries, since this was
causing too much confusion and
misunderstanding wrt the license, doing in
the end more harm than good to the
community, which we care very much
about.

So in the future, GNAT will be available
directly and only from the FSF versions,
and Alire will make that easy.

Alire (https://alire.ada.dev/) already
provides GCC 10.3 today, see e.g.
"alr toolchain --select"

> (Making a tree generator separate from
the compiler is for me another error,
although I can live with it. One of the
main benefits of ASIS is that the ASIS
program has the same view of the code
as the compiler - but that's a separate
issue).

Right, and has never been the case for
cross compilers where you already needed
a native GNAT to build your ASIS
application, and a cross GNAT to
generate trees.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Thu, 30 Sep 2021 01:28:16 -0700

> But it's not available from AdaCore's
community page. For most users,
downloading and building from an FSF
site is way too complicated.

There are plenty of GNAT FSF 10 builds
available:

 - Linux distribs (Ubuntu/Debian, Arch,
Fedora, and probably others that I don't
know about)

 - msys2 for Windows

 - Simon Wright's builds for macOS

 - Alire for Linux, Windows and macOS

Availability of GNAT FSF 10 is not an
issue.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 12:54:33 +0200

> And that's an issue, why not release
them PD or BSD? I've seen the asis
specs before and I'm certain they are
not GPL'd, just like the packages in the
Ada RM.

If you are talking about the official ASIS
specs ("like the packages in the Ada
RM"), they are part of an ISO standard,
and as such under ISO copyright.
However, in the case of APIs, ISO allows
their use by any implementation
(otherwise, they would be useless). This
has of course nothing in common with the
GPL or any other open license.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 12:56:52 +0200

> I wanted to know where they are. I once
found the entire directory of ASIS
specs from the iso doc, I think I have
them somewhere still.

> Where are the updated ones for post 95?
There should be an archive or directory
with them with no restrictive licensing
comments.

Just download ASIS for GNAT CE 2019.

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 30 Sep 2021 13:27:11 +0100

> If you are talking about the official
ASIS specs ("like the packages in the
Ada RM"), they are part of an ISO
standard, and as such under ISO
copyright. However, in the case of
APIs, ISO allows their use by any
implementation (otherwise, they would
be useless).

Exactly, same as the ARM packages.

> This has of course nothing in common
with the GPL or any other open license.

But the issue is, if the specs for the
extended ASIS have only been released
under GPL, they are useless to any non-
gpl language implementations as their use
infects that implementation causing
further issues.

This GPL issue is the reason why I've
looked at, in the past, creating my own
compiler, and now just wanting to
develop my own language that I can use
anywhere.

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 30 Sep 2021 13:27:37 +0100

>> Where are the updated ones for post
95? There should be an archive or
directory with them with no restrictive
licensing comments.

> Just download ASIS for GNAT CE
2019.

No. See my other message.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 17:28:39 +0200

If you want a separate, available
document, I don't think there is. If it is
just out of curiosity, use ASIS for GNAT.

There is certainly work to do to get an
updated standard!

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2021 17:25:25 +0200

> But the issue is, if the specs for the
extended ASIS have only been released
under GPL, they are useless to any non-
GPL language implementations as their
use infects that implementation causing
further issues.

Right, currently AdaCore is the owner of
these specifications. A standardization
effort would need a transfer of copyright,
I hope that AdaCore wouldn't object.

BTW, talking of copyright: LibAdalang
has no header comment telling the
copyright status, therefore it is by default
proprietary AdaCore!

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 30 Sep 2021 19:18:05 -0500

> I'm afraid this is a red herring. I think
rather that AdaCore has a hard time
convincing people of moving from the
well defined, carefully designed ASIS
to the terrible mess of LibAdalang.

The ASIS design and definition is a mess
(at least from the perspective of
explaining what is expected). We tried to
clean it up in the previous ASIS
standardization update, but that was a lot
of work and we probably didn't match
implementations very well.

The entire model of ASIS doesn't make
much sense for static analysis purposes,
it's way too focused on syntax rather than
semantics. And it doesn't work well for
syntax analysis because it requires a
compilable program. So it really has a
very narrow use case (if any).

Your tool mainly proves that one can use
anything with heroic enough efforts. But
the effort that your tools goes through to
determine basic semantics like whether a
type is tagged demonstrates it's hardly a
practical way to build a tool. As far as I
know, you're the only one that ever
managed to do anything beyond proof-of-
concepts with ASIS. I can certainly see
why AdaCore might not want to support
something solely for one usage.

140 Ada-related Resources

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

I can easily believe that Libadalang is
even more poorly defined than ASIS
(most vendor-generated things are,
regardless of the vendor involved). I
would guess that the only way to build a
tool like yours is to do your own analysis
(certainly, that is how I'd approach it). A
true Ada Semantic Interface would be a
good thing, but ASIS isn't it.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 30 Sep 2021 19:30:03 -0500

> This specification is adapted from the
Ada Semantic Interface Specification
Standard (ISO/IEC 15291) for use with
GNAT. [...]

Umm, someone is confusing the original
ASIS drafts with the ISO Standard (which
has an ISO copyright with no exceptions).
I would definitely not reference the ISO
Standard in anything you are freely giving
away -- there are copyright trolls out there
that could easily decide to get your
material banned from the Internet.

For Ada, we are very carefully keeping
the Ada Reference Manual as a separate
document from the ISO Standard, so that
the Ada RM has the permissive copyright
while the ISO Standard for Ada definitely
does not. These are not the same thing!

That care was not taken for the ASIS
Standard; I know of no public version that
was maintained. As such, my opinion is
that ISO owns the copyright, and any
extensive use (like using all of the specs)
would require a license from ISO. This is
by far the best reason for abandoning
ASIS - I don't believe that you can
implement it without getting a license
from ISO (since the bulk of the ASIS
Standard is Ada specifications, you are
using too much to fall under fair use).
This is one reason that I would never
consider implementing ASIS in
Janus/Ada.

> Moreover, AdaCore kept this good
habit for all the newly introduced
features that support up to Ada 2012,
which would make retrofitting them
into an updated ASIS standard quite
easy.

It's only easy if you think that giving
AdaCore's work to ISO under the
exclusive copyright that they (ISO) will
insist on is something that is legally and
ethically appropriate.

You need to come to grips with the reality
that ASIS is dead. It's legally dangerous
to implement it, it isn't a good match for
either syntax or semantic analysis (doing
neither very well), and it is a poor match
for modern compilers (hardly anyone
builds trees much like the ASIS ones,
unless you are trying to implement ASIS).

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 1 Oct 2021 11:24:15 +0200

> The ASIS design and definition is a
mess (at least from the perspective of
explaining what is expected). We tried
to clean it up in the previous ASIS
standardization update [...]

That was mainly an attempt to introduce
more static and tagged typing, and it
failed due to the complexity involved (and
that AdaCore said they would never
implement it). LibAdalang made the same
error, and got the same unnecessary
complexity.

> The entire model of ASIS doesn't make
much sense for static analysis [...]

It is an exact image of the program, from
which you can derive all the information
you need. Some higher level queries are
needed, but they can be provided as
secondary queries or added to the
standard.

> And it doesn't work well for syntax
analysis because it requires a
compilable program. So it really has a
very narrow use case (if any).

On the contrary. There is no semantic you
can analyze in a non-compilable program.
And since it analyzes the output of a
validated compiler, you can trust it better
than any custom analyzer without known
pedigree.

> the effort that your tools go through to
determine [...] whether a type is tagged
demonstrates it's hardly a practical way
to build a tool.

I'm afraid you are confused here. It is very
easy to check whether a type is tagged.
You may be confusing this with checking
whether a type is limited or not: yes, an
extra query would be useful for this case.
No big deal.

> As far as I know, you're the only one
that ever managed to do anything
beyond proof-of-concepts with ASIS.

For years, AdaCore tools (gnatelim,
gnatstub) used ASIS, not counting
Gnatcheck that has not yet been able to
migrate to LibAadalang. The interface
generator of AWS is also based on ASIS.
Out of the top of my mind, I think certain
document generators as well as some real-
time properties analyzers also use ASIS.

[...]

True, a first approach or a casual reading
of the interface is not very friendly. But
the more you use it, the more you realize
that it is very consistently defined, and
allows you to do whatever you need.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 1 Oct 2021 11:41:05 +0200

> Umm, someone is confusing the
original ASIS drafts with the ISO
Standard (which has an ISO copyright
with no exceptions). I would definitely
not reference the ISO Standard in
anything you are freely giving away

Strangely enough, my copy of ISO 15291
has no copyright statement at all; might
be a "last draft" version.

However, the headers of every ASIS-for-
Gnat package state: "This specification is
adapted from the Ada Semantic Interface
Specification Standard (ISO/IEC 15291)
for use with GNAT. In accordance with
the copyright of that document, you can
freely copy and modify this specification,
provided that if you redistribute a
modified version, any changes that you
have made are clearly indicated."

(and since that statement dates back to
Robert Dewar's times, I'm pretty certain it
is reliable).

My memory is that all "interesting" part
of the standard was deliberately put as
comments in the specification, precisely
to circumvent the ISO copyright, and
allow the use of ASIS without paying an
outrageous price to ISO.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 1 Oct 2021 11:56:48 +0200

> We have decided in any case to stop
creating and distributing GNAT
Community binaries [...]

And what will happen to other versions of
GNAT that were useful for promoting
Ada, like JGnat and Lego-mindstorm? (I
know you froze these some years ago, but
it was very useful to be able to mention
them).

And what will happen for fixes to asis-
gcc? Will they be propagated to GCC
10.3? Even after you move to GCC 11.x?

> Alire (https://alire.ada.dev/) already
provides GCC 10.3 today, see e.g. "alr
toolchain --select"

And does it provide a matching version of
ASIS?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 2 Oct 2021 04:14:59 -0500

> However, the headers of every ASIS-
for-Gnat package state:

> "This specification is adapted from the
Ada Semantic Interface Specification
Standard (ISO/IEC 15291) for use with
GNAT.

I'm certain that is something that predates
the ISO version of ASIS. There's no such
permission in the ISO document that I
was sent as editor during our last
(aborted) revision attempt. Robert
probably was using the pre-ISO version as
the source, all

> My memory is that all "interesting" part
of the standard was deliberately put as
comments in the specification,
precisely to circumvent the ISO
copyright, and allow the use of ASIS
without paying an outrageous price to
ISO.

Ada-related Tools 141

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

I don't see how using comments helps
anything. The Oracle case makes it pretty
clear an API itself can be covered by a
copyright, and surely the comments are
covered by the copyright. And the ISO
version has no copyright statement other
than the usual "All rights reserved".

Disclaimer: I am not a lawyer and cannot
say anything for certain in these matters.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 2 Oct 2021 04:34:30 -0500

>> The entire model of ASIS [...]

> It is an exact image of the program,
from which you can derive all the
information you need.

That's exactly the problem. You start with
the source code, which is way too low a
level for any useful analysis. At most, you
want a simple connection to the source in
the semantic information, not trying to
preserve every punctuation mark and
comment. (Janus/Ada discards all of that
stuff as soon as parsing succeeds.) If you
need to refer to the original source, say
for error handling purposes, then do that,
but don't waste vast amounts of space and
time trying to keep loads of irrelevant
material.

[...]

No sane compiler (validated or not) keeps
all of the irrelevant syntactic detail
required by ASIS. It ends up getting
reconstructed solely for the use of ASIS,
and how a rarely used interface is
somehow more reliable escapes me.

A true semantic interface on the lines of
the one proposed for ASIS would make
good sense (design of types), but the vast
majority of the existing ASIS belongs in a
rubbish bin. Good riddance.

> But you didn't use it.

I don't use it because implementing it
would require adding loads of useless
cruft to our Ada compiler. And even then,
it doesn't make much sense based on our
compilation model and our generic unit
model. Supporting it would be like
building a whole new Ada compiler.
Ergo, it is a lie, it claims to be an
"interface to a compiler", but it requires
many things that most compilers would
not waste time on. (I think it is a fairly
close representation of the internals of
early Rational compilers, which is
probably why they were so slow and
memory hogs. ;-) So what is it really? Just
a very complex way to do stuff that you
can easily do with a parser. Not worth
anyone's time, IMHO.

I've assumed most people used it because
it was there and because some people had
spent a lot of time trying to define it as
some sort of Standard. Just because
people put a lot of work into something
doesn't mean that it is a useful thing.

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 4 Oct 2021 14:26:25 +0200

 [...]

> [...] the vast majority of the existing
ASIS belongs in a rubbish bin. Good
riddance.

Says someone who didn't use or
implement ASIS. BTW, I understand that
ASIS would be difficult to implement in
Janus Ada, especially when it comes to
generic expansion. But it's not a reason to
deprive others from it...

> [...] (I think it is a fairly close
representation of the internals of early
Rational compilers

True, the design was based on ideas from
Diana. But it was designed with inputs
from various compilers.

> Just because people put a lot of work
into something doesn't mean that it is a
useful thing.

It allowed me to build a very
sophisticated tool, valued at 1.24M$ (see
https://www.adacontrol.fr), and used by
very serious customers. Seems enough to
qualify it "useful".

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 4 Oct 2021 14:30:59 +0200

> I don't see how using comments helps
anything. The Oracle case makes it
pretty clear an API itself can be
covered by a copyright, and surely the
comments are covered by the copyright.

1) It seems to me that you are confusing
the copyright owner with the right to use
the interface. Undoubtedly, ISO is the
copyright owner. But they may authorize
unlimited use of the specification,
otherwise NO standard would make
sense. Do you infringe copyright if you
build an electrical plug that conforms to
your electrical standard?

2) Comments help, because they describe
precisely what is expected by every
function, and what it provides. Actually, I
never open the ASIS standard, everything
I need is detailed in the comments.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 13 Oct 2021 20:48:11 -0500

> 1) It seems to me that you are confusing
the copyright owner with the right to
use the interface.

That's clearly covered by "fair use". But
API Standards are different: you have to
copy large parts of the Standard to
implement them (and ASIS is an extreme
case -- you have to copy 90% of it to use
it). That certainly is not covered by "fair
use".

It's my (semi-informed) opinion that API
Standards are useless, because you have
to violate the ISO copyright to use them
(or buy a license).

> 2) Comments help, because they
describe precisely what is expected by
every function, and what it provides.
Actually, I never open the ASIS
standard, everything I need is detailed
in the comments.

Exactly. Someone copied 90% of the
ASIS standard without permission, and
that is what you are using. And that is
depriving ISO of possible revenue.

It's clear to me that anyone using ASIS
specs is skating on thin ice. Whether it
ever would become a problem for ISO is
certainly unknown, but I wouldn't want to
build a business on top of such a thing.
It's definitely not open source by any
reasonable definition.

We've spent a huge amount of effort to
ensure that the Ada language (and its
language-defined packages) do not fall
into the same trap. But it's way too late to
do that for ASIS.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 14 Oct 2021 08:09:26 +0200

> It's my (semi-informed) opinion that
API Standards are useless, because you
have to violate the ISO copyright to use
them (or buy a license).

Standards are meant to be used. Therefore
my not-better-informed opinion is that the
problem has been addressed by ISO, with
a decision that APIs, as defined in the
standard, can be used.

> Exactly. Someone copied 90% of the
ASIS standard without permission, and
that is what you are using. And that
is depriving ISO of possible revenue.

Not at all. The exact specification of ASIS
packages is part of the standard, including
comments. And this standard has been
approved by ISO, with comments.

Ada-related Tools

Simple Components v4.57

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components v4.57
Date: Sun, 11 Jul 2021 13:40:44 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations. The library is kept

142 Ada-related Tools

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/
ada/components.htm

Changes to the previous version:

- Bug fix in the HTTP client. The bug
affected systems with above average
performance causing sporadic distortion
of HTTP request headers.

SweetAda on Github

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: ANN: SweetAda on github
Date: Fri, 30 Jul 2021 16:52:52 -0700
Newsgroups: comp.lang.ada

SweetAda has now a home in GitHub.

You can reach it @
https://github.com/gabriele-galeotti/
SweetAda.

SweetAda is a lightweight development
framework to create Ada systems on a
wide range of machines. Please refer to
https://www.sweetada.org.

SweetAda is now licensed under the terms
of the MIT license. RTS and LibGCC
files keep their original license, which is a
GCC runtime library exception 3.1.

I've also built a new toolchain release,
based on GCC 11.1.0, which will be
uploaded in the next days both at
SourceForge and SweetAda.org.

The committed branch has some minor
changes from the last v0.8 package, and
new interesting features, like the
possibility to compile the RTS directly
from sources, and a fully usability in an
MSYS2 environment (for MSYS2 first
download the new toolchain and be sure
to select only the items you're interested
in, because the build script is querying the
Makefile and is very slow under that
environment).

Yet I have very scarce time, and the
documentation is thus painfully
incomplete. But do not hesitate to ask.

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Date: Tue, 3 Aug 2021 01:46:21 -0700

> Is this with the generic-instantiation
exception, or am I thinking of a
different license?

RTS source files and some LibGCC
assembly files are, more or less, exact
copies of the FSF GCC release, plus some
patches. So I've reported their licenses as
highlighted in their headers:

[Extract of GPL v3 omitted. —arm]

I'm not a lawyer, and I don't want to hurt
anyone, so I've just tried to stay in a
"maximum correctness mode", reporting
licenses verbatim.

But I think that the whole SweetAda
hierarchy, due to this, is practically under
the MIT license, and has no limitations.

Corrections welcome.

> How integral is MSYS2 to everything?

SweetAda does work in a windoz
environment just in plain cmd shell (with
the aid of PowerShell), because the
package includes a port of make, grep and
sed utilities.

MSYS2 (or Cygwin), plus the dos2unix
utility, is required only to rebuild the
RTS, because the script is currently Bash-
only. So if you are a windoz guy and you
want to use a clone from the github
repository, you need it. The bad news:
MSYS2 is extremely slow in processing
scripts.

Obviously SweetAda works much better
in a Linux environment, because this is
my native environment. OS X should
work ok, but it is increasingly difficult for
me to make toolchains in that
environment (there are problems indeed),
and I am limited to checking things in a
VM-hosted machine.

SweetAda Update to GCC
11.1.0

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: ANN: SweetAda toolchains
updated, GCC 11.1.0

Date: Wed, 4 Aug 2021 10:37:51 -0700
Newsgroups: comp.lang.ada

Hi all.

I've just released an updated version of
SweetAda toolchains.

SweetAda is a lightweight development
framework to create Ada systems on a
wide range of machines. Please refer to
https://www.sweetada.org.

The new toolchain is based on GCC
11.1.0. Binutils is @ 2.37 for Linux, still
@ 2.35 for Windows and OS X. GDB is
@ 10.2.

You can find the toolchains at both
SweetAda home, or at SourceForge
SweetAda repository
https://sourceforge.net/projects/sweetada/
files/toolchains. Please browse into
[Linux|Windows|OSX]/release-20210725
subdirectories. OSX toolchains in
SourceForge are uploading, ready made in
sweetada.org.

The new toolchain is supported by
SweetAda GitHub repository code.

For older toolchains, you have to revert
the RTS GCC 11.1.0 commit
(d40b4d0)c61bc901b8d57e16dccb6857fc
4182adf, because new long integer types
were introduced.

Gnu Emacs Ada Mode
v7.1.6

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Gnu Emacs Ada mode 7.1.6
released.

Date: Sat, 31 Jul 2021 09:43:49 -0700
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 7.1.6 is now
available in GNU ELPA.

This is a bug fix release.

ada-mode and wisi are now compatible
with GNAT FSF 11, Pro 22, Community
2021.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Thu, 5 Aug 2021 10:16:36 +0200

Thank you for the update Stephen.

I can confirm that it works with GNAT
community 2021. It is the first time I got
it working.

However, a couple of comments. I could
not use the build.sh script directly. The
line
WISI_DIR=`ls -d ../wisi*`
matches everything named wisi. In my
case it is the following:
../wisi-3.1.5
../wisitoken-grammar-mode-1.2.0
../wisi-3.1.5.signed
../wisitoken-grammar-mode-1.2.0.signed

The *.signed entries are files, which
screw with gprclean/build. So I had to run
each command manually. That is not a big
issue for me, but as you can understand, it
can easily be a headache to a lot of
people. For that reason I would like to
propose a small change. The wisitoken
package uses a slightly modified ls
command:

export GPR_PROJECT_PATH=
`ls -d ../wisi-3.1.?`

This type of pattern matching would solve
the issue of finding too many things. I
would change the WISI_DIR entry to

WISI_DIR=`ls -d ../wisi-?.?.?`

Which ensures that only the directory of
the package is matched. As far as I know,
the ? pattern matching is POSIX
compliant, so it should work in pretty
much any $SHELL.

The second proposal would be to, instead
of asking the user to run the commands
directly, that an elisp function is used. For
example, the package pdf-tools requires
some compilation in order to use it. It
comes with the elisp function

(pdf-tools-install)

which installs the package, and it is pretty
obvious to the user. It also comes with

(pdf-loader-install)

Ada-related Tools 143

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

which is recommended to be used in the
configuration file. This function checks
whether the package has already been
compiled/installed properly at boot. If it
is, then Emacs just loads it, if not, it gets
compiled. I think this is a much more user
friendly experience, it would simplify the
installation process.

In the case of ada-mode, if the
compilation fails, some report could be
emitted, such as "No Ada compiler
found.", "The GNATCOLL dependencies
have to be installed previous to the
compilation, please refer to XXX." and
finally "Compilation failed, please see the
compilation window."/"Compilation
successful.". A function the style

(load-or-install-ada-mode)

could be created for this and the user
could be requested to run it. Or when ada-
mode is called, that function could be
executed. That way even if the user is not
aware of the compilation step, they are
informed. Instead of getting a cryptic wisi
error message.

Thank you for your work and fixing the
issue with the newer versions of the
compilers!

From: Simon Wright
<simon@pushface.org>

Date: Thu, 05 Aug 2021 09:58:08 +0100

> I can confirm that it works with GNAT
community 2021. It is the first time I
got it working.

In my case it didn't: resurrection of old
problems,

sal-gen_unbounded_definite_stacks.adb:
209:07: error: access discriminant in
return object would be a dangling
reference
sal-gen_unbounded_definite_stacks.adb:
216:07: error: access discriminant in
return object would be a dangling
reference
wisitoken-syntax_trees.ads:620:04:
warning: in instantiation at
sal-gen_unbounded_definite_vectors.adb
:65 [-gnatwv]
wisitoken-syntax_trees.ads:620:04:
warning: aggregate not fully initialized
[-gnatwv]
etc etc

This is because ada-mode-7.1.6 only
"requires" wisi-3.1.3, which was already
installed, rather than the latest 3.1.5 ...
install 3.1.5, *delete 3.1.3*

> I could not use the build.sh script
directly. The line

>> WISI_DIR=`ls -d ../wisi*`

> matches everything named wisi. In my
case it is the following:

> ../wisi-3.1.5 ../wisitoken-grammar-
mode-1.2.0

> ../wisi-3.1.5.signed ../wisitoken-
grammar-mode-1.2.0.signed

I used

WISI_DIR=`ls -d ../wisi* | grep -v signed`

but Fernando's suggestion is better, I
think.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Thu, 5 Aug 2021 12:59:53 +0200

> This is because ada-mode-7.1.6 only
"requires" wisi-3.1.3, which was
already installed

I would like to point out that I had never
installed or compiled any of the
components. Previous to this successful
installation, I updated _all_ packages.
Which yielded the newest version of ada-
mode and wisi.

I am just giving a bit more information
and context, in case someone tries to
replicate what I did.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 05 Aug 2021 14:42:31 +0100

I got a successful build with macOS
GNAT CE 2021. However, using it failed
with

Execution of /Users/simon/.emacs.d/elpa/
ada-mode-7.1.6/gpr_query terminated by
unhandled exception
raised PROGRAM_ERROR :
gnatcoll-sql_impl.adb:198 accessibility
check failed
Load address: 0x1066e1000

[Traceback addresses omitted. —arm]

which is an unfortunate bleeding-edge
interaction between the compiler and
gnatcoll-db:v21.0.0 (there are mutterings
in the source at this line about "GNAT
bug OB03-009").

Building with FSF GCC 11.1.0 is looking
good.

Which version of gnatcoll-db did you use,
Fernando? The ada-mode README isn't
very prescriptive.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Thu, 5 Aug 2021 15:51:36 +0200

> Which version of gnatcoll-db did you
use, Fernando? The ada-mode
README isn't very prescriptive.

I used the master branch as of two days
ago, so 2021/08/03. I thought about
downloading a tagged version, as of that
day the 21.0.0. But since I had already
cloned master, I went with it.

I think this issue is related to this commit,
which refers to that GNATbug directly:

https://github.com/AdaCore/
gnatcoll-db/commit/c75234037fb45
68739435fad204f206afe609a77

From: Manuel Gomez
<mgrojo@gmail.com>

Date: Sat, 7 Aug 2021 00:00:19 +0200

I share my experience, just in case it's
useful for anyone.

I tried with GNAT CE 2021 and gnatcoll-
db 2021, but had problems with that
combination. I finally used gnat-9 and
gnatcoll packages provided by Ubuntu
20.04, but had to add ".all" for "error:
access discriminant in return object..."
and remove the option to consider
warnings as errors in
"standard_common.gpr". Different
compiler versions produce different
warnings, so that flag might be
counterproductive for distribution. The
problem with the 2021 version might have
been the same, not sure about it.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 07 Aug 2021 11:35:19 +0100

> Previous to this successful installation, I
updated _all_ packages. Which yielded
the newest version of ada-mode and
wisi.

Thanks for the advice to update all
packages (U x in the package list
window), which gives us ada-mode-7.1.7,
which includes the "ls -d wisi*" fix, and
builds/works fine on macOS Big Sur with
GCC 11.1.0 (see previous remarks re:
gnatcoll-db).

From: Paul Onions
<ponions37@gmail.com>

Date: Sat, 7 Aug 2021 09:47:38 -0700

> ... builds/works fine on macOS Big Sur
with GCC 11.1.0 ...

I'm using the same setup now, but for
some reason I'm still seeing error
messages about a void-function called
wisi--lexer-error. I can get a working
system if I go into the wisi-3.1.5 directory
and delete all of the .elc files I find there,
but then editing can be very slow (e.g.
delay between pressing a key and
character appearing in buffer >5 secs
sometimes). Not sure if this is caused by
my deleting the .elc files, but it also
happened to me when I did the same thing
in my workarounds to get the 7.1.4 ada-
mode release working.

From: Paul Onions
<ponions37@gmail.com>

Date: Sat, 7 Aug 2021 10:46:00 -0700

> ... I'm still seeing error messages about
a void-function called wisi--lexer-error.

I think this is due to a missing:-

 (require 'cl-lib)

at the start of wisi-parse-common.el.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 09 Aug 2021 03:54:21 -0700

> [...] The line

> WISI_DIR=`ls -d ../wisi*`

> matches everything named wisi.

Fixed in 7.1.7

144 Ada-related Tools

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

> The second proposal would be to,
instead of asking the user to run the
commands directly, that an elisp
function is used.

I keep hoping *someone else* will
implement this :).

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 09 Aug 2021 14:09:47 -0700

> In my case it didn't: resurrection of old
problems,

> This is because ada-mode-7.1.6 only
"requires" wisi-3.1.3,

Sigh. to be fixed in 7.1.8.

I could argue that wisi 3.1.3 is technically
correct, since ada-mode 7.1.6 does
compile with it. But that's not really the
point here; easy user upgrade is more
important.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 09 Aug 2021 14:18:41 -0700

> I got a successful build with macOS
GNAT CE 2021. However, using it
failed [...]

 tried to attach a patch for that, but
nntp.aioe.org says "441 Invalid Content
type" even for text/plain. So I include it
inline below; it applies to the 21.2 release
branch of gnatcoll-sql from github
AdaCore. I guess I should have included
it in 3.1.8.

> Which version of gnatcoll-db did you
use, Fernando? The ada-mode
README isn't very prescriptive.

ada-mode.info has more detail in the
Install section.

-------------- gnatcoll-2021-sql.patch -------

--- sql/gnatcoll-sql_impl.adb.orig
 2021-05-20 01:25:55.000000000 -0700
+++ sql/gnatcoll-sql_impl.adb
 2021-06-21 09:44:09.437292100 -0700
@@ -188,15 +188,9 @@
(Self : Field;
To : in out SQL_Field_List'Class;
Is_Aggregate : in out Boolean)
- is
- FC : access SQL_Field_Internal'Class;
- begin
+ is begin
if not Self.Data.Is_Null then
- -- !!! Could not use Element call result in
the
- -- Append_If_Not_Aggregate parameter
because of GNAT bug OB03-009
-
- FC := Self.Data.Get.Element;
- Append_If_Not_Aggregate (FC, To,
Is_Aggregate);
+ Append_If_Not_Aggregate
(Self.Data.Get.Element, To, Is_Aggregate);
end if;
end Append_If_Not_Aggregate;
end Data_Fields;

GNAT CE 2021 for Intel
MacOS

From: Simon Wright
<simon@pushface.org>

Subject: Re: ANN: GNAT CE 2021 for Intel
macOS

Date: Wed, 18 Aug 2021 17:11:27 +0100
Newsgroups: comp.lang.ada

GNAT CE 2021, built for macOS El
Capitan .. Big Sur, updated.

The problems addressed are:

* Bad dylib path in
libxmlada_unicode.dylib.2021: I hadn't
cleared out a previous build attempt:
fixed.

* Gnatcoll.Xref crash: this also affected
emacs ada-mode: patched.

* GDB `file` command crash: patched.

Additionally, note:

* The Gnatcoll Python binding is (a) to
Python 3, (b) to the https://python.org
release, which doesn't install in the same
place as the Big Sur Xcode release.

* Only the Sqlite backend for Gnatcoll
DB is provided.

Sourceforge:
https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2021-x86_64-darwin-bin-2/

Github (scroll down to the Assets
section):
https://github.com/simonjwright/
distributing-gcc/releases/tag/gnat-ce-
2021-2

GtkAda on MacOS Big Sur

From: Gareth Baker
<garethbaker60@gmail.com>

Subject: GtkAda on macOS Big Sur
Date: Sat, 21 Aug 2021 07:28:29 -0700
Newsgroups: comp.lang.ada

I hope someone can help - I've used
GtkAda before with no problems
(AdaCore CE and Xnadalib) but I'm now
getting an odd behaviour. Using the
recent CE2021 versions (and actually all
other previous versions back to 2019).
The programs compile okay but when
launched they appear as a small rectangle
(top left quarter) within a larger window
with a black background.

Am I missing some setting that is not
mentioned in the README(s)?

From: Jeffrey R. Carter
Date: Sun, 22 Aug 2021 11:14:05 +0200

It sounds as if the OS version changed
something. You might want to consider a
less OS-dependent GUI library, such as
Ada GUI (https://github.com/jrcarter/
Ada_GUI) or Gnoga
(https://sourceforge.net/projects/gnoga/).

From: Gareth Baker
<garethbaker60@gmail.com>

Date: Fri, 27 Aug 2021 09:13:42 -0700

The testgtk program does the same thing,
a window opens up with the program
shrunk to 1/4 size against a black
background.

The gtk3-demo is slightly different in that
it opens up on its own but I think again it
is 1/4 of the size it should be and the
mouse clicks do not work where they
should.

I’m on macOS 15.5.2.

Other programs run from the terminal
(python with qt GUI) work okay.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 27 Aug 2021 18:12:27 +0100

> The testgtk program does the same
thing [...] The gtk3-demo is slightly
different

Same here.

> I’m on macOS 15.5.2.

11.5.2 I think!

I had to run "sudo xattr -d
com.apple.quarantine" on bin/*,
lib/*.dylib, lib/*.so, and the testgtk
program.

Also, on page 2 of
https://blady.pagesperso-orange.fr/
telechargements/gtkada/gtk-ada.pdf,

it should say

 $ PATH=/opt/gnat-ce-2021/bin:$PATH

not

 $ PATH=/opt/gnat-ce-2021:$PATH

From: Gareth Baker
<garethbaker60@gmail.com>

Date: Fri, 27 Aug 2021 11:58:06 -0700

Humm - not sure why but removing the
security attribute does not work for me.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 27 Aug 2021 20:48:39 +0100

Without removing it the programs won't
run at all, unless you've turned off system
integrity protection (bad idea).

And having removed it, as I said, I see the
same unexpected behaviour you do.

Pascal, I'm on a MacBook Pro (Retina,
13-inch, Early 2015)

Emacs Mode: Using
Tree-sitter

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Subject: Emacs mode: using tree-sitter
Date: Mon, 30 Aug 2021 02:21:47 -0700
Newsgroups: comp.lang.ada

Ada-related Tools 145

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

I was looking recently at both Emacs and
vim recent updates, and noted that both
those tools now provide interfaces to tree-
sitter (https://tree-sitter.github.io/tree-
sitter/) which is a parser generator and
incremental parsing library. It doesn't
have an Ada parser yet, though :-(

It might be nice, as a community, to work
on such a parser though. I did not look
into what that implies yet, maybe
someone else has already started work on
that.

The advantage might be that the Emacs
ada-mode can use that instead of its
home-brewed parser (which although I
am sure it was fun to develop still likely
requires some maintenance by Stephen,
and definitely requires manually
compiling some Ada code before we can
use the ada-mode).

We could also use it to improve the
current vim ada-mode, which hasn't been
updated in years and could do with
various improvements.

Finally, maybe we could talk with the
GNAT Studio team. I don't think they
have looked into tree-sitter yet, but it
might be useful.

I do not know whether tools like Visual
Studio Code also interface with tree-sitter,
but maybe that library will become the
equivalent of the Language Server
Protocol, and companies provide one tree-
sitter parser + one language server and the
IDE automatically gains support for Ada

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 30 Aug 2021 17:37:58 -0700

> [...] It doesn't have an Ada parser yet,
though :-(

And it won't until the parser generator
gets a serious overhaul:
https://github.com/tree-sitter/
tree-sitter/issues/693

> [...] maybe someone else has already
started work on that.

Yes, me. There is code in wisitoken devel
that converts any wisitoken grammar to
tree-sitter syntax. I find EBNF much more
readable than the javascript DSL tree-
sitter uses.

> The advantage might be that the Emacs
ada-mode can use that instead of its
home-brewed parser [...]

Someone would have to maintain the tree-
sitter parser; it's not magic. And you'd
have to compile the tree-sitter parser as
well. Again, not magic.

> We could also use it to improve the
current vim ada-mode

It might be easier to adapt the Emacs ada-
mode code to meet the vim plugin
interface. Or adapt Emacs ada-mode code
to LSP, that would benefit many editors.

> Finally, maybe we could talk with the
GNAT Studio team. I don't think they
have looked into tree-sitter yet, but it
might be useful.

They provide an LSP ada-language-
server:
https://github.com/AdaCore/
ada_language_server

It is not as feature rich as the ada-mode
parser.

I doubt they have the resources for
anything more (unless the request comes
with money, of course).

Adare_net Ada Network
Initial Release

From: Daniel Norte Moraes
<danielcheagle@gmail.com>

Subject: ANN: Adare_net Ada network lib
Date: Sat, 4 Sep 2021 20:54:53 -0700
Newsgroups: comp.lang.ada

Hi All! :-)

Adare_net is a small, portable and easy to
use Ada network lib. It supports ipv4 ipv6
udp and tcp, and can 'listen' with ipv6,
too.

The powerful buffer feature can support
all Ada types, and with a more refined
treatment, you can use endian proof
records and unconstrained arrays.

From now, tested and working:

AMD64 : MSWindows 7 sp1 64bits and
Ubuntu Hirsute 64bits

Thanks and Enjoy!!

https://gitlab.com/daresoft/network/
adare_net

From: Drpi <314@drpi.fr>
Date: Fri, 17 Sep 2021 23:04:58 +0200

I had a quick look at the top level source
code. I'm surprised that all packages are
declared with "pure" aspect. From what I
understand of the "pure" aspect, these
packages are not pure. Am I wrong?

From: Joakim Strandberg
<joakimds@kth.se>

Date: Wed, 22 Sep 2021 01:47:13 -0700

I agree with you Nicolas, they should not
be declared Pure. It makes the GNAT
compiler check for example that there are
no global variables used in the packages
but other than that, they (I didn't check all
the packages) are not Pure. The pragma
Pure worked as expected in Ada83 but the
meaning and utility of it disappeared with
the Ada95 standard. [...]

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Wed, 22 Sep 2021 02:16:12 -0700

There is no pragma Pure in Ada 83.

From: Joakim Strandberg
<joakimds@kth.se>

Date: Wed, 22 Sep 2021 04:07:05 -0700

Thanks for clearing that up AdaMagica, I
wasn't aware.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 27 Sep 2021 23:52:33 -0500

>There is no pragma Pure in Ada 83.

Pragma Pure was an IMHO failed attempt
to control/document access to globals. It
has much too broad of a granularity to be
very useful (I've never found anything
that I could make Pure outside of
language-defined things, and some of
those cannot be implemented as Pure even
though declared that way). Ada 2022 has
aspect Global to do this properly, Global
=> null has many fewer holes than Pure.

Note however that one can always lie
about any Ada semantics in interfacing
code. But any such lies make your code
erroneous, and while it might work on one
compiler today, there's no guarantee that
it will work anywhere else (including the
next update of your usual compiler). See
B.1(38.1/5):

 “It is the programmer's responsibility to
ensure that the use of interfacing aspects
does not violate Ada semantics;
otherwise, program execution is
erroneous. For example, passing an object
with mode “in” to imported code that
modifies it causes erroneous execution.
Similarly, calling an imported
subprogram that is not pure from a pure
package causes erroneous execution.”

(The latter two sentences were added
because programmers didn't seem to get
what the first sentence means. We wanted
that to be interpreted in the broadest
possible way.)

AdaControl v1.22r15

From: J-P. Rosen <rosen@adalog.fr>
Subject: [Ann] New version of AdaControl

released
Date: Wed, 22 Sep 2021 22:42:12 +0200
Newsgroups: comp.lang.ada

Adalog is pleased to announce a new
version of AdaControl (1.22r15).

This version features a number of new
rules and enhancements, reaching 73 rules
and 591 possible checks.

Noteworthy improvements include a rule
to check for known exceptions; this
includes a data-flow tracing function, that
benefits other rules too; a subrule to check
assignments that could benefit from the
new "@" syntax of Ada 202X, and other
simplifiable statements; enhanced
detection of redundant instantiations of
generics, and more.

146 Ada-related Products

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

There is also a possibility to define your
own output format, with examples using
Toml and Yaml formats.

As usual, the complete list of
improvements and new features can be
found in file HISTORY.

Installation procedures have slightly
changed, due to AdaCore's decision to not
provide the community with the useful
tools that it reserves to paying customers.
Please read the details on AdaControl's
home page, where you can download this
version from:

https://www.adacontrol.fr

Enjoy!

Ada-related Products

Janus/Ada 1.5 CP/M
Manuals

From: Luke A. Guest
<laguest@archeia.com>

Subject: Janus Ada 1.5 Ada cp/m manuals
Date: Sun, 15 Aug 2021 00:05:34 +0100
Newsgroups: comp.lang.ada

Does anyone have electronic copies?
They’re not in the zips available.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 17 Aug 2021 02:23:43 -0500

Unfortunately, they don't exist. The
original source was for a photo-typesetter
that hasn't existed for decades (and most
likely is only stored on 8" floppies that
probably aren't readable even if the right
hardware was available).

The only way for them to exist is for
someone to scan a printed version.

I have a single printed version in our
archives (with installation instructions for
8" floppies dated March 5, 1984). It's got
someone's handwritten notes in it (it's not
pristine). Anyway, since it is the only
known version, I won't let it out of the
office, since it is literally irreplaceable.

I've offered to others to scan it to PDFs
(one per page, that's all I can figure out
how to do on our cheap multifunction
machine here) if someone would want to
convert that to something more usable.
But since I'd have to scan each page
individually and the document is an inch
thick give or take a few millimeters, I'd
need some compensation for the time. (I
have lots of things I could be doing that
are either fun, make money, or advance
Ada - this is none of these!) Contact me
privately if you want to discuss this
further.

BTW, since RRS still exists and never
made a public version for any version of
Janus/Ada (including the CP/M versions)
-- because all of the versions are derived

from the same original source and it is
likely that some of the compiler still
survives from those versions) -- using it
without a license is technically infringing.
I don't think there is much chance that
anyone would try to stop non-commercial
use, but I would suggest getting legal if
anything commercial is involved. (And
yes, we periodically get requests for help
with it from users that I would have
expected to have moved on long ago.)

From: Paul Rubin
<no.email@nospam.invalid>

Date: Tue, 17 Aug 2021 02:03:43 -0700

> I've offered to others to scan it to PDFs
(one per page, that's all I can figure out
how to do on our cheap multifunction
machine here)

Do you think you could scan and post one
page, maybe from the middle, so we
would know what we are dealing with?

From: Luke A. Guest
<laguest@archeia.com>

Date: Tue, 17 Aug 2021 10:16:22 +0100

> [...] that probably aren't readable even if
the right hardware was available.

There are a few retro youtube channels
who could handle getting any old
hardware working if you have it and are
willing to donate or lend it to them, retro
recipes, rmc, 8-bit guy, etc.

> I've offered to others to scan it to PDFs
(one per page, that's all I can figure out
how to do on our cheap multifunction
machine here) if someone

Maybe you should let someone come in
with their own laptop and scanner to do it.

> BTW, since RRS still exists and never
made a public version for any version
of Janus/Ada (including the CP/M
versions) [...]

Seriously? Even Caldera released CP/M
to the public and Amstrad released the
source to the Spectrum ROM's.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 17 Aug 2021 11:25:54 +0200

I saw a few forums about reading 8"
floppies. It looks quite doable. Floppies
are very reliable too, my old 3.5" floppies
from the 90's are still readable. I think
there are good chances of success.

Conversion from typesetting to HTML
would be a neat Ada program... (:-))

From: Luke A. Guest
<laguest@archeia.com>

Date: Tue, 17 Aug 2021 10:28:02 +0100

> Seriously? Even Caldera released CP/M
to the public and Amstrad released the
source to the Spectrum ROM's.

Having an official public release would be
good for historical reasons. Having the
source would be even better, for curios

like me who have been wondering how
old 8-bit compilers worked.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 18 Aug 2021 15:05:29 -0500

> Maybe you should let someone come in
with their own laptop and scanner to do
it.

That would be an option; I didn't think of
it as the last person that wanted it was in
Scandinavia and visiting Madison WI
would be far more expensive than giving
me a few hundred dollars to do it. If there
is some US-based person that wants to do
that, the dynamics are different.

>Having an official public release would
be good for historical reasons.

Most likely don't have the capability to
make such a release (I do have a Z-80
CP/M machine in storage, but it's unlikely
to boot - S-100 machines stored a year
usually needed extensive cleaning of
contacts to work, after 20 years...).

> Having the source would be even better,
for curios like me who have been
wondering how old 8-bit compilers
worked.

So far as I know, that's (partially) lost. I
had moved it to dual 5 1/4" floppies, and I
was asked to throw out all of the
redundant stuff to save space when we
moved to a smaller space. When I was
retiring the last working machine with 5
1/4", I decided to move it into our version
control, but was unable to read all of the
floppies. So parts are lost. That's OK from
an RRS perspective, as we wouldn't use
an ancient code generator in anything new
anyway (it would need to hook to the
modern optimizer/static analyzer, so it
would need a full redo anyway). I did
manage to get the runtime into our
version control, something that would be
a lot more work to reproduce.

In any case, parts of the source (and more
importantly, design) are still in use so
giving it away isn't really an option.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 18 Aug 2021 21:34:14 -0500

> Do you think you could scan and post
one page, maybe from the middle, so
we would know what we are dealing
with?

That I can do. See
http://www.rrsoftware.com/archives/
CPM-doc-sample.zip

There are three pages in here, one from
the 3.3 upgrade text, and two from the
regular 3.2 printed manual. (I don't think
there ever was a consolidated version.)

Looking at this in more detail, it looks
like the original documentation was
printed on the NEC Spinwriter with a
special font and ribbon. The formatting

Ada and Operat ing Systems 147

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

program was something we built, it was
related to the typesetter version but that
might have been a bit later.

The 3.3 update seems to have been
printed on a lousy dot matrix printer,
probably whatever we were using at the
time. That's why I scanned a sample of
each. The 3.3 update seems to be an MS-
DOS version, unfortunately (it talks about
8087 at one point); for the most part those
were the same but there is probably some
CP/M specific stuff that's missing.

I haven't been able to get the HP scanning
software to work reliably on our network,
so I have to scan each page individually
and e-mail it to myself. That works fine
for things that are just a single page (like
invoices) but gets really old for a large
document. (There are about eight steps on
the tiny touch screen of the printer for
each page.) Not sure that it would be
much easier even with the software,
because I'd still have to go into the other
room and change each page to be scanned
(no feeder on this scanner).

From: Paul Rubin
<no.email@nospam.invalid>

Date: Thu, 19 Aug 2021 22:25:41 -0700

> room and change each page to be
scanned (no feeder on this scanner).

It might be easier to just photograph all
the pages with a phone. That would be
harder to OCR than good quality scans,
but at least it would preserve the contents.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 20 Aug 2021 00:58:06 -0700

> it looks like the original documentation
was printed on the NEC Spinwriter...
The 3.3 update seems to have been
printed on a lousy dot matrix printer,

Any idea of the total number of pages
involved The Spinwriter text is quite
readable and probably OCR-able, not
counting the handwritten notes. The dot
matrix update would be more difficult.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 24 Aug 2021 18:27:56 -0500

> Any idea of the total number of pages
involved?

I can't easily tell; the pages are numbered
by chapter (2-3, 4-5, 8-4, etc.). It's about
19 mm (using a ruler) of 24 lb paper (we
printed these things to last), including 4
heavy dividers. So it's probably not a
huge number. I guessed 200+ when I was
trying to figure out how much time it
would take me to deal with it.) BTW,
some of the pages have yellow highlights
as well. I don't think that would cause
problems for an OCR, but I don't know.

Note that a lot of the manual is a basic
outline of Ada; the original manual was
created back in the early days of Ada
when other material wasn't readily

available. But it also includes details and
limitations on the various features, which
is interesting for a subset. So just skipping
that material isn't a great idea.

Ada and Operating
Systems

DEC Ada for VAX/VMS 5.5

From: Calliet Gérard <gerard.calliet@pia-
sofer.fr>

Subject: dec ada for vax/vms 5.5
Date: Thu, 29 Jul 2021 17:40:44 +0200
Newsgroups: comp.lang.ada

I'm not an archeologist. Somewhere in the
world they use VAX/VMS 5.5-H2, and
will for a long time. I'll be retired when
they stop the servers.

So I'm training new guys who will do the
job. I try to help them take the job as fun
as possible.

We learn this year DEC Ada

I need:

- a distribution

- buying a license

Anyone know where I can get these
things?

From: Shark8
<onewingedshark@gmail.com>

Date: Thu, 29 Jul 2021 09:52:31 -0700

Try VMS Software:

https://vmssoftware.com/contact/

They're doing the port of OpenVMS to
x86, and have a suite of software they're
updating [IIRC they also have existing
support contracts for VMS, so might
know where to get it]; it would probably
be good to call them and tell them your
company would like Ada support in the
port, too.

(It certainly can't hurt to signal that there's
interest there.)

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Thu, 29 Jul 2021 13:40:13 -0400

https://training.vmssoftware.com/
student-license/

https://vmssoftware.com/community/
community-license/

No idea if the Ada compiler is installed.
My prior employer was running a version
of VMS on some Windows server, no
doubt via emulator -- after replacing the
ancient VAX systems. It was needed to
support an ancient (non-DEC) Ada cross
compiler for 680xx processors. (Yes, the
Boeing* 737 flies on 68040 CPUs <G>)

https://blog.poggs.com/2020/04/21/
openvms-on-a-raspberry-pi/

Unfortunately, I think /that/ free version
of OpenVMS has been discontinued.

As you have commented, the hobbyist
license program was terminated last year
and many people are now unable to use
any system which required LMF (VMS
5.0 and above).

http://www.vaxhaven.com/
CD_Image_Archive

But doesn't provide licenses to activate...

* Boeing is NOT the employer in
question

From: Calliet Gérard <gerard.calliet@pia-
sofer.fr>

Date: Fri, 30 Jul 2021 16:22:46 +0200

> Try VMS Software

VSI doesn't do anything for VAX
environments (alpha, itanium, x86 (soon),
yes, VAX, no). And HPE seems to have
totally abandoned VMS.

> They're doing the port of OpenVMS to
x86 [...]; it would probably be good to
call them and tell them your company
would like Ada support in the port, too.

THE Big Issue. I'm calling them since
2015, some others are calling them now.
They hesitate. I think because the ratio:
number of business cases / investment is
not so good.

(I'm myself involved on Ada on VMS:
www.vmsadaall.org)

> (It certainly can't hurt to signal that
there's interest there.)

Right

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Fri, 30 Jul 2021 11:35:15 -0700

> We learn this year Dec Ada

> I need:

> - a distribution

> - buying a license

You might consider contacting AdaCore
(sales@adacore.com I believe). I
remember that quite a number of things
were added to the GNAT compiler for
compatibility with DEC Ada. The biggest
difficulty is likely to be the build process
(and we have related discussions on some
other thread in this forum), because DEC
Ada's notion of systems and subsystems is
quite different from what GNAT does.
But AdaCore has some experience on the
subject.

Porting Ada to NetBSD

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Subject: Help: Ada in NetBSD
Date: Sun, 29 Aug 2021 13:06:53 +0200
Newsgroups: comp.lang.ada

148 Ada and Operat ing Systems

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

Dear All,

I have been trying for the past few months
to make GCC/Ada work in NetBSD. I am
writing this message to you since I have
been stuck in a roadblock for far too long
and without concrete answers.

Long story short: JMarino, within the
Aurora project, already ported GCC/Ada
to a lot of systems, namely FreeBSD,
DragonflyBSD, NetBSD and Solaris. The
last version that works without friction in
NetBSD/pkgsrc is GCC v6. I wanted to
update GCC to v10 (10.3.0).

So, one can compile GCC v10 with C,
C++ and Ada support with v6 without any
issues. The biggest problem is that the RT
(RunTime Files) had no configuration for
NetBSD (see the original Makefile.rtl in
the gcc/ada directory). I fixed it by
copying the FreeBSD support files and
modifying an imported C function to be
POSIX compliant, since NetBSD did not
have the function that FreeBSD used
(related to pthreads).

The results of compiling GCC v10 with
this "small" change are documented in a
blog entry I did:

https://www.irvise.xyz/Projects
%20&%20Engineering/
updating-gcc-ada-pkgsrc.html

TL;DR: GCC v10 compiles and can
generate binaries!!! :D But...

The tasking system is not working
correctly (I have been testing the compiler
with the ACATS test suite provided by
Simon). The linker complains about some
C functions not being correctly imported
within Ada files. And the programs where
the linker complains, once compiled, tend
to get blocked or die. Here is one such
example:

/usr/bin/ld:

/home/fernando/mysandboxfolder/usr/
pkg/gcc10/lib/gcc/
x86_64--netbsd/10.3.0/adalib/
libgnat.a(s-osprim.o):

 in function
`system__os_primitives__clock':

/usr/pkgsrc/wip/gcc10-aux/
work/build/gcc/ada/rts/s-osprim.adb:91:
warning: reference to compatibility
gettimeofday(); include <sys/time.h> to
generate correct reference

As you can see, the linker says that, in
this case, gettimeofday() is not correctly
referenced and that I should include
<sys/time.h>. Notice, it is complaining
that the file s-osprim.adb, and Ada file, is
at fault here. This happens to all files that
use the tasking system in one way or
another, so, in summary, all large
projects, such as GPRBuild.

I thought that an #include <sys/time.h>
may have been missing from a C source

file that is required to build the Ada
compiler. After all, there were some
defined (__NetBSD__) missing from the
Ada sources.

I added those. Nothing. I took a really
good look at JMarino's patches:

http://cvsweb.netbsd.org/bsdweb.cgi/
pkgsrc/lang/gcc6-aux/files/
diff-ada?rev=1.1&content-type=text/
x-cvsweb-markup

I applied some extra changes (the
configure/configure.ac patches are failing
to apply). Still nothing, it keeps failing.

I have been looking for the "missing"
#include files, they are <time.h>,
<sys/time.h> and <signal.h>. I searched
through the code, there are few
occurrences of them and, for example,
<sys/time.h> only appears in a legacy
system.

I checked the C signature files to make
sure that they were also correct in the Ada
sources, and they seem to match.

I am out of ideas.

How come the linker complains about
those functions and not the other imported
C ones? These files are automatically
included with -lc. How could I go about
fixing this issue? Any ideas, pointers?

Below* are the patches that I have
created.

If you are wondering why am I doing this:
I like alternative systems, Ada is portable
on paper, but what about in reality? And
my end goal would be to see Ada
everywhere and upstream these fixes to
GCC.

*[For the large amounts of code in this
thread, visit https://groups.google.com/
g/comp.lang.ada/c/XXAQEbMsEUM
—arm]

From: Stephane Carrez
<stephane.carrez@gmail.com>

Date: Sun, 29 Aug 2021 06:19:57 -0700

On NetBSD there are several symbols that
are replaced by the virtue of including a C
header. If you include correctly the C
header, the correct symbol is used and
you don't get the linker warning.

For gettimeofday the symbol is replaced
by __gettimeofday50.

These symbols are marked with
__RENAME(XXX) macros in the C
headers.

I would suggest to have a look at the .o
files to find out the one that has the
`gettimeofday` symbol that is not
replaced.

By the way, I'm interested in your work as
I'm still stuck on gcc 6 for my NetBSD
machines. 20 years ago I wrote the
68HC11 port that was integrated in GCC

3.3 so I have some past experience in
working with GCC. Despite my very
limited spare time, I could have a look if
you provide me with the sources of your
port :-)

From: Simon Wright
<simon@pushface.org>

Date: Sun, 29 Aug 2021 18:34:50 +0100

> The tasking system is not working
correctly (I have been testing the
compiler with the ACATS test suite
provided by Simon).

There are several tasking-related (CXD)
tests in ACATS that few if any desktop
OSs are expected to support; mainly, I
think, priority-related.

[...]

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Sun, 29 Aug 2021 20:08:27 +0200

> On NetBSD there are several symbols
that are replaced by the virtue of
including a C header. If you include
correctly the C header, the correct
symbol is used and you don't get the
linker warning.

That is what I did by adding the indicated
header files to the NetBSD section of the
init.c file. No other systems have them
there (or anywhere in some cases). I
expected that to fix the issue, but it did
not.

> For gettimeofday the symbol is replaced
by __gettimeofday50.

> These symbols are marked with
__RENAME(XXX) macros in the C
headers.

I saw a few of those... So that is what they
do... I never got to the bottom of that
rabbit hole.

> I would suggest to have a look at the .o
files to find out the one that has the
`gettimeofday` symbol that is not
replaced.

I am doing it right now, let's see what I
can find... However, as I said, the headers
should have been already included. The
linker does not complain during the
compilation of gcc. Only when I try to
build things with the newly created
toolchain. Maybe that is a clue...

> By the way, I'm interested in your work
as I'm still stuck on gcc 6 for my
NetBSD machines. [...]

I am working directly on pkgsrc/wip. This
way I hope to be able to upstream
everything as quickly as possible. Jay
Patelani already uploaded the patches
from the initial blog post. You can find
them here:

https://github.com/NetBSD/pkgsrc-wip/
tree/c550eafe889691af212379590974944
e1359e180/gcc10_aux

Ada and Operat ing Systems 149

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

It is basically the gcc10 entry with the
patch-ada* file in patches and Ada added
to the USE_LANGUAGES variable (it
has to be hardcoded, it cannot be set via
options). It is not a clean snapshot, some
dirty files were pulled, but it should work
as first order approximation. The previous
email contains some extra patches
(though you would have to update the
distinfo file manually). I was lucky that
the pkgsrc got changed a few months
back to make gcc6-aux the default,
instead of gcc5-aux.

I will ask you to take a look if I need to.
However, this is "my personal project" I
want to do this myself, so for the time
being, no need for that :) I would like to
see Ada running on as many systems and
package managers as possible ;)

P.S: I am yet to try your AWA, I am
looking forward to it.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 29 Aug 2021 19:25:05 +0100

>> If you include correctly the C header,
the correct symbol is used and you
don't get the linker warning.

> That is what I did by adding the
indicated header files to the NetBSD
section of the init.c file. [...] I expected
that to fix the issue, but it did not.

The problem can't be fixed by including C
headers, because … [...]

The C header is (I got this from the net, so
beware)

int gettimeofday(struct timeval * __restrict,
void *__restrict)

 __RENAME(__gettimeofday50);

so when you say, in Ada,

 function gettimeofday
 (tv : not null access struct_timeval;
 tz : struct_timezone_ptr) return Integer;
 pragma Import (C, gettimeofday,
 "gettimeofday");

the linker looks for a symbol
gettimeofday (or maybe _gettimeofday)
and gives you the warning that you report.
Since it's just a warning, it may actually
work - for the moment, anyway.

The Ada needs to change to

 function gettimeofday
 (tv : not null access struct_timeval;
 tz : struct_timezone_ptr) return Integer;
 pragma Import (C, gettimeofday,
 "gettimeofday50");

(or maybe "_gettimeofday50", or even
"__gettimeofday50" - nm will be your
friend).

From: Stephane Carrez
<stephane.carrez@gmail.com>

Date: Sun, 29 Aug 2021 15:08:27 -0700

Simon is right, the symbol used by the
Ada import statement must be renamed.

The reason for the symbol change is some
NetBSD libc change in the signature of
some system calls. Some information in:
http://ftp.netbsd.org/pub/NetBSD/NetBS
D-current/src/lib/libc/README

The __gettimeofday50 is the new function
signature while _gettimeofday is the old
one. The gettimeofday is the weak alias to
_gettimeofday and produces the warning.

Beware that the symbol name that you
specify for some import statement is
platform specific. Having a different
symbol name for NetBSD is quite
common.

FreeBSD is different from NetBSD,
likewise for OpenBSD :-)

Thanks for the link to the NetBSD git
sources, I'm trying to build and keep you
informed of my progress :-)

From: Simon Wright
<simon@pushface.org>

Date: Mon, 30 Aug 2021 08:37:54 +0100

> Simon is right, the symbol used by the
Ada import statement must be renamed.

One possibility, with ample precedent,
would be to create e.g.
__gnat_gettimeofday() in
gcc/ada/adaint.[ch] and reference that in
the Ada import statement.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Mon, 30 Aug 2021 14:15:18 +0200

Okay. I have a much much clearer picture
now.

I have spoken with a couple of people in
the NetBSD IRC. NetBSD has been
revamping their ABI, see for example, the
UNIX time.

Some things were going to break. In the
case of some of the "standard" functions,
they created a RENAME macro to hide
these changes. It leaves a weak symbol
reference that is empty and not resolved
by the linker.

After taking a much closer look into the
patch set of JMarino, I realised that he
had already dealt with this issue. For
example, see:

https://github.com/NetBSD/pkgsrc/blob/
27a8f94efc02f33007d20a4ba6a8aaa36936
1b95/lang/gcc6-aux/files/diff-ada#L1685

I think I am going to use the strategy that
Simon pointed out. Since that would be
the most maintainable way for the
future... The patching is going to be much
longer than I expected.

From: John R. Marino <mfl-
commissioner@marino.st>

Date: Wed, 1 Sep 2021 06:28:43 -0700

Fernando,

Maybe you are in luck. A friend of mine
needs Ravenports

(http://www.ravenports.com/) to support
NetBSD. Ravenports has the same base
compiler for all supported systems. It was
GCC 9.3 but I'm in the process of
completing the transition to GCC 11.2.0.
This base compiler has to support Ada
among other languages. Which is a long
way of saying I have to polish my netbsd
patches for that compiler and re-bootstrap
it back to NetBSD. So I'll be working on
this separately (for GCC 11.2, not 10.x).

My process will be different. I cross-
compile it on another host, then bring it
over to NetBSD and eventually it builds
itself natively. I'm awaiting an SSD to
arrive which I'll install the latest NetBSD
on. My gcc6-aux work has been living on:
https://github.com/jrmarino/draco While
the patches are current for FreeBSD,
DragonFly, Linux, Solaris and probably
Android, I did let OpenBSD and NetBSD
support slip. But I'm not starting from
scratch.

I'll look over your work. And with regard
to the test suite, I got all the tests to pass
back then:

http://www.dragonlace.net/gnataux/
netbsd64/

Which reminds me: I'd only do this for
x86_64 platform.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Wed, 1 Sep 2021 16:58:47 +0200

[...]

> Which reminds me: I'd only do this for
x86_64 platform.

My goal would be to at the very least give
support to ARM, ARM64 and RISC-V.
To be honest with you, I would like it to
work on any piece of hardware that can be
currently bought. Also, not just NetBSD,
also FreeBSD, DragonflyBSD (already
done by you), improved OpenBSD
support and Haiku. I would also like to
see gcc-ada added to Guix, the GNU
package manager, but that is a completely
different story.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Fri, 17 Sep 2021 19:36:01 +0200

Another update on my side, this time with
a bit more content.

Following the help provided by Arnaud, I
modified the flags with which the
ACATS's tests get compiled.

To the gnatmake command I added the -f
-a -g -j0 flags.

-f to force the recompilation of all files
needed with the exception of the runtime
and library files.

-a is to also force the recompilation of the
library & runtime files.

Whatever is needed.

150 Ada and Other Languages

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

-g debugging.

-j0 ignored by the ACATS suite provided
by Simon (or so says the documentation
in the shell file).

These flags make the compilation much
slower, obviously, since nearly for every
test the entire Ada library needs to be
recompiled. However, this started to give
me a much better insight on what was
going on. Especially since now I could
debug the failing tests.

I noticed that the first test I started
debugging was stuck in a loop related to
task management. This would explain
why I was getting so many tests failing
with timeouts. Great, but I could only get
so much insight.

Arnaud, once again came to the rescue
and indicated that I should add the -gnata
flag.

-gnata is to enable assertions.

And yes, now the tests were finally failing
in a meaningful manner. I have written
the assertions I have found that failed.
Remember, I am using GCC 10.3 with the
patch set that is available on my website.
You can find it in one of the messages I
have sent in this thread.

So, what do we get?

System.Assertions. Assert_Failure in s-
tassta.adb:1643 (very common
everywhere), s-tpopmo.adb:213 (fairly
common) and s-taprop.adb:463 (common
in the c9 section).

Storage_Error in s-intman.adb:136

Stack overflow or erroneous memory
access in a few tests. I got no pointer on
where it was happening.

And still some timeouts, but I think they
are related to the first assertion
mentioned.

The "strange" (not that much) is that I
have not touched any of these files. I will
see where they are used in the compiler,
how they are used and if the issues are
related with how NetBSD handles some
functions/standards... The s-tassta.adb
problem I know is 100% related to
POSIX Threads. Maybe the issue is in the
POSIX Threads handling or maybe not.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Thu, 23 Sep 2021 21:53:47 +0200

Okay, so another short blog post. This is
going to be a bit of a rant.

So... remember when I said that NetBSD
expected a priority value of -1 when using
SCHED_ODER? And that that was not
POSIX compliant? Well, after a nice
conversation in #netbsd, it has been
decided to escalate this matter into a
PR/ML discussion. All that good :)

But the question on how does Linux work
then? Remained... So I ran the ACATS
suite with debugging symbols,
recompilation and assertions to check.
And guess what?

Let the code speak:

 else
 Param.sched_priority := 0;
 Result :=pthread_setschedparam
 (T.Common.LL.Thread,
 SCHED_OTHER, Param'Access);
 end if;
 pragma Assert (Result in 0 | EPERM |
 EINVAL);
end Set_Priority;

So the Set_Priority function receives the
Default_Priority value, which I think was
48. But when it goes into the actual
branch, it knows that that default value is
stupid and discards it (sets it to 0). That
would be all nice and dandy, but here is
the problem, 0 is a valid value because
most OS/arches use it, there is no reason 0
is valid (as per POSIX).

And what really gets me is that Pragma...
Whoever wrote it probably was getting
errors and decided that that was fine.
EPERM? EINVAL? Not my problem! No
wonder there is a specific s-
taprop__linux.adb...

So here we are. NetBSD is not POSIX
compliant (min and max
SCHED_OTHER priority is -1, which is
an error code for the function that should
return it), and Linux hardcodes it.
Amazing, just amazing...

My solution? Email the NetBSD people.
But that won't be enough. So I am
thinking of patching the s-
taprop__posix.adb file to try it with the
default priority, if it fails, with 0, if it
fails, with -1 for NetBSD...

Oh well... I thought that the state of
GNAT was better... Anyhow, regards,

From: Simon Wright
<simon@pushface.org>

Date: Fri, 24 Sep 2021 08:48:34 +0100

> pragma Assert (Result in 0 | EPERM |
EINVAL);

EINVAL was added 5 years ago. The
others have been there for 20 years (when
Ada was added to FSF GCC, according to
git blame in https://github.com/gcc-
mirror/gcc).

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Fri, 24 Sep 2021 11:44:56 +0200

> EINVAL was added 5 years ago. The
others have been there for 20 years

Thank you for your reply Simon. But I
think I have understood it now.

It really does not matter what that
function "pthread_set..." returns, even if it
is an error.

SCHED_OTHER is the default scheduler
FIFO and RR are more RTOS-like and
are generally reserved for root. I would
expect that most programs that spawn
threads generally do not care about the
priority, since that is managed by the OS.

That would mean that even if that
function fails, once the program spawns
the actual process, the OS just does it,
independently of what the program tried
to do. That would explain why it works in
OpenBSD, FreeBSD etc, and why I was
not getting this error before I added
assertions. Because it really does not
matter.

I am still very salty about code that knows
it fails, but does nothing/is not cleaned
up...

I patched however that function and reran
ACATS.

Now, I am no longer getting that assertion
failure (s-taprop.adb:659). And at the very
least the test I worked with (a83a02b) is
now fully fixed. However, now, other
assertion failures in a couple other places
are taking place, primarily s-
tassta.adb:1643, which is related to

pragma Assert
(Self_ID.Common.Wait_Count = 0);

Which, from the comments, the master
should not have any slaves but it does
somehow (mine is returning a 1). The s-
tassta.adb file is shared among all systems
(there are no OS specific files). Another
common error is s-taprop.adb:463 and
STORAGE_ERROR : s-intman.adb:136

I will keep on debugging...

Ada and Other
Languages

Ada vs Pascal Efficiency

From: Richard Iswara
<haujekchifan@gmail.com>

Subject: Not good for Ada endorsement
Date: Wed, 7 Jul 2021 07:21:55 -0700
Newsgroups: comp.lang.ada

I haven't seen this posted before so
apologies if redundant.

A couple days ago this person posted on
YouTube this clip:
https://www.youtube.com/watch?
v=pv4Yq35Chx0.

In the video it was run against Pascal and
Ada lost by being 50% slower than Pascal
on Prime Sieving. Also shown as 2 orders
of magnitude slower than the fastest
implementation of that day. See on video
at 20:45.

This is the base implementation link:
https://github.com/
PlummersSoftwareLLC/Primes/blob/

Ada and Other Languages 151

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

drag-race/PrimeAda/solution_1/src/
main.adb.

I know it's trivial, and probably click bait
on the video person, but this is not a good
PR on Ada reputation. The guy said do a
better implementation to get a better
score. So can Ada implementation do
better?

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 7 Jul 2021 16:06:46 +0100

I watched this finally yesterday as it kept
popping up. I started running the entire
project last night as running the Ada one
on it's own didn't do anything. It's still
running, It's been on PrimeR all day!

> So can Ada implementation do better?

Don't know as I don't know the algorithm,
but I did clone the repo to look at it. I
would be comparing Ada with C, C++,
Pascal and any other compiled language.
Not just Pascal.

From: Richard Iswara
<haujekchifan@gmail.com>

Date: Wed, 7 Jul 2021 20:46:29 -0700

It is supposed to be a basic Sieve of
Erastosthenes searching for primes under
1 million.

Odd number search only, can be
multithreaded and skip ahead. See the
rules at: https://github.com/
plummerssoftwarellc/Primes/blob/
drag-race/CONTRIBUTING.md#rules.

Indirectly it is a comparison of
implementation and tools benchmarking.
Looking at the gpr file, there is no
compile switch used, not even an "-o2"
switch.

From: Jeffrey R. Carter
Date: Thu, 8 Jul 2021 10:20:31 +0200

> Indirectly it is a comparison of
implementation and tools
benchmarking. Looking at the gpr file,
there is no compile switch used, not
even an "-o2" switch.

Compiling with -gnatp -O3 would
undoubtedly speed it up (suppressing
checks is justified since execution with
checks active shows that no checks fail).

Looking casually at the code, the map
could be replaced by a constant, as
Sieve_Size is hard coded to 1,000,000,
and the filling of the map is included in
the timing. The calculation of the square
root of 1,000,000 could be replaced by a
constant. The array of Boolean could be
constrained to 3 .. Sieve_Size. The
function that simply returns (others =>
True) could be replaced by the aggregate,
though optimization will probably do that.
Long_Long_Integer could be replaced by
a type with range 0 .. 2 ** 31 - 1, though I
don't know if that would have any effect.
The first inner loop in the sieve algorithm
could be eliminated, in which case the

initialization of Num could also be
removed.

From: Jeffrey R. Carter
Date: Thu, 8 Jul 2021 12:42:25 +0200

Compiling the original code with

gnatmake prime_sieve.adb

gives 408 passes in 5 seconds.

Making the changes listed above (I used
Interfaces.Integer_32) and compiling with

gnatmake -O3 prime_sieve.adb

(to ensure that no checks fail) gives 2087
passes in 5 seconds, for a factor of 5.1.

Applying that to the reported 67
passes/second for the original on the test
system implies that this version, compiled
with checks enabled and optimization,
would give 343 passes/second.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 8 Jul 2021 10:42:40 +0200

> Looking casually at the code, [...]

Exactly, this is what is wrong with such
contests. The solution is non-scalable
giving advantage to low-level languages
like C. Scalability and readability has the
price that hobby-sized instances work
poorly.

P.S. I would also suggest ensuring the
Boolean array is not packed. If not with
compiler switches and pragmas then by
declaring a custom Boolean 1,2,4,8 bytes
long depending on the target architecture.
It is not a fair play, guys!

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 8 Jul 2021 11:51:03 +0100

Here's the playlist:
https://youtube.com/playlist?list=PLF2KJ
6Gy3cZ5Er-1eF9fN1Hgw_xkoD9V1

The second video is where he sets up
Python, C# and C++.

He shows the C++ jumping from 4645
(https://youtu.be/D3h62rgewZM?t=1246)
to 7,436
(https://youtu.be/D3h62rgewZM?t=1306)
passes going from 32 to 64 bit.

He also uses clang's -Ofast option to
compile for speed over size.

From: Jeffrey R. Carter
Date: Thu, 8 Jul 2021 13:12:29 +0200

Going back to 64-bit integers gives 1999;
with -gnatp, 2098

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 8 Jul 2021 18:37:54 +0100

I've uploaded my version here:
https://github.com/Lucretia/Primes/tree/
add-optimised-ada/PrimeAda/solution_2

It's a straight conversion from the C++ to
Ada. I intend to keep optimising it.

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 8 Jul 2021 18:43:42 +0100

As a quick test, I removed the Pack
attribute from the Bits array and got the
following speed:

debug0:

Passes: 1108, Time: 5.003198, Avg:
0.004515521, Limit: 1000000, Count1:
78498, Count2: 78498, Valid: TRUE

Lucretia;1108; 5.003198;
algorithm=base,faithful=yes,bits=8

optimised:

Passes: 3286, Time 5.000592, Avg
0.001521786, Limit: 1000000, Count1:
78498, Count2: 78498, Valid: TRUE

Lucretia;3286; 5.000592;
algorithm=base,faithful=yes,bits=8

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 09 Jul 2021 01:10:34 -0700

> It's a straight conversion from the C++
to Ada. I intend to keep optimising it.

I'd be interested in seeing a straight
conversion of Pascal to Ada, if the
existing Ada code differs significantly
from the existing Pascal code in a way
that affects the speed and isn't a
straightforward conversion.

From: Egil H H <ehh.public@gmail.com>
Date: Fri, 9 Jul 2021 01:24:01 -0700

One significant difference between the
original Ada version and the Pascal and
C++ versions, is that Ada is missing a
Num := Factor before the first inner loop.

(Luke fixed that in his version, though)

From: Jeffrey R. Carter
Date: Fri, 9 Jul 2021 11:16:24 +0200

> I get a bit better performance by
modifying the check to

> if Number mod 2 /= 0 and then
Sieve.Bits(Index_Type(Number)) then

Since both operands are positive, mod and
rem give the same results, and rem is
usually a bit faster. It's normally not an
issue, but in this case it's done billions of
times, so it might make a difference.

From: Jeffrey R. Carter
Date: Fri, 9 Jul 2021 11:21:02 +0200

Note also that short-circuit forms (and
then) require disabling processor-level
optimizations and may have a negative
effect on execution time when used
unnecessarily.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Sun, 11 Jul 2021 11:54:27 -0400

>I haven't seen this posted before so
apologies if redundant.

152 Ada and Other Languages

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

It also showed up on the Free-Pascal
group. Though there the concern was
relative to a C/C++ implementation.

The kicker... Said C/C++ implementation
declared practically everything as
"constexpr" (or some such), and a Google
search indicated that such items are
computed... BY THE COMPILER. Not at
executable run-time. Run-time basically
was "yup, we found them all".

From: Lucretia
<laguest9000@googlemail.com>

Date: Thu, 15 Jul 2021 08:13:05 -0700

I managed to get just under 4000 passes
with a 1 bit array, but not using Ada's
packed array. That's actually the slowest
method, strangely.

From: Jeffrey R. Carter
Date: Thu, 15 Jul 2021 17:56:31 +0200

So you have an array of a modular type,
calculate an index and bit within it, mask
out that bit, and compare it to zero? I
would have thought an unpacked array of
Boolean would be fastest.

A packed array of Boolean requires all the
operations above, plus shifting the bit to
the LSB and treating the result as a
Boolean, so it may not be that surprising
that it's slower.

From: Jeffrey R. Carter
Date: Thu, 15 Jul 2021 23:08:40 +0200

>> A packed array of Boolean requires all
the operations above, plus shifting the
bit to the LSB and treating the result as
a Boolean, so it may not be that

> Don't need to shift to the LSB, only
need to shift the 1 to the bit location
you want to test, invert and then check
against 0.

You know that that is enough, and may be
what you're doing manually, but the
compiler may not know that. If A is a
packed array of Boolean, then A (I) has
type Boolean. Unless the compiler can
optimize it (and maybe it can), it would
normally need to shift the bit down so it
can be treated as a value of type Boolean,
and then apply whatever you do with the
resulting Boolean value.

From: Mace Ayres
<mace.ayres@icloud.com>

Date: Sun, 18 Jul 2021 16:03:04 -0700

I doubt if any industrial software
engineering in Aviations, railroads,
control systems in Europe or in the US,
beyond, web programmers are going to
abandon Ada, back to Pascal, over such
kiddy code comparisons.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Sun, 18 Jul 2021 18:00:19 -0700

It's still a matter of concern if
straightforward code is that much harder
to compile with Ada, that an advanced
Ada compiler (GNAT) produces slower

code than a relatively simple Pascal
compiler does (depending on what Pascal
compiler it was, of course).

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Thu, 15 Jul 2021 09:29:50 -0700

Should fixed lower bound index array (-
gnatX) speed it up?

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Fri, 23 Jul 2021 10:04:12 -0700

> Should fixed lower bound index array (-
gnatX) speed it up?

Indeed, it does. As posted on Reddit Ada,
I got 5476 Passes after changing array
types to arrays having fixed lower bound
index of 0 on lines 9 and 10 and
compiling it using switch -gnatX -02. By
the way, I used GNAT Studio 2021
running on Windows 10.

Predefined Integer Sizes in
Ada & C

From: Kevin Chadwick
<m8il1ists@gmail.com>

Subject: C time_t 2038 problem s-os_lib.ads
Date: Thu, 23 Sep 2021 03:42:16 -0700
Newsgroups: comp.lang.ada

I have noticed that C time_t appears to be
Long_integer in GNAT s-os_lib.ads.

Just wondering if it should be 64bit long
long as OpenBSD has already moved to
long long?

There seemed to be some noise on Twitter
about the Linux Kernel side last year but
I'm not sure if that ended up just being
noise without action or not.

"https://www.openbsd.org/papers/
eurobsdcon_2013_time_t/"

p.s. It's interesting that Ada’s type system
avoids this issue mostly (ignoring leap
handling pain)

From: Jeffrey R. Carter
Date: Thu, 23 Sep 2021 16:26:09 +0200

GNAT defines

 type Long_Integer is range
 -(2 **63) .. +(2 **63 - 1);
 for Long_Integer'Size use 64;

From: Joakim Strandberg
<joakimds@kth.se>

Date: Thu, 23 Sep 2021 08:08:49 -0700

Well, yes Long_Integer is 64-bits, but
long long in cpp is 128 bits which sounds
like a discrepancy to me. On OpenBSD it
indicates C time_t should be changed
from Long_Integer to something else that
is 128-bits. All packages in Ada have
"with Standard; use Standard;" which
brings Integer etc. into scope.
Long_Integer should be defined in the
Standard package. Under help in GPS it
should be possible to find the Standard
package.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Thu, 23 Sep 2021 12:52:30 -0700

If by "cpp" you mean C++, I've never
seen an implementation where long long
is 128 bits (or anything other than exactly
64 bits).

In C and C++, int is required to be at least
16 bits (POSIX requires 32), long is at
least 32 bits, and long long is at least 64
bits. On most 64-bit Linux-based systems,
int is 32 bits, and long and long long are
both 64 bits. On 64-bit MS Windows, int
and long are both 32 bits, and long long is
64 bits. time_t is 64 bits on almost all 64-
bit systems. I've never seen a 128-bit
time_t; 64 bits with 1-second resolution is
good for several hundred billion years.

If an Ada implementation makes Integer,
Long_Integer, and Long_Long_Integer
correspond to C and C++'s int, long, and
long long, then on a system (e.g.,.
Windows) where long is 32 bits, defining
time_t as Long_Integer is going to cause
problems in 2038 -- *and* it's likely not
going to match the system's C and C++
time_t definition.

 don't see a definition of "time_t" in s-
os_lib.ads on my system.

If an Ada implementation is going to
define a type that's intended to match C's
time_t, it should match the representation
of that C type. I presume GNAT gets this
right.

From: Joakim Strandberg
<joakimds@kth.se>

Date: Fri, 24 Sep 2021 02:32:54 -0700

Thanks for the summary of different types
of integers on different platforms Keith.
When I wrote above I had simply done a
quick Google search and found
https://www.tutorialspoint.com/what-is-
long-long-in-c-cplusplus where it said
"On Linux environment the long takes 64-
bit (8-bytes) of space, and the long long
takes 128-bits (16-bytes) of space." I have
never seen 128-bit integers either but have
seen on the development log on
AdaCore's website that support for 128-
bit integers has been added to the
Interfaces package
(Interfaces.Integer_128 and
Interfaces.Unsigned_128). I believe they
are part of the new Ada2022 standard.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 24 Sep 2021 12:44:38 +0300

Good that they have been added.

> I believe they are part of the new
Ada2022 standard.

I believe not. The draft Ada2022 RM still
requires no specific integer widths in
section B.2, "The Package Interfaces". As
in earlier standards, it still says:

Ada Pract ice 153

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

"An implementation shall provide the
following declarations in the visible part
of package Interfaces: - Signed and
modular integer types of n bits, if
supported by the target architecture, for
each n that is at least the size of a storage
element and that is a factor of the word
size. The names of these types are of the
form Integer_n for the signed types, and
Unsigned_n for the modular types"

The change by AdaCore probably reflects
the fact that gcc now supports 128-bit
integers on common platforms.

Wikipedia has a summary:
https://en.wikipedia.org/wiki/
128-bit_computing.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Fri, 24 Sep 2021 15:54:10 -0700

> Thanks for the summary of different
types of integers on different platforms
Keith. When I wrote above I had
simply done a quick Google search [...]

That web page is simply wrong about
long long being 128 bits. It certainly can
be (the C standard only says that it's at
least 64 bits), but it's exactly 64 bit on
every implementation I've seen or heard
of.

I'm not shocked that something on
tutorialspoint.com is wrong.

There are several common data models in
the C and C++ world:

Name ILP32 LP64 IL32P64
char 8 8 8
short 16 16 16
int 32 32 32
long 32 64 32
long long 64 64 64
pointer 32 64 64

32-bit systems (which are becoming rarer
for non-embedded systems) typically use
ILP32, and 64-bit Linux/Unix systems
typically use LP64. 64-bit Windows uses
IL32P64 (and hardly anything else does).

It's *seems* almost obvious that Ada's
types

Character
Short_Integer
Integer
Long_Integer
Long_Long_Integer

should correspond to the similarly named
C types, but it's not required. (I don't
know whether GNAT does so consistently
or not.)

Some C and C++ compilers support 128-
bit integers on 64-bit systems. gcc
supports "__int128" and "unsigned
__int128", but they don't quite meet all
the C requirements for integer types; for
example, there are no literals of those
types.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sat, 25 Sep 2021 12:22:17 +0200

> It's *seems* almost obvious that Ada's
types [...] should correspond to the
similarly named C types

It might turn out as an advantage if Ada
programs don't use types named like that.

First, the standard says an implementation
MAY provide them.

Second, if Ada programs call C functions
that take C int arguments, then argument
types taken from Interfaces.C seem to be
the obvious choice.

Just state what's needed in the type's
definition in your program, referring to
"externally defined" types as required.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 25 Sep 2021 12:23:53 +0100

> It's *seems* almost obvious that Ada's
types [...] should correspond to the
similarly named C types, but it's not
required. (I don't know whether GNAT
does so consistently or not.)

Package Standard in FSF GCC 11.2.0 on
macOS (which you can see by compiling
something with -gnatS) has

 type Integer is range -(2 **31) ..
 +(2 **31 - 1);
 for Integer'Size use 32;

 subtype Natural is Integer range
 0 .. Integer'Last;
 subtype Positive is Integer range
 1 .. Integer'Last;

 type Short_Short_Integer is range
 -(2 **7) .. +(2 **7 - 1);
 for Short_Short_Integer'Size use 8;
 type Short_Integer is range -(2 **15) ..
 +(2 **15 - 1);
 for Short_Integer'Size use 16;

 type Long_Integer is range -(2 **63) ..
 +(2 **63 - 1);
 for Long_Integer'Size use 64;

 type Long_Long_Integer is range
 -(2 **63) .. +(2 **63 - 1);
 for Long_Long_Integer'Size use 64;

 type Long_Long_Long_Integer is range
 -(2 **127) .. +(2 **127 - 1);
 for Long_Long_Long_Integer'Size use
 128;

I didn't know about the last, which is new
in FSF GCC 11/GNAT CE 2021 ... I
could build my Analytical Engine
simulator with 40 digit wheels (i.e.
capable of 40 decimal digits) instead of
50 using Long_Long_Long_Integer
instead of GNATColl.GMP.Integer.

Ada Practice

Discarding Function Call
Results

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Re: calling function but ignoring
results

Date: Wed, 30 Jun 2021 17:06:27 -0700
Newsgroups: comp.lang.ada

> It is not very often that ignoring a
function result is okay, but I have run
across many instances of the following
block structure in code over the years:

> declare

> dont_care : BOOLEAN;

> begin

> dont_care := foo(x, y);

> end;

With, GNAT, this can be:

declare
 dont_care : BOOLEAN := foo(x, y);
 pragma Unreferenced (dont_care);
begin
 null;
end;

which makes the intent clear. I don't know
if Unreferenced was proposed as a
language addition; it's not in Ada 202x.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 30 Jun 2021 22:55:12 -0500

Unreferenced controls warnings (with one
exception) are not an Ada concept. So
how would we describe what it does?
Aspect unreferenced does nothing at all??
:-)

One could imagine an aspect that caused a
Legality Rule against an actual reference,
but I don't think that is what the GNAT
aspect does.

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Date: Thu, 1 Jul 2021 11:07:41 -0700

> > Is there an Ada 202x feature to
support calling functions and ignoring
the result?

> If you want to use a language that
allows this, then you probably shouldn't
be developing S/W.

Yes, you are right. But sometimes it is
necessary (especially at the H/W level) to
force a read of a peripheral register in
order to obtain a specific behaviour, e.g.,
clear an interrupt or latch a value
previously written; in these cases what
you read is useless.

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Fri, 2 Jul 2021 00:32:23 -0700

> But sometimes it is necessary...

154 Ada Pract ice

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

Yes, but the frequency is too low to
justify yet another feature of the language,
IMO.

From: Nasser M. Abbasi
<nma@12000.org>

Date: Fri, 2 Jul 2021 20:22:55 -0500

fyi, Matlab had this for years:

https://www.mathworks.com/help/matlab/
matlab_prog/ignore-function-outputs.html

"This example shows how to ignore
specific outputs from a function using the
tilde (~) operator.

To ignore function outputs in any position
in the argument list, use the tilde operator.
For example, ignore the first output using
a tilde.

 [~,name,ext] = fileparts(helpFile);"

From: Matt Borchers
<mattborchers@gmail.com>

Date: Fri, 2 Jul 2021 21:59:18 -0700

Thanks for the feedback. I guess I have to
live with five lines to accomplish what
one should do regardless of the numerous
varieties of ways to accomplish this. I
mostly appreciate the wordiness of Ada
for the clarity it offers to the code
maintainers, but in some cases the extra
wordiness offers nothing.

Related to this, I really appreciate the new
parenthesized expressions as it offers a
clean way to declare simple functions.
GNAT 21.2 was just released today and
includes declare expressions. I don't have
the compiler yet, but I wonder if this
would work:

procedure FOO(x, y) is
 (declare b : BOOLEAN := foo(x, y));

but it seems likely that an expression
returns a value and would not be allowed
in this instance.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sat, 3 Jul 2021 00:37:08 -0700

> I mostly appreciate the wordiness of
Ada for the clarity it offers to the code
maintainers, but in some cases the extra
wordiness offers nothing.

If you use functions properly (only "in"
parameters and no side effects) you don't
have this issue at all.

Interfacing with C is an edge case which
doesn't need to add more noise in the Ada
syntax, IMHO.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 3 Jul 2021 10:57:20 +0300

 If you use functions properly (only "in"
parameters and not side effects) you don't
have this issue at all.

However, the problem then changes to
ignoring unneeded "out" parameters of
procedures, and the only way (currently)

is to declare dummy output variables and
then leave them unused.

But it is not a big problem, and not worth
changing the language, IMO

> Interfacing with C is an edge case
which doesn't need to add more noise in
the Ada syntax, IMHO.

I agree.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 6 Jul 2021 18:07:38 -0500

> I think any compiler needs some facility
like this, at least if it has any
pretensions to interfacing to foreign
languages

Perhaps "any compiler that tries to warn
about unused objects". Janus/Ada doesn't
do that, so it doesn't need some facility to
turn it off, either. But I grant that if it did
have such a warning, then some method
to turn it off is needed. (We have a
pragma Warning_Level for turning off
classes of warnings in selective areas,
nothing for individual warnings -- my
assumption has been that a warning
message might change when the compiler
gets upgraded, but the class of warning
will not [unless of course there is
something else wrong].)

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Fri, 9 Jul 2021 20:14:07 +0200

> In Ada 202x, renaming is easier
(assuming the usual case where
overloading

> isn't involved):

> declare

> Ignore renames Foo (Baz);

> begin

Is this "type-less" naming a copy of the
popular omission schemes like auto in
C++? Optional type annotations in Swift,
or Scala? Too many of those omissions
have invited, uhm, a number of things.

They'll be good, for sure, when securing
the workplace semantically; also good for
implementers of more complex type
inference algorithms and, consequently,
for makers of the CPUs that are needed to
properly handle the omissions. I think the
proper number of omissions is a subject
of research at ETH Zürich. They are
trying to find a sweet spot that makes
inference finish in reasonable time.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 9 Jul 2021 22:20:56 +0300

> Is this "type-less" naming a copy of the
popular omission schemes like auto in
C++? Optional type annotations in
Swift, or Scala?

I don't know all the origins of this
language change, but it can be seen as a
correction because it avoids the wart in

the earlier Ada form of renaming, where a
(sub)type name is included. The wart is
that the constraints of that (sub)type are
essentially ignored, and so can be
misleading.

AI12-0275 seems to be the main origin of
this change:
http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ai12s/ai12-02751.txt?
rev=1.9&raw=N

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 9 Jul 2021 21:57:27 -0500

Right; the name of the type is often a lie
vis-a-vis the subtype properties;
moreover, it is often the case that the type
is included in the renamed item:

 Foo : renames Some_Type'(Bar(Obj));

Repeating the type in such cases is not
useful and violates DRY ("Do Not Repeat
Yourself"):

 Foo : Some_Type renames
 Some_Type'(Bar(Obj));

We felt this was something that was better
handled by style guides rather than
imposing unnecessarily wordy syntax.

> AI12-0275 seems to be the main origin
of this change

The actual motivation behind this change
was a strong desire for a shorter way to
write bindings in declare expressions. We
tried a number of things, but they all
seemed oddly special cases. Eventually,
we settled on using normal syntax
throughout declare expressions, but
simplified the syntax for renaming in all
cases. The tipping point was noticing the
duplication in examples like the above,
along with the fact that the subtype given
is ignored anyway.

If we were designing Ada from scratch,
the subtype in a rename would have to
statically match the nominal subtype of
the name being renamed. But that wasn't
required in Ada 83 and it would be way
too incompatible to require now. (The
reason that Ada 83 didn't require it? Jean
Ichbiah didn't want to have to define
"static matching" -- according to an old
thread that John Goodenough dug up. Of
course the Ada 9x team decided such a
concept was necessary and added it to the
language, so we ended up with most
constructs using static matching, but
renames being different.)

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 12 Jul 2021 08:56:55 -0700

> I think the proper number of omissions
is a subject of research at ETH Zürich.
They are trying to find a sweet spot that
makes inference finish in reasonable
time.

I tend to dislike type-inference* almost
altogether; I think Ada 2012 and before

Ada Pract ice 155

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

got it right: very constrained and
deterministic contexts (e.g. the for loop's
index).

Yes, I realize there's systems like Haskell
that are good about types, but as you say
these have inferences that take a while.
While I'm all in favor of making the
compiler do the tedious work, given that
types are [in general] a static portion of
the program as a whole it should be
possible (to borrow from the GPS UI) to
throw up the little wrench/auto-fix option
and "fill in" the types found so that the
next compile doesn't have to infer types...
but I suspect that most implementations
will instead simply do the inference again
and again and again on each compile and
waste your time.

* It invites the "could possibly work" C-
ish mentality, rather than the "cannot
possibly not-work" Ada-mentality, IMO.

Deferred Constants in
Bodies

From: Matt Borchers
<mattborchers@gmail.com>

Subject: deferred constants
Date: Wed, 7 Jul 2021 12:31:33 -0700
Newsgroups: comp.lang.ada

Is it possible to define a constant in a
package body that has its initialization
deferred to elaboration?

For example...

with Gnat.RegExp;
package body
 pat : constant Gnat.RegExp.RegExp;
begin
 pat := Gnat.RegExp.compile("...");
end;

Obviously it is not strictly necessary to
create 'pat' as a constant, but it is ideal to
define symbols as precise as possible.
Without it being a constant, the compiler
will obviously not check to make sure
someone has not inadvertently
overwritten it.

GNAT gives me the following errors:

 - constant declaration requires
initialization expression

 - deferred constant is frozen before
completion

The first error message is not true, but
comes from the fact that the second IS
true. Is there a way to postpone the
freezing of a symbol until after
elaboration?

From: Jeffrey R. Carter
Date: Wed, 7 Jul 2021 22:40:25 +0200

Deferred constants are defined in ARM
7.4 (http://www.ada-auth.org/
standards/rm12_w_tc1/html/
RM-7-4.html), which says they may only
appear in the visible part of a pkg spec,
and the full declaration must appear in the

private part of the same pkg. So what
you're trying is illegal.

In cases like this, you declare the object
as a variable, with comments indicating
that it is set later and is then constant.

Of course, in the example, one can simply
do

Pat : constant Gnat.RegExp.RegExp :=
Gnat.RegExp.Compile ("...");

but there are cases where this is not
possible.

From: Shark8
<onewingedshark@gmail.com>

Date: Wed, 7 Jul 2021 13:44:32 -0700

Use RENAMES?

pat : Gnat.RegExp.RegExp renames
Gnat.RegExp.compile("...");

Other than this, I would advise not using
RegEx.

From: Matt Borchers
<mattborchers@gmail.com>

Date: Wed, 7 Jul 2021 16:15:42 -0700

Of course comments help, but the
compiler does not enforce what is written
in comments. (That I'm aware of.) The
fact that the example uses RegExp doesn't
matter, it was just code I ran across and
the example could be anything. BTW,
what's wrong with Gnat.RegExp It has
worked in our code for years.

I was looking at old code and began
wondering if there was a new or better
way to add protection to this entity. It
appears not when it is defined in the
elaboration block.

I suppose I could just move the call to
'compile' out of the begin block of the
package as people have suggested. At
what point do constants defined by a
function call get elaborated? Before or
after the elaboration block? Might I then
potentially encounter an elaboration race
condition?

The RENAME is interesting as I have not
seen that before. Is it a rename of the
function call (invokes the function upon
reference) or a rename of the function
result?

From: Shark8
<onewingedshark@gmail.com>

Date: Wed, 7 Jul 2021 16:37:22 -0700

> BTW, what's wrong with Gnat.RegExp?

Regular expressions are for regular
languages; it is very easy to violate that
restriction with your incoming data.

Most of my professional career has been
doing maintenance, and RegEx are
terrible when it comes to
maintainability, to the point that I actively
avoid them and advise others to as well,
even for things that conceptually *could*
be done via RegEx (e.g. recognizing an
Integer) in favor of actual parsing... or if

you need pattern-matching, something
more robust like SNOBOL.

> At what point do constants defined by a
function call get elaborated? Before or
after the elaboration block? Might I
then potentially encounter an
elaboration race condition?

This is where the categorization
pragmas/aspects come in: if a package
that you are depending on are PURE or
PREELABORATE then there can be no
elaboration error. If the type you are
relying on is
PREELABORABLE_INITIALIZATION,
then there can be no elaboration error. All
other conditions are a solid *maybe* on
having an elaboration error.

> The RENAME is interesting as I have
not seen that before. Is it a rename of
the function call (invokes the function
upon reference) or a rename of the
function result?

That form of RENAMES is the function
result.

I've found it an excellent alternative to
CONSTANT, as it signals my intent to
have an alias for some result inside
DECLARE blocks and certain internal
objects. (eg Default_Map : Map renames
Internal_Map_Generation(P1, P2); ... and
then I can use "Default_Map" instead of
calling the generation-function at each
point and possibly messing things up
should the parameters change.)

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 07 Jul 2021 18:21:34 -0700

> Might I then potentially encounter a
elaboration race condition?

The Ada rules guarantee no race
condition, but sometimes fixing
elaboration order gets tricky. GNAT
offers (at least) two elaboration models;
see the user guide. Normally, you just
write the code, and only worry about
elaboration if the compiler reports a
problem.

Ada and Software Testing

From: Paul Rubin
<no.email@nospam.invalid>

Subject: Ada and software testing
Date: Sun, 11 Jul 2021 17:49:56 -0700
Newsgroups: comp.lang.ada

I wonder if there is good guidance around
for software testing in the Ada world, or if
it depends too closely on the application
area. I'm aware of DO-178B and DO-
178C in the aviation world, though I
haven't studied either of them. Sqlite's
document about its testing procedure is
also interesting and maybe a cautionary
tale. Sqlite is a really nice SQL database
whose main misfortune from the Ada
perspective is that it is written in C. Its
testing doc is here:

156 Ada Pract ice

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

https://sqlite.org/testing.html

and a little more info can be found in this
interview with the author:
https://corecursive.com/
066-sqlite-with-richard-hipp/#
testing-and-aviation-standards

Overview:

1. Sqlite originally had only ad hoc
testing. Then the author (Dr. Richard
Hipp) did some work with Rockwell,
heard about DO-178B there, and
embarked on a large effort to
strengthen Sqlite's testing in
accordance with DO-178B.
Particularly, the Sqlite team created an
enormous suite of unit tests aiming to
get 100% MC/DC test coverage. That
is, for any "if" statement, there must be
tests that exercise both branches of the
"if". This seemingly got Sqlite to be
very reliable.

2. Later on, fuzz testing came into vogue,
so they started fuzzing Sqlite. This in
fact found a bunch of crashes and
vulnerabilities that were duly fixed, and
nonstop fuzzing was added to the test
setup. But the testing document
(section 4.1.6) notes a tension between
MC/DC and fuzzing: MC/DC requires
deep parts of the code to be reachable
by test inputs, while fuzz protection
tends to use defensive programming
against "impossible" inputs, resulting in
seemingly unreachable code. Fuzz
testing has been effective enough at
finding bugs in C programs that it has
now displaced a lot of static analysis in
the C world.

3. Sqlite uses a little bit of static analysis
(section 11) but the document says it
has not helped much. Ada on the other
hand uses static analysis extensively,
both in its fine grained type system
(compared with C's) and using tools
like SPARK.

4. Bugs found by fuzz testing C programs
are typically the standard C hazards
like buffer overflows, undefined
behaviour (UB) from bad arithmetic
operands, etc. I'm of the impression
that Ada is less susceptible to these
bugs because of mandatory range
checking and less UB in the language.

Well, that went on for longer than I
expected. My questions are basically:

 Q1. Are there good recommendations for
Ada testing strategies Do the tests
resemble the stuff in the Sqlite doc?

 Q2. Is fuzz testing an important part of
Ada testing, and does it tend to find many
bugs?

Thanks!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 12 Jul 2021 10:40:24 +0200

> Q1. Are there good recommendations
for Ada testing strategies? Do the tests
resemble the stuff in the Sqlite doc?

> Q2. Is fuzz testing an important part of
Ada testing, and does it tend to find
many bugs?

I do not think so.

Here is a war story of a bug I fixed
recently. A network protocol
implementation used a callback to send
the next portion of data, when the
transport becomes available.

The callback implementation peeks a
portion of data from the outgoing queue
and *asynchronously* sends it away. *If*
initiation of sending is successful, the
queue is popped.

OK?

No, it is a bug that almost never shows
itself because initiation of I/O would
normally deprive the task of the
processor. But if it does not and I/O
completes without losing the processor,
the callback is called recursively *before*
popping the queue and the *same* portion
of data is sent again.

Now, neither 100% coverage, nor fuzz,
not even 100% black box testing can
detect this, arguably trivial bug.

[The fix is to make recursive calls void]

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 14 Jul 2021 12:56:08 -0700

> But if it does not and I/O completes
without losing the processor, the
callback is called recursively *before*
popping the queue and the *same*
portion of data is sent again.

This is a garden variety concurrency bug
that you're right, wouldn't normally be
found with conventional fuzzing, but
might be findable with stress testing. A
more rigorous approach would involve
model checking.

This type of problem happens in C
programs all the time as well, and doesn't
really signify anything about the
effectiveness of fuzz testing. Fuzzing is
very effective against C programs, but
tentatively maybe less so against Ada
programs, because of Ada's more
thorough type checking.

> [The fix is to make recursive calls void]

Hopefully there would be some locks
between the tasks, though in that case the
problem would show up as deadlock.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Mon, 12 Jul 2021 09:14:39 -0700

> Q2. Is fuzz testing an important part of
Ada testing, and does it tend to find
many bugs?

You can combine the power of fuzzing
with the power of Ada's strong typing,
implying standard Ada run-time checks
(e.g. range checks), plus a compiler's own
checks (e.g. GNAT's validity checks).

Read the following article for details:
https://blog.adacore.com/running-
american-fuzzy-lop-on-your-ada-code

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 14 Jul 2021 12:32:40 -0700

> Read the following article for details:

Thanks, this is pretty interesting. He runs
AFL on three Ada programs: Zip-Ada,
and Ada libraries for reading YAML and
JSON. It finds bugs in all three, though
not very many. It fits my picture that Ada
programs are less susceptible than C
programs are, to the types of bugs that
fuzzing uncovers.

I do have to say that errors thrown by
runtime checks on range types are still
program bugs, in the sense that they are
type errors, that in principle we should
want to catch at compile time.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 12 Jul 2021 18:41:28 +0200

> You can combine the power of fuzzing
with the power of Ada's strong typing,
implying standard Ada run-time checks
(e.g. range checks), plus a compiler's
own checks (e.g. GNAT's validity
checks).

Before the Dark Age of Computing,
testing was not arbitrary. You knew
things about your implementation and
even, God forbid, foresaw some of them.

E.g. if the implementation was "linear"
(the case for all buffer overflow stuff) you
would simply test the endpoints
(extremes) and one point inside instead of
wasting time on anything else.

Of course, to make such considerations
and techniques work, the programs
needed to be designed very differently,
which was one of the motivations behind
Ada constrained subtypes, ranges etc.

This is also one of the reasons why
unbounded strings, dynamic memory
allocation etc must be avoided as you
leave some upper bounds undefined
making a lot of things non-testable.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 14 Jul 2021 21:51:54 +0200

> I do have to say that errors thrown by
runtime checks on range types are still
program bugs,

No, it depends on the contract.

> in the sense that they are type errors,

Ada Pract ice 157

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

A type error cannot happen at run-time
per definition of strong typing. Constraint
violation is not a type error.

> that in principle we should want to
catch at compile time.

If you can. In reality it is impossible to
enforce validity per type system, because
such contracts are often not enforceable.

So the trick is to relax the contract by
including exceptions, which is what Ada
constrained subtypes do. But then
Constraint_Error becomes a legal "value"
function + would "return" on overflow.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 14 Jul 2021 13:02:23 -0700

> No, it depends on the contract.

If a contract is broken by either the caller
or the callee, it is a program bug either
way, I would have thought.

> A type error cannot happen at run-time
per definition of strong typing.
Constraint violation is not a type error.

Hmm ok, if out of range for a range type
is considered a constraint error rather than
a type error, then it's ok to say the
compiler can't check it even in principle,
and it becomes the responsibility of the
application user or environment. Inputs
that trigger a constraint error might be
considered invalid in some situations.

> If you can. In reality it is impossible to
enforce validity per type system,
because such contracts are often not
enforceable.

Yep. SPARK tries to enforce such
constraints at compile time, but it's not
always possible to use it.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 15 Jul 2021 09:27:37 +0200

> If a contract is broken by either the
caller or the callee, it is a program bug
either way, I would have thought.

If the contract includes exceptions, then
nothing is broken.

> Hmm ok, if out of range for a range
type is considered a constraint error
rather than a type error, then it's ok to
say the compiler can't check it even in
principle [...]

Yes, and the tests must include the cases
when exceptions are propagated, which is
frequently ignored, though in my view
such tests are even more important than
the "normal" cases. Exceptions are not
likely to happen. So the code not handling
contracted exceptions tend to slip into
production with catastrophic results.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Fri, 16 Jul 2021 12:01:47 +0200

> My questions are basically:

I'd like to add, if I may, a third question,
perhaps a follow-up question, after having
been bitten by a bug that was hidden
behind assumptions.

Is there a way of systematically looking
for hiding places of bugs specifically in
places external to the program text? And,
then, what kind of mock-ups could
establish typical testing patterns? I/O is
mentioned in the sqlite examples, but
what if you do not assume that there is
going to be X equiv. I/O?

Example: Some external library, of very
closed source nature, exposes an
unforeseen behavior. It turns out that a
library function uses a lock, and while
waiting for it, the function call times out,
the client program reports failure and
terminates normally - with side effects...

After the fact, after some reading and then
some testing, in an adjusted setup, it all
seems plausible. "But, I didn't think of
that!". Educated guesses about what the
library might do need to be based on a
vast set of documents, plus the seller of
the library also sells expensive training.
Programs need a quick fix, though.

So, what is a proper testing strategy once
the programmers have found that the
transitive closure of some call might
sometimes incur externally caused
behavior? Such as timeout, or ordering
effect due to concurrency?

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 16 Jul 2021 03:21:24 -0700

> So, what is a proper testing strategy
once the programmers have found that
the transitive closure of some call might
sometimes incur externally caused
behavior?

Depending on the situation, this may be
an area to try model checking. I've been
wanting to try Alloy (alloytools.org) but
so far have only clicked around its web
site a little. It looks interesting.

From: Paul Butcher
<butcher@adacore.com>

Date: Wed, 28 Jul 2021 08:28:55 -0700

If you haven't done already you may also
want to have a look at:
https://blog.adacore.com/advanced-fuzz-
testing-with-aflplusplus-3-00

It's a follow-on blog to the original R&D
work around fuzz testing Ada programs
and goes into more detail. It also contains
an example of why fuzz testing Ada
applications over C can actually identify
more program anomalies (again by
leveraging the power of the Ada runtime
checks).

We're actually seeing a lot of interest in
fuzz testing Ada programs and a
commercial need for an industrial grade
fuzz testing solution for Ada.

You may also want to have a look at ED-
203A "Airworthiness Security Methods
and Considerations" which is a set of
guidelines around ED-202A
"Airworthiness Security Process
Specification". This report explicitly
mentions fuzz testing as a means of
identifying vulnerabilities and challenging
security measures within airborne
software.

In addition (and following on from a
previous comment) one aspect we are
very interested in exploring is being able
to bolster existing unit test input data with
a fuzzing campaign. Here we would take
the existing test inputs and feed them into
the fuzzer as the starting corpus (in an
automated fashion).

Fuzz testing Ada programs may not
currently be a thing, but it soon will be...
;-)

Building GnatStudio 2021
from Sources

From: Rod Kay <rodakay5@gmail.com>
Subject: Building the 2021 source release of

GnatStudio
Date: Wed, 28 Jul 2021 19:25:46 +1000
Newsgroups: comp.lang.ada

Has anyone managed this successfully
with the Community Edition source
release?

As I find it, the source and dependent
project sources are out of version sync.

When those problems are sorted out, the
python support files installed to
'/usr/share/gnatstudio' are problematic at
best, to put it 'nicely'. They differ largely
from the python support files installed in
the corresponding 2021 binary install
(and, in fact, break running GnatStudio).

I wonder how this can be (unless I have
made several fundamental build errors).

Ada is touted for its safety, stability and
portability. What would new-comers
think when the main Ada IDE, produced
by the main Ada vendor, breaks so
frequently (every yearly release, there
have been similar difficulties).

How can these problems be 'accidental'
over so many years?

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Wed, 28 Jul 2021 03:49:40 -0700

In the same message, you are talking
about difficulties with some python files,
then mentioning how Ada makes
everything bad. Those are two different
languages.

I was one of the GPS/GnatStudio
developers for quite a number of years
(looks like I am still ahead in the total
number of commits :-), and a large part of
the installation issues (and a somewhat

158 Ada Pract ice

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

smaller part of the actual stability issues)
were largely in the third party libraries
that GPS depends on, most notably gtk
and friends. Those are very hard to install
correctly, they come with tons of
dependencies of their own, were not (at
the time at least) properly tested on
Windows, and so on...

Compiling the Ada part of GnatStudio
was not a major issue at the time. I take it
that things are more complex now (did
not try in 4 years) because there are more
dependencies to other Ada libraries. This
is a cost to pay for better sharing of code
with other projects and the rest of the
community (which is something people
have been asking a lot). Things could be a
lot simpler if gprbuild was a more
competent tool similar to what cargo is
for Rust for instance. Alire is trying to
improve things in that area, so hopefully it
will simplify the handling of those
dependencies...

Collectively, we certainly owe big thanks
to the people out there who build these
community packages for others to use. I
know Simon does it for macOS, someone
else does it on Debian. Not sure whether
there is a similar volunteer on Windows.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 28 Jul 2021 15:29:16 +0100

> I know Simon does it for macOS,
someone else does it on Debian.

Studio is something I've never provided
for macOS: up till now, the CE version
has been just fine, last one 2019). Pascal
(Blady) is working on the 2021 version, I
think.

The last time I tried Studio for macOS I
ended up in Python hand-managed
memory management hell.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 28 Jul 2021 19:49:14 -0500

> Ada is touted for its safety, stability and
portability. What would new-comers
think when the main Ada IDE,
produced by the main Ada vendor,
breaks so frequently (every yearly
release, there have been similar
difficulties).

Since the "main Ada IDE" isn't even an
Ada program (primarily being
programmed in Python), I'm not sure what
it has to do with the reliability of Ada
programs. If someone built an all-Ada
IDE, then that might make more sense.
And in any case, programs like an IDE
are almost always installed from binary
packages.

From: Roger Mc
<rogermcm2@gmail.com>

Date: Wed, 28 Jul 2021 18:09:25 -0700

> Has anyone managed this successfully
with the Community Edition source
release?

Yes! I once tried to build it and found
similar problems. My attempt also
included converting many Python 2
sources to Python 3. I note that you refer
to "the main Ada IDE" and I tend to
agree. The fact that the causes of the
problems are due to "python support files
", including version syncing, causing
problems with building "the main Ada
IDE" and not Ada can quite possibly give
a negative impression for Ada even
though Ada is not the culprit. I am
currently trying to use VS Code, but find
the 2019 CE GPS version preferable.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 29 Jul 2021 10:41:29 +0200

First, never ever use Python!

But if you do, as there is no viable
scripting alternative (Lua, Julia are only
worse and no Ada script fulfills minimal
requirements, last time I looked). I do use
Python loading it dynamically. That
eliminates all build problems, but creates
other ones with packaging...

From: Rod Kay <rodakay5@gmail.com>
Date: Thu, 29 Jul 2021 20:29:03 +1000

> Compiling the Ada part of GnatStudio
was not a major issue at the time [...]

Building the Ada part of GnatStudio was
not the main problem. The difficulty there
was only with version mismatches with
the Ada dependencies. These were
relatively simple to patch by backporting
current git code. Though I wonder how
these mismatches could exist in the source
release when any attempt to build reveals
them.

> Collectively, we certainly owe big
thanks to the people out there who
build these community packages for
others to use [...]

I've been maintaining Ada packages for
Archlinux for several years now and have
had trouble building GnatStudio on each
release. Perhaps I was speaking out of
accumulated frustration over problems
which should be easy to spot and correct
(i.e., the dependencies version
mismatches).

From: Rod Kay <rodakay5@gmail.com>
Date: Thu, 29 Jul 2021 20:37:55 +1000

> Since the "main Ada IDE" isn't even an
Ada program (primarily being
programmed in Python), I'm not sure
what it has to do with the reliability of
Ada programs.

I guess the point I was trying to make was
'Why is GnatStudio using Python at all,
given that Ada is superior?'.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 29 Jul 2021 16:37:49 +0200

> I guess the point I was trying to make
was 'Why is GnatStudio using Python
at all, given that Ada is superior?'.

Python is useful for tailoring; by dropping
a Python file in the appropriate directory,
you can add any feature to GnatStudio
(OK, it needs some XML too).

That's how AdaControl's integration
works.

From: Rod Kay <rodakay5@gmail.com>
Date: Thu, 29 Jul 2021 20:47:37 +1000

I ended up installing the files from
'GNAT/2021/share/gnatstudio' to
'/usr/share/gnatstudio' which solved most
of the Python2/3 problems. There is still
an issue with auto-indent, when using the
TAB key, which I've not been able to fix.

In case it is of use to anyone, here is a link
to the Archlinux gnat-gps package (which
builds ok) ...

https://aur.archlinux.org/packages/
gnat-gps

Regards.

From: Stéphane Rivière
<stef@genesix.org>

Date: Thu, 29 Jul 2021 13:33:52 +0200

> First, never ever use Python!

If scripting capabilities are needed in
GnatStudio, why not use HAC?
https://github.com/zertovitch/hac

We use it at $job on a daily basis,
replacing all our Bash and PHP scripting
stuff...

Seven times faster than Bash, tons times
more powerful and maintainable and,
even better, HAC source can be GNAT
compiled from scratch (without changing
a line). There is also a shebang to ease
scripting like with any other scripting
language...

The biggest HAC program here is 3500
lines (!) It's a Cron. A Drupal web scraper
to a Wordpress filer and MySQL DB). It
syncs every week thousands of product
pages and ten thousands of jpeg and pdf
files...

A friendly, humble, well tested and
capable companion to a first class Ada
environment.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 29 Jul 2021 13:58:29 +0200

> If scripting capabilities are needed in
GnatStudio, why not use HAC ?

Nothing of the shell sort. I think it is a
major confusion on the side of developers
of Ada scripts.

For scripting an Ada application one
needs support of

1. Loadable modules/packages, prebuilt,
to call back to the Ada application

Ada Pract ice 159

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

subprograms provided by the
module/package;

2. Passing Ada in/out parameters down to
a script's subprogram upon invocation;

3. Returning parameters from the script's
subprogram;

4. Precompiled script modules, GPS
would use a huge number of scripts,
compiling them each time would be
expensive;

5. Abortable calls and propagation of
exceptions out of the script;

6. Concurrent script run-time with
independent instances.

For example, this is what I use Python for,
and this is just the same case as in GPS:

http://www.dmitry-kazakov.de/ada/
max_home_automation.htm#5.1

The user script refers to a preloaded
module that offers a communication
channel back to the application, e.g. GPS
script interface.

In my case the script is called periodically
and returns a persistent object, which is
passed down by the next call. Such
objects must be managed by the caller
(the application).

And I load Python dynamically to break
dependency on it.

From: Stéphane Rivière
<stef@genesix.org>

Date: Fri, 30 Jul 2021 13:29:46 +0200

> For scripting an Ada application one
needs support of

I don't see anything that HAC couldn't do,
natively or with adaptations, both on the
side of HAC and GNATStudio,
considering the enormous amount of time
that has been spent to integrate Python
into GNATStudio.

But, imho, this is all history,
GNATStudio is scriptable in Python,
GNATStudio is very difficult to build,
AdaCore is known to love Python and
GNAT CE, as a whole, is a wonderful
tool. We have to live with it ;)

From: Shark8
<onewingedshark@gmail.com>

Date: Thu, 29 Jul 2021 10:23:46 -0700

> Since the "main Ada IDE" isn't even an
Ada program (primarily being
programmed in Python), I'm not sure
what it has to do with the reliability of
Ada programs.

On the issue of IDEs, and in the context
of GUI, maybe it would be better to use
something like RAPID.

(If it was *just* Windows, I'd recommend
Rod look at Claw: pure Ada, no
extraneous dependency, and supporting a
small vendor.)

At this point, I think it would be prudent
(as-a-community) to assess whether or not
external dependencies are worth their
keep, whether it be a library like gtkAda
or GNATCOLL, or whether it be another
language like Python. I'm of the opinion
that these dependencies hurt Ada's
reputation & goodwill (respectively and
especially among newcomers and
packagers/maintainers) more than they
assist Ada's community.

LINKS to Ada-related GUI libraries:

CLA thread on RAPID:
https://groups.google.com/g/
comp.lang.ada/c/vzajq2ymI0w/m/
sOQIfvNRAQAJ

RAPID Website:
http://savannah.nongnu.org/projects/rapid/

Paper:
https://www.researchgate.net/profile/
Martin-Carlisle/publication/
221444571_RAPID_A_Free_Portable_G
UI_Design_Tool/links/55eeeabe08aedecb
68fd812f/RAPID-A-Free-Portable-GUI-
Design-Tool

CLAW:
http://www.rrsoftware.com/html/prodinf/
claw/claw.htm

Paper:
http://www.rrsoftware.com/html/prodinf/
triadapaper/triada.html

JEWL:
http://archive.adaic.com/tools/bindings/
JEWL/jewl-17.zip

From: Shark8
<onewingedshark@gmail.com>

Date: Thu, 29 Jul 2021 10:43:51 -0700

> Python is useful for tailoring; by
dropping a Python file in the
appropriate directory, you can add any
feature to GnatStudio

I mean we could do that even easier with
FORTH, and distribute the Ada
implementation alongside it.

If you take a look at the implementation I
have https://github.com/
OneWingedShark/Forth

-- you'll observe that there's zero non-Ada
portions of the program, all the core-
words are given in terms of the VM:

https://github.com/OneWingedShark/
Forth/blob/master/src/
forth-vm-functions.ads

https://github.com/OneWingedShark/
Forth/blob/master/src/
forth-vm-functions.adb

https://github.com/OneWingedShark/
Forth/blob/master/src/
forth-vm-default_words.adb

-- and thus we could achieve a completely
portable interpreted system.

Having a fully compliant FORTH 2012
interpreter would be pretty nice in this
respect, as FORTH is one of 21 ISO
programming languages --
https://en.m.wikipedia.org/wiki/Category:
Programming_languages_with_an_ISO_st
andard -- and only one of three which is
traditionally interpreted (ECMAScript,
ISLISP, FORTH). ISLISP *might* be a
better technical choice than FORTH, but
the same technique would work in
implementing the portability;
ECMAScript (aka JavaScript) would be
the obvious choice if it were based on
popularity.

TL;DR -- There's zero reason to include
Python as a dependency in an IDE.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Fri, 30 Jul 2021 04:51:49 -0700

I must admit having a hard time
understanding this discussion. There is of
course no way AdaCore will change their
tools to use any of the suggestions in this
thread. HA is 100% unknown outside of
the Ada community, and I would guess
100% unknown outside of the small
comp.lang.ada subset of it. At least for
now, and things could possibly change in
the future.

AdaCore has a large number of customers
that have written their own integration
scripts in python very easily. Those
scripts are in general not written by
people with knowledge of Ada at all,
those are the people responsible for
providing the tooling to other teams. So it
would make no sense to only have HAC
support for instance (and would not
remove any of the build difficulties to
boot, since backward compatibility is a
thing and python would have to be kept)

Shark8 suggested that external
dependencies are a bad thing altogether,
and libraries like GtkAda and
GNATCOLL should never be used. This
is totally opposite to what people actually
want (see the development of Alire for
instance, or what happens in all
programming languages out there). So
that also makes no sense.

As the original poster mentioned, building
GNATStudio is a very difficult thing. Just
like building Firefox, or I presume Visual
Studio, or any large application out there.
Things likely could be improved with
better documentation, and that's likely
where the community should play a role.
AdaCore developers in general have the
proper setup because their colleagues
helped them (there is no secret
documentation that they do not want to
publish to the outside), and of course
AdaCore cannot test on all systems and
all machines out there. But building
GNATStudio is something only a few
people are intended to do. Others will
benefit from their pre-built packages.

160 Ada Pract ice

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

From: Shark8
<onewingedshark@gmail.com>

Date: Fri, 30 Jul 2021 09:59:08 -0700

> Shark8 suggested that external
dependencies are a bad thing altogether,
and libraries like GtkAda and
GNATCOLL should never be used.

This is a rather uncharitable take of my
suggestion that all dependencies should
be, from time to time, evaluated against
their benefits and costs.

But I do stand by it: if some dependency
costs more to maintain (not excluding
things like install/configuration or
make/build troubles foisted on the users
and maintainers) then it should be
eliminated.

I have a rather harsh view of Python
itself, especially the tendency to "it works
on my computer!" WRT installation
woes, that I strongly question if it *IS*
"worth its keep".

> This is totally opposite to what people
actually want (see the development of
Alire for instance, or what happens in
all programming languages out there).
So that also makes no sense.

I'm sorry, but *HOW* does a package-
manager's popularity (much less
existence) negate my suggestion that a
dependency's usefulness [and pain-points]
should be evaluated?

Just because some package's dependency
is well-used doesn't make it a good thing
to depend upon, does it? I mean, consider
the story of NPM and leftpad:

https://www.theregister.com/2016/03/23/n
pm_left_pad_chaos/

From: Simon Wright
<simon@pushface.org>

Date: Fri, 30 Jul 2021 18:07:55 +0100

 [Nothing was quoted. —arm]

Good sense.

> But building GNATStudio is something
only a few people are intended to do.
Others will benefit from their pre-built
packages.

Those of us on macOS have no CE2021
(at least, from AdaCore :-), and CE2020
has no GNATStudio. We don't know what
the future holds for other platforms.

Similar position for gnatprove. I don't
know how hard it would be to build from
the Linux CE2021 sources.

From: Stéphane Rivière
<stef@genesix.org>

Date: Sat, 31 Jul 2021 11:37:02 +0200

> I must admit having a hard time
understanding this discussion.

But it's a pleasure to talk with an AdaCore
insider :)

> There is of course no way AdaCore will
change their tools to use any of the
suggestions in this thread.

I didn't even think about it :)

> HAC is 100% unknown outside of the
Ada community, and I would guess
100% unknown outside of the small
comp.lang.ada subset of it.

It uses a clean subset of a certain
computer language we know better than
the snake :)

> At least for now, and things could
possibly change in the future.

Legacy has to be handled. So I think it's
too late and probably irrelevant.

> So it would make no sense to only have
HAC support for instance (and would
not remove any of the build difficulties
to boot, since backward compatibility is
a thing and python would have to be
kept)

The root of the problem is (to my taste)
there. Python has no place in an IDE
written in Ada.

I guess GPS/GNATStudio was written
also to demonstrate that Ada can
implement any complex graphical
application.

So, this is a counterproductive example
that gives the image of an incomplete or
weak language having to use Python to
implement a high-level IDE with scripting
capabilities.

Emacs uses Lisp, Emacs users script in
Lisp (like me at one point).

GNATStudio should have used an Ada
subset from the start. The effort was not
made. It is too late. Next case :)

> As the original poster mentioned,
building GNATStudio is a very
difficult thing. Just like building
Firefox, or I presume Visual Studio,

That's, to my taste, definitely not a
valuable excuse :)

I built GVD (the GNATStudio ancestor) a
breeze, almost 20 years ago. Then came
GPS, with ton of C inside (nearly 30%
due to Berkeley DB embedded at this
time) and a "unmakeable" make process
:>

> is no secret documentation that they do
not want to publish to the outside)

No secret documentation? Okay. So I
need it for Linux :) A full GNATStudio
build script with instructions, please :) As
I don't believe Adacore engineers keep
this complex knowledge in their heads...

Anyway, it seems to me that the latest
versions of GNATStudio are better
finished and the whole thing is a really
nice tool to use.

All the best for you and AdaCore team

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Jul 2021 12:30:31 +0200

[...]

> But, imho, this is all history,
GNATStudio is scriptable in Python,
GNATStudio is very difficult to build,
AdaCore is known to love Python and
GNAT CE, as a whole, is a wonderful
tool. We have to live with it ;)

For AdaCore it is not really much work,
they only have to provide a module to
interface the GPS engine. Their customers
would decide which script they would
use.

What AdaCore *must* do is to remove
static linking to Python. The GPS user
should choose the script language per
preferences that would look for the
corresponding script run-time e.g. Python
or HAC or whatever.

From: Stéphane Rivière
<stef@genesix.org>

Date: Sat, 31 Jul 2021 13:58:37 +0200

> The HAC script must take Argument,
call Square (accessible via the module),
return the result of Square (Argument).

API HAC has Argument,
Argument_Count and Set_Exit_Status,
and the result can be piped.

However, I do not state that HAC is
production ready for GNATStudio... But
HAC is well written and easily hackable
(I speak for Gautier ;)

> For AdaCore it is not really much work,
they only have to provide a module to
interface the GPS engine. Their
customers would decide which script
they would use.

You're right. That is the best way to
handle it. But Emmanuel says that the
need for GNATStudio Python is
mandatory anyway...

> What AdaCore *must* do is to remove
static linking to Python. The GPS user
should choose the script language per
preferences that would look for the
corresponding script run-time e.g.
Python or HAC or whatever.

Freedom of choice. I agree. But I guess
AdaCore resources are limited and this is
like reinventing the wheel.

The free software way could be to fork
GNATStudio, simplify it and fully change
the build process. Personally, I've neither
the time nor the skills to go this way...

The biggest complaint I had about
GNATStudio was its instability. I think
that AdaCore has made great progress
now. It's now a pleasure to work with.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Jul 2021 14:29:04 +0200

Ada Pract ice 161

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

> API HAC has Argument,
Argument_Count and Set_Exit_Status,
and the result can be piped.

Whatever, you could post a complete
example, when ready (:-)).

E.g. here is a lesser sample in Julia, an
Ada subprogram is called from

Julia back when Julia is called from Ada:

with Ada.Text_IO; use Ada.Text_IO;
with Interfaces.C; use Interfaces.C;
with Julia; use Julia;

procedure Ada_Call is
 Bin : constant String := "D:\Julia-1.2.0\bin";
begin
 Load (Bin & "\libjulia.dll"); -- Load library
 Init_With_Image (Bin); -- Initialize
 -- environment
 declare
 function Increment (X : Double)
 return Double;
 pragma Convention (C, Increment);

 function Increment (X : Double)
 return Double is
 begin
 return X + 1.0;
 end Increment;
 begin
 Eval_String
 ("println(ccall("
 & CCall_Address (Increment'Address)
 & ",Cdouble,(Cdouble,),10.0))"
);
 end;
 AtExit_Hook; -- Finalize environment
end Ada_Call;

Note, there is only one process!

> However, I do not state that HAC is
production ready for GNATStudio...
But HAC is well written and easily
hackable (I speak for Gautier ;)

That is not the point. The point is that
AFAIK it cannot be used for scripting
unless examples as above are provided.

>> What AdaCore *must* do is to
remove static linking to Python.

> Freedom choice. I agree. But I guess
AdaCore resources are limited and this
is like reinventing the wheel.

It is a minimal requirement to replace
static linking with dynamic.

Moreover, whatever resources AdaCore
has it does not make any sense to call
internal GPS functions implemented in
Ada from Ada code via Python scripts!
So, no work involved.

> The biggest complaint I had about
GNATStudio was its instability. I think
that AdaCore has made great progress
now. It's now a pleasure to work with.

Yes, but each new version of GTK can
change that. GTK is unstable on both
Windows and Linux, it is just as it is.
AdaCore can at best work around GTK
bugs.

Though Python is 100% self-inflicted
damage. AdaCore could easily implement
some Ada script, again, not to confuse
with shell. They did it partially with GPR.
The GPR compiler could be extended to
support a larger variety of expressions.

Customers wanting Python will use
Eclipse instead of GPS anyway, so that is
not an argument either.

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 2 Aug 2021 18:05:17 -0700

> Yes, but each new version of GTK can
change that. GTK is unstable on both
Windows and Linux, it is just as it is.
AdaCore can at best work around GTK
bugs.

And this is exactly why I said that one
should evaluate the consequences of your
dependencies: depending on something
unstable can easily introduce that
instability into your program.

> Though Python is 100% self-inflicted
damage.

Agreed.

While Python can be quick and "easy" for
prototyping, there are whole classes of
errors that any dynamic-typed language
possesses which statically-typed
languages do not. The only dynamically-
typed programming language that I've
come across which [arguably] has both
the mechanisms and culture addressing
those issues is LISP.

>AdaCore could easily implement some
Ada script, again, not to confuse with
shell. They did it partially with GPR.

GPR is a very saddening example. It's too
"stringly-typed", it doesn't leverage the
obvious structural Ada ancestry, and
because of this the GPR-build tool is
kneecapped.

(As an example, if GPR files were a
tightly restricted GENERIC package [that
is, a subset of Ada s.t. all GPR files were
valid Ada], with build-options as formal-
parameters, you could use the GPR-build
tool to automatically generate menus and
guide the user through a build.)

[...]

From: Blady <p.p11@orange.fr>
Date: Fri, 27 Aug 2021 11:58:43 +0200

Though GPS mailing list hasn't been used
since March 2017, I propose to start a
thread about sharing experiences in
building GNAT Studio:

https://lists.adacore.com/pipermail/
gps-devel/2021-August/000237.html

I've sent a first post with some basic
questions about used component versions
which are unfortunately not present in
INSTALL documentation.

Could please share your experience and
component versions on the GPS list?
However, it would be nice to get little
support from AdaCore staff.

Dynamic Discriminant
Problems

From: Simon Wright
<simon@pushface.org>

Subject: Discriminant problem
Date: Sun, 29 Aug 2021 19:51:57 +0100
Newsgroups: comp.lang.ada

I have

 Location_Step.Node_Test :=
 (Node_Test => Get_Node_Type_Test
 (T.Node_Type_Part.all),
 Name => Null_Unbounded_String);

where

 type Location_Steps is record
 ...
 Node_Test : Node_Test_Specification
 := (Node_Test => No_Node_Test,
 Name => Null_Unbounded_String);
 ...
 end record;

and

 type Node_Test_Specification
 (Node_Test : Node_Tests :=
 No_Node_Test) is
 record
 Name : Unbounded_String;
 case Node_Test is
 ...
 end case;
 end record;

Because of that function call in

 Node_Test => Get_Node_Type_Test
 (T.Node_Type_Part.all)

the compiler says

value for discriminant "Node_Test" must
be static non-static function call
(RM 4.9(6,18))

OK, I get that (tiresome though it is, and
I'm amazed I've never come across it
before), but how to approach it? I seem to
be OK with

 case Get_Node_Type_Test
 (T.Node_Type_Part.all) is
 when Text_Node_Test =>
 Location_Step.Node_Test :=
 (Node_Test => Text_Node_Test,
 Name => Null_Unbounded_String);
 when ...
 end case;

but this seems very ugly.

I've only just noticed this: I'd been using -
gnatX (so that I could use 'Image on
records), which meant that the original
code was OK (in the sense that it didn't

162 Ada Pract ice

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

raise any problems), but of course it's not
portable even within the GNAT family. I
think -gnat2020 might solve the issue too,
but there's a bit of a skew between CE
2021 and GCC 11.

From: Simon Wright
<simon@pushface.org>

Date: Mon, 30 Aug 2021 09:13:31 +0100

The skew might well be about the
semantics of -gnatX - not 100% sure.

The only way I can see that -gnat2020
would help would be if
Get_Node_Type_Test was a static
expression function[1], but it's not even
an expression function! It could be,
though since it involves tag tests and can
'return' an exception this seems unlikely.

[1] http://www.ada-auth.org/standards/
2xaarm/html/AA-4-9.html#p21.1

From: Jeffrey R. Carter
Date: Tue, 31 Aug 2021 00:03:16 +0200

> value for discriminant "Node_Test"
must be static non-static function call
(RM 4.9(6,18))

This has always been the rule for
aggregates. [...] What I usually do is

declare
 Result : Whatever (D =>
 Non_Static_Value);
 -- Discriminant of an object
 -- need not be static
begin
 Result.F1 := ...;
 ...
 Location_Step.Node_Test := Result;
end;

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 30 Aug 2021 20:53:41 -0500

> This has always been the rule for
aggregates.

But Ada 202x relaxes it slightly. If the
expression has a static nominal subtype,
and every value in the subtype selects the
same variant, then a dynamic discriminant
is allowed in an aggregate. I don't know if
that is what is happening here or not; this
relaxation doesn't come up that often.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 09 Sep 2021 20:51:39 +0100

That's exactly what's happening here.

Oddity with Function
Returning Image of Fixed
Point Type

From: Jesper Quorning
<jesper.quorning@gmail.com>

Subject: Oddity with function returning
image of fixed point type

Date: Thu, 2 Sep 2021 03:25:45 -0700
Newsgroups: comp.lang.ada

Is something odd going on here? I did not
expect Image_Odd1/2 to return floating
point images.

with Ada.Text_Io; use Ada.Text_Io;

procedure Fpt_Last is

 type Fpt is delta 0.01 digits 4;
 Image_Last : constant String :=
 Fpt'Image (Fpt'Last);

 function Image_Ok return String is
 begin
 return Fpt'Last'Image;
 -- return Fpt'Image (Fpt'Last); -- Also ok
 end Image_Ok;

 Last : constant Fpt := Fpt'Last;
 function Image_Odd_1 return String is
 (Fpt'Last'Img);
 function Image_Odd_2 return String is
 (Fpt'Last'Image);
 function Image_Ok_2 return String is
 (Fpt'Image (FPT'Last));
 function Image_Ok_3 return String is
 (Last'Image);
begin
 Put_Line ("Image_Last : " & Image_Last);
 Put_Line ("Image_Ok : " & Image_Ok);
 Put_Line ("Image_Odd_1 : " &
 Image_Odd_1);
 Put_Line ("Image_Odd_2 : " &
 Image_Odd_2);
 Put_Line ("Image_Ok_2 : " &
 Image_Ok_2);
 Put_Line ("Image_Ok_3 : " &
 Image_Ok_3);
end Fpt_Last;

Output:
Image_Last : 99.99
Image_Ok : 99.99
Image_Odd_1 : 9.99900000000000000E+01
Image_Odd_2 : 9.99900000000000000E+01
Image_Ok_2 : 99.99
Image_Ok_3 : 99.99

Compiled with gnatmake version 10.3.0
or CE 2020 on macOS 10.13.6.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 02 Sep 2021 10:08:31 -0700

> Is something odd going on here?

Right, this looks like a compiler bug.
LRM 3.5(13):
S'Last denotes the upper bound of the
range of S. The value of this attribute is of
the type of S.

But this is acting like Fpt'Last is
universal_real.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 2 Sep 2021 19:32:57 +0200

No, it is this:

LRM 4.10 (40/5)

"X'Image denotes the result of calling
function S'Image with Arg being X,
where S is the nominal subtype of X."

The question is what is the nominal
subtype of Fpt'Last.

From: Jesper Quorning
<jesper.quorning@gmail.com>

Date: Thu, 2 Sep 2021 16:24:05 -0700

> No, it is this: LRM 4.10 (40/5)

Had to go back to Ada 83 LRM to find a
chapter 4.10.

> "X'Image denotes the result of calling
function S'Image with Arg being X,
where S is the nominal subtype of X."

LRM 3.5 (35-36) says about the same.

> The question is what is the nominal
subtype of Fpt'Last.

Well Image_Ok and Image_Odd_2 should
both return Fpt'Last'Image so one of them
must be bad.

Found LRM 3.5 (27.7/2) describing the
image of a fixed point type.

Thanks for your responses. I will report
the issue.

GtkAda Callback and Event

From: Drpi <314@drpi.fr>
Subject: GtkAda callback and event
Date: Sat, 4 Sep 2021 23:39:29 +0200
Newsgroups: comp.lang.ada

I use an event callback with user data.

I first declare a package:

 package Handler_Motion_Notify is new
 Gtk.Handlers.User_Return_Callback
 (Widget_Type =>
 Gtk.Text_View.Gtk_Text_View_Record,
 Return_Type => Boolean,
 User_Type => t_Debug_Panel);

The function callback is declared like this:

 function On_Motion_Notify (
 TextView : access Gtk.Text_View.
 Gtk_Text_View_Record'Class;
 DebugPanel : t_Debug_Panel) return
 Boolean;

The connection is done like this :

 Handler_Motion_Notify.Connect (
 Widget => Panel.TextView,
 Name => Gtk.Widget.
 Signal_Motion_Notify_Event,
 Cb => On_Motion_Notify'Access,
 User_Data =>t_Debug_Panel(Panel));

This works correctly. But... I need to have
access to the event in the callback
function. How can I achieve this?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 9 Sep 2021 21:58:03 +0200

> I'm not as versed in GtkAda, but it
looks like those have 'Class types so if
it is like most of the other GUI
frameworks out there, you typically
would extend the type that you are
doing the handler for and your user data
would be fields of the new record type.

Ada Pract ice 163

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

Since the handler uses 'Class you could
just cast the parameter to your new type
and have access to the user data.

The problem is that GtkAda uses generics
instead of tagged types. And, as I
frequently say, generics are lousy.

Here is the design, very simplified:

 generic
 type Widget_Type is new
Glib.Object.GObject_Record with private;--
 type User_Type (<>) is private;
 package User_Callback is
 type Int_Handler is access procedure
 (Widget : access Widget_Type'Class;
 Param : GInt;
 User_Data : User_Type);
 procedure Connect
 (...,
 Int_Handler
 ...
);
 type GUInt_Handler is access
 procedure
 (Widget : access Widget_Type'Class;
 Param : GUInt;
 User_Data : User_Type);
 procedure Connect
 (...,
 Int_Handler
 ...
);
 ... -- An so on for each parameter type

In reality it is much messier because
handlers are created per generic instances.
But you see the problem. For each
combination of parameters you need a
handler type and a connect procedure.

Furthermore, observe that this is
inherently type unsafe as you could attach
any handler from a generic instance to
any event regardless of the parameters of
the event.

Welcome to generics, enjoy.

Handlers without user data are non-
generic and exist for each event because
GtkAda is generated. So, it is possible to
generate a non-generic handler/connect
pair for each of hundreds of events per
widget. This is what Emmanuel
suggested:

 Cb_GObject_Gdk_Event_Motion_
 Boolean

But, no user data.

You could not do the same and stuff
thousands of cases in a single generic
handler package! There is only one for all
widgets-events.

There is much hatred towards OO design
in the Ada community which is possibly a
motive behind this.

An OO design would be to create an
abstract base type for each event with a
primitive operation to handle the event.
The target widget type would be fixed

class-wide, but since it is practically never
used, that is no problem.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 9 Sep 2021 23:56:21 -0700

>> type My_Button is new
Gtk.Whatever_Path.Button_Type with
record

>> User_Data : User_Data_Type;

>> end record;

This is indeed the recommended
approach. In practice, most widgets have
a single callback per event type (so one
for motion_notify, one for click, and so
on). All that's needed is the `Self`
parameter which contains all relevant
information. At least this was my
experience based on the GPS source code,
which is a relatively extensive GUI
application. I don't remember the stats
exactly, but there were just a few cases
where this approach did not work. And
this is why we implemented the higher-
level approach in GtkAda, where there are
no possible errors in the type of
parameters for callbacks.

There are a few cases where you want to
share the same callback subprogram for
multiple events, or multiple types of
widgets for instance. In these cases, you
might have to fallback to using the
generics to connect, along with specifying
a user data. As much as possible, I would
recommend not using this approach if you
can avoid it.

I do not share Dmitry's distrust of
generics, but for GUI applications I 100%
agree that an OO approach works much
better indeed. The performance cost is
negligible in such contexts, and the
flexibility is much needed.

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 10 Sep 2021 22:58:06 +0200

> I didn't think I could extend the widget
type to add my own parameters.

Not only for parameters.

Even more frequent purpose is a
composite widget. E.g. consider a text
edit widget with a scroll bar, a menu,
some buttons etc. Typically, you would
take some existing widget and derive your
widget from there.

In the Initialize you will create all other
widgets and pack them into the widget (if
it is a container) or Ref them otherwise. In
Gtk_New you will have custom
parameters.

This new widget you could use just as any
built-in widget. Moreover, you can create
a new class for your derived widget and
add new events, properties and styles for
external parametrization etc. The styles
can be set via CSS.

It is a very powerful and versatile
mechanism GtkAda offers.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sat, 11 Sep 2021 00:38:07 -0700

> Typically, you would take some
existing widget and derive your widget
from there.

I agree this is exactly the right design and
the way we intended GtkAda to be used
(supporting this was not completely trivial
at first, though later versions of gtk+
made that simpler).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 11 Sep 2021 17:56:02 +0200

> Any pointers on how to use CSS styles?

This is GTK documentation of CSS:
https://docs.gtk.org/gtk3/
css-overview.html

Here is an example of a custom button
that uses CSS for label, icon, tool tip etc.

 http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm#
Gtk.Generic_Style_Button

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Sun, 12 Sep 2021 00:08:59 -0700

> The big problem is documentation.

A good introduction into GtkAda is direly
needed. Trial and error cost me
enormously much time.

The GtkAda UG and RM are a bad joke.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 12 Sep 2021 10:52:34 +0200

> The GtkAda UG and RM are a bad
joke.

I think you rather mean GTK introduction
because GtkAda follows GTK to the
letter. There are few advanced topics of
interplay between GtkAda objects and
GObject etc, but that is not required in the
beginning. Basically, you know GTK, you
know GtkAda.

Regarding GTK introduction, it would
require a genius to write that. GTK is
incredibly messy and full of small details
you must know before you start. I have no
idea how anybody could summarize that
in a compact form. There exist various
GTK "getting started." All of them, while
describing important things, miss minor
details essential to write an actual
application. There seems to be no such
thing as an overview in the case of GTK.

And things are far worse for those who
get lured by GLADE. GLADE further
obscures what is going on, what has to be
done. Be happy you did not step into
that...

164 Ada Pract ice

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

From: Drpi <314@drpi.fr>
Date: Sun, 12 Sep 2021 15:00:52 +0200

> I think you rather mean GTK
introduction because GtkAda follows
GTK to the letter.

I don't fully agree with you. I already
found Gtk examples I've not been able to
use directly with GtkAda because of Ada
implementation. Or at least, it was not the
best way to do things. Mostly due to the
GtkAda OO implementation. Events and
customized widgets are good examples.

I also lose a big amount of time searching
for how to do things. [...]

I think the tutorial I've found is a good
one to start. It starts from scratch which is
not as easy as one could think it is: a basic
application never ends. The main window
closes but the exe never stops. Quite
disturbing. When you create a basic
GtkAda project with GPS, you get an
application with such a behavior. At first,
I thought I did something wrong when
installing GtkAda. I then found the
tutorial and discovered this behavior is the
correct one.

> And things are far worse for those who
get lured by GLADE.

I tried Glade once and quickly changed
my mind. I don't say it's a bad tool. Just
that, like you said, things are more
obscure using it. As I like to understand
what I do, this is not the way to go for me
right now. I did the same thing with
WxPython. I learned to construct my GUI
programmatically. Then, when I've been
comfortable with it I switched to
wxFormBuilder for some of my projects.

URL to the French tutorial I use:

https://zestedesavoir.com/tutoriels/645/
apprenez-a-programmer-avec-ada/
555_ada-et-gtk-la-programmation-
evenementielle/
2676_gtkada-introduction-et-installation/

One problem with this tutorial is that it is
outdated.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 12 Sep 2021 15:57:55 +0200

> I don't fully agree with you.

> I already found Gtk examples I've not
been able to use directly with GtkAda
because of Ada implementation. Or at
least, it was not the best way to do
things.

Well, you are supposed to use GValues in
GTK. GtkAda just makes life much easier
for you by adding a typed layer to connect
and handle the events. How it works is
well explained in the documentation. E.g.

https://docs.adacore.com/live/wave/
gtkada/html/gtkada_ug/signals.html

The problem is that you started with that,
skipped reading for later because it was

too much reading. If you had started the
GTK's way first, namely with GValues,
then after pulling much hairs, read the
stuff more carefully, then you would
rather say, "Aha, that is a much better
way to do this. Thanks."

> Mostly due to the GtkAda OO
implementation. Events and customized
widgets are good examples.

Right, because when you begin with
GtkAda with no prior knowledge of GTK,
you are at a complete loss.

Luckily, you do not yet understand how
deep the abyss is! (:-))

> I also lose a big amount of time
searching for how to do things.

Because GTK is a mess. Nobody ever
knows how to do this or that in GTK. I
keep the GTK sources at hand to consult
to just understand what is going on. [It
was a lot easier a decade ago, when
Google was a search engine and GTK
topics were not spammed into oblivion by
Python and C# garbage sites.]

> I think the tutorial I've found is a good
one to start. It starts from scratch which
is not as easy as one could think it is: a
basic application never ends. The main
window closes but the exe never stops.
Quite disturbing.

Then the tutorial is broken. If you look at
GtkAda samples and tests they all contain
the basic GTK frame with
On_Delete_Event and On_Destroy.

Trivial Question: How to
Avoid Confusing Sec, Min,
Hour and Day in a
Program?

From: Reinert <reinkor@gmail.com>
Subject: Trivial question: how to avoid

confusing sec, min, hour and day in a
program?

Date: Sat, 4 Sep 2021 23:56:43 -0700
Newsgroups: comp.lang.ada

Anybody with good ideas on how (in a
simplest possible way) to avoid to confuse
between representation of time as
seconds, minutes, hours and days in an
Ada program? Standardize on internal
representation of time as seconds (Float)?
I will delay to use complex approaches
for physical units.

It is somewhere in my program
natural/human to think in seconds
whereas minutes or hours feels more
natural at other places (so the numerics is
"human"). Example to illustrate: heart rate
is "natural" to give in number per minute
(not in number per second, hour or day).
Time on work is normally given by hours
(not seconds) etc.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 5 Sep 2021 09:27:38 +0200

> Anybody with good ideas on how (in a
simplest possible way) to avoid to
confuse between representation of time
as seconds, minutes, hours and days in
an Ada program?

Just use the standard type Duration.

> It is somewhere in my program
natural/human to think in seconds
whereas minutes or hours feels more
natural at other places (so the numerics
is "human"). Example to illustrate:
heart rate is "natural" to give in number
per minute (not in number per second,
hour or day). Time on work is normally
given by hours (not seconds) etc.

The user interface is responsible for
converting anything to Duration and back.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 5 Sep 2021 15:42:49 +0300

> Just use the standard type Duration.

But note that:

- Duration is a fixed-point type, not
floating point, so it has a fixed
resolution, Duration'Small.

- The resolution and range of Duration are
implementation-defined, and the
standard does not guarantee much. RM
9.6(27) says:

"The implementation of the type Duration
shall allow representation of time
intervals (both positive and negative) up
to at least 86400 seconds (one day);
Duration'Small shall not be greater than
twenty milliseconds."

(Aside: I wonder why this paragraph is
not in RM A.1, "The Package Standard",
where the Duration type is introduced.)

If you want your code to be portable,
define your own type for "time in
seconds", choosing the properties your
application needs.

That said, I believe that GNAT versions
typically provide a 64-bit Duration type
that has enough precision and range for
most applications dealing with times on
human scales. But perhaps not on nuclear,
geological or astrophysical scales.

From: Ldries46 <bertus.dries@planet.nl>
Date: Mon, 6 Sep 2021 09:20:27 +0200

I agree with Dimitry but I think the
problem is far bigger and not only in Ada
but in every computer language. You
cannot use packages written by others if
you do not know the dimensions they use.
For instance in mechanical engineering in
Europe there is a general use of cm while
in other countries they use inches and in
aircraft engineering they use in Europe
mostly mm.

In general the use of dimensioning
systems (f.i. cgs -cm gram second) is
different for different countries and
application areas. Some factors used

Ada Pract ice 165

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

within calculations are even dependent on
the dimensioning system. It would be a
good idea if a package was developed that
can solve all these problems for instance
by doing the calculations in one of the
possible dimensioning systems
automagically presenting the results in the
dimension you choose.

Such a system must exist of a record for
every value, that exists of at least real
values for the standard dimensioning
system and the value in the dimensioning
system you want, the factor between the
two systems and the string containing the
dimension, perhaps even more. There
should be functions for "+", "-", "*", "/"
and sqrt. The calculation should be done
for the value in the standard dimension
while the input and output must be in the
wanted system. Also the strings and
factors must be changed when necessary.

I have already been thinking how but the
problems are mostly in the strings and the
fact that there are also dimensions that
have a lower limit (temperature) or have
an offset (degrees Celsius, Reamur or
Fahrenheit) or exist of several integer
values (time). I think that the potential of
Ada of being independent of an operating
system can be extended that way to
independent of the dimensioning system.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 6 Sep 2021 11:47:52 +0200

> I agree with Dimitry but I think the
problem is far bigger and not only in
Ada but in every computer language.

Why do you need that? If written in Ada,
the value is of some separate numeric
type you could not mix with other types.

> In general the use of dimensioning
systems (f.i. cgs -cm gram second) is
different for different countries and
application areas.

If calculations are involved, they are
performed in SI, because otherwise you
need factors in all formulae. And SI
means no mm, but m, no km/h, but m/s
etc.

> There should be functions for "+", "-",
"*", "/" and sqrt.

http://www.dmitry-kazakov.de/ada/
units.htm

From: Ldries46 <bertus.dries@planet.nl>
Date: Mon, 6 Sep 2021 15:06:17 +0200

> [...] If calculations are involved, they
are performed in SI, because otherwise
you need factors in all formulae.

Sorry but It should perhaps be so but it is
not. Programs made primarily for Aircraft
engineering (f.i. CATIA 5/6) do use mm
and your velocity clock in your car shows
km/h and it registers the distance in km
(in England and the USA mph and miles)
In aircraft the Speed is often still
measured in Knots (Nautical miles per

hour). Maybe French aircraft will possibly
show km/h. It is too hazardous to change
this.

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 6 Sep 2021 15:43:45 +0200

> Sorry but It should perhaps be so but it
is not.

Do not confuse computations with
input/output. I agree with Dmitry, all
computations should be performed in SI,
with a (user selectable) choice of units for
input and display.

From: Ldries46 <bertus.dries@planet.nl>
Date: Mon, 6 Sep 2021 16:13:36 +0200

> Do not confuse computations with
input/output.

What I tried to say is just what J-P Rosen
says. But in my experience (41 years in
aircraft engineering) that is not so, every
time you have to realise what the system
you're working with and you are forced to
even use systems parallel. One of the
points I made is in mechanical
engineering which often uses cm has
standard profiles using mm HE110B is
100mm high. That is the reason that I ask
for a package which solves this problem
for once and always and still gives the
user the possibility to use all kind of
dimensions

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Mon, 06 Sep 2021 11:10:49 -0400

>100mm high. That is the reason that I
ask for a package which solves this
problem for once and always and still
gives the user the possibility to use all
kind of dimensions

So... a reimplementation of the HP-48
UNITS module... Which requires all
values to have a unit designation attached
(eg: 1.6_km) and internally probably
tracks the input unit but converts to base
(SI) units for computations, then remaps
to user input units for display.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Mon, 6 Sep 2021 08:55:57 -0700

> http://www.dmitry-kazakov.de/ada/
units.htm

http://archive.adaic.com/tools/CKWG/
Dimension/Dimension.html

You might try to improve one of those
packages for your needs.

Don't know what HE110B is.

From: Reinert <reinkor@gmail.com>
Date: Sat, 23 Oct 2021 23:52:17 -0700

Ada seems to guarantee that Duration
covers 24 hours (?). What do you do
when you need to represent for example 5
years?

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 24 Oct 2021 09:24:46 +0200

> Ada seems to guarantee that Duration
covers 24 hours

Ada /guarantees/ at least 24 hours, since
subtype Day_Duration corresponds to one
day.

In practice, Duration is much bigger.
There is no requirement for it, since it
obviously depends on the implementation.
With GNAT, the following program:

with Text_Io; use Text_Io;
procedure Test_Duration is
 package Duration_Io is new Fixed_Io (
 (Duration);
 use Duration_Io;
begin
 null;
 Put ("duration'last:");
 Put (Duration'Last); New_Line;
 Put ("days:");
 Put (Duration'Last / 86400); New_Line;
 Put ("years:");
 Put (Duration'Last / 86400 / 365.25);
 New_Line;
end;

gives:

Duration'last: 9223372036.854775807
Days: 106751.991167300
Years: 292.271023045

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 24 Oct 2021 12:39:34 +0200

> Put ("years:") ; Put (Duration'Last /
86400 / 365.25); New_Line;

Still using the Julian calendar? In the
Common calendar, the average length of a
year is 365.2425 days (97 leap years
every 400 years).

> years: 292.271023045

Should be 292.277024627

From: Simon Wright
<simon@pushface.org>

Date: Sun, 24 Oct 2021 11:48:24 +0100

> What do you do when you need to
represent for example 5 years?

This must depend on your use case.

I'd imagine you want to arrange for some
event to happen 5 years in the future. The
'natural' way to do this might be, in a task,

 delay until Ada.Calendar.Clock +
 Duration'({5 years});

but this comes up against two problems:
first, as you note, that long a duration
might not work, and second, the computer
is almost certain to have been restarted by
then, losing this task.

The second problem could be solved by,
e.g., keeping a backed-up time-ordered
queue of events to be processed, with a
task that delays until the next event is due.

As for the first -- I think you may need to
make an appropriate Duration'Last part of
your compiler selection criteria.

166 Ada Pract ice

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

Single-Instance Executable,
TSR-style Programs,
"lockfiles" and the DSA

From: Shark8
<onewingedshark@gmail.com>

Subject: Single-Instance Executable, TSR-
style programs, "lockfiles" and the DSA

Date: Wed, 8 Sep 2021 14:23:58 -0700
Newsgroups: comp.lang.ada

I'm currently engaged in writing a series
of programs for some scientists to control
a few cameras; one system is a sort of
cobbled together web-program,
distributed across several computers [PHP
for interface + C++ for message-slinging
and camera-control], while the other is a
single computer basically running the
camera's manufacturer's program. -- This
is mostly about the latter, though the
former will need to be addressed [via
DSA(?)] in the near future.

There is another system that I'm not
touching (for now) which uses lockfiles;
sometimes (crashes and erroneous
shutdowns) will leave the lockfiles
behind. I have a controlled type-wrapper
that will close its file if it is still open, and
that could easily be adapted to delete
them on finalization in the case of a
lockfile. -- (#1) What is the best way that
the community has come up with
regarding lockfiles or similar
functionality?

In this particular case, the lockfile
represents that the control software for a
particular instrument is already running,
which brought to mind the old DOS TSRs
where you would boot up the program
and could call it (or another program
using its services) again to achieve some
different/special effects, which then
brought to mind the new single-instance
executables. Now, obviously the DSA can
be used in this manner so that one
partition provides services and the client
partition queries/quits as needed. -- (#2) Is
there a non-DSA, and hopefully portable,
Ada way to achieve single-instance
executables? [I haven't had any luck
trying web-searches on this topic.]

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Fri, 10 Sep 2021 00:10:49 -0700

When I wrote the program that processes
all incoming email on the mailing lists at
AdaCore (in particular to manage tickets),
we were using lockfiles indeed to
coordinate between all the instances of the
program (one per incoming email). The
lockfile contained an expiration date and
the PID of the process that took the lock,
and a program was allowed to break the
lock when that date was reached (like
10min or something, I forgot the value we
came up with, when processing one
message takes a few milliseconds), or
when the process no longer existed (so

crashed). So at least the system could not
totally break and would eventually
recover.

This is of course far from perfect, since
during those 10 minutes no email could
be processed or delivered, and if the
timeout is incorrect we could end up with
two programs executing concurrently (in
practice, this was not a major issue for us
and we could deal with the once-a-year
duplicate ticket generated).

Years later, we finally moved to an actual
database (postgresql) and we were able to
remove the locks altogether by taking
advantage of transactions there. This is of
course a much better approach.

When I look at systems like Kafka (multi-
node exchange of messages), they have an
external program (ZooKeeper) in charge
of monitoring the various instances.
Presumably a similar approach could be
used, where the external program is much
simpler and only in charge of
synchronizing things. Being simpler and
fully written in Ada, it would be simpler
to ensure this one doesn't crash (famous
last words...).

From: Shark8
<onewingedshark@gmail.com>

Date: Fri, 10 Sep 2021 09:26:08 -0700

> Years later, we finally moved to an
actual database (postgresql) and we
were able to remove the locks
altogether by taking advantage of
transactions there.

Interesting.

When you moved to DB, did you use the
DSA to have a Database-interface
partition and client-query/-interface
partition? I'm assuming not, because such
a ticketing system probably doesn't have
enough need for distributed clients,
report-generators, etc. to justify such a
design.

> When I look at systems like Kafka
(multi-node exchange of messages),
they have an external program
(ZooKeeper) in charge of monitoring
the various instances.

I suspect such designs are consequences
of the poor support for processes/tasking
that C has; the Ada equivalent of the
functionality would be to have a TASK
dedicated to the DB-interfacing [assuming
single-node]; for full multi-node DB-
backed/-transacted message-exchange
DSA makes a lot of sense: Partition your
DB-interface into a single node, then have
your clients remote-interface that node.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sat, 11 Sep 2021 00:42:19 -0700

> When you moved to DB, did you use
the DSA to have a Database-interface
partition and client-query/-interface
partition?

We did not use the DSA. Postgres itself is
a very capable server, which is
implemented way more efficiently (and
tested way better) than we could ever do I
think, since this was only a side job. No
reason to add an extra layer between the
mail-processing program and the
database.

> I suspect such designs are consequences
of the poor support for
processes/tasking that C has; the Ada
equivalent of the functionality would be
to have a TASK dedicated to the DB-
interfacing.

I don't think you need a task dedicated to
the database. Postgres handles
concurrency very efficiently, it can do
asynchronous queries if you really need
that, and so on. If you indeed have a
database in your application, you could
also use that to handle inter-process
locking (pg_advisory_lock() for instance)

GtkAda and €

From: Adamagica <christ-usch.grein@t-
online.de>

Subject: GtkAda and €
Date: Fri, 10 Sep 2021 10:56:19 -0700
Newsgroups: comp.lang.ada

I'm struggling to get the euro sign in a
label or on a button in GtkAda. I have the
euro sign on my German keyboard (on the
E key), but I have no idea how this is
encoded. So how do I get this in UTF8?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 10 Sep 2021 20:53:07 +0200

> So how do I get this in UTF8?

With Strings Edit:

 Strings_Edit.UTF8.Image (16#20A0#)

See:

http://www.dmitry-kazakov.de/ada/
strings_edit.htm#7

Otherwise, see:

https://www.fileformat.info/info/unicode/
char/20ac/index.htm

It gives the hexadecimal UTF-8 encoding:

 0xE2 0x82 0xAC

So, in Ada:

 Character'Val (16#E2#) &
 Character'Val (16#82#) &
 Character'Val (16#AC#)

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Sat, 11 Sep 2021 02:20:32 -0700

Is there no way to use the character €
directly? Imagine, you want to write
cyrillc on the label of a GUI? Would you
use hex values or would you write “Я
говорю по-русски”.

Ada Pract ice 167

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 11 Sep 2021 12:04:40 +0200

I would never use Cyrillic in the source
code.

Anyway, this is a question regarding the
encoding of literals in Ada. Ada 2X
supports Unicode and GNAT supports
Unicode sources.

I never tried it but I suppose the following
should work:

Strings_Edit.UTF8.Handling.To_UTF8 ('€');

Here '€' should be resolved to
Wide_Character'('€') and then converted
to a UTF-8 encoded String.

As for labels, icons etc, I use GTK style
properties.

I.e. Let me have a label with a text on it.
Usually this label would be packed in
some larger container widget, e.g.
Gtk_Grid_Record. I derive a custom
widget from Gtk_Grid_Record. Then I
call Initialize_Class_Record once to
create the new widget "type" (used
G_New). There I add style properties like
this:

 Class_Record : aliased
Ada_GObject_Class := Uninitialized_Class;
 ...
 procedure Initialize
 (Widget : not null access
 My_Widget_Record'Class
) is
 begin
 G_New (Widget, Get_Type);
 -- Get_Type will register class
 ...

 function Get_Type return GType is
 begin
 if Initialize_Class_Record
 (Ancestor => Gtk.Grid.Get_Type,
 -- Parent class
 Class_Record =>
 Class_Record'Access,
 Type_Name => "mywidget"
) then -- Not yet registered
 Install_Style_Property
 (GLib.Types.Class_Ref
 (Class_Record.The_Type),
 Gnew_String
 (Name => "label",
 Nick => "Label",
 Blurb => "Label text I want to be
 able to change",
 Default => "I speak English"
));
 ...
 end if;
 return Class_Record.The_Type;
 end Get_Type;

The widget must handle "style-updated"
from where it would use Style_Get to get
the label text and set it into the label.

So, a Russian localization would be a CSS
sheet file defining the property "label":

--8<--

mywidget {

 -mywidget-label: "Я говорю по-
русски";

}

--8<--

P.S. Inventors of GTK CSS sheets
apparently misspelled the word "sheet",
they should have used the letter 'i'! (:-))

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sat, 11 Sep 2021 04:11:35 -0700

> custom widget from Gtk_Grid_Record.
Then I call Initialize_Class_Record
once to create the new widget "type"
(used G_New). There I add style
properties like this:

I am impressed! I have never had the
courage to actually use those properties in
my code...

I would use GtkAda.Intl, so that the code
would contain

 use GtkAda.Intl;
 Button.Set_Label (-"string to translate");

and the translations are given in a separate
file.

This is also theoretical for me: although
we had initially tried to maintain such a
translation file for GPS (and made sure
that all user-visible strings on the string
were used with the "-" operator in case we
ever wanted to do a translation, it was
never done in practice).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 11 Sep 2021 14:47:53 +0200

> I am impressed! I have never had the
courage to actually use those properties
in my code...

I used properties because I had custom
general-purpose widgets rather than an
end application like GPS.

A nice thing about GtkAda is that one can
use all GTK stuff without any C
insertions and it is highly extensible.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Sat, 11 Sep 2021 06:26:29 -0700

> Here '€' should be resolved to
Wide_Character'('€') and then
converted to a UTF-8 encoded String.

This does not work. Source files are in
Latin_1 by default and € is beyond 255,
so GNAT cannot handle '€'. I tried to set
the source file's character set to Unicode
UTF16 (in GPS, from the file's context
menu choose "Properties...") with terrible
effects. A real no-go.

> As for labels, icons etc, I use GTK style
properties.

I dare not try this...

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Sat, 11 Sep 2021 06:51:40 -0700

Being German, I need umlauts and €
together in strings to write them to some
labels. Using Character'Val (16#E2#) &
Character'Val (16#82#) & Character'Val
(16#AC#) complicates things, since
umlauts are above 255 and need
transformation to UTF8, whereas the euro
sequence above is already in UTF8 and
must not again be transformed.

What a mess!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 11 Sep 2021 16:13:07 +0200

> What a mess!

Huh, the mess here is Latin-1 introduced
by Ada 95, no such thing should have
been even supported. This happened
because in the 90s UTF-8 was not yet
established, so Ada 95 made Character
Latin-1 and added Wide_Character for
UCS-2. This was a huge mistake with
wide (pun intended) reaching nasty
consequences.

Since the Ada type system is too weak to
handle encodings, Strings should simply
be UTF-8 and Character an octet with
lower 7-bits corresponding to ASCII.

Anyway, for anything that is not ASCII I
use a named constant.

From: Manuel Gomez
<mgrojo@gmail.com>

Date: Sat, 11 Sep 2021 19:46:46 +0200

> Being German, I need umlauts and €
together in strings to write them to
some labels.

When converting to UTF8, can you
specify that you are using Latin-9 (ISO-
8859-15), instead of Latin-1? Latin-9 is
equivalent to Latin-1 plus the Euro sign,
instead of the generic currency sign, since
Latin-1 predates the Euro.

In that case, it would be:

 Euro_Sign : constant Character :=
 Character'Val (164);

This is from Ada.Characters.Latin_9,
provided by GNAT (not in the standard).
Not sure, but maybe you could type the
Euro sign in the source code with the
keyboard, since the representation is the
same.

Another option is to use ASCII only (with
some encoding for umlauts and Euro sign)
and then apply localization for the strings
that must be "translated" to proper
German.

From: Adamagica
 <christ-usch.grein@t-online.de>

Date: Sun, 12 Sep 2021 00:04:47 -0700

> This is from Ada.Characters.Latin_9,
provided by GNAT (not in the standard).

168 Ada Pract ice

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

Not sure, but maybe you could type the
Euro sign in the source code with the
keyboard, since the representation is the
same.

In GNAT Studio, you can set the
encoding (from the file's context menu
choose "Properties...") to Latin_9. Then
the character 164 is displayed as € in the
Ada source file. You can even use the €
key on the keyboard. That does not help,
however, since Unicode is based on
Latin_1, and when this is transformed to
UTF8, the currency character appears on
the GtkAda GUI.

> Another option is to use ASCII only
(with some encoding for umlauts and
Euro sign) and then apply localization
for the strings that must be "translated"
to proper German.

I indeed use Character 164 as a
placeholder in the Ada source code. When
transforming to UTF8, I search for this
character first, transform the head string,
insert the Euro sequence and transform
the tail string recursively. This works.

From: Manuel Gomez
<mgrojo@gmail.com>

Date: Sun, 12 Sep 2021 13:44:54 +0200

> In GNAT Studio, you can set the
encoding (from the file's context menu
choose "Properties...") to Latin_9. Then
the character 164 is displayed as € in
the Ada source file. That does not help,
however, since Unicode is based on
Latin_1, and when this is transformed
to UTF8, the currency character
appears on the GtkAda GUI.

I suppose this is because the conversion
assumes Latin-1 input, and it is acceptable
given that String type should be in that
encoding, but with a general string
conversion library, like iconv, you can
convert between any 8-bit character
encoding and UTF-8.

Here an Ada binding to iconv (I haven't
used it):
https://github.com/ytomino/iconv-ada

And Matreshka League has several 8-bit
character encodings, although it lacks
ISO-8859-15. It should be easy to add
ISO-8859-15 based on ISO-8859-1:

http://forge.ada-ru.org/matreshka/wiki/
League/TextCodec

But I guess what you are already doing is
the easiest approach. It's just one
character.

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Mon, 13 Sep 2021 00:21:05 -0700

> What a mess!

Character encoding in source code, input-
output and GUI is a known mess. There is
Ada 2022 library that provides high level
API to process text information, see

https://github.com/AdaCore/VSS

You can try to use Virtual_String
everywhere, and do encoding conversion
only to get/pass text from/to Gtk+ or
input-output streams.

Note, if you want to write characters
outside of the ASCII range in the source
code you will need to use UTF8 for
source files and provide -gnatW8 switch
to compiler. It may break compilation of
old code sometimes :(

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

170

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

Conference Calendar
Dirk Craeynest
KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. Where available, the status of events is
indicated with the following markers: "(v)" = event is held online, "(h)"= event is held in a hybrid form (i.e. partially online).

2021

October 3-7
(h)

16th International Conference on Software Engineering Advances (ICSEA'2021). Barcelona, Spain.
Topics include: trends and achievements; advances in fundamentals for software development (software
analysis and model checking, software design, design by contract, software modeling, software
validation and verification, software testing and testing tools, software implementation, component-
based software development, software security-based development, ...); advanced mechanisms for
software development (software composition, refactoring, software dependencies, software rejuvenation,
embedded software, parallel and distributed software, ...); advanced design tools for developing software
(formal specifications in software, programming mechanisms such as real-time, multi-threads, etc.,
programming techniques, programming languages, ...); software security, privacy, safeness (software
safety and security, software vulnerabilities, assessing risks in software, software for online banking and
transactions, high confidence software, ...); advances in software testing; specialized software advanced
applications (software for mobile vehicles, biomedical-related software, mission critical software, real-
time software, e-health related software, ...); open source software; agile and lean approaches in software
engineering; software deployment and maintenance; software engineering techniques, metrics, and
formalisms (software reuse, software re-engineering, software composition, software integration, ...);
software economics, adoption, and education; etc.

October 8-15
(v)

Embedded Systems Week 2021 (ESWEEK'2021). Shanghai, China. The venues for ESWEEK 2020
and 2021 were swapped. ESWEEK 2020 was to be held in Hamburg, Germany from September 20-25,
2020. ESWEEK 2021 would be held in Shanghai, China from October 10-15, 2021, but then moved to
a virtual event format. Includes CASES'2021 (International Conference on Compilers, Architectures, and
Synthesis for Embedded Systems), CODES+ISSS'2021 (International Conference on
Hardware/Software Codesign and System Synthesis), EMSOFT'2021 (International Conference on
Embedded Software).

 October 10-15
(v)

ACM SIGBED International Conference on Embedded Software (EMSOFT'2021).
Topics include: the science, engineering, and technology of embedded software
development; research in the design and analysis of software that interacts with physical
processes; results on cyber-physical systems, which integrate computation, networking,
and physical dynamics.

 October 10-15
(v)

International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS'2021). Topics include: system-level design, hardware/software co-
design, modeling, analysis, and implementation of modern Embedded Systems, Cyber-
Physical Systems, and Internet-of-Things, from system-level specification and
optimization to system synthesis of multi-processor hardware/software
implementations.

 October 10-15
(v)

International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES'2021). Topics include: latest advances in compilers and architectures
for high-performance, low-power, and domain-specific embedded systems; compilers
for embedded systems: multi- and many-core processors, GPU architectures,

Conference Calendar 171

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

reconfigurable computing including FPGAs and CGRAs, security, reliability, and
predictability (secure architectures, hardware security, and compilation for software
security; architecture and compiler techniques for reliability and aging; modeling,
design, analysis, and optimization for timing and predictability; validation, verification,
testing & debugging of embedded software); etc.

October 11-14
(h)

21st International Conference on Runtime Verification (RV'2021). Los Angeles, California, USA.
Topics include: monitoring and analysis of runtime behaviour of software and hardware systems.
Application areas include cyber-physical systems, safety/mission critical systems, enterprise and systems
software, cloud systems, autonomous and reactive control systems, health management and diagnosis
systems, and system security and privacy, among others.

October 11-15
(h)

15th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2021). Bari, Italy. ESEM'2020 was postponed from 8-9 October 2020 to 2021.

 October 17-22
(h)

ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2021). Chicago, Illinois, USA. Topics include: all aspects of software construction
and delivery, at the intersection of programming, languages, and software engineering.

 October 17-19 14th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2021). Topics include: areas ranging from theoretical and conceptual
contributions, to tools, techniques, and frameworks in the domain of software language
engineering; software language engineering rather than engineering a specific software
language; software language design and implementation; software language validation;
software language integration and composition; software language maintenance
(software language reuse, language evolution, language families and variability);
domain-specific approaches for any aspects of SLE (design, implementation, validation,
maintenance); empirical evaluation and experience reports of language engineering tools
(user studies evaluating usability, performance benchmarks, industrial applications); etc.

October 17-22 28th Static Analysis Symposium (SAS'2021). Chicago, Illinois, USA. In conjunction with
SPLASH'2021. Topics include: static analysis as fundamental tool for program verification, bug
detection, compiler optimization, program understanding, and software maintenance.

October 18-22
(v)

19th International Symposium on Automated Technology for Verification and Analysis
(ATVA'2021). Gold Coast, Australia. Topics include: theoretical and practical aspects of automated
analysis, synthesis, and verification of hardware, software, and machine learning (ML) systems; program
analysis and software verification; analytical techniques for safety, security, and dependability; testing
and runtime analysis based on verification technology; analysis and verification of parallel and
concurrent systems; verification in industrial practice; applications and case studies; automated tool
support; etc.

October 25
(v)

11th Workshop on Programming Languages and Operating Systems (PLOS'2021). Internet. Topics
include: critical evaluations of new programming language ideas in support of OS construction; type-
safe languages for operating systems; language-based approaches to crosscutting system concerns, such
as security and run-time performance; language support for system verification, testing, and debugging;
the use of OS abstractions and techniques in language runtimes; experience reports on applying new
language techniques in commercial OS settings; etc.

October 28-29
(v)

17th International Conference on Formal Aspects of Component Software (FACS'2021). Grenoble,
France. Topics include: application of formal methods in all aspects of software components and
services, such as formal models for software components and their interaction; design and verification
methods for software components and services; formal methods and modeling languages for components
and services; components for real-time, safety-critical, secure, and/or embedded systems; components
for the Internet of things and cyber-physical systems; model-based testing of components and services;
case studies and experience reports; tools supporting formal methods for components and services; etc.

November 01-02 24th International Workshop on Software and Compilers for Embedded Systems (SCOPES'2021).
Eindhoven, the Netherlands. Topics include: all aspects of the compilation and mapping process of
embedded systems, such as models of computation and programming languages, automatic code
parallelization techniques, mapping and scheduling techniques for embedded multi-processor systems,
code generation techniques for embedded single- and multi-processor architectures, design of real-time

172 Conference Calendar

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

systems, techniques for compiler aided profiling, measurement, debugging and validation of embedded
software, etc.

November 15-19
(v)

36th IEEE/ACM International Conference on Automated Software Engineering (ASE'2021).
Melbourne, Australia. Topics include: foundations, techniques, and tools for automating the analysis,
design, implementation, testing, and maintenance of large software systems; testing, verification, and
validation; software analysis; empirical software engineering; maintenance and evolution; software
security and trust; program comprehension; software architecture and design; reverse engineering and
re-engineering; model-driven development; specification languages; software product line engineering;
etc.

November 17-20
(v)

23rd International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS'2021). Internet. Topics include: foundations of concurrent and distributed computing; distributed
and concurrent algorithms and data structures; synchronization protocols; formal methods, validation,
verification, and synthesis; fault tolerance, security, and privacy; verifiable/fault-tolerant computing; etc.

November 20-26
(v)

24th International Symposium on Formal Methods (FM'2021). Beijing, China. Topics include: formal
methods in a wide range of domains including software, computer-based systems, systems-of-systems,
cyber-physical systems, security, human-computer interaction, manufacturing, sustainability, energy,
transport, smart cities, and healthcare; formal methods in practice (industrial applications of formal
methods, experience with formal methods in industry, tool usage reports, experiments with challenge
problems); tools for formal methods (advances in automated verification, model checking, and testing
with formal methods, tools integration, environments for formal methods, and experimental validation
of tools); formal methods in software and systems engineering (development processes with formal
methods, usage guidelines for formal methods, and method integration); etc. Deadline for submissions:
October 4, 2021 (Doctoral Symposium research abstracts).

November 22-23
(v)

15th International Conference on Verification and Evaluation of Computer and Communication
Systems (VECoS'2021). Beijing, China. Topics include: formal verification and evaluation approaches,
methods and techniques, especially those developed for concurrent and distributed hardware/software
systems; abstraction techniques; compositional verification; correct-by-construction design; rigorous
system design; model-checking; performance and robustness evaluation; QoS evaluation, planning and
deployment; dependability assessment techniques; RAMS (Reliability-Availability-Maintainability-
Safety) assessment; model-based security assessment; verification & validation of IoT and of safety-
critical systems; assessment for real-time systems; worst-case execution time analysis; etc. Application
areas include: communication protocols, cyber-physical systems, high-performance computing, internet
of things, logistics systems, mixed criticality systems, programming languages, real-time and embedded
operating systems, telecommunication systems, etc.

November 25-26 22nd International Conference on Product-Focused Software Process Improvement
(PROFES'2021). Turin, Italy. Topics include: experiences, ideas, innovations, as well as concerns related
to professional software development and process improvement driven by product and service quality
needs.

December 01-04
(v)

25th Pacific Rim International Symposium on Dependable Computing (PRDC'2021). Perth,
Australia. Topics include: software and hardware reliability, testing, verification, and validation;
dependability measurement, modeling, evaluation, and tools; software aging and rejuvenation; safety-
critical and mixed-criticality systems and software; architecture and system design for dependability;
(industrial) Internet of Things dependability, security and privacy; dependability issues in high
performance computing, in real-time systems; in cyber-physical systems; dependability and security in
AI and machine learning systems; etc.

December 06-08
(v)

20th Belgium-Netherlands Software Evolution Workshop (BENEVOL'2021). 's-Hertogenbosch, the
Netherlands. Topics include: software evolution and maintenance. Deadline for submissions: November
5, 2021 (technical papers), November 12, 2021 (presentation abstracts). Deadline for registration:
November 22, 2021.

December 06-09
(v)

28th Asia-Pacific Software Engineering Conference (APSEC'2021). Taiwan. Topics include: agile
methodologies; component-based software engineering; cyber-physical systems and Internet of Things;
debugging and fault localization; embedded real-time systems; formal methods; middleware,
frameworks, and APIs; model-driven and domain-specific engineering; open source development;
parallel, distributed, and concurrent systems; programming languages and systems; refactoring; reverse

Conference Calendar 173

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

engineering; security, reliability, and privacy; software architecture, modelling and design; software
comprehension and traceability; software engineering education; software engineering tools and
environments; software maintenance and evolution; software product-line engineering; software reuse;
software repository mining; testing, verification, and validation; etc. Deadline for submissions: October
7, 2021 (poster papers).

December 06-10
(v)

19th International Conference on Software Engineering and Formal Methods (SEFM'2021). York,
UK. Topics include: software development methods (formal modeling, specification, and design;
software evolution, maintenance, re-engineering, and reuse); design principles (programming languages,
domain-specific languages, abstraction and refinement, ...); software testing, validation, and verification
(model checking, theorem proving, and decision procedures; testing and runtime verification; lightweight
and scalable formal methods; resilience, security, privacy, and trust; safety-critical, fault-tolerant, and
secure systems; software assurance and certification; ...); applications and technology transfer
(component-based and multi-agent systems; real-time, hybrid, and cyber-physical systems; education;
...); special topic "Software Engineering and Formal Methods for Resilient and Trustworthy Autonomous
Systems"; case studies, best practices, and experience reports.

December 06-14
(h)

21st IEEE International Conference on Software Quality, Reliability and Security (QRS'2021).
Hainan Island, China. Topics include: reliability, security, availability, and safety of software systems;
software testing, verification, and validation; program debugging and comprehension; fault tolerance for
software reliability improvement; modeling, prediction, simulation, and evaluation; metrics,
measurements, and analysis; software vulnerabilities; formal methods; operating system security and
reliability; benchmark, tools, industrial applications, and empirical studies; etc. Deadline for
submissions: October 01, 2021 (fast abstracts, industry track, posters).

 Dec 07-10
 (v)

42nd IEEE Real-Time Systems Symposium (RTSS'2021). Dortmund, Germany. RTSS'2021 was
moved from Taipei, Taiwan, to Dortmund, Germany. Topics include: addressing some form of real-time
requirements such as deadlines, response times or delays/latency; real-time system track (middleware,
compilers, tools, scheduling, QoS support, testing and debugging, design and verification, modeling,
WCET analysis, performance analysis, fault tolerance, security, system experimentation and deployment
experiences, ...); design and application track (cyber-physical systems design methods, tools chains,
security and privacy, performance analysis, robustness and safety, analysis techniques and tools, ...;
architecture description languages and tools; Internet of Things (IoT) aspects of scalability,
interoperability, reliability, security, middleware and programming abstractions, protocols, modelling,
analysis and performance evaluation, ...); etc. Deadline for submissions: October 1, 2021 (TCRTS Test
of Time Award nominations), October 29, 2021 (student travel grant applications). Deadline for early
registration: October 27, 2021 (physical participation), December 10, 2021 (virtual participation).

December 07-10
(v)

24th Brazilian Symposium on Formal Methods (SBMF'2021). Campina Grande, PB, Brazil. Topics
include: development, dissemination, and use of formal methods for the construction of high-quality
computational systems; applications of formal methods to software design, development, code
generation, testing, maintenance, evolution, reuse, ...; specification and modelling languages (logic and
semantics for specification or/and programming languages; formal methods for timed, real-time, hybrid,
or/and safety-critical systems; formal methods for cyber-physical systems; ...); theoretical foundations
(type systems models of concurrency, security, ...); verification and validation (abstraction,
modularization or/and refinement techniques, static analysis, model checking, theorem proving, software
certification, correctness by construction); experience reports on teaching formal methods, on industrial
application of formal methods.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 13-14
(v)

17th International Conference on Embedded Software and Systems (ICESS'2021). Shanghai, P. R.
China. Topics include: systems, models & algorithms track (real-time embedded systems, fault tolerant
and trusted embedded systems, mixed-criticality embedded systems, multicore embedded systems, ...),
design methodology & tools track (formal methods for embedded systems, middleware for embedded
systems, IDE and software tools, verification and validation for embedded systems, compilation and
debug techniques and tools, safety of machine learning for embedded systems, ...), emerging embedded
applications and interdisciplinary topics track (machine learning for embedded applications, Internet-of-
Things (IoT), robotics and control systems, Cyber-Physical Systems (CPS), automotive and avionics
systems, medical systems, industrial practices and case studies, ...), etc.

174 Conference Calendar

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

2022

January 17-19 17th International Conference on High Performance and Embedded Architecture and

Compilation (HiPEAC'2022). Budapest, Hungary. Topics include: computer architecture, programming
models, compilers and operating systems for embedded and general-purpose systems.

January 18-20 14th Software Quality Days Conference and Tools Fair (SWQD'2022), Vienna, Austria. Topics
include: all topics about software and systems quality, such as improvement of software development
methods and processes, testing and quality assurance of software and software-intensive systems, project
and risk management, domain specific quality issues (among others embedded, medical, automotive
systems), novel trends in software quality, etc.

 February 6
(v)

11th Ada Developer Room at FOSDEM 2022, Brussels, Belgium. FOSDEM 2022 is
a two-day event (Sat-Sun 5-6 Feb), exceptionally held fully online. This years' edition
includes once more a full-day Ada Developer Room, held on Sunday 6 February, and
organized in cooperation with Ada-Belgium and Ada-Europe. Deadline for submissions:
December 26, 2021 (initial presentation proposals).

 February 12-16
(h)

26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP'2022). Seoul, South Korea. Deadline for submissions: November 5, 2021 (workshops, tutorials).

March 09-11
(h)

30th Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP'2022). Valladolid, Spain.

March 12-15
(h)

18th IEEE International Conference on Software Architecture (ICSA'2022). Honolulu, Hawaii,
USA. Topics include: architecture evaluation and quality aspects of software architectures; model-driven
engineering and component-based software engineering; automatic extraction and generation of software
architecture descriptions; refactoring and evolving architecture design decisions and solutions;
architecture frameworks and architecture description languages; linking architecture to requirements
and/or implementation; architecture conformance; reusable architectural solutions; software architecture
for legacy systems and systems integration; architecting families of products; roles and responsibilities
for software architects; training, soft skills, coaching, mentoring, education, and certification of software
architects; resilient and dependable software architectures; etc. Deadline for submissions: October 31,
2021 (student volunteers), November 1, 2021 (technical track abstracts), November 8, 2021 (technical
track full papers), December 1, 2021 (Software Architecture in Practice track, New and Emerging Ideas
track abstracts, Early Career Researchers Forum abstracts, poster track abstracts), December 8, 2021
(journal-first track, New and Emerging Ideas track full papers, Early Career Researchers Forum full
papers, poster track full papers, tutorials), January 11, 2022 (Artifact Evaluation track mandatory
registrations), January 14, 2022 (Artifact Evaluation track submissions).

March 15-18 29th IEEE Conference on Software Analysis, Evolution, and Reengineering (SANER'2022).
Honolulu, Hawaii, USA. Topics include: theory and practice of recovering information from existing
software and systems; software analysis, parsing, and fact extraction; software reverse engineering and
reengineering; program comprehension; software evolution analysis; software architecture recovery and
reverse architecting; program transformation and refactoring; mining software repositories and software
analytics; software maintenance and evolution; software release engineering, continuous integration and
delivery; education related to all of the above topics; etc. Deadline for submissions: October 10, 2021
(workshops), October 14, 2021 (main research track abstracts), October 21, 2021 (main research track
papers), November 11, 2021 (ERA track abstracts, tool track and industry track abstracts, RENE track
abstracts), November 18, 2021 (ERA track papers, tool track and industry track papers, RENE track
papers), November 19, 2021 (journal first track), December 17, 2021 (workshop papers).

March 21-24 28th International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2022). Aston, Birmingham, UK. Theme: "Explainability in Requirements
Engineering". Deadline for submissions: October 11, 2021 (workshops), October 18, 2021 (research
paper abstracts), October 25, 2021 (full research papers), January 10, 2022 (poster and tool abstracts),
January 17, 2022 (workshop papers, posters, tools), January 28, 2022 (doctoral symposium).

Conference Calendar 175

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

 March 21-25
(h)

International Conference on the Art, Science, and Engineering of Programming
(Programming'2022). Porto, Portugal. Deadline for submissions: December 5, 2021 (workshops).

 March 30-31 11th European Congress on Embedded Real Time Systems (ERTS'2022). Toulouse, France. Topics
include: all aspects of critical embedded real-time systems, such as model-based system engineering,
formal methods, product line engineering, new programming and verification languages, dependability,
safety, cyber security, quality of service, fault tolerance, maintainability, certification, robotics, etc.
Deadline for submissions: October 3, 2021 (regular abstracts, short papers), January 9, 2022 (regular
papers), January 30, 2022 (final short and regular papers).

April 02-03 31st ACM SIGPLAN International Conference on Compiler Construction (CC'2022). Seoul, South
Korea. Co-located with CGO, HPCA, and PPoPP. Topics include: processing programs in the most
general sense (analyzing, transforming or executing input that describes how a system operates,
including traditional compiler construction as a special case); compilation and interpretation techniques
(including program representation, analysis, and transformation; code generation, optimization, and
synthesis; the verification thereof); run-time techniques (including memory management, virtual
machines, and dynamic and just-in-time compilation); programming tools (including refactoring editors,
checkers, verifiers, compilers, debuggers, and profilers); techniques, ranging from programming
languages to micro-architectural support, for specific domains such as secure, parallel, distributed,
embedded or mobile environments; design and implementation of novel language constructs,
programming models, and domain-specific languages. Deadline for submissions: November 8, 2021 (full
papers), February 7, 2022 (artifacts).

April 02-07 25th European Joint Conferences on Theory and Practice of Software (ETAPS'2022). Munich,
Germany. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline for
submissions: October 14, 2021 (papers).

April 04-13
(v)

15th IEEE International Conference on Software Testing, Verification and Validation (ICST'2022).
Valencia, Spain. Deadline for submissions: December 17, 2021 (tool demos), January 8, 2022 (doctoral
symposium), February 4, 2022 (posters).

April 09-13 13th ACM/SPEC International Conference on Performance Engineering (ICPE'2022). Beijing,
China.

April 23
(h)

2nd International Conference on Code Quality (ICCQ'2022). Innopolis, Kazan, Russia. Topics
include: static analysis, program verification, bug detection, and software maintenance. Deadline for
submissions: December 18, 2021 (abstracts, papers).

April 25-29
(h)

37th ACM Symposium on Applied Computing (SAC'2022). Brno, Czech Republic.

 April 25-29 17th Track on Dependable, Adaptive, and Secure Distributed Systems
(DADS'2022). Topics include: Dependable, Adaptive, and secure Distributed Systems
(DADS); modeling, design, and engineering of DADS; foundations and formal methods
for DADS; etc. Deadline for paper submissions: October 15, 2021.

May 03-06 15th Cyber-Physical Systems and Internet of Things Week (CPS Week'2022). Milan, Italy. Event
includes: 5 top conferences, HSCC, ICCPS, IPSN, RTAS, and IoTDI, multiple workshops, tutorials,
competitions and various exhibitions from both industry and academia.

 May 04-06 CPSWeek2022 - 28th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS'2022)- Topics include: systems research related to embedded
systems and time-sensitive systems; original systems, applications, case studies,
methodologies, and algorithms that contribute to the state of practice in design,
implementation, verification, and validation of embedded systems or time-sensitive
systems. Deadline for submissions: October 29, 2021 (papers).

 May 17-19 25th IEEE International Symposium On Real-Time Distributed Computing (ISORC'2022).
Västerås, Sweden. Topics include: all aspects of object/component/service-oriented real-time distributed
computing (ORC) technology, such as distributed computing, internet of things (IoT), real-time
scheduling theory, resilient cyber-physical systems, autonomous systems (e.g., autonomous driving),
optimization of time-sensitive applications, applications based on ORC technology (e.g., medical

176 Conference Calendar

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

devices, intelligent transportation systems, industrial automation systems and industry 4.0, smart grids,
...), etc. Deadline for submissions: January 23, 2022 (regular papers).

May 21-29 44th International Conference on Software Engineering (ICSE'2022). Pittsburgh, Pennsylvania,
USA. Topics include: the full spectrum of Software Engineering. Deadline for submissions: October 15,
2021 (NIER - New Ideas and Emerging Results, SEIP - Software Engineering in Practice), October 22,
2021 (SEET - Software Engineering Education and Training, SEIS - Software Engineering in Society),
November 24, 2021 (demos), January 12, 2022 (Journal-First papers), January 14, 2022 (workshop
papers).

 May 22-23 5th International Conference on Technical Debt (TechDebt'2022). Deadline for
submissions: January 13, 2022 (main research track abstracts), January 18, 2022 (main
research track papers), January 31, 2022 (tool presentation papers), March 30, 2022 (tool
track extended abstracts).

May 24-27
(h)

14th NASA Formal Methods Symposium (NFM'2022). Pasadena, California, USA. Topics include:
challenges and solutions for achieving assurance for critical systems, such as advances in formal methods
(interactive and automated theorem proving, model checking, static analysis, runtime verification,
automated testing, design for verification and correct-by-design techniques, ...), integration of formal
methods techniques, formal methods in practice (experience reports of application of formal methods on
real systems, such as autonomous systems, safety-critical systems, concurrent and distributed systems,
cyber-physical, embedded, and hybrid systems, ...; use of formal methods in education; reports on
negative results in the development and the application for formal methods in practice; usability of
formal method tools, and their infusion into industrial contexts; ...).

 June 01-02 International Conference on Reliability, Safety and Security of Railway Systems (RSSRail'2022).
Paris, France. Topics include: building critical railway applications and systems; safety in development
processes and safety management; system and software safety analysis; formal modelling and
verification techniques; system reliability; validation according to the standards; tool and model
integration, toolchains; domain-specific languages and modelling frameworks; model reuse for
reliability, safety and security; etc. Deadline for submissions: November 25, 2021 (abstracts), December
2, 2021 (full papers).

 June 06-10 36th European Conference on Object-Oriented Programming (ECOOP'2022). Berlin, Germany.
Topics include: all practical and theoretical investigations of programming languages, systems and
environments; innovative solutions to real problems as well as evaluations of existing solutions. Deadline
for submissions: December 1, 2021 (round 1 submissions), December 10, 2021 (round 1 artifacts),
December 15, 2021 (nominations for Dahl-Nygaard prizes), March 1, 2022 (round 2 submissions),
March 10, 2022 (round 2 artifacts).

June 07-10 17th International Conference on integrated Formal Methods (iFM'2022). Lugano, Switzerland.
Topics include: recent research advances in the development of integrated approaches to formal
modelling and analysis; all aspects of the design of integrated techniques, including language design,
verification and validation, automated tool support and the use of such techniques in software
engineering practice. Deadline for submissions: January 14, 2022 (abstracts), January 21, 2022 (papers),
March 28, 2022 (artefacts).

 June 08-09
(h)

30th International Conference on Real-Time Networks and Systems (RTNS'2022). Paris, France.
Topics include: real-time application design and evaluation (automotive, avionics, space, railways,
telecommunications, process control, ...), real-time aspects of emerging smart systems (cyber-physical
systems and emerging applications, ...), real-time system design and analysis (real-time tasks modeling,
task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET) analysis,
security, ...), software technologies for real-time systems (model-driven engineering, programming
languages, compilers, WCET-aware compilation and parallelization strategies, middleware, Real-time
Operating Systems (RTOS), ...), formal specification and verification, real-time distributed systems, etc.
Deadline for submissions: February 24, 2022.

June 13-15
(h)

26th International Conference on Empirical Assessment and Evaluation in Software Engineering
(EASE'2022). Gothenburg, Sweden. Topics include: assessing the benefits/costs associated with using
chosen development technologies; empirical studies using qualitative, quantitative, and mixed methods;
evaluation and comparison of techniques and models; modeling, measuring, and assessing product
and/or process quality; replication of empirical studies and families of studies; software technology

Conference Calendar 177

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

transfer to industry; etc. Deadline for submissions: November 8, 2021 (workshops, tutorials), December
6, 2021 (paper abstracts), December 12, 2021 (full papers), January 5, 2022 (short papers and artifacts),
January 10, 2022 (workshop and tutorial papers), January 24, 2022 (doctoral symposium papers),
February 12, 2022 (industry experience reports), February 17, 2022 (vision papers and emerging results).

June 13-17 25th Ibero-American Conference on Software Engineering (CIbSE'2022). Cordoba, Argentina.
Topics include: formal methods applied to software engineering (SE), mining software repositories and
software analytics, model-driven SE, software architecture, software dependability, SE education and
training, SE for emerging application domains (e.g., cyber-physical systems, IoT, ...), SE in industry,
software maintenance and evolution, software process, software product lines, software quality and
quality models, software reuse, software testing, technical debt management, etc. Deadline for
submissions: February 7, 2022 (abstracts), February 14, 2022 (papers), March 8, 2022 (doctoral
symposium, journal first).

 June 14-17
(h)

26th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2022 aka Ada-Europe 2022), Ghent, Belgium. Sponsored by Ada-
Europe. In cooperation with ACM SIGAda (pending), and the Ada Resource Association
(ARA). Deadline for submissions: January 16, 2022 (journal-track papers, tutorials and
workshop proposals), 27 February 2022 (industrial track and work-in-progress
abstracts).

June 15-17
(h)

20th International Conference on Software and Systems Reuse (ICSR'2022). Montpellier, France.
Theme: "Reuse and Software Quality". Topics include: new and innovative research results and
industrial experience reports dealing with all aspects of software reuse within the context of the modern
software development landscape, such as technical aspects of reuse (model-driven development,
variability management and software product lines, domain-specific languages, new language
abstractions for software reuse, software composition and modularization, ...), software reuse in industry
(reuse success stories, reuse failures and lessons learned, reuse obstacles and success factors, return on
Investment studies), etc. Deadline for submissions: December 1, 2021 (workshops), January 7, 2022
(paper abstracts), January 21, 2022 (full papers), January 28, 2022 (tutorials), March 10, 2022 (doctoral
symposium), March 15, 2022 (tool demos).

September 04-07 17th Federated Conference on Computer Science and Information Systems (FedCSIS'2022). Sofia,
Bulgaria. Deadline for submissions: November 21, 2022 (technical sessions).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

178

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

Call for Contributions

Topics: Ada, Programming Languages, Software
Engineering Issues and Reliable Software
Technologies in general.

Contributions: Refereed Original Articles, Invited
Papers, Proceedings of workshops and panels and
News and Information on Ada and reliable software
technologies.

More information available on the

Journal web page at

http://www.ada-europe.org/auj

Online archive of past issues at http://www.ada-europe.org/auj/archive/

Ada User Journal

Forthcoming Events 179

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

Call for Participation
11th Ada Developer Room at FOSDEM 2022

Sunday 6 February 2022, online from Brussels, Belgium

Organized in cooperation with
Ada-Belgium1 and Ada-Europe2

FOSDEM3, the Free and Open source Software Developers' European Meeting, is a non-commercial two-
day weekend event organized early each year in Brussels, Belgium. It is highly developer-oriented and
brings together 8000+ participants from all over the world. The 2022 edition takes place on Saturday 5
and Sunday 6 February. It is free to attend and no registration is necessary. This year, for obvious reasons,
it has been turned into an online event, just like last year.

In this edition, the Ada FOSDEM community organizes once more 8 hours of presentations related to Ada
and Free or Open Software in a s.c. Developer Room. The “Ada DevRoom” at FOSDEM 2022 is held on
the 2nd day of the event, and offers introductory presentations on the Ada programming language, as well
as more specialised presentations on focused topics, tools and projects: a total of 13 Ada-related
presentations by 12 authors from 8 countries!

Program overview:
• Introduction to the Ada DevRoom, by Fernando Oleo Blanco, Germany
• Introduction to Ada for Beginning and Experienced Programmers, by Jean-Pierre Rosen, France
• Ada Looks Good, Now Program a Game Without Knowing Anything, by Stefan Hild, Germany
• The Ada Numerics Model, by Jean-Pierre Rosen, France
• 2022 Alire Update, by Fabien Chouteau, France, Alejandro Mosteo, Spain
• SweetAda: Lightweight Development Framework for Ada-based Software Systems, by Gabriele Galeotti, Italy
• Use (and Abuse?) of Ada 2022 Features to Design a JSON-like Data Structure, by Alejandro Mosteo, Spain
• Getting Started with AdaWebPack, by Max Reznik, Ukraine
• Overview of Ada GUI, by Jeffrey Carter, Belgium
• SPARKNaCl: a Verified, Fast Re-implementation of TweetNaCl, by Roderick Chapman, UK
• The Outsider's Guide to Ada: Lessons from Learning Ada in 2021, by Paul Jarrett, USA
• Proving the Correctness of the GNAT Light Runtime Library, by Yannick Moy, France
• Implementing a Build Manager in Ada, by Stephane Carrez, France
• Exporting Ada Software to Python and Julia, by Jan Verschelde, USA
• Closing of the Ada DevRoom, by Dirk Craeynest, Belgium, Fernando Oleo Blanco, Germany

The Ada at FOSDEM 2022 web-page will have all details, such as the full schedule, abstracts of
presentations, biographies of speakers, and pointers to more info, including live video streaming and chat,
plus recordings afterwards. For the latest information at any time, contact Fernando Oleo Blanco
<irvise@irvise.xyz>, or see:

https://fosdem.org/2022/schedule/track/ada/
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/22/220206-fosdem.html

1http://www.cs.kuleuven.be/~dirk/ada-belgium/
2http://www.ada-europe.org/
3https://fosdem.org/2022/

Conference Chair

Tullio Vardanega
University of Padua, Italy
tullio.vardanega@unipd.it

Journal-track Chair

Jérôme Hugues
Carnegie Mellon University, USA
jjhugues@sei.cmu.edu

Industrial-track Chair

Alejandro R. Mosteo
Centro Universitario de la Defensa,
Zaragoza, Spain
amosteo@unizar.es

Work-in-Progress-track Chair

Frank Singhoff
University of Brest, France
frank.singhoff@univ-brest.fr

Tutorial and Workshop Chair

Aurora Agar Armario
NATO, Netherlands
aurora.agar@ncia.nato.int

Exhibition & Sponsorship Chair

Ahlan Marriott
White Elephant GmbH, Switzerland

software@white-elephant.ch

Publicity Chair

Dirk Craeynest
Ada-Belgium & KU Leuven, Belgium
dirk.craeynest@cs.kuleuven.be

Local Chair

Vicky Wandels
University of Ghent, Belgium
Vicky.Wandels@UGent.be

General Information

The 26th Ada-Europe International Conference on Reliable Software Technologies
(AEiC 2022) will take place in Ghent, Belgium in dual mode, with a solid core of in-
presence activities accompanied by digital support for remote participation. The
conference schedule comprises a journal track, an industrial track, a work-in-progress
track, a vendor exhibition, parallel tutorials, and satellite workshops.

Schedule

Topics

The conference is an established international forum for providers, practitioners and
researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of developing, running and
maintaining challenging long-lived, high-quality software systems for a variety of
application domains including manufacturing, robotics, avionics, space, health care,
transportation, Cloud environments, smart energy, serious games. The program will
allow ample time for keynotes, Q&A sessions and discussions, and social events.
Participants include practitioners and researchers from industry, academia and
government organizations active in the promotion and development of reliable
software technologies.

The topics of interest for the conference include but are not limited to:

 Real-Time and Safety-Critical Systems
o Design, implementation and verification challenges;
o Novel approaches, e.g., Mixed-Criticality Systems, novel scheduling

algorithms, novel design and analysis methods.

 High-Integrity Systems and Reliability
o Theory and practice of High-Integrity Systems;
o Languages vulnerabilities and countermeasures;
o Architecture-centred development methods and tools

 Reliability-oriented Programming Languages (not limited to Ada)
o Compilation and runtime challenges, language profiles;
o Use cases and experience reports;
o Language education and training initiatives.

 Experience Reports
o Case studies, lessons learned, and comparative assessments;

Refer to the conference website for the full list of topics.

16 January 2022 Submission deadline for journal-track papers, tutorials and
workshop proposals.

27 February 2022 Submission deadline for industrial-track and work-in-progress-
track abstracts.

14 March 2022 Notification of invitations-to-present for journal-track papers.
Notification of acceptance for all other types of submission.

3 April 2022 Publication of advance program.

26th AdaEurope
International Conference on

Reliable Software Technologies
(AEiC 2022)

1417 June 2022, Ghent, Belgium

Call for Journal‐track Submissions

Following the journal‐first model inaugurated in 2019, the conference includes a journal‐track that seeks original and high‐quality
submissions that describe mature research work in the scope of the conference. Accepted papers for this track will be published in the
"Reliable Software Technologies (AEiC2022)" Special Issue of the Journal of Systems Architecture (JSA). General information for
submitting to the JSA can be found at https://www.journals.elsevier.com/journal‐of‐systems‐architecture. Submissions should be made
online at https://www.editorialmanager.com/jsa/ by selecting the “VSI:AEiC2022” option for the paper type.

In order to speed up publication, the JSA has adopted the Virtual Special Issue model, whereby acceptance decisions are made on a
rolling basis. On that account, authors are encouraged to submit as early as they can, no later than 16 January 2022. Authors who have
successfully passed the first round of review will be invited to present their work at the conference. Ada‐Europe, the main conference
sponsor, will cover the Open Access fees for the first four papers to gain final acceptance, which do not already enjoy OA from
personalized bilateral agreements with the Publisher.

Prospective authors may direct all enquiries regarding this track to the corresponding chair, Jérôme Hugues, at the listed address.

Call for Industrial‐track Submissions

The conference seeks industrial practitioner presentations that deliver insight on the challenges of developing reliable software. Given
their applied nature, such contributions will be subject to a dedicated practitioner‐peer review process. Interested authors shall submit
a short (one‐to‐two pages) abstract, by 27 February 2022, via https://easychair.org/conferences/?conf=aeic2022, strictly in PDF,
following the Ada User Journal style (cf. http://www.ada‐europe.org/auj/).

The abstract of the accepted contributions will be included in the conference booklet. The corresponding authors will get a presentation
slot in the prime‐time technical program of the conference, and will also be invited to expand their contributions into full‐fledged
articles for publication in the Ada User Journal, which will form the proceedings of the Industrial track of the Conference.

Prospective authors may direct all enquiries regarding this track to the corresponding chair, Alejandro R. Mosteo, at the listed address.

Call for Work‐in‐Progress‐track Submissions

The Work‐in‐Progress track seeks two kinds of submissions: (a) ongoing research, and (b) early‐stage ideas. Ongoing research
submissions are 4‐page papers that describe research results that are not mature enough to be submitted to the journal track as yet.
Early‐stage ideas, are 1‐page papers that pitch new research directions that fall in the scope of the conference. Both kinds of submission
must be original and shall undergo anonymous peer review. Submissions by recent MSc graduates and PhD students are especially
sought. Authors shall submit their work by 27 February 2022, via https://easychair.org/conferences/?conf=aeic2022, strictly in PDF,
following the Ada User Journal style (cf. http://www.ada‐europe.org/auj/).

The abstract of the accepted contributions will be included in the conference booklet. The corresponding authors will get a presentation
slot in the prime‐time technical program of the conference, and will also be offered the opportunity to expand their contributions into
4‐page articles for publication in the Ada User Journal, which will form the proceedings of the WiP track of the Conference.

Prospective authors may direct all enquiries regarding this track to the corresponding chair, Frank Singhoff, at the listed address.

Academic Listing

The Journal of Systems Architecture, publication venue of the journal‐track proceedings of the conference, was ranked Q1 (SJR) in the
year 2020, also featuring 72th percentile in CiteScope (Scopus). The Ada User Journal, venue of all other technical proceedings of the
conference, is indexed by Scopus and by EBSCOhost in the Academic Search Ultimate database.

Awards

Ada‐Europe will offer an honorary award for the best technical presentation, to be announced in the closing session of the conference.

Call for Tutorials

The conference seeks tutorials in the form of educational seminars on themes falling within the conference scope, with an academic
or practitioner slant, including hands‐on or practical elements. Tutorial proposals shall include a title, an abstract, a description of the
topic, an outline of the presentation, the proposed duration (half day or full day), the intended level of the contents (introductory,
intermediate, or advanced), and a statement motivating attendance. Tutorial proposals shall be submitted by e‐mail to the Workshop
and Tutorial Chair, Aurora Agar Armario, at the listed address, with subject line: “[AEiC 2022: tutorial proposal]”.

The authors of accepted full‐day tutorials will receive a complimentary conference registration, halved for half‐day tutorials. The Ada
User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

The conference welcomes satellite workshops centred on themes that fall within the conference scope. Proposals may be submitted
for half‐ or full‐day events, to be scheduled at either end of the conference proper. Workshop proposals shall be submitted by e‐mail
to the Workshop and Tutorial Chair , Aurora Agar Armario, at the listed address, with subject line: “[AEiC 2022: workshop proposal]”.
Workshop organizers shall also commit to producing the proceedings of the event, for publication in the Ada User Journal.

Call for Exhibitors

The conference will include a vendor and technology exhibition. Interested providers should direct inquiries to the Exhibition Chair.

Venue

The conference will take place in the heart of the city of Ghent, Belgium, capital city of the East Flanders, north‐west of Brussels, a half‐

hour train ride from it. Ghent is rich in history, culture and higher‐education, with a top‐100 university founded in 1817.

182

Google Summer of Code (GSoC) and Ada
Community Participation

Fernando Oleo Blanco
Open Source & Ada aficionado; Tel: +34 689 44 27 45; email: irvise@irvise.xyz

Abstract

Since 2005 the company known as Google (now part of
the Alphabet conglomerate) has organized the “Google
Summer of Code (GSoC)”, a program to fund work on
Open Source projects. Since its beginnings, Google
has offered the funding exclusively to students over the
age of 18. However, in 2021 it was announced that the
requirement to be a student was no longer in effect. This
opens the door to a broader audience, which can benefit
greatly the Ada community at large. This article will
give some insights and information on how projects and
organizations can participate on it.

Keywords: community, funding, Open Source, GSoC,
Ada.

1 GSoC Origins and Goals
Google, among other “big tech” companies, offers grants
and funding to activities that it considers beneficial. Since
2005 one of its main projects has been the Google Summer
of Code. It is a yearly event where organizations developing
or involved in the development of Open Source Software,
can propose a task for another person to do. Google, in turn,
would select the projects that it deemed fit and would fund a
volunteering student to work on such task.

In its first year of operation, Google received over 8700 appli-
cations for the 200 funding grants [1]. Due to the overwhelm-
ing demand, Google doubled the grants to over 400. Google’s
goals were to support Open Source Software projects, give
students an opportunity to receive payment for their work
and student mentoring from the participating institutions. It
is important to remark that Google focuses specially in the
mentoring aspects of the students; with the hope that they
may become long term contributors to such projects. The
task, which lasts for about three months during summer, once
completed, would allow for the payment of the student. The
participating organizations were also given a comparatively
small sum of money for their mentoring of the students. This
year, marked the beginning of an ever larger event. Since then,
GSoC has grown in popularity and size, it has also refined
the way grants are handed to students and the evaluations that
need to be done at the end of the task.

2 GSoC Today
In order to gain a better understanding on the current size of
the GSoC, a summary of the results reported by Google for

the 2021 edition [2] is presented here. There were over 1200
students from 67 countries that successfully completed the
accepted tasks within the given time frame. The number of
accepted organizations was 199 with over 2100 mentors from
75 countries. Another interesting data point is that 88% of
the students answered they would apply to GSoC again.

In late 2021, Google announced major changes for the up-
coming GSoC in 2022 [3]. GSoC would no longer be only
for students or recent graduates. It will be open to anybody
above the age of 18 and would target students, self-taught
programmers, returning professionals, etc. On top of this
major change, the temporary measure adopted in 2021 due to
the pandemic, to allow for longer tasks and more flexibility
in the schedule; will become permanent. Therefore, orga-
nizations and institutions can propose “medium” size tasks,
which should take 175h approximately to complete; or larger
projects, taking about 350h to completion.

3 An Opportunity for the Ada Community
GSoC presents itself as a great opportunity for Open Source
communities to grow and improve their offering, both in size
and quality. Language organizations can also apply to GSoC.
One example is the participation of the Fortran community in
2021 [4].

The Ada community along with its stakeholders are already
involved in several open projects that could benefit from more
work. The Ada community could also expand its reach thanks
to the paid work offered by GSoC and community/public
facing projects. Some ideas that could be proposed as tasks
are:

• Alire [5]: Ada package-project manager;

• SPARK: improvements of the tools, packages, update to
cover Ada 202X, etc;

• AdaWebPack [6]: run Ada code on the browser using
WebAssembly;

• GNAT-LLVM [7]: GNAT frontend using the LLVM
compiler infrastructure;

• revamp of the Ada Rapporteur Group (ARG) website;

• revamp of the Ada Reference Manual (ARM) tooling;

• ASIS: improvements and reintegration in upstream
GCC;

• AdaControl [8]: update analysis to cover Ada 202X;

• general improvements to libraries, compilers, infrastruc-
ture, etc.

Volume 42, Number 3-4 , September-December 2021 Ada User Jour na l

F. Oleo Blanco 183

4 Participating in GSoC
The author would like to disclose that he has no experience
participating in GSoC as a student nor as a mentor. The infor-
mation presented below is a summary of what is published by
official Google sources.

The main source of information and news is the official GSoC
web-page [9]. It contains news, announcements and links to
documentation that is relevant to all participants. The site to
gain more information on mentoring can be found in [10],
while the participant page is [11]. The timeline for the 2022
edition of GSoC is found in [12].

The final date for mentor applications for the 2022 edition
ends on February 21st, at 18:00 UTC. Therefore, it is more
than likely that no Ada stakeholder will participate in this
edition. However, that is not the goal of this publication.
The author would like to bring awareness to the Ada commu-
nity of the possibilities that GSoC presents and to propose
participation in the edition that will take place in 2023.

5 Organizing Proposals for the Next Edi-
tion

One of the major potential issues in presenting Ada tasks
to GSoC would be the organization and mentoring from the
different stakeholders. The tools, libraries, etc; present in the
Ada ecosystem, are handled by different stakeholders. One
such example is the GNAT compiler, which falls within the
FSF/GCC organization. Since they have been participating
in several editions [13], it may be best for the relevant Ada
stakeholders to propose tasks regarding GNAT from within
the FSF/GCC organization, instead of separately. However,
this may decrease visibility of the participation of Ada in
GSoC. Another option is to create a “common front” and
propose tasks that may or may not clearly fall within other
organizations as an “Ada-Lang” entry. This is the approach
that the Fortran community took in 2021. They proposed
work on tools and libraries from different authors/groups
that did not already have a participating organization behind
them. And, as far as the author is aware, Fortran-Lang [4]
is a purely community run organization. There are some
ISO participating members, but it is not acknowledged as an
official Fortran entity.

The efforts to create a common proposal could be handled
by the major Ada Open Source developers and communities
that promote the use of Ada. This is something that will have
to be discussed an readied for the next edition of GSoC if a
serious proposal is to be made. And as an obvious reminder,
there has to be a will to mentor newcomers; without mentors,
the tasks will not be accepted.

6 Author’s Transparency
The author would like to disclose that the writing of this
article was suggested by Dirk Craeynest (Ada-Europe) in

order to bring awareness of this opportunity to the readers
of the AUJ. The author would also like to express his bias
towards the libre software community and his will to keep
fostering it.

References
[1] B. Byfield, “Google’s Summer of Code concludes.” ht

tps://archive.ph/20110521182621/http:
//www.linux.com/articles/48232#selec
tion-665.0-665.33, Sep 2005.

[2] “Google Summer of Code 2021: Results announced!.”
https://opensource.googleblog.com/20
21/08/google-summer-of-code-2021-res
ults-announced.html, August 2021.

[3] “Expanding Google Summer of Code in 2022.” https:
//opensource.googleblog.com/2021/11/
expanding-google-summer-of-code-in-2
022.html, Nov 2021.

[4] O. Čertík, M. Curcic, S. Ehlert, L. Kedward, A. Markus,
B. Richardson, D. Rouson, and M. Ward, “Fortran-lang
accepted to Google Summer of Code 2021.” https:
//fortran-lang.org/newsletter/2021/
03/09/fortran-lang-accepted-for-goo
gle-summer-of-code-2021/, March 2021.

[5] A. Mosteo and F. Chouteau, “Alire: Ada Library REpos-
itory.” https://alire.ada.dev/.

[6] V. Godunko and M. Reznik, “AdaWebPack.” https:
//github.com/godunko/adawebpack/.

[7] AdaCore, “GNAT-LLVM.” https://github.com
/AdaCore/gnat-llvm.

[8] J.-P. Rosen, “AdaControl.” https://www.adalog
.fr/en/adacontrol.html.

[9] Google, “Google Summer of Code.” https://summ
erofcode.withgoogle.com/.

[10] Google, “What is Google Summer of Code? Mentor
page.” https://google.github.io/gsocgui
des/mentor/.

[11] Google, “What is Google Summer of Code? Participant
page.” https://google.github.io/gsocgui
des/student/.

[12] Google, “Google summer of code 2022 timeline.” ht
tps://developers.google.com/open-sou
rce/gsoc/timeline.

[13] GCC, “GCC’s GSoC page.” https://gcc.gnu.or
g/wiki/SummerOfCode.

Ada User Jour na l Vo lume 42, Number 3-4 , September-December 2021

185

Ember: An Embedded Robotics Library in SPARK

Kristoffer Nyborg Gregertsen
SINTEF Digital, Trondheim, Norway; email: kristoffer.gregertsen@sintef.no

Abstract

This paper describes the Ember library for high-
integrity embedded robotics and GNC applications de-
veloped in SPARK 2014 with formal verification. The
library is based on generic packages and includes func-
tionality as linear algebra, complex numbers, quater-
nions, and kinematics. Preliminary test results for linear
algebra performance are very promising.

Keywords: Numerics, robotics, embedded, SPARK

1 Introduction
Numerical code used for robotics and guidance, navigation
and control (GNC) applications have a different set of require-
ments than general-purpose numerics libraries. The code
must run on embedded systems with limited computational
resources, and should not include more functionality than is
needed. Furthermore, the system interacts with the physical
world and failures may cause harm to health and environment.
Thus the GNC application often will have real-time, depend-
ability and safety requirements that must be verified. Control
engineers typically develop and analyze their algorithms with
numerical tools such as MATLAB and Simulink, and could
then use a certified auto-coding tool such as QGen to generate
code for the target [1]. In other situations it may be desirable
to have full control over the code, or more cost-efficient to
re-implement it for the target. In both cases it is necessary to
have a numerical library for the target that can be verified, for
instance using formal verification and SPARK [2].

Ember is a library for embedded robotics developed in
SPARK 2014 with the goal to: provide the basic functionality
needed for embedded robotics and GNC applications; be op-
timized for performance on embedded systems; include only
the necessary functionality by using Ada generic packages
and routines; not have external dependencies other than a
minimal run-time environment; and be certifiable to software
criticality Level B [3].

Ember has been developed under the I3DS and EROSS
projects in the H2020 Strategic Research Cluster (SRC) on
Space Robotics. The goal of the SRC is to reduce develop-
ment time and cost of European space robotics missions by
providing a set of common building blocks. In the first call
of the SRC, parallel projects developed the common building
blocks for RTOS, autonomy, sensor fusion, sensor suites and
mechanics, and in the second call these building blocks were
used in orbital and planetary tracks. The I3DS project [4] was
led by Thales Alenia Space (TAS) and developed a sensor

suite with standardized interfaces. SINTEF and the author led
the software architecture and integration work. The EROSS
project [5] of the second SRC call is also led by TAS, and
develops an architecture for on-orbit servicing of satellites
that was successfully demonstrated in the spring of 2021. The
newly started EROSS+ project is a continuation of EROSS
and will prepare the technology for launch of a demonstrator
to space by 2025. SINTEF is responsible for the maturation of
the I3DS sensor suite and the overall software architecture in
EROSS and EROSS+. One major challenge is to rise the TRL
and software maturity to be qualified for software criticality
Level B, as most of the software of the first two SRC calls
depends on open-source frameworks such as OpenCV and
Eigen, and is executed in TASTE [6] and GNU/Linux. The
current code-base is mostly in C++ and has not been devel-
oped in accordance with software assurance procedures [3]
due to limitations in time and budget. On goal for SINTEF in
EROSS+ is to replace much of this code-base with software
developed using the Ember library and formal verification
with SPARK 2014.

2 The Ember library
Ember is developed with GNAT Pro and SPARK Pro tools
from AdaCore, and is organized as a hierarchy of generic
Ada packages. There are two main parent packages as
of 2021: Ember.Numerics for numerical functionality, and
Ember.Kinematics for kinematics such as rotation and refer-
ence frames used for robotic applications.

2.1 Numerics

The numeric package defines a generic package without body
for defining mathematical rings as real and complex numbers.

generic

type T is private;
type Real is digits <>;

with function "+" (Left, Right: T) return T;
with function "-" (Left, Right: T) return T;
with function "*" (Left, Right: T) return T;
with function "/" (Left, Right: T) return T;
with function "-" (Right : T) return T;

with function "abs" (Right : T)
return Real’Base;

with function "*" (Left : T; Right: Real)
return T;

Unity : T;
Zero : T;
Commutative : Boolean;

package Generic_Ring is end;

Ada User Jour na l Vo lume 42, Numbers 3-4, September-December 2021

186 Ember : An Embedded Robot ics L ibrar y in SPARK

The linear algebra package supports vector and matrix types
and operations on these. The ring package shown above is
used as generic parameter so that the same generic packages
can be used both for real and complex numbers. In contrast
to the standard definition in the Ada numerical annex, these
types are of fixed size, and are always indexed from 1.
generic

N : Positive;
M : Positive;
with package Field is new Generic_Ring (<>);
use Field;

package Generic_Matrix is

subtype Index_1 is Positive range 1 .. N;
subtype Index_2 is Positive range 1 .. M;

type Matrix is array (Index_1, Index_2) of T;
...

end Generic_Matrix;

The vector and matrix packages support operations such as
adding and subtracting with the same type, as well as scalar
multiplication and division and initialization using the defini-
tions of the generic ring package. For the dot product between
matrix and vectors types the generic dot function must be in-
stantiated. The ring of the two input and result types need
not be the same, so it is for instance possible to multiply a
complex matrix with a real vector.
generic

N, M, L : Positive;
with package MA is new

Generic_Matrix (N, L, others => <>);
with package MB is new

Generic_Matrix (L, M, others => <>);
with package MR is new

Generic_Matrix (N, M, others => <>);
with function "*"

(Left : MA.Field.T;
Right : MB.Field.T) return MR.Field.T;

function MM_Dot
(A : MA.Matrix;
B : MB.Matrix) return MR.Matrix;

Generic functions are also defined to transpose matrices, to
take the power and exponential of square matrices, and special
functions for getting the determinant of 2x2 and 3x3 matrix
types. LU factorization is used to solve NxN linear systems
and get their determinant and inverse.

A package with elementary functions is defined in the same
way as for the Ada numerical annex, but with pre-and post-
conditions, for instance demanding that the input to the Log
function must be larger than 0, and guaranteeing that the
result of the exponential function is always larger than 0.
function Log (X, Base : Real) return Real with

Pre => (X > 0.0 and Base > 0.0 and Base /= 1.0);

function Exp (X : Real) return Real with
Post => (Exp’Result > 0.0);

As of now the elementary functions are implemented with the
standard Ada library, but they will be rewritten from scratch
as Ember is supposed to have minimal dependencies.

Complex numbers are defined as in the Ada numerical annex,
but pre- and post-conditions are used, and pure imaginary

numbers are not defined as a separate type. Quaternions are
similar to complex numbers but are non-commutative, and
consist of four scalars represented in Ember as a real scalar
part and an imaginary part with components (i, j, k).

2.2 Kinematics

The kinematics package defines types and operations for ro-
tation and translation in 3D space. The rotation matrix with
detR = 1 is used for rotation of vectors, either around an
axis, as Euler parameters (rotation around vector), or roll-
pitch-yaw (RPY). Similary, unit quaternions are used for
rotation either as Euler parameters or RPY. The 6 degrees-of-
freedom (DOF) poses are descibed as reference frames with
an offset and rotation matrix, and allow vectors in one frame
to be translated to and from other reference frames. Finally,
the screw type can be used for calculations on pairs of vectors
with linear and rotational components.

The reference frame tree package allows the entities of a
system to be related to a global reference frame and each other
through one or more intermediate steps. The tree structure is
enforced by pre-conditions saying that a frame can only have
a parent frame with ID lower than its own (with 0 being the
global frame). This ensures that circular references cannot
occur. When computing the pose of one frame as seen from
another the shortest path in the tree is taken.

Figure 1: The UR-10 manipulator from Universal Robotics.

The manipulator package represents a robot arm with linked
segments that can be rotated or translated relative to its parent.
This allows to represent for instance a 6-DOF robot arm as
the UR-10 manipulator shown in Figure 1, and calculate the
pose of the end-effector given the joint-configuration. The
manipulator consists of a fixed number of segments given
as generic parameter along with a frame tree package. It is
initialized with a base ID that may or may not be the global
frame. Each segment can then be configured with a segment
type (fixed, rotational or translational), and a frame (offset
and rotation) for the tip of the segment relative to the joint.
The tip of a segment is the reference for the next segment in
the robot, and so on until the end-effector. When the joint-
configuration of the manipulator is set the corresponding
reference frames of the tree are updated accordingly. In this

Volume 42, Numbers 3-4, September-December 2021 Ada User Jour na l

K. N. Greger tsen 187

way all segments can be related to other reference frames
of the tree, for instance to calculate the pose of the end-
effector relative to some object that is going to be gripped.
The inverse kinematics operation of calculating the needed
joint-configuration for a desired end-effector pose is not yet
implemented.

When calculating motion (or guidance) of robotic manipu-
lators it is important to check for collisions and that safety
zones are not violated. To support this, Ember has a package
for basic 3D geometric shapes as capsules, spheres, cuboids,
and cones, each with physical dimensions and linked to a
reference frame in the provided tree. The package supports
calculating the internal distance to find how far an object is
from going out of a safety zone, and the external distance to
find how far two objects are from colliding. This package can
be used to check if a given joint-configuration of a manipu-
lator would result in collisions, either between segments or
other obstacles, and if any segment would go outside safety
zones. A manipulator such as the UR-10 shown in Figure 1
could be represented with one or two capsules for each seg-
ment, depending on the desired tolerances. A safety-zone will
typically be statically bound to the base of the manipulator,
but could also be dynamic.

3 Performance test
A simple performance test is run to get some preliminary
results of the Ember library compared to the Ada numerics
package and the C++ Eigen library. The test runs a simple
linear system update x ← A · x + b for x ∈ R3 with 9
multiplications and 9 additions. The total execution-time of
100 million such updates of x is measured 20 times.

For Ember, one must define the real domain represented
with IEEE 754 double-precision floating-point type, the 3-
dimensional vector and 3x3 matrix, and the operator to multi-
ply the matrix with the vector:

procedure Ember_Perf is

package RT is new Real_Types (Float_64);

package RV3 is new
Linear_Algebra.Generic_Vector

(3, RT.Real_Field);
package RM3 is new

Linear_Algebra.Generic_Matrix
(3, 3, RT.Real_Field);

use type RV3.Vector;
use type RM3.Matrix;

function "*" is new
Linear_Algebra.MV_Dot

(3, 3, RM3, RV3, RV3, "*");

A : constant RM3.Matrix :=
((0.1, 0.2, 0.3),
(0.2, 0.1, 0.3),
(0.3, 0.2, 0.1));

B : constant RV3.Vector :=
(1.0, 2.0, 3.0);

X : RV3.Vector := RV3.Zeros;

T0, T1 : CPU_Time;

begin
for I in 1 .. 20 loop

T0 := Clock;

for J in 1 .. 100_000_000 loop
X := A * X + B;

end loop;

T1 := Clock;
Put (To_Duration (T1 - T0), 0);
New_Line;

end loop;
...

end Ember_Perf;

Not shown in the listings is the with/use statements and the
final output of x to validate and enforce its calculation. The
test using the Ada Numerics package is exactly the same
except for the declarations of the matrix and vectors.

The C++ test using Eigen is also similar in structure:

int main()
{
Eigen::Matrix<double, 3, 3> A;

A << 0.1, 0.2, 0.3,
0.2, 0.1, 0.3,
0.3, 0.2, 0.1;

Eigen::Vector3d b(1.0, 2.0, 3.0);
Eigen::Vector3d x(0.0, 0.0, 0.0);

long t0, t1;

for (int i = 0; i < 20; i++) {
t0 = clock();

for (int j = 0; j < 100000000; j++) {
x = A * x + b;

}

t1 = clock();
std::cout << 1e-9 * (t1 - t0) << std::endl;

}
...
return 0;

}

The three test programs were complied and linked using
GNAT Pro 21 with GCC optimization flags “-O3” for speed
and “-Os” for minimal code size, and was run on a Core
i7-6700 @ 3.4 GHz with Arch Linux operating system.

Figure 2 shows the results in millions of iterations per second
for the median of the six test runs. To remove outliers caused
by interference the median of the measurements was used. In
general there was very low variance for the 20 iterations. As
it can be seen Ember and Eigen have similar measurements
when optimized for performance, while Ember has lower
performance when optimized for space. The Ada numerical
library has lower performance than Ember and Eigen in both
cases, and is not much affected by optimization flags. Notice
that the Ada test programs use the execution-time while the
C++ test use the high-resolution clock, the test were also run
with the real-time clock for Ada with similar results.

Ada User Jour na l Vo lume 42, Numbers 3-4, September-December 2021

188 Ember : An Embedded Robot ics L ibrar y in SPARK

Ember O3 Eigen O3 Eigen Os Ember Os Ada O3 Ada Os
0

25

50

75

100

125

150

175

200

Figure 2: Preliminary performance comparison in millions of
iterations per second with “O3” and “Os” optimization flags.

4 Discussion
The use of SPARK 2014 has enforced a disciplined style of
coding, and allowed to catch basic errors such as for data
flow making sure that all variables are initialized prior to
usage. This is referred to as the bronze level by AdaCore.
Also, the code is found to be free of run-time exceptions
other than floating-point overflow. This is referred to as silver
level. However, going to the full gold level with full formal
verification is not straightforward for numerical algorithms,
as the prover has limitations in understanding of numerical
operations. While rare when working with physical units in
GNC applications, floating-point overflow could arise from
numerical operations, for instance when dividing by a very
small number, or adding two very large numbers. Further
work is needed to define lemmas to aid the prover, and to
make restrictions on inputs to prove absence of overflows.

Still there are many algorithms that are hard to prove formally,
such as matrix inversion, and testing is needed both to prove
correct functionality and to evaluate the numerical stability.
The AUnit framework is used for setting up and executing
test harnesses of the different functionality. Test code is only
written for non-trivial algorithms that cannot easily be proven.
For instance, the inverse is found for a set of random matrices,
and it is shown that the product of the matrix and its inverse is
sufficiently close to the identity matrix. It would be desirable
to automatically create tests code from pragmas specifying
properties of types and functions, such as the relation between
a matrix and its inverse.

The design choice of using generic packages is motivated
by a desire to only include the functionality that is needed
in the final build. However, the need to instantiate generic
packages for different sized vectors and matrix, and generic
functions for each dot product operation used seems to go
against this goal. The rationale is that robotics and GNC
applications often will use only a limited set of rather small
vector and matrix sizes, and that the benefits in execution-
time and possibility of in-lining simple operations will justify
this. This approach is also used by the Eigen framework that

has inspired the linear algebra parts of Ember. As shown in
preliminary test results in 2, the Ember library matches the
performance of Eigen on a Core i7 when in-lining is used, and
is able to perform more than double the number of iterations
per second compared to the identical code using the Ada
numerical annex. The performance gains are reduced when
in-lining is turned off by optimizing for space. More work is
needed to test for a larger and more realistic application on
an embedded target and to compare the size of the binaries.

5 Conclusion and further work
While the numerical functionality of Ember has been stable
for more than one year, the kinematics packages are still
being developed and tested. Also, there is still much work
needed to provide the all the functionality needed for robotics
applications. Planned features include support for inverse
kinematics, (Extended) Kalman filters used for estimation
and navigation, and basic image processing like the core func-
tionality of OpenCV. However, it is important to notice that
Ember is not intended to replace general-purpose numerical
tools like MATLAB and the Python NumPy/SciPy packages.
Only the functionality needed at run-time to and that can be
implemented with reasonable computational resources in a
high-performance embedded system is to be provided.

Ember has not yet been released to the public under an open-
source license, the release is planned in the end of 2021. It is
hoped that the Ember library can contribute to increased use
of Ada and SPARK 2014 in the robotics and control field, and
result in embedded software that is suitable for high-integrity
applications and easier to verify.

Acknowledgements
Many thanks to AdaCore that has provided both the needed
tools and consultation free of charge. This work has been
funded under the H2020 research and innovation programme
under the I3DS grant agreement No 730118, and under the
EROSS grant agreement No 821904.

References
[1] T. Naks, M. A. Aiello, and S. T. Taft, “Using SPARK to

ensure system to software integrity: A case study,” Ada
User Journal, vol. 40, no. 4, pp. 226–229, 2019.

[2] P. Neto, J. Tojal, J. Veríssimo, and S. M. de Sousa, “To-
wards a formally verified space mission software using
SPARK,” Ada User Journal, vol. 40, no. 4, pp. 243–246,
2019.

[3] ECSS, “ECSS-Q-ST-80C Rev. 1: Space product assur-
ance - software product assurance,” 2017.

[4] V. Dubanchet and S. Andiappane, “Development of
I3DS: An integrated sensors suite for orbital rendezvous
and planetary exploration,” in i-SAIRAS 2018.

[5] V. Dubanchet, J. B. Romero, K. N. Gregertsen, et al.,
“EROSS project - European autonomous robotic vehicle
for on-orbit servicing,” in i-SAIRAS 2020.

[6] M. Perrotin, E. Conquet, J. Delange, et al., “TASTE:
A real-time software engineering tool-chain overview,
status, and future,” Lecture Notes in Computer Science,
vol. 7083 LNCS, pp. 26–37, 2011.

Volume 42, Numbers 3-4, September-December 2021 Ada User Jour na l

189

Queuing Ports for Mesh Based Many-Core
Processors

David García Villaescusa, Mario Aldea Rivas, Michael González Harbour
University of Cantabria, Avenida de los Castros S/N, Santander; email: {garciavd, aldeam, mgh}@unican.es

Abstract

This paper presents the implementation of Queuing
Ports, a blocking communication protocol developed
for many-core architectures that perform a synchro-
nized communication between cores without the need
of polling. This implementation has been performed on
M2OS-mc, a Real-Time Operating System (RTOS) that
has already been tested in the Epiphany processor. The
extension presented is based on the ARINC-653’s Queu-
ing Port communication primitive and gives an alterna-
tive to the implementation based in the ARINC-653’s
Sampling Port communication primitive previously de-
veloped.1

Keywords: many-core, queuing-port, epiphany, task
synchronization, M2OS.

1 Introduction
Processor manufacturers are always looking for ways to in-
crease the capabilities of their products. The performance
improvement of the processor technology is currently focused
on integrating more cores in the same System-on-Chip (SoC),
allowing us to parallelize execution.

The main problem a real-time system has to face in a current
COTS processor is the existence of a shared bus as the way
to communicate the cores among them and with the shared
memory. Fortunately, the increasing number of cores in the
same SoC is driving the processor manufacturers to more
scalable solutions avoiding that shared bus.

One of this solutions is using a 2D mesh Network-on-Chip
(NoC) like the one present in the Epiphany [1] many-core
processor, which has 16 cores connected by a NoC consisting
of a 4x4 2D mesh as shown in Figure 1. This is the processor
where the developments described at this paper have been
tested.

The existence of suitable hardware is not enough to implement
a real-time system. Adequate software platforms are also
necessary to have a fully capable real-time system. M2OS-
mc [2] is the Real-Time Operating System (RTOS) picked
as a starting point to develop the Queuing Port communica-
tion mechanism based on the existing Garrido’s ARINC-653
implementation [3].

1This work has been financed by the Graduate Grant Program of the
University of Cantabria and by the Spanish Government and FEDER funds
(AEI/FEDER, UE) under Grant TIN2017-86520-C3-3-R(PRECON-I4)

M2OS-mc4, as well as M2OS, is written in Ada as this lan-
guage has specialized features supporting low-level real-time,
safety-critical and embedded systems programming. M2OS
alongside M2OS-mc are available on-line at the website 2,
and are distributed under a GPLv3+ license.

A typical Ada application executed on M2OS-mc in the
Epiphany processor is composed of several tasks running
in the different cores, with one or more tasks in each core.
Tasks in the same core are executed under the one-shot non-
preemptive scheduling policy implemented by M2OS. The
messages between tasks allocated in different cores will travel
through the NoC.

The paper continues by exposing related work in Section 2. In
Section 3 the Epiphany processor is exposed. Section 4 refers
to the work done in the RTOS used, the M2OS. Section 5
describes the new communication primitive implemented: the
Queuing Ports. Finally, Section 7 shows the paper conclusions
and future work.

2 Related work
M2OS-mc was initially implemented using Sampling Ports
[2] as the communication mechanism. That implementation
gives the RTOS a way to communicate in a synchronized
fashion trough the different cores of the many-core processor
with a bounded temporal behavior. The temporal impact of
the RTOS has been studied and modeled using the MAST [4]
tool.

While the Sampling Ports available in M2OS-mc there are
no blocking operations and, therefore, when a reading task is
waiting for a message it has to periodically poll for its arrival.
This active wait introduces timing overhead to other tasks.
Another possible downside of the Sampling Ports is that a
writing process will overwrite any not already read message
waiting at the Sampling Port and some messages could be
missed.

To avoid those downsides, a blocking messaging mechanism
has been implemented based on the ARINC-653 Queuing
Port.

Garrido [3] presented an implementation for the ARINC-
653 synchronized communication ports. The Sampling Port
synchronization mechanism developed for M2OS is based on
those implementations as well as the Queuing Port mechanism
presented in this paper.

2https://m2os.unican.es

Ada User Jour na l Vo lume 42, Numbers 3-4, September-December 2021

190 Queuing Por ts for Mesh Based Many-Core Processors

3 Epiphany
The Epiphany processor is integrated in the Parallella [8]
development board. It is a processor with 16 cores connected
through a 2D 4x4 mesh NoC as seen in Figure 1. Each core
of the Epiphany is an eCore, whose architecture is designed
by Adapteva. The eCore executes its instructions in order,
with a frequency of 600 MHz. It consists of an integer ALU,
floating-point unit, a debug unit, an interrupt controller, a
general purpose program sequencer and a 64-word general
purpose register file. Each core has 32KB of local memory.
The architecture is supported by the GCC compiler and has
libraries for OpenMP and MPI.

Any eCore can access the local memory of the rest of the
eCores using a range of special global addresses. An eCore’s
local memory can be written and read without any hardware
limitations, but the memory size. Writing to other eCore
memory generates a message that must travel through the
NoC. Reading from other eCore memory generates a reading
request that must travel through the NoC and once it reaches
its destination it will generate a writing message to the eCore
sending the read request, with the requested data.

Figure 1: Epiphany many-core topology

4 M2OS
M2OS [9] [10] is a small RTOS that allows running mul-
titasking applications in small microcontrollers with scarce
memory resources.

M2OS implements a simple scheduling policy based on non-
preemptive one-shot tasks, which requires a very small mem-
ory footprint. This policy allows the same stack area to be
shared by all the tasks and, consequently, the system only
needs to allocate a stack area large enough to fit the largest
task stack.

One-shot tasks do not keep any local state in the stack be-
tween releases. They are made of initialization instructions
executed only at the first release of the task and job instruc-
tions executed at subsequent releases. The job instructions
must end in a blocking operation to wait for the next release
event.

Since the scheduling policy is non-preemptive, a running task
will not release the CPU until it reaches a blocking operation.

M2OS is written in Ada and it is the base of a simplified Run-
Time System for the GNAT Ada compiler. This RTOS has
been developed for Arduino Uno and STM32F4. It is intended
to be easily ported to different platforms. All the hardware
dependent part is encapsulated in a Hardware Abstraction
Layer (HAL), which is the only code that has to be modified
to port the kernel to a new platform.

4.1 M2OS-mc
The many-core version of M2OS (called M2OS-mc [2]) has
a microkernel implementation which means that independent
instances of the RTOS are located at each core. The kernel of
each core will schedule the execution of all the tasks allocated
there. M2OS-mc provides two mechanisms to communicate
tasks in different cores: the Sampling Ports (presented in [2])
and the Queuing Ports (described in this paper).

5 Queuing Ports
A Queuing Port consists in a circular FIFO queue. A reader is
blocked when no data is stored at the accessed Queuing Port
and it is activated when new data arrives.

A fixed number of Queuing Ports are assigned per core. These
Queuing Ports are identified by an index. Reader and writer
tasks must know the index and the host core of the Queuing
Port they are going to use to share the data.

Queuing Ports are implemented as an Ada record with the
following fields:

• Initialized. A boolean to make sure the Queuing Port
has been initialized before using it.

• Mutex. The spinlock to serialize accesses to the Queuing
Port.

• Queue_Size. The maximum number of elements the
Queuing Port is able to store.

• Tail. The index of the most recent element written to the
Queuing Port.

• Head. The index of the first element to be read from the
Queuing Port.

• N_Elements. The number of elements currently stored
at the Queuing Port.

• Element_Size. The size of each element stored at the
Queuing Port. Every element has the same size.

• Elements. The pointer to the area where the elements of
the Queuing Port are being stored. The data structure is
an array of N_Elements of size Element_Size. This array
must be created by the task initializing the Queuing Port.

• Core. The core where the Queuing Port is located.

The usage of the Queuing Port is illustrated in Figure 2 where
two Queuing Ports can be seen, only one of them initialized. It
can be seen that a memory area is located at the local memory
of the 0x0 core pointed by the Elements field.

The interface to manage the Queuing Port is show in List-
ing 1. The parameters Core and Index of the procedures in
the interface allow identifying the Queuing Port.

Volume 42, Numbers 3-4, September-December 2021 Ada User Jour na l

D. Garc ía Vi l laescusa, M. Aldea Rivas, M. González Harbour 191

Figure 2: Queuing Port use example

function Init_Queuing_Port (Index : in QP_Index;
Size_Q : in Unsigned_32;
Data_Address : in System.Address;
Data_Size : in Unsigned_32;
Core : in E_Lib.Core)
return QP_Access;

procedure Write_Queuing_Port (QP : in out QP_Access;
Orig : in System.Address;
Orig_Size : in Unsigned_32;
Successful : out Boolean);

procedure Read_Queuing_Port (QP : in out QP_Access;
Dest : in System.Address;
Dest_Size : in Unsigned_32;
Successful : out Boolean);

Listing 1: Queuing Port interface

The Init_Queuing_Port procedure initializes the Queuing
Port. This procedure must be executed before any other op-
eration. Before initializing a Queuing Port the task calling
the procedure must allocate the necessary data structure (an
array) to store all the data. The procedure must receive the
size of a single data element (every data has the same size),
the maximum number of elements and the address of the data
structure provided to store the messages.

The Write_Queuing_Port procedure receives the address of
the data to be written and its size. The size must be the same
as the Element Size of the Queuing Port. It has an output
boolean parameter indicating if the write operation into the
Queuing Port that has index N has been successful or the data
could not be written because the Queuing Port is already full.

The Read_Queuing_Port procedure tries to read from the
Queuing Port. If the Queuing Port has no data, the calling
task blocks. This procedure receives the address where the
read data must be stored and the size of the variable created

for that purpose. It indicates the success of the procedure with
the out parameter Successful.

The implementation of a Read Task in M2OS-mc must take
into account that M2OS-mc implements a non-preemptive
scheduling policy, which implies that trying to read from an
empty Queuing Port will cause the calling task to finish its
current activation and block. For that reason, the data is used
in the initial part of the body, previous to the read operation. A
read operation is also included in the initialization procedure
of the task. The Read Task is shown in Listing 2 alongside
with the Write Task, that must wait for the Queuing Port to
be initialized. The schematic shown in Listing 2 has been
done considering the Read Task to be hosting the data and the
queue, which is the most efficient solution.

procedure Read_Task_Init is
−− Initialize the task
QP := Init_Queuing_Port
(Port Index, Size_Q, Data_Q’Address, Unsigned_64’Size, Core);

Read_Queuing_Port
(QP, Var’Address, Var’Size, Success);

end Read_Task_Init;

procedure Read_Task_Body is

begin
−− Use data

Read_Queuing_Port
(QP, Var’Address, Var’Size, Success);

end Read_Task_Body;

procedure Write_Task_Init is
−− Initialize the task

QP := Get_Queuing_Port
(Target_Core, Port Index);
while (Check_Queuing_Port_Initialized (QP) = False) loop

null ;
end loop;

end Write_Task_Init

procedure Write_Task_Body is

begin
−− Generate data
Write_Queuing_Port (QP, Data’Address, Data’Size, Success);
−− Task work post write
−− Task Delay

end Write_Task_Body;

Listing 2: Read and Write Tasks implementation

6 Implementation in M2OS-mc
In order to allow the RTOS to have the Queuing Ports imple-
mented some additions have been done.

A priority-sorted queue has been created
(QP_Blocked_Task_Queue) to store the tasks while
they are blocked waiting for new data to be written to a
Queuing Port.

The Task Control Block (TCB) has two new fields shown in
Listing 3. One that points to the Queuing Port that blocked the
task (QP_Where_Blocked) and another one that indicates

Ada User Jour na l Vo lume 42, Numbers 3-4, September-December 2021

192 Queuing Por ts for Mesh Based Many-Core Processors

where the task wants to store the data read from the Queu-
ing Port. The data will be stored there once the dispatcher
awakens the task.

QP_Where_Blocked : Queueing_Port’Access;
QP_Data : QP_Data_Type;

Listing 3: Task record addition

In order to implement the Queuing Ports it has been neces-
sary to modify the dispatching algorithm of M2OS-mc. The
developed implementation consists of trying to find a blocked
task that has any pending message with a higher priority than
the task selected form the Ready Queue, which is the task
with the highest priority of that queue. The new part of the
Dispatcher algorithm is shown in Listing 4.

The Pop_QP procedure takes the first message of the Queu-
ing Port and copies it to the Data, both passed as parameters.

Head_Ac := Ready_Queue.Head;
Exit_BQ := False;
Th_Ac := QP_Blocked_Tasks_Queue.Head;
while Th_Ac /= Null_TCB_Ac and not Exit_BQ loop

if Head_Ac /= TCBs.Null_TCB_Ac
and then Th_Ac.Priority > Head_Ac.Priority then

exit ; −− Exit when there is no higher priority task
−− in QP_Blocked_Tasks_Queue

end if ;

Th_Ac_Prev := null;

E_Lib.E_Mutex_Lock (Th_Ac.QP_Where_Blocked.Core.Row,
Th_Ac.QP_Where_Blocked.Core.Col,
Th_Ac.QP_Where_Blocked.Mutex);

if Th_Ac.QP_Where_Blocked.N_Elements > 0 then
Pop_QP (Th_Ac.QP_Where_Blocked, Th_Ac.all.QP_Data);

−− To ready Queue
Th_Ac.all.Status := Ready;
RQ.Enqueue_Ready_Thread (Th_Ac);

−− Enqueuing will make it exist in the next
−− iteration of the loop
Head_Ac := RQ.Head_Of_Ready_Queue;
−− Remove from blocked tasks
if Th_Ac = Head_Of_QP_Blocked_Tasks_Queue then

Dequeue_Head_Of_QP_Blocked_Tasks_Queue;
else

if Th_Ac_Prev /= null then
Th_Ac_Prev.Next := Th_Ac.Next;

end if ;
end if ;

Exit_BQ := True;
end if ;

E_Lib.E_Mutex_Unlock (Th_Ac.QP_Where_Blocked.Core.Row,
Th_Ac.QP_Where_Blocked.Core.Col,
Th_Ac.QP_Where_Blocked.Mutex);

Th_Ac_Prev := Th_Ac;
Th_Ac := Th_Ac.Next;

end loop;

−− From here, activate the first Ready_Queue

Listing 4: Dispatching blocked task

7 Conclusions and future work
The ARINC’s 653 Queuing Port has been implemented for
M2OS-mc and it has been tested with the Epiphany processor.

This implementation gives M2OS-mc an alternative to Sam-
pling Ports for having synchronized communication among
cores.

As future work, we have to perform more tests to merge the
Queuing Ports into the M2OS-mc project. Another step is to
study the temporal behavior of the Queuing Port implementa-
tion for different sizes and distances to find the way to model
its behavior in a way that allow us to analyze a system using
MAST [4], as it was previously done for the Sampling Port
implementation [2].

References
[1] A. Olofsson, T. Nordström, and Z. Ul-Abdin, “Kick-

starting high-performance energy-efficient manycore
architectures with epiphany,” 2014.

[2] D. García Villaescusa, M. Aldea Rivas, and M. González
Harbour, “M2OS-Mc: An RTOS for Many-Core Pro-
cessors,” in Second Workshop on Next Generation Real-
Time Embedded Systems (NG-RES 2021) (M. Bertogna
and F. Terraneo, eds.), vol. 87 of OpenAccess Series
in Informatics (OASIcs), (Dagstuhl, Germany), pp. 5:1–
5:13, Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2021.

[3] J. G. Balaguer, J. R. Z. Flores, and J. A. de la Puente Al-
faro, “Arinc-653 inter-partition communications and the
ravenscar profile,” Ada Letters, vol. 35, no. 1, pp. 38–45,
2015.

[4] M. González Harbour, J. L. Medina, J. J. Gutiérrez,
J. Palencia, and J. Drake, “Mast: An open environment
for modeling, analysis, and design of real-time systems,”
1st CARTS Workshop, January 2002.

[5] E. Enterprise, “Erika3.” [Online; accessed 29-January-
2020].

[6] eSol, “Scalable and High-performance Real-Time OS
available for various types of processors.” [Online; ac-
cessed 29-January-2020].

[7] H. Almatary, Operating System Kernels on Multi-core
Architectures. PhD thesis, University of York, January
2016.

[8] A. Olofsson, T. Nordström, and Z. Ul-Abdin, “Kick-
starting high-performance energy-efficient manycore
architectures with epiphany,” 2014.

[9] M. Aldea Rivas and H. Pérez Tijero, “Leveraging real-
time and multitasking Ada capabilities to small micro-
controllers,” Journal of Systems Architecture, vol. 94,
pp. 32 – 41, 2019.

[10] M. Aldea Rivas and H. Pérez Tijero, “Proposal for a
new Ada profile for small microcontrollers,” Ada Lett.,
vol. 38, p. 34–39, July 2018.

Volume 42, Numbers 3-4, September-December 2021 Ada User Jour na l

 193

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

More Ada in Non-Ada Systems
A. Marriott, U. Maurer
White Elephant GmbH, Beckengässchen 1, 8200 Schaffhausen, Switzerland; email: software@white-elephant.ch

Abstract

This article is based on the industrial presentation
“More Ada in non-Ada systems” which was given at
the 2021 Ada-Europe virtual conference.

The presentation was an update to the presentation
given at the Ada-Europe 2018 conference in Lisbon
entitled “Using Ada in non-Ada systems” and that was
subsequently published in the Ada User Journal [1].

The work used GCC 7.4.1 built by AdaCore and made
available as part of their 2019 Windows hosted GNAT
for ARM GPL community distribution. The GNAT
sources referred to in the presentation were also
obtained from this distribution.

Keywords: GCC, Modula-2, C, ZFA, ARM

1 Previously

If we restrict ourselves to a subset of Ada, the so called Zero
Footprint Ada (ZFA), then it is possible to write applications
that use a mixture of Ada and C. The Ada we use is not the
Ada with which we are most familiar, it is a very cutback
version – but even so, despite all the restrictions, it can still
be beneficial to write code in Ada rather than in C.

We believe that there are many reasons why one should
program in Ada rather than C. However, from a business
perspective, these reasons may be insufficient to warrant the
complete rewrite of a large, stable and successful system.

Rather than trying to advocate that our systems should be re-
written completely in Ada we showed how existing code
could be supplemented by code written in Ada.

In 2018 our work was a proof of concept. At that time our
management had no intention nor desire to write any code in
Ada. The existing software and expertise were in Modula-2,
a language that can be considered to be a simpler yet similar
language, at least in comparison with alternatives such as the
dreaded C.

2 Data compression

However, all this changed when it was decided that
downloads to our ARM based processors should be
compressed. As products develop, they tend to grow in both
complexity and size, yet the speed of the field bus used to
transfer the executable images remains the same. This results
in the time to download getting longer and longer.

As a consequence, it was decided that it would be an
interesting salable feature if this time could be reduced by
compressing the download. Because we lack the required
expertise to develop this sort of software, this decision would

require us to use some sort of library - either binary, or just
as bad, source written in C.

Another alternative would be to use the ZipAda [2] open-
source code written by our colleague Gautier de Montmollin.
But, as the library’s name suggests, this software is written
in Ada. This presented us with the choice of either using it
directly in Ada or converting it into Modula-2, which, as I’ve
already alluded, is a very similar language. Similar in theory,
but in practice it rather depends on what features of Ada one
has used. Unfortunately for us, Gautier had used many
features of Ada that aren’t supported by Modula-2 - thereby
making a translation virtually impossible. Or at least not
without the risk of introducing all manner of interesting and
hard to find bugs.

The solution was to use the proof of concept work we had
made in 2018 and use his source code directly. I think it says
a lot about the portability of software written in Ada that we
could use the ZipAda software with only the most minor of
changes.

The software was designed to run on a PC reading data from
a file and compressing it to make what is generally referred
to as a Zip File. Instead, we use a PC to read the executable
to be downloaded, compress this and then transmit the
compressed byte stream to the microprocessor which then
uses the same software to decompress the byte stream back
into the executable.

Amazingly this all worked, with almost no effort. We took
software written in Ada that was designed and primarily
works on PCs, recompiled it using an Ada compiler for ARM
and then linked this into our product – that was otherwise
written entirely in machine generated C.

This then was the first commercial use of the work I
presented in 2018 as a theoretical exercise.

3 Floating-point

Up until now all the microprocessors that we have used have
been without floating-point units.

Because floating-point without hardware support is
incredibly inefficient, we explicitly prohibited its use by not
recognizing the Modula-2 floating-point syntax.

In the Ada work I presented in 2018 we used the pragma
Restrictions (No_Floating_Point) in System.ads to impose
the same restriction on routines written in Ada.

However, our latest target microprocessor has a floating-
point unit and so, unsurprisingly, there are plans to use it, so
the dilemma has been to decide how to use it.

194 More Ada in Non-Ada Systems

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

If we permit the floating-point syntax in Modula then we
may encounter problems with our Modula to C translator –
which, obviously, has never been used to translate anything
concerning floating-point. Then there is the problem of what
exactly is floating-point in C and then, lastly, what libraries
are available, how good are they and can we obtain the
sources for them?

An alternative strategy, and what we have ultimately decided
to do, is to forget Modula-2 and, because only our ARM
microprocessor has an FPU, write all our floating-point code
in Ada.

Allowing the Ada syntax was easy – all we had to do was
remove the pragma Restrictions (No_Floating_Point). The
Ada compiler can be directed to generate code using the
ARM floating-point instructions by including the switch
“-mfloat-abi=hard” and the switch “-mfpu” to describe what
sort of FPU the processor has.

Therefore it is relatively easy to support code that merely
performs simple arithmetic.

The fun starts when one wants to use functions that are
provided by the package Ada.Numerics.
Elementary_Functions and/or its long float counterpart
Ada.Numerics.Long_Elementary_Functions.

Trying to compile the Ada statement

X:= Ada.Numerics.Elementary_Functions.Tan(45.0);

will produce the error message

 "Ada.Numerics" is not a predefined library unit

This means that GNAT cannot find the specification for
Ada.Numerics in the source file search path. This
specification file must be provided even though it only
contains two constants: Pi and e.

Moreover, GNAT requires that the specification is provided
in a file with the crunched file name a-numeri.ads.

Once this file is made available, GNAT will then require the
file a-nuelfu.ads and once this is provided, it will start
requiring various system definitions, starting with
System.Generic_C_Math_Interface contained in

s-gcmain.ads

To cut a long story short, to use Ada’s floating point
elementary functions requires that the GNAT compiler be
able to find 14 specification packages in files with crunched
filenames.

Helpfully the compiler tells you what is missing and
therefore these files are relatively easy to find and place in
the source path.

The 14 files are:

 a-numeri.ads

 a-ndelfu.ads

 a-nuelfu.ads

 a-nlelfu.ads

 s-gcmain.ads

 s-libsin.ads

 s-libpre.ads

 s-libdou.ads

 s-exnllf.ads

 s-fatflt.ads

 s-fatlfl.ads

 s-fatgen.ads

 s-fatgen.adb

 s-lisisq.ads

Once GNAT can find these files it will compile. However, it
will then fail at link time.

In my tangent example it will fail with

undefined reference to
`ada__numerics__elementary_functions__tan'

because although we have provided the specification of the
tangent function, we haven’t provided the implementation.

Unfortunately, if we take the source of the implementation
and try to compile a-nuelfu.adb, GNAT produces the error
message

user-defined descendants of package Ada are not allowed

The work-around to this is to rename the sources and to
export the functions with the name they would have had, had
they been compiled as descendants of Ada. If we place the
objects into a static library (object archive) and provide this
library explicitly in the linker script, the GCC can resolve the
references, and all is well.

Our Ada is used in conjunction with C machine generated
from source written in Modula-2. We called this mixture of
Ada and Modula, Adam. For this reason, we chose to base
our library on the root package Adam.

For example, for the Tangent function we copied the source
file a-nuelfu.ads and renamed it to Adam-Numerics-
Elementary_Functions.ads.

We then modified the contents to rename the package name
to Adam.Numerics.Elementary_Functions and exported
every function with the External name prefixed
by "ada__numerics__elementary_functions__"

package Adam.Numerics.Elementary_Functions with
Preelaborate is

 Prefix : constant String :=
 "ada__numerics__elementary_functions__";

 function Tan (X : Float) return Float
 with Inline,
 Export,
 External_Name => Prefix & "tan";

end Adam.Numerics.Elementary_Functions;

For the implementation we renamed the file a-nuelfi.adb to
Adam-Numerics-Elementary_Functions.adb and modified

A. Marr iot , U. Maurer 195

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

the contents so that the package name became
Adam.Numerics.Elementary_Functions.

We had to do this for the following 21 files:

 Adam-Numerics.ads

 Adam-Numerics-Elementary_Functions.ads

 Adam-Numerics-Elementary_Functions.adb

 (a-nuelfu.adb)

 Adam-Numerics-Long_Elementary_Functions.ads

 Adam-Numerics-Long_Elementary_Functions.adb
(a-nlelfu.adb)

 Adam-Generic_C_Math_Interface.ads

 Adam-Generic_C_Math_Interface.adb

 (s-gcmain.adb)

 Adam-Libm.ads

 Adam-Libm.adb (s-libm.adb)

 Adam-Libm-Single.ads

 Adam-Libm-Single.adb (s-libsin.adb, s-lisisq.adb)

 Adam-Libm-Double.ads

 Adam-Libm-Double.adb (s-libdou.adb)

 Adam-Exn_LLF.ads

 Adam-Exn_LLF.adb (s-exnllf.adb)

 Adam-Generic_Attributes.ads

 Adam-Generic_Attributes.adb (s-fatgen.adb)

 Adam-Attributes.ads

 Adam-Attributes.adb (s-fatflt.adb)

 Adam-Long_Attributes.ads

 Adam-Long_Attributes.adb (s-fatlfl.adb)

Other than renaming we did not have to modify the code very
much, but some minor changes had to be made:

3.1 Exception handling
In ZFA, exceptions cannot be propagated outside the
procedure, so either they must be caught and handled
(usually by an SVC instruction) or suppressed if the
exception is thought to be impossible to raise. I refer you to
my previous presentation [1] for a description on how to do
this and why it has to be done.

3.2 Square-Root
In Adam-Libm-Single.adb and Adam-Libm-Double.adb we
implemented the square root function as the built-in intrinsic
so that the FPU VSQRT instruction is used rather than the
acres of code provided in s-lisisq.adb and s-lidosq.adb
respectively.

3.3 Copy_Sign
The function Copy_Sign in s-fatgen.adb didn’t compile
using GCC v7.4.1.

GNAT issued the error message “Incorrect context for
intrinsic convention” on the pragma import for the function
Is_Negative.

Our solution was simply to replace this call with a
comparison with 0.0 and the presentation described the code
this produced and questioned whether or not it was actually
correct.

All this was rendered moot by AdaCore releasing GPL 2021

In this release GNAT (GCC v10.3) no longer recognizes the
intrinsic function Is_Negative and, as a result, the procedure
Copy_Sign has been totally reworked.

Because the new coding is backward compatible the problem
described in the presentation has now effectively been fixed.

3.4 Static library
When all the sources have been modified, the static library
can be built. To build the library we simply compiled all the
.adb files that start with the prefix Adam- and then used the
GCC archive program Ar to place the objects into a static
library. This library is then cited as an input in the GCC
linker script.

4 Returning unconstrained types

String handling in Modula-2 is very primitive. Strings are
simply arrays of characters and because Modula-2 functions
cannot return variable sized objects, they cannot therefore
return strings.

Up until now we have had very little need for string
manipulation. This is probably because our user interface is
PC based rather than executing on any of the
microprocessors. However, this would change if, for
example, we implemented a stand-alone product that
communicated with the user using TCP Telnet or as a web
server using HTML. In such a project we would need
improved string handling – such as that provided by Ada.

However, in order that Ada functions are able to return
unconstrained types such as strings, we need to implement a
secondary stack. This is a per-task area of memory from
which the compiler can allocate space to return
unconstrained types.

First the pragma Restrictions (No_Secondary_Stack) has to
be removed from System.ads otherwise any function that
attempts to return an unconstrained type will cause GNAT
to issue the error message violation of implicit restriction
"No_Secondary_Stack".

Once this restriction pragma has been removed from
System.ads, GNAT will then issue the rather cryptic
message

construct not allowed in configurable run-time mode

What this means is that GNAT has been unable to find the
specification packages that enables returning unconstrained
types. Just like with the enabling of floating-point these
specifications need to be placed in the source search path and
be contained within files with crunched names.

The required specification files are:

 s-parame.ads

 s-secsta.ads

196 More Ada in Non-Ada Systems

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

 s-stoele.ads

Once these have been made available, code can be compiled.

However, linking will fail because of unresolved references.

A program that uses the secondary stack to return
unconstrained types will need the routines:

 system__secondary_stack__ss_allocate

 system__secondary_stack__ss_mark

 system__secondary_stack__ss_release

We provide these routines in the same way as we did the
floating-point routines, namely, in a static library. These
routines are wrappers around our kernel functions to allocate
memory from the calling task’s secondary stack, to read its
secondary stack pointer and to set its secondary stack pointer
respectively.

In our Kernel, when a task is created, the size of its primary
stack is given and optionally the size of a second stack. The
primary stack is accessed via the processor’s stack pointer
register, and the secondary stack via access routines
provided by the Kernel. Both stacks are protected by the
Memory Protection Unit (MPU) and are private to the task.
I.e. a memory fault will be raised should another task attempt
to access them.

The Kernel provides three routines:

 AllocateFromSecondaryStack
Takes the required size as a parameter and returns the
start address of the memory area that has been allocated.

 GetSecondaryStackPointer
Returns the secondary stack pointer of the current task.

 SetSecondaryStackPointer
Sets the task’s secondary stack pointer to the address
passed as its parameter if the address is between the
task’s top of stack and the current secondary stack
pointer.

These routines conveniently directly map onto the routines
required by Ada.

5 String attributes

The attribute ‘image, its short-hand form ‘img and the
attribute ‘value are immensely useful when dealing with
strings. To enable these, we need to provide GNAT with 12
specification packages all contained in files with crunched
filenames.

We need 6 for the image attribute

 s-imgboo.ads

 s-imgllu.ads

 s-imgrea.ads

 s-imguns.ads

 s-imgint.ads

 s-imglli.ads

and a further six for the value attribute

 s-valboo.ads

 s-valint.ads

 s-vallli.ads

 s-valllu.ads

 s-valrea.ads

 s-valuns.ads

At link time we need to resolve unsatisfied references, once
again by use of a static library. Just as we did to support
floating-point, we need to rename the Ada source files to the
parent package Adam, compile them, and place the resultant
objects into a static library.

This time there are 37 files:

 Adam-Image_LLU.ads

 Adam-Image_LLU.adb

 Adam-Image_Uns.ads

 Adam-Image_Uns.adb

 Adam-Img_Bool.ads

 Adam-Img_Bool.adb

 Adam-Img_Int.ads

 Adam-Img_Int.adb

 Adam-Img_LLI.ads

 Adam-Img_LLI.adb

 Adam-Img_LLU.ads

 Adam-Img_LLU.adb

 Adam-Img_Real.ads

 Adam-Img_Real.adb

 Adam-Img_Uns.ads

 Adam-Img_Uns.adb

 Adam-Float_Control.ads

 Adam-Val_Bool.ads

 Adam-Val_Bool.adb

 Adam-Val_Int.ads

 Adam-Val_Int.adb

 Adam-Val_LLI.ads

 Adam-Val_LLI.adb

 Adam-Val_LLU.ads

 Adam-Val_LLU.adb

 Adam-Val_Real.ads

 Adam-Val_Real.adb

 Adam-Val_Uns.ads

 Adam-Val_Uns.adb

 Adam-Val_Util.ads

 Adam-Val_Util.adb

 Adam-Value_LLU.ads

 Adam-Value_LLU.adb

 Adam-Value_Uns.ads

A. Marr iot , U. Maurer 197

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

 Adam-Value_Uns.adb

 Adam-Case_Util.ads

 Adam-Case_Util.adb

6 Images of Enumerations

However this isn’t quite the whole story.

Left like this, obtaining the string representation of an
enumeration literal does not bring back the uppercase
version of the declaration but the string representation of its
position within the enumeration.

For example:

 type Color is (Blue, Green, Red);
 C : Color := Red;
 CI : constant String := C'image;

In the above example we would expect CI to be the 3 byte
string “RED” whereas, in fact, it is the two byte string “ 2”!

I.e. GNAT has silently, and without any warning
whatsoever, implemented

CI : constant String:= Color'pos(C)'image;

rather than what was written!

For the correct implementation the name strings have to be
retained. GNAT can be instructed to do this by commenting
out or otherwise removing the pragma Discard_Names in
System.ads.

The comment in System.ads for this pragma is

“Disable explicitly the generation of names associated with
entities in order to reduce the amount of storage used. These
names are not used anyway.”

However, the last sentence in this comment is no longer true,
the names, if they are there, can be used.

But just providing the names is not sufficient. Two more
crunched specifications need to be provided:

 s-imenne.ads

 s-valenu.ads

along with their implementations:

 Adam-Img_Enum_New

 Adam-Val_Enum

Then, and only then, does GNAT compile the correct code
and the program work correctly and according to the Ada
standard.

7 Protected Objects

As I mentioned in the description of the secondary stack, our
system is multi-tasking, but we cannot use Ada’s tasking
model because ZFA precludes the use of Ada’s run-time.
However, our Kernel does support multi-tasking and
therefore we need to protect certain data against
simultaneous access.

In Modula-2, one way of doing this is by using a semaphore
for each group of variables that need to be protected.

Unfortunately, this approach is somewhat error prone, it is
all too easy to forget to write the code to wait on the group’s
semaphore, or even sometimes to use the wrong semaphore.

Ada makes this easier and less error prone with its protected
object construct. Fortunately, although we don’t use Ada’s
tasking model, ZFA supports the implementation of
protected objects, albeit restricted to procedural operations.
Protected entries are not supported because these would not
work with our state machine model.

The following is an example of how we can use a protected
type to ensure that the increment of a quadword is made task
safe on a processor where 64-bit operations are not atomic.

type Value is mod 2**64;

protected Data is
 procedure Increment;
 function Actual_Value return Value;
private
 The_Value : Value := 0;
end Data;

protected body Data is
 procedure Increment is
 begin
 The_Value := The_Value + 1;
 end Increment;

 function Actual_Value return Value is
 begin
 return The_Value;
 end Actual_Value;
end Data;

If we try to compile this, GNAT will issue the by now
familiar message

construct not allowed in configurable run-time mode

indicating that an Ada feature needs to be enabled by
supplying a specific specification package within a file with
a crunched filename.

To enable protected objects, we need to supply:

 s-taprob.ads

 s-taskin.ads

At link-time we will need to provide three routines

 system__tasking__protected_objects__initialize_protec
tion

 system__tasking__protected_objects__lock

 system__tasking__protected_objects__unlock

Which we implement simply as wrapper routines around our
Kernel’s semaphore routines Initialize, Wait_For and Signal
respectively.

8 Dynamic memory allocation

For example

 C := new Character (‘x’);

198 More Ada in Non-Ada Systems

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

In order that we can dynamically allocate memory using the
Ada “new” construct we need to enable the feature by
including the specification file s-memory.ads

At link time we must then satisfy the reference to
___Gnat_Malloc with an implementation that simply calls
our Kernel’s Allocate function that takes the desired amount
of memory as a parameter and returns the address of the
allocated memory.

9 Summary

In my first presentation [1] I described how Ada could be
linked into an application predominantly written in C, how
Ada routines could call C routines and C routines call Ada
and how the Ada packages could be correctly elaborated.

This presentation goes further and shows that even more Ada
features can be used if they are enabled by the simple

expedient of providing the required specification package in
a file with the expected crunched filename. I also explained
how the implementation could be provided by a static library
and how this could be built. Together, these two techniques
have allowed us to expand our use of Ada to include floating-
point, functions returning strings, protected objects and
memory allocation thereby making Zero Footprint Ada even
more useful.

References

[1] A. Marriott and U. Maurer, “Using Ada in non-Ada
Systems”, Ada User Journal, vol 39 no 3, pp 180-187,
2018.

[2] Zip-Ada is a free, open-source programming library for
dealing with the Zip compressed archive file format.
https://sourceforge.net/projects/unzip-ada or
ssh://git@github.com/zertovitch/zip-ada

 199

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

Static Analysis for Ada, C/C++ and Python:
Different Languages, Different Needs
Maurizio Martignano
Spazio IT – Soluzioni Informatiche s.a.s., San Giorgio Bigarello, Italy; email:Maurizio.Martignano@spazioit.com

Abstract

Spazio IT has been working on the Independent
Software Verification and Validation of several
codebases, some written in Ada, others in C/C++ and
more recently also in Python; in all cases Spazio IT has
used static analysis techniques and tools facilitating
code inspection. Static analysis has always proven to
be beneficial, but depending on the programming
language, its advantages have emerged in different
areas and namely: metrics and structural analysis for
Ada, bugs finding at execution/semantic level for
C/C++ and errors finding at compilation/syntactical
level for Python. The paper presents first some general
considerations on static analysis, then it concentrates
on static analysis specifically applied to Ada, C/C++
and Python codebases. Finally, the paper describes
Spazio IT future activities in the area of static analysis.

Keywords: static analysis, code inspection, Ada,
C/C++, Python, open source

1 Introduction

Spazio IT has been working on several Independent
Software Verification and Validation projects, especially in
application domains like avionics and automotive, where the
codebases under analysis have been written mostly in
C/C++, sometimes in Ada and more recently also in Python.
Though in all these projects static analysis has always proven
to be beneficial, its advantages have emerged in different
areas and namely: metrics and structural analysis for Ada,
bugs finding at execution/semantic level for C/C++ and
errors finding at compilation/syntactical level for Python.

Section two of this paper will present static analysis in
general, why it is used in ISVV projects, in which areas it
provides the more benefits and its relationships with testing.
Section three will concentrate on static analysis and Ada.
Section four on static analysis and C/C++. Section five will
concentrate on static analysis and Python. Section six will
present Spazio IT next activities in the area of static analysis.

2 Why Static Analysis?

Static analysis techniques and tools are used in Independent
Software Verification and Validation mostly for three
reasons:

 Metrics Gathering, Structure Analysis;

 Checking the adherence of the codebase under
analysis to Guidelines and Standards;

 Bugs Finding.

Metrics Gathering, Structure Analysis

In some projects the codebase under analysis has to satisfy a
set of quality requirements, it has to “meet some specific set
of quality objectives”. This is usually verified according to a
particular software quality model, e.g. ISO/IEC 25010 [1].
These models identify some quality “characteristics” (e.g.
“maintainability”, that derive from some sub-characteristics
(e.g. in the case of “maintainability” its sub-characteristic are
“modularity”, “reusability”, “analysability”,
“modifiability”, “testability”). Sub-characteristics in turn
derive/are computed from “metrics” like “lines of code”,
“ratio comment to code”, “cyclomatic complexity”,
“construct nesting”, and so on.

Metrics are gathered by static analyzers; some static
analyzers are also able to compute sub-characteristics and,
in turn, characteristics according to selected models.

In Spazio IT experience, several times, these “apparently
theoretical” quality measurements, have allowed the
identification of critical areas in the codebase actually
requiring fixes to improve their readability and
maintainability.

Checking Guidelines and Standards

The adoption of guidelines and coding standards is
supported by the principle that, given a programming
language, it is possible to identify a subset of that language
aiming at improving the portability, security and safety
aspects of programs written in that language. MISRA C
2012, MISRA C++ 2008 [2] and AUTOSAR C++ 14 [3] are
example of such “subsets” for C/C++. SPARK 2014 [4] is
another example of these language “subsets”, but this time
for Ada. While, at the moment, the C/C++ “subsets” can only
be checked via static analyzers, SPARK 2014 stands on top
of the GNAT compilation system.

In Spazio IT experience, only relating to C/C++ “subsets”,
adopting these guidelines and standards has often generated
a considerable amount of noise, false positives, especially
when applied to legacy codebases. This is why in these
cases, a fine-tuning activity, identifying which checks, rules
to allow and which ones to disable before the actual analysis
execution had been necessary.

Bugs Finding

Static analysis has proven to be very helpful also in bugs
finding. This capacity has been relying on techniques like
abstract interpretation, data flow analysis during symbolic
(i.e. virtual) execution, bounded model checking and the
like.

200 Stat ic Analysis for Ada, C/C++ and Python

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

With time most of these techniques, that originally were only
available in some advanced commercial tools or in some
kind or research/experimental tools, have been implemented
also in “popular” and well supported tools like Clang Static
Analyzer, Clang Tidy and FB-Infer. These “new generation”
tools, being based on actual compiler technologies, are able
to process real codebases in a reasonable time; on the
contrary some of the original tools could only work on very
limited portions of code.

Syntactical Checks

A fourth reason, only appeared recently with “interpreted”
languages like Python and justifying the use of static
analysis, is that on “interpreted” codebases the static
analyzer, the “linter” can be used as a sort of compiler to
verify the syntactical correctness of the entire codebase, very
difficult to prove otherwise. More on this in section five, on
Python.

Static Analysis vs Testing

Static analysis, especially bugs finding, has sometimes been
considered as a replacement for testing. Spazio IT believes
it is better to consider static analysis as a complementary
activity to testing. The quality of testing depends on the
quality and completeness of the test cases. Static analysis
efficiency in bugs finding depends on the used techniques
and tools and not on the quality of the test cases or their
completeness. In huge codebases static analysis techniques
could help identifying which areas require more testing than
others, so they could help in maximizing the results that can
be obtained with testing – also when resources are limited.

3 Static Analysis in Ada

Table 1 shows the Ada static analyzers used at Spazio IT
over the years.

Table 1. Ada Static Analyzers used at Spazio IT

(M = mostly used for, A = also used for)

AdaLog AdaControl [5] has been used for metrics gathering
and checking the adherence of the codebases to project-
specific coding standards.AdaCore GNATmetric [6] and
GNATcheck [7] have also been used for metrics gathering
and checking the adherence of the codebases to standards
like DO-178B/C [8] and EN 50128 / IEC 62279 [9].
Likewise, for the very same two reasons, also MathWorks
PolySpace for Ada [10] and SciTools Understand [11] have
bene used.

In some limited cases AdaCore CodePeer [12] and
Polyspace have also been used as supporting tool when
looking for bugs during coding inspections activities.

In 2015 Spazio IT developed for Airbus an Ada SonarQube
Plugin able to compute the so called “Maintainability Index”
based on a quality model developed by Airbus and similar to
ISO/IEC 25010; in this model “maintainability” was a
function of “analyzability”, “changeability”, “stability”, and
“testability”.

4 Static Analysis in C/C++

Table 2 shows the C/C++ static analyzers used at Spazio IT
over the years.

Table 2. C/C++ Static Analyzers used at Spazio IT

(M = mostly used for, A = also used for)

Gimpel Software PC-Lint(-Plus) [13] has been used mostly
for metrics gathering and checking the adherence of the
codebases to MISRA and AUTOSAR coding standards. In
some cases, PC-Lint has also been used for bugs finding (e.g.
identification of recursive loops, logical errors in data flow
processing and the like).

The open-source tools Cppcheck [14], Clang-SA (Static
analyzer) [15], Clang-Tidy [16] and FB Infer [17] have been
used for bugs finding. Cppcheck has also been used for
metrics gathering and checking the adherence of the
codebases to MISRA.

It has to be noticed that, recognizing the power and
continuous improvement of the Clang tools, also Cppcheck
is more and more relying not only on its internal analysis
capabilities but on these Clang tools.

Figure 1 shows that C/C++ compilers, if properly used, can
be as strict as Ada compilers (e.g. Ada Gem #33 [18]).

In the Clang compilation system, the compiler and the static
analyzers (Clang-SA and Clang-Tidy) are based on the very
same libraries, so, in a way, the “Compiler” is the “Static
Analyzer”.

Figure 1. Dangling references spotted by the Ada compiler

and by the C compiler

M. Mart ignano 201

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

Static analyzers as CBMC [19] and Frama-C [20] though
very interesting from a theoretical and research point of
view, at the moment, that is April 2021, are not a viable
option for the analysis of large codebases. It is also
interesting to notice that, like Cppcheck, also Frama-C is
more and more trying to integrate with the Clang
compilation system and static analyzers.

Figure 2. A bug discovered by Clang Static Analyzer and
showed in its GUI

Figure 2 shows a bug caught by Clang Static Analyzer and
Figure 3 shows the very same bug, this time displayed from
by SonarQube (a code quality platform used by Spazio IT
for all its ISVV activities [21]).

Figure 3. The very same bug, caught by Clang Static
Analyzer and shown by SonarQube

5 Static Analysis in Python

Table 3 shows the Python static analyzers used at Spazio IT
in the recent years.

Table 3. Python Static Analyzers used at Spazio IT
(M = mostly used for, A = also used for)

The open-source tool Flake8 [22] has been used for metrics
gathering and checking the adherence of the codebases to
some project-specific coding standards.

Like in the case of C/C++, also in Python, the open-source
tools Bandit [23], Pylint [24] and SonarQube Python Plugin
[25] have been used for bugs finding.

Figure 4. SonarQube platform showing a bug caught by the

SonarQube Python Plugin

Somehow static analysis is applied to Python codebases in
the same way that is applied to C/C++ codebases: mostly for
bugs finding. But Python as also an additional “use case” for
static analysis.

The Linter as Compiler

Figure 5. An incorrect piece of code in Python

Figure 5 shows a piece code written in Python, where there’s
an obvious error. This error (“pront” instead of “print”), if
Python is invoked in “interpreted mode” would manifest
itself only if line 6 is executed. On the contrary a similar
situation would not occur in a compiled language where the
error would not escape the compilation / linking phase.

Many Python codebases, e.g. all web application based on
the “Django” framework [26] start with statements similar to
the following:

Figure 6. The starting point of a Django base application

202 Stat ic Analysis for Ada, C/C++ and Python

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

So, the application is started with Python in interpreted
mode.

If the application has a huge codebase, it might very well be
that inside these codebases there could be some syntactical
(or link type) errors that only the actual execution or a sort
of “compilation” can catch.

Figure 7 shows that Pylint, a static analyser, can also perform
these “compilation/link type” checks before actual
execution.

Figure 7. The linter as “compiler“

6 Spazio IT future activities on Static
Analysis

Spazio IT, apart from continuing being involved in ISVV
projects, in the next few months/years will be busy:

1. Keeping up to date with the evolution of Clang Static
Analyzer, Clang-Tidy and FB Infer.

2. Keeping up to date with the evolution of SonarQube.

3. Improving Spazio IT SAFe Toolset [27], by adding to it
support for Python.

The SAFe (Static Analysis Framework) Toolset is a set of
open-source tools, packaged in easily reusable form
(currently, an Ubuntu Virtual Machine), that can be used to
perform Software Verification and Validation.

References

[1] https://www.iso.org/standard/35733.html

[2] https://misra.org.uk/Publications/tabid/57/Default.aspx

[3] https://www.autosar.org/fileadmin/user_upload/standar
ds/adaptive/20-
11/AUTOSAR_RS_CPP14Guidelines.pdf

[4] https://github.com/AdaCore/spark2014

[5] https://www.adalog.fr/en/adacontrol.html

[6] https://learn.adacore.com/courses/GNAT_Toolchain_I
ntro/chapters/gnat_tools.html#gnatmetric

[7] https://www.adacore.com/gnatpro/toolsuite/gnatcheck

[8] https://www.rtca.org/

[9] https://webstore.iec.ch/publication/22781

[10] https://www.mathworks.com/products/polyspace-
ada.html

[11] https://www.scitools.com/

[12] https://www.adacore.com/codepeer

[13] https://gimpel.com/

[14] http://cppcheck.sourceforge.net/

[15] https://clang-analyzer.llvm.org/

[16] https://clang.llvm.org/extra/clang-tidy/

[17] https://fbinfer.com/

[18] https://www.adacore.com/gems/gem-33

[19] http://www.cprover.org/cbmc/

[20] https://frama-c.com/

[21] https://www.sonarqube.org/

[22] https://flake8.pycqa.org/

[23] https://pypi.org/project/bandit/

[24] https://pylint.org/

[25] https://github.com/SonarSource/sonar-python

[26] https://www.djangoproject.com/

[27] https://spazioit.com/pages_en/sol_inf_en/code_quality
_en/safe-toolset-en/

 203

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

ASIS vs. LibAdalang: A Comparative Assesment
J-P. Rosen
Adalog, 2 rue du Docteur Lombard, 92130 Issy-Les-Moulineaux, France; email: rosen@adalog.fr

Abstract

This paper compares the origins, features, and status
of two different tools intended to facilitate static
analysis of Ada programs: ASIS and LibAdalang.

It stresses the differences in principles, features, and
intended usages, and shows use cases where each is
more appropriate.

Keywords: Ada, static analysis, ASIS, LibAdalang.

1 Introduction

Ada is a language which is both large and complex to
compile. Any tool that aims at providing some form of static
analysis of an Ada program must cope with visibility rules,
overloading resolution, generic instantiations, defaulted
parameters, etc.

For example, consider the simple statement:

V := A (B);

Possible interpretations are:

 A is a function, B is the parameter
 A is an array, B is an index
 A is a type, B is converted to A
 A is a parameterless function call returning an

array, B is an index
 A is a pointer to a function, B is the parameter

And of course, B can be a constant, a variable, or a function
call...

Starting an analysis tool from scratch would require almost
rewriting half of a compiler. To avoid this effort and foster
the development of language tools, ASIS was developed as
an API to access the decorated AST (Abstract Syntax Tree)
produced by the compiler. More recently, AdaCore [2]
developed an alternative solution named LibAdalang.

Developers of Ada tools have now two competing solutions,
and are faced with fundamental decisions:

 When developing a new tool, which solution is
more appropriate?

 When evolving an ASIS tool, is it appropriate to
invest time and money for moving it to
LibAdalang?

This paper aims at providing some material to help
answering these questions.

1 This is assumed from the long-time involvement of AdaCore with free software. However, at the time of writing, the project distribution
has no mention saying “LibAdalang is free software”; this is likely to be an omission, but it makes the copyright status unclear

2 Origin

ASIS
ASIS [1] is an international standard, first developed for Ada
83, then updated to Ada 95. It was developed by an
international committee (the ASIS working group), and built
upon experience gained from previous attempts to
standardize an intermediate representation for Ada, notably
DIANA [3].

Several compilers provide the ASIS interface. The standard
was not evolved for subsequent updates of Ada, however
implementations, especially the AdaCore one, continued to
add support up to Ada 2012. AdaCore announced however
that their implementation would not be upgraded to support
Ada 2022.

LibAdalang
LibAdalang is an independent, self-funded development of
AdaCore. It is developed by a dedicated team from AdaCore.
It is an open-source project1 available on GitHub [2], and the
team welcomes comments from the community; however,
there is no control of any official or international body over
the design decisions.

3 Fundamental principles

ASIS
ASIS is an API to explore and get information from the
decorated syntactic tree, as produced by the associated
compiler. This guarantees that a tool based on ASIS will see
the code exactly as the compiler sees it, including
implementation dependent elements allowed by the
standard, and elements defined in the System and Standard
packages. However, this implies that an ASIS
implementation is linked to a certain compiler. A tool based
on ASIS must provide specific versions for each supported
compiler.

Since ASIS operates on a tree resulting from a successful
compilation, it cannot handle incorrect or incomplete code.
For the same reason, it was a deliberate design decision to
not provide any operation that would modify, or even add
information, to the syntactic tree. It is purely oriented
towards analysing a program, with no way to modify it.

LibAdalang
LibAdalang includes its own analyser and tree constructor,
which is part of the library, and embedded with any
application that uses it. A LibAdalang application is
therefore stand-alone, independent of any compiler, and can

204 ASIS vs. LibAdalang: A Comparat ive Assesment

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

be used even without an Ada compiler on the target machine.
On the other hand, there is no guarantee that the view of the
program provided to the tool is strictly equivalent to the
compiler’s view, nor that packages System and Standard
match the ones of the compiled code. More precisely,
LibAdalang will happily accept any program which is
syntactically correct, even if it is not semantically correct.
For example, no error is diagnosed in the following program:

procedure Incorrect is
 I : Integer;
begin
 I := 1.0; -- Typing error
end Incorrect;

A goal of LibAdalang was to be usable in contexts such as
syntactic editors, where the source can be incorrect, and to
be able to fix such incorrect code or to automatically
complete it. Of course, there are limitations to what can be
achieved on incorrect code, since almost nothing can be
assumed. LibAdalang provides operations to modify the
underlying tree and the original source.

Moreover, LibAdalang provides a Python interface for
developing rapid applications or interactively trying the
interface.

4 Style and organization

ASIS
ASIS has a root package (Asis) that defines the basic entities
used by the rest of the API. Child units group queries
according to the structure (chapter and clauses) of the Ada
reference manual: Asis.Declarations, Asis.Definitions,
Asis.Expressions, Asis.Statements, etc.

Other packages are provided for initialization and loading of
compilation units, accessing the source text of any element,
etc.

The tree managed by ASIS is strictly the abstract syntax tree
(AST) as defined by the syntax of the language; concrete
elements that are not syntactic elements (comments, semi-
colons, spaces) do not appear in the tree. It is possible to
access the source corresponding to a node in the tree, but
only as text. This makes it more complicated to develop
applications like pretty printers that deal mainly with the
physical appearance of the program [4].

LibAdalang
LibAdalang provides only two packages related to analysis:
Libadalang.Common and Libadalang.Analysis. The root
package Libadalang is almost empty and serves only as the
parent of the hierarchy. Libadalang.Common groups general
declarations of types and subprograms used in the rest of the
API, including declarations intended only for the
implementation of the library, and not for the user of
LibAdalang. Libadalang.Analysis gathers all syntactic and
semantic queries in a single package; as of this paper, the
specification of Libadalang.Analysis contains 15992 raw
lines, including 14154 lines in the visible part.

Other packages are provided for initialization and loading of
compilation units, changing program text on the fly, etc.

In addition to syntactic elements, LibAdalang keeps all
syntactic tokens, including trivias representing the concrete
representation, like spacing in the source, semi-colons,
comments, etc. The goal is to be able to manipulate the
concrete representation of the program as well as its abstract
structure.

5 Typing system

ASIS
All Ada elements are of a single type: Element. Subtypes are
provided for documentation purposes, like:

subtype Declaration is Element;

but since there are no constraints, there is no compile-time
check that an element belongs to the expected subtype. The
hierarchy of syntactic elements is accessible through a
number of classification functions returning enumeration
types that tell the precise “kind” of the element. For example,
the function Element_Kind returns a value like
A_Declaration, An_Expression, A_Statement… If the
element is a declaration, the function Declaration_Kind
returns A_Subtype_Declaration, A_Variable_Declaration,
A_Constant_Declaration ...

Every query expects its argument to be of certain kinds, and
checks it at run-time (and raises the exception
Inappropriate_Element if the checks fails). This means that
ASIS is strongly, but dynamically typed.

This comes as a surprise to many Ada users who are more
accustomed to static strong typing. However, this simplifies
navigating through the syntactic tree, since it is often not
possible to foresee the exact nature of the result of a query.
For example, it is very common in tools to navigate “up” the
tree. A simple loop to find which procedure body encloses a
certain element can be done simply, thanks to dynamic
typing:

declare
 E : Asis.Element := Some_Query (...);
begin
 while declaration_kind (E)
 not in A_Procedure_Body_Declaration
 loop
 E := Enclosing_Element (E);
 end loop;
end;

LibAdalang
LibAdalang represents elements as a hierarchy of tagged
types, rooted at Ada_Node:

type Ada_Node is tagged private;
type Expr is new Ada_Node with private;
type Name is new Expr with private;
…

The whole hierarchy of elements contains 373 different
types. Queries require parameters of the appropriate type,
but return values of the specific type Ada_Node. These
values must be converted to the appropriate type using ad-
hoc conversion functions, which raise an exception if their

J-P. Rosen 205

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

argument is not of the appropriate kind. Here is a typical
example of this programming pattern:

case Kind (Node) is
 when Ada_Call_Expr =>
 for Assoc of As_Assoc_List
 (F_Suffix (As_Call_Expr (Node)))
 loop
 ...
 end loop;
 ...
end case;

Here, Node is obtained from a previous query, and is of type
Ada_Node, and its real kind is obtained by the Kind function.
Since F_Suffix expects a parameter of type Call_Expr’Class,
it must be converted by the special function As_Call_Expr.
Of course, this function will raise an exception
(Constraint_Error) if the parameter does not correspond to
the expected type.

Despite the apparent stronger typed hierarchy of elements,
LibAdalang is also dynamically typed: if a node does not
belong to the expected kind for a query, it will be checked at
run-time by the corresponding “As_...” function instead of
the function itself. On the other hand, the stronger typing
makes exploring the tree more difficult; for example, the
simple loop of the previous example has to be replaced by
the following recursive function:

function Enclosing_Proc (N : Ada_Node'Class)
 return Ada_Node'Class
is
begin
 if Kind (N) in
 Ada_Subp_Kind_Procedure | Ada_Subp_Body
 then
 return N;
 else
 return Enclosing_Proc (Parent (N));
 end if;
end Enclosing_Proc;

6 Tree traversal

Tree traversal is the process by which a program explores the
whole program under analysis.

ASIS
ASIS provides a generic traversal function, which must be
instantiated to provide the actual traversal function:

generic
 type State_Information is limited private;
 with procedure Pre_Operation
 (Element : Asis.Element;
 Control : in out Traverse_Control;
 State : in out State_Information)
 is <>;
 with procedure Post_Operation
 (Element : Asis.Element;
 Control : in out Traverse_Control;
 State : in out State_Information)

 is <>;
procedure Traverse_Element
 (Element : Asis.Element;
 Control : in out Traverse_Control;
 State : in out State_Information);

The Pre_Operation procedure is called when entering a node
in the AST, before traversing the children, while the
Post_Operation procedure is called when returning to the
node after traversing the children. In addition, a variable of
the (user provided) type State_Information is passed along.
This makes it convenient to initialize information when
reaching a node, gathering information while traversing the
children, and using the result when returning to the node.

Each of the operations returns a value of the enumeration
type State_Information; possible values are Continue
(normal case), Abandon_Children (child nodes are not
traversed), Abandon_Siblings (return immediately to the
parent node), and Terminate_Immediately.

LibAdalang
LibAdalang provides a traversal function where the
processing of the node is provided as a pointer to an
appropriate function:

function Traverse
 (Node : Ada_Node'Class;
 Visit : access function (Node : Ada_Node'Class)
 return Visit_Status)
return Visit_Status;

The Visit function is called when entering a node in the AST,
before traversing the children. The enumeration type
Visit_Status can take the values Into (continue normally),
Over (child nodes are not traversed) and Stop. There is no
equivalent to Abandon_Siblings.

There is no provided function to perform processing when
returning to the node after traversing the children; if this is
desired, the Visit function must manually invoke Traverse on
child nodes and add the necessary processing after it returns.
Since there is no associated data, information must be
gathered in a global variable, or equivalent data structure.

7 Documentation

ASIS
The official documentation is the ASIS standard itself. It
provides a good description of how to build an ASIS
application and examples, in addition to the API itself. But
being an ISO standard, it is a copyrighted document that
must be bought from ISO at usual ISO price (currently, CHF
198).

However, AdaCore’s implementation comes with an ASIS
user guide that provides appropriate guidance on how to
build an ASIS application.

The API itself is self-documented. The naming convention
of the structural queries follows strictly the names and the
syntax used in the ARM, making it easy to find the desired
function. For example, the syntax of an assignment in the
ARM is given as:

206 ASIS vs. LibAdalang: A Comparat ive Assesment

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

variable_name := expression;

The corresponding structural queries will be:

function Assignment_Variable_Name
 (Statement : Asis.Statement)
 return Asis.Expression;
function Assignment_Expression
 (Statement : Asis.Statement)
 return Asis.Expression;

Each query states precisely the kinds of expected elements,
and the kinds of the provided result. For example, the
comments on the above Assignment_Variable_Name
function state:

-- Statement - Specifies the assignment statement to query

-- Returns the expression that names the left hand side of the

-- assignment.

-- Appropriate Element_Kinds:

-- A_Statement

-- Appropriate Statement_Kinds:

-- An_Assignment_Statement

-- Returns Element_Kinds:

-- An_Expression

Structural queries have names starting with
“Corresponding_”, making it easy to read and understand.
For example, the query used to find the declaration of a given
name is called Corresponding_Name_Declaration.

LibAdalang
LibAdalang comes with a user guide, providing a detailed
explanation of how to create an application, both in Python
and Ada.

The API has a layout that shows that it is still work in
progress: no header comments, lots of useless blank lines,
poor indentation… The naming convention of queries bears
no relationship to the reference manual; for example, the
syntactic element Selector in Ada is called Suffix in
LibAdalang. Many names use abbreviations whose meaning
is far from obvious, when not misleading. For example, the
query that returns the list of names that follow a with clause
is named F_Packages… although a with clause can refer to
units that are not packages!

Queries are divided into those that return “fields” of the
underlying structure (i.e. structural queries) and those that
return “properties” (i.e. semantic queries). The first ones
have names that start in F_ and the second ones have names
that start in P_, a convention that may be useful to the
implementation, but makes the reading quite unnatural. The
documentation (in the accompanying document or in the
comments in the package) is often missing, or simply states
what kind of nodes is contained in the corresponding field -
often with misleading information. For example, the
documentation of the F_Dest query for an assignment (the
left-hand side of the assignment) mentions as possible fields
Attribute_Ref, Char_Literal, and String_Literal, while actually
these cannot appear as the destination of an assignment
statement!

8 Extra functionalities

ASIS
The ASIS standard defines just an API. Helper utilities can
be provided by the implementation, but there is no
requirement to do so.

The AdaCore implementation provides a utility called
Asistant that allows exercising interactively all queries of the
API. It is very useful to understand the exact behaviour of
the queries, but it is not intended as a way of quickly
analysing a program.

As part of the distribution of AdaControl [5], Adalog
provides a small utility called ptree that prints a semi-
graphical representation of the syntactic tree, as obtained
from ASIS; this is handy in understanding the structure of
the AST.

LibAdalang
LibAdalang provides a Python API in addition to the Ada
API. This can be used to exercise queries as well as for
developing quickly and interactively small analysis tasks. Of
course, the Ada programmer will prefer the Ada interface for
applications with a long lifetime…

For quick development of a command line application,
LibAdalang provides the generic package App, which can be
instantiated with a procedure traversing the tree, and sets up
automatically all the environment, including command line
parameters analysis, setting of the environment, etc.

An associated project is LKQL (LangKit Query Language),
a language intended to provide language queries on top of
LibAdalang.

9 Pros and Cons

ASIS
Pros: ASIS works on legal code, after analysis by an Ada
compiler that passes the validation. This provides great
confidence that the program is analysed in conformance with
the standard, and that the content of packages Standard and
System match the ones used by the compiler. It comes with
a complete documentation in the API, strongly linked to the
Ada Reference Manual, making it easy to retrieve the
necessary queries and to understand its effects.

Cons: The fact that ASIS works only on legal code and
cannot change the tree or the corresponding source makes it
inappropriate for interactive applications, such as IDEs,
where the source is incomplete or evolving. Although
AdaCores’s implementation processes all versions of Ada up
to Ada 2012, an update of the standard to the latest version
of Ada would be welcome.

LibAdalang
Pros: LibAdalang is able to work on incomplete/incorrect
code and provides sophisticated support to the concrete
representation of the program, as well as editing and
modifying the original text. It processes the latest version of
the language.

J-P. Rosen 207

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

Cons: As there is no connection to the compiler, there is no
guarantee that LibAdalang’s view of the program
corresponds the compiler’s view or to the Ada standard. An
analysis tool cannot rely on the fact that there is no diagnosis
to trust that Ada rules are being obeyed; therefore the tool
should be run only on programs that have been successfully
compiled with a full Ada compiler.

The typing system and the distance between Ada’s formal
definition and the analysis packages, as well as the lack of a
number of useful features, makes it less fit for deep analysis
of Ada code.

The development of LibAdalang is fully under control of
AdaCore without external review, and of course it is not a
standard, nor expected to become one.

Conclusion

ASIS and LibAdalang cover different parts of the spectrum
of code analysis tools. ASIS, thanks to its precise
specification, its close connection to the Ada definition, and
its guarantee of semantic correctness of the analysed code, is
more appropriate for long lived tools, and especially tools
expected to be used in demanding domains like
instrumentation or control of safety critical software, The
dynamic aspect of LibAdalang is well suited for all the tasks
that require close connection to the source, user interaction,
or dynamic modifications, like syntactic editors, code
generators, and code transformation tools.

Given the fundamental differences in philosophy and typing
systems between ASIS and LibAdalang, moving a tool from
ASIS to LibAdalang cannot be done easily and would
require a complete rewrite.

References

[1] ISO/IEC 15291: Information technology —
Programming languages — Ada Semantic Interface
Specification (ASIS)

[2] https://github.com/AdaCore/libadalang

[3] G. Goos and G. Winterstein, "Towards a compiler front-
end for Ada", Proceedings of the ACM-SIGPLAN
symposium on Ada programming language, Annual
International Conference on Ada. ACM-SIGPLAN. pp.
36–46, 1980.

[4] S. Rybin and A. Strohmeier, " About the Difficulties of
Building a Pretty-Printer for Ada”, Reliable Software
Technologies — Ada-Europe 2002 Conference, June
2002.

[5] https://github.com/Adalog-fr/Adacontrol

[6] https://github.com/AdaCore/langkit-query-
language/blob/master/user_manual/source/language_re
ference.rst

208

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels, Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

1090 Rue René Descartes
13100 Aix en Provence, France

Contact: Patricia Langle
patricia.langle@systerel.fr

www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki, Finland

Contact: Niklas Holsti
niklas.holsti@tidorum.fi

www.tidorum.fi

3271 Valley Centre Drive,
Suite 300

San Diego, CA 92069, USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

Signal Business Centre
2 Innotec Drive, Bangor
North Down BT19 7PD
Northern Ireland, UK

enquiries@sysada.co.uk
www.sysada.co.uk

Corso Sempione 68
20154 Milano

Italy
Contact: Massimo Bombino

massimo.bombino@vector.com
www.vector.com

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

United Kingdom
Contact: Chris Nettleton

nettelton@xgc.com
www.xgc.com

22 St. Lawrence Street
Southgate, Bath BA1 1AN

United Kingdom
www.capgemini.com

46 Rue d’Amsterdam
F-75009 Paris, France
Contact: Jamie Ayre
sales@adacore.com
www.adacore.com

4545 E. Shea Blvd. #210
Phoenix, AZ 85028

USA
Contact: Laurent Meilleur

sales@ddci.com
www.ddci.com

