

Ada User Journal Volume 43, Number 1, March 2022

ADA
USER
JOURNAL

Volume 43

Number 1

March 2022

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 35

Forthcoming Events 41

Proceedings of the 11th Ada Developer Room at FOSDEM 22
 D. Craeynest

“Overview” 43
 S. Hild

“Ada Looks Good, Now Program a Game Without Knowing Anything” 44
 J-P. Rosen

“The Ada Numerics Model” 46
 A. Mosteo, F. Chouteau

“Alire 2022 Update” 49
 G. Galeotti

“SweetAda: Lightweight Development Framework for Ada-Based Software Systems” 52
 A. Mosteo

“Use (and Abuse?) of Ada 2022 Features to Design a JSON-Like Data Structure” 55
 M. Reznik

“Getting Started with AdaWebPack” 58
 J. Carter

“Overview of Ada GUI” 60
 P. Jarret

“The Outsider's Guide to Ada Lessons from Learning Ada in 2021” 64
 Y. Moy

“Proving the Correctness of the GNAT Light Runtime Library” 65
 S. Carrez

“Implementing a Build Manager in Ada” 67
 J. Verschelde

“Exporting Ada Software to Python and Julia” 75

Ada-Europe Associate Members (National Ada Organizations) 78

Ada-Europe Sponsors Inside Back Cover

2

Volume 43, Number 1, March 2022 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and December.
Copy date is the last day of the month of
publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics, such
as reliable software technologies, are
welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

� Refereed original articles on
technical matters concerning Ada
and related topics.

� Invited papers on Ada and the Ada
standardization process.

� Proceedings of workshops and
panels on topics relevant to the
Journal.

� Reprints of articles published
elsewhere that deserve a wider
audience.

� News and miscellany of interest to
the Ada community.

� Commentaries on matters relating
to Ada and software engineering.

� Announcements and reports of
conferences and workshops.

� Announcements regarding
standards concerning Ada.

� Reviews of publications in the field
of software engineering.

Further details on our approach to these
are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will be
relayed to the authors at the discretion
of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues
The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups to
find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be of
interest to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it a

wider audience. This includes papers
published in North America that are not
easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These may
represent the views either of individuals
or of organisations. Such articles can be
of any length – inclusion is at the
discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report on
events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal is
at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to print
reviews submitted from elsewhere at
the discretion of the Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be rapid.
Currently, accepted papers submitted
electronically are typically published 3-
6 months after submission. Items of
topical interest will normally appear in
the next edition. There is no limitation
on the length of papers, though a paper
longer than 10,000 words would be
regarded as exceptional.

 3

Ada User Journal Volume 43, Number 1, March 2022

Editorial

After two years into the global COVID-19 pandemic, my first wish and hope for 2022, as Editor-in-Chief of the AUJ, is that
we get back to track concerning the timeliness of publication and delivery of new issues, for which it will be important that the
flow of materials, namely from Ada-related events, returns to what it was before.

For this first AUJ issue in 2022, we challenged the presenters at the “Ada DevRoom” at FOSDEM, which took place in February
2022 as an online event, to prepare short papers derived from their presentations for inclusion in what we called “Proceedings
of the 11th Ada Developer Room at FOSDEM 22”. This year the response was overwhelming, with a total of 11 contributions
being received. We decided to make it easier for authors, not imposing restrictions in terms of paper size, so we ended up with
contributions ranging from 1 to 8 pages, as the reader will find. The topics are diverse, but in all cases, strongly related to the
Ada language and Ada tools.

These informal proceedings start with an introduction prepared by Dirk Craeynest, one of the Ada DevRoom organizers, who
describes the scope of the event and provides a program overview. Then we include the 11 received contributions. The reader
will find papers talking about the personal experience of newcomers to Ada programming (Ada Looks Good, Now Program a
Game Without Knowing Anything; The Outsider's Guide to Ada: Lessons from Learning Ada in 2021), papers related to the
use and exploitation of Ada language features (The Ada Numerics Model, Use (and Abuse?) of Ada 2022 Features to Design
a JSON-Like Data Structure), to the management and development of Ada projects (Alire Update; SweetAda: Lightweight
Development Framework for Ada-Based Software Systems; Implementing a Build Manager in Ada; Exporting Ada Software
to Python and Julia), to the use of specific Ada packages (Overview of Ada GUI), to both the development of Ada projects and
the use of specific packages (Getting Started with AdaWebPack), and to the use of SPARK to prove the correctness of Ada
libraries (Proving the Correctness of the GNAT Light Runtime Library).

We hope the reader will enjoy reading these contributions, and perhaps will be tempted to watch the presentations that were
recorded during the event, available on its webpage (https://fosdem.org/2022/schedule/track/ada/).

As usual, this issue also includes the News Digest section prepared by Alejandro R. Mosteo and the Calendar and Events section
prepared by Dirk Craeynest. We note that one of the forthcoming events will be the 2022 edition of the HILT (High Integrity
Language Technologies) Workshop, taking place in October, which this year is organized by ACM SIGAda in cooperation
with Ada-Europe. The respective Call for Papers is included in the Forthcoming Events section.

 Antonio Casimiro
Lisboa

March 2022
 Email: AUJ_Editor@Ada-Europe.org

4

Volume 43, Number 1, March 2022 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 4
Ada-related Events 4
Ada-related Resources 6
Ada-related Tools 7
Ada Inside 13
Ada and Other Languages 15
Ada Practice 23

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor
Dear Reader,

As I write this preface, we are in between
two big Ada events: the FOSDEM Ada
Developer Room, which brings together
open source enthusiasts presenting their
latest developments [1], and the Ada-
Europe Int. Conf. on Reliable Software
Technologies (AEiC 2022), which this
year will return, fingers crossed, as an in-
person event at Ghent, Belgium [2].
Information about both can be found in
the “Ada-related Events” section.

A piece of news that has made some
ripples in the Ada community is the
recently announced collaboration between
AdaCore and Ferrous Systems to provide
a safety-qualified Rust toolchain. The
newsgroup saw some reactions to this
announcement [3], and a discussion about
the merits, similarities and differences
between Rust and Ada and their
respective strong points.

Glad tidings come for macOS users with
the announcement of builds of GCC 12
and SPARK 2014 for this operating
system, thanks to the volunteer efforts of
Simon Wright [4], with GCC also
available for the M1 architecture. And for
the lovers of space, some of us wonder
whether there is some Ada in the Webb
telescope [5]. (Spoiler: probably not.)

Sincerely,
Alejandro R. Mosteo.

[1] “Ada Developer Room at FOSDEM
2022”, in Ada-related Events.

[2] “CfC Ada-Europe 2022 Conference”,
in Ada-related Events.

[3] “AdaCore Joins with Ferrous Systems
to Support Rust”, in Ada and Other
Languages.

[4] “macOS GCC 12.0.1, SPARK2014”,
in Ada-related Resources.

[5] “Ada in James Webb Space
Telescope?”, in Ada Inside.

Ada-related Events
CfC Ada-Europe 2022
Conference
[Deadline is past; announcement kept for
the record. –arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC Ada-Europe 2022 Conference
- 27 Feb - second deadline

Date: Mon, 31 Jan 2022 16:44:08 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

--
UPDATED Call for Contributions

26th Ada-Europe International
Conference on Reliable Software

Technologies
(AEiC 2022)

14-17 June 2022, Ghent, Belgium

www.ada-europe.org/conference2022

Organized by Ada-Europe in cooperation
with ACM SIGAda, SIGPLAN, SIGBED
and the Ada Resource Association (ARA)

* 2nd DEADLINE 27 February 2022 *

#AEiC2022 #AdaEurope
#AdaProgramming

--

General Information

The 26th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2022) will take place
in Ghent, Belgium, in the week of 14-17
June, in dual mode, with a solid core of
in-presence activities accompanied by
digital support for remote participation.
The conference schedule comprises a
journal track, an industrial track, a work-

in-progress track, a vendor exhibition,
parallel tutorials, and satellite workshops.

Schedule

16 January 2022 Submission deadline for
journal-track papers, tutorials and
workshop proposals.

27 February 2022: Submission deadline
for industrial-track and work-in-progress-
track abstracts.

14 March 2022 Notification of
invitations-to-present for journal-track
papers. Notification of acceptance for all
other types of submission.

3 April 2022: Publication of advance
program.

Topics

The conference is an established
international forum for providers,
practitioners and researchers in reliable
software technologies. The conference
presentations will illustrate current work
in the theory and practice of developing,
running and maintaining challenging
long-lived, high-quality software systems
for a variety of application domains
including manufacturing, robotics,
avionics, space, health care,
transportation, cloud environments, smart
energy, serious games. The program will
allow ample time for keynotes, Q&A
sessions and discussions, and social
events. Participants include practitioners
and researchers from industry, academia
and government organizations active in
the promotion and development of
reliable software technologies.

The topics of interest for the conference
include but are not limited to:

- Real-Time and Safety-Critical Systems:
design, implementation and verification
challenges, novel approaches, e.g.,
Mixed-Criticality Systems, novel
scheduling algorithms, novel design and
analysis methods;

- High-Integrity Systems and Reliability:
theory and practice of High-Integrity
Systems, languages vulnerabilities and
countermeasures, architecture-centred
development methods and tools;

- Reliability-oriented Programming
Languages (not limited to Ada):
compilation and runtime challenges,
language profiles, use cases and
experience reports, language education
and training initiatives;

Ada-related Events 5

Ada User Journal Volume 43, Number 1, March 2022

- Experience Reports: case studies,
lessons learned, and comparative
assessments.

Refer to the conference website for the
full list of topics.

Call for Journal-track Submissions

Following the journal-first model
inaugurated in 2019, the conference
includes a journal-track that seeks original
and high-quality submissions that
describe mature research work in the
scope of the conference. Accepted papers
for this track will be published in the
"Reliable Software Technologies
(AEiC2022)"

[Submission details removed. Call is
closed now.]

Authors who have successfully passed the
first round of review will be invited to
present their work at the conference. Ada-
Europe, the main conference sponsor, will
cover the Open Access fees for the first
four papers to gain final acceptance,
which do not already enjoy OA from
personalized bilateral agreements with the
Publisher.

Call for Industrial-track Submissions

The conference seeks industrial
practitioner presentations that deliver
insight on the challenges of developing
reliable software. Given their applied
nature, such contributions will be subject
to a dedicated practitioner-peer review
process. Interested authors shall submit a
short (one-to-two pages) abstract, by 27
February 2022, via
https://easychair.org/conferences/?
conf=aeic2022, strictly in PDF, following
the Ada User Journal style (cf.
http://www.ada-europe.org/auj/).

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference, and
will also be invited to expand their
contributions into full-fledged articles for
publication in the Ada User Journal,
which will form the proceedings of the
Industrial track of the Conference.

Prospective authors may direct all
enquiries regarding this track to the
corresponding chair, Alejandro R.
Mosteo, at the listed address.

Call for Work-in-Progress-track
Submissions

The Work-in-Progress track seeks two
kinds of submissions: (a) ongoing
research, and (b) early-stage ideas.
Ongoing research submissions are 4-page
papers that describe research results that
are not mature enough to be submitted to
the journal track as yet. Early-stage ideas,
are 1-page papers that pitch new research
directions that fall in the scope of the

conference. Both kinds of submission
must be original and shall undergo
anonymous peer review. Submissions by
recent MSc graduates and PhD students
are especially sought.

[Submission details removed. Call is
closed now.]

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference, and
will also be offered the opportunity to
expand their contributions into 4-page
articles for publication in the Ada User
Journal, which will form the proceedings
of the WiP track of the Conference.

Academic Listing

The Journal of Systems Architecture,
publication venue of the journal-track
proceedings of the conference, was
ranked Q1 (SJR) in the year 2020, also
featuring 72th percentile in CiteScope
(Scopus). The Ada User Journal, venue of
all other technical proceedings of the
conference, is indexed by Scopus and by
EBSCOhost in the Academic Search
Ultimate database.

Awards

Ada-Europe will offer an honorary award
for the best technical presentation, to be
announced in the closing session of the
conference.

Call for Tutorials

The conference seeks tutorials in the form
of educational seminars on themes falling
within the conference scope, with an
academic or practitioner slant, including
hands-on or practical elements.

[Submission details removed. Call is
closed now.]

The authors of accepted full-day tutorials
will receive a complimentary conference
registration, halved for half-day tutorials.
The Ada User Journal will offer space for
the publication of summaries of the
accepted tutorials.

Call for Workshops

The conference welcomes satellite
workshops centred on themes that fall
within the conference scope. Proposals
may be submitted for half- or full-day
events, to be scheduled at either end of
the conference proper.

[Submission details removed. Call is
closed now.]

Call for Exhibitors

The conference will include a vendor and
technology exhibition. Interested
providers should direct inquiries to the
Exhibition Chair.

Venue

The conference will take place in the
heart of the city of Ghent, Belgium,
capital of the East Flanders province, a
halfhour train ride north-west of Brussels.
Ghent is rich in history, culture and
higher-education, with a top-100
university founded in 1817.

Organizing Committee

* Conference Chair
Tullio Vardanega, University of Padua,
Italy
tullio.vardanega at unipd.it

* Journal-track Chair
Jérôme Hugues, Carnegie Mellon
University, USA
jjhugues at sei.cmu.edu

* Industrial-track Chair
Alejandro R.Mosteo, Centro Universitario
de la Defensa, Zaragoza, Spain
amosteo at unizar.es

* Work-in-Progress-track Chair
Frank Singhoff, University of Brest,
France
frank.singhoff at univ-brest.fr

* Tutorial and Workshop Chair
Aurora Agar Armario, NATO, the
Netherlands
aurora.agar at ncia.nato.int

* Exhibition & Sponsorship Chair
Ahlan Marriott, White Elephant GmbH,
Switzerland
software at white-elephant.ch

* Publicity Chair
Dirk Craeynest, Ada-Belgium & KU
Leuven, Belgium
dirk.craeynest at cs.kuleuven.be

* Local Chair
Vicky Wandels, University of Ghent,
Belgium
Vicky.Wandels at UGent.be

*** Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 26th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), Warsaw, Poland
('19), and online from Santander, Spain
('21).

6 Ada-related Resources

Volume 43, Number 1, March 2022 Ada User Journal

Information on previous editions of the
conference can be found at
http://www.ada-europe.org/confs/ae.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2022 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 26th Ada-Europe Int.Conf. Reliable
Software Technologies (AEiC 2022)
* June 14-17, 2022, Ghent, Belgium *
www.ada-europe.org/conference2022

Ada Developer Room at
FOSDEM 2022
[Past event, for the record. –arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada Developer Room at FOSDEM
2022 - Sun 6 Feb - online

Date: Thu, 3 Feb 2022 20:14:24 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

Call for Participation

11th Ada Developer Room at FOSDEM
2022

Sunday 6 February 2022, online from
Brussels, Belgium

Organized in cooperation with Ada-
Belgium [1] and Ada-Europe [2]

fosdem.org/2022/schedule/track/ada/

www.cs.kuleuven.be/~dirk/ada-
belgium/events/22/220206-fosdem.html

#AdaFOSDEM #AdaDevRoom
#AdaProgramming

#AdaBelgium #AdaEurope
#FOSDEM2022

FOSDEM [3], the Free and Open source
Software Developers' European Meeting,
is a non-commercial two-day weekend
event organized early each year in
Brussels, Belgium. It is highly developer-
oriented and brings together 8000+
participants from all over the world. The
2022 edition takes place on Saturday 5
and Sunday 6 February. It is free to attend
and no registration is necessary. This
year, for obvious reasons, it has been
turned into an online event, just like last
year.

In this edition, the Ada FOSDEM
community organizes once more 8 hours
of presentations related to Ada and Free
or Open Software in a s.c. Developer
Room. The "Ada DevRoom" at FOSDEM
2022 is held on the 2nd day of the event,
and offers introductory presentations on
the Ada programming language, as well
as more specialised presentations on

focused topics, tools and projects: a total
of 13 Ada-related presentations by 12
authors from 8 countries!

Program overview:

- Introduction to the Ada DevRoom,
by Fernando Oleo Blanco, Germany

- Introduction to Ada for Beginning and
Experienced Programmers,
by Jean-Pierre Rosen, France

- Ada Looks Good, Now Program a Game
Without Knowing Anything,
by Stefan Hild, Germany

- The Ada Numerics Model,
by Jean-Pierre Rosen, France

- 2022 Alire Update,
by Fabien Chouteau, France, Alejandro
Mosteo, Spain

- SweetAda: Lightweight Development
Framework for Ada-based Software
Systems,
by Gabriele Galeotti, Italy

- Use (and Abuse?) of Ada 2022 Features
to Design a JSON-like Data Structure,
by Alejandro Mosteo, Spain

- Getting Started with AdaWebPack,
by Max Reznik, Ukraine

- Overview of Ada GUI,
by Jeffrey Carter, Belgium

- SPARKNaCl: a Verified, Fast Re-
implementation of TweetNaCl,
by Roderick Chapman, UK

- The Outsider's Guide to Ada: Lessons
from Learning Ada in 2021,
by Paul Jarrett, USA

- Proving the Correctness of the GNAT
Light Runtime Library,
by Yannick Moy, France

- Implementing a Build Manager in Ada,
by Stephane Carrez, France

- Exporting Ada Software to Python and
Julia,
by Jan Verschelde, USA

- Closing of the Ada DevRoom,
by Dirk Craeynest, Belgium, Fernando
Oleo Blanco, Germany

The Ada at FOSDEM 2022 web-page will
have all details, such as the full schedule,
abstracts of presentations, biographies of
speakers, and pointers to more info,
including live video streaming and chat,
plus recordings afterwards. For the latest
information at any time, contact Fernando
Oleo Blanco <irvise@irvise.xyz>, or see:

[1] http://www.cs.kuleuven.be/~dirk/
ada-belgium/

[2] http://www.ada-europe.org/

[3] https://fosdem.org/2022/

Dirk Craeynest, FOSDEM Ada DevRoom
team
Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

Ada Developer Room Videos
Online
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Subject: Ada Developer Room at FOSDEM

2022 - videos online
Date: Sun, 20 Feb 2022 14:23:10 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

** Presentations and video recordings

available online ***

11th Ada Developer Room at FOSDEM
2022

held on Sunday 6 February 2022, online
from Brussels, Belgium

https://fosdem.org/2022/schedule/track/
ada/

All presentations and video recordings
from the 11th Ada Developer Room, held
at the online FOSDEM 2022 event
recently, are available.

Yet another full day with 13 Ada-related
talks by 12 authors from 8 countries!

[See program overview in the previous
message. –arm]

Thanks once more to all presenters and
helpers for their work and collaboration,
thanks to Fer for coordinating the
DevRoom, thanks to all the FOSDEM
organizers and volunteers, thanks to the
many participants for their interest, and
thanks to everyone for another nice
experience!

#AdaFOSDEM #AdaDevRoom
#AdaProgramming
#AdaBelgium #AdaEurope
#FOSDEM2022

Dirk Craeynest, FOSDEM Ada DevRoom
team

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

Ada-related Resources
[Delta counts are from Nov 1st to May
9th. —arm]

Ada on Social Media
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada on Social Media
Date: Mon, 2 May 2022 11:39:21 CET
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 3_302 (+88) members [1]

- Reddit: 8_005 (+357) members [2]

- Stack Overflow: 2_212 (+87)
 questions [3]

Ada-related Tools 7

Ada User Journal Volume 43, Number 1, March 2022

- Libera.Chat:75 (=) concurrent users [4]

- Gitter:115 (+24) people [5]

- Telegram: 139 (+9) users [6]

- Twitter: 30 (-197) tweeters [7]

 53 (-223) unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Repositories of Open Source

software
Date: Mon, 9 May 2021 11:45:21 CET
To: Ada User Journal readership

Rosetta Code: 900 (+54) examples [1]

 39 (+1) developers [2]

GitHub: 763* (=) developers [3]

Sourceforge: 274 (+1) projects [4]

Open Hub: 214 (=) projects [5]

Alire: 243 (+48) crates [6]

Bitbucket: 88 (=) repositories [7]

Codelabs: 53 (=) repositories [8]

AdaForge: 8 (=) repositories [9]

*This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada in language popularity

rankings
Date: Mon, 9 May 2021 11:50:21 +0100
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 27 (+4) 0.46%
 (+0.04%) [1]

- PYPL Index: 17 (=) 0.81%
 (-0.13%) [2]

- IEEE Spectrum (general): 31 (=)
 Score: 38.8 (=) [3]

- IEEE Spectrum (embedded): 9 (=)
 Score: 38.8 (=) [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/top-
programming-languages/

Ada "Coin" Updated for
Ada 2022
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Subject: Ada - In Strong Typing We Trust -

"coin" updated for Ada 2022
Date: Sat, 5 Feb 2022 16:04:59 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

Ada - In Strong Typing We Trust - "coin"
updated for Ada 2022

As of today, a new version of the
traditional "Ada coin" is available for
promotional use at
http://www.cs.kuleuven.be/~dirk/
ada-belgium/pictures/ada-strong.html

Coinciding with the final stages in the
ISO standardization of the latest Ada
programming language revision, referred
to as "Ada 2022", and for the occasion of
the 11th Ada Developer Room at
FOSDEM 2022, a new update was made
available, adding "2022".

Enjoy!

Dirk Craeynest

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/-Europe/SIGAda/WG9 mail)

New Ada Forge
From: William <william@sterna.io>
Subject: New Ada Forge: catalog of

(almost) all Ada open source code &
tools

Date: Sat, 12 Feb 2022 19:47:36 +0100
Newsgroups: comp.lang.ada

Hello Ada lovers!

I’ve the pleasure to announce a ground-up
update of AdaForge.org

https://www.adaforge.org

The purpose of this site is to bring to the
Ada developer a catalog of (almost) all
Ada open source code and tools existing
in different public repositories.

==> This catalog is structured according
to a software developer perspective
(taxonomy).

Note: AdaForge.org references 100% of
the Alire ‘crates’ packaging repo. :-)

I’m excited to hear some feedback from
you,

Kind regards,
William

Ada-related Tools
AdaStudio-2021 Release
01/10/2021 Free Edition
From: Leonid Dulman

<leonid.dulman@gmail.com>
Subject: Announce: AdaStudio-2021 release

01/10/2021 free edition
Date: Fri, 1 Oct 2021 22:31:52 -0700
Newsgroups: comp.lang.ada

I'm pleased to announce AdaStudio-2021
new release, based on Qt-6.2.0-
everywhere Qt 6.2.0 opensourc without
qtwebengine,extended with modules from
Qt-5.15: qtgraphicaleffect qtlocatio
qtgamepad qtspeech qtx11extras
qtwinextras Qt 6 is a new long time
project and I hope to add qtwebengine in
next releases.

Qt6ada version 6.2.0 open source and
qt6base.dll ,qt6ext.dll
(win64),libqt6base.so,libqt6txt.so(x86-64)
built with Microsoft Visual Studio 2019
x64 Windows, gcc x86-64 in Linux.

Package tested with GNAT gpl 2020 Ada
compiler in Windows 64bit, Linux x86-64
Debian 10.4 Qt-6.2.0 everywhere
opensource prebuilt binaries for win64
and amd64 are included into AdaStudio-
2021

AdaStudio-2021 includes the following
modules: qt6ada, vtkada, qt6avada,
qt6cvada and voice recognizer.

Qt6Ada is built under GNU GPLv3
license https://www.gnu.org/licenses/
lgpl-3.0.html.

Qt6Ada modules for Windows, Linux
(Unix) are available from Google drive
https://drive.google.com/folderview?id=0
B2QuZLoe-yiPbmNQRl83M1dTRVE
&usp=sharing

[List of detailed file contents omitted.
—arm]

8 Ada-related Tools

Volume 43, Number 1, March 2022 Ada User Journal

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.docx"

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Sat, 2 Oct 2021 16:00:50 +0200

Hi Leonid,

I have been following your work for a few
years. I like the Qt ecosystem (even with
their change of heart) and very specially
VTK. Thank you for your work. I hope to
use it in the future for my projects.

I first wanted to say that the webpage that
is indicated on your CV and where QtAda
has been living is unreachable. Google
says it has been blocked since it is
suspicious. Do you receive the same
message?
[https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/adastudio.html]

> Qt6Ada is built under GNU GPLv3
license https://www.gnu.org/licenses/
lgpl-3.0.html.

Is it GPLv3 or LGPLv3? I am asking
since you mention GPLv3 but link
LGPLv3.

Once again, thank you for maintaining
this lovely software suite!

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Thu, 7 Oct 2021 22:59:20 -0700

Qt6Ada is built under GNU LGPLv3
license, sorry for my mistake.

I built a web page from my google drive
and it worked well, but now I have got a
message from Google and I don't know
why. Old link to AdaStudio no longer
works. The new is
https://drive.google.com/drive/folders/
0B2QuZLoe-yiPbmNQRl83M1dTRVE?
resourcekey=0-b-M35gZhynB6-
LOQww33Tg&usp=sharing

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Wed, 6 Oct 2021 23:28:33 +0200

I have been playing today with qt5ada and
I think I can shed some light on the issue
[of some seemingly missing C files
—arm].

The Ada sources that call the Qt
procedures are in the
AdaStudio/qt5ada/qt5adasrc.tar.bz2 file.
That is the source file. There are no C
files there. That library contains all of the
Ada wrapper.

However, that is indeed not enough to use
it. It requires a fully functional Qt5
installation (and a very complete one,
with bells and whistles). The binaries are
provided in the other *.tar.bz2 files
(except the demos file). There is also the
qt5adax86-64.tar.bz2 file which weighs
about 6Mb. That seems to be the relevant
file to build qt5ada from source in Linux.

It comes with different files to setup the
file structure and environment. I must
admit, I have not tried to build it with the
provided files in qt5adax86-64.tar.bz2

These "build files" expect you to have a
Qt5 installation in your local /usr/local
folder. I suppose that is where the
qt5.15x86-64.tar.bz2 comes into place,
after all, it should unpack in the directory
written in the environment file.

Of course, the question is: where are the
instructions to build this all from source?
The short answer is in the document
"How to use Qt5Ada.docx" that is present
in AdaStudio/qt5ada. That sheds more
light into the procedure. But it still
expects you to use the precompiled Qt5
binary. And, I must be honest, it is not
clear and easy to follow, you need to
adapt the generic instructions to what is
on your system...

Then the question becomes: "How can I
build _everything_ from source?
Specially with the system provided
libraries, such as the system provided
Qt5." Well... That is not so simple. I
understand why Leonid has set up things
this way. Correctly setting the compiler
flags and directories for system installed
libraries is a nightmare. I tried to compile
qt5ada with my system provided Qt5
(OpenSUSE Tumbleweed), it is not trivial
at all. There can be problems with the
Qt5 version, there can be problems with
the plugins, compiler flags, etc. Can it be
done? Most likely, but it will require
some elbow grease. There is a reason to
why most Qt projects use CMAKE to
build and link themselves; because it is
not an easy task.

So I would say that the instructions need
to be cleaner and that in its current state,
there is only one easy solution to building
qt5ada, and it requires the binaries
provided. But I would also say that all the
source files needed are in there. The
prebuilt Qt5 binary seems to be the
standard unmodified Qt5 distribution, so
no surprises there. And that a lot of extra
work would be needed to make qt5ada
work seamlessly with the system provided
libraries.

SweetAda 0.9
From: Gabriele Galeotti

<gabriele.galeotti.xyz@gmail.com>
Subject: ANN: SweetAda 0.9 released
Date: Sun, 3 Oct 2021 06:32:40 -0700
Newsgroups: comp.lang.ada

I've just released SweetAda 0.9.

SweetAda is a lightweight development
framework to create Ada systems on a
wide range of machines. Please refer to
https://www.sweetada.org.

Release notes @
https://www.sweetada.org/
release_notes.html (delayed)

Downloads available @
https://sourceforge.net/projects/sweetada.

Clone repository @ https://github.com/
gabriele-galeotti/SweetAda

Release notes

There are too many changes, so I will list
only the most important features of this
release.

- Windows environment does not need the
grep utility, nor a dos2unix utility
(which is now provided internally);
elftool is now optionals and its use is
configurable in configuration.in

- RTS can be build from sources by
means of "CPU=<cpu> make rts"
command (the RTS type is being picked
up from configuration.in as usual), every
RTS branch will be named like the
toolchain triplet being used

- Both SweetAda and RTS are fully
buildable in Linux, Windows/cmd.exe,
Windows/MSYS and OS X; you should
only to have online a "make" and "sed"
(and for Windows these are available as
zip packages in Sourceforge); due to
this, there are no RTS packages anymore

- SweetAda does not relies on SweetAda
toolchains, you can use your own GNU
toolchain, or whatever GNAT you can
pick, just be sure to use Ada 2020

The final result is a package that is fully
auto-consistent, because the core, RTS
and utilities are fully provided in both
source form and executable form. Since
SweetAda toolchains are by no means
eligible as the unique compilers for the
system, they will slowly fade away.

GCC Release Notes, aka,
Ada Is Still Alive!
From: Fernando Oleo Blanco

<irvise_ml@irvise.xyz>
Subject: GCC release notes, aka, Ada is still

alive!
Date: Mon, 11 Oct 2021 20:41:18 +0200
Newsgroups: comp.lang.ada

Hi everybody,

I have been meaning to write this message
for a long while, so here it goes.

Reading Phoronix [1] for years, I noticed
that with every new GCC release, the
biggest changes to GCC and its languages
were mentioned. However, Ada was
pretty much never present.

Today, just a few moments ago in
#netbsd, someone asked whether Ada had
finally been dropped out of GCC... I am
not even mad. GCC's release notes have
not mentioned Ada since GCC 8 [2], [3],
[4]; and even in GCC 7 and 8 the notes
are minute.

So I would like to ask whether someone
would like to help me get release notes
ready. I am not saying that I will be doing

Ada-related Tools 9

Ada User Journal Volume 43, Number 1, March 2022

much, but I would like to breathe some
fresh air into how Ada is seen and how
much people hear about it.

I personally do not like marketing since
good products stand on their merits, not
slogans or shininess. But there is no
reason to not put publicly what is going
on.

Yes, AdaCore has been doing some very
nice followups to the development of Ada
in their blog [5]. But the people that go
there are already aware of Ada. And since
AdaCore is phasing out their GNAT CE
system in favour of FSF builds (included
in Alire), the relevance of GCC's releases
grows.

Note, I am not implying that AdaCore
should write the releases. They are doing
the bulk of work in GNAT, so I do not
think they _need_ to do more. Personally
I am glad with what they are doing, but of
course, they can write the releases if they
so want.

I am especially saddened by the fact that
GCC has gotten a substantial amount of
support for Ada 2022 and it is not even
mentioned. No wonder why people think
Ada is dead!

So, if you have any recommendation, or
would like to help, then you are more than
welcomed!

P.S.: I am already doing my part GNAT
in NetBSD x86_64 is working! It has 9
failed ACATS tests, but they are minor. A
thousand thanks go to J. Marino and
Tobiasu for their enormous help in #ada.
Today I will see if I can compile it for
armv6 and run it on my RPi!

[1] https://www.phoronix.com/scan.php?
page=home

[2] https://gcc.gnu.org/gcc-7/changes.html

[3] https://gcc.gnu.org/gcc-8/changes.html

[4] https://gcc.gnu.org/gcc-9/changes.html

[5] https://blog.adacore.com/

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Tue, 12 Oct 2021 05:54:33 -0700

Most, if not all, of what is in this blog
post [1] is applicable to GNAT/GCC 11.

[1] https://blog.adacore.com/ada-202x-
support-in-gnat

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue, 12 Oct 2021 21:37:25 +0300
> Most, if not all, of what is in this blog

post [1] is applicable to GNAT/GCC
11.

I guess the main point of Fernando was
that it would be nice if someone could add
all the new changes between versions 11
and 12 to https://gcc.gnu.org/gcc-
12/changes.html before GCC 12 is
released.

gcc-X/changes.html traditionally lists
some items for all other language
frontends, but there is never anything for
Ada.

The git history for gcc-12/changes.html
page is visible at

https://gcc.gnu.org/git/?
p=gcc-wwwdocs.git;a=history;
f=htdocs/gcc-12/changes.html;
h=f38fd2bef9c4089369e6f9315590ebffd8
b24f5c;hb=HEAD

(that is gcc-wwwdocs repository at
gcc.gnu.org/git).

Maybe someone with enough free time
(and enough knowledge about the
changes) could take look and provide a
patch for GCC web page maintainers?

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Wed, 13 Oct 2021 18:32:30 +0200

Thank you to everybody that commented
on the topic.

We could use the Changelog present in
the gcc/ada directory to triage commits
more precisely (credit goes to Stéphane).

> I decided to try an example. I must
confess that I don't know where the
cutoff point for GCC 11 was and what
it changes actually did

To be honest, we could try to write the
changelog for GCC 11 with the
information given by Fabien (AdaCore)
and what we find out. If for whatever
reason the GCC people do not want to
make large changes to the already
released changelog, we could compile a
larger list for GCC 12.

I think the most important aspects are:

- Ada 2022, which has a long list of
changes on its own;

- Improvements to systems (VxWorks,
RTMS, etc), as it shows that Ada is
present in more places than what meets
the eye;

- Deprecations and fixes;

- General improvements in the library,
SPARK and with the GCC ecosystem.

I think Ada has somewhat acceptable
support for OpenMP, which was
improved in the past few years, for
example. It has also been increasing
SPARK support in the libraries.

[...]

I want to sign up for GCC's gcc mailing
list (general discussion) and ask the GCC
people what would be the preferred way
to move forward. Hey, maybe they would
like to have Ada changelogs for all past
releases! If I hear anything back I will tell
you.

Though if someone wants to start, I see no
problem on sharing diffs here. Not the

most ideal place, but it is a good forum to
share ideas.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 13 Oct 2021 20:59:47 +0100
> - General improvements in the library,

SPARK and with the GCC ecosystem.

Not sure how to work SPARK into a GCC
note, since it's not part of the GCC
ecosystem?

"There's extensive support for possible
static analysis of code, e.g. via SPARK, in
the form of annotations that can
optionally be compiled as runtime
assertions."

From: Stéphane Rivière
<stef@genesix.org>

Date: Thu, 14 Oct 2021 10:24:20 +0200
> So, if you have any recommendation, or

would like to help, then you are more
than welcomed!

I second that and I would like to help, if I
may.

According to gcc-mirror on github, Ada
basecode is above C++

C 47.7%
Ada 17.5%
C++ 14.9%
Go 7.4%
GCC Machine Description 4.7%
Fortran 2.4%
Other 5.4%

git clone https://github.com/gcc-mirror/
gcc
git log > log.gcc (volume: 124M)
cat log.gcc | grep AdaCore > log.ada
(1M, ~25K contribs since 2005)
grep "\[Ada\]" ./log.gcc >
log-oneliner.ada (190K, 3200 lines)
grep -B 2 -A 20 AdaCore log.gcc >
log-detail.ada
cat log-detail.ada | grep -B 2 -A 20 [ada]
log.gcc > log-changes.ada

It seems that everything is there to create
a more or less relevant changelog.

But AdaCore's comments are one thing,
sorted and relevant information for
developers are another.

A raw copy/paste would be useless, we
would have to analyze the changelog to
give back useful information.

We should also edit a changelog for each
GCC release. The above metrics were
made on master.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Wed, 20 Oct 2021 10:42:20 +0200

The discussion thread on the GCC ML
has been started. You can find it here:
https://gcc.gnu.org/pipermail/gcc/
2021-October/237600.html

Do not hesitate to add any comments!

10 Ada-related Tools

Volume 43, Number 1, March 2022 Ada User Journal

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Wed, 20 Oct 2021 22:14:57 +0200
> The discussion thread on the GCC ML

has been started.

Okay, we already had a couple of
comments and they cover everything
needed. Arnaud has volunteered to be the
"supervisor". So here is my plan:
crowdsourcing! :D

I would like to write a (simple) list of
changes for each version here, on the
CLA. If you want to add something
__copy__ (do not quote) the list from the
previous person/reply/modification and
add your proposed changes. You can also
make comments if you would like
anything changed. If "CHECK" or if
"TODO" are written by somebody, it
means that something needs to be checked
or that it needs to be expanded;
respectively. After the list is mostly
completed, we could create a patch(es) to
send to GCC. The quality of this list is not
going to be great, treat it like a checklist.
Obviously, if you want to discuss
something about the changes, do quote
the relevant section.

[...]

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Mon, 25 Oct 2021 20:47:05 +0200

Diff: add to GCC 12 the deletion of
gnatxref and gnatfind (the patch was
posted today in the ML). The -gnat2020
has been commented too in GCC 10 and -
gnat2022 in GCC 12. Also, we have
explicit permission by Arnaud to copy as
much code as necessary from AdaCore's
blog.

LIST OF CHANGES

GCC 12

- Introduction of the -gnat2022 flag in
gnatmake (-gnat2020 is a deprecated
alias).

- gnatfind and gnatxref tools have been
deleted. They have been deprecated for
years and have been substituted by
gprbuild tools.

- Further library improvements in both
quality and performance.

- The use of contracts has been extended
in the "Ada library" allowing for further
checks at runtime or a deeper static
analysis with the SPARK prover.

- Further improvements to embedded
systems such as VxWorks and RTMS.
CHECK maybe be more
specific/generic.

GCC 11

- Better Ada 2022 support. The parallel
keyword is still unsupported.

- TODO name the additional features. See
[1], obviously, with some code
examples.

- Addition of the Jorvik profile. CHECK,
see [2], maybe code examples?

- Additional non-standard features [3].
CHECK if this applies to GCC 11 or 12.

- A bug was fixed were previous GCC
versions allowed XXX construct
CHECK. This is not allowed by the
standard. Some software was making
use of XXX (which is, once again, not
allowed) and it has to be patched.

- General library improvements in both
clarity and performance.

- The use of contracts has been extended
in the "Ada library" allowing for further
checks at runtime or a deeper static
analysis with the SPARK prover.

- Further improvements to embedded
systems such as VxWorks and RTMS.
CHECK maybe be more
specific/generic.

GCC 10

- Introduction of the -gnat2020 flag in
gnatmake (-gnat2020 is a deprecated
alias). It enables newer features present
in Ada 2022 (still to be ratified). These
features are still experimental.

- Some Ada 2022 features are available
already with the use of the -gnatX (gnat
eXtensions switch).

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 27 Oct 2021 09:52:26 -0700
> - gnatfind and gnatxref tools have been

deleted. They have been deprecated for
years and have been substituted by
gprbuild tools.

What "gprbuild tool" replaces gnatxref?

From recent discussions in an AdaCore
ticket, the replacement for gnatxref is
libadalang, either via the LSP Ada
Language Server, or a similar custom
wrapper.

GCC Updated in NetBSD!
From: Fernando Oleo Blanco

<irvise_ml@irvise.xyz>
Subject: GCC updated in NetBSD!
Date: Tue, 19 Oct 2021 23:47:36 +0200
Newsgroups: comp.lang.ada

Hello everybody! I bring good news!

GCC with Ada support has been updated
in NetBSD! Now versions 10 and 11
should work on x86 and x86_64 NetBSD
machines! You can find them in pkgsrc-
wip (gcc10-aux) [1] and Ravenports
(gcc11) [http://www.ravenports.com/]!

First things first, the acknowledgements: a
big thank you goes to J. Marino who did
the original gcc-aux packages and who
provided most if not all the work when it

came to fixing the threads and symbols.
Another big thank you goes to tobiasu
who correctly picked up that the pthread
structure wrappers were not correct and
had to be remade. Another big thank you
goes to Jay Patelani for his help with
pkgsrc.

So, long story short. Most of the work that
had been done up until a few weeks ago
was done correctly, but the failing tests
(most related to tasking) were failing in
very strange ways. It happened that the
pthread structure memory that the Ada
wrapper was using was incorrect, so we
were getting completely erratic behaviour.
Once that got fixed, pretty much all tests
passed. J. Marino also took the time and
effort to create __gnat_* function
wrappers to all the symbols that the
NetBSD people have renamed. This is a
much cleaner fix and allows for the
renamed functions to generate the correct
symbols since now they are getting
preprocessed. It should also be more
"upstream friendly". The issue, however,
remains if NetBSD decides to rename
more functions that are still being linked
directly.

There are still some failing ACATS tests
(about 10). Some are related to numerical
precision and a couple others. They are
mostly the same failing tests in both GCC
10 and 11. J. Marino ran the ACATS tests
on a DragonflyBSD (or was it FreeBSD?)
machine and the same tests were failing
there too. So we suspect is is a common
limitation on *BSDs and it is unlikely that
this will ever affect anybody. There is
also the issue of stack unwinding when it
contains a signal trampoline [2], read the
following thread to gain more information
about this.

[1] https://github.com/NetBSD/
pkgsrc-wip/tree/master/gcc10-aux

[2] https://mail-index.netbsd.org/
tech-kern/2021/10/15/msg027703.html

I have started trying to get GCC to
xcompile to arm* on NetBSD. I think I
am somewhat close, but further hacking
on NetBSD's src is needed (and I think the
RTS is not getting picked up correctly).
So do not get your hopes up. I mean, I
have a working gcc x86_64 NetBSD host
to NetBSD arm* xcompiler, it is the
native gcc on arm* that is not getting built
correctly.

From: Richard Iswara
<haujekchifan@gmail.com>

Date: Wed, 20 Oct 2021 12:01:40 +0700

A big applause for your hard work
identifying the problem in the first place.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Tue, 19 Oct 2021 23:43:23 -0700

When I was working at AdaCore, we used
to run our internal CRM and the ticket-
management tool that processes all email

Ada-related Tools 11

Ada User Journal Volume 43, Number 1, March 2022

on a FreeBSD machine, because the
sysadmin was very fond of that system.
The CRM was (is?) based on AWS (Ada
Web Server), so using tasking pretty
heavily. We never had any problem at the
time.

I guess AdaCore has given up on
FreeBSD, like they have macOS.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Wed, 20 Oct 2021 20:44:01 +0200
> I guess AdaCore has given up on

FreeBSD, like they have macOS.

Well, GCC officially supports FreeBSD
x86* and AFAIK, arm too. Though,
AFAIK, the gcc-aux packages from
freshports have been left without a
maintainer...

And good news everybody! I have
managed to get GPRBuild working and
Alire too! I even got the GNATColl
components built using Alire ^^. Pretty
easy if you ask me :P

The mayor issue I am facing now is with
make... I tried building AWS with Alire
but it could not, since it was using make,
which in *BSD world is BSD make, aka,
bmake, not GNU make, aka gmake...
Anyhow, I am very happy to see so many
packages getting built without issues in
NetBSD :D

There is the problem where GPRBuild
says that the "lib" option is not supported
on the OS. I don't think it is suprissing
since GPRBuild probably does not know
anything about NetBSD.

I am also getting warnings from
gnatmake:
/home/fernando/bootstrap_ada/alire/src/
alire/alire-toolchains.adb:331:8:

warning: frame size too large for reliable
stack checking which probably come
from NetBSD having a small stack by
default.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Tue, 2 Nov 2021 21:32:56 +0100

A bit of a followup.

The package gcc10-aux has been updated
in pkgsrc-wip. I am now the maintainer.
As requested by some pkgsrc developer, I
have made the package explicitly depend
on gcc6-aux. That way, it may be used as
a base Ada compiler for all the packages
that need Ada (although this is just the
first step). I have also rebased it on the
new skeleton of gcc10 from pkgsrc-
current. Hopefully the review period and
inclusion into pkgsrc-current will not take
much time.

[...]

From: Fernando Oleo Blanco
<irvirse_ml@irvise.xyz>

Date: Thu, 23 Dec 2021 12:52:42 +0100

Well well well...

I come with a Christmas present... Ada
running on NetBSD-powerpc! It should
run on any powerpc "port", in NetBSD
terms also known as evbppc, macppc and
amigappc.

It is not perfect, but it is there.

Here are the results from ACATS 4.1X
running natively on the macppc port (as
created by https://github.com/alarixnia/
mkimg-netbsd)

=== acats Summary ===

of expected passes 2490
of unexpected failures 62
of expected failures 1487
of unresolved testcases 11
of unsupported tests 116

*** FAILURES: c324006 c350a01
c452003 c452005 c452006 c452a02
c52103x c52104x c52104y c552a01
c552a02 c611a04 c650b04 c760a02
c96001a c96008a c96008b cb1010a
cb1010c cb1010d cc40001 cc51007
cdd2b03 cdd2b04 cxa4010 cxa4011
cxa4021 cxa4022 cxa4023 cxa4030
cxa4031 cxa4032 cxa4033 cxa4035
cxaa022 cxab004 cxab005 cxac004
cxag001 cxag003 cxai001 cxai009
cxai010 cxaia01 cxaib05 cxaib06 cxaib08
cxb4002 cxb4005 cxb5002 cxb5003
cxd1003 cxd1004 cxd1005 cxd2002
cxd2003 cxd2004 cxd2006 cxd3001
cxd3002 cxd6001 cxd6002

/home/fernando/ACATS-master/
run_all.sh completed at Thu Dec 23
10:13:16 UTC 2021

The compiler is GCC from the NetBSD
src tree, which is an older GCC 10
version. Which means (following the
results from previous runs) that 28
failures where expected; 6 from
shortcomings from NetBSD and the rest
from GCC 10 not passing newer tests.
That means this system generated at least
34 new failures. This may be for a
number of reasons, both related and
unrelated to GCC-Ada. Still, I think they
are rather good! I believe a lot of cxa
failures were due to the system running
on low memory. Also, the compiler was
built against NetBSD 9.99.92, but the
actual host is 9.2, and NetBSD is not
backwards compatible; so that may
explain other failures.

Just for your own enjoyment, these tests
took about 2 days to run, since I am
emulating powerpc on a virtualised
NetBSD-x86_64 system :P

The reason I tried to run powerpc is
because, to put it bluntly, NetBSD has to
fix their shit with aarch64 and mips64 and
because they do not provide binaries for
POWER. NetBSD just works if you use
their tooling, but the moment something
out of the ordinary of what has to be built,

fecal matter impacts the air impeller
(credit to a reddit user for that one).

Merry Christmas everybody!
Fer

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Thu, 10 Feb 2022 20:21:53 +0100

One last update on GCC 10 on NetBSD.

As I have already said in other messages,
it works great. The package is still under
wip since no maintainer has stepped up to
take care of the review. I also have not
pushed it further.

I would recommend the use of
Ravenports, since it has GCC 11, which is
newer and works on FreeBSD too.

I have given up on trying to port it to
other arches. It should be as simple as
adding them to the Makefile.rtl. There is a
minor bug on my patchset, the x86
intrinsics are also present on the arm
sections, I need to delete that.

The reason for giving up on supporting
other arches is mostly due to NetBSD not
upstreaming support for those arches. For
example, the official binutils does not
have support for aarch64-netbsd. It is only
present in NetBSD's src. And it only
works when used within NetBSD's src.
This makes everything more complex
than needed and I do not have the will to
push through with it.

Regarding the use of other Ada tools in
NetBSD. I added support for grpbuild a
few months ago, so you should be able to
just use it. Notice, when using GCC 10
only V21 of AdaCore tools work. Newer
versions (currently v22) need GCC 11.
The rest of the tools seem to compile
without much fuzz at all. So I say that my
work is mostly complete.

I will try to get gcc10-aux pushed to
stable however; sometime after March.

For now, I will try to update the Ada
changelog in GCC and write an article
about Ada-Scheme for the AUJ.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Mon, 14 Mar 2022 22:21:49 +0100

Quick update. The package has now been
upstreamed and is now part of the official
pkgsrc distribution!

You can find it here:
https://cdn.netbsd.org/pub/pkgsrc/current/
pkgsrc/lang/gcc10-aux/index.html

Binaries are still not available since it just
got added.

This is a nice conclusion to this journey...
But there is something else brewing
behind the scenes... AVR support is
coming to Alire thanks to Fabien and we
are ironing out some of the issues there :D

12 Ada-related Tools

Volume 43, Number 1, March 2022 Ada User Journal

Simple Components v4.59
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Simple Components for Ada

v4.59
Date: Sat, 6 Nov 2021 13:04:27 +0100
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- The primitive operation Clear was added
to GNAT.Sockets.Server.Connect;

- Julia bindings moved to the version
1.6.3;

- The functions Eval_char_array,
Get_Safe_Restore, Load_File_String,
Set_Safe_Restore were added to Julia
bindings;

- Functions To_Julia and Value added to
Julia bindings for Ada types Time and
Day_Duration;

- To_Julia defined on tuples fixed when
types of elements are not directly
visible.

Dokan Ada Bindings 2.0
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Dokan Ada bindings 2.0
Date: Sun, 16 Jan 2022 17:07:54 +0100
Newsgroups: comp.lang.ada

Dokan is a user-space file system for
Windows 32- and 64-bit. It consists of a
driver and a library. The driver routes the
I/O requests to the file system device to
the library callback.

A sample implementing a memory
resident files system is provided.

http://www.dmitry-kazakov.de/ada/
dokan.htm

Changes to the version 1.5.0:

- The code and the API were reworked to
accommodate the Dokan major version 2.

AdaControl 1.22r16c
From: J-P. Rosen <rosen@adalog.fr>
Subject: [Ann] New version of AdaControl
Date: Wed, 8 Dec 2021 17:51:44 +0100
Newsgroups: comp.lang.ada

AdaControl 1.22r16c is mainly a bug fix
release (no new rule), but improvements
in the static evaluator provides better
results and avoids false positives in
several rules.

Enjoy!

Renaissance-Ada Made
Open Source
From: Pierre Van De Laar

<pierre.van.de.laar@gmail.com>
Subject: Renaissance-Ada, a toolset for

legacy Ada software, made open source
Date: Thu, 27 Jan 2022 04:32:00 -0800
Newsgroups: comp.lang.ada

Dear Members of comp.lang.ada,

We would like to inform you that we have
made Renaissance-Ada, a toolset for
legacy Ada software, open source:

https://github.com/TNO/Renaissance-Ada

The Renaissance-Ada project builds on
top of LibAdalang and includes the
following functionality

* Dependency Graph Extractor that
produces a graphml file for visualization
and querying with e.g. yEd and Neo4J.

* Rejuvenation Library that allow
analysis and manipulation of Ada code
based on concrete patterns.

* Rewriters_Library that enables
automatic rewriting of Ada code based
on concrete patterns.

* Code Reviewer that automatically
reviews Ada code based on a large list
of rewrite rules.

If you have any question about this toolset
don’t hesitate to contact me!

GWindows Release, 29-Jan-
2022
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann: GWindows release, 29-Jan-

2022
Date: Sat, 29 Jan 2022 13:48:46 -0800
Newsgroups: comp.lang.ada

GWindows is a full Microsoft Windows
Rapid Application Development
framework for programming GUIs
(Graphical User Interfaces) with Ada.
GWindows works only with the GNAT
development system, but with some
effort, GWindows could be made pure
Ada. GWindows is free and open-source!

Changes to the framework are detailed in
gwindows/changes.txt or in the News
forum on the project site.

In a nutshell (since last announcement
here):

 427: GWindows.Image_Lists: added
color options; includes features of
"extended" Ex_Image_List_Type in
package
GWindows.Image_Lists.Ex_Image_List
s, which is marked as obsolescent.

 424: GWindows.Application: added
function Screen_Visibility.

 423: GWindows.Application: added
Enumerate_Display_Monitors.

 422: GWindows.Base: added
Set_Foreground_Window.

 421: GWindows.Base: added
Set_Active_Window.

 417:
GWindows.Common_Controls.Ex_Tb
(toolbar): is now 64-bit compatible; see
LEA http://l-e-a.sf.net/ ,
LEA_GWin.Toolbars for an example.

 414: GWindows.Scintilla: method names
are "de-camel-cased": e.g.:
"Move_Caret_Inside_View" instead of
"MoveCaretInsideView".

 412: GWindows.Scintilla: works on both
Intel x86 32-bit and x64 64-bit types of
platforms.

 411:
GWindows.Common_Controls.Ex_List_
View: method On_Free_Payload is now
public and can be overridden with effect.

 410:
GWindows.Common_Controls.Ex_List_
View: Sort can use a comparison
method not based on strings (e.g. a
numerical comparison).

GWindows Project site:

https://sf.net/projects/gnavi/

GWindows GitHub clone:

https://github.com/zertovitch/gwindows

Enjoy!

macOS GCC 12.0.1,
SPARK2014
From: Simon Wright

<simon@pushface.org>
Subject: ANN: macOS GCC 12.0.1,

compatible SPARK2014
Date: Fri, 25 Feb 2022 18:21:04 +0000
Newsgroups: comp.lang.ada

GCC 12.0.1 of 20220204 (only Ada, C,
C++, built on El Capitan, runs up to
Monterey) available at
https://github.com/simonjwright/
distributing-gcc/releases/tag/gcc-12.0.1.

SPARK2014 built against it (provers
CVC4, Z3, Alt-Ergo; CVC4 requires
Sierra and upwards) available at

Ada Inside 13

Ada User Journal Volume 43, Number 1, March 2022

https://github.com/simonjwright/
spark2014/releases/tag/macos-0.1.

Needs GCC 12.0.1 installed. Running the
test suite on the ug* tests (the examples in
the User Guide) results in one failure
(aside from the missing CodePeer one)
unless you build with -j2 (where 2 is less
than the number of processors in your
machine).

A note on building the latter at
https://forward-in-code.blogspot.com/
2022/02/spark2014-and-fsf-gcc.html.

UXStrings Package
Available (UXS_20220226)
From: Blady <p.p11@orange.fr>
Subject: [ANN] UXStrings package

available (UXS_20220226).
Date: Tue, 1 Mar 2022 21:47:49 +0100
Newsgroups: comp.lang.ada

The objective of UXStrings is Unicode
and dynamic length support for strings in
Ada.

UXStrings API is inspired from
Ada.Strings.Unbounded in order to
minimize adaptation work from existing
Ada source codes.

Changes from last publication:

- Ada.Strings.UTF_Encoding.
Conversions fix is no longer needed
with GNAT CE 2021

- A few fix

Available on GitHub
https://github.com/Blady-Com/UXStrings
and also on Alire
https://alire.ada.dev/crates/uxstrings.html

Feedback is welcome on actual use cases.

GCC 12.0.1/Apple Silicon
From: Simon Wright

<simon@pushface.org>
Subject: [ANN] GCC 12.0.1/Apple silicon
Date: Wed, 23 Mar 2022 21:08:25 +0000
Newsgroups: comp.lang.ada

Find GCC 12.0.1 and tools for M1 Macs
at https://github.com/simonjwright/
distributing-gcc/releases/tag/
aarch64-apple-darwin21-1

About double the size of the x86_64
(Intel) equivalent.

Ada Inside
Ada in James Webb Space
Telescope?
From: Nasser M. Abbasi

<nma@12000.org>
Subject: is Ada used in James Webb Space

Telescope software?
Date: Sun, 26 Dec 2021 07:18:41 -0600
Newsgroups: comp.lang.ada

Anyone knows if Ada is used in James
Webb Space Telescope software.

Either in the control systems or in the
embedded software for the Telescope.

https://www.jwst.nasa.gov/

I sure hope they did not use javascript or
Python or C for the software.

There is some talk in the following link
about its software but I could not find
what language they used.

https://www.nasa.gov/feature/goddard/20
20/nasa-s-james-webb-space-telescope-
completes-comprehensive-systems-test

From: Peter Chapin <peter@pchapin.org>
Date: Thu, 30 Dec 2021 08:30:54 -0500
> Anyone knows if Ada is used in James

Webb Space Telescope software.

It is likely they used C. Specifically, C99.
I say this because in my dealings with
NASA (related to my work with
CubeSats), the people I've talked with
made it clear that NASA is now a C shop.
Both my colleague and I have extolled the
virtues of Ada and SPARK to NASA
engineers, but we get the usual reaction:
too much investment in C to take any
other option seriously... except maybe
C++ (JPL, at least, does some work with
C++ so that might also be on the JWST).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 26 Dec 2021 15:23:43 +0100

Since it was 30 years in development, I
would not dismiss QBasic...

From: Paul Rubin
<no.email@nospam.invalid>

Date: Sun, 26 Dec 2021 11:22:56 -0800
> Since it was 30 years in development, I

would not dismiss QBasic...

Don't forget Forth! It was used on many
space projects.

https://web.archive.org/web/19990125085
748/http://forth.gsfc.nasa.gov/

From: John Mccabe
<john@mccabe.org.uk>

Date: Sun, 26 Dec 2021 15:57:42 -0800
> Don't forget Forth! It was used on many

space projects.

Interesting. I didn't realise there had been
so many projects in Forth. I started to
learn/use Forth at one point, as it looked
like we (Matra Marconi Space) might be
forced to use the RTX2010 as it was one
of very few space qualified processors
with hardware floating point support. In
the end we used the MA31750, with Ada,
instead.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Sun, 26 Dec 2021 16:37:00 -0800
> I didn't realise there had been so many

projects in Forth.

Much of Forth's early development was at
the Kitt Peak observatory where I think
Charles Moore worked for a while, so it
was popular with the astronomy
community and maybe indirectly with the
spaceflight community through there and
JPL. As a more general matter, hardware
designers (electrical engineers who
sometimes have to muck with embedded
software but aren't really into
programming as a topic) tend to like it
because of its simplicity and directness.

> In the end we used the MA31750, with
Ada, instead.

Interesting. I hadn't heard of the
MA31750 but it appears to be a 16 bit
processor that implements the MIL-STD-
1750A instruction set(!), which I didn't
know about either. Apparently it was
made in the 1980s but has since been
superseded by SPARC architecture cpu's.

I wonder if targeting GCC to the
RTX2010 might have been feasible. Can I
ask what Ada compiler you used for the
MA31750? It looks like GCC supported
the MA31750 until version 3.1, but I don't
know whether GNAT existed then.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 27 Dec 2021 09:44:26 +0200
>> I didn't realise there had been so many

projects in Forth.

Forth is of course one of the few ways to
get a self-hosted but fairly fast interactive
compiler/editor system on small
processors.

In the 1980's I was working in radio
astronomy and we were planning to use
Forth to replace HP BASIC on an
HP2100 16-bit mini for telescope control
and data acquisition. I had a little crush on
Forth at the time, but fell out of love with
it when I found that some astronomy SW
had defined the word 2000.0 as a
procedure to convert stellar coordinates to
the year 2000 ephemeris... very clear :-(

Fortunately IMO we chose to use HP-
Algol instead, and much later changed to
Ada on a MicroVAX.

> Can I ask what Ada compiler you used
for the MA31750?

Like John, I used Ada on an MA31750.
We used the TLD Ada compiler, where
(IIRC) TLD stands for the main author,
Terry L. Dunbar. GNAT was around, but
I don't remember if it had support for the
MA31750 -- I doubt it. We used gnatp 3.
<something> for testing the MA31750
SW on workstations (Sun Solaris on
SPARC, IIRC), but the customer (Matra
Marconi Space) specified TLD Ada for
the target, so there was never a question
of using GNAT instead.

That project developed the on-board SW
for the ozone-monitoring instrument
GOMOS on the ESA ENVISAT satellite.

14 Ada Inside

Volume 43, Number 1, March 2022 Ada User Journal

I believe ENVISAT used MA31750 and
TLD Ada for all its systems.

From: John Mccabe
<john@mccabe.org.uk>

Date: Tue, 28 Dec 2021 02:24:54 -0800
> [the MA31750] appears to be a 16 bit

processor that implements the MIL-
STD-1750A instruction set(!)

There were 3 or 4 different
implementations of the MIL-STD-1750A
instruction set architecture around the
time. It was an interesting one; it was
fairly small, but had some relatively
complex instructions that were really
useful. The MA31750 was GEC-Plessey
Semiconductors' 2nd version, I believe,
although if I remember correctly, this was
the one that had the FPU, or maybe it was
the MMU, integrated into a single device,
using silicon-on-sapphire for rad-
hardness. There were two other
implementations I particularly remember
that were rad-hard, one by IBM, which
had better claimed performance but was
really expensive and special order only (I
think we paid £7500 or so for each
MA31750, so you may be able to imagine
what I mean by "really expensive"), and
one by another US company that went
into Chapter 11 protection around the
time we were talking to them!

> Can I ask what Ada compiler you used
for the MA31750?

I'm almost 100% sure GNAT wasn't
available for the MIL-STD-1750A; it was
a very niche market and we weren't aware
of any C compilers we could've used at
the time, even if we'd wanted to.

The Ada compiler we used was the same
as Nikolas; TLD. I was also working on
part of ENVISAT (the Tile Control and
Interface Unit - TCIU, although some of
my colleagues were also using it on the
main ASAR control system). Although
Nikolas mentions Matra Marconi Space
mandating TLD, that would've come
down from Dornier who'd apparently
done a deal with TLD. I don't know what
happened with TLD after that, but some
geezer from the Irvine Compiler
Corporation contacted me once when they
were following up on some unpaid license
fees related to part of the TLD compiler.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Tue, 28 Dec 2021 12:59:32 +0200
> Although Nikolas mentions Matra

Marconi Space mandating TLD, that
would've come down from Dornier
who'd apparently done a deal with
TLD.

Yes, a considerable part of our
requirements came from Dornier via
Matra Marconi Space (France). We
sometimes had fun trying to understand
how the French had interpreted
requirements written in English by the

Germans. The two other languages had
left their imprints on the "English"
wording :-)

From: John Mccabe
<john@mccabe.org.uk>

Date: Fri, 31 Dec 2021 02:26:14 -0800
> Yes, a considerable part of our

requirements came from Dornier via
Matra Marconi Space (France).

We didn't really have that problem. On
TCIU most of our requirements came
from Dornier - > MMS-UK (ASAR
instrument prime) - > Alcatel - > MMS-
UK (TCIU team). Both MMS-UK teams
were in Portsmouth. Alcatel were only
there because of 'juste retour'* and they
didn't even seem to bother trying to
interpret the MMS-UK ASAR
requirements, they just changed the front
page to have "Alcatel" on it. We basically
had a shed-load of requirements placed on
us that had nothing to do with what the
TCIU needed to do, and Alcatel never did
get round to formally specifying the bit
we really did need from them (the TCIU -
> T/R Module - an Alcatel device -
interface) as far as I can remember!

It was good in a way, but Alcatel
certainly, and possibly also Alenia, played
politics all the way through. We were
required to go through Alcatel to get them
to clarify some of the requirements that
were relevant and had come from MMS-
UK. As they had no idea what they meant,
Alcatel had to go to MMS-UK to get the
clarification. Fortunately Alcatel appeared
to want to do as little work as possible for
their money so they'd just forward the
clarification from MMS-UK without
bothering to try to understand it.

I'm sure lots of people have been in
similar situations, but the inefficiency
could've been disastrous, especially as we
(the MMS-UK teams) had been working
directly with each other on ASAR for
years before Alcatel were put in to split us
up, and we used the same canteen!

Ah well, those were the days. Apologies
for going so far off-topic, but it was nice
to reminisce :-)

* Similarly, the ASAR CESA (Central
Electronics SubAssembly) requirements
came Dornier - > MMS-UK - > Alenia - >
MMS-UK.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Subject: [OT] ESA project memories (was
Re: is Ada used in James Webb Space
Telescope software?)

Date: Fri, 31 Dec 2021 23:18:49 +0200
Newsgroups: comp.lang.ada
> We didn't really have that problem. On

TCIU most of our requirements came
from Dornier - > MMS-UK (ASAR
instrument prime) - > Alcatel - > MMS-
UK (TCIU team). Both MMS-UK
teams were in Portsmouth.

Interesting :-). I had a similar, but inverse,
experience in a later project (SW for the
Flexible Combined Imager instruments on
the MTG satellites) where Thales Alenia
Space (France) was both our customer for
the whole SW and our subcontractor for a
part of the SW. It led to a number of
"direct" communications and decisions
between the two TAS-F teams that
bypassed our team (in Finland) and of
which we learned later. But not much
harm done, overall a good project.

> Alcatel were only there because of 'juste
retour'*

I can't complain about "juste retour" as
without it much less ESA work would be
given to Finnish companies, especially
earlier when Finland was a new ESA
member with no experience in ESA work.

(For those not in the know: "juste retour"
is the ESA policy by which ESA tries to
give enough project work to each of its
member countries to correspond to the
country's share of ESA membership fees.)

[...]

> I'm sure lots of people have been in
similar situations [...]

Although splitting work up into several
companies does easily make for
inefficiency, in can also have the benefit
of documenting stuff that otherwise might
be lost in internal e-mails or face-to-face
discussions. That is, if the companies
involved do their work properly, and don't
act as you describe for Alcatel. But
perhaps the Alcatel technical people did
as well as they could to mitigate a poor
higher-level decision, by being basically a
transparent conduit, as you describe.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Wed, 5 Jan 2022 16:43:11 -0000
> Interesting :-). I had a similar, but

inverse, experience in a later project
[...]

It would be inappropriate of me to say
whether or not that sort of behaviour
occurred on ASAR, although I seem to
remember occasions where Alcatel
waived their right to be piggy-in-the-
middle as some of the discussion about
SAR pulse timing and the effect of
shifting things around a bit, to deal with
the fact that we would've needed a mid-
90s supercomputer (and a substantial re-
design of the TCIU -> T/R Module
interface) to achieve what was originally
specified, would've fried the brains of the
people who were actually involved :-)

<snip>

 > Although splitting work up into several
companies does easily make for
inefficiency, it can also have the benefit
of documenting stuff that otherwise
might be lost in internal e-mails or
face-to-face discussions. [...]

Ada and Other Languages 15

Ada User Journal Volume 43, Number 1, March 2022

To be fair (to MMS!), the actual
documentation that was produced at the
instrument level was pretty good. To be
fair to Alcatel, as I mentioned, we'd been
working without them on this for a long
time before ESA decided to mandate that
they should "manage" the TCIU
development as a subcontract, so they
were forced to pick up on stuff they pretty
much hadn't cared about before.

Ironically none of this helped with the
documentation from Alcatel; the TCIU ->
T/R Module interface I mentioned, for
example. We went through 3 rounds of
TCIU Software Requirements reviews
(i.e. SRR, then re-visited at ADR and
DDR or something like that), where our
assumptions on how that interface worked
(based on rough sketch ideas we'd been
given rather than formal specification)
were described, before someone at Alcatel
bothered to read it and say "nah, doesn't
work like that" (presumably in French) :-)

Ada and Other
Languages
AdaCore Joins with Ferrous
Systems to Support Rust
From: Paul Rubin

<no.email@nospam.invalid>
Subject: Adacore joins with Ferrous

Systems to support Rust
Date: Wed, 02 Feb 2022 00:57:33 -0800
Newsgroups: comp.lang.ada

https://blog.adacore.com/adacore-and-
ferrous-systems-joining-forces-to-
support-rust

Ferrous Systems is apparently a Rust
support company based in Germany.
From the linked page:

 "Ferrous Systems and AdaCore are
announcing today that they’re joining
forces to develop Ferrocene - a safety-
qualified Rust toolchain, which is aimed
at supporting the needs of various
regulated markets, such as automotive,
avionics, space, and railway."

No mention about whether there will be
any type of FOSS or community release.
No word on whether the compiler and/or
toolchain will be based on the existing
stuff, or something new. Wonder how
they will safety-certify anything in Rust
when the language itself doesn't even
have a formal spec. But, it is an
interesting development.

Is the writing on the wall for Ada?

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 2 Feb 2022 13:04:42 +0000

I see this going one way, Ada loses out as
the Rust side uses AdaCore to get what
they want.

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Wed, 2 Feb 2022 07:29:12 -0800

If possible please tell what Rust has to
offer over Ada. From a quick look at the
Rust book it seemed weaker in structured
programming, generic programming, type
system.

Thanks.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 02 Feb 2022 08:19:37 -0800

> Is the writing on the wall for Ada?

Yes. And it says:

As long as people care about quality
software engineering, they will use Ada.

:)

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 2 Feb 2022 16:36:46 +0000
> If possible please tell what Rust has to

offer over Ada.

[...] not a lot, only the borrow checker
stuff.

From: John Mccabe
<john@mccabe.org.uk>

Date: Thu, 3 Feb 2022 15:29:17 -0800
> If possible please tell what Rust has to

offer over Ada.

A very nasty syntax, and there's an
annoying thing where it moans about
what you've called your project.

TBH that's about as far as I got with Rust;
I can't be doing with pedantic restrictions
that have no technical benefit (as far as I
can see).

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Wed, 2 Feb 2022 10:48:44 -0800

> Is the writing on the wall for Ada?

Don't worry too much, people said that
already more than 30 years ago... But
perhaps the company will rebrand itself
RustCore :-) ?

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 02 Feb 2022 12:03:03 -0800
> But perhaps the company will rebrand

itself RustCore :-) ?

If the new IDE is called Oxide, watch out
;-).

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 02 Feb 2022 12:06:16 -0800
> I see this going one way, Ada loses out

as the Rust side uses AdaCore to get
what they want.

I don't think this is two companies
merging. It's two companies working

jointly on a particular product. Idk any
more than the press release though.

Regarding Rust vs Ada, I've never heard
anything from anyone who is a real expert
at both. Superficially it looks to me like
Rust's type system really is more precise
than Ada's in general, although it doesn't
have integer range types. In other stuff
like modules, Ada is probably still ahead.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Wed, 2 Feb 2022 21:07:44 +0100
> If possible please tell what Rust has to

offer over Ada.

Embedded systems reportedly still mostly
use C. Consequently, C is the thing to
which a language's merits must be
compared. If Rust managers manage to
persuade C shops to use Rust, the this is a
reasonable attempt at improving C based
program production. If Ada influences the
process, then it has had a purpose. :-)

Perhaps it is easier to add guarantees to
Rust programs than to C programs. Also,
C programmers might feel more at home
when using Rust. Java programmers also,
even when it is just curly braces.

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 3 Feb 2022 01:34:40 +0000

 > [...] have integer range types.

Apparently, they have ranges as
templates, can't see how that
compensates.

[...]

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 02 Feb 2022 18:20:04 -0800
> [Ada vs Rust] Er, try learning both and

you'll see?

It's a big effort to become expert at either,
let alone both. Basic or superficial
knowledge isn't helpful for such
comparisons. I've read "Ada Distilled"
(Ada 95 version) but still have no clue
understanding most of the Ada
discussions in this newsgroup, so there is
a big gap between basic and advanced
knowledge of Ada.

>> [type] system really is more precise
than Ada's [...]

From what I've heard, Rust's type system
is similar to Haskell's. Haskell's type
system can verify stuff just by
typechecking, that might be doable in Ada
using SPARK and maybe an external
proof assistant, but not with just types.
Example: a red-black tree using Haskell
GADT's (Generalized Algebraic Data
Types):

https://www.reddit.com/r/haskell/commen
ts/ti5il/redblack_trees_in_haskell_using_g
adts_existential/

> Ada's ahead in most things.

16 Ada and Other Languages

Volume 43, Number 1, March 2022 Ada User Journal

Idk, I'd like to know more. I've never
done anything serious in Ada and nothing
at all in Rust, but C++ seems a lot more
fluid than Ada, and Rust is supposed to
compare well with C++. C++ of course is
terrible in terms of reliability but I'm only
referring to the effort needed to bang out a
chunk of code.

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 3 Feb 2022 02:52:25 +0000
> It's a big effort to become expert at

either, let alone both. Basic or
superficial knowledge isn't helpful for
such comparisons.

You don't need to learn both languages
inside and out. You pick a project and
implement it in both languages, that
project has to be specific to what you are
wanting to know about whether it's
binding or tasking or whatever,
Ultimately with Ada, you can get by
knowing the Ada subset and the
representation clauses and do most of
what you need to do to compare to
another language, obviously if you want
to compare tasking, you need to go
further.

> [...] there is a big gap between basic and
advanced knowledge of Ada.

Learn the basic part, it's equivalent to
Pascal with proper type ranges, Pascal
only has subtypes iirc. That's the main
part of the RM, no annexes, you can do
without access and tagged/controlled
types to start with. At uni, we didn't even
touch on tagged types, but used controlled
types, it is possible.

> Haskell's type system can verify stuff
just by typechecking

So it's no different than a C++ compiler
checking against classes or a variant of C
with strong typing? Still no ranges,
subranges, ranges with holes in, etc. This
is where the power is.

[...]

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Thu, 3 Feb 2022 10:54:43 +0100
> a lot of effort in Ada programming goes

into making programs never crash. For
example, if the program runs out of
memory during operation it might
crash, so Ada programs are often
written to never allocate new memory
after a startup phase. In C++ or Rust,
it's important not to get wrong answers
like 2+2=5, but if your program runs
out of memory and crashes, go get a
bigger computer. So idiomatic C++ and
Rust programming uses dynamic
allocation freely, and that makes some
kinds of programming more
convenient, at the expense of tolerating
possible crashes.

That depends on the domain. Perhaps it is
true in embedded. I use Ada for large
systems, talking to databases, and lots of
administrative work. On a win/Unix
server. We would not dream of pre-
allocate memory at startup. We allocate
and dispose as needed.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 3 Feb 2022 21:20:08 -0600
> How else would you do controlled types

[if not with tagged types]?

Ada 9x originally had a bunch of magic
attributes (similar to streaming). It was
very complex and got dumped in the
dustbin during "scope reduction". Later
on, some of us were bemoaning that a
critical feature (finalization) had gotten
lost in Ada 9x, and Tucker came up with
the idea to build it on top of tagged types
as a massive simplification (at the loss of
a bit of power). People often complain
that Ada finalization is complex, and it is,
except all of the alternatives are a lot
more complex. :-)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 3 Feb 2022 21:38:16 -0600

...

> Well are you familiar with red-black
trees? They are a data structure similar
to B-trees which you may have seen.
Basically the trees have nodes that are
coloured either red or black, and there
are some rules such as that internal red
nodes can have only black children, and
that enforces some invariants that keep
the trees balanced so that lookups and
updates are guaranteed to run fairly
fast.

> Now these trees have been implemented
in many languages, and if you look at
almost any implementation, there is
usually a test suite or internal
debugging code to make sure that the
invariants are preserved after doing an
update. It is quite easy to make a
mistake after all. But the Haskell code
doesn't have those tests. Why not?
Because the invariants are enforced by
the datatype! If you make a mistake and
mess up an invariant, your code won't
compile! It's the difference between
checking a subscript at runtime, and
verifying that it in range with SPARK.
SPARK lets you get rid of the runtime
check. Haskell's type system is able to
do similar things.

Cool, and most likely useless. OOP is like
that in many ways, it lets you make a
bunch of static checks, but to get them,
you have to contort your design in awful
ways. And then it is hard to extend, as
you have a huge number of routines to
override to get anything done.

[...]

The key for a programming language
design is to minimize what Ada calls
erroneous execution (undefined behavior),
because it is that possibility which stop
proofs in their tracks (or at least should; at
least some tools ignore that possibility
and essentially give garbage results as a
consequence). Ada needs work in that
area, but most other languages need more
-- Ada at least detects most problems with
dynamic checks.

Anyway, that's my 20 cents (inflation,
you know). :-)

From: Paul Rubin
<no.email@nospam.invalid>

Date: Thu, 03 Feb 2022 21:19:14 -0800
> In any language with dynamic checks,

one can easily reduce the problem of
correctness down to simply proving
that no check fails.

Well sure, but I'd take issue with the word
"easily" there. The invariants for the red-
black tree are fairly complicated.
Enforcing them could be done with what I
think SPARK calls a "ghost function" or
something like that: a piece of code that is
not actually executed, but is used only by
the prover. But, what would the proof
look like I think it would likely involve
some manual work with an external proof
assistant like ISABELLE. That takes quite
a bit of effort and knowledge on the
programmer's part.

On the other hand, the RB tree type
declaration in that Haskell example is
very natural and appealing even in that
old implementation, and using newer
GHC features that have appeared since
then, it becomes even nicer.

[...]

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 4 Feb 2022 10:28:33 +0000
> Ada 9x originally had a bunch of magic

attributes [for finalization]

Now I want to know what these magic
attributes were! Were they specific to a
version of OO? Or were they to enable
finalization?

From: Andreas Zeurcher
<zuercher_andreas@outlook.com>

Date: Fri, 4 Feb 2022 09:51:59 -0800
> Now I want to know what these magic

attributes were! Were they specific to a
version of OO? Or were they to enable
finalization?

Randy, I agree with Luke: were these
intermediate design proposals lost entirely
or have they (as still extant) have simply
not been released publicly? I suspect that
at least some of these attributes have
nowadays analogues in C++ smart
pointer's & Objective-C/Swift's ARC
{strong, weak, plain old data not needing
finalization, pointed-to-object ownership,
presence of finalization

Ada and Other Languages 17

Ada User Journal Volume 43, Number 1, March 2022

subroutine/function/procedure a.k.a.
finalizer/destructor, whether this finalizer
in a subtype displaces its parent's finalizer
versus this finalizer in a subtype chains its
finalizer to all of its ancestors' finalizers
unwound from most-derived to
underived-root, … and so forth}. Or was
Tucker's set of magic attributes going an
entirely different direction? That
intermediate proposal under consideration
back in the 1st half of the 1990s might be
a quite interesting read (especially by a
reader with an interest in envisioning an
Ada-esque analogue of Rust's borrow-
checker algorithm).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 4 Feb 2022 22:31:40 -0600
> Now I want to know what these magic

attributes were! Were they specific to a
version of OO? Or were they to enable
finalization?

They were specifically for finalization,
and got called automatically in various
places.

Re: Andreas. So far as I know, the
documents existed only on paper - there
never were any electronically distributed
versions outside of the Ada 9x team (and
possibly the printers). I still have a set of
them on my bookshelf -- I look at them
periodically to see where current oddities
appeared in the language (and possibly to
get some idea why). [But see below.]

Looking in the RM 3.0 (the final version
was 6.0 for reference), it already had the
tagged type version, but they were
derived from an implementation defined
type "Finalization_Implementation", and
what became Adjust was named
Duplicate.

Looking in ILS 1.2 (a working document
full of ideas but not quite a complete RM,
dated Dec 1992), I can't find any sign of
finalization. It must have been gone by
then.

I do have a large number of older
documents somewhere in storage, but this
isn't worth digging around in there to find
out. Most of those were incomplete
design documents.

You might be able to find something
about that design in the Ada 9x mail
archive or in the LSNs (Language Study
Notes). You can find them in the AdaIC
archives. Rooting around in there, there
are some promising looking documents in
the "history" section of the AdaIC
archives. There is a directory of stuff
called "9x-history"; there probably is
interesting stuff there.

http://archive.adaic.com/pol-hist/history/
9x-history/

LSNs are found in:
http://archive.adaic.com/standards/95lsn/

The Ada 9x mail archive (These were
known as "MRT comments"):

http://archive.adaic.com/standards/95com/
mrtcomments/

The comments of interest here are
probably in the ZIPed comments rather
than the more recent ones. (These are text
files, I think, even though they don't have
a usual extension.)

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Fri, 11 Feb 2022 09:40:14 -0800
> If possible please tell what Rust has to

offer over Ada.

In my minimally informed opinion after
going through parts of the official tutorial
a couple of times, what Rust has to offer
in general:

+ Memory safety (no leaks, double-free,
race conditions*) by default.

- Terrible illegible syntax.

+ Safer/more expressive/more modern
constructs than C.

+ Modern tooling shared by all the
community.

[*] I guess in a protected-object sense, not
in a high-level logic sense. But I don't
really know.

The thing is that C is so basic and C++ so
prone to shooting yourself in the foot, that
Rust hits a middle ground that feels like
the best thing since sliced bread to C/C++
programmers wishing for something
better. Add to that the true novel
contribution to a mainstream language
that is memory safety (this is really a new
way of thinking when you get into Rust),
that if you don't know better (e.g., Ada) it
really is overwhelmingly compelling. I'm
not surprised at the cult-like following (I
mean, we feel like that sometimes in the
Ada world, right?) In a sense, Rust is the
Ada of a younger generation, and without
the baggage.

Of course you sometimes have to use
"unsafe" programming evading the
borrow checker, just like pointers are
sometimes a necessity in Ada; and the
legibility becomes truly awful IMHO
really fast (to me, this is THE Achilles
heel nobody seems to care too much
about), but as I said, it has a couple of real
selling points over the competition. Of
course, if legibility is not your concern
because you're used to C++ templating
nightmares, you don't feel that particular
pain. It's always the same story with Ada;
most people don't know better to realize
what they're missing.

The whole memory safety thing with the
borrow checker goes beyond a gimmick,
and it has a solid quality which goes
beyond "in Ada you don't need pointers
most of the time". It's a compile-time
check, and it makes evident that runtime

checks are a poor substitute. I'm more
ashamed now of the whole anonymous
pointers and accessibility surprises in
Ada. Yes, SPARK added something
similar for pointers, but in Rust it is for all
variables. The equivalence in Ada would
be not being able to use the same variable
in two consecutive calls as an in-out
parameter. So it's not the same, besides
being only in SPARK.

Not having done anything of real import,
I'm not sure how inevitable it is to go
unsafe in Rust. My guess is that it will be
hidden in libraries just like the Ada
standard containers contain some scary
pointer use (and I mean that I wouldn't
like to have to understand what is going
on there with the tampering checks etc.)
At that point, obviously, you've lost the
most solid selling point IMHO. Ada is
safer not in a single sense, but as a whole
design.

All in all, Rust has one big thing that Ada
hasn't, which is the borrow checker.

And that is how I would summarize it:
Rust is better in a single narrow sense, but
Ada is better as a general language.
Which is, not surprisingly, the
consequence of the design motivations for
each, which were precisely to have a
memory-safe language and a high-
integrity-oriented language. So the funny
thing is that both have succeeded at their
objective.

I really miss not having the time to
become proficient in Rust at least to be
able to properly compare. I think the
memory safety is great to have (and if
Ada were designed today, I guess it
should play the same integral part, if
practical), but Rust is demanding on the
programmer in a way that C/C++ aren't,
and the maintainability seems suspect, so
I don't know how far it will carry Rust
into the future. I guess it could absorb a
big part of both new C and C++
development.

Boy, can I write a lot sometimes...

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 11 Feb 2022 19:24:02 +0000
> The thing is that C is so basic and C++

so prone to shooting yourself in the
foot, that Rust hits a middle ground that
feels

I'd say C++ is like a "backgun" (search
images).

> like the best thing since sliced bread to
C/C++ programmers wishing for
something better. [...]

Exactly, people want something better,
but for some reason CAN NOT accept
anything that doesn't look like C/C++.

> [...] It's always the same story with Ada;
most people don't know better to realize
what they're missing.

18 Ada and Other Languages

Volume 43, Number 1, March 2022 Ada User Journal

And refuse to look for better, just
accepting to continue using the same old,
same old.

> The whole memory safety thing with
the borrow checker goes beyond a
gimmick, and it has a solid quality
which goes beyond "in Ada you don't
need pointers most of the time". It's a
compile-time check, and it makes
evident that runtime checks are a poor
substitute.

So, you'd prefer, if Ada was designed
now, it didn't do runtime checks (on
pointers) and have compile-time checks?

> Yes, SPARK added something similar
for pointers [...]

They added memory tracking at
gnatprove time, much like the borrow
checker afaik, which is an additional step.

[...]

> All in all, Rust has one big thing that
Ada hasn't, which is the borrow
checker.

I've not learnt any rust yet and that is my
conclusion from what I've read. I need to
do some tutorials at some point, but I also
need eye bleach.

[...]

From: John Perry <devotus@yahoo.com>
Date: Fri, 11 Feb 2022 21:22:50 -0800
> I really miss not having the time to

become proficient in Rust at least to be
able to properly compare.

I've followed this thread with some
interest. I've had to learn & use Rust at
work; it has its ups and downs.

> + Memory safety (no leaks, double-free,
race conditions*) by default.

Here's what Rust promises:
https://doc.rust-lang.org/nomicon/
races.html

"Safe Rust guarantees an absence of data
races, which are defined as... [omitted]
Rust does not prevent general race
conditions. This is pretty fundamentally
impossible, and probably honestly
undesirable. ... So it's perfectly "fine" for
a Safe Rust program to get deadlocked or
do something nonsensical with incorrect
synchronization. ... Still, a race condition
can't violate memory safety in a Rust
program on its own."

> In a sense, Rust is the Ada of a younger
generation, and without the baggage.

Not quite. It's kind of discouraging to me
how many of the older generation roll
their eyes when you mention Ada, or
relate stories of how it didn't work out for
previous places of employment.

> Of course you sometimes have to use
"unsafe" programming evading the
borrow checker, just like pointers are
sometimes a necessity in Ada...

The only time I've found it necessary (so
far) to use the "unsafe" keyword is when
interfacing with C or C++. There are
people, and probably entire fields of IT,
where "unsafe" may be much more
common.

> and the legibility becomes truly awful
IMHO really fast (to me, this is THE
Achilles heel nobody seems to care too
much about

I agree with this. It's not as bad as C++,
not even as bad as C IMHO, but the
braces get old. If not for IDEs that can
help navigate them, I'd get lost pretty
easily.

> The whole memory safety thing with
the borrow checker goes beyond a
gimmick [...] It's a compile-time check

In addition, the compiler's error messages
are *very* useful, better than GNAT's for
certain. The only time we have trouble
making sense of them is, again, when we
have to interface with C or C++ code.

(Well, except when I was learning. I got
pretty frustrated with the compiler error
messages at times. And I still haven't
figured out Rust's manner of organizing
modules; if I do understand it, then
"lib.rs" is a much bigger deal than I think
it should be. But I probably just don't
understand well enough yet.)

> [...] The equivalence in Ada would be
not being able to use the same variable
in two consecutive calls as an in-out
parameter.

Maybe I misunderstand, but I think the
analogy's incorrect. When you designate a
Rust variable as mutable, you can in fact
have two consecutive calls in a manner
akin to "in out", _so long as_ the function
declares it wants to "borrow" the variable
as mutable, *and* so long as the caller
gives permission for both the borrow and
the mutability. If it doesn't, the compiler
gives a very clear error message.

I'm not sure Ada has anything comparable
to that.

> Not having done anything of real
import, I'm not sure how inevitable it is
to go unsafe in Rust.

At work we have a fairly non-trivial Rust
system that, as far as I know, goes unsafe
only when... you can fill in the blank. :-)

> And that is what how I would
summarize it: Rust is better in a single
narrow sense, but Ada is better as a
general language.

I haven't played with Ada's task &
rendezvous mechanisms in a long time.
Do they guarantee an absence of data
races? If not, I'd say that's something else
Rust has that Ada doesn't. I think SPARK
does guarantee that, though. (If I
understand correctly, the key is to
disallow mutable objects being passed to
multiple tasks / threads / etc.)

> Rust is demanding on the programmer
in a way that C/C++ aren't...

Perhaps, C/C++ are demanding on the
programmer in all kinds of ways that Rust
isn't, and none of those ways is good. ;-)
Whereas Rust's demands are pretty much
all good (in comparison to C/C++).

I would also add that Rust has an amazing
and effective ecosystem of libraries that
are extremely easy to download and build,
all as part of the generally-used Cargo
build tool, which as far as I can tell is
much easier to use and much more robust
than ant, gradle, make, etc. I have the
impression that alire is inspired by Cargo,
but I haven't used alire at all yet, so I don't
know how it compares beyond the ability
to create projects and download libraries.
I also don't know if alire is nearly as
comprehensive as what Cargo offers (see,
for instance, https://crates.io/, which
offers tens of thousands of crates, and
https://docs.rs/, which documents them --
alire has about 220 crates).

I have a feeling that abundance of crates,
and the ease of incorporating and using
them, has at least as much appeal as the
guarantees on any safe code you may
write.

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Sat, 12 Feb 2022 02:08:11 -0800
> > and the legibility becomes truly awful

IMHO really fast [...]

> I agree with this. It's not as bad as C++
[...]

Agree too, but only because they use
K&R style. I find Allman style quite
readable.

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Sat, 12 Feb 2022 18:34:04 +0100
> So, you'd prefer, if Ada was designed

now, it didn't do runtime check (on
pointers) and have compile-time
checks?

I'd prefer that, as much as feasible, checks
were moved (not removed!) to compile-
time, yes. I know there are efforts in this
direction at AdaCore to simplify the
accessibility checks model.

>> I'm more ashamed now of the whole
anonymous pointers and accessibility
surprises in Ada.

> I'm not sure what you mean here.

My problem with runtime checks (which
are undoubtedly better than no checks,
sure), and in particular with accessibility
checks, is that sometimes you get a failure
much later during testing. By that time,
understanding the problem may be 1) hard
and 2) require painful redesign. At
compile-time you get to deal with the
problem immediately.

Ada and Other Languages 19

Ada User Journal Volume 43, Number 1, March 2022

This is something in which Rust and Ada
share the sentiment: "if it compiles, it
works". So having something in another
language found at compile-time makes
me want to have it also in Ada at compile-
time. It really spoils you against runtime
checks. Much like I prefer the static
elaboration model in GNAT instead of the
dynamic one.

Also there are times in Ada where static
checks are false positives that require
some 'Unchecked_Access, and other
times there is no failure yet you're doing
something wrong. I find these from time
to time in pretty obscure combinations not
easy to provide a reproducer and frankly,
I hate it. I'm never sure if I'm at fault, the
compiler is at fault, or I've hit a corner
case in the "heart of darkness". Nowadays
I won't use a pointer even if it means
obscene underperformance, until the thing
is unavoidable.

There are also situations in which
marking a parameter as aliased, even if
you know it is already by reference (a
limited/tagged type), will alter the things
you can do with
'Access/'Unchecked_Access. There have
been a couple of recent posts about that.
Even if it's my fault, I find too hard to
repeatably remember the finer details.

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Sat, 12 Feb 2022 19:24:02 +0100
> I agree with this. It's not as bad as C++,

not even as bad as C IMHO, but the
braces get old.

For me, it's not so much the braces as the
reference/lifetime &'!<> soup.

> Maybe I misunderstand, but I think the
analogy's incorrect. [...]

Yes, it is as you say. It is not a perfect
analogy, and rethinking a bit more about
it it's possible I was wrong including non-
pointers. In Ada there's no trouble by
default either; you have to mark things
aliased, or take an
'Access/'Unchecked_Access to start to get
into trouble.

With tasking involved is another matter,
there Ada provides no safety when using
global variables.

> I'm not sure Ada has anything
comparable to that.

No, I think that's the novelty in Rust, the
single-ownership model.

> I haven't played with Ada's task &
rendezvous mechanisms in a long time.
Do they guarantee an absence of data
races?

Not for global variables, yes for task-local
ones. For any decent design you'd
encapsulate any shared data in a protected
object or task, which would give the same
assurance as the bit you quoted for Rust.
Then there's Pragma Detect_Blocking, but

that will only work for protected
operations, and two tasks getting in a
mutual deadlock needs not to involve
protected operations.

> If not, I'd say that's something else Rust
has that Ada doesn't. I think SPARK
does guarantee that, though. (If I
understand correctly, the key is to
disallow mutable objects being passed
to multiple tasks / threads / etc.)

I agree here. Rust prevents misuse of
global variables at the low level of
simultaneous access (from what you
referenced before). This certainly can be
useful in refactorings going from a single-
to a multi-threaded design. In Ada you'd
have to inspect every package for global
state. SPARK deals with that, of course,
but again: not Ada.

>> Rust is demanding on the programmer
in a way that C/C++ aren't...

>

> Perhaps, C/C++ are demanding on the
programmer in all kinds of ways that
Rust isn't, and none of those ways is
good. ;-) Whereas Rust's demands are
pretty much all good (in comparison to
C/C++).

Sure, that's a good point: it's not easy but
it's for a good cause. That's another point I
see in common with the Ada compiler.
Still, I feel Ada is simpler for beginners.
You don't need to face the harshness of
the more complex aspects of the
language, perhaps owing to simpler
imperative roots. In Rust you must face
the borrow checker head on.

> I would also add that Rust has an
amazing and effective ecosystem of
libraries that are extremely easy to
download and build, all as part of the
generally-used Cargo build tool,

The ecosystem certainly is a selling point.
Look at Python; for quick and dirty there's
nothing better simply because you know
there's going to be the library you need.

> I have the impression that alire is
inspired by Cargo, but I haven't used
alire at all yet, so I don't know how it
compares beyond the ability to create
projects and download libraries.

The inspiration is there in a broad sense,
but Alire is much younger and the
manpower behind it is a fraction. For now
we strive to cover the basics. There's also
ideas from opam, virtualenvs, ... In some
aspects Alire may be even more
comprehensive (like crate configuration).

> I also don't know if alire is nearly as
comprehensive as what Cargo offers
[...] alire has about 220 crates).

No need to guess, given the difference in
size of the communities.

> I have a feeling that abundance of
crates, and the ease of incorporating
and using them, has at least as much

appeal as the guarantees on any safe
code you may write.

Sure it's appealing. In many (most?)
cases, as you say, it can tip the scales.
Still, I don't think anyone that keeps on
using Ada is doing it for the amount of
ready-to-use libraries. It's a problem to
attract new people, though. And it may
disqualify Ada when a particular
dependency is important and too costly to
bind.

From: John Perry <devotus@yahoo.com>
Date: Sat, 12 Feb 2022 15:59:33 -0800

First, I agree with Alejandro about the
reference/lifetime soup. The other day I
saw an expression along the lines of
&[&something] and thought, "what"? If I
look & think hard enough, I can figure out
what that means, but words would be so
much nicer, and searching for the
meaning of a word is a bit easier than
searching for "[]".

On the other hand, again: the tooling and
error messages are really very good.
"cargo clippy" gives a lot of helpful
advice/lint. I think one of the regular
correspondents here sells or maintains one
for Ada, but I can't remember the name
[AdaControl —arm].

Anyway, I want to walk back part of what
I said about Rust's safety, related to a post
in a reddit thread where someone writes,
"having students develop in Ada lead to
them jumping from exception to
exception until it worked, while other
students writing code for the same
problem in Rust lead to them swearing for
4 days until their code compiled and then
being surprised that their code works,
100% as they expected and not ever
producing a runtime error until the end of
the two week practicum."

https://www.reddit.com/r/ada/comments/
7wzrqi/why_rust_was_the_best_thing_
that_could_have/

Maybe, but long term I'm not so sure.

Rust doesn't have a null in safe mode, so
the idiomatic way to indicate an error is
via a Result enum, which has two
variants: Ok(result), where "result" is the
desired result, or Err(msg), where "msg"
is an error message.

https://doc.rust-lang.org/std/
result/enum.Result.html

[...] In any case, handling the Result can
be a little tedious (only a little but still!)
so people often use the standard library's
".unwrap()" function instead. That means
something akin to, "I'm confident the
preceding expression had an Ok result, so
just hand me the result. If it's an Err then
go ahead and panic with Err's msg."

[...] But a lot of Rust users default to
.unwrap() all the same, which makes me
think that issue about Ada users jumping

20 Ada and Other Languages

Volume 43, Number 1, March 2022 Ada User Journal

from exception to exception may be a
feature of a lot of Rust code, too. Depends
on the self-discipline, I guess.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 13 Feb 2022 09:10:01 +0100
> In Ada you'd have to inspect every

package for global state.

AdaControl has a rule for that:
Global_References

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 14 Feb 2022 17:25:54 -0600
> Not for global variables, yes for task-

local ones.

Ada 2022 has "conflict checking" to
detect and reject bad uses of global
variables. It's especially important for the
parallel constructs (for which you don't
have the syntactic guardrails that you get
with tasks. It doesn't prevent every data
race, but it eliminates most of them. (You
can still get in trouble with accesses to
multiple objects; that isn't necessarily safe
even if accesses to the individual objects
are.)

But, so far as I know, GNAT doesn't
implement it yet.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Mon, 14 Feb 2022 20:29:34 -0800
> It doesn't prevent every data race, but it

eliminates most of them

I wonder if we need software
transactional memory:
https://research.microsoft.com/
en-us/um/people/simonpj/papers/
stm/stm.pdf

https://research.microsoft.com/~simonpj/
Papers/stm/beautiful.pdf

In the second paper, jump to the bottom
of page 7 to skip a bunch of introductory
stuff.

From: Kevin Chadwick
<kevc3no4@gmail.com>

Date: Fri, 18 Feb 2022 05:24:15 -0800
> If possible please tell what Rust has to

offer over Ada.

I haven't written a single line of Rust and
do not intend to but I have done some
research before and after choosing Ada, to
confirm my choice due to Rusts
popularity. My biggest preference is Ada's
readability, of course some love brevity
even when it adds complexity for some
reason that I cannot understand.

Ada’s type system has already been
mentioned, but is fantastic.

Another is that Ada has a focus on stack
and has tried to offer more heap tools in
recent decades.

Rust has a focus on heap. I prefer the
simpler stack default! Personally I
avoided the heap, even with C.

I have heard that Rusts ownership model
can cause problem with local/stack usage
of owned memory (podcast interviewing a
core maintainer "Rust with Steve
Klabnik" but from 2015).

I have seen Rusts unsafe used even for
simple things in embedded Rust whilst
removing ALL of their 3 protections.
Whereas with Ada you can more precisely
permit pointer use and rarely need to.

https://docs.rs/svd2rust/0.19.0/
svd2rust/#peripheral-api

struct PA0 { _0: () }
impl PA0 {
 fn is_high(&self) -> bool {
 // NOTE(unsafe) actually safe
 // because this is an atomic read with
 // no side effects
 unsafe { (*GPIOA::ptr()).idr.read().bits()
& 1 != 0 }
 }
 fn is_low(&self) -> bool {
 !self.is_high()
 }
}

Ada has been engineered to avoid pointer
use, which I find appealing. Rust users
would cite memory flexibility as
appealing.

"Why Pascal is Not My Favorite
Programming Language" by Kernighan is
sometimes brought up, though much of it
does not apply to Ada and no longer
applies in any case and is clearly biased.
Does he really promote the use of
#include! Personally I blame flexibility
points of view like his as the primary
cause, as to why I have critical updates on
my phone every single month and spend
many days per year vulnerable to known
exploits. Though really it is management
at Vendors relentlessly pushing C. Maybe
Rust can shift that closed point of view? I
am aware that if my business does not
succeed then the opportunity to write
Ada, may go with it.

WRT compile time checks vs runtime:
GO was written precisely because its
authors were fed up waiting for C++ to
compile. For me it is not important but
worth bearing in mind. Personally I like
the simplicity of runtime checks. I have
much more faith in them than compile
time checks! Though I confess to not
knowing the details well enough to make
that statement with complete confidence.
It would also be nice to handle them more
easily in a ZFP runtime.

SPARK sounds great and I like how it is
intended to be applied where needed but I
am dubious of any text that says it proves
this or that, when it often depends on the
tests implemented. I much prefer the
language used by one AdaCore member
in a podcast (Paul Butcher) along the lines
of providing a high degree of
confidence/assurance.

Ada versus Pascal
From: 711 Spooky Mart

<711@spooky.mart>
Subject: Ada versus Pascal
Date: Thu, 21 Oct 2021 22:29:15 -0500
Newsgroups: comp.lang.ada

The little snippets of Ada code I've seen
look _alot_ like Pascal.

What degree of learning curve is there to
learn Ada, coming from a Pascal
background? What kind of rough
timeframes to get comfortable with
programming without always looking into
the manuals?

Where is the best starting point for a
Pascal programmer to get up and running
with Ada?

From: Ldries46 <bertus.dries@planet.nl>
Date: Fri, 22 Oct 2021 08:18:07 +0200
> Where is the best starting point for a

Pascal programmer to get up and
running with Ada?

I learned programming in 1966/1967 in
Algol 60. As seen in the Algol report that
can be found on the internet, Algol 60 is
mostly a language for defining
algorithms. It does not define Input and
Output procedures. Pascal is one of the
languages that have Algol 60 as a
predecessor as is Ada. I did learn Pascal
from some course and later on I did learn
Ada, the latter by just reading the book
"Software Engineering with Ada" by
Grady Booch. That was Ada 85, the first
version of Ada. Ada is stricter than other
languages and is meant to have NO
Operating system dependent items, so if
you cannot go around something there
must be a package on each operating
system having the same interface
everywhere.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Thu, 21 Oct 2021 23:40:51 -0700
> What degree of learning curve is there

to learn Ada [...]

Ada is not that hard to get started with,
but it has orders of magnitude more stuff
in it than Pascal does, and getting familiar
with all the intricacies is a big task. I've
fooled with Ada a little, I consider myself
a language geek, I've been following this
newsgroup on and off for years, but I can't
understand that many of the discussions I
see here.

If I wanted to do something serious with
Ada, I'd start by working through an in-
depth textbook rather than just an intro or
tutorial.

For just getting started, I used "Ada
Distilled" (easy to find online). It is pretty
good, but there is an enormous amount of
material that it doesn't cover.

Ada and Other Languages 21

Ada User Journal Volume 43, Number 1, March 2022

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 22 Oct 2021 11:57:17 +0300
> The little snippets of Ada code I've seen

look _alot_ like Pascal.

Yes. Pascal syntax had a lot of influence
on Ada syntax. But, as others have said,
(current) Ada has a lot more features than
(original) Pascal.

Very roughly speaking, and off the cuff,
Ada has evolved as follows, which also
gives you a list of the main things to
learn, in addition to the Pascal base:

- Ada 83: Pascal + much improved type
system + modules (packages) +
exception handling + generic
programming + concurrency (tasks)

- Ada 95: added modular (unsigned)
integer types, object-oriented
programming (classes = tagged types),
package hierarchies (child packages),
and asynchronous inter-task
communication (protected objects)

- Ada 2005: added Java-like interface
types (limited multiple inheritance), a
standard container library, and further
standard libraries

- Ada 2012: added support for program
proof and logical run-time checks
(preconditions, postconditions, type
predicates), more forms of expressions
(if expressions, case expressions,
quantified expressions), and more
standard libraries.

- Ada 2022 (upcoming): adds fine-grained
parallel execution, extends the ability to
do static (compile-time) computations,
adds library packages for arbitrary-
precision and arbitrary-range integer and
real arithmetic ("bignums"), and makes
lots of sundry improvements.

> What degree of learning curve is there
to learn Ada?

As you can see from the list above, there
is quite a lot to learn before you know
all of Ada. A Pascal-like subset should
not be hard to learn, and if you learn the
rest of the features in more or less the
same order as they were added to Ada,
you will pass from one consistent,
working language subset to a larger such
subset at each step.

The only point where I suggest to learn
features in a different order is in inter-task
communication: asynchronous
communication via protected objects is
much easier than was the original,
synchronous rendez-vous method in Ada
83 (but which is of course still supported).

> Where is the best starting point for a
Pascal programmer to get up and
running with Ada?

I think this depends a lot on how you like
to learn - by reading technical text
(manuals) or by experimentation. I'm a
"read the manual" type (I learned Ada

from the Ada 83 Reference Manual) so
perhaps I would start with the Ada
Wikibook at https://en.m.wikibooks.org/
wiki/Ada_Programming, which extends
up to the 2012 Ada standard (or so it
claims, I haven't really read it, but I've
heard good reports of it).

Perhaps you could take one of your
smaller Pascal programs and translate it to
Ada as a first step? As the next step, you
could divide that program into packages,
then add exception handling. And then
take a new problem and write an Ada
program from scratch.

Ask for help here, or in some other Ada
forum, whenever in doubt about
something.

From: 711 Spooky Mart
<711@spooky.mart>

Date: Fri, 22 Oct 2021 04:59:25 -0500
> Ada is stricter than other languages and

is meant to have NO Operating system
dependent items, so if you cannot go
around something there must be a
package on each operating system
having the same interface everywhere.

By this do you mean the same syntax and
libs will run on all target systems without
fiddling with {IFDEF} and architecture
compiler switch woo foo for USES and
repetitive cross-arch boilerplate?

One thing I can't stand about Pascal is the
totally different functions and logic from
several operating systems that MUST be
re-written several times in the same code
base to do the same job. This drives me
mad. In fact it irks me so much I was
thinking of writing some libraries for
things I do that would handle this all
automatically across arches. There would
go a couple months of Sundays.

Think IPC with Pascal. Get a good IPC
routine going for Linux in your app, then
you have to re-write it for MAC and
Windows, and even some other flavors of
*nix.

So am I to understand that the Ada
compiler has somehow eliminated this
problem, by ensuring every target OS has
a syntactically conformant package to
execute its methods using the same
statements?

If I'm understanding you rightly, even
though Ada sounds like a much more
complex language than Pascal, it also
sounds like it would have less surprises
across arches.

Please elaborate if I'm misunderstanding.
And thanks to everyone else who has
responded.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 22 Oct 2021 13:49:11 +0200

> What degree of learning curve is there
to learn Ada, coming from a Pascal
background?

Pascal was the starting point for the Green
language, which became Ada in 1980
(and also for the Blue, Red, and Yellow
languages, which did not). Ada is firmly
in the ALGOL family of languages.

There is a sequential subset of Ada that
Pascal users can learn very quickly: the
sequential language + packages (packages
[modules] are fundamental to Ada, and
you can't do anything useful without
them). One should then quickly learn
generics, as much of the standard library
is generic. Ada's features are mostly
orthogonal, so one can use this subset
without surprises from the other aspects
of the language.

One can then learn programming by type
extension (tagged types and interfaces)
and concurrent programming (tasks and
their friends) to complete your
understanding of the language.

I generally recommend “Ada Distilled”

(https://www.adaic.org/wp-content/
uploads/2010/05/Ada-Distilled-24-
January-2011-Ada-2005-Version.pdf)

to those familiar with another imperative
language. It's ISO/IEC 8652:2007 Ada,
but you can easily pick up the new Ada-
12 features when you've finished. (There's
also now an Ada-12 version available on
Amazon.)

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 22 Oct 2021 18:12:49 +0300
> By this do you mean the same syntax

and libs will run on all target systems
without fiddling with {IFDEF} and
architecture compiler switch woo foo
for USES and repetitive cross-arch
boilerplate?

I'm not ldries46, but here is an answer:
Ada standardizes _some_ functions for
which some other languages use "OS"
services, principally threading, which in
Ada is the "tasking" feature. Indeed Ada
tasking works in the same way whichever
OS is used, and also in the "bare board",
no-OS situation. This is very useful for
developing multi-threaded embedded SW,
because the Ada tasking code can be
tested on desk-top workstations and then
executed on the target system unchanged.
(and no "ifdefs").

But real operating systems (as opposed to
simpler real-time kernels) provide many
services that are not standardized in Ada,
for example inter-process communication.

> Think IPC with Pascal. Get a good IPC
routine going for Linux in your app,
then you have to re-write it for MAC
and Windows, and even some other
flavors of *nix.

22 Ada and Other Languages

Volume 43, Number 1, March 2022 Ada User Journal

Indeed.

> So am I to understand that the Ada
compiler has somehow eliminated this
problem, by ensuring every target OS
has a syntactically conformant package
to execute its methods using the same
statements?

Sadly no.

However, there are some rudiments:

- There is a standardized Ada interface
(binding) to POSIX services. This is
implemented in an Ada library called
Florist. If you find or make a Florist
implementation for the OSes you use,
your Ada program can use the same OS
service interfaces on all those OSes.

- The gcc-based Ada compiler GNAT
comes with a GNAT-specific library that
provides some OS services with the
same Ada API on any OS that GNAT
supports. This includes some IPC, but I
don't know exactly how far that goes,
and the library may of course change
from one GNAT version to the next.

- There is an Ada library called
Win32Ada that provides an extensive set
of Microsoft Windows services, but it is
a "thin binding" meaning that even the
API is Windows-specific.

The Ada applications I have created and
worked with have needed only a few OS
services, basically some IPC: text in and
out via pipes to and from a child process.
We implemented our own binding to the
required OS services (pipe and process
creation and destruction). The interface
consisted of a package declaration (.ads
file) that was basically the same for all the
supported OSes (Windows, Linux, Mac
OS X) but had different OS-specific
package body files (implementations, .adb
files). In practice I think the Linux and
Mac OS X implementations were the
same and used direct binding to fork() and
pipe() etc. The Windows implementation
used Win32Ada.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 22 Oct 2021 17:47:59 +0200
> But real operating systems (as opposed

to simpler real-time kernels) provide
many services that are not standardized
in Ada, for example inter-process
communication.

Ada 83 predates threads. Initially a task
meant to be either scheduled internally or
mapped onto system processes. It is not
late now. One could allow the pragma
Import for tasks (and protected objects) in
order to communicate to an external
process using rendezvous and protected
actions.

> - The gcc-based Ada compiler GNAT
comes with a GNAT-specific library
that provides some OS services with the
same Ada API on any OS that GNAT
supports.

It provides sockets and serial I/O, one or
both are vital for many applications.

- There is the annex E providing RPC and
shared objects. Unfortunately it is very
vague and underdocumented. [...]

- The simple components library provides
inter-process communication primitives:
mutexes, events, streams, pools, RPCs
etc.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Fri, 22 Oct 2021 13:05:01 -0400
>The little snippets of Ada code I've seen

look _alot_ like Pascal.

No surprise. The teams that took part in
the DoD competition to design a language
to replace the mish-mash of languages
being used in the 70s tended to choose
Pascal as the starting point (Modula-2
hadn't escaped ETH-Zurich yet <G>).

The main difference is that Ada
incorporated block closing syntax at the
base, finding Pascal (and C) [begin/end,
{/} respectively] usage error-prone
(dangling else, etc.) along with using ; as
a terminator instead of separator. Oh, and
using (/) for both function arguments and
array indexing (back then, most US
keypunches didn't support [/] or {/}).

Declarations do not have a defined
sequence (type, constant, variable).

Also, Pascal of the era typically did not
support separate compilation and/or
include files -- programs were all single
monolithic files, any change required
recompiling the entire program.

Pascal also had a relatively limited I/O
system -- with the bad quirk that it did
"pre-reads" of files. Made
interactive/console programs difficult (or
required special handling by the run-time
startup) -- starting a program would result
in stdin reading at least one character, if
not one line, into the file buffer variable...
But the program may not want the data
until after lots of initialization and
prompts.

>What degree of learning curve is there to
learn Ada, coming from a Pascal
background?

If all one is writing is "Pascal" type
applications, without using complex data
types (ie; defining specific types for each
"concept") -- it shouldn't take too long.

Tasking, rendezvous, protected objects
(not to be confused with private objects),
and generics, may take longer to get
comfortable with.

The appendices of the LRM will tend to
get lots of usage; there are many
subtleties to the standard libraries.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Fri, 22 Oct 2021 13:00:45 -0700

> What degree of learning curve is there
to learn Ada, coming from a Pascal
background?

You don't need to read more manuals than
you were used to for Pascal (so, it can be
a wide range, depending on your way of
learning). The most outstanding
difference between both languages is the
degree of unification.

Here are a couple of links, with a Pascal-
then-Ada perspective, that could be
useful:

http://p2ada.sourceforge.net/pascada.htm

http://p2ada.sourceforge.net/

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 22 Oct 2021 17:29:26 -0700
> Also, Pascal of the era typically did not

support separate compilation and/or
include files

I thought Ada was originally like that too.
The program could be split into multiple
files, but they were expected to all be
compiled together.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 22 Oct 2021 20:17:02 -0500
> I thought Ada was originally like that

too.

No. Some implementations were like that,
but most supported fully separate
compilations from the beginning.
Janus/Ada certainly did (once we got
packages implemented, and Ada without
packages really isn't Ada at all). You
might have been thinking about the
original permission to require generic
bodies to be available when compiling an
instantiation, but that only applied to
generic units, never "regular" units. And
some compilers (like Janus/Ada) never
used that permission.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Sat, 23 Oct 2021 13:24:19 -0400
>I thought Ada was originally like that

too. The program could be split into
multiple files, but they were expected
to all be compiled together.

No... Pretty much every build system for
Ada focused on only rebuilding the parts
affected by a changed file -- by following
WITH statements to find required units
(see the LRM for what a "unit"
comprises) /and/ determining if that unit
requires compilation. Timestamps or
intermediate files may be used in that
determination. Changes in
implementation (body) require the body
to be recompiled, but if the specification
did not change, then units WITHing the
specification don't need to be compiled --
they just need relinking with the updated
body.

Ada Pract ice 23

Ada User Journal Volume 43, Number 1, March 2022

GNAT's build system -- using the host OS
filesystem as the "database" -- required
that separate files are generated for each
unit. (cf: GNATCHOP) All-in-One was
the optional source file format accepted
by some compilers -- but other than the
early language reference manuals, I
haven't encountered any text books that
use that means of presenting code
examples (unless it is discussing the use
of GNATCHOP itself <G>).

https://en.wikisource.org/wiki/Stoneman_
requirements [Link replaced. See below
Rosen’s comment. —arm] is the
requirements document that DoD used to
define the desired environment around
Ada development.

"""

4.E APSE TOOLSET
REQUIREMENTS

4.E.1 The tools in an APSE shall support
the development of programs in the Ada
language as defined by the Ada reference
manual. In particular an APSE shall
support the separate compilation features
of the language.

"""

Note the last sentence

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 24 Oct 2021 09:04:29 +0200
>

https://www.adahome.com/History/Sto
neman/stoneman.htm is the
requirements document that DoD used
to define the desired environment
around Ada development.

Please don't provide links to adahome,
this site is frozen since 1998, and there
are copyright issues with the owner.

Stoneman can be obtained from:

https://en.wikisource.org/wiki/
Stoneman_requirements

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 24 Oct 2021 09:04:29 +0200
> https://www.adahome.com/History/

Stoneman/stoneman.htm is the
requirements document that DoD used
to define the desired environment
around Ada development.

Please don't provide links to adahome,
this site is frozen since 1998, and there
are copyright issues with the owner.

Stoneman can be obtained from:

https://en.wikisource.org/wiki/
Stoneman_requirements

From: Jerry <list_email@icloud.com>
Date: Sat, 23 Oct 2021 21:33:14 -0700

This thread began as a comparison of Ada
and the original Pascal. So how does Ada
compare to Free Pascal Compiler and
Delphi which have gone far past original
Pascal?

From: Ldries46 <bertus.dries@planet.nl>
Date: Sun, 24 Oct 2021 08:32:01 +0200
> how does Ada compare to Free Pascal

Compiler and Delphi which have gone
far past original Pascal?

You can also ask can you compile a Free
Pascal program in Delphi or in the other
direction. Ada was intended to do so and
to keep it that way

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sun, 24 Oct 2021 09:51:26 -0700
> how does Ada compare to Free Pascal

Compiler and Delphi [...]?

You find a very partial answer in the
comparison here:

http://p2ada.sourceforge.net/
pascada.htm#tables

Made around year 2000, so ~30 after
original Pascal but ~20 years ago.

Note that both FPC and Delphi descend
from Turbo Pascal, which is itself
completely different from other
extensions like ISO Extended Pascal.

In a nutshell, Pascal is an extreme
example of fragmentation of a language
into dialects.

Ada is on the other extremity: you can
build the same source sets (I mean exactly
the same sources, without preprocessing
gimmicks) on completely different
compilers & OSes.

From: 711 Spooky Mart
<711@spooky.mart>

Date: Sun, 24 Oct 2021 18:24:21 -0500
> Ada is on the other extremity: you can

build the same source sets (I mean
exactly the same sources, without
preprocessing gimmicks) on completely
different compilers & OSes.

I think that answers the important original
query.

Does modern Ada have facility for
writing boot loaders, inline Assembly,
kernels, etc.?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 25 Oct 2021 11:23:49 +0300
> Does modern Ada have facility for

writing boot loaders, inline Assembly,
kernels, etc.?

In-line assembly is supported by most of
the Ada compilers I have used, but the
syntax may differ across compilers.

The run-time systems (real-time kernels)
associated with Ada compilers for bare-
board embedded systems are typically
written in Ada, with minor amounts of
assembly language inserted for the very
HW-specific parts such as HW context
saving and restoring.

I'm not very familiar with boot loaders,
but I see no reason why a boot loader
could not be written in Ada. However,
usually (and as for other languages) there
will be a small start-up routine in
assembly language to initialize the
processor, set up a stack, and so forth.
The "Ada Bare Bones" project is doing
something like this, I believe:

https://wiki.osdev.org/Ada_Bare_bones

From: Luke A. Guest
<laguest@archeia.com>

Date: Mon, 25 Oct 2021 09:40:38 +0100

Boot loaders and kernels are just another
application area any general purpose
language can target, even Ada.

> I'm not very familiar with boot loaders

If you're talking x86 on PC's, then you'll
need to read up on the x86 boot process in
which x86 starts up in 16-bit (real) mode,
then has to be taken into protected and
then long modes. You would need a GCC
that can target all those modes.

> The "Ada Bare Bones" project is doing
something like this, I believe

Thanks for pointing out my project :) It's
out of date and doesn't build as is any
more, but others have written Ada pages
on that site since.

IIRC, the changes that need to happen is
that gprbuild

--target=arm-<whatever> be used instead
of arm-<whatever>-gprbuild

Ada Practice
Custom Storage Pool
Questions
From: Jere <jhb.chat@gmail.com>
Subject: Custom Storage Pool questions
Date: Sun, 12 Sep 2021 17:53:47 -0700
Newsgroups: comp.lang.ada

I was learning about making user defined
storage pools when I came across an
article that made me pause and wonder
how portable storage pools actually can
be. In particular, I assumed that the
Size_In_Storage_Elements parameter in
the Allocate operation actually indicated
the total number of storage elements
needed.

procedure Allocate(
 Pool : in out Root_Storage_Pool;
 Storage_Address : out Address;
 Size_In_Storage_Elements : in
 Storage_Elements.Storage_Count;
 Alignment : in
 Storage_Elements.Storage_Count)
is abstract;

But after reading the following AdaCore
article, my assumption is now called into
question: https://blog.adacore.com/
header-storage-pools

24 Ada Pract ice

Volume 43, Number 1, March 2022 Ada User Journal

In particular, the blog there advocates for
separately counting for things like
unconstrained array First/Last indices or
the Prev/Next pointers used for
Controlled objects. Normally I would
have assumed that the
Size_In_Storage_Elements parameter in
Allocate would account for that, but the
blog clearly shows that it doesn't

So that seems to mean to make a storage
pool, I have to make it compiler specific
or else risk someone creating a type like
an array and my allocation size and
address values will be off.

Is it intended not to be able to do portable
Storage Pools or am I missing some Ada
functionality that helps me out here. I
scanned through the list of attributes but
none seem to give any info about where
the object's returned address is relative to
the top of the memory actually allocated
for the object. I saw the attribute
Max_Size_In_Storage_Elements, but it
doesn't seem to guarantee to include
things like the array indices and it still
doesn't solve the issue of knowing where
the returned address needs to be relative
to the top of allocated memory.

I can easily use a generic to ensure that
the types I care about are portably made
by the pool, but I can't prevent someone
from using my pool to create other objects
that I hadn't accounted for. Unless there is
a way to restrict a pool from allocating
objects of other types?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 13 Sep 2021 00:29:35 -0500

Not sure what you are expecting. There is
no requirement that objects are allocated
contiguously. Indeed, Janus/Ada will call
Allocate as many times as needed for
each object; for instance, unconstrained
arrays are in two parts (descriptor and
data area).

The only thing that you can assume in a
portable library is that you get called the
same number of times and
sizes/alignment for Allocate and
Deallocate; there's no assumptions about
size or alignment that you can make.

If you want to build a pool around some
specific allocated size, then if it needs to
be portable, (A) you have to calculate the
allocated size, and (B) you have to have a
mechanism for what to do if some other
size is requested. (Allocate a whole block
for smaller sizes, fall back to built-in heap
for too large is what I usually do).

More likely, you'll build a pool for a
particular implementation. Pools are very
low level by their nature, and useful ones
are even more so (because they are using
target facilities to allocate memory, or
need to assume something about the
allocations, or because they are doing
icky things like address math, or ...).

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 13 Sep 2021 13:12:39 +0200
> I was learning about making user

defined storage pools when I came
across an article that made me pause
and wonder how portable storage pools
actually can be. [...]

That blog shows a special use for
Storage_Pools, where you allocate /user/
data on top of the requested memory.
When called by the compiler, it is up to
the compiler to compute how much
memory is needed, and your duty is to
just allocate that.

From: Jere <jhb.chat@gmail.com>
Date: Mon, 13 Sep 2021 17:48:15 -0700
> That blog shows a special use for

Storage_Pools

Yes, but if you look at that blog, they are
allocating space for the /user/ data and for
the Next/Prev for controlled types and
First/Last for unconstrained arrays in
addition to the size specified by allocate.

I agree I feel it is up to the compiler to
provide the correct size to Allocate, but
the blog would indicate that GNAT does
not (or did not..old blog..so who knows?).
Does the RM require that an
implementation pass the full amount of
memory needed to Allocate when new is
called

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 14 Sep 2021 08:08:48 +0200

The RM says that an allocator allocates
storage from the storage pool. You could
argue that it does not say "allocates all
needed storage...", but that would be a bit
far fetched.

Anyway, a blog is not the proper place to
get information from for that kind of
issue. Look at the GNAT documentation.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 14 Sep 2021 08:23:08 +0200
> Yes, but if you look at that blog, they

are allocating space for the /user/ data
and for the Next/Prev for controlled
types and First/Last for unconstrained
arrays in addition to the size specified
by allocate.

I do not understand your concern. The
blog discusses how to add service data to
the objects allocated in the pool.

I use such pools extensively in Simple
Components. E.g. linked lists are
implemented this way. The list links are
allocated in front of list elements which
can be of any type, unconstrained arrays
included.

The problem with unconstrained arrays is
not that the bounds are not allocated, they
are, but the semantics of X'Address when
applied to arrays.

A'Address is the address of the first array
element, not of the array object. For a
pool designer it constitutes a problem of
getting the array object by address. This is
what Emmanuel discusses in the blog.

[The motivation behind Ada choice was
probably to keep the semantics
implementation-independent.]

Consider for example a list of String
elements. When Allocate is called with
String, it returns the address of all String.
But that is not the address you would get
if you applied 'Address. You have to
add/subtract some offset in order to get
one from another.

In Simple Components this offset is
determined at run-time for each generic
instance.

Of course, a proper solution would be
fixing Ada by adding another address
attribute:

 X'Object_Address

returning the first address of the object as
allocated.

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 14 Sep 2021 08:42:52 +0200
> X'Object_Address

> returning the first address of the object
as allocated.

But you cannot assume that the object is
allocated as one big chunk. Bounds can be
allocated at a different place. What would
be X'Object_Address in that case?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 14 Sep 2021 09:00:13 +0200

The object address, without bounds, same
as X'Address.

What Allocate returns is not what
A'Address tells. The compiler always
knows the difference, the programmer has
to know it too. Nothing more.

From: Jere <jhb.chat@gmail.com>
Date: Tue, 14 Sep 2021 17:21:04 -0700
> I use such pools extensively in Simple

Components. E.g. linked lists are
implemented this way. The list links are
allocated in front of list elements which
can be of any type, unconstrained
arrays included.

The blog I saw was old, so it is
completely possible it no longer is true
that GNAT does what the blog suggests.
I'll take a look at your storage pools and
see how they handle things like this.

From: Jere <jhb.chat@gmail.com>
Date: Tue, 14 Sep 2021 17:39:43 -0700
> Anyway, a blog is not the proper place

to get information from for that kind of
issue. Look at the GNAT
documentation.

Ada Pract ice 25

Ada User Journal Volume 43, Number 1, March 2022

I'll take a look at the GNAT docs to see
(and of course that blog is old, so GNAT
may not do this anymore anyways), but I
am mainly asking in the frame of what
Ada allows and/or expects. I'd like to be
able to allocate storage simply without
worrying how the compiler does it under
the hood and just assume that any calls to
Allocate will ask for the full amount of
memory.

Am I correct to assume that Ada doesn't
provide any language means to restrict
what types a pool can make objects of.
The times that I have wanted to make a
pool are generally for specific types and it
is often simpler to design them if I can
assume only those types are being
generated

Thanks for the response. I'm sorry for all
the questions. That's how I learn and I
realize it isn't a popular way to learn in
the community, but I have always learned
very differently than most.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 15 Sep 2021 08:54:07 +0200

It seems that you are under the impression
that Allocate must allocate more size than
its Size parameter asks. The answer is no,
unless *you* wanted to add something to
each allocated object.

[...]

Again, if attributes are added, then it
should be the object address as allocated.
The compiler always knows the proper
address because this address is passed to
Free, not X'Address!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 15 Sep 2021 21:07:22 +0200

[Continuing on the subject of how to
retrieve the object in the pool from its
‘Address, when there is hidden data like a
fat pointer, Dmitry challenges readers to
implement a function that needs to do so.
—arm]

Now define and implement the following
function:

type Type_Pointer is access Some_Type
 with Storage_Pool => Pool;
 function Get_Allocation_Time
 (Pointer : Type_Pointer) return Time;

The function returns the time when the
pointed object was allocated in the pool.

[...]

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 16 Sep 2021 00:12:58 -0700

I am the original implementer of
GNATCOLL.Storage_Pools.Headers, and
I have been silent in this discussion
because I must admit I forgot a lot of the
details... To be sure, we did not add new
attributes just for the sake of

GNATCOLL, those existed previously so
likely had already found other uses.

As has been mentioned several times in
the discussion, the compiler is already
passing the full size it needs to Allocate,
and the storage pool only needs to
allocate that exact amount in general. This
applies for the usual kinds of storage
pools, which would for instance
preallocate a pool for objects of fixed
sizes, or add stronger alignment
requirements.

In the case of the GNATCOLL headers
pool, we need to allocate more because
the user wants to store extra data. For that
data, we are left on our own to find the
number of bytes we need, which is part of
the computation we do: we of course need
the number of bytes for the header's
object_size, but also perhaps some extra
bytes that are not returned by that
object_size in particular for controlled
types and arrays.

Note again that those additional bytes are
for the header type, not for the type the
user is allocating (for which, again, the
compiler already passes the number of
bytes it needs).

The next difficulty is then to convert from
the object's 'Address back to your extra
header data. This is when you need to
know the size of the prefix added by the
compiler (array bounds, tag,...) to skip
them and then take into account the
alignment, and finally the size of your
header.

Dmitry's suggested exercise (storing the
timestamp of the allocation) seems like a
useful one indeed. It would be nice indeed
if GNATCOLL's code wasn’t too
complicated, but I am afraid this isn't the
case. We had used those pools to
implement reference counting for various
complex types, and ended up with that
complexity.

AdaCore (Olivier Hainque) has made a
change to the implementation since the
blog was published
(https://github.com/AdaCore/gnatcoll-
core/commits/master/src/gnatcoll-
storage_pools-headers.adb), so I got some
details wrong in the initial
implementation apparently.

From: Jere <jhb.chat@gmail.com>
Date: Thu, 16 Sep 2021 16:21:58 -0700
> In the case of the GNATCOLL headers

pool, we need to allocate more because
the user wants to store extra data. For
that data, we are left on our own to find
the number of bytes we need, which is
part of the computation we do: we of
course need the number of bytes for the
header's object_size, but also perhaps
some extra bytes that are not returned
by that object_size in particular for
controlled types and arrays.

> Note again that those additional bytes
are for the header type, not for the type
the user is allocating (for which, again,
the compiler already passes the number
of bytes it needs).

Thanks for the response Emmanuel. That
clears it up for me. I think the confusion
for me came from the terminology used
then. In the blog, that extra space for
First/Last and Prev/Next was mentioned
as if it were for the element, which I
mistook was the user's object being
allocated and not the header portion. I
didn't catch that as the generic formal's
name, so that is my mistake. I guess in my
head, I would have expected the formal
name to be Header_Type or similar so I
misread it in my haste.

I appreciate the clarity and apologize if I
caused too much of a stir. I was asking the
question because I didn't understand, so I
hope you don't think too poorly of me for
it, despite my mistake.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 17 Sep 2021 15:56:20 +0200
> I was asking the question because I

didn't understand, so I hope you don't
think too poorly of me for it, despite
my mistake.

Nope, especially because the issue with
X'Address being unusable for memory
pool developers is a long standing painful
problem that needs to be resolved. That
will never happen until a measurable
group of people start asking questions. So
you are doubly welcome.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 17 Sep 2021 20:46:26 +0100
> the issue with X'Address being

unusable for memory pool developers
is a long standing painful problem that
needs to be resolved.

There are two attributes that we should all
have known about, Descriptor_Size[1]
(bits, introduced in 2011) and
Finalization_Size[2] (storage units, I
think, introduced in 2017)

[1] https://docs.adacore.com/live/
wave/gnat_rm/html/gnat_rm/gnat_rm/
implementation_defined_attributes.htm
l#attribute-descriptor-size

[2] https://docs.adacore.com/live/
wave/gnat_rm/html/gnat_rm/gnat_rm/
implementation_defined_attributes.htm
l#attribute-finalization-size

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 17 Sep 2021 22:39:05 +0200

They are non-standard and have murky
semantics I doubt anybody really cares
about. What is needed is the address
passed to Deallocate should the object be
freed = the address returned by Allocate.
Is that too much to ask?

26 Ada Pract ice

Volume 43, Number 1, March 2022 Ada User Journal

BTW, finalization lists (#2) should have
been removed from the language long
ago. They have absolutely no use, except
maybe for debugging, and introduce huge
overhead. The semantics should have
been either Unchecked_Deallocation or
compiler allocated objects/components
may call Finalize, nothing else.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 18 Sep 2021 00:17:50 +0300
> What is needed is the address passed to

Deallocate should the object be freed =
the address returned by Allocate. Is that
too much to ask?

That is already required by RM
13.11(21.7/3): "The value of the
Storage_Address parameter for a call to
Deallocate is the value returned in the
Storage_Address parameter of the
corresponding successful call to
Allocate."

The "size" parameters are also required to
be the same in the calls to Deallocate and
to Allocate.

> BTW, finalization lists (#2) should have
been removed from the language long
ago.

Huh? Where does the RM _require_
finalization lists? I see them mentioned
here and there as a _possible_
implementation technique, and an
alternative "PC-map" technique is
described in RM 7.6.1 (24.r .. 24.t).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 18 Sep 2021 09:49:16 +0200
> That is already required by RM

13.11(21.7/3): "The value of the
Storage_Address parameter for a call to
Deallocate is the value returned in the
Storage_Address parameter of the
corresponding successful call to
Allocate."

You missed the discussion totally. It is
about the X'Address attribute.

The challenge: write pool with a function
returning object allocation time by its
pool-specific access type.

> Huh? Where does the RM _require_
finalization lists?

7.6.1 (11 1/3)

> I see them mentioned here and there as
a _possible_ implementation technique,
and an alternative "PC-map" technique
is described in RM 7.6.1 (24.r .. 24.t).

I don't care about techniques to implement
meaningless stuff. It should be out, at
least there must be a representation aspect
for turning this mess off.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 18 Sep 2021 12:03:03 +0300

> You missed the discussion totally. It is
about X'Address attribute.

Sure, I understand that the address
returned by Allocate, and passed to
Deallocate, for an object X, is not always
X'Address, and that you would like some
means to get the Allocate/Deallocate
address from (an access to) X. But what
you stated as not "too much to ask" is
specifically required in the RM paragraph
I quoted. Perhaps you meant to state
something else, about X'Address or some
other attribute, but that was not what you
wrote.

Given that an object can be allocated in
multiple independent pieces, it seems
unlikely that what you want will be
provided. You would need some way of
iterating over all the pieces allocated for a
given object, or some way of defining a
"main" or "prime" piece and a means to
get the Allocate/Deallocate address for
that piece.

>> Huh? Where does the RM _require_
finalization lists?

> 7.6.1 (11 1/3)

RM (2012) 7.6.1 (11.1/3) says only that
objects must be finalized in reverse order
of their creation. There is no mention of
"list".

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 18 Sep 2021 12:22:45 +0200
> Perhaps you meant to state something

else, about X'Address or some other
attribute, but that was not what you
wrote.

I wrote about attributes, specifically
GNAT-specific ones used in the blog to
calculate the correct address. "Too much
to ask" was about an attribute that would
return the object address directly.

> Given that an object can be allocated in
multiple independent pieces, it seems
unlikely that what you want will be
provided.

Such implementations would
automatically disqualify the compiler.
Compiler-generated piecewise allocation
is OK for the stack, not for user storage
pools.

And anyway, all this equally applies to
X'Address.

> RM (2012) 7.6.1 (11.1/3) says only that
objects must be finalized in reverse
order of their creation. There is no
mention of "list".

It talks about "collection."

> Then your complaint seems to be about
something specified for the order of
finalization, but you haven't said clearly
what that something is.

No, it is about the overhead of
maintaining "collections" associated with
an access type in order to call Finalization
for all members of the collection.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 18 Sep 2021 18:59:27 +0300
>> Given that an object can be allocated

in multiple independent pieces, it seems
unlikely that what you want will be
provided.

> Such implementations would
automatically disqualify the compiler.

That is your opinion (or need), to which
you are entitled, of course, but it is not an
RM requirement on compilers -- see
Randy's posts about what Janus/Ada does.

[...]

> No, it is about the overhead of
maintaining "collections" associated
with an access type in order to call
Finalization for all members of the
collection.

So you want a way to specify that for a
given access type, although the accessed
object type has a Finalize operation or
needs finalization, the objects left over in
the (at least conceptually) associated
collection should _not_ be finalized when
the scope of the access type is left? Have
you proposed this to the ARG?

To me it seems a risky thing to do,
subverting the normal semantics of
initialization and finalization. Perhaps it
could be motivated for library-level
collections in programs that are known to
never terminate (that is, to not need any
clean-up when they do stop or are
stopped).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 18 Sep 2021 18:19:23 +0200
> So you want a way to specify that for a

given access type, although the
accessed object type has a Finalize
operation or needs finalization, the
objects left over in the (at least
conceptually) associated collection
should _not_ be finalized when the
scope of the access type is left?

Exactly, especially because these objects
are not deallocated, as you say they are
left over. If they wanted GC they should
do that. If they do not, then they should
keep their hands off the objects
maintained by the programmer.

> To me it seems a risky thing to do,
subverting the normal semantics of
initialization and finalization.

Quite the opposite, it is the collection rule
that subverts semantics because objects
are not freed, yet mangled.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 19 Sep 2021 13:36:11 +0300

Ada Pract ice 27

Ada User Journal Volume 43, Number 1, March 2022

> Quite the opposite, it is the collection
rule that subverts semantics because
objects are not freed, yet mangled.

Local variables declared in a subprogram
are also not explicitly freed (deallocated),
yet they are automatically finalized when
the subprogram returns.

My understanding of Ada semantic
principles is that any object that is
initialized should also be finalized. Since
the objects left in a collection associated
with a local access type become
inaccessible when the scope of the access
type is left, finalizing them automatically,
even without an explicit free, makes sense
to me. If you disagree, suggest a change
to the ARG and see if you can find
supporters.

Has this feature of Ada caused you real
problems in real applications, or is it only
a point of principle for you?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 19 Sep 2021 13:41:00 +0200
> Local variables declared in a

subprogram are also not explicitly freed
(deallocated), yet they are
automatically finalized when the
subprogram returns.

Local objects are certainly freed. Explicit
or not, aggregated or not, is irrelevant.

> My understanding of Ada semantic
principles is that any object that is
initialized should also be finalized.

IFF deallocated.

An application that runs continuously will
never deallocate, HENCE finalize certain
objects.

> Has this feature of Ada caused you real
problems in real applications, or is it
only a point of principle for you?

1. It is a massive overhead in both
memory and performance terms with no
purpose whatsoever. I fail to see where
that sort of thing might be even
marginally useful. Specialized pools, e.g.
mark-and-release will deploy their own
bookkeeping, not rely on this.

2. What is worse is that a collection is not
bound to the pool. It is to an access type,
which may have a narrower scope. So the
user could declare an unfortunate access
type, which would corrupt objects in the
pool and the pool designer has no means
to prevent that.

From: Jere <jhb.chat@gmail.com>
Date: Sun, 19 Sep 2021 17:31:26 -0700
> Not sure what you are expecting. There

is no requirement that objects are
allocated contiguously. Indeed,
Janus/Ada will call Allocate as many
times as needed for each object; for
instance, unconstrained arrays are in
two parts (descriptor and data area).

Followup question cause Randy's
statement got me thinking: If a compiler
is allowed to break up an allocation into
multiple calls to Allocate (and of course
Deallocate), how does one go about
enforcing that the user's header is only
created once In the example Randy gave
(unconstrained arrays), in Janus there is
an allocation for the descriptor and a
separate allocation for the data. If I am
making a storage pool that is intending to
create a hidden header for my objects, this
means in Janus Ada (and potentially other
compilers) I would instead create two
headers, one for the descriptor and one for
the data, when I might intend to have one
header for the entire object.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 20 Sep 2021 09:34:47 +0300

I think one cannot enforce that, because
the calls to Allocate do not indicate (with
parameters) which set of calls concern the
same object allocation.

This is probably why Dmitry said that
such compiler behaviour would
"disqualify the compiler" for his uses.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sun, 19 Sep 2021 23:48:20 -0700
> I think one cannot enforce that, because

the calls to Allocate do not indicate
(with parameters) which set of calls
concern the same object allocation.

I think the only solution would be for this
compiler to have another attribute similar
to 'Storage_Pool, but that would define
the pool for the descriptor:

 for X'Storage_Pool use Pool;
 for X'Descriptor_Storage_Pool use
 Other_Pool;

That way the user can decide when to add
(or not) extra headers.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 20 Sep 2021 10:05:14 +0300
> Local objects are certainly freed.

Explicit or not, aggregated or not, is
irrelevant.

Objects left over in a local collection may
certainly be freed automatically, if the
implementation has created a local pool
for them. See ARM 13.11 (2.a):
"Alternatively, [the implementation]
might choose to create a new pool at each
accessibility level, which might mean that
storage is reclaimed for an access type
when leaving the appropriate scope."

> An application that runs continuously
will never deallocate, HENCE finalize
certain objects.

And I agreed that in this case it could be
nice to let the programmer specify that
keeping collections is not needed.

> 1. It is a massive overhead in both
memory and performance terms with
no purpose whatsoever. [...]

Have you actually measured or observed
that overhead in some application?

> 2. What is worse is that a collection is
not bound to the pool. It is to an access
type, which may have a narrower
scope. So the user could declare an
unfortunate access type, which would
corrupt objects in the pool and the pool
designer has no means to prevent that.

So there is a possibility of programmer
mistake, leading to unintended
finalization of those (now inaccessible)
objects.

However, your semantic argument (as
opposed to the overhead argument) seems
to be based on an assumption that the
objects "left over" in a local collection,
and which thus are inaccessible, will still,
somehow, participate in the later
execution of the program, which is why
you say that finalizing those objects
would "corrupt" them.

It seems to me that such continued
participation is possible only if the objects
contain tasks or are accessed through
some kind of unchecked programming.
Do you agree?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 20 Sep 2021 09:35:35 +0200
> Objects left over in a local collection

may certainly be freed automatically, if
the implementation has created a local
pool for them. See ARM 13.11 (2.a):
"Alternatively, [the implementation]
might choose to create a new pool at
each accessibility level, which might
mean that storage is reclaimed for an
access type when leaving the
appropriate scope."

May or may not. The feature which
correctness depends on scopes and lots of
further assumptions has no place in a
language like Ada.

> Have you actually measured or
observed that overhead in some
application?

How?

However you could estimate it from the
most likely implementation as a doubly-
linked list. You add new element for each
allocation and remove one for each
deallocation. The elements are allocated
in the same pool or in some other pool.
Finalization is not time bounded, BTW.
Nice?

> It seems to me that such continued
participation is possible only if the
objects contain tasks or are accessed
through some kind of unchecked
programming. Do you agree?

28 Ada Pract ice

Volume 43, Number 1, March 2022 Ada User Journal

No. You can have them accessible over
other access types with wider scopes:

 Collection_Pointer := new X;
 Global_Pointer :=
Collection_Pointer.all'Unchecked_Access;

access discriminants etc. As I said, hands
off!

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 20 Sep 2021 11:08:52 +0300
> Global_Pointer :=

Collection_Pointer.all'Unchecked_Acce
ss;

So, unchecked programming, as I said.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 20 Sep 2021 10:28:28 +0200
> So, unchecked programming, as I said.

Right, working with pools is all that thing.
Maybe "new" should be named
"unchecked_new" (:-))

Finalize and Initialize certainly should
have been Unchecked_Finalize and
Unchecked_Initialize as they are not
enforced. You can override the parent's
Initialize and never call it. It is a plain
primitive operation anybody can call any
time any place. You can even call it
before the object is fully initialized!

So, why bother with objects the user
manually allocates (and forgets to free)?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 20 Sep 2021 18:48:02 -0500
> The problem with unconstrained arrays

is not that the bounds are not allocated,
they are, but the semantics of
X'Address when applied to arrays.

> A'Address is the address of the first
array element, not of the array object.
For a pool designer it constitutes a
problem of getting the array object by
address. This is what Emmanuel
discusses in the blog.

Right, this is why Janus/Ada never
"fixed" 'Address to follow the Ada
requirement. (Our Ada 83 compiler treats
the "object" as whatever the top-level
piece is, for an unconstrained array, that's
the bounds -- the data lies elsewhere and
is separately allocated -- something that
follows from slice semantics.)

I suppose your suggestion of
implementing yet-another-attribute is
probably the right way to go, and then
finding every use of 'Address in existing
RRS Janus/Ada code and changing it to
use the new attribute that works "right".

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 20 Sep 2021 18:51:15 -0500

Sorry about that, I didn't understand what
you were asking. And I get defensive

about people who think that a pool should
get some specific Size (and only that
size), so I leapt to a conclusion and
answered accordingly.

The compiler requests all of the memory
IT needs, but if the pool needs some
additional memory for its purposes (pretty
common), it will need to add that space
itself. It's hard to imagine how it could be
otherwise, I guess I would have thought
that goes without saying. (And that rather
proves that there is nothing that goes
without saying.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 20 Sep 2021 18:58:34 -0500
> But you cannot assume that the object is

allocated as one big chunk. Bounds can
be allocated at a different place. What
would be X'Object_Address in that
case?

The address of the real object, which is
the bounds. (I'm using "object" in the
Janus/Ada compiler sense and not in the
Ada sense.) The only way I could make
sense of the implementation requirements
for Janus/Ada was to have every object be
statically sized. If the Ada object is *not*
statically sized, then the Janus/Ada object
is a descriptor that provides access to that
Ada object data.

Generally, one wants access to the
statically sized object, as that provides
access to everything else (there may be
multiple levels if discriminant-dependent
arrays are involved). That's not what
'Address is supposed to provide, so the
address used internally to the compiler is
the wrong answer in Ada terms, but it is
the right answer for most uses (storage
pools being an obvious example).

When one specifies 'Address in
Janus/Ada, you are specifying the address
of the statically allocated data. The rest of
the object lives in some storage pool and
it makes absolutely no sense to try to
force that somewhere.

There's no sensible reason to expect
'Address to be implementation-
independent; specifying the address of
unconstrained arrays is nonsense unless
you know that the same Ada compiler is
creating the object you are accessing --
hardly a common case.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 20 Sep 2021 19:19:38 -0500
> I don't care about techniques to

implement meaningless stuff. It should
be out, at least there must be a
representation aspect for turning this
mess off.

There is: Restriction
No_Controlled_Types. - Randy

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 20 Sep 2021 19:26:19 -0500
> Such implementations would

automatically disqualify the compiler.
Compiler-generated piecewise
allocation is OK for the stack, not for
user storage pools.

If someone wants to require contiguous
allocation of objects, there should be a
representation attribute to specify it. And
there should not be nonsense restrictions
on records with defaulted discriminants
unless you specify that you require
contiguous allocation. There is no good
reason to need that for 99% of objects,
why insist on a very expensive
implementation of slices/unconstrained
arrays unless it's required??

> No, it is about the overhead of
maintaining "collections" associated
with an access type in order to call
Finalization for all members of the
collection.

How else would you ensure that Finalize
is always called on an allocated object?
Unchecked_Deallocation need not be
called on an allocated object. The Ada
model is that Finalize will ALWAYS be
called on every controlled object before
the program ends; there are no "leaks" of
finalization. Otherwise, one cannot
depend on finalization for anything
important; you would often leak resources
(especially for simple kernels that don't
try to free unreleased resources
themselves).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 20 Sep 2021 19:37:56 -0500
> 1. It is a massive overhead in both

memory and performance terms with
no purpose whatsoever. I fail to see
where that sort of thing might be even
marginally useful.

The classic example of Finalization is file
management on a simple kernel (I use
CP/M as the example in my head). CP/M
did not try to recover any resources on
program exit, it was the program's
responsibility to recover them all (or
reboot after every run). If you had holes
in finalization, you would easily leak files
and since you could only open a limited
number of them at a time, you could
easily make a system non-responsive.

You get similar things on some embedded
kernels.

If you only write programs that live in
ROM and never, ever terminate, then you
probably have different requirements.
Most likely, you shouldn't be using
Finalization at all (or at least not putting
such objects in allocated things).

> 2. What is worse is that a collection is
not bound to the pool. It is to an access
type, which may have a narrower

Ada Pract ice 29

Ada User Journal Volume 43, Number 1, March 2022

scope. So the user could declare an
unfortunate access type, which would
corrupt objects in the pool and the pool
designer has no means to prevent that.

Pools are extremely low-level things that
cannot be safe in any sense of the word. A
badly designed pool will corrupt
everything. Using a pool with the "wrong"
access type generally has to be
programmed for (as I answered earlier, if
I assume anything about allocations, I
check for violations and do something
else.) And a pool can be used with many
access types; many useful ones are.

Some of what you want is provided by the
subpool mechanism, but it is even more
complex at runtime, so it probably doesn't
help you.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 20 Sep 2021 19:45:28 -0500
> You can override the parent's Initialize

and never call it. It is a plain primitive
operation anybody can call any time
any place. You can even call it before
the object is fully initialized!

User calls on Initialize and Finalize have
no special meaning; they're ignored for
the purposes of language-defined
finalization. The fact that they're normal
routines and can be called by someone
else means that some defensive
programming is needed. That all
happened because of the "scope
reduction" of Ada 9x; the dedicated
creation/finalization mechanism got
dumped. Finalization was too important to
lose completely, so Tucker cooked up the
current much simpler mechanism in order
to avoid the objections. It's not ideal for
that reason -- but Finalize would still have
been a normal subprogram that anyone
could call (what else could it have been --
the mechanism of stream attributes could
have been used instead). I don't think
there is a way that one could have
prevented user-defined calls to these
routines (even if they had a special name,
you still could have renamed an existing
subprogram to the special name).

From: Simon Wright
<simon@pushface.org>

Date: Tue, 28 Sep 2021 08:52:31 +0100
>> Deallocation is irrelevant. Finalization

is called when objects are about to be
destroyed, by any method.

> And no object may be destroyed unless
deallocated.

Well, if it's important that an allocated
object not be destroyed, don't allocate it
from a storage pool that can go out of
scope!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 28 Sep 2021 10:07:52 +0200
> Well, if it's important that an allocated

object not be destroyed, don't allocate it

from a storage pool that can go out of
scope!

That was never the case.

The case is that an object allocated in a
pool gets finalized because the access
type (not the pool!) used to allocate the
object goes out of the scope.

This makes no sense whatsoever.

Again, finalization must be tied with
[logical] deallocation. Just like
initialization is with allocation.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 28 Sep 2021 17:04:05 -0500
> Again, finalization must be tied with

[logical] deallocation. Just like
initialization is with allocation.

But it is. All of the objects allocated from
an access type are logically deallocated
when the access type goes out of scope
(and the memory can be recovered).
Remember that Ada was designed so that
one never needs to use
Unchecked_Deallocation.

I could see an unsafe language (like C)
doing the sort of thing you suggest, but
not Ada. Every object in Ada has a
specific declaration point, initialization
point, finalization point, and destruction
point. There are no exceptions.

Code Flow Control
From: Kevin Chadwick

<kevc3no4@gmail.com>
Subject: Code flow control
Date: Fri, 15 Oct 2021 08:08:42 -0700
Newsgroups: comp.lang.ada

Although surprised that pragma
No_Exception_Propagation seems to
prevent access to some exception
information, I am happy with Ada’s
exception mechanism. I have read that
exceptions should not be used for code
flow.

For Ada after perusing various threads on
this mailing list around best practice I am
considering using exceptions locally but
also have an in out variable for code flow
control at the point of use. Is that the way
with the caveat that it all depends on the
task at hand?

In Go with vscode a static checker will
warn if an error type variable is returned
without a following if error utilisation
(check usually of the form if err /= nil).

I have read that Spark has some kind of
static analysis to achieve something
similar as it forbids exceptions.

It is not the end of the world but is there
any static analyser that could do similar
for Ada. IOW save me some time or
perhaps worse whenever I have simply

omitted the check by accident, in haste or
distraction.

I'm sure I could quickly write a shell
script easily enough for a specific design
as in if keyword appears once but not
again within x lines then shout at me but I
am wondering if I am missing a tool or
better practice before I do so?

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 15 Oct 2021 19:48:06 +0200
> I have read that exceptions should not

be used for code flow.

Some people reserve exceptions for
signalling errors. I regard them as a way
to handle "exceptional" situations, i.e.
when the normal flow of control cannot
continue. For example, in a deep recursive
search, they are handy to stop the
recursion and go back to top level when
you have found what you were looking
for. Some would disagree with that.

> I am considering using exceptions
locally but also have an in out variable
for code flow control at the point of
use.

I definitely would prefer an exception, on
the ground that you can omit the check,
but you cannot ignore an exception.

> In Go with vscode a static checker will
warn if an error type variable is
returned without a following if error
utilisation (check usually of the form if
err /= nil).

An interesting idea for AdaControl,
especially if you have some funding for it
;-)

From: Jeffrey R. Carter
Date: Fri, 15 Oct 2021 19:53:06 +0200

What you're talking about is result codes.
Exceptions exist because of problems
people encountered with result codes.
Using result codes when you have
exceptions is like using conditional go-tos
when you have if statements.

So, yes, there is better practice. It's called
exceptions.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 15 Oct 2021 20:03:16 +0200

[...]

What I do wish is carefully designed
exception contracts in Ada.

Named vs Anonymous
Pointer Types
From: Simon Belmont

<sbelmont700@gmail.com>
Subject: Is this legal?
Date: Sat, 16 Oct 2021 12:00:18 -0700
Newsgroups: comp.lang.ada

I'm trying to learn the 2012 changes to
accessibility rules, e.g. aliased parameters,
additional dynamics checks, and some

30 Ada Pract ice

Volume 43, Number 1, March 2022 Ada User Journal

eliminated unnecessary typecasts. But I
am also aware of the… fluid nature of
GNATs correctness of implementing
them, and the following situation seems
dubious. In particular, when 'current' is an
anonymous access type, it compiles
without issue, but not when it's a named
access type (or when explicitly converted
to one). Does anyone know off hand
which is the correct behavior?

Thanks

-sb

procedure Main is

 subtype str5 is string(1..5);
 type s5_ptr is access all str5;

 type T is
 record
 current : access str5;
 --current : s5_ptr; -- "aliased actual has
 -- wrong accessibility"
 foo : aliased str5;
 end record;

 function F (y : aliased in out str5)
 return access str5 is
 begin
 return y'Access;
 end F;

 procedure P (x : in out T) is
 begin
 x.current := F(x.foo);
 end P;

 o : T := (current => null, foo => "Hello");

begin
 P(o);
end Main;

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sun, 17 Oct 2021 01:35:22 -0700

For information, ObjectAda v.10.2
accepts both variants (in Ada 2012 mode).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 18 Oct 2021 22:50:52 -0500
>I'm trying to learn the 2012 changes to

accessibility rules [...] Does anyone
know off hand which is the correct
behavior?

I can assure you that no one anywhere
will *ever* know "off-hand" the correct
behavior. :-) It takes quite a bit of looking
to be sure.

...

...

> function F (y : aliased in out str5)
return access str5 is

> begin

> return y'Access;

> end F;

This is always legal (we hope :-). There
should be a static (or dynamic) check on
Y when F is called that Y has an
appropriate lifetime for the result. (I can't
grok "accessibility", either. I always think
in terms of lifetimes, and then try to
translate to the wording.)

> procedure P (x : in out T) is

> begin

> x.current := F(x.foo);

> end P;

This should always be statically illegal. X
here has the lifetime of P (as the actual
lifetime is unknown). That's not long
enough regardless of how you declare
Current (since it's type is necessarily
outside of P). There is no special
accessibility rules for anonymous access
components (unlike most other cases);
they always have the accessibility (think
lifetime) of the enclosing type.

[...]

Read a long UTF-8 File,
Incrementally
From: Marius Amado-Alves

<amado.alves@gmail.com>
Subject: How to read in a (long) UTF-8 file,

incrementally?
Date: Tue, 2 Nov 2021 10:42:37 -0700
Newsgroups: comp.lang.ada

As I understand it, to work with Unicode
text inside the program it is better to use
the Wide_Wide (UTF-32) variants of
everything.

Now, Unicode files usually are in UTF-8.

One solution is to read the entire file in
one gulp to a String, then convert to
Wide_Wide. This solution is not memory
efficient, and it may not be possible in
some tasks e.g. real time processing of
lines of text.

If the files has lines, I guess we can also
work line by line (Text_IO). But the text
may not have lines. Can be a long XML
object, for example.

So it should be possible to read a single
UTF-8 character, right? Which might be
1, 2, 3, or 4 bytes long, so it must be read
into a String, right? Or directly to
Wide_Wide. Are there such functions?

Thanks a lot.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 2 Nov 2021 19:17:58 +0100
> So it should be possible to read a single

UTF-8 character, right? Which might
be 1, 2, 3, or 4 bytes long, so it must be
read into a String, right? Or directly to
Wide_Wide. Are there such functions?

You simply read a stream of Characters
into a buffer. Never ever use Wide or

Wide_Wide, they are useless. Inside the
buffer you must have 4 Characters ahead
unless the file end is reached. Usually you
read until some separator like line end.

Then you call this:

http://www.dmitry-kazakov.de/ada/
strings_edit.htm#Strings_Edit.UTF8.Get

That will give you a code point and
advance the cursor to the next UTF-8
character.

However, normally, no text processing
task needs that. Whatever you want to do,
you can accomplish it using normal String
operations and normal String-based data
structures like maps and tables. You need
not to care about any UTF-8 character
boundaries ever.

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Wed, 3 Nov 2021 00:43:02 -0700
> [...] Are there such functions?

There is a special library to process
Unicode text, see
https://github.com/AdaCore/VSS;
'contrib' directory contains
VSS.Utils.File_IO package to load file
into Virtual_String. However, attempting
to load a whole file into the memory is
usually a bad decision.

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 3 Nov 2021 08:48:58 +0000
> As I understand it, to work with

Unicode text inside the program it is
better to use the Wide_Wide (UTF-32)
variants of everything.

You can take a look at my simple lib:
https://github.com/Lucretia/uca

It can read into a large string buffer. And
can break it up into lines. There's no
Unicode consistency checks.

The lib is a bit hacky, but seems to work
for now. There's nothing more than what
I've mentioned so far.

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Thu, 4 Nov 2021 04:43:22 -0700

Great libraries, thanks.

It still seems to me that
Wide_Wide_Character is useful. It allows
to represent the character directly in the
source code e.g.

 if C = '±' then ...

And Wide_Wide_Character'Pos should
give the codepoint.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 4 Nov 2021 13:13:12 +0100
> if C = '±' then ...

If the source supports Unicode, it should
do UTF-8 as well. So, you would write

Ada Pract ice 31

Ada User Journal Volume 43, Number 1, March 2022

 if C = "±" then ...

where C is String.

> And Wide_Wide_Character'Pos should
give the codepoint.

Yes, but you need no Wide_Wide to get
an integer value and if your objective is
Unicode categorization, that is too
complicated for manual comparisons. Use
a library function [generated from
UnicodeData.txt] instead.

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 4 Nov 2021 14:30:25 +0000
> And Wide_Wide_Character'Pos should

give the codepoint.

Characters no longer exist as a thing as
one can even be represented as multiple
utf-32 code points.

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Fri, 5 Nov 2021 03:56:42 -0700

You're alluding to combining characters?

From: Simon Wright
<simon@pushface.org>

Date: Fri, 05 Nov 2021 19:55:33 +0000
> You're alluding to combining

characters?

Fun & games on macOS[1]:

> $
GNAT_FILE_NAME_CASE_SENSIT
IVE=1 gnatmake -c p*.ads

> gcc -c páck3.ads

> páck3.ads:1:10: warning: file name does
not match unit name, should be
"páck3.ads"

>

> The reason for this apparently-bizarre
message is that macOS takes the
composed form (lowercase a acute) and
converts it under the hood to what
HFS+ insists on, the fully decomposed
form (lowercase a, combining acute);
thus the names are actually different
even though they _look_ the same.

[1] https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=81114#c1

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Tue, 16 Nov 2021 03:55:05 -0800

I'm worried. I need the concept of
character, for proper text processing. For
example, I want to reference characters in
a text file by their position. Any
tips/references on how to deal with
combining characters, or any other
perturbing feature of Unicode, greatly
appreciated.

(For me, a combining character is not a
character, the combination is. Unicode
agrees, right?)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 16 Nov 2021 13:36:00 +0100
> I'm worried. I need the concept of

character, for proper text processing.

Simply ignore or reject decomposed
characters.

> For example, I want to reference
characters in a text file by their
position.

That is no problem either. There are two
alternatives:

1. Fixed font representation. Reduce
everything to normal glyphs, use string
position corresponding to the beginning
of an UTF-8 sequence.

2. Proportional font. Use a graphical user
interface like GTK. The GTK text buffer
has a data type (iterator) to indicate a
place in the buffer, e.g. when a selection
happens. These iterators are consistent
with the glyphs as rendered on the
screen and you can convert between
them and string position.

> (For me, a combining character is not a
character, the combination is. Unicode
agrees, right?)

No, Unicode disagrees, e.g. É can be
composed from E and acute accent. But it
is advised just to ignore all this nonsense
and consider:

 code point = character

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Tue, 16 Nov 2021 05:52:59 -0800
> Simply ignore or reject decomposed

characters.

Brilliant!

> 1. Fixed font representation. Reduce
everything to normal glyphs, use string
position corresponding to the beginning
of an UTF-8 sequence.

I am indeed resorting to byte position in
UTF-8 files as the character position.
Treating UTF-8 entities as the strings that
they are:-)

(Not dealing with fonts nor graphics yet,
just plain text.)

Thanks a lot.

From: Luke A. Guest
<laguest@archeia.com>

Date: Tue, 16 Nov 2021 15:25:10 +0000
> [...] I want to reference characters in a

text file by their position. [...]

You can't. The concept of character is
dead, the new concept are grapheme
clusters.

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Tue, 16 Nov 2021 09:38:13 -0800

> (For me, a combining character is not a
character, the combination is. Unicode
agrees, right?)

You can use VSS and
Grapheme_Cluster_Iterator to lookup for
grapheme cluster at given position and to
obtain position of the grapheme cluster in
the string (as well as UTF-8/UTF-16 code
units).

However, the concept of grapheme
clusters doesn't handle special cases like
tabulation stops; TAB is just a single
grapheme cluster.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 16 Nov 2021 14:23:28 -0600
> Simply ignore or reject decomposed

characters.

Unicode calls that "requiring
Normalization Form C". ("Form D" is all
decomposed characters.) You'll note that
what Ada compilers do with text not in
Normalization Form C is implementation-
defined; in particular, a compiler could
reject such text.

My understanding is that various Internet
standards also require Normalization
Form C. For instance, web pages are
supposed to always be in that format.
Whether browsers actually enforce that is
unknown (they should enforce a lot of
stuff about web pages, but generally just
try to muddle through, which causes all
kinds of security issues).

Happy Birthday, Ada!
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Subject: Happy Birthday, Ada!
Date: Fri, 10 Dec 2021 10:37:41 +0100
Newsgroups: comp.lang.ada

Born this day in 1815 and 1980. New
version on this date in 2012.

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 10 Dec 2021 11:30:11 +0000

Are new revisions always released on this
date?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 10 Dec 2021 13:36:32 +0100

No. 83, 95, and ISO/IEC 8652:2007 were
not published on Dec 10. Probably 2X
won't be, either.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Fri, 10 Dec 2021 06:23:44 -0800

A list of dates Ada 93 .. Ada 2012 can be
found here:
https://www.ada-deutschland.de/
sites/default/files/AdaTourCD/
AdaTourCD2004/Ada%20Magica/
Contents.html

32 Ada Pract ice

Volume 43, Number 1, March 2022 Ada User Journal

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 10 Dec 2021 23:28:05 -0600
> Are new revisions always released on

this date?

No. It was mostly a coincidence. We were
told that the Ada 2012 Standard would be
published in the December 15th batch of
Standards. Joyce Tokar made a request to
date it December 10th in honor of Ada's
birthday; she got a response that ISO
couldn't do that. When it actually was
published (around December 15th), we
found they had dated it December 10th as
requested. Not sure when/where/how they
changed their mind.

If it had been scheduled for, say, February
15th, such a request wouldn't make any
sense. We wouldn't want to delay the
Standard for months just so it can have a
cool date.

Big_Integer Has a Limit of
300 Digits?
From: Michael Ferguson

<michaelblakeferguson@gmail.com>
Subject:

Ada.Numerics.Big_Numbers.Big_Integer
has a limit of 300 digits?

Date: Tue, 21 Dec 2021 21:57:08 -0800
Newsgroups: comp.lang.ada

I just started using the Big_Integer library
that is a part of the 202X version of Ada.

It is repeatedly described as an "arbitrary
precision library" that has user defined
implementation.

I was under the impression that this
library would be able to infinitely
calculate numbers of any length, but there
is clearly a default limit of 300 digits.

Is there any way to get rid of this
problem?

[Example code omitted, as it is not
referenced in later discussion. —arm]

From: Mark Lorenzen
<mark.lorenzen@gmail.com>

Date: Wed, 22 Dec 2021 00:25:26 -0800

How did you determine the limit of 300
digits? I see nothing in your example, that
would imply such a limit. Are you sure
that you are not reaching a line length
limit in Text_IO or maybe a limit in the
Image attribute?

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Wed, 22 Dec 2021 03:14:12 -0800

There is a limit

Bignum_Limit : constant := 200;

in System.Generic_Bignums body,
function Normalize, lines 1100ff.

I do not see an implementation advice,
implementation permission or

implementation requirement about such
limits in A.5.5, A.5.6.

But there is somewhere in the RM a
paragraph stating that implementation
may pose limits on certain features. I just
cannot find the place in the RM.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Wed, 22 Dec 2021 03:32:23 -0800

See RM 1.1.3(2).

I guess this limit is just a transient
arbitrary limit until Ada 2022 is
standardized.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Wed, 22 Dec 2021 08:04:29 -0800
> Bignum_Limit : constant := 200;

RM 2.2(14) limits the line length and the
length of lexical elements to 200.

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 22 Dec 2021 17:01:56 +0000

What are you doing that requires that
number of digits?

From: Michael Ferguson
<michaelblakeferguson@gmail.com>

Date: Wed, 22 Dec 2021 09:27:56 -0800
> What are you doing that requires that

number of digits?

I am working on ProjectEuler.net problem
number 48.

The questions asks you to sum the
numbers n^n for (2 <= n <= 1000) and
determine what the last ten digits of this
number are.

Obviously, this is quite a trivial problem
when using any arbitrary precision
library.

I had incorrectly determined that 700^700
had 300 digits, in fact 700^700 =
3.7E1991.

However, my code strictly breaks when
the loop range is set to 683, which
683^683 = 8.12E1935.

So, it is interesting that the Big_Integer
type works with numbers of just under
2000 digit length despite Bignum_Limit :
constant := 200.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 22 Dec 2021 19:37:45 +0200
>> Bignum_Limit : constant := 200;

> RM 2.2(14) limits the line length and
the length of lexical elements to 200.

To express it more clearly, RM 2.2(14)
requires implementations to support lines
and lexical elements of /at least/ 200
characters, but /allows/ implementations
to support longer lines and lexical
elements.

I'm not sure if GNAT supports more than
200 characters, though. And of course an
Ada program that uses more than 200
characters may not be portable to
compilers that support only 200.

But I don't see any direct logical
connection to the number of digits that
Big_Integers can support. While one
cannot write a big-number literal longer
than a line or longer than the maximum
length of a lexical element, that should
not directly limit the size of big-number
values in computations.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 22 Dec 2021 19:48:42 +0200
> I was under the impression that this

library would be able to infinitely
calculate numbers of any length,

I have the same impression (up to
Storage_Error, of course).

How does it break? Some exception, or
something else?

Mark Lorenzen suggested in an earlier
post that the limit might be in the
Big_Integer'Image function. The package
Ada.Numerics.Big_Numbers.Big_Integer
s has some other output operations that
you could try:

 function To_String
 (Arg : Valid_Big_Integer; ...) return String;
 procedure Put_Image
 (Buffer : ... ; Arg: in Valid_Big_Integer);

Of course those might be internally linked
to the 'Image function and have the same
possible limitation.

From: Michael Ferguson
<michaelblakeferguson@gmail.com>

Date: Wed, 22 Dec 2021 10:02:41 -0800

[...]

Niklas also gave me an epiphany as the
exact error my program gives for the
upper limit is

raised STORAGE_ERROR :
Ada.Numerics.Big_Numbers.Big_Integer
s.Bignums.Normalize: big integer limit
exceeded

I had thought that since the end of this
error said big integer limit exceeded it
was a problem with the library, but now
I'm starting to think I need to get GNAT
to allocated more memory for the
program.

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>

Date: Wed, 22 Dec 2021 17:43:46 +0000

Does Ada's Big_Integer type work with
modular ranged types?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 22 Dec 2021 21:05:18 +0200

[...]

Ada Pract ice 33

Ada User Journal Volume 43, Number 1, March 2022

Modular types are not connected to
Big_Integers, except that the particular
problem you are trying to solve could be
computed "mod 10**10" because it asks
for only the last 10 digits. However, the
Big_Integers package does not directly
support computations "mod" something
(perhaps this should be an extension in a
later Ada standard, because such
computations are quite common).

Using "mod 10**10" operations in
solving the problem would limit the
number of digits in all intermediate results
drastically.

> Niklas also gave me an epiphany as the
exact error my program gives for the
upper limit is

>
Ada.Numerics.Big_Numbers.Big_Integ
ers.Bignums.Normalize: big integer
limit exceeded

[...] the very specific exception message
("big integer limit exceeded") suggests
that this exception is not a typical
Storage_Error (say, heap or stack
exhaustion) but may indeed stem from
exceeding some specific limit in the
current Big_Integer implementation in
GNAT.

The size of your problem, with only a few
thousand digits, suggests that heap
exhaustion is unlikely to happen.
However, if the Big_Integer computations
are internally recursive, and use stack-
allocated local variables, stack overflow
could happen, so the first thing to try
would be to increase the stack size.
Unfortunately, for the main subprogram
that has to be done with some compiler or
linker options which I don't recall now.
(We should really extend pragma
Storage_Size to apply also to the
environment task, by specifying it for the
main subprogram!)

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 22 Dec 2021 12:31:32 -0800
> I am working on ProjectEuler.net

problem number 48. ...

The thing about Euler problems is they
usually want you to figure out a clever
math trick to get to the solution, rather
than using brute calculation. In the case of
this problem, you want to reduce all the
intermediate results mod 1e10 (which fits
in an int64 easily, though not quite in an
int32). That gets rid of the need for
bignums.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 22 Dec 2021 20:34:20 +0000
> There is a limit

> Bignum_Limit : constant := 200;

> in System.Generic_Bignums body,
function Normalize, lines 1100ff.

This is the maximum length of a
Digit_Vector, where

 subtype SD is Interfaces.Unsigned_32;
 -- Single length digit
 type Digit_Vector is array
 (Length range <>) of SD;
 -- Represent digits of a number
 (most significant digit first)

I think this should give a maximum value
of ~10**2000.

I printed out sum'image'length; the last
value before the exception was 1937.

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 23 Dec 2021 08:31:11 +0000

Is mod overloadable?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 23 Dec 2021 09:54:34 +0100

It is as any operator.

P.S. For large numbers one needs rather
full division than separate /, mod, rem.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Thu, 23 Dec 2021 03:41:13 -0800
> However, the Big_Integers package

does not directly support computations
"mod"

It does A.5.6(18/5).

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 23 Dec 2021 14:18:34 +0200

Yes, there is a "mod" operator for
Big_Integer. My point was that there are
no Big_Integer operations, such as
multiplication, that are intrinsically
modular in the same way as the
operations for modular types are. So the
only way to perform a modular
multiplication of Big_Integers is to first
multiply the numbers in the usual way,
producing a possibly very large product,
and then apply "mod" to reduce that
product.

In my imperfect understanding,
intrinsically modular big-number
computations can be much more efficient
than such post-computation applications
of "mod", at least if the modulus is not
itself a big number.

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>

Date: Thu, 23 Dec 2021 14:01:47 +0000

Yes, there are efficient algorithms for "x *
y mod n" so almost all "big num" libraries
provide a function to do it. Ada has the
type system for the mod operation to be
explicit in the type.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 23 Dec 2021 16:48:17 +0100

As it appears from the rest of the
discussion that there is a limit in the

implementation of the pkg, you could try
using PragmARC.
Unbounded_Numbers.Integers

https://github.com/jrcarter/PragmARC/
blob/Ada-12/pragmarc-
unbounded_numbers-integers.ad

where the implementation restricts a
number to Integer'Last "digits" or the
available heap memory, whichever is less.

Note that with recent versions of GNAT
for 64-bit processors, the "digits" will be
64 bits.

Pure vs Preelaborate
From: Simon Belmont

<sbelmont700@gmail.com>
Subject: Re: Ada Pure or Preelaborate or ?

in Adare_net
Date: Mon, 3 Jan 2022 17:11:36 -0800
Newsgroups: comp.lang.ada
> I and a friend created an Ada network

lib where, from the begining, we tried
very hard to make It a Ada Pure.

> From the examples dir, the lib worked
as expected (in gcc-10.2 gcc-11.2 and
gcc-12). To our surprise, what most
caught the attention of the group's
friends was the fact that the lib was Ada
Pure and if that was correct.

> For this reason, if really 'is' pure, not
pure, preelaborate or what (?),
pleeeeeeaaase, we ask the group's Ada
Language Lawyers to help analyze and
suggest modifications if necessary.

> link:
https://gitlab.com/daresoft/network/ada
re_net/-/tree/202x

> for Ada version use 2012 and or 202x.

It seems to be mostly just a thin binding
to a bunch of C functions, so the
applicability of any Ada feature is mostly
a moot point. The Ada compiler has no
control or visibility into the C domain, so
while on the one hand your packages are
technically Pure, on the other hand the C
functions can violate those "purity rules"
all they want, which might be misleading
to users expecting otherwise. You don't
use 'Unchecked_Access either, but
obviously that doesn't mean the C
functions are somehow prevented from
creating dangling pointers. Personally, I
would have the interfaces reflect the
reality of the actual behavior (which in
the case of C code you don't control, is
usually assume-the-worst).

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Tue, 4 Jan 2022 05:52:41 -0800
> For this reason, if really 'is' pure, not

pure, preelaborate or what (?)

I recommend reading this:
https://stackoverflow.com/questions/
19353228/when-to-use-pragma-pure-
preelaborate

34 Ada Pract ice

Volume 43, Number 1, March 2022 Ada User Journal

If your units are declared as Pure, the
compiler considers that they have no side
effects and can decide to call the sub-
programs only once and cache the result,
or even not call the sub-program if the
result is not used after.

From: Daniel Norte Moraes
<danielcheagle@gmail.com>

Date: Wed, 5 Jan 2022 08:11:52 -0800
> It seems to be mostly just a thin binding

to a bunch of C functions, so the
applicability of any Ada feature is
mostly a moot point. [...]

The C pointers are only created in
c_initialize_socket.c (c_init_address())
and data pointed copied

to an Ada array, and then immediately
free by c part. This is the only time there
is a dynamic allocation.

We managed to make libadare_net very
close to 100% static allocation!

Because of this, there aren’t dangling
pointers.

There is still the problem of omitting the
execution of subprograms by the compiler
by pure packages.

Would 'preelaborate' solve this?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 5 Jan 2022 17:40:04 -0600

Yes. The permission to omit calls only
applies to Pure (see 10.2.1(18/3)).
http://www.ada-

auth.org/standards/2xaarm/html/AA-10-2-
1.html#p18. (I gave a reference to the Ada
2022 AARM, but this rule hasn't changed
in spirit since it was introduced in Ada
95.)

From: Daniel Norte Moraes
<danielcheagle@gmail.com>

Date: Thu, 6 Jan 2022 12:39:21 -0800
> Yes. The permission to omit calls only

applies to Pure (see 10.2.1(18/3)).

Thanks!

We will change the packages in
LibAdare_Net to 'preelaborate'. :-) and
continue from here.

 35

Ada User Journal Volume 43, Number 1, March 2022

Conference Calendar
Dirk Craeynest
KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked � is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with � denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. Where available, the status of events is
indicated with the following markers: "(v)" = event is held online, "(h)"= event is held in a hybrid form (i.e. partially online).

2021

April 02-06
(v)

IEEE/ACM International Symposium on Code Generation and Optimization (CGO'2022), Seoul,
South Korea. Co-located with PPoPP, CC and HPCA. Topics include: a wide range of optimization and
code generation techniques and related issues at the interface of hardware and software; from purely
static to fully dynamic approaches, from pure software-based methods to specific architectural features
and support for code generation and optimization.

� April 02-06
(v)

27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP'2022), Seoul, South Korea. PPoPP'2022 was postponed from 12-16 February to 2-6 April.
Topics include: all aspects of parallel programming, including theoretical foundations, techniques,
languages, compilers, runtime systems, tools, and practical experience; techniques and tools that improve
the productivity of parallel programming.

April 02-07 25th European Joint Conferences on Theory and Practice of Software (ETAPS'2022). Munich,
Germany. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), TACAS (Tools and Algorithms for the Construction and Analysis of Systems).

 � April 02-03 VerifyThis Verification Competition 2022. Topics include: no restrictions on
programming language and verification technology used.

April 04-13
(v)

15th IEEE International Conference on Software Testing, Verification and Validation (ICST'2022).
Valencia, Spain.

April 05-06
(v)

31st ACM SIGPLAN International Conference on Compiler Construction (CC'2022), Seoul, South
Korea. Co-located with CGO, HPCA, and PPoPP. Topics include: processing programs in the most
general sense (analyzing, transforming or executing input that describes how a system operates,
including traditional compiler construction as a special case); compilation and interpretation techniques
(including program representation, analysis, and transformation; code generation, optimization, and
synthesis; the verification thereof); run-time techniques (including memory management, virtual
machines, and dynamic and just-in-time compilation); programming tools (including refactoring editors,
checkers, verifiers, compilers, debuggers, and profilers); techniques, ranging from programming
languages to micro-architectural support, for specific domains such as secure, parallel, distributed,
embedded or mobile environments; design and implementation of novel language constructs,
programming models, and domain-specific languages.

April 09-13 13th ACM/SPEC International Conference on Performance Engineering (ICPE'2022). Beijing,
China.

April 23
(h)

2nd International Conference on Code Quality (ICCQ'2022). Innopolis, Kazan, Russia. Topics
include: static analysis, program verification, bug detection, and software maintenance.

April 25-29
(v)

37th ACM Symposium on Applied Computing (SAC'2022). Brno, Czech Republic.

36 Conference Calendar

Volume 43, Number 1, March 2022 Ada User Journal

 April 25-29
(v)

17th Track on Dependable, Adaptive, and Secure Distributed Systems
(DADS'2022). Topics include: Dependable, Adaptive, and secure Distributed Systems
(DADS); modeling, design, and engineering of DADS; foundations and formal methods
for DADS; etc.

 April 25-29
(v)

Embedded Systems Track (EMBS'2022). Topics include: the application of both novel
and well-known techniques to the embedded systems development.

 April 25-29
(v)

Track on Software Engineering (SE'2022). Topics include: developing high-quality
software applications more effectively and efficiently; architecture, framework, and
design patterns; standards; software maintenance and evolution; software testing and
verification; mining software repositories; quality assurance; verification, validation,
testing, and analysis; safety, security, privacy, and risk management; dependability and
reliability; fault tolerance and availability; formal methods and theories; component-
based development and reuse; empirical studies and industrial best practices;
applications and tools; etc.

May 03-06
(v)

15th Cyber-Physical Systems and Internet of Things Week (CPS Week'2022). Milan, Italy. Event
includes: 5 top conferences, HSCC, ICCPS, IPSN, RTAS, and IoTDI, multiple workshops, tutorials,
competitions and various exhibitions from both industry and academia.

 � May 04-06
(v)

28th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS'2022). Topics include: systems research related to embedded systems and time-
sensitive systems; original systems, applications, case studies, methodologies, and
algorithms that contribute to the state of practice in design, implementation, verification,
and validation of embedded systems or time-sensitive systems.

 May 04-06
(v)

13th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS'2022). Topics include: software platforms and systems for CPS; specification
languages and requirements; design, optimization, and synthesis; testing, verification,
certification; security, trust, and privacy in CPS; applications of CPS technologies; tools,
testbeds, demonstrations, and deployments; etc.

� May 17-18
(h)

25th IEEE International Symposium On Real-Time Distributed Computing (ISORC'2022).
Västerås, Sweden. Topics include: all aspects of object/component/service-oriented real-time distributed
computing (ORC) technology, such as distributed computing, internet of things (IoT), real-time
scheduling theory, resilient cyber-physical systems, autonomous systems (e.g., autonomous driving),
optimization of time-sensitive applications, applications based on ORC technology (e.g., medical
devices, intelligent transportation systems, industrial automation systems and industry 4.0, smart grids,
...), etc.

May 21
(v)

28th International Symposium on Model Checking of Software (SPIN'2022), Chicago, Illinois, USA.
Topics include: automated tool-based techniques for the analysis of software as well as models of
software for the purpose of verification and validation, formal specification languages, design-by-
contract, model checking, verifying compilers, abstraction and symbolic execution techniques, static
analysis and abstract interpretation, combination of verification techniques, modular and compositional
verification techniques, combination of static and dynamic analyses, case studies of interesting systems
or with interesting results, engineering and implementation of software verification and analysis tools,
formal methods of education and training, etc.

May 21-29 44th International Conference on Software Engineering (ICSE'2022). Pittsburgh, Pennsylvania,
USA. Topics include: the full spectrum of Software Engineering.

 May 9
(v)

4th International Workshop on Robotics Software Engineering (RoSE'2022).

 May 22-23
(h)

5th International Conference on Technical Debt (TechDebt'2022).

 May 22-23
(h)

10th International Conference on Formal Methods in Software Engineering
(FormaliSE'2022). Topics include: approaches, methods and tools for verification and
validation; correctness-by-construction approaches for software and systems
engineering; application of formal methods to specific domains, e.g., autonomous,
cyber-physical, intelligent, and IoT systems; scalability of formal methods applications;

Conference Calendar 37

Ada User Journal Volume 43, Number 1, March 2022

integration of formal methods within the software development lifecycle; model-based
software engineering approaches; formal methods in a certification context; formal
approaches for safety and security; usability of formal methods; guidelines to use formal
methods in practice; case studies developed/analyzed with formal approaches;
experience reports on the application of formal methods to real-world problems; etc.

May 24-27
(h)

14th NASA Formal Methods Symposium (NFM'2022). Pasadena, California, USA. Topics include:
challenges and solutions for achieving assurance for critical systems, such as advances in formal methods
(interactive and automated theorem proving, model checking, static analysis, runtime verification,
automated testing, design for verification and correct-by-design techniques, ...), integration of formal
methods techniques, formal methods in practice (experience reports of application of formal methods on
real systems, such as autonomous systems, safety-critical systems, concurrent and distributed systems,
cyber-physical, embedded, and hybrid systems, ...; use of formal methods in education; reports on
negative results in the development and the application for formal methods in practice; usability of
formal method tools, and their infusion into industrial contexts; ...).

� June 01-02 International Conference on Reliability, Safety and Security of Railway Systems (RSSRail'2022).
Paris, France. Topics include: building critical railway applications and systems; safety in development
processes and safety management; system and software safety analysis; formal modelling and
verification techniques; system reliability; validation according to the standards; tool and model
integration, toolchains; domain-specific languages and modelling frameworks; model reuse for
reliability, safety and security; etc.

June 4
(v)

Ada-Belgium 2022 General Assembly. Belgium. Deadline for registration: June 3,
2022, 16:00.

� June 06-10
(h)

36th European Conference on Object-Oriented Programming (ECOOP'2022). Berlin, Germany.
Topics include: all practical and theoretical investigations of programming languages, systems and
environments; innovative solutions to real problems as well as evaluations of existing solutions. Deadline
for submissions: April 1-30, 2022 (workshop papers).

� June 07-08
(h)

30th International Conference on Real-Time Networks and Systems (RTNS'2022). Paris, France.
Topics include: real-time application design and evaluation (automotive, avionics, space, railways,
telecommunications, process control, ...), real-time aspects of emerging smart systems (cyber-physical
systems and emerging applications, ...), real-time system design and analysis (real-time tasks modeling,
task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET) analysis,
security, ...), software technologies for real-time systems (model-driven engineering, programming
languages, compilers, WCET-aware compilation and parallelization strategies, middleware, Real-time
Operating Systems (RTOS), ...), formal specification and verification, real-time distributed systems, etc.

June 07-10
(h)

17th International Conference on integrated Formal Methods (iFM'2022). Lugano, Switzerland. .
Topics include: recent research advances in the development of integrated approaches to formal
modelling and analysis; all aspects of the design of integrated techniques, including language design,
verification and validation, automated tool support and the use of such techniques in software
engineering practice.

June 13-15
(h)

26th International Conference on Empirical Assessment and Evaluation in Software Engineering
(EASE'2022). Gothenburg, Sweden. Topics include: assessing the benefits/costs associated with using
chosen development technologies; empirical studies using qualitative, quantitative, and mixed methods;
evaluation and comparison of techniques and models; modeling, measuring, and assessing product
and/or process quality; replication of empirical studies and families of studies; software technology
transfer to industry; etc.

June 13-17
(v)

25th Ibero-American Conference on Software Engineering (CIbSE'2022). Cordoba, Argentina.
Topics include: formal methods applied to software engineering (SE), mining software repositories and
software analytics, model-driven SE, software architecture, software dependability, SE education and
training, SE for emerging application domains (e.g., cyber-physical systems, IoT, ...), SE in industry,
software maintenance and evolution, software process, software product lines, software quality and
quality models, software reuse, software testing, technical debt management, etc.

38 Conference Calendar

Volume 43, Number 1, March 2022 Ada User Journal

June 14-17
(h)

26th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2022 aka Ada-Europe 2022), Ghent, Belgium. Sponsored by Ada-
Europe. In cooperation with ACM SIGAda, SIGBED, SIGPLAN, the Ada Resource
Association (ARA), and Ghent University. Deadline for early registration: May 20, 2022.

 � June 17 7th Workshop on Challenges and New Approaches for Dependable and Cyber-
Physical System Engineering (De-CPS'2022). Topics include: artificial intelligence
for CPS; model-based system engineering; transport and mobility, vehicle of the
future; Industry 4.0 / 5.0; IoT, edge and cloud Continuum; safety and (cyber)security;
advanced platforms; human/machine interaction; timing sensitive networks; 5G
networks. Deadline for submissions: April 29, 2022 (papers).

 June 17 ADEPT workshop, AADL by its practitioners (ADEPT'2022). Topics include:
current projects in the field of design, implementation and verification of critical
systems where AADL is a first citizen technology. Deadline for submissions: May 20,
2022 (abstracts).

June 15-17
(h)

20th International Conference on Software and Systems Reuse (ICSR'2022). Montpellier, France.
Theme: "Reuse and Software Quality". Topics include: new and innovative research results and
industrial experience reports dealing with all aspects of software reuse within the context of the modern
software development landscape, such as technical aspects of reuse (model-driven development,
variability management and software product lines, domain-specific languages, new language
abstractions for software reuse, software composition and modularization, ...), software reuse in industry
(reuse success stories, reuse failures and lessons learned, reuse obstacles and success factors, return on
Investment studies), etc. Deadline for submissions: April 15, 2022 (Industry and Tool-Demo track), April
19, 2022 (doctoral symposium).

June 20-22 17th International Conference on High Performance and Embedded Architecture and
Compilation (HiPEAC'2022), Budapest, Hungary. HiPEAC'2022 was postponed from 17-19 January to
20-22 June. Topics include: computer architecture, programming models, compilers and operating
systems for embedded and general-purpose systems. Deadline for early registration: May 15, 2022.

July 05-08 Software Technologies: Applications and Foundations (STAF'2022), Nantes, France. Deadline for
submissions: May 14, 2022 (workshop papers). Deadline for early registration: May 31, 2022.

� July 07-08 15th International Symposium on High-Level Parallel Programming and applications
(HLPP'2022), Porto, Portugal. Topics include: high-level parallel programming, its tools and
applications, such as high-level programming and tools, automatic code generation for parallel
programming, model-driven software engineering with parallel programs, high-level programming
models for heterogeneous/hierarchical platforms, applications of parallel systems using high-level
languages and tools, formal models of timing and real-time verification for parallel systems, etc.
Deadline for submissions: May 6, 2022. Deadline for early registration: June 8, 2022.

� August 22-26 28th International European Conference on Parallel and Distributed Computing (Euro-Par'2022).
Glasgow, Scotland, UK. Topics include: all flavors of parallel and distributed processing, such as
compilers, tools and environments, scheduling and load balancing, theory and algorithms for parallel
and distributed processing, parallel and distributed programming, interfaces, and languages, multicore
and manycore parallelism, etc. Deadline for submissions: May 20, 2022 (workshop papers).

� August 23-25
(h)

28th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'2022). Taiwan. Deadline for submissions: April 8, 2022 (abstracts), April 15,
2022 (papers).

September 04-07
(h)

17th Federated Conference on Computer Science and Information Systems (FedCSIS'2022). Sofia,
Bulgaria. Deadline for submissions: November 21, 2022 (technical sessions), May 10, 2022 (papers),
June 7, 2022 (position papers).

September 12-14 15th International Conference on the Quality of Information and Communications Technology
(QUATIC'2022). Talavera de la Reina, Spain. Topics include: all quality aspects in ICT systems
engineering and management; related to the specification, design, development, operation, maintenance
and evolution of ITC systems; quality in ICT process, product, and applications domains; practical
studies; etc.

Conference Calendar 39

Ada User Journal Volume 43, Number 1, March 2022

� September 14-16 27th International Conference on Formal Methods for Industrial Critical Systems (FMICS'2022).
Warschaw, Poland. Part of CONFEST'2022. Topics include: case studies and experience reports on
industrial applications of formal methods, focusing on lessons learned or identification of new research
directions; methods, techniques and tools to support automated analysis, certification, debugging,
descriptions, learning, optimisation and transformation of complex, distributed, real-time, embedded,
mobile and autonomous systems; verification and validation methods that address shortcomings of
existing methods with respect to their industrial applicability (e.g., scalability and usability issues);
impact of the adoption of formal methods on the development process and associated costs; application
of formal methods in standardisation and industrial forums. Deadline for submissions: May 5, 2022
(abstracts), May 26, 2022 (papers).

September 19-23 16th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2022). Helsinki, Finland. Deadline for submissions: April 25, 2022 (abstracts of technical papers
and emerging results and vision papers), May 2, 2022 (technical papers and emerging results and vision
papers), June 22, 2022 (Doctoral Symposium), June 30, 2022 (Registered Reports track), July 7, 2022
(Journal-First papers), August 13, 2022 (Industry Forum).

October 03-06
(v)

29th IEEE Software Technology Conference (STC'2022). Internet. Topics include: software
engineering for emerging systems; software testing, testability, and assurance; cybersecurity and
information assurance; agile software development; challenges and opportunities in SW & systems
development processes; etc. Deadline for submissions: June 3, 2022 (abstracts, full papers).

October 07-14
(h)

Embedded Systems Week 2022 (ESWEEK'2022), Shanghai, China. Includes CASES'2022
(International Conference on Compilers, Architectures, and Synthesis for Embedded Systems),
CODES+ISSS'2022 (International Conference on Hardware/Software Codesign and System Synthesis),
EMSOFT'2022 (International Conference on Embedded Software). Deadline for submissions: April 7,
2022 (Journal Track full papers), April 16, 2022 (workshops, tutorials, education class, brainstorming
sessions, breakout sessions), April 30, 2022 (special sessions), May 27, 2022 (MEMOCODE abstracts,
i.e. International Conference on Formal Methods and Models for System Design), June 1, 2022 (student
competition proposals), June 3, 2022 (MEMOCODE papers), June 11, 2022 (industry papers, Industry
Challenge pitches, Work-in-Progress (WiP) papers, Ph.D. Forum).

� October 14 ACM SIGAda High Integrity Language Technology International Workshop on Supporting a
Rigorous Approach to Software Development (HILT'2022), Ann Arbor, Michigan, USA. Co-located
with ASE'2022. Sponsored by ACM SIGAda. Topics include: practical use of High Integrity languages,
technologies, and methodologies that enable expedited design and development of software-intensive
systems; practical use of formal methods at industrial scale; IDE-support for formal methods; model-
level analysis tools for systems like SysML, AADL, Lustre, or Simulink; continuous integration and
deployment based on advanced static analysis tools; safety-oriented programming language features;
qualification of language tools for critical systems use; etc. Deadline for submissions: July 1, 2022.

November 15-17 24th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS'2022), Clermont-Ferrand, France. Topics include: concurrent and distributed computing
(foundations, fault-tolerance, and security); distributed, concurrent, and fault-tolerant algorithms;
synchronization protocols; formal methods, validation, verification, and synthesis; etc. Deadline for
paper submissions: April 15, 2022 (1st deadline), August 5, 2022 (2nd deadline).

� December 05-08 43rd IEEE Real-Time Systems Symposium (RTSS'2022), Houston, Texas, USA. Topics include:
addressing some form of real-time requirements such as deadlines, response times or delay/latency.
Deadline for submissions: May 15, 2022 (TCRTS award nominations), May 26, 2022 (papers).

� December 05-10 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2022), Auckland, New Zealand. Deadline for submissions: May 1, 2022
(workshops), September 1, 2022 (workshop papers). Deadline for early registration: September 18, 2022.

December 10

Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2023

January 16-18 18th International Conference on High Performance and Embedded Architecture and

Compilation (HiPEAC'2023), Toulouse, France. Topics include: software development for high

40 Conference Calendar

Volume 43, Number 1, March 2022 Ada User Journal

performance parallel systems; tools for compilation, evaluation, optimization of high performance
parallel systems (compiler support, tracing, and debugging for parallel architectures, ...); embedded real-
time systems, mixed criticality system support, dependable systems, ...; software support for embedded
architectures (tracing and real-time analysis of embedded applications, runtime software); etc. Deadline
for submissions: June 1, 2022 (workshops, tutorials).

March 06-10 25th International Symposium on Formal Methods (FM'2023), Lübeck, Germany. Deadline for
submissions: June 10, 2022 (workshops), July 1, 2022 (tutorials).

April 22-27 26th European Joint Conferences on Theory and Practice of Software (ETAPS'2023), Paris, France.
Events include: ESOP (European Symposium on Programming), FASE (Fundamental Approaches to
Software Engineering), FoSSaCS (Foundations of Software Science and Computation Structures),
TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline for
submissions: May 20, 2022 (satellite events).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Forthcoming Events 41

Ada User Journal Volume 43, Number 1, March 2022

HILT’22 CALL FOR PAPERS

About the conference
This is the seventh in the HILT series of conferences and workshops focused on the use of High Integrity Language
Technology to address challenging issues in the engineering of highly complex critical software systems. HILT is organized
by ACM SIGAda, in cooperation with Ada-Europe.
High Integrity Language Technologies have been tackling the challenges of building efficient, safe, reliable software for
decades. Critical software as a domain is quickly expanding beyond embedded real-time control applications to the increasing
reliance on complex software for the basic functioning of businesses, governments, and society in general.
For its 2022 edition, HILT will be a workshop of the 37th IEEE/ACM International Conference on Automated Software
Engineering, ASE’2022. The workshop will be held on October 14th 2022.

Topics
HILT 2022 will focus on the increasing synergies between formal methods (theorem provers, SAT, SMT, etc.), advanced
static analysis (model checking, abstract interpretation), software design and modeling, and safety-oriented languages. From
separate fields of research, we now observe a stronger interconnection between formal methods, advanced analytics,
modeling and design of software, and safety features in programming languages. Programming languages for safety-critical
systems now routinely integrate theorem proving capabilities like C/ACSL or Ada/SPARK2014. Theorem provers such as
Coq, Lean, or Isabelle have established themselves as a viable strategy to implement compilers or properly define the
semantics of domain-specific languages. Tools for verifying modeling languages such as AADL, Lustre, and Simulink are
becoming more widely available, and with the emergence of the Rust language and the release of Ada 2022, safety is rising to
the top of concerns for critical systems developers.

The HILT'2022 workshop seeks to explore ways High Integrity Language Technologies leverage recent advances in practical
formal methods and language design to deliver the next generation of safety-critical systems.

Call for Papers and Extended Abstract
This workshop is focused on the practical use of High Integrity languages, technologies, and methodologies that enable
expedited design and development of software-intensive systems.
Key areas of interest include experience and research into:

� Practical use of formal methods at industrial scale
� IDE-support for formal methods
� Model-level analysis tools for systems like SysML, AADL, Lustre, or Simulink
� Continuous Integration and Deployment based on advanced static analysis tools
� Safety-Oriented Programming Language features
� Qualification of Language Tools for critical systems use

The workshop accepts either short abstracts (2-3 pages) for presentation, or full papers (up to 8 pages). Submissions should
conform, at time of submission, to the ACM Proceedings Template: https://www.acm.org/publications/proceedings-template.

The workshop proceedings will be jointly published in the ACM Ada Letters and Ada-Europe’s Ada User Journal. Authors of
accepted papers will be invited to contribute to a special issue of the Springer Journal on Software and Tools for Technology
Transfer (STTT).

Conference Website: https://conf.researchr.org/home/hilt-2022
Submission Deadline: July, 1 2022
Notification to authors: August, 1 2022
Workshop date: October, 14th 2022

Tentative list of Program Committee members
� Robert Bocchino (NASA JPL, US)
� Claire Dross (AdaCore, FR)
� Florian Gilcher (Ferrous Systems, DE)
� John Hatcliff (KSU, US)
� Laura Humphrey (AFRL, US)
� John Kassie (Collins Aerospace, US)
� Nikolai Kosmatov (CEA List, FR)

� Nicholas Matsakis (AWS, US)
� Sara Royuela, (Barcelona SC, ES)
� Ina Schaefer, (TU Braunschweig, DE)
� Alok Srivastava, (SAIC Inc.m US)
� Cesare Tinelli, (Univ. Iowa, US)
� Joyce Tokar, (Raytheon, US)
� Uwe Zimmer (ANU, AU)

www.cambridge.org/alerts
For the latest in your fi eld

Programming�in�Ada�2012�with
a�Preview�of�Ada�2022
�nd�������	
�������	�
���������	
����
���
�	�����

��������	���
����
��������
���
���������
����������
����
�����������	���������

�����	���������������
�������
��������	���
���
����������������
�������

� ��

��
���
���	�����!���
�"��������	��
��
������#��������!��	
�
����������	#��������
	�����
���
���
��������

� �
������
����	����

�"�� ��	$�������� ���
���
����������� ����	����	��

����
�	���������
�������	�	�����	���%��

� ������	!�
�#���������������������	�
�����	�������
	��

��
����������

��
��������
�"���������&���
����
����
 �
�#���&��� �����
�&��������������� 	�����	����������������������	����������
�������
������
#
�������!���
���
�	�"�����
�����

�&�����		�
���
�����
�"��������	��
��
�
����#����	��
�"��������	���
������� ��������

������������
���	����
 ���������������������	#

���
�����������������	������������	���������������������	��������
������	���������	����
��#$%����	��$����+���6��������	��7�����8��#���	��%�6�����������8��#����9�8���#�#�	��������
��� �%8����?#�����$������@��K�Q���%���W%���Y�����%����W$����Z����	���%�������������[������W���	�
���������\���Q$������	��������������]����6$��8��#���������������W$�������8��#�����W%��	
������������������^?����8�����������������`�8����	��$��������W$�����+�������%%�����������
���8��#�+��j����	�%����`�	�����7���6q��������	����$��8��##�	8���@���Q��$���	����Y�
��	���������Z��|�#������W$�����[������#�����~����W$�����\����	��������]��^��`�	8�������6q���
����	�������?	�����������^��`�	8����?	����������8��#�7����$���������������������#$%���	8
�?������W���+���������	���%�6���W�����8��#�@����%��
�������7����	���	���%�6���W���@�
�	�������	8�����8��#�Y���%�W�	8�$��%����Y��^?���$����%�~����		�Q�����Z��
�	�%����$$�	��Q���
j��������
�������������$$�	��Q�����%�����W���$$�	��Q�����W	��Q���$$�	��Q�����	�������	8
�����]�����	�
��������Q�����������6%��8��$?W���	��Q�

�
���������
�77�Q��[[�##��\\�$$

��$��6��`�\Z[���]]\��[�+7��
�
����	���
��� ����������
���

�[7�\\ �Y+�Z7
���]�]] �[��@]

2�% Discount on this title
Expires at 31/07/22

���#�����	���#����	�������
���������������	���
��	��
�!���
�!�"#�
�%���������������	��������$&���

����?��?�����	����#�%��%W�6��������	��?���
�$����%�������	����?����%����������8��##�	8�
�	��������Q�����?	����	����	����������?��
������������	�
�������	���������	�#�%W�
������]�����
��?�6��?���8�����	����8������?	�
����	������	�?����6�%��W�����Q$%��	�	�
�����
����������	���
�W��?���#�`����?�#�6��?�
�##������%W��	������	��6%���	��
�##������%W����6%���6�����������?��?�%$��%�
��	��Q���	��
���W��Q�#$%���?��$������������
��#�#6�������?��8���$��?���#��	���	���?��
����%�	8��8�����	��������?	�`	�
���?���	��
�	����������
?W��?������������	�����$����
�?�W������6���?�����#������%
�W��6���?��
6�����������	8��6�����?��#�	�������?���W$���%�
%�	8��8������8	����#�#�#6���
�������
�6�������������?��6�8�$��������	��?�
��?��
	�
���������������	����?�������%%�%�	8��8���
�	��?�
������	�6�	������?��$��8��##����
6��%��	8��������%��$$%������	���	������
�����^��`���^�������
����
�����	���	���
����	
������	���
�

 43

Ada User Journal Volume 43, Number 1, March 2022

11th Ada Developer Room at FOSDEM 2022
Dirk Craeynest
KU Leuven, Dept. of Computer Science, B-3001 Leuven, Belgium; email: Dirk.Craeynest@cs.kuleuven.be

Abstract
FOSDEM is a huge open source event organized each
year in Brussels, Belgium. Among others, it features
dozens of tracks on specific topics: the Developer
Rooms. This year, for the 11th time, there was a track
about the Ada programming language and related
technologies. A brief overview of the full-day “Ada
DevRoom” program is given, followed by reports of
most presentations by their respective authors.
Keywords: Free and Open Source, FOSDEM, Ada.

1 Introduction
FOSDEM 1 , the Free and Open source Software
Developers’ European Meeting, is a non-commercial two-
day weekend event organized early each year in Brussels.
It is highly developer-oriented and brings together 8000+
participants from all over the world. It is free to attend and
no registration is necessary. The 2022 edition took place on
Saturday 5 and Sunday 6 February. As last year, due to the
COVID-19 pandemic, it had been turned into an online
event.

At FOSDEM, Ada-Belgium organized 10 Ada DevRooms
in the years 2006-2020. In this edition, the Ada FOSDEM
community organized once more 8 hours of presentations
related to Ada and Free or Open Software. The “Ada
DevRoom” at FOSDEM 2022, for the first time in an
online format, was held on the 2nd day of the event, and
offered introductory presentations on the Ada
programming language, as well as more specialised
presentations on focused topics, tools and projects: a total
of 13 Ada-related presentations by 12 authors from 8
countries!

This year the coordination was done for the first time by
Fernando Oleo Blanco, and done very well! The event was
organized in cooperation with Ada-Belgium and Ada-
Europe, and saw a good level of participation and great
discussions.

2 Program overview
Each slot in the Ada DevRoom program consisted of a pre-
recorded video of the presentation, played on the virtual
“main stage” of the DevRoom; a Q&A session, where
participants could interact live with the presenter on that
“main stage”; and when the next video started, participants
had the option to continue discussions with the presenter in
a dedicated “chat room” for each presentation.

The Ada DevRoom featured the following program:

1 https://fosdem.org/2022/

• Introduction to the Ada DevRoom,
by Fernando Oleo Blanco, Germany;

• Introduction to Ada for Beginning and
Experienced Programmers, by Jean-Pierre Rosen,
France;

• Ada Looks Good, Now Program a Game Without
Knowing Anything, by Stefan Hild, Germany;

• The Ada Numerics Model,
by Jean-Pierre Rosen, France;

• 2022 Alire Update, by Fabien Chouteau, France,
and Alejandro Mosteo, Spain;

• SweetAda: Lightweight Development Framework
for Ada-Based Software Systems,
by Gabriele Galeotti, Italy;

• Use (and Abuse?) of Ada 2022 Features to Design
a JSON-Like Data Structure,
by Alejandro Mosteo, Spain;

• Getting Started with AdaWebPack,
by Max Reznik, Ukraine;

• Overview of Ada GUI, by Jeffrey Carter, Belgium;
• SPARKNaCl: a Verified, Fast Re-implementation

of TweetNaCl, by Roderick Chapman, UK;
• The Outsider's Guide to Ada: Lessons from

Learning Ada in 2021, by Paul Jarrett, USA;
• Proving the Correctness of the GNAT Light

Runtime Library, by Yannick Moy, France;
• Implementing a Build Manager in Ada,

by Stephane Carrez, France;
• Exporting Ada Software to Python and Julia,

by Jan Verschelde, USA;
• Closing of the Ada DevRoom, by Dirk Craeynest,

Belgium, and Fernando Oleo Blanco, Germany.

The Ada at FOSDEM 2022 web page has all details, see:

 https://fosdem.org/2022/schedule/track/ada/

It provides the full schedule, abstracts of presentations,
biographies of speakers, and pointers to more info.
Recordings of each presentation, i.e. the pre-recorded
video as well as the Q&A session, plus copies of the slides,
are available there as well.

3 Informal proceedings in the AUJ
All authors were invited to prepare short papers based on
their presentations, to be included in the AUJ, and most of
them accepted. The idea was to make it easier for authors
and to be as inclusive as possible, hence the Journal
accepted papers with variable size, from 1 to 8 pages.

The collection of papers is provided in this AUJ issue, in
what we may call the informal proceedings of the Ada
DevRoom at FOSDEM 2022.

44

Volume 43, Number 1, March 2022 Ada User Journal

Ada Looks Good, Now Program a Game Without
Knowing Anything
Stefan Hild

Abstract
In 2020 I started live streaming the development of a
turn-based strategy game. At that time I had little idea
about Ada, programming or game development
(nothing has changed about that to this day). But by
September 2020 it had taken the early form of a
Civilization clone. After more than a year of
development, it has become almost a real game with its
own features. And now I'm going to talk a little bit
about some experiences and weirdnesses with game
development in Ada.
Keywords: Game, Beginner, Ada.

1 Introduction
I discovered Ada in early 2019, I can't remember exactly
how, but I directly liked the language, unlike several other
programming languages I've looked at or tried to learn in the
past. Some of the things I liked were readable syntax, usable
error messages, and that not any junk just compiled through.

So I started learning the language with the help of the
tutorials from Wikibooks [1] and Rosetta Code [2] and after
understanding some of the basics, of course I immediately
started programming a game. The result [3] is exactly on the
level you would expect when someone programs an RPG
with little knowledge of the programming language used or
game development in general.

The time to really get more involved with Ada was at the
beginning of 2020, when I also started developing a new
game [4]. By September 2020 it had taken the form of an
early Civilization clone and after more than a year of
development it's now almost a real game with its own ideas.
As I live stream almost all of the development on YouTube
[5] and Twitch [6], I was "discovered" and asked to give a
presentation at FOSDEM 2022 [7].

But since I don't know anything, I just talked about some
basic things and problems in Ada that I noticed during my
game development. Because sometimes it seems as if Ada
wasn't developed primarily for game programming.

2 General
First of all I would like to clarify that all statements refer to
game development with Ada 2012 under a reasonably
modern computer system and there will probably be
significant differences if you develop for old or embedded
systems (or you just know what you are doing). So let's start
with a few basic recommendations.

Ada offers various additional validity checks (-gnatVx),
which should all be activated. The same applies to the

additional warnings, with the exception of -gnatw.y, which
only provides information about why a package needs a
body, which may be useful for very complex packages. You
should also have all warnings treated as errors. All of this
may sound a bit exaggerated at first, but once you understand
what you have to do to avoid the messages that appear as a
result, it hardly takes any more time and you can identify
problems much earlier. Which then makes it possible to fix
corresponding errors in five minutes of work and not drag it
around for a while and then take three days to adjust
everything. Which of course has never happened to me.

There are also various style checks that you should take a
look at. Among other things, you should think about limiting
the nesting depth, just because Ada allows things like nested
packages doesn't mean you should overdo it. It should also
be noted that Ada guarantees a length of 200 characters for
names, this should also be used for a more understandable
code, there is no advantage in limiting all names to three
characters.

3 String Handling
As with many programs, games need text, so string handling
is an important thing. Luckily, Ada has a variety of different
types of strings, but all but three variants can be practically
ignored. These three types are Unbounded_Wide_
Wide_String, Wide_Wide_String, and String.

Since the texts in games are often available in several
languages and/or you want to enable modding by the players,
the exact text length is unknown. Therefore, the simplest
solution to this problem is an Unbounded_String. In
addition, other languages often use characters outside of the
ASCII character set, for example the German language
contains the special characters ä, ö, ü and ß, a problem that
can be easily solved by using the Wide_Wide_Version. Of
course one could also use a different string variant and adjust
the length of the string dynamically or use the UTF8 version
of the standard string. Not only is this a significantly greater
effort to save text, it also does not result in any significant
advantages. Certainly, an Unbounded_Wide_Wide_String
requires more memory than a normal string, but this is only
theoretically relevant, since this consumption is completely
lost in the background noise compared to other parts, for
example the game world map. In addition, an
Unbounded_String can also be used in records without
further adjustments.

Occasionally, especially if you want to interact with the
standard or external libraries, you need a string that is not
Unbounded. In these cases, it is best to use
Wide_Wide_String whenever possible. This way you don't
have to worry about possible problems with texts containing

S. Hi ld 45

Ada User Journal Volume 43, Number 1, March 2022

special characters and by using
Ada.Strings.Wide_Wide_Unbounded.To_Wide_Wide_Stri
ng and Ada.Strings.Wide_Wide_Unbounded.
To_Unbounded_Wide_Wide_String an easy conversion
option is available. Again, the theoretically saveable
memory is irrelevant and it just creates a bunch of extra
work.

Finally there is the normal string, which is especially
important when interacting with a library that only uses
string. An example here is the standard library, which with
Ada.Directories has offered the possibility of reading in
directories and file names since Ada 2005, but only in a
string.

4 Standard library
Which brings us directly to one of the problems with the Ada
standard library, Ada.Directories only uses String. Ada 2005
introduced Wide_Wide_ for complete UTF8 support and
many packages have a corresponding Wide_Wide_ Variant,
but not Ada.Directories. The revision in Ada 2012 hasn't
changed that either. This must be taken into account when
naming files and folders, and additional conversions must be
built in.

Also for Ada.Float_Text_IO there is no
Wide_Wide_Version and if you need one you have to create
a derived package based on Ada.Wide_Wide_Text_IO
yourself. Not an insurmountable obstacle, but sometimes
quite inconsistent, especially since an
Integer_Wide_Wide_Text_IO exists.

Another problem is that there are often no comments when
naming different procedures or functions in the same way.
Yes, Ada allows multiple procedures/functions with the
same name in the same file, even if the transfer parameter
names are the same, as long as the data types are different.
However, creating 5000 procedures with the name Put and
then distributing them in 300 files without any comments is
not very user-friendly. When you're learning Ada and you're
looking for a solution to a problem and you find the solution
"just use Put for that", it's a bit difficult to find out which Put
is meant. Of course, this does not only apply to Put, there are
also plenty of Get, despite the possible name length of 200
characters in Ada.

5 Minor things
Lastly, a few little things. The string that
(Wide_Wide_)Image returns has a minus as the first
character for negative numbers, and a space for positive

numbers, possibly this can chop up the text positioning.
(Wide_Wide_)Value allows you to convert a string to a
number, but doesn't check if the string is all numbers. You
have to check this yourself, because if the string contains a
character that is not a number, a program error occurs.
Converting float to a string puts it in scientific view. If you
want it to be a normal decimal number, then you have to
adjust it accordingly, but there is a put in the standard library
for that, have fun finding the right one. Just kidding, what
you are looking for is in Ada.Wide_Wide_Text_IO.Float_IO
and is called:

procedure Put
 (To : out Wide_Wide_String;
 Item : Num;
 Aft : Field := Default_Aft;
 Exp : Field := Default_Exp);

Then there is the reading/writing of data. The simplest
solutions are Text_IO for text and Stream_IO for everything
else. This is easy and while other variants may use less disk
space, it's not worth the extra work as the graphics, sounds
and music will take up more space anyway.

6 End
That was roughly the summary of my FOSDEM contribution
and I'm now going to continue working on my game. I still
hope to be able to sell it successfully in the future, after all
the number of commercial games written in Ada is far too
low. In addition, you are of course welcome to my live
streams, in addition to German I also speak English and if
you still don't understand me then don't worry, I usually don't
understand myself either.

Citations and references
[1] Wikibooks, Ada Programming,

https://en.wikibooks.org/wiki/Ada_Programming

[2] Rosetta Code,
https://rosettacode.org/wiki/Category:Ada

[3] GitHub,
https://github.com/HonkiTonk/Test-Rollenspiel

[4] GitHub, https://github.com/HonkiTonk/Civ-Klon

[5] YouTube, https://www.youtube.com/user/tpHonkiTonk

[6] Twitch, https://www.twitch.tv/tphonkitonk

[7] Stefan Hild, Ada Looks Good, Now Program a Game
Without Knowing Anything, https://fosdem.org/2022/
schedule/event/ada_looks_good_game/

46

Volume 43, Number 1, March 2022 Ada User Journal

The Ada Numerics Model
Jean-Pierre Rosen
Adalog, 2 rue du Docteur Lombard, 92130 Issy-Les-Moulineaux, France.; email: rosen@adalog.fr

Abstract
This paper describes the challenges of making
portable calculations across different architectures,
and how the Ada model addresses the issues.
Keywords: Ada, numerics, floating points, fixed
points.

1 What is numerical analysis?
All programming languages feature so-called “real” types.
However, these types are very different from mathematical
reals. The mathematical set � cannot be represented on a
computer: it has an infinite number of values, even for a
bounded segment. A computer can represent only types
with a finite number of values, and these values can be (at
most) rational numbers, since there is no finite
representation of irrational numbers.

However, computers are intended to perform computations
for the real world, and if you want to compute the
circumference of a circle given its radius, you will need �,
which is irrational!

Therefore, we can define numerical analysis as the art of
making not too wrong computations in the real world,
using only the finite subset of rational numbers that a
computer can handle.

Moreover, since the result is not exact, it is important to be
able to compute how wrong (or more precisely uncertain)
the result is.

2 Hardware formats and languages
There are many ways of representing real numbers on a
computer For example, [1] describes 76 different floating
point formats! Moreover, there are often several available
formats on a given computer, allowing various trade-offs
between range, accuracy, and memory space. For example,
the popular IEEE-754 standard [2,3] features 5 standard
formats, (3 binary, 2 decimal), + extensions. The old
DEC/Vax architecture is another interesting case, as
pictured in figure 1:

Size Exponent Mantissa

32 bits 8 23

64 bits 8 55

 11 52

128 bits 15 112

Figure 1 VAX floating point formats

Note that there are two different 64 bits format, one with
more accuracy (longer mantissa) and the other one with
more range (longer exponent). Talking about “short” or
“long” floats cannot describe this situation.

Actually, the notion of short or long floats dates back to the
early times of Fortran, when most computers had only two
floating point formats. Most today’s languages still define
various floating point types just by the size of the type,
without any idea of the actual accuracy (or range) implied
by the type, and no definition of the accuracy of
computations.

The IEEE-754 standard tried to address these issues by
defining a number of standard formats and the associated
accuracy, including a precise definition of arithmetic: two
computers implementing the standard will give exactly the
same results. However, the relation to programming
languages is delegated to the programming language
standard, including the means to adjust a certain number of
features (like exceptions). And from a programmer’s point
of view, the issue of portability for computers that do not
implement the standard remains.

3 Ada model and real types
3.2 Model of arithmetic
The Steelman requirements [4] called for both
“approximate” and “exact” computations whose accuracy
could be chosen by the user, independently of the
underlying architecture.

The solution offered by Ada is inspired by the notion of
approximate values in physics: a value does not stand only
for itself, but represents a small range of values
corresponding to an uncertainty around the value. Based on
this, a range arithmetic can be defined, the so-called
Brown’s model [5].

Physicists use two kind of approximations: absolute
approximations, where the uncertainty is the same for the
whole range of values (i.e. value is 5V±0.1V), and relative
approximations where the uncertainty is proportional to the
value (i.e. value is 5V±1%). Similarly, Ada offers two kind
of real types: fixed point types corresponding to absolute
approximation, and floating point types corresponding to
relative approximation.

The syntax of the definition of a fixed point type is as
follows:

-- Binary fixed
type name is delta step range min .. max;
type Volts is delta 0.01 range 0.0 .. 100.0;

J.-P. Rosen 47

Ada User Journal Volume 43, Number 1, March 2022

-- Decimal fixed
type name is delta step digits number_of_digits
 [range min .. max];
type Euros is delta 0.01 digits 11;

The syntax of the definition of a floating point type is as
follows:

type name is digits number_of_digits
 [range min..max];
type Length is digits 5 range 0.0..40.0E6;

Unlike most other languages, the programmer does not
choose one of the types provided by the computer, but
expresses the requirements on the mathematical properties
of the type. It is up to the compiler to choose an appropriate
machine type that fulfils the requirements.

The definition of an Ada real1 type defines a set of values,
called model numbers that must be represented exactly on
every implementation. If no machine type is available that
satisfies the declaration (i.e. that can represent exactly all
model numbers), the declaration is rejected by the
compiler. The machine type chosen by the compiler may
include more values than the model numbers: these extra
values are called machine numbers and provide more
accuracy than the minimum guaranteed by the declaration.

Since the programmer specifies the requirements for
accuracy and range, the compiler can choose the most
appropriate among all available machine types.

This defines the accuracy of the definition of data. In
addition, if the compiler implements the numerics annex,
there are additional requirements on the accuracy of
operations, including for the functions provided by the
numerical libraries: elementary functions, linear algebra,
and random number generators.

The principle of these requirements, following Brown’s
model, is as follows:

� If both operands are model numbers and the
mathematical result of the operation is a model number,
then the computed result must be that model number,
exactly.

� Otherwise, if the mathematical result lies between two
model numbers, the computed result can be any value
belonging to the model interval bounded by the nearest
model numbers that surround the mathematical result.
This means that the compiler can keep more accuracy
if hardware permits, but that the inaccuracy is bounded
independently of the hardware.

� The above principle is extended when both operands
are only known to belong to some intervals: the
mathematical operation is (formally) performed
between all values of operands in their respective
model intervals, thus defining a result interval that can
extend over several model intervals, and is not

1 Remember that the term "real" in Ada encompasses both floating point
and fixed point types.

necessarily bound by model numbers; the computed
result must belong to this result interval, extended to the
nearest model numbers.

This is basically like computing approximations in physics,
except for the extra “digitalization noise” due to extending
the intervals to the nearest model numbers.

Note that with this model, there is no notion of underflow.
Some arithmetic models make a special case when a
mathematical result is not strictly zero, but the computed
result is an exact zero. In Ada, this situation means that zero
belongs to the result interval and is an acceptable result; it
is not a special condition.

As far as portability of computations is concerned, a
program running on two different computers will not give
the exact same result; however, both results will belong to
an interval whose range can be computed independently of
the implementation. What Ada guarantees is not an
absolute result (which is meaningless anyway, since there
is always some uncertainty), but portable bounds on the
maximum error of computations.

In addition, the standard requires that all static expressions
be evaluated exactly; no error can be introduced at compile
time by differences of evaluations within the compiler.

3.3 Fixed point vs. floating point types
All languages provide floating point types, and
programmers are used to them. But few languages provide
fixed point types, and people who are not familiar with
them often do not consider their use. They constitute
however an additional possibility of Ada that can often
better match the problem domain than floating point types.
Figure 2 shows a comparison of the respective model
numbers of a fixed point type and of a floating point type:

Figure 2 Floating points vs. fixed points model numbers

Fixed point model numbers are evenly spaced, while
floating point model numbers are very tight when close to
zero, but lose (absolute) accuracy when away from zero.
Fixed point types are often more appropriate to represent
money or physical values, like readings from
measurements devices. This is especially the case for time,
where the zero value is arbitrary2, and there is no reason to
provide more accuracy when getting closer to zero3.

3.2 Numerical portabilities
Portability of numerical computations is not a single goal.
There are actually several kinds of numerical portabilities,
as allowed by the Ada model.

2 In Ada, the type duration is a fixed point type.

3 Except for astronomers who model the big bang, of course…

48 The Ada Numerics Model

Volume 43, Number 1, March 2022 Ada User Journal

For example, you may want to benefit from the “natural”
types of your computer, and be able to determine the
confidence range of your result. You will use predefined
types, like Float or Long_Float. Knowing your algorithm
and given the various attributes provided by Ada, a
numerical analyst is able to determine the accuracy of the
result. This can be called a posteriori portability: the same
program run on machine A will print “PI=3.14+-0.05”,
while on machine B it will print “PI=3.1415+-0.0005”.
Both results are correct, although not identical.

In other cases, you may have requirements on the accuracy
of the result; for example, the maximum error on the
computed speed of a vehicle must not exceed 5 km/h. Like
any requirements, it should be provably met! Given the
Ada model, your numerical analyst is able to determine the
required accuracy (and range) of the data that are part of
the computation. These can be expressed in Ada terms, and
guaranteed by the implementation, independently of any
architecture. This can be called a priori portability:
different machines may give different results, but they will
all be within the stated requirements.

Conclusion
For many programming languages, as soon as a numeric
value includes a decimal point, the only choice is between
short and long floats, which usually boils down to short
floats if memory space is an issue, or long floats “just to be

on the safe side” otherwise. Not exactly an engineered
approach…

Ada offers a rich range of real types that can provably
match stated requirements and guarantee the maximum
uncertainty of the computed results, independently of the
underlying architecture. When it comes to choosing a
programming language for a development, this aspect of
Ada should really be more known to all those with
requirements on the accuracy of computations.

References
[1] http://www.quadibloc.com/comp/cp0201.htm

[2] Wikipedia, IEEE 754,
https://en.wikipedia.org/wiki/IEEE_754

[3] "IEEE Standard for Binary Floating-Point Arithmetic".
ANSI/IEEE Std 754-1985.

[4] Department of Defense, Requirements for High Order
Computer Programming Languages "STEELMAN",
June 1978.
https://en.wikisource.org/wiki/Steelman_language_require
ments

[5] W. S. Brown, A Simple but Realistic Model of
Floating-Point Computation, ACM Transactions on
Mathematical Software, Volume 7 Issue 4, Dec. 1981,
pp. 445-480.

49

Alire 2022 Update

Alejandro R. Mosteo
Centro Universitario de la Defensa, ctra. de Huesca s/n, 50090, Zaragoza, Spain; email: amosteo@unizar.es

Fabien Chouteau
AdaCore, 46 rue d’Amsterdam, 75009, Paris, France; email: chouteau@adacore.com

Abstract

The Alire Package Manager released its first stable ver-
sion in 2021 and, since then, it has seen continued im-
provement and new features. Herein we present the lat-
est major features that have been added for the benefit
of Ada developers, which include toolchain installation,
a publishing assistant, generation of configuration code,
and a so-called pin system for concurrent development
of multiple projects. We also take a look at the status of
its ecosystem of available libraries.

Keywords: Alire, Package Manager, Dependency Man-
agement, Open Source.

1 Introduction
It is nowadays a common expectation of open source devel-

opers that some kind of package manager will exist for a

language, easing the retrieval of dependencies, reuse of li-

braries, and publishing of projects (crates in Alire parlance).

Alire [1] positioned as such a community project for Ada and

SPARK and saw the release of its first stable release [2] in

2020. Since then, the project has seen steady progress, having

seen the release of its 1.1 version, which contains several

major new features.

These features are the focus of this writing, and they take the

project’s command-line tool, alr, to a new level of useful-

ness for developers, in some instances surpassing the capa-

bilities of package managers for other languages. A video

presentation of these features is also available on-line [3].

The main features that are included in this update are as

follows. Installation of toolchains is covered in Section 2. The

publishing assistant is described in Section 3. The solution

provided to develop several crates in tandem is the subject of

Section 4. Configuration of crates based on code generation is

given in Section 5. A brief look at the status of the ecosystem

of crates in the project is presented in Section 6. Finally,

concluding remarks are given in Section 7.

2 Installation of toolchains
Through the alr toolchain command, it is now possible

to download and select a variety of compilers based on the

FSF source tree [4], with a corresponding gprbuild tool

for build management. Although some Linux distributions al-

ready are able to provide such a toolchain, they have their own

release life cycles that might make their compilers somewhat

older. Alire makes its compilers, hosted on x86_64 at the

moment, available generically for Linux, but also for macOS

and Windows, including cross-compilers for ARM, AVR, and

RISC-V. These compilers are distributed as binaries, although

their build process is open and can be perused at [5].

In Alire, one GNAT and gprbuild can be selected as a

default (there is also the option of not selecting any, and

relying in a user-provided toolchain existing in the environ-

ment where alr is run), via the -select switch. However,

the user can, if so desired, install several toolchains. The

default toolchain is used normally for compilation, unless

some dependency specifically requires a particular version

or cross-compiler, in which case the appropriate toolchain is

automatically used.

3 Publishing of releases
In Alire, we refer generically to a packaged project as a crate,

which in turn can offer one or more releases, each identified

by their semantic version [6]. For authors, publishing and

updating their work should be as easy as possible, which is

the motive behind the alr publish feature.

Alire relies on indexes to provide releases. Indexes may

be hosted anywhere, even privately, but the Alire project

hosts the community index [7], which is the default in use

and the one to which open source authors are encouraged to

contribute. An index is composed by individual manifest files,

one per release, in which their metadata is detailed in TOML

format [8]. The community index itself is just a public git

repository containing these files.

Thus, in essence, the process of publishing a release consists

in adding its manifest to the appropriate location of this repos-

itory. In usual GitHub methodology, the repository itself is

read-only except to its maintainers, so all modifications by

third parties are achieved through a pull request [9], which is

automatically vetted by GitHub Actions, and then manually

reviewed, approved and merged by Alire maintainers.

At present, the alr publish command helps with the fol-

lowing steps:

• Verifying that the user has properly forked the commu-

nity index in their own GitHub account.

• Verifying that all necessary metadata is already defined

in the working manifest1 of the project.

1The working manifest contains a subset of the information that goes into

the index manifest, and is always present inside an Alire working release.

Ada User Jour na l Vo lume 43, Number 1, March 2022

50 Al i re 2022 Update

[[pins]]
subdir = { path = " ../ my/bar" }
Use a local folder to override a dependency

remote = { url = "https :// github.com/baz.git" }
No commit, will track HEAD, will update on ‘alr update’

branch = { url = "https :// gitrepo .com/wip.git"
branch="feature" }

Track a remote branch, will update on ‘alr update’

commit = { url = "https :// gitlab .com/gru.git"
commit="..." }

Explicit commit, will not be updated

Figure 1: Different pin kinds.

• Fetching and compilation of sources from their public

on-line publishing location.

• Generation of the index manifest, and providing of an

URL to which the manifest file can be uploaded to initi-

ate the pull request.

4 Dependency overriding with pins
An usual occurrence during development is to have to update

concurrently a few interrelated projects. Likewise, when

working with bleeding-edge code, it may be necessary to

use developing versions of code from third parties, not yet

published to the community index.

By default, dependencies in Alire are always satisfied by

releases in the community index, or some other index pro-

vided by the user. However, publishing versions very often,

although relatively straightforward, is too unwieldy, and will

not help with code maintained by other developers. The new

pinning mechanism in Alire is designed to tackle these situa-

tions.

A pin is a dependency override in which an alternative source

is specified for the code of a dependency, bypassing any

indexes. By design, a pin will always fulfill the dependency

on a crate, so the responsibility of making sure that a pin

is proper falls on the developer. As pins are not intended

for final publishing, but only during transitory development

stages, this is a reasonable and even expected requisite.

Pins are defined, as all other information, in the working

manifest of the releases being developed. Their precise syntax

is described in the project documentation [10], boiling down

to a few fields of information per dependency (see Fig. 1).

my_lib
alire.toml
examples

alire.toml
tests

alire.toml

Figure 2: A crate with two nested subcrates.

4.1 Local pins
Local pins require only a relative or absolute path to a direc-

tory, which will contain the code for the dependency. This is

practical when the overridden dependency is being modified

at the same time than its dependent crates.

Another use case is to have nested crates inside a root project,

that provide for example testing projects or demonstration

executables (see Fig. 2). Since these nested crates are not

intended to be built during the normal use of the library, and

may furthermore bring in additional dependencies themselves,

in this way they remain separate yet always in sync with their

parent project, for local use.

An example of the manifest in such a nested crate is as fol-

lows, in this case for a testing crate that uses aunit to ver-

ify the main library. Note how the my_lib dependency,

which would be the library intended to be published, is sim-

ply pinned through a relative path to the parent folder, where

the root manifest is located, as seen in Fig. 2.

[[pins]]
my_lib = { path=".." } # Use parent folder for dependency

[[depends−on]]
aunit = "*" # Extra dependency, only for testing

Listing 1: Manifest of nested testing crate.

When the target of a pin contains itself an Alire manifest, it

will be processed as a regular Alire crate and its own depen-

dencies and pins added to the closure of sources required for

building. Otherwise, it is assumed that a GPR project file will

exist at the root that will enable the building of these sources.

4.2 Remote pins
Sometimes, it is necessary to use bleeding edge code from

third parties that still has not yet made into the community

index. In that case, Alire can save the manual steps of fetching

the code and pinning to it with a path, as just shown. This is

achieved with a pin that provides a URL to a git repository

and, optionally, a branch or commit.

When no branch is supplied, the repository default branch

is tracked, so an alr update will not only update regular

dependencies, but fetch the latest changes from such a pin.

Likewise, when a branch name is given, the working is the

same but for the given branch. Finally, when a commit hash

is specified instead, this is an immutable reference that will

not result in updates.

5 Crate configuration
The Ada designers consciously made a decision to avoid pre-

processor macros. Likewise, the gprbuild tool does not

allow launching other tools before the compilation step. There

are circumstances, however, in which some kind of code tai-

loring is necessary that goes beyond selecting among different

preexisting source files. In embedded development, in partic-

ular, not all features of Ada may be available due to restricted

run-times, further complicating the self-configuration of data

structures based on run-time gathered information. Also, code

size in small boards may be a critical factor.

Traditionally, one would address these issues with some other

build tool, like perhaps make. However, for developers using

Volume 43, Number 1, March 2022 Ada User Jour na l

A. R. Mosteo, F. Chouteau 51

[configuration .variables]
Device_Name = {type = "String ",

default = "no device name"}
Print_Debug = {type = "Boolean", default = false }
Debug_Level = {type = "Enum",

values = ["Debug", "Warn", "Error "],
default = "Warn"}

Buffer_Size = {type = "Integer ",
first = 0, last = 1024,
default = 256}

Max_Power = {type = "Real",
first = 0.0, last = 100.0,
default = 50.0}

Figure 3: Definitions in a configurable crate.

Alire as their driving tool, there is now a simpler alternative,

which is the new crate configuration feature.

This feature enables the creator of a crate to supply a number

of variables, of a given type, and their bounds and optional

default value (see Fig. 3). The usual predefined types of Ada

are supported, and also enumerated types.

These values can be set in a different, dependent crate, with

any conflict being detected and reported (Fig. 4). In this way,

there is a flow of information from the dependent crate into

the dependency, which at the time of its compilation is taking

into account the settings requested by the dependent crate.

More concretely, before the compilation run, Alire generates

static files containing definitions for these variables as Ada,

C and GPR sources (Fig. 5). This way, the values are readily

available for mixed-language programming, and also to be

used from other GPR project files. Once files are generated,

the compilation process follows the usual topological order

of the dependency tree.

6 Ecosystem overview
At the time of this writing, the Alire project indexes 243 crates,

of which 14 are in SPARK or SPARK-friendly. Notably,

the most popular tag is “embedded” with 32 crates, which

is a testimony to the community of embedded developers

that are taking advantage of the project. Other popular tags

completing the top 10 are “nostd” (26 hits), “gnatcoll” (14),

“web” (12), “database” (10), “rp2040” (9), “bindings” (9),

“sql” (8), and “game” (8).

7 Conclusion
The Alire project continues its evolution incorporating more

advanced features. In this update, four new main features

have been reported. First, Alire is now able to install binary

toolchains, hosted in x86_64 Linux, macOS, and Windows,

including cross-compilers for ARM, AVR, and RISC-V. Publi-

cation of releases is now simpler too, thanks to the publishing

assistant that verifies information and generates the single

manifest file required for a new release. The release process

[configuration .values]
my_crate.Device_Name = "Custom device name"
my_crate.Print_Debug = true
my_crate.Debug_Level = "Error"
my_crate.Buffer_Size = 42
my_crate.Max_Power = 42.0

Figure 4: Configuration settings in a dependent crate.

package my_crate_Config is
Crate_Version : constant String := "0.1.0" ;

Buffer_Size_First : constant := 0;
Buffer_Size_Last : constant := 1024;
Buffer_Size : constant := 42;

type Debug_Level_Kind is (Debug, Warn, Error);
Debug_Level : constant Debug_Level_Kind := Error;

Print_Debug : constant Boolean := True;

Max_Power_First : constant := 0.00000000000000E+00;
Max_Power_Last : constant := 1.00000000000000E+02;
Max_Power : constant := 4.20000000000000E+01;

Device_Name : constant String := "Custom device name";
end my_crate_Config;

Figure 5: Generated Ada package for static compilation.

is based on opening a GitHub pull request that adds this file

to the community index.

For more advanced developer workflows, there is a new “pin-

ning” feature in which dependencies can be overridden by

local folders or remote repositories, enabling the concurrent

development of several projects, and also the creation of

nested testing and demonstration projects without interfering

with a main library intended for publishing.

Finally, generation of source files prior to compilation is now

available, containing configurable variables of scalar, string

and enumerated types, with ranges where applicable and op-

tional default values. These values can be configured by any

dependent crate, enabling powerful configuration of libraries

even for embedded contexts in which static compilation is a

priority due to run-time or board constraints.

The Alire project documentation, downloads and source code

are available on-line at https://alire.ada.dev.

References
[1] A. R. Mosteo, “Alire: a library repository manager for the

open source Ada ecosystem.,” Ada User Journal, vol. 39, no. 3,

2018.

[2] F. Chouteau, P.-M. de Rodat, and A. R. Mosteo, “Alire: Ada

has a package manager.” https://archive.fosdem.
org/2020/schedule/event/ada_alire, 2020.

FOSDEM.

[3] A. R. Mosteo and F. Chouteau, “Alire 2022 update.”

https://fosdem.org/2022/schedule/event/
2022_alire_update, 2022. FOSDEM.

[4] Free Software Foundation, “GNAT GNU Ada.” https://
www.gnu.org/software/gnat, 2022.

[5] Alire Project, “GNAT FSF builds.” https://github.
com/alire-project/GNAT-FSF-builds, 2022.

[6] T. Preston-Werner, “Semantic versioning 2.0.” https://
semver.org, 2022.

[7] Alire Project, “Community index.” https://github.
com/alire-project/alire-index, 2022.

[8] T. Preston-Werner, “Tom’s obvious minimal language.”

https://toml.io, 2022.

[9] GitHub, “Collaborating with pull requests.” https:
//docs.github.com/en/pull-requests/
collaborating-with-pull-requests, 2022.

[10] Alire Project, “Work-in-progress dependency overrides.”

https://alire.ada.dev/docs, 2022.

Ada User Jour na l Vo lume 43, Number 1, March 2022

52

Volume 43, Number 1, March 2022 Ada User Journal

SweetAda: A Lightweight Ada-Based Framework
Gabriele Galeotti
SweetAda home, 50019 Sesto Fiorentino (FI), Italy; email: gabriele.galeotti@sweetada.org,
gabriele.galeotti.xyz@gmail.com; website: https://www.sweetada.org,
https://github.com/gabriele-galeotti/SweetAda

Abstract
This article tries to describe what is SweetAda, how it
was developed, its uses, and its possible future routes.
Keywords: Ada, SweetAda.

Introduction
SweetAda could be described, at a first glance, like
something resembling a build system to produce a working,
albeit simple, Ada code on various devices.

The origin of SweetAda can be found on the classical
scheme involving a software project whose purpose is
running a primitive kernel (maybe neither a “classical”
kernel at all) on some CPU device. Following the combined
GNU/Linux [1] open-source revolution, thousands of
projects like that have been developed in the last decades, so
the idea is, after all, not so newsworthy.

Trying to spend time on something different and not reinvent
the wheel once more, SweetAda slowly born as a radical
departure from the basic concept of using a low-level
language for its implementation (mostly C or one of its
dialects), propelled with a “naive” approach towards an
experimental Ada-based one, and the wish to see it run on
every possible piece of hardware available.

Despite these loose initial criteria, several key points were
anyway stated during the inception of such a system, e.g., the
complete absence of an underlying OS, the use of standard
GNU FSF toolchains, a Makefile-based build engine, and
avoiding the use of everything not provided in the form of
source code. The expected result is to produce a thing like a
binary image that can bring a CPU out of reset and execute
Ada code able to manipulate some I/Os and peripheral
devices.

On the other hand, CPU computing devices are increasingly
becoming complex and hard to manage. A user view limited
to objects exposed by the RTS could be too much coarse in
some context, so SweetAda tries to stay more close to
hardware, possibly without disregarding other things.

That being said, in order to obtain this result, SweetAda
freely chooses to not provide a full RTS, and lacks the
fundamental OS-dependent primitives, like tasking and
protected objects, which imply the presence of a rather
advanced, already-existent support behind the scenes.

Looking forward, high-level Ada language constructs will
eventually have to be mapped on top of the more primitive
objects exposed by SweetAda.

1 Initial development
Unfortunately, this kind of approach is not a simple one.

Problems are the availability of useful tools needed in order
to be proficient during the development. To take a CPU out
of reset and make it able to finally execute a single line of
high-level language can be daunting, and once you enter the
domain of Ada, things do not improve. Assembling a stable
sandbox is not straightforward and you cannot write every
CPU specific low-level fragment of code in pure assembly,
since this could soon divert from the original intent of the
project.

If you want to put Ada code on the bare metal, then, you will
soon find yourself debugging a hostile emulator, or diving
into the inners of a JTAG driver which refuses to load your
binary image. As a matter of fact, I had to rewrite almost
from scratch a JTAG driver for a MIPS platform (besides
buying a DECstation 5000 [1] and burn EPROMs to test real
code). Furthermore, even if you have a test bench based on
an emulator, chances are that you cannot see anything until
you correctly setup the (emulated) UART to successfully
send something out. So I also wrote a sort of plugin for
QEMU [1] that shows some I/O ports in a graphic window
to check that the program is alive (incidentally this could be
very useful not only at the development stage, but also for
users).

In the end, in order to develop SweetAda for the maximum
possible range of CPUs, appropriate hardware devices are
instrumental. But some targets could appear rather exotic,
because sometimes is very difficult to find an affordable
development platform. For example, in the case of Hitachi
SH4 CPU [1], the popular Dreamcast [1] game console is
being used as a target.

Toolchains, then, are another big issue to solve. If you want
to provide a friendly environment, you have obviously to
provide them for at least the most common machines, like a
Linux [1] machine or a Windows [1] one. To create a single
GNAT toolchain is a process involving four different
(cross-) compilers, and invariably some sort of issue shows
up, maybe because the build crashes with some form of error
due to bad configure options, or maybe because the compiler
doesn’t run on the target OS due to a missing library. To
create toolchains and utilities became soon almost a project
in itself.

To make the long story short: you start writing Ada, but less
than 5% of your development time will be exactly aimed at
this business.

G. Galeott i 53

Ada User Journal Volume 43, Number 1, March 2022

2 Layout, RTS, low-level code, bits and
bytes
A choice made rather early during the development of
SweetAda was to not follow the classical scheme of having
everything suited around an existing RTS.

Almost always (in accordance with Ada guidelines), every
piece of software is depending on an RTS that transparently
provides a foundation base where your code will live. For
practical (and commodity) reasons, I avoid this kind of
layout, since it would have prevented me developing for
more than one architecture, putting too much effort on
something that would end up as a trivial software port and
nothing more.

So, starting from a “pragma No_Runtime” base that was
hardly able to be even referenced by the context, I create a
series of low-level units whose purpose was to deal with the
various kinds of hardware. Since in any case a ZFP/SFP RTS
would have been mandatory, I started patching the original
GNAT sources to not include heavy features, like the
secondary stack (which is now partially implemented), or the
floating-point support (also in the development stage). It was
a long and tedious process but it finally worked out quite
satisfactory.

Complete control about LibGCC was another point that I
liked to implement. In this context, this does not mean an
alternative implementation, but I felt that the opportunity of
having exactly every single bit of code in source form
(except clearly the code generated by the compiler) would
have been a good thing.

To keep up with this fact, SweetAda has a copy of the last
current LibGCC, kept synchronized together with the last
toolchain version. LibGCC sources are only cosmetically
cleaned up and carry no patches whatsoever, and when you
build SweetAda for some platform/CPU, a LibGCC copy is
automatically incorporated in the CPU base library that will
be linked into the final executable. Besides, this allows also
a more fine-grained control on the object components.

This proved fine, anyway there is also the more
“conservative” choice to link in the standard copy that comes
as a component of the compiler toolchain (also because the
in-source LibGCC was a later addiction to the SweetAda
system).

Still speaking about LibGCC, this is why does exist an
homonym subdirectory in the core component of SweetAda:
here you will find Ada implementations for the very basic
functions that the compiler uses for doing low-level
arithmetic. If, for example, you run out of memory in a
resource-limited microcontroller, maybe you can just use a
32x32 bitwise multiplication without neither being
concerned about using LibGCC.

2.1 Bits&Bytes
Handling of physical hardware is clearly one of most
difficult things to do. Although GNAT has a bunch of
pragmas/aspects, CPU internals and I/O registers are always
extremely complicated to describe correctly, and their

management is often unclear, maybe because registers
overlap at identical addresses. Description by records is thus
generally limited to the single register (and still this is not
ideal because the same register has different meanings,
depending on some “mode” determined by a flag in another
register). The whole peripherals should then be described by
means of specific offsets mapping and helpers.

An approach used, but now abandoned, was to create a
bunch of generics, on top of which to create a long string of
dedicated access helpers, but I found that unpleasant,
unnecessarily verbose and error-prone, besides being
inefficient. Furthermore, this prevents the treatment of some
corner case or highly-specialized behaviour. So,
disregarding style and elegance, a raw approach proved to
pay better. Besides that, the new approach, although partially
using unchecked conversions, operates in a very controlled
context, and does not hurt safety nor readability.

To ease the handling of all these low-level things, units like
Bits, LLutils and MMIO are provided in core directory of the
system, and are completely overridable and customizable.

2.2 System layout
The “unorthodox” nature of SweetAda can be immediately
ascertained when you look at the organization of the
filesystem.

Instead that having a giant RTS-dictated structure, we have
a more free organization of the various components, like in
mainstream C-based project. There is a CPU-dedicated tree
for low-level dependent code, a core tree for basic CPU-
independent code, a devices tree for peripheral handling, and
a modules hierarchy for yet independent units that
implement not-mandatory features. There is also a C nano-
library (whose functions are actually calling Ada
subprograms) which could be used to incorporate C code
into a project, perhaps to ease a software port.

Then finally comes the platforms tree, where the intended
target device BSP code is implemented.

2.3 Configuration
The configuration of SweetAda is carried out by a chain of
Makefile-style variable declaration files that the build engine
includes back-to-back, in order to create a detailed
description of what it is going to build. The configuration
files are written in simple Makefile syntax, so the more
complicated thing to write down is an “ifdef” conditional to
suppress a GNAT warning switch, or to change one of the
default core units in favour of a customized one.
Configuration variables can be selectively suppressed or
augmented during the various phases of this process.

The first file sits in the top-level directory and describes
basic informations, like paths to toolchains and their triplet
names, then, once the system knows which is the intended
target platform, the corresponding configuration files of both
the target CPU and target platform will be parsed.

Anyway, SweetAda provides as an option also a GPRbuild-
style configuration inside the main Makefile build engine

54 SweetAda: A Lightweight Ada-Based Framework

Volume 43, Number 1, March 2022 Ada User Journal

(except for the link phase which, is always executed by the
latter).

3 What is able to do SweetAda?
Being in a development phase, SweetAda is not fullfilled
with every possible feature, but in some cases is able to
perform, generally speaking, some basic activities, like
program an Arduino UNO [1] board and make some kind of
I/O digital processing.

But you can also respond to an UDP datagram received by
your ancient x86 motherboard equipped with an NE2000
network card, or you could send a message from your
emulated S/390 IBM [1] mainframe to an X3270 terminal
once SweetAda is coming out from IPL.

Let’s bring a Raspberry Pi 3 [1], and see how is possible to
blink a LED, and send a message out of serial port when the
temperature of the SoC rises too much (refer to examples in
the application directory and connect GPIO serial pins
through a simple FTDI232 USB converter).

 Here is a cutted-down example:

with RPI3; use RPI3;
with Console; use Console;
-- called by BSP_Setup
procedure Run is
 T : Integer;
begin
 -- wire up some GPIOs to LEDs and USB serialport
 GPFSEL0.FSEL5 := GPIO_OUTPUT;
 GPFSEL0.FSEL6 := GPIO_OUTPUT;
 loop
 T := Temperature_Get (Temperature_ID);
 if T > 70 then
 GPSET0 := (SET6 => True, others => False);
 GPCLR0 := (CLR5 => True, others => False);
 Print (“T is too high.”, NL => True);
 else
 GPSET0 := (SET5 => True, others => False);
 GPCLR0 := (CLR6 => True, others => False);
 end if;
 end loop;
end;

This example is clearly convoluted because the Raspberry Pi
3 support hasn’t yet great notions about time and CPU
management, so the CPU sits in a loop, wasting time only
for the pleasure to see a LED turn on.

Many other examples can be found in the application
directory, where every platform has a little loop to perform
some activity or to test the software environment.

Yet as another example, the following is a screenshot
showing SweetAda running on a Malta MIPS [1] board
under QEMU, and has just executed:

- an initial bootstrap, out of reset

- detection of PCI interfaces available

- filling of the VGA LCD with a banner

- directory listing of a FAT virtual disk attached to the IDE
interface,

and is now looping through an I/O port count, while the
interrupt timer is running at 1 kHz, blinking the LED once
per second.

Figure 1 SweetAda running on a Malta MIPS in QEMU.

Conclusion
SweetAda is currently in a deep phase of development.

After initial releases, much work was done in order to keep
the project clean and to reduce dependencies from host
machine environments and toolchains. For many CPUs
support is not completely deployed yet, and various
components like interrupt handling and ABI interfaces have
yet to be fully implemented up to an operational stage. The
SFP RTS is to be refined, while the ZFP is highly stable, like
the whole build engine.

The future of SweetAda could be to follow and expand the
current approach, or to converge towards a standard RTS-
based layout, depending on which will be the better route.

Anyway, the system so far have proved to be modular and
flexible, is working fine for every platform/CPU tested, and
some contexts are already powerful enough to perform very
interesting activities.

References
[1] Trademarks and trade names are properties of their

respective owners.

55

Use (and Abuse?) of Ada 2022 Features in

Designing a JSON-Like Data Structure

Alejandro R. Mosteo
Centro Universitario de la Defensa, ctra. de Huesca s/n, 50090, Zaragoza, Spain; email: amosteo@unizar.es

Abstract

Ada 2022 introduces new features that enable more
natural-looking initializations. On the one hand, it is
now possible to use universal numbers and strings to
initialize any private type; on the other hand, containers
can be initialized directly without the explicit use of
converting functions. Both features are enabled through
new aspects that associate user-defined subprograms
with the necessary initialization calls.

In this work, the possibility of using these new features
is explored to define a container type that allows initial-
izations using heterogeneous types, as is usual in textual
formats for structured data such as JSON, TOML and
YAML, and still without the need to resort to explicit
conversion calls or “crutch” functions like the often-
seen trick of overloading the “+” operator. Although
this has proven ultimately avoidable, there is still the
need to use qualifications in certain circumstances.

Keywords: Ada 2022, JSON, Yeison, user-defined ini-
tialization.

1 Introduction
The Ada 2022 revision of the language added a few new

aspects [1, 2] that enable two orthogonal features: initializing

any variable of a user-defined type with a universal number or

string, and initializing a collection with a list of values or key-

value pairs. User-defined initialization is used to great effect,

for example, in the new big-number packages in the standard

library, by enabling to write a number as long as necessary

to initialize a Big_Integer. Previously, an equivalent

package would have been forced to use something like

Int : Big_Integer := To_Big_Integer ("1234567890123456789");

whereas now one can simply write

Int : Big_Integer := 1234567890123456789;

Likewise, initialization of containers is intended to reduce

boilerplate when creating a collection. These are two exam-

ples of now valid constructs:

type User_List is tagged private
with ...; −− Aspects omitted for now

type User_Map is tagged private
with ...; −− Aspects omitted for now

List : constant User_List := (1, 2, 3, 4, 5);
Map : constant User_Map := ("key1" => "value1",

"key2" => "value2");

Based on those examples, one would be right in thinking

that they can be combined and nothing precludes, in good

Ada orthogonality fashion, having a container of big numbers

initialized by combining both features.

From this starting point, the objective of this work was to see

whether, by exploiting these new aspects and perhaps some

other features, it would be possible to initialize a JSON-like

data structure without resorting to helper conversion functions.

For example:

X : Yeison.Map :=
("array" => (1, "2", 3.0),
"boolean" => True,
"color" => "gold",
"number" => 123,
"object" => ("a" => "b",

"c" => "d"));

Listing 1: Desired Ada initialization.

which would be equivalent to this JSON-formatted [3] infor-

mation:

{
"array" : [1, "2", 3.0],
"boolean" : true ,
"color" : "gold",
"number" : 123,
"object" : { "a": "b",

"c" : "d" }
}

In both examples we can find heterogeneous elements in ar-

rays and maps, which poses an obvious difficulty in traditional

Ada.

The efforts discussed in this work are fully available in source

code form [4], and have been packaged under the in-jest name

of YEISON. A video presentation is also on-line [5].

In the following, the necessary new aspects are presented

in Section 2. Difficulties found in trying to apply them are

described in Section 3. The best solution identified to date

is detailed in Section 4, and concluding remarks are given in

Section 5.

2 Aspects involved
The feature found in the Ada Reference Manual as User-
defined literals [1] defines three new aspects that connect a

function with the values being created. For conciseness, only

the integer and string cases are shown in the following listing,

although a similar Real_Literal aspect exists for real

types:

Ada User Jour na l Vo lume 43, Number 1, March 2022

56 Ada 2022 Features in Des ign ing a JSON-L ike Data St ruc ture

type My_Integer is private
with Integer_Literal => Init ;

function Init (Img : String) return My_Integer;
−− Create a number from its ASCII image

type My_String is private
with String_Literal => Init ;

function Init (Str : Wide_Wide_String) return My_String;
−− Store the string with whatever representation we prefer

In regard to container initializations, the pertinent topic is

Container Aggregates [2], which describes aspects used to

create and modify a container. Only those relevant to lists and

maps (presuming that an array would be always indexed from

0, like in JSON, and thus being somewhat equivalent to a list)

are shown:

type My_List is private with
Aggregate => (Empty => Empty,

Add_Unnamed => Append);
function Empty return My_List;
procedure Append (List : in out My_List; Val : Value;
−− E.g., List := (E1, E2, E3) will call Empty and then
−− thrice the Append procedure.

type My_Map is private with
Aggregate => (Empty => Empty,

Add_Named => Insert);
function Empty return My_Map;
procedure Insert (Map : in out My_Map; K : Key; V : Value);
−− In this case, for Map := ("a" => "b", "c" => "d "),
−− Insert would be called twice with the "a "/"b", "c "/" d"
−− argument pairs.

−− Naturally, these aspects require matching types for
−− key and element types of the containers, which usually
−− would be defined in a generic package with those types
−− as generic formal parameters.

Note how the Aggregate aspect is itself composed by an

aggregation of differently named components, depending on

the kind of the container (a list, a map, or a discretely indexed

vector (omitted here, as it is not used in this library).

The Reference Manual defines a few rules and limitations that

will be discussed when relevant in the next section. However,

it should be clear by inspecting these aspects how they are

the building blocks that will allow to attempt to create the

intended data structure.

3 Difficulties found
Among all the attempts at achieving the code depicted in

Listing 1, there where roughly two main approaches: one

in which the datatype is unique, and to which all aspects

would be applied; and another approach in which a family of

interrelated classes are used for each data kind: elementary,

list and map.

3.1 Monolithic type
In this approach, the ideas boiled down to apply all relevant

aspects to a single type:

type Any is tagged private with
Integer_Literal => To_Int,
Real_Literal => To_Real,
String_Literal => To_String,
Aggregate =>

(Empty => Empty,
Add_Named => Insert ,
Add_Unnamed => Append)

It turns out that initializing a same type with both numeric

and string literals is allowed, so the first three aspects pose

no problem. However, there is a explicit rule (ARM 202x

4.3.5, 5/5 [2]) forbidding using both named and unnamed

aggregates:

If Add_Named is specified, neither Add_Unnamed
nor Assign_Indexed shall be specified.

This idea, then, is a no-go that would require the use of

explicit conversion functions and auxiliary types to work

around that rule.

3.2 Family of classes
Given the previous finding, another approach is to apply the

incompatible aspects to two different types. Here, again,

several options open. One possibility is to try to have In-

sert/Append procedures with several profiles, so a mixture of

types can be stored in a container. An example showing only

integers and strings is as follows (omitting unrelated aspects):

type List is tagged private with
Aggregate => (Add_Unnamed => Append);

procedure Append (L : in out List; I : Integer);
procedure Append (L : in out List; S : String);

This, unfortunately, once again does not work, at least with

GNAT 11.2.4, as only the last Append prototype is associated

to the aspect, with others being silently ignored. At the time

of this writing, the author has not pinpointed whether this is

intended behavior, or a bug where either it should be rejected

or all procedures should be recognized during aggregate con-

struction.

This finding prompted the use of a solution based on class-

wide types, which is described in the following section.

4 Current solution
The best solution found until date consists in a container

where elements belong to a same class:

type Any is tagged private with
Integer_Literal => To_Int,
Real_Literal => To_Real,
String_Literal => To_Str;

Listing 2: Base type for literal initializations.

This base type serves to allow initialization with elementary

values. Although later there are derived wrapper types defined

for integers, reals, and strings, these aspects must be also

present in the base class, or initializations fail to recognize

values as appropriate for aggregate components.

The derived classes are (with some details omitted) thus:

type Bool is new Any with private;
function False return Bool;
function True return Bool;

type Int is new Any with private with Integer_Literal => To_Int;
type Real is new Any with private with Real_Literal => To_Real;
type Str is new Any with private with String_Literal => To_Str;

type Map is new Any with private with
Aggregate => (Empty => Empty,

Add_Named => Insert);
procedure Insert (M : in out Map; Key : String; Val : Any’Class);
type Vec is new Any with private with

Aggregate => (Empty => Empty,
Add_Unnamed => Append);

procedure Append (V : in out Vec; Val : Any’Class);

Vo lume 43, Number 1, March 2022 Ada User Jour na l

A. R. Mosteo 57

Here, the type Vec fulfills here the role of a simple list or

0-indexed vector. Note that both Map and Vec expect el-

ements to be of type Any’Class, which enables hetero-

geneous initializations. Now, these definitions1 allow the

writing of initializations such as (knowing that they are inside

a root package named Yeison):

A1 : constant Yeison.Int := 1;
A2 : constant Yeison.Str := " string " ;
A3 : constant Yeison.Bool := Yeison.True;
A4 : constant Yeison.Real := 3.14;

M1 : constant Yeison.Map := ("one" => 1,
"two" => "two");

M2 : constant Yeison.Map := ("one" => A1,
"two" => "two",
"three" => M1);

V1 : constant Yeison.Vec := (1, M2, "three", 4.0);
V2 : constant Yeison.Vec := (A1, 2, M2, V1, "five ");

Listing 3: Some initialization examples.

That is, we truly can have heterogeneous initializations, mix-

ing both literals or all kinds and variables, and still without

using any adapter function.

4.1 The trouble with class-wide values
What then about the objective we set out for with Listing 1?

It turns out we face and old “problem” (actually a logical

imposition of the language, even if in some cases it would be

unambiguous): when a literal of an aggregate type is used for

a class-wide placeholder, one must qualify the value with its

type. An example that could already arise in Ada 2012 is:

type Base is tagged null record;
type Int is new Base with record

I : Integer;
end record;

function Make (I : Integer) return Base’Class;

Now, in the body of Make we are forced to write as follows,

even if there is no possible ambiguity:

function Make (I : Integer) return Base’Class is
begin

return Int ’(I => I); −− Valid
return (I => I); −− Invalid

end Make;

The second, invalid, return statement in the previous listing

fails with an error “Type of aggregate cannot be class-wide”.

The same problem afflicts the presented design in examples

such as

V : Yeison.Vec := (1, "2", 3.0, (" four" => 4));
M : Yeison.Map := ("a" => 1,

"b" => "2",
"c" => 3.0,
"d" => (1, 2, 3, 4));

with the four element of both initialization expressions.

It is a pity that the user-defined literals, that result in a pre-

cise value of type Any (Listing 2) are accepted, whereas an

expression that can only be interpreted as an initialization of

a Map or a Vec, respectively, is instead “hijacked” by the

aggregate initialization, resulting in the aforementioned error.

1The complete code is available on-line [4].

Again, we are back to the problem of being unable to define

both Add_Named and Add_Unnamed aspects to the base

Any type.

4.2 Final outlook
With these limitations in mind, the closest code to Listing 1

still requires some “excess” qualifications, yet still not involv-

ing auxiliary functions:

X : Yeison.Map :=
("array" => Yeison.Vec’(1, "2", 3.0),
"boolean" => True,
"color" => "gold",
"number" => 123,
"object" => Yeison.Map’("a" => "b",

"c" => "d"));

Listing 4: Final result with qualifications.

These qualifications, as seen in Listing 3, were not necessary

when actual variables of a concrete type were used instead of

in-place aggregate initialization expressions. Here, the qualifi-

cations resolve the ambiguity and ensure these values have the

required Map or Vec type, which fulfills the Any’Class
elements expected by Map and Vec.

5 Conclusion
This work described current attempts to achieve initializa-

tion of a containers with heterogeneous data such as can be

found in JSON representations, without resorting to helper

conversion functions. This was largely achieved thanks to

a combination of new aspects for user-defined initialization

from literals, container aggregate initialization, and tagged

types that provide the necessary heterogeneity.

This solution fails at being entirely free of boilerplate, as

the use of class-wide types requires the use of qualification

expressions in nested elements of a collection. Apparent limi-

tations of the current GNAT implementation hint at a possible

alternative solution if eventually more than one function pro-

file is accepted for container initializations. Nonetheless, the

reduction in boilerplate achieved is remarkable and is a tes-

timony to how old and new orthogonal features combine to

facilitate the stated goal.

Finally, since the new user-defined initialization aspect only

applies to literals, there is still no risk of marring the language

with the unintended appearance of implied or automatic con-

versions that make other languages such as C++ much harder

to unravel for a human reader.

References
[1] “User-defined literals.” http://www.ada-auth.org/

standards/2xrm/html/RM-4-2-1.html. Ada Refer-

ence Manual (Ada 202x Draft 32).

[2] “Container aggregates.” http://www.ada-auth.org/
standards/2xrm/html/RM-4-3-5.html. Ada Refer-

ence Manual (Ada 202x Draft 32).

[3] L. Bassett, Introduction to JavaScript object notation: a to-the-
point guide to JSON. " O’Reilly Media, Inc.", 2015.

[4] A. R. Mosteo, “YEISON repository.” https://github.
com/mosteo/yeison, May 2022.

[5] A. R. Mosteo, “Use (and abuse?) of Ada 2022 features in design-

ing a JSON-like data structure.” https://fosdem.org/
2022/schedule/event/ada_2022_json_like/,

2022. FOSDEM.

Ada User Jour na l Vo lume 43, Number 1, March 2022

58

Getting Started with AdaWebPack

Max Reznik
Private entrepreneur, Zaporizhzhia, Ukraine; Tel: +38 050 106 6648; email: reznikmm@gmail.com

Abstract

This article introduces the AdaWebPack project recently
presented at the 12th Ada Developer Room at FOSDEM
2022 [3]. The AdaWebPack project aims for providing
a toolchain and Ada libraries to enable developing of
web applications to be executed in a web browser.

Keywords: Ada, WebAssembly, LLVM.

1 Introduction
A web application is application software that is accessed by

the user through a web browser mainly with an active network

connection. As the Internet spreads and the capabilities of

web browsers develop, web applications become more and

more powerful and attractive. Web applications have several

advantages. Web applications are very portabe, because they

run on a wide range of devices and operating systems. It’s

easy to keep web applications uptodate as they served from

a web server. They are easy to use because may not require

installation. Web applications can reach anyone, anywhere,

on any device with a single codebase.

Web browsers are quite capable right today. They provides

reach APIs such as WebGL for 3D visualisation, WebVR for

virtual reality, WebRTC for network communications and so

on. Web browsers execute WebAssembly, so web applications

could be developed in many languages, not just in JavaScript.

WebAssembly is a portable binary-code format as well as

software interfaces to the host environment. The main goal

of WebAssembly is to enable high-performance web applica-

tions. Many languages (including C/C++, Rust, Python, Java,

Ruby, Go) have WebAssembly as a compilation target. The

AdaWebPack project aims for adding Ada to this list.

In Oct 2019 AdaCore presented the GNAT LLVM project [1].

This project combines the GNAT Ada front-end with a LLVM

code generator. The LLVM supports many instruction sets

for real CPU/GPU, but it is able to generate WebAssembly

also. This combination opens the way for Ada to the Web.

Besides GNAT LLVM based toolchain, AdaWebPack con-

tains a customised GNAT Run Time library and Web API

bindings.

2 Compiling to WebAssembly
GNAT LLVM toolchain includes llvm-gcc compiler. To com-

pile an Ada code to WebAssembly you need

• specify wasm32 as a target to LLVM backend,

• point GNAT to a target dependent information, because it

differs from the native one. This information is provided

by AdaWebPack in the wasm32.atp file.

Corresponding command looks like this:

llvm−gcc −c −−target=wasm32 −gnateT=wasm32.atp ...

Since GNAT LLVM release, gprbuild is aware of it, so you

can compile a whole project like this:

gprbuild −−target=llvm −P hello.gpr −cargs
−−target=wasm32 −gnateT=wasm32.atp

3 Customized Ada Run-Time Library
At the current state WebAssembly doesn’t allow any stack

manipulation, so some Ada features are not supported yet.

Given that the Posix API is not available in the WebAssembly

environment, it is clear why the embedded GNAT runtime

library was chosen to be adapted as the WebAssembly runtime

library. It imposes the following restrictions:

• No exception handling (but local)

• No nested subprogram access values

• No tasks and protected objects

To allow dynamic memory allocation a simple implementa-

tion of TLSF allocatior was written. If the default memory

region is exhausted then allocatior requests new memory re-

gion from the host environment.

4 Provided Ada Libraries
4.1 WASM auxiliary packages
JavaScript object space is securely isolated from the We-

bAssembly program, so no JavaScript object can be accessed

directly. To simplify JavaScript integration AdaWebPack pro-

vides several auxiliary packages under WASM hierarchy (See

Figure 1).

They include WASM.Objects package to map JavaScript ob-

jects to integer identifiers as they are passed to Ada space.

WASM.Methods lets user call a method on a such object,

while WASM.Attributes provides read and write access to

object’s attributes.

Volume 43, Number 1, March 2022 Ada User Jour na l

M. Reznik 59

Figure 1: JavaScript and Ada space separation

4.2 WebAPI: Web.Strings
It seems that the string is the most used type for Web appli-

cations. To simplify exchange strings with JavaScript world

AdaWebPack provides a new string type (Web_String) with

primitives to contert it to and from Wide_Wide_String.

function "+" (X : Wide_Wide_String)
return Web.Strings.Web_String

renames Web.Strings.To_Web_String;

X : Web.HTML.Elements.HTML_Element :=
Web.Window.Document.Get_Element_By_Id

(+"toggle_label");

4.3 WebAPI: Web.DOM
The Web.DOM binding let the user access to a Web document

in a usual way. This interface provides Documents, Nodes,

Elements, Events types and so on. The user can search for

an element with Get_Element_By_Id function, traverse ele-

ment tree, create, update and delete nodes, subscribe to DOM

events. To implement an event handler the user provides an

implementation of Event_Listener interface.

type Listener is limited new
Web.DOM.Event_Listeners.Event_Listener

with null record;

overriding procedure Handle_Event
(Self : in out Listener;
Event : in out Web.DOM.Events.Event’Class);

L : aliased Listener;

4.4 WebAPI: Web.HTML
This package hierarchy provides a binding to HTML elements

such as Buttons, Inputs, Windows and so on.

procedure Initialize_Demo is
B : Web.HTML.Buttons.HTML_Button_Element

:= Web.Window.Document.Get_Element_By_Id
(+"toggle_button").As_HTML_Button;

begin
B.Add_Event_Listener (+"click", L’Access);
B.Set_Disabled (False);

end Initialize_Demo;

4.5 WebAPI: Web.GL
The WebGL is an API for rendering interactive 2D and 3D

graphics within a web application. This very impressive

technology could be used to create games, 3D visualisation,

content creation and so on.

AdaWebPack provides a basic binding for a subset of WebGL

API.

4.6 WebAPI: Web.Sockets, Web.XHR
The other two packages are for network communication.

The WebSocket protocol provides full-duplex communication

channels over a single TCP connection and lets the browser

interact with the server and vice versa.

XMLHttpRequest is an API to make HTTP requests such as

GET, POST, DELETE, etc. This is widely used to get data

from the server, send a user input to the server, check user’s

permissions and so on.

5 Web Application architecture
Just as an any Ada program, Ada Web application is executed

in two phases - elaboration and main procedure execution.

During elaboration the application initializes internal data,

creates event listeners and subscribes them to required events.

To emphasize that the browser controls the application execu-

tion, the body of the main program is left empty, so it does

nothing. After than the browser drives event loop and web

application gets events and reacts on them.

The AdaWebPack includes several examples to help newcom-

ers understand basic ideas.

6 AdaWebPack distribution
The AdaWebPack sources are published on GitHub under an

open source license. Everyone can build it from sources, but

this process could be complicated because it involves sources

from several other projects: GNAT frontend sources (part of

GCC), GNAT LLVM, LLVM. All these projects evolve on

their-own pace, so it could be hard to get consistent sources.

The AdaWebPack repository provides a binary release to help

with this issue. Currently, there are binaries for Fedora Linux,

Ubuntu and MSYS2 package for Windows.

7 Future work
Currently, AdaWebPack is at an early stage of development.

It capable to build a rather simple web applications, but writ-

ing them requires a lot of manual coding. It’s hard because it

involves synchronous update of Ada, HTML, CSS, WebGL

shaders code. We are looking a way to simplify this by de-

veloping a higher-level widget toolkit, but this requires more

expirience, ideas and experiments than we have now.

Current WebAPI binding is rather small. Extending it it’s

trivial, but requires a lot of work for a massive API. So we

are developing a WebIDL-to-Ada converter to automate this

work.

Another interesting idea is to use Ada for a multitier devel-

opment. Suppose you write a single Ada program and a tool

then splits it to client and server parts. These parts commu-

nicate each other with Distributed System Annex primitives

implemented over WebSocket, WebRTC or XMLHttpRequest

API.

We invite everyone intrested in Web application development

give AdaWebPack a try, and let us know via Issues and Pull

Requests on GitHub how it works for you.

Repository link: https://github.com/godunko/adawebpack

References
[1] A. Charlet, “Combining gnat with llvm.”

https://blog.adacore.com/combining-gnat-with-llvm,

2019.

Ada User Jour na l Vo lume 43, Number 1, March 2022

60

Volume 43, Number 1, March 2022 Ada User Journal

Overview of Ada GUI
Jeffrey R. Carter
PragmAda Software Engineering, https://github.com/jrcarter/

Abstract
This is a summary of the presentation of the same title
made in the Ada devroom at FOSDEM 2022.
Traditional GUIs require registering callbacks and
then giving up the program's thread of control to the
GUI. This results in an unnatural programming style
that runs counter to the way people typically learn to
read programs. Ada GUI uses an alternative approach
suited to a concurrent language.
Keywords: Ada, GUI.

1 Introduction
Traditional GUI frameworks require the program to create
widgets, register callbacks, and then give up the thread of
control. This is a response to the inherent parallelism of a
GUI by sequential languages. Programs are unintuitive to
design, write, and understand. In a concurrent language such
as Ada, the GUI can have its own task. This allows the GUI
to preserve the intuitive way of writing and understanding
programs. Ada GUI provides an interface for such a GUI.
There could be multiple implementations of this interface.
There is an all-Ada example implementation, that uses a
browser as a platform, supplied with the interface on Github
[1]. The use of a browser as the platform makes the
implementation very portable.

2 Traditional GUI Framework
In a traditional GUI framework, the program creates
widgets, registers callbacks, and gives up its thread of
control. This is due to the fact that a GUI is inherently
parallel: the user and the program run on completely separate
processors. The GUI needs a thread of control in order to be
able to respond to user actions. In a sequential language, that
thread must come from the program. But there must be a
mechanism for the program's code to execute in response to
the user's actions. This is provided by the GUI calling
subprograms that the program has registered with the GUI.

This approach has a number of consequences. What of
program code that needs to run independently of the GUI?
There is the question of what happens if there is a GUI event
while a callback is executing. Nor is this purely an academic
consideration: the Gnoga version of Mine Detector [2] has
to take action to deal with the possibility of a GUI event
occuring during a callback.

There is also an effect on program design, implementation,
and understanding. People learn to think of programs as
sequential things: First it does X, then Y, and then Z.
Consider a typical program that does not use a GUI:

with Ada.Text_IO;

procedure No_GUI is
 -- Empty
begin -- No_GUI
 All_Commands : loop
 Ada.Text_IO.Put(Item => "Enter g, h, or q: ");
 One_Command : declare
 Command : constant String :=
 Ada.Text_IO.Get_Line;
 begin -- One_Command
 if Command'Length > 0 then
 case Command (Command'First) is
 when 'g' =>
 Ada.Text_IO.Put_Line(Item => "Greetings");
 when 'h' =>
 Ada.Text_IO.Put_Line(Item => "Hello");
 when 'q' =>
 Ada.Text_IO.Put_Line(Item => "Quitting");

 exit All_Commands;
 when others =>
 null;
 end case;
 end if;
 end One_Command;
 end loop All_Commands;
end No_GUI;

This program is designed, written, and read top-to-bottom,
with X, Y, and Z corresponding to outputting a prompt,
getting a line, and processing the line.

Compare No_GUI to a similar program that uses a GUI:

with TGF;

procedure With_GUI is
 G : TGF.Button;
 H : TGF.Button;
 Q : TGF.Button;
 Output : TGF.Text_Box;

 procedure G_Click is
 -- Empty
 begin -- G_Click
 Output.Set_Text (Text => "Greetings");
 end G_Click;

 procedure H_Click is
 -- Empty
 begin -- H_Click
 Output.Set_Text (Text => "Hello");
 end H_Click;

J. R. Carter 61

Ada User Journal Volume 43, Number 1, March 2022

 procedure Q_Click is
 -- Empty
 begin -- Q_Click
 Output.Set_Text(Text => "Quitting");
 TGF.End_GUI;
 end Q_Click;
begin -- With_GUI
 TGF.Set_Up(Title => "Silly Example");
 G.Create
 (Text => "g",
 Click_Action => G_Click'Access);
 H.Create
 (Text => "h",
 Click_Action => H_Click'Access);
 Q.Create
 (Text => "q",
 Click_Action => Q_Click'Access);
 Output.Create;
 TGF.Main_Loop;
end With_GUI;

(TGF stands for Traditional GUI Framework; it is
imaginary.) This can be read top-to-bottom, but even
understanding how package TGF works, that doesn't give
much information. Instead, one must think in terms of "when
the user does this, the GUI calls that". The callbacks
normally have to modify the internal state of the program,
and in many cases modify the GUI as well. Even for fairly
modest programs, the number of combinations can easily
exceed the ability of the programmer or reader to keep them
in mind. The checks within a callback to deal with the need
for different actions for different cases can also become quite
complex.

3 Ada-Gui philosophy
The main idea behind Ada GUI is to use the features of Ada
to preserve the intuitive way of writing and understanding
programs. Ada is a concurrent language, so the GUI can have
its own task to respond to events, eliminating the need to
register callbacks and give up the thread of control. The GUI
can put events on a protected queue; the program takes
events from the queue when appropriate for the program's
logic. Significantly different cases can be handled by
separate parts of the program, eliminating the combinatorial
explosion and complex checks of handling them all from the
same set of callbacks. There is no need to worry about when
or how frequently events occur.

Widgets are created by functions that return the ID of the
new widget. Operations take the ID of the widget to act on,
with heavy use of preconditions to make sure that operations
are not applied to inappropriate widgets. Events from the
event queue contain the ID of the widget that generated the
event.

4 Example
A simple example of the use of Ada GUI is provided by a
Luhn-checksum generator. Luhn checksums are used for the
last digit of credit and debit card numbers and the like.

-- A program for generating Luhn checksums
-- with an Ada_GUI UI
-- An Ada_GUI demo prograM
-- Copyright (C) 2022 by PragmAda
-- Software Engineering
-- Released under the terms of the BSD
-- 3-Clause license; see
-- https://opensource.org/licenses
--
with Ada.Exceptions;
with Ada.Text_IO;

with Ada_GUI;

procedure Luhn_Gen is
 Input : Ada_GUI.Widget_ID;
 Err : Ada_GUI.Widget_ID;
 Checksum : Ada_GUI.Widget_ID;
 Gen : Ada_GUI.Widget_ID;
 Quit : Ada_GUI.Widget_ID;

 procedure Generate;
 -- Obtain input from the GUI and
 -- calculate the checksum

 Err_Msg : constant String := "Enter some digits";

 procedure Generate is
 subtype Digit is Character range '0' .. '9';

 function Reversed (Value : String) return String;
 -- Reverses Value.

 function Squeezed (Value : String) return String;
 -- Keeps the Digits of Value and discards any other
 -- characters.

 function D2N (D : Digit) return Natural is
 (Character'Pos (D) - Character'Pos ('0'));

 function Reversed (Value : String) return String is
 Result : String (Value'Range);
 Last : Natural := Value'Last;
 begin -- Reversed
 if Value = "" then
 return "";
 end if;

Swap : for First in Value'First .. Value'First +
 (Value'Length - 1) / 2

 loop
 Result (First) := Value (Last);
 Result (Last) := Value (First);
 Last := Last - 1;
 end loop Swap;

 return Result;
 end Reversed;
 function Squeezed (Value : String) return String is
 Result : String (1 .. Value'Length);

62 Overview of Ada GUI

Volume 43, Number 1, March 2022 Ada User Journal

 Last : Natural := 0;
 begin -- Squeezed
 All_Chars : for I in Value'Range loop
 if Value (I) in Digit then
 Last := Last + 1;
 Result (Last) := Value (I);
 end if;
 end loop All_Chars;
 return Result (1 .. Last);
 end Squeezed;

 Forward : constant String := Input.Text;
 Value : constant String := Squeezed
 (Reversed (Forward));
 Sum : Natural := 0;
 D : Natural;
 begin -- Generate
 Err.Set_Text (Text => "");
 Err.Set_Visibility (Visible => False);
 Checksum.Set_Text (Text => "");

 if Value'Length = 0 then
 Err.Set_Visibility (Visible => True);
 Err.Set_Text (Text => Err_Msg);
 return;
 end if;

 All_Digits : for I in Value'Range loop
 D := D2N (Value (I));
 if I rem 2 = 1 then
 D := 2 * D;
 if D > 9 then
 D := D - 9;
 end if;
 end if;

 Sum := Sum + D;
 end loop All_Digits;

 Checksum.Set_Text (Text => Integer'Image (
 (9 * Sum) rem 10));
 exception -- Generate
 when E : others =>
 Ada.Text_IO.Put_Line (Item => "Generate: " &
 Ada.Exceptions.Exception_Information (E));
 end Generate;

 Event : Ada_GUI.Next_Result_Info;

 use type Ada_GUI.Event_Kind_ID;
 use type Ada_GUI.Widget_ID;
begin -- Luhn_Gen
 Ada_GUI.Set_Up (Title =>
 "Luhn Checksum Generator");

 Input := Ada_GUI.New_Text_Box (Label => "Input :",
 Placeholder => Err_Msg);
 Err := Ada_GUI.New_Background_Text
 (Break_Before => True);

 Err.Set_Foreground_Color (Color =>
 Ada_GUI.To_Color (Ada_GUI.Red));
 Err.Set_Visibility (Visible => False);
 Checksum := Ada_GUI.New_Text_Box (Label =>
 "Checksum :", Break_Before => True);
 Gen := Ada_GUI.New_Button (Text => "Generate",
 Break_Before => True);
 Quit := Ada_GUI.New_Button (Text => "Quit",
 Break_Before => True);

 All_Events : loop
 Event := Ada_GUI.Next_Event;

 if not Event.Timed_Out then
 exit All_Events when Event.Event.Kind =
 Ada_GUI.Window_Closed;

 if Event.Event.Kind = Ada_GUI.Left_Click then
 if Event.Event.ID = Gen then
 Generate;
 end if;

 exit All_Events when Event.Event.ID = Quit;
 end if;
 end if;
 end loop All_Events;

 Ada_GUI.End_GUI;
exception -- Luhn_Gen
when E : others =>
 Ada.Text_IO.Put_Line (Item =>
Ada.Exceptions.Exception_Information (E));
end Luhn_Gen;

The reader will note that the intuitive way of reading a
program is preserved. First the program sets up the GUI, then
obtains GUI events and responds to them.

For a more complex example, the reader may want to see the
Ada-GUI version of MP, a music player [3]. It demonstrates
using separate parts of the program to deal with different
operating modes. There is also an Ada-GUI version of Mine
Detector [2] which does not have to worry about event
arrival timing.

5 Implementation
Ada GUI comes with an example implementation derived
from Gnoga, with many simplifications and modifications.
It uses a browser as its platform, making programs that use
it very portable. The implementation is also all Ada, making
it easier for an Ada software engineer to understand. Other
implementations are possible.

6 Summary
The traditional GUI framework results in an unintuitive
approach to program implementation that can be difficult to
understand. The main reason for Ada GUI is to provide a
GUI that preserves the intuitive way of writing and
understanding programs. Ada GUI is conceptually quite
simple and straightforward, and the example implementation

J. R. Carter 63

Ada User Journal Volume 43, Number 1, March 2022

is all Ada. Ada-GUI programs should be very portable, even
to versions with alternative implementations.

References
[1] J. R. Carter, Ada-GUI repository,

https://github.com/jrcarter/Ada_GUI.

[2] J. R. Carter, Mine-Detector respository,
https://github.com/jrcarter/Mine_Detector.

[3] J. R. Carter, MP respository,
https://github.com/jrcarter/MP

64

Volume 43, Number 1, March 2022 Ada User Journal

The Outsider's Guide to Ada Lessons from Learning
Ada in 2021
Paul Jarrett

Abstract
Ada often gets written off as an old and obscure
language, though few have first-hand experience with
it. In this presentation, an Ada newcomer provides an
objective overview of the language's major elements
and features. A C++ software engineer with
experience in over a dozen programming languages,
Paul introduces Ada to fellow programmers using the
C family vernacular.
Get introduced to the modern techniques and tools
used for open source development with Ada. See how
the Alire tool allows easy cross-platform development,
as used by AdaCore's Ada Crate of the Year 2021
winner.
Learn how the language breaks into four syntax
categories, which form a core and three opt-in

sublanguages. Discover how structural elements come
in four flavors, and how types and subprograms drive
design. Also included is an illustration of fine tuning
and low level control with aspects and attributes. The
talk concludes by showing tasking in action from an
open source project, and the various ways the
language focuses on describing programmer intent.
This talk focuses on concepts, making it a great
complement to Jean-Pierre Rosen's more detailed talk,
"Introduction to Ada for Beginning and Experienced
Programmers."
Watch the video [1] to see an outsider's perspective of
Ada, or to introduce programmers to the language.

References
[1] https://fosdem.org/2022/schedule/event/

ada_outsiders_guide/

 65

Ada User Journal Volume 43, Number 1, March 2022

Proving the Correctness of GNAT Light Runtime
Library
Yannick Moy and Claire Dross
AdaCore, 46 rue d’Amsterdam, 75009 Paris; email: moy@adacore.com, dross@adacore.com

Abstract
The GNAT light runtime library is a version of the
runtime library targeted at embedded platforms and
certification, which has been certified for use at the
highest levels of criticality in several industrial
domains. It contains around 180 units focused mostly
on I/O, numerics, text manipulation, memory
operations. We have used SPARK to prove the
correctness of 40 of them: that the code is free of
runtime errors, and that it satisfies its functional
specifications.
Keywords: SPARK, runtime, proof.

1 Introduction
As a programming language, Ada offers a number of
features that require runtime support, e.g. exception
propagation or concurrency (tasks, protected objects). The
GNAT compiler implements this support in its runtime
library, which comes in a number of different flavors, with
more or less capability. The GNAT light runtime library is a
version of the runtime library targeted at embedded
platforms and certification, with an Operating System or
without it (baremetal). It contains around 180 units focused
mostly on I/O, numerics, text manipulation, memory
operations.

Variants of the GNAT light runtime library have been
certified for use at the highest levels of criticality in several
industrial domains: avionics (DO-178), space (ECSS-E-
ST40C), railway (EN 50128), automotive (ISO-26262).
Details vary across certification regimes, but the common
approach to certification used today is based on written
requirements traced to corresponding tests, supported by test
coverage analysis. Despite this strict certification process,
some bugs were found in the past in the code. An ongoing
project at AdaCore is applying formal proof with SPARK to
the light runtime units, in order to prove their correctness:
that the code is free of runtime errors, and that it satisfies its
functional specifications. So far, 40 units (out of 180) have
been proved, and a few bugs fixed along the way (including
a buffer overflow).

2 Not all Bugs are Shallow
But first, let’s consider a motivating example of why one
may need formal proof to get confidence in the correctness
of runtime units. Back in 2012, the late great programmer
(and co-founder of AdaCore) Robert Dewar implemented
runtime support for big integers in the GNAT compiler, in

order to allow intermediate arithmetic computations without
overflows (say, if you compute (A * B) / C but (A * B) might
overflow, this allows you to tell the compiler to compute (A
* B) / C with big integers, so that only the final result has to
fit in a machine integer). The most complex function was the
division between big integers, for which he implemented
algorithm D by Donald Knuth from The Art of Computer
Programming Vol 2, 2nd Edition - 1981, section 4.3.1. One
of the code reviewers reported a possible integer overflow in
a test, when computing the quantity ((u (j) & u (j + 1)) - DD
(qhat) * DD (v1)) * b. Robert was initially not worried, given
that this closely followed Knuth’s published algorithm, but
got concerned when it was shown that the overflow could be
exercised! So that the computation of (A * B) / C with A =
18446744069414584318, B = 4294967296 and C =
18446744069414584319 was giving the result 2147483648
instead of the correct 4294967295.

Thankfully, we were not the first to spot the bug, which had
already been corrected in 1995. Here is the relevant section
of errata of TAOCP Vol 2, 2nd Edition, replacing the buggy
test with new code (to the right of the strange arrow):

In fact, with this patch, the rewritten test might still lead to
an overflow! This was detected a decade later, in 2005. Here
is the relevant section of errata of TAOCP Vol 2, 3rd Edition,
changing the comparison operation:

After careful code reviews, we convinced ourselves that the
new version was correct, but, already at the time, we
wondered whether this could be proved using SPARK tools
(after all, the GNAT compiler is written itself in Ada, so we
could hope to prove part of it). That was not possible at the
time, but we kept it as a future challenge.

Of course, the same algorithm may get implemented
numerous times in a given application, and GNAT was no
exception. There were two other implementations of
algorithm D in GNAT, one in uintp.adb for arbitrary-
precision computation at compile time, and one in s-
arit64.adb for runtime support of fixed-point arithmetic. In
the specific context of these two other implementations, we
found no clear bug: the fixes were propagated to uintp.adb
which was using a similar test, while s-arit64.adb used a
different comparison which could not overflow. But given

66 Proving the Correctness of GNAT Light Runt ime Library

Volume 43, Number 1, March 2022 Ada User Journal

that the 1st Edition of Vol 2 was published in 1969, there
must be hundreds of implementations of this algorithm out
there that did not apply later fixes and are still incorrect!

Five years later, in 2019, our interest in the implementation
of algorithm D in s-arit64.adb was raised by a remark of an
external auditor, as part of the certification of this runtime
unit for use in space. The auditor noted the high complexity
of this function and asked for the addition of more comments
in the code to be able to assess its correctness. Prompted by
this request, we reviewed again this implementation and
discovered that the code failed to raise an exception in a case
where it should have done so (because the result of the
division was too large), and that the code of another function
in that unit contained two possible integer overflows when
converting between signed and unsigned values. Thankfully,
none was critical, because the former concerned a case of
incorrect inputs, and because the overflows in the latter were
silent in the runtime at that time (the runtime was compiled
without runtime checking). Still, that was a close-enough
call for us to wish that we could increase our confidence in
the correctness of this code through proof.

3 Going Beyond Eyeballs (i.e. Reviews)
And this is what we did in the summer of 2021! Our intern
Pierre-Alexandre Bazin used SPARK to prove that s-
arit64.adb was correctly implementing all its functions: there
were no possible runtime errors in the code, and all the
functions implemented their specification faithfully. This
required expressing the specification as contracts in SPARK,
that is, preconditions and postconditions, like here for the
function Scaled_Divide implementing algorithm D:

The postcondition uses big numbers to express that the
resulting quotient Q is the mathematical operation (X * Y /
Z) and the resulting remainder R is the rounded value of the
mathematical remainder. The precondition states that these
values for Q and R should fit in the machine integer type
Double_Int. See the code for the definition of the ghost
functions Round_Quotient and Same_Sign which are used
to define this contract.

The implementation of Scaled_Divide was slightly modified
to make it provable, but more critically, Pierre-Alexandre
had to use quite a lot of ghost code to guide automatic
provers, including basic arithmetic lemmas to enunciate and
prove mathematical properties, as well as a number of more
complex lemmas to isolate parts of the proof, and a few
intermediate assertions to simplify and share the proofs
between provers.

Encouraged by this initial success, we have added contracts
expressing the full functional specification of many other
units in the GNAT light runtime, and proved with SPARK
that the code correctly implemented these contracts. This
includes units for character and string handling (like a-
strsup.ads/a-strsup.adb), units for support of language
attributes ‘Width, ‘Value and ‘Image (like s-widthu.ads/s-
widthu.adb, s-valueu.ads/s-valueu.adb and s-imageu.ads/s-
imageu.adb), support for exponentiation (like s-
exponn.ads/s-exponn.adb). We have so far proven 40 such
units, and, along the way, we have discovered and fixed a
few cases of overflow check and range check failures, one of
which could lead to a buffer overflow on a runtime built
without runtime checks. As you can see from the source
files, that required adding many specifications (around 400
preconditions and 500 postconditions) and ghost code
(around 150 loop invariants, 400 assertions, 300 ghost
entities), and the daily proof takes 1.5 hours on a Linux
server with 36 cores.

Most remaining units remain out of reach for SPARK today,
either because they rely on an untyped memory model
(converting between raw Address values and typed pointers)
or because they require precise reasoning on bitwise
floating-point representation. Most units that use Address-
to-pointer conversions use very simple algorithms, and those
that manipulate floating-point values are direct translations
in Ada of either reference C implementations or textbook
algorithms, which increases confidence in their correctness.
Our vision for the future is to both maintain the automatic
proof of the 40 units proved so far as the analysis tool and
provers get updated, so that we can benefit from the
associated assurance in certification, and to grow the set of
proved units as SPARK language allows more constructs
and tooling improves.

The fact that this effort has not led to the discovery of serious
bugs is a testament to the quality of the GNAT light runtime
code, which has been submitted to a very high level of
scrutiny in the past 20 years as it has been certified to the
highest levels of multiple certification standards for
avionics, railway, space, etc. Proof with SPARK is a new
way to achieve this high level of assurance, with stronger
guarantees about the absence of whole classes of errors, and
about the faithfulness of all code paths to the specification.

4 Conclusion
Linus’s law states that “given enough eyeballs, all bugs are
shallow”. Our past experience with subtle bugs remaining
present in code after decades of detailed inspection by
experts, including in the context of certification, tells us that
this is not true of all bugs. Formal proof may provide a cost-
effective way to gain the assurance that indeed subtle bugs
escaping reviews and testing are not present in the software.

This work was presented in the Ada devroom at FOSDEM
2022. [1]

References
[1] https://fosdem.org/2022/schedule/event/

ada_proving_gnat_light_runtime/

67

Implementing a Build Manager in Ada

Stéphane Carrez
Issy Les Moulineaux, France; email: Stephane.Carrez@protonmail.com

Abstract

A build manager is a tool used to automate the building,
testing and delivery of software projets. Porion is a new
build manager that was first presented at the FOSDEM
2022 event in the “Continuous Integration and Continu-
ous Deployment Developer Room” [1] and in the “Ada
Developer Room” [2]. This paper is a summary of these
two presentations and it focuses on the complexity of
designing a build manager. It highlights some security
issues that apply to a build manager and its implementa-
tion. It explains the overall architecture that was chosen
and the reason of the choice. Finally it presents the Ada
generation tools that have been used in this project.

Keywords: build manager, continuous integration, con-
tinuous delivery, code generation.

1 Introduction
After having used Jenkins [3] with more than 30 projects

during 8 years, it was time to switch to another build manager.

Jenkins is a great build manager but it is written in Java

and suffers from several performance and security issues.

With my Jenkins configuration, the server is using more than

1.3Gb of resident memory. Jenkins also has regular security

vulnerabilities due to the numerous plugins it is composed of

and to the use of Java. The Jenkins community is however

very reactive and these vulnerabilities are fixed quickly.

It was time to get rid of Java and put in place a better and

safer design in Ada. Security is an important aspect of the

project and it must be taken seriously from the beginning. As

far as functionalities are concerned, it is not necessary to have

all the features provided by Jenkins but having a command

line interface and a web interface were two important aspects.

Last is the performance of the final build manager which must

deliver a fast and responsive web interface.

This article is structured as follow. Section 2 presents the

project to highlight some of its concepts and features. The

project architecture is described in section 3. Section 4

presents the UML and code generation tool which are used.

Section 5 describes how some resources are embedded in the

Ada program with the help of another code generation tool,

before concluding in section 6.

2 Overview
Porion [4] is a continuous integration server and agent that

helps automate the building, testing and deployment of soft-

ware development projects written in any language.

The name of the project comes from the north of France and

was used in coil mines to designate the master miner. The

word means “leak” in English or “poireau” in French. Indeed

the “porion” sits down and waits for others to do the job. This

is what we expect for a build manager: wait, build and verify

that the work is done correctly.

2.1 Porion concepts
Before looking at the project features and architecture, it is

necessary to look at the different concepts used by a build

manager. These concepts are common to most build man-

agers, they are illustrated by figure 1.

First the build manager defines a notion of project that must

be monitored and built. From that project the build manager

must have access to the sources to check whether they are

modified and start new builds. In most cases, sources are

stored using a source control system such as Git, Subversion,

Mercurial, Bazaar, CVS or others. But it is also possible to

use a tar or a zip file to get access to the sources.

Figure 1: Porion concepts

To build a project we are going to use a build recipe that

describes all the steps to build the project. A same project can

be built by using different recipes and therefore different build

steps. A build recipe can be setup to configure the build with

code coverage analysis, another one to build with optimized

options for a production release and a third one could enable

or disable some specific project feature.

Having a build recipe, the build manager must decide to

execute the associated build steps on a build node. The build

node can be the machine where the build manager is running

but it can also be a remote server dedicated to the build. The

build node has specific properties such as the operating system

or CPU architecture. For some projects it is useful to ask the

build manager to build the project on different build nodes,

each having different properties.

When executing the build recipes on a build node we obtain

some build results. The build results are composed of the

production of the build, test execution results, code coverage

analysis and all the logs associated with execution of the build

recipes.

Ada User Jour na l Vo lume 43, Number 1, March 2022

68 Implement ing a Bui ld Manager in Ada

2.2 What Porion must do?
A build manager has a lot of work to fulfill its job. Assuming

the build manager has all the project configuration, it must

first probe the sources to detect changes in the project. Such

mechanism is specific to each source control system. Having

detected changes, it must schedule the builds according to the

projects and the recipes and for that is uses a build queue.

The build manager must launch builds either locally or re-

motely on a build node. For this it will look at the build

recipe and execute every step one by one. Such execution

is synchronous meaning that the build manager has to wait

until the recipe step has completed. During that execution,

the build manager must also track the execution and record

build logs.

After the build recipes are executed, the build manager must

extract some build results either from the build logs or from

some files produced by running the build steps. The build

manager can extract unit test results, code coverage results.

Once the build is finished, the build manager must publish

some build summary and provide various reports.

2.3 What Porion must protect?
A build manager has access to sensitive data and we must not

neglect the security aspects of such tool. The first set of data

to protect is the source files and how they are fetched from

the source control system.

Another set of sensitive information is the credentials used

by the build manager. Some credentials are used to access

and retrieve the source code of the projects. Some other

credentials are used to connect and execute recipes on build

nodes. The API secret keys which are used to interact with

external tools is another form of credentials that must be

protected.

A last class of secret information concerns the passwords used

by certificates when a build must be signed. For example, an

Android application must be signed with a certificate before

being uploaded to the Google Play Console. Such certificate

must be protected by a password and we don’t want to expose

that password to malicious users.

The build manager provides a web access in order to display

build results. Web application security is often underesti-

mated. This is an area where security is an important concern

and using a secure framework can help reduce application

vulnerabilities.

2.4 Project numbers
The project was started in May 2021 and took around 260

hours so far. It contains 32000 lines of Ada 2012 but half

of them is in fact generated by some code generator. The

program has only 43 Ada packages completed by 30 Ada pri-

vate packages making it rather small and reasonably complex

project.

3 Porion architecture
The Porion build manager is composed of a command line

agent and a web server. The command line agent provides

the basic commands to manage projects, recipes, build nodes,

executing build recipes and collecting build results. On its

side, the web server provides a simple dashboard that shows

the projects and their build results. Both of them are written

in Ada 2012 and they share almost the same Ada components

and libraries.

3.1 Porion library
The heart of the build manager is composed of a library that

is shared by the command line agent and the web server.

This library is composed of 39 packages that organize the

different operations of the build manager. The Ada packages

are organized around the different functionalities that the

build manager must perform. The use of Ada private child

package is used whenever possible to restrict and limit the

visibility of the package. Doing this has been very helpful

for the refactoring because we know beforehand whether the

impact is limited or larger. All the packages are contained in

the Porion root package. Figure 2 tries to give a graphical

overview of some packages and their organization. A greyed

box package cannot be used outside of its enclosing box

because it is a private Ada package. Packages marked with a

star are generated by a code generator described later.

Ssh

Local

Scripts Metrics XUnit

Con�gs BuildsProjects

Porion

Nodes

Builders

XUnitSources

Git

Files ServicesServices Services

Metrics

Cloc CoverageDiskusage Filesize

Setup

Rules

Executors

Services

Models Models

Models

Models

Models

Analysis

Parsers
* * *

*

*

Queries

Logs

Reports

Resources

*

Figure 2: Porion library Ada packages

The sources of a project are controlled by the Sources child

package. It contains two private child packages which are

dedicated to the management of Git and tar or zip files. It is

possible to add new source control systems by adding new

private child package.

The projects and builds are managed by the Projects and

Builds packages. The build nodes are represented by the

Nodes package which contains specific private child pack-

ages dedicated to the management of these build nodes. The

Local child package is dedicated to launching commands

locally and the Ssh child package targets a build node with

some ssh access.

The Metrics child package is dedicated at collecting vari-

ous build metrics. Specific build metrics are implemented by

a private child package. This allows to hide the implementa-

tion details of these build metrics and make sure that they are

exposed using a common mechanism.

Volume 43, Number 1, March 2022 Ada User Jour na l

S. Carrez 69

3.2 Porion agent
The Porion agent provides a set of commands that allow to

control the projects, their configuration, define their recipes

and execute build recipes. Each command has a specific name

and dedicated options. The list of command example below

is used to setup the workspace directory for hold the database

and build area. The add command registers the aflex Git

project, the set command configure some project variable.

porion init / build /porion
porion add https :// github.com/Ada−France/aflex.git
porion set aflex~main filter_rules git ,make,gprbuild,cloc

The build command checks for changes on the project and

build it. Last, the list and info commands report some

information on the build or on a specific project.

porion build aflex
porion list −b
porion info −a aflex

Each command is implemented within its own Ada private

child package as illustrated by figure 3. They are implemented

by using the generic command framework provided by the

Ada Utility Library [5]. That command framework handles

the identification of the command to execute, the parsing of

command arguments and the help support to give information

about a command.

Build

Porion

Main Commands

Check Con�g Depend

Edit Env Info Init List Logs

Node Remove Set Status Steps

Drivers Add
Resources

Queries

Schema
*
*

Figure 3: Porion agent Ada packages

To use command framework, the first step is to instanti-

ate the Util.Commands.Drivers package with a con-

text type and a parser package. The context type allows to

define and give an application specific context when exe-

cuting a command. The parser package defines the opera-

tions and types required to parse the command line. The

GNAT_Parser handles the command line parsing by us-

ing the GNAT.Command_Line package which brings the

support for numerous short and long option parser.

with Util .Commands.Drivers;
with Util .Commands.Parsers.GNAT_Parser;
private package Porion.Commands.Drivers is

use Util .Commands;
package Main_Driver is
new Util.Commands.Drivers
(Context_Type => Context_Type,
Config_Parser => Parsers.GNAT_Parser.Config_Parser,
Driver_Name => "porion");

type Command_Type is abstract
new Main_Driver.Command_Type with null record;

end Porion.Commands.Drivers;

Each command is implemented by a specific child package

of the Porion.Commands package and it is defined by a

specific Ada tagged type that must override an Execute pro-

cedure. The command framework will execute that procedure

when the command name is given as program argument.

private package Porion.Commands.Info is

type Command_Type is
new Porion.Commands.Drivers.Command_Type with private;

overriding
procedure Execute

(Command : in out Command_Type;
Name : in String ;
Args : in Argument_List'Class;
Context : in out Context_Type);

end Porion.Commands.Info;

An instance of the concrete Command_Type type is then

declared in the Porion.Commands package body and reg-

istered to the driver with a name and a short description string.

The driver uses the name to identify the command and the

description for the help command.

package body Porion.Commands is
Info_Command : aliased Porion.Commands.Info.Command_Type;

...
Driver .Add_Command

(" info " ,
"report some information about a project or a build"),
Info_Command'Access);

...
end Porion.Commands;

3.3 Porion server
The Porion web server is built on top of the Ada Web Appli-

cation (AWA) [6] framework which was presented at the FOS-

DEM 2019 event [7]. Also based on the Ada Web Server [8],

it can run on various servers including GNU/Linux, NetBSD

and FreeBSD. AWA leverages Ada’s safety features to pro-

vide a secure environment on top of which safe applications

are built. AWA is based on several Java-like technologies such

as Java Beans, Java Servlet, Java Server Faces and other stan-

dards such as OAuth2, REST and OpenAPI, all implemented

in Ada.

Ada Web Application

Ada Database

 Objects
OpenAPI Ada

 Ada

Server Faces
Ada Servlet

Ada KeystoreAda EL

Ada Security

Ada UtilAda Web Server XML/Ada

SQLite

GNU/LinuxFreeBSDNetBSD

D
y
n

a
m

o

A
d

v
a
n

c
e
d

 R
e
s
o

u
rc

e

E
m

b
e
d

d
e
r

d
v
a
n

c
e
dd

Porion Lib

Porion Web Server Porion Agent

Figure 4: Porion architecture

Figure 4 shows the different Ada libraries that are provided

or used by the AWA framework.

4 UML and code generation
To store and keep track of the different data, the Porion build

manager uses a database. This gives enough flexibility and

Ada User Jour na l Vo lume 43, Number 1, March 2022

70 Implement ing a Bui ld Manager in Ada

scalability for the project management, tracking of project

changes and representing the build results. The database has

a specific schema for the representation of the data that must

be stored. On the other hand, we need to access and store the

data from an Ada 2012 program.

4.1 Database modeling
To easily describe the information that is stored in the database

and accessed from Ada, a database model and a code genera-

tor is used. The database model is made by using UML [9]

and the choice of UML was motivated by the fact that a UML

class diagram is simple and flexible enough to represent a

database table and its relations.

Figure 5 shows the development process. The first step is to

design the database model either by using a UML tool such as

ArgoUML [10] or by writing an XML or YAML description

file. The second step is to generate the Ada mapping files by

using the Dynamo [11] code generator. At the same time, the

code generator can produce the SQL database schema. The

last step is to write the application on top of the generated

code that gives direct and simplified access to the database

tables.

XML Model

Dynamo

Generator

Model

Doc

(HTML)

SQL

Tables

Ada

Model

Packages

UML Model

Generate Develop

YAML Model

Design

YAML Model

XML Model

Figure 5: Dynamo code generator

The framework used by Porion to access the database is com-

posed of the Ada Database Objects [12] library (ADO) and

the Dynamo code generator. Most of the concepts developed

for ADO come from the Java Hibernate [13] framework. The

Ada Database Objects provides an “Object Relational Map-

ping” (ORM) for the Ada programming language. It allows

to map database objects into Ada records and access database

content easily. The library supports PostgreSQL, MySQL,

SQLite as databases. On its side, Dynamo reads a model

description and generates both the SQL schema and the Ada

packages giving access to the database tables through the

ADO framework.

4.2 Porion UML model
The Porion database model being described in UML with Ar-

goUML, it is composed of 19 tables organized in 5 packages.

Furthermore the Dynamo code generator allows to map SQL

queries in Ada vectors and these queries are organized in a

separate package. At the end, the 6 generated Ada packages

contain 14000 lines of Ada code.

UML mostly uses graphical notations to express the design of

software components. The UML class diagram is one of such

graphical notation. It describes classes by specifying a name

for the class and defining a set of attributes that belong the

class. Relations between different classes are expressed by

drawing specific links between different classes. The UML

class diagram can also describe operations provided by the

class.

To describe some specific behavior, we are using UML stereo-

types and apply them either on the UML class, UML attributes

or UML relations. These stereotypes are recognized by the

code generator and they control how the generated code or

database SQL mapping is produced.

Project
<<Table>>

<<PK>> id : Identi�er
<<Auditable>> name : String
<<Version>> version : Integer
<<Auditable>> description : String
create_date : DateTime
update_date : DateTime
<<Auditable>> status : Project_Status_Type
<<Auditable>> scm : Source_Control_Type
<<Auditable>> scm_url : String
pass_rate : Permille_Type
fail_rate : Permille_Type
timeout_rate : Permille_Type
build_rate : Permille_Type
check_date : DateTime
<<Auditable>> check_delay : Integer
next_check_date : DateTime
build_progress : Permille_Type

Porion::Builds::Models::Buil
<<Table>>

<<PK>> id : Identi�er
<<Version>> version : Integer
number : Integer
create_date : DateTime
�nish_date : DateTime
pass_count : Integer
fail_count : Integer
timeout_count : Integer
test_duration : Microsecond_Type
status : Build_Status_Type
tag : String
build_duration : Millisecond_Type
sys_time : Millisecond_Type
user_time : Millisecond_Type

for-project

0..*

1
project

Project_Status_Type
<<enumeration>>

PROJECT_ACTIVE
PROJECT_DISABLED
PROJECT_ONHOLD

Branch
<<Table>>

<<PK>> id : Identi�er
<<Version>> version : Integer
name : String
<<Auditable>> tag : String
<<Auditable>> last_date : DateTime
create_date : DateTime
update_date : DateTime
status : Branch_Status_Type
pass_rate : Permille_Type
fail_rate : Permille_Type
timeout_rate : Permille_Type
build_rate : Permille_Type
rate_factor : Rate_Type
<<Auditable>> main_branch : Boolean
last_build_number : Integer
build_progress : Permille_Type
description : String

branch-of-project0..*

1
project

for-branch 0..*1
branch

Branch_Status_Type
<<enumeration>>

BUILD_DISABLED
BUILD_REQUIRED
BUILD_SUCCEEDED
BUILD_FAILED

Dependency
<<Table>>

<<PK>> id : Identi�er
<<Version>> version : Integer

uses-project

0..*1
project

depends-on

0..*1

owner

Porion::Builds::Models::Recipe
<<Table>>

<<PK>> id : Identi�er
<<Version>> version : Integer
<<Auditable>> name : String
<<Auditable>> description : String
<<Auditable>> status : Con�g_Status_Type
<<Auditable>> rate_factor : Permille_Type
<<Auditable>> main_recipe : Boolean
<<Auditable>> �lter_rules : String

recipe-for
0..*1

project

with-recipe

0..*

1

recipe

Porion::Builds::Models::Last_Build
<<Table>>

<<PK>> id : Identi�er
status : Build_Status_Type
<<Version>> version : Integer
last_build : Boolean

0..* 1

build

0..*1
branch

for-recipe
0..1

1 recipe

Figure 6: Projects, branches, dependencies, recipes and builds
relations

Figure 6 shows several database tables with their relations.

The Project class is marked with the Table stereotype

to tell the code generator this is a database table and it must

generate code for it. That table has a first id attribute whose

type is Identifier and the PK stereotype indicates that

this is a primary key. Next is the name attribute which is a

String and has the Auditable stereotype. That stereo-

type indicates to the code generator to emit code to track

changes of the attribute in a specific audit table.

A project can have several branches and this is tracked by the

Branch table. A branch can belong to exactly one project

and a project can have zero or several branches. The Recipe
table describes the recipes to build the project and a project

can have several build recipes.

The UML model and code generator allow the user to specify

their own types. To track execution times and store them

in a reasonable format, two types have been introduced:

Millisecond_Type and Microsecond_Type. Both

of them are represented as integer in the database but they

are declared in the project as new natural types so that they

cannot be mixed together. These two types are defined in

a parent Ada package in a non generated Ada package. On

its side the UML model contains some import definition that

make these two types visible from the model.

4.3 Ada code generation with Dynamo
For each UML package, Dynamo generates an Ada pack-

age specification and a body with the definition of types

and operations to represent the tables that are modelized in

Volume 43, Number 1, March 2022 Ada User Jour na l

S. Carrez 71

UML. For the Project table, the code generator creates

the Project_Ref tagged record and a Project_Impl
private type. The first type is the type intended to be used by

applications and it provides procedures and functions to oper-

ate on the project instance. Each project instance represents

a single database row. Internally it uses a reference counter

to the Project_Impl instance which holds all the record

attributes.

with Ada.Containers.Vectors;
with ADO.Objects;
with ADO.Sessions;
with ADO.SQL;
package Porion.Projects.Models is

type Project_Ref is new ADO.Objects.Object_Ref
with null record;

procedure Set_Name
(Object : in out Project_Ref; Value : in String);

function Get_Name
(Object : in Project_Ref) return String;

overriding
procedure Save

(Object : in out Project_Ref;
Session : in out ADO.Sessions.Master_Session'Class);

package Project_Vectors
is new Ada.Containers.Vectors

(Index_Type => Positive ,
Element_Type => Project_Ref,
"=" => "=");

procedure List
(Object : in out Project_Vector;
Session : in out ADO.Sessions.Session'Class;
Query : in ADO.SQL.Query'Class);

...
private

type Project_Impl is ...
end Porion.Projects.Models;

The code generator generates an instantiation of the

Ada.Containers.Vectors package and a List proce-

dure that allows to retrieve a list of projects from the database.

To select which projects are returned a query object can be

configured to operate on the SQL WHERE clause that is gen-

erated to retrieve the rows from the database.

4.4 Using the generated Ada model
Using the generated Ada code to access the database is

quite easy. The Project table is represented by the

Project_Ref Ada tagged record and for each UML class

attribute, the code generator provides a getter and a setter oper-

ation. The UML attributes are only accessed through function

and procedures because the database framework must know

when a value is modified in order to generate the correct SQL

INSERT or UPDATE statement.

Populating a project information is easily done by calling

the generated Set_ procedures and then calling the Save
procedure. Depending on whether the project existed or not

in the database, the ADO runtime will either generate an SQL

INSERT or UPDATE statement.

DB : ADO.Sessions.Master_Session;
Project : Porion.Projects.Models.Project_Ref;
...

Project .Set_Name (Name);
Project .Set_Create_Date (Ada.Calendar.Clock);
Project .Set_Status (Projects.Models.PROJECT_ACTIVE);
Project .Set_Scm_Url ("https:// gitlab .com/stcarrez/porion.git ");

Project .Set_Scm (SRC_GIT);
Project .Save (DB);

4.5 Focus on the build queue scheduler
The build manager has a build queue that describes the project

recipes that must be built. When registering a project, it is

possible to define the dependencies between projects (this is

represented by the Dependency class shown in figure 6).

Such dependencies allow to trigger a build on a project when

one of its dependent project was successfully built. The

challenge is to reduce the number of builds and avoid building

a project several times.

CA D CBDA
Add B in queue

Dependencies

Figure 7: Project dependencies and build queue

Let’s consider a set of 4 projects with a dependency tree of

figure 7 such that project C depends on B which depends on

project A and project D depends on project A. Let’s assume

that the build queue already contains project A, C and D, if the

project B is modified, we have to add it in the build queue. If

we add the project B at the end of the queue, the dependency

tree will schedule again the build on project C. The job of the

build scheduler is to avoid that and make sure that we insert

the new project in the build queue before project C as shown

in figure 7. However, at the same time we don’t want to defer

the execution of project D which does not depend on the new

project.

To solve this problem, Porion has a build queue scheduler

which looks at the build queue and the project dependencies

when a new recipe is added in the build queue. The first step is

to load the build queue from the database. The UML to Ada

code generator has generated a Build_Queue_Vector
type by instantiating the Ada.Containers.Vectors
package. This allows us to call a List procedure that will

execute an SQL SELECT statement and populate the Ada

vector with each database row returned by the SQL statement.

with Porion.Builds.Models;
with ADO.Queries;
use Porion.Builds.Models;

Queues : Build_Queue_Vector;
Query : ADO.Queries.Context;

...
Porion.Builds.Models.List (Queues, DB, Query);

Having our build queue, the first step is to know whether the

build queue already contains the build recipe we want to add.

For this, we are going to write a simple Contains function

that looks whether the recipe identifier is already contained

in the list. The implementation is straightforward by the use

of Ada 2012 quantified expression:

Ada User Jour na l Vo lume 43, Number 1, March 2022

72 Implement ing a Bui ld Manager in Ada

function Contains (List : in Build_Queue_Vector;
Recipe : in Recipe_Ref) return Boolean

is (for some Queue of List
=> Queue.Get_Recipe.Get_Id = Recipe.Get_Id);

To add the new recipe in the build queue, we only have to

check whether it is already part of the queue in which case we

have nothing to do. If it is not part of the queue, we only have

to declare a Build_Queue_Ref object, setup the recipe,

build node, creation date and append it to our list.

if not Contains (Queues, Recipe) then
declare

Queue : Porion.Builds.Models.Build_Queue_Ref;
begin

Queue.Set_Recipe (Recipe);
Queue.Set_Node (Build_Node);
Queue.Set_Create_Date (Ada.Calendar.Clock);
Queues.Append (Queue);

end;
end if ;

The magic of the porion build scheduler is now fully imple-

mented by using the Ada containers Generic_Sorting
package. Because our Build_Queue_Vector is imple-

mented on top of the Ada containers we only need to write a

comparison function whose job is to decide whether a recipe

in the queue must be built before another one. The complexity

of the build scheduler is now moved to this comparison opera-

tion. Having it, we can instantiate the Generic_Sorting
package to get our Sort_Queue package.

function "<" (Left , Right : in Build_Queue_Ref) return Boolean;

package Sort_Queue is
new Build_Queue_Vectors.Generic_Sorting ("<" => "<");

Reordering the build queue according to project dependencies

becomes as simple as calling the Sort procedure on our

build queue vector.

Sort_Queue.Sort (Queues);

The last step is to save the result in the database. For this, we

only have to update the build queue order for each element.

This is done by calling the Set_Order procedure and then

saving it by calling the Save procedure. If the build queue

order was not changed the operation will do nothing but if

it was changed, an SQL UDPATE statement is executed to

update the order column in the database.

declare
Order : Natural := 0;

begin
for Queue of Queues loop

Queue.Set_Order (Order);
Queue.Save (DB);
Order := Order + 1;

end loop;
end;

4.6 Benefit of UML and Ada
When designing and implementing Porion, the UML database

model was not correct at the first time. In the relatively short

lifetime of this project, new requirements and ideas have

been introduced and it forced changes in the database model.

Several iterations were made on the model, sometimes to

add new attributes, sometimes to introduce new classes and

new relations. All these changes are easily done from the

ArgoUML graphical tool. Very often it is useful to sketch a

new set of classes and check if the new relations better fit the

requirements and objectives. Such design trial phase can be

made quickly by using UML.

From the UML database model, the Dynamo code genera-

tor generates quickly the Ada packages with the data types

and operations to access the database. By using such code

generator, changes to the UML model are easily propagated

to the Ada source code. Because Ada is using strong typing,

it happens that some change in the UML model breaks the

compilation of the project. This occurs if a class is renamed,

a class attribute is removed or has is type modified. Such

compilation break occurred several time during the design

phase of the project but each time it was easily fixed.

Refactoring the UML database model occurred several times.

Sometimes to reorganize the classes in different packages.

Sometimes to introduce new tables and relations. Thanks

to Ada strong typing and the UML to Ada code generator,

each time a refactoring was made and the compilation of the

project was fixed, there was very little issues that remained.

The Ada representation of database tables and the use of

standard Ada container packages to retrieve a subset of the

database tables simplifies the implementation. Very often it

is not necessary to deal with SQL statements to query, insert

or update the database. It becomes possible to implement

complex algorithm but very easily in Ada. The build queue

scheduler is an example of such complex algorithm but its

implementation has been made quite simple with the use of

the Ada containers Generic_Sorting generic package.

5 Embedding resources in Ada program
An interesting issue came while setting up this project: how

to install and configure the database on a fresh installation.

Providing SQL schema files separate from the binary is of

course a solution but it brings complexity and issues to pack-

age the solution. Instead, it would be nice that such SQL

schema be part of the final binary program.

5.1 Advanced Resource Embedder
Incorporating files in a binary program can sometimes be a

challenge. The “Advanced Resource Embedder” [14] is a

flexible tool that collects files such as documentation, images,

scripts, configuration files and generates a source code that

contains these files. It is able to apply some transformations

on the collected files:

• it can run a Javascript minifier such as closure,

• it can compress CSS files by running yui-compressor,

• it can compress files by running gzip or another tool.

Once these transformations are executed, it invokes a target

generator to produce a source file either in C, Ada or Go

language. The generated source file can then be used in the

final program and taken into account during the compilation

process of that program. At the end, the binary will contain

the embedded files with their optional transformations.

Volume 43, Number 1, March 2022 Ada User Jour na l

S. Carrez 73

esource

Configuration

Files

Binary

Executable

Generate BuildResources

Compiler

(C, Ada, Go)

Help Files

Web Files

(HTML, CSS, JS...)

Run

Rules

Copy

Minify

Compress

Config

Help

Web

C

Ada

Go

A

R

E

dvanced

mbedder

Figure 8: Advanced Resource Embedder

Figure 8 illustrates the process to use the tool. The first step

is to describe the resources that must be embedded. The

description is either made on command line arguments or

by writing an XML file. The XML description gives more

flexibility as it allows to define a transformation rule that must

be executed on the original file before being embedded. This

allows to minify a Javascript or CSS file, compress some files

and even encrypt a file before its integration.

The second step is to run the command with the target lan-

guage and rule description and give the tool a list of directories

that must be scanned to identify the files that must be col-

lected. The tool scans the directories according to the patterns

that are given either on the command line or in the XML rule

description. After identifying the files, the tool applies the

rules and executes the transformations. The tool then invokes

the target language generator that writes one or several files

depending on the list of resources.

Once the files are generated, the generated code must be

integrated in the build process as they are now part of the pro-

gram sources. After building the program, it now embeds the

resource files that were collected and optionally transformed.

5.2 Database schema integration in Porion
From our UML model, the Dynamo code generator has gen-

erated an SQL schema file. That schema file contains sev-

eral SQL statements most of them are statements to create

a database table but some of them also insert some data af-

ter a table is created. The resource embedder can embed

the file as is and make it available either in the form of an

Ada String type or a more low level data type such as the

Storage_Element. For our use case, it is better to have

one Ada String for each SQL statement. For Porion, the

data storage representation is defined in a non generated Ada

package. The generated Ada package will be a child of that

package to make these types directly visible.

package Porion.Resources is
type Content_Array is

array (Natural range <>) of access constant String;
type Content_Access is

access constant Content_Array;
end Porion.Resources;

To control this code generation, an XML file is used to de-

scribe how the SQL schema file is integrated. The trans-

formation that we are going to apply is to split the source

file in separate lines on the “;” separator used by SQL and

then apply several regular expression filters to remove SQL

comments, remove duplicate spaces and drop line separators.

<package>
<resource name='Porion.Resources.Schema'

format=' lines '>
<line−separator>;</line−separator>
<line− filter >[\ r \n]</ line− filter >
<line− filter > /*[^/]**/ </ line− filter >
<line− filter replace=' '>[\ t][\ t]+</ line− filter >
< install mode='copy' strip−extension='yes'>

< fileset dir="db/ sqlite ">
<include name="create−porion_agent−sqlite.sql"/>

</ fileset >
</ install >

</resource>
</package>

With this configuration, the tool will generate the

Porion.Resources.Schema Ada package. The speci-

fication contains the declaration of the Get_Content func-

tion that can be used to retrieve the content of the embedded

file. It returns an access type to the constant array of strings

with each string being an access type to a single SQL state-

ment that must be executed.

package Porion.Resources.Schema is
Names : constant Name_Array;

function Get_Content (Name : String) return
Content_Access;

private
...

end Porion.Resources.Schema;

For the curious, the generated package body contains the con-

tent of files that are embedded basically as constant strings.

When the resource is made available as a String, the con-

tent is stored by using an aliased constant String.

Below is an extract of that body package:

package body Porion.Resources.Schema is
L_1 : aliased constant String := "pragma synchronous=OFF";
L_2 : aliased constant String := "CREATE TABLE IF NOT "
& "EXISTS awa_audit_field (id INTEGER NOT NULL "
& "PRIMARY KEY AUTOINCREMENT, name VARCHAR(255)"
& " NOT NULL, entity_type INTEGER NOT NULL)";
...
C_0 : aliased constant Content_Array :=
(L_1'Access,

...
);

type Content_List_Array is array (Natural range <>)
of Content_Access;

Contents : constant Content_List_Array := (
0 => C_0'Access);

function Get_Content (Name : String) return Content_Access is
begin

return (if Names (0).all = Name then Contents (0) else null);
end Get_Content;

end Porion.Resources.Schema;

6 Conclusions and future work
Writing a build manager is a complex project and if we com-

pare with a mature build manager such as Jenkins there is

still a lot of work to do. The core of Jenkins contains more

than 1000 Java classes and it has a complex architecture with

more than 1800 plugins. Porion does not have this level of

Ada User Jour na l Vo lume 43, Number 1, March 2022

74 Implement ing a Bui ld Manager in Ada

complexity but by using Ada 2012 and some code generators

it was possible to setup a functional build manager in a short

development time frame. The Porion web server is now us-

ing only 50Mb of memory compared to the 1.3Gb used by

Jenkins this is a reasonable reduction. The web server is also

serving requests in less than 120ms where Jenkins required

1.5s on the same hardware.

Code generation can speed up development and the UML

to Ada generation was key to easily access and operate on

the SQL database. The “Advanced Resource Embedder” tool

was created for this build manager when the needs came to

embed the SQL schema in the binary. Writing dedicated tools

for code generation is also very interesting to automate some

tasks and reduce costs at the end.

High level database access in Ada was key for the implemen-

tation of this build manager. It provides secure and safe access

to the database and brings strong typing to database manage-

ment. By using such representation in Ada, it becomes easier

to implement complex algorithm easily on top of an SQL

database.

The Porion build manager will evolve to introduce the notifi-

cation of build results in order to inform users when a build

failed. It will be improved in the area of build nodes to be

able to start and stop virtual machines on demand. Last, the

web server user interface must be completed to provide a full

editable configuration of projects from a web browser while

keeping the application safe.

References
[1] S. Carrez, “Porion a new build manager,” FOSDEM

CiCd devroom https://fosdem.org/2022/
schedule/event/porion_a_new_build_
manager/, 2022.

[2] S. Carrez, “Implementing a build manager

in ada,” FOSDEM Ada devroom https:

//fosdem.org/2022/schedule/event/
ada_build_manager/, 2022.

[3] K. Kawaguchi, “Jenkins.” https://github.com/
jenkinsci/jenkins.

[4] S. Carrez, “Porion build manager.” https://
gitlab.com/stcarrez/porion.

[5] S. Carrez, “Ada utility library.” https://github.
com/stcarrez/ada-util.

[6] S. Carrez, “Ada web application.” https://github.
com/stcarrez/ada-awa.

[7] S. Carrez, “Secure web applications with awa,”

FOSDEM Ada devroom https://archive.
fosdem.org/2019/schedule/event/ada_
secureweb/, 2019.

[8] D. Anisimkov and P. Obry, “Ada web server.” https:
//github.com/AdaCore/aws.

[9] G. Booch, J. Rumbaugh, and I. Jacobson, The unified
modeling language user guide. Upper Saddle River, NJ:

Addison-Wesley, 2005.

[10] L. Tolke, “Argouml.” https://github.com/argouml-tigris-

org/argouml.

[11] S. Carrez, “Dynamo.” https://github.com/
stcarrez/dynamo.

[12] S. Carrez, “Ada database objects library.” https://
github.com/stcarrez/ada-ado.

[13] “Hibernate orm.” https://hibernate.org/
orm/.

[14] S. Carrez, “Advanced resource embed-

der.” https://gitlab.com/stcarrez/
resource-embedder.

Volume 43, Number 1, March 2022 Ada User Jour na l

75

Exporting Ada Software to Python and Julia

Jan Verschelde
University of Illinois at Chicago, Department of Mathematics, Statistics, and Computer Science, 851 S. Morgan St.
(m/c 249), Chicago, IL 60607-7045; email: janv@uic.edu, http://www.math.uic.edu/∼jan

Abstract

The objective is to demonstrate the making of Ada soft-
ware available to Python and Julia programmers us-
ing GPRbuild. GPRbuild is the project manager of
the GNAT toolchain. With GPRbuild the making of
shared object files is fully automated and the software
can be readily used in Python and Julia. The applica-
tion is the build process of PHCpack, a free and open
source software package to solve polynomial systems
by homotopy continuation methods, written mainly in
Ada, with components in C++, available at github at
https://github.com/janverschelde/PHCpack.

1 Language Agnostic Computing
This paper describes interface development from the perspec-

tive of an Ada programmer, aimed to export the functionality

of a software package to Python [1] and Julia [2] computa-

tional environments, available through Jupyter notebooks [3].

The Jupyter notebook is the interface to SageMath [4], a free

open source system for mathematical computing.

In order to export all functionality the interface passes through

C, which may be regarded as a least common multiple of pro-

gramming languages, as Ada, Python, and Julia share enough

common ground to enable language agnostic computing, as

Jupyter stands for Julia, Python, R, and many others.

Python

��

Julia

��

C interface

�

Ada Code

Figure 1: C as the least common multiple language.

The main point is to automate building with GPRbuild.

2 GPRbuild and Interface Development
The mixed language development is supported by GPRbuild,

the project manager of the gnu-ada compiler GNAT. The build

process, defined via library projects, results in shared object

files (with the extension .so on Linux, .dll on Windows,

and .dylib on Mac OS X). These shared object files can be

called directly from a Python script or a Julia program.

In the C interface layer, the control is passed to a C program.

The C program passes input data to some Ada procedure,

calls an exported procedure, and extracts the output data via

another call to an Ada procedure. The most basic and versatile

manner to pass data is via a plain sequence of characters of

32-bit integers. As the hello world for this interface, consider

the swapping of characters in a string.

"hello" � swap � "olleh"

Figure 2: Swapping characters via an interface package.

The interface package as shown in Figure 3 exports a proce-

dure to pass the input data, the DoIt procedure to compute

the output data, and then a third function to return the output.

swap

� Initialize(s)

� DoIt

� s := Retrieve

Figure 3: An interface package to swap characters in a string.

Then the C program calls the function call_swap, declared

in Ada as below.

with C_Integer_Arrays;
use C_Integer_Arrays;

function call_swap
(jobnbr : integer;

sizedata : integer;
swapdata : C_intarrs.Pointer;
verbose : integer) return integer;

where the package C_Integer_Arrays defines

C_Integer_Array as an array of C integers, of type

Interfaces.C.int. The package contains

package C_intarrs is
new Interfaces.C.Pointers

(Interfaces.C.size_T,
Interfaces.C.int,
C_Integer_Array,0);

Observe that the void idiom of C is avoided. The

details of this introductory project are posted at

github.com/janverschelde/ExportAdaGPRbuild.

Ada User Jour na l Vo lume 43, Number 1, March 2022

76 Expor t ing Ada Sof tware to Python and Ju l ia

The C code to test takes a string word, converts the string

into an array of 32-bit integers, and then calls the Ada code:

sizeword = strlen(word);

for(int idx = 0; idx < sizeword; idx++)
dataword[idx] = (int) word[idx];

adainit();
fail = _ada_call_swap(0,sizeword,dataword,1);
fail = _ada_call_swap(1,sizeword,dataword,1);
fail = _ada_call_swap(2,sizeword,dataword,1);
adafinal();

for(int idx = 0; idx < sizeword; idx++)
word[idx] = (char) dataword[idx];

The contents of the file demo.gpr defines the build of the C

test program.

project Demo is

for Languages use ("Ada", "C");

for Source_Dirs use ("src");

for Main use
(

"hello_world.adb",
"main.adb",
"test_call_swap.c"

);

for Object_Dir use "obj";

for Exec_Dir use "bin";

end Demo;

To make a shared object file, a library project is de-

fined. Below are the essentials of the instructions to make the

libdemo as a shared object.

for Library_Dir use "lib";
for Library_Name use "demo";
for Library_Kind use "dynamic";
for Library_Auto_Init use "true";
for Library_Interface use
(

"hello_world", "main", "swap",
"call_swap", "c_integer_arrays"

);
for Library_Standalone use "encapsulated";

package Compiler is

for Switches ("call_swap.adb") use ("-c");

end Compiler;

package Binder is

-- use "-Lada" for adainit and adafinal
for Default_Switches ("Ada")

use ("-n", "-Lada");

end Binder;

Julia has the function ccall() to execute compiled C code.

The Julia code below calls the call_swap procedure.

LIBRARY = "../Ada/lib/libdemo"

word = [Cint(’h’), Cint(’e’), Cint(’l’),
Cint(’l’), Cint(’o’)]

println(word)
ptr2word = pointer(word, 1)
p = ccall((:_ada_call_swap, LIBRARY), Cint,

(Cint, Cint, Ref{Cint}, Cint),
0, 5, ptr2word, 1)

p = ccall((:_ada_call_swap, LIBRARY), Cint,
(Cint, Cint, Ref{Cint}, Cint),
1, 5, ptr2word, 1)

p = ccall((:_ada_call_swap, LIBRARY), Cint,
(Cint, Cint, Ref{Cint}, Cint),
2, 5, ptr2word, 1)

println(word)

The string "hello" is represented by Int32[104, 101,
108, 108, 111]. The last println(word) shows

Int32[111, 108, 108, 101, 104].

To extend Python code, an extension module must be de-

fined in C or C++. The setup.py script has the list

extra_objects to define the location of the compiled

Ada code and the location of the Ada runtime libraries.

The shared object made running python setup.py
build_ext can then be directly imported in a Python ses-

sion. The making of this extension can be done without

makefiles.

3 Building PHCpack
As a demonstration to a large scale project, GPRbuild is

applied to make share objects for PHCpack, a free and open

source software package to solve polynomial systems with

homotopy continuation. The python interface to PHCpack

is phcpy [5]. Written mainly in Ada, PHCpack contains

MixedVol [6] and DEMiCs [7] to count bounds on the number

of isolated solutions fast. For MixedVol, a translation into

Ada was made. The package DEMiCs is written in C++ and

incorporated into PHCpack as such. As described in [8], the

code for multiple double precision is provided by QDlib [9]

and CAMPARY [10].

A Julia interface is under development. From the Julia
folder of the PHCpack source distribution, running the Julia
program version.jl at the command prompt:

$ julia version.jl
-> in use_c2phc4c.Handle_Jobs ...
PHCv2.4.85 released 2021-06-30
$

The ccall() uses the libPHCpack shared object, made

with GPRbuild.

Acknowledgements
Supported by the National Science Foundation under grant

DMS 1854513.

The author thanks Dirk Craeynest and Fernando Oleo Blanco

for the organization of the Ada Devroom at FOSDEM 2022.

Volume 43, Number 1, March 2022 Ada User Jour na l

J. Versche lde 77

References
[1] F. Pérez, B. Granger, and J. Hunter, “Python: An ecosys-

tem for scientific computing,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 12–21, 2011.

[2] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,

“Julia: A fresh approach to numerical computing,” SIAM
Review, vol. 59, no. 1, pp. 65–98, 2017.

[3] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger,

M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick,

J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla,

C. Willing, and J. D. Team, “Jupyter Notebooks—a

publishing format for reproducible computational work-

flows,” in Positioning and Power in Academic Publish-
ing: Players, Agents, and Agendas (F. Loizides and

B. Schmidt, eds.), pp. 87–90, IOS Press, 2016.

[4] W. Stein, “Sage: Creating a viable free open source

alternative to Magma, Maple, Mathematica, and MAT-

LAB,” in Foundations of Computational Mathematics,
Budapest 2011 (F. Cucker, T. Krick, A. Pinkus, and

A. Szanto, eds.), vol. 403 of London Mathematical Soci-
ety Lecture Note Series, pp. 230–238, Cambridge Uni-

versity Press, 2012.

[5] J. Otto, A. Forbes, and J. Verschelde, “Solving polyno-

mial systems with phcpy,” in Proceedings of the 18th
Python in Science Conference, pp. 563–582, 2019.

[6] T. Gao, T. Y. Li, and M. Wu, “Algorithm 846: Mixed-

Vol: a software package for mixed-volume computation,”

ACM Trans. Math. Softw., vol. 31, no. 4, pp. 555–560,

2005.

[7] T. Mizutani and A. Takeda, “DEMiCs: A software pack-

age for computing the mixed volume via dynamic enu-

meration of all mixed cells,” in Software for Algebraic
Geometry (M. Stillman, N. Takayama, and J. Verschelde,

eds.), vol. 148 of The IMA Volumes in Mathematics and
its Applications, pp. 59–79, Springer-Verlag, 2008.

[8] J. Verschelde, “Parallel software to offset the cost of

higher precision,” ACM SIGAda Ada Letters, vol. 40,

no. 2, pp. 59–64, 2020.

[9] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for

quad-double precision floating point arithmetic,” in 15th
IEEE Symposium on Computer Arithmetic (Arith-15
2001), pp. 155–162, IEEE Computer Society, 2001.

[10] M. Joldes, J.-M. Muller, V. Popescu, and T. W., “CAM-

PARY: Cuda Multiple precision arithmetic library and

applications,” in Mathematical Software – ICMS 2016,
the 5th International Conference on Mathematical Soft-
ware, pp. 232–240, Springer-Verlag, 2016.

Ada User Jour na l Vo lume 43, Number 1, March 2022

78

Volume 43, Number 1, March 2022 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard

Ada-Deutschland
Dr. Hubert B. Keller CEO
ci-tec GmbH
Beuthener Str. 16
76139 Karlsruhe
Germany
+491712075269
Email: h.keller@ci-tec.de
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels

Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

1090 Rue René Descartes
13100 Aix en Provence

France
Contact: Patricia Langle

patricia.langle@systerel.fr
www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki

Finland
Contact: Niklas Holsti

niklas.holsti@tidorum.fi
www.tidorum.fi

3271 Valley Centre Drive,Suite 300
San Diego, CA 92069

USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

Signal Business Centre
2 Innotec Drive, Bangor
North Down BT19 7PD
Northern Ireland, UK

enquiries@sysada.co.uk
www.sysada.co.uk

Corso Sempione 68
20154 Milano

Italy
Contact: Massimo Bombino

massimo.bombino@vector.com
www.vector.com

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

22 St. Lawrence Street
Southgate, Bath BA1 1AN

United Kingdom
www.capgemini.com

.

.

46 Rue d’Amsterdam
F-75009 Paris

France
Contact: Jamie Ayre
sales@adacore.com
www.adacore.com

