" The journal for the internat

Ada community

User
Journal

europe

A. Mosteo, f

ti. Swe tAda nghtvﬁglgl;t'

'fll

Editor in Chief

Antonio Casimiro

University of Lisbon, Portugal
AUJ_Editor@Ada-Europe.org

Ada User Journal Editorial Board

Luis Miguel Pinho
Associate Editor

Jorge Real
Deputy Editor

Patricia Lopez Martinez
Assistant Editor

Kristoffer N. Gregertsen

Polytechnic Institute of Porto, Portugal
Imp@isep.ipp.pt

Universitat Politécnica de Valéncia, Spain
Jjorge@disca.upv.es

Universidad de Cantabria, Spain
lopezpa@unican.es

SINTEF, Norway

Assistant Editor kristoffer.gregertsen@sintef-no

Dirk Craeynest KU Leuven, Belgium

Events Editor Dirk.Craeynest@cs.kuleuven.be

Alejandro R. Mosteo Centro Universitario de la Defensa, Zaragoza, Spain

News Editor amosteo@unizar.es

Ada-Europe Board

Tullio Vardanega (President) Italy

University of Padua * *
Dirk Craeynest (Vice-President) Belgium * *
Ada-Belgium & KU Leuven

Dene Brown (General Secretary)

SysAda Limited

%

United Kingdom

Ahlan Marriott (Treasurer)
White Elephant GmbH

Luis Miguel Pinho (Ada User Journal)
Polytechnic Institute of Porto

Antoénio Casimiro (Ada User Journal)
University of Lisbon

Switzerland e U rO pe
Portugal

Portugal

Ada-Europe General Secretary

Dene Brown

SysAda Limited
Signal Business Center
2 Innotec Drive

BT19 7PD Bangor
Northern Ireland, UK

Tel: +44 2891 520 560
Email: Secretary(@Ada-Europe.org
URL: www.ada-europe.org

Information on Subscriptions and Advertisements

Ada User Journal (ISSN 1381-6551) is published in one volume of four issues. The Journal is provided free of
charge to members of Ada-Europe. Library subscription details can be obtained direct from the Ada-Europe General
Secretary (contact details above). Claims for missing issues will be honoured free of charge, if made within three
months of the publication date for the issues. Mail order, subscription information and enquiries to the Ada-Europe

General Secretary.

For details of advertisement rates please contact the Ada-Europe General Secretary (contact details above).

ADA Volume 43
USER —
JOURNAL

Contents

Page

Editorial Policy for Ada User Journal 2
Editorial 3
Quarterly News Digest 4
Conference Calendar 35
Forthcoming Events 41
Proceedings of the 11™ Ada Developer Room at FOSDEM 22

D. Craeynest

“Overview” 43

S. Hild

“Ada Looks Good, Now Program a Game Without Knowing Anything” 44

J-P. Rosen

“The Ada Numerics Model” 46

A. Mosteo, F. Chouteau

“Alire 2022 Update” 49

G. Galeotti

“SweetAda: Lightweight Development Framework for Ada-Based Software Systems” 52

A. Mosteo

“Use (and Abuse?) of Ada 2022 Features to Design a JSON-Like Data Structure” 55

M. Reznik

“Getting Started with AdaWebPack” 58

J. Carter

“Overview of Ada GUI” 60

P. Jarret

“The Outsider's Guide to Ada Lessons from Learning Ada in 2021 64

Y. Moy

“Proving the Correctness of the GNAT Light Runtime Library” 65

S. Carrez

“Implementing a Build Manager in Ada” 67

J. Verschelde

“Exporting Ada Software to Python and Julia” 75
Ada-Europe Associate Members (National Ada Organizations) 78
Ada-Europe Sponsors Inside Back Cover

Ada User Journal Volume 43, Number 1, March 2022

Editorial Policy for Ada User Journal

Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and December.
Copy date is the last day of the month of
publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics, such
as reliable software technologies, are
welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

e Refereed original articles on
technical matters concerning Ada
and related topics.

e Invited papers on Ada and the Ada
standardization process.

e Proceedings of workshops and
panels on topics relevant to the

Journal.
e Reprints of articles published
elsewhere that deserve a wider

audience.

e News and miscellany of interest to
the Ada community.

e Commentaries on matters relating
to Ada and software engineering.

e Announcements and reports of
conferences and workshops.

e Announcements regarding
standards concerning Ada.

e Reviews of publications in the field
of software engineering.

Further details on our approach to these
are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will be
relayed to the authors at the discretion
of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups to
find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be of
interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it a

wider audience. This includes papers
published in North America that are not
easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These may
represent the views either of individuals
or of organisations. Such articles can be
of any length — inclusion is at the
discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report on
events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal is
at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to print
reviews submitted from elsewhere at
the discretion of the Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be rapid.
Currently, accepted papers submitted
electronically are typically published 3-
6 months after submission. Items of
topical interest will normally appear in
the next edition. There is no limitation
on the length of papers, though a paper
longer than 10,000 words would be
regarded as exceptional.

Volume 43, Number 1, March 2022

Ada User Journal

Editorial

After two years into the global COVID-19 pandemic, my first wish and hope for 2022, as Editor-in-Chief of the AUJ, is that
we get back to track concerning the timeliness of publication and delivery of new issues, for which it will be important that the
flow of materials, namely from Ada-related events, returns to what it was before.

For this first AUJ issue in 2022, we challenged the presenters at the “Ada DevRoom” at FOSDEM, which took place in February
2022 as an online event, to prepare short papers derived from their presentations for inclusion in what we called “Proceedings
of the 11th Ada Developer Room at FOSDEM 22”. This year the response was overwhelming, with a total of 11 contributions
being received. We decided to make it easier for authors, not imposing restrictions in terms of paper size, so we ended up with
contributions ranging from 1 to 8 pages, as the reader will find. The topics are diverse, but in all cases, strongly related to the
Ada language and Ada tools.

These informal proceedings start with an introduction prepared by Dirk Craeynest, one of the Ada DevRoom organizers, who
describes the scope of the event and provides a program overview. Then we include the 11 received contributions. The reader
will find papers talking about the personal experience of newcomers to Ada programming (Ada Looks Good, Now Program a
Game Without Knowing Anything; The Outsider's Guide to Ada: Lessons from Learning Ada in 2021), papers related to the
use and exploitation of Ada language features (The Ada Numerics Model, Use (and Abuse?) of Ada 2022 Features to Design
a JSON-Like Data Structure), to the management and development of Ada projects (Alire Update; SweetAda: Lightweight
Development Framework for Ada-Based Software Systems; Implementing a Build Manager in Ada; Exporting Ada Software
to Python and Julia), to the use of specific Ada packages (Overview of Ada GUI), to both the development of Ada projects and
the use of specific packages (Getting Started with AdaWebPack), and to the use of SPARK to prove the correctness of Ada
libraries (Proving the Correctness of the GNAT Light Runtime Library).

We hope the reader will enjoy reading these contributions, and perhaps will be tempted to watch the presentations that were
recorded during the event, available on its webpage (https://fosdem.org/2022/schedule/track/ada/).

As usual, this issue also includes the News Digest section prepared by Alejandro R. Mosteo and the Calendar and Events section
prepared by Dirk Craeynest. We note that one of the forthcoming events will be the 2022 edition of the HILT (High Integrity
Language Technologies) Workshop, taking place in October, which this year is organized by ACM SIGAda in cooperation
with Ada-Europe. The respective Call for Papers is included in the Forthcoming Events section.

Antonio Casimiro

Lisboa

March 2022

Email: AUJ _Editor@Ada-Europe.org

Ada User Journal Volume 43, Number 1, March 2022

Quarterly News Digest

Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain, Instituto de Investigacion en
Ingenieria de Aragon, Mariano Esquillor s/n, 50018, Zaragoza, Spain, email: amosteo@unizar.es

Contents

Preface by the News Editor 4
Ada-related Events 4
Ada-related Resources 6
Ada-related Tools 7
Ada Inside 13
Ada and Other Languages 15
Ada Practice 23

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

[1] “Ada Developer Room at FOSDEM
20227, in Ada-related Events.

[2] “CfC Ada-Europe 2022 Conference”,
in Ada-related Events.

[3] “AdaCore Joins with Ferrous Systems
to Support Rust”, in Ada and Other
Languages.

[4] “macOS GCC 12.0.1, SPARK2014”,
in Ada-related Resources.

[5] “Ada in James Webb Space
Telescope?”, in Ada Inside.

Preface by the News
Editor

Dear Reader,

As I write this preface, we are in between
two big Ada events: the FOSDEM Ada
Developer Room, which brings together
open source enthusiasts presenting their
latest developments [1], and the Ada-
Europe Int. Conf. on Reliable Software
Technologies (AEiC 2022), which this
year will return, fingers crossed, as an in-
person event at Ghent, Belgium [2].
Information about both can be found in
the “Ada-related Events” section.

A piece of news that has made some
ripples in the Ada community is the
recently announced collaboration between
AdaCore and Ferrous Systems to provide
a safety-qualified Rust toolchain. The
newsgroup saw some reactions to this
announcement [3], and a discussion about
the merits, similarities and differences
between Rust and Ada and their
respective strong points.

Glad tidings come for macOS users with
the announcement of builds of GCC 12
and SPARK 2014 for this operating
system, thanks to the volunteer efforts of
Simon Wright [4], with GCC also
available for the M1 architecture. And for
the lovers of space, some of us wonder
whether there is some Ada in the Webb
telescope [5]. (Spoiler: probably not.)

Sincerely,
Alejandro R. Mosteo.

Ada-related Events

CfC Ada-Europe 2022
Conference

[Deadline is past; announcement kept for
the record. —arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC Ada-Europe 2022 Conference
- 27 Feb - second deadline

Date: Mon, 31 Jan 2022 16:44:08 -0000

Newsgroups: comp.lang.ada,
fr.comp.lang.ada, comp.lang.misc

UPDATED Call for Contributions

26th Ada-Europe International
Conference on Reliable Software
Technologies
(AEIC 2022)

14-17 June 2022, Ghent, Belgium
www.ada-europe.org/conference2022

Organized by Ada-Europe in cooperation

with ACM SIGAda, SIGPLAN, SIGBED

and the Ada Resource Association (ARA)
* 2nd DEADLINE 27 February 2022 *

#AEiC2022 #AdaEurope
#AdaProgramming

General Information

The 26th Ada-Europe International
Conference on Reliable Software
Technologies (AEiIC 2022) will take place
in Ghent, Belgium, in the week of 14-17
June, in dual mode, with a solid core of
in-presence activities accompanied by
digital support for remote participation.
The conference schedule comprises a
journal track, an industrial track, a work-

in-progress track, a vendor exhibition,
parallel tutorials, and satellite workshops.

Schedule

16 January 2022 Submission deadline for
journal-track papers, tutorials and
workshop proposals.

27 February 2022: Submission deadline
for industrial-track and work-in-progress-
track abstracts.

14 March 2022 Notification of
invitations-to-present for journal-track
papers. Notification of acceptance for all
other types of submission.

3 April 2022: Publication of advance
program.

Topics

The conference is an established
international forum for providers,
practitioners and researchers in reliable
software technologies. The conference
presentations will illustrate current work
in the theory and practice of developing,
running and maintaining challenging
long-lived, high-quality software systems
for a variety of application domains
including manufacturing, robotics,
avionics, space, health care,
transportation, cloud environments, smart
energy, serious games. The program will
allow ample time for keynotes, Q&A
sessions and discussions, and social
events. Participants include practitioners
and researchers from industry, academia
and government organizations active in
the promotion and development of
reliable software technologies.

The topics of interest for the conference
include but are not limited to:

- Real-Time and Safety-Critical Systems:
design, implementation and verification
challenges, novel approaches, e.g.,
Mixed-Criticality Systems, novel
scheduling algorithms, novel design and
analysis methods;

- High-Integrity Systems and Reliability:
theory and practice of High-Integrity
Systems, languages vulnerabilities and
countermeasures, architecture-centred
development methods and tools;

- Reliability-oriented Programming
Languages (not limited to Ada):
compilation and runtime challenges,
language profiles, use cases and
experience reports, language education
and training initiatives;

Volume 43, Number 1, March 2022

Ada User Journal

Ada-related Events

- Experience Reports: case studies,
lessons learned, and comparative
assessments.

Refer to the conference website for the
full list of topics.

Call for Journal-track Submissions

Following the journal-first model
inaugurated in 2019, the conference
includes a journal-track that seeks original
and high-quality submissions that
describe mature research work in the
scope of the conference. Accepted papers
for this track will be published in the
"Reliable Software Technologies
(AEiC2022)"

[Submission details removed. Call is
closed now.]

Authors who have successfully passed the
first round of review will be invited to
present their work at the conference. Ada-
Europe, the main conference sponsor, will
cover the Open Access fees for the first
four papers to gain final acceptance,
which do not already enjoy OA from
personalized bilateral agreements with the
Publisher.

Call for Industrial-track Submissions

The conference seeks industrial
practitioner presentations that deliver
insight on the challenges of developing
reliable software. Given their applied
nature, such contributions will be subject
to a dedicated practitioner-peer review
process. Interested authors shall submit a
short (one-to-two pages) abstract, by 27
February 2022, via
https://easychair.org/conferences/?
conf=aeic2022, strictly in PDF, following
the Ada User Journal style (cf.
http://www.ada-europe.org/auj/).

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference, and
will also be invited to expand their
contributions into full-fledged articles for
publication in the Ada User Journal,
which will form the proceedings of the
Industrial track of the Conference.

Prospective authors may direct all
enquiries regarding this track to the
corresponding chair, Alejandro R.
Mosteo, at the listed address.

Call for Work-in-Progress-track
Submissions

The Work-in-Progress track seeks two
kinds of submissions: (a) ongoing
research, and (b) early-stage ideas.
Ongoing research submissions are 4-page
papers that describe research results that
are not mature enough to be submitted to
the journal track as yet. Early-stage ideas,
are 1-page papers that pitch new research
directions that fall in the scope of the

conference. Both kinds of submission
must be original and shall undergo
anonymous peer review. Submissions by
recent MSc graduates and PhD students
are especially sought.

[Submission details removed. Call is
closed now.]

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference, and
will also be offered the opportunity to
expand their contributions into 4-page
articles for publication in the Ada User
Journal, which will form the proceedings
of the WiP track of the Conference.

Academic Listing

The Journal of Systems Architecture,
publication venue of the journal-track
proceedings of the conference, was
ranked Q1 (SJR) in the year 2020, also
featuring 72th percentile in CiteScope
(Scopus). The Ada User Journal, venue of
all other technical proceedings of the
conference, is indexed by Scopus and by
EBSCOhost in the Academic Search
Ultimate database.

Awards

Ada-Europe will offer an honorary award
for the best technical presentation, to be
announced in the closing session of the
conference.

Call for Tutorials

The conference seeks tutorials in the form
of educational seminars on themes falling
within the conference scope, with an
academic or practitioner slant, including
hands-on or practical elements.

[Submission details removed. Call is
closed now.]

The authors of accepted full-day tutorials
will receive a complimentary conference
registration, halved for half-day tutorials.
The Ada User Journal will offer space for
the publication of summaries of the
accepted tutorials.

Call for Workshops

The conference welcomes satellite
workshops centred on themes that fall
within the conference scope. Proposals
may be submitted for half- or full-day
events, to be scheduled at either end of
the conference proper.

[Submission details removed. Call is
closed now.]

Call for Exhibitors

The conference will include a vendor and
technology exhibition. Interested
providers should direct inquiries to the
Exhibition Chair.

Venue

The conference will take place in the
heart of the city of Ghent, Belgium,
capital of the East Flanders province, a
halfhour train ride north-west of Brussels.
Ghent is rich in history, culture and
higher-education, with a top-100
university founded in 1817.

Organizing Committee

* Conference Chair

Tullio Vardanega, University of Padua,
Italy

tullio.vardanega at unipd.it

* Journal-track Chair

Jérome Hugues, Carnegie Mellon
University, USA

jjhugues at sei.cmu.edu

* Industrial-track Chair

Alejandro R.Mosteo, Centro Universitario
de la Defensa, Zaragoza, Spain

amosteo at unizar.es

* Work-in-Progress-track Chair
Frank Singhoff, University of Brest,
France

frank.singhoff at univ-brest.fr

* Tutorial and Workshop Chair
Aurora Agar Armario, NATO, the
Netherlands

aurora.agar at ncia.nato.int

* Exhibition & Sponsorship Chair
Ahlan Marriott, White Elephant GmbH,
Switzerland

software at white-elephant.ch

* Publicity Chair

Dirk Craeynest, Ada-Belgium & KU
Leuven, Belgium

dirk.craeynest at cs.kuleuven.be

* Local Chair

Vicky Wandels, University of Ghent,
Belgium

Vicky.Wandels at UGent.be

*** Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 26th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), Warsaw, Poland
('19), and online from Santander, Spain
(21).

Ada User Journal

Volume 43, Number 1, March 2022

Information on previous editions of the
conference can be found at
http://www.ada-europe.org/confs/ae.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2022 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 26th Ada-Europe Int.Conf. Reliable
Software Technologies (AEiC 2022)

* June 14-17, 2022, Ghent, Belgium *
www.ada-europe.org/conference2022

Ada Developer Room at
FOSDEM 2022

[Past event, for the record. —arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada Developer Room at FOSDEM
2022 - Sun 6 Feb - online

Date: Thu, 3 Feb 2022 20:14:24 -0000

Newsgroups: comp.lang.ada,
fir.comp.lang.ada

Call for Participation

11th Ada Developer Room at FOSDEM
2022

Sunday 6 February 2022, online from
Brussels, Belgium

Organized in cooperation with Ada-
Belgium [1] and Ada-Europe [2]

fosdem.org/2022/schedule/track/ada/

www.cs.kuleuven.be/~dirk/ada-
belgium/events/22/220206-fosdem.html

#AdaFOSDEM #AdaDevRoom
#AdaProgramming
#AdaBelgium #AdaEurope
#FOSDEM2022

FOSDEM [3], the Free and Open source
Software Developers' European Meeting,
is a non-commercial two-day weekend
event organized early each year in
Brussels, Belgium. It is highly developer-
oriented and brings together 8000+
participants from all over the world. The
2022 edition takes place on Saturday 5
and Sunday 6 February. It is free to attend
and no registration is necessary. This
year, for obvious reasons, it has been
turned into an online event, just like last
year.

In this edition, the Ada FOSDEM
community organizes once more 8 hours
of presentations related to Ada and Free
or Open Software in a s.c. Developer
Room. The "Ada DevRoom" at FOSDEM
2022 is held on the 2nd day of the event,
and offers introductory presentations on
the Ada programming language, as well
as more specialised presentations on

focused topics, tools and projects: a total
of 13 Ada-related presentations by 12
authors from 8 countries!

Program overview:

- Introduction to the Ada DevRoom,
by Fernando Oleo Blanco, Germany

- Introduction to Ada for Beginning and
Experienced Programmers,
by Jean-Pierre Rosen, France

- Ada Looks Good, Now Program a Game
Without Knowing Anything,
by Stefan Hild, Germany

- The Ada Numerics Model,
by Jean-Pierre Rosen, France

- 2022 Alire Update,
by Fabien Chouteau, France, Alejandro
Mosteo, Spain

- SweetAda: Lightweight Development
Framework for Ada-based Software
Systems,
by Gabriele Galeotti, Italy

- Use (and Abuse?) of Ada 2022 Features
to Design a JSON-like Data Structure,
by Alejandro Mosteo, Spain

- Getting Started with AdaWebPack,
by Max Reznik, Ukraine

- Overview of Ada GUI,
by Jeffrey Carter, Belgium

- SPARKNaCI: a Verified, Fast Re-
implementation of TweetNaCl,
by Roderick Chapman, UK

- The Outsider's Guide to Ada: Lessons
from Learning Ada in 2021,
by Paul Jarrett, USA

- Proving the Correctness of the GNAT
Light Runtime Library,
by Yannick Moy, France

- Implementing a Build Manager in Ada,
by Stephane Carrez, France

- Exporting Ada Software to Python and
Julia,
by Jan Verschelde, USA

- Closing of the Ada DevRoom,
by Dirk Craeynest, Belgium, Fernando
Oleo Blanco, Germany

The Ada at FOSDEM 2022 web-page will
have all details, such as the full schedule,
abstracts of presentations, biographies of
speakers, and pointers to more info,
including live video streaming and chat,
plus recordings afterwards. For the latest
information at any time, contact Fernando
Oleo Blanco <irvise@irvise.xyz>, or see:

[17 http://www.cs.kuleuven.be/~dirk/
ada-belgium/

[2] http://www.ada-europe.org/

[3] https://fosdem.org/2022/

Dirk Craeynest, FOSDEM Ada DevRoom
team

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

Ada-related Resources

Ada Developer Room Videos
Online

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada Developer Room at FOSDEM
2022 - videos online

Date: Sun, 20 Feb 2022 14:23:10 -0000

Newsgroups: comp.lang.ada,
fr.comp.lang.ada, comp.lang.misc

** Presentations and video recordings
available online ***

11th Ada Developer Room at FOSDEM
2022

held on Sunday 6 February 2022, online
from Brussels, Belgium

https://fosdem.org/2022/schedule/track/
ada/

All presentations and video recordings
from the 11th Ada Developer Room, held
at the online FOSDEM 2022 event
recently, are available.

Yet another full day with 13 Ada-related
talks by 12 authors from 8 countries!

[See program overview in the previous
message. —arm]

Thanks once more to all presenters and
helpers for their work and collaboration,
thanks to Fer for coordinating the
DevRoom, thanks to all the FOSDEM
organizers and volunteers, thanks to the
many participants for their interest, and
thanks to everyone for another nice
experience!

#AdaFOSDEM #AdaDevRoom
#AdaProgramming
#AdaBelgium #AdaEurope
#FOSDEM?2022

Dirk Craeynest, FOSDEM Ada DevRoom
team

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

Ada-related Resources

[Delta counts are from Nov Ist to May
9th. —arm)]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media

Date: Mon, 2 May 2022 11:39:21 CET

To: Ada User Journal readership

Ada groups on various social media:
- LinkedIn: 3_302 (+88) members [1]
- Reddit: 8 005 (+357) members [2]

- Stack Overflow: 2 212 (+87)
questions [3]

Volume 43, Number 1, March 2022

Ada User Journal

Ada-related Tools

- Libera.Chat:75 (=) concurrent users [4]
- Gitter:115 (+24) people [5]
- Telegram: 139 (+9) users [6]
- Twitter: 30 (-197) tweeters [7]

53 (-223) unique tweets [7]

[17 https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

[5] https://gitter.im/ada-lang
[6] https://t.me/ada_lang
[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Mon, 9 May 2021 11:45:21 CET

To: Ada User Journal readership

Rosetta Code: 900 (+54) examples [1]
39 (+1) developers [2]

GitHub: 763* (=) developers [3]
Sourceforge: 274 (+1) projects [4]
Open Hub: 214 (=) projects [5]
Alire: 243 (+48) crates [6]
Bitbucket: 88 (=) repositories [7]
Codelabs: 53 (=) repositories [8]
AdaForge: 8 (=) repositories [9]

*This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
g=language%3 A Ada&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Mon, 9 May 2021 11:50:21 +0100

To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 27 (+4) 0.46%

(+0.04%) [1]
- PYPL Index: 17 (=) 0.81%

(-0.13%) (2]
- IEEE Spectrum (general): 31 (=)

Score: 38.8 (=) [3]
- IEEE Spectrum (embedded): 9 (=)

Score: 38.8 (=) [3]

[17 https://www.tiobe.com/tiobe-index/
[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/top-
programming-languages/

Ada "Coin" Updated for
Ada 2022

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>
Subject: Ada - In Strong Typing We Trust -
"coin" updated for Ada 2022
Date: Sat, 5 Feb 2022 16:04:59 -0000
Newsgroups: comp.lang.ada,
fr.comp.lang.ada

Ada - In Strong Typing We Trust - "coin"
updated for Ada 2022

As of today, a new version of the
traditional "Ada coin" is available for
promotional use at
http://www.cs.kuleuven.be/~dirk/
ada-belgium/pictures/ada-strong.html

Coinciding with the final stages in the
ISO standardization of the latest Ada
programming language revision, referred
to as "Ada 2022", and for the occasion of
the 11th Ada Developer Room at
FOSDEM 2022, a new update was made
available, adding "2022".

Enjoy!
Dirk Craeynest

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/-Europe/SIGAda/WG9 mail)

New Ada Forge

From: William <william@sterna.io>

Subject: New Ada Forge: catalog of
(almost) all Ada open source code &
tools

Date: Sat, 12 Feb 2022 19:47:36 +0100

Newsgroups: comp.lang.ada

Hello Ada lovers!

I’ve the pleasure to announce a ground-up
update of AdaForge.org

https://www.adaforge.org

The purpose of this site is to bring to the
Ada developer a catalog of (almost) all
Ada open source code and tools existing
in different public repositories.

==> This catalog is structured according
to a software developer perspective
(taxonomy).

Note: AdaForge.org references 100% of
the Alire ‘crates’ packaging repo. :-)
I’'m excited to hear some feedback from
you,

Kind regards,
William

Ada-related Tools

AdaStudio-2021 Release
01/10/2021 Free Edition

From: Leonid Dulman
<leonid.dulman(@gmail.com>

Subject: Announce: AdaStudio-2021 release
01/10/2021 free edition

Date: Fri, 1 Oct 2021 22:31:52 -0700

Newsgroups: comp.lang.ada

I'm pleased to announce AdaStudio-2021
new release, based on Qt-6.2.0-
everywhere Qt 6.2.0 opensourc without
qtwebengine,extended with modules from
Qt-5.15: qtgraphicaleffect qtlocatio
qtgamepad qtspeech qtx11extras
qtwinextras Qt 6 is a new long time
project and I hope to add qtwebengine in
next releases.

Qt6ada version 6.2.0 open source and
qt6base.dll ,qt6ext.dll
(win64),libqt6base.so,libqt6txt.so(x86-64)
built with Microsoft Visual Studio 2019
x64 Windows, gcc x86-64 in Linux.

Package tested with GNAT gpl 2020 Ada
compiler in Windows 64bit, Linux x86-64
Debian 10.4 Qt-6.2.0 everywhere
opensource prebuilt binaries for win64
and amd64 are included into AdaStudio-
2021

AdaStudio-2021 includes the following
modules: qt6ada, vtkada, qt6avada,
qtéecvada and voice recognizer.

Qt6Ada is built under GNU GPLv3
license https://www.gnu.org/licenses/
1gpl-3.0.html.

Qt6Ada modules for Windows, Linux
(Unix) are available from Google drive
https://drive.google.com/folderview?id=0
B2QuZLoe-yiPbmNQRI83M1dTRVE
&usp=sharing

[List of detailed file contents omitted.
—arm]

Ada User Journal

Volume 43, Number 1, March 2022

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.docx"

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Sat, 2 Oct 2021 16:00:50 +0200

Hi Leonid,

I have been following your work for a few
years. I like the Qt ecosystem (even with
their change of heart) and very specially
VTK. Thank you for your work. I hope to
use it in the future for my projects.

I first wanted to say that the webpage that
is indicated on your CV and where QtAda
has been living is unreachable. Google
says it has been blocked since it is
suspicious. Do you receive the same
message?
[https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/adastudio.html]

> Qt6Ada is built under GNU GPLv3
license https://www.gnu.org/licenses/
1gpl-3.0.html.

Is it GPLv3 or LGPLv3? I am asking
since you mention GPLv3 but link
LGPLvV3.

Once again, thank you for maintaining
this lovely software suite!

From: Leonid Dulman
<leonid.dulman@gmail.com>
Date: Thu, 7 Oct 2021 22:59:20 -0700

Qt6Ada is built under GNU LGPLv3
license, sorry for my mistake.

I built a web page from my google drive
and it worked well, but now I have got a
message from Google and I don't know
why. Old link to AdaStudio no longer
works. The new is
https://drive.google.com/drive/folders/
0B2QuZLoe-yiPbmNQRIS3M1dTRVE?
resourcekey=0-b-M35gZhynB6-
LOQww33Tg&usp=sharing

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Wed, 6 Oct 2021 23:28:33 +0200

I have been playing today with qtSada and
I think I can shed some light on the issue
[of some seemingly missing C files
—arm)].

The Ada sources that call the Qt
procedures are in the
AdaStudio/qtSada/qt5adasrc.tar.bz?2 file.
That is the source file. There are no C
files there. That library contains all of the
Ada wrapper.

However, that is indeed not enough to use
it. It requires a fully functional Qt5
installation (and a very complete one,
with bells and whistles). The binaries are
provided in the other *.tar.bz2 files
(except the demos file). There is also the
qtSadax86-64.tar.bz2 file which weighs
about 6Mb. That seems to be the relevant
file to build qt5ada from source in Linux.

It comes with different files to setup the
file structure and environment. I must
admit, I have not tried to build it with the
provided files in qt5adax86-64.tar.bz2

These "build files" expect you to have a
Qt5 installation in your local /usr/local
folder. I suppose that is where the
qt5.15x86-64.tar.bz2 comes into place,
after all, it should unpack in the directory
written in the environment file.

Of course, the question is: where are the
instructions to build this all from source?
The short answer is in the document
"How to use QtSAda.docx" that is present
in AdaStudio/qt5ada. That sheds more
light into the procedure. But it still
expects you to use the precompiled Qt5
binary. And, I must be honest, it is not
clear and easy to follow, you need to
adapt the generic instructions to what is
on your system...

Then the question becomes: "How can |
build _everything from source?
Specially with the system provided
libraries, such as the system provided
Qt5." Well... That is not so simple. I
understand why Leonid has set up things
this way. Correctly setting the compiler
flags and directories for system installed
libraries is a nightmare. I tried to compile
qt5ada with my system provided Qt5
(OpenSUSE Tumbleweed), it is not trivial
_atall . There can be problems with the
QtS version, there can be problems with
the plugins, compiler flags, etc. Can it be
done? Most likely, but it will require
some elbow grease. There is a reason to
why most Qt projects use CMAKE to
build and link themselves; because it is
not an easy task.

So I would say that the instructions need
to be cleaner and that in its current state,
there is only one easy solution to building
qt5ada, and it requires the binaries
provided. But I would also say that all the
source files needed are in there. The
prebuilt Qt5 binary seems to be the
standard unmodified Qt5 distribution, so
no surprises there. And that a lot of extra
work would be needed to make qt5ada
work seamlessly with the system provided
libraries.

SweetAda 0.9

From: Gabriele Galeotti
<gabriele.galeotti.xyz(@gmail.com>
Subject: ANN: SweetAda 0.9 released
Date: Sun, 3 Oct 2021 06:32:40 -0700
Newsgroups: comp.lang.ada

I've just released SweetAda 0.9.

SweetAda is a lightweight development
framework to create Ada systems on a
wide range of machines. Please refer to
https://www.sweetada.org.

Release notes @
https://www.sweetada.org/
release notes.html (delayed)

Ada-related Tools

Downloads available @
https://sourceforge.net/projects/sweetada.

Clone repository @ https://github.com/
gabriele-galeotti/SweetAda

Release notes

There are too many changes, so I will list
only the most important features of this
release.

- Windows environment does not need the
grep utility, nor a dos2unix utility
(which is now provided internally);
elftool is now optionals and its use is
configurable in configuration.in

- RTS can be build from sources by
means of "CPU=<cpu> make rts"
command (the RTS type is being picked
up from configuration.in as usual), every
RTS branch will be named like the
toolchain triplet being used

- Both SweetAda and RTS are fully
buildable in Linux, Windows/cmd.exe,
Windows/MSYS and OS X; you should
only to have online a "make" and "sed"
(and for Windows these are available as
zip packages in Sourceforge); due to
this, there are no RTS packages anymore

- SweetAda does not relies on SweetAda
toolchains, you can use your own GNU
toolchain, or whatever GNAT you can
pick, just be sure to use Ada 2020

The final result is a package that is fully
auto-consistent, because the core, RTS
and utilities are fully provided in both
source form and executable form. Since
SweetAda toolchains are by no means
eligible as the unique compilers for the
system, they will slowly fade away.

GCC Release Notes, aka,
Ada Is Still Alive!

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Subject: GCC release notes, aka, Ada is still
alive!

Date: Mon, 11 Oct 2021 20:41:18 +0200

Newsgroups.: comp.lang.ada

Hi everybody,

I have been meaning to write this message
for a long while, so here it goes.

Reading Phoronix [1] for years, I noticed
that with every new GCC release, the
biggest changes to GCC and its languages
were mentioned. However, Ada was
pretty much never present.

Today, just a few moments ago in
#netbsd, someone asked whether Ada had
finally been dropped out of GCC... I am
not even mad. GCC's release notes have
not mentioned Ada since GCC 8 [2], [3],
[4]; and even in GCC 7 and 8 the notes
are minute.

So I would like to ask whether someone
would like to help me get release notes
ready. [am not saying that I will be doing

Volume 43, Number 1, March 2022

Ada User Journal

Ada-related Tools

much, but I would like to breathe some
fresh air into how Ada is seen and how
much people hear about it.

I personally do not like marketing since
good products stand on their merits, not
slogans or shininess. But there is no
reason to not put publicly what is going
on.

Yes, AdaCore has been doing some very
nice followups to the development of Ada
in their blog [5]. But the people that go
there are already aware of Ada. And since
AdaCore is phasing out their GNAT CE
system in favour of FSF builds (included
in Alire), the relevance of GCC's releases
Srows.

Note, [am not implying that AdaCore
should write the releases. They are doing
the bulk of work in GNAT, so I do not
think they need to do more. Personally
I am glad with what they are doing, but of
course, they can write the releases if they
so want.

I am especially saddened by the fact that
GCC has gotten a substantial amount of
support for Ada 2022 and it is not even
mentioned. No wonder why people think
Ada is dead!

So, if you have any recommendation, or
would like to help, then you are more than
welcomed!

P.S.: I am already doing my part GNAT
in NetBSD x86_64 is working! It has 9
failed ACATS tests, but they are minor. A
thousand thanks go to J. Marino and
Tobiasu for their enormous help in #ada.
Today I will see if I can compile it for
armv6 and run it on my RPi!

[1] https://www.phoronix.com/scan.php?
page=home

[2] https://gcc.gnu.org/gec-7/changes.html

[3] https://gec.gnu.org/gec-8/changes.html

[4] https://gcc.gnu.org/gec-9/changes.html

[5] https://blog.adacore.com/

From: Fabien Chouteau
<fabien.chouteau@gmail.com>
Date: Tue, 12 Oct 2021 05:54:33 -0700

Most, if not all, of what is in this blog
post [1] is applicable to GNAT/GCC 11.

[1] https://blog.adacore.com/ada-202x-
support-in-gnat

From: Tero Koskinen
<tero.koskinen@iki.fi>
Date: Tue, 12 Oct 2021 21:37:25 +0300

> Most, if not all, of what is in this blog
post [1] is applicable to GNAT/GCC
11.

I guess the main point of Fernando was
that it would be nice if someone could add
all the new changes between versions 11
and 12 to https://gcc.gnu.org/gec-
12/changes.html before GCC 12 is
released.

gcce-X/changes.html traditionally lists
some items for all other language
frontends, but there is never anything for
Ada.

The git history for gcc-12/changes.html
page is visible at

https://gcc.gnu.org/git/?
p=gcc-wwwdocs.git;a=history;
f=htdocs/gcc-12/changes.html;
h=f38{d2bef9c4089369¢619315590ebffd8
b24f5¢;hb=HEAD

(that is gcc-wwwdocs repository at
gcc.gnu.org/git).

Maybe someone with enough free time
(and enough knowledge about the
changes) could take look and provide a
patch for GCC web page maintainers?

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Wed, 13 Oct 2021 18:32:30 +0200

Thank you to everybody that commented
on the topic.

We could use the Changelog present in
the gce/ada directory to triage commits
more precisely (credit goes to Stéphane).

> [decided to try an example. [must
confess that I don't know where the
cutoff point for GCC 11 was and what
it changes actually did

To be honest, we could try to write the
changelog for GCC 11 with the
information given by Fabien (AdaCore)
and what we find out. If for whatever
reason the GCC people do not want to
make large changes to the already
released changelog, we could compile a
larger list for GCC 12.

I think the most important aspects are:

- Ada 2022, which has a long list of
changes on its own,

- Improvements to systems (VxWorks,
RTMS, etc), as it shows that Ada is
present in more places than what meets
the eye;

- Deprecations and fixes;

- General improvements in the library,
SPARK and with the GCC ecosystem.

I think Ada has somewhat acceptable
support for OpenMP, which was
improved in the past few years, for
example. It has also been increasing
SPARK support in the libraries.

[.]

I want to sign up for GCC's gcc mailing
list (general discussion) and ask the GCC
people what would be the preferred way
to move forward. Hey, maybe they would
like to have Ada changelogs for all past
releases! If I hear anything back I will tell
you.

Though if someone wants to start, I see no
problem on sharing diffs here. Not the

most ideal place, but it is a good forum to
share ideas.

From: Simon Wright
<simon@pushface.org>
Date: Wed, 13 Oct 2021 20:59:47 +0100

> - General improvements in the library,
SPARK and with the GCC ecosystem.

Not sure how to work SPARK into a GCC
note, since it's not part of the GCC
ecosystem?

"There's extensive support for possible
static analysis of code, e.g. via SPARK, in
the form of annotations that can
optionally be compiled as runtime
assertions."

From: Stéphane Riviére
<steflwgenesix.org>
Date: Thu, 14 Oct 2021 10:24:20 +0200

> So, if you have any recommendation, or
would like to help, then you are more
than welcomed!

I second that and I would like to help, if
may.

According to gcc-mirror on github, Ada
basecode is above C++

C47.7%

Ada 17.5%

C++14.9%

Go 7.4%

GCC Machine Description 4.7%
Fortran 2.4%

Other 5.4%

git clone https://github.com/gcc-mirror/
gcc

git log > log.gce (volume: 124M)

cat log.gcc | grep AdaCore > log.ada
(1M, ~25K contribs since 2005)

grep "\[Ada\]" ./log.gcc >
log-oneliner.ada (190K, 3200 lines)
grep -B 2 -A 20 AdaCore log.gcc >
log-detail.ada

cat log-detail.ada | grep -B 2 -A 20 [ada]
log.gcc > log-changes.ada

It seems that everything is there to create
a more or less relevant changelog.

But AdaCore's comments are one thing,
sorted and relevant information for
developers are another.

A raw copy/paste would be useless, we
would have to analyze the changelog to
give back useful information.

We should also edit a changelog for each
GCC release. The above metrics were
made on master.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Wed, 20 Oct 2021 10:42:20 +0200

The discussion thread on the GCC ML
has been started. You can find it here:
https://gce.gnu.org/pipermail/gcc/
2021-October/237600.html

Do not hesitate to add any comments!

Ada User Journal

Volume 43, Number 1, March 2022

10

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Wed, 20 Oct 2021 22:14:57 +0200

> The discussion thread on the GCC ML
has been started.

Okay, we already had a couple of
comments and they cover everything
needed. Arnaud has volunteered to be the
"supervisor". So here is my plan:
crowdsourcing! :D

I would like to write a (simple) list of
changes for each version here, on the
CLA. If you want to add something
__copy__ (do not quote) the list from the
previous person/reply/modification and
add your proposed changes. You can also
make comments if you would like
anything changed. If "CHECK" or if
"TODQO" are written by somebody, it
means that something needs to be checked
or that it needs to be expanded;
respectively. After the list is mostly
completed, we could create a patch(es) to
send to GCC. The quality of this list is not
going to be great, treat it like a checklist.
Obviously, if you want to discuss
something about the changes, do quote
the relevant section.

[.]

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Mon, 25 Oct 2021 20:47:05 +0200

Diff: add to GCC 12 the deletion of
gnatxref and gnatfind (the patch was
posted today in the ML). The -gnat2020
has been commented too in GCC 10 and -
gnat2022 in GCC 12. Also, we have
explicit permission by Arnaud to copy as
much code as necessary from AdaCore's
blog.

LIST OF CHANGES

GCC 12

- Introduction of the -gnat2022 flag in
gnatmake (-gnat2020 is a deprecated
alias).

- gnatfind and gnatxref tools have been
deleted. They have been deprecated for
years and have been substituted by
gprbuild tools.

- Further library improvements in both
quality and performance.

- The use of contracts has been extended
in the "Ada library" allowing for further
checks at runtime or a deeper static
analysis with the SPARK prover.

- Further improvements to embedded
systems such as VxWorks and RTMS.
CHECK maybe be more
specific/generic.

GCC 11

- Better Ada 2022 support. The parallel
keyword is still unsupported.

- TODO name the additional features. See
[1], obviously, with some code
examples.

- Addition of the Jorvik profile. CHECK,
see [2], maybe code examples?

- Additional non-standard features [3].
CHECK if this applies to GCC 11 or 12.

- A bug was fixed were previous GCC
versions allowed XXX construct
CHECK. This is not allowed by the
standard. Some software was making
use of XXX (which is, once again, not
allowed) and it has to be patched.

- General library improvements in both
clarity and performance.

- The use of contracts has been extended
in the "Ada library" allowing for further
checks at runtime or a deeper static
analysis with the SPARK prover.

- Further improvements to embedded
systems such as VxWorks and RTMS.
CHECK maybe be more
specific/generic.

GCC 10

- Introduction of the -gnat2020 flag in
gnatmake (-gnat2020 is a deprecated
alias). It enables newer features present
in Ada 2022 (still to be ratified). These
features are still experimental.

- Some Ada 2022 features are available
already with the use of the -gnatX (gnat
eXtensions switch).

From: Stephen Leake
<stephen_leake@stephe-leake.org>
Date: Wed, 27 Oct 2021 09:52:26 -0700

> - gnatfind and gnatxref tools have been
deleted. They have been deprecated for
years and have been substituted by
gprbuild tools.

What "gprbuild tool" replaces gnatxref?

From recent discussions in an AdaCore
ticket, the replacement for gnatxref is
libadalang, either via the LSP Ada
Language Server, or a similar custom
wrapper.

GCC Updated in NetBSD!

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Subject: GCC updated in NetBSD!

Date: Tue, 19 Oct 2021 23:47:36 +0200

Newsgroups: comp.lang.ada

Hello everybody! I bring good news!

GCC with Ada support has been updated
in NetBSD! Now versions 10 and 11
should work on x86 and x86_64 NetBSD
machines! You can find them in pkgsrc-
wip (gecl0-aux) [1] and Ravenports
(gccll) [http://www.ravenports.com/]!

First things first, the acknowledgements: a
big thank you goes to J. Marino who did
the original gcc-aux packages and who
provided most if not all the work when it

Ada-related Tools

came to fixing the threads and symbols.
Another big thank you goes to tobiasu
who correctly picked up that the pthread
structure wrappers were not correct and
had to be remade. Another big thank you
goes to Jay Patelani for his help with
pkgsre.

So, long story short. Most of the work that
had been done up until a few weeks ago
was done correctly, but the failing tests
(most related to tasking) were failing in
very strange ways. It happened that the
pthread structure memory that the Ada
wrapper was using was incorrect, so we
were getting completely erratic behaviour.
Once that got fixed, pretty much all tests
passed. J. Marino also took the time and
effort to create __gnat * function
wrappers to all the symbols that the
NetBSD people have renamed. This is a
much cleaner fix and allows for the
renamed functions to generate the correct
symbols since now they are getting
preprocessed. It should also be more
"upstream friendly". The issue, however,
remains if NetBSD decides to rename
more functions that are still being linked
directly.

There are still some failing ACATS tests
(about 10). Some are related to numerical
precision and a couple others. They are
mostly the same failing tests in both GCC
10 and 11. J. Marino ran the ACATS tests
on a DragonflyBSD (or was it FreeBSD?)
machine and the same tests were failing
there too. So we suspect is is a common
limitation on *BSDs and it is unlikely that
this will ever affect anybody. There is
also the issue of stack unwinding when it
contains a signal trampoline [2], read the
following thread to gain more information
about this.

[1] https://github.com/NetBSD/
pkgsrc-wip/tree/master/gcc10-aux

[2] https://mail-index.netbsd.org/
tech-kern/2021/10/15/msg027703.html

I have started trying to get GCC to
xcompile to arm* on NetBSD. I think I
am somewhat close, but further hacking
on NetBSD's src is needed (and I think the
RTS is not getting picked up correctly).
So do not get your hopes up. I mean, I
have a working gcc x86_64 NetBSD host
to NetBSD arm* xcompiler, it is the
native gcc on arm* that is not getting built
correctly.

From: Richard Iswara
<haujekchifan@gmail.com>
Date: Wed, 20 Oct 2021 12:01:40 +0700

A big applause for your hard work
identifying the problem in the first place.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>
Date: Tue, 19 Oct 2021 23:43:23 -0700

When I was working at AdaCore, we used
to run our internal CRM and the ticket-
management tool that processes all email

Volume 43, Number 1, March 2022

Ada User Journal

Ada-related Tools

on a FreeBSD machine, because the
sysadmin was very fond of that system.
The CRM was (is?) based on AWS (Ada
Web Server), so using tasking pretty
heavily. We never had any problem at the
time.

I guess AdaCore has given up on
FreeBSD, like they have macOS.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Wed, 20 Oct 2021 20:44:01 +0200

> I guess AdaCore has given up on
FreeBSD, like they have macOS.

Well, GCC officially supports FreeBSD
x86* and AFAIK, arm too. Though,
AFAIK, the gcc-aux packages from
freshports have been left without a
maintainer...

And good news everybody! I have
managed to get GPRBuild working and
Alire too! I even got the GNATColl
components built using Alire . Pretty
easy if you ask me :P

The mayor issue I am facing now is with
make... I tried building AWS with Alire
but it could not, since it was using make,
which in *BSD world is BSD make, aka,
bmake, not GNU make, aka gmake...
Anyhow, I am very happy to see so many
packages getting built without issues in
NetBSD :D

There is the problem where GPRBuild
says that the "lib" option is not supported
on the OS. I don't think it is suprissing
since GPRBuild probably does not know
anything about NetBSD.

I am also getting warnings from
gnatmake:

/home/fernando/bootstrap ada/alire/src/
alire/alire-toolchains.adb:331:8:

warning: frame size too large for reliable
stack checking which probably come
from NetBSD having a small stack by
default.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Tue, 2 Nov 2021 21:32:56 +0100

A bit of a followup.

The package gccl10-aux has been updated
in pkgsrc-wip. I am now the maintainer.
As requested by some pkgsrc developer, I
have made the package explicitly depend
on gcco-aux. That way, it may be used as
a base Ada compiler for all the packages
that need Ada (although this is just the
first step). I have also rebased it on the
new skeleton of gcc10 from pkgsrc-
current. Hopefully the review period and
inclusion into pkgsrc-current will not take
much time.

[.]

From: Fernando Oleo Blanco
<irvirse_ml@jirvise.xyz>
Date: Thu, 23 Dec 2021 12:52:42 +0100

Well well well...

I come with a Christmas present... Ada
running on NetBSD-powerpc! It should
run on any powerpc "port", in NetBSD
terms also known as evbppc, macppc and
amigappc.

It is not perfect, but it is there.

Here are the results from ACATS 4.1X
running natively on the macppc port (as
created by https://github.com/alarixnia/
mkimg-netbsd)

=== acats Summary ===

of expected passes
of unexpected failures 62
of expected failures
of unresolved testcases 11
of unsupported tests

**% FAILURES: ¢324006 ¢350a01
¢452003 ¢452005 ¢452006 c452a02
€52103x ¢52104x ¢52104y c552a01
¢552a02 c611a04 c650b04 c760a02
¢96001a c96008a c96008b cb1010a
c¢b1010c¢ ¢cb1010d ¢c40001 cc51007
¢dd2b03 cdd2b04 cxa4010 cxa4011
cxa4021 cxa4022 cxa4023 cxa4030
cxa4031 cxa4032 cxa4033 cxa4035
cxaa022 cxab004 cxab005 cxac004
cxag001 cxag003 cxai001 cxai009
cxai010 cxaia01l cxaib05 cxaib06 cxaib08
¢xb4002 cxb4005 cxb5002 cxb5003
¢xd1003 ¢cxd1004 ¢xd1005 ¢xd2002
¢xd2003 ¢xd2004 ¢xd2006 ¢xd3001
¢xd3002 cxd6001 ¢cxd6002

/home/fernando/ACATS-master/
run_all.sh completed at Thu Dec 23
10:13:16 UTC 2021

The compiler is GCC from the NetBSD
src tree, which is an older GCC 10
version. Which means (following the
results from previous runs) that 28
failures where expected; 6 from
shortcomings from NetBSD and the rest
from GCC 10 not passing newer tests.
That means this system generated at least
34 new failures. This may be for a
number of reasons, both related and
unrelated to GCC-Ada. Still, I think they
are rather good! I believe a lot of cxa
failures were due to the system running
on low memory. Also, the compiler was
built against NetBSD 9.99.92, but the
actual host is 9.2, and NetBSD is not
backwards compatible; so that may
explain other failures.

Just for your own enjoyment, these tests
took about 2 days to run, since [am
emulating powerpc on a virtualised
NetBSD-x86 64 system :P

The reason I tried to run powerpc is
because, to put it bluntly, NetBSD has to
fix their shit with aarch64 and mips64 and
because they do not provide binaries for
POWER. NetBSD just works if you use
their tooling, but the moment something
out of the ordinary of what has to be built,

11

fecal matter impacts the air impeller
(credit to a reddit user for that one).

Merry Christmas everybody!
Fer

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Thu, 10 Feb 2022 20:21:53 +0100

One last update on GCC 10 on NetBSD.

As I have already said in other messages,
it works great. The package is still under
wip since no maintainer has stepped up to
take care of the review. I also have not
pushed it further.

I would recommend the use of
Ravenports, since it has GCC 11, which is
newer and works on FreeBSD too.

I have given up on trying to port it to
other arches. It should be as simple as
adding them to the Makefile.rtl. There is a
minor bug on my patchset, the x86
intrinsics are also present on the arm
sections, I need to delete that.

The reason for giving up on supporting
other arches is mostly due to NetBSD not
upstreaming support for those arches. For
example, the official binutils does not
have support for aarch64-netbsd. It is only
present in NetBSD's src. And it only
works when used within NetBSD's src.
This makes everything more complex
than needed and I do not have the will to
push through with it.

Regarding the use of other Ada tools in
NetBSD. I added support for grpbuild a
few months ago, so you should be able to
just use it. Notice, when using GCC 10
only V21 of AdaCore tools work. Newer
versions (currently v22) need GCC 11.
The rest of the tools seem to compile
without much fuzz at all. So I say that my
work is mostly complete.

I will try to get gcc10-aux pushed to
stable however; sometime after March.

For now, I will try to update the Ada
changelog in GCC and write an article
about Ada-Scheme for the AUJ.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Mon, 14 Mar 2022 22:21:49 +0100

Quick update. The package has now been
upstreamed and is now part of the official
pkgsre distribution!

You can find it here:
https://cdn.netbsd.org/pub/pkgsrc/current/
pkgsrc/lang/gec10-aux/index.html

Binaries are still not available since it just
got added.

This is a nice conclusion to this journey...
But there is something else brewing
behind the scenes... AVR support is
coming to Alire thanks to Fabien and we
are ironing out some of the issues there :D

Ada User Journal

Volume 43, Number 1, March 2022

12

Simple Components v4.59

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components for Ada
v4.59

Date: Sat, 6 Nov 2021 13:04:27 +0100

Newsgroups.: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- The primitive operation Clear was added
to GNAT.Sockets.Server.Connect;

- Julia bindings moved to the version
1.6.3;

- The functions Eval char_array,
Get_Safe Restore, Load_File String,
Set Safe Restore were added to Julia
bindings;

- Functions To_Julia and Value added to
Julia bindings for Ada types Time and
Day Duration;

- To_Julia defined on tuples fixed when
types of elements are not directly
visible.

Dokan Ada Bindings 2.0

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Subject: ANN: Dokan Ada bindings 2.0
Date: Sun, 16 Jan 2022 17:07:54 +0100
Newsgroups.: comp.lang.ada

Dokan is a user-space file system for
Windows 32- and 64-bit. It consists of a
driver and a library. The driver routes the
/O requests to the file system device to
the library callback.

A sample implementing a memory
resident files system is provided.

http://www.dmitry-kazakov.de/ada/
dokan.htm
Changes to the version 1.5.0:

- The code and the API were reworked to
accommodate the Dokan major version 2.

AdaControl 1.22r16¢

From: J-P. Rosen <rosen@adalog.fr>
Subject: [Ann] New version of AdaControl
Date: Wed, 8 Dec 2021 17:51:44 +0100
Newsgroups: comp.lang.ada

AdaControl 1.22r16¢ is mainly a bug fix
release (no new rule), but improvements
in the static evaluator provides better
results and avoids false positives in
several rules.

Enjoy!

Renaissance-Ada Made
Open Source

From: Pierre Van De Laar
<pierre.van.de.laar@gmail.com>
Subject: Renaissance-Ada, a toolset for
legacy Ada software, made open source
Date: Thu, 27 Jan 2022 04:32:00 -0800
Newsgroups: comp.lang.ada

Dear Members of comp.lang.ada,

We would like to inform you that we have
made Renaissance-Ada, a toolset for
legacy Ada software, open source:

https://github.com/TNO/Renaissance-Ada

The Renaissance-Ada project builds on
top of LibAdalang and includes the
following functionality

* Dependency Graph Extractor that
produces a graphml file for visualization
and querying with e.g. yEd and Neo4lJ.

* Rejuvenation Library that allow
analysis and manipulation of Ada code
based on concrete patterns.

* Rewriters_Library that enables
automatic rewriting of Ada code based
on concrete patterns.

* Code Reviewer that automatically
reviews Ada code based on a large list
of rewrite rules.

If you have any question about this toolset
don’t hesitate to contact me!

GWindows Release, 29-Jan-
2022

From: Gautier Write-Only Address
<gautier niouzes@hotmail.com>

Subject: Ann: GWindows release, 29-Jan-
2022

Date: Sat, 29 Jan 2022 13:48:46 -0800

Newsgroups: comp.lang.ada

GWindows is a full Microsoft Windows
Rapid Application Development
framework for programming GUIs
(Graphical User Interfaces) with Ada.
GWindows works only with the GNAT
development system, but with some
effort, GWindows could be made pure
Ada. GWindows is free and open-source!

Ada-related Tools

Changes to the framework are detailed in
gwindows/changes.txt or in the News
forum on the project site.

In a nutshell (since last announcement
here):

427: GWindows.Image Lists: added
color options; includes features of
"extended" Ex Image List Type in
package
GWindows.Image Lists.Ex Image List
s, which is marked as obsolescent.

424: GWindows.Application: added
function Screen_Visibility.

423: GWindows.Application: added
Enumerate Display Monitors.

422: GWindows.Base: added
Set_Foreground Window.

421: GWindows.Base: added
Set_Active_ Window.

417:
GWindows.Common_Controls.Ex_Tb
(toolbar): is now 64-bit compatible; see
LEA http://l-e-a.sf.net/,

LEA_ GWin.Toolbars for an example.

414: GWindows.Scintilla: method names
are "de-camel-cased": e.g.:
"Move_Caret Inside View" instead of
"MoveCaretInsideView".

412: GWindows.Scintilla: works on both
Intel x86 32-bit and x64 64-bit types of
platforms.

411:
GWindows.Common_Controls.Ex List
View: method On_Free Payload is now
public and can be overridden with effect.

410:
GWindows.Common_Controls.Ex_List
View: Sort can use a comparison
method not based on strings (e.g. a
numerical comparison).

GWindows Project site:
https://sf.net/projects/gnavi/
GWindows GitHub clone:
https://github.com/zertovitch/gwindows
Enjoy!

macOS GCC 12.0.1,
SPARK2014

From: Simon Wright
<simon@pushface.org>

Subject: ANN: macOS GCC 12.0.1,
compatible SPARK2014

Date: Fri, 25 Feb 2022 18:21:04 +0000

Newsgroups: comp.lang.ada

GCC 12.0.1 0f 20220204 (only Ada, C,
C++, built on El Capitan, runs up to
Monterey) available at
https://github.com/simonjwright/
distributing-gcc/releases/tag/gec-12.0.1.

SPARK?2014 built against it (provers
CVC(C4, 73, Alt-Ergo; CVC4 requires
Sierra and upwards) available at

Volume 43, Number 1, March 2022

Ada User Journal

Ada Inside

https://github.com/simonjwright/
spark2014/releases/tag/macos-0.1.

Needs GCC 12.0.1 installed. Running the
test suite on the ug* tests (the examples in
the User Guide) results in one failure
(aside from the missing CodePeer one)
unless you build with -j2 (where 2 is less
than the number of processors in your
machine).

A note on building the latter at
https://forward-in-code.blogspot.com/
2022/02/spark2014-and-fsf-gcc.html.

UXStrings Package
Available (UXS_20220226)

From: Blady <p.pl1@orange.fr>

Subject: [ANN] UXStrings package
available (UXS 20220226).

Date: Tue, 1 Mar 2022 21:47:49 +0100

Newsgroups: comp.lang.ada

The objective of UXStrings is Unicode
and dynamic length support for strings in
Ada.

UXStrings API is inspired from
Ada.Strings.Unbounded in order to
minimize adaptation work from existing
Ada source codes.

Changes from last publication:

- Ada.Strings.UTF_Encoding.
Conversions fix is no longer needed
with GNAT CE 2021

- A few fix

Available on GitHub
https://github.com/Blady-Com/UXStrings
and also on Alire
https://alire.ada.dev/crates/uxstrings.html

Feedback is welcome on actual use cases.

GCC 12.0.1/Apple Silicon

From: Simon Wright
<simon@pushface.org>

Subject: [ANN] GCC 12.0.1/Apple silicon

Date: Wed, 23 Mar 2022 21:08:25 +0000

Newsgroups: comp.lang.ada

Find GCC 12.0.1 and tools for M1 Macs
at https://github.com/simonjwright/
distributing-gcc/releases/tag/
aarch64-apple-darwin21-1

About double the size of the x86 64
(Intel) equivalent.

Ada Inside

Ada in James Webb Space
Telescope?

From: Nasser M. Abbasi
<nma@12000.0rg>

Subject: is Ada used in James Webb Space
Telescope software?

Date: Sun, 26 Dec 2021 07:18:41 -0600

Newsgroups: comp.lang.ada

Anyone knows if Ada is used in James
Webb Space Telescope software.

Either in the control systems or in the
embedded software for the Telescope.

https://www.jwst.nasa.gov/

I sure hope they did not use javascript or
Python or C for the software.

There is some talk in the following link
about its software but I could not find
what language they used.

https://www.nasa.gov/feature/goddard/20
20/nasa-s-james-webb-space-telescope-
completes-comprehensive-systems-test

From: Peter Chapin <peter@pchapin.org>
Date: Thu, 30 Dec 2021 08:30:54 -0500

> Anyone knows if Ada is used in James
Webb Space Telescope software.

It is likely they used C. Specifically, C99.
I say this because in my dealings with
NASA (related to my work with
CubeSats), the people I've talked with
made it clear that NASA is now a C shop.
Both my colleague and I have extolled the
virtues of Ada and SPARK to NASA
engineers, but we get the usual reaction:
too much investment in C to take any
other option seriously... except maybe
C++ (JPL, at least, does some work with
C++ so that might also be on the JWST).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Sun, 26 Dec 2021 15:23:43 +0100

Since it was 30 years in development, I
would not dismiss QBasic...

From: Paul Rubin
<no.email@nospam.invalid>
Date: Sun, 26 Dec 2021 11:22:56 -0800

> Since it was 30 years in development, [
would not dismiss QBasic...

Don't forget Forth! It was used on many
space projects.

https://web.archive.org/web/19990125085
748/http://forth.gsfc.nasa.gov/

From: John Mccabe
<john@mccabe.org.uk>
Date: Sun, 26 Dec 2021 15:57:42 -0800

> Don't forget Forth! It was used on many
space projects.

Interesting. I didn't realise there had been
so many projects in Forth. I started to
learn/use Forth at one point, as it looked
like we (Matra Marconi Space) might be
forced to use the RTX2010 as it was one
of very few space qualified processors
with hardware floating point support. In
the end we used the MA31750, with Ada,
instead.

From: Paul Rubin
<no.email@nospam.invalid>
Date: Sun, 26 Dec 2021 16:37:00 -0800

> [didn't realise there had been so many
projects in Forth.

13

Much of Forth's early development was at
the Kitt Peak observatory where I think
Charles Moore worked for a while, so it
was popular with the astronomy
community and maybe indirectly with the
spaceflight community through there and
JPL. As a more general matter, hardware
designers (electrical engineers who
sometimes have to muck with embedded
software but aren't really into
programming as a topic) tend to like it
because of its simplicity and directness.

> In the end we used the MA31750, with
Ada, instead.

Interesting. I hadn't heard of the
MA31750 but it appears to be a 16 bit
processor that implements the MIL-STD-
1750A instruction set(!), which I didn't
know about either. Apparently it was
made in the 1980s but has since been
superseded by SPARC architecture cpu's.

I wonder if targeting GCC to the
RTX2010 might have been feasible. Can I
ask what Ada compiler you used for the
MA31750? It looks like GCC supported
the MA31750 until version 3.1, but I don't
know whether GNAT existed then.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Mon, 27 Dec 2021 09:44:26 +0200

>> [didn't realise there had been so many
projects in Forth.

Forth is of course one of the few ways to
get a self-hosted but fairly fast interactive
compiler/editor system on small
processors.

In the 1980's I was working in radio
astronomy and we were planning to use
Forth to replace HP BASIC on an
HP2100 16-bit mini for telescope control
and data acquisition. I had a little crush on
Forth at the time, but fell out of love with
it when I found that some astronomy SW
had defined the word 2000.0 as a
procedure to convert stellar coordinates to
the year 2000 ephemeris... very clear :-(

Fortunately IMO we chose to use HP-
Algol instead, and much later changed to
Ada on a MicroVAX.

> Can I ask what Ada compiler you used
for the MA31750?

Like John, I used Ada on an MA31750.
We used the TLD Ada compiler, where
(IIRC) TLD stands for the main author,
Terry L. Dunbar. GNAT was around, but
I don't remember if it had support for the
MA31750 -- I doubt it. We used gnatp 3.
<something> for testing the MA31750
SW on workstations (Sun Solaris on
SPARC, IIRC), but the customer (Matra
Marconi Space) specified TLD Ada for
the target, so there was never a question
of using GNAT instead.

That project developed the on-board SW
for the ozone-monitoring instrument
GOMOS on the ESA ENVISAT satellite.

Ada User Journal

Volume 43, Number 1, March 2022

14

I believe ENVISAT used MA31750 and
TLD Ada for all its systems.

From: John Mccabe
<john@mccabe.org.uk>
Date: Tue, 28 Dec 2021 02:24:54 -0800

> [the MA31750] appears to be a 16 bit
processor that implements the MIL-
STD-1750A instruction set(!)

There were 3 or 4 different
implementations of the MIL-STD-1750A
instruction set architecture around the
time. It was an interesting one; it was
fairly small, but had some relatively
complex instructions that were really
useful. The MA31750 was GEC-Plessey
Semiconductors' 2nd version, I believe,
although if I remember correctly, this was
the one that had the FPU, or maybe it was
the MMU, integrated into a single device,
using silicon-on-sapphire for rad-
hardness. There were two other
implementations I particularly remember
that were rad-hard, one by IBM, which
had better claimed performance but was
really expensive and special order only (I
think we paid £7500 or so for each
MA31750, so you may be able to imagine
what I mean by "really expensive"), and
one by another US company that went
into Chapter 11 protection around the
time we were talking to them!

> Can I ask what Ada compiler you used
for the MA31750?

I'm almost 100% sure GNAT wasn't
available for the MIL-STD-1750A; it was
a very niche market and we weren't aware
of any C compilers we could've used at
the time, even if we'd wanted to.

The Ada compiler we used was the same
as Nikolas; TLD. I was also working on
part of ENVISAT (the Tile Control and
Interface Unit - TCIU, although some of
my colleagues were also using it on the
main ASAR control system). Although
Nikolas mentions Matra Marconi Space
mandating TLD, that would've come
down from Dornier who'd apparently
done a deal with TLD. I don't know what
happened with TLD after that, but some
geezer from the Irvine Compiler
Corporation contacted me once when they
were following up on some unpaid license
fees related to part of the TLD compiler.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Tue, 28 Dec 2021 12:59:32 +0200

> Although Nikolas mentions Matra
Marconi Space mandating TLD, that
would've come down from Dornier
who'd apparently done a deal with
TLD.

Yes, a considerable part of our
requirements came from Dornier via
Matra Marconi Space (France). We
sometimes had fun trying to understand
how the French had interpreted
requirements written in English by the

Germans. The two other languages had
left their imprints on the "English"
wording :-)

From: John Mccabe
<john@mccabe.org.uk>
Date: Fri, 31 Dec 2021 02:26:14 -0800

> Yes, a considerable part of our
requirements came from Dornier via
Matra Marconi Space (France).

We didn't really have that problem. On
TCIU most of our requirements came
from Dornier - > MMS-UK (ASAR
instrument prime) - > Alcatel - > MMS-
UK (TCIU team). Both MMS-UK teams
were in Portsmouth. Alcatel were only
there because of 'juste retour'* and they
didn't even seem to bother trying to
interpret the MMS-UK ASAR
requirements, they just changed the front
page to have "Alcatel" on it. We basically
had a shed-load of requirements placed on
us that had nothing to do with what the
TCIU needed to do, and Alcatel never did
get round to formally specifying the bit
we really did need from them (the TCIU -
> T/R Module - an Alcatel device -
interface) as far as I can remember!

It was good in a way, but Alcatel
certainly, and possibly also Alenia, played
politics all the way through. We were
required to go through Alcatel to get them
to clarify some of the requirements that
were relevant and had come from MMS-
UK. As they had no idea what they meant,
Alcatel had to go to MMS-UK to get the
clarification. Fortunately Alcatel appeared
to want to do as little work as possible for
their money so they'd just forward the
clarification from MMS-UK without
bothering to try to understand it.

I'm sure lots of people have been in
similar situations, but the inefficiency
could've been disastrous, especially as we
(the MMS-UK teams) had been working
directly with each other on ASAR for
years before Alcatel were put in to split us
up, and we used the same canteen!

Ah well, those were the days. Apologies
for going so far off-topic, but it was nice
to reminisce :-)

* Similarly, the ASAR CESA (Central
Electronics SubAssembly) requirements
came Dornier - > MMS-UK - > Alenia - >
MMS-UK.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Subject: [OT] ESA project memories (was
Re: is Ada used in James Webb Space
Telescope software?)

Date: Fri, 31 Dec 2021 23:18:49 +0200

Newsgroups: comp.lang.ada

> We didn't really have that problem. On
TCIU most of our requirements came
from Dornier - > MMS-UK (ASAR
instrument prime) - > Alcatel - > MMS-
UK (TCIU team). Both MMS-UK
teams were in Portsmouth.

Ada Inside

Interesting :-). I had a similar, but inverse,
experience in a later project (SW for the
Flexible Combined Imager instruments on
the MTG satellites) where Thales Alenia
Space (France) was both our customer for
the whole SW and our subcontractor for a
part of the SW. It led to a number of
"direct" communications and decisions
between the two TAS-F teams that
bypassed our team (in Finland) and of
which we learned later. But not much
harm done, overall a good project.

> Alcatel were only there because of 'juste
retour'*

I can't complain about "juste retour” as
without it much less ESA work would be
given to Finnish companies, especially
earlier when Finland was a new ESA
member with no experience in ESA work.

(For those not in the know: "juste retour"
is the ESA policy by which ESA tries to
give enough project work to each of its
member countries to correspond to the
country's share of ESA membership fees.)

[.]

> I'm sure lots of people have been in
similar situations [...]

Although splitting work up into several
companies does easily make for
inefficiency, in can also have the benefit
of documenting stuff that otherwise might
be lost in internal e-mails or face-to-face
discussions. That is, if the companies
involved do their work properly, and don't
act as you describe for Alcatel. But
perhaps the Alcatel technical people did
as well as they could to mitigate a poor
higher-level decision, by being basically a
transparent conduit, as you describe.

From: John Mccabe
<john@nospam.mccabe.org.uk>
Date: Wed, 5 Jan 2022 16:43:11 -0000

> Interesting :-). I had a similar, but
inverse, experience in a later project

[.]

It would be inappropriate of me to say
whether or not that sort of behaviour
occurred on ASAR, although I seem to
remember occasions where Alcatel
waived their right to be piggy-in-the-
middle as some of the discussion about
SAR pulse timing and the effect of
shifting things around a bit, to deal with
the fact that we would've needed a mid-
90s supercomputer (and a substantial re-
design of the TCIU -> T/R Module
interface) to achieve what was originally
specified, would've fried the brains of the
people who were actually involved :-)

<snip>

> Although splitting work up into several
companies does easily make for
inefficiency, it can also have the benefit
of documenting stuff that otherwise
might be lost in internal e-mails or
face-to-face discussions. [...]

Volume 43, Number 1, March 2022

Ada User Journal

Ada and Other Languages

To be fair (to MMS!), the actual
documentation that was produced at the
instrument level was pretty good. To be
fair to Alcatel, as I mentioned, we'd been
working without them on this for a long
time before ESA decided to mandate that
they should "manage" the TCIU
development as a subcontract, so they
were forced to pick up on stuff they pretty
much hadn't cared about before.

Ironically none of this helped with the
documentation from Alcatel; the TCIU ->
T/R Module interface I mentioned, for
example. We went through 3 rounds of
TCIU Software Requirements reviews
(i.e. SRR, then re-visited at ADR and
DDR or something like that), where our
assumptions on how that interface worked
(based on rough sketch ideas we'd been
given rather than formal specification)
were described, before someone at Alcatel
bothered to read it and say "nah, doesn't
work like that" (presumably in French) :-)

Ada and Other
Languages

AdaCore Joins with Ferrous
Systems to Support Rust

From: Paul Rubin
<no.email@nospam.invalid>

Subject: Adacore joins with Ferrous
Systems to support Rust

Date: Wed, 02 Feb 2022 00:57:33 -0800

Newsgroups.: comp.lang.ada

https://blog.adacore.com/adacore-and-
ferrous-systems-joining-forces-to-
support-rust

Ferrous Systems is apparently a Rust
support company based in Germany.
From the linked page:

"Ferrous Systems and AdaCore are
announcing today that they’re joining
forces to develop Ferrocene - a safety-
qualified Rust toolchain, which is aimed
at supporting the needs of various
regulated markets, such as automotive,
avionics, space, and railway."

No mention about whether there will be
any type of FOSS or community release.
No word on whether the compiler and/or
toolchain will be based on the existing
stuff, or something new. Wonder how
they will safety-certify anything in Rust
when the language itself doesn't even
have a formal spec. But, it is an
interesting development.

Is the writing on the wall for Ada?

From: Luke A. Guest
<laguest@archeia.com>
Date: Wed, 2 Feb 2022 13:04:42 +0000

I see this going one way, Ada loses out as
the Rust side uses AdaCore to get what
they want.

From: Marius Amado-Alves
<amado.alves@gmail.com>
Date: Wed, 2 Feb 2022 07:29:12 -0800

If possible please tell what Rust has to
offer over Ada. From a quick look at the
Rust book it seemed weaker in structured
programming, generic programming, type
system.

Thanks.

From: Stephen Leake
<stephen_leake@stephe-leake.org>
Date: Wed, 02 Feb 2022 08:19:37 -0800

> Is the writing on the wall for Ada?
Yes. And it says:

As long as people care about quality
software engineering, they will use Ada.

)
From: Luke A. Guest

<laguest@archeia.com>
Date: Wed, 2 Feb 2022 16:36:46 +0000

> If possible please tell what Rust has to
offer over Ada.

[...] not a lot, only the borrow checker
stuff.

From: John Mccabe
<john@mccabe.org.uk>
Date: Thu, 3 Feb 2022 15:29:17 -0800

> If possible please tell what Rust has to
offer over Ada.

A very nasty syntax, and there's an
annoying thing where it moans about
what you've called your project.

TBH that's about as far as I got with Rust;
I can't be doing with pedantic restrictions
that have no technical benefit (as far as [
can see).

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>
Date: Wed, 2 Feb 2022 10:48:44 -0800

> s the writing on the wall for Ada?

Don't worry too much, people said that
already more than 30 years ago... But
perhaps the company will rebrand itself
RustCore :-) ?

From: Paul Rubin
<no.email@nospam.invalid