

Ada User Journal Volume 43, Number 2, June 2022

ADA
USER
JOURNAL

Volume 43

Number 2

June 2022

Contents
Page

Editorial Policy for Ada User Journal 80

Editorial 81

Quarterly News Digest 82

Conference Calendar 103

Forthcoming Events 108

Articles from the AEiC 2022 Work-in-Progress Session

 S. T. Taft, S. Baird, C. Dross

“Defining a Pattern Matching Language Feature for Ada” 111

 S. T. Taft

“A Work Stealing Scheduler for Ada 2022, in Ada” 112

 J. Zou, X. Dai, J. A. McDermid

“Resilience-Aware Mixed-Criticality DAG Scheduling on Multi-cores for Autonomous Systems” 113

 I. Sousa, A. Casimiro, J. Cecílio

“Artificial Neural Networks for Real-Time Data Quality Assurance” 117

 J. Loureiro, J. Cecílio

“Deep Learning for Reliable Communication Optimization on Autonomous Vehicles” 121

 M. Solé, L. Kosmidis

“Compiler Support for an AI-oriented SIMD Extension of a Space Processor” 125

 A. Jover-Alvarez, I. Rodriguez, L. Kosmidis, D. Steenari

“Space Compression Algorithms Acceleration on Embedded Multi-core and GPU Platforms” 129

 Z. Boukili, H. N. Tran, A. Plantec

“Fine-Grained Runtime Monitoring of Real-Time Embedded Systems” 133

Ada-Europe Associate Members (National Ada Organizations) 134

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

82

Volume 43, Number 2, June 2022 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 82
Ada-related Events 82
Ada-related Resources 86
Ada-related Tools 87
Ada and Operating Systems 89
Ada Inside 90
Ada and Other Languages 90
Ada Practice 94

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

It is a recurrent topic that the several
GNAT versions with differing licensing
conditions are [not] a hindrance to Ada
adoption. Well, AdaCore has announced
that, moving forward, their open source
oriented compiler offering will be unique
and based on the FSF source tree, hence
with similar licensing as other GCC
languages [1]. Let us hope this puts to rest
the FUD of the past. No doubt, a
remarkable piece of news and a valiant
bet on the future of Ada with the backing
of a healthy open source community.

Likewise on the open source front, the
HAC compiler continues making steady
progress [2], with several versions
released in close succession, each one
bringing more Ada features into its
supported subset.

This issue has seen a livelier than usual
section on Ada and other languages. I
always find interesting the examination of
the interrelations between languages, and
how Ada fits in the past, present and
future of programming languages. Will
Ada ever regain a spot in the top-10 more
popular languages [3]? Perhaps we should
devise our own ranking using Metrics that
Really Matter™ ;-)

Sincerely,
Alejandro R. Mosteo.

[1] “A New Era for Ada/SPARK Open
Source Community”, in Ada-related
Tools.

[2] “HAC v.0.2”, in Ada-related Tools.

[3] “When Ada Was the Most Popular
Language”, in Ada and Other
Languages.

Ada-related Events

Ada Monthly Meeting
Proposal

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Subject: Ada Monthly Meeting proposal
Date: Tue, 26 Apr 2022 21:59:32 +0200
Newsgroups: comp.lang.ada

Ada Monthly meeting

A lot of programming languages and
libraries have meetings/meetups which
allow the community to come together
and have a chat, share ideas, proposals
and better utilise and prioritise resources.
I would like to propose such a thing for
Ada. Below is the rationale and some
ideas and issues.

Motivation

The Ada community does not have many
members when compared to other more-
well-known communities. However, there
is still some interest in having such type
of meetings. This was recently made clear
after some people pointed out they would
like to have such a thing in the Ada
channel over at Gitter. Personally, I have
been playing with such an idea and that is
what motivated me to volunteer to drive
the FOSDEM Ada devroom. I would like
the Ada community to be more well-
known and to have the same "resources"
as other communities have. Meetups are a
great way to have fun while discussing
what we like.

In meetups, generally speaking, users and
developers can have the opportunity to
come together, discuss topics, organise
resources and help each other. Gray-
beards can help those who still have
colour in their hair; people with different
sets of skills can propose solutions to
problems that one may not have thought
about; authors can present their work or
improvements, etc.

I would like to use the Fortran community
as an example of what meetups can be
used for. Here is their April monthly-
meetup [1]. Their meetups are very
focused on the language and "core"
tooling... it is quite formal, which may not
be what I had in mind, but we will see.

Who is this meant for?

Everybody who is interested.

I would love to see some participation of
the "Industrial users". But I understand
that a lot of people see Ada (and many
other things) as a tool that brings food to
the table, nothing more. So I would not
expect much participation from this
group.

Newbees and beginners are also more
than welcome. They could see what
people are doing and ask questions that
are better answered in real-time by a
person, instead of a Stackoverflow for
example.

Though, I must be honest, it is mostly
intended for people who are interested in
the Ada environment and open side of
things. This is due to the nature of an
open discussion and building a
community. I have to be clear and state
that I am biased towards the libre
community, so feel free to point out any
unfairness.

How would it work? What would it be
like?

THIS IS JUST A PROPOSAL, SO TAKE
THIS AS SUCH.

I thought about having a Jitsi room (libre
conference system that runs on your
browser, same one used in FOSDEM) [2]
where people can just join and take part of
the meetup. Jitsi allows for moderation
too, so that speakers can talk without
getting interrupted and it has a built in
chat too.

So, what could be discussed? Here is a
short list of ideas that I have:

- Monthly news: new releases, milestones,
etc.

- Presentations: attendees may want to
present their work or do a
demonstration. They may also want to
have a discussion about a specific topic
(for example, the use of Ada 2022
features).

mailto:amosteo@unizar.es

Ada-re lated Events 83

Ada User Journal Volume 43, Number 2, June 2022

- General libre software coordination:
improvements to tools, feedback,
questions, past goals discussion, etc.

- General Q&A related to Ada and open
to everybody.

 - Finally, a beer.

I think this could take place between 30
min to 2 hours, depending on the load of
that day. Presentations would obviously
be much more casual and easy when
compared to an actual conference.

Potential issues

 1. Not enough interest.

 2. Timezones! Users are mostly
concentrated in Asia-Pacific/EU/USA,
which makes coordination an absolute
pain. A compromise could be found, or
a different schedule each month in such
a way that everybody benefits (and gets
screwed) equally.

 3. Organisation: there needs to be a
main organiser and a second in
command-

 4. There also needs to be a medium in
which to spread the word. C.L.A is a
good starting point, but may not reach
the wider community. It could be
announced everywhere every month,
but that is a tedious task.

Feedback

I have probably said enough, even if not
everything has been said. So I would like
to ask for your feedback and specially
know if you would be interested.

Thank you for your time,
Fer

References

[1] https://invidious-us.kavin.rocks/
watch?v=8-_ll4f0gN8

[2] https://meet.jit.si/

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Wed, 27 Apr 2022 03:34:13 -0700

I would give it a try!

From: Anton F.
<imantonmeep@gmail.com>

Date: Wed, 27 Apr 2022 05:57:49 -0700

I would participate, this is a great idea!

From: Yossep Binyoum
<yossep237@gmail.com>

Date: Thu, 28 Apr 2022 13:41:03 -0700

From Senegal, I totally agree with you. I
give it a try

From: Stéphane Rivière
<stef@genesix.org>

Date: Fri, 29 Apr 2022 16:38:39 +0200

Great idea!

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 29 Apr 2022 11:29:47 -0700

> * Ada Monthly meeting

Sounds interesting. I maintain Emacs Ada
mode; this might be a good forum to get
less formal feedback than the ada-mode
mailing list provides, and to hear what
other IDEs are doing for Ada.

> 1. There also needs to be a medium in
which to spread the word. C.L.A is a
good starting point, but may not reach
the wider community. It could be
announced everywhere every month,
but that is a tedious task.

This sounds like a job for a bot; post the
same announcement to a list of channels.

Anyone have a bot written in Ada?

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Fri, 29 Apr 2022 21:04:15 -0700

> Anyone have a bot written in Ada?

I have a bot in Ada for Telegram. It is a
bridge between Telegram, Jabber, IRC
channel. It also checks whether telegram
newcomers are not bots.

I can write another one for
announcements, but I'm not sure if
announcing once a month is worth the
time :)

From: Ada Forge
<adaforge2022@gmail.com>

Date: Sat, 30 Apr 2022 06:57:40 -0700

> * Ada Monthly meeting

Nice initiative!

Take me into account ;-)

Some subjects I’d love to debate with
connoisseurs:

 * UTF8-Unicode-UCS: a lot of libraries
are offering strings manipulation. State
of the art? (Gnat extensions, GnatColl,
Matreska, Gnoga, ...)

 * OS system usage (as (system shell)
scripts, in place of Perl, Python, …):
GNAT extensions; Florist; GnatColl;
SoWebIO; ...

 * Windowing (2D) systems: future of
GTK/Glade; Qt6/Qt Design Studio;
GWindows; Apple new SwiftUI MV
paradigm; wxWidgets; Tk/TCL

 * How let anyone collaborate to
AdaForge’s new up-todate 2022 Ada
resources gathered all over the internet
;-) Through GitHub?

Cheers, with a fresh Belgian Ada 10°
William

From: Rod Kay <rodakay5@gmail.com>
Date: Sun, 1 May 2022 02:33:47 +1000

> Nice initiative!

 Agree. Count me in Fer :).

> Some subjects I’d love to debate with
connoisseurs:

If by 'OS system usage' you mean using
Ada to write shell-like scripts then you
may be interested in aShell. It builds on
Florist to allow Ada applets to more
easily call and interact with OS
commands.

The last release allowed OS commands to
be called but only from a single Ada task.
Atm, work is being done on supporting
task safe commands (via a spawn
manager).

The next release will contain the task safe
commands and be Alire enabled, and
should occur in the next month or so
(Lady Ada willing).

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 30 Apr 2022 18:01:24 +0100

> Some subjects I’d love to debate with
connoisseurs:

> * UTF8-Unicode-UCS: a lot of
libraries are offering strings
manipulation. State of the art? (Gnat
extensions, GnatColl, Matreska, Gnoga,
...)

> * Windowing (2D) systems: future of
GTK/Glade; Qt6/Qt Design Studio;
GWindows; Apple new SwiftUI MV
paradigm; wxWidgets; Tk/TCL

Oh, I suppose I'll have to attend given I
have experience with those.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Tue, 3 May 2022 21:06:21 +0200

Thank you all for your answers :)

It seems that there is some interest to have
a meeting from time to time. Other
communication channels where this
proposal was posted did have other people
who liked the idea. For this reason, I
would like to share some extra bits.

- I think the duration of such a monthly
meeting could last for an hour, an hour
and a half.

- Could take place monthly in a varying
schedule to suite some people better
than other depending on the month.

- The level of preparation is much much
lower than FOSDEM or similar venues.
This is more about building community
than actually making this a serious thing.

- The structure could be the following:

 - < 5 mins to share important news and
announcements.

 - < 30 mins reserved for already
predefined talks/topics. More on this
later.

 - < 15 min discussion topic. Maybe there
is something that needs a few words, it's
the topic of the day.

 - < 15 mins to let people share their
work or improvements.

 - The main meeting ends here.

84 Ada-re lated Events

Volume 43, Number 2, June 2022 Ada User Journal

 - Open questions and answers and
general discussion/beer.

- The main section of the meeting
(without Q&A and open discussion)
could be recorded and uploaded to video
hosting sites. I know a few people
already reupload the videos from
FOSDEM, so I could as them to do the
same for us. This would allow us to keep
a log of the meetings:)

- We could use Jitsi, a libre conference
software. I know it has recording
capabilities, but I think only for
Youtube... :/ We will see whether Jitsi
actually works or not...

If this works, I think we could start
inviting people to share their work and
reserve time for their presentations. That
is what the second section of the proposed
schedule is about. At the beginning,
obviously, we will focus on making sure
that the meetings work and see if there is
enough recurring interest in them.

Regarding the actual planning. I will not
make it for the month of May unless
someone steps and helps a fair bit. On a
personal note, I have a lot of work and it
will just keep increasing so I cannot
ensure that I will be able to pull
something like this alone. FOSDEM was
already a bit exhausting :P

I also want to see what you have to offer
both in direct help or if you have projects
that you want to talk about, presentations,
etc. Some of you already commented on
it, so I am happy.

What is your opinion about this? I would
need feedback :)

Also, please, feel free to repost this to
other social media. The more Ada users
and people interested in Ada the better! If
you want a contact, feel free to email me
at "irvise(AT)irvise.xyz".

Bye now :D
Fer

CFP: ACM SIGAda HILT
2022 Workshop at ASE '22,
October 14, 2022

From: Tucker Taft
<tucker.taft@gmail.com>

Subject: CFP: ACM SIGAda HILT 2022
Workshop at ASE '22, October 14, 2022

Date: Thu, 12 May 2022 18:30:15 -0700
Newsgroups: comp.lang.ada

Please consider contributing to this
workshop sponsored by ACM SIGAda:
HILT-2022 - Supporting a Rigorous
Approach to Software Development

This is the seventh in the HILT series of
conferences and workshops focused on
the use of High Integrity Language
Technology to address challenging issues
in the engineering of highly complex
critical software systems.

High Integrity Language Technologies
have been tackling the challenges of
building efficient, safe, reliable software
for decades. Critical software as a domain
is quickly expanding beyond embedded
real-time control applications to the
increasing reliance on complex software
for the basic functioning of businesses,
governments, and society in general.

For its 2022 edition, HILT will be a
workshop of the 37th IEEE/ACM
International Conference on Automated
Software Engineering, ASE’2022. The
workshop will be held on October 14th
2022.

See ASE’2022 (https://conf.researchr.org/
home/ase-2022) for details on the venue
and registration.

Topics

HILT 2022 will focus on the increasing
synergies between formal methods
(theorem provers, SAT, SMT, etc.),
advanced static analysis (model checking,
abstract interpretation), software design
and modeling, and safety-oriented
languages. From separate fields of
research, we now observe a stronger
interconnection between formal methods,
advanced analytics, modeling and design
of software, and safety features in
programming languages. Programming
languages for safety-critical systems now
routinely integrate theorem proving
capabilities like C/ACSL or
Ada/SPARK2014. Theorem provers such
as Coq, Lean, or Isabelle have established
themselves as a viable strategy to
implement compilers or properly define
the semantics of domain-specific
languages. Tools for verifying modeling
languages such as AADL, Lustre, and
Simulink are becoming more widely
available, and with the emergence of the
Rust language and the release of Ada
2022, safety is rising to the top of
concerns for critical systems developers.

The HILT’2022 workshop seeks to
explore ways High Integrity Language
Technologies leverage recent advances in
practical formal methods and language
design to deliver the next generation of
safety-critical systems.

Call for Papers

This workshop is focused on the practical
use of High Integrity languages,
technologies, and methodologies that
enable expedited design and development
of software-intensive systems.

Key areas of interest include experience
and research into:

 Practical use of formal methods at
industrial scale

 IDE-support for formal methods

 Model-level analysis tools for systems
like SysML, AADL, Lustre, or Simulink

 Continuous Integration and Deployment
based on advanced static analysis tools

 Safety-Oriented Programming Language
features *Qualification of Language
Tools for critical systems use

The workshop accepts either short
abstracts (2-3 pages) for presentation, or
full papers (up to 8 pages).

Submissions should conform, at time of
submission, to the ACM Proceedings
Template:
https://www.acm.org/publications/
proceedings-template.

The workshop proceedings will be
published in the ACM Ada Letters.
Authors of accepted papers will be invited
to contribute to a special issue of the
Springer Journal on Software and Tools
for Technology Transfer (STTT).

Paper submission

Submit your paper through Easychair at
https://easychair.org/conferences/
?conf=hilt22

Important Dates

 Submission Deadline: July, 1 2022

 Notification to authors: August, 1 2022

 Workshop Date: October 14th 2022.

From: Tucker Taft
<tucker.taft@gmail.com>

Date: Thu, 12 May 2022 18:34:51 -0700

> Please consider contributing to this
workshop sponsored by ACM SIGAda:
HILT-2022 - Supporting a Rigorous
Approach to Software Development

Website is:
https://conf.researchr.org/home/hilt-2022

Press Release - AEiC 2022,
Ada-Europe Reliable Softw.
Technol.

[The event took place during 14-17 June,
so this announcement is for the record.
—arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Press Release - AEiC 2022, Ada-
Europe Reliable Softw. Technol.

Date: Sun, 12 Jun 2022 20:59:37 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

FINAL Call for Participation

***UPDATED Program Summary ***

26th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2022)

14-17 June 2022, Ghent, Belgium

www.ada-europe.org/conference2022

Ada-re lated Events 85

Ada User Journal Volume 43, Number 2, June 2022

Organized by Ada-Europe in cooperation
with ACM SIGAda, SIGPLAN, SIGBED,

the Ada Resource Association (ARA),
and Ghent University

#AEiC2022 #AdaEurope
#AdaProgramming

*** Final Program available on the
conference web site ***

*** Add tutorials and/or a workshop to
your conference registration ***

www.ada-europe.org/conference2022/
tutorials.html

* Welcome Event on Tuesday evening *

Press release:

26th Ada-Europe Int'l Conference on
Reliable Software Technologies.

International experts meet in Ghent.

Ghent, Belgium (12 June 2022) - Ada-
Europe together with the University of
Ghent, Belgium, organizes from 14 to 17
June 2022 the 26th Ada-Europe
International Conference on Reliable
Software Technologies (AEiC 2022). The
event is in cooperation with the Ada
Resource Association (ARA), and with
ACM's Special Interest Groups on Ada
(SIGAda), on Embedded Systems
(SIGBED) and on Programming
Languages (SIGPLAN).

The Ada-Europe series of conferences has
over the years become a leading
international forum for providers,
practitioners and researchers in reliable
software technologies. These events
highlight the increased relevance of Ada
in general and in safety- and security-
critical systems in particular, and provide
a unique opportunity for interaction and
collaboration between academics and
industrial practitioners.

This year's conference offers 4 tutorials, a
keynote and an invited presentation, a
technical program of 7 sessions with
refereed papers industrial, work-in-
progress, and vendor presentations, a
social program with exciting sightseeing,
2 workshops and a Birds-of-a-Feather
session.

Four tutorials are scheduled on Tuesday,
targeting different audiences:

- "Moving up to Ada 2022", by S. Tucker
Taft, AdaCore, USA;

- "Numerics for the non-numerical
analyst", by Jean-Pierre Rosen, Adalog,
France;

- "The ALiRe Package Manager", by
Fabien Chouteau, France, and Alejandro
Mosteo, Spain;

- "The HAC Ada Compiler", by Gautier
de Montmollin, Switzerland.

Vendors and organisations will be present
in the networking area on Wednesday and
Thursday include AdaCore, VECTOR,
and Ada-Europe.

Two eminent speakers have been invited
to deliver a talk on each of the core
conference days:

- on Wed Jun 15, a spotlight talk (remote)
by Anita Carleton, Software Engineering
Institute, Carnegie Mellon University,
USA, about "Envisioning the Future of
Software Engineering";

- on Thu June 16, a keynote talk by
Cristina (Crista) Lopes, School of
Computer Sciences, University of
California at Irvine, USA, who will
present her study on "The Curious Case
of Code Duplication in Github".

The technical program on Wednesday and
Thursday presents 7 sessions with 9
journal-track refereed technical papers, 9
industrial, 12 work-in-progress, and 2
vendor presentations in sessions on: Uses
of Ada, Real-Time Systems 1,
Development Challenges, Advanced
Systems, Special-Purpose Systems,
Verification Challenges, Real-Time
Systems 2.

On Friday the conference hosts for the 7th
year the workshop on "Challenges and
new Approaches for Dependable and
Cyber-Physical Systems Engineering"
(DeCPS 2022), as well as the
International Workshop "AADL Unveiled
by its Practitioners (ADEPT), and a
Birds-of-a-feather (BoF) Meeting on the
"Future of ASIS and Vendor Independent
Tools".

Peer-reviewed papers have been
submitted to a special issue of the Journal
of Systems Architecture and are heading
towards final acceptance as open-access
publications. Industrial and work-in-
progress presentations, together with
tutorial abstracts, will be offered
publication in the Ada User Journal, the
quarterly magazine of Ada-Europe.

The social program includes for all
tutorial and conference participants on
Tuesday evening a Welcome Aperitif
with beer tasting (sponsored by
VECTOR) in the "Il Trovatore" lounge, a
restored medieval cellar. On Wednesday
evening, a private visit to the Gothic-style
St Bavo's Cathedral and its artistic
treasures including the world-famous Lam
Gods altarpiece, followed by the
Conference Banquet in the Abt, the only
brasserie from the famous Orval Trappist
beer brewery. And on Thursday evening a
boat tour in the canals that encircle the
medieval center of Ghent, followed by a
conference dinner at the Carlos Quinto
restaurant, a short walk across the heart of
town from the boat pier.

The Best Presentation Award will be
offered during the Closing session.

The full program is available on the
conference web site.

Online registration is still possible.

Latest updates:

The 16-page "Final Program" is available
at www.ada-europe.org/conference2022/
docs/AEiC_2022_Final_Program.pdf.

Check out the tutorials in the PDF
program, or in the schedule at
www.ada-europe.org/conference2022/
tutorials.html.

Registration is done on-line. For all
details, select "Registration" at www.ada-
europe.org/conference2022 or go directly
to https://registration.ada-europe.org.

A printed Conference Booklet with
abstracts of all technical papers

and industrial presentations will be
included in every conference

handout, and is available at
www.ada-europe.org/conference2022/
docs/AEiC_2022_Booklet_of_
Presentations.pdf.

AEiC 2022 is sponsored by Ada-Europe
(www.ada-europe.org), AdaCore
(www.adacore.com), and VECTOR
(www.vector.com/int/en/products/
products-a-z/software/vectorcast).

Help promote the conference by
advertising it.

Recommended Twitter hashtags:
#AEiC2022 #AdaEurope
#AdaProgramming.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2022 Publicity
Chair

Dirk.Craeynest@cs.kuleuven.be

* 26th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2022)

* June 14-17, 2022, Ghent, Belgium *
www.ada-europe.org/conference2022

(V6.1)

Ada/SPARK Crate of the
Year 2022

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Subject: Ada/SPARK Crate Of The Year is
back!

Date: Tue, 28 Jun 2022 05:55:20 -0700
Newsgroups: comp.lang.ada

https://blog.adacore.com/announcing-the-
2022-ada-spark-crate-of-the-year-award

[AdaCore offers 3 prizes of $2,000 each
for the following categories: best overall

http://www.ada-europe.org/

86 Ada-re lated Resources

Volume 43, Number 2, June 2022 Ada User Journal

Ada crate, best crate written in SPARK
and/or contributing to the SPARK
ecosystem, and best Ada or SPARK crate
for embedded software. Candidates can be
submitted until the end of the year.
—arm]

Ada-related Resources

[Delta counts are from May 9th to July
18th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 18 Jul 2022 14:53 CET
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 3_328 (+26) members [1]

- Reddit: 8_078 (+73) members [2]

- Stack Overflow:
 2_238 (+26) questions [3]

- Libera.Chat: 75 (=) concurrent users [4]

- Gitter: 123 (+8) people [5]

- Telegram: 143 (+4) users [6]

- Twitter: 30 (=) tweeters [7]

 75 (+22) unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: 18 Jul 2021 15:16 CET
To: Ada User Journal readership

Rosetta Code: 915 (+15) examples [1]

 39 (+1) developers [2]

GitHub: 763* (=) developers [3]

Sourceforge: 244 (-30) projects [4]

Open Hub: 214 (=) projects [5]

Alire: 260 (+17) crates [6]

Bitbucket: 87 (-1) repositories [7]

Codelabs: 53 (=) repositories [8]

AdaForge: 8 (=) repositories [9]

*This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: 18 Jul 2021 15:51 +0100
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 30 (-3) 0.38%
 (-0.08%) [1]

- PYPL Index: 17 (=) 0.86% (+0.05%) [2]

- IEEE Spectrum (general): 31 (=)
 Score: 38.8 (=) [3]

- IEEE Spectrum (embedded): 9 (=)
 Score: 38.8 (=) [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/
top-programming-languages/

Source-code Hosting with
Ada Build Tools?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Subject: Source-code hosting with Ada build
tools?

Date: Fri, 25 Mar 2022 18:56:56 +0200
Newsgroups: comp.lang.ada

I'm planning to move a biggish Ada
project from being hosted on my own
website to some hosting service, such as
GitHub or OSDN. Are there any such
services that, in addition to a source-code
repository, bug reporting, etc., also offer
access to Ada compilers (that is, gnat) for
building the SW, ideally on several
platforms?

At the moment, my main candidate is
OSDN, but they explicitly do not provide
any compilers.

TIA for any suggestions, whether with
build tools or without.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 25 Mar 2022 21:00:58 +0000

Github Actions do this; though I've never
set them up for myself.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 26 Mar 2022 21:15:16 +0200

> Github Actions do this; though I've
never set them up for myself.

Are you sure that they provide Ada
compilers that can be called in an Action?

I tried to find out on the GitHub website,
but could not find any list of all the
supported languages, and the specific
languages they mentioned did not include
Ada, and the Search function found
nothing about Ada compilation.

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 25 Mar 2022 21:01:31 +0000

> Github Actions do this; though I've
never set them up for myself.

AdaCore has one for GNAT.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 26 Mar 2022 21:04:13 +0000

> Are you sure that they provide Ada
compilers that can be called in an
Action?

https://github.com/marketplace/actions/
ada-actions-toolchain

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 26 Mar 2022 23:46:26 +0200

> https://github.com/marketplace/actions/
ada-actions-toolchain

Thanks! Looks like GitHub will be my
choice, although I am usually a bit
Microsoft-allergic.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 27 Mar 2022 16:59:47 +0100

> Thanks! Looks like GitHub will be my
choice, although I am usually a bit
Microsoft-allergic.

Aren't we all?

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue, 29 Mar 2022 21:38:09 +0300

I have my Ahven library and other things
at Sourcehut.org:
https://hg.sr.ht/~tkoskine/ahven/

They offer generic build service also. For
example see one build log from Ahven:
https://builds.sr.ht/~tkoskine/job/675294

Ada-re lated Tools 87

Ada User Journal Volume 43, Number 2, June 2022

The build configurations are Yaml files:
https://hg.sr.ht/~tkoskine/ahven/browse/
.builds?rev=tip

Of course, the software on the build
service is limited to open source operating
systems and compilers (Linux, *BSDs,
GNAT).

Commercial Ada compilers (like
ObjectAda or Janus/Ada) are not
supported.

For commercial Ada compilers, I run
internal homelab network with Jenkins
master on RPi4 and couple of Windows
build slaves, which fetch the source code
from Sourcehut periodically.

And before starting to use Sourcehut, read
the caveats page:
https://sourcehut.org/alpha-details/

I also think that Sourcehut doesn't support
hosting of "random" binaries, like hand-
crafted release tar balls. These kinds of
things I locate on a separate virtual server.

Ada-related Tools

HAC v.0.0996

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Ann: HAC v.0.0996
Date: Sat, 22 Jan 2022 01:41:09 -0800
Newsgroups: comp.lang.ada

HAC (HAC Ada Compiler) is a small,
quick, open-source Ada compiler,
covering a subset of the Ada language.
HAC is itself fully programmed in Ada.

Web site: http://hacadacompiler.sf.net/

Source repositories:

#1 svn: https://sf.net/p/hacadacompiler/
code/HEAD/tree/trunk/

#2 git: https://github.com/zertovitch/hac

* Main improvements since v.0.095:

 - range checks on discrete subtype
assignment (:=) and conversion

 - short-circuit logical operators: "and
then", "or else"

 - for S = Scalar subtype: S'First, S'Last,
S'Succ, S'Pred, S'Pos, S'Val, S'Image,
S'Value, S'Range attributes

 - for A = array object or array subtype:
A'First [(N)], A'Last [(N)], A'Range
[(N)], A'Length [(N)] attributes

 - "&", "<", ">", "=", "/=" operators
defined for the String type (additionally
to HAL.VString type)

 - CASE choices admit ranges

 - forward declarations for subprograms

Enjoy!

PS: for Windows there is an integrated
editor that embeds HAC: LEA:
http://l-e-a.sf.net

HAC v.0.1

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Ann: HAC v.0.1
Date: Sat, 14 May 2022 05:35:55 -0700
Newsgroups: comp.lang.ada

[Omitted common info to previous HAC
announcements. —arm]

* Main improvements since v.0.0996:

 - packages and subpackages are now
supported

 - modularity: packages and subprograms
can be standalone library units, stored in
individual files with GNAT's naming
convention, and accessed from other
units via the WITH clause

 - validity checks were added for a better
detection of uninitialized variables.

Package examples and modularity tests
have been added. Particularly, a new PDF
producer package with a few demos is
located in the ./exm/pdf directory.

Enjoy!
Gautier

PS: for Windows, there is an integrated
editor that embeds HAC:

LEA: http://l-e-a.sf.net

PPS: HAC will be shown at the Ada-
Europe conference (presentation +
tutorial)

http://www.ada-europe.org/
conference2022/

From: Doctor Who <doc@tardis.org>
Date: Sat, 14 May 2022 18:05:55 +0200

Which subset of the Ada language is
covered?

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sat, 14 May 2022 22:24:04 -0700

> which subset of the Ada language is
covered?

Quoting from ./doc/hac.txt (section
"Language subset"):

"The available Ada language subset
supported by HAC is so far, roughly, the
"Pascal subset", plus tasking, plus
packages, less pointers. From a different
perspective, HAC supports Ada 83, less
pointers, less generics, less unconstrained
types, plus a few items from Ada 95 and
2005. Recursion and nested subprograms
are supported."

and: "Tasks are implemented, but not
working yet."

From: Leo Brewin
<leo.brewin@monash.edu>

Date: Sun, 15 May 2022 10:14:41 +1000

I just tested this on macOS Monterey
12.3.1 and it works perfectly out of the
box (as expected for Ada code :).

Great work Gautier!

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Sun, 15 May 2022 02:39:36 +0100

> I just tested this on macOS Monterey
12.3.1 and it works perfectly out of the
box (as expected for Ada code :)

You beat me to it by an hour!

> Great work Gautier!

Ditto.

HAC v.0.2

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Ann: HAC v.0.2
Date: Sat, 25 Jun 2022 00:43:14 -0700
Newsgroups: comp.lang.ada

[Omitted common info to previous HAC
announcements. —arm]

* Main improvements since v.0.1:

 - a program run by HAC can exchange
data with the program running HAC,
through dynamically registered call-backs

 - see package HAC_Sys.Interfacing
 and demos:
 src/apps/exchange_native_side.adb
 src/apps/exchange_hac_side.adb

 - the compiler checks that all choices in
a CASE statement are covered

 - the compiler performs more compile-
time range checks and optimizes away
useless run-time checks when it's safe to
do so.

AdaStudio-2022 Rel.
12/04/2022 Free Edition

From: Leonid Dulman
<leonid.dulman@gmail.com>

Subject: Announce: AdaStudio-2022 release
12/04/2022 free edition

Date: Wed, 13 Apr 2022 01:19:51 -0700
Newsgroups: comp.lang.ada

I'm pleased to announce AdaStudio-2022.

It’s based on Qt-6.3.0-everywher
opensource (expanded with modules from
Qt-5.15: qtgraphicaleffects qtgamepad
qtspeech qtx11extras qtwinextras), VTK-
9.1.0, FFMPEG-5.1, OpenCV-4.5.5,
SDL2-2.0.20, MDK-SDK (wang-bin)
Qt6ada version 6.3.0 open source and
qt6base.dll, qt6ext.dll (win64),
libqt6base.so, libqt6txt.so (x86-64) built
with Microsoft Visual Studio 201 x64
Windows, gcc amd64 in Linux. Package
tested with GNAT gpl 2020 Ada compiler
in Windows 64bit, Linux amd64 Debian
11.1 AdaStudio-2022 includes next
modules: qt6ada, vtkada, qt6mdkada,
qt6cvada (with face recognition) and
voice recognizer.

Qt6Ada is built under GNU LGPLv3
license

88 Ada-re lated Tools

Volume 43, Number 2, June 2022 Ada User Journal

https://www.gnu.org/licenses/
lgpl-3.0.html.

Qt6Ada modules for Windows, Linux
(Unix) are available from Google drive
https://drive.google.com/drive/folders/
0B2QuZLoe-yiPbmNQRl83M1dTRVE?
resourcekey=0-b-M35gZhynB6-
LOQww33Tg&usp=sharing

WebPage is
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/index.html

[List of detailed files omitted. —arm]

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.pdf"

The simple manual how to build Qt6Ada
application can be read in "How to use
Qt6ada.pdf"

If you have any problems or questions, let
me know.

Leonid (leonid.dulman@gmail.com)

Generic Image Decoder v.10

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Ann: Generic Image Decoder v.10
Date: Sun, 17 Apr 2022 03:26:25 -0700
Newsgroups: comp.lang.ada

There is a new release of GID - the
Generic Image Decoder.

Home page: http://gen-img-dec.sf.net/

Project page #1:
http://sf.net/projects/gen-img-dec/

Project page #2:
https://github.com/zertovitch/gid

New in V.10

* Added a decoder for the QOI (Quite OK
Image) format

* Added an "all RGB" demo

About GID

The Generic Image Decoder (GID) is an
Ada package for decoding a broad variety
of image formats, from any data stream,
to any kind of medium, be it an in-
memory bitmap, a GUI object, some other
stream, arrays of floating-point initial data
for scientific calculations, a browser
element, a device...

Animations are supported.

Features

* Standalone (no dependency on other
libraries, bindings...)

* Unconditionally portable code: OS-,
CPU-, compiler- independent code.

* Multi-platform, but native code built

* Task safe

* Endian-neutral

* Use of generics and inlining at multiple
nesting levels for fast execution

* Free, open-source

Currently supported formats are: BMP,
GIF, JPEG, PNG, PNM (PBM, PGM,
PPM), QOI, TGA.

SparForte 2.5

From: Ken Burtch <koburtch@gmail.com>
Subject: ANN: SparForte 2.5
Date: Wed, 27 Apr 2022 06:00:12 -0700
Newsgroups: comp.lang.ada

SparForte is my Ada-based shell,
scripting language and template engine.

Version 2.5 is available from
www.sparforte.com.

Changes since 2.4:

 New features/examples: 23

 Changes: 8

 Fixes: 26

Known Issues:

 On Raspian Bullseye, the calendar
package has rounding errors. Possibly
due to increased precision of time values
in the kernel.

 On FreeBSD 13, "environment corrupt"
errors are being reported when the spar
command runs another spar command.
Possibly due to out-of-data GCC Ada
for FreeBSD.

 Tab completion does not work
correctly on directory names containing
spaces.

Change Log can be viewed here:
https://www.sparforte.com/news/2022/
news_apr2022.html

A summary of new features can be
viewed here:
https://www.pegasoft.ca/coder/
coder_january_2022.html

SparForte is my hobby and is built with
the support of volunteers. It is open
source and is about 123,000 lines of code.
It has been in development since 2001.

GCC 12.1.0

From: Simon Wright
<simon@pushface.org>

Subject: ANN: GCC 12.1.0
Date: Wed, 11 May 2022 17:58:26 +0100
Newsgroups: comp.lang.ada

Find GCC 12.1.0 & tools for Intel silicon
(will run on M1 silicon under Rosetta) at
https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.1.0-x86_64

Built on High Sierra with Python 3.8
(because Apple have withdrawn 2.7 in
Monterey).

GCC 12.1.0 for Apple
Silicon (aarch64)

From: Simon Wright
<simon@pushface.org>

Subject: [ANN] GCC 12.1.0 for Apple
silicon (aarch64)

Date: Fri, 27 May 2022 14:05:19 +0100
Newsgroups: comp.lang.ada

Find at
https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.1.0-aarch64-1

SweetAda 0.10

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: ANN: SweetAda 0.10
Date: Thu, 12 May 2022 14:54:29 -0700
Newsgroups: comp.lang.ada

I've just released SweetAda 0.10.

SweetAda is a lightweight development
framework to create Ada systems on a
wide range of machines. Please refer to
https://www.sweetada.org.

Release notes @
https://www.sweetada.org/
release_notes.html.

Downloads available @
https://sourceforge.net/projects/sweetada.

This release comes with a huge cleanup of
the whole system, with many changes in
all areas. The build system seems pretty
efficient and stable, with no redundant
actions, and is able to accommodate a
large set of configuration.

The profile agrees with Ravenscar, and all
platforms tested run OK, albeit many of
them in a very simple manner. Interrupt
handling is for some CPUs still only a
placeholder, but many of them are able to
handle at least a simple timer in order to
have a raw notion of time.

There is a Monitor module (very
exemplary) to do user interaction and the
Srecord module that could be used as a
built-in tool to execute fragments of code.
The Time module should provide basic
capabilities in order to manipulate a
datetime.

Many other changes, large cosmetic
refinements and an improved
documentation. Syntax changes to adhere
Ada 2012/202x and some generics
removed from I/O layers to simplify the
code and gain speed.

With SweetAda 0.10, I also provide new
toolchains based on GCC 11.3.0 (release-
20220429), you can find them at
SweetAda home or at SourceForge.
QEMU emulators are bumped to 7.0.0
(release-20220504).

Ada and Operat ing Systems 89

Ada User Journal Volume 43, Number 2, June 2022

Unfortunately, I can no longer provide OS
X toolchains due to increasing difficulties
in building the software (GCC and LLVM
disagree on the syntax of some CPU
instructions), and lack of time, sorry. But
this shouldn't be a problem since
SweetAda should be toolchain-agnostic.

Simple Components v4.62

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components v4.62
Date: Sat, 21 May 2022 12:03:59 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- Pipe stream implementation added;

- GNAT 12.1 bugs worked around in
several package, in particular, in
GNAT.Sockets.Server;

- Bug fix in Generic_Set procedure
Replace, parameter Updated unset;

- Bug fix in Tables.UTF8_Names
procedure Replace, parameter Offset
unset under circumstances.

PragmAda Reusable
Components

From: Pragmada Software Engineering
<pragmada@
pragmada.x10hosting.com>

Subject: [Reminder] The PragmAda
Reusable Components

Date: Wed, 1 Jun 2022 12:23:50 +0200
Newsgroups: comp.lang.ada

The PragmARCs are a library of (mostly)
useful Ada reusable components provided
as source code under the GMGPL or BSD
3-Clause license at
https://github.com/jrcarter/PragmARC.

This reminder will be posted about every
six months so that newcomers become
aware of the PragmARCs. I presume that
those who want notification when the
PragmARCs are updated have used
Github's notification mechanism to
receive them, so I no longer post update
announcements. Anyone who wants to

receive notifications without using
Github's mechanism should contact me
directly.

A New Era for Ada/SPARK
Open Source Community

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Subject: AdaCore Blog: A New Era For
Ada/SPARK Open Source Community

Date: Mon, 6 Jun 2022 01:56:27 -0700
Newsgroups: comp.lang.ada

I am sharing this here for people who
might not have seen it yet:

https://blog.adacore.com/a-new-era-for-
ada-spark-open-source-community

[The blog post announces the relicensing
of several AdaCore libraries as Apache
2.0 and the discontinuation of the
Community Edition in favor of the FSF
branch distributed through Alire. —arm]

I will be at the Ada-Europe conference
next week if someone wants to talk live
about these announcements.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 06 Jun 2022 09:03:25 -0700

Thanks for posting this.

I hope this will reduce the differences
among the GNAT versions available in
the various OS releases; they've been
causing headaches for Emacs ada-mode.
But probably not.

Alire 1.2.0

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Subject: [ANN] Alire 1.2.0
Date: Mon, 6 Jun 2022 01:57:09 -0700
Newsgroups: comp.lang.ada

The new release is here:
https://github.com/alire-project/alire/
releases/tag/v1.2.0

Adalog Components

From: J-P. Rosen <rosen@adalog.fr>
Subject: [Ann] Adalog components
Date: Mon, 27 Jun 2022 18:23:18 +0200
Newsgroups: comp.lang.ada

I have added a new component to ease
processing of CSV files. Moreover, I have
renamed package Debug to Tracer, there
were too many packages called Debug
around!

More details from Adalog's components
page:

https://adalog.fr/en/components.html

Ada and Operating
Systems

Building GNAT-FSF on
FreeBSD

From: William <william@sterna.io>
Subject: Building GNAT-FSF on FreeBSD
Date: Sat, 12 Feb 2022 21:09:54 +0100
Newsgroups: comp.lang.ada

I did succeed to build a modern gcc (with
Ada-GNAT FSF) on my FreeBSD 13.0
serveur. :-)

Fernando Oleo Blanco was very inspiring
to me (NetBSD porting), and I use
Simon J. Wright portings to macOS for
my Hackingtosh.

So I decided to do it too!

For now I did a quick try with plain gcc
«out of the box»: (story short)

1. Install gcc6-aux pkg from FreeBSD
port (2014 -- Last Updated on 2022-01-
26). (see also
http://www.dragonlace.net)

2. get gcc 10.3 src from GNU.org and
compile it with gcc6-aux (gnat
compiler seems OK)

3. get gcc 11.2 src from GNU.org and
compile it with the just installed
gcc/gnat 10.3

In the first place I thought it would not be
successful ...

Now it's time to build) and run the
ACATS 4.1y

I took a look at Simon’s ACATS
Testsuite on SourceForge, but I need to
understand those automated scripts.

I’d like to parallelise a maximum of
ACATS sub-projects in order to reduce
time.

WIP!!

See you later, William

From: Simon Wright
<simon@pushface.org>

Date: Mon, 14 Feb 2022 09:52:31 +0000

The section "Testing in GCC" in the
README tells how to run the tests
within the GCC framework that allows
parallel running. Note, you'll probably
have to hammer C-c to abort a parallel
run, the script doesn't respond well to that.

I would have liked to get parallelising
working, but those scripts! eww!

From: Simon Wright
<simon@pushface.org>

Date: Mon, 14 Feb 2022 11:45:05 +0000!

See this thread:
 https://gcc.gnu.org/
pipermail/gcc/2018-July/226729.html

90 Ada and Other Languages

Volume 43, Number 2, June 2022 Ada User Journal

[This thread discusses how to interrupt
Ada tests, as Ctrl-C fails sometimes.
–arm]

I'm not sure, but I think that GCC/Ada
folk regard the ACATS (2.6, I think) in
GCC as more of a confidence thing (DEC
used to call it an IVP, Installation
Verification Procedure) than a full check.

[...]

Ada Inside

Controlling ST7789 Screen
on a RPi Pico

From: Björn Lundin
<b.f.lundin@gmail.com>

Subject: Controlling st7789 screen from
Ada on a rpi Pico?

Date: Tue, 15 Feb 2022 22:18:44 +0100
Newsgroups: comp.lang.ada

So, I got my first Raspberry Pico :-)

I also got a 'Pico Explorer Base' device at
https://shop.pimoroni.com/products/
pico-explorer-base

This thing has a st7789 screen. I got it to
work with Python.

Now - I see that there is work done with
the Pico and Ada - the
https://pico-doc.synack.me seems to be a
good place to start.

I wonder if there is any port done already
for this screen in Ada? Google points me
to some python and some c/c++
implementations (whereof Pimoroni's
Github has some)

I also came across uGUI
http://embeddedlightning.com/ugui/
which looks interesting. Same question
there. Ada-port?

I hesitate to start translating one of the c-
libraries - butI probably will when time
permits if nothing is already in place.

From: jer...@synack.me
<jeremy@synack.me>

Date: Tue, 15 Feb 2022 18:03:26 -0800

The Pimoroni Picosystem uses a ST7789
screen, I have a driver for it in
picosystem_bsp:
https://github.com/JeremyGrosser/
picosystem_bsp/tree/master/src

I didn't implement every feature or video
mode that the controller supports, so you
may need to modify it to suit your needs.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Wed, 16 Feb 2022 08:19:07 +0100

Perfect - just what I was looking for -
thanks.

And thanks for the effort of bringing Ada
to the Pico

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Fri, 18 Feb 2022 01:31:20 -0800

> I also came across uGUI
<http://embeddedlightning.com/ugui/>
which looks interesting

I have an Ada binding [1] for the
excellent lvgl GUI library [2]. You can
get it from Alire: [3].

It is not in a very beginner friendly shape,
but it works. I am trying to do a new
version that should be easier to integrate
into existing projects.

Don't hesitate to say hello on the Ada
Gitter chat if you want a little help setting
it up.

[1] https://github.com/
Fabien-Chouteau/lvgl-ada

[2] https://github.com/lvgl/lvgl

[3] https://alire.ada.dev/crates/
lvgl_ada.html

Ada in James Webb Space
Telescope? (Cont.)

[Refer to AUJ 43-1: Ada in James Webb
Space Telescope? —arm]

From: 姚飞 <yaofei509@gmail.com>
Subject: Re: is Ada used in James Webb

Space Telescope software?
Date: Sat, 23 Apr 2022 02:17:05 -0700
Newsgroups: comp.lang.ada

> Interesting. I hadn't heard of the
MA31750 but it appears to be a 16 bit
processor that implements the MIL-
STD-1750A instruction set(!), which I
didn't know about either. Apparently it
was made in the 1980s but has since
been superseded by SPARC
architecture cpu's.

MAS31750 + XGC M1750-Ada is a very
wonderful combination, we use them for
several large satellites, and they are
working in orbit now.

Ada and Other
Languages

Comparing Languages wrt
Energy, Speed, and Memory
Use

From: Jerry <list_email@icloud.com>
Subject: Comparing languages wrt energy,

speed, and memory use
Date: Sun, 20 Feb 2022 14:59:29 -0800
Newsgroups: comp.lang.ada

This paper comparing 27 languages with
respect to energy use, speed, and memory
use is interesting. Of course Ada fares
very well.

https://greenlab.di.uminho.pt/
wp-content/uploads/2017/10/sleFinal.pdf

It is linked from this Slashdot page which
I'm sure is full of useless chatter.

https://developers.slashdot.org/story/22/
02/20/0143226/is-it-more-energy-
efficient-to-program-in-rust

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Tue, 22 Feb 2022 21:10:15 +0100

I am going to leave a few comments
regarding this paper that I believe
everybody should know. Most if not all of
these points are known and have been
discussed pretty much everywhere; but a
lot of people still don't know them or
decide to not know.

The programs are taken from the
Programming Language Benchmark
Game. It is a really cool place that has
been providing relevant performance data
for a lot of languages and comparisons
between them.

Here are a few issues:

1. Quite a few languages are not using
heavily optimised code. Ada is one of
them. Some of those programs are
written as direct translations from other
languages from people that did not know
the target language.

2. Quite a few of those implementations
have not been touched in years. Some of
the improvements that may have taken
place in the language/compiler/tools
may not be taken advantage of. For
example, the Ada examples are
compiled with -gnatNp. Can anybody
say what that flag does? x)

3. C/C++/Rust programs are competing
on getting the best results. Other
languages are lagging behind. For
example, Fortran could do much better.
For a couple of years, the Fortran
community has been improving the code
little by little and they have managed to
improve their results.

4. There are a few controversies. Some
languages are not allowed to use higher
performance libraries while others are
allowed their stl or equivalent that do
actually use the same tools as those
libraries. There are a few other
examples.

As the very Game page says, do not take
the benchmark seriously. But the
communities whose languages are on top,
they do not care. Ada has been left behind
since very few or nobody is actually
taking a look at the code and optimising
it...

We may want to improve some of these
tests as a community :)

Here are some relevant links:

- Benchmark game:
https://benchmarksgame-
team.pages.debian.net/benchmarksgame/

Ada and Other Languages 91

Ada User Journal Volume 43, Number 2, June 2022

- Source code: https://salsa.debian.org/
benchmarksgame-team/
benchmarksgame

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 22 Feb 2022 21:49:25 +0100

> [good remarks snipped]

Let me add another one: this benchmark
does not consider the energy (electrical
and human) needed to write and debug
the program... That could also make a
difference for Ada!

Real ecological balance, taking
everything into account, is tricky...

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Thu, 24 Feb 2022 08:42:40 +0100

> Here are a few issues:

One issue is Isaac Gouy's clever
approach. (Not complaining. I sometimes
didn't see the point, though, of adopting
another new thing. For example, when a
new regex library was introduced (at
some point) that wins hands down by
using optimization techniques you'd
associate with JIT compilers or with data
based optimization. Worth knowing
about, but how does it help comparing
languages when all you can do is link it to
your program?)

> 1. Quite a few languages are not using
heavily optimised code

Can you be specific? For example, at least
one program currently leads by making
extensive use of x86 intrinsic ops.

Some use OMP with intrinsic 128bit ops.
Does GNAT have a similar parallel loop
in the language yet?

 > 2. Quite a few of those
implementations have not been touched
in years.

Yet, some Ada program versions #N+m
used to run faster than #N. They now
have their speed difference wiped out or
even reversed... I see -march=ivybridge
now, so the hardware has likely changed.

> For example, the Ada examples are
compiled with -gnatNp. Can anybody
say what that flag does? x)

GNAT User's Guide explains. (su-p-press
and front end i-N-lining)

> 3. C/C++/Rust program are competing
on getting the best results. Other
languages are lagging behind. For
example, Fortran could do much better.

How would Fortran do much better? Can
Ada learn from that?

[...]

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Thu, 24 Feb 2022 10:13:46 +0100

> Can you be specific? For example, at
least one program currently leads by

making extensive use of x86 intrinsic
ops.

> Some use OMP with intrinsic 128bit
ops. Does GNAT have a similar
parallel loop in the language yet?

Yes, take a look at
https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
program/nbody-gnat-2.html

it is taken from the Pascal implementation
and uses intrinsics. My point is that some
of these programs are not very Ada-like.
As far as I remember, there was one
ported from Lua.

Ada 2022 will have a parallel keyword.
However, it is still not supported in FSF
GNAT, which is the one being used. Also,
the benchmarks are Ada 2012.

> GNAT User's Guide explains. (su-p-
press and front end i-N-lining)

Correct, but that switch has been
deprecated for years, it is no longer
documented anywhere in the new GNAT
releases:

https://gcc.gnu.org/onlinedocs/
gcc-11.2.0/gnat_ugn.pdf

> How would Fortran do much better?
Can Ada learn from that?

Fortran is using Intel's compiler, which is
known to be one of the best. Fortran
compilers can much more easily generate
SIMD code and parallelise loops
automatically if the code is idiomatic.

Also, Fortran was not fourth in the race a
while ago. For example Ada overtook
Fortran for a small while. December
2018:

https://web.archive.org/web/
20181204085050/
https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
which-programs-are-fast.html

Ada is fourth; while it was fifth in April
of that same year

https://web.archive.org/web/
20180406194535/
https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
which-programs-are-fastest.html

A year later, December 2019, Fortran
could be fourth if it were not for that
outlier

https://web.archive.org/web/
20191225172425/
https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
which-programs-are-fastest.html

These are the current results:

https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
box-plot-summary-charts.html

Take a look at the evolution of the
language podium. It has always been
C/C++/Rust, but starting from the fourth
position there has been quite a bit of
rivalry.

[...]

Some Ada programs could use better
algorithms, data structures, more up-to-
date syntax and parallelism. Some
programs could also be made a bit
prettier.

The crux of the issue is that you can
pretty much always get peak performance
for non-GC languages if you use the same
techniques, libraries, algos, state of the art
compilers, etc. And in a lot of real world
cases, even GC languages are not an
issue, see Go, Erlang, Julia, Lisp (SBCL),
Nim...

But as someone (I believe it was the dean
of TUM (Technische Universität
München)) once said: "Everybody knows
that rankings are flawed, but it is always
better to be on top." The benchmark game
is, after all, a game. But some people took
it too seriously. It is just like Football
hooligans.

From: 25.Bx943 <25bz493@nada.net>
Date: Sat, 26 Feb 2022 22:31:19 -0500

After 30+ years, I started messing around
with FORTRAN again. One of the things
I noticed in the various help notes online
was that programmers were actually
comparing the numbers of cycles and
executables size for various ways of
solving any particular problem.

This sort of thinking is rarely seen these
days except in the microcontroller
universe - and less even there because the
RAM/ROM and speed of those devices
has increased.

Ada is another language where overall
"efficiency" gets at least some
consideration.

With energy costs rising, maybe it's time
to see MORE of these discussions and
comparisons. Global warming be damned
- this is a MONEY issue :-)

Oh, and rising power costs may disappear
the crypto sector. Those boxes full of
GPUs calculating like mad - the power
usage is stupendous. Once the energy-in
begins to exceed the value of the
Bitcoins-out - it's all over.

From: Robin Vowels
<robin.vowels@gmail.com>

Date: Sun, 27 Feb 2022 00:05:48 -0800

> This paper comparing 27 languages
with respect to energy use, speed, and
memory use is interesting.

Has this anything to do with reality?

What of the design, testing, and
maintainability of programs?

92 Ada and Other Languages

Volume 43, Number 2, June 2022 Ada User Journal

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 27 Feb 2022 09:56:12 +0100

> What of the design, testing, and
maintainability of programs?

There are a couple of obvious problems
with this study. First, the same data
structures, algorithms, and checks for
validity of input and so on, in any
imperative language, should give very
similar machine code. Robert Dewar
famously had a collection of equivalent
Ada and C programs that produced
identical machine code when compiled
with gcc. The kind of differences reported
between C and Ada or C++ shows that
they are comparing apples to orangutans.

Second, there are hard data that show that,
compared to low-level languages like C,
Ada requires 1/2 the effort to reach
deployment, and 1/40 the effort to correct
post-deployment errors. The energy
consumption for that additional effort
should swamp the kind of small
differences during execution that this
study concentrates on.

Ruby and Ada

From: Mockturtle
<framefritti@gmail.com>

Subject: Ruby and Ada
Date: Sat, 14 May 2022 01:46:06 -0700
Newsgroups: comp.lang.ada

As you can guess, my language of choice
is Ada, but for small things (often "fast
and dirty") or to extract stuff from text
files, I use Ruby which I prefer over its
direct competitor (much more popular)
Python.

Then I read this [1]

> Its [of Ruby] creator, Yukihiro “Matz”
Matsumoto, combined parts of his
favorite languages (Perl, Smalltalk,
Eiffel, Ada, and Lisp)

This could explain the affinity... (Matz is
an Adaist! :-))

[1] https://dev.to/rodmatola/ruby-the-best-
language-for-general-automation-gh3

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sat, 14 May 2022 05:53:21 -0700

> [...] for small things [...]

BTW: for the small things you describe,
you could be tempted by HAC (see the
post about HAC a few hours later) :-)...

From: Sromatic <sriviere17@gmail.com>
Date: Thu, 19 May 2022 00:40:03 -0700

I second that.

We wrote in HAC more than 10K lines of
code for about 50 scripts (the biggest ones
being 3000 lines, the smallest ones less
than 20 lines).

I know Ruby (also very nice for small
jobs) but HAC is much better (1) and
certainly faster too (2)... We also coded a
lot in Bash (there are sysadmin here too :)

(1) One of the great things about HAC is
that all HAC code can be compiled by
GNAT.

(2) HAC is 7 times faster than Bash

And, recently, HAC handles packages...
This allows us to have modularity in the
Ada way... HAC is a golden nugget ;)

From: Robin Vowels
<robin.vowels@gmail.com>

Date: Sat, 14 May 2022 06:40:44 -0700

> [...] for small things [...]

Whether it's small and dirty or something
big, PL/I is a great all-rounder.

When Ada Was the Most
Popular Language

From: Nasser M. Abbasi
<nma@12000.org>

Subject: The good old days, when Ada was
the most popular language

Date: Sat, 28 May 2022 06:46:15 -0500
Newsgroups: comp.lang.ada

Check out this cool video

"Most Popular Programming Languages
1965 - 2019"

https://www.youtube.com/watch?
v=Og847HVwRSI

At 1:47

1986. Ada was the most popular
programming language! (before C took
over)

Who Needs Types? Types
Make Code Ugly.

From: Nasser M. Abbasi
<nma@12000.org>

Subject: who needs types? Types makes
code ugly.

Date: Wed, 1 Jun 2022 22:21:08 -0500
Newsgroups: comp.lang.ada

So Ada had it wrong all the time it seems.
From

https://python.land/python-tutorial

In a strongly typed language, you need to
specify the exact type of each variable,
like String, int, and float. It gets even
uglier when objects are involved.

Now let’s look at Python variables. In
Python, we can do exactly the same
without types:

my_name = "Erik"

my_age = 37

my_salary = 1250.70

As you can see, the Python variant is a lot
cleaner and easier on the eyes!

And about possible error, they defend this
by saying:

In addition, you’ll find out soon enough
during testing and fix the error before the
software ever goes to production.

So, I think all that Ada needs is to simply
remove all those ugly types from the
language and it will become popular like
Python is now :)

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 2 Jun 2022 12:47:25 +0200

> In addition, you’ll find out soon enough
during testing and fix the error before
the software ever goes to production.

Proven beyond a shadow of a doubt by
the total absence of security
vulnerabilities in production S/W.

From: Ldries46 <bertus.dries@planet.nl>
Date: Thu, 2 Jun 2022 13:47:14 +0200

As someone who has been programming
since 1966 I used several different
languages, Algol 60, Fortran, Basic,
C/C++ and Ada, I like using strong types
because the ugliest faults you can create
are the ones where you by accident use
different types in the input or the output
of a formula. Such a fault can work
through the complete program and result
in very tough error searching. Even when
the basic failure is using an integer
instead of a real.

From: Ben <ben.usenet@bsb.me.uk>
Date: Thu, 02 Jun 2022 16:02:58 +0100

The terms being using in this thread might
need to tightened up a bit because I think
you are talking about strong /static/
typing.

Python is strongly typed (though exactly
how "strong" is debatable) but the
checking is at run-time, so you have to
rely on testing rather than the compiler. (I
don't know enough about Python's new
static type syntax to know how strong that
is, but it's optional anyway.)

Also, the OP is talking about removing all
those messy types, and that's not
necessarily the same as removing type
checking, either static type checking or at
run-time. Haskell, for example, has strong
static type checking, but a lot of Haskell
is written without ever using a type
because of the language's type inference
mechanism.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Thu, 02 Jun 2022 10:28:44 -0700

Ada and Other Languages 93

Ada User Journal Volume 43, Number 2, June 2022

That's just one tutorial. It likely doesn't
reflect the views of most Python
programmers. The "python.land" site has
no official connection

And for what it's worth, Python 3.5 added
support for "type hints".

https://docs.python.org/3/library/
typing.html

From: John Perry <devotus@yahoo.com>
Date: Thu, 2 Jun 2022 15:10:57 -0700

> (I don't know enough about Python's
new static type syntax to know how
strong that is, but it's optional anyway.)

I think you mean "type hints"? The
compiler doesn't check even when you
specify the types. The typing is available
for those who want to use a 3rd party tool
to do "stuff" with it. See the note at the
top of this page:
https://docs.python.org/3/library/typing.ht
ml

The Python runtime does not enforce
function and variable type annotations.

They can be used by third party tools such
as type checkers, IDEs, linters, etc.

> but a lot of Haskell is written without
ever using a type because of the
language's type inference mechanism.

Correct me if I'm wrong, but do you mean
"without ever *specifying* a type"?
Several recent languages have taken this
up, including Kotlin and Rust, though you
have to specify some types.

Even Ada 2022 offers it with the
"renames" keyword.

From: Ben <ben.usenet@bsb.me.uk>
Date: Fri, 03 Jun 2022 01:02:27 +0100

> Correct me if I'm wrong, but do you
mean "without ever *specifying* a
type"?

"Use" was not at all the right word since
writing 1+2 obviously "uses" types, but I
don't mean specify either since types can
be specified simply by writing literals like
"abc". I should have said something more
technical like "without writing any type
signatures".

> Several recent languages have taken this
up, including Kotlin and Rust, though
you have to specify some types.

Yes, and even C++.

> Even Ada 2022 offers it with the
"renames" keyword.

I don't know much about Ada newer than
about 1990. I'll take a look...

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Thu, 02 Jun 2022 23:37:51 -0400

>I don't know much about Ada newer
than about 1990. I'll take a look...

My condolences -- taken literally, that
means you are working with Ada-83
(ANSI/Mil-Std 1815A -- later ISO-
8652:1987). The first significant update
was Ada-95 (and Air Force funded
original GNAT).

From: Ben <ben.usenet@bsb.me.uk>
Date: Fri, 03 Jun 2022 19:13:50 +0100

> My condolences

Thanks, but I'm fine. Knowing was not
intended to imply forced to use.

> -- taken literally, that means you are
working with Ada-83 (ANSI/Mil-Std
1815A -- later ISO-8652:1987).

That was the only Ada I knew, though I
knew about the updates of course.
Couldn't find any reference to type
inference though. Is there a good place to
go for a "summary of changes" between
standards?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 3 Jun 2022 21:34:36 +0300

> Couldn't find any reference to type
inference though.

As far as I know, the only type
inferencing that occur in Ada is in for-
loops where the type of the loop
parameter variable is inferred from the
range or container over which the loop
iterates.

> Is there a good place to go for a
"summary of changes" between
standards?

Each version of the Reference Manual has
an "Introduction" chapter that contains a
subheading "Language Changes", but
those are quite terse. If you can find a
"Rationale" document for the version in
question that usually has much more
information about the changes.

For Ada 95:
https://www.adaic.org/resources/
add_content/standards/95rat/rat95html/rat
95-contents.html

For Ada 2005:
https://www.adaic.org/ada-resources/
standards/ada05/

For Ada 2012:
http://www.ada-auth.org/standards/
rationale12.html

For Ada 2022, see the Intro in the RM:
http://www.ada-auth.org/standards/
ada2x.html

For Ada 2022 I don't think there is any
"Rationale" document (yet), but there are
various summaries and introductions, for
example:
https://learn.adacore.com/courses/
whats-new-in-ada-2022/chapters/
introduction.html

From: John Perry <devotus@yahoo.com>
Date: Fri, 3 Jun 2022 13:27:38 -0700

> As far as I know, the only type
inferencing that occur in Ada is in for-
loops where the type of the loop
parameter variable is inferred from the
range or container over which the loop
iterates.

FWIW I was referring to the optional
specification of type in a renames clause,
which I first read about here:
https://blog.adacore.com/
ada-202x-support-in-gnat

(section "Renames with type inference").

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 3 Jun 2022 19:28:23 -0500

> For Ada 2022 I don't think there is any
"Rationale" document (yet)

It is not likely that there will be an Ada
2022 Rationale, as no one has stepped up
to write it or pay John Barnes to write it.
The closest thing we have is the Jeff
Cousins overview, which I can't find an
on-line reference to (or my copy, for that
matter). I'll check with Jeff and hopefully
get more information.

From: Wesley Pan
<wesley.y.pan@gmail.com>

Date: Fri, 17 Jun 2022 10:33:07 -0700

> no one has stepped up to write it or pay
John Barnes to write it.

How much would it likely cost to pay
someone to generate the Ada2022
rationale? Maybe the community can join
together to help fund the work?

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 17 Jun 2022 13:46:18 -0700

> How much would it likely cost to pay
someone to generate the Ada2022
rationale?

Compared to Ada 2012, the 2022 changes
look fairly modest.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 17 Jun 2022 21:06:14 -0500

> How much would it likely cost to pay
someone to generate the Ada2022
rationale?

Dunno, you'd have to ask John.

I did get a copy of Jeff Cousin's overview
that I'll put up on Ada-Auth.org when I
get time (probably not until next month).

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Sat, 18 Jun 2022 10:29:02 -0000

>>> It is not likely that there will be an
Ada 2022 Rationale

See my follow-up to Randy's June 3
posting quoted above, that I posted on 4
Jun in this newsgroup with subject

94 Ada Pract ice

Volume 43, Number 2, June 2022 Ada User Journal

"What's new in Ada 2022?" (copied
below).

Executive summary:

- John Barnes wrote a 46 page overview
on what's new in Ada 2022; it is
available as a new appendix in his latest
book "Programming in Ada 2012 with a
Preview of Ada 2022";

- Jeff Cousin's overview was published in
the Ada User Journal (AUJ), and is
already available in the online AUJ
archive.

Recent addition:

Earlier this week, Tucker Taft presented a
very interesting half-day tutorial "Moving
up to Ada 2022" at the 26th Ada-Europe
International Conference on Reliable
Software Technologies (AEiC 2022), held
in Ghent, Belgium. The event was
announced in this newsgroup and via
various mailing lists and social platforms.
Tutorial participants got a nice overview
of what's new in Ada 2022 and practical
examples of how to use the new features.

(http://www.adaeurope.org/
conference2022/tutorials.html#T1).

To conclude, I repeat below my earlier
posting with more information on, and
pointers to, John's and Jeff's
contributions:

Two additional sources of information on
Ada 2022 exist:

- the Ada User Journal;

- the new book by John Barnes.

The Ada User Journal (AUJ,
http://www.ada-europe.org/auj/home) has
published several articles the last few
years about the changes in Ada 2022
(then called Ada 220x).

The latest contribution was the above
mentioned overview by Jeff Cousins. It is
available from the AUJ online archive:

Ada User Journal, Volume 41, Number 3,
September 2020

Jeff Cousins: "An Overview of Ada
202x", pp.159-175

http://www.ada-europe.org/archive/auj/
auj-41-3-withcovers.pdf?page=43

And then there's of course the new edition
of John Barnes' book: "Programming in
Ada 2012 with a Preview of Ada 2022"

https://www.cambridge.org/core/books/
programming-in-ada-2012-with-a-
preview-of-ada2022/AD30275F35
CCECB97EAB80ABC32B019C

Previews of the various sections are
available on the cambridge.org site
mentioned above, such as the first page of
the Preface at
https://www.cambridge.org/core/books/
abs/programming-in-ada-2012-with-a-

preview-of-ada2022/preface/21277
D825A1D24906949F642B4AD8BE8

That page includes:

"[...] the main chapters describe the 2016
updated version of Ada 2012 in detail.
The book concludes with a major
appendix describing the key new features
of Ada 2022".

(2016 refers to the year of publication by
ISO of the Corrigendum which revised
Ada 2012.)

I asked John Barnes about the differences
between the original "Programming in
Ada 2012" and this new book, apart from
the extra appendix on Ada 2022. He
provided the following info.

“The main changes are twofold.

 In the main body, I have updated it to
cover all changes introduced by the 2016
corrigendum. I have corrected all known
errors (there were quite a lot) and many
cross references were wrong.

An idea of the amount of change can be
gathered by noting that the original
version had just 6 AIs mentioned in the
Index. The new edition mentions 55 AIs
in the index.

I also updated the text of the main body to
use aspects rather than pragmas where
relevant.

So the body is now Ada 2016 although we
don't usually talk about that.

The new appendix (46 pages) covers all
major features of Ada 2022. The
associated website also has things such as
the full syntax for Ada 2022 in a style
matching the book (that's another 30
pages). Also an updated table of the
facilities in containers (14 pages). And
some worked examples using new
features especially using the big integer
packages (currently another 14 pages).

 Each chapter of the main book ends with
a checklist outlining the new features and
referring to the appropriate place in
appendix 4 where they are discussed.

-- John Barnes, 14 May 2022, with
permission"

I hope this helps.

Dirk Craeynest

From: Paul Rubin
<no.email@nospam.invalid>

Date: Sat, 18 Jun 2022 15:16:46 -0700

> To conclude, I repeat below my earlier
posting with more information on, and
pointers to, John's and Jeff's
contributions: ...

> I hope this helps.

Yes, thanks, those references are useful
for understanding the changes introduced
in Ada 2022. I had thought the idea of a
formal rationale was different: not just to

explain the changes, but also to explain
from an authoritative standpoint why the
decisions were made. I don't know how
important rationales traditionally have
been in the Ada world. But, Ada 2012
introduced a much larger set of changes
than Ada 2022 did. So I can understand if
a rationale was more important in 2012
than in 2022.

I guess if the higher-end Ada community
thought that a 2022 rationale was
necessary, they would have required it
and funded it. As a not-so-serious user or
wannabe user, I don't think I need it, but
that's just me.

I do notice long after reading "Ada
Distilled" that most of the discussions on
this group about technical aspects of Ada
still baffle me. So I think a more
advanced online tutorial would do some
good. I believe the current Ada Wikibook
is nice for beginners but doesn't cover
more advanced topics all that well.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 20 Jun 2022 16:40:06 -0500

> - Jeff Cousin's overview was published
in the Ada User Journal (AUJ), and is
already available in the online AUJ
archive.

Correct. The version of Jeff's overview I
have is quite a bit newer than the version
from the AUJ, and has many errors
corrected. So I would suggest reading that
version rather than the original AUJ
version (but of course, only once I can get
it posted).

Ada Practice

GtkAda for GTK4?

From: Andreas Almroth
<andreas@almroth.com>

Subject: GtkAda for GTk4?
Date: Sun, 13 Feb 2022 07:32:23 -0800
Newsgroups: comp.lang.ada

Looking at the excellent support for GTK
in GtkAda over the past many years,
which I have enjoyed using, I was looking
for (aka googling) references to any initial
thoughts/work on having GtkAda to also
support GTK4.

I know, GTK4 has only been "out" for a
little over a year, but it would be
interesting to know if anyone is
considering doing this. I would be glad to
participate, although with limited know-
how of the inner workings of GtkAda, but
at least testing perhaps.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 13 Feb 2022 17:46:04 +0100

Well, knowing GTK's disastrous history it
cannot be "also", it must be either 3 or 4.

Ada Pract ice 95

Ada User Journal Volume 43, Number 2, June 2022

GTK 4 breaks basically everything one
could ever think of.

To me new features in GTK 4 do not look
worth changing the API again, not even
useful, just fancy stuff. It seems that GTK
team keep on breaking the API rather out
of fun than necessity. Instead of
hardening the code. GTK 3 is still buggy
as hell.

Of course, at some point one will have to
migrate, but how about sitting GTK 4
over and going straight to GTK 5? Unless
they lose remaining users...

GtkAda is maintained by AdaCore, so it is
them [whom you have] to ask.

From: Andreas Almroth
<andreas@almroth.com>

Date: Sun, 13 Feb 2022 12:26:11 -0800

[…]

 > Of course, at some point one will have
to migrate, but how about sitting GTK 4
over and going straight to GTK 5? Unless
they lose remaining users...

Well, they might, but it is still based on C,
which is easier to interface to from Ada,
than say C++ (which I have found
cumbersome). Most other GUI
frameworks are based on C++, for
instance QT. QTAda is as far as I know
not maintained (I haven't seen much in a
very long time).

[...]

From: Andreas Almroth
<andreas@almroth.com>

Date: Mon, 14 Feb 2022 00:45:07 -0800

First, I have to correct myself... Seems
Leonid Dulman provides QT5 and QT6
support as part of Ada Studio (google
qt6ada). Just saw another post on the
adagorge.org re-design, and found QT
that way…

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 13 Feb 2022 21:45:57 +0100

> Well, they might, but it is still based on
C, which is easier to interface to from
Ada, than say C++ (which I have found
cumbersome).

Absolutely. C API is a huge advantage.
However GTK and stuff is monstrous,
practically impossible to handle manually.

GtkAda bindings are generated by a tool
designed by AdaCore. This tool might
require massive changes when migrating
to GTK 4.

I cannot speak for AdaCore, but I think
any help will be welcome.

Good luck.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 13 Feb 2022 22:35:44 +0000

>> Well, knowing GTK's disastrous
history it cannot be "also", it must be
either 3 or 4. GTK 4 breaks basically
everything one could ever think of.

It's almost like wxAda would've been
better...

> Well, they might, but it is still based on
C, which is easier to interface to from
Ada, than say C++

Can confirm, binding C++ is too easy to
burn out on, having done so on wxAda.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sun, 13 Feb 2022 23:46:01 -0800

> GtkAda bindings are generated by a
tool designed by AdaCore. This tool
might require massive changes when
migrating to GTK 4.

I wrote that python script years ago, when
the XML files that describe the gtk+ API
were actually pretty bad type-wise. The
script is full of special cases, and very
ugly. I don't think anyone should use it as
a basis for binding to gtk 4, it would
likely be much better to restart from
scratch. I believe the XML files have
improved significantly since then, and are
used by more language bindings, too, so
that could likely be simplified.

From: Andreas Almroth
<andreas@almroth.com>

Date: Mon, 14 Feb 2022 00:47:53 -0800

> I wrote that python script years ago [...]

Thanks Emmanuel for your input. Seems
it indeed would be a larger effort, and as
Dimitry states, perhaps one should wait
for the next major release. It will take
some time in any event to create the
interface binding.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Mon, 14 Feb 2022 20:50:20 +0100

> I wrote that python script years ago

This may be worth mentioning...

Fortran also has a GTK binding [1]. It is
also autogenerated with a Python script.
As far as I can remember, the change
from GTK3 to 4 was not too big. It did
obviously require changes and a bit of
elbow grease, but they had GTK4 support
as soon as it became official. The actual
code is present here [2].

This may serve as a comparison or
reference for what may be needed. It is
obvious that the Fortran people did have a
different starting point and Fortran is a
different language. I am just including it
for reference.

[1] https://github.com/vmagnin/gtk-
fortran

[2] https://github.com/vmagnin/gtk-
fortran/tree/gtk4/src

What Is the Name of the “|”
Symbol?

From: Matt Jaffe <matt.jaffe@gmail.com>
Subject: What is the name of the | symbol?
Date: Fri, 25 Mar 2022 12:04:57 -0700
Newsgroups: comp.lang.ada

In using it in a named association array
aggregate, its semantic are "and" --- e.g.,
some_1D_array := (1 | 3 | 7 => 5, others
=> 10) sets elements 1 and 3 and 7 to the
value 5. In a case statement, its semantics
are "or" --- e.g. when 1 | 3 | 7 => ... any of
the values 1, 3, or 7 for the case
expression will select the ... code for
execution. Is there a single name for that
symbol (the |) that seems to have
different semantics depending on context?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 25 Mar 2022 23:21:37 +0100

ARM 2.1(15/3)

(http://www.ada-auth.org/standards/
aarm12_w_tc1/html/AA-2-1.html#I1201)
says its name in Ada is "vertical line".

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 25 Mar 2022 21:24:32 -0700

The Unicode name is U+007C
VERTICAL LINE, alias name vertical
bar.

/ is U+002F SOLIDUS, alias names slash
and virgule. I haven't heard of the name
"solidus" used for symbols other than /.

From: Matt Jaffe <matt.jaffe@gmail.com>
Date: Fri, 25 Mar 2022 12:16:04 -0700

In using it in a named association array
aggregate, its semantics are "and" --- e.g.,
some_1D_array := (1 | 3 | 7 => 5, others
=> 10) sets elements 1 and 3 and 7 to the
value 5. In a case statement, its semantics
are "or" --- e.g. when 1 | 3 | 7 => ... any of
the values 1or 3, or 7 for the case
expression will select the ... code for
execution. Is there a single name for that
symbol (the |) that seems to have
different semantics depending on context?

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>

Date: Fri, 25 Mar 2022 19:23:19 +0000

How about reading it like this (read with a
fixed-width font):

a := (1 | 3 | 7 => 5, others => 10)

if the index is one or three or seven then
five else ten fi

Similar syntax appeared in Algol 68. | is
frequently used for "alternatives" -- it's
just a question of what's being referred to.
Here, it's all the alternative indexes that
map to a specific value.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 25 Mar 2022 22:03:08 +0200

https://github.com/vmagnin/gtk-fortran/tree/gtk4/src
https://github.com/vmagnin/gtk-fortran/tree/gtk4/src

96 Ada Pract ice

Volume 43, Number 2, June 2022 Ada User Journal

That is a quirk of natural language, where
"and" and "or" are used in non-
mathematical ways. You could as well
describe the aggregate as saying "if the
index is 1 or 3 or 7, the element is 5", and
you could describe the case statement as
saying "this when-branch is executed
when the case selector is 1 and 3 and 7".

As '|' is used in some logical formalisms
for disjunction ("or"), and in syntactical
notation (BNF) to separate alternatives, I
tend to read it as "or".

> Is there a single name for that symbol
(the |) that seems to have different
semantics depending on context?

For the name, see
https://en.wikipedia.org/wiki/Vertical_bar
, where indeed "vertical bar" seems
favoured. However, I'm pretty sure that I
have seen "solidus" used, too, but
Wikipedia says that is a synonym for
"slash" (/). Wiktionary does not recognize
"solidus" as a term for any punctuation
mark.

From: Chris Townley <news@cct-
net.co.uk>

Date: Fri, 25 Mar 2022 23:24:45 +0000

Probably wrong, but for a Unix user since
the last century, I call it 'pipe'

From: Matt Jaffe <matt.jaffe@gmail.com>
Date: Sun, 27 Mar 2022 11:57:48 -0700

> Probably wrong, but for a Unix user
since the last century, I call it 'pipe'

Well, non-judgmental type that I am, I'm
not going to say you're "wrong", but pipe
is the name and usage for that symbol
when programming a Unix shell. Its
semantics in Ada are quite different, so I
don't think calling it pipe quite fits. (So I
guess I'm not a pipe-fitter either ;-)

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 26 Mar 2022 00:58:53 +0000

> Probably wrong, but for a Unix user
since the last century, I call it 'pipe'

Or bar.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sat, 26 Mar 2022 17:38:59 -0700

> Or bar.

Emacs ada-mode grammar calls it BAR.

From: Matt Jaffe <matt.jaffe@gmail.com>
Date: Sun, 27 Mar 2022 12:01:05 -0700

> Emacs ada-mode grammar calls it BAR.

"Bar" sounds like the best alternative so
far; I think that's what I'll use when
talking to my students.

Thanks.

From: Chris Townley
 <news@cct-net.co.uk>

Date: Sat, 26 Mar 2022 02:01:38 +0000

> Or bar.

No that is for after work ;)

Aggregate with (parens)
Considered Obsolescent

From: Simon Wright
<simon@pushface.org>

Subject: Aggregate with (parens) considered
obsolescent

Date: Mon, 11 Apr 2022 17:15:08 +0100
Newsgroups: comp.lang.ada

GCC 12. with the -gnat2022 switch,
supports (a large part of) ARM 2022. One
of the changes is AI12-0212[1], the use of
square brackets [] in array aggregates.

I was surprised to find that the compiler
reports the use of parentheses () for array
aggregates as obsolescent! To quote
PR104751[2],

=============

Compiling

 procedure New_Syntax is

 T : array (1 .. 5) of Integer;

 begin

 T := (1, 2, 3, 4, 5);

 end New_Syntax;

with -gnat2022 -gnatwj gives

new_syntax.adb:4:09: warning: array
aggregate using () is an obsolescent
syntax, use [] instead [-gnatwj]

but use of parens is not in Annex J; use of
brackets is an option, AARM 202x Draft
32, 4.3.3(49.m).

Having -gnatwj as part of -gnatwa makes
this very intrusive.

=============

The fact that it happens with -gnatwa,
which is a switch that I suspect quite a lot
of us use, will be particularly annoying
for those who use -gnatwe (treat warnings
as errors) and who want to support
multiple compiler releases (for example,
the Ada Drivers Library).

The response dismissing the PR suggested
using

pragma Warnings (Off, "*array aggregate*");

and one glimmer of hope is that this can
be used as a configuration pragma.

I could remove the problem from macOS
releases that I support
(sem_aggr.adb:1803..1815), but of course
that would lead users into problems when
using another GCC 12+ release.

[1] http://www.ada-auth.org/
cgi-bin/cvsweb.cgi/ai12s/
ai12-0212-1.txt?rev=1.29&raw=N

[2] https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=104751

Use Clauses and Naming
Schemes

[Offshoot from “Unchecked_Deallocation
Usefulness”, in AUJ 42-2, 2021. The
conversation went into naming
preferences in relation to “use” clauses.
—arm]

From: Thomas
<fantome.forums.tdecontes@
free.fr.invalid>

Subject: use clauses
Date: Wed, 13 Apr 2022 01:25:31 +0200
Newsgroups: comp.lang.ada

> For me, a naming scheme that
discourages the use of (package) use
clauses is a bonus. (Such a scheme
makes it easier to avoid use clauses.)

I agree to avoid use clauses.

(I personally prefer Lists.List, like
Vincent Marciante - I like
Ada.Containers.* naming :-))

> I personally only use "use type" in new
code (there's tons of old code for which
that doesn't work, of course, but that
doesn't change the principle).

what do you think about:

- "use all type" clauses?

- List.Clear? (could you remember me
how you call that, please?)

- List.Clear does work only if List is
tagged?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 12 Apr 2022 20:05:00 -0500

> what do you think about:

> - "use all type" clauses?

This is OK; I don't use them mainly
because I only use features implemented
in Janus/Ada, and "use all type" is not yet
implemented there.

The fundamental problem with "use" is
that it makes everything visible, and then
deals with conflicts by making those
things invisible again. That's not a
problem for overloadable primitive
operations, since the profile is included
and conflicts only occur when someone
has made a lousy design choice (creating
a routine with the same name and profile
as a primitive) [Most such conflicts come
from maintenance when some existing
routine is moved to be primitive; in such
cases, the original routine simply should
be removed.] Since "use all type" only
works on overloadable primitives (and
things that work rather like primitives),
it's fairly safe. One could make an
argument that primitive operations should
always be visible when the type is (that's
not the Ada rule, but arguably it would
work better in most circumstances) - and
you should always know to look at
primitives anyway when trying to find
something..

Ada Pract ice 97

Ada User Journal Volume 43, Number 2, June 2022

> - List.Clear? (could you remember me
how you call that, please?)

For tagged types, you can use prefix
notation, so "My_List.Clear" is the
easiest. With "use all type List", you can
write Clear(My_List). If your objects
have well-chosen names, it's not really
needed to have the type around for such
operations, even when use clauses are in
place. Thus, "Clear", not "Clear_List",
and that works well even when someone
uses everything in sight (of course, they
may have a hard time finding where Clear
is defined when debugging, but that's their
choice).

> - List.Clear does work only if List is
tagged?

Right. There are a number of semantic
issues for untagged types, the main ones
having to do with implicit dereference
(which occurs in this notation, as in any
other selected_component notation). If
you have a prefix of an access type, it gets
very messy to determine which
dereference is which. And just allowing
composite types doesn't work well either:
a private type that is completed with an
access type would *lose* operations when
it had full visibility -- that seems pretty
weird.

It originally got limited to tagged types as
that was easy to do and didn't have
semantic issues. We were going to look at
generalizing the prefix notation again
(several people asked about it), but no one
made a concrete proposal and it never
went anywhere for Ada 2022.

Max Line Length
Preferences

From: Thomas <fantome.forums.tdecontes
@free.fr.invalid>

Subject: max line length
Date: Mon, 18 Apr 2022 23:58:56 +0200
Newsgroups: comp.lang.ada

How do you set your max line length?

Using indentations a lot, I find that 80 is
short. but I don't realize how many people
I'm going to disturb if I set a greater
length, because I don't know all your uses.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Tue, 19 Apr 2022 09:38:00 +0300

I limit lines to 80 characters, because I
very often want to use a side-by-side diff
of file versions, which means having a
window wider than two line-lengths. Text
in a 170-character-wide window is still
readable, but wider ones are not, for me as
an older guy with stiff eye-lenses.

To make do with 80-character lines, I
often use local or partial use-clauses, and
I divide long calls across many lines,
usually having only one parameter per
line. By a "partial use clause" I mean, for
example, "use Interfaces", when I really

need to use Interfaces.C, so I still have to
qualify with "C.zzz" but not with
"Interfaces.C.zzz".

I also group subsystems into package
families (parent and child packages)
which means that the children can directly
use parent-declared identifiers without
qualification.

Other means to keep lines short include
using a small indentation step (I now use
3 spaces, but I'm considering changing to
2 spaces) and keeping subprograms short,
which also helps the readability.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 21 Apr 2022 16:34:04 -0700

> I limit lines to 80 characters, because I
very often want to use a side-by-side
diff of file versions,

I prefer top/bottom diff, partly for this
reason.

But my monitor can easily display 240
characters across. And I have good
glasses.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Tue, 19 Apr 2022 21:30:38 +0200

> how do you set your max line length?

I use the Preferences menu selection in
my editor. But that's probably not what
you intended to ask. I set mine to 132
characters.

> using indentations a lot, i find that 80 is
short.

When I started out, source lines were
limited to 80 columns because that was
the length of punched cards, but the line
printers could print 132 columns. In the
1980s printing switched from 14 x 11
inch paper in line printers to 8.5 x 11 inch
paper, but it was still possible to print 132
characters in landscape mode, so that's
what I used if I had an editor that could
handle long lines easily (screens were not
large enough or high enough resolution to
be suitable for reading programs, so I still
tended to print them when that was
needed. Today printing is not needed
much, but I continue to use 132 columns.
If others want a different line length they
may reformat it.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 19 Apr 2022 22:07:20 +0200

> how do you set your max line length?

72. I used to program in FORTRAN on
punched cards. (:-))

These days I use 3 split GPS Windows
side by side.

Then I am using the "use" clause, so I do
not need a thousand of characters to just
write Z := X + Y; (:-))

> using indentations a lot, I find that 80 is
short.

Refactor the code and use local
subprograms.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 21 Apr 2022 16:31:56 -0700

> how do you set your max line length?

120 chars; I assume readers have a big
display like mine.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 22 Apr 2022 02:57:08 -0500

> I prefer top/bottom diff, partly for this
reason.

The diff program I use can scroll
sideways if necessary, and so can every
editor I've used since 1985, so this isn't
generally an important concern. The
Janus/Ada source used a "soft" limit of
80, mainly because that's what terminals
and PCs displayed back then, but we
never broke lines just for that reason.
Typically, the indent is more than the
overrun anyway (so that actual text never
exceeded 80 characters). Of course, one
has to break really long calls, like the call
to create a window in Claw (which
usually has a dozen or so parameters).

Aspect Location in
Expression Function

From: Blady <p.p11@orange.fr>
Subject: Aspect location in expression

function.
Date: Sat, 14 May 2022 13:47:28 +0200
Newsgroups: comp.lang.ada

I'm puzzled when I want to change a
function body with aspects to an
expression function, for instance:

function Length (S: Some_Tagged_Tyoe)

return Natural

 with Pre => S.Valid

 is

 begin

 return S.Length;

 end;

have to be changed in:

function Length (S: Some_Tagged_Tyoe)

return Natural

 is (S.Length)

 with Pre => S.Valid;

The location of the aspect has moved to
the end.

I'd like simply replace the begin block by
the expression, as:

function Length (S: Some_Tagged_Tyoe)

return Natural

 with Pre => S.Valid

 is (S.Length);

What could be any reasons not to permit
it?

98 Ada Pract ice

Volume 43, Number 2, June 2022 Ada User Journal

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 14 May 2022 17:40:03 +0200

What you say is logical if you think of an
expression function as a body; however, it
is more like a specification (it can appear
in a package spec, although it can
complete a specification), so the place
where the aspect appears makes sense.
And it would be confusing to allow the
aspect in two different places. It is the
same for separate bodies of subprograms.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 23 May 2022 23:05:12 -0500

> What you say is logical if you think of
an expression function as a body;
however, it is more like a specification

To make a functioning :LR grammar for
Ada, I *had* to allow the aspect
specification in both places, and then
make one of them illegal. Which is more
work than just allowing in either place. So
I guess it is a matter of perspective. :-)

To the OP: we discussed placement of
aspect specifications ad-nauseam, as
issues like this always were coming up.
There is no consistent rule that really
works well, because one does not want
small things following large sets of aspect
specs -- they can get lost and overlooked.

For instance, one puts aspect
specifications after "is abstract" as
otherwise that could be lost after a
lengthy precondition expression (and it's
too important to be lost). See how that
could happen in the following (illegal)
declaration:

 procedure P (A, B ,,,)

 with Pre => <very long expression
 that extends over several lines here>

 is abstract;

So something like this (and "is null" as
well) require the Pre at the end:

 procedure P (A, B ,,,)

 is abstract

 with Pre => <very long expression
 that extends over several lines here>;

Expression functions generally follow the
same rules as the older null procedures,
thus they ended up with the same
positioning. It's not as obvious a case
here, since the return expression can also
be long, but we thought it should be
consistent.

BTW, I don't think there ever is a reason
to go from [a function –arm] with a
normal body to an expression function
(assuming the body is legal). A normal
body is more readable and less of a hassle
during maintenance. The advantage of an
expression function is to use it in places
where a regular body is not allowed
and/or just to be lazy writing the body -

neither of which would ever require
changing *to* an expression function.
Maintenance might require changing
from an expression function if the body
has gotten too complex (for instance,
needs a variable declaration), but that
generally will require moving the function
as well so "ease" of doing so isn't very
relevant.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Tue, 24 May 2022 20:24:14 +0200

> For instance, one puts aspect
specifications after "is abstract" as
otherwise that could be lost after a
lengthy precondition expression (and
it's too important to be lost).

Isn't this emphasis on "is abstract" losing
the very point of abstraction?

> See how that could happen in the
following

> (illegal) declaration:

> procedure P (A, B ,,,)

> with Pre => <very long expression
that extends over several lines here>

> is abstract;

Who cares to see "is abstract" if P is in a
spec? The implementer, I guess, but the
client? Less so.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 25 May 2022 00:20:50 -0500

> Who cares to see "is abstract" if P is in
a spec? The implementer, I guess, but
the client? Less so.

Any client that needs to declare an
extension (pretty common in OOP),
especially as "abstract" routines mostly
are used with root types (and interfaces). I
suppose you could "program by error"
and just let the compiler complain if you
don't give a body for something abstract,
but it's generally recommended to know
what you're doing and not just try to make
the compiler happy.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Wed, 25 May 2022 20:45:58 +0200

> Any client that needs to declare an
extension (pretty common in OOP),

Another, dare I say, more frequent way of
being a client of a type is being a caller of
the type's subprograms, such as P, rather
than being an implementer of a type's
concrete behavior. (The two can overlap,
but I'm thinking of the more frequent
human clients here :)

A case I'd single out is a type that comes
with a factory F. I'd expect the associated
type T to be abstract. This goes without
saying! ;-) A client needs to know the
"behavioral" interface of T and also that
of F. The "is abstract" then remains as

helpful language technology, but as seen
inside the factory.

(So, I'd put "is abstract" last.)

> especially as "abstract" routines mostly
are used with root types (and
interfaces). I suppose you could
"program by error"

Not design errors, but mechanical errors
duly output by the compiler. The
programmer will be programming by
"following the language's rules". IDEs
and compilers will assist the programmer
who is implementing an abstract type. For
example, the usual IDE has this
suggestion following its compiler's error
message:

 Fix: "Add unimplemented methods"

(for)

 Error: "The type must implement[!] the
inherited abstract method ..."

The IDE will do so if you answer "Yes"
and programmers can provide their own
adjustments to template text that this
mechanism will be using. Thus, again,
programmers can involve useful language
technology in a template's text. I
remember some Ada tools offering
similar features.

What Is X'Address of an
Empty Array?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: What is X'Address of an empty
array?

Date: Tue, 31 May 2022 14:19:24 +0200
Newsgroups: comp.lang.ada

I have a language lawyering question.
According to ARM X'Address is the
address of the first array element. What is
the address of an empty array?

In the case of an array with bounds it
could be the address following the
bounds.

But what about a definite empty array? Of
zero length (and presumably zero size).
Would the compiler have to invent some
address?

P.S. With GNAT:

 type NUL is array (1..0) of Integer;

 S : NUL;

S'Size is 8 and it has some address that
holds the byte.

Talking about the dark matter in our
Universe. This is what empty arrays are
constructed of! (:-))

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 31 May 2022 16:35:49 -0500

Aliased objects should never have zero-
size in Ada (or, at least, ever be allocated
at the same address). I believe that is

Ada Pract ice 99

Ada User Journal Volume 43, Number 2, June 2022

because of the required result of the
equality operator. Specifically:

 type NUL is array (1..0) of Integer;

 A, B : aliased NUL;

 type PNul is access Nul;

 PA : PNul := A'Access;

 PB : PNul := B'Access;

 if PA = PB then

 Report.Failed ("Access to two distinct

 objects cannot be equal");

 end if;

If an object is not aliased, it is undefined
whether 'Address will work reliably with
it (it probably does in GNAT, it might not
in Janus/Ada, etc.) If the objects ARE
aliased, then 'Address works essentially
the same as 'Access.

I personally find this a bit of
overspecification in Ada, but since zero-
size objects are unusual, no one has
thought it worth going through the effort
to change. (And of course such a change
would complicate static analysis.) We (the
ARG) did discuss this topic at one point (I
don't have the AI number at hand).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 1 Jun 2022 14:49:25 +0200

> I personally find this a bit of
overspecification in Ada

It is actually rather nice.

I recently stumbled upon code:

 A (A'First)'Address

in C bindings, when the other side has
something like:

 const double * a, int len

It of course fails in the marginal case
when the array is empty. But A'Address
seems to never do.

Modern Syntax for Complex
Conditions

From: Matt Borchers
<mattborchers@gmail.com>

Subject: Ada needs some modernization
Date: Tue, 31 May 2022 10:54:46 -0700
Newsgroups: comp.lang.ada

Throughout my career, I often find myself
writing code similar to:

if (A and B) or else (not A and C) then...

and I always wished there was a better
and clearer way to write this in Ada. Then
along came if expressions. But, if
expressions don't help that much with
readability although it is arguably
simpler:

if (if A then B else C) then...

What amendment can we suggest to the
Ada syntax so the if expression be better
written when used in an if statement? I
know other languages support this and it

often looks like A ? B : C or something
similar. That's certainly not Ada-like
IMO, but I can't think of something better.
These same languages often also have a
null check operator A ?? B (where A and
B are access types of the same Type) such
that if A is not null then A is returned
otherwise B is returned. So useful and
helpful!

Again, I often find myself writing a loop
to search for something and then
performing one or another action
depending on the success of the search.
This almost always requires some
externally defined variable, like:

--assuming arr'First is not Integer'First

found := arr'First - 1;

for i in arr'Range loop

 if arr(i) = match then

 found := i;

 exit;

 end if;

end loop;

if found in arr'Range then

 --do something A

else

 --do something else B

end if;

Of course I could move the "do something
A" into the if block within the loop, but I
still need to know if I must run the
alternate code afterward. It would be nice
to avoid having to create a variable just to
indicate the success state or indexing
location found. Maybe something like:

for i in arr'Range loop

 if arr(i) = match then

 --do something A

 exit;

 end if;

then

 --do something else B

end loop;

The "then" part only executes after the
loop terminates normally, i.e. only when
the loop does NOT exit early by "exit" or
"return" statement.

I think syntax enhancements like these
could go a long way to making Ada feel
like it is at least keeping up with modern
languages and I think current
programmers expect "ease-of-use" syntax
from today's languages. Other
contemporary modernized languages have
taken ideas from Ada, but Ada has not
continued to pioneer ideas as quickly.
Perhaps that's by choice or design.

Thoughts?

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Tue, 31 May 2022 12:05:48 -0700

In your proposal, the "do something else
B" appears before "end loop", which is
not a very intuitive way to indicate a
statement happening *after* the loop.

I suspect there is room for improvement...

Perhaps you would like to show an
equivalent piece of code in a what you
call a "modern language"?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 31 May 2022 21:55:05 +0200

> if (A and B) or else (not A and C)
then...

> if (if A then B else C) then...

Not the same. In the former A may be
computed twice.

> What amendment can we suggest to the
Ada syntax so the if expression be
better written when used in an if
statement?

I newer felt it necessary. To me much
more aggravating is code that combines
test/allocator with renaming, i.e.

 if P /= null then

 declare

 X : T renames P.all;

 begin

 ...

 end;

 end if;

 if X in T'Class then

 declare

 XX : T'Class renames T'Class (X);

 begin

 ...

 end;

 end if;

 P : access T'Class := new S;

 X : S renames S (P.all);

If one could come up with some syntax
for if-then-declare and new-then-declare
that would cover a lot of cases.

> I know other languages support this and
it often looks like A ? B : C or
something similar. That's certainly not
Ada-like IMO, but I can't think of
something better. These same
languages often also have a null check
operator A ?? B (where A and B are
access types of the same Type) such
that if A is not null then A is returned
otherwise B is returned. So useful and
helpful!

Not in a strongly typed language IMO.

[...]

> Maybe something like:

> for i in arr'Range loop

> if arr(i) = match then

> --do something A

> exit;

> end if;

> then

> --do something else B

> end loop;

100 Ada Pract ice

Volume 43, Number 2, June 2022 Ada User Journal

I usually use a nested function, e.g. search
with a fallback:

 function Get_Me_Something return

 Element is

 begin

 for I in arr'Range loop

 if Arr (I) = match then

 return Arr (I);

 end if;

 end loop;

 return Default;

 end Get_Me_Something

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 31 May 2022 17:46:04 -0500

>What amendment can we suggest to the
Ada syntax [...]? I know other
languages support this and it often
looks like A ? B : C or something
similar. That's certainly not Ada-like
IMO, but I can't think of something
better.

Which is the rub. Ada is *not* about
clever operators that hardly anyone knows
what they do. Indeed, the original
proposal for Ada 2012 had an "implies"
operator. But we quickly found out that
there are many people that don't know
off-hand what function an implies
operator does. We were pretty sure that
every Ada programmer would understand
an if expression.

Note that pretty much the only place that
you should almost never use an if
expression is in the choice of an if
statement. If you already can write an if
statement, you don't need an if
expression! If expressions exist to make
initializations and assertions like
(Pre/Post) easier to write.

So I would never write your expression in
the first place (either of them). I'd write
something like:

 if A then

 if B then.

 else

 end if;

 else

 if C then

 else

 end if;

 end if;

The contents of the arms should be short
anyway, and typically will just be a
procedure call (and possibly some
debugging, which is way easier if the
conditions are kept simple).

>null check operator A ?? B [...] such that
if A is not null then A is returned
otherwise B is returned. So useful and
helpful!

Again, "utility" is not the criteria for Ada,
rather understandability for future
maintainers is the primary criteria. The
last thing we need is a bunch of fancy but
little used operators that [leave] someone
cold when reading some unfamiliar code.

(Yes, of course you can look them up on-
line, but stopping to doing so necessarily
breaks your train of thought.)

And this construct fits nicely into an if
expression, with no magic:

 (if A /= null then A else B)

and this extends nicely to more likely
cases:

 (if A /= null then A elsif B /= null then B

 else raise Program_Error)

Personally, I don't believe I've ever
written something where such an operator
would be useful; one needs to check
everything for null (you can't usually can't
assume B is nonnull, either). And the fall
backs are generally more complex than
using some other object. Moreover,
probably A should have been declared
null-excluding so it doesn't need to be
tested in the first place. :-)

> I often find myself writing a loop to
search for something and then
performing one or another action
depending on the success of the search.
...

>for i in arr'Range loop

> if arr(i) = match then

> --do something A

> exit;

> end if;

>then

> --do something else B

>end loop;

>The "then" part only executes after the
loop terminates normally, ...

In Ada terms, an exit *is* normal
completion, so you would need some
different terminology.

> i.e. only when the loop does NOT exit
early by "exit" or "return" statement.

We've discussed the "continue" statement
multiple times, and have always ended up
deciding that we are better off without it.
(We've also discussed allowing "exit"
from blocks, but that turns into a mess
when blocks and loops get mixed, at least
if one wants the code to do the same thing
in Ada 2012 and in future Ada.)

We've essentially decided that it is better
to use a goto in such rare cases. The case
you show above is similar.

 for i in arr'Range loop

 if arr(i) = match then

 --do something A

 goto Loop_Finished;

 end if;

 end loop;

 -- We get here if the search item is

 -- not found:

 --do something else B

 <<Loop_Finished>> null;

Remember that every feature added to a
language adds costs in implementation,
documentation, and in tools (analysis,
checkers, etc.). A feature needs to be quite
useful in order to make the cut.

Aside: in the case above, I've usually
written such loops like:

 for i in arr'Range loop

 if arr(i) = match then

 --do something A

 exit;

 elsif i = arr'Last then

 --do something else B

 exit; -- Not really needed, but clearer

 -- what is going on.

 end if;

 end loop;

I've never been that happy with the
duplication of the termination condition,
but this avoids any extra objects or any
gotos.

If I was going to try to fix your problem
with a language feature, I'd probably try
to define an attribute to avoid needing to
duplicate the termination condition.
Something like:

 Loop_Name: for i in arr'Range loop

 if arr(i) = match then

 --do something A

 exit Loop_Name;

 elsif i = Loop_Name'Range'Last then

 --do something else B

 exit Loop_Name; -- Not really needed,

 --but clearer what is going on.

 end if;

 end loop Loop_Name;

(We probably would allow 'First and 'Last
in such a case.) But this technique doesn't
really work with user-defined iterators
(which don't necessarily have a defined
end), and I'm unsure if it is important
enough for another whistle.

>"ease-of-use" syntax from today's
languages.

Ada has *never* been about "ease-of-
use". It is about readability,
maintainability, and understandability.
(See the “Design Goals” in the
Introduction -- http://www.ada-
auth.org/standards/2xrm/html/RM-0-
2.html.)

Enhancing readability might also enhance
ease of use (for instance, user-defined
literals, target name symbols, and user-
defined indexing all were added to
enhance readability by avoiding
duplicative text that provides little
information), but it is never a primary
goal for an Ada feature.

>Other contemporary modernized
languages have taken ideas from Ada,
but Ada has not continued to pioneer
ideas as quickly.

Ada Pract ice 101

Ada User Journal Volume 43, Number 2, June 2022

This is not true. Ada pioneers ideas all the
time (see delta aggregates, aggregate
iterators, the target symbol, parallel stuff,
etc. from Ada 2022). What Ada does not
do is waver from its core goal of
readability and maintainability. So we
don't waste time with tiny features that are
more likely to harm readability and
understandability than help. (Admittedly,
what features are really necessary and
which are just nice to have is always a
personal choice.) Additionally, Ada has
always been designed with a "building-
block" approach, so we don't provide
(say) a semaphore, but rather the tools
(the protected type) to write one (and
many other constructs). An if expression
is a building block; funny boolean
operators with limited uses are not.

I personally am not the least bit interested
in worrying about ease-of-use gadgets in
other languages. If programmers need
such gadgets to be comfortable, they
probably don't have the right mindset to
be great Ada software engineers in the
first place. Saving a few characters in a
few expressions simply does not matter
when compared to the effort needed to
define and document a good data
abstraction (for instance, an abstract data
type and package).

There *are* features that probably would
not interfere with Ada goals of
readability. One of them that comes up
periodically is an "at end" clause so one
could write final wishes for a
block/subprogram/package without
writing a bunch of exception handlers
(which doesn't work in the case of abort!)
or one-time use controlled types. I'm sure
there are others.

And certainly other languages have
interesting features that Ada should steal,
the Rust owned access types would be an
obvious example. (Don't get me started on
why Ada 2022 does not have those.) But
"ease-of-use" is not interesting, at least
when it does not make readability better.
(I want people to replace "and" and "or"
with if expressions as much as possible,
as those are much more understandable.
No more operators please!)

Randy.

P.S. Man, did I spend a lot more time than
I planned answering this. I hope it helps.

From: John Mccabe
<john@mccabe.org.uk>

Date: Wed, 1 Jun 2022 00:24:24 -0700

> P.S. Man, did I spend a lot more time
than I planned answering this. I hope it
helps.

FWIW, I thought it was valuable. As I
read through it I was constantly thinking
of how I wish the people tweaking C++
(which, for various reasons, I'm using
now) would take the same attitude, rather
than trying to feed their own egos by

adding all sorts of random rubbish that,
due to the current 3 year cycle, tends also
to be either temporary or half-baked
random rubbish!

Thank you, Randy!

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Wed, 1 Jun 2022 21:00:31 +0200

> What amendment can we suggest to the
Ada syntax [...]

What you call "modernization" looks to
me a lot like "repeating mistakes that
Ritchie made over 50 years ago".

"A ? B : C"? Or is it "A : B ? C"? If only
there were a less cryptic, easier to
remember and understand way to express
it. Something like "(if A then B else C)",
for example.

"A ?? B" might be "useful and helpful" if
you use (or think in) a language with
pointers to objects everywhere, but in a
language where such pointers are never
needed, like Ada, it is neither, especially
since a conditional expression would
handle it just fine if it were ever needed.

> I often find myself writing a loop to
search ...

When you write something for a second
time, it's a signal to create a subprogram
or package to avoid writing it a third time.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Thu, 2 Jun 2022 07:56:53 +0200

> What amendment can we suggest to the
Ada syntax so the if expression be
better written when used in an if
statement?

I would try to fix the problem at where it
is caused: ad hoc, unnamed logical
predicates! Syntactic sugar won't make
these go away.

All those Boolean expressions have
meaning, I suppose. The meanings could
be given a name. There would be facts,
about A, B and C, that make your
statement true, some not. What does it
state?

Compare this assembly of variables

((A and B) or else ((not A) and C)))

to a lambda expression or to a state
machine. Similar? It is the lowest level of
computation using a high level language.

> Again, I often find myself writing a
loop to search for something and then
performing one or another action
depending on the success of the search.

Again, there is an algorithm, typically
Find_the_First, that will return an index
(or cursor). I'd use the return value in a
conditional.

From: Brad Moore
<bj.mooremr@gmail.com>

Date: Fri, 10 Jun 2022 09:38:35 -0700

> if (A and B) or else (not A and C)
then...

> if (if A then B else C) then...

I agree with the other comments, and in a
case like this, I might consider writing an
expression function to improve
readability.

Using cryptic letters for Booleans makes
it difficult to assign a name to the
expression function, but if you apply it to
a less generic example, this becomes
easier to do.

For example, if A is renamed to
Weekday, B means (time < 9:00pm), and
C means (time < 6:00pm) you could
write:

function Shopping_Mall_is_Open return

Boolean is (if Weekday then

Earlier_than_9_PM else

Earlier_than_6_PM);

Then your other code would simply be,

if Shopping_Mall_is_Open then ...

Brad

Problems Using
Generic_Dispatching_Const
ructor

From: Mark Lorenzen
<mark.lorenzen@gmail.com>

Subject: Problems using
Generic_Dispatching_Constructor

Date: Wed, 1 Jun 2022 04:36:02 -0700
Newsgroups: comp.lang.ada

The generic function Ada.Tags.
Generic_Dispatching_Constructor is
defined as:

generic

 type T (<>) is abstract tagged limited

private;

 type Parameters (<>) is limited private;

 with function Constructor (Params: not

 null access Parameters) return T is

 abstract;

function

Ada.Tags.Generic_Dispatching_Constructor

(The_Tag : Tag; Params : not null access

Parameters) return T'Class;

This gives us some problems when calling
an instance of Ada.Tags.
Generic_Dispatching_Constructor when
the Params parameter is an in-mode
parameter of a function e.g.:

function Make (From_Params : in P) return

T'Class

 is

 function Make_T_Class is new

 Ada.Tags.Ada.Tags.

 Generic_Dispatching_Constructor

 (T => T, Parameters => P,

 Constructor => ...);

102 Ada Pract ice

Volume 43, Number 2, June 2022 Ada User Journal

 begin

 ...

 return Make_T_Class

 (Some_Tag, P'Access);

 end Make;

This results in a compile-time error:

error: access-to-variable designates
constant

Why is function Ada.Tags.
Generic_Dispatching_Constructor defined
as:

function

Ada.Tags.Generic_Dispatching_Constructor

(The_Tag : Tag; Params : not null access

Parameters) return T'Class;

and not as e.g (note the access-to-constant
type):

function

Ada.Tags.Generic_Dispatching_Constructor

(The_Tag : Tag; Params : not null access

constant Parameters) return T'Class;

I guess we could declare function Make
as (note the in-out mode):

function Make (From_Params : in out P)

return T'Class

But this is horrible as functions should
never ever have in-out or out-mode
parameters (or side effects in general).

Why are access types used at all?

Is there another workaround?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 1 Jun 2022 14:42:40 +0200

> Why are access types used at all?

Parameters are kind of a factory object,
you want to have the factory mutable.

> Is there another workaround?

In my practice I never had a case when I
could obtain the tag needed for generic
dispatching constructor. All my designs
ended up with a mapping

key -> constructing function

with an explicit registering the type in the
mapping.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 1 Jun 2022 16:25:16 -0500

>> Why are access types used at all?

We needed this usable to implement
dispatching stream attributes (the generic
dispatching constructor was intended to
be a user-definable generalization of the
mechanism of the class-wide stream
attribute). The stream attributes probably
used access types because "in out"
parameters were not allowed for functions
when they were invented. (So mistakes
piled on mistakes. :-)

> Parameters are kind of a factory object,
you want to have the factory mutable.

Right. For instance, consider a factory
where each object gets a unique id while
being constructed. You would want to
update the Next_Id component at the end
of each construction.

>> Is there another workaround?

> In my practice I never had a case when I
could obtain the tag needed for generic
dispatching constructor. All my designs
ended up with a mapping

> key -> constructing function

>

> with an explicit registering the type in
the mapping.

Right. Generally, one uses a mapping of
some sort of key or menu choice or
whatever to tags. If you aren't adverse to a
giant case statement, then you might as
well call the constructor directly. (And if
you are willing to use access-to-functions,
you don't need OOP at all.) So this
"factory" is mostly a bone for OOP
purists.

The one exception is the case where you
have an external tag as the key, since you
can get the tag from that directly. But
even that is really a mapping (one built by
the implementation).

