

Ada User Journal Volume 43, Number 2, June 2022

ADA
USER
JOURNAL

Volume 43

Number 2

June 2022

Contents
Page

Editorial Policy for Ada User Journal 80

Editorial 81

Quarterly News Digest 82

Conference Calendar 103

Forthcoming Events 108

Articles from the AEiC 2022 Work-in-Progress Session

 S. T. Taft, S. Baird, C. Dross

“Defining a Pattern Matching Language Feature for Ada” 111

 S. T. Taft

“A Work Stealing Scheduler for Ada 2022, in Ada” 112

 J. Zou, X. Dai, J. A. McDermid

“Resilience-Aware Mixed-Criticality DAG Scheduling on Multi-cores for Autonomous Systems” 113

 I. Sousa, A. Casimiro, J. Cecílio

“Artificial Neural Networks for Real-Time Data Quality Assurance” 117

 J. Loureiro, J. Cecílio

“Deep Learning for Reliable Communication Optimization on Autonomous Vehicles” 121

 M. Solé, L. Kosmidis

“Compiler Support for an AI-oriented SIMD Extension of a Space Processor” 125

 A. Jover-Alvarez, I. Rodriguez, L. Kosmidis, D. Steenari

“Space Compression Algorithms Acceleration on Embedded Multi-core and GPU Platforms” 129

 Z. Boukili, H. N. Tran, A. Plantec

“Fine-Grained Runtime Monitoring of Real-Time Embedded Systems” 133

Ada-Europe Associate Members (National Ada Organizations) 134

Ada-Europe Sponsors Inside Back Cover

80

Volume 43, Number 2, June 2022 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and December.
Copy date is the last day of the month of
publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics, such
as reliable software technologies, are
welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

� Refereed original articles on
technical matters concerning Ada
and related topics.

� Invited papers on Ada and the Ada
standardization process.

� Proceedings of workshops and
panels on topics relevant to the
Journal.

� Reprints of articles published
elsewhere that deserve a wider
audience.

� News and miscellany of interest to
the Ada community.

� Commentaries on matters relating
to Ada and software engineering.

� Announcements and reports of
conferences and workshops.

� Announcements regarding
standards concerning Ada.

� Reviews of publications in the field
of software engineering.

Further details on our approach to these
are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will be
relayed to the authors at the discretion
of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues
The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups to
find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be of
interest to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it a

wider audience. This includes papers
published in North America that are not
easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These may
represent the views either of individuals
or of organisations. Such articles can be
of any length – inclusion is at the
discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report on
events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal is
at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to print
reviews submitted from elsewhere at
the discretion of the Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be rapid.
Currently, accepted papers submitted
electronically are typically published 3-
6 months after submission. Items of
topical interest will normally appear in
the next edition. There is no limitation
on the length of papers, though a paper
longer than 10,000 words would be
regarded as exceptional.

 81

Ada User Journal Volume 43, Number 2, June 2022

Editorial

I would like to start this editorial by celebrating the fact that the Ada-Europe International Conference on Reliable Software

Technologies (AEiC-2022) is taking place once again as a physical event, this time in Ghent, Belgium, on June 14-17. The

conference features an excellent and diversified technical program, also including a rich set of opportunities for socializing,

namely by participating in very interesting cultural and social events.

Coincidentally, but not surprisingly, in this issue of the Ada User Journal we start the publication of the AEiC-2022 Work-in-

Progress Session proceedings. We include eight contributions, covering a set of quite diverse topics related to the development

of reliable embedded systems, or to the Ada language.

The first two papers address Ada-related features and are both written by authors from AdaCore (USA and France). They report

on work in progress concerning the definition of a pattern-matching feature for Ada, and the definition of a work-stealing

scheduler for the lightweight threads supporting the Ada 2022 parallel programming features. Then, a paper describing a new

scheduling method for mixed-criticality systems is presented. The work, by authors from the University of York, UK, is

developed for multi-core systems and considers the survivability of low criticality tasks, to achieve consistent schedules for

different operation modes. After that, two papers by authors from the Faculty of Sciences of the University of Lisbon are

included. In both cases, machine learning techniques are used for improving aspects of embedded systems operation, either the

quality of sensor data or the communication reliability. The following paper is authored by Marc Solé and Leonidas Kosmidis,

who are affiliated with the Barcelona Supercomputing Center (BSC) and the Polytechnic University of Catalonia (UPC). They

report on their experience using the GCC and LLVM compilers, which were extended with the necessary support for the

SPARROW hardware, an AI-oriented SIMD Extension. Then we include another paper authored by BSC/UPC researchers, but

in this case co-authored by David Steenari, from the European Space Agency. The paper presents ongoing work concerning the

acceleration of data compression, considering two different embedded GPU platforms for space systems for evaluation

purposes. It is shown that despite the typically sequential nature of data compression tasks, it is possible to achieve performance

improvements through parallelization. Finally, this first part of the AEiC-2022 WiP proceedings is closed with a paper authored

by Zineb Boukili, Hai Nam Tran and Alain Plantec, from the University of Brest. The paper presents a new approach for run-

time timing monitoring of real-time systems, which is based on the definition of fine-grained program blocks and on code

instrumentation on defined monitoring points.

In this AUJ issue we also include, as usual, the News Digest section prepared by Alejandro R. Mosteo, and the Calendar and
Events sections, prepared by Dirk Craeynest.

 Antonio Casimiro
Lisboa

June 2022
 Email: AUJ_Editor@Ada-Europe.org

82

Volume 43, Number 2, June 2022 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 82
Ada-related Events 82
Ada-related Resources 86
Ada-related Tools 87
Ada and Operating Systems 89
Ada Inside 90
Ada and Other Languages 90
Ada Practice 94

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor
Dear Reader,

It is a recurrent topic that the several
GNAT versions with differing licensing
conditions are [not] a hindrance to Ada
adoption. Well, AdaCore has announced
that, moving forward, their open source
oriented compiler offering will be unique
and based on the FSF source tree, hence
with similar licensing as other GCC
languages [1]. Let us hope this puts to rest
the FUD of the past. No doubt, a
remarkable piece of news and a valiant
bet on the future of Ada with the backing
of a healthy open source community.

Likewise on the open source front, the
HAC compiler continues making steady
progress [2], with several versions
released in close succession, each one
bringing more Ada features into its
supported subset.

This issue has seen a livelier than usual
section on Ada and other languages. I
always find interesting the examination of
the interrelations between languages, and
how Ada fits in the past, present and
future of programming languages. Will
Ada ever regain a spot in the top-10 more
popular languages [3]? Perhaps we should
devise our own ranking using Metrics that
Really Matter™ ;-)

Sincerely,
Alejandro R. Mosteo.

[1] “A New Era for Ada/SPARK Open
Source Community”, in Ada-related
Tools.

[2] “HAC v.0.2”, in Ada-related Tools.

[3] “When Ada Was the Most Popular
Language”, in Ada and Other
Languages.

Ada-related Events
Ada Monthly Meeting
Proposal
From: Fernando Oleo Blanco

<irvise_ml@irvise.xyz>
Subject: Ada Monthly Meeting proposal
Date: Tue, 26 Apr 2022 21:59:32 +0200
Newsgroups: comp.lang.ada

Ada Monthly meeting

A lot of programming languages and
libraries have meetings/meetups which
allow the community to come together
and have a chat, share ideas, proposals
and better utilise and prioritise resources.
I would like to propose such a thing for
Ada. Below is the rationale and some
ideas and issues.

Motivation

The Ada community does not have many
members when compared to other more-
well-known communities. However, there
is still some interest in having such type
of meetings. This was recently made clear
after some people pointed out they would
like to have such a thing in the Ada
channel over at Gitter. Personally, I have
been playing with such an idea and that is
what motivated me to volunteer to drive
the FOSDEM Ada devroom. I would like
the Ada community to be more well-
known and to have the same "resources"
as other communities have. Meetups are a
great way to have fun while discussing
what we like.

In meetups, generally speaking, users and
developers can have the opportunity to
come together, discuss topics, organise
resources and help each other. Gray-
beards can help those who still have
colour in their hair; people with different
sets of skills can propose solutions to
problems that one may not have thought
about; authors can present their work or
improvements, etc.

I would like to use the Fortran community
as an example of what meetups can be
used for. Here is their April monthly-
meetup [1]. Their meetups are very
focused on the language and "core"
tooling... it is quite formal, which may not
be what I had in mind, but we will see.

Who is this meant for?

Everybody who is interested.

I would love to see some participation of
the "Industrial users". But I understand
that a lot of people see Ada (and many
other things) as a tool that brings food to
the table, nothing more. So I would not
expect much participation from this
group.

Newbees and beginners are also more
than welcome. They could see what
people are doing and ask questions that
are better answered in real-time by a
person, instead of a Stackoverflow for
example.

Though, I must be honest, it is mostly
intended for people who are interested in
the Ada environment and open side of
things. This is due to the nature of an
open discussion and building a
community. I have to be clear and state
that I am biased towards the libre
community, so feel free to point out any
unfairness.

How would it work? What would it be
like?

THIS IS JUST A PROPOSAL, SO TAKE
THIS AS SUCH.

I thought about having a Jitsi room (libre
conference system that runs on your
browser, same one used in FOSDEM) [2]
where people can just join and take part of
the meetup. Jitsi allows for moderation
too, so that speakers can talk without
getting interrupted and it has a built in
chat too.

So, what could be discussed? Here is a
short list of ideas that I have:

- Monthly news: new releases, milestones,
etc.

- Presentations: attendees may want to
present their work or do a
demonstration. They may also want to
have a discussion about a specific topic
(for example, the use of Ada 2022
features).

Ada-related Events 83

Ada User Journal Volume 43, Number 2, June 2022

- General libre software coordination:
improvements to tools, feedback,
questions, past goals discussion, etc.

- General Q&A related to Ada and open
to everybody.

 - Finally, a beer.

I think this could take place between 30
min to 2 hours, depending on the load of
that day. Presentations would obviously
be much more casual and easy when
compared to an actual conference.

Potential issues

 1. Not enough interest.

 2. Timezones! Users are mostly
concentrated in Asia-Pacific/EU/USA,
which makes coordination an absolute
pain. A compromise could be found, or
a different schedule each month in such
a way that everybody benefits (and gets
screwed) equally.

 3. Organisation: there needs to be a
main organiser and a second in
command-

 4. There also needs to be a medium in
which to spread the word. C.L.A is a
good starting point, but may not reach
the wider community. It could be
announced everywhere every month,
but that is a tedious task.

Feedback

I have probably said enough, even if not
everything has been said. So I would like
to ask for your feedback and specially
know if you would be interested.

Thank you for your time,
Fer

References

[1] https://invidious-us.kavin.rocks/
watch?v=8-_ll4f0gN8

[2] https://meet.jit.si/

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Wed, 27 Apr 2022 03:34:13 -0700

I would give it a try!

From: Anton F.
<imantonmeep@gmail.com>

Date: Wed, 27 Apr 2022 05:57:49 -0700

I would participate, this is a great idea!

From: Yossep Binyoum
<yossep237@gmail.com>

Date: Thu, 28 Apr 2022 13:41:03 -0700

From Senegal, I totally agree with you. I
give it a try

From: Stéphane Rivière
<stef@genesix.org>

Date: Fri, 29 Apr 2022 16:38:39 +0200

Great idea!

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 29 Apr 2022 11:29:47 -0700

> * Ada Monthly meeting

Sounds interesting. I maintain Emacs Ada
mode; this might be a good forum to get
less formal feedback than the ada-mode
mailing list provides, and to hear what
other IDEs are doing for Ada.

> 1. There also needs to be a medium in
which to spread the word. C.L.A is a
good starting point, but may not reach
the wider community. It could be
announced everywhere every month,
but that is a tedious task.

This sounds like a job for a bot; post the
same announcement to a list of channels.

Anyone have a bot written in Ada?

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Fri, 29 Apr 2022 21:04:15 -0700
> Anyone have a bot written in Ada?

I have a bot in Ada for Telegram. It is a
bridge between Telegram, Jabber, IRC
channel. It also checks whether telegram
newcomers are not bots.

I can write another one for
announcements, but I'm not sure if
announcing once a month is worth the
time :)

From: Ada Forge
<adaforge2022@gmail.com>

Date: Sat, 30 Apr 2022 06:57:40 -0700

> * Ada Monthly meeting

Nice initiative!

Take me into account ;-)

Some subjects I’d love to debate with
connoisseurs:

 * UTF8-Unicode-UCS: a lot of libraries
are offering strings manipulation. State
of the art? (Gnat extensions, GnatColl,
Matreska, Gnoga, ...)

 * OS system usage (as (system shell)
scripts, in place of Perl, Python, …):
GNAT extensions; Florist; GnatColl;
SoWebIO; ...

 * Windowing (2D) systems: future of
GTK/Glade; Qt6/Qt Design Studio;
GWindows; Apple new SwiftUI MV
paradigm; wxWidgets; Tk/TCL

 * How let anyone collaborate to
AdaForge’s new up-todate 2022 Ada
resources gathered all over the internet
;-) Through GitHub?

Cheers, with a fresh Belgian Ada 10°
William

From: Rod Kay <rodakay5@gmail.com>
Date: Sun, 1 May 2022 02:33:47 +1000

> Nice initiative!

 Agree. Count me in Fer :).

> Some subjects I’d love to debate with
connoisseurs:

If by 'OS system usage' you mean using
Ada to write shell-like scripts then you
may be interested in aShell. It builds on
Florist to allow Ada applets to more
easily call and interact with OS
commands.

The last release allowed OS commands to
be called but only from a single Ada task.
Atm, work is being done on supporting
task safe commands (via a spawn
manager).

The next release will contain the task safe
commands and be Alire enabled, and
should occur in the next month or so
(Lady Ada willing).

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 30 Apr 2022 18:01:24 +0100
> Some subjects I’d love to debate with

connoisseurs:

> * UTF8-Unicode-UCS: a lot of
libraries are offering strings
manipulation. State of the art? (Gnat
extensions, GnatColl, Matreska, Gnoga,
...)

> * Windowing (2D) systems: future of
GTK/Glade; Qt6/Qt Design Studio;
GWindows; Apple new SwiftUI MV
paradigm; wxWidgets; Tk/TCL

Oh, I suppose I'll have to attend given I
have experience with those.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Tue, 3 May 2022 21:06:21 +0200

Thank you all for your answers :)

It seems that there is some interest to have
a meeting from time to time. Other
communication channels where this
proposal was posted did have other people
who liked the idea. For this reason, I
would like to share some extra bits.

- I think the duration of such a monthly
meeting could last for an hour, an hour
and a half.

- Could take place monthly in a varying
schedule to suite some people better
than other depending on the month.

- The level of preparation is much much
lower than FOSDEM or similar venues.
This is more about building community
than actually making this a serious thing.

- The structure could be the following:

 - < 5 mins to share important news and
announcements.

 - < 30 mins reserved for already
predefined talks/topics. More on this
later.

 - < 15 min discussion topic. Maybe there
is something that needs a few words, it's
the topic of the day.

 - < 15 mins to let people share their
work or improvements.

 - The main meeting ends here.

84 Ada-related Events

Volume 43, Number 2, June 2022 Ada User Journal

 - Open questions and answers and
general discussion/beer.

- The main section of the meeting
(without Q&A and open discussion)
could be recorded and uploaded to video
hosting sites. I know a few people
already reupload the videos from
FOSDEM, so I could as them to do the
same for us. This would allow us to keep
a log of the meetings:)

- We could use Jitsi, a libre conference
software. I know it has recording
capabilities, but I think only for
Youtube... :/ We will see whether Jitsi
actually works or not...

If this works, I think we could start
inviting people to share their work and
reserve time for their presentations. That
is what the second section of the proposed
schedule is about. At the beginning,
obviously, we will focus on making sure
that the meetings work and see if there is
enough recurring interest in them.

Regarding the actual planning. I will not
make it for the month of May unless
someone steps and helps a fair bit. On a
personal note, I have a lot of work and it
will just keep increasing so I cannot
ensure that I will be able to pull
something like this alone. FOSDEM was
already a bit exhausting :P

I also want to see what you have to offer
both in direct help or if you have projects
that you want to talk about, presentations,
etc. Some of you already commented on
it, so I am happy.

What is your opinion about this? I would
need feedback :)

Also, please, feel free to repost this to
other social media. The more Ada users
and people interested in Ada the better! If
you want a contact, feel free to email me
at "irvise(AT)irvise.xyz".

Bye now :D
Fer

CFP: ACM SIGAda HILT
2022 Workshop at ASE '22,
October 14, 2022
From: Tucker Taft

<tucker.taft@gmail.com>
Subject: CFP: ACM SIGAda HILT 2022

Workshop at ASE '22, October 14, 2022
Date: Thu, 12 May 2022 18:30:15 -0700
Newsgroups: comp.lang.ada

Please consider contributing to this
workshop sponsored by ACM SIGAda:
HILT-2022 - Supporting a Rigorous
Approach to Software Development

This is the seventh in the HILT series of
conferences and workshops focused on
the use of High Integrity Language
Technology to address challenging issues
in the engineering of highly complex
critical software systems.

High Integrity Language Technologies
have been tackling the challenges of
building efficient, safe, reliable software
for decades. Critical software as a domain
is quickly expanding beyond embedded
real-time control applications to the
increasing reliance on complex software
for the basic functioning of businesses,
governments, and society in general.

For its 2022 edition, HILT will be a
workshop of the 37th IEEE/ACM
International Conference on Automated
Software Engineering, ASE’2022. The
workshop will be held on October 14th
2022.

See ASE’2022 (https://conf.researchr.org/
home/ase-2022) for details on the venue
and registration.

Topics

HILT 2022 will focus on the increasing
synergies between formal methods
(theorem provers, SAT, SMT, etc.),
advanced static analysis (model checking,
abstract interpretation), software design
and modeling, and safety-oriented
languages. From separate fields of
research, we now observe a stronger
interconnection between formal methods,
advanced analytics, modeling and design
of software, and safety features in
programming languages. Programming
languages for safety-critical systems now
routinely integrate theorem proving
capabilities like C/ACSL or
Ada/SPARK2014. Theorem provers such
as Coq, Lean, or Isabelle have established
themselves as a viable strategy to
implement compilers or properly define
the semantics of domain-specific
languages. Tools for verifying modeling
languages such as AADL, Lustre, and
Simulink are becoming more widely
available, and with the emergence of the
Rust language and the release of Ada
2022, safety is rising to the top of
concerns for critical systems developers.

The HILT’2022 workshop seeks to
explore ways High Integrity Language
Technologies leverage recent advances in
practical formal methods and language
design to deliver the next generation of
safety-critical systems.

Call for Papers

This workshop is focused on the practical
use of High Integrity languages,
technologies, and methodologies that
enable expedited design and development
of software-intensive systems.

Key areas of interest include experience
and research into:

 Practical use of formal methods at
industrial scale

 IDE-support for formal methods

 Model-level analysis tools for systems
like SysML, AADL, Lustre, or Simulink

 Continuous Integration and Deployment
based on advanced static analysis tools

 Safety-Oriented Programming Language
features *Qualification of Language
Tools for critical systems use

The workshop accepts either short
abstracts (2-3 pages) for presentation, or
full papers (up to 8 pages).

Submissions should conform, at time of
submission, to the ACM Proceedings
Template:
https://www.acm.org/publications/
proceedings-template.

The workshop proceedings will be
published in the ACM Ada Letters.
Authors of accepted papers will be invited
to contribute to a special issue of the
Springer Journal on Software and Tools
for Technology Transfer (STTT).

Paper submission

Submit your paper through Easychair at
https://easychair.org/conferences/
?conf=hilt22

Important Dates

 Submission Deadline: July, 1 2022

 Notification to authors: August, 1 2022

 Workshop Date: October 14th 2022.

From: Tucker Taft
<tucker.taft@gmail.com>

Date: Thu, 12 May 2022 18:34:51 -0700
> Please consider contributing to this

workshop sponsored by ACM SIGAda:
HILT-2022 - Supporting a Rigorous
Approach to Software Development

Website is:
https://conf.researchr.org/home/hilt-2022

Press Release - AEiC 2022,
Ada-Europe Reliable Softw.
Technol.
[The event took place during 14-17 June,
so this announcement is for the record.
—arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Press Release - AEiC 2022, Ada-
Europe Reliable Softw. Technol.

Date: Sun, 12 Jun 2022 20:59:37 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

FINAL Call for Participation

***UPDATED Program Summary ***

26th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2022)

14-17 June 2022, Ghent, Belgium

www.ada-europe.org/conference2022

Ada-related Events 85

Ada User Journal Volume 43, Number 2, June 2022

Organized by Ada-Europe in cooperation
with ACM SIGAda, SIGPLAN, SIGBED,

the Ada Resource Association (ARA),
and Ghent University

#AEiC2022 #AdaEurope
#AdaProgramming

*** Final Program available on the
conference web site ***

*** Add tutorials and/or a workshop to
your conference registration ***

www.ada-europe.org/conference2022/
tutorials.html

* Welcome Event on Tuesday evening *

Press release:

26th Ada-Europe Int'l Conference on
Reliable Software Technologies.

International experts meet in Ghent.

Ghent, Belgium (12 June 2022) - Ada-
Europe together with the University of
Ghent, Belgium, organizes from 14 to 17
June 2022 the 26th Ada-Europe
International Conference on Reliable
Software Technologies (AEiC 2022). The
event is in cooperation with the Ada
Resource Association (ARA), and with
ACM's Special Interest Groups on Ada
(SIGAda), on Embedded Systems
(SIGBED) and on Programming
Languages (SIGPLAN).

The Ada-Europe series of conferences has
over the years become a leading
international forum for providers,
practitioners and researchers in reliable
software technologies. These events
highlight the increased relevance of Ada
in general and in safety- and security-
critical systems in particular, and provide
a unique opportunity for interaction and
collaboration between academics and
industrial practitioners.

This year's conference offers 4 tutorials, a
keynote and an invited presentation, a
technical program of 7 sessions with
refereed papers industrial, work-in-
progress, and vendor presentations, a
social program with exciting sightseeing,
2 workshops and a Birds-of-a-Feather
session.

Four tutorials are scheduled on Tuesday,
targeting different audiences:

- "Moving up to Ada 2022", by S. Tucker
Taft, AdaCore, USA;

- "Numerics for the non-numerical
analyst", by Jean-Pierre Rosen, Adalog,
France;

- "The ALiRe Package Manager", by
Fabien Chouteau, France, and Alejandro
Mosteo, Spain;

- "The HAC Ada Compiler", by Gautier
de Montmollin, Switzerland.

Vendors and organisations will be present
in the networking area on Wednesday and
Thursday include AdaCore, VECTOR,
and Ada-Europe.

Two eminent speakers have been invited
to deliver a talk on each of the core
conference days:

- on Wed Jun 15, a spotlight talk (remote)
by Anita Carleton, Software Engineering
Institute, Carnegie Mellon University,
USA, about "Envisioning the Future of
Software Engineering";

- on Thu June 16, a keynote talk by
Cristina (Crista) Lopes, School of
Computer Sciences, University of
California at Irvine, USA, who will
present her study on "The Curious Case
of Code Duplication in Github".

The technical program on Wednesday and
Thursday presents 7 sessions with 9
journal-track refereed technical papers, 9
industrial, 12 work-in-progress, and 2
vendor presentations in sessions on: Uses
of Ada, Real-Time Systems 1,
Development Challenges, Advanced
Systems, Special-Purpose Systems,
Verification Challenges, Real-Time
Systems 2.

On Friday the conference hosts for the 7th
year the workshop on "Challenges and
new Approaches for Dependable and
Cyber-Physical Systems Engineering"
(DeCPS 2022), as well as the
International Workshop "AADL Unveiled
by its Practitioners (ADEPT), and a
Birds-of-a-feather (BoF) Meeting on the
"Future of ASIS and Vendor Independent
Tools".

Peer-reviewed papers have been
submitted to a special issue of the Journal
of Systems Architecture and are heading
towards final acceptance as open-access
publications. Industrial and work-in-
progress presentations, together with
tutorial abstracts, will be offered
publication in the Ada User Journal, the
quarterly magazine of Ada-Europe.

The social program includes for all
tutorial and conference participants on
Tuesday evening a Welcome Aperitif
with beer tasting (sponsored by
VECTOR) in the "Il Trovatore" lounge, a
restored medieval cellar. On Wednesday
evening, a private visit to the Gothic-style
St Bavo's Cathedral and its artistic
treasures including the world-famous Lam
Gods altarpiece, followed by the
Conference Banquet in the Abt, the only
brasserie from the famous Orval Trappist
beer brewery. And on Thursday evening a
boat tour in the canals that encircle the
medieval center of Ghent, followed by a
conference dinner at the Carlos Quinto
restaurant, a short walk across the heart of
town from the boat pier.

The Best Presentation Award will be
offered during the Closing session.

The full program is available on the
conference web site.

Online registration is still possible.

Latest updates:

The 16-page "Final Program" is available
at www.ada-europe.org/conference2022/
docs/AEiC_2022_Final_Program.pdf.

Check out the tutorials in the PDF
program, or in the schedule at
www.ada-europe.org/conference2022/
tutorials.html.

Registration is done on-line. For all
details, select "Registration" at www.ada-
europe.org/conference2022 or go directly
to https://registration.ada-europe.org.

A printed Conference Booklet with
abstracts of all technical papers

and industrial presentations will be
included in every conference

handout, and is available at
www.ada-europe.org/conference2022/
docs/AEiC_2022_Booklet_of_
Presentations.pdf.

AEiC 2022 is sponsored by Ada-Europe
(www.ada-europe.org), AdaCore
(www.adacore.com), and VECTOR
(www.vector.com/int/en/products/
products-a-z/software/vectorcast).

Help promote the conference by
advertising it.

Recommended Twitter hashtags:
#AEiC2022 #AdaEurope
#AdaProgramming.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2022 Publicity
Chair

Dirk.Craeynest@cs.kuleuven.be

* 26th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2022)

* June 14-17, 2022, Ghent, Belgium *
www.ada-europe.org/conference2022

(V6.1)

Ada/SPARK Crate of the
Year 2022
From: Fabien Chouteau

<fabien.chouteau@gmail.com>
Subject: Ada/SPARK Crate Of The Year is

back!
Date: Tue, 28 Jun 2022 05:55:20 -0700
Newsgroups: comp.lang.ada

https://blog.adacore.com/announcing-the-
2022-ada-spark-crate-of-the-year-award

[AdaCore offers 3 prizes of $2,000 each
for the following categories: best overall

86 Ada-related Resources

Volume 43, Number 2, June 2022 Ada User Journal

Ada crate, best crate written in SPARK
and/or contributing to the SPARK
ecosystem, and best Ada or SPARK crate
for embedded software. Candidates can be
submitted until the end of the year.
—arm]

Ada-related Resources
[Delta counts are from May 9th to July
18th. —arm]

Ada on Social Media
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada on Social Media
Date: 18 Jul 2022 14:53 CET
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 3_328 (+26) members [1]

- Reddit: 8_078 (+73) members [2]

- Stack Overflow:
 2_238 (+26) questions [3]

- Libera.Chat: 75 (=) concurrent users [4]

- Gitter: 123 (+8) people [5]

- Telegram: 143 (+4) users [6]

- Twitter: 30 (=) tweeters [7]

 75 (+22) unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Repositories of Open Source

software
Date: 18 Jul 2021 15:16 CET
To: Ada User Journal readership

Rosetta Code: 915 (+15) examples [1]

 39 (+1) developers [2]

GitHub: 763* (=) developers [3]

Sourceforge: 244 (-30) projects [4]

Open Hub: 214 (=) projects [5]

Alire: 260 (+17) crates [6]

Bitbucket: 87 (-1) repositories [7]

Codelabs: 53 (=) repositories [8]

AdaForge: 8 (=) repositories [9]

*This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada in language popularity

rankings
Date: 18 Jul 2021 15:51 +0100
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 30 (-3) 0.38%
 (-0.08%) [1]

- PYPL Index: 17 (=) 0.86% (+0.05%) [2]

- IEEE Spectrum (general): 31 (=)
 Score: 38.8 (=) [3]

- IEEE Spectrum (embedded): 9 (=)
 Score: 38.8 (=) [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/
top-programming-languages/

Source-code Hosting with
Ada Build Tools?
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Subject: Source-code hosting with Ada build

tools?
Date: Fri, 25 Mar 2022 18:56:56 +0200
Newsgroups: comp.lang.ada

I'm planning to move a biggish Ada
project from being hosted on my own
website to some hosting service, such as
GitHub or OSDN. Are there any such
services that, in addition to a source-code
repository, bug reporting, etc., also offer
access to Ada compilers (that is, gnat) for
building the SW, ideally on several
platforms?

At the moment, my main candidate is
OSDN, but they explicitly do not provide
any compilers.

TIA for any suggestions, whether with
build tools or without.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 25 Mar 2022 21:00:58 +0000

Github Actions do this; though I've never
set them up for myself.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 26 Mar 2022 21:15:16 +0200
> Github Actions do this; though I've

never set them up for myself.

Are you sure that they provide Ada
compilers that can be called in an Action?

I tried to find out on the GitHub website,
but could not find any list of all the
supported languages, and the specific
languages they mentioned did not include
Ada, and the Search function found
nothing about Ada compilation.

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 25 Mar 2022 21:01:31 +0000
> Github Actions do this; though I've

never set them up for myself.

AdaCore has one for GNAT.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 26 Mar 2022 21:04:13 +0000
> Are you sure that they provide Ada

compilers that can be called in an
Action?

https://github.com/marketplace/actions/
ada-actions-toolchain

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 26 Mar 2022 23:46:26 +0200
> https://github.com/marketplace/actions/

ada-actions-toolchain

Thanks! Looks like GitHub will be my
choice, although I am usually a bit
Microsoft-allergic.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 27 Mar 2022 16:59:47 +0100
> Thanks! Looks like GitHub will be my

choice, although I am usually a bit
Microsoft-allergic.

Aren't we all?

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue, 29 Mar 2022 21:38:09 +0300

I have my Ahven library and other things
at Sourcehut.org:
https://hg.sr.ht/~tkoskine/ahven/

They offer generic build service also. For
example see one build log from Ahven:
https://builds.sr.ht/~tkoskine/job/675294

Ada-related Tools 87

Ada User Journal Volume 43, Number 2, June 2022

The build configurations are Yaml files:
https://hg.sr.ht/~tkoskine/ahven/browse/
.builds?rev=tip

Of course, the software on the build
service is limited to open source operating
systems and compilers (Linux, *BSDs,
GNAT).

Commercial Ada compilers (like
ObjectAda or Janus/Ada) are not
supported.

For commercial Ada compilers, I run
internal homelab network with Jenkins
master on RPi4 and couple of Windows
build slaves, which fetch the source code
from Sourcehut periodically.

And before starting to use Sourcehut, read
the caveats page:
https://sourcehut.org/alpha-details/

I also think that Sourcehut doesn't support
hosting of "random" binaries, like hand-
crafted release tar balls. These kinds of
things I locate on a separate virtual server.

Ada-related Tools
HAC v.0.0996
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann: HAC v.0.0996
Date: Sat, 22 Jan 2022 01:41:09 -0800
Newsgroups: comp.lang.ada

HAC (HAC Ada Compiler) is a small,
quick, open-source Ada compiler,
covering a subset of the Ada language.
HAC is itself fully programmed in Ada.

Web site: http://hacadacompiler.sf.net/

Source repositories:

#1 svn: https://sf.net/p/hacadacompiler/
code/HEAD/tree/trunk/

#2 git: https://github.com/zertovitch/hac

* Main improvements since v.0.095:

 - range checks on discrete subtype
assignment (:=) and conversion

 - short-circuit logical operators: "and
then", "or else"

 - for S = Scalar subtype: S'First, S'Last,
S'Succ, S'Pred, S'Pos, S'Val, S'Image,
S'Value, S'Range attributes

 - for A = array object or array subtype:
A'First [(N)], A'Last [(N)], A'Range
[(N)], A'Length [(N)] attributes

 - "&", "<", ">", "=", "/=" operators
defined for the String type (additionally
to HAL.VString type)

 - CASE choices admit ranges

 - forward declarations for subprograms

Enjoy!

PS: for Windows there is an integrated
editor that embeds HAC: LEA:
http://l-e-a.sf.net

HAC v.0.1
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann: HAC v.0.1
Date: Sat, 14 May 2022 05:35:55 -0700
Newsgroups: comp.lang.ada

[Omitted common info to previous HAC
announcements. —arm]

* Main improvements since v.0.0996:

 - packages and subpackages are now
supported

 - modularity: packages and subprograms
can be standalone library units, stored in
individual files with GNAT's naming
convention, and accessed from other
units via the WITH clause

 - validity checks were added for a better
detection of uninitialized variables.

Package examples and modularity tests
have been added. Particularly, a new PDF
producer package with a few demos is
located in the ./exm/pdf directory.

Enjoy!
Gautier

PS: for Windows, there is an integrated
editor that embeds HAC:

LEA: http://l-e-a.sf.net

PPS: HAC will be shown at the Ada-
Europe conference (presentation +
tutorial)

http://www.ada-europe.org/
conference2022/

From: Doctor Who <doc@tardis.org>
Date: Sat, 14 May 2022 18:05:55 +0200

Which subset of the Ada language is
covered?

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sat, 14 May 2022 22:24:04 -0700
> which subset of the Ada language is

covered?

Quoting from ./doc/hac.txt (section
"Language subset"):

"The available Ada language subset
supported by HAC is so far, roughly, the
"Pascal subset", plus tasking, plus
packages, less pointers. From a different
perspective, HAC supports Ada 83, less
pointers, less generics, less unconstrained
types, plus a few items from Ada 95 and
2005. Recursion and nested subprograms
are supported."

and: "Tasks are implemented, but not
working yet."

From: Leo Brewin
<leo.brewin@monash.edu>

Date: Sun, 15 May 2022 10:14:41 +1000

I just tested this on macOS Monterey
12.3.1 and it works perfectly out of the
box (as expected for Ada code :).

Great work Gautier!

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Sun, 15 May 2022 02:39:36 +0100
> I just tested this on macOS Monterey

12.3.1 and it works perfectly out of the
box (as expected for Ada code :)

You beat me to it by an hour!

> Great work Gautier!

Ditto.

HAC v.0.2
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann: HAC v.0.2
Date: Sat, 25 Jun 2022 00:43:14 -0700
Newsgroups: comp.lang.ada

[Omitted common info to previous HAC
announcements. —arm]

* Main improvements since v.0.1:

 - a program run by HAC can exchange
data with the program running HAC,
through dynamically registered call-backs

 - see package HAC_Sys.Interfacing
 and demos:
 src/apps/exchange_native_side.adb
 src/apps/exchange_hac_side.adb

 - the compiler checks that all choices in
a CASE statement are covered

 - the compiler performs more compile-
time range checks and optimizes away
useless run-time checks when it's safe to
do so.

AdaStudio-2022 Rel.
12/04/2022 Free Edition
From: Leonid Dulman

<leonid.dulman@gmail.com>
Subject: Announce: AdaStudio-2022 release

12/04/2022 free edition
Date: Wed, 13 Apr 2022 01:19:51 -0700
Newsgroups: comp.lang.ada

I'm pleased to announce AdaStudio-2022.

It’s based on Qt-6.3.0-everywher
opensource (expanded with modules from
Qt-5.15: qtgraphicaleffects qtgamepad
qtspeech qtx11extras qtwinextras), VTK-
9.1.0, FFMPEG-5.1, OpenCV-4.5.5,
SDL2-2.0.20, MDK-SDK (wang-bin)
Qt6ada version 6.3.0 open source and
qt6base.dll, qt6ext.dll (win64),
libqt6base.so, libqt6txt.so (x86-64) built
with Microsoft Visual Studio 201 x64
Windows, gcc amd64 in Linux. Package
tested with GNAT gpl 2020 Ada compiler
in Windows 64bit, Linux amd64 Debian
11.1 AdaStudio-2022 includes next
modules: qt6ada, vtkada, qt6mdkada,
qt6cvada (with face recognition) and
voice recognizer.

Qt6Ada is built under GNU LGPLv3
license

88 Ada-related Tools

Volume 43, Number 2, June 2022 Ada User Journal

https://www.gnu.org/licenses/
lgpl-3.0.html.

Qt6Ada modules for Windows, Linux
(Unix) are available from Google drive
https://drive.google.com/drive/folders/
0B2QuZLoe-yiPbmNQRl83M1dTRVE?
resourcekey=0-b-M35gZhynB6-
LOQww33Tg&usp=sharing

WebPage is
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/index.html

[List of detailed files omitted. —arm]

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.pdf"

The simple manual how to build Qt6Ada
application can be read in "How to use
Qt6ada.pdf"

If you have any problems or questions, let
me know.

Leonid (leonid.dulman@gmail.com)

Generic Image Decoder v.10
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann: Generic Image Decoder v.10
Date: Sun, 17 Apr 2022 03:26:25 -0700
Newsgroups: comp.lang.ada

There is a new release of GID - the
Generic Image Decoder.

Home page: http://gen-img-dec.sf.net/

Project page #1:
http://sf.net/projects/gen-img-dec/

Project page #2:
https://github.com/zertovitch/gid

New in V.10

* Added a decoder for the QOI (Quite OK
Image) format

* Added an "all RGB" demo

About GID

The Generic Image Decoder (GID) is an
Ada package for decoding a broad variety
of image formats, from any data stream,
to any kind of medium, be it an in-
memory bitmap, a GUI object, some other
stream, arrays of floating-point initial data
for scientific calculations, a browser
element, a device...

Animations are supported.

Features

* Standalone (no dependency on other
libraries, bindings...)

* Unconditionally portable code: OS-,
CPU-, compiler- independent code.

* Multi-platform, but native code built

* Task safe

* Endian-neutral

* Use of generics and inlining at multiple
nesting levels for fast execution

* Free, open-source

Currently supported formats are: BMP,
GIF, JPEG, PNG, PNM (PBM, PGM,
PPM), QOI, TGA.

SparForte 2.5
From: Ken Burtch <koburtch@gmail.com>
Subject: ANN: SparForte 2.5
Date: Wed, 27 Apr 2022 06:00:12 -0700
Newsgroups: comp.lang.ada

SparForte is my Ada-based shell,
scripting language and template engine.

Version 2.5 is available from
www.sparforte.com.

Changes since 2.4:

 New features/examples: 23

 Changes: 8

 Fixes: 26

Known Issues:

 On Raspian Bullseye, the calendar
package has rounding errors. Possibly
due to increased precision of time values
in the kernel.

 On FreeBSD 13, "environment corrupt"
errors are being reported when the spar
command runs another spar command.
Possibly due to out-of-data GCC Ada
for FreeBSD.

 Tab completion does not work
correctly on directory names containing
spaces.

Change Log can be viewed here:
https://www.sparforte.com/news/2022/
news_apr2022.html

A summary of new features can be
viewed here:
https://www.pegasoft.ca/coder/
coder_january_2022.html

SparForte is my hobby and is built with
the support of volunteers. It is open
source and is about 123,000 lines of code.
It has been in development since 2001.

GCC 12.1.0
From: Simon Wright

<simon@pushface.org>
Subject: ANN: GCC 12.1.0
Date: Wed, 11 May 2022 17:58:26 +0100
Newsgroups: comp.lang.ada

Find GCC 12.1.0 & tools for Intel silicon
(will run on M1 silicon under Rosetta) at
https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.1.0-x86_64

Built on High Sierra with Python 3.8
(because Apple have withdrawn 2.7 in
Monterey).

GCC 12.1.0 for Apple
Silicon (aarch64)
From: Simon Wright

<simon@pushface.org>
Subject: [ANN] GCC 12.1.0 for Apple

silicon (aarch64)
Date: Fri, 27 May 2022 14:05:19 +0100
Newsgroups: comp.lang.ada

Find at
https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.1.0-aarch64-1

SweetAda 0.10
From: Gabriele Galeotti

<gabriele.galeotti.xyz@gmail.com>
Subject: ANN: SweetAda 0.10
Date: Thu, 12 May 2022 14:54:29 -0700
Newsgroups: comp.lang.ada

I've just released SweetAda 0.10.

SweetAda is a lightweight development
framework to create Ada systems on a
wide range of machines. Please refer to
https://www.sweetada.org.

Release notes @
https://www.sweetada.org/
release_notes.html.

Downloads available @
https://sourceforge.net/projects/sweetada.

This release comes with a huge cleanup of
the whole system, with many changes in
all areas. The build system seems pretty
efficient and stable, with no redundant
actions, and is able to accommodate a
large set of configuration.

The profile agrees with Ravenscar, and all
platforms tested run OK, albeit many of
them in a very simple manner. Interrupt
handling is for some CPUs still only a
placeholder, but many of them are able to
handle at least a simple timer in order to
have a raw notion of time.

There is a Monitor module (very
exemplary) to do user interaction and the
Srecord module that could be used as a
built-in tool to execute fragments of code.
The Time module should provide basic
capabilities in order to manipulate a
datetime.

Many other changes, large cosmetic
refinements and an improved
documentation. Syntax changes to adhere
Ada 2012/202x and some generics
removed from I/O layers to simplify the
code and gain speed.

With SweetAda 0.10, I also provide new
toolchains based on GCC 11.3.0 (release-
20220429), you can find them at
SweetAda home or at SourceForge.
QEMU emulators are bumped to 7.0.0
(release-20220504).

Ada and Operat ing Systems 89

Ada User Journal Volume 43, Number 2, June 2022

Unfortunately, I can no longer provide OS
X toolchains due to increasing difficulties
in building the software (GCC and LLVM
disagree on the syntax of some CPU
instructions), and lack of time, sorry. But
this shouldn't be a problem since
SweetAda should be toolchain-agnostic.

Simple Components v4.62
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Simple Components v4.62
Date: Sat, 21 May 2022 12:03:59 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- Pipe stream implementation added;

- GNAT 12.1 bugs worked around in
several package, in particular, in
GNAT.Sockets.Server;

- Bug fix in Generic_Set procedure
Replace, parameter Updated unset;

- Bug fix in Tables.UTF8_Names
procedure Replace, parameter Offset
unset under circumstances.

PragmAda Reusable
Components
From: Pragmada Software Engineering

<pragmada@
pragmada.x10hosting.com>

Subject: [Reminder] The PragmAda
Reusable Components

Date: Wed, 1 Jun 2022 12:23:50 +0200
Newsgroups: comp.lang.ada

The PragmARCs are a library of (mostly)
useful Ada reusable components provided
as source code under the GMGPL or BSD
3-Clause license at
https://github.com/jrcarter/PragmARC.

This reminder will be posted about every
six months so that newcomers become
aware of the PragmARCs. I presume that
those who want notification when the
PragmARCs are updated have used
Github's notification mechanism to
receive them, so I no longer post update
announcements. Anyone who wants to

receive notifications without using
Github's mechanism should contact me
directly.

A New Era for Ada/SPARK
Open Source Community
From: Fabien Chouteau

<fabien.chouteau@gmail.com>
Subject: AdaCore Blog: A New Era For

Ada/SPARK Open Source Community
Date: Mon, 6 Jun 2022 01:56:27 -0700
Newsgroups: comp.lang.ada

I am sharing this here for people who
might not have seen it yet:

https://blog.adacore.com/a-new-era-for-
ada-spark-open-source-community

[The blog post announces the relicensing
of several AdaCore libraries as Apache
2.0 and the discontinuation of the
Community Edition in favor of the FSF
branch distributed through Alire. —arm]

I will be at the Ada-Europe conference
next week if someone wants to talk live
about these announcements.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 06 Jun 2022 09:03:25 -0700

Thanks for posting this.

I hope this will reduce the differences
among the GNAT versions available in
the various OS releases; they've been
causing headaches for Emacs ada-mode.
But probably not.

Alire 1.2.0
From: Fabien Chouteau

<fabien.chouteau@gmail.com>
Subject: [ANN] Alire 1.2.0
Date: Mon, 6 Jun 2022 01:57:09 -0700
Newsgroups: comp.lang.ada

The new release is here:
https://github.com/alire-project/alire/
releases/tag/v1.2.0

Adalog Components
From: J-P. Rosen <rosen@adalog.fr>
Subject: [Ann] Adalog components
Date: Mon, 27 Jun 2022 18:23:18 +0200
Newsgroups: comp.lang.ada

I have added a new component to ease
processing of CSV files. Moreover, I have
renamed package Debug to Tracer, there
were too many packages called Debug
around!

More details from Adalog's components
page:

https://adalog.fr/en/components.html

Ada and Operating
Systems
Building GNAT-FSF on
FreeBSD
From: William <william@sterna.io>
Subject: Building GNAT-FSF on FreeBSD
Date: Sat, 12 Feb 2022 21:09:54 +0100
Newsgroups: comp.lang.ada

I did succeed to build a modern gcc (with
Ada-GNAT FSF) on my FreeBSD 13.0
serveur. :-)

Fernando Oleo Blanco was very inspiring
to me (NetBSD porting), and I use
Simon J. Wright portings to macOS for
my Hackingtosh.

So I decided to do it too!

For now I did a quick try with plain gcc
«out of the box»: (story short)

1. Install gcc6-aux pkg from FreeBSD
port (2014 -- Last Updated on 2022-01-
26). (see also
http://www.dragonlace.net)

2. get gcc 10.3 src from GNU.org and
compile it with gcc6-aux (gnat
compiler seems OK)

3. get gcc 11.2 src from GNU.org and
compile it with the just installed
gcc/gnat 10.3

In the first place I thought it would not be
successful ...

Now it's time to build) and run the
ACATS 4.1y

I took a look at Simon’s ACATS
Testsuite on SourceForge, but I need to
understand those automated scripts.

I’d like to parallelise a maximum of
ACATS sub-projects in order to reduce
time.

WIP!!

See you later, William

From: Simon Wright
<simon@pushface.org>

Date: Mon, 14 Feb 2022 09:52:31 +0000

The section "Testing in GCC" in the
README tells how to run the tests
within the GCC framework that allows
parallel running. Note, you'll probably
have to hammer C-c to abort a parallel
run, the script doesn't respond well to that.

I would have liked to get parallelising
working, but those scripts! eww!

From: Simon Wright
<simon@pushface.org>

Date: Mon, 14 Feb 2022 11:45:05 +0000!

See this thread:
 https://gcc.gnu.org/
pipermail/gcc/2018-July/226729.html

90 Ada and Other Languages

Volume 43, Number 2, June 2022 Ada User Journal

[This thread discusses how to interrupt
Ada tests, as Ctrl-C fails sometimes.
–arm]

I'm not sure, but I think that GCC/Ada
folk regard the ACATS (2.6, I think) in
GCC as more of a confidence thing (DEC
used to call it an IVP, Installation
Verification Procedure) than a full check.

[...]

Ada Inside
Controlling ST7789 Screen
on a RPi Pico
From: Björn Lundin

<b.f.lundin@gmail.com>
Subject: Controlling st7789 screen from

Ada on a rpi Pico?
Date: Tue, 15 Feb 2022 22:18:44 +0100
Newsgroups: comp.lang.ada

So, I got my first Raspberry Pico :-)

I also got a 'Pico Explorer Base' device at
https://shop.pimoroni.com/products/
pico-explorer-base

This thing has a st7789 screen. I got it to
work with Python.

Now - I see that there is work done with
the Pico and Ada - the
https://pico-doc.synack.me seems to be a
good place to start.

I wonder if there is any port done already
for this screen in Ada? Google points me
to some python and some c/c++
implementations (whereof Pimoroni's
Github has some)

I also came across uGUI
http://embeddedlightning.com/ugui/
which looks interesting. Same question
there. Ada-port?

I hesitate to start translating one of the c-
libraries - butI probably will when time
permits if nothing is already in place.

From: jer...@synack.me
<jeremy@synack.me>

Date: Tue, 15 Feb 2022 18:03:26 -0800

The Pimoroni Picosystem uses a ST7789
screen, I have a driver for it in
picosystem_bsp:
https://github.com/JeremyGrosser/
picosystem_bsp/tree/master/src

I didn't implement every feature or video
mode that the controller supports, so you
may need to modify it to suit your needs.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Wed, 16 Feb 2022 08:19:07 +0100

Perfect - just what I was looking for -
thanks.

And thanks for the effort of bringing Ada
to the Pico

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Fri, 18 Feb 2022 01:31:20 -0800
> I also came across uGUI

<http://embeddedlightning.com/ugui/>
which looks interesting

I have an Ada binding [1] for the
excellent lvgl GUI library [2]. You can
get it from Alire: [3].

It is not in a very beginner friendly shape,
but it works. I am trying to do a new
version that should be easier to integrate
into existing projects.

Don't hesitate to say hello on the Ada
Gitter chat if you want a little help setting
it up.

[1] https://github.com/
Fabien-Chouteau/lvgl-ada

[2] https://github.com/lvgl/lvgl

[3] https://alire.ada.dev/crates/
lvgl_ada.html

Ada in James Webb Space
Telescope? (Cont.)
[Refer to AUJ 43-1: Ada in James Webb
Space Telescope? —arm]

From: <yaofei509@gmail.com>
Subject: Re: is Ada used in James Webb

Space Telescope software?
Date: Sat, 23 Apr 2022 02:17:05 -0700
Newsgroups: comp.lang.ada
> Interesting. I hadn't heard of the

MA31750 but it appears to be a 16 bit
processor that implements the MIL-
STD-1750A instruction set(!), which I
didn't know about either. Apparently it
was made in the 1980s but has since
been superseded by SPARC
architecture cpu's.

MAS31750 + XGC M1750-Ada is a very
wonderful combination, we use them for
several large satellites, and they are
working in orbit now.

Ada and Other
Languages
Comparing Languages wrt
Energy, Speed, and Memory
Use
From: Jerry <list_email@icloud.com>
Subject: Comparing languages wrt energy,

speed, and memory use
Date: Sun, 20 Feb 2022 14:59:29 -0800
Newsgroups: comp.lang.ada

This paper comparing 27 languages with
respect to energy use, speed, and memory
use is interesting. Of course Ada fares
very well.

https://greenlab.di.uminho.pt/
wp-content/uploads/2017/10/sleFinal.pdf

It is linked from this Slashdot page which
I'm sure is full of useless chatter.

https://developers.slashdot.org/story/22/
02/20/0143226/is-it-more-energy-
efficient-to-program-in-rust

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Tue, 22 Feb 2022 21:10:15 +0100

I am going to leave a few comments
regarding this paper that I believe
everybody should know. Most if not all of
these points are known and have been
discussed pretty much everywhere; but a
lot of people still don't know them or
decide to not know.

The programs are taken from the
Programming Language Benchmark
Game. It is a really cool place that has
been providing relevant performance data
for a lot of languages and comparisons
between them.

Here are a few issues:

1. Quite a few languages are not using
heavily optimised code. Ada is one of
them. Some of those programs are
written as direct translations from other
languages from people that did not know
the target language.

2. Quite a few of those implementations
have not been touched in years. Some of
the improvements that may have taken
place in the language/compiler/tools
may not be taken advantage of. For
example, the Ada examples are
compiled with -gnatNp. Can anybody
say what that flag does? x)

3. C/C++/Rust programs are competing
on getting the best results. Other
languages are lagging behind. For
example, Fortran could do much better.
For a couple of years, the Fortran
community has been improving the code
little by little and they have managed to
improve their results.

4. There are a few controversies. Some
languages are not allowed to use higher
performance libraries while others are
allowed their stl or equivalent that do
actually use the same tools as those
libraries. There are a few other
examples.

As the very Game page says, do not take
the benchmark seriously. But the
communities whose languages are on top,
they do not care. Ada has been left behind
since very few or nobody is actually
taking a look at the code and optimising
it...

We may want to improve some of these
tests as a community :)

Here are some relevant links:

- Benchmark game:
https://benchmarksgame-
team.pages.debian.net/benchmarksgame/

Ada and Other Languages 91

Ada User Journal Volume 43, Number 2, June 2022

- Source code: https://salsa.debian.org/
benchmarksgame-team/
benchmarksgame

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 22 Feb 2022 21:49:25 +0100

> [good remarks snipped]

Let me add another one: this benchmark
does not consider the energy (electrical
and human) needed to write and debug
the program... That could also make a
difference for Ada!

Real ecological balance, taking
everything into account, is tricky...

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Thu, 24 Feb 2022 08:42:40 +0100

> Here are a few issues:

One issue is Isaac Gouy's clever
approach. (Not complaining. I sometimes
didn't see the point, though, of adopting
another new thing. For example, when a
new regex library was introduced (at
some point) that wins hands down by
using optimization techniques you'd
associate with JIT compilers or with data
based optimization. Worth knowing
about, but how does it help comparing
languages when all you can do is link it to
your program?)

> 1. Quite a few languages are not using
heavily optimised code

Can you be specific? For example, at least
one program currently leads by making
extensive use of x86 intrinsic ops.

Some use OMP with intrinsic 128bit ops.
Does GNAT have a similar parallel loop
in the language yet?

 > 2. Quite a few of those
implementations have not been touched
in years.

Yet, some Ada program versions #N+m
used to run faster than #N. They now
have their speed difference wiped out or
even reversed... I see -march=ivybridge
now, so the hardware has likely changed.

> For example, the Ada examples are
compiled with -gnatNp. Can anybody
say what that flag does? x)

GNAT User's Guide explains. (su-p-press
and front end i-N-lining)

> 3. C/C++/Rust program are competing
on getting the best results. Other
languages are lagging behind. For
example, Fortran could do much better.

How would Fortran do much better? Can
Ada learn from that?

[...]

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Thu, 24 Feb 2022 10:13:46 +0100
> Can you be specific? For example, at

least one program currently leads by

making extensive use of x86 intrinsic
ops.

> Some use OMP with intrinsic 128bit
ops. Does GNAT have a similar
parallel loop in the language yet?

Yes, take a look at
https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
program/nbody-gnat-2.html

it is taken from the Pascal implementation
and uses intrinsics. My point is that some
of these programs are not very Ada-like.
As far as I remember, there was one
ported from Lua.

Ada 2022 will have a parallel keyword.
However, it is still not supported in FSF
GNAT, which is the one being used. Also,
the benchmarks are Ada 2012.

> GNAT User's Guide explains. (su-p-
press and front end i-N-lining)

Correct, but that switch has been
deprecated for years, it is no longer
documented anywhere in the new GNAT
releases:

https://gcc.gnu.org/onlinedocs/
gcc-11.2.0/gnat_ugn.pdf

> How would Fortran do much better?
Can Ada learn from that?

Fortran is using Intel's compiler, which is
known to be one of the best. Fortran
compilers can much more easily generate
SIMD code and parallelise loops
automatically if the code is idiomatic.

Also, Fortran was not fourth in the race a
while ago. For example Ada overtook
Fortran for a small while. December
2018:

https://web.archive.org/web/
20181204085050/
https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
which-programs-are-fast.html

Ada is fourth; while it was fifth in April
of that same year

https://web.archive.org/web/
20180406194535/
https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
which-programs-are-fastest.html

A year later, December 2019, Fortran
could be fourth if it were not for that
outlier

https://web.archive.org/web/
20191225172425/
https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
which-programs-are-fastest.html

These are the current results:

https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
box-plot-summary-charts.html

Take a look at the evolution of the
language podium. It has always been
C/C++/Rust, but starting from the fourth
position there has been quite a bit of
rivalry.

[...]

Some Ada programs could use better
algorithms, data structures, more up-to-
date syntax and parallelism. Some
programs could also be made a bit
prettier.

The crux of the issue is that you can
pretty much always get peak performance
for non-GC languages if you use the same
techniques, libraries, algos, state of the art
compilers, etc. And in a lot of real world
cases, even GC languages are not an
issue, see Go, Erlang, Julia, Lisp (SBCL),
Nim...

But as someone (I believe it was the dean
of TUM (Technische Universität
München)) once said: "Everybody knows
that rankings are flawed, but it is always
better to be on top." The benchmark game
is, after all, a game. But some people took
it too seriously. It is just like Football
hooligans.

From: 25.Bx943 <25bz493@nada.net>
Date: Sat, 26 Feb 2022 22:31:19 -0500

After 30+ years, I started messing around
with FORTRAN again. One of the things
I noticed in the various help notes online
was that programmers were actually
comparing the numbers of cycles and
executables size for various ways of
solving any particular problem.

This sort of thinking is rarely seen these
days except in the microcontroller
universe - and less even there because the
RAM/ROM and speed of those devices
has increased.

Ada is another language where overall
"efficiency" gets at least some
consideration.

With energy costs rising, maybe it's time
to see MORE of these discussions and
comparisons. Global warming be damned
- this is a MONEY issue :-)

Oh, and rising power costs may disappear
the crypto sector. Those boxes full of
GPUs calculating like mad - the power
usage is stupendous. Once the energy-in
begins to exceed the value of the
Bitcoins-out - it's all over.

From: Robin Vowels
<robin.vowels@gmail.com>

Date: Sun, 27 Feb 2022 00:05:48 -0800
> This paper comparing 27 languages

with respect to energy use, speed, and
memory use is interesting.

Has this anything to do with reality?

What of the design, testing, and
maintainability of programs?

92 Ada and Other Languages

Volume 43, Number 2, June 2022 Ada User Journal

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 27 Feb 2022 09:56:12 +0100
> What of the design, testing, and

maintainability of programs?

There are a couple of obvious problems
with this study. First, the same data
structures, algorithms, and checks for
validity of input and so on, in any
imperative language, should give very
similar machine code. Robert Dewar
famously had a collection of equivalent
Ada and C programs that produced
identical machine code when compiled
with gcc. The kind of differences reported
between C and Ada or C++ shows that
they are comparing apples to orangutans.

Second, there are hard data that show that,
compared to low-level languages like C,
Ada requires 1/2 the effort to reach
deployment, and 1/40 the effort to correct
post-deployment errors. The energy
consumption for that additional effort
should swamp the kind of small
differences during execution that this
study concentrates on.

Ruby and Ada
From: Mockturtle

<framefritti@gmail.com>
Subject: Ruby and Ada
Date: Sat, 14 May 2022 01:46:06 -0700
Newsgroups: comp.lang.ada

As you can guess, my language of choice
is Ada, but for small things (often "fast
and dirty") or to extract stuff from text
files, I use Ruby which I prefer over its
direct competitor (much more popular)
Python.

Then I read this [1]

> Its [of Ruby] creator, Yukihiro “Matz”
Matsumoto, combined parts of his
favorite languages (Perl, Smalltalk,
Eiffel, Ada, and Lisp)

This could explain the affinity... (Matz is
an Adaist! :-))

[1] https://dev.to/rodmatola/ruby-the-best-
language-for-general-automation-gh3

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sat, 14 May 2022 05:53:21 -0700

> [...] for small things [...]

BTW: for the small things you describe,
you could be tempted by HAC (see the
post about HAC a few hours later) :-)...

From: Sromatic <sriviere17@gmail.com>
Date: Thu, 19 May 2022 00:40:03 -0700

I second that.

We wrote in HAC more than 10K lines of
code for about 50 scripts (the biggest ones
being 3000 lines, the smallest ones less
than 20 lines).

I know Ruby (also very nice for small
jobs) but HAC is much better (1) and
certainly faster too (2)... We also coded a
lot in Bash (there are sysadmin here too :)

(1) One of the great things about HAC is
that all HAC code can be compiled by
GNAT.

(2) HAC is 7 times faster than Bash

And, recently, HAC handles packages...
This allows us to have modularity in the
Ada way... HAC is a golden nugget ;)

From: Robin Vowels
<robin.vowels@gmail.com>

Date: Sat, 14 May 2022 06:40:44 -0700

> [...] for small things [...]

Whether it's small and dirty or something
big, PL/I is a great all-rounder.

When Ada Was the Most
Popular Language
From: Nasser M. Abbasi

<nma@12000.org>
Subject: The good old days, when Ada was

the most popular language
Date: Sat, 28 May 2022 06:46:15 -0500
Newsgroups: comp.lang.ada

Check out this cool video

"Most Popular Programming Languages
1965 - 2019"

https://www.youtube.com/watch?
v=Og847HVwRSI

At 1:47

1986. Ada was the most popular
programming language! (before C took
over)

Who Needs Types? Types
Make Code Ugly.
From: Nasser M. Abbasi

<nma@12000.org>
Subject: who needs types? Types makes

code ugly.
Date: Wed, 1 Jun 2022 22:21:08 -0500
Newsgroups: comp.lang.ada

So Ada had it wrong all the time it seems.
From

https://python.land/python-tutorial

In a strongly typed language, you need to
specify the exact type of each variable,
like String, int, and float. It gets even
uglier when objects are involved.

Now let’s look at Python variables. In
Python, we can do exactly the same
without types:

my_name = "Erik"

my_age = 37

my_salary = 1250.70

As you can see, the Python variant is a lot
cleaner and easier on the eyes!

And about possible error, they defend this
by saying:

In addition, you’ll find out soon enough
during testing and fix the error before the
software ever goes to production.

So, I think all that Ada needs is to simply
remove all those ugly types from the
language and it will become popular like
Python is now :)

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 2 Jun 2022 12:47:25 +0200
> In addition, you’ll find out soon enough

during testing and fix the error before
the software ever goes to production.

Proven beyond a shadow of a doubt by
the total absence of security
vulnerabilities in production S/W.

From: Ldries46 <bertus.dries@planet.nl>
Date: Thu, 2 Jun 2022 13:47:14 +0200

As someone who has been programming
since 1966 I used several different
languages, Algol 60, Fortran, Basic,
C/C++ and Ada, I like using strong types
because the ugliest faults you can create
are the ones where you by accident use
different types in the input or the output
of a formula. Such a fault can work
through the complete program and result
in very tough error searching. Even when
the basic failure is using an integer
instead of a real.

From: Ben <ben.usenet@bsb.me.uk>
Date: Thu, 02 Jun 2022 16:02:58 +0100

The terms being using in this thread might
need to tightened up a bit because I think
you are talking about strong /static/
typing.

Python is strongly typed (though exactly
how "strong" is debatable) but the
checking is at run-time, so you have to
rely on testing rather than the compiler. (I
don't know enough about Python's new
static type syntax to know how strong that
is, but it's optional anyway.)

Also, the OP is talking about removing all
those messy types, and that's not
necessarily the same as removing type
checking, either static type checking or at
run-time. Haskell, for example, has strong
static type checking, but a lot of Haskell
is written without ever using a type
because of the language's type inference
mechanism.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Thu, 02 Jun 2022 10:28:44 -0700

Ada and Other Languages 93

Ada User Journal Volume 43, Number 2, June 2022

That's just one tutorial. It likely doesn't
reflect the views of most Python
programmers. The "python.land" site has
no official connection

And for what it's worth, Python 3.5 added
support for "type hints".

https://docs.python.org/3/library/
typing.html

From: John Perry <devotus@yahoo.com>
Date: Thu, 2 Jun 2022 15:10:57 -0700
> (I don't know enough about Python's

new static type syntax to know how
strong that is, but it's optional anyway.)

I think you mean "type hints"? The
compiler doesn't check even when you
specify the types. The typing is available
for those who want to use a 3rd party tool
to do "stuff" with it. See the note at the
top of this page:
https://docs.python.org/3/library/typing.ht
ml

The Python runtime does not enforce
function and variable type annotations.

They can be used by third party tools such
as type checkers, IDEs, linters, etc.

> but a lot of Haskell is written without
ever using a type because of the
language's type inference mechanism.

Correct me if I'm wrong, but do you mean
"without ever *specifying* a type"?
Several recent languages have taken this
up, including Kotlin and Rust, though you
have to specify some types.

Even Ada 2022 offers it with the
"renames" keyword.

From: Ben <ben.usenet@bsb.me.uk>
Date: Fri, 03 Jun 2022 01:02:27 +0100
> Correct me if I'm wrong, but do you

mean "without ever *specifying* a
type"?

"Use" was not at all the right word since
writing 1+2 obviously "uses" types, but I
don't mean specify either since types can
be specified simply by writing literals like
"abc". I should have said something more
technical like "without writing any type
signatures".

> Several recent languages have taken this
up, including Kotlin and Rust, though
you have to specify some types.

Yes, and even C++.

> Even Ada 2022 offers it with the
"renames" keyword.

I don't know much about Ada newer than
about 1990. I'll take a look...

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Thu, 02 Jun 2022 23:37:51 -0400
>I don't know much about Ada newer

than about 1990. I'll take a look...

My condolences -- taken literally, that
means you are working with Ada-83
(ANSI/Mil-Std 1815A -- later ISO-
8652:1987). The first significant update
was Ada-95 (and Air Force funded
original GNAT).

From: Ben <ben.usenet@bsb.me.uk>
Date: Fri, 03 Jun 2022 19:13:50 +0100
> My condolences

Thanks, but I'm fine. Knowing was not
intended to imply forced to use.

> -- taken literally, that means you are
working with Ada-83 (ANSI/Mil-Std
1815A -- later ISO-8652:1987).

That was the only Ada I knew, though I
knew about the updates of course.
Couldn't find any reference to type
inference though. Is there a good place to
go for a "summary of changes" between
standards?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 3 Jun 2022 21:34:36 +0300
> Couldn't find any reference to type

inference though.

As far as I know, the only type
inferencing that occur in Ada is in for-
loops where the type of the loop
parameter variable is inferred from the
range or container over which the loop
iterates.

> Is there a good place to go for a
"summary of changes" between
standards?

Each version of the Reference Manual has
an "Introduction" chapter that contains a
subheading "Language Changes", but
those are quite terse. If you can find a
"Rationale" document for the version in
question that usually has much more
information about the changes.

For Ada 95:
https://www.adaic.org/resources/
add_content/standards/95rat/rat95html/rat
95-contents.html

For Ada 2005:
https://www.adaic.org/ada-resources/
standards/ada05/

For Ada 2012:
http://www.ada-auth.org/standards/
rationale12.html

For Ada 2022, see the Intro in the RM:
http://www.ada-auth.org/standards/
ada2x.html

For Ada 2022 I don't think there is any
"Rationale" document (yet), but there are
various summaries and introductions, for
example:
https://learn.adacore.com/courses/
whats-new-in-ada-2022/chapters/
introduction.html

From: John Perry <devotus@yahoo.com>
Date: Fri, 3 Jun 2022 13:27:38 -0700
> As far as I know, the only type

inferencing that occur in Ada is in for-
loops where the type of the loop
parameter variable is inferred from the
range or container over which the loop
iterates.

FWIW I was referring to the optional
specification of type in a renames clause,
which I first read about here:
https://blog.adacore.com/
ada-202x-support-in-gnat

(section "Renames with type inference").

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 3 Jun 2022 19:28:23 -0500
> For Ada 2022 I don't think there is any

"Rationale" document (yet)

It is not likely that there will be an Ada
2022 Rationale, as no one has stepped up
to write it or pay John Barnes to write it.
The closest thing we have is the Jeff
Cousins overview, which I can't find an
on-line reference to (or my copy, for that
matter). I'll check with Jeff and hopefully
get more information.

From: Wesley Pan
<wesley.y.pan@gmail.com>

Date: Fri, 17 Jun 2022 10:33:07 -0700
> no one has stepped up to write it or pay

John Barnes to write it.

How much would it likely cost to pay
someone to generate the Ada2022
rationale? Maybe the community can join
together to help fund the work?

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 17 Jun 2022 13:46:18 -0700
> How much would it likely cost to pay

someone to generate the Ada2022
rationale?

Compared to Ada 2012, the 2022 changes
look fairly modest.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 17 Jun 2022 21:06:14 -0500
> How much would it likely cost to pay

someone to generate the Ada2022
rationale?

Dunno, you'd have to ask John.

I did get a copy of Jeff Cousin's overview
that I'll put up on Ada-Auth.org when I
get time (probably not until next month).

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Sat, 18 Jun 2022 10:29:02 -0000
>>> It is not likely that there will be an

Ada 2022 Rationale

See my follow-up to Randy's June 3
posting quoted above, that I posted on 4
Jun in this newsgroup with subject

94 Ada Pract ice

Volume 43, Number 2, June 2022 Ada User Journal

"What's new in Ada 2022?" (copied
below).

Executive summary:

- John Barnes wrote a 46 page overview
on what's new in Ada 2022; it is
available as a new appendix in his latest
book "Programming in Ada 2012 with a
Preview of Ada 2022";

- Jeff Cousin's overview was published in
the Ada User Journal (AUJ), and is
already available in the online AUJ
archive.

Recent addition:

Earlier this week, Tucker Taft presented a
very interesting half-day tutorial "Moving
up to Ada 2022" at the 26th Ada-Europe
International Conference on Reliable
Software Technologies (AEiC 2022), held
in Ghent, Belgium. The event was
announced in this newsgroup and via
various mailing lists and social platforms.
Tutorial participants got a nice overview
of what's new in Ada 2022 and practical
examples of how to use the new features.

(http://www.adaeurope.org/
conference2022/tutorials.html#T1).

To conclude, I repeat below my earlier
posting with more information on, and
pointers to, John's and Jeff's
contributions:

Two additional sources of information on
Ada 2022 exist:

- the Ada User Journal;

- the new book by John Barnes.

The Ada User Journal (AUJ,
http://www.ada-europe.org/auj/home) has
published several articles the last few
years about the changes in Ada 2022
(then called Ada 220x).

The latest contribution was the above
mentioned overview by Jeff Cousins. It is
available from the AUJ online archive:

Ada User Journal, Volume 41, Number 3,
September 2020

Jeff Cousins: "An Overview of Ada
202x", pp.159-175

http://www.ada-europe.org/archive/auj/
auj-41-3-withcovers.pdf?page=43

And then there's of course the new edition
of John Barnes' book: "Programming in
Ada 2012 with a Preview of Ada 2022"

https://www.cambridge.org/core/books/
programming-in-ada-2012-with-a-
preview-of-ada2022/AD30275F35
CCECB97EAB80ABC32B019C

Previews of the various sections are
available on the cambridge.org site
mentioned above, such as the first page of
the Preface at
https://www.cambridge.org/core/books/
abs/programming-in-ada-2012-with-a-

preview-of-ada2022/preface/21277
D825A1D24906949F642B4AD8BE8

That page includes:

"[...] the main chapters describe the 2016
updated version of Ada 2012 in detail.
The book concludes with a major
appendix describing the key new features
of Ada 2022".

(2016 refers to the year of publication by
ISO of the Corrigendum which revised
Ada 2012.)

I asked John Barnes about the differences
between the original "Programming in
Ada 2012" and this new book, apart from
the extra appendix on Ada 2022. He
provided the following info.

“The main changes are twofold.

 In the main body, I have updated it to
cover all changes introduced by the 2016
corrigendum. I have corrected all known
errors (there were quite a lot) and many
cross references were wrong.

An idea of the amount of change can be
gathered by noting that the original
version had just 6 AIs mentioned in the
Index. The new edition mentions 55 AIs
in the index.

I also updated the text of the main body to
use aspects rather than pragmas where
relevant.

So the body is now Ada 2016 although we
don't usually talk about that.

The new appendix (46 pages) covers all
major features of Ada 2022. The
associated website also has things such as
the full syntax for Ada 2022 in a style
matching the book (that's another 30
pages). Also an updated table of the
facilities in containers (14 pages). And
some worked examples using new
features especially using the big integer
packages (currently another 14 pages).

 Each chapter of the main book ends with
a checklist outlining the new features and
referring to the appropriate place in
appendix 4 where they are discussed.

-- John Barnes, 14 May 2022, with
permission"

I hope this helps.

Dirk Craeynest

From: Paul Rubin
<no.email@nospam.invalid>

Date: Sat, 18 Jun 2022 15:16:46 -0700
> To conclude, I repeat below my earlier

posting with more information on, and
pointers to, John's and Jeff's
contributions: ...

> I hope this helps.

Yes, thanks, those references are useful
for understanding the changes introduced
in Ada 2022. I had thought the idea of a
formal rationale was different: not just to

explain the changes, but also to explain
from an authoritative standpoint why the
decisions were made. I don't know how
important rationales traditionally have
been in the Ada world. But, Ada 2012
introduced a much larger set of changes
than Ada 2022 did. So I can understand if
a rationale was more important in 2012
than in 2022.

I guess if the higher-end Ada community
thought that a 2022 rationale was
necessary, they would have required it
and funded it. As a not-so-serious user or
wannabe user, I don't think I need it, but
that's just me.

I do notice long after reading "Ada
Distilled" that most of the discussions on
this group about technical aspects of Ada
still baffle me. So I think a more
advanced online tutorial would do some
good. I believe the current Ada Wikibook
is nice for beginners but doesn't cover
more advanced topics all that well.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 20 Jun 2022 16:40:06 -0500
> - Jeff Cousin's overview was published

in the Ada User Journal (AUJ), and is
already available in the online AUJ
archive.

Correct. The version of Jeff's overview I
have is quite a bit newer than the version
from the AUJ, and has many errors
corrected. So I would suggest reading that
version rather than the original AUJ
version (but of course, only once I can get
it posted).

Ada Practice
GtkAda for GTK4?
From: Andreas Almroth

<andreas@almroth.com>
Subject: GtkAda for GTk4?
Date: Sun, 13 Feb 2022 07:32:23 -0800
Newsgroups: comp.lang.ada

Looking at the excellent support for GTK
in GtkAda over the past many years,
which I have enjoyed using, I was looking
for (aka googling) references to any initial
thoughts/work on having GtkAda to also
support GTK4.

I know, GTK4 has only been "out" for a
little over a year, but it would be
interesting to know if anyone is
considering doing this. I would be glad to
participate, although with limited know-
how of the inner workings of GtkAda, but
at least testing perhaps.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 13 Feb 2022 17:46:04 +0100

Well, knowing GTK's disastrous history it
cannot be "also", it must be either 3 or 4.

Ada Pract ice 95

Ada User Journal Volume 43, Number 2, June 2022

GTK 4 breaks basically everything one
could ever think of.

To me new features in GTK 4 do not look
worth changing the API again, not even
useful, just fancy stuff. It seems that GTK
team keep on breaking the API rather out
of fun than necessity. Instead of
hardening the code. GTK 3 is still buggy
as hell.

Of course, at some point one will have to
migrate, but how about sitting GTK 4
over and going straight to GTK 5? Unless
they lose remaining users...

GtkAda is maintained by AdaCore, so it is
them [whom you have] to ask.

From: Andreas Almroth
<andreas@almroth.com>

Date: Sun, 13 Feb 2022 12:26:11 -0800

[…]

 > Of course, at some point one will have
to migrate, but how about sitting GTK 4
over and going straight to GTK 5? Unless
they lose remaining users...

Well, they might, but it is still based on C,
which is easier to interface to from Ada,
than say C++ (which I have found
cumbersome). Most other GUI
frameworks are based on C++, for
instance QT. QTAda is as far as I know
not maintained (I haven't seen much in a
very long time).

[...]

From: Andreas Almroth
<andreas@almroth.com>

Date: Mon, 14 Feb 2022 00:45:07 -0800

First, I have to correct myself... Seems
Leonid Dulman provides QT5 and QT6
support as part of Ada Studio (google
qt6ada). Just saw another post on the
adagorge.org re-design, and found QT
that way…

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 13 Feb 2022 21:45:57 +0100
> Well, they might, but it is still based on

C, which is easier to interface to from
Ada, than say C++ (which I have found
cumbersome).

Absolutely. C API is a huge advantage.
However GTK and stuff is monstrous,
practically impossible to handle manually.

GtkAda bindings are generated by a tool
designed by AdaCore. This tool might
require massive changes when migrating
to GTK 4.

I cannot speak for AdaCore, but I think
any help will be welcome.

Good luck.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 13 Feb 2022 22:35:44 +0000

>> Well, knowing GTK's disastrous
history it cannot be "also", it must be
either 3 or 4. GTK 4 breaks basically
everything one could ever think of.

It's almost like wxAda would've been
better...

> Well, they might, but it is still based on
C, which is easier to interface to from
Ada, than say C++

Can confirm, binding C++ is too easy to
burn out on, having done so on wxAda.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sun, 13 Feb 2022 23:46:01 -0800
> GtkAda bindings are generated by a

tool designed by AdaCore. This tool
might require massive changes when
migrating to GTK 4.

I wrote that python script years ago, when
the XML files that describe the gtk+ API
were actually pretty bad type-wise. The
script is full of special cases, and very
ugly. I don't think anyone should use it as
a basis for binding to gtk 4, it would
likely be much better to restart from
scratch. I believe the XML files have
improved significantly since then, and are
used by more language bindings, too, so
that could likely be simplified.

From: Andreas Almroth
<andreas@almroth.com>

Date: Mon, 14 Feb 2022 00:47:53 -0800
> I wrote that python script years ago [...]

Thanks Emmanuel for your input. Seems
it indeed would be a larger effort, and as
Dimitry states, perhaps one should wait
for the next major release. It will take
some time in any event to create the
interface binding.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Mon, 14 Feb 2022 20:50:20 +0100
> I wrote that python script years ago

This may be worth mentioning...

Fortran also has a GTK binding [1]. It is
also autogenerated with a Python script.
As far as I can remember, the change
from GTK3 to 4 was not too big. It did
obviously require changes and a bit of
elbow grease, but they had GTK4 support
as soon as it became official. The actual
code is present here [2].

This may serve as a comparison or
reference for what may be needed. It is
obvious that the Fortran people did have a
different starting point and Fortran is a
different language. I am just including it
for reference.

[1] https://github.com/vmagnin/gtk-
fortran

[2] https://github.com/vmagnin/gtk-
fortran/tree/gtk4/src

What Is the Name of the “|”
Symbol?
From: Matt Jaffe <matt.jaffe@gmail.com>
Subject: What is the name of the | symbol?
Date: Fri, 25 Mar 2022 12:04:57 -0700
Newsgroups: comp.lang.ada

In using it in a named association array
aggregate, its semantic are "and" --- e.g.,
some_1D_array := (1 | 3 | 7 => 5, others
=> 10) sets elements 1 and 3 and 7 to the
value 5. In a case statement, its semantics
are "or" --- e.g. when 1 | 3 | 7 => ... any of
the values 1, 3, or 7 for the case
expression will select the ... code for
execution. Is there a single name for that
symbol (the |) that seems to have
different semantics depending on context?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 25 Mar 2022 23:21:37 +0100

ARM 2.1(15/3)

(http://www.ada-auth.org/standards/
aarm12_w_tc1/html/AA-2-1.html#I1201)
says its name in Ada is "vertical line".

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 25 Mar 2022 21:24:32 -0700

The Unicode name is U+007C
VERTICAL LINE, alias name vertical
bar.

/ is U+002F SOLIDUS, alias names slash
and virgule. I haven't heard of the name
"solidus" used for symbols other than /.

From: Matt Jaffe <matt.jaffe@gmail.com>
Date: Fri, 25 Mar 2022 12:16:04 -0700

In using it in a named association array
aggregate, its semantics are "and" --- e.g.,
some_1D_array := (1 | 3 | 7 => 5, others
=> 10) sets elements 1 and 3 and 7 to the
value 5. In a case statement, its semantics
are "or" --- e.g. when 1 | 3 | 7 => ... any of
the values 1or 3, or 7 for the case
expression will select the ... code for
execution. Is there a single name for that
symbol (the |) that seems to have
different semantics depending on context?

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>

Date: Fri, 25 Mar 2022 19:23:19 +0000

How about reading it like this (read with a
fixed-width font):

a := (1 | 3 | 7 => 5, others => 10)

if the index is one or three or seven then
five else ten fi

Similar syntax appeared in Algol 68. | is
frequently used for "alternatives" -- it's
just a question of what's being referred to.
Here, it's all the alternative indexes that
map to a specific value.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 25 Mar 2022 22:03:08 +0200

96 Ada Pract ice

Volume 43, Number 2, June 2022 Ada User Journal

That is a quirk of natural language, where
"and" and "or" are used in non-
mathematical ways. You could as well
describe the aggregate as saying "if the
index is 1 or 3 or 7, the element is 5", and
you could describe the case statement as
saying "this when-branch is executed
when the case selector is 1 and 3 and 7".

As '|' is used in some logical formalisms
for disjunction ("or"), and in syntactical
notation (BNF) to separate alternatives, I
tend to read it as "or".

> Is there a single name for that symbol
(the |) that seems to have different
semantics depending on context?

For the name, see
https://en.wikipedia.org/wiki/Vertical_bar
, where indeed "vertical bar" seems
favoured. However, I'm pretty sure that I
have seen "solidus" used, too, but
Wikipedia says that is a synonym for
"slash" (/). Wiktionary does not recognize
"solidus" as a term for any punctuation
mark.

From: Chris Townley <news@cct-
net.co.uk>

Date: Fri, 25 Mar 2022 23:24:45 +0000

Probably wrong, but for a Unix user since
the last century, I call it 'pipe'

From: Matt Jaffe <matt.jaffe@gmail.com>
Date: Sun, 27 Mar 2022 11:57:48 -0700
> Probably wrong, but for a Unix user

since the last century, I call it 'pipe'

Well, non-judgmental type that I am, I'm
not going to say you're "wrong", but pipe
is the name and usage for that symbol
when programming a Unix shell. Its
semantics in Ada are quite different, so I
don't think calling it pipe quite fits. (So I
guess I'm not a pipe-fitter either ;-)

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 26 Mar 2022 00:58:53 +0000
> Probably wrong, but for a Unix user

since the last century, I call it 'pipe'

Or bar.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sat, 26 Mar 2022 17:38:59 -0700

> Or bar.

Emacs ada-mode grammar calls it BAR.

From: Matt Jaffe <matt.jaffe@gmail.com>
Date: Sun, 27 Mar 2022 12:01:05 -0700

> Emacs ada-mode grammar calls it BAR.

"Bar" sounds like the best alternative so
far; I think that's what I'll use when
talking to my students.

Thanks.

From: Chris Townley
 <news@cct-net.co.uk>

Date: Sat, 26 Mar 2022 02:01:38 +0000

> Or bar.

No that is for after work ;)

Aggregate with (parens)
Considered Obsolescent
From: Simon Wright

<simon@pushface.org>
Subject: Aggregate with (parens) considered

obsolescent
Date: Mon, 11 Apr 2022 17:15:08 +0100
Newsgroups: comp.lang.ada

GCC 12. with the -gnat2022 switch,
supports (a large part of) ARM 2022. One
of the changes is AI12-0212[1], the use of
square brackets [] in array aggregates.

I was surprised to find that the compiler
reports the use of parentheses () for array
aggregates as obsolescent! To quote
PR104751[2],

=============

Compiling

 procedure New_Syntax is
 T : array (1 .. 5) of Integer;
 begin
 T := (1, 2, 3, 4, 5);
 end New_Syntax;

with -gnat2022 -gnatwj gives

new_syntax.adb:4:09: warning: array
aggregate using () is an obsolescent
syntax, use [] instead [-gnatwj]

but use of parens is not in Annex J; use of
brackets is an option, AARM 202x Draft
32, 4.3.3(49.m).

Having -gnatwj as part of -gnatwa makes
this very intrusive.

=============

The fact that it happens with -gnatwa,
which is a switch that I suspect quite a lot
of us use, will be particularly annoying
for those who use -gnatwe (treat warnings
as errors) and who want to support
multiple compiler releases (for example,
the Ada Drivers Library).

The response dismissing the PR suggested
using

pragma Warnings (Off, "*array aggregate*");

and one glimmer of hope is that this can
be used as a configuration pragma.

I could remove the problem from macOS
releases that I support
(sem_aggr.adb:1803..1815), but of course
that would lead users into problems when
using another GCC 12+ release.

[1] http://www.ada-auth.org/
cgi-bin/cvsweb.cgi/ai12s/
ai12-0212-1.txt?rev=1.29&raw=N

[2] https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=104751

Use Clauses and Naming
Schemes
[Offshoot from “Unchecked_Deallocation
Usefulness”, in AUJ 42-2, 2021. The
conversation went into naming
preferences in relation to “use” clauses.
—arm]

From: Thomas
<fantome.forums.tdecontes@
free.fr.invalid>

Subject: use clauses
Date: Wed, 13 Apr 2022 01:25:31 +0200
Newsgroups: comp.lang.ada
> For me, a naming scheme that

discourages the use of (package) use
clauses is a bonus. (Such a scheme
makes it easier to avoid use clauses.)

I agree to avoid use clauses.

(I personally prefer Lists.List, like
Vincent Marciante - I like
Ada.Containers.* naming :-))

> I personally only use "use type" in new
code (there's tons of old code for which
that doesn't work, of course, but that
doesn't change the principle).

what do you think about:

- "use all type" clauses?

- List.Clear? (could you remember me
how you call that, please?)

- List.Clear does work only if List is
tagged?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 12 Apr 2022 20:05:00 -0500
> what do you think about:

> - "use all type" clauses?

This is OK; I don't use them mainly
because I only use features implemented
in Janus/Ada, and "use all type" is not yet
implemented there.

The fundamental problem with "use" is
that it makes everything visible, and then
deals with conflicts by making those
things invisible again. That's not a
problem for overloadable primitive
operations, since the profile is included
and conflicts only occur when someone
has made a lousy design choice (creating
a routine with the same name and profile
as a primitive) [Most such conflicts come
from maintenance when some existing
routine is moved to be primitive; in such
cases, the original routine simply should
be removed.] Since "use all type" only
works on overloadable primitives (and
things that work rather like primitives),
it's fairly safe. One could make an
argument that primitive operations should
always be visible when the type is (that's
not the Ada rule, but arguably it would
work better in most circumstances) - and
you should always know to look at
primitives anyway when trying to find
something..

Ada Pract ice 97

Ada User Journal Volume 43, Number 2, June 2022

> - List.Clear? (could you remember me
how you call that, please?)

For tagged types, you can use prefix
notation, so "My_List.Clear" is the
easiest. With "use all type List", you can
write Clear(My_List). If your objects
have well-chosen names, it's not really
needed to have the type around for such
operations, even when use clauses are in
place. Thus, "Clear", not "Clear_List",
and that works well even when someone
uses everything in sight (of course, they
may have a hard time finding where Clear
is defined when debugging, but that's their
choice).

> - List.Clear does work only if List is
tagged?

Right. There are a number of semantic
issues for untagged types, the main ones
having to do with implicit dereference
(which occurs in this notation, as in any
other selected_component notation). If
you have a prefix of an access type, it gets
very messy to determine which
dereference is which. And just allowing
composite types doesn't work well either:
a private type that is completed with an
access type would *lose* operations when
it had full visibility -- that seems pretty
weird.

It originally got limited to tagged types as
that was easy to do and didn't have
semantic issues. We were going to look at
generalizing the prefix notation again
(several people asked about it), but no one
made a concrete proposal and it never
went anywhere for Ada 2022.

Max Line Length
Preferences
From: Thomas <fantome.forums.tdecontes

@free.fr.invalid>
Subject: max line length
Date: Mon, 18 Apr 2022 23:58:56 +0200
Newsgroups: comp.lang.ada

How do you set your max line length?

Using indentations a lot, I find that 80 is
short. but I don't realize how many people
I'm going to disturb if I set a greater
length, because I don't know all your uses.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Tue, 19 Apr 2022 09:38:00 +0300

I limit lines to 80 characters, because I
very often want to use a side-by-side diff
of file versions, which means having a
window wider than two line-lengths. Text
in a 170-character-wide window is still
readable, but wider ones are not, for me as
an older guy with stiff eye-lenses.

To make do with 80-character lines, I
often use local or partial use-clauses, and
I divide long calls across many lines,
usually having only one parameter per
line. By a "partial use clause" I mean, for
example, "use Interfaces", when I really

need to use Interfaces.C, so I still have to
qualify with "C.zzz" but not with
"Interfaces.C.zzz".

I also group subsystems into package
families (parent and child packages)
which means that the children can directly
use parent-declared identifiers without
qualification.

Other means to keep lines short include
using a small indentation step (I now use
3 spaces, but I'm considering changing to
2 spaces) and keeping subprograms short,
which also helps the readability.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 21 Apr 2022 16:34:04 -0700
> I limit lines to 80 characters, because I

very often want to use a side-by-side
diff of file versions,

I prefer top/bottom diff, partly for this
reason.

But my monitor can easily display 240
characters across. And I have good
glasses.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Tue, 19 Apr 2022 21:30:38 +0200
> how do you set your max line length?

I use the Preferences menu selection in
my editor. But that's probably not what
you intended to ask. I set mine to 132
characters.

> using indentations a lot, i find that 80 is
short.

When I started out, source lines were
limited to 80 columns because that was
the length of punched cards, but the line
printers could print 132 columns. In the
1980s printing switched from 14 x 11
inch paper in line printers to 8.5 x 11 inch
paper, but it was still possible to print 132
characters in landscape mode, so that's
what I used if I had an editor that could
handle long lines easily (screens were not
large enough or high enough resolution to
be suitable for reading programs, so I still
tended to print them when that was
needed. Today printing is not needed
much, but I continue to use 132 columns.
If others want a different line length they
may reformat it.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 19 Apr 2022 22:07:20 +0200

> how do you set your max line length?

72. I used to program in FORTRAN on
punched cards. (:-))

These days I use 3 split GPS Windows
side by side.

Then I am using the "use" clause, so I do
not need a thousand of characters to just
write Z := X + Y; (:-))

> using indentations a lot, I find that 80 is
short.

Refactor the code and use local
subprograms.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 21 Apr 2022 16:31:56 -0700

> how do you set your max line length?

120 chars; I assume readers have a big
display like mine.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 22 Apr 2022 02:57:08 -0500
> I prefer top/bottom diff, partly for this

reason.

The diff program I use can scroll
sideways if necessary, and so can every
editor I've used since 1985, so this isn't
generally an important concern. The
Janus/Ada source used a "soft" limit of
80, mainly because that's what terminals
and PCs displayed back then, but we
never broke lines just for that reason.
Typically, the indent is more than the
overrun anyway (so that actual text never
exceeded 80 characters). Of course, one
has to break really long calls, like the call
to create a window in Claw (which
usually has a dozen or so parameters).

Aspect Location in
Expression Function
From: Blady <p.p11@orange.fr>
Subject: Aspect location in expression

function.
Date: Sat, 14 May 2022 13:47:28 +0200
Newsgroups: comp.lang.ada

I'm puzzled when I want to change a
function body with aspects to an
expression function, for instance:

function Length (S: Some_Tagged_Tyoe)
return Natural
 with Pre => S.Valid
 is
 begin
 return S.Length;
 end;

have to be changed in:

function Length (S: Some_Tagged_Tyoe)
return Natural
 is (S.Length)
 with Pre => S.Valid;

The location of the aspect has moved to
the end.

I'd like simply replace the begin block by
the expression, as:

function Length (S: Some_Tagged_Tyoe)
return Natural
 with Pre => S.Valid
 is (S.Length);

What could be any reasons not to permit
it?

98 Ada Pract ice

Volume 43, Number 2, June 2022 Ada User Journal

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 14 May 2022 17:40:03 +0200

What you say is logical if you think of an
expression function as a body; however, it
is more like a specification (it can appear
in a package spec, although it can
complete a specification), so the place
where the aspect appears makes sense.
And it would be confusing to allow the
aspect in two different places. It is the
same for separate bodies of subprograms.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 23 May 2022 23:05:12 -0500
> What you say is logical if you think of

an expression function as a body;
however, it is more like a specification

To make a functioning :LR grammar for
Ada, I *had* to allow the aspect
specification in both places, and then
make one of them illegal. Which is more
work than just allowing in either place. So
I guess it is a matter of perspective. :-)

To the OP: we discussed placement of
aspect specifications ad-nauseam, as
issues like this always were coming up.
There is no consistent rule that really
works well, because one does not want
small things following large sets of aspect
specs -- they can get lost and overlooked.

For instance, one puts aspect
specifications after "is abstract" as
otherwise that could be lost after a
lengthy precondition expression (and it's
too important to be lost). See how that
could happen in the following (illegal)
declaration:

 procedure P (A, B ,,,)

 with Pre => <very long expression
 that extends over several lines here>

 is abstract;

So something like this (and "is null" as
well) require the Pre at the end:

 procedure P (A, B ,,,)

 is abstract

 with Pre => <very long expression
 that extends over several lines here>;

Expression functions generally follow the
same rules as the older null procedures,
thus they ended up with the same
positioning. It's not as obvious a case
here, since the return expression can also
be long, but we thought it should be
consistent.

BTW, I don't think there ever is a reason
to go from [a function –arm] with a
normal body to an expression function
(assuming the body is legal). A normal
body is more readable and less of a hassle
during maintenance. The advantage of an
expression function is to use it in places
where a regular body is not allowed
and/or just to be lazy writing the body -

neither of which would ever require
changing *to* an expression function.
Maintenance might require changing
from an expression function if the body
has gotten too complex (for instance,
needs a variable declaration), but that
generally will require moving the function
as well so "ease" of doing so isn't very
relevant.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Tue, 24 May 2022 20:24:14 +0200
> For instance, one puts aspect

specifications after "is abstract" as
otherwise that could be lost after a
lengthy precondition expression (and
it's too important to be lost).

Isn't this emphasis on "is abstract" losing
the very point of abstraction?

> See how that could happen in the
following

> (illegal) declaration:

> procedure P (A, B ,,,)

> with Pre => <very long expression
that extends over several lines here>

> is abstract;

Who cares to see "is abstract" if P is in a
spec? The implementer, I guess, but the
client? Less so.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 25 May 2022 00:20:50 -0500
> Who cares to see "is abstract" if P is in

a spec? The implementer, I guess, but
the client? Less so.

Any client that needs to declare an
extension (pretty common in OOP),
especially as "abstract" routines mostly
are used with root types (and interfaces). I
suppose you could "program by error"
and just let the compiler complain if you
don't give a body for something abstract,
but it's generally recommended to know
what you're doing and not just try to make
the compiler happy.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Wed, 25 May 2022 20:45:58 +0200
> Any client that needs to declare an

extension (pretty common in OOP),

Another, dare I say, more frequent way of
being a client of a type is being a caller of
the type's subprograms, such as P, rather
than being an implementer of a type's
concrete behavior. (The two can overlap,
but I'm thinking of the more frequent
human clients here :)

A case I'd single out is a type that comes
with a factory F. I'd expect the associated
type T to be abstract. This goes without
saying! ;-) A client needs to know the
"behavioral" interface of T and also that
of F. The "is abstract" then remains as

helpful language technology, but as seen
inside the factory.

(So, I'd put "is abstract" last.)

> especially as "abstract" routines mostly
are used with root types (and
interfaces). I suppose you could
"program by error"

Not design errors, but mechanical errors
duly output by the compiler. The
programmer will be programming by
"following the language's rules". IDEs
and compilers will assist the programmer
who is implementing an abstract type. For
example, the usual IDE has this
suggestion following its compiler's error
message:

 Fix: "Add unimplemented methods"

(for)

 Error: "The type must implement[!] the
inherited abstract method ..."

The IDE will do so if you answer "Yes"
and programmers can provide their own
adjustments to template text that this
mechanism will be using. Thus, again,
programmers can involve useful language
technology in a template's text. I
remember some Ada tools offering
similar features.

What Is X'Address of an
Empty Array?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: What is X'Address of an empty

array?
Date: Tue, 31 May 2022 14:19:24 +0200
Newsgroups: comp.lang.ada

I have a language lawyering question.
According to ARM X'Address is the
address of the first array element. What is
the address of an empty array?

In the case of an array with bounds it
could be the address following the
bounds.

But what about a definite empty array? Of
zero length (and presumably zero size).
Would the compiler have to invent some
address?

P.S. With GNAT:

 type NUL is array (1..0) of Integer;
 S : NUL;

S'Size is 8 and it has some address that
holds the byte.

Talking about the dark matter in our
Universe. This is what empty arrays are
constructed of! (:-))

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 31 May 2022 16:35:49 -0500

Aliased objects should never have zero-
size in Ada (or, at least, ever be allocated
at the same address). I believe that is

Ada Pract ice 99

Ada User Journal Volume 43, Number 2, June 2022

because of the required result of the
equality operator. Specifically:

 type NUL is array (1..0) of Integer;
 A, B : aliased NUL;
 type PNul is access Nul;
 PA : PNul := A'Access;
 PB : PNul := B'Access;

 if PA = PB then
 Report.Failed ("Access to two distinct
 objects cannot be equal");
 end if;

If an object is not aliased, it is undefined
whether 'Address will work reliably with
it (it probably does in GNAT, it might not
in Janus/Ada, etc.) If the objects ARE
aliased, then 'Address works essentially
the same as 'Access.

I personally find this a bit of
overspecification in Ada, but since zero-
size objects are unusual, no one has
thought it worth going through the effort
to change. (And of course such a change
would complicate static analysis.) We (the
ARG) did discuss this topic at one point (I
don't have the AI number at hand).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 1 Jun 2022 14:49:25 +0200
> I personally find this a bit of

overspecification in Ada

It is actually rather nice.

I recently stumbled upon code:

 A (A'First)'Address

in C bindings, when the other side has
something like:

 const double * a, int len

It of course fails in the marginal case
when the array is empty. But A'Address
seems to never do.

Modern Syntax for Complex
Conditions
From: Matt Borchers

<mattborchers@gmail.com>
Subject: Ada needs some modernization
Date: Tue, 31 May 2022 10:54:46 -0700
Newsgroups: comp.lang.ada

Throughout my career, I often find myself
writing code similar to:

if (A and B) or else (not A and C) then...

and I always wished there was a better
and clearer way to write this in Ada. Then
along came if expressions. But, if
expressions don't help that much with
readability although it is arguably
simpler:

if (if A then B else C) then...

What amendment can we suggest to the
Ada syntax so the if expression be better
written when used in an if statement? I
know other languages support this and it

often looks like A ? B : C or something
similar. That's certainly not Ada-like
IMO, but I can't think of something better.
These same languages often also have a
null check operator A ?? B (where A and
B are access types of the same Type) such
that if A is not null then A is returned
otherwise B is returned. So useful and
helpful!

Again, I often find myself writing a loop
to search for something and then
performing one or another action
depending on the success of the search.
This almost always requires some
externally defined variable, like:

--assuming arr'First is not Integer'First
found := arr'First - 1;
for i in arr'Range loop
 if arr(i) = match then
 found := i;
 exit;
 end if;
end loop;
if found in arr'Range then
 --do something A
else
 --do something else B
end if;

Of course I could move the "do something
A" into the if block within the loop, but I
still need to know if I must run the
alternate code afterward. It would be nice
to avoid having to create a variable just to
indicate the success state or indexing
location found. Maybe something like:

for i in arr'Range loop
 if arr(i) = match then
 --do something A
 exit;
 end if;
then
 --do something else B
end loop;

The "then" part only executes after the
loop terminates normally, i.e. only when
the loop does NOT exit early by "exit" or
"return" statement.

I think syntax enhancements like these
could go a long way to making Ada feel
like it is at least keeping up with modern
languages and I think current
programmers expect "ease-of-use" syntax
from today's languages. Other
contemporary modernized languages have
taken ideas from Ada, but Ada has not
continued to pioneer ideas as quickly.
Perhaps that's by choice or design.

Thoughts?

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Tue, 31 May 2022 12:05:48 -0700

In your proposal, the "do something else
B" appears before "end loop", which is
not a very intuitive way to indicate a
statement happening *after* the loop.

I suspect there is room for improvement...

Perhaps you would like to show an
equivalent piece of code in a what you
call a "modern language"?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 31 May 2022 21:55:05 +0200
> if (A and B) or else (not A and C)

then...

> if (if A then B else C) then...

Not the same. In the former A may be
computed twice.

> What amendment can we suggest to the
Ada syntax so the if expression be
better written when used in an if
statement?

I newer felt it necessary. To me much
more aggravating is code that combines
test/allocator with renaming, i.e.

 if P /= null then
 declare
 X : T renames P.all;
 begin
 ...
 end;
 end if;

 if X in T'Class then
 declare
 XX : T'Class renames T'Class (X);
 begin
 ...
 end;
 end if;

 P : access T'Class := new S;
 X : S renames S (P.all);

If one could come up with some syntax
for if-then-declare and new-then-declare
that would cover a lot of cases.

> I know other languages support this and
it often looks like A ? B : C or
something similar. That's certainly not
Ada-like IMO, but I can't think of
something better. These same
languages often also have a null check
operator A ?? B (where A and B are
access types of the same Type) such
that if A is not null then A is returned
otherwise B is returned. So useful and
helpful!

Not in a strongly typed language IMO.

[...]

> Maybe something like:

> for i in arr'Range loop

> if arr(i) = match then

> --do something A

> exit;

> end if;

> then

> --do something else B

> end loop;

100 Ada Pract ice

Volume 43, Number 2, June 2022 Ada User Journal

I usually use a nested function, e.g. search
with a fallback:

 function Get_Me_Something return
 Element is
 begin
 for I in arr'Range loop
 if Arr (I) = match then
 return Arr (I);
 end if;
 end loop;
 return Default;
 end Get_Me_Something

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 31 May 2022 17:46:04 -0500
>What amendment can we suggest to the

Ada syntax [...]? I know other
languages support this and it often
looks like A ? B : C or something
similar. That's certainly not Ada-like
IMO, but I can't think of something
better.

Which is the rub. Ada is *not* about
clever operators that hardly anyone knows
what they do. Indeed, the original
proposal for Ada 2012 had an "implies"
operator. But we quickly found out that
there are many people that don't know
off-hand what function an implies
operator does. We were pretty sure that
every Ada programmer would understand
an if expression.

Note that pretty much the only place that
you should almost never use an if
expression is in the choice of an if
statement. If you already can write an if
statement, you don't need an if
expression! If expressions exist to make
initializations and assertions like
(Pre/Post) easier to write.

So I would never write your expression in
the first place (either of them). I'd write
something like:

 if A then
 if B then.
 else
 end if;
 else
 if C then
 else
 end if;
 end if;

The contents of the arms should be short
anyway, and typically will just be a
procedure call (and possibly some
debugging, which is way easier if the
conditions are kept simple).

>null check operator A ?? B [...] such that
if A is not null then A is returned
otherwise B is returned. So useful and
helpful!

Again, "utility" is not the criteria for Ada,
rather understandability for future
maintainers is the primary criteria. The
last thing we need is a bunch of fancy but
little used operators that [leave] someone
cold when reading some unfamiliar code.

(Yes, of course you can look them up on-
line, but stopping to doing so necessarily
breaks your train of thought.)

And this construct fits nicely into an if
expression, with no magic:

 (if A /= null then A else B)

and this extends nicely to more likely
cases:

 (if A /= null then A elsif B /= null then B
 else raise Program_Error)

Personally, I don't believe I've ever
written something where such an operator
would be useful; one needs to check
everything for null (you can't usually can't
assume B is nonnull, either). And the fall
backs are generally more complex than
using some other object. Moreover,
probably A should have been declared
null-excluding so it doesn't need to be
tested in the first place. :-)

> I often find myself writing a loop to
search for something and then
performing one or another action
depending on the success of the search.
...

>for i in arr'Range loop

> if arr(i) = match then

> --do something A

> exit;

> end if;

>then

> --do something else B

>end loop;

>The "then" part only executes after the
loop terminates normally, ...

In Ada terms, an exit *is* normal
completion, so you would need some
different terminology.

> i.e. only when the loop does NOT exit
early by "exit" or "return" statement.

We've discussed the "continue" statement
multiple times, and have always ended up
deciding that we are better off without it.
(We've also discussed allowing "exit"
from blocks, but that turns into a mess
when blocks and loops get mixed, at least
if one wants the code to do the same thing
in Ada 2012 and in future Ada.)

We've essentially decided that it is better
to use a goto in such rare cases. The case
you show above is similar.

 for i in arr'Range loop
 if arr(i) = match then
 --do something A
 goto Loop_Finished;
 end if;
 end loop;
 -- We get here if the search item is
 -- not found:
 --do something else B
 <<Loop_Finished>> null;

Remember that every feature added to a
language adds costs in implementation,
documentation, and in tools (analysis,
checkers, etc.). A feature needs to be quite
useful in order to make the cut.

Aside: in the case above, I've usually
written such loops like:

 for i in arr'Range loop
 if arr(i) = match then
 --do something A
 exit;
 elsif i = arr'Last then
 --do something else B
 exit; -- Not really needed, but clearer
 -- what is going on.
 end if;
 end loop;

I've never been that happy with the
duplication of the termination condition,
but this avoids any extra objects or any
gotos.

If I was going to try to fix your problem
with a language feature, I'd probably try
to define an attribute to avoid needing to
duplicate the termination condition.
Something like:

 Loop_Name: for i in arr'Range loop
 if arr(i) = match then
 --do something A
 exit Loop_Name;
 elsif i = Loop_Name'Range'Last then
 --do something else B
 exit Loop_Name; -- Not really needed,
 --but clearer what is going on.

 end if;

 end loop Loop_Name;

(We probably would allow 'First and 'Last
in such a case.) But this technique doesn't
really work with user-defined iterators
(which don't necessarily have a defined
end), and I'm unsure if it is important
enough for another whistle.

>"ease-of-use" syntax from today's
languages.

Ada has *never* been about "ease-of-
use". It is about readability,
maintainability, and understandability.
(See the “Design Goals” in the
Introduction -- http://www.ada-
auth.org/standards/2xrm/html/RM-0-
2.html.)

Enhancing readability might also enhance
ease of use (for instance, user-defined
literals, target name symbols, and user-
defined indexing all were added to
enhance readability by avoiding
duplicative text that provides little
information), but it is never a primary
goal for an Ada feature.

>Other contemporary modernized
languages have taken ideas from Ada,
but Ada has not continued to pioneer
ideas as quickly.

Ada Pract ice 101

Ada User Journal Volume 43, Number 2, June 2022

This is not true. Ada pioneers ideas all the
time (see delta aggregates, aggregate
iterators, the target symbol, parallel stuff,
etc. from Ada 2022). What Ada does not
do is waver from its core goal of
readability and maintainability. So we
don't waste time with tiny features that are
more likely to harm readability and
understandability than help. (Admittedly,
what features are really necessary and
which are just nice to have is always a
personal choice.) Additionally, Ada has
always been designed with a "building-
block" approach, so we don't provide
(say) a semaphore, but rather the tools
(the protected type) to write one (and
many other constructs). An if expression
is a building block; funny boolean
operators with limited uses are not.

I personally am not the least bit interested
in worrying about ease-of-use gadgets in
other languages. If programmers need
such gadgets to be comfortable, they
probably don't have the right mindset to
be great Ada software engineers in the
first place. Saving a few characters in a
few expressions simply does not matter
when compared to the effort needed to
define and document a good data
abstraction (for instance, an abstract data
type and package).

There *are* features that probably would
not interfere with Ada goals of
readability. One of them that comes up
periodically is an "at end" clause so one
could write final wishes for a
block/subprogram/package without
writing a bunch of exception handlers
(which doesn't work in the case of abort!)
or one-time use controlled types. I'm sure
there are others.

And certainly other languages have
interesting features that Ada should steal,
the Rust owned access types would be an
obvious example. (Don't get me started on
why Ada 2022 does not have those.) But
"ease-of-use" is not interesting, at least
when it does not make readability better.
(I want people to replace "and" and "or"
with if expressions as much as possible,
as those are much more understandable.
No more operators please!)

Randy.

P.S. Man, did I spend a lot more time than
I planned answering this. I hope it helps.

From: John Mccabe
<john@mccabe.org.uk>

Date: Wed, 1 Jun 2022 00:24:24 -0700
> P.S. Man, did I spend a lot more time

than I planned answering this. I hope it
helps.

FWIW, I thought it was valuable. As I
read through it I was constantly thinking
of how I wish the people tweaking C++
(which, for various reasons, I'm using
now) would take the same attitude, rather
than trying to feed their own egos by

adding all sorts of random rubbish that,
due to the current 3 year cycle, tends also
to be either temporary or half-baked
random rubbish!

Thank you, Randy!

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Wed, 1 Jun 2022 21:00:31 +0200
> What amendment can we suggest to the

Ada syntax [...]

What you call "modernization" looks to
me a lot like "repeating mistakes that
Ritchie made over 50 years ago".

"A ? B : C"? Or is it "A : B ? C"? If only
there were a less cryptic, easier to
remember and understand way to express
it. Something like "(if A then B else C)",
for example.

"A ?? B" might be "useful and helpful" if
you use (or think in) a language with
pointers to objects everywhere, but in a
language where such pointers are never
needed, like Ada, it is neither, especially
since a conditional expression would
handle it just fine if it were ever needed.

> I often find myself writing a loop to
search ...

When you write something for a second
time, it's a signal to create a subprogram
or package to avoid writing it a third time.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Thu, 2 Jun 2022 07:56:53 +0200
> What amendment can we suggest to the

Ada syntax so the if expression be
better written when used in an if
statement?

I would try to fix the problem at where it
is caused: ad hoc, unnamed logical
predicates! Syntactic sugar won't make
these go away.

All those Boolean expressions have
meaning, I suppose. The meanings could
be given a name. There would be facts,
about A, B and C, that make your
statement true, some not. What does it
state?

Compare this assembly of variables

((A and B) or else ((not A) and C)))

to a lambda expression or to a state
machine. Similar? It is the lowest level of
computation using a high level language.

> Again, I often find myself writing a
loop to search for something and then
performing one or another action
depending on the success of the search.

Again, there is an algorithm, typically
Find_the_First, that will return an index
(or cursor). I'd use the return value in a
conditional.

From: Brad Moore
<bj.mooremr@gmail.com>

Date: Fri, 10 Jun 2022 09:38:35 -0700
> if (A and B) or else (not A and C)

then...

> if (if A then B else C) then...

I agree with the other comments, and in a
case like this, I might consider writing an
expression function to improve
readability.

Using cryptic letters for Booleans makes
it difficult to assign a name to the
expression function, but if you apply it to
a less generic example, this becomes
easier to do.

For example, if A is renamed to
Weekday, B means (time < 9:00pm), and
C means (time < 6:00pm) you could
write:

function Shopping_Mall_is_Open return
Boolean is (if Weekday then
Earlier_than_9_PM else
Earlier_than_6_PM);

Then your other code would simply be,

if Shopping_Mall_is_Open then ...

Brad

Problems Using
Generic_Dispatching_Const
ructor
From: Mark Lorenzen

<mark.lorenzen@gmail.com>
Subject: Problems using

Generic_Dispatching_Constructor
Date: Wed, 1 Jun 2022 04:36:02 -0700
Newsgroups: comp.lang.ada

The generic function Ada.Tags.
Generic_Dispatching_Constructor is
defined as:

generic
 type T (<>) is abstract tagged limited
private;
 type Parameters (<>) is limited private;
 with function Constructor (Params: not
 null access Parameters) return T is
 abstract;
function
Ada.Tags.Generic_Dispatching_Constructor
(The_Tag : Tag; Params : not null access
Parameters) return T'Class;

This gives us some problems when calling
an instance of Ada.Tags.
Generic_Dispatching_Constructor when
the Params parameter is an in-mode
parameter of a function e.g.:

function Make (From_Params : in P) return
T'Class
 is
 function Make_T_Class is new
 Ada.Tags.Ada.Tags.
 Generic_Dispatching_Constructor
 (T => T, Parameters => P,
 Constructor => ...);

102 Ada Pract ice

Volume 43, Number 2, June 2022 Ada User Journal

 begin
 ...
 return Make_T_Class
 (Some_Tag, P'Access);
 end Make;

This results in a compile-time error:

error: access-to-variable designates
constant

Why is function Ada.Tags.
Generic_Dispatching_Constructor defined
as:

function
Ada.Tags.Generic_Dispatching_Constructor
(The_Tag : Tag; Params : not null access
Parameters) return T'Class;

and not as e.g (note the access-to-constant
type):

function
Ada.Tags.Generic_Dispatching_Constructor
(The_Tag : Tag; Params : not null access
constant Parameters) return T'Class;

I guess we could declare function Make
as (note the in-out mode):

function Make (From_Params : in out P)
return T'Class

But this is horrible as functions should
never ever have in-out or out-mode
parameters (or side effects in general).

Why are access types used at all?

Is there another workaround?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 1 Jun 2022 14:42:40 +0200
> Why are access types used at all?

Parameters are kind of a factory object,
you want to have the factory mutable.

> Is there another workaround?

In my practice I never had a case when I
could obtain the tag needed for generic
dispatching constructor. All my designs
ended up with a mapping

key -> constructing function

with an explicit registering the type in the
mapping.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 1 Jun 2022 16:25:16 -0500
>> Why are access types used at all?

We needed this usable to implement
dispatching stream attributes (the generic
dispatching constructor was intended to
be a user-definable generalization of the
mechanism of the class-wide stream
attribute). The stream attributes probably
used access types because "in out"
parameters were not allowed for functions
when they were invented. (So mistakes
piled on mistakes. :-)

> Parameters are kind of a factory object,
you want to have the factory mutable.

Right. For instance, consider a factory
where each object gets a unique id while
being constructed. You would want to
update the Next_Id component at the end
of each construction.

>> Is there another workaround?

> In my practice I never had a case when I
could obtain the tag needed for generic
dispatching constructor. All my designs
ended up with a mapping

> key -> constructing function

>

> with an explicit registering the type in
the mapping.

Right. Generally, one uses a mapping of
some sort of key or menu choice or
whatever to tags. If you aren't adverse to a
giant case statement, then you might as
well call the constructor directly. (And if
you are willing to use access-to-functions,
you don't need OOP at all.) So this
"factory" is mostly a bone for OOP
purists.

The one exception is the case where you
have an external tag as the key, since you
can get the tag from that directly. But
even that is really a mapping (one built by
the implementation).

 103

Ada User Journal Volume 43, Number 2, June 2022

Conference Calendar
Dirk Craeynest
KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked � is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with � denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. Some events are still planned to be held
"virtually", and others in "hybrid" mode, also for wider dissemination. Where available, the status of events is indicated with
the following markers: "(v)" = event is held online, "(h)" = event is held in a hybrid form (i.e. partially online).

2022

July 03-07

22nd International Conference on embedded computer Systems: Architectures, MOdeling and
Simulation (SAMOS'2022), Pythagorion, Samos Island, Greece. Topics include: advances in

systems efficiency in various domains; novel architectures and computing methodologies and

solutions for accelerating applications in various embedded domains; software tools, compilation

techniques and optimizations, and code generation for reconfigurable architectures; embedded

parallel systems and multiprocessor systems-on-chip; application level resource management of

multi-core architectures; all design processes for embedded systems; design languages; performance;

reliability; specification languages and models; system-level design, simulation, and verification;

MP-SoC programming, compilers, simulation and mapping technologies; profiling, measurement

and analysis techniques; (design for) system adaptivity; testing and debugging; etc.

July 05-08

(h)

Software Technologies: Applications and Foundations (STAF'2022), Nantes, France.

 July 04-08 16th International Conference on Tests And Proofs (TAP'2022). Topics include:

many aspects of verification technology, including foundational work, tool

development, and empirical research; the connection between proofs (and other static

techniques) and testing (and other dynamic techniques); verification and analysis

techniques combining proofs and tests; program proving with the aid of testing

techniques; deductive techniques supporting the automated generation of test vectors

and oracles, and supporting novel definitions of coverage criteria; program analysis

techniques combining static and dynamic analysis; testing and runtime analysis of

formal specifications; verification of verification tools and environments;

applications of test and proof techniques in new domains, such as security,

configuration management, learning; combined approaches of test and proof in the

context of formal certifications (Common Criteria, CENELEC, ...); case studies, tool

and framework descriptions, and experience reports about combining tests and

proofs; etc.

July 05-08

(h)

34th Euromicro Conference on Real-Time Systems (ECRTS'2022), Modena, Italy.

� July 07-08 15th International Symposium on High-Level Parallel Programming and applications

(HLPP'2022), Porto, Portugal. Topics include: high-level parallel programming, its tools and

applications, such as high-level programming and tools, automatic code generation for parallel

programming, model-driven software engineering with parallel programs, high-level programming

models for heterogeneous/hierarchical platforms, applications of parallel systems using high-level

languages and tools, formal models of timing and real-time verification for parallel systems, etc.

� August 22-26

(h)

28th International European Conference on Parallel and Distributed Computing (Euro-

Par'2022), Glasgow, Scotland, UK. Topics include: all flavors of parallel and distributed processing,

such as compilers, tools and environments, scheduling and load balancing, theory and algorithms for

104 Conference Calendar

Volume 43, Number 2, June 2022 Ada User Journal

parallel and distributed processing, parallel and distributed programming, interfaces, and languages,

multicore and manycore parallelism, etc. Deadline for early registration: July 14, 2022.

� August 23-25

(h)

28th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'2022), Taiwan. Deadline for registration: August 19, 2022.

September 04-07

(h)

17th Federated Conference on Computer Science and Information Systems (FedCSIS'2022),

Sofia, Bulgaria. Deadline for submissions: July 1, 2022 (Data Mining Competition papers).

September 06-09 41st International Conference on Computer Safety, Reliability and Security (SafeComp'2022),

Munich, Germany. Topics include: development, assessment, operation and maintenance of safety-

related and safety-critical computer systems; formal methods for verification, validation and fault

tolerance; safety/security co-engineering and risk assessment; testing, verification and validation

methods and tools; qualification, assurance and certification methods and tools; cyber-physical

threats and vulnerability analysis; safety and security guidelines, standards and certification; etc.

Domains of application include: railways, automotive, space, avionics and process industries; highly

automated and autonomous systems; telecommunication and networks; safety-related applications of

smart systems and IoT; critical infrastructures; medical devices and healthcare; surveillance, defense,

emergency and rescue; logistics, industrial automation, off-shore technology; education and training;

etc.

September 12-14 15th International Conference on the Quality of Information and Communications Technology

(QUATIC'2022), Talavera de la Reina, Spain. Topics include: all quality aspects in ICT systems

engineering and management; related to the specification, design, development, operation,

maintenance and evolution of ITC systems; quality in ICT process, product, and applications

domains; practical studies; etc. Deadline for registration: September 5, 2022.

� September 14-16 27th International Conference on Formal Methods for Industrial Critical Systems

(FMICS'2022), Warsaw, Poland. Part of CONFEST'2022. Topics include: case studies and

experience reports on industrial applications of formal methods, focusing on lessons learned or

identification of new research directions; methods, techniques and tools to support automated

analysis, certification, debugging, descriptions, learning, optimisation and transformation of

complex, distributed, real-time, embedded, mobile and autonomous systems; verification and

validation methods that address shortcomings of existing methods with respect to their industrial

applicability (e.g., scalability and usability issues); impact of the adoption of formal methods on the

development process and associated costs; application of formal methods in standardisation and

industrial forums.

September 20-22 1st Summer School on Security Testing and Verification 2022, Leuven, Belgium. Topics include:

static and dynamic security testing; software verification; security by design; etc. Deadline for early

registration: July 31, 2022.

September 20-22

(h)

21st International Conference on Intelligent Software Methodologies, Tools and Techniques

(SOMET'2022), Kitakyushu, Japan. Topics include: state-of-art and new trends in software

methodologies, tools, and techniques; software methodologies, and tools for robust, reliable, non-

fragile software design; software developments techniques and legacy systems; software evolution

techniques; agile software and lean methods; software optimization and formal methods for software

design; software maintenance; software security tools and techniques; formal techniques for software

representation, software testing and validation; software reliability; model driven development

(DVD), code centric to model centric software engineering; etc.

September 22-23 16th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM'2022), Helsinki, Finland. Deadline for submissions: July 7, 2022 (Journal-

First papers), August 13, 2022 (Industry Forum), September 19, 2022 (student volunteers).

September 27-29

(h)

19th International Colloquium on Theoretical Aspects of Computing (ICTAC'2022), Tbilisi,

Georgia. Topics include: semantics of programming languages; theories of concurrency; theories of

distributed computing; models of objects and components; timed, hybrid, embedded and cyber-

physical systems; security; static analysis; software verification; software testing; runtime

verification; model checking and theorem proving; applications and case studies; etc. Deadline for

autumn school registration: July 31, 2022 (early), August 31, 2022 (late).

Conference Calendar 105

Ada User Journal Volume 43, Number 2, June 2022

September 28-30 20th International Conference on Software Engineering and Formal Methods (SEFM'2022),

Berlin, Germany. Topics include: software development methods; design principles; software testing,

validation, and verification; applications and technology transfer; special topic "Software

Engineering and Formal Methods for Intelligent and Learning Systems"; usage of formal methods in

industrial applications, case studies, best practices, experience reports.

September 28-30

(h)

22nd International Conference on Runtime Verification (RV'2022), Tbilisi, Georgia. Topics

include: monitoring and analysis of runtime behaviour of software and hardware systems.

Application areas of runtime verification include cyber-physical systems, autonomous systems,

safety/mission critical systems, enterprise and systems software, cloud systems, reactive control

systems, health management and diagnosis systems, and system security and privacy.

September 28-30 16th International Conference on Verification and Evaluation of Computer and
Communication Systems (VECoS'2022), Tbilisi, Georgia. Topics include: analysis and

communication systems, where functional and extra-functional properties are inter-related; cross-

fertilization between various formal verification and evaluation approaches, methods and techniques,

especially those developed for concurrent and distributed hardware/software systems.

October 03-06

(v)

29th IEEE Software Technology Conference (STC'2022), Internet. Topics include: software

engineering for emerging systems; software testing, testability, and assurance; cybersecurity and

information assurance; agile software development; challenges and opportunities in SW & systems

development processes; etc.

October 07-14

(h)

Embedded Systems Week 2022 (ESWEEK'2022), Shanghai, China. Includes CASES'2022

(International Conference on Compilers, Architectures, and Synthesis for Embedded Systems),

CODES+ISSS'2022 (International Conference on Hardware/Software Codesign and System

Synthesis), EMSOFT'2022 (International Conference on Embedded Software). Deadline for

submissions: July 1, 2022 (industry papers, Industry Challenge pitches) papers, Ph.D. Forum).

 October 07-14

(h)
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES'2022). Topics include: latest advances in compilers

and architectures for high-performance, low-power embedded systems; software

security for embedded systems, IoT, and CPS; architecture, design, and compiler

techniques for reliability, and aging; modeling, analysis, and optimization for timing

and predictability; validation, verification, testing, and debugging of embedded

software; etc.

 October 07-14 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS'2022). Topics include: system-level design,

hardware/software co-design, modeling, analysis, and implementation of modern

Embedded Systems, Cyber-Physical Systems, and Internet-of-Things, from system-

level specification and optimization to system synthesis of multi-processor

hardware/software implementations.

 October 10-14

(h)

ACM SIGBED International Conference on Embedded Software

(EMSOFT'2022). Topics include: the science, engineering, and technology of

embedded software development; research in the design and analysis of software that

interacts with physical processes; results on cyber-physical systems, which integrate

computation, networking, and physical dynamics.

October 10-14 37th IEEE/ACM International Conference on Automated Software Engineering (ASE'2022),

Oakland Center, Michigan, United States. Events include: ACM SIGAda's HILT workshop (High

Integrity Language Technology) on Tools and Languages in support of a Rigorous Approach to

Software Development.

� October 14 ACM SIGAda High Integrity Language Technology International Workshop
on Supporting a Rigorous Approach to Software Development (HILT'2022),
Ann Arbor, Michigan, USA. Co-located with ASE'2022. Organized by ACM SIGAda,
in cooperation with Ada-Europe. Topics include: practical use of High Integrity
languages, technologies, and methodologies that enable expedited design and
development of software-intensive systems; practical use of formal methods at
industrial scale; IDE-support for formal methods; model-level analysis tools for

106 Conference Calendar

Volume 43, Number 2, June 2022 Ada User Journal

systems like SysML, AADL, Lustre, or Simulink; continuous integration and
deployment based on advanced static analysis tools; safety-oriented programming
language features; qualification of language tools for critical systems use; etc.

October 16-20

(h)

17th International Conference on Software Engineering Advances (ICSEA'2022), Lisbon,

Portugal. Topics include: trends and achievements; advances in fundamentals for software

development; advanced mechanisms for software development; advanced design tools for developing

software; software performance; software security, privacy, safeness; advances in software testing;

specialized software advanced applications; open source software; agile and Lean approaches in

software engineering; software deployment and maintenance; software engineering techniques,

metrics, and formalisms; software economics, adoption, and education; etc.

October 25-28

(v)

20th International Symposium on Automated Technology for Verification and Analysis

(ATVA'2022), Beijing, China. Topics include: theoretical and practical aspects of automated

analysis, synthesis, and verification of hardware, software, and machine learning (ML) systems;

specifications and correctness criteria for programs and systems decision procedures and solvers for

verification and synthesis program analysis and software verification analysis and verification of

parallel and concurrent systems analysis of cyber-physical systems analysis and verification of

machine learning algorithms and systems formal models and methods for security and privacy testing

and runtime analysis based on verification technology applications and case studies verification in

industrial practice; etc.

November 10-11

(v)

18th International Conference on Formal Aspects of Component Software (FACS'2022), Oslo,

Norway. Topics include: applications of formal methods in all aspects of software components and

services; formal methods, models, and languages for components and services, including formal

aspects of concrete component-based systems, including real-time/safety-critical systems, hybrid and

cyber physical systems, ...; tools supporting formal methods for components and services; case

studies and experience reports over the above topics; etc. Deadline for submissions: July 18, 2022

(abstracts, papers).

November 14-18 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE'2022), Singapore.

November 15-17 24th International Symposium on Stabilization, Safety, and Security of Distributed Systems

(SSS'2022), Clermont-Ferrand, France. Topics include: concurrent and distributed computing

(foundations, fault-tolerance, and security); distributed, concurrent, and fault-tolerant algorithms;

synchronization protocols; formal methods, validation, verification, and synthesis; etc. Deadline for

paper submissions: August 5, 2022 (2nd deadline).

December 05-07 29th Static Analysis Symposium (SAS'2022), Auckland, New Zealand. In conjunction with

SPLASH'2022 Topics include: static analysis as fundamental tool for program verification, bug

detection, compiler optimization, program understanding, and software maintenance.

� December 05-08 43rd IEEE Real-Time Systems Symposium (RTSS'2022), Houston, Texas, USA. Topics include:

addressing some form of real-time requirements such as deadlines, response times or delay/latency.

Deadline for submissions: September 12, 2022 (RTSS@Work demos, brief presentations).

� December 05-10 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2022), Auckland, New Zealand. Topics include: all aspects of software

construction and delivery, at the intersection of programming, languages, and software engineering.

Deadline for submissions: July 10, 2022 (Onward! papers), July 18, 2022 (Student Research

Competition), August 1, 2022 (Doctoral Symposium), August 8, 2022 (GPE abstracts, SLE abstracts

2nd round), August 12, 2022 (GPE papers, SLE papers 2nd round), August 15, 2022 (posters), August

19, 2022 (SPLASH-E), September 1, 2022 (workshop papers), September 5, 2022 (Onward! Essays).

 Dec 05-10 15th ACM SIGPLAN International Conference on Software Language
Engineering (SLE'2022). Topics include: software language engineering rather than

engineering a specific software language; software language design and

implementation; software language validation (verification and formal methods for

languages, testing techniques for languages, simulation techniques for languages);

software language integration and composition; software language maintenance

(software language reuse, language evolution, language families and variability,

Conference Calendar 107

Ada User Journal Volume 43, Number 2, June 2022

language and software product lines); domain-specific approaches for any aspects of

SLE (design, implementation, validation, maintenance); empirical evaluation and

experience reports of language engineering tools (user studies evaluating usability,

performance benchmarks, industrial applications); etc. Deadline for submissions:

August 8, 2022 (abstracts), August 12, 2022 (papers), October 11, 2022 (artifacts).

December 10

Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2023

January 16-18 18th International Conference on High Performance and Embedded Architecture and
Compilation (HiPEAC'2023), Toulouse, France. Topics include: software development for high

performance parallel systems; tools for compilation, evaluation, optimization of high performance

parallel systems (compiler support, tracing, and debugging for parallel architectures, ...); embedded real-

time systems, mixed criticality system support, dependable systems, ...; software support for embedded

architectures (tracing and real-time analysis of embedded applications, runtime software); etc.

March 06-10

(h)

25th International Symposium on Formal Methods (FM'2023), Lübeck, Germany. Topics include:

development and application of formal methods in a wide range of domains including trustworthy AI,

software, computer-based systems, systems-of-systems, cyber-physical systems, security, human-

computer interaction, manufacturing, sustainability, energy, transport, smart cities, healthcare and

biology; techniques, tools and experiences in interdisciplinary settings; experiences of applying formal

methods in industrial settings; design and validation of formal method tools; formal methods in practice

(industrial applications of formal methods, experience with formal methods in industry, tool usage

reports, experiments with challenge problems); tools for formal methods (advances in automated

verification, model checking, and testing with formal methods, tools integration, environments for

formal methods, and experimental validation of tools); formal methods in software and systems

engineering (development processes with formal methods, usage guidelines for formal methods, and

method integration); special FM 2023 session on "Formal methods meets AI" (focused on formal and

rigorous modelling and analysis techniques to ensuring safety, robustness etc. (trustworthiness) of AI-

based systems); etc. Deadline for submissions: July 1, 2022 (tutorials), September 4, 2022 (abstracts),

September 11, 2022 (full papers), November 20, 2022 (artefacts).

April 22-27 26th European Joint Conferences on Theory and Practice of Software (ETAPS'2023), Paris, France.

Events include: ESOP (European Symposium on Programming), FASE (Fundamental Approaches to

Software Engineering), FoSSaCS (Foundations of Software Science and Computation Structures),

TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline for

submissions: August 30, 2022 (nominations EAPLS Best Dissertation Award), October 13, 2022

(papers), November 10, 2022 (TACAS artefact submissions), January 5, 2023 (ESOP, FASE, FoSSaCS

artefact submissions).

� June 13-16 27th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2023 aka Ada-Europe 2023), Lisbon, Portugal. Sponsored by
Ada-Europe.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

108 Forthcoming Events

Volume 43, Number 2, June 2022 Ada User Journal

HILT 2022 Workshop on Supporting a Rigorous
Approach to Software Development
As part of. 37th IEEE/ACM International Conference on Automated Software Engineering, ASE’2022,
October 14, 2022, Oakland Center, Michigan, United States

Sponsored by ACM SIGAda, in cooperation with Ada-Europe

This is the seventh in the HILT series of conferences and workshops focused on the use of High
Integrity Language Technology to address challenging issues in the engineering of highly complex
critical software systems. HILT 2022 will focus on the increasing synergies between formal methods
(theorem provers, SAT, SMT, etc.), advanced static analysis (model checking, abstract interpretation),
software design and modeling, and safety-oriented languages.

Keynote speakers:

Rustan Leino, Amazon Web Services Niko Matsakis, Amazon Web Services

Recent experience with developing
formally verified software

 a-mir-formality:
a formal model for the Rust language

Senior Principal Applied Scientist in the
Automated Reasoning Group at Amazon Web
Services. Throughout his career, he has
developed and applied tools for the formal
verification of software. The most recent of
these is the Dafny language and verifier,
which has been used in projects and education
for more than a decade. Leino is an ACM
Fellow and a recipient of the CAV Award.

Senior Principal Engineer at AWS and co-
lead of the open source Rust language design
team. He has worked on Rust since 2011, and
led the design of its “secret sauce”, the
borrow checker. He has played a number of
other roles in Rust over the years, such as
being a member of the Rust core team, the
lead of the Rust compiler team, and helping to
launch the Rust Foundation.

This workshop is designed as a forum for communities of researchers and practitioners from academic,
industrial, and governmental settings, to come together, share experiences, and forge partnerships
focused on integrating and deploying tool and language combinations to address the challenges of
rigorous software development.

Forthcoming Events 109

Ada User Journal Volume 43, Number 2, June 2022

HILT 2022 Schedule:

0830-0840 Opening, S. Tucker Taft and Jerome Hugues

0840-0940 Keynote#1: K. Rustan M. Leino, Senior Principal Engineer, Amazon Web Services.
“Recent experience with developing formally verified software”

0940-1130 Session #1: Formal methods and applications
1. Daniel Larraz (The University of Iowa) and Cesare Tinelli (The University of Iowa), “Finding

Locally Smallest Cut Sets using Max-SMT.”

[1010-1030 Coffee break]

2. Daniel Larraz (The University of Iowa), Arjun Viswanathan (The University of Iowa), Mickaël
Laurent (Université de Paris) and Cesare Tinelli (The University of Iowa). “Beyond model checking
of idealized Lustre in Kind 2.”

3. Danielle Stewart (University of Minnesota) and John Hatcliff (Kansas State University). “An AADL
Contract Language Supporting Integrated Model- and Code-Level Verification.”

1130-1230 Keynote #2: Niko Matsakis, Senior Principal Engineer, Amazon Web Services
“a-mir-formality: a formal model for the Rust language”

[1230-1330 Lunch]

1330-1530 Session #2: Language and Assurance
1. David Hardin (Collins Aerospace). “Hardware/Software Co-Assurance for the Rust Programming

Language Applied to Zero Trust Architecture Development.”
2. Claire Dross (AdaCore). “Containers for Specification in SPARK.”
3. S. Tucker Taft (AdaCore). “Rigorous Pattern Matching as a Language Feature.”

[1500-1530 Coffee break]

1530-1700 Session #3: Use Cases
1. Tabea Bordis (Karlsruhe Institute of Technology), Tobias Runge (Karlsruhe Institute of

Technology), Alexander Kittelmann (Karlsruhe Institute of Technology) and Ina Schaefer (Karlsruhe
Institute of Technology). “Correctness-by-Construction: An Overview of the CorC Ecosystem”
(Short Abstract).

2. Laura Humphrey (Air Force Research Laboratory). “Basic Formal Verification of a Waypoint
Manager for Unmanned Air Vehicles in SPARK.”

3. Howard Ausden (Leidos). “Getting to 100% availability in a large C++ and Ada program.”

Organizing Committee

� Jerome Hugues, CMU/SEI (Co-Chair)

� Tucker Taft, AdaCore, Inc (Co-Chair)

� Dirk Craeynest, ACM SIGAda International Representative, KU Leuven

� Luis Miguel Pinho, Secretary-Treasurer, ACM SIGAda, Polytechnic Institute of Porto

� Alok Srivastava, Editor, ACM Ada Letters, SAIC

110 For thcoming Events

Volume 43, Number 2, June 2022 Ada User Journal

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

The�27th�Ada�Europe�International�Conference�on�Reliable�Software�
Technologies�(AEiC�2023)�will�take�place�on�June�13�16,�2023,��

in�Lisbon,�Portugal�
Yes,�it’s�true,�AEiC�will�be�returning�to�Lisbon!!!�

�
�

If�you�were�unable�to�enjoy�the�2018�edition�of�AEiC,�in�Lisbon,�this�will�be�a�great�
opportunity�to�visit�the�city�while�enjoying�what�the�conference�has�to�offer:�keynotes,�

presentations,�posters,�vendor�booths,�and�interactions�with�other�participants.�

If�you�attended�the�2018�edition,�then�you�know�how�nice�it�is�downtown�Lisbon,�the�
taste�of�Portuguese�food,�the�weather.�And�you�will�not�want�to�miss�the�opportunity�to�

return�to�Lisbon.�

We�are�working�to�prepare�a�great�event,�with�an�interesting�scientific�and�industrial�
program,�and�with�enjoyable�social,�cultural�and�touristic�opportunities.�

Getting�there�is�easy,�with�plenty�of�flights�from�all�major�cities�in�Europe,�and�from�
several�cities�in�the�US�and�Canada.�

And�when�you�land,�you�are�already�almost�downtown!

 111

Ada User Journal Volume 43, Number 2, June 2022

Defining a Pattern Matching Language Feature for

Ada
S. Tucker Taft
AdaCore; Lexington, MA, USA; email: taft@adacore.com
Stephen Baird
AdaCore; Mountain View, CA, USA; email: baird@adacore.com
Claire Dross
AdaCore; Paris, FR; email: dross@adacore.com

Abstract
Structural pattern-matching as a language feature has
become more common in programming languages over
the past decade. This talk will report on the work in
progress to define such a feature for the Ada language,
both from a language-design point of view, and from
an implementation point of view.
Keywords: pattern-matching, language-design, Ada.

1 Introduction
Many programming languages now include a pattern-

matching feature, often introduced with the keyword match,

e.g. OCaml[1], Python[2], Haskell[3] (Haskell doesn't

require any keyword -- every function is considered a pattern

match). These are not primarily focused on string pattern

matching, but more on structure pattern matching, where the

matching starts from an object of some structured type, and

the individual patterns select particular structural patterns for

special handling.

These pattern matching features can be seen as a

generalization of the case or switch statement available in

most third-generation programming languages. But they

typically include the ability to associate an identifier with

some or all of the pattern, which is then usable inside the

handler for the given pattern, knowing that that identifier

refers to some part of the original object that satisfies the

given part of the pattern.

In general, for a pattern matching language feature

(including one as simple as a switch/case statement) three

properties are considered important in any legal usage of the

feature:

1. Complete/Exhaustive -- Every possibility is covered by

some pattern.

This is easily accomplished if the programmer includes

a final catch-all pattern (e.g. others/default option), but

it may be valuable in some cases to avoid such a catch-
all and have the compiler complain unless the other

more specific patterns cover all interesting cases.

2. Unambiguous -- There should be no two patterns where

a given object could match both, unless the pattern that

comes lexically second covers a strict superset of

objects of the earlier pattern. The later, superset pattern

is analogous to the others/default branch of a case or

switch statement, which must come after all more

specific patterns.

3. Nonredundant -- There are no patterns which are

redundant, in that no object will reach that pattern, since

it is fully covered by earlier patterns.

This would be analogous to an others/default branch of

a case/switch statement that is never reached, and could

be considered misleading. Violating this property might

be treated more as deserving a warning rather than an

error, at least for a true catch-all pattern. For a pattern

that is not a true catch-all but which is being used as a

fall-back pattern for one or more earlier more specific

patterns, if this fall-back is never reachable, then it

might well be considered a redundancy error.

This talk will describe the work in progress to define a

generalization of the Ada case statement which would

provide a general, structural pattern-matching facility, and

describe some of the language design issues and some of the

interesting implementation challenges[4].

References
[1] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy

and J. Vouillon, “Chapter 9. The OCaml Language,

Section 6. Patterns”, The OCaml Manual,
https://ocaml.org/manual/patterns.html, retrieved 25-Feb-

2022.

[2] Python Software Foundation, “8.6 The Match

Statement”, The Python Language Reference,

https://docs.python.org/3/reference/compound_stmts.html#

the-match-statement, retrieved 25-Feb-2022.

[3] S. Marlow (ed.), “3.17 Pattern Matching”, Haskell 2010
Language Report, 2010. https://www.haskell.org

/onlinereport/haskell2010/haskellch3.html, retrieved 25-

Feb-2022.

[4] F. Le Fessant and L. Maranget, “Optimizing Pattern

Matching”, ACM SIGPLAN Notices 36,

10.1145/507635.507641, 2001.

112

Volume 43, Number 2, June 2022 Ada User Journal

A Work-Stealing Scheduler for Ada 2022, in Ada

S Tucker Taft
AdaCore; Lexington, MA, USA.; email: taft@adacore.com

Abstract
Ada 2022 includes parallel programming features that
use lightweight logical threads of control on top of the
heavier-weight Ada tasks. This talk will report on the
work in progress to implement a work-stealing
scheduler for these lightweight threads, in Ada itself.
Keywords: parallel programming, work stealing, Ada
2022.

1 Introduction
Ada 2022 parallel programming features [1] rely on having

multiple (lightweight) logical threads of control for a single

Ada (heavyweight) task. This implies the need for a

scheduler for such lightweight threads (LWTs). The

OpenMP API [2] includes a scheduler which can be used as

the basis for this LWT scheduler, as OpenMP has the notion

of both lightweight threads, known (confusingly from an

Ada perspective) as OpenMP "tasks”) and heavier weight

threads known simply as OpenMP “threads”. An explicit

goal of the design of Ada 2022 was to permit LWT

schedulers such as the one provided by OpenMP to handle

the scheduling for Ada 2022’s “logical threads of control.”
It is also possible to build an LWT scheduler directly in Ada,

using Ada tasks as heavier weight server threads to provide

the actual execution resources for the scheduler. This

presentation will describe a work in progress to implement a

high-performance lightweight thread scheduler in “pure”

Ada, based on work stealing.

2 Work Stealing
Work stealing is widely recognized as an efficient approach

to lightweight thread scheduling and has been adopted by

many parallel-programming systems. Work-stealing became

widely known as a result of work by Blumofe and Leisersen

[3] at MIT in the context of the Cilk parallel programming

language. Work stealing provides a nearly ideal combination

of efficient load balancing across a set of cores (or kernel

threads), while preserving locality of reference on a single

core and separation of reference between distinct cores,

which together minimize the unwanted cache effect known

as false sharing.

The basic technique of work stealing is to have a separate,

doubly-ended queue (“deque”) of lightweight threads for

each heavyweight server thread. In the context of Ada this

means that we use multiple (anonymous) Ada tasks, each

with its own deque, to service the various logical threads of

control implicit in the use of the Ada 2022 parallel

programming constructs of parallel loops and parallel

blocks.

When a new light-weight thread (LWT) is spawned, the

spawning server adds the LWT to the top of its own doubly-

ended queue. When a server runs out of work, it pops the

thread from the top of its deque. Hence, the LWTs are

managed as a LIFO stack by a given server. Note that the

LWTs at the bottom of this LIFO stack typically represent

bigger jobs that have been languishing longer, if we are

presuming new LWTs are spawned as part of a divide-and-

conquer approach, with each new LWT spawned

representing a shrinking fraction of the overall work to be

done. This means that when a server runs out of LWTs on its

own deque, it steals from some other server, and when it

steals, it steals from the bottom of the stack of that server, so

it gets an older and bigger job to do.

So this deque is effectively a LIFO stack on one end, used

by a single server, and a FIFO queue at the other end, used

competitively by multiple servers.

There is a "classic" implementation of the work-stealing

deque by Chase and Lev [4]. We implemented this algorithm

using the Ada 2022 Atomic_Operations.Exchange package,

and then refined it to take advantage of Ada’s modular types.

This talk will report on some of the specific challenges in

achieving high performance, and the results achieved in the

implementation of various Ada 2022 parallel programming

features, in comparison with the use of the OpenMP

scheduler.

References
[1] ISO Wg9, The Ada Reference Manual, Clause 9 Tasks

and Synchronization, 2022. http://www.ada-auth.org/

standards/2xrm/html/RM-9.html, retrieved 26-Feb-2022.

[2] OpenMP ARB, OpenMP Application Programming
Interfaces, Section 1.3 Execution Model, 2021.

https://www.openmp.org/wp-content/uploads/OpenMP-API-

Specification-5-2.pdf, retrieved 26-Feb-2022.

[3] R. D. Blumofe and C. E. Leiserson, “Scheduling

multithreaded computations by work stealing”, Journal
of the ACM, 46, 5 pp. 720–748, DOI:

https://doi.org/10.1145/324133.324234, 1999

[4] D. Chase and Y. Lev, “Dynamic circular work-stealing

deque”, Proceedings of the seventeenth annual ACM
symposium on Parallelism in algorithms and
architectures (SPAA '05), ACM, New York, NY, USA,

21-28, 2005, DOI: http://dx.doi.org/10.1145/

1073970.1073974, https://www.dre.vanderbilt.edu/

~schmidt/PDF/work-stealing-dequeue.pdf, retrieved 26-

Feb-2022.

113

Resilience-Aware Mixed-Criticality DAG

Scheduling on Multi-cores for Autonomous

Systems

Jie Zou, Xiaotian Dai, John A. McDermid
Department of Computer Science, University of York, UK; email: {first.last}@york.ac.uk

Abstract

Fully- and semi-autonomous systems are complex and
safety-critical with strict timing and resource con-
straints, and have a deep processing pipeline with strong
dependencies between different functions. Furthermore,
tasks with different criticalities share the same hard-
ware, and the scheduling strategy has to guarantee high
criticality tasks’ execution irrespective of interference
from low criticality tasks whilst respecting the prece-
dence constraints among tasks. Most static scheduling
work considering task dependencies does not take into
account the survivability of low criticality tasks, instead
assuming that all low criticality tasks should be sus-
pended or discarded after a mode change. Consequently,
the schedules for high and low modes are different, so
that more effort is needed to check the safety of sched-
ules during mode change and with a potential increase
in the migration cost as tasks may be executed on a
different core after a mode change. This work proposes
a novel mixed-criticality DAG-based multi-core static
scheduling method considering low criticality tasks’ sur-
vivability and precedence constraints between tasks with
different criticalities. This produces a consistent sched-
ule for different system modes enabling task-level mode
change and improving the resilience of the system. Fur-
thermore, the utilisation of computational resources is
also improved by avoiding discarding low tasks.

Keywords: mixed-criticality systems, DAG scheduling,
resilient autonomous systems

1 Background and Related Work
The development of advanced driver-assistance systems

(ADAS) and semi-autonomous systems, which comprise in-

creasing number of tasks with different criticality levels, has

been intensively studied in recent years. Mixed-criticality

systems (MCSs) provide the opportunity to integrate tasks

with different criticality requirements onto a shared compu-

tational platform. At the same time, there are increasingly

stringent predictability requirements to support safety certifi-

cation. Baruah and Fohler remarked that static scheduling is

well supported in the industry because it is regarded as giving

“complete determinism” and is easy to certify [1]. Thus, static

scheduling is adopted as the foundation for this work.

In this work, we use DAGs to describe the functions of

systems. DAGs have been widely used as they allow in-

tuitive identification of task dependencies and parallelizable

tasks. Recently, some state-of-the-art strategies proposed

generating static schedules based on mixed-criticality DAGs,

e.g. [2], [3], [4], [5] and [6]. However, most existing static

scheduling methods use different schedules for systems in

different modes (HI and LO modes) without considering the

survivability of LO criticality tasks (in HI mode).

Nevertheless, as Bletsas et al. observed in [7], some tasks con-

sidered as LO criticality might still contain mission-critical

functions and are vital for the correct and efficient opera-

tion of the system. Thus, Burns et al. [8] emphasise the

importance of robustness and resilience of task scheduling

for mixed-criticality systems. Furthermore, as Adjur et al.

identified [9], the overrun of one specific HI criticality task

does not imply that all HI tasks simultaneously exhibit their

longest Worst-Case Execution Time (WCET). Propelled by

this motivation, we propose what we believe to be the first

approach to generating one consistent static schedule consid-

ering the survivability of LO criticality tasks to improve the

resilience of the system. In this paper, we briefly introduce

the idea and the formulation of the proposed scheduling with

a case study.

2 Formulation
This section introduces the proposed resilience-aware mixed-

criticality multi-core DAG scheduling method, where the

schedule formulation is done in two steps.

2.1 Mixed-Criticality Task Model
We assume a dual-criticality system considering criticality-

dependent WCET estimation (i.e., for HI critical tasks

C(LO) ≤ C(HI)). A task τi can be defined by the tu-

ples (Ti, Di, Ci(HI), Ci(LO), Li), where Ti, Di represent

the period and deadline, respectively (Ti = Di); Li is the

criticality level; and Ci denotes the execution time. In this

work, we introduce the idea of minimum operation, i.e., a LO
task will always keep a simple data refresh operation; this is

to ensure the timeliness of data and the operation is assumed

to consume one time unit. Thus, if Li is LO, then Ci(HI) is

one. If the schedule considers the parallelism of LO tasks,

as Figure 1 shows, the overrun of HI1 task only impacts

on LO1.1. According to our proposed strategy, LO1.1 will

keep a minimum data refresh operation, and because of the

Ada User Jour na l Vo lume 43, Number 2, June 2022

114 Resi l ience-Aware MC DAG Schedul ing on Mul t i -cores for Autonomous Systems

Figure 1: HI mode schedule example with degraded LO
criticality task

existence of LO1.2, task LO1 is regarded as surviving with

degraded performance. Furthermore, it is worth noting that

LO1.2, LO2 and LO3 will never be discarded because their

execution will never be affected. Evidently, an appropriate

static schedule can ease the task-level mode change because

for each HI task, the LO tasks which could be impacted by

its overrun, are not difficult to be identified once the schedule

is known.

2.2 Consistent Mixed-Criticality DAGs (CMC-
DAG) Scheduling

This subsection defines our proposed new Consistent Mixed-
Criticality DAGs (CMC-DAG) scheduling method. For DAG

scheduling, the execution of one task can be started only when

all its predecessors finish their execution. When calculating

the schedule using backpropagation, a task can only be treated

when the time slots for all of its successors have been identi-

fied. Therefore, the definition of each task should be extended

to τi := (Ti, Di, Ci(HI), Ci(LO), Li, Suc(τi), P red(τi)),
where Suc(τi) and Pred(τi) represent the set of successors

and predecessors of τi, respectively.

Before the schedule calculation, the worst-case finishing time

(fi) of each node needs to be calculated following Equation

(1), where CP (τi) denotes the critical path of task τi; Gi

is DAG i; NGi represents the number of times the DAG is

released (starting from one).

f(τi) = (NGi
− 1)× T (Gi) + CP (τi) (1)

To provide more flexibility for LO task allocation, we adopt

the idea proposed in [3], where the schedule calculation is

started from the last time point of the hyperperiod and the last

layer of DAGs in the system (i.e., it starts from the last task

of the system back to the source node). Thus, all HI critical

tasks can be executed as late as possible. Their scheduled

start time will be fixed and kept the same in both system

modes. Similar to the state-of-the-art methods, the schedule

calculation also consists of two steps.

2.2.1 Schedule calculation in HI mode (Step 1)
The schedule should be generated based on the HI mode

task behaviour to guarantee the execution of HI tasks. The

existence of LO criticality tasks can assist in anchoring the

target schedule region of LO tasks in LO mode, which guar-

antees the satisfaction of precedence constraints among tasks

with different criticalities in both system modes. The anchor

time point is recorded as the latest starting time of minimum

operation for each LO task. Besides, it can assist in grouping

the LO tasks to specific a HI task to realise task-level mode

change.

Starting from the bottom layer of DAGs, the priority value

P (τi) of each task from the same layer will be calculated

according to Equation (2). Then the task priority will be

assigned according to the priority value sorted in increasing

order. Moreover, the relative order among LO critical tasks

should be adapted to increase the probability that the alloca-

tion of the regular (non-parallelizable) LO task will be prior

to the sub-task of the segmented LO task. In this work, time

slot allocation is in the backpropagation direction; the first

scheduled regular LO task would be executed following the

sub-task of the segmented LO task after schedule reversing.

Then, the overrun of the previous HI task can impact the

sub-task first, and the normal one could be protected.

P (τi) = Di − f(τi) (2)

Based on the adapted list, the task at the beginning of the

queue will be selected and allocated to the core with maxi-

mum remaining utilization Ur. Then, the utilization value of

that core should be updated according to Equation (3), where

S(τi) denotes the start time of the allocated task (relative to

this hyperperiod). C(τi) represents the execution time of the

allocated task. For HI tasks, C(τi) = C(HI) and for LO
tasks, C(τi) = C(LO) because we need to be aware of the

execution behaviour of each LO task in LO mode. In this

step, the start time of each HI task is fixed. It is vital to

note the precedence constraints during start time allocation.

With the help of anchor time points of LO tasks and the fixed

start time of HI critical tasks, the LO tasks which can be

impacted by each HI task can be grouped.

Ur ← min

{
S(τi)

Thyper
, Ur − C(τi)

Thyper

}
(3)

2.2.2 Consistent schedule generation (Step 2)
Based on the schedule calculated in step 1, all tasks are per-

formed with LO mode behaviour in this step. The execution

time of HI tasks is shortened, and more time is freed to

schedule LO tasks. The allocation of LO tasks is group-

based. In each HI task group, the related LO tasks are fixed,

and the last time point for task allocation is the start time

of the next HI task on the same core. We also adopt the

back-propagation allocation method, working from the end to

the beginning time point; thus, the regular type of LO critical

task from a specific HI task group would be scheduled first,

and the possible end time is the start time of the following HI
task. After the task is allocated, its start time is regarded as

the end time of the next scheduled LO task. After identifying

the possible end time of LO tasks, the upper bound of starting

time is defined by the end time of the owner (HI task) of

the specific group or the latest finish time of all its predeces-

sors. If the slack time from the same core is not sufficient

to support the execution of the LO task, its execution should

be segmented. The remaining execution can be allocated to

other cores, and regarded as a new task, which would be fed

into the waiting queue.

After all possible time slots have been allocated, we will

go back to check the schedulability of tasks in the waiting

Volume 43, Number 2, June 2022 Ada User Jour na l

J. Zou, X. Dai , J. A. McDer mid 115

Figure 2: Mixed-criticality DAGs example
(nodes in green: LO-tasks; nodes in red: HI-tasks)

queue. First of all, the queue should be sorted according to

the priority value determined by Equation (2) in increasing

order and start from the one with the minimum value. We

only need to search for free time slots of each core in the LO
mode schedule for the remaining execution of one specific

LO criticality task. However, for tasks that are fully un-

allocated in the waiting queue, the slack time of each core

under HI and LO mode should be checked because, in LO
mode, there is no free space to allocate it on the expected core,

even for the minimum operation. Considering the consistency

of static schedules under all system modes, the anchor time

point should also be migrated to other cores. Thus, The

overlapped free time can be used to allocate at least the one-

time unit minimum operation, where possible. The remaining

part would be scheduled in the same way determined for the

segmented task in the waiting queue. If the waiting tasks

cannot be scheduled successfully, the system is regarded as

unschedulable.

In summary, in this work, a consistent schedule enables task-

level mode change without any other effort for system mode

recovery. Furthermore, the survivability of LO tasks and

the resilience of systems are considerably improved, and the

computational resources can be used with high efficiency.

3 Case Study
A case study shown in Figure 2 is used to demonstrate the

schedule calculation procedures and highlights the advantage

of the proposed method. The example system consists of

two functions, represented by mixed-criticality DAGs with

different periods and mapped to core cluster A. To make

the case study more practical, task A2.5 is regarded as a

parallelizable HI task, segmented into A2.5.1 and A2.5.2,

and deployed on different cores to accelerate the execution.

The LO tasks A2.2 and A2.3 can be segmented, and the

missing part of their execution only implies performance

degradation. First of all, we adopt the method introduced

in [10] to determine the number of cores used for this example.

Because of space limitations, the procedure will be left to a

later paper. In this case study, the utilization of the system

in HI mode equals 2.35, and for LO mode, the utilization

equals 2.05. Thus, the minimum number of cores is three.

Then, within the hyper-period 20, DAG 1 is executed two

times with period of 10. The finish time of each node in

Figure 3: The schedule generated by step 1

HI mode can be calculated following Equation (1), and is

marked in purple. Following the procedure introduced in step

1, we calculate the schedule in the backpropagation direc-

tion (from time point 20 to 0), starting from the first layer

of the DAG which consists of three tasks A1.4, A1.5, A2.8.

The priority values obtained following Equation (2) are 6, 9

and 16, respectively. Thus, task A1.4 is selected first and

is allocated to core 1. The start time is fixed as 16, and the

remaining utilization of core 1 will be reduced to 0.8. Then,

considering A1.5, we use worst-fit to balance the workload

of different cores and the remaining utilization of core 2 is

calculated based on the execution time of the allocated tasks

in LO mode (i.e., 2 time units for A1.5) and reduced to 0.9.

The anchor time point of A1.5 is set to 19. Finally, A2.8 is

allocated to core 3 and the utilization is updated to 0.8. Then,

we move to layer 2 in the DAG, which comprises five tasks

(A1.2, A1.3, A2.6, A2.7.1, A2.7.2). The priorities are 3, 5,

11, 15 and 15, respectively. The order of selection is (A1.2,

A1.3, A2.6, A2.7.1, A2.7.2). When checking the relative

order of LO tasks, the regular A1.3 is selected before the

segmented task A2.7. Therefore, we do not need to swap the

relative order. In this round, core 2 has the maximum remain-

ing utilization with 0.9, so A1.2 will be allocated to core 2.

Then we need to check the earliest start time of its successors

(i.e., A1.4 and A1.5), and the time point of A1.4 with 16 is

selected. Thus the start time of A1.2 on core 2 is set to 13, as

calculated by Sτi(HI) = min{SSuc(τi)(HI)} − Cτi(HI),
and the remaining utilization reduces to 0.65. SSuc(τi) de-

notes the start time of τi’s successors. Following the same

rules, the static schedule in HI mode is calculated based on

a non-preemptive strategy. When it comes to the last layer in

the DAG (A1.1), the remaining utilization of each core is 0,

0, and -0.05, respectively. Thus, we need to check the slack

time of each core based on the existing schedule. Considering

the precedence constraints, A1.1 should finish its execution

before the start time of A1.2. A1.1 does not have any prede-

cessors thus the slack time searching duration is [0, 2]. On

core 1, there is a slack time slot, and the start time of A1.1
will be set as the start time of the slack, which equals 0, here.

Finally, the schedule from step 1 can be generated as shown

in Figure 3.

Following step 2 for consistent schedule design, the LO task

group of A1.1 contains A1.3, A2.2.1, which implies that be-

fore the start time of the next HI task A2.3 allocated to the

same core, the schedule of all tasks from this group should

be allocated. Starting from the regular task, which should be

Ada User Jour na l Vo lume 43, Number 2, June 2022

116 Resi l ience-Aware MC DAG Schedul ing on Mul t i -cores for Autonomous Systems

Figure 4: The consistent schedule from step 2

selected first, the anchor time point of A1.3, A2.2.1 will be

changed. In LO mode, the execution time of A1.1 is short-

ened to one time unit, and the start time of A1.3 is set to 3.

The remaining slack time from the same core is 2 and not

sufficient to support the execution of A2.2.1 thus, it will be

segmented and the portion allocated to core 1 is marked as

A2.2.1(2) and the remaining execution is regarded as a new

task with one-time unit and fed into the waiting queue. For

the second released task A1.1, the time duration for A2.2.1
starts from the latest end time of its predecessors (i.e., 10 from

A2.5.2) with C(LO) to the earliest start time of its successors

or the following task on the same core (i.e., 14 from A1.3).

Then we can find that its execution should be segmented into

A2.7.1(1) (from 10 to 11) and A2.7.1(2) (from 12 to 14).

After finishing all possible allocation, returning to the waiting

queue, there is only one waiting task A2.2.1, in this example.

When facing multiple waiting tasks, the one with the lowest

priority value will be selected first. The search time duration

for the remaining task A2.2.1 is bounded by 0 and the start

time of A2.2.1(2). On core 2, one free time slot can be found,

i.e., [0, 1] and the search would be stopped and the portion

marked as A2.2.1(1). Finally, a consistent schedule can be

generated as shown in Figure 4. Though the migration of

tasks during run time cannot be fully avoided, comparing

with the schedule generated by preemption according to the

priority of each task in paper [10], the number of migrations

can be significantly reduced.

Based on the consistent schedule, it is not difficult to find

that the overrun of each HI task can only interfere with the

execution of the LO tasks in its group, and there exist LO
tasks that will never be discarded, such as A1.5. Besides, task

A1.3 will be degraded to minimum operation only if A2.2.1
can not finish its data refresh before its anchor time point. The

overrun of A1.1 only leads to the performance degradation

of A2.2 because of the loss of A2.2.1. Suppose the minimum

operation is not started before its anchor point. All LO critical

tasks should be discarded with only the minimum operation

kept. For example, after the overrun of A1.1, ideally, the

minimum operation can be finished before instant 3. If not,

that will trigger the discarding of A1.3. Time slots [3,4] and

[4,5] can guarantee the minimum execution of A2.2 and A1.3,

respectively.

4 Conclusion
In this work, a novel mixed-criticality, multi-core DAG

scheduling strategy is proposed. Instead of generating two

different schedules for the different system modes and discard-

ing all LO critical tasks in HI mode, our strategy generates

one consistent schedule considering the survivability of LO
tasks to reduce the complexity of task-level mode change,

which can accelerate the recovery of specific impacted LO
tasks. The existence of LO criticality tasks also improves the

efficiency of computational resource utilisation. Whilst we

have illustrated the approach using an example and illustrat-

ing the schedules graphically. However, the method will be

applied to more realistic examples — as we are doing with a

mobile delivery robot.

References
[1] S. Baruah and G. Fohler, “Certification-cognizant time-

triggered scheduling of mixed-criticality systems,” in

2011 IEEE 32nd Real-Time Systems Symposium, pp. 3–

12, IEEE, 2011.

[2] S. Baruah, “The federated scheduling of systems of

mixed-criticality sporadic dag tasks,” in 2016 IEEE
Real-Time Systems Symposium (RTSS), pp. 227–236,

IEEE, 2016.

[3] R. Medina, E. Borde, and L. Pautet, “Directed acyclic

graph scheduling for mixed-criticality systems,” in Ada-
Europe International Conference on Reliable Software
Technologies, pp. 217–232, Springer, 2017.

[4] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu,

“Mixed-criticality federated scheduling for parallel real-

time tasks,” Real-time systems, vol. 53, no. 5, pp. 760–

811, 2017.

[5] R. M. Pathan, “Improving the schedulability and qual-

ity of service for federated scheduling of parallel

mixed-criticality tasks on multiprocessors,” in 30th Eu-
romicro Conference on Real-Time Systems (ECRTS
2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik, 2018.

[6] R. Medina, E. Borde, and L. Pautet, “Generalized mixed-

criticality static scheduling for periodic directed acyclic

graphs on multi-core processors,” IEEE Transactions on
Computers, vol. 70, no. 3, pp. 457–470, 2020.

[7] K. Bletsas, M. A. Awan, P. F. Souto, B. Akesson,

A. Burns, and E. Tovar, “Decoupling criticality and im-

portance in mixed-criticality scheduling,” in Workshop
on Mixed Criticality, pp. 25–32, York, 2018.

[8] A. Burns, R. I. Davis, S. Baruah, and I. Bate, “Robust

mixed-criticality systems,” IEEE Transactions on Com-
puters, vol. 67, no. 10, pp. 1478–1491, 2018.

[9] J. Boudjadar, S. Ramanathan, A. Easwaran, and U. Ny-

man, “Combining task-level and system-level schedul-

ing modes for mixed criticality systems,” in 2019
IEEE/ACM 23rd International Symposium on Dis-
tributed Simulation and Real Time Applications (DS-
RT), pp. 1–10, IEEE, 2019.

[10] R. Medina, E. Borde, and L. Pautet, “Scheduling multi-

periodic mixed-criticality dags on multi-core architec-

tures,” in 2018 IEEE Real-Time Systems Symposium
(RTSS), pp. 254–264, IEEE, 2018.

Volume 43, Number 2, June 2022 Ada User Jour na l

117

Artificial Neural Networks for Real-Time Data

Quality Assurance

Inês Sousa, António Casimiro, José Cecílio
Faculty of Sciences, University of Lisbon, Lisbon, Portugal; email: fc51588@alunos.fc.ul.pt,
casim@ciencias.ulisboa.pt, jmcecilio@ciencias.ulisboa.pt

Abstract

Wireless Sensor Networks used in aquatic environments
for continuous monitoring are typically subject to phys-
ical or environmental factors that create anomalies in
collected data. A possible approach to identify and
correct these anomalies, hence to improve the quality
of data, is to use artificial neural networks, as done
by the previously proposed ANNODE (Artificial Neural
Network-based Outlier Detection) framework [1].

In this paper we propose ANNODE+, which extends
the ANNODE framework by detecting missing data in
addition to outliers. We also describe the design and
implementation of ANNODE+, implemented in Python
to exploit readily available machine learning (ML) tools
and libraries, also allowing online processing of incom-
ing measurements. To evaluate the ANNODE+ capa-
bilities, we used a dataset from a sensor deployment
in Seixal’s bay, Portugal. This dataset includes mea-
surements of water level, temperature and salinity. We
observed that our implementation of ANNODE+ per-
formed as intended, being able to detect injected anoma-
lies and successfully correcting them.

Keywords: Neural networks, Environmental monitoring,
Sensor networks, Forecasting, Data quality

1 Introduction
Nowadays, maintaining good water quality is important for

the aquatic fauna and flora and our life quality. It has become

a scarce resource, so it is crucial to monitor it. The Internet

of Things (IoT) and Wireless Sensor Networks (WSNs) play

an important role to monitor and inspect its quality. WSNs

are networks with dedicated sensors that detect specific phe-

nomenons or events. WSNs have been used to remotely

monitor many different aquatic environments such as rivers,

coasts, lakes and bays [1, 2].

Given that WSNs and their sensors are exposed to physical or

environmental factors that often create anomalies in collected

data, existing solutions can benefit from platforms for detect-

ing erroneous data or data omissions, to provide the required

reliability.

In this work, we propose the ANNODE+ framework, an arti-

ficial neural network-based framework for online data quality

assurance. Taking inspiration from ANNODE, an outlier

detection framework based on Artificial Neural Networks

(ANNs) previously proposed by Jesus et al. [1], we report

on the on-going design and implementation of a new, more

generic and extended framework, usable in multiple settings.

With the support of ANNs, the framework considers incoming

measurements as time series (e.g., temperature values over

time), predicting future values in the series. Each received

measurement goes through a set of blocks to determine if

it is an outlier, to estimate its quality, and, if considered an

outlier, to replace it by a corrected measurement. Our frame-

work was designed for online processing of incoming sensor

measurements, and implemented with real-time concerns in

mind, to reduce the time taken to process each incoming

measurement and avoid arbitrarily large processing times. It

offers capabilities to deal with a single sensor (data source) or

multiple sensors providing correlated measurements. In fact,

the ability to detect outliers can be significantly improved

when correlated data sources are available. Measurements

can be correlated if different variables have an impact within

one another, e.g, salinity levels can change temperature levels.

If more than one data source is available, some events can

be explained as incidents. For instance, if it is detected a

change in water levels, this change will also be detected in

other sensors. However, if an event is detected by only one

data source, it is most likely that that event is an anomaly.

2 Related Work
There have been many investigations and many different

projects using WSNs. However, there is little work on the

detection and correction of anomalies in sensor data, which

can be frequent when considering deployments affected by

harsh environmental conditions. We reviewed previous work

done by different authors and the current state-of-the-art in

the context of this work for each topic.

Ensuring that sensor data is of good quality, is of great impor-

tance to applications that rely on these types of data [3]. As

discussed in the survey from Hui Yie Teh et al. [4], artificial

intelligence (AI) and machine learning (ML) solutions are

now commonly used to ensure data quality despite sensor and

network failures. In [4], Hui Yie Teh et al. made a literature

search for keywords related to these topics. Table 1 shows the

most frequent types of sensor data errors mentioned in papers

and the number of times they were mentioned.

From these values, it is clear that outlier and missing data

errors are those that gather comparatively more attention in

Ada User Jour na l Vo lume 43, Number 2, June 2022

118 Ar t i f i c ia l Neura l Networks for Real -T ime Data Qual i ty Assurance

Table 1: Most common types of errors in sensor data [4] and
number of papers mentioning them.

Type of error Total

Outliers 32

Missing Data 16

Bias 12

Drift 12

Type of error Total

Noise 8

Constant value 7

Uncertainty 6

Stuck-at-zero 6

the literature, perhaps because they are prominent in real de-

ployments. These are the two types of errors that we address

with ANNODE+.

As previously stated, ML methods are commonly used to

detect anomalies in sensor data. Several different methods,

including supervised and unsupervised ones, can be used to

detect anomalies based on past data. In [4], an analysis of

the most common ML methods for error detection was also

done, being the three most prominent ones the Principal Com-

ponent Analysis (PCA), Artificial Neural Networks (ANNs)

and Ensemble Classifiers. Our framework uses ANNs for

this process, more specifically MultiLayer Perceptron Neural

Networks (MLP).

In addition to detecting outliers, ANNODE+ also detects

missing data. This is done only for periodic data, assuming

that the period is known.

In [5], a similar experience was made in Aveiro, Portugal.

The authors used and adapted a custom-deployment based

forecasting platform to the Portuguese coast. This allowed

to create numerical models to provide forecasts of sea level

variations, currents, temperatures, etc. However, they also

recognize that further research and solutions to deal with data

errors are needed when considering sensor deployments in

harsh environments. Furthermore, they refer to the possibility

of exploiting existing temporal and spatial correlations in

sensor data.

To understand the relevance of correlations between data

from different sensors, several ML methods were considered

in [6] to forecast long-term and short-term water demand

when considering variables such as rain, hour of the day

and air temperature. It was possible to conclude that using

multiple correlated variables helps improving the accuracy

of forecasts, with some variables having more impact on the

achieved results.

In summary, the ANNODE+ framework is designed to detect

and correct the most common sensor data errors. Additionally,

the framework includes mechanisms, based on timers, to deal

with missing data and exploit data correlations that may help

with the predictive model and the detection of anomalies.

3 ANNODE+ Architecture
The framework’s architecture is illustrated in figures 1 and

2. It is composed of two blocks: the training and execution

blocks. The training block corresponds to an offline execu-

tion for models’ training. This training step is supported by

a dataset containing sufficient information to represent all

the main characteristics and dynamics of the variable being

modelled (e.g., represent the seasonality present in the real

phenomenon). The user must prepare a configuration file

with all the training requirements, such as the number of sen-

sors, their characteristics (e.g., sampling period), and data

characteristics (e.g., representative period).

The characteristics of the MultiLayer Perceptron (MLP) neu-

ral networks trained in the framework are the same as those

proposed in the ANNODE framework, which are described

in [1], and consist of two hidden layers with 20 neurons in the

first layer and 15 in the second, using a hyperbolic tangent

sigmoid (tansig) as the activation function.

Models are trained using datasets that must be provided by

the user, which must have been previously collected and

must include only data considered correct. Annotating or

cleaning training data is a typical requirement when using

ML methods. When data from multiple correlated sensors

is available, several models are created, corresponding to

different combinations of sensors. In fact, to predict the next

measurement of a sensor, it is possible to use a model that was

trained using only data from that sensor (exploiting temporal

correlation), or using a model combining data from multiple

neighbor sensors (exploiting spatial correlation).

After training the ANN models, the framework is ready to

run (online execution). The Execution block follows a multi-

service implementation approach. Currently, there are three

primary services: Communication, Omission detection and

Processing. The Communication service is responsible for

receiving sensor data, for identifying its source sensor, and

for inserting these data in that sensor measurements queue,

which is shared with the Omission detection service.

The Omission detection service is a multi-thread service with

a timer thread for each sensor from which periodic data is

to be received. Considering that each sensor s sends a new

measurement with period Ps, a corresponding timer is set to

expire after Ps + δ, where δ corresponds to the jitter assumed

for the measurement reception instant. If no measurement

from that sensor is received before Ps + δ, an omission is

detected and a special value (like a NaN) is inserted in the

sensor measurements queue. By considering the channel jitter,

the probability of wrongly detecting an omission is reduced

to the probability of considering a wrong (too small) jitter.

Lastly, there is the Processing service. This service is trig-

gered by new incoming measurements, stored in each sensor’s

measurements queue. However, actual processing only starts

after a certain number of measurements have been received,

covering an entire representative period of the physical pro-

cess being monitored (e.g., 12 hours for sea water level).

When this condition is fulfilled, actual processing is executed

for every new incoming measurement. Firstly, measurements

are temporally aligned, to match the alignments used during

model training. Then, input vectors are built from the stored

and aligned measurements, to be fed to the relevant ANN

prediction models. If correlated sensors are available, then

the following models (which have been previously trained)

are used to generate forecasts:

Volume 43, Number 2, June 2022 Ada User Jour na l

I . Sousa, A. Cas imi ro, J. Cecí l io 119

Training Block

Training
Configuration

File

Create Neural
Network

CDF
Data

Training
Data

Test
Data

Non-trained
Neural

Network
Training

Trained Neural
Network

Calculate CDF

Save Neural
Network

User

Processing Data

Figure 1: ANNODE+ Architecture - Training Block

Server

Communication
Service

Omission FD
Service

Processing Service

Align Times Predict

Failure
Detection

Quality Replace

queue

queue

Output

Output
File

Execution
Configuration File

Execution Block

Store
Measurement

User

Neural
Network

Repository

TensorFlow

FD?
No

Yes

Outliers

Missing Data

Drifts

Noise

Figure 2: ANNODE+ Architecture - Execution Block

1. A model that only uses data from the target sensor whose

measurement is being processed (temporal correlation);

2. A model that uses data from the target sensor and its

neighbours (temporal and spatial correlation);

3. A model that uses data only from the target sensor neigh-

bours (spatial correlation only).

The benefit of using these multiple forecasts is to be able to

distinguish real environmental events (even if they look like

outliers) from real outliers (only affecting the target sensor,

but not the neighbor ones). It is then possible to check the

correctness of the received measurement, comparing it with

the generated forecasts. In fact, given that sensor data can be

affected by different kinds of errors, it is at this point of the

processing chain that it is possible to determine if some failure

may have happened, leading to those different errors. While

ANNODE+ is only detecting outliers, it may be extended

in future work with new failure detection blocks to detect

data drifts and noise. When some failure is detected (either

missing data or outlier), then the received measurement (or the

special NaN value) is replaced by an average of the calculated

forecasts.

In addition to detecting failures, it is also possible to calculate

the quality of the received measurement. When the difference

between the received measurement and the forecasts provided

by the models is small, then the quality is high.

4 Results
To evaluate our ANNODE+ implementation, we used a

dataset with temperature measurements collected from a sen-

sor in the Seixal Bay, in Portugal. We divided this dataset in

two parts, containing data from different temporal periods.

One part was used to train a single model (in this initial eval-

uation we only considered one model, exploiting temporal

correlations) and the other was used to test the framework.

Training a single model took about one full day on our hard-

ware with 16GB of RAM and an AMD Ryzen 5 3500X CPU.

Given our objective of checking the ability of the framework

Ada User Jour na l Vo lume 43, Number 2, June 2022

120 Ar t i f i c ia l Neura l Networks for Real -T ime Data Qual i ty Assurance

to detect outliers and missing values, we randomly injected

these anomalies in the second part of the dataset, by changing

some measurements and by removing some of them from the

temporal series.

To emulate a real online usage of the framework, we built a

framework client that plays the role of a sensor and sends a

new measurement (taken from the dataset) to the framework

with a period of 500ms (except when injecting an omission).

We observed very positive results, with the framework replac-

ing the injected outliers with their respective predictions. As

stated before, when training is done with a sufficiently large

and representative dataset, the obtained predictions are very

accurate. We were also able to detect omissions, as expected,

and correctly replacing the missing measurements with the

values predicted by the ANN model.

Given the need to execute the full processing chain before the

arrival of a new measurement, we also measured the response

time of the framework, from the moment a new measurement

arrives until it is fully processed, to assess the achievable per-

formance and potential capacity of the framework in handling

incoming data. The ability to ensure a bounded execution

time necessarily depends on the underlying execution environ-

ment (namely the operating system being used), but having

an idea of the time needed to process a single measurement is

already important to make sure that the framework is not over-

loaded. In our experiments we also measured the CPU load,

and we considered the execution of the framework with and

without background load. The background load was created

by running the framework for model training.

Table 2: Run-time cost of the algorithm for one measurement.

Without load Total

Max time (ms) 165

Avg time (ms) 52

Best time (ms) 46

Avg CPU load 11%

With load Total

Max time (ms) 153

Avg time (ms) 54

Best time (ms) 49

Avg CPU load 42%

Table 2 provides the collected performance measurements.

The results show that in this case it would be possible to fully

process each new measurement in about 50ms (in average),

even considering a loaded CPU. For most applications per-

forming environmental monitoring, this kind of performance

is sufficiently good to allow the framework to be used for

online processing of incoming measurements, even if mea-

surements from several sensors have to be processed.

5 Conclusion and Future Work
The preliminary results show very positive outcomes. How-

ever, we aim to complete and test the implementation of ANN-

ODE+ to handle more than one data source, and improve the

calculation of the measurement quality using correlations be-

tween sensors. We also plan on improving the training block

by automating some parts of the training process.

Moving away from applications in the environmental mon-

itoring area, we plan to use the framework in a use case of
arc detection in DC distribution cabinets, in the context of the

VEDLIoT EU project (https://vedliot.eu). In this case there is

a stream of sensor data being continually produced and sent

in batches to the framework, while timing requirements for

the detection of arcs (which will create data that will look like

outlier in relation to normal data) are very stringent, in the

order of a few milliseconds. A different execution platform

will be required, with more resources and making it possible

to satisfy timeliness requirements.

Acknowledgments
This work was supported by FCT through funding of the

AQUAMON project (ref. PTDC/CCI-COM/30142/2017) and

the LASIGE Research Unit (ref. UIDB/00408/2020 and ref.

UIDP/00408/2020), and by the European Union’s Horizon

2020 research and innovation programme under grant agree-

ment No 957197 (VEDLIoT project).

References
[1] G. Jesus, A. Casimiro, and A. Oliveira, “Using machine

learning for dependable outlier detection in environmen-

tal monitoring systems,” ACM Trans. Cyber-Phys. Syst.,
vol. 5, jul 2021.

[2] B. O’Flyrm, R. Martinez, J. Cleary, C. Slater, F. Regan,

D. Diamond, and H. Murphy, “Smartcoast: A wireless

sensor network for water quality monitoring,” pp. 815 –

816, 11 2007.

[3] G. Jesus, A. Casimiro, and A. Oliveira, “A survey on

data quality for dependable monitoring in wireless sensor

networks,” Sensors, vol. 17, no. 9, p. 2010, 2017.

[4] H. Teh, A. Kempa-Liehr, and K. Wang, “Sensor data

quality: a systematic review,” Journal of Big Data, vol. 7,

02 2020.

[5] J. Gomes, M. Rodrigues, A. Azevedo, G. Jesus, J. Ro-

geiro, and A. Oliveira, “Managing a coastal sensors

network in a nowcast-forecast information system,” in

2013 Eighth International Conference on Broadband and
Wireless Computing, Communication and Applications,

pp. 518–523, IEEE, 2013.

[6] B. Brentan, G. Meirelles, M. Herrera, E. Luvizotto Jr, and

J. Izquierdo, “Correlation analysis of water demand and

predictive variables for short-term forecasting models,”

Mathematical Problems in Engineering, vol. 2017, 12

2017.

Volume 43, Number 2, June 2022 Ada User Jour na l

121

Deep Learning for Reliable Communication

Optimization on Autonomous Vehicles

J. Loureiro, J. Cecílio
Faculdade de Ciências da Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa; email: {jnloureiro,
jmcecilio}@ciencias.ulisboa.pt

Abstract

Recent breakthroughs in the autonomous vehicle indus-
try have brought this technology closer to consumers.
However, the cost of self-driving solutions still consti-
tutes an entry barrier to many potential users due to its
reliance on powerful onboard computers. As an alter-
native, autonomous driving algorithm processing may
be offloaded to remote machines, which requires a reli-
able connection to the cloud servers. However, despite
significant 5G coverage in many countries, mobile net-
work reliability and latency are still inadequate for this
purpose. This work explores deep learning concepts to
forecast signal quality as a vehicle moves, predicting
when periods of degraded network quality will occur.
We develop a Long Short-Term Memory (LSTM)-based
neural network, trained on multivariate time series con-
taining historical data on several mobile network pa-
rameters, and evaluate the results of multi-step Refer-
ence Signal Received Power (RSRP) prediction. Results
show that our model achieves a rapidly increasing Root-
Mean-Square Error (RMSE), reaching over 8 dBm after
25-time steps. This error does not allow for the accurate
prediction of future signal quality.

Keywords: Deep Learning, Autonomous Vehicle, Signal
Quality, Forecasting.

1 Introduction
In recent years, vehicle manufactures have been investing

significantly in technology that would enable their vehicles

to operate autonomously without requiring the presence of a

human driver. Self-driving cars aim to improve road safety

while optimizing driving performance, freeing passengers to

focus on tasks other than driving. Such vehicles have the

potential to revolutionize multiple transportation industries.

Over the years, the technology behind autonomous vehicles

has improved significantly through the evolution of control

systems that process data obtained from various sensors, such

as cameras, radar, lidar, sonar, and GPS. Those sensors of-

fer the capability to collect information about the vehicle’s

positioning and surroundings to control and navigate the car,

avoiding any obstacles. However, current autonomous vehicle

technology still needs to be improved before it can be used

with confidence in public roads, making it the target of large

amounts of research. Sensing hardware is typically mounted

on the vehicle, and these systems are usually built on machine

learning algorithms and other processing-heavy mechanisms.

As technology evolves, vehicles increasingly benefit from

being connected to the Internet. Such vehicles are designated

connected vehicles. These connections can also be used for

applications outside of autonomous driving, such as vehicle

management, entertainment, and mobility management. Con-

nected vehicle manufacturers have chosen existing mobile

network technologies to power their vehicles’ Internet con-

nection capabilities. The current mobile network generation

— 5G — aims to bring considerable improvements to the

network’s latency, which would prove extremely useful in

safety-critical and real-time remote processing applications,

such as offloading computer vision processing in self-driving

cars.

Self-driving solutions usually require computers to be fit in-

side the vehicles to perform local computer vision operations.

These computers use powerful CPUs and GPUs to process a

large amount of information necessary to achieve autonomous

driving reliably. Such computing devices are expensive, driv-

ing the vehicles’ prices up. Sometimes prohibitively so, pre-

venting a significant percentage of consumers from affording

retrofitted self-driving systems or autonomous vehicles.

Alternatively, a part of the information processing can be of-

floaded to remote servers, reducing the computing capability

requirement of onboard computing devices, thus reducing

their cost. However, offloading this computing burden re-

quires a persistent and reliable network connection between

the vehicles and the servers. In fact, given the life-critical

nature of cars circulating on public roads, the high reliability

of the connection is vital to the safe operation of the vehicle.

The network must allow all necessary data to be transmitted

promptly to achieve high levels of reliability. Thus, sufficient

network throughput to transmit all sensor data is indispens-

able to the processing offloading, as are latency values low

enough to allow the vehicle to receive and react to the of-

floaded algorithms decisions. In addition, the car must be

connected to reliable infrastructure and properly handle cell

tower handovers to maintain an adequate connection quality.

Considering that the safety of the passengers is a major pri-

ority to any autonomous driving solution, maximizing it will

necessarily also be of paramount importance in our work.

Reducing the vehicle’s speed when facing periods of network

instability will improve passenger safety while allowing more

Ada User Jour na l Vo lume 43, Number 2, June 2022

122 Deep Lear n ing for Rel iable Communicat ion Opt imizat ion on Autonomous Vehic les

time for the data to be processed by autonomous driving algo-

rithms. Additionally, the chosen route determines the pattern

of network availability during the ride, as it influences the

amount and relative position of cell towers, which would, in

turn, have an impact on the vehicle’s ability to offload pro-

cessing power to remote devices. Choosing the route that

maximizes network availability requires considering large

amounts of diverse types of data, often not readily available:

geographical data, cell tower position data, vehicle GPS data,

and live traffic data. Moreover, route selection algorithm

heuristics often value routes that minimize travel time, driven

distance, and fuel consumption, which may conflict with

routes with superior network performance. In this paper, we

explore the concept of deep learning to forecast the communi-

cation quality while a self-driving car is moving. We leverage

deep neural networks to predict the network quality metric

Reference Signal Received Power (RSRP). Our forecasting

model creates an opportunity to develop sophisticated control

algorithms that allow improving the system’s reliability and

safety, and reduce its cost.

The remainder of this document is organized as follows. Sec-

tion 2 describes the related work. Previous deep learning

applications to forecast network parameters and methods are

reviewed. Section 3 describes the dataset used, followed by

an exploratory analysis of the data. We present the methods

used to process and model the data in Section 4, followed by

Section 5 in which we present the obtained results. Finally,

Section 6 presents our preliminary conclusions.

2 Related work
Multiple research groups have previously tackled the network

parameter forecasting problem using a variety of approaches.

Bui et al. [1] have surveyed recent works related to network

parameter forecasting. In particular, they note that there is

significant interest in utilizing anticipatory mobile network-

ing to optimize network efficiency. Additionally, numerous

papers leverage historical data in the form of time series to

predict network parameters, used to train a variety of machine

learning models, including neural networks. Finally, they

recognize the importance of research focusing on the emerg-

ing 5G technology, which will be followed by a new set of

challenges, such as data collection difficulties and security

considerations.

Raca et al. [2] recognize the advantages of deep learning

techniques when applied to throughput prediction tasks, as

it results in models requiring less storage space and provid-

ing more accurate results when compared to other machine

learning algorithms. Deep learning algorithms, such as Long

Short-Term Memory (LSTM)-based neural networks, are al-

ready widely used in the autonomous vehicle industry, sup-

porting numerous self-driving solutions [3]. In fact, in the

context of 5G and deep learning research, LSTM-based neural

network use surpasses that of CNNs or traditional RNNs [4].

Minovski et al. [5] have used several machine learning algo-

rithms, namely Random Forest, Support Vector Regression,

XGBoost, and Multilayer Perceptron, to predict instantaneous

network throughput while the mobile device is idle, based

on several passive network metrics, such as signal quality

and parameters from serving and neighboring cells, achieving

prediction Mean Squared Errors (MSE) of 0.06 and 0.17 for

LTE and 5G networks, respectively. These results suggest that

network metrics are somewhat correlated and that network

throughput tends to have low variance over time.

In Prihodko’s work [6], signal strength (more specifically,

network RSRP values) is predicted using the Vector Autore-

gression, Multilayer Perceptron, and Gated Recurrent Unit

(GRU) algorithms to improve handover timing in mobile de-

vices, based on past RSRP observations. The GRU-based

model achieved the best results of all tested models with an

RMSE of over 13.5 dBm after 10 time steps. Note that this

work used simulated data to train their models and results may

differ from those obtained from real-world data. In this work,

they used the Rectified Linear Unit (ReLU) function as the

activation function, claiming it significantly increases training

speed. Conversely, we have used the hyperbolic tangent func-

tion due to internal optimizations in our chosen framework,

as explained in Section 4. In addition, the ReLU function has

been deemed inappropriate to use with RNNs without careful

network weight initialization [7].

3 Dataset
In this work, we are using a dataset created by Raca et

al. [8], which corresponds to a collection of network met-

ric captures from mobile devices. This dataset consists of 83

traces, grouped by mobility pattern and download type, of

data channel Key Performance Indicators (KPIs), captured

using a network monitoring application (G-NetTrack Pro1) on

non-rooted Android mobile devices. All traces were captured

using the same mobile device, connected to a single mobile

network operator. This dataset supersedes multiple previous

capture collections by other research groups regarding sam-

pling granularity, available KPIs and metrics, and scenario

and technology diversity. It also replaces an older dataset

published by the same authors [9] focused on 4G capture

data.

Traces are grouped into categories by mobility pattern, la-

belled according to the primary mode of transportation. In

this work, we use the 60 traces obtained while driving in urban

and suburban environments around the city of Cork, Ireland,

in cars. These traces correspond to approximately 95% of the

total capture duration of the dataset and exhibit great diversity

in KPI evolution patterns due to the high number of traces

and the different congestion patterns observed during capture.

The remaining traces, captured in static conditions, do not

represent a relevant use case and are therefore ignored. Fur-

thermore, traces are labeled by download type: file download,

Netflix streaming, and Amazon Prime streaming. Table 1

shows the number of traces in the dataset grouped by mobility

pattern and by type of download.

The following list describes the KPIs present in each sample.

This list only includes the dataset features that are relevant to

this work.

• Timestamp: sample timestamp, in the format

[YYYY].[MM].[DD]_[hh].[mm].[ss], with a

one-second granularity.

1https://gyokovsolutions.com/g-nettrack/

Volume 43, Number 2, June 2022 Ada User Jour na l

J. Loure i ro, J. Cecí l io 123

Table 1: Trace distribution by mobility pattern and application
pattern. Only driving traces are included.

Download Netflix Amazon Prime Total
Static 5 10 8 23
Car 16 23 21 60

• Longitude & Latitude: current GPS coordinates of the

mobile device.

• Speed, in km/h: velocity of the mobile device, obtained

from in-device GPS components.

• NetworkMode: sample’s mobile network technology.

This value depends on the highest generation standard

supported by the serving cell. Valid values for this fea-

ture are GPRS and EDGE for 2G, UMTS, HSUPA, HS-
DPA and HSPA+ for 3G, LTE for 4G, and 5G for 5G.

• RSRP, in dBm: Reference Signal Received Power. It

represents the average power observed in the Resource

Elements (RE) that carry cell-specific Reference Signals

(RS). REs carrying Data Signals are not considered. This

metric provides a reliable indication of the connection’s

signal quality.

• DL_bitrate & UL_bitrate, in kbit/s: download and up-

load rates, respectively. During capture, the mobile de-

vices continuously download a large file via TCP. These

values represent transmission rates measured on the de-

vices’ network interface. The sum of these two values

corresponds to the device’s network throughput.

Traces representing the download of large files show higher

throughput values when compared to the other two applica-

tion patterns, corresponding to video streaming from popular

online streaming services. The applications used to download

large files attempt to achieve the shortest download time using

the network’s highest throughput capacity. Conversely, video

streaming applications download video files in segments, re-

maining idle while the video buffers are full. In addition,

these applications’ HTTP Adaptive Streaming (HAS) tech-

niques keep the application throughput below the network’s

maximum capacity to ensure a satisfactory user experience.

This results in throughput values for streaming applications

that are consistently lower than for the file downloads. In

our use case, the throughput profile would resemble a stream-

ing download since the amount of data in the transmission

is limited by the data obtained from the sensors over time.

However, the data size would often push the network through-

put capacity to its limit. We then argue that samples from

both file download and streaming profiles should be used in

the forecasting process. Ping statistics are missing in over

98% of observations. This prevents latency values (extracted

from average ping values) from being used in model training.

Calculating the Pearson correlation coefficient for each signif-

icant numerical feature pair, we found no strongly correlated

features.

4 Forecasting Network design
Each observation in the dataset is labelled with a sequential

timestamp with a consistent time step of one second. There-

fore, all samples are time series, making RNNs one of the

Figure 1: Neural network architecture diagram.

most appropriate neural network classes to process the data

involved in this work. For this reason, LSTMs will be used

for forecasting network quality.

The proposed solution is divided into three layers. The first

layer is an LSTM layer with 64 units that consume the input

data. This layer is configured to return a data matrix instead

of a vector, which a second LSTM layer will process with

32 units. Both layers use the hyperbolic tangent function

as an activation function and the sigmoid function as a re-

current activation function, which allows model operations

to be executed using the cuDNN2 GPU-accelerated library,

significantly accelerating training and prediction operations.

Then, there is a dense layer of 30 neurons corresponding to

the output neurons. It is used to change the dimension of the

output vector. The model is configured with the Adaptive

Moment Estimation (Adam) optimizer and the Mean Squared

Error (MSE) loss function, causing higher error values to

impact the weight adjustment process significantly. Figure

1 illustrates the model’s layer architecture. All numerical

feature data is converted to floating-point representations and

normalized using a minimum-maximum scaler to the range 0

to 1 before being input into the neural network.

The two features used to train the model are throughput, cal-

culated from the download and upload bitrates, and RSRP.

The target feature to forecast is RSRP, corresponding to the

device’s signal strength. The model was trained using 100

past time steps, with one additional feature besides the tar-

get feature, and 30 future time steps for each sample. The

samples were then split into training and test data at a ratio

of 9:1. This resulted in 86170 training samples and 9575

test samples. Forecasting 30 time steps in the future with a

granularity of one second corresponds to a prediction range

of 30 seconds, or 500 meters at 60 km/h and 1000 meters at

120 km/h. These are common speeds for vehicles traveling

in urban and highway environments, respectively, and the

prediction ranges would allow enough time to react to periods

of degraded signal quality. Model training was run for 10

epochs using batches of 32 samples.

5 Results
The model is evaluated using Root-Mean-Square Error

(RMSE), a commonly used evaluation metric that penalizes

more significant deviations from the mean. In the context

of this work, higher error values are particularly pernicious

2https://developer.nvidia.com/cudnn

Ada User Jour na l Vo lume 43, Number 2, June 2022

124 Deep Lear n ing for Rel iable Communicat ion Opt imizat ion on Autonomous Vehic les

Figure 2: Prediction RMSE for each predicted time step.

due to the criticality of the application. Sizeable forecasting

errors lead to catastrophic vehicle control decisions, which

may ultimately result in loss of passenger life. The trained

model was used to forecast RSRP values for both training

and test data. Our experiments achieved an RMSE of 7.1051

dBm for the training data and 7.1297 dBm for the test data.

Similar bias and variance suggest that the model is not under-

fitting the test data, showing nearly indistinguishable results

for previously seen and unseen data. The error for training

data ranges from 2.6749 dBm to 8.9956 dBm for the first and

last (30th) predicted time steps, respectively. We got errors

from 2.5448 dBm to 8.9851 dBm concerning the testing data.

As evidenced in Figure 2, the error proliferates as the predic-

tion gains distance from the moment of the last observation.

This growth resembles a logarithmic curve that decelerates as

more time steps are forecast. In practice, given the obtained

error amplitudes, the predictions resulting from the current

model could not be used with sufficient confidence to enable

reliability for a control algorithm to operate in an autonomous

vehicle. We considered that the values are acceptable for one

or two time-steps from our preliminary results. Still, when

we predict a considerable period, we get significant errors

decreasing the model’s usefulness.

All data processing and model training was run using the

Google Colab3 platform’s cloud computing resources, on ma-

chines with the following specifications: Intel Xeon processor

running at 2200MHz, 12GB of RAM, Nvidia Tesla K80 GPU

with 12GB of VRAM, running Ubuntu Linux version 18.04.5

LTS. All implementation and visualization code was written

in Python, and the neural network was implemented using the

Keras4 framework.

6 Conclusion
In this work, we explored the concept of deep learning to

forecast the communication quality of a self-driving car when

it is moving. We designed a deep neural network to predict

the RSRP received by a vehicle several steps onwards. Our

preliminary results concluded that the mobile network met-

ric RSRP could not be accurately forecast based on patterns

extracted from previous observations of network KPIs such

as RSRP and throughput. Intuitively, previous traces have

a low correlation with future network usage experience in

3https://colab.research.google.com/
4https://keras.io/

previously unseen locations, as characteristics of the area

surrounding the mobile device in the past cannot infer charac-

teristics of future surrounding areas. Successful forecasting of

network parameters requires more information related to the

vehicle’s surroundings along its planned route, such as mor-

phology data, including nearby building boundaries and cell

towers within reach of the vehicle’s antenna. When success-

fully applied, these forecasting models create an opportunity

to develop sophisticated control algorithms that improve the

system’s reliability and safety and reduce its cost.

Acknowledgments
This work was supported by the LASIGE Research Unit (ref.

UIDB/00408/2020 and ref. UIDP/00408/2020), and by the

European Union’s Horizon 2020 research and innovation

programme under grant agreement No 957197 (VEDLIoT

project).

References
[1] N. Bui, M. Cesana, S. A. Hosseini, Q. Liao, I. Malanchini,

and J. Widmer, “A survey of anticipatory mobile network-

ing: Context-based classification, prediction methodolo-

gies, and optimization techniques,” IEEE Communica-
tions Surveys & Tutorials, vol. 19, no. 3, pp. 1790–1821,

2017.

[2] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha,

E. Halepovic, R. Jana, and V. Gopalakrishnan, “On lever-

aging machine and deep learning for throughput predic-

tion in cellular networks: Design, performance, and chal-

lenges,” IEEE Communications Magazine, vol. 58, no. 3,

pp. 11–17, 2020.

[3] J. Ni, Y. Chen, Y. Chen, J. Zhu, D. Ali, and W. Cao,

“A survey on theories and applications for self-driving

cars based on deep learning methods,” Applied Sciences,

vol. 10, no. 8, p. 2749, 2020.

[4] G. L. Santos, P. T. Endo, D. Sadok, and J. Kelner, “When

5g meets deep learning: a systematic review,” Algorithms,

vol. 13, no. 9, p. 208, 2020.

[5] D. Minovski, N. Ogren, C. Ahlund, and K. Mitra,

“Throughput prediction using machine learning in lte and

5g networks,” IEEE Transactions on Mobile Computing,

2021.

[6] N. Prihodko, “Machine learning for forecasting signal

strength in mobile networks,” 2018.

[7] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way

to initialize recurrent networks of rectified linear units,”

arXiv preprint arXiv:1504.00941, 2015.

[8] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan,

“Beyond throughput: A 4g lte dataset with channel and

context metrics,” in Proceedings of the 9th ACM Multi-
media Systems Conference, MMSys ’18, (New York, NY,

USA), p. 460–465, Association for Computing Machin-

ery, 2018.

[9] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan, “Be-

yond throughput, the next generation: A 5g dataset with

channel and context metrics,” in Proceedings of the 11th
ACM Multimedia Systems Conference, MMSys ’20, (New

York, NY, USA), p. 303–308, Association for Computing

Machinery, 2020.

Volume 43, Number 2, June 2022 Ada User Jour na l

125

Compiler Support for an AI-oriented SIMD

Extension of a Space Processor

Marc Solé, Leonidas Kosmidis
Barcelona Supercomputing Center (BSC) and Universitat Politècnica de Catalunya (UPC); email: {marc.solebonet,
leonidas.kosmidis}@bsc.es

Abstract

In this on going research paper, we present our work
on the compiler support for an AI-oriented SIMD Ex-
tension, called SPARROW. The SPARROW hardware
design has been developed during a recently defended,
award-winning Master Thesis and is targeting Cob-
ham Gaisler’s space processors Leon3 and NOEL-V.
We present the compiler support we have included in
two compiler toolchains, gcc and llvm as well as a SIMD
intrinsics library for easy programmability. Compiler
modifications are kept to minimum in order to enable
incremental qualification of the toolchains. We present
our experience working with the two compilers and per-
formance results for the two compilers on top an FPGA
implementation of the target space processor.

Keywords: compiler, SIMD, AI, space processor.

1 Introduction
In recent years, artificial intelligence (AI) and related topics,

such as machine learning (ML) and neural networks (NN),

have been explored in many different fields. Space systems

are not an exception; the advantages that AI applications can

provide in space operations are numerous, thus there are many

on-going efforts to accelerate AI processing in space.

The simple, in-order, low-power processors traditionally used

in space systems cannot meet the increased performance de-

mands of AI. In such a critical environment, real-time capabil-

ities and space qualification are mandatory properties, which

are costly to provide in completely new designs.

While commercial off-the-shelf (COTS) AI accelerators and

embedded GPUs have been used as an alternative in certain

cases such as experimental missions and nano-satellites, they

are not a definitive solution for high-risk missions. COTS

accelerators are not radiation tolerant – a requirement to work

beyond low-earth orbit – nor they have appropriate software

stacks for the applications in space or support for real-time

operating systems.

For this reason, in this recently presented Master’s thesis

project, we implemented SPARROW [1], a small, open-

source SIMD module to accelerate the computation of AI

applications in an already qualified, widely used space proces-

sor, LEON3, with minimal hardware and software changes.

It is directly connected into the integer pipeline and provides

additional vector instructions to improve such applications.

�������

�	 �
 �� ��

� � ����� �

��������������������������������

�	 �	 �� �� �� ��

� �� �� �� �

��������
��	

��������
��	

�����������
�����	

�
� ��������

������

�
� ��������

������

�
� ��������

������

�
� ��������

������

�
 �

Figure 1: Overview of the SIMD SPARROW module [1]

The hardware cost of the module is minimal compared with

conventional vector approaches, thanks to the re-utilization

of the integer register file. This is possible since 8-bit op-

erations have been shown enough for AI applications in the

literature and in commercial AI hardware. Therefore, each

integer register can work as a vector with up to 4 8-bit com-

ponents. To our knowledge, this is a unique feature of our

work. Further advantages of our choice is the simplification

of data management, which eliminates the need for new load-

store instructions, allowing a small incremental qualification

cost of the hardware and its compiler. More details on the

hardware design of the module are provided in [1].

In this work in progress paper, we describe our on-going work

regarding the addition of software support for SPARROW

with two widely used compilers, gcc and llvm. We describe

our experience working with these two compilers and the

development of small preprocessor library which allows to

program SPARROW in a similar way with SIMD intrinsics

for other processors. In addition, we provide some early

comparison results of the performance of the two compilers

both with handwritten assembly implementations as well as

with our SIMD library.

2 Background on SPARROW Design
Before we discuss about the compiler support, we first need

to briefly describe the SPARROW hardware design. The

SPARROW SIMD unit is co-designed analyzing the most

important features and characteristics of ML workloads. The

Ada User Jour na l Vo lume 43, Number 2, June 2022

126 Compi ler Suppor t for an AI-or iented SIMD Extens ion of a Space Processor

1 unsigned char weights[32*32];
2 unsigned char next_layer [32*32];
3 unsigned int a, b, result , scr ;
4

5 /* set the value of the %scr */
6 scr = 0x0D9D0E; //swizzling_B = 1−2−3−0,
7 // swizzling_A = 3−2−2−0,
8 // mask_select = 0, mask = 1110
9

10 asm("wr %0", %%scr : : "r"(scr)) ;
11 /* initialise all a components to 0, ie a .xyzw=0 */
12 a = 0;
13 /* b.xyzw = weights [0]. xyzw */
14 b = *((unsigned int*) &weights[0]);
15 asm("nop"); // wait for %scr to commit the write
16 /* result .xyz = a.xyy + b.zyx */
17 asm("usadd_ %1, %2, %0": "=r"(result) : "r"(a) , "r"(b)) ;
18 /* next_layer [0]. xyzw = result .xyzw */
19 *((unsigned int*) &next_layer [0]) = result ;

Figure 2: Example of SPARROW programming in C with inline
assembly

dot product is one of the most frequently used computations

in ML as it is used in matrix multiplication which is a re-

current kernel in the computation of NN for fully connected

layers and convolutions. SPARROW features a 2-stage ap-

proach which allows to compute a dot product with a single

instruction as can be seen in Figure 1. In the first stage, for

vector-vector operations, the data are computed in parallel

allowing up to 4 simultaneous operations. In the second stage,

reduction operations are performed on the result from the first

stage. Both stages can be bypassed in order to just perform

any of the two types of operations. This allows up to 200

combinations of operations such as addition, multiplication,

maximum and minimum, bitwise operations, etc with just the

introduction of 13 vector instructions in the first stage and

4 reduction operations in the second one. Both signed and

unsigned version are included.

Additionally, SPARROW includes GPU-like features to pro-

vide even more flexibility to the module, such as masking and

swizzling. Both characteristics can be controlled by using a

special register, the SPARROW control register (%scr). As

other special registers it can be accessed using the already

existing instructions in the ISA. To avoid overflow, SPAR-

ROW also includes a saturation version of the instructions,

both signed and unsigned, which clips the results at 0 to 255

for unsigned or at -128 to 127 for signed.

The module is highly portable and can be used in differ-

ent base processors with minimal modifications. Currently

SPARROW has been integrated with the SPARCv8-compliant

LEON3 processor, developed by Cobham Gaisler, preserving

its 100MHz frequency. The module has also been ported to

the NOEL-V processor, a RISC-V based space processor by

Cobham Gaisler, as we discussed in our talk at the RISC-V

Forum: Vector and Machine Learning [2] [3]. SPARROW

won the fist position in Xilinx’s Open Hardware Competition

2021 in the student category, and awarded the best Master

Thesis in Spain for 2021 by the Spanish IEEE AESS Chapter.

3 SPARROW Software Support
3.1 Compiler support
An important advantage of SPARROW compared to custom

accelerators is the ability to reuse the existing qualified soft-

1 unsigned char weights[32*32];
2 unsigned char next_layer [32*32];
3 unsigned int a, b, result , scr ;
4

5 /* set the value of the %scr */
6 __sparrow_setMask(0b1110);
7 __sparrow_setMaskSel(0);
8 __sparrow_setSwizzlingA (3,2,2,0) ;
9 __sparrow_setSwizzlingB (1,2,3,0) ;

10

11 __sparrow_writeSCR();
12 /* initialise all a components to 0, ie a .xyzw=0 */
13 a = 0;
14 /* b.xyzw = weights [0]. xyzw */
15 b = *((unsigned int*) &weights[0]);
16 asm("nop"); // wait for %scr to commit the write
17 /* result .xyz = a.xyy + b.zyx */
18 __nop(result , a , "usadd", b) ;
19 /* next_layer [0]. xyzw = result .xyzw */
20 *((unsigned int*) &next_layer [0]) = result ;

Figure 3: Example of SPARROW programming in C for
SPARC v8 with the SPARROW SIMD library

ware stack of LEON3 i.e. the RTEMS real-time operating

system or bare-metal space applications, which reduces both

the cost and the effort of the development of a new compiler

from scratch as well as its qualification cost later.

We added SPARROW support in the two most widely

used compilers nowadays, gcc and llvm. We modified the

binutils of Gaisler’s bcc-2.2.0 gcc-derivative com-

piler and the base LLVM v13.0. We use an underscore as

separation between the instruction names of the two stages.

In the case of nop it is omitted for the second stage. An s
and u prefix in the instruction name denotes saturation and

unsigned operation, i.e. usmul_. We also added aliases

such as the dot product, which can be both represented by

mul_sum or dot. The SPARROW control register can be

accessed using the wr, rd and mov instructions present on

the SPARC v8 ISA for accessing special registers.

We program SPARROW in C, using inline assembly instruc-

tions as shown in the example of Figure 2 for a saturated

vector addition with unsigned 8-bit values using swizzling

and masking. As it can be seen, SPARROW can be pro-

grammed in a high level way, not very different than vector

intrinsics for conventional SIMD extensions such as NEON.

Another important advantage of reusing the integer register

file is that we can use the regular load and store instructions.

Inline assembly (and code generation) is only required for

the SIMD operations. Moreover, this means that we don’t

need to specify explicit registers in the inline assembly, nor to

modify the compiler register allocator. Notice that by passing

the integer variable names to the inline assembly instruction

(line 17), the SIMD instruction accesses directly the register

in which each of the variable is allocated by the compiler.

3.2 SPARROW SIMD Library
A disadvantage of programming SPARROW in assembly is

that there are features like the mask and swizzling which the

programmer needs to be aware of. In order to make the setting

of the SPARROW Control Register transparent, we decided to

create a library that contains multiple definitions to simplify

working with SPARROW in SIMD intrinsics fashion.

Volume 43, Number 2, June 2022 Ada User Jour na l

M. Solé , L . Kosmid is 127

Function Description
__sparrow_readSCR(X) Stores the current value of the SPARROW Control Register in the variable X
__sparrow_writeSCR() Writes in the SPARROW Control Register the value of __sparrow_scr
__sparrow_set(X,Y) Writes in the SPARROW Control Register X xor Y
__sparrow_resetSCR() Resets the value of the SPARROW Control Register

__sparrow_setMask(X) Sets the mask bits of __sparrow_scr to X
__sparrow_setMaskSel(X) Sets the mask selection bit of __sparrow_scr to X
__sparrow_setSwizzlingA(X,Y,Z,W) Sets the first operand swizzling order in __sparrow_scr to X-Y-Z-W
__sparrow_setSwizzlingB(X,Y,Z,W) Sets the second operand swizzling order in __sparrow_scr to X-Y-Z-W
__sparrow_(op1, op2, A, B, C) Performs the op2 reduction on A op1 B and stores the value in C
__nop(C, A, op1, B) Computes C = A op1 B
__sum(C, A, op1, B) Computes a sum over A op1 B and stores the result in C
__max(C, A, op1, B) Computes the maximum in A op1 B and stores the result in C
__min(C, A, op1, B) Computes the minimum in A op1 B and stores the result in C
__xor(C, A, op1, B) Computes a xor reduction over A op1 B and stores the result in C
__usum(C, A, op1, B) Computes an unsigned sum over A op1 B and stores the result in C
__umax(C, A, op1, B) Computes the unsigned maximum in A op1 B and stores the result in C
__umin(C, A, op1, B) Computes the unsigned minimum in A op1 B and stores the result in C

Table 1: SPARROW library functions

The SPARROW SIMD library is implemented using C-

preprocessor macros that convert function-like calls into the

inline assembly. For the SCR, a variable is declared which

is modified when setting the mask and swizzling and is used

to write in the special register. One of the advantages of hav-

ing a library implemented like this is once again portability

and simplicity. Table 1 shows the existing functions in the

SPARROW library.

In Figure 3 the same code shown in Figure 2 is represented us-

ing the SPARROW library. Note that the setting of the SCR,

which starts at line 6, requires more instructions, however

since those are C-preprocessor macros the compiler can re-

duce the number of actual generated instructions. On the other

hand, although the same behaviour as with the inline assembly

could be achieved by using __sparrow_setSCR(X,Y),

with this approach the value of each field is more clear and

the programmer does not require any knowledge on the SCR

organization. In line 11 it is necessary to include the writ-

ing of the SCR as the previous lines were just setting the

library internal variable. This is done to reduce the number

of accesses which otherwise, would be necessary if each line

performed the actual write.

4 Preliminary Experimental Results
We have evaluated our compilers and SIMD library on

an FPGA implementation of SPARROW integrated with

LEON3 [4]. For our preliminary evaluation we are using

a widely used and well understood kernel, matrix multiplica-

tion, which is an essential block for AI inference applications,

since it is used for representing fully connected layers as well

as for the implementation of convolutions. In addition to

the sequential version of matrix multiplication written in C

which is used as a baseline, we have produced two additional

versions of the code, one written in SPARROW assembly and

one using the SPARROW SIMD library. Moreover, we have

developed two variants of matrix multiplication, one using

saturation and one allowing the values to wrap around when

an overflow occurs. However, due to space reasons we only

provide results with the version with saturation, since the

results for the other version exhibit the same trends, but with

lower speedup ranges (from 2.1× - 6.8×). All programs are

compiled using the highest optimisation level (-O3).

Figure 4 shows the comparison between the various versions,

for different size of matrices, for common matrix sizes found

in machine learning applications. The results are normalised

with respect to the gcc sequential (CPU) version, which is

also shown in the figure with a red line at value 1. As a

consequence, higher values are better and values over the red

line represent speedup, while values below it show slowdown.

First we compare the sequential versions of the two compilers.

For the two smaller sizes (4 and 8), gcc provides slightly

faster code than llvm, while for sizes 16 and 32 llvm is faster.

However, when the size of matrices exceed the size of the

data cache (8KB), the performance difference is negligible.

When comparing the SIMD assembly versions, we notice that

gcc generates faster code than llvm for all sizes, achieving

a maximum speedup of 17.3× over the sequential version

for matrix size 32. The llvm still provides a good speedup

compared to the sequential version, up to 15.2×, being only

10% slower that gcc.

The SIMD library inevitably incurs some overhead compared

to the assembly implementations, especially in the case of

gcc. However, llvm provides the same performance with the

version that uses assembly instead of the library for sizes of

128 and larger. Finally, comparing the SIMD library versions

on top of gcc and llvm, gcc provides the same performance

with llvm, except in sizes 8 and 16, where it is slightly faster.

5 Lessons Learnt
Having worked with both GCC and LLVM for the develop-

ment of the software support for SPARROW has allowed us

to compare, not only the performance, but also the experience

when working with each one. It is worth noting that we had

no prior experience on working on either of the two toolchains

Ada User Jour na l Vo lume 43, Number 2, June 2022

128 Compi ler Suppor t for an AI-or iented SIMD Extens ion of a Space Processor

0

2

4

6

8

10

12

14

16

18

20

4 8 16 32 64 128 256 512

Size

Matrix multiplication performance with respect to the GCC CPU version (with saturation)

GCC CPU GCC ASSEMBLY GCC LIBSPARROW LLVM CPU LLVM ASSEMBLY LLVM LIBSPARROW

Figure 4: Plot of the performance for matrix multiplication with saturation enabled

prior to this project. In the previous section we already pre-

sented a preliminary performance comparison between the

two compilers. A detailed analysis would require more ex-

perimentation and the evaluation in different scenarios. In

general, however, it is shown that gcc-compiled executables

have lower execution times, at least for LEON3.

When working to include the SPARROW assembly instruc-

tions one of the key advantages of llvm over gcc was the

possibility of defining the instructions in a nested way. This

simplifies the addition of two-stage instructions allowing a

simpler combination of them. However, a new line for each

combination must be manually added. On the other hand, the

code for adding these instructions is easier to understand in

GCC, which can be easily deduced from the existing instruc-

tions. Fortunately, LLVM has a great documentation and a

large number of tutorials about on how to modify it.

All in all, both compilers had advantages and disadvantages

compared to one another, however they both offer good facili-

ties to implement the required functionality in order to add

software support in new hardware designs.

6 Conclusions and Future Work
In this paper we have presented our on-going work on the

addition of software support for the SPARROW SIMD unit in

the gcc and llvm compilers, and a SIMD library that facilitates

SPARROW programming without using inline assembly. In

terms of development both compilers had advantages and

disadvantages compared to one another, however they both

offer good facilities to implement the required functionality

in order to add software support in new hardware designs.

In terms of performance, we noticed that gcc provides higher

performance when sequential C code or assembly is used, but

both compilers provide similar performance when our SIMD

library is used. As a future work we want to perform an
extensive evaluation of the compiler backends we developed

as well as of our SIMD library, by porting more applications

in SPARROW. Moreover, we would like to evaluate Ada’s

frontends of both compilers, generate an Ada version of our

SIMD library and compare them among them and with the

C frontends. Finally, we plan to add support in the compil-

ers so that they can generate directly SPARROW assembly

instructions, through autovectorisation.

7 Acknowledgments
This work was funded by the Ministerio de Ciencia e Innova-

cion - Agencia Estatal de Investigacion (PID2019-107255GB-

C21/AEI/10.13039/501100011033 and IJC-2020-045931-I)

and partially supported by the European Space Agency (ESA)

through the GPU4S (GPU for Space) activity and the HiPEAC

Network of Excellence.

References
[1] M. Solé and L. Kosmidis, “SPARROW: A Low-Cost

Hardware/Software Co-designed SIMD Microarchitec-

ture for AI Operations in Space Processors,” in Design,
Automation and Test in Europe Conference and Exhibi-
tion (DATE), 2022.

[2] Linux Foundation, “RISC-V Forum: Vector and Ma-

chine Learning.” https://events.linuxfoundation.org/riscv-

forum-vector-and-machine-learning.

[3] Marc Solé, Leonidas Kosmidis, “RISC-

V Forum: Vector and Machine Learning.”

https://events.linuxfoundation.org/riscv-forum-vector-

and-machine-learning/program/schedule/.

[4] M. Solé and L. Kosmidis, “SPARROW source code repos-

itory,” 2021. https://gitlab.bsc.es/msolebon/sparrow.

Volume 43, Number 2, June 2022 Ada User Jour na l

129

Space Compression Algorithms Acceleration on

Embedded Multi-core and GPU Platforms

Alvaro Jover-Alvarez*, Ivan Rodriguez*, Leonidas Kosmidis
Barcelona Supercomputing Center (BSC) and Universitat Politecnica de Catalunya (UPC); email: {ajover, irodrig,
lkosmidi}@bsc.es

David Steenari
European Space Agency (ESA); email: David.Steenari@esa.int

Abstract

Future space missions will require increased on-board
computing power to process and compress massive
amounts of data. Consequently, embedded multi-core
and GPU platforms are considered, which have been
shown beneficial for data processing. However, the
acceleration of data compression - an inherently se-
quential task - has not been explored. In this on-going
research paper, we parallelize two space compression
standards on both CPUs and GPUs using two candidate
embedded GPU platforms for space showing that de-
spite the challenging nature of CCSDS algorithms, their
parallelization is possible and can provide significant
performance benefits.

Keywords: embedded GPUs, multi-core, space compres-
sion.

*Both first authors contributed equally to the paper.

1 Introduction
The on-board processing requirements of future space mis-

sions are constantly increasing, requiring new hardware to

satisfy this need.Embedded COTS platforms featuring multi-

core CPUs and GPUs are promising candidates, combining

high-performance and low power consumption. The GPU4S

(GPU for Space) ESA-funded project [1] studies whether

on-board processing algorithms are amenable to GPU par-

allelization as well as whether embedded GPUs can satisfy

the performance requirements of future space missions, effec-

tively paving the way for their adoption.

However space compression algorithms are among the most

challenging space processing algorithms in order to be par-

allelized, due to their inherent sequential nature, created by

data dependencies.

Due to the importance of data compression, current spacecraft

include specific ASIC or FPGA implementations of the vari-

ous space compression CCSDS standards for supporting these

tasks. However, an efficient parallel software implementation

of these standards targeting embedded multi-core CPUs and

GPUs can allow a series of benefits for future space missions.

There are 3 main families of space compression standards de-

fined by the Consultative Committee for Space Data Systems

(CCSDS) which consists of representatives from several space

agencies and private corporations: CCSDS 121 covers general

purpose data compression in a lossless way, CCSDS 122 cov-

ers both lossless and lossy image compression and CCSDS

123 focuses on hyper-spectral lossless and near-lossless com-

pression. Early project results in GPU4S with commonly

used processing algorithms [2] indicate that embedded GPUs

can provide significant processing improvements of several

orders of magnitude compared to existing space processors

such as LEON/SPARC. Compared to FPGAs, which are com-

monly used in on-board processing applications, GPUs offer

the capability to reconfigure the on-board processing using

software in a fast manner.

We present our work on the acceleration of two of the most

widely used space compression standards nowadays, CCSDS

121.0-B-3 [3] and CCSDS 122.0-B-2 [4] using parallel embed-

ded COTS platforms which are considered good candidates

for on board processing in the future.

Our results on two embedded platforms with multicore CPUs

and GPUs, the NVIDIA Xavier and the AMD Embedded

Ryzen V1605B show that the parallelization of space com-

pression algorithms for on-board processing is possible and

comparable with existing space solutions. Our implementa-

tions are available as open source, as part of ESA’s OBPMark

(On-Board Processing Benchmark) benchmarking suite [5],

focusing on the evaluation of general purpose devices for up-

coming space missions, using complex applications relevant

to the space domain.

2 Parallelisation approaches
2.1 CCSDS 121.0-B-3
The CCSDS 121.0-B-3 [3] implements a lossless compression

of 1D data. The algorithm architecture consists of two blocks,

a preprocessor and an adaptive entropy encoder.

The preprocessor step is optional and can be omitted. It ap-

plies a reversible function to the input data to remove the

correlation between its values and to convert them in a proba-

bility distribution. The predictors work with a block size J
parameter which needs to be provided for the decompression.

Ada User Jour na l Vo lume 43, Number 2, June 2022

130 Space Compress ion Algor i thms Acce lera t ion

Selected
Code

Option

Option
No Compression

Preprocessor

Option
2nd Extension

Option
FS

Option
k = 1

Option
Zero-Block

Option
k = 2

Adaptive Entropy Coder

y

ID

�=�1,�2,...,�Jx=x1,x2,...,xJ

Code Option
Selection

Figure 1: Structure of the CCSDS 121.0-B-3 [3] space compres-
sion algorithm. Image courtesy of [3].

The adaptive entropy encoder selects a different encoding of

the preprocessed input based on the input data distribution.

In fact, the input data are encoded using all the encoders

implemented in the adaptive encoder, and the best one is

selected i.e. the one which results to a higher compression

ratio for each input data block.

The standard defines a series of encoders which can be used:

Zero-Block, Second-Extension, Fundamental Sequence, Sam-

ple Splitting and No-compression (Figure 1). The Sample

Splitting encoder is parametric based on a value k, with

1 ≤ k ≤ 29, resulting to a total of 33 possible encoders.

Note that similar to the preprocessor, not all encoders are

required to be provided by a compliant implementation.

For the parallelization we follow a coarse-grain approach for

both the CPU and GPU. In the CPU implementation, which

is based on OpenMP, we distribute input data blocks of size J

to each of the CPUs in the system. Each of the CPUs applies

the entire pipeline shown in Figure 1 on its provided data, and

outputs its selected compression encoder and its compressed

data.

Our GPU parallelization uses a similar approach implemented

in CUDA for the NVIDIA and in OpenCL for the AMD plat-

form. However, instead of distributing the image blocks to the

CPUs, we are distributing them in separate Streams/Command
Queues. This version requires more frequent synchronisations

compared to the CPU version, in order to synchronise between

different kernel invocations, which are more costly.

2.2 CCSDS 122.0-B-2
The CCSDS 122 [4] standard provides lossless or lossy 2D

data compression based on the Discrete Wavelet Transform

(DWT). It consists of two main functional blocks, the Discrete

Wavelet Transform and a Bit-Plane encoder.

The purpose of the Discrete Wavelet Transform is to decom-

pose the input to a high and low frequency components to

decorrelate the input data before the encoding.

The standard uses 3 levels of 2D DWTs, each of which we

compute in parallel on both the multicore and GPU imple-

mentations by applying the one dimensional DWT first in

rows and then in columns. For each level, the process is

repeated for the top left part of the image in a pyramidal

fashion. The remaining values on the top left corner are the

ones containing the highest quantity of information and are

called DC coefficients. The rest of the values which only add

extra information are called AC coefficients. Both lossless

and lossy compression can be achieved with this method, by

using an integer approximation or floating point version of

the transform with higher compression achieved by the latter.

We obtained similar performance for both lossless and lossy

compression for each parallel implementation.

The bit planar encoder encodes the coefficients of the de-

composed image in blocks consisting of coefficients which

correspond roughly to a region of the input image. When the

integer transform is used, the encoder exploits information

about least significant bits of certain frequency components

being 0 as a result of their scaling. DC and AC components

follow a different encoding scheme but despite their differ-

ent encoding algorithms, in both cases their characteristics

are taken into account in order to increase the compression

ratio, such as the dynamic range they represent. The selected

encoding method is specified in the output to enable its re-

construction later. Like CCSDS 121, it is possible that values

remain uncoded, especially if this minimizes the number of

required bits. If different component encodings require the

same number of bits with the uncoded option, the standard

mandates the use of the uncoded one.

3 Experimental Results
3.1 Experimental Setup
We execute our implementations on two embedded SoCs fea-

turing multiple CPUs and GPUs, the NVIDIA Xavier and

the AMD Embedded Ryzen V1605B. These two embedded

platforms are the latest embedded GPUs of these vendors and

have been identified as good candidates in terms of theoretical

performance and power consumption, by multiple indepen-

dent studies of using GPUs in space [6] [7] [8] [9] [10] and

they are considered for further evaluation of their properties.

Both boards have similar characteristics, and we are using

them with 4 enabled CPUs since in the case of the NVIDIA

Xavier the manufacturer ensures that the board maximum

power consumption is capped at 15W, which has been identi-

fied as a limit for on-board processing hardware [7]. For the

AMD board such information is not provided by the manu-

facturer, but it is configured with the same properties for fair

comparison. Both boards use Ubuntu 18.04 LTS. However,

it is worth to note that OpenCL is not currently supported by

AMD out of the box, so we are using a custom driver provided

by Bruhnpace AB [11], which might not be as optimized as a

driver provided by the GPU vendor.

3.2 Results
For the performance evaluation of our algorithms we report

both execution times as well as MSamples/s and MPixels/s

which are the standard metrics used in the literature. During

the execution we measure the voltage and the current and

report the maximum power consumption of the boards for

each experiment.

As we have mentioned, our GPU implementations are para-

metric, so the number of streams and thread block sizes are

configurable. We tune these parameters in order to select

the values that provide the best performance. For the CPU

version, OpenMP automatically uses the number of available

cores, which is 4 in both boards.

Volume 43, Number 2, June 2022 Ada User Jour na l

A. Jover -A lvarez, I . Rodr iguez, L . Kosmid is 131

3.2.1 CCSDS 121
For the evaluation of our CCSDS 121 implementations, we

use the standard methodology followed by other works in the

literature, using randomly generated data. In particular, we

use 16 MB of randomly generated data which is divided in

1024 Steps, each of which consists of 256 blocks of 64 bytes.

Moreover, we ensure that all the compared implementations

use the same input data and produce identical output.

Figure 2 shows the results between the sequential implemen-

tation and our parallel versions for both platforms for various

Block Sizes (J values). We notice that the sequential CPU

version is faster in the AMD, which means that the Embedded

Ryzen x86 CPU has higher performance than the NVIDIA

designed "Carmel" ARM v8.2 CPU. Similarly, the OpenMP

version is faster in AMD than in the NVIDIA platform. In

both cases, we see a speedup of the parallel version compared

to the sequential one, 81% in the Xavier and an impressive

2.2× in the Emdedded Ryzen.

Regarding the GPU performance, the NVIDIA GPU provides

a speedup of up to 2.1× over the sequential version but equiv-

alent or lower performance than the parallel CPU version on

the same platform. However, in the AMD platform, the GPU

version provides similar performance with the sequential ver-

sion and it is 2× slower than the parallel CPU version on the

same platform.

We have identified that the reason of low GPU performance

comes from the use of atomic operations. We are using the

atomics operations for the implementation of the ZeroBlock

encoder. Due to the high overhead of atomics on the AMD

platform, ZeroBlock becomes the bottleneck of the GPU

implementation. In NVIDIA GPUs, each hardware generation

reduces the cost of atomics operations. However, in AMD

GPUs such information is not available.

The AMD platform contains a more powerful CPU than the

Xavier, as it can be seen in terms of absolute performance

(Mpixels/s) for the sequential version. This in addition to the

fact that the overhead of atomics is smaller in the CPU, due to

smaller number of threads translates to exceptional multicore

performance, which is faster than the GPU implementations

of both platforms.

Moreover, we observe that the maximum performance is ob-

tained for block size 16. Our multi-core performance on the

AMD V1605B is close to the requirement of 60 MSamples/s

which is usually a target for space applications, as specified

by a recent ESA funded FPGA development project which

resulted to the best state-of-the-art CCSDS 121 hardware im-

plementation [12]. Table 1 shows the power consumption for

the same experiments. However, there are no reported power

consumption data for state-of-the-art CCSDS 121 implemen-

tations for comparison.

3.2.2 CCSDS 122
For the evaluation of our parallel implementations in this

compression algorithm, again we have followed the standard

practice used in the literature for the performance evaluation

of this algorithm implementations, using uniform images

such as completely black, random generated images and real

Figure 2: CSDS121 performance in MSamples/s for the NVIDIA
Xavier and V1605V fixed at 1024 steps with 256 sample intervals
for different Block Sizes J.

J Size CUDA Sequential OpenMP
16 9.16 W 9.35 W 9.67 W

32 9.28 W 9.03 W 9.83 W

64 9.03 W 9.40 W 9.89 W

Table 1: Measured power consumption when running
CCSDS 121 with different J size on the NVIDIA
Xavier platform.

images from space missions. In particular, we have employed

several synthetic and real images of different sizes, such as

one from NASA’s Mars Pathfinder Mission from the area

surrounding Yogi [13] (a rock named by Geoffrey A. Landis)

and one from NOAA, taken by the Metop C satellite on 2019-

12-21 during its ascending orbit direction.

Table 2 shows the comparison of our implementations using

the floating point implementation of the DWT. Although we

implemented both integer and floating point version of the

DWT, the results are very similar, so we only show one of

them. The same trends observed with the CCSDS 121 im-

plementations are visible in this version, too, however on a

different scale. In this algorithm, the OpenMP implementa-

tions are only slightly faster than the sequential versions, and

the AMD CPU is faster than the ARM CPU. On the other

hand, the NVIDIA GPU provides a 10× performance benefit

compared to the sequential version. However, the AMD GPU

is significantly slower (4×) than the sequential CPU version.

According to our analysis, the bottleneck in the AMD GPU

implementation comes from additional memory copies and

the conversion operations between floating point and integers,

which are very costly in the AMD platform. These operations

are performed just before and after the DWT stage. As an

indication, in the integer version of DWT for the 122, the copy

operation takes 3s, while in the Xavier 20ms. Similarly, in

the floating point version, in the AMD platform the memory

copy and conversion takes 9.4s, while in the Xavier it takes

300ms. Again, we don’t know if this is a hardware issue e.g.

if the memory bandwidth of the AMD platform is lower than

the one of the Xavier, or an issue of the unofficial driver e.g.

the driver does not use DMA for the memory transfers, or

does not overlap kernels and memory copies. Of course, the

sequential version of the algorithm does not require these very

Ada User Jour na l Vo lume 43, Number 2, June 2022

132 Space Compress ion Algor i thms Acce lera t ion

Image Secuential
(Xavier)

Sequential
(V1605B)

OpenMP
(Xavier)

OpenMP
(V1605B)

CUDA
(Xavier)

OpenCL
(V1605B)

NOAA
Image

5.48 Mp/s

9.07 W

7.194 Mp/s

∼15 W

5.96 Mp/s

9.23 W

7.918 Mp/s

∼15 W

6.466 Mp/s

11.48 W

0.906 Mp/s

∼15 W

Mars
marspath

6.16 Mp/s

9.02 W

7.434 Mp/s

∼15 W

5.01 Mp/s

8.96 W

7.204 Mp/s

∼15 W

5.636 Mp/s

9.35 W

0.878 Mp/s

∼15W

Random
(2048 x 2048)

3.844 Mp/s

9.50 W

5.478 Mp/s

∼15 W

4.32 Mp/s

9.76 W

7.302 Mp/s

∼15 W

17.047 Mp/s

11.52 W

0.876 Mp/s

∼15 W

Black
(2048 x2048)

3.75 Mp/s

9.35 W

6.108 Mp/s

∼15 W

4.66 Mp/s

9.62 W

7.866 Mp/s

∼15 W

16.78 Mp/s

10.28 W

0.86 Mp/s

∼15 W

Random
(4096 x 4096)

3.308 Mp/s

9.43 W

5.398 Mp/s

∼15 W

4.14 Mp/s

9.70W

6.014 Mp/s

∼15 W

30.642 Mp/s

13.08 W

0.88 Mp/s

∼15 W

Black
(4096 x4096)

3.24 Mp/s

9.24 W

5.912 Mp/s

∼15 W

4.21 Mp/s

9.88 W

6.482 Mp/s

∼15 W

32.43 Mp/s

12.54 W

0.882 Mp/s

∼15 W

Table 2: Performance in MPixels/s and average maximum power
execution for CCSDS122 with various images and sizes

expensive transfers, so the CPU sequential version is faster

than the GPU one in the AMD platform.

Compared to a state-of-the-art space qualified ASIC imple-

mentation [14], which matches the space requirement of 60

MPixels/s compression rate, we obtain half of its performance

with double power consumption on the Xavier GPU imple-

mentation. However, [14] only supports pixel ranges up to

16 bit, while our evaluation has been performed using 32 bit

arithmetic and it is configurable to use up to 64 bits per pixel.

This illustrates a significant difference between software im-

plementations and ASIC hardware implementations, that can

be easily extended for the requirements of future missions,

which will use higher resolutions and larger dynamic ranges

per pixel. Moreover, note that the highest performance in our

implementations is achieved with larger images, regardless

of whether they are random or uniform. This means that our

approach will benefit from the larger image sizes which will

be used in future missions.

4 Conclusions and Future Work
In this on-going research paper we presented our work on the

CPU and GPU parallelization for CCSDS 121 and 122.We

have shown that although the parallelization of compression

algorithms is challenging, it is possible to obtain significant

speedups with their CPU and GPU parallelization, as our

results on two embedded GPU platforms show. In fact, our

obtained results are very close to the requirements of existing

space missions both in terms of performance as well as in

power consumption. Moreover, they are competitive with

existing space processors.

As a future work we intend to finish our parallel implementa-

tions on the CCSDS 123.0-B-1, since it shares several com-

mon blocks with the CCSDS 121.0-B-3. Moreover, we would

like to further investigate the issue of the low performance of

the AMD GPU despite the fact that its characteristics are sim-

ilar to the NVIDIA one. A possible reason is the custom GPU

driver we are using, so we will explore other possibilities to

confirm this fact or rule it out.

5 Acknowledgments
This work was funded by the Ministerio de Ciencia e Innova-

cion - Agencia Estatal de Investigacion (PID2019-107255GB-

C21/AEI/10.13039/501100011033 and IJC-2020-045931-I)

and partially supported by the European Space Agency (ESA)

through the GPU4S (GPU for Space) activity and the HiPEAC

Network of Excellence.

References
[1] L. Kosmidis, I. Rodriguez-Ferrandez, A. Jover-Alvarez,

S. Alcaide, J. Lachaize, A. C. O. Notebaert, and

D. Steenari, “GPU4S: Major Project Outcomes, Lessons

Learnt and Way Forward,” in Design, Automation and
Test in Europe Conference and Exhibition, (DATE),
2021.

[2] L. Kosmidis, I. Rodriguez, A. Jover, S. Alcaide,

J. Lachaize, J. Abella, O. Notebaert, F. J. Cazorla, and

D. Steenari, “GPU4S: Embedded GPUs in Space - Lat-

est Project Updates,” Elsevier Microprocessors and Mi-
crosystems, vol. 77, Sept 2020.

[3] CCSDS The Consultative Committee for Space

Data Systems, CCSDS 121.0-B-3, Lossless
Data Compression. CCSDS Blue Book, 2020.

https://public.ccsds.org/Pubs/121x0b3.pdf.

[4] CCSDS The Consultative Committee for Space

Data Systems, CCSDS 122.0-B-2, Image Data
Compression. CCSDS Blue Book, 2017.

https://public.ccsds.org/Pubs/122x0b2.pdf.

[5] ESA, “Obpmark (on-board processing benchmarks),”

2021. http://www.obpmark.org.

[6] Powell, Wesley and Campola, Michael and Sheets,

Teresa and Davidson, Abigail and Welsh, Sebastian,

“Commercial Off-The-Shelf GPU Qualification for

Space Applications,” tech. rep., NASA, 2018.

[7] L. Kosmidis, J. Lachaize, J. Abella, O. Notebaert, F. J.

Cazorla, and D. Steenari, “GPU4S: Embedded GPUs in

Space,” in 2019 22nd Euromicro Conference on Digital
System Design (DSD), pp. 399–405, Aug 2019.

[8] Mr. Nan Li, Mr. Aimin Xiao, Mr. Mengxi Yu, Dr. Jian-

quan Zhang, Dr. Wenbo Dong, “Application of GPU on-

orbit and Self-adaptive Scheduling by its Internal Ther-

mal Sensor,” in International Astronautical Congress
(IAC), 2018.

[9] F. C. Bruhn, N. Tsog, F. Kunkel, O. Flordal, and

I. Troxel, “Enabling Radiation Tolerant Heterogeneous

GPU-based Onboard Data Processing in Space ,” CEAS
Space Journal, vol. 12, pp. 551–564, June 2020.

[10] D. Luchena, V. Schiattarella, D. Spiller, M. Moriani,

and F. Curti, “A new complementary multi-core data

processor for space applications,” 10 2018.

[11] Unibap AB and Mälardalen University, “"Bruhnspace

ROCm project for AMD APUs",” 2020.

https://bruhnspace.com/en/bruhnspace-rocm-for-

amd-apus/.

[12] U. de Las Palmas de Gran Canaria, “Expro+ esa ao/1-

8032/14/nl/ak ccsds lossless compression ip-core space

applications,” tech. rep., Universidad de Las Palmas de

Gran Canaria, 2017.

[13] N. P. Project, “False color image of the area surrounding

yogi, nasa mars pa,” jun 1998.

[14] J.-L. Poupat, “Cwicom & coreci: Towards a highly inte-

grated & innovative image compression unit,” ESASP,

vol. 694, p. 35, 2011.

Volume 43, Number 2, June 2022 Ada User Jour na l

133

Fine-Grained Runtime Monitoring of Real-Time

Embedded Systems

Zineb Boukili, Hai Nam Tran, Alain Plantec
Univ. Brest, Lab-STICC, CNRS, UMR 6285, Brest, France; email: {firstname.lastname}@univ-brest.fr

Abstract

Dynamically ensuring the correctness of the functional
behavior of a real-time embedded system is tedious, es-
pecially in the autonomous domain. Even though the
current real-time task model provides sufficient infor-
mation to perform basic schedulability tests, it is inad-
equate to be used in runtime monitoring to assert and
guarantee the correctness of a system under hardware/-
software malfunctions or malicious cyber attacks. In
this article, we present a runtime monitoring approach
based on a fine-grained model of real-time tasks.

1 Introduction
Real-time systems (RTES) are evolving rapidly in complexity

with higher demands in schedulability, safety, and security.

In order to satisfy these demands, runtime monitoring is re-

quired as a correctness verification procedure to assess the

system’s state against a previously defined specification. The

real-time task model presented in the seminal work of [1] has

been widely implemented in real-time scheduling analysis.

Even though this model gives sufficient information to per-

form basic schedulability tests, it is inadequate to enforce a

dynamic control to assert the normal operation of a system

under hardware/software malfunctions or malicious cyber

attacks.

To cope with the problem, we propose a runtime monitoring

approach based on a fine-grained model of real-time tasks.

For a given task, an execution profile is constructed by ex-

ploiting the information obtained from static timing analysis

and scheduling simulation tools. Then, verifications are done

at runtime, by monitoring the timing properties of tasks and

comparing them with the predefined execution profile.

2 Approach
The proposed runtime monitoring approach consists of build-

ing the execution profile, implementing monitoring infrastruc-

ture, and establishing runtime verification criteria.

Execution profile: The model consists of control flow graphs

(CFG) of tasks with the execution time of each basic block.

This information is obtained by using static timing analysis

tools such as OTAWA [2]. It also uses scheduling simulation

results of the tasks over the feasibility interval, which are

obtained by a real-time scheduling simulator such as Cheddar
[3].

Monitoring infrastructure: The first prototype of the moni-

toring unit is implemented as a software process running on a

dedicated core. For a task, a subset of basic blocks is chosen

as monitored program points that sent signals to the monitors

by instrumenting their code with interprocess communication

mechanisms. This approach is known to be time-consuming.

In future work, we aim to reduce the overhead by employing

a hardware monitor.

Runtime verification criteria: A subset of basic blocks,

called monitored program points, is instrumented by adding

instructions sending a signal to the monitoring unit. The

monitor receives the information with regard to the timing

properties of each program point. Verification theory for

an individual task is based on three criteria: static timing

properties, order of events, and presence of events:

1. A program point p can be executed only between the best-

case execution time of the CFG part including nodes that

are connected to p but not p itself and the worst-case ex-

ecution time of the same part including p. Nevertheless,

conditional and loop statements are challenging because

they make the verdict more difficult. Upperbounds and

lowerbounds can be computed by applying graph theory

to deduce the shortest and the longest paths.

2. The monitored program points appear in the predefined

order in the control flow graph.

3. A program point is on a must executed path, it must

appear in the monitored log.

Finally, the monitored events must also conform to the

scheduling simulation results provided by the simulator.

References
[1] C. L. Liu and J. W. Layland, “Scheduling algorithms

for multiprogramming in a hard-real-time environment,”

Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61,

1973.

[2] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat,

“Otawa: An open toolbox for adaptive wcet analysis,” in

IFIP International Workshop on Software Technolgies for
Embedded and Ubiquitous Systems, pp. 35–46, Springer,

2010.

[3] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Ched-

dar: a flexible real time scheduling framework,” in Pro-
ceedings of the 2004 annual ACM SIGAda international
conference on Ada, 2004.

Ada User Jour na l Vo lume 43, Number 2, June 2022

134

Volume 43, Number 2, June 2022 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard

Ada-Deutschland
Dr. Hubert B. Keller CEO
ci-tec GmbH
Beuthener Str. 16
76139 Karlsruhe
Germany
+491712075269
Email: h.keller@ci-tec.de
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Julio Medina
Facultad de Ciencias
Universidad de Cantabria
Avda. de los Castros s/n
39005 Santander
Spain
Phone: +34-942-201477
Email: julio.medina@unican.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels

Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

1090 Rue René Descartes
13100 Aix en Provence

France
Contact: Patricia Langle

patricia.langle@systerel.fr
www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki

Finland
Contact: Niklas Holsti

niklas.holsti@tidorum.fi
www.tidorum.fi

3271 Valley Centre Drive,Suite 300
San Diego, CA 92069

USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

Signal Business Centre
2 Innotec Drive, Bangor
North Down BT19 7PD
Northern Ireland, UK

enquiries@sysada.co.uk
www.sysada.co.uk

Corso Sempione 68
20154 Milano

Italy
Contact: Massimo Bombino

massimo.bombino@vector.com
www.vector.com

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

22 St. Lawrence Street
Southgate, Bath BA1 1AN

United Kingdom
www.capgemini.com

.

.

46 Rue d’Amsterdam
F-75009 Paris

France
Contact: Jamie Ayre
sales@adacore.com
www.adacore.com

