

Ada User Journal Volume 43, Number 3, September 2022

ADA
USER
JOURNAL

Volume 43

Number 3

September 2022

Contents
Page

Editorial Policy for Ada User Journal 136

Editorial 137

Quarterly News Digest 138

Conference Calendar 143

Forthcoming Events 148

Articles from the AEiC 2022 Work-in-Progress Session

 I. Kolesnikov

“Boosting Simulation and Debugging of Cyber-physical Systems with Symbolic Exploration” 150

 B. Kempa, C. Johannsen, K. Y. Rozier

“Improving Usability and Trust in Real-Time Verification of a Large-Scale Complex
Safety-Critical System” 151

 Q. Dauprat, P. Dorbec, G. Richard, J. P. Rosen

“Use of Graph Databases for Static Code Analysis” 155

 T. Carvalho, L. M. Pinho

“Tracing and Measuring GPU Execution in Automotive Software Systems” 160

AEiC 2022 Industrial Presentations

 P. van de Laar, A. Mooij

“Renaissance-Ada: Tools for Analysis and Transformation of Ada Code” 165

 A. Munera, E. Quiñones, S. Royuela, M. Pressler, H. Mackamul, D. Ziegenbein

“Boosting Productivity and Resiliency through Automated Software Replication” 171

 A. Medaglini, S. Bartolini, V. Di Massa, F. Dini

“Software Tool for Evaluation of Multi-sensor Object Tracking in ADAS Systems” 177

 C. Dross

“The Work of Proof in SPARK” 187

Ada-Europe Associate Members (National Ada Organizations) 194

Ada-Europe Sponsors Inside Back Cover

136

Volume 43, Number 3, September 2022 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and December.

Copy Date: is the last day of the month

of publication.

Aims
Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics, such

as reliable software technologies, are

welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

� Refereed original articles on

technical matters concerning Ada

and related topics.

� Invited papers on Ada and the Ada

standardization process.

� Proceedings of workshops and

panels on topics relevant to the

Journal.

� Reprints of articles published

elsewhere that deserve a wider

audience.

� News and miscellany of interest to

the Ada community.

� Commentaries on matters relating

to Ada and software engineering.

� Announcements and reports of

conferences and workshops.

� Announcements regarding

standards concerning Ada.

� Reviews of publications in the field

of software engineering.

Further details on our approach to these

are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers
Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will be

relayed to the authors at the discretion

of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues
The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements
Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups to

find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be of

interest to them.

Reprinted Articles
While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it a

wider audience. This includes papers

published in North America that are not

easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries
We publish commentaries on Ada and

software engineering topics. These may

represent the views either of individuals

or of organisations. Such articles can be

of any length – inclusion is at the

discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports
We are happy to publicise and report on

events that may be of interest to our

readers.

Reviews
Inclusion of any review in the Journal is

at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to print

reviews submitted From: elsewhere at

the discretion of the Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be rapid.

Currently, accepted papers submitted

electronically are typically published 3-

6 months after submission. Items of

topical interest will normally appear in

the next edition. There is no limitation

on the length of papers, though a paper

longer than 10,000 words would be

regarded as exceptional.

 137

Ada User Journal Volume 43, Number 3, September 2022

Editorial

This editorial starts with two notes related to the annual event organized by Ada-Europe. Firstly, I would like to highlight the

fact that the next edition of the conference will be held in Lisbon, Portugal, featuring several tracks, as usual (Journal-track,

Industrial-track, Work-in-Progress-track). A Call for Submissions is included in the pages of this issue. Secondly, I would like

to note that since the 2019 edition of the Ada-Europe Conference, the papers presented at the conference (in the main or, now

called, journal track), are published by Elsevier with open access, and links to all these papers are provided on the Ada-Europe

website (under the ”Conferences” tab).

As for the contents of this issue, we conclude the publication of the proceedings of the AEiC 2022 Work-in-Progress Session,

and we provide four papers derived from AEiC 2022 Industrial presentations. Four WiP papers are included. The first one is a

brief abstract authored by Ivan Kolesnikov, from IRIT, France, proposing the use of Bounded Model Checking (BMC) to

improve the performance of simulation and testing of Cyber-Physical Systems. Then, another paper related to verification and

testing is provided. B. Kempa, C. Johannsen and K. Y. Rozier, from the Iowa State University, describe their on-going work

on extending the R2U2 real-time verification tool to provide validation transparency without sacrificing performance in

deployment time. The third paper describes joint work by Q. Dauprat and J. P. Rosen, from Adalog, and P. Dorbec and G.

Richard, from the university of Caen Normandie, on the exploration of graph databases for code analysis. The objective is to

not only reduce the time required to perform the analysis, but also to make it more effective. Finally, these proceedings are

closed with a paper by T. Carvalho and L. M. Pinho, from ISEP, Portugal, presenting on-going work on the integration of GPU

tracing in the AMALTHEA framework for automotive system design and development.

The papers derived from industrial presentations at AEiC 2022 start with one authored by P. van de Laar and A. Mooij, from

TNO, The Netherlands, describing Renaissance-Ada. Renaissance-Ada is a set of tools for Ada code analysis and

transformation/improvement. The paper describes the tools and provides examples on how to use them. Then, several authors

from the Barcelona Supercomputing Center, Spain, and from Bosch, Germany, describing work on the improvement of the

AMALTHEA domain-specific modelling language to handle the incorporation of software redundancy in the system design.

The third paper, authored by A. Medaglini and S. Bartolini from the University of Siena, V. Di Massa from Thales, and F. Dini

from Magenta, presents a suite of tools for the analysis of ADAS systems. The tools allow the generation of tests to find corner

cases in the systems under test, and hence support the safety assessment tasks. The last paper, authored by C. Dross, from

AdaCore, provides insights on how the SPARK tool works, for the verification of contracts in Ada.

As usual, the issue also includes the Quarterly News Digest, prepared by Alejandro R. Mosteo, and the Calendar section,

prepared by Dirk Craeynest.

 Antonio Casimiro
Lisboa

September 2022
 Email: AUJ_Editor@Ada-Europe.org

138

Volume 43, Number 3, September 2022 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 138
Ada-related Events 138
Ada-related Resources 139
Ada-related Tools 140

[Messages without Subject:/Newsgroups:
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor
Dear Reader,

This number is packed full with works
from the last Ada-Europe conference and
so the News section is slim and focused
on announcements. Our regular contents
will pick up where they left in the next
number.

Even so, there are a few news items of
note: There is a new kid on the block of
Ada websites, fully community-driven
and intended to ease the onboarding of
Ada newcomers [1]. Will it stand the test
of time? Let us hope so.

And, on the front of the final arrival of
Ada 2022, an exhaustive overview of its
new features has been posted at the Ada
Auth website [2]; great stuff for those of
us eager for the next iteration of the
language.

[1] “Yet another Ada website”, in Ada-
related Resources.

[2] “Ada 2022 Overview”, in Ada-related
Resources.

Sincerely,
Alejandro R. Mosteo.

Ada-related Events
SIGAda Awards
Nominations
From: Tucker Taft

<tucker.taft@gmail.com>
Subject: SIGAda Awards Nominations --

Due Sept. 20, 2022

Date: Tue, 13 Sep 2022 123800 -0700
Newsgroups:comp.lang.ada

[Past call, for the record. Stay tuned for
the winner! —arm]

Dear Members of the Ada Community:

We welcome your nominations for the
2022 Robert Dewar Award for
Outstanding Ada Community
Contributions and the 2022 ACM SIGAda
Distinguished Service Award.

We hope this message finds you and your
family safe and healthy. The SIGAda
meeting in 2022 will be a HILT workshop
of the 37th IEEEACM International
Conference on Automated Software
Engineering, ASE’2022. The workshop
will be held on October 14th 2022. See
ASE’2022 for details on the venue and
registration.

This year’s award winners will be
announced as part of the SIGAda
Workshop.

Award nominations are due on September
20th.

The ACM SIGAda Awards recognize
individuals, teams, and organizations that
have made outstanding contributions to
the Ada community and to SIGAda. The
two categories of awards are

(1) Robert Dewar Award for Outstanding
Ada Community Contributions
-- For broad, lasting contributions to
Ada technology & usage.

(2) ACM SIGAda Distinguished Service
Award
-- For exceptional contributions to
SIGAda activities & products.

If there are individuals or teams who you
feel have made contributions that satisfy
these criteria, please consider nominating
them. You may nominate a person or a
team of people for either or both awards,
and as many people as you think worthy.

Please visit the SIGAda Awards page
http://www.sigada.org/exec/awards/
awards.html
and peruse the names of past winners.
This may help you think about the
measure of accomplishment that is
appropriate. You may be aware of people
who have made substantial contributions
that have not yet been acknowledged.
Nominate them. Consider what you
believe to be the best developments in the
Ada community or SIGAda in the last

year; the last 5 years; since Ada's
inception. Who was responsible?
Nominate them.

Please note that anyone who has received
either of the two awards remains eligible
for the other. Perhaps there is an
outstanding SIGAda volunteer who has
won our Distinguished Service Award
and who has also made important
contributions to the advance of Ada
technology, or vice versa. Nominate him
or her!

The nomination form is available on the
SIGAda Awards page:
http://www.sigada.org/exec/awards/
awards.html

Submit your nomination as an e-mail or e-
mail attachment to
sigada-awards-comm@acm.org
From your nominations, the recipients of
the awards are determined by a poll of
previous award winners.

Call our attention to the people who are
most deserving, by nominating them. And
please nominate by September 20th!

Your participation in the nominations
process will help maintain the prestige
and honor of these awards.

Thank you,

Drew Hamilton
Chair ACM SIGAda Awards Committee
ACM SIGAda Past Chair

Drew Hamilton, Ph.D. ‘96
Professor of Computer Science &
Engineering
Director, Texas A&M Center for
Cybersecurity

ACM SIGAda HILT'22
From: Tucker Taft

<tucker.taft@gmail.com>
Subject: ACM SIGAda HILT'22 Workshop

on Supporting Rigorous SW
Development -- Oct 14, 2022

Date: Fri, 16 Sep 2022 122628 -0700
Newsgroups: comp.lang.ada

The seventh ACM workshop on High
Integrity Language Technology (ACM
HILT 2022) is being held on October 14,
2022 in Detroit, MI in conjunction with
the 2022 Automated Software
Engineering conference (ASE'22),
sponsored by SIGAda. This year's HILT
theme is Language and Tool Support for

Ada-related Resources 139

Ada User Journal Volume 43, Number 3, September 2022

Rigorous Software Development. We
have 9 presentations plus two keynotes
related to this theme. Our keynote
speakers are K. Rustan M. Leino, the
creator of the Dafny verifiable language
and the Boogie system supporting major
industrial uses of formal methods, and
Niko Matsakis, one of the original
members of the Rust design team, talking
about a-mir-formality, a more formal
model of Rust. For more information see

https://conf.researchr.org/track/ase-
2022/ase-2022-workshop-hilt-22

#formalmethods #softwareengineering
#ada #rust #spark #dafny #ACM #ASE

Ada-related Resources
[Delta counts are from July 18th to
November 13th. —arm]

Ada on Social Media
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada on Social Media
Date: 13 Nov 2022 1127 CET
To: Ada User Journal readership

Ada groups on various social media

- Reddit: 8_200 (+122) members [2]

- LinkedIn: 3_400 (+72) members [1]

- Stack Overflow: 2_273 (+35)
questions [3]

- Telegram: 153 (+10) users [6]

- Gitter: 140 (+17) people [5]

- Libera.Chat: 77 (+2) concurrent
users [4]

- Ada-lang.io: 50 (new) users [8]

- Twitter: 37 (+7) tweeters [7]

 85 (+10) unique tweets [7]

[1] https://www.linkedin.com/
groups/114211

[2] http://www.reddit.comrada

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/details.php
?room=%23ada&net=Libera.Chat

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

[8] https://forum.ada-lang.io/u

Repositories of Open Source
Software
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Repositories of Open Source

software
Date: 13 Nov 2022 1128 CET
To: Ada User Journal readership

Rosetta Code: 919 (+4) examples [1]

 39 (=) developers [2]

GitHub: 763* (=) developers
 [3]

Alire: 309 (+49) crates [6]

Sourceforge: 238 (-6) projects [4]

Open Hub: 214 (=) projects [5]

Codelabs: 53 (=) repositories [8]

Bitbucket: 31 (-56**) repositories [7]

AdaForge: 8 (=) repositories [9]

*This number is unreliable due to GitHub
search limitations.

**This large drop may be related to the
extinction of Mercurial repositories, see
https://bitbucket.org/blog/
sunsetting-mercurial-support-in-bitbucket.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/
tagsnames=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada in language popularity

rankings
Date: 13 Nov 2022 1128 +0100
To Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 27 (+3) 0.48%
(+0.1%) [1]

- PYPL Index: 17 (=) 0.81% (-0.05%) [2]

- IEEE Spectrum (general): 35 (-4)
Score 1.16 [3]

- IEEE Spectrum (jobs): 33 (new)
Score 0.79 [3]

- IEEE Spectrum (trending): 32 (new)
Score 3.95 [3]

The Spectrum ranking has been
revamped, no longer using the same
categories and rating methodology. Thus,
historic trends are omitted for this issue
except for the default category.

[1] https://www.tiobe.com/tiobe-index

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/
top-programming-languages/

Yet Another Ada Website?
From: Maxim Reznik

<reznikmm@gmail.com>
Subject: yet another Ada web site
Date: Thu, 25 Aug 2022 030129 -0700
Newsgroups: comp.lang.ada

I wonder if the Ada community needs yet
another web site?

My idea is here:

https://www.reddit.com/r/ada/comments/
wx9zp1/yet_another_ada_web_site/

From: Paul Rubin
<no.email@nospam.invalid>

Date: Fri, 26 Aug 2022 115814 -0700
>I wonder if the Ada community needs

yet another web site

Adahome.com is sort of like that, but it is
run by some company and hasn't been
updated in forever. Maybe what you want
is a wiki (like forthfreak.net used to be),
but you'd have to do a lot of work getting
it initially populated, before it became
interesting enough to attract more
contributors. It's very easy to suggest
work for other people to do, but they all
have their own projects already.

I don't have much trouble finding any
information that I want about Ada, e.g.
with web searches. The challenge is in
digesting and using the information, not
in finding it. I don't see the proposed new
web site as being much help. More
helpful would be a systematic effort to
reproduce or at least supply Ada bindings
for the main toolsets that exist for other
languages, to target popular
microcontrollers, etc.

From: Rene <rehartmann@t-online.de>
Date: Sat, 27 Aug 2022 111209 +0200

Maybe a web forum would be a good
idea, because many people nowadays see
Usenet Newsgroups: as an outdated thing.
So the fact that the community mostly
relies on comp.lang.ada may turn them
off. (I Don't want to discuss whether
Usenet is actually outdated or not, but I
guess many people feel this way)

From: Nasser M. Abbasi nma@12000.org
Date: Sat, 27 Aug 2022 045317 -0500

Some are starting to use discord for such
things. For example, the main Julia forum
is at discord

https://discourse.julialang.org/t/
julialang-official-discord-server/45499

From: Simon Wright
<simon@pushface.org>

Date: Sun, 28 Aug 2022 082148 +0100

140 Ada-related Tools

Volume 43, Number 3, September 2022 Ada User Journal

Would be better than Telegram or Gitter -
at any rate for actual discussions.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 28 Aug 2022 095047 +0200
> Some are starting to use discord for

such things.

Indeed. It is quite uncomfortable I must
say from my experience. (I participate
there because I maintain Ada Julia
bindings)

P.S. They just killed Firefox support
keeping it listed as a supported browser...

P.P.S. Clearly, how anybody could
implement a discussion board without
making it dependent on petabytes of
browser-specific scripts. Right (-))

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Fri, 16 Sep 2022 082540 -0700

I'm happy to announce a new Ada website

https://ada-lang.io

Thank people who make it real!

I'm asking the community to send their
updates and make it even better.

Here is the Paul Jarrett's original message:

> Hi folks, @onox and me have been
working on something for a few weeks,
and we need your help. We've been
building an open source, Ada
community site to share with everyone.
The intent is an open source community
hub that will persist for a long time.
There's a Github organization set up for
people to contribute to and my intent is
to hand off the domain to some existing
Ada group.

> Right now, I've migrated some of my
old programming with Ada content
over, and I've built on Maxim's work to
output a fancy version of the AARM
for it. If you have content elsewhere
you'd like to add, feel free to submit it.
You can use plain Markdown (.md
files) or Markdown with React (.mdx
files). Some things which I haven't
found time to write, which other people
could help with, would be an Alire
introduction, patterns for when binding
to C, how to make a memory allocator,
etc.

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 16 Sep 2022 180725 +0100

Looks decent, especially the non-yellow
RM.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 16 Sep 2022 103403 -0700
> https:// ada-lang.io

It would be nice if comp.lang.ada was
listed under community; this newsgroup

is far older than all those flash-in-the-pan
wannabes).

From: Jere <jhb.chat@gmail.com>
Date: Fri, 16 Sep 2022 114556 -0700

If you do add it, I would recommend
NOT using a link to the google groups
interface given the porn spam problem. It
would stink if someone at a work
computer followed it and got hammered
by their IT department (speaking from
experience). Perhaps someone has a
tutorial webpage on how to set up a mail
reader for comp.lang.ada that could be
linked to under the community section

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 17 Sep 2022 104547 +0100

The link would be news://comp.lang.ada

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sun, 18 Sep 2022 233955 -0700
> https:// ada-lang.io

Well done Maxim and Paul, the new site
looks nice.

One area that could be nice is a blog
aggregator, which would monitor various
Ada-related blogs on the Internet and help
people find those resources.

I am sure you guys already have plenty of
ideas on what to add, so maybe not
looking for more -)

Ada 2022 Overview
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Ada 2022 Overview posted
Date: Fri, 23 Sep 2022 024828 -0500
Newsgroups: comp.lang.ada

The Ada 2022 Overview is now available
on the Ada-Auth.org website at:

http://www.ada-auth.org/
standards/overview22.html

It is available in HTML and PDF
versions.

This is an extensive update of Jeff
Cousins' Ada 2022 Overview that was
published two years ago this month in the
Ada User Journal. It expands upon many
topics, adds a few missing topics, and
corrects many errors found in the original
article. An index also has been added, and
the HTML version includes links to all of
the mentioned AIs and RM subclauses.

The overview tries to cover all of the
significant changes and enhancements
found in Ada 2022. It includes many
examples, and helps to illustrate how the
new features could be used.

This version was built partially in
response to some complaints here on
comp.lang.ada about the lack of Ada 2022
material (outside of the new edition of

John Barnes' book, which many be too
expensive for many purposes).

Randy Brukardt, ARG Editor.

Ada-related Tools
GNU Emacs Ada Mode
7.3.beta.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Subject: Gnu Emacs Ada mode 7.3.beta

released.
Date: Tue, 12 Jul 2022 073115 -0700
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 7.3.beta is now
available in GNU ELPA devel for beta
testing.

ada-mode and wisi are now compatible
with recent GNAT versions. The grammar
is updated to the proposed Ada 2022
version.

Incremental parse is provided. It still has
some bugs, so it is not enabled by default.
To try it:
(setq-default wisi-incremental-parse-
enable t).

Incremental parse often gets confused; to
recover, use M-x wisi-reset-parser. That
does a full parse of the entire buffer,
which can be noticeably slow in large
buffers.

To access the beta version via Gnu ELPA,
add the devel archive to package-
archives:
(add-to-list 'package-archives (cons “gnu-
devel” “https://elpa.gnu.org/devel”))

Then M-x list-packages; the beta release
shows as ada-mode version
7.3beta1.0.20220711.185004, wisi
version 4.0beta1.0.20220711.185552.

See the NEWS files in ~.emacs.delpaada-
mode-7.3beta and wisi-4.0beta, or at
https://elpa.gnu.org/packages/ada-
mode.html, for more details.

Please report success and issues to the
Emacs ada-mode mailing list
https://lists.nongnu.org/mailman/listinfo/
ada-mode-users.

The required Ada code requires a manual
compile step, after the normal list-
packages installation:

cd ~.emacs.delpaada-mode-7.3beta
.build.sh
.install.sh

There's a bug in install.sh; it looks for
WISI_DIR with the old version. Copy the
equivalent code from build.sh to fix it.

This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

Ada-related Tools 141

Ada User Journal Volume 43, Number 3, September 2022

build.sh will take longer than in previous
releases, up to several minutes; the ada-
mode LR1 parse table is now too big to
store in ELPA, so build.sh generates it.

Strings Edit v3.8
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN Strings Edit v3.8
Date: Fri, 5 Aug 2022 143618 +0200
Newsgroups: comp.lang.ada

The library provides text editing and I/O:

- Generic axis scales support;

- Integer numbers (generic, package
Integer_Edit);

- Integer sub- and superscript numbers;

- ISO 8601 representations of time and
duration;

- Floating-point numbers (generic,
package Float_Edit);

- Roman numbers (the type Roman);

- Strings;

- Ada-style quoted strings;

- Base64 encoding;

- Object identifiers and distinguished
names;

- RFC 8439 (ChaCha20 cipher, Poly1305
digest, AEAD);

- UTF-8 encoded strings and conversions
to older encoding standards;

- Unicode maps and sets;

- Wildcard pattern matching.

http://www.dmitry-kazakov.de/
adastrings_edit.htm

Changes to the version previous 3.7:

- Minor bug fixes in Strings_Edit-
ISO_8601.

Simple Components v4.63
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN Simple Components v4.63
Date: Fri, 5 Aug 2022 143807 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/
adacomponents.htm

Changes to the previous version:

- Code cleanup;

- SQL_Show and Close added to the
package SQLite;

- Python dynamic bindings added.

Simple Components v4.64
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN Simple Components v4.64
Date: Fri, 19 Aug 2022 114416 +0200
Newsgroups: comp.lang.ada

The release is focused on B-trees. The B-
tree represents a more performant and
easy to use alternative to SQLite in Ada
applications.

The release fixes bugs and adds tagging
B-tree buckets with user data. Tags can be
used for effective (e.g. logarithmic)
search for values rather than for keys
only, e.g. for points of entering or leaving
an interval of values etc.

A B-tree based implementation of
waveforms (x,y) provides means to store
render and analyze large sets of
measurement data.

http://www.dmitry-kazakov.de/
adacomponents.htm

Changes to the previous version:

- Persistent.Memory_Pools.Streams.
Generic_Float_Waveform was added to
provide waveform implementation;

- The implementation of B-trees was
modified to support tagging buckets of
the three. For this the packages
Generic_B_Tree,
Generic_Indefinite_B_Tree,
Persistent.Memory_Pools.Streams.
Generic_External_B_Tree,
Persistent.Memory_Pools.Streams.
Generic_External_Ptr_B_Tree provide
subprograms Get_Tag and Set_Tag;

- The package Generic_B_Tree now has
additional generic formal parameters
Tag_Type and Initial_Tag;

- Subprograms to navigate tree buckets
Get_Item, Get_Left_Child,
Get_Left_Parent, Get_Right_Child,
Get_Right_Parent, Get_Root were
added to the implementations of B-Trees
in the listed above packages;

- Functions Get_First and Get_Last were
added to the implementations of B-Trees
in the listed above packages;

- Procedures Store and Restore were
added to the implementations of B-Trees
in the listed above packages;

- The generic procedure Generic_Traverse
and non-generic Travers were added to
the implementations of B-Trees in the
listed above packages to shallow and
deep traversal of the tree items and
buckets;

- Persistent.Memory_Pools lock is made
reentrant;

- Image function was added to
Persistent.Blocking_Files;

- Bug fix in encodings in
Persistent.Blocking_Files.Transactional
and Persistent.Memory_Pools;

- Bug fix in persistent B-tree
implementations;

- Documentation extended.

Zip-Ada V.58
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann Zip-Ada v.58
Date: Sat, 27 Aug 2022 005822 -0700
Newsgroups: comp.lang.ada

* New in '58', 20-Aug-2022 [rev. 922]

 - Support for Zip_64 archives.
The Zip_64 format extension is needed
when there are more than more than
65535 entries or more than 4 GiB data
for a single entry's compressed or
uncompressed size, or for a whole
archive.

Zip-Ada is a pure Ada library for dealing
with the Zip compressed archive file
format. It supplies:

- compression with the following sub-
formats (methods) Store, Reduce, Shrink
(LZW), Deflate and LZMA

- decompression for the following sub-
formats (methods) Store, Reduce, Shrink
(LZW), Implode, Deflate, Deflate64,
BZip2 and LZMA

- encryption and decryption (portable Zip
2.0 encryption scheme)

- unconditional portability - within limits
of compiler's provided integer types and
target architecture capacity

- input archive to decompress can be any
kind of indexed data stream

- output archive to build can be any kind
of indexed data stream

- input data to compress can be any kind
of data stream

- output data to extract can be any kind of
data stream

- cross format compatibility with the most
various tools and file formats based on
the Zip format 7-zip, Info-Zip's Zip,
WinZip, PKZip, Java's JARs,
OpenDocument files, MS Office 2007+,
Google Chrome extensions, Mozilla
extensions, E-Pub documents and many
others

- task safety this library can be used ad
libitum in parallel processing

- endian-neutral IO

Main site & contact info:
http://unzip-ada.sf.net

142 Ada-related Tools

Volume 43, Number 3, September 2022 Ada User Journal

Project site & subversion repository:
https://sf.net/projects/unzip-ada/

GitHub clone with git repository:
https://github.com/zertovitch/zip-ada

Azip V.2.50
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann AZip v.2.50
Date: Sun, 28 Aug 2022 003334 -0700
Newsgroups: comp.lang.ada

The version 2.5 of AZip is out!

URL: http://azip.sf.net/

AZip is a Zip archive manager.

Some features:

 - Multi-document

 - Flat view / Tree view toggle

 - Simple to use (at least I hope so ;-))

 - Useful built-in tools

 - Text & name search function
through an archive, without having
to extract files

 - Archive updater

 - Integrity check

 - Archive recompression, using an
algorithm-picking approach for
improving a Zip archive's
compression.

 - Encryption

 - Zip compression formats supported
Reduce, Shrink, Implode, Deflate,
Deflate64, BZip2, LZMA

 - Free, open-source

 - Portable (in the sense no installation
needed, no DLL, no configuration file)

Summary of latest changes since 2.15:

 2.50: Support for Zip_64 archives.

 2.40: Optional Windows Explorer
context menu integration.

 2.38: AZip is its own installer (if
desired).

 2.20: Drag & Drop for extracting Zip
archive data. Stealth mode.

 Full list: https://sourceforge.net/p/azip/
news

Under the hood features

 - AZip is from A to Z in Ada -)

 - Uses the highly portable Zip-Ada
library - all in Ada.

 - (regarding Windows skin) Uses the
GWindows library - all in Ada.

 143

Ada User Journal Volume 43, Number 3, September 2022

Conference Calendar
Dirk Craeynest
Department of Computer Science, KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked � is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with � denote events with close relation to Ada.

The information in this section is extracted From: the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. Although the situation seems to improve, a

few events are still planned to be held "virtually", and some others in "hybrid" mode, also for wider dissemination. Where

available, the status of events is indicated with the following markers: "(v)" = event is held online, "(h)" = event is held in a

hybrid form (i.e. partially online).

2022

October 03-06

(v)

29th IEEE Software Technology Conference (STC'2022), Internet. Topics include: software

engineering for emerging systems; software testing, testability, and assurance; cybersecurity and

information assurance; agile software development; challenges and opportunities in SW & systems

development processes; etc.

October 07-14

(h)

Embedded Systems Week 2022 (ESWEEK'2022), Shanghai, China. Includes CASES'2022

(International Conference on Compilers, Architectures, and Synthesis for Embedded Systems),

CODES+ISSS'2022 (International Conference on Hardware/Software Codesign and System

Synthesis), EMSOFT'2022 (International Conference on Embedded Software).

 October 07-14

(h)
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES'2022). Topics include: latest advances in compilers

and architectures for high-performance, low-power embedded systems; software

security for embedded systems, IoT, and CPS; architecture, design, and compiler

techniques for reliability, and aging; modeling, analysis, and optimization for timing

and predictability; validation, verification, testing, and debugging of embedded

software; etc.

 October 07-14 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS'2022). Topics include: system-level design,

hardware/software co-design, modeling, analysis, and implementation of modern

Embedded Systems, Cyber-Physical Systems, and Internet-of-Things, From:

system-level specification and optimization to system synthesis of multi-processor

hardware/software implementations.

 October 07-14

(h)

ACM SIGBED International Conference on Embedded Software

(EMSOFT'2022). Topics include: the science, engineering, and technology of

embedded software development; research in the design and analysis of software that

interacts with physical processes; results on cyber-physical systems, which integrate

computation, networking, and physical dynamics.

October 10-14 37th IEEE/ACM International Conference on Automated Software Engineering (ASE'2022),

Oakland Center, Michigan, USA. Events include: ACM SIGAda's HILT workshop (High Integrity

Language Technology) on Tools and Languages in support of a Rigorous Approach to Software

Development.

� October 14

(h)

ACM SIGAda High Integrity Language Technology International Workshop on Supporting a
Rigorous Approach to Software Development (HILT'2022), Ann Arbor, Michigan, USA. Co-

located with ASE'2022. Organized by ACM SIGAda, in cooperation with Ada-Europe. Topics

include: practical use of High Integrity languages, technologies, and methodologies that enable

expedited design and development of software-intensive systems; practical use of formal methods at

144 Conference Calendar

Volume 43, Number 3, September 2022 Ada User Journal

industrial scale; IDE-support for formal methods; model-level analysis tools for systems like SysML,

AADL, Lustre, or Simulink; continuous integration and deployment based on advanced static

analysis tools; safety-oriented programming language features; qualification of language tools for

critical systems use; etc.

October 16-20

(h)

17th International Conference on Software Engineering Advances (ICSEA'2022), Lisbon,

Portugal. Topics include: trends and achievements; advances in fundamentals for software

development; advanced mechanisms for software development; advanced design tools for developing

software; software performance; software security, privacy, safeness; advances in software testing;

specialized software advanced applications; open source software; agile and Lean approaches in

software engineering; software deployment and maintenance; software engineering techniques,

metrics, and formalisms; software economics, adoption, and education; etc.

October 25-28

(v)

20th International Symposium on Automated Technology for Verification and Analysis

(ATVA'2022), Beijing, China. Topics include: theoretical and practical aspects of automated

analysis, synthesis, and verification of hardware, software, and machine learning (ML) systems;

specifications and correctness criteria for programs and systems decision procedures and solvers for

verification and synthesis program analysis and software verification analysis and verification of

parallel and concurrent systems analysis of cyber-physical systems analysis and verification of

machine learning algorithms and systems formal models and methods for security and privacy testing

and runtime analysis based on verification technology applications and case studies verification in

industrial practice; etc.

November 8-9 Ada-France at Paris Open Source Experience, Paris, France.
November 10-11

(v)

18th International Conference on Formal Aspects of Component Software (FACS'2022), Oslo,

Norway. Topics include: applications of formal methods in all aspects of software components and

services; formal methods, models, and languages for components and services, including formal

aspects of concrete component-based systems, including real-time/safety-critical systems, hybrid and

cyber physical systems, ...; tools supporting formal methods for components and services; case

studies and experience reports over the above topics; etc.

November 14-18 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE'2022), Singapore.

November 15-17 24th International Symposium on Stabilization, Safety, and Security of Distributed Systems

(SSS'2022), Clermont-Ferrand, France. Topics include: concurrent and distributed computing

(foundations, fault-tolerance, and security); distributed, concurrent, and fault-tolerant algorithms;

synchronization protocols; formal methods, validation, verification, and synthesis; etc.

November 21-23 23rd International Conference on Product-Focused Software Process Improvement
(PROFES'2022), Jyväskylä, Finland. Topics include: experiences, ideas, innovations, as well as

concerns related to professional software development and process improvement driven by product

and service quality needs.

Nov 28 – Dec 01

(v)

27th Pacific Rim International Symposium on Dependable Computing (PRDC'2022), Beijing,

China. Topics include: software and hardware reliability, resilience, safety, security, testing,

verification, and validation; dependability measurement, modeling, evaluation, and tools;

architecture and system design for dependability; dependability issues in computing systems (e.g.

high performance computing, real-time systems, cyber-physical systems, ...); etc.

December 05-07 29th Static Analysis Symposium (SAS'2022), Auckland, New Zealand. In conjunction with

SPLASH'2022 Topics include: static analysis as fundamental tool for program verification, bug

detection, compiler optimization, program understanding, and software maintenance.

� December 05-08

(h)

43rd IEEE Real-Time Systems Symposium (RTSS'2022), Houston, Texas, USA. Topics include:

addressing some form of real-time requirements such as deadlines, response times or delay/latency.

Deadline for submissions: October 25, 2022 (Industry Challenge). Deadline for early registration:

November 18, 2022.

 Dec 05 5th Workshop on Security and Dependability of Critical Embedded Real-Time
Systems (CERTS'2022). Topics include: security and dependability of cyber-

physical and other real-time and embedded systems, vulnerabilities and protective

Conference Calendar 145

Ada User Journal Volume 43, Number 3, September 2022

measures of CPS infrastructure, fault and intrusion tolerant distributed real-time

systems, system architectures encompassing combinations of distribution, security,

dependability and timeliness; etc. Deadline for submissions: October 3, 2022.

December 05-09

(h)

22nd IEEE International Conference on Software Quality, Reliability and Security (QRS'2022),

Guangzhou, China. Topics include: reliability, security, availability, and safety of software systems;

software testing, verification, and validation; program debugging and comprehension; fault tolerance

for software reliability improvement; modeling, prediction, simulation, and evaluation; metrics,

measurements, and analysis; software vulnerabilities; formal methods; operating system security and

reliability; benchmark, tools, industrial applications, and empirical studies; etc. Deadline for

submissions: October 1, 2022 (workshop papers), October 10, 2022 (fast abstracts, industry track,

posters).

� December 05-10

(h)

ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2022), Auckland, New Zealand. Topics include: all aspects of software

construction and delivery, at the intersection of programming, languages, and software engineering.

Deadline for early registration: November 15, 2022.

 Dec 05-10 15th ACM SIGPLAN International Conference on Software Language
Engineering (SLE'2022). Topics include: software language engineering rather than

engineering a specific software language; software language design and

implementation; software language validation (verification and formal methods for

languages, testing techniques for languages, simulation techniques for languages);

software language integration and composition; software language maintenance

(software language reuse, language evolution, language families and variability,

language and software product lines); domain-specific approaches for any aspects of

SLE (design, implementation, validation, maintenance); empirical evaluation and

experience reports of language engineering tools (user studies evaluating usability,

performance benchmarks, industrial applications); etc. Deadline for submissions:

October 11, 2022 (artifacts).

 � Dec 05-10 Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'2022). Topics include: all practical and theoretical

investigations of programming languages, systems and environments, targeting any

stage of software development, including requirements, modeling, prototyping,

design, implementation, generation, analysis, verification, testing, evaluation,

maintenance, and reuse of software systems; development of new tools, techniques,

principles, and evaluations.

December 06-09

(v)

29th Asia-Pacific Software Engineering Conference (APSEC'2022), Japan. Topics include: agile

methodologies; component-based software engineering; cyber-physical systems and Internet of

Things; debugging and fault localization; embedded real-time systems; formal methods; middleware,

frameworks, and APIs; model-driven and domain-specific engineering; open source development;

parallel, distributed, and concurrent systems; programming languages and systems; refactoring;

reverse engineering; security, reliability, and privacy; software architecture, modeling and design;

software comprehension and traceability; software engineering education and training; software

engineering tools and environments; software maintenance and evolution; software product-line

engineering; software reuse; software repository mining; testing, verification, and validation; etc.

Deadline for submissions: October 14, 2022 (posters), October 14-31, 2022 (workshop papers).

Deadline for early registration: November 30, 2022.

December 10

Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2023

January 16-18 18th International Conference on High Performance and Embedded Architecture and
Compilation (HiPEAC'2023), Toulouse, France. Topics include: software development for high

performance parallel systems; tools for compilation, evaluation, optimization of high performance

parallel systems (compiler support, tracing, and debugging for parallel architectures, ...); embedded real-

146 Conference Calendar

Volume 43, Number 3, September 2022 Ada User Journal

time systems, mixed criticality system support, dependable systems, ...; software support for embedded

architectures (tracing and real-time analysis of embedded applications, runtime software); etc.

� February 04-05 Free and Open source Software Developers' European Meeting (FOSDEM'2023), Brussels,

Belgium. FOSDEM 2023 is an international two-day event (Sat-Sun 4-5 Feb), held in Brussels, Belgium.

After our 11th Ada DevRoom earlier this year there won't be an Ada DevRoom in 2023, but Ada-related

proposals can be submitted to several of the 53(!) accepted DevRooms...

March 06-10

(h)

25th International Symposium on Formal Methods (FM'2023), Lübeck, Germany. Topics include:

development and application of formal methods in a wide range of domains including trustworthy AI,

software, computer-based systems, systems-of-systems, cyber-physical systems, security, human-

computer interaction, manufacturing, sustainability, energy, transport, smart cities, healthcare and

biology; techniques, tools and experiences in interdisciplinary settings; experiences of applying formal

methods in industrial settings; design and validation of formal method tools; formal methods in practice

(industrial applications of formal methods, experience with formal methods in industry, tool usage

reports, experiments with challenge problems); tools for formal methods (advances in automated

verification, model checking, and testing with formal methods, tools integration, environments for

formal methods, and experimental validation of tools); formal methods in software and systems

engineering (development processes with formal methods, usage guidelines for formal methods, and

method integration); special FM 2023 session on "Formal methods meets AI" (focused on formal and

rigorous modelling and analysis techniques to ensuring safety, robustness etc. (trustworthiness) of AI-

based systems); etc. Deadline for submissions: November 20, 2022 (artefacts), November 21, 2022

(Doctoral Symposium).

March 13-17 20th IEEE International Conference on Software Architecture (ICSA'2023), L'Aquila, Italy. Topics

include: architecture evaluation and quality aspects of software architectures; model-driven engineering

for architecture; component-based software engineering; automatic extraction and generation of software

architecture descriptions; refactoring and evolving architecture design decisions and solutions;

architecture frameworks and architecture description languages; linking architecture to requirements

and/or implementation; architecture & continuous integration/delivery, and DevOps; training, soft skills,

coaching, mentoring, education, and certification of software architects; architecture for legacy systems

and systems integration; architecting families of products; roles and responsibilities for software

architects; etc. Deadline for submissions: October 28, 2022 (technical track abstracts), November 4, 2022

(technical track full papers).

Mar 27 – Apr 02 38th ACM/SIGAPP Symposium on Applied Computing (SAC'2023), Tallinn, Estonia.

 Mar 27 – Apr 02 Embedded Systems Track (EMBS'2023). Topics include: the application of both

novel and well-known techniques to the embedded systems development. Deadline

for submissions: October 24, 2022 (full papers).

April 05 Eelco Visser Commemorative Symposium, Delft, the Netherlands. Topics include: language

engineering, program transformation, language workbenches, declarative language specification, name

binding and scope graphs, type soundness and intrinsically-typed interpreters, language specification

testing, language implementation generation, domain-specific programming languages, DSLs for

software deployment, DSLs for web application development, tool-supported programming education.

Deadline for submissions: October 28, 2022 (papers).

April 15-19 14th ACM/SPEC International Conference on Performance Engineering (ICPE'2023), Coimbra,

Portugal. Deadline for submissions: October 14, 2022 (research track abstracts), October 21, 2022

(research track papers, industry track papers, (SPEC Kaivalya Dixit Distinguished Dissertation award

nominations), January 7, 2023 (artifact track submission).

April 16-20 16th IEEE International Conference on Software Testing, Verification and Validation (ICST'2023),

Dublin, Ireland. Topics include: manual testing practices and techniques, security testing, model-based

testing, test automation, static analysis and symbolic execution, formal verification and model checking,

software reliability, testability and design, testing and development processes, testing in specific domains

(such as embedded, concurrent, distributed, ..., and real-time systems), testing for cyber-physical

systems, testing/debugging tools, empirical studies, experience reports, etc. Deadline for submissions:

October 20, 2022.

Conference Calendar 147

Ada User Journal Volume 43, Number 3, September 2022

April 17-20 28th International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2023), Barcelona, Catalunya, Spain. Theme: "Human Values in RE". Deadline for

submissions: November 11, 2022 (research paper abstracts), November 18, 2022 (research papers).

April 22-27 26th European Joint Conferences on Theory and Practice of Software (ETAPS'2023), Paris, France.

Events include: ESOP (European Symposium on Programming), FASE (Fundamental Approaches to

Software Engineering), FoSSaCS (Foundations of Software Science and Computation Structures),

TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline for

submissions: October 13, 2022 (papers), November 10, 2022 (TACAS artefact submissions), January 5,

2023 (ESOP, FASE, FoSSaCS artefact submissions), January 16, 2023 (Doctoral Dissertation Award

nominations.

 April 26-27 29th International Symposium on Model Checking of Software (SPIN'2023).

Topics include: automated tool-based techniques to analyze and model software for

the purpose of verification and validation. Deadline for submissions: January 9, 2023

(abstracts), January 16, 2023 (papers).

May 09-12 16th Cyber-Physical Systems and Internet of Things Week (CPS-IoT Week'2023), San Antonio,

Texas, USA. Event includes: 5 top conferences, HSCC, ICCPS, IoTDI, IPSN, and RTAS, multiple

workshops, tutorials, and competitions.

 � May 09-12 29th IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS'2023). Topics include: systems research related to embedded systems and time-

sensitive systems; original systems, applications, case studies, methodologies, and

algorithms that contribute to the state of practice in design, implementation,

verification, and validation of embedded systems or time-sensitive systems. Deadline

for submissions: October 31, 2022 (papers), February 10, 2023 (brief presentations).

May 16-18 15th NASA Formal Methods Symposium (NFM'2023), Houston, Texas, USA. Topics include:

challenges and solutions for achieving assurance for critical systems, such as formal verification,

including theorem proving, model checking, and static analysis, advances in automated theorem proving

including SAT and SMT solving, use of formal methods in software and system testing, techniques and

algorithms for scaling formal methods (abstraction and symbolic methods, compositional techniques,

parallel and/or distributed techniques, ...), etc. Deadline for submissions: December 9, 2022 (abstracts),

December 16, 2023 (papers).

May 23-25 15th Software Quality Days (SWQD'2023), Munich, Germany. Topics include: all topics about

software and systems quality, such as improvement of software development methods and processes,

testing and quality assurance of software and software-intensive systems, project and risk management,

domain specific quality issues such as embedded, medical, automotive systems, novel trends in software

quality, etc. Deadline for submissions: October 21, 2022.

� June 07-08 31st International Conference on Real-Time Networks and Systems (RTNS'2023), Dortmund,

Germany. Topics include: real-time applications design and evaluation (automotive, avionics, space,

railways, telecommunications, process control, ...), real-time aspects of emerging smart systems (cyber-

physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks

modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)

analysis, security, ...), software technologies for real-time systems (model-driven engineering,

programming languages, compilers, WCET-aware compilation and parallelization strategies,

middleware, Real-time Operating Systems (RTOS), ...), formal specification and verification, real-time

distributed systems, etc. Deadline for submissions: January 13, 2023 (abstracts 2nd round), January 17,

2023 (papers 2nd round).

� June 13-16 27th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2023), Lisbon, Portugal. Sponsored by Ada-Europe.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Conference Chair
António Casimiro
casim@ciencias.ulisboa.pt
University of Lisbon, Portugal

Journal-track Chair
Elena Troubitsyna
elenatro@kth.se
KTH Royal Inst. of Technology, Sweden

Industrial-track Chairs
Alexandre Skrzyniarz
alexandre.skrzyniarz@fr.thalesgroup.com
Thales, France

Sara Royuela
sara.royuela@bsc.es
Barcelona Supercomputing Center, Spain

Work-In-Progress-track Chairs
Bjorn Andersson
baandersson@sei.cmu.edu
Carnegie Mellon University, USA

José Cecílio
jmcecilio@fc.ul.pt
University of Lisbon, Portugal

Tutorial and Education Chair
Luis Miguel Pinho
lmp@isep.ipp.pt
ISEP, Portugal

Workshop Chair
Frank Singhoff
singhoff@univ-brest.fr
University of Brest, France

Exhibition & Sponsorship Chair
Ahlan Marriott
ahlan@Ada-Switzerland.ch
White Elephant GmbH, Switzerland

Publicity Chair
Dirk Craeynest
Dirk.Craeynest@cs.kuleuven.be
Ada-Belgium & KU Leuven, Belgium

Webmaster
Hai Nam Tran
hai-nam.tran@univ-brest.fr
University of Brest, France

General Information

The 27th Ada-Europe International Conference on Reliable Software Technologies (AEiC
2023) will take place in Lisbon, Portugal. The conference schedule comprises a journal
track, an industrial track, a work-in-progress track, a vendor exhibition, parallel tutorials,
and satellite workshops.

� Journal-track submissions present research advances supported by solid
theoretical foundation and thorough evaluation.

� Industrial-track submissions highlight the practitioners' side of a challenging case
study or industrial project.

� Work-in-progress-track submissions illustrate a novel research idea that is still at
an initial stage, between conception and first prototype.

� Tutorial submissions guide attenders through a hands-on familiarization with
innovative developments or with useful features related to reliable software.

Schedule

Scope and Topics

The conference is a leading international forum for providers, practitioners, and
researchers in reliable software technologies. The conference presentations will illustrate
current work in the theory and practice of the design, development, and maintenance of
long-lived, high-quality software systems for a challenging variety of application domains.
The program will allow ample time for keynotes, Q&A sessions and discussions, and social
events. Participants include practitioners and researchers from industry, academia, and
government organizations active in the promotion and development of reliable software
technologies.

The topics of interest for the conference include but are not limited to:
� Formal and model-based engineering of critical systems
� Real-Time Systems
� High-Integrity Systems and Reliability
� Ada Language
� Applications in a variety of domains

More specific topics are described on the conference web page.

hhttp://www.ada--eeurope.org/conference20223

13 February 2023 Submission deadline for journal-track papers
27 February 2023 Submission deadline for industrial-track papers, work-in-progress

papers, tutorial and workshop proposals
20 March 2023 First round notification for journal-track papers, and notification

of acceptance for all other types of submissions
13-16 June 2023 Conference

CCall ffor JJoournal--ttrack SSuubmissions

Following a journal-first model, this edition of the conference again includes a journal track, which seeks original and high-quality papers that describe
mature research work on the conference topics. Accepted journal-track papers will be published in the "Reliable Software Technologies (AEiC2023)"
Special Issue of JSA -- the Journal of Systems Architecture (Scimago Q1 ranked, impact factor 5.936).

General information for submitting to the JSA can be found at the Journal of Systems Architecture website. The submission link will be available on the
conference web page. Contributions must be submitted by 113 February 2023. JSA has adopted the Virtual Special Issue model to speed up the
publication process, where Special Issue papers are published in regular issues, but marked as SI papers. Acceptance decisions are made on a rolling
basis. Therefore, authors are encouraged to submit papers early, and need not wait until the submission deadline. Authors who have successfully
passed the first round of review will be invited to present their work at the conference. Please note that the AEiC 2023 organization committee will
waive the Open Access fees for the first four accepted papers, which do not already enjoy OA from personalized bilateral agreements with the Publisher.
Subsequent papers will follow JSA regular publishing track. Prospective authors may direct all enquiries regarding this track to the corresponding chair,
Elena Troubitsyna (elenatro@kth.se).

Call for Industrial-track Submissions

The conference seeks industrial practitioner presentations that deliver insight on the challenges of developing reliable software. Especially welcome
kinds of submissions are listed on the conference web site. Given their applied nature, such contributions will be subject to a dedicated practitioner-
peer review process. Interested authors shall submit a one-to-two pages abstract, by 227 February 2023, via EasyChair at
https://easychair.org/my/conference?conf=aeic2023, selecting the “Industrial Track”. The format for submission is strictly in PDF, following the Ada
User Journal style. Templates are available at http://www.ada-europe.org/auj/guide.

The abstract of the accepted contributions will be included in the conference booklet. The corresponding authors will get a presentation slot in the
prime-time technical program of the conference and will also be invited to expand their contributions into full-fledged articles for publication in the
Ada User Journal, which will form the proceedings of the industrial track of the Conference. Prospective authors may direct all enquiries regarding this
track to its chairs Alexandre Skrzyniarz (alexandre.skrzyniarz@fr.thalesgroup.com) and Sara Royuela (sara.royuela@bsc.es).

Call for Work-in-Progress-track Submissions

The work-in-progress track seeks two kinds of submissions: (a) ongoing research and (b) early-stage ideas. Ongoing research submissions are 4-page
papers describing research results that are not mature enough to be submitted to the journal track. Early-stage ideas are 1-page papers that pitch new
research directions that fall within the scope of the conference. Both kinds of submissions must be original and shall undergo anonymous peer review.
Submissions by recent MSc graduates and PhD students are especially sought. Authors shall submit their work by 227 February 2023, via EasyChair at
https://easychair.org/my/conference?conf=aeic2023, selecting the “Work in Progress Track”. The format for submission is strictly in PDF, following the
Ada User Journal style. Templates are available at http://www.ada-europe.org/auj/guide.

The abstract of the accepted contributions will be included in the conference booklet. The corresponding authors will get a presentation slot in the
prime-time technical program of the conference and will also be offered the opportunity to expand their contributions into 4-page articles for
publication in the Ada User Journal, which will form the proceedings of the WiP track of the Conference. Prospective authors may direct all enquiries
regarding this track to the corresponding chairs Bjorn Andersson (baandersson@sei.cmu.ed) and José Cecílio (jmcecilio@fc.ul.pt).

Call for Tutorials

The conference seeks tutorials in the form of educational seminars on themes falling within the conference scope, with an academic or practitioner
slant, including hands-on or practical elements. Tutorial proposals shall include a title, an abstract, a description of the topic, an outline of the
presentation, the proposed duration (half-day or full-day), the intended level of the contents (introductory, intermediate, or advanced), and a statement
motivating attendance. Tutorial proposals shall be submitted by e-mail to Tutorial and Education Chair, Luís Miguel Pinho (lmp@isep.ipp.pt), with
subject line: “[AEiC 2023: tutorial proposal]”. Tutorial proposals shall be submitted by 227 February 2023. The authors of accepted full-day tutorials will
receive a complimentary conference registration, halved for half-day tutorials. The Ada User Journal will offer space for the publication of summaries
of the accepted tutorials.

Call for Workshops

The conference welcomes satellite workshops centred on themes that fall within the conference scope. Proposals may be submitted for half- or full-
day events, to be scheduled at either end of the AEiC conference. Workshop organizers shall also commit to producing the proceedings of the event,
for publication in the Ada User Journal. Workshop proposals shall be submitted by e-mail to the Workshop Chair, Frank Singhoff (singhoff@univ-
brest.fr), with subject line: [AEiC 2023: workshop proposal]. Workshop proposals shall be submitted at any time but no later than the 227 February 2023.
Once submitted, each workshop proposal will be evaluated by the conference organizers as soon as possible.

Call for Exhibitors

The conference will include a vendor and technology exhibition. Interested providers should direct inquiries to the Exhibition & Sponsorship Chair.

Venue

The conference will take place at the Hotel Fénix Lisboa, near downtown Lisbon, Portugal. June is full of events in Lisbon, including the festivities in
honour of St. António (June 13 is the town holiday), with music, grilled sardines, and popular parties in Alfama and Bairro Alto neighbourhoods. There’s
plenty to see and visit in Lisbon, so plan in advance!

150

Boosting Simulation and Debugging of

Cyber-physical Systems with Symbolic Exploration

Ivan Kolesnikov
IRIT; email: ivan.kolesnikov@irit.fr

Cyber-physical systems (CPS) often have a mission critical

nature; it is therefore mandatory to ensure their correct func-

tionality at runtime. Simulation and testing are quite common

approaches, however, for the most of real-life CPS they fall

short to explore all possible execution scenarios, due to the

very large or even infinite size of their state space. This well-

known state-explosion problem is mainly due to two factors,

namely, (i) the number of components and (ii) the number and

the domain (i.e., type) of data variables manipulated within

the CPS. Several techniques allowing to cope effectively with

state-explosion have been developed in the past; in particular,

symbolic exploration methods rely on specific encoding of

system executions avoiding explicit enumeration of states,

and therefore, provide opportunities to boost the performance

of classical simulation and testing techniques.

One of these methods is Bounded Model Checking (BMC)

[1, 2, 3] which allows to effectively represent all system exe-

cutions consisting of a specific number of consecutive steps

and to verify related reachability properties. System execu-

tions are typically encoded as SMT formulae [4] or MILP

formulae [5]). First, such formulae are obtained by replicat-

ing constraints of the form T step(xi, yi, . . . , xi+1, yi+1, . . .)
encoding the i-th execution step on variables like x0, x1, x2

which represent the value of a model variable x on each step 0,

1, 2, etc. For the first and the last step some extra constraints

are added e.g., defining initial and final states of interest. Sec-

ond, SMT solvers (such as Z3, CVC4, etc) or MILP solvers

(such as CPLEX, Gurobi, etc) are used to check for satisfia-

bility of such formula. If the formula is satisfiable the solver

provides concrete values for each variable, representing one

possible execution trace from a state in the initial set to a state

in the final set. Otherwise, the solver provides a subset of

contradictory constraints (i.e., an unsatisfiable core), that is, a

minimum set of constraints which cannot be met together.

The use of BMC on real systems has also some known limita-

tions. For example, the number of steps to consider may need

to be limited, the types and operations on data variables may

need to be restricted in order to obtain formula manageable by

existing solvers. Also, the counter-examples extracted when

formulas are not satisfied can be counter-intuitive. So it might

be difficult to explore a real scale system just using BMC.

In this work, we propose the development of the theoretical

approach and tools to reach two goals:

1. use BMC as a tool for local search of the state space,

helping the user to reach states of interest during explicit

state simulation, or to verify that certain conditions are

unsatisfiable when starting from the current simulation

state.

2. whenever a property is not satisfied, leverage the unsatis-

fiable core to provide user with some explanation of the

counter-example to help him understanding the reason

of failure and guiding towards finding a fix, if possible.

We plan to practically implement our approach on the top of

TASTE [6] a tool-chain targeting heterogeneous embedded

systems, using a model-based development approach. We are

currently working on supporting BMC for TASTE models,

more precisely for encoding the semantics of TASTE compo-

nents defined using the SDL graphical programming language

as SMT constraints.

Acknowledgement

The paper is written as a part of PhD thesis "Boosting simula-

tion and debugging of Cyber-Physical Systems (CPS) models

with symbolic analysis methods" under the supervision of Iu-

lian Ober (ISAE-Supaero, Université de Toulouse) and Marius

Bozga (CNRS-VERIMAG, Université Grenoble Alpes).

References
[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu,

“Symbolic Model Checking without BDDs,” in TACAS,

vol. 1579 of Lecture Notes in Computer Science, pp. 193–

207, Springer, 1999.

[2] M. Sorea, “Bounded model checking for timed au-

tomata,” Electronic Notes in Theoretical Computer Sci-
ence, pp. 116–134, 01 2003.

[3] M. Fränzle and C. Herde, “Efficient Proof Engines for

Bounded Model Checking of Hybrid Systems,” Elec-
tronic Notes in Theoretical Computer Science, vol. 133,

pp. 119–137, May 2005.

[4] A. Cimatti, S. Mover, and S. Tonetta, “Smt-based sce-

nario verification for hybrid systems,” Formal Methods
in System Design, vol. 42, pp. 46–66, 02 2013.

[5] I. Ober, “Revisiting bounded reachability analysis of

timed automata based on milp,” Formal Methods for In-
dustrial Critical Systems, p. 269–283, 2018.

[6] “A tool-chain targeting heterogeneous embedded systems,

using a model-based development approach.” https:
//taste.tools/.

Volume 43, Number 3, September 2022 Ada User Jour na l

151

Improving Usability and Trust in Real-Time

Verification of a Large-Scale Complex

Safety-Critical System*

Brian Kempa, Chris Johannsen, Kristin Yvonne Rozier
Iowa State University, Ames, Iowa, USA; email: {bckempa,cgjohann,kyrozier}@iastate.edu

Abstract

Large-scale complex safety-critical systems are inher-
ently difficult to both verify in real-time and transpar-
ently validate. The iterative specification development
process is challenging when the performance and reli-
ability demands of target systems (e.g., flight software)
require strict behavior of verification tools which often
trade off usability for performance and conformance.
Providing both strict behavioral guarantees and effi-
ciency of this iterative process allows specification au-
thors and engineers to more quickly deploy their systems
and have more confidence in their verification efforts.

Our on-going work addresses this challenge by pro-
viding validation transparency for specification authors
during system development while maintaining necessary
performance during deployment by extending R2U2,
a real-time verification tool specifically designed for
resource-constrained systems. We also strengthen the
trust in R2U2 by providing a robust suite of tests to show
adherence to the strict requirements of safety-critical
flight software. These tasks are efforts toward transi-
tioning R2U2 from a research-grade tool to a flight-
software-grade tool suitable for use by real-time safety-
critical systems and thereby answer the calls for ex-
panded developmental-to-operational verification by,
e.g., the Vehicle System Management (VSM) team of the
NASA Lunar Gateway.

Keywords: Real-Time and Safety-Critical Systems, Run-
time Verification, Developmental Contract Verification,
Assume-Guarantee Contracts.

1 Introduction
Complex autonomous real-time systems such as robots,

rovers, satellites, and unmanned aerial systems (UAS) must

operate reliably for extended periods without human inter-

vention. Runtime verification is a family of techniques that

enable such systems to check themselves during operation

by identifying and correcting problems as they occur. The

legacy approach to runtime verification in software is to use

custom ad-hoc algorithms that are difficult to implement,

*This work was supported in part by NASA Cooperative Agreement

Grant #80NSSC21M0121 and NSF CAREER Award CNS-1552934.

susceptible to errors, and extremely difficult to verify [1].

Large-scale complex safety-critical systems require both real-

time verification during system operation but also transparent

requirement validation during system development that can

carry through to runtime.

After an extensive survey of all currently-available verifica-

tion tools, the NASA Lunar Gateway Project selected the

R2U2 runtime verification engine for use in developing and

monitoring autonomous spacecraft software, starting with

the Vehicle System Manager (VSM) [1]. The choice was

based primarily on R2U2’s unobtrusive, flight-certifiable ar-

chitecture, proven capacity for real-time runtime verification

on-board safety-critical systems, and an open-source, exten-

sible C codebase that integrates into the NASA core Flight

System/core Flight Executive (cFS/cFE) [2] environment [3].

A hardware version of R2U2 that implements the same algo-

rithms as the C version previously embedded in the space left

over on the FPGA controlling NASA’s Robonaut2’s knee to

provide real-time fault disambiguation [4]. The three imple-

mentations of R2U2 (hardware/FPGA, C, and C++) have ver-

ified many previous safety-critical systems; see [5] for a tool

overview and summary of previous case studies. R2U2’s un-

derlying specification-monitoring algorithms were originally

created specifically to fulfill NASA’s needs for a Responsive,

Reliable, Unobtrusive Unit (hence the name R2U2) [6], and

optimized (with accompanying proofs of correctness) for the

Robonaut2 study [4].

While design-by-contract systems like SPARK have provided

formal verification in this domain [7], VSM focused on stand-

alone monitors for their verification efforts because they

sought runtime visibility of system status instead of design

time prescription of component correctness, therefore their

selected tool needed to be independent from the flight soft-

ware implementation [1]. The VSM team has an established

verification workflow that includes extensive requirement elic-

itation in the form of Assume-Guarantee Contracts (AGCs),

and the design-time verification technique of model check-

ing to verify AGCs against state-machine models of various

sub-systems. However, specification (of models and their

requirements) is the biggest bottleneck to verification of au-

tonomy [8]. Developing a system model of required fidelity to

fully leverage model checking involves significant effort and

expertise, so only some AGCs are suitable for model checking

Ada User Jour na l Vo lume 43, Number 3, September 2022

152 Usabi l i ty and Trust in Real -T ime Ver i f i ca t ion of a Safe ty-Cr i t i ca l System

and others instead undergo a lighter-weight validation anal-

ysis with a modified form of runtime verification via R2U2

during development phase instead [9]. The end-goal is to

validate AGCs by simulating the possible system executions

that satisfy them during system development time, then verify

them over simulated system runs (developmental verification)

and eventual mission-time execution (operational verifica-

tion); see [10] for a description of the distinction between

developmental runtime verification and simulation.

We describe ongoing work extending the open-source,

publicly-available runtime verification engine R2U2, to en-

able its use for public purposes that are relevant to NASA,

including enabling system designers to transparently capture

their desired requirements, and making verification results

accessible to users. We aim to enhance R2U2 to make it

more accessible to software developers and to make R2U2

output tie transparently to the input AGCs. Since the goal

is to measurably increase R2U2’s usability, user documenta-

tion/example uses, and both input and output interfacing, we

are evolving R2U2 with regular feedback from a representa-

tive NASA mission, in this case, the Lunar Gateway Vehicle

System Manager (VSM) team, as an outside check that these

goals are being accomplished.

This report previews ongoing work expanding R2U2’s us-

ability and trust as a runtime verification engine optimized

for a minimal resource footprint running on-board safety-

critical systems. Figure 1 displays the features discussed here

bounded by the dashed box. The contributions of this paper

are (1) extensions to the input and output formats of R2U2

to improve usability when validating and verifying complex

specifications and (2) increasing trust in the underlying run-

time monitor of R2U2 while maturing research software for

flight. Section 2 explores extensions to R2U2’s input and

output syntax to facilitate specification authorship and valida-

tion. Our approach to preparing research software for flight is

highlighted in Section 3. Finally, Section 4 summarizes work

in progress and next steps.

2 Usability
R2U2 utilizes a minimal input/output syntax to meet real-time

deadlines in resource-constrained embedded systems. This

low-level syntax makes authoring specifications, validating

specifications against requirements, and interpreting verifica-

tion results more difficult for system engineers. As systems

scale in complexity (and often criticality) the mental overhead

quickly becomes untenable; however, intuitive naming and

reporting schemes can improve specification transparency,

reducing iteration time during specification and system de-

velopment. We extend R2U2’s specification syntax with

three enhancements to facilitate human validation: Assume-

Guarantee Contracts (AGCs), set aggregation operations, and

more readable syntax. These ergonomic improvements im-

pact efficiency in authoring and validating specifications, as

shown in the “develop” path in Figure 1.

2.1 Assume-Guarantee Contracts
VSM uses AGCs to capture requirements [1]. AGCs are a sim-

ple yet powerful requirement framework, but encoding them

Figure 1: Workflow of the design, validation, and deployment of
R2U2 on board the Lunar Gateway where the components in the
dashed box are those that the contributions of this paper refer to.
A specification author translates the set of AGC project require-
ments to a set of Mission-time Linear Temporal Logic (MLTL)
specifications, compiles these specifications into an R2U2 config-
uration, then tests and validates the configuration locally. Once
the author validates a configuration, engineers then deploy the
configuration onto the target platform.
(Photo of Lunar Gateway, https://flic.kr/p/2mHPaLg,
by NASA/Alberto Bertolin CC BY-NC-ND 2.0 / Cropped)

using logical implication (assumption → guarantee) con-

flates inactive and verified contracts because R2U2’s verdicts

are Boolean.

The "Old Syntax" in Figure 2 demonstrates a workaround

encoding the three conditions as separate formulas in a "one-

hot" pattern such that one and only one is true at each timestep.

In contrast, we implmented an AGC operator "⇒" in R2U2,

which efficiently computes the trinary status and outputs a

single clear verdict. The new syntax is easier to write, read,

and validate.

2.2 Set Aggregation
We also implement set-aggregation operations as first sug-

gested in [11], permitting succinct requirements over sets

of expressions. The set-aggregation operators are syntactic

sugar and eliminate long repetitive structures that may hide

typos. They accept a set of expressions and evaluate a set

property such as “exactly one of these” and are simpler for

system engineers to write, interpret, and validate.

For example, a requirement may state that exactly one task

shall be active simultaneously. The "Old Syntax" in Figure 2

demonstrates writing this as a disjunction of conjunctions

that grow exponentially with the number of tasks, while the

“New Syntax” captures this succinctly with a set-aggregation

operation.

2.3 Syntax Readability
Internally, R2U2 addresses all values by their index positions

in internal vectors. Accordingly, interpreting the output of

the old syntax seen in Figure 2 requires knowing the formula

number, and mentally mapping that back though the atomic

number to the input signal number, increasing the complexity

of writing, reading and validating specifications.

Our new syntax and tooling support human-readable labels for

formulas, variables, and subexpressions. Named subexpres-

sions allow specifications to resemble the requirements they

monitor more closely, while formula names carry through

Volume 43, Number 3, September 2022 Ada User Jour na l

B. Kempa, C. Johannsen, K. Y. Roz ier 153

Old Syntax

a0 && ((a1 && !a2 && !a3) || // AGC:
(!a1 && a2 && !a3) || // TRUE
(!a1 && !a2 && a3));

!a0; // AGC: INACTIVE
a0 && !((a1 && !a2 && !a3) || // AGC:

(!a1 && a2 && !a3) || // FALSE
(!a1 && !a2 && a3));

a0 = bool(s0) == 1;
a1 = bool(s1) == 1;
a2 = bool(s2) == 1;
a3 = bool(s3) == 1;

New Syntax

RVALID: resRactive => resRvalid;

taskAactive = bool(Aactive) == 1;
taskBactive = bool(Bactive) == 1;
taskCactive = bool(Cactive) == 1;
resRactive = bool(Ractive) == 1;
resRvalid =

exactly-one-of(active_tasks) == 1;

active_tasks = {taskAactive,
taskBactive,
taskCactive};

Input

Time
s0 s1 s2 s3

resRactive taskAactive taskBactive taskCactive

0 T T F F

1 T F T F

2 F F F F

3 T T T F

Old Output New Output
0:0 T RVALID:0 TRUE
1:0 F
2:0 F
0:1 T RVALID:1 TRUE
1:1 F
2:1 F
0:2 F RVALID:2 INACTIVE
1:2 T
2:2 F
0:3 F RVALID:3 FALSE
1:3 F
2:3 T

Figure 2: An example usage of R2U2 with the old and new
syntaxes. The specification shown captures the system behavior
that when a shared resource R is active, exactly one task is
using that resource. There is no native support for AGCs and
variable names in the old syntax so the specification must be
written without these features i.e., each case of the AGC must
be explicitly written out and each variable uses a generic name.
The new syntax adds these features and as such is more human-
readable and easier to validate.

to the output stream, both easing validation. Because the

VSM team selected R2U2 for its real-time performance and

bounded resource guarantees under flight software restric-

tions [1], these ergonomic improvements cannot impact the

deployed monitor performance. Most of these features only

affect the formula compiler, but human-readable output like

formula names requires auxiliary information and runtime ac-

tions. While development and deployment workflows utilize

the same specification files, R2U2 now stores auxiliary data

like formula names separately. Deployment monitors do not

compile the auxiliary output hooks or read the auxiliary data

files, leaving them strictly more performant than development

builds, under equivalent conditions.

Additionally, we added an option to dynamically map input

signals by the name used in the specification. This added input

robustness decouples specification authorship from engineer-

ing decisions until target integration, i. e., changing structure

definitions no longer requires specification modification.

3 Trust
Academic research software ("gradware") is developed under

different motivations than projects targeting third-party use,

and unpublishable custodial tasks (e.g., documentation, test-

ing) are often are not attended to beyond what is required for

peer acceptance. Software deployed in critical applications,

however, must meet a higher bar than standard software best

practices. As we convert R2U2 from a research tool to a flight-

certified component, we establish trust in R2U2’s output with

a hierarchical testing campaign, automated analysis-guided

peer-review, and adherence to open-source best practices.

3.1 Testing
Our new R2U2 test suite design supports fast iteration as

we react to VSM’s needs and meet established flight soft-

ware verification standards, bridging traditional and formal

methods.

Unit Tests: Following NASA’s standards for VSM flight

software, unit tests verify individual functions (e. g., queue

operations) and must exercise every line and branch. We

parameterize tests over the Cartesian product of the input

parameters, covering the input space without repeated code.

R2U2’s 66 unit tests currently cover 98.1% of the 577 exe-

cutable lines and 52.3% of the 2276 branches. The low branch

coverage results from a standard C macro idiom for debug

print statements that create a do-while structure that can never

repeat, generating an unreachable jump instruction. Crucially,

these spurious branches do not appear in deployment binaries.

Integration Tests: These black-box tests confirm implemen-

tation correctness by comparing the output of R2U2 with a

slower but simpler Python oracle over a benchmark set with

2000+ combinations of formulas and input signals. We cu-

rate this collection to exercise all logical operators in varied

compositions, including published and randomly-generated

benchmark specifications. A core set of 50 acceptance tests

that cover common cases and check for regressions of pre-

vious issues runs in under a minute on consumer hardware.

Although the total space of formulas and inputs is infeasible

to cover exhaustively, we “fuzz” for edge cases beyond the

curated set with randomized inputs and formulas.

Ada User Jour na l Vo lume 43, Number 3, September 2022

154 Usabi l i ty and Trust in Real -T ime Ver i f i ca t ion of a Safe ty-Cr i t i ca l System

3.2 Automated Analysis and Review
GitLab provides version control; all changes automatically

trigger the Continuous Integration (CI) server, which scans

the source with linters and static analysis tools, builds a debug

binary with maximum compiler warnings, and runs both test

suites with the sanitizer runtimes linked to catch memory mis-

takes not detectable at compile time. We use CodeChecker2

to aggregate analysis results from Clang Tidy, CLang Static

Analyzer, Cppcheck, Infer, and cpplint. The CI report assists

in finding potential defects during code reviews. CI does

not measure performance since benchmarks are highly sensi-

tive to environmental context (e. g., working directory, cache

alignment, etc.) [12]. Instead, profile-guided optimization is

performed on integration target hardware.

3.3 Release Best Practices
Though R2U2 is already open source, code availability is

insufficient to ensure the project remains maintainable and

accessible for developers of R2U2 and projects incorporating

using it. Popular open-source libraries solve this problem

with a series of best practices R2U2 is adopting: an open Git

repository with full version history, public issue tracking, an

established open license, and documentation targeting both

users. These tasks are vital to transitioning any research-grade

software to software suitable for flight. Beyond the existing

in-line comments, we are preparing three documents: 1) a

user’s guide detailing the use of R2U2 (e.g., formula syntax,

output format, target platform integration), 2) a developer’s

guide with architectural decisions, code style, and algorithm

descriptions with proofs, and 3) an API reference autogener-

ated from the source using Doxygen.

4 Conclusion
NASA’s VSM team is actively developing specifications for

the Lunar Gateway using our tool chain. The new usability

and trust features are crucial for the transition of R2U2 from a

research-grade academic tool to one suitable for safety-critical

flight-software systems. We continue to collaboratively evalu-

ate user needs, modify the tool accordingly, and monitor the

effectiveness of delivered solutions. We are looking forward

to insightful experience reports and technical evaluations at

the end of the project.

Additionally we are working on: 1) Adding an optimization

pass to formula compilation that removes unnecessary

instructions (e. g., double negations) and improves partial

result reuse to improve performance and reduce resource

requirements. 2) Building a visual configuration utility for

tuning the static memory bound parameters that provides

statistics on formula resource usage. This is also useful

when designing new formula sets for a monitor with existing

bounds.

2https://github.com/Ericsson/codechecker

References
[1] J. B. Dabney, J. M. Badger, and P. Rajagopal, “Adding

a verification view for an autonomous real-time system

architecture,” in AIAA Scitech 2021, p. 0566, 2021.

[2] NASA, “core Flight System (cFS) Background

and Overview.” Online: https://cfs.gsfc.nasa.gov/

cFS-OviewBGSlideDeck-ExportControl-Final.pdf, 2014.

[3] J. B. Dabney, P. Rajagopal, and J. M. Badger,

“Using assume-guarantee contracts in autonomous

spacecraft.” Flight Software Workshop (FSW) On-

line: https://www.youtube.com/watch?v=
zrtyiyNf674, February 2021.

[4] B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and

K. Y. Rozier, “Embedding Online Runtime Verifica-

tion for Fault Disambiguation on Robonaut2,” in FOR-
MATS, Proc. 18th, vol. 12288 of LNCS, (Vienna, Aus-

tria), pp. 196–214, Springer, September 2020.

[5] K. Y. Rozier and J. Schumann, “R2U2: Tool Overview,”

in RV-CUBES, vol. 3, (Seattle, WA, USA), pp. 138–156,

Kalpa Publications, September 2017.

[6] T. Reinbacher, K. Y. Rozier, and J. Schumann,

“Temporal-logic based runtime observer pairs for system

health management of real-time systems,” in TACAS,
Proc. 20th, vol. 8413 of LNCS, pp. 357–372, Springer,

April 2014.

[7] P. Neto, J. Tojal, J. Veríssimo, and S. M. de Sousa,

“Towards a formally verified space mission software

using spark.,” Ada User Journal, vol. 40, no. 4, pp. 243

– 246, 2019.

[8] K. Y. Rozier, “Specification: The biggest bottleneck in

formal methods and autonomy,” in VSTTE, Proc. 8th,

vol. 9971 of LNCS, (Toronto, ON, Canada), pp. 1–19,

Springer-Verlag, July 2016.

[9] J. B. Dabney, P. Rajagopal, and J. M. Badger, “Us-

ing assume-guarantee contracts for developmental ver-

ification of autonomous spacecraft.” Flight Software

Workshop (FSW) Online: https://www.youtube.
com/watch?v=HFnn6TzblPg, February 2022.

[10] K. Y. Rozier, “From simulation to runtime verifica-

tion and back: Connecting single-run verification tech-

niques,” in SpringSim, (Tucson, AZ, USA), pp. 1–10,

Society for Modeling & Simulation Int’l, April 2019.

[11] A. Hammer, M. Cauwels, B. Hertz, P. Jones, and K. Y.

Rozier, “Integrating runtime verification into an auto-

mated uas traffic management system,” Innovations in
Systems and Software Engineering: A NASA Journal,
July 2021.

[12] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.

Sweeney, “Producing wrong data without doing any-

thing obviously wrong!,” ACM Sigplan Notices, vol. 44,

no. 3, pp. 265–276, 2009.

Volume 43, Number 3, September 2022 Ada User Jour na l

1,2 1 1 2

ACTED_IN
Role: Neo

Label: Person
Name: Keanu Reeves

Label: Movie
Name: The Matrix

ACTED_IN
Role: Trinity

Label: Person
Name: Carrie-Anne Moss

𝐴

𝐴

𝐴

𝐵

Pack.A1 :=
Pack.A3;

Pack.A1 Pack.A3

Pack

C
or

re
sp

on
di

ng
 A

ss
ig

na
tio

n

Corresponding Name Definition

A1 Pack

Corresponding Name Definition

A3

T_Usage

Pack

Public
Part

A1, A2 :
Integer;

A1 A2

A3 : Integer
range 1..10 :=

1;

A3

Pack.A1 :=
Pack.A3;

Corresponding Assignation Corresponding Name DefinitionA1 A1
A1, A2 :
Integer;

160

Tracing and Measuring GPU Execution in

Automotive Software Systems

Tiago Carvalho, Luís Miguel Pinho
Instituto Superior de Engenharia do Porto, Porto, Portugal; email: {tdc, lmp}@isep.ipp.pt

Abstract

The advance of technology in the automotive industry
brought several new functionalities providing more ef-
ficiency and safety. This, however, has one important
concern: the development has become more complex.

AMALTHEA is a framework for automotive system de-
sign and development in a model-based development
fashion. It includes several features, including testing,
software design, simulation and traceability.

This paper presents ongoing work to integrate GPU
tracing in the AMALTHEA standard format for tracing
execution events, thus enabling platform heterogeneity
to be supported in the tracing model.

Keywords: Traceability, BTF, GPU, Automotive Soft-
ware.

1 Introduction
Modern vehicles are expected to present more advanced and

automated functions, relying on numerous electronic devices,

and connected to several entities [1]. Several of those func-

tions are expected to be performed within a deadline, specially

for safety reasons. The integration of such functions, and sys-

tem components, has resulted in an increased complexity in

system design and development. The approach most adopted

by the automotive industry for system design is the Model-

based development (MBD). It promotes efficiency, among

other benefits such as early testing [2], standardisation, soft-

ware design support, and maintenance [3].

AMALTHEA is an open-source framework [4] that delivers

automotive software development.

This framework supports the entire life cycle of the project,

is compatible with automotive standards (like AUTOSAR [5],

a software reference architecture, widely adopted by auto-

motive suppliers), and it promotes automation and code gen-

eration [6]. AMALTHEA has been widely adopted for au-

tomotive software development, and it is the basis of both

AMPERE [7] and the PANORAMA [8] projects.

The AMPERE project aims to provide a bridge to the existing

gap between MBD approaches used to develop cyber-physical

systems and the parallel programming models supported by

embedded platforms. By taking advantage of the model de-

fined in AMALTHEA, and together with non-functional prop-

erties, the system provides efficient key parallel constructs,

while ensuring compliance to non-function requirements [7].

The ITEA3 project PANORAMA aims for improving design

efficiency for heterogeneous automotive and aerospace sys-

tems. It provides an environment for collaboration amongst

diverse hardware and software technologies and teams, espe-

cially at the early stages of design. PANORAMA provides

system design and system analysis (both static and dynamic)

at the AMALTHEA model level, also used in the feedback

process. The analysis phase is intended to find safety and

timing requirements for the top-level system functions [8].

AMALTHEA supports the traceability of the system, mainly

focusing on timing properties [9]. AMALTHEA adopted

BTF (Best Tracing Format) as its standard format for pro-

viding traceability. BTF is an open-source CSV-based trace

fully compatible with automotive software development (e.g.

AUTOSAR and OSEK) [10]. Current versions of BTF are

essentially focused on tracing CPU and operating system

events [10], with timestamps as the only measurable feature.

With the evolution of computational systems and the increased

demand of performance, it is common to include accelerators,

and other performing devices, in the system, such as graphic

processing units (GPUs) and field-programming gate arrays

(FPGAs). These devices are expected to perform better -

e.g. in terms of execution time - than a CPU, specially when

dealing with data-intensive and concurrent applications.

The design of a system has to take into account these type of

devices, as they impact the architecture of the hardware and,

primarily, the performance of the developed features. The per-

formance impact involves more events than just the efficiency

of the offloaded computation. The overheard of synchroniza-

tion, allocating memory, copying memory between CPU host

and device, all of these - and other - events are in fact impor-

tant to have an accurate analysis of the overall system [11].

Therefore, it is important to include the design and analysis of

these devices in the development phase. The need of tracing

both activity and performance measurements for both CPU

and accelerators is the gap that this work intends to fill.

In the context of both AMPERE and PANORAMA projects,

we present in this paper adequate extensions to the BTF

format in order to include traces (and measurements) from

devices other than the CPU, mainly accelerators, specially

for the communication with AMALTHEA models. As the

extraction of such traces is also a missing feature in the

AMALTHEA framework, we also present a tool, a work

in progress, that takes advantage of CUPTI API to profile

CUDA-based applications [12] and generate BTF traces with

Volume 43, Number 3, September 2022 Ada User Jour na l

T. Car va lho, L . M. Pinho 161

the new extensions. The final version of the tool will be

integrated in the analysis flow of the projects. Despite the ex-

tensions being essentially aimed to GPUs, they were designed

to be generic enough to comprise other types of accelerators

or other means for offloading computation outside the CPU.

2 Traceability in Automotive Systems with
AMALTHEA

In the context of AMPERE and PANORAMA, the

AMALTHEA framework is used for the system design and

analysis. The main flow of the analysis process is as follow:

model design � code generation � BTF file
� ATDB � model annotation

The system is designed as an AMALTHEA model, which

in turn is used for code generation. The code generation

process can be whether a real application using code parcels

of designed functionalities (ergo Runnables) or via synthetic

code generation (e.g. with App4mc.sim [13]). The code is

generated with tracing mechanisms that output the execution

traces in a CSV-like format, named BTF [10].

Traces are stored in the AMALTHEA Trace Database

(ATDB) 1, which provides straightforward access to the sev-

eral metrics collected from simulations or executions. These

metrics can then be directly annotate in the AMALTHEA

models.

The Best-Trace Format (BTF) [10] is an open-source CSV-

based trace fully compatible with automotive software devel-

opment (e.g. AUTOSAR and OSEK). BTF was defined to

record traces of embedded real-time multi-core systems in a

CSV structure to log timestamped system events (e.g. tasks

execution states, memory accesses), as illustrated as follows.

time, source,id, type, target,id, event, note
100, Task_1, 0, R, Runnable_1, 0, start
3210, Task_1, 0, R, Runnable_1, 0, terminate

This format is based on the specification of system events and

entities state transitions, supporting the specification of timing

and performance-related metrics. The information provided

by BTF traces supports the traceability of software systems at

Tasks and Runnables levels, allowing the metrics assessments

at this granularity. With this format, it is possible to indicate

event-based traces that contains information about: times-

tamp, executing task (source), executing runnable (target),

type of event (e.g. a runnable starts), and a textual note.

BTF format identifies timestamps of events and it is limited

to operating system, tasks and runnables events.

There are at least two potential extensions to this format

able to provide unexplored tracing data currently not present

neither in the BTF format nor the tools that generate traces in

this format.

At one level, several measurements and metrics can be ob-

tained from the system, besides timing, such as computed

instructions, cache misses occurred or branch mispredic-

tions [14]. Several tools (e.g. perf [15] and PAPI [16]) ease

the programmatic access to this information.

1ATDB: https://www.eclipse.org/app4mc/help/latest, section 2.3.12

Another level is the inclusion of traceability when offloading

functionalities to accelerators. For instance, to know when

a code parcel is offloaded and executed in a device or when

synchronization happens and how long it takes. This informa-

tion can be retrieved with tools specially dedicated to these

devices, depending on the programming model used. Some

examples are CUPTI API [12] for CUDA-based applications

and CodeXL2 for OpenCL.

This work extends the analysis flow of the projects to take

advantage of such tools to feedback more information to

AMALTHEA models besides timestamps. We propose exten-

sions to the BTF format and provide a working prototype able

to generate new type of traces and measurements. We use

PAPI [16] to retrieve runtime information from executions in

the CPU, and CUPTI [12] to retrieve traces and measurements

from executions using the GPU.

3 Extensions to the BTF Format
3.1 Adding Components Measurements to a Trace
Nowadays processing units such as CPUs provide access to

data about their current (runtime) performance, known as

performance monitoring counters (PMCs) [17]. PMCs can be

accessed via low-level features, such as device-specific reg-

istries or system-level read-only files, or with a high-level API.

In the case of CPU, PMCs can provide measurements about

the number of computed cycles, total of instructions executed,

accesses to different data cache levels, branch prediction, etc.

A very known tool for PMC access is PAPI [16], Performance

Application Programming Interface, which provides an inter-

face and methodology for accessing PMCs and relates them to

processor events. The tool adapts to different target systems

and the programming API is independent of the platform.

Our approach retrieves PMCs data for each executing

Runnable, the "fine-grain" specification of a functionality

in the AMALTHEA model, and a Task can be profiled based

on the performance of each Runnable. By instrumenting

the code around a given Runnable we obtain performance

metrics specific to the execution of that Runnable.

For the BTF extension, in terms of syntactical structure, the

CSV-like format and the number of columns used was main-

tained as the additional information does not require more

features besides listing the results in a similar matter of exist-

ing trace types. The main focus was in the semantics of the

BTF processing phase. Since these events represent the access

to memory addresses of micro-controllers, one way of repre-

senting it consists of the specification of Signal Events [10]

including the access to the PMC. This would completely

maintain the structure of BTF, and only additional lines of

"memory accesses" appear in the BTF file. The structure used

to add performance traces is depicted in Figure 1.

Line 1 represents the structure. Runnable identifies the

runnable for which the PMCs where read, the trace event is

always specified as a Signal event (SIG), and the cell to the

right of SIG represent the name of the performance counter.

2CodeXL: https://gpuopen.com/compute-product/codexl/

Ada User Jour na l Vo lume 43, Number 3, September 2022

162 Trac ing and Measur ing GPU Execut ion in Automot ive Sof tware Systems

Time, runnable, id, SIG, PMC_<name, 0, read,
value

1 120, Runnable_1, 0, SIG, PMC_TOT_CYC, 0, read, 121501

2 120, Runnable_1, 0, SIG, PMC_L1_DCH, 0, read, 4301
3 120, Task_1, 0, R, Runnable_1, 0, start
4 321, Runnable_1, 0, SIG, PMC_TOT_CYC, 0, read, 126505

5 321, Runnable_1, 0, SIG, PMC_L1_DCH, 0, read, 6051
6 321, Task_1, 0, R, Runnable_1, 0, terminate

Figure 1: BTF example with PMCs measurements.

We use "PMC_" as prefix to differ PMCs readings from pro-

gram labels. The two following cells (0 and read) are also

fixed values, as there is not need to differ instances of PMCs

and they are read-only registers. The value parameter will

contain the content of the PMC in that specific timestamp.

The following excerpt of the BTF trace shows the relation

between the runnable execution and the PMCs reading. PMC

readings are added prior to the runnable event as a way of

associating PMC data directly to the Runnable. Lines 2 and

3 show PMCs reading before the runnable starts and lines 5

and 6 are the PMCs reading when the runnable finishes.

3.2 Tracing Execution of an Accelerator
This extension adds traces of the device regarding their events,

similar to CPU and SO events, and PMC measurements. Once

again we try to limit the extensions to BTF to what is actually

essential for the new type of traces.

BTF uses a source → target format in every trace, as

in the example below. The most common to appear are

Core → Task for task instantiation, Task → Runnable for

any runnable-related event, and Task → Signal when labels

(i.e. variables/memory) are accessed.

time, source,id, type, target,id, event,
note
100, Core_1, 0, T, Task_A, 0, start
100, Task_A, 0, R, Runnable_A_1, 0, start
800, Task_A, 0, R, Runnable_A_1, 0, terminate

This relationship format allows us to easily map the

host ↔ device communication for accelerators, where it is

only necessary to indicate the type of the target of the trace.

In BTF, the type of the target is defined in the fourth position

of the trace. The previous example shows the use of T for

targeted tasks and R for targeted runnables.

To distinguish between code execution in a CPU and an ac-

celerator device, we propose the identification of a new type

target specifically for devices used for offloading computa-

tion. The following structure specifies the proposal for adding

device-related activity traces, similar to CPU and SO events:

time, runnable, id, D, device, id, event, note

The type of device-related events are specified with ’D’ type

(fourth position). The source (second and third position) iden-

tifies the runnable using the device, while the device name

and instance (fifth and sixth position) identify the device and

its current instance. The seventh (and optionally eighth) posi-

tion will define the event (and extra information) occurred at

that timestamp. The events will depend on what it is possible

to trace in the device during execution.

1 void Runn_1(cudaStream_t stream)
2 {
3 int *h_A, *h_B, *h_C; //host variables
4 int *d_A, *d_B, *d_C; //device variables
5 ...
6 cudaMemcpyAsync(d_A, h_A, size,
7 cudaMemcpyHostToDevice, stream); //host to device

8 cudaMemcpyAsync(d_B, h_B, size,
9 cudaMemcpyHostToDevice, stream); //host to device

10 ...
11 VecAdd<<<..., stream>>>(d_A, d_B, d_C, COMPUTE_N);

12
13 cudaMemcpyAsync(h_C, d_C, size,
14 cudaMemcpyDeviceToHost, stream); //device to host

15 cudaStreamSynchronize(stream); //sync with device
16 }

Figure 2: A Runnable with CUDA code with offloading compu-
tations to a device.

4 Tracing CUDA-based Applications
GPUs are devices commonly included in systems that can

take advantage parallelizable work (e.g. for image or vec-

toral processing). In this work we consider the use of a

GPU device, specifically NVIDIA GPUs with CUDA capa-

bilities [18]. CUDA is one of the most used interfaces for

parallel programming with GPU devices.

Figure 2 shows an example of a Runnable that offloads com-

putation to a GPU (using a cudaStream_t for the commu-

nication). The most common structure of offloading is to first

allocate and copy memory from the host to the device (lines

5 to 9), then request the execution of one or more kernels and

finish the process by copying memory back to the host. These

and other types of events can be easily traced with CUPTI.

CUPTI [12] is the CUDA Profiling Tools Interface that allows

the profiling and tracing of applications programmed with

CUDA, being the ideal tool to monitor CUDA applications.

CUPTI provides access to activity traces, from which we

highlight: memory copy from host to device and vice-versa,

kernel execution deploy and host-device synchronization.

In the same way as PAPI, CUPTI can access PMCs from

the device through the CUPTI event API. PMCs from de-

vices can be integrated as SIG traces, using a prefix PMC

to consider as a performance counter. The available events

are device-dependent. Two examples of CUPTI events are

the elapsed clock cycles and the number of transactions for

shared store/load accesses. We are developing a tool that gen-

erates code with tracing mechanisms using the CUPTI API to

build a complete BTF trace, considering the communication

between an AMALTHEA Runnable and the device.

Currently, the tool is able to generate code for the trac-

ing mechanims, while the integration of the generated

code is done manually by essentially adding two function

calls: btf_start and btf_stop. For the compila-

tion it is necessary to add the CUPTI libraries: -lcupti
-lnvToolsExt.

Then, at runtime, the generated tracing mechanism processes

the events reported by CUPTI and builds the BTF trace, in-

cluding common BTF traces, such as Task instantiation and

Runnable execution. Figure 3 shows an example of a BTF

Volume 43, Number 3, September 2022 Ada User Jour na l

T. Car va lho, L . M. Pinho 163

time, source,id, type, target,id, event, note
1 21674, Task_1, 0, R, Runn_1, 0, start
2 58584, Runn_1, 0, D, GPU, 7, memcopy_start, HtoD
3 58616, Runn_1, 0, D, GPU, 7, memcopy_terminate, HtoD

4 58709, Runn_1, 0, D, GPU, 7, memcopy_start, HtoD
5 58735, Runn_1, 0, D, GPU, 7, memcopy_terminate, HtoD

6 58794, Runn_1, 0, D, GPU, 7, kernel_start, VecAdd

7 58822, Runn_1, 0, D, GPU, 7, kernel_terminate, VecAdd

8 58903, Runn_1, 0, D, GPU, 7, memcopy_start, DtoH
9 58930, Runn_1, 0, D, GPU, 7, memcopy_terminate, DtoH

10 59250, Task_1, 0, R, Runn_1, 0, suspend, cuda context

11 59258, Task_1, 0, R, Runn_1, 0, resume, cuda context

12 59530, Task_1, 0, R, Runn_1, 0, terminate

Figure 3: Extended BTF generated directly from executing the
tracing tool over the example in Figure 2.

trace generated from an execution of the code in Figure 2,

specifically the execution of runnable Runn_1 (between lines

1-12). Lines 2-5, 9-10 are traces of memory events, lines 6-7

show the kernel execution in the device, and lines 10-11 relate

to host ↔ device synchronization. The traces are defined in

a format of (start, terminate) pairs. This way it is possible

to observe the time spent during that CUDA-related activity.

For instance, the execution of VecAdd took 28 μs.

5 Conclusions
The paper presented a set of extensions to the BTF format to

comprise performance data and GPU activity traces. The pro-

posal had in mind minimal extensions to the format to main-

tain full compatibility with existing tools. It does not change

the structure (lexically and syntactically) of the BTF format,

but includes new (semantic) concepts. Considering the exten-

sions to the format, a code generator is being developed that

provides tracing mechanisms for CUDA applications.

The next step for this process is the improvement of the trac-

ing tool with a more automated approach for instrumenting

the target code.

The final version of the tool will be integrated in the system

analysis flow of AMPERE and PANORAMA projects, taking

advantage of the code generation processes. Furthermore,

we intend to develop extensions to current BTF processing

tools for them to be able to interpret the new features. These

additions to the process are crucial to complete the tracing

process and analysis of GPU execution.

6 Acknowledgments
This research has been co-funded by the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No 871669, in the context of the AMPERE project,

and by the Portugal COMPETE 2020 Program, through

the European Regional Development Fund (ERDF), within

project POCI-01-0247-FEDER-040194, in the context of the

ITEA3 project Panorama.

References
[1] S. Ray, W. Chen, J. Bhadra, and M. A. Al Faruque,

“Extensibility in automotive security: Current practice

and challenges,” in Proc. of the 54th ACM/EDAC/IEEE
Design Automation Conf. (DAC), pp. 1–6, 2017.

[2] H. Guissouma, H. Klare, E. Sax, and E. Burger, “An

empirical study on the current and future challenges of

automotive software release and configuration manage-

ment,” in Proc. of the 44th Euromicro Conf. on Soft-
ware Engineering and Advanced Applications (SEAA),
pp. 298–305, 2018.

[3] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and

G. Reggio, “Benefits from modelling and MDD adop-

tion: Expectations and achievements,” in Proc. of the
2nd Edition of the Intl. Workshop on Experiences and
Empirical Studies in Software Modelling, 2012.

[4] C. Wolff, C. Brink, R. Höttger, B. Igel, E. Kamsties,

L. Krawczyk, and U. Lauschner, “Automotive software

development with amalthea,” Practice and Perspectives,

vol. 432, 2015.

[5] S. Fürst and M. Bechter, “Autosar for connected and

autonomous vehicles: The autosar adaptive platform,” in

2016 46th annual IEEE/IFIP Intl. Conf. on Dependable
Systems and Networks Workshop, pp. 215–217, IEEE,

2016.

[6] C. Wolff, L. Krawczyk, R. Höttger, C. Brink,

U. Lauschner, D. Fruhner, E. Kamsties, and B. Igel,

“AMALTHEA — tailoring tools to projects in auto-

motive software development,” in Proc. of the IEEE
8th Intl. Conf. on Intelligent Data Acquisition and Ad-
vanced Computing Systems: Technology and Applica-
tions (IDAACS), vol. 2, pp. 515–520, 2015.

[7] E. Quiñones, S. Royuela, C. Scordino, P. Gai, L. M.

Pinho, and L. Nogueira et al., “The ampere project: : A

model-driven development framework for highly paral-

lel and energy-efficient computation supporting multi-

criteria optimization,” in 2020 IEEE 23rd Intl. Sympo-
sium on Real-Time Distributed Computing (ISORC),
pp. 201–206, 2020.

[8] L. Krawczyk, J. Tessmer, and H. Mackamul, “Panorama

- boosting design efficiency for heterogeneous systems,”

ECLIPSE Newsletter, July 2019.

[9] R. Höttger, H. Mackamul, A. Sailer, J.-P. Steghöfer, and

J. Tessmer, “App4mc: application platform project for

multi-and many-core systems,” it-Information Technol-
ogy, vol. 59, no. 5, pp. 243–251, 2017.

[10] Vector Informatik GmbH, “Best trace format (btf) – tech-

nical specification, version 2.2.1,” tech. rep., Vector In-

formatik GmbH, 2021.

[11] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.

Stone, and J. C. Phillips, “Gpu computing,” Proc. of the
IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[12] NVIDIA, “Api reference guide for cupti,

the cuda profiling tools interface.” URL:

https://docs.nvidia.com/cuda/cupti/index.html. Ac-

cessed: 26-02-2022.

Ada User Jour na l Vo lume 43, Number 3, September 2022

164 Trac ing and Measur ing GPU Execut ion in Automot ive Sof tware Systems

[13] Bosch GmbH, “App4mc.sim - timing simulation

of embedded systems.” Available at: https:// git-

lab.idial.institute/panorama.systemc.group/app4mc.sim.

[14] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploit-

ing hardware performance counters,” in 2008 5th Work-
shop on Fault Diagnosis and Tolerance in Cryptography,

pp. 59–67, IEEE, 2008.

[15] A. C. De Melo, “The new linux’perf’tools,” in Slides
from Linux Kongress, vol. 18, pp. 1–42, 2010.

[16] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A

portable interface to hardware performance counters,” in

Proc. of the department of defense HPCMP users group
Conf., vol. 710, Citeseer, 1999.

[17] K. Singh, M. Bhadauria, and S. A. McKee, “Real

time power estimation and thread scheduling via perfor-

mance counters,” ACM SIGARCH Computer Architec-
ture News, vol. 37, no. 2, pp. 46–55, 2009.

[18] J. Cheng, M. Grossman, and T. McKercher, Professional
CUDA c programming. John Wiley & Sons, 2014.

Volume 43, Number 3, September 2022 Ada User Jour na l

165

Renaissance-Ada: Tools for Analysis and

Transformation of Ada code*

Piërre van de Laar, Arjan Mooij
ESI (TNO), High Tech Campus 25, 5656 AE Eindhoven, The Netherlands; email: {pierre.vandelaar,
arjan.mooij}@tno.nl

Abstract

In a constantly changing world, developers need to
analyze and transform their code to keep it up-to-date
and valuable. Currently, analysis and transformation is
a time-consuming and largely manual activity.

The Renaissance approach aims to enhance insight
by analysis and to reduce complexity by transfor-
mation. The Renaissance approach is supported by
programming-language-specific tools. The Renaissance-
Ada tools can be configured, integrated, and extended
by developers to perform their program and task-
specialized analysis and transformation of Ada code.
Furthermore, the Renaissance-Ada tools shields devel-
opers from parsing details.

Nexperia ITEC has used Renaissance-Ada to their
full satisfaction. Recently Renaissance-Ada has be-
come open source at https://github.com/TNO/
Renaissance-Ada.

Keywords: software analysis, software transformation.

1 Introduction
Developers need to change software to realize new require-

ments, to deal with obsolescence of components, and to in-

corporate advances in business and technology. To correctly

change the software, developers need to understand the soft-

ware. Previous studies [1, 2, 3] indicate that developers spend

a large portion of their time on understanding software.

Software “understanding involves dealing with specific prob-
lems that require program and task-specialized solutions” [4].

A possible solution is a toolkit that supports a developer to cre-

ate a specialized analysis. The tools in such a toolkit should

be easy to configure, integrate, and extend, and should shield

users from parsing details.

How can Ada developers currently understand and change

their code? Besides manual analysis and transformation, the

following options for automation exist:

*The research is carried out as part of the Bright project under the re-

sponsibility of ESI (TNO) with Nexperia ITEC as the carrying industrial

partner. The Bright research is supported by the Netherlands Organisation

for Applied Scientific Research TNO.

• Regular expressions. These enable program and task-

specialized analysis and transformation and provide an

interface for extension and integration. However, regu-

lar expressions are text based and thus expose a lot of

parsing details, including the handling of comments and

white spaces. Furthermore, regular expressions cannot

handle programming language structures like recursively

nested parentheses.

• Ada-specific stand-alone or integrated analysis tools.

GNATCheck and CodePeer are examples of the former,

and the “Find All References” functionality, present in

Integrated Development Environments such as GNAT-

Studio and Visual Studio Code, is an example of the

latter. These analysis tools shield users from parsing

details, but only perform generic analysis and provide

no interface to developers for integration and extension.

• Ada-specific analysis libraries, such as Libadalang1 and

ASIS2. Such analysis libraries enable program and task-

specialized analysis and provide an interface for exten-

sion and integration, yet expose all parsing details related

to the Abstract Syntax Tree (AST) of the Ada program-

ming language.

In Section 2, we describe the Renaissance approach that

is supported by programming-language-specific tools. The

Renaissance-Ada tools target Ada code and are available

under the BSD3 license at https://github.com/TNO/

Renaissance-Ada. In Sections 3, 4, and 5, we describe the

main Renaissance-Ada tools: the dependency graph extractor,

the rejuvenation library, and the rewriters library, respectively.

We end with conclusions in Section 6.

2 Renaissance approach
The Renaissance approach [5, 6, 7, 8, 9] aims to enhance in-

sight by analysis and to reduce complexity by transformation.

These aims reinforce each other as is visualized in Figure 1.

The Renaissance approach exploits the strengths of developers

and computers for semi-automated analysis and transforma-

tion. In this approach, developers orchestrate and specialize

the analysis and transformation, while computers execute the

administrative and repetitive parts fast and reliably.

1https://adaco.re/libadalang
2https://www.adacore.com/asis

Ada User Jour na l Vo lume 43, Number 3, September 2022

166 Renaissance-Ada

Figure 1: Reinforcing Renaissance aims.

The Renaissance approach values human judgment to

make the right decisions, since by making a transfor-

mation automatically, one loses the ability to spot the

real error, and make the right change. For example,

the programmer error InRange(X) and then InRange(X) can be

simplified into InRange(X), yet should be changed into

InRange(X) and then InRange(Y) to correct the error. In general

Renaissance code transformations do not need to preserve the

code’s semantics, and hence code changes must be reviewed

by humans.

The Renaissance approach was developed by ESI (TNO) in

public-private research projects together with Thermo Fisher

Scientific and Philips [9]. The Renaissance approach was val-

idated and further developed by ESI (TNO) in public-private

research projects with Nexperia ITEC. Nexperia ITEC [10]

reported at the AdaCore Tech Days 2021 EU Event that they

already saved 300k$ and estimated to save another 900k$

using the Renaissance approach while the investment was

below 100k$.

The Renaissance approach depends on tools that capture com-

monalities across analyses and transformations, yet are highly

configurable or even programmable to support the unique

aspects of a particular analysis or transformation. The Renais-

sance tools developed together with Thermo Fisher Scientific

and Philips target the programming languages C and C++.

In the cooperation with Nexperia ITEC, tools targeting the

Ada programming language were developed. These tools are

build on top of Libadalang and were made open source in the

Renaissance-Ada project at https://github.com/TNO/

Renaissance-Ada under the BSD3 license in the beginning

of 2022. Furthermore, these tools are also made available as

Alire3 crates.

3 Interactively visualize and query code
Renaissance-Ada contains the dependency graph extractor:

a tool that extracts structural elements and relations [7, 8]

from Ada code for further analysis. The elements range from

Ada declaration to project file. The relations include compile,

import, call, override, and instantiate. The dependency graph

extractor considers the static semantics of the Ada program-

ming language at an abstraction level that balances between

detail and usability. For example, details like position of

3https://alire.ada.dev

Figure 2: Result of query to find indirect recursion in Neo4j.

components in records, order of execution, and used kind of

notation, i.e., positional or named associations are hidden.

The dependency graph extractor outputs graph data in the

GraphML4 file format. Files in the GraphML file format

can be imported in graph data platforms, like Neo4j5. Graph

data platforms enable developers to perform their program

and task-specialized analysis by interactively visualizing and

querying for relevant code elements and relations in the Ada

code. As an example, Figure 2 shows a Cypher6 query in

Neo4j to find indirect recursion: recursion involving at least

two functions.

Figure 3: Result of "Find All References" for the function
Start_Offset in GNATStudio.

A lot of functionality already provided by stand-alone and in-

tegrated analysis tools can be easily realized using the graph

data obtained by the dependency graph extractor from the

Ada code. Figure 3 shows the result of the "Find All Refer-

ences" analysis of GNATStudio for the function Start_Offset.
Figure 4 shows the tabular result of a query to find all refer-

ences in Neo4j for the same function. The tabular result has a

row for each function that references the function Start_Offset.
Each row has three columns for the referencing function’s

containing file name, location range within the containing

4http://graphml.graphdrawing.org
5https://neo4j.com
6https://neo4j.com/developer/cypher

Volume 43, Number 3, September 2022 Ada User Jour na l

P. van de Laar, A. Mooi j 167

Figure 4: Result of query to find all references for the function
Start_Offset in Neo4j.

file, and name, respectively. The results only differ because

of the different aggregation levels: where GNATStudio uses

the references with their code location, the dependency graph

extractor uses the functions containing the references with

their code location ranges.

Unlike stand-alone and integrated analysis tools, graph data

platforms offer an interface for extension and integration by

developers. For example, Neo4j enables that the information

obtained by the dependency graph extractor can be combined

with other information, such as code ownership, i.e., the e-

mail address of the maintainer of each file, and the allowed

architectural relations. Furthermore, Neo4j provides a pro-

grammatic interface that enables developers to create analyses

in which queries can be composed. So, when a developer

wants to change the signature of a function, the developer can

easily combine the query, shown in Figure 4, with the code

ownership information to obtain the e-mail addresses of all

stakeholders that must be invited for the meeting on changing

the function’s signature. Similarly, when an architect wants

to communicate the adherence to the architecture, a relatively

simple program can generate graphs highlighting differences

between the actual and desired relations. An anonymized

example visualizing such a graph using a graph editor, like

yEd8, is shown in Figure 5.

Figure 5: Dependencies of a package. The color of the depen-
dencies reflect the adherence to the architecture: red-colored
dependencies violate the architecture.

8https://www.yworks.com/products/yed

4 Specify code patterns in Ada
Renaissance-Ada contains a rejuvenation library that provides

basic analysis and transformation functionality. The rejuvena-

tion library enables the specification of code patterns using

concrete Ada syntax [5,6,11,12]. The concrete syntax shields

the developers from parsing details related to the Abstract

Syntax Tree (AST) representation that is used for comparing

pieces of Ada code and matching of patterns with Ada code.

Two pieces of Ada code are considered identical when they

have the same tree structure and semantically identical leaf

AST nodes. In other words, when comparing two pieces of

Ada code we ignore comments, white spaces, and syntactic

variations that map onto a single semantic entity, e.g., due to

case insensitive identifiers and underscores used in numeric

literals.

We use the concrete Ada syntax with a naming convention to

denote placeholders that capture arbitrary AST nodes. Two

types of placeholders exist: single and multiple. Single place-

holders are matched with a single AST node, be that a single

expression, a single statement, a single argument, or anything

else. Multiple placeholders are matched with a sequence of

AST nodes, i.e., zero or more nodes. Single and multiple

placeholders start with the prefix $S_ and $M_, respectively.

After those prefixes, any alphanumeric string is allowed.

Depending on the purpose of the pattern, we refer to ei-

ther a find or a replace pattern. For example, the find pat-

tern Square ($S_PA) matches all calls to the Square function

with a single parameter association, both named and posi-

tional. Hence, the rejuvenation library will match this find

pattern with the code fragments Square(x => 3), Square(a + b),
and Square (f (x, y) + g (z)), but not with the code fragment

Square(a, b).

A pattern may contain several placeholders that each may

even occur multiple times. For find patterns it holds that

when the same placeholder occurs multiple times, a match

will only be found when all occurrences of that placeholder

are identical. For replace patterns it holds that a placeholder

always refers to the same placeholder in the associated find

pattern. The placeholder will be replaced by the value of that

placeholder9 in the match of the find pattern. Since the replace

pattern Power ($S_PA, n => 2) has the same placeholders as the

find pattern Square ($S_PA), they can be applied together to re-

place function calls to the Square function by calls to the Power
function, with the exponent value of two. Given this find and

replace pattern, the rejuvenation library will change the code

pattern Square (x => 3) into Power (x => 3, n => 2), Square (a + b)
into Power (a + b, n => 2), and Square (f (x, y) + g (z)) into

Power (f (x, y) + g (z), n => 2).

Although the previous example seems simple, it based on

a real industrial case in which Nexperia ITEC wanted to

remove a proprietary function that became obsolete when

an equivalent function was added to Ada’s standard libraries.

Using regular expressions, it was not possible to automate the

9The rejuvenation library allows developers to specify whether trivia,

i.e., comments and white spaces, before and after the placeholder should

be included in its value. Note that trivia within the placeholder are always

included in its value.

Ada User Jour na l Vo lume 43, Number 3, September 2022

168 Renaissance-Ada

removal of this proprietary function, due to function calls like

Square (f (x, y) + g (z)) that contain multiple sets of matching

parentheses and separating comma’s within the argument.

Using the rejuvenation library, Nexperia ITEC was able to

automate the transformation of all function calls and thus to

remove the proprietary function.

4.1 From code fragments to patterns
Suppose we would like to find all if-statements of which both

branches call the same subprogram and only differ in the first

argument, such as
if Is_Male (X) then

Display ("Mr." & Name (X), Red);
else

Display ("Mrs." & Name (X), Red);
end if ;
and replace them with a call statement with an if-expression

as first argument, such as
Display ((if Is_Male (X) then "Mr." & Name (X)

else "Mrs." & Name (X)), Red);
We can realize this particular find and replacement using

the rejuvenation library. We take these code fragments and

replace pieces of code by placeholders where variation is

wanted. For example, we replace all instances of Display by

$S_F, since we want to allow any subprogram name, but also

keep the constraint of having the same subprogram name in

both branches of the if-statement in the find pattern and the

back reference in the replace pattern. The final transformation

exists of the following find pattern:
if $S_Cond then

$S_F ($S_True, $M_Tail);
else

$S_F ($S_False, $M_Tail);
end if ;
and the following replace pattern:
$S_F ((if $S_Cond then $S_True else $S_False), $M_Tail);

4.2 Shielding parsing details
The concrete syntax shields the developers from parsing de-

tails related to the Abstract Syntax Tree (AST) representation,

unlike analysis libraries like Libadalang and ASIS. For ex-

ample, we believe it is easier to understand and maintain the

following find pattern specified in concrete Ada syntax:
if $S_Cond then

$S_Dest := True;
else

$S_Dest := False;
end if ;
than the implementation of the equivalent functionality using

Libadalang:
function Is_Match_If_Stmt_Identifiers

(ThenIdentifier , ElseIdentifier : Identifier)
return Boolean is

(Ada.Strings.Equal_Case_Insensitive
(Image (ThenIdentifier.Text), "True")

and then Ada.Strings.Equal_Case_Insensitive
(Image (ElseIdentifier .Text), "False"));

function Is_Match_If_Stmt_Assign_Stmts
(ThenAssignStmt, ElseAssignStmt : Assign_Stmt)
return Boolean is

(ThenAssignStmt.F_Dest.Text = ElseAssignStmt.F_Dest.Text
and then ThenAssignStmt.F_Expr.Kind = Ada_Identifier
and then ElseAssignStmt.F_Expr.Kind = Ada_Identifier
and then Is_Match_If_Stmt_Identifiers

(ThenAssignStmt.F_Expr.As_Identifier,
ElseAssignStmt.F_Expr.As_Identifier));

function Is_Match_If_Stmt_Branches
(ThenNode, ElseNode : Ada_Node) return Boolean is

(ThenNode.Kind = Ada_Assign_Stmt
and then ElseNode.Kind = Ada_Assign_Stmt
and then Is_Match_If_Stmt_Assign_Stmts

(ThenNode.As_Assign_Stmt, ElseNode.As_Assign_Stmt));

function Is_Match_If_Stmt (IfStmt : If_Stmt) return Boolean is
(IfStmt .F_Then_Stmts.Children_Count = 1
and then IfStmt.F_Else_Stmts.Children_Count = 1
and then IfStmt.F_Alternatives.Children_Count = 0
and then Is_Match_If_Stmt_Branches
(IfStmt .F_Then_Stmts.First_Child,
IfStmt .F_Else_Stmts.First_Child));

function Process_Node
(Node : Ada_Node’Class) return Visit_Status is

begin
if Node.Kind = Ada_If_Stmt then

declare
IfStmt : constant If_Stmt := Node.As_If_Stmt;

begin
if Is_Match_If_Stmt (IfStmt) then

Put_Line (Image (IfStmt.Full_Sloc_Image) & " Found");
end if ;

end;
end if ;
return Into ;

end Process_Node;

where the function Process_Node is called on all nodes of

the AST tree. For more details, see Libadalang’s Ada Api

tutorial10.

5 Composing code transformations
Transformations have more acceptance criteria than just mak-

ing the change. In this section, we introduce the rewriters

library of Renaissance-Ada and describe how the rewriters

library makes changes more acceptable for compilers and

the development team, containing developers, testers, and

reviewers, by composing transformations.

First, one transformation often triggers another transforma-

tion. For example, the development team indicated that the

example of Subsection 4.1 could be simplified and should be

transformed into
Display ((if Is_Male (X) then "Mr." else "Mrs.") & Name (X), Red);

The desired simplification can be realized with a transforma-

tion that uses the find pattern
if $S_Cond then $S_True & $S_Expr else $S_False & $S_Expr

to detect that the same element is concatenated in both

branches of an if-expression, and the replace pattern
(if $S_Cond then $S_True else $S_False) & $S_Expr

to factor out the concatenation of the same element. However,

applying this transformation on the whole code base might

modify pieces of code not affected by the original transfor-

mation. All modifications that are not related to the original

transformation are undesired, since they only distract the de-

velopment team in achieving their goal. The rewriters library

both supports a large set of transformations that simplify Ada

code as expected by the development team, and enables that

transformations can be limited to the earlier transformed code.

10https://docs.adacore.com/live/wave/libadalang/
html/libadalang_ug/ada_api_tutorial.html#
browse-the-tree

Volume 43, Number 3, September 2022 Ada User Jour na l

P. van de Laar, A. Mooi j 169

Second, compilation can fail when code styles are violated,

e.g., when a line is longer than the maximum allowed number

of characters. Hence, transformations should not lead to style

violations. However, pretty printing a file might modify pieces

of code not affected by the transformation. The rewriters

library ensures that pretty printing is as much as possible

limited to the transformed code while all requirements of the

pretty printer are satisfied. For example, GnatPP requires that

the commands to turn pretty printing on and off appear on a

line by themselves, making a line the smallest piece of code

that can be pretty printed.

Third, one transformation may not be sufficient according to

the development team. For example, after applying the find

pattern to detect adjacent declarations with the same type and

initial value, i.e.,
$M_X : $S_Type := $M_Expr;
$M_Y : $S_Type := $M_Expr;

and the replace pattern to combine these declarations into a

single declaration, i.e.,
$M_X, $M_Y : $S_Type := $M_Expr;

on the code fragment
A : Integer := 0;
B : Integer := 0;
C : Integer := 0;

one gets
A, B : Integer := 0;
C : Integer := 0;

On this code fragment, one can apply the same find and

replace pattern once more, resulting in
A, B, C : Integer := 0;

The development team expects that the transformation is ap-

plied multiple times. Similarly, the development team expects

that when code is transformed not one but both De Mor-
gan’s laws are applied at the same time. The rewriters library

supports repeating and combining transformations to ensure

acceptance by the development team.

6 Conclusion
The Renaissance-Ada toolkit enables developer to perform

program and task-specialized analysis and transformation of

Ada code by configuring, combining, and extending its tools.

Furthermore, the Renaissance-Ada tools shield developers

from parsing details.

The Renaissance-Ada toolkit includes (1) the dependency

graph extractor, which enables interactively visualizing and

querying of Ada elements and relations; (2) the rejuvena-

tion library, which enables AST-based find and replace using

patterns specified in the Ada language extended with place-

holders; and (3) the rewriters library, which makes changes

more acceptable for compilers and the development team

by repeating and combining transformations, and by limit-

ing pretty printing and additional transformations, such as

simplifications, to earlier transformed code.

The Renaissance-Ada toolkit has recently been made open

source. Like Nexperia ITEC, every organization can now

benefit by using its tools on their own Ada code. Furthermore,

everyone can contribute to Renaissance-Ada!

Acknowledgements
We would like to thank Jeroen Ketema for the development

of the Renaissance-Ada version of the dependency graph

extractor.

We would like to thank Jacques Verriet for his valuable feed-

back on earlier versions of this paper.

References
[1] J. Singer, T. C. Lethbridge, N. G. Vinson, and N. An-

quetil, “An examination of software engineering work

practices,” in Proceedings of the 1997 conference of the
Centre for Advanced Studies on Collaborative Research,
November 10-13, 1997, Toronto, Ontario, Canada (J. H.

Johnson, ed.), p. 21, IBM, 1997.

[2] I. Schröter, J. Krüger, J. Siegmund, and T. Leich, “Com-

prehending studies on program comprehension,” in Pro-
ceedings of the 25th International Conference on Pro-
gram Comprehension, ICPC 2017, Buenos Aires, Ar-
gentina, May 22-23, 2017 (G. Scanniello, D. Lo, and

A. Serebrenik, eds.), pp. 308–311, IEEE Computer So-

ciety, 2017.

[3] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li,

“Measuring program comprehension: A large-scale field

study with professionals,” IEEE Trans. Software Eng.,
vol. 44, no. 10, pp. 951–976, 2018.

[4] S. P. Reiss, “The paradox of software visualization,” in

Proceedings of the 3rd International Workshop on Visu-
alizing Software for Understanding and Analysis, VIS-
SOFT 2005, Budapest, Hungary, September 25, 2005
(S. Ducasse, M. Lanza, A. Marcus, J. I. Maletic, and

M. D. Storey, eds.), pp. 59–63, IEEE Computer Society,

2005.

[5] A. J. Mooij, M. M. Joy, G. Eggen, P. Janson, and

A. Radulescu, “Industrial software rejuvenation us-

ing open-source parsers,” in Theory and Practice of
Model Transformations - 9th International Conference,
ICMT@STAF 2016, Vienna, Austria, July 4-5, 2016,
Proceedings (P. V. Gorp and G. Engels, eds.), vol. 9765

of Lecture Notes in Computer Science, pp. 157–172,

Springer, 2016.

[6] S. Klusener, A. J. Mooij, J. Ketema, and H. van Wezep,

“Reducing code duplication by identifying fresh domain

abstractions,” in 2018 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2018,
Madrid, Spain, September 23-29, 2018, pp. 569–578,

IEEE Computer Society, 2018.

[7] D. Dams, A. J. Mooij, P. Kramer, A. Radulescu,

and J. Vanhara, “Model-based software restructuring:

Lessons from cleaning up COM interfaces in indus-

trial legacy code,” in 25th International Conference
on Software Analysis, Evolution and Reengineering,
SANER 2018, Campobasso, Italy, March 20-23, 2018
(R. Oliveto, M. D. Penta, and D. C. Shepherd, eds.),

pp. 552–556, IEEE Computer Society, 2018.

Ada User Jour na l Vo lume 43, Number 3, September 2022

170 Renaissance-Ada

[8] D. Dams, J. Ketema, P. Kramer, A. J. Mooij, and A. Rad-

ulescu, “Developing and applying custom static analysis

tools for industrial multi-language code bases,” in Pro-
ceedings of the 20th Belgium-Netherlands Software Evo-
lution Workshop, Virtual Event / ’s-Hertogenbosch, The
Netherlands, December 7-8, 2021 (G. Catolino, D. D.

Nucci, and D. A. Tamburri, eds.), vol. 3071 of CEUR
Workshop Proceedings, CEUR-WS.org, 2021.

[9] N. Roos, “ESI helps Thermo Fisher and Philips grease

their software machines,” Bits & Chips, no. 6, pp. 38–

41, 2019. https://bits-chips.nl/artikel/esi-helps-thermo-

fisher-and-philips-grease-their-software-machines.

[10] F. Patschkowski, “Refactoring with confidence: A

pattern-based approach built on top of libadalang to

save money.” https://www.youtube.com/watch?v=EHrd-

9wgALM, November 2021. AdaCore Tech Days 2021

EU Event.

[11] M. P. A. Sellink and C. Verhoef, “Native patterns,”

in 5th Working Conference on Reverse Engineering,
WCRE ’98, Honolulu, Hawai, USA, October 12-14,
1998, pp. 89–103, IEEE Computer Society, 1998.

[12] E. Visser, “Meta-programming with concrete object syn-

tax,” in Generative Programming and Component Engi-
neering, ACM SIGPLAN/SIGSOFT Conference, GPCE
2002, Pittsburgh, PA, USA, October 6-8, 2002, Pro-
ceedings (D. S. Batory, C. Consel, and W. Taha, eds.),

vol. 2487 of Lecture Notes in Computer Science, pp. 299–

315, Springer, 2002.

Volume 43, Number 3, September 2022 Ada User Jour na l

171

Boosting Productivity and Resiliency through

Automated Software Replication

Adrian Munera, Eduardo Quiñones, Sara Royuela
Barcelona Supercomputing Center, Pl. Eusebi Güell, 1-3, 08034, Barcelona, Spain;
email: {adrian.munera, eduardo.quinones, sara.royuela}@bsc.es

Michael Pressler, Harald Mackamul, Dirk Ziegenbein
Robert Bosch GmbH, 71272 Renningen, Germany;
email: {michael.pressler, harald.mackamul, dirk.ziegenbein}@de.bosch.com

Abstract

The high performance demands of complex cyber-
physical systems (CPS) pushes the use of parallel and
heterogeneous processor architectures in systems where
dependability is crucial. One widespread technique to
accomplish dependability and, in particular, resilience,
is replication. Replicating hardware or software compo-
nents changes the overall system, hence must be taken
into consideration at design-time. Domain-specific mod-
eling languages (DSML) provide a level of abstraction
that alleviates the design process of CPS while ensuring
a correct-by-construction paradigm. Developed in the
frame of the AMPERE H2020 EU project, this work
increases the expressiveness of the AMALTHEA DSML
to describe software redundancy. Based on these ex-
tensions, the AMPERE tool-chain is capable of auto-
matically generating parallel replicas during system
deployment to boost the reliability of the system while
keeping the productivity. The effectiveness of this ap-
proach is demonstrated by extending the synthetic load
generator included in the APP4MC platform.

Keywords: Software replication, productivity, DSML.

1 Introduction
Model-driven engineering (MDE) is a software engineering

paradigm that typically leans on domain specific modeling

languages (DSML) to describe the system from the domain

point of view while hiding the complexity of the technical

solution. DSMLs are further used to tailor specific modelling

languages to focus certain aspects of the system important to

the domain. E.g., safety standards can differ in each domain

and must be handled appropriately.

Strong model semantics relevant to the target domain and

systems allow to use pure model-based approaches for for-

mal validation and verification analysis. Additionally, strong

semantics enables the automatic generation of target code gen-

eration, to facilitate the verification of the system for aspects

that cannot be verified at the formal model level.

Consequently, MDE is widely used for the development of

complex cyber-physical systems (CPS) where dependability

is crucial. Advanced functionalities, like steering-by-wire and

adaptive cruise control from the automotive domain, require

high-performance capabilities while still following strong

safety requirements. In this context, parallel heterogeneous

architectures are of particular interest, as they can provide

(1) dedicated processors to real-time and safety-critical func-

tionalities, and (2) increased number of resources to boost

throughput.

The AMPERE H2020 EU project [1] addresses the devel-

opment of correct-by-construction CPS by providing a new

generation of software programming environments for low-

energy and highly parallel and heterogeneous computing ar-

chitectures that fulfill the non-functional requirements of the

system, including real-time and reliability. Bosch, as indus-

trial partner of the project and use-case provider, contributes

with the APP4MC platform [2], tailored for engineering em-

bedded multi- and many-core software systems. Originally,

the DSML was designed to represent the dynamic system

architecture of real-time CPS. This allows timing analysis

as well as safety checks for data-consistency mechanisms.

The checks are needed in concurrent CPS systems, especially

during the transition from single to multi- and many-core

systems.

With the shift from single function electronic control units

(ECU) towards domain, zone and vehicle architectures [3],

the burden of validation and verification processes shifts more

towards the ECU. The use of high-performance embedded

platforms and the need of hosting heterogeneous applications

from different suppliers on the same platform, pose new chal-

lenges on validation and verification. It increases the need to

adapt system design to higher abstraction levels. An earlier

integration on DSML level as well as on code level is needed.

APP4MC allows the integration on ECU system level and

provides the synthetic load generator (SLG) to mimic the

timing behavior of the system directly on the target.

This work takes advantage of the possibilities offered by

DSML and parallel processor architectures to boost the pro-

ductivity of dependable systems that (partially) rely on repli-

cation to ensure safety. To that end, the APP4MC framework

has been extended at two levels: (1) the AMALTHEA DSML

Ada User Jour na l Vo lume 43, Number 3, September 2022

172 Boost ing Product iv i ty and Resi l iency through Automated Sof tware Repl ica t ion

has been augmented with a new redundancy property to in-

crease fault tolerance; and (2) the APP4MC SLG has been

augmented with a transformation method that generates par-

allel replicas and uses a voting-based consensus algorithm

to decide the solution and actions to take. The proposed ex-

tensions will push the DSML further into utilizing modern

parallel processor architectures beyond classical CPS and

allow to evaluate the overall impact of redundancy safety

techniques starting early in the design flow. The performance

of the system is evaluated on the WATERS 2016 challenge [4]

proposed by Bosch.

2 The APP4MC platform
APP4MC [2] is an open source Eclipse platform that provides

AUTOSAR [5] compliant data models, namely AMALTHEA,

for multi-/many-core systems. The model is generated com-

bining information from various sources including code anal-

ysis for production code, runtime traces, AUTOSAR specifi-

cations and also information added by the designer.

The platform has been proven in the automotive sector by

Bosch and their partners. Different analysis tools have been

build around it varying from commercial tools for system

performance analysis to Bosch internal tools for data con-

sistency checks for multi-core systems and memory layout

optimization [6]. Several output artifacts can be generated

based on the enhanced system model, e.g., linker files, system

configuration files or source code.

Figure 1: APP4MC

Recently a synthetic load generator was added to the tool

portfolio. It transforms AMALTHEA models into sequential

C code and is described in 2.2.

2.1 The AMALTHEA DSML
In order to investigate the (timing) behavior of systems, a

suitably abstracted description of the factors must be avail-

able. The Eclipse APP4MC open-source project provides the

AMALTHEA DSML that combines various partial models,

which together contain the information necessary to conduct

a performance simulation, analysis and optimization. An

overview is depicted in 1. It includes software, hardware and

stimuli models, among others. The software model allows

to define runnables, i.e., smallest functional execution units,

and tasks, i.e., smallest units of concurrency at the operating

system (OS) level. The hardware platform is described in

terms of devices, ports and connections. The data exchange

between the devices (i.e. processing units, memories) hap-

pens via connections that are characterized by attributes like

latency and bandwidth. The stimuli model contains the ac-

tivation of tasks via stimuli. Figure 2 shows the top level

elements, described above, of an AMALTHEA model.

Figure 2: Top level elements of the WATERS 2016 AMALTHEA
model.

For most model elements it is possible to attach custom prop-

erties that provide additional information for specific tools

or use cases. These properties are organized as key-value

pairs in a map and can be nested to represent more complex

structures.

The description can vary in degree of abstraction and detail,

depending on what stage of development or for what purpose

the system should be examined.

2.2 The Synthetic Load Generator (SLG)
The synthetic load generator (SLG) [7] is provided as part of

the APP4MC platform. The intend of the SLG is to mimic

the performance of the modeled system on the target platform.

In modern automotive systems, software from different sup-

pliers will be integrated on the same target platforms. These

new high-performance platforms are designed for high per-

formance but not for timing predictability [8] and therefore

challenging for safety argumentation. Analyzing and under-

standing the overall system early in the design process is

crucial. Integration at model level and understanding the

side effects on e.g., shared hardware resources or middleware

overheads, is mandatory.

Figure 3: Synthetic Load Generator

The SLG generates representative code that mimics the mod-

eled performance behavior of AMALTHEA models to support

this analysis. Relevant performance metrics include the ex-

ecuted cycles on the computation unit (e.g., CPU core) and

the accesses to the memory subsystem. The SLG transforms

Volume 43, Number 3, September 2022 Ada User Jour na l

A. Munera, E. Quiñones, S. Royuela , M. Press ler, H. Mackamul , D. Z iegenbein 173

every task in an AMALTHEA model into sequential C code,

and each runnable into a separate C function. AMALTHEA

tasks include an activity graph consisting of a sequence of

calls to the different runnables.

The SLG generates task activation patterns that are either

triggered periodically or by an event. The SLG covers the

automatic generation of micro-ROS code. Micro-ROS [9]

was implemented to bridge the gap between resource con-

straint μControllers with microRos components and perfor-

mant μProcessors where ROS2 applications are hosted. The

structure of the SLG repository is depicted in Figure 3. All

boxes with the Eclipse logo are open source and available

in the tools repository of APP4MC. The model transforma-

tion framework provides a general infrastructure to imple-

ment model-to-model and model-to-text transformation with

mechanisms to e.g., provide dynamic code injections. On

top of this framework the basic SLG is implemented. The

M2T plug-in provides the general implementation how to

generate executable code from AMALTHEA models. The

Linux, ROS2/micro-ROS, and AUTOSAR Adaptive plug-ins

extend the basic SLG to provide further customization to

support Posix threads, ROS2/micro-ROS nodes and commu-

nication primitives as well as specialized code for the ETAS

AUTOSAR Adaptive implementation RTE-VRTE [10]. The

latter is not publicly available.

The implementation of the SLG is based on a general model

transformation framework that provides an infrastructure to

implement model-to-model (M2M) and model-to-text (M2T)

transformations. The SLG transformations of the platform

can easily be customized with dynamic code injections. These

extensions generate the parallel replicas and the voting-based

consensus algorithm. This automated approach will boost pro-

ductivity and improve the model driven development method.

2.3 Extensions for resilience
This work addresses resilience by including features for

software-based replication at the DSML level and its SLG

counterpart. A new custom property, namely replication,

can be attached to a runnable to specify that the runnable is

to be replicated. This feature, illustrated in Figure 4, further

specifies (1) the number of replicas to generate (3 in the exam-

ple), and (2) the group of consolidation functions, combined

with the labels they check, that are used after the replication

process to verify the results.

Figure 4: Snippet of an AMALTHEA model using a new custom
property, namely replication, associated to Runnable_10ms_0,
from WATERS 2016. The property describes the replication
parameters, i.e., the number of replicas and the consolidation
function(s) linked with the variables they check.

Figure 5 represents the execution flow, in the form of a direct

acyclic graph (DAG), of the replication example presented

in Figure 4. The extensions introduced in the SLG transform

the new redundancy property into a number of parallel repli-

cas of the runnable (blue nodes), insert the synchronization

required after the execution of the original and the replicated

functionalities, and call the consolidation functions that vali-

date the correctness of the results (one consolidation function

per variable to check). As expressed in the workflow, this

work currently considers spatial redundancy (meaning that all

replicas can be executed at the same time, ideally in different

processing units) and all replicas are waited for before the

consolidation functions can execute. Section 4 discusses fur-

ther extensions and optimizations to the presented model. The

recovery mechanisms required when the results are incorrect

remain out of the scope of this paper.

Original

Replicas

Synchronization

Consolidation function

Figure 5: Execution workflow when replicating an AMALTHEA
runnable as expressed in Figure 4.

A number of parallel languages can be used for the paralleliza-

tion of replicas, e.g., C++ multithreading, Pthreads, OpenMP.

For the purpose of this work, the SLG implements a system

based on Pthreads.

3 Evaluation
This section evaluates the productivity of the proposed frame-

work in terms of the slowdown caused by replicating different

portions of a system.

3.1 Experimental setup
The application and environment used for the experiments are

detailed next.

Application The experiment uses a simplified version of

the WATERS 2016 verification challenge [4] model provided

in the APP4MC platform. This model represents a com-

plex engine management software composed of a number of

cause-effect chains, and includes 21 preemptive and coopera-

tive periodic and sporadic tasks, containing 1250 runnables

that access a total of 10000 labels. The model has been sim-

plified to execute the three more time-consuming tasks, i.e.,

Task_10ms, Task_20ms and Task_50ms, called T10, T20 and

T50 henceforward. The name of each task corresponds to

the period used to trigger the task, meaning that at time 0
all three tasks are triggered, at time 10ms only T10 is trig-

gered, at time 20ms T10 and T20 are triggered, etc. The tasks

include sequences of runnable calls, more specifically 304

in T10, 307 in T20 and 46 in T50. As a part of this work,

the sequences of runnables have been parallelized based on

the accesses to the labels, preserving sequential consistency.

Figure 6 shows the DAG of the three tasks (dependencies

are displayed left to right). The mechanism used to generate

Ada User Jour na l Vo lume 43, Number 3, September 2022

174 Boost ing Product iv i ty and Resi l iency through Automated Sof tware Repl ica t ion

the graph minimizes crosses between edges to enhance read-

ability. As a consequence, the graphs show more parallelism

than actually exposed. Originally running in an infinite loop,

the code generated with the APP4MC SLG for the simplified

model of WATERS 2016 has been adapted to run during the

hyper period of the selected tasks, i.e., 100ms. Finally, the

Weibull distribution used to determine the number of ticks

expended by the runnables of the model has been fixed to be

upper bound in order to maximize the use of the system.

0

1

166

5

35

47

52

146

2

4

20

57

69

3

11

159

12

31

10

18

19

176

201

215

6

32

44

238

7 16

22

24

127

8 25

37

71

9

13

42

147

14

40

58

96

15

68

26

109

48

102

120

36

30

39

70

82

108

21

74

78

17 23

150

28

56

143

45

107

170

236

27

130

148

54

90

93

97

49

124

267

29

50

72

212

217

84

193

158

180

204

264

134

171

209

122

214

112

219

277

33

221

34

140

154

104

152

38

153

173

60

113

144

103

41 46

160

121

199

43

125

61

85

231

76

162

94

240

245

98

128

234

255

80

157

187

205

51

142

163

283

232

53

185

62

55

67

89

100

207

117

118

59

184

235

198

174

268

64

137

261

63

226

248

259

139

206

65

77

99

175

200

66

213

293

83

222

225

263

270

178

252

116

119 123

73

227

88

156

75 168

224

115

161

257

79

183

220

81

138

129

179

167

286

86

145

87

247

105

91

237

92

95 131

253

292

297

195

223

101

291

244

110

151

191

106

242

272230

141

111

189

250

149

114

133

155

275

266

278

208

246

188

211

216

126

276

233

192

254

210

301

132

290

135

136

186

241

262

298

239

164

280

218

243

196

289

285

299

181

203

251

169

165

249

274

190

295 303

172

279

256

177

265

287

228

271

260

258

182

269

202

194

197

229

288

284

281

273

296

302

294

282

300

(a) T10

0 23

1

2

14

78

115

125

126

169

193

5

15

33

279

3 113

184

4

293

73

109

6

159

7

25

164

8

27

254

9

20

81

86

10

11

12 49

13

221

48

156

161

214

32

79

16

190

282

17

18

148

180

247

19

93

135

21 110

22

229

56

266

24

295

40

256

26

94

199

116

238

28

65

179

29
107

136

173

30

31 122

41

63

212

150

290

34 283

35 166

211

36

37

50

85

130

38

104

39 59

140

141

172

192

42 82

43

95

44 276

45

46

158

47

162

51 68

52

274

53

261

54

55

176

262

144

57

58

269

181

60

118

252

61

62 203

231

64

72

220

66

67

69

225

288

70

301

306

71

75

153

154

74

298

284

76

77

132

236

80

297

201

188

83

111

138

84

102

134

187

87 143

88

99

300

89

90

91

129

235

92

197

273

146

232

96 206

97

98 215

106

207

100

101

145

281

103

171

177

233

105

157

303

108

242

196

112

114 210

117

155

119

120

121

123 195

124

202

268

127

200

128

131

189

133

137 224

139 226

142

170

286

222

239

147

149

151

208

152

216

237

160

198

163

165

167

209

168

299

186

248

174

175178

240

182 191

183

265

185

278

287

253

264

194

249

294

204

205

251

292

272

260

213 257

219

241

258

217

218

275

285

263

223

227 280

228

250

289

230

267

234

270

243

302

244

245

246

291

255

259

304

277

271

305

296

(b) T20

0
1

3
2

17

21

12

6

4

5

30

13

7

34

8 26

9 10 37

11

24

41

44

23

14 36

15

16

18

28

43

45

19

20

25

31

27

22

29

40

32 33

35

38

39

42

(c) T50

Figure 6: Direct acyclic graphs representing the simplified WA-
TERS 2016 model, where nodes represent runnable instances
(each color is a different runnable), and edges (left to right) rep-
resent data dependencies.

Compilation and tools The LLVM 15.0.0 compilation

framework with the −O2 optimization flag is used to generate

the executable application.

Hardware The generated code is executed on an NVIDIA

Jetson AGX Xavier System-on-Module featuring 8-core

NVIDIA Carmel 64-bit ARMv8.2 @2265MHz and 16GB

256-bit LPDDR4x @2133MHz, and running an Ubuntu

18.04.5 LTS operating system. Extrae [11] tracing tool and

Paraver [12] visualization tool have been used during the

evaluation of the application.

3.2 Preliminary analysis
In order to evaluate the feasibility of replicating computation

in the aforementioned scenario of the WATERS 2016 model,

a preliminary evaluation of resource occupation has been

performed. Figure 7 shows the execution trace of the 100ms

hyper period. The columns formed in the trace show that in

all cases (i.e., executing (a) T10, T20 and T50, (b) T10, and

T20, and (c) T10 and T50) most of the time between periods

is idle.

Figure 7: Execution trace of the simplified WATERS 2016 code
generated with the APP4MC SLG when running Task_10ms,
Task_20ms and Task_50ms for a hyper period of 100ms.

Runnables in the WATERS 2016 model have a very fine gran-

ularity, from 0.7μs to 22.6μ, with an average execution time

of 3, 47μs. Extrae and Paraver are very useful to understand

the overall behavior of a system. In this case however, where

numerous small runnables are triggered frequently, Extrae

incurs in too much overhead to be used in a performance

analysis. Consequently, manual instrumentation is used at the

application level to determine amount of time the machine is

in use. Table 1 shows the execution time of each of the combi-

nations of tasks that occur during the 100ms. For example, for

four times T10 is run in isolation take a total time of 0.76ms,

while the only time the combination of T10, T20 and T50 is

executed take 0.3ms. Overall, the system, which is running

for 100ms, performs computation during a total of 2.41ms.

This evinces the great potential to implement parallel repli-

cation, reducing the impact of this fault-tolerance technique,

without jeopardizing the schedulability of the system.

Tasks Execution time (ms)
T10 0.76

T10, T20 1.12

T10, T50 0.23

T10, T20, T50 0.3

TOTAL 2.41

Table 1: Average execution time (in ms) of all possible combina-
tion of tasks in a given period, for a hyper period of 100ms.

3.3 Impact on the use of resources
The use of the machine when running the WATERS 2016

simplified model is illustrated in Figure 8. The figure shows

Volume 43, Number 3, September 2022 Ada User Jour na l

A. Munera, E. Quiñones, S. Royuela , M. Press ler, H. Mackamul , D. Z iegenbein 175

the amount of time computing the tasks of the system, in ms,

of an overall time of 100ms (the hyper period of the consid-

ered tasks). This amount is computed as the average of 100

iterations. Since the total amount of time considered is 100ms,

the time used for executing the tasks corresponds to the per-

centage of time the NVIDIA Jetson AGX Xavier is in use.

The replication is applied to a random set of runnables, so the

runnables that are replicated might be different for different

replication configurations. The use of the machine shows a

linear trend, indicating the contained impact of replication

mainly due to the availability of resources while executing

the application without replication. The variability in the

granularity of the tasks and the randomization of the repli-

cation process explains the deviations in the trend. In all

the iterations performed, the execution of all tasks including

replication finished within the corresponding period.

Figure 8: Computation time (in ms) of tasks Task_10ms,
Task_20ms and Task_50ms from WATERS 2016, for a hyper
period of 100ms.

4 Conclusions and Future Work
The use of parallel heterogeneous architectures in complex

CPS with dependability constraints allows the introduction

of replication mechanisms that enhance the reliability of the

system while minimizing the overhead. As shown in the evalu-

ation of a simplified version of the WATERS 2016 verification

challenge, the exploitation of the parallel opportunities of the

system allows replicating a number of critical functionalities

restraining the impact on the performance and so providing

better opportunities for maintaining the schedulability.

Exposing replication at the AMALTHEA DSML level fur-

ther allows maintaining the correct-by-construction principle

behind model-based design provided by (1) a number of mech-

anisms for verification and validation at the model level, and

(2) a code generation tool that automatically transforms the

model into C code.

The current work relies on a custom property that, attached

to a runnable (functionality) defines its level of replication

and the consolidation functions that implement the consensus-

and-voting mechanism. For future versions of this work, the

Automotive Safety Integrity Level (ASIL), already supported

in AMALTHEA models as an attribute of the runnables, can

be considered in order to determine the number of replicas

and type of replication (spatial or temporal) required. Addi-

tionally, the MooN safety architecture used to design Safety

Instrumented Functions (SIF) in order to achieve the Risk

Reduction Factor (RRF) required for each ASIL can also be

considered. In this architecture, M-out-of-N components (e.g.,

sensors) must act to perform the corresponding function cor-

rectly. This information can be used in software replication

to determine the number of replicas that must finish before

the consensus-and-voting mechanism is executed.

5 Acknowledgments
This work has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No 871669.

References
[1] E. Quiñones, S. Royuela, C. Scordino, P. Gai, L. M.

Pinho, L. Nogueira, J. Rollo, T. Cucinotta, A. Biondi,

A. Hamann, et al., “The AMPERE Project: A Model-

driven development framework for highly Parallel and

EneRgy-Efficient computation supporting multi-criteria

optimization,” in International Symposium on Real-Time
Distributed Computing (ISORC), pp. 201–206, IEEE,

2020.

[2] Eclipse, “APP4MC,” 2022. https://www.
eclipse.org/app4mc/.

[3] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and

M. Wolf, “Special Session: Future Automotive Systems

Design: Research Challenges and Opportunities,” in

International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), pp. 1–7,

2018.

[4] Arne Hamann, Simon Kramer, Martin Lukasiewycz and

Dirk Ziegenbein, “International Workshop on Analy-

sis Tools and Methodologies for Embedded and Real-

time Systems (WATERS) verification challenge,” 2016.

https://waters2016.inria.fr.

[5] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-

Biller, P. Heitkämper, G. Kinkelin, K. Nishikawa, and

K. Lange, “AUTOSAR–A Worldwide Standard is on

the Road,” in International VDI Congress Electronic
Systems for Vehicles, Baden-Baden, vol. 62, p. 5, 2009.

[6] Syed Aoun Raza, “PLAT4MC: Multicore Per-

formance Optimization with Open Source,”

2017. https://www.microconsult.de/
1712-0-PLAT4MC-Multicore-Performance-
Optimization-with-Open-Source-
ESE-2017.html.

[7] Eclipse, “APP4MC SLG,” 2022. https://git.
eclipse.org/c/app4mc/org.eclipse.
app4mc.addon.transformation.git.

[8] A. Saeed, D. Dasari, D. Ziegenbein, V. Rajasekaran,

F. Rehm, M. Pressler, A. Hamann, D. Mueller-

Gritschneder, A. Gerstlauer, and U. Schlichtmann,

“Memory Utilization-Based Dynamic Bandwidth Regu-

lation for Temporal Isolation in Multi-Cores,” in Real-
Time and Embedded Technology and Applications Sym-
posium (RTAS), pp. 133–145, 2022.

Ada User Jour na l Vo lume 43, Number 3, September 2022

176 Boost ing Product iv i ty and Resi l iency through Automated Sof tware Repl ica t ion

[9] “micro-ROS.” https://micro.ros.org/.

[10] “ETAS RTA-VRTE.” https://www.etas.com/
de/portfolio/rta-vrte.php.

[11] Barcelona Supercomputing Center, “Extrae,” 2022.

https://tools.bsc.es/extrae.

[12] Barcelona Supercomputing Center, “Paraver,” 2022.

https://tools.bsc.es/paraver.

Volume 43, Number 3, September 2022 Ada User Jour na l

177

Software Tool for Evaluation of Multi-Sensor

Object Tracking in ADAS Systems

A.Medaglini, S. Bartolini
Department of Information Engineering and Mathematics, University of Siena, Via Roma 56, Siena,
Italy; email: {alessio.medaglini, sandro.bartolini}@unisi.it

V. Di Massa
Thales Italy, Via Lucchese 33, Sesto Fiorentino, Italy; email: vincenzo.dimassa@thalesgroup.com

F. Dini
Magenta srl, Via B. Pasquini 6, Florence, Italy; email: fabrizio.dini@magentalab.it

Abstract

Nowadays, the innovations of AI and other automated
decision-making software are spreading to many differ-
ent areas. The automotive field in particular is rapidly
shifting towards the concepts of Advanced Driver Assis-
tance Systems (ADAS), which could bring huge benefits
in the future. However, before being able to use these
tools, many assurances are required regarding their
functioning and safety. To this end, several control tech-
niques exist to evaluate the performance of this software,
but a reliable and repeatable method for evaluating com-
plex scenarios and corner cases is still lacking. In this
paper, we propose a suite of tools for the generation and
analysis of synthetic tests, aimed at evaluating and an-
alyzing the functioning of autonomous driving systems
in order to measure their effectiveness and drive their
development.

Keywords: synthetic test, autonomous driving, software
tool.

1 Introduction
In the past ten years there was an exponential growth in the

use of electronic components and software in automotive sys-

tems. Driven by the revolutions in AI and machine vision, the

automotive field has been profoundly renewed by inserting

an ever-increasing number of driving aid tools inside cars,

from lane keeping to complete autonomous driving systems.

In particular, thanks to the huge amount of data that can

be collected, taking advantage of inertial platforms, sensors,

and so on, automated decision-making systems are becoming

increasingly popular. This huge amount of innovations is

shifting the market towards Advanced Driver Assistance Sys-

tems (ADAS), with the aim of developing fully autonomous

vehicles in the future. In such scenario, to verify the operation

and evaluate the performance of this new kind of vehicle, a

very broad and thorough analysis is required. In fact, as stated

in [1], "Autonomous vehicles would have to be driven hun-

dreds of millions of miles and sometimes hundreds of billions

of miles to demonstrate their reliability in terms of fatalities

and injuries". As one can imagine, it is not possible to verify

such a requirement with tests done with real vehicles only,

but it must also be accomplished by exploiting simulation

tools to fully evaluate the reliability of these kinds of vehicles.

With regard to tests with real vehicles, there are also some

drawbacks that make their use not recommended. The main

of them are listed below:

• there is a too wide variety of scenarios to be explored

and it would require an unimaginable amount of time,

and resources.

• it could be difficult to exactly replicate a specific test

scenario to verify if an improvement can help in facing

it correctly.

• it is difficult to obtain quantitative measurement of per-

formance using real collected data since it does not gives

us any reference about the desired behavior.

• danger for the personnel involved during the testing pro-

cedure is too high to take a chance, especially in edge

cases [2].

Nowadays, for all these reasons, simulated tests constitute

an essential way for the automotive industry to provide the

safety requirements of autonomous vehicles, reducing the

mentioned costs and giving a speed up to the testing proce-

dure. Nevertheless, performing tests that produce quantitative,

repeatable, and comparable results remains challenging for

autonomous vehicles, since the reliability of the results is

strongly dependent on the accuracy of the simulated informa-

tion used as input for the software. In particular, one of the

crucial parts of the systems for autonomous driving is manag-

ing the problem of Object Tracking and Obstacle Detection

(OTOD) [3], which is the focus of this paper. Situation aware-

ness is indeed a crucial aspect to be able to develop properly

working decision-making systems that are fully reliable in

urban traffic scenarios. For this reason, we focus on the study

of generating scenarios for such critical activities. In fact,

our work aims at evaluating and measuring OTOD features

and performance through a modular and efficient simulated

approach.

Ada User Jour na l Vo lume 43, Number 3, September 2022

178 Sof tware Tool for Eva luat ion of Mul t i -Sensor Object Track ing in ADAS Systems

In this area, there are some proposals that have been made to

manage such issues, which can be split into two categories.

The first is more oriented to the generation of test scenarios

starting from real data, while the other is based on the use of

mathematical models. The approaches in the first category

gather data from real-world runs, to obtain a database of sce-

narios that can be used for building the simulated scenarios.

On the other hand, approaches in the second category rely on

abstract scenario generation, defined by mathematical or se-

mantic languages which are then translated into test scenarios.

Unfortunately, these methods can be expensive in some re-

spects or require a huge base of data to combine. Furthermore,

the problem of evaluating the final results of the elaboration

of these product scenarios is not always completely addressed,

and many evaluation criteria are often based on different per-

formance indicators whose interpretation and composition

are not uniquely determined [4].

Within the second category, we propose a methodology that

models the salient aspects of tracking and sensing objects, to

effectively abstract the necessary facets to test OTOD behav-

ior in ADAS systems. Our tool generates synthetic scenarios

that replicate the sensors’ perception of the objects around a

vehicle, so that they are representative and effective without

burdening the model with unnecessary information, promot-

ing high modularity and flexibility. The main contribution of

this paper can be summarized as follows:

• a method for the evaluation of object detection and track-

ing submodules of an ADAS system through a simulated

approach.

• a synthetic scenario generation tool configurable through

a simple scripting language that allows describing sce-

narios quickly and concisely.

• a performance evaluation based on the obtained results,

through automatic calculation of aggregated Key Per-

formance Indexes (KPIs), to produce comparable and

easy-to-understand reports from test execution.

2 Related works
In the category of methods based on real data, [5] proposes an

approach for scenario generation based on a scenario database.

In particular, their schema builds upon the generated scenario

database structure that clearly identifies the key components

of a given autonomous paradigm. This abstraction enables the

creation of parameterized test cases to test the autonomous

functions under various adaptive conditions. Their scenario

database consists of data collected from multiple sources,

and stores information about real-world sensor data, param-

eters required to create the setup for testing, and scenario

definitions related to the functions supported. Similarly, de

Gelder and Paardekooper [6] propose a method for evaluating

the performance of the functions in an ADAS system based

on real-life scenarios, taken from the Streetwise database,

combined with Monte-Carlo simulations. Another possible

approach, proposed in [7], is based on the use of advanced

perception systems for obtaining reference data used for the

automated generation of simulated driving scenarios. In this

case, the data provided by their referenced sensor system

can be transferred into a simulation tool, to obtain virtual

scenarios from real-world scenarios. The second category

instead relies on abstract scenario generation. For instance,

in [8] the scenes and the related assertions are defined by a

matrix-based semantic language and translated into test sce-

narios in simulation. They developed a semantic language for

breaking down the factors that define a scenario, taking the

input from the command line, and parsing the formal gram-

mar to generate tokens. Then, using a matrix-based system

they generalize the scenario characteristics. The numerical

matrix is read as input where each row is a different assertion

describing a single road piece or actor that can then be parsed

to generate the scenario. In [9] they generate both static, i.e.

scenarios where objects just follow a predefined trajectory,

and hybrid scenarios where the vehicles need to deviate due

to the influence of other vehicles in order to avoid a crash. In

order to do that they use a combinatorial interaction-testing

algorithm together with a backtracking algorithm and a mo-

tion planner.

Our approach is mainly related to the category based on math-

ematical models, but we differ from the reported works for

the following reasons:

• our scenario definition language is simple and human-

readable, it does not involve matrix definition or other

complex mathematical formalization of the items present

on the scene.

• in our case complex algorithms are not required to create

scenario data starting from its representation, requiring

a great computational power, but the output is automat-

ically generated starting from the objects involved and

based on the sensors used, lightly and quickly.

• our tool also models how different sensors perceive the

environment, replicating their transducer characteristics

and specific format of data and meta-data, along with

the different kinds of noises that can affect them.

3 The ADAS system: a real-world use-case
Thales Italy (TH-ITA) industry has developed a multi-sensor

ADAS system for city trams for obstacle detection and col-

lision avoidance. The system assists and supports the driver

in avoiding collisions by detecting and tracking obstacles in

real-time, thereby compensating for driver errors. The aim

of TH-ITA is to enhance the safety of trams and light rail

vehicles, to the benefit of passengers, service operators, and

other traffic participants. Although technology cannot replace

human drivers, it can complement human perception and deci-

sion making – often deciding between life and death. Indeed,

the system will be able to significantly reduce the number of

rear-end collisions involving tram vehicles and, as a result,

will help to avoid high follow-up costs.

The complexity of city traffic requires cognitive capabilities

to improve vehicle reactivity and perception of near- and long-

range obstacles. The development of this technology and its

impact on light rail transit will result in improved safety of

daily operations. In fact, tramways can be considered a chal-

lenging application for autonomous driving systems for many

reasons. First of all, compared to mainline railways, tram rails

are not always segregated from road traffic and pedestrians.

Volume 43, Number 3, September 2022 Ada User Jour na l

A. Medagl in i , S. Bar to l in i , V. Di Massa, F. Din i 179

For this reason, while in mainlines any detected obstacle on

the track has to be considered a threat to safety [10], for a

tram driving system it is not so straightforward to discrim-

inate whether an object on the track rails can constitute a

safety threat or not, depending on the specific situation. For

example, a car could drive on the rail, in front of the tram,

preceding it while driving in the same direction. In the same

way, it is common to find people crossing the rails or in close

proximity of them, for instance in all those cases where the

tram is approaching a platform with people standing and walk-

ing in the surroundings. These tramway scenarios are normal

and should not cause an alert. In contrast, when the ADAS

system detects a car or pedestrian whose future trajectory

can be predicted to intersect the tram’s one, it shall generate

an alert so that the driver can stop or slow down the tram

to avoid the collision. In fact, in a typical use case, there

are many vehicles that can move around the tram, which is

also moving. This situation generates a variety of possible

scenarios, according to the different obstacles, weather, and

lighting conditions around the tram.

In addition, the same driving situation is certainly much more

dangerous for a tram vehicle than an automobile. This is

mainly caused by the high braking distance required by a

tram, which is very different respect to the one of a car, due

to the great difference in weight and coefficient of friction

with the respective transit surfaces between the two types

of vehicles. For instance, as highlighted in Figure 1 [11], a

tram traveling at 37km/h needs about 20m to stop, the same

distance required by a car moving at more than 60km/h. For

this reason, tram driving requires more caution than car driv-

ing, due to the absolutely relevant momentum of the former

even at relatively low speeds, which can create safety hazards

for other road users during its operation.

Figure 1: Braking time and distance for tram and car.

In Figure 2 some possible everyday scenarios are reported,

with different objects moving around the tram. Each image

within the figure shows different types of objects and road

topologies that the tram encounters along its path. In fact,

there are crossroads, crosswalks, platforms with pedestrians,

and cars moving parallel to the rail tracks or intersecting

them. Depending on the evolution of their behavior all these

objects can become obstacles for the tram. We consider an

obstacle any possible object (including cars, bicycles, ani-

mals, pedestrians, and other objects) that can collide with

the tram because it stands between the rails or because it

stands nearby and its shape and trajectory are suitable for a

collision. The fact that both the tram and the surrounding

objects can move poses critical issues from the point of view

of the correct identification of the objects and the nature of

their movement. In particular, there are situations in which

the tram is stationary and has objects moving around it and

others where the tram is moving and this affects the relative

speed of the other objects (both moving and stationary). This

latter case can produce critical effects for the object tracking

algorithm. For instance when the tram curves, especially if

the turn has a narrow radius, all the objects rapidly shift on

the scene, and their speed and position change abruptly.

(a) Vehicles around the tram (b) Motorbike crossing tracks

(c) People at the tram stop (d) Crossroads

Figure 2: Typical urban scenarios taken from real tramway

The images in Figure 2 are taken from the camera mounted on

the real tram. In fact, to be able to perform object detection

and tracking algorithms, the vehicle must be equipped with

a heterogeneous set of sensors. In particular, in the TH-ITA

case, each tram has been equipped with two cameras, a radar,

and a lidar. The way these sensors perceive the environment is

critical to obtain good performance from ADAS systems [12].

The overall architecture of the TH-ITA ADAS system can

be represented as depicted in Figure 3, where the entire data

pipeline is reported. The system is composed of three main

subsystems: a set of sensors that are installed on the tram

vehicle, a data association and tracking (DAT) module, and a

collision checker module (CCM).

Figure 3: Architecture of an ADAS system

First of all, the sensors collect raw data from the real world,

which are then analyzed by the respective pipelines to provide

the system with bounding boxes representing detected objects.

These data are then propagated to the DAT module, which is

Ada User Jour na l Vo lume 43, Number 3, September 2022

180 Sof tware Tool for Eva luat ion of Mul t i -Sensor Object Track ing in ADAS Systems

in charge of elaborating the raw data collected by the sensors

and associating them with the objects tracked by the system.

This submodule tracks the targets’ evolution and produces

estimates on the future positions of the objects, which are sent

to the CCM of the system. This last module deals with the

driving logic of the tram, deciding whether the future position

of an object will be critical to the system, causing a collision,

and if so providing an alert to the tram driver. As can be easily

understood, the DAT module is the core of the ADAS system

and, within it, we mainly focus on the detection and tracking

aspects. In fact, the reliability of the system is based on the

correctness of the object detection and tracking phase.

4 Proposed approach
Developing a multi-sensor ADAS requires evaluating the be-

havior of association and tracking algorithms, which are fed

with data from sensors. To track real-world objects it is cru-

cial to model how they are perceived by sensors. Therefore,

we addressed both the simulation of reality, in a faithful but

synthetic way, and also how this reality is perceived by the

different sensors. Our proposal hence focuses on a method

to generate scenarios that replicate as precisely as possible

the trajectories of the objects and the sensor’s perception of

reality. In this way, it is possible to feed the data associa-

tion and tracking algorithms with realistic and accurate data,

for producing meaningful results that can then be analyzed.

Indeed, the generation of test scenarios and the evaluation

of the results obtained are two critical aspects that must be

addressed jointly to be able to properly steer the development

of an autonomous driving system. For this reason, we propose

a software tool to guide the development of an autonomous

driving system and to measure its effectiveness, starting from

the description of a synthetic scenario to its implementation

and evaluation. The first part of this proposal is dedicated to

identifying a novel procedure to generate synthetic scenarios,

while in the second part we deal with the evaluation of the

obtained results using an automatic report generator based on

reliable KPIs previously defined.

To define the different scenarios and cases of study we follow

an incremental approach. Initially, we classify all the possible

behavior of a single object moving around the vehicle,

distinguishing them according to the direction, trajectory,

and position of the object. Then, we model the behavior

of each possible sensor used for sensing the environment

(camera, radar, and lidar in our case), specifying the typical

characteristic of each one and modeling the noise that can

affect them. In this way, by combining all the possible

trajectories of objects and the way they are perceived by

the different sensors, thousands of randomized variations

of each specific scenario can be easily and effectively run.

Lastly, the tool aggregates the results from multiple runs and

can automatically produce reports summarizing the setup

parameters, for experiment repeatability, and the achieved

results through easily specifiable KPIs.

4.1 Objects movements
Regarding the first aspect, simulation of real objects, we

identified some macro scenarios of typical configurations

for the tramway system and the objects around, based on

data collected by Thales Italy. A classification of these basic

macro-scenarios is presented below:

• Static obstacle on the track rails: such obstacle could be

a car blocked on the rails, a fallen bicycle or motorbike,

a tree branch, or other unexpected objects.

• Obstacle moving along the rail: a car or other vehicle

moving along or beside the rail, from a side or the other

one. This obstacle should have a size that is sufficient

for impacting the tram or a trajectory too close and dan-

gerous.

• Obstacle moving at a distance from the tram, but with

trajectory and speed that are compatible with a future

collision. This can happen when approaching a cross-

road or a roundabout where vehicles cross the railway

track.

• Obstacle moving in the nearby of the tram, but with

trajectory and speed that are compatible with a future

collision. This can happen for instance when the tram

is stopped near a traffic light or a tramway station and

other vehicles intersect the train tracks, passing close to

the tram.

All these scenarios are very frequent during the travel of the

tram since it is moving in a city area crowded with people and

different typologies of vehicles in the surrounding of it. In

particular, for the trajectories that move in front of the vehicle,

it is important to make a distinction based on the distance

from it, as it has an impact on the response time required to

the vehicle. Furthermore, the direction in which the different

trajectories are traveled is also relevant as it affects the

vehicle’s field of view. The above scenarios can be combined

with each other to generate more complex situations, building

new scenarios starting from multiple specific behaviors of

different objects on the basis of the superposition principle

or generating interference between them. The taxonomy of

basic behaviors we found for the objects, as reported above,

is summarized in Figure 4. This figure depicts the trajectories

as plan views, with the trajectories as they would appear

when viewed from above the tram.

Figure 4: Basic trajectories of objects around the tram.

At the bottom of the figure the reference system is reported,

which is centered in the front part of the tram with the x-axis

directed along the direction of travel of the tram, the y-axis

directed on the left, and the z-axis upwards. In particular,

Volume 43, Number 3, September 2022 Ada User Jour na l

A. Medagl in i , S. Bar to l in i , V. Di Massa, F. Din i 181

each of the lines represents one of the main categories of

trajectories that we have identified as basic trajectories that

an object can follow in the urban environment around a

tram. In fact, from the analysis we carried out, each object

around the tram can have different behaviors and therefore

follow trajectories that can make it an obstacle for the train.

These trajectories cover lateral movements with respect to

the vehicle (num. 1,2), which does not intersect its trajectory,

and movements that instead intersect its trajectory, both

perpendicularly (num. 3,4) or with different angles (num.

5,6). Some examples of these trajectories can be seen in

Figure 2: the cars in Figure 2a are moving following the

trajectories of type 1 and 2; type 3 and 4 trajectories can

happen in scenarios like the one reported in Figure 2d; and

in Figure 2b an instance of the trajectory 5 is reported, but

you can easily imagine similar scenarios for the type 6

trajectory. All the trajectories in Figure 4 can be traveled in

both directions, as underlined by the arrows drawn on both

ends.

4.2 Modeling objects and movements
To model the behavior of objects on the scene, as explained

above, it is necessary to estimate the temporal progression

of their kinematic characteristics, just as sensors would cap-

ture them in the real case. Each sensor collects different

information from the environment, and we identified that

the movement of an object can effectively be described by

a limited set of basic motion patterns like uniformly accel-

erated rectilinear motion or circular motion. In fact, each

sensor allows to collect different information, but it is always

possible to describe an object through its position, speed,

and acceleration at different instants of time. We, therefore,

decided to model the behavior of objects based on the de-

scription of these three kinematic characteristics, evolving

them over time according to appropriate physical laws. In

our model, each object is defined by specifying its initial po-

sition (assumed in the origin of the Cartesian system if not

specified) and an initial speed and/or acceleration (assumed

null if not specified). From that moment on the motion of

the object is modeled using uniform or uniformly accelerated

rectilinear motion laws using the set parameters. Providing

different inputs for each of them at different instants of time it

is therefore possible to accurately describe arbitrary motions

of the different objects. Motion parameters (e.g. direction,

acceleration) can also be changed, even randomly, at each

time instant within the object’s lifetime, so that even more

complex motion laws can be easily modeled. Furthermore,

such scenarios can be combined with each other to generate

more articulated situations encompassing multiple objects

and evaluating the consequent interaction effects in the object

detection and tracking algorithm.

The object description is based on a formal language used to

define each case. It is implemented in a human-readable form

so that it is easy to write and immediately understood at first

glance, as can be seen in the following snippet:

GLOBAL_END_TIME,40000
1,0,POS,2,−20,0
1,0,VEL,1,1,0
2,0,POS,2,20,0

2,0,VEL,1,−1,0
1,300,ACC,1,0.5,0
2,450,VEL,1,−2,0

The language exploits a comma-separated value format,

where the first element in each line is the object id, the

second one is the time instant (in milliseconds) at which the

following property is applied, and the third is a kinematic

keyword (POS for position, VEL for velocity and ACC for

acceleration) representing the property we want to specify

and, finally, there are the values of the previously specified

property for each Cartesian coordinate (x,y,z). This triplet

is expressed as meter (m) for position property, meter per

second (m/s) for velocity, and meter per square second (m/s2)

where the property is equal to acceleration. We also create

two other reserved words which are GLOBAL_END_TIME to

define the last time instant in our scenario (on a reserved line)

and END which is used instead of the kinematic property

of an object to remove such object from the scenario at the

specified time instant. Through this language, it is possible

to define the position, speed, and acceleration along every

Cartesian direction (x, y, z) for each involved object. These

properties can be specified at each time instant within the

lifetime of the object so that we can create even complex

varying motion laws in a few steps. A specific part of our

software is then in charge to verify that the described scenario

is consistent, in order to avoid unexpected or not feasible

behaviors. Using this procedure it is possible to describe

every feasible scenario, and then obtain automatically an

output file for each simulated sensor. The output file is

created again in a CSV format, easily readable by both

humans and machines, containing the kinematic properties

of every object at each time instant, with a frequency

corresponding to the specific simulated sensor’s characteristic

period. The output file can then be used to test each scenario

within the specific application under development.

4.3 Modeling of sensors
During the scenario generation procedure we allow modeling

of each sensor, accounting for its output data format,

transducer characteristics, as well as the noise that can

affect it. In particular, the output data format comprises

the type and variety of positional data and meta-data (radar

cross-section, probability of existence, object class, and so

on) provided by the sensor. In fact, our system takes care

of modeling each different kind of sensor in use, because

sensors are one of the most relevant parts of ADAS systems.

They are in charge of capturing information from the

environment, and therefore the final results strictly depend

on their functioning. Moreover, since sensors also capture

noise in their measurements, coming from poor external

conditions or electromagnetic interference depending on

the kind of sensors, it must be considered in the model.

Consequently, our tool allows easy modeling of different

possible measurement noises like additive zero-mean

Gaussian noise, the type of noise that most commonly affects

sensors, with a range of variances estimated from real data,

and also some random zero/saturation/missing values can be

simulated according to arbitrary statistical distributions. The

Ada User Jour na l Vo lume 43, Number 3, September 2022

182 Sof tware Tool for Eva luat ion of Mul t i -Sensor Object Track ing in ADAS Systems

features described above allow you to have high repeatability

and controllability of the test scenarios, to make a huge

number of experiments in many different conditions with

the opportunity of easily steering the software development.

Through this procedure, however, some approximations

are introduced. These approximations mainly concern the

dynamics of objects and the model used for the sensors,

which cannot be as accurate as the real one. A fundamental

aspect is in fact the trade-off between the accuracy of the

scenario and the computational power required to realize

it, which must be optimized to make the designed scenario

computable, as well as reliable, and significant.

4.4 Report generation
Another aspect covered by our tool is system evaluation.

In fact, to evaluate the performance of the system it is of

paramount importance to be able to compare the obtained re-

sults with a ground truth measurement of the specific scenario

used. If the scenario comes from real-world data, a ground

truth reference can be obtained only if we perform manual

data inspection and labeling. This manual inspection and

labeling procedure is prohibitively expensive to be performed

extensively and accurately. Instead, using synthetic data, we

describe the scenario we want to test and then simulate equiv-

alent sensors to produce the information used to feed the data

association and tracking components. Finally, we can com-

pare the results with the known ground truth. Moreover, when

we produce simulated sensor data we are able to inject known

noise into the simulated data to model real-world noise. This

way we can analyze and measure the performance of the im-

plemented algorithms, and also infer properties about sensors’

noise and test the resiliency of the system against them.

Once the scenarios have been tested, the final stage is to col-

lect the produced results and aggregate them into meaningful

KPIs. This phase is extremely important and comparative

reports play an important role in each industry, for evaluating

the performance level of a software application and for driving

its evolution. Typically, those kinds of reports are manually

composed from large amounts of information provided by

various heterogeneous sources. Processing this information is

tedious, time-consuming, and error-prone. For all these rea-

sons, we have developed an automatic tool that aggregates the

results from multiple runs of the tested software, executed on

different scenarios or with different functioning parameters,

and produce a comprehensive report which summarizes the

environmental setup of the specific execution and the obtained

results evaluated using some previously defined KPIs.

5 Performed experiments and evaluation
5.1 Methodology
Our synthetic model is based on the analysis of data collected

on real trams. We carried out qualitative tests by analyzing

videos of cars, pedestrians, and other objects to empirically

estimate their motions and the parameters to be used. Using

our generation language it is possible to specify the initial con-

ditions of each object and modify them during its movement.

Object positions evolve according to discrete-time cinematic

equations of uniform or constant accelerated rectilinear or cir-

cular motions, possibly with varying parameters over time. In

time periods between two changes to the dynamic of a specific

object its evolution is based on the physical laws of uniformly

accelerated rectilinear motion. Obviously, if the acceleration

is not present in the input parameters it is assumed equal to

zero and the two equations reduce to a uniform rectilinear

motion.

An important aspect to evaluate the behavior of the system

is represented by the performance metrics to be used. In this

work, we decide to focus on evaluating the performance of

the multi-object tracker inside the ADAS system. In order

to do so, we need to understand what qualities we expect

from it. In an ideal world, such a tracker should, at all points

in time, be able to identify the correct number of objects

on the scene and estimate the position of each of them as

accurately as possible. Additionally, we expect the tracker

to be able to consistently track each object over time. This

means that, if each object has been assigned to a unique track

ID, it remains constant throughout the entire sequence (even

after a temporary occlusion). This leads to the following

evaluation criteria for performance metrics:

1. They should allow to judge a tracker’s precision in deter-

mining exact object locations.

2. They should reflect its ability to consistently track object

configurations through time, that is, to correctly trace

object trajectories, producing exactly one trajectory per

object.

3. They should be clear, easily understandable, and behave

according to human intuition.

4. They should be few in number and yet expressive, so that

they can be used, for example, in evaluating complex

systems.

Based on the above criteria, we adopt the MOT Metrics [13]

performance evaluation of the multi-object tracker inside

the ADAS. The two most used metrics in this area are the

Multiple Object Tracking Precision (MOTP) and the Multiple

Object Tracking Accuracy (MOTA). In particular, we have

chosen to calculate the MOTP also for each sensor used.

This allows us to understand how each individual sensor

contributes to the overall performance of the system, by

varying the noise level modeled for each sensor. Then, we

decided to add another metric to our KPIs: since we are

mainly interested in evaluating the behavior of our tracker

in the immediate surroundings of the tram, i.e. the areas

with the greatest risk of collision, we have decided to also

use the Root Mean Square Error (RMSE) as a performance

index. To this aim, we have divided the tram’s field of view

(FOV) into sectors, based on the distance and angle of objects

relative to the tram, using a plan view of the scenario, and we

compute the RMSE value for each of them. This is useful for

understanding how the position of an object, its distance and

angle with respect to the tram, affect the ability of the system

to track it correctly. Indeed, performance evaluation has

different levels of interest-based on the location of sectors,

with those close to the vehicle being the most critical for

collision detection. For this reason, the FOV of the tram

has been divided in such a way to focus the attention on the

Volume 43, Number 3, September 2022 Ada User Jour na l

A. Medagl in i , S. Bar to l in i , V. Di Massa, F. Din i 183

bands closest to it, with circular sections of increasing width

as the distance increases. Furthermore, the FOV has been

divided into four lateral slices according to the angle of the

objects with respect to the tram, to separate the objects that

are located in front of the tram from peripheral ones, which

may be more difficult to follow. Lastly, it is worth noticing

that thanks to the modularity and flexibility of our tool, it is

easy to add and tune new KPIs to manage specific situations

if needed.

5.2 Experiments and results discussion
The test framework we developed allows us, through scenario

design and test reports generation, to have deep insight into

the system operations. There are a lot of parameters that an

ADAS system depends on, and in this way we can evaluate

the effects of each of them. Among the various analyzed

trajectories and scenarios, we focus here on two of them,

reported in Figure 5:

1. In the first case an object is simulated moving in front

of the tram with a curvilinear trajectory, modeling its

movement around a roundabout (taken from the real case

of Batoni square in Florence).

2. The second case deals with a multi-object scenario where

two objects move from each side of the tram with inter-

secting trajectories, modeling typical road intersections

with vehicles coming from different directions.

(a) Roundabout motion (b) Crossing trajectory

Figure 5: Example of test scenarios

In the first test we performed, reported in Figure 6, the sen-

sors are modeled without noise, i.e. the ADAS system was

fed with "exact" synthetic data, in order to evaluate their

performance and behavior characteristics regardless of other

influences. This is not realistic, but it is useful to tune the co-

variances of errors in the model we adopted so that it can cope

with the dynamics of the objects. In fact, different sensors

sense the environment differently, and this brings some differ-

ence in the measures they provide, even if they are referred to

the same object. These differences in the measured position of

the same object become noise for the system, and this needs

to be accounted for in the measurement models. Thanks to

our scenario generator we can simulate the behavior of the

real sensors, and this allows us to visualize the differences be-

tween, for example, the lidar and the radar view of the same

object. In Figure 6, the image above shows the trajectory

estimated with lidar measures only, while in the image below

the trajectory is estimated with radar measurements only. As

the figure shows, the two trajectories are slightly different,

because measurements from the two sensors are different in

many ways: different timing, different estimated positions,

and different measurement models.

Figure 6: Single object track against GT, without noise. Above:
lidar only. Below: radar only.

In this case, the track based on radar measures is more precise,

as confirmed by the MOTP metrics value, which in the radar

and lidar cases is equal to 84,3% and 90,8% respectively. This

is due to the fact that the higher radar sensing ratio helps the

system to correctly track the object. Therefore the different

behavior in different conditions of the various sensors gives

us the possibility of fusing their output, in order to enhance

the overall performance of the system.

A second important feature we tested through our scenario

generator regards the noise in the data, which we can control

by varying the covariance of an additive zero-mean Gaussian

noise that we inject into the input data. For different levels of

noise estimated position of the targets appears farther from

the ground truth and few measurements are left unassociated.

This can cause the tracker to lose its target and, if the unas-

sociated measurements are enough, they could be used to

instantiate a new tracker following the same target. By carry-

ing out various tests we are able to investigate the sensitivity

of MOTP values to noise variation. In Figure 7 are reported

the plots from two different simulations, with increasing noise

covariance in sensor positions going from 0.5 to 0.9. A high

level of noise in the measures degrades tracking performance,

increasing the MOTP metric value from 53,7% to 69,3%. It

is worth noting that these injected noise levels are larger than

those usually recorded on sensor data, and we decided to

apply them as a stress test for the system.

As a result, not only estimated position of the targets appear

Ada User Jour na l Vo lume 43, Number 3, September 2022

184 Sof tware Tool for Eva luat ion of Mul t i -Sensor Object Track ing in ADAS Systems

Figure 7: Effects of increasing noise in measurement data.
Above: 0.5 covariance noise. Below: 0.9 covariance noise.

noisier and farther from the GT, but some measurements are

also left unassociated. As expected, this causes the creation of

incorrect trackers. In fact, in both graphs, the orange and dark

green dots represent different trackers from the first one (blue

dots) that are used to track the same object. By carrying out

this kind of experiment, we can investigate the sensitivity of

the system to sensors’ noise variation, measuring how much

the accuracy of a single sensor affects the overall tracking

results of the ADAS system.

Another key aspect addressed by our test framework is the

sensitivity of the system to misdetections, i.e. cases when

an object is present in the scene but sensors do not detect it.

In fact, we define a "misdetection" as the event in which an

object present in the scene does not cause a corresponding

signal in a sensor’s scan. When this happens the object is non-

existent for that sensor at some points in time. Actually, there

are quite a few reasons why an object can be misdetected:

the sensor may suffer from a temporary or local failure that

prevents it from functioning correctly, there may be interfer-

ence from external sources or, more likely, the object may be

occluded by other objects or by the environment. Moreover,

an object can also be mistakenly categorized as clutter and re-

moved by decluttering filters. To test the system’s sensitivity

to objects’ misdetections, our tool can simulate the random

loss of measurements by defining the desired rate of misdetec-

tions for each sensor and evaluating the tracking robustness

of the system. In this way, each time a measurement is sup-

posed to be given as input by the system, there is a certain

probability that the measurement will be simply dropped and

not used by the system. In the plots in Figure 8 we simulated

an increasing misdetection probability of 20% and 40% on

all sensors.

Figure 8: Effects of increasing probability of misdetection.
Above: 20% misdetection probability. Below: 40% misdetection
probability.

As shown from the figures, the system tolerates a high rate

of misdetections, up to 20%, and this is probably due to the

sequential approach we use to process the sensors’ scans. In

fact, although there is not a single sensor with a very high

sampling rate, processing them when they arrive, one after

the other, allows us to perform as if the system was fed by a

single sensor having a sampling rate equal to the sum of each

sensor’s sampling rate. In the end, when the percentage of

misdetections increases up to 40% the system cannot track

the objects correctly anymore.

Single-target scenarios are useful to isolate specific issues

that could affect the core of the ADAS system, and can give

important information about the performance of the system

in terms of intra-track performance, such as those measured

by the MOTP metric. They may also give some informa-

tion about simple data association errors, as we have seen by

simulating misdetection. However, they are not sufficient to

investigate more complex scenarios where different associ-

ation errors may occur, such as identity mismatch. In order

to do this, we need to define multi-object scenarios where

two or more objects may interfere with each other. A very

simple example of this can be seen in the second scenario we

want to discuss, reported in Figure 5b. There, two objects

start moving from each side of the tram, with intersecting

trajectories. The objects’ velocity is about 2.8 m/s, which is

Volume 43, Number 3, September 2022 Ada User Jour na l

A. Medagl in i , S. Bar to l in i , V. Di Massa, F. Din i 185

compatible for example with bikes or scooters. In this multi-

object scenario, repeating the experiments about misdetection

probability, we can observe an interesting behavior. In Figure

9 we can see that increasing the misdetection probability has

no effect on the two predicted trajectories until 30% value

is reached. Then, with this percentage of measurement loss,

when the two objects intersect each other’s trajectory, an iden-

tity mismatch occurs, as the bottom plot of Figure 9 shows.

Figure 9: Effects of increasing probability of misdetection on
a multi-object scenario. Above: 20% misdetection probability.
Below: 30% misdetection probability.

What happened here is that one of the two trackers suffered

from a lack of measures close to the intersection, and at some

point the association algorithm has associated it with mea-

sures originating from the other object. These measurements

were stolen by their "legal owner", who was later forced to

associate with the measurements originated from the other

object. In the last part of the trajectories, although other mis-

detections surely occurred, the two objects are too far away to

interfere with each other, and the tracking proceeds smoothly

up to the end.

Lastly, when the misdetection probability reaches 40%, some-

thing different happens as reported in Figure 10. Only the

object moving from left to right suffered an association prob-

lem, while the other presented a continuous track. In this

case, the association error is simply a misdetection error: one

object suffered from a lack of measurements that elapsed

long enough for the system to decide that the tracker had

to be deleted, while the other continued to be fed with the

correct measurements. This caused measurements from the

first object to be left unassociated, and these were used to

start another tracker.

Figure 10: Objects on intersecting trajectories with 40% misde-
tection probability.

The overall result is two-fold. On the one hand, the object

has changed its "identity" (from 1 to 4, see the legend) and

therefore we could not reconstruct the object’s history, should

we need to. On the other hand, the actual physical object has

been undetected for a while, and this is surely a more severe

problem for an ADAS system. In other words, this kind of

error leads to identity changes between objects and apparently

strange paths, posing challenges in the obstacle-evaluation

algorithms of the system.

As a final note, it has to be pointed out that the previous effect

does not only depend on the increase of the misdetection prob-

ability. The phenomena we have described above could also

occur with a lower level of misdetections since it all depends

on the particular realization of the stochastic processes we are

simulating in the test framework. For sure, higher levels of

misdetections make that event more likely to occur, and this

explains why we observed it in that particular experiment, but

there is a non-zero probability that such an event could occur

in any of the synthetic tests.

6 Conclusions and future work
Nowadays, the verification of the behavior of autonomous

driving systems is critical for their deployment in everyday

life and the importance of synthetic test environments is in-

creasing. In this paper, we tackled the problem of testing

the behavior of ADAS systems by means of a flexible tool

for generating synthetic scenarios and evaluating KPIs. We

have proposed a methodology for identifying test scenarios

and presented a simulation framework for generating and run-

ning such scenarios and evaluating the system performance.

Our scenario generation procedure uses a simulation model

based on a simple scripting to describe the different scenarios,

which are then run modeling sensors’ behavior. Then, our

tool can evaluate the overall system performance by aggregat-

Ada User Jour na l Vo lume 43, Number 3, September 2022

186 Sof tware Tool for Eva luat ion of Mul t i -Sensor Object Track ing in ADAS Systems

ing execution results from multiple runs. Our methodology

brings complementary features compared to existing ones

for the evaluation of object detection and tracking systems in

ADAS systems, as it allows modular, effective, and repeatable

simulation of representative scenarios with limited effort.

As we explained in a few examples in the previous section,

our performance measurement tool allows very detailed inves-

tigation about the problems that may relate to the Thales Italy

ADAS system and to autonomous driving systems in gen-

eral. Furthermore, the proposed tool allows evaluating results

both qualitatively and quantitatively, using easily adoptable

KPIs and graphical representations of the objects’ trajectories.

However, even if our framework works as expected, it needs

to be tested more extensively, for assessing completely its

functionality and fine-tuning it. In this respect, thanks to a

new feature we are developing, we will include also the ex-

plicit modeling of the train motion in the scenarios. This will

allow an easier and more precise modeling of setups where

complex trajectories are performed by objects and by the train.

Moreover, we want to enrich the level of automation inside

our scenario generation tool, exploiting a statistical approach

to automatically derive the object motion parameters from

real-world use-cases, generating then many small variations

of them to test the system behavior extensively. Lastly, we

also want to compare our work with other strategies based

on real-world data, trying to apply them jointly to exploit the

strengths points of each one.

References
[1] N. Kalra and S. M. Paddock, Driving to Safety: How

Many Miles of Driving Would It Take to Demonstrate
Autonomous Vehicle Reliability? RAND Corporation,

2016.

[2] C.-H. Yu, Y.-Z. Chen, and I.-C. Kuo, “The benefit of

simulation test application on the development of au-

tonomous driving system,” in 2020 International Auto-
matic Control Conference (CACS), 2020, pp. 1–5.

[3] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and

W. Shi, “Computing systems for autonomous driving:

State of the art and challenges,” IEEE Internet of Things
Journal, vol. 8, no. 8, pp. 6469–6486, 2021.

[4] L. Li, W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y.

Wang, “Intelligence testing for autonomous vehicles: A

new approach,” IEEE Transactions on Intelligent Vehi-
cles, vol. 1, no. 2, pp. 158–166, 2016.

[5] A. Erdogan, E. Kaplan, A. Leitner, and M. Nager,

“Parametrized end-to-end scenario generation architec-

ture for autonomous vehicles,” in 2018 6th International
Conference on Control Engineering Information Tech-
nology (CEIT), 2018, pp. 1–6.

[6] E. de Gelder and J.-P. Paardekooper, “Assessment of

automated driving systems using real-life scenarios,” in

2017 IEEE Intelligent Vehicles Symposium (IV), 2017,

pp. 589–594.

[7] U. Lages, M. Spencer, and R. Katz, “Automatic scenario

generation based on laserscanner reference data and

advanced offline processing,” in 2013 IEEE Intelligent
Vehicles Symposium Workshops (IV Workshops), 2013,

pp. 146–148.

[8] C. Medrano-Berumen and M. I. Akbaş, “Abstract simu-

lation scenario generation for autonomous vehicle veri-

fication,” in 2019 SoutheastCon, 2019, pp. 1–6.

[9] E. Rocklage, H. Kraft, A. Karatas, and J. Seewig,

“Automated scenario generation for regression testing

of autonomous vehicles,” in 2017 IEEE 20th Interna-
tional Conference on Intelligent Transportation Systems
(ITSC), 2017, pp. 476–483.

[10] P. Hyde, C. Ulianov, J. Liu, M. Banic, M. Simonovic,

and D. Ristic-Durrant, “Use cases for obstacle detection

and track intrusion detection systems in the context of

new generation of railway traffic management systems,”

Proceedings of the Institution of Mechanical Engineers,
Part F: Journal of Rail and Rapid Transit, vol. 236,

no. 2, pp. 149–158, 2022.

[11] W. Leutzbach, Introduction to the Theory of Traffic Flow.

Springer Berlin, Heidelberg, 1988.

[12] S. Sivaraman and M. M. Trivedi, “Looking at vehicles

on the road: A survey of vision-based vehicle detection,

tracking, and behavior analysis,” IEEE Transactions on
Intelligent Transportation Systems, vol. 14, no. 4, pp.

1773–1795, 2013.

[13] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo,

D. Mostefa, and P. Soundararajan, “The clear 2006 eval-

uation,” vol. 4122, 04 2006, pp. 1–44.

Volume 43, Number 3, September 2022 Ada User Jour na l

187

The Work of Proof in SPARK

Claire Dross
AdaCore, 75009 Paris, France; email: dross@adacore.com

Abstract

Since Ada targets safety-critical programs, many fea-
tures of the language introduce safety nets in the form
of language-mandated checks. Even if compile-time ver-
ification is preferred to runtime verification whenever
possible, many of these checks are still done dynam-
ically, an exception being raised in case of violation.
The addition of contracts in Ada 2012 follows a similar
trend, as a violation causes an exception to be raised
when the code is compiled with assertions enabled. The
SPARK tool aims at statically verifying that language-
mandated checks and the user-written contracts can
never fail at runtime. In this article, we give insights on
how the tool works in practice and what are the most
important challenges as of today.

Keywords: SPARK, proof of program, deductive verifi-
cation.

1 Introduction
Since Ada targets safety-critical programs, many features of

the language introduce safety nets in the form of language-

mandated checks. For example, a check is made on every

signed integer computation to make sure that it will not exceed

the bounds of the underlying machine type. Even if compile-

time verification is preferred to runtime verification whenever

possible, many of these checks are still done dynamically.

If they fail, an exception is raised at runtime. For example,

calling the procedure Increment below on Integer’Last

will result in an exception as the increment of X will overflow.

procedure Increment (X : in out Integer) is
begin

X := X + 1;
end Increment;

The addition of contracts in Ada 2012 follows a similar trend.

If they are enabled at compilation, the boolean expressions

supplied as pre and postconditions of subprograms or as type

invariants are evaluated at runtime, and an exception is raised

if this evaluation returns False. As an example, consider the

following annotation for the procedure Increment:

procedure Increment (X : in out Integer) with
Pre ⇒ X �= Integer’Last,
Post ⇒ X > X’Old;

If Increment is called on Integer’Last and the precondi-

tion is enabled at compilation, an exception will be raised as

its boolean expression evaluates to False. Similarly, if a bug

is introduced in the implementation of Increment so that its

parameter X is no longer increased by the call, an exception

will be raised when checking the postcondition.

SPARK is a static analysis tool for Ada. It allows users to

verify that the language-mandated checks and the user-written

contracts in their program will never fail at runtime without

running the program. It is open-source1 and available through

the Alire package manager. In this article, we give insights

on how the tool works in practice and what are the most

important challenges in its implementation as of today.

2 Formal Proof of Programs
SPARK verifies programs at the source code level on all possi-

ble inputs at once using deductive verification [1, 2]. Figure 1

schematizes the different steps of the verification process.

First of all, the user is responsible for annotating their pro-

gram with contracts. These contracts can express properties

the user wants to verify on their code, but we will see later

that some contracts can be necessary even to verify language

mandated checks. Then, the tool transforms the annotated

program into a set of logical formulas called verification con-
ditions. There can be one verification condition or more for

each property that is verified on the Ada program, be it a

check or a user-written contract. Finally, the verification con-

ditions are given to automated solvers. If all the formulas are

verified, the program is correct.

Deductive verification is modular on a per subprogram basis.

This is necessary for the verification process to be scalable in

practice. Contracts are used to summarize what the guaran-

tees are for each subprogram, both from the caller’s and from

the callee’s point of view. When analysing the subprogram

itself, SPARK verifies that, for all inputs that fulfill the precon-

dition, the subprogram executes safely (there are no runtime

errors) and the postcondition holds on subprogram exit. As an

example, let us consider the procedure Increment presented

before. To be able to verify its body, it is necessary for the

user to supply a precondition preventing it from being called

with Integer’Last. With the contract proposed before, the

SPARK tool is able to verify both that no overflows can occur

during the increment, and that the postcondition necessarily

holds at the end of the call.

As the verification is modular, the SPARK tool does not

look at the body of called subprograms, it only considers

the contract: the precondition is checked and the postcondi-

tion is used to get information about the values of the objects

modified by the subprogram after the call. As an example,

let us consider the procedure Foo defined below. It calls

1https://github.com/AdaCore/spark2014

Ada User Jour na l Vo lume 43, Number 3, September 2022

188 The Work of Proof in SPARKThe Work of Proof

Figure 1: Deductive verification in SPARK

Increment twice in a row on a variable initially initialized

to 0:

procedure Foo is
X : Integer := 0;

begin
Increment (X);
Increment (X);

end Foo;

For each call to Increment, the analysis tool needs to verify

that the precondition holds. For the first one, the verification

succeeds. Indeed, X is known to be 0 before the call, which

is not Integer’Last. The verification fails however for the

second call. Looking at the body of Increment, we know

that X should be 1 at this point, so the precondition would

evaluate to True if we were to execute Foo. The SPARK tool

however, will fail to verify it. As it works modularly on a per-

subprogram basis, it cannot look at the body of Increment

when analysing Foo. Instead it looks at its postcondition,

which is not precise enough to rule out the possibility of X

being Integer’Last after the first call.

In general, to verify a program using SPARK, it is necessary

to annotate all subprograms with contracts precise enough

to entail together the correction of the complete program.

The preconditions should be strong enough to verify the sub-

programs themselves, and the postconditions to verify their

callers. In our example, if we change the postcondition of

Increment as below, then both procedures can be automati-

cally verified:

procedure Increment (X : in out Integer) with
Pre ⇒ X �= Integer’Last,
Post ⇒ X = X’Old + 1;

Unfortunately, the underlying logic used for deductive pro-

gram verification is undecidable. As a result, it is not possible

for such a tool to be able to decide on every program whether

it is correct or not. Some tools, commonly called bug finders,

focus on reducing the number of false alarms - they try to

only report a bug when they are sure that there is one. SPARK

on the other hand is a sound verification tool. If it can verify

a program, then the program is correct2. However, it is not

complete - if the verification fails, that does not necessarily

mean that the program is incorrect. It is also possible that

some contracts are missing, or that they are not sufficiently

precise to verify the program. As we have seen before, it

is the case of the postcondition of Increment presented in

Section 1 which is not strong enough to verify the procedure

2The soundness of the tool relies on assumptions. For example, since

the verification is done on the source code, it assumes that the program is

compiled correctly.

Foo. Finally, the background solvers might also be unable to

verify a valid formula in the allocated time. This sometimes

makes it difficult for users to understand why the verification

of a program is failing. The SPARK tool tries to help the in-

vestigation by providing counterexamples whenever possible.

Unfortunately, the incompleteness of the background solvers

means that this is not always possible, in particular when

the program becomes more complex. Efficient and reliable

counterexample generation for deductive verification is still

being researched [3, 4].

3 Why3 as an Intermediate Language
The SPARK tool works by using in the background bleed-

ing edge technology developed by academic researchers in

the formal verification domain. The Why3 platform [5], de-

veloped at Inria in France, performs deductive verification

on a ML like semi-executable language called WhyML. It

generates the verification conditions and translates them into

the input language of various automated or manual solvers.

As schematized in Figure 2, Why3 is used as a backend by

several tools targeted at mainstream programming languages

such as C [6] or Java and more recently Rust [7]. SPARK is

such a frontend for Ada.

Compared to other frontends of Why3, SPARK can take ad-

vantage of the constraints imposed by the Ada language to

reduce the need for user-written annotations and to make

the verification process more efficient. In particular, the con-

straints imposed by the expressive type system of Ada are

reflected on the Why3 side through assumptions. As an exam-

ple, let us consider the record type My_Rec defined below. It

has a discriminant Length which is used to bound the length

of its array component F. The elements of the array are natural

numbers bounded by a constant Max.

subtype My_Nat is Natural range 0 .. Max;
type Nat_Array is array (Positive range <>)

of My_Nat;
type My_Rec (Length : Natural) is record

F : Nat_Array (1 .. Length);
end record;

In the generated WhyML code, values of type My_Rec are

assumed to fulfill its dynamic invariant: a predicate which

gives both the bounds of the array component F and the range

of its elements. It is defined as follows:

predicate dynamic_invariant (x : my_rec) =
first x.rec__f = 1

∧ last x.rec__f = x.rec__length
∧ ∀ i : int.

first x.rec__f ≤ i ≤ last x.rec__f →
0 ≤ get x.rec__f i ≤ max

Volume 43, Number 3, September 2022 Ada User Jour na l

C. Dross 189

Figure 2: The Why3 platform for deductive verification

In general, the translation from Ada to WhyML does not at-

tempt to preserve the executable semantics of the program, but

rather to produce the simplest verification conditions possible

while retaining soundness. In fact, the generated WhyML pro-

gram is not even executable. For example, all subprograms

are translated twice: once to generate the verification con-

ditions for their body, and once to verify their callers. This

has several advantages. In particular, it makes it possible

to translate subprograms without worrying about the order

of declarations and possible mutual recursivity. Indeed, fol-

lowing the order in which the Ada subprograms are declared

would not be enough to avoid forward references in WhyML,

as Ada allows calling functions which have not been defined

yet inside contracts. It also allows the SPARK tool to use

different contracts for the subprogram depending on the call-

ing context. This is important to handle dispatching calls on

tagged primitives in particular.

As an example, here is the declaration of Increment used

for the verification of Foo. It is an abstract function without a

body. Its writes contract states that it modifies its input x.

The requires and ensures annotations are direct transla-

tions of the Ada contract. The fact that the parameter x fulfills

the constraints of its Ada type after the call is made explicit

in the postcondition.

val increment (x: ref int) : unit
writes {x}
requires {!x �= 2147483647}
ensures

{ !x > old !x ∧ dynamic_invariant !x }

When verifying increment itself, the translation is quite dif-

ferent. First of all, the parameters are declared as global

variables instead of actual parameters of the subprogram. It

makes it easier to verify entities nested inside the subprogram

(a nested package or a nested subprogram for example). Then,

while the Why3 translation of Increment has a postcondi-

tion, it does not have a precondition. This allows the SPARK

tool to verify that the Ada precondition is self-guarded, that is,

it can be evaluated in any context without raising an exception.

Afterward, the Ada precondition is assumed before verifying

the rest of the subprogram:

(* The parameters of Increment are global

variables *)
val x : ref int;
let increment__def (_ : unit)

ensures { !x.int__content > old !x }
=

(* Assume that x follows the Ada typing
rules *)

assume { dynamic_invariant ! x };
(* Check that no runtime error can occur

while evaluating the precondition *)
(begin

ensures { true }
let _ = !x �= 2147483647 in ()

end);
(* Assume the precondition of Increment *)
assume { !x �= 2147483647 };
...

4 Different Solvers in the Background
To discharge the verification conditions, SPARK relies mostly

on Satisfiability Modulo Theory (SMT) solvers. These auto-

mated solvers are well-suited for program verification because

they support natively theory symbols, that is, symbols which

have a generally understood meaning outside of the context

of the verification condition. These symbols include in partic-

ular integer or floating point literals and arithmetic operators,

which occur often in programs. In general, a verification

condition coming from an Ada program references symbols

from several theories. As an example, the dynamic invariant

of type My_Rec defined in Section 3 uses symbols from:

• the theory of linear arithmetic on mathematical integer

types for the integer literals and the comparison opera-

tors,

• the theory of abstract data-types for record components,

and

• the theory of infinite immutable arrays for the access to

the array component.

It also uses the universal logical equality symbol, first-order

quantification, and uninterpreted function symbols like max.

As stated before, the resulting logic is undecidable. It means

that it is not possible to design an algorithm which would

be able to determine on all such logical formulas whether

they are valid or not without errors. The solvers used in the

Ada User Jour na l Vo lume 43, Number 3, September 2022

190 The Work of Proof in SPARK

backend of SPARK are all sound - they never verify an invalid

formula. However they are incomplete, so they might not be

able to verify valid formulas. In particular, certain constructs

are not efficiently supported by any solvers and are the subject

of active research. Here are some of these topics:

• first-order quantification, in particular with alternating

quantifiers,

• non-linear integer arithmetic, which is undecidable even

on quantifier free formulas, and

• conditions involving symbols from different theories -

floating point numbers and integers for example.

To alleviate these concerns, SPARK takes advantage of the

capability of the Why3 platform to target different provers. By

default, it uses three SMT solvers as a backend, Alt-Ergo [8],

cvc5 [9], and Z3 [10]. All are independent open-source tools

developed, at least initially, as part of a research endeavor.

The three solvers are run on every verification condition, one

after the other, until the condition is proved. This allows users

to take advantage of the different strengths of these solvers.

In addition, as Why3 makes it possible to tune the translation

specifically for each solver, the SPARK tool increases the

diversity between the solvers by purposefully encoding the

problem differently for each of them. Indeed, the best way

to encode a feature of the language might depend on the

use-case, and having several increases the chance of finding

a proof. As an example, consider modular integer types.

They can be encoded either as a mathematical integer, or as a

bitvector of fixed size. The first encoding is often preferable

when doing standard integer manipulation as well as when

converting toward other numeric types such as signed integers

and floating-point numbers. The second makes the support of

bitwise manipulation more effective. To get the advantages

of both worlds, the SPARK tool uses bitvectors for cvc5 and

Z3, and mathematical integers for Alt-Ergo.

Even if SMT solvers are better suited for program verification,

the use of other kinds of solvers, which might not suffer

from the same caveats, is also investigated. In particular,

constraint solvers could improve the provability on quantifier-

free verification conditions involving conversions between

values of different theories. The solver COLIBRI [11] is

already available from the SPARK verification tool, though it

is not used by default yet.

In general, choosing which provers to run and with which

options and encoding is a question of trade-off. Running

one more prover is time consuming, as it will be launched

on all the verification conditions, and possibly run up-to the

provided time-limit. This is why it is important to limit the

number of solvers used by the tool, and to assess the efficiency

and interest of each new addition thoroughly.

5 Expressivity versus Efficiency
Taking a step back, we have seen that verifying Ada programs

using deductive verification is complex, and requires user

input, in particular in the form of contracts. To make the

tool usable in practice, it is important to find a balance in the

accepted language between expressivity and ease of annota-

tion and verification. For that, the SPARK tool introduces

simplifying assumptions. At the simplest, these assumptions

are features of Ada which are not supported by the tool, like

side-effects in functions, or handling of exceptions. Others

are more complex, for example all values are assumed to

be valid, and no two objects can be aliases of each others -

modifying an object cannot affect another object in a visible

way.

For the SPARK tool to remain sound, it is important that

it verifies that these assumptions are valid on the program.

This is generally ensured by a separate analysis done by the

SPARK tool, prior to running deductive verification. As part

of this effort, a program flow analysis is run on the code to

determine the effect of all subprograms and the global data

that they access. Based on the results of this analysis, it

is possible for the SPARK tool to ensure that functions do

not have side-effects, and that no uninitialized variables can

be read, which helps to rule out invalid values. Absence of

aliases in programs using pointers is enforced through an

ownership policy with its own specialized analysis.

Simplifying assumptions need to be chosen carefully so they

are both effective - they reduce significantly the complexity of

either the verification itself or the manual annotation process

- and not overly restrictive. The right balance is generally

hard to find, and can be refined in subsequent releases of

the tool. For example, by default, SPARK enforces correct

initialization of variables by a strict initialization policy: all

inputs of a subprogram shall be entirely initialized at the point

of call and all its outputs shall be entirely initialized when

the subprogram returns. This restriction is useful, as it saves

the user from having to annotate all their subprograms with

contracts about initialization of values. However, it makes it

impossible to annotate and verify a program which initializes

a record component by component in separate procedures as

the program below:

type Two_Fields is record
F, G : Integer;

end record;

procedure Init_F (X : in out Two_Fields) is
begin

X.F := 0;
end Init_F;

procedure Init_G (X : in out Two_Fields) is
begin

X.G := 0;
end Init_G;

procedure Process (X : in out Two_Fields) is
...

procedure Main is
X : Two_Fields;

begin
Init_F (X);
Init_G (X);
Process (X)

end Main;

Since the parameter X of Init_F has mode in out, it is an

input of the subprogram and SPARK will try to verify that it

Volume 43, Number 3, September 2022 Ada User Jour na l

C. Dross 191

Figure 3: The SPARK language

is entirely initialized before the call to Init_F in Main. Ob-

viously, it is not the case. Unfortunately, changing the mode

of the parameter X of Init_F to out will not solve the issue

as the tool will then try to verify that X is entirely initialized

by Init_F, which is not the case either. To alleviate this

issue, more recent versions of SPARK allow users to annotate

their objects to exempt them from the initialization policy.

However, it then becomes necessary for the user to manually

add information about initialization in subprogram contracts:

type Two_Fields is record
F, G : Integer;

end record;

procedure Init_F (X : in out Two_Fields) with
Relaxed_Initialization ⇒ X,
-- X is no longer subjected to the
-- initialization policy of SPARK.
Post ⇒ X.F’Initialized
-- X.F is initialized by Init_F
and (X.G’Initialized = X.G’Initialized’Old)
-- X.G is left as it was

is
begin

X.F := 0;
end Init_F;

procedure Init_G (X : in out Two_Fields) with
Relaxed_Initialization ⇒ X,
Post ⇒ X.G’Initialized
and (X.F’Initialized = X.F’Initialized’Old)

is
begin

X.G := 0;
end Init_G;

procedure Process (X : in out Two_Fields) is
...

-- The parameter X is not exempted from
-- initialization checks.

procedure Main is
X : Two_Fields with Relaxed_Initialization;

begin
Init_F (X);
Init_G (X);
-- Complete initialization of X is
-- checked at this point.
Process (X);

end Main;

The parameter X of Init_F is exempted from the initial-

ization policy, so SPARK no longer tries to verify that it is

initialized before the call in Main. Without additional an-

notations, it does not assume that it is initialized afterward

either. It makes it necessary for the user to add a postcon-

dition to Init_F to say that it initializes the component F

of its parameter. The postcondition also says that the com-

ponent G is not uninitialized by the call. It is not necessary

to verify Main, as Init_F is called before Init_G, but it

preserves the symmetry between Init_F and Init_G. The

parameter X of Process does not need to be exempted from

the initialization policy, as Process is necessarily called on

entirely initialized data. As a result, we do not need to supply

a contract about initialization for it. With these annotations,

the code is entirely verified by the SPARK tool.

All these restrictions imposed by SPARK on top of Ada define

a language subset. The language supported as input of the

SPARK tool is called the SPARK language. It is not a strict

subset of Ada, as can be seen on Figure 3, as it also introduces

additional annotation features. As an example, contract cases
are used to specify a contract as several smaller contracts with

their own precondition and postcondition, and code which is

only used for the specification process can be marked as ghost
so that it is removed by the compiler when the assertions are

not enabled at runtime. This language evolves continuously

as more features are added to the tool. Major additions to the

SPARK language are discussed online3 and community input

is always valuable.

6 Conclusion
SPARK is a static analysis tool for Ada. It verifies that no

language mandated checks can fail at runtime, and that user

written contracts always hold. The analysis is modular on a

per subprogram basis: when analyzing a subprogram, the tool

only uses the contract of called subprograms and not their

bodies. As a consequence, the tool requires users to annotate

all their subprograms with contracts precise enough to ensure

together the correction of the whole program.

The SPARK tool is based on the Why3 plateform for program

verification. The program and the contracts are transformed

3https://github.com/AdaCore/ada-spark-rfcs

Ada User Jour na l Vo lume 43, Number 3, September 2022

192 The Work of Proof in SPARK

into a set of logical formulas which are then verified by auto-

matic solvers. The solvers used as the backend of SPARK are

mostly SMT solvers. They work on first-order formulas with

interpreted symbols coming from various theories - integer

and floating-point arithmetic, bitvectors... This logic is unde-

cidable. To work around prover’s limitations, SPARK uses

several automatic solvers for the verification.

To make both the verification and the manual annotation

process tractable, SPARK introduces simplifying assumptions.

These assumptions are associated to language restrictions

which are verified by the tool. Both the SPARK proof tool and

the related language restrictions are evolving continuously.

For example, support for access types and its ownership policy

have been added and extended in the last couple of years.

Precise support for handling of exceptions is being discussed

currently.

References
[1] C. A. R. Hoare, “An axiomatic basis for computer

programming,” Communications of the ACM, vol. 12,

no. 10, pp. 576–580, 1969.

[2] E. W. Dijkstra, “Guarded commands, nondeterminacy

and formal derivation of programs,” Communications of
the ACM, vol. 18, no. 8, pp. 453–457, 1975.

[3] S. Dailler, D. Hauzar, C. Marché, and Y. Moy, “Instru-

menting a weakest precondition calculus for counterex-

ample generation,” Journal of logical and algebraic
methods in programming, vol. 99, pp. 97–113, 2018.

[4] B. Becker, C. Lourenço, and C. Marché, “Explaining

counterexamples with giant-step assertion checking,” in

F-IDE 2021-6th Workshop on Formal Integrated Devel-
opment Environments, Electronic Proceedings in Theo-

retical Computer Science, 2021.

[5] J.-C. Filliâtre and A. Paskevich, “Why3—where pro-

grams meet provers,” in European symposium on pro-
gramming, pp. 125–128, Springer, 2013.

[6] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Sig-

noles, and B. Yakobowski, “Frama-c,” in International
conference on software engineering and formal methods,

pp. 233–247, Springer, 2012.

[7] X. Denis, J.-H. Jourdan, and C. Marché, The Creusot
Environment for the Deductive Verification of Rust Pro-
grams. PhD thesis, Inria Saclay-Île de France, 2021.

[8] S. Conchon, A. Coquereau, M. Iguernlala, and A. Meb-

sout, “Alt-ergo 2.2,” in SMT Workshop: International
Workshop on Satisfiability Modulo Theories, 2018.

[9] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lach-

nitt, M. Mann, A. Mohamed, M. Mohamed, A. Niemetz,

A. Nötzli, et al., “cvc5: a versatile and industrial-

strength smt solver,” in International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, pp. 415–442, Springer, 2022.

[10] L. d. Moura and N. Bjørner, “Z3: An efficient smt

solver,” in International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems,

pp. 337–340, Springer, 2008.

[11] B. Blanc, C. Junke, B. Marre, P. Le Gall, and O. An-

drieu, “Handling state-machines specifications with ga-

tel,” Electronic Notes in Theoretical Computer Science,

vol. 264, no. 3, pp. 3–17, 2010.

Volume 43, Number 3, September 2022 Ada User Jour na l

 193

Ada User Journal Volume 43, Number 3, September 2022

Join Ada-Europe!

Become a member of Ada-Europe and support Ada-
related activities and the future development of the
Ada programming language.

Membership benefits include receiving the quarterly
Ada User Journal and a substantial discount when
registering for the annual Ada-Europe conference.

To apply for membership, visit our web page at

http://www.ada-europe.org/join

194

Volume 43, Number 3, September 2022 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest

c/o KU Leuven

Dept. of Computer Science

Celestijnenlaan 200-A

B-3001 Leuven (Heverlee)

Belgium

Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard

Ada-Deutschland
Dr. Hubert B. Keller CEO

ci-tec GmbH

Beuthener Str. 16

76139 Karlsruhe

Germany

+491712075269

Email: h.keller@ci-tec.de
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen

115, avenue du Maine

75014 Paris

France
URL: www.ada-france.org

Ada-Spain
attn. Julio Medina

Facultad de Ciencias

Universidad de Cantabria

Avda. de los Castros s/n

39005 Santander

Spain

Phone: +34-942-201477

Email: julio.medina@unican.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott

Altweg 5

8450 Andelfingen

Switzerland

Phone: +41 52 624 2939

e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels

Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

1090 Rue René Descartes
13100 Aix en Provence

France
Contact: Patricia Langle

patricia.langle@systerel.fr
www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki

Finland
Contact: Niklas Holsti

niklas.holsti@tidorum.fi
www.tidorum.fi

3271 Valley Centre Drive,Suite 300
San Diego, CA 92069

USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

Enterprise House
Baloo Avenue, Bangor

North Down BT19 7QT
Northern Ireland, UK

enquiries@sysada.co.uk
sysada.co.uk

Corso Sempione 68
20154 Milano

Italy
Contact: Massimo Bombino

massimo.bombino@vector.com
www.vector.com

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

46 Rue d’Amsterdam
F-75009 Paris

France
Contact: Jamie Ayre
sales@adacore.com
www.adacore.com

