

Ada User Journal Volume 43, Number 4, December 2022

ADA
USER
JOURNAL

Volume 43

Number 4

December 2022

Contents
Page

Editorial Policy for Ada User Journal 196

Editorial 197

Quarterly News Digest 198

Conference Calendar 213

Forthcoming Events 217

AEiC 2022 BoF Session

 J. P. Rosen. “Report on the ASIS BoF Session: The Future of ASIS and Vendor Independent Tools” 221

Proceedings of the “Workshop on Challenges and New Approaches for Dependable and

Cyber-physical Systems Engineering” of AEiC 2022

 W. John et al. “ANIARA Project - Automation of Network Edge Infrastructure and Applications

with Artificial Intelligence” 223

 A. Balador, S. Sinaei, M. Pettersson, I. Kaya. “DAIS Project - Distributed Artificial Intelligence

Systems: Objectives and Challenges” 227

 A. Bagnato, A. Cicchetti, L. Berardinelli, H. Bruneliere, R. Eramo. “AI-Augmented Model-Based

Capabilities in the AIDOaRt Project: Continuous Development of Cyber-physical Systems” 230

 A. Bagnato, J. Krasnodębska. “MORPHEMIC - Optimization of the Deployment and Life-Cycle

Management of Data-Intensive Applications in the Cloud Computing Continuum” 235

 A. Imbruglia, D. Cancila, M. Settembre. “5G Communication and Security in Connected Vehicles” 240

 R. Sousa, E. Sabate, M. González-Hierro, A. Barros, C. Zubia, L. M. Pinho, E. Kartsakli.

“Managing Non-functional Requirements in an ELASTIC Edge-Cloud Continuum” 245

Proceedings of the “HILT’22 - Supporting a Rigorous Approach to Software Development

Workshop”

 C. Dross. “Containers for Specification in SPARK” 249

 S. Tucker Taft. “Rigorous Pattern Matching as a Language Feature” 255

 D. Larraz, C. Tinelli. “Finding Locally Smallest Cut Sets using Max-SMT” 261

 L. Humphrey. “Basic Formal Verification of a Waypoint Manager for Unmanned Air Vehicles

in SPARK” 269

Ada-Europe Associate Members (National Ada Organizations) 277

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

198

Volume 43, Number 4, December 2022 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 198
Ada-related Events 198
Ada-related Resources 200
Ada-related Tools 201
References To Publications 205
Ada and Other Languages 205
Ada Practice 206

[Messages without Subject:/Newsgroups:
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

Do not miss the upcoming Ada-Europe
2023 conference, for which an
announcement can be found in this issue
[1]. The conference will be celebrated, as
always, in mid-June and will take place
this year in lovely Lisbon.

I will also take this opportunity to
congratulate Fabien Chouteau on
receiving the 2022 ACM SIGAda Award
for Outstanding Ada Community
Contributions [2]. This award is entirely
deserved, and I look forward to seeing his
future initiatives to promote the Ada
language in the open source community.

Finally, with this issue, we are mostly
caught up and back on track with our
regular news schedule. Remember that the
last News Digest included only timely
announcements, as the issue devoted most
of its space to technical papers.

[1] “CfC 27th Ada-Europe Int. Conf.
Reliable Software Technologies”, in
Ada-related Events.

[2] “Winners of 2022 ACM SIGAda
Awards”, in Ada-related Events.

Sincerely,
Alejandro R. Mosteo.

Ada-related Events

ACM SIGAda HILT'22
Workshop on Supporting
Rigorous S/W Development

[Event in the past, for the record. —arm]

From: Tucker Taft
<tucker.taft@gmail.com>

Subject: Re: ACM SIGAda HILT'22
Workshop on Supporting Rigorous S/W
Development -- Oct 14, 2022

Date: Tue, 4 Oct 2022 13:59:44 -0700
Newsgroups: comp.lang.ada

There is now an online option for
attending the ACM SIGAda HILT'22
workshop featuring Niko Matsakis and
Rustan Leino.

Anyone registered for the workshop will
receive a link allowing use of Zoom
and/or the "Whova" app to attend the
workshop remotely. The organizers of the
associated conference (ASE'22) have
indicated that remote attendees may
register at the lowest attendee price
("Student Member"). So if you or a
colleague might be interested in
participating in the workshop remotely,
please register soon for the October 14th
workshop, at: https://conf.researchr.org/
attending/ase-2022/registration
and indicate "Student Member" as your
category of attendee.

[Original announcement omitted. —arm]

For more information see:
https://conf.researchr.org/track/
ase-2022/ase-2022-workshop-hilt-22

#formalmethods #softwareengineering
#ada #rust #spark #dafny #ACM #ASE

FOSDEM 2023: Call for
Devroom

From: Mockturtle
<framefritti@gmail.com>

Subject: FOSDEM 2023: call for devroom.
Deadline: 18/10

Date: Sun, 9 Oct 2022 10:11:14 -0700
Newsgroups: comp.lang.ada

Dear all,
I just discovered that on 29/9 FOSDEM
2023 published the Call for DevRoom.

The deadline for the proposal is 18/10.

https://fosdem.org/2023/news/
2022-09-29-call_for_devrooms/

From: Dirk Craeynest
<dirk.craeynest@gmail.com>

Date: Sun, 9 Oct 2022 23:17:28 -0700

> I just discovered that on 29/9 FOSDEM
2023 published the Call for DevRoom.

We've been working behind the scenes on
this already. Stay tuned for an
announcement with more details on the
AdaFOSDEM mailing list in the very near
future!

Fer and Dirk

Winners of 2022 ACM
SIGAda Awards

From: Tucker Taft
<tucker.taft@gmail.com>

Subject: ANN: Winners of 2022 ACM
SIGAda Awards

Date: Fri, 21 Oct 2022 11:54:27 -0700
Newsgroups: comp.lang.ada

ACM Special Interest Group on Ada
(SIGAda) is pleased to announce the
following SIGAda awards for 2022.

==========
Winner of the 2022 Robert Dewar Award
for Outstanding Ada Community
Contributions, for broad, lasting
contributions to Ada technology and
usage:

Fabien Chouteau

Fabien Chouteau has been the lead of
AdaCore's Ada Community outreach
activities for many years. He has been the
energy behind the "Make With Ada" and
"Crate of the Year" contests, and has
invigorated the Ada hobbyist market by
encouraging support of amateur Ada
champions, fostering the development of
the excellent Alire package manager for
Ada, and working to move all AdaCore
libraries from GPL to a more permissive
("Apache 2.0") license.

==========
Winner of the 2022 ACM SIGAda
Distinguished Service Award, for
exceptional contributions to SIGAda
activities and products:

Luis Miguel Pinho

Luis Miguel Pinho (PhD SMIEEE
SMACM) is a Professor and Researcher
in the Computer Engineering Department
of the Polytechnic of Porto - School of

mailto:amosteo@unizar.es

Ada-re lated Events 199

Ada User Journal Volume 43, Number 4, December 2022

Engineering (ISEP), in Portugal. Miguel
is the current editor of Ada Letters and
serves as the SIGAda Secretary-
Treasurer. He was a member of the
Research Center in Real-Time and
Embedded Computing Systems, and
Executive Director of the Porto Research,
Technology & Innovation Center. He
served as General Chair and Program Co-
Chair of Ada-Europe 2006 and General
Co-Chair of ARCS 2015, was a Keynote
Speaker at RTCSA 2010 and Program
Co-Chair of Ada-Europe 2012, Ada-
Europe 2016 and RTNS 2016. He was
Editor-in-Chief of the Ada User Journal,
and is a member of the HiPEAC network
of excellence.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Wed, 26 Oct 2022 02:39:03 -0700

Thanks a lot Tuck,
I am honored to receive the ACM SigAda
award for my contribution to the Ada
community.

It's been a blast working towards the
broader adoption of Ada/SPARK,
improving the ecosystem, and seeing the
community evolve along the years. And
this is a good opportunity for me to thank
everyone who contributed to this effort,
and/or who believed in our vision for the
future of the Ada/SPARK community.

There is still a lot to do obviously, and I
think the biggest challenge is to show
those who have already seen Ada in the
past how the language and its ecosystem
have evolved. But we entered an exciting
time for Ada/SPARK, as more and more
people are questioning their choice of
programming languages.

In my opinion, the most important topics
for the future of Ada/SPARK are:

First, foster collaboration and welcome
newcomers. This is why Alire and its
ecosystem are game changing.

Second, spread awareness on the amazing
power of SPARK, and have it recognized
as the truly bleeding edge technology it is.

Third, use the technology to show what it
can do. Since my first "Make With Ada"
blog post in 2015, I have always been
convinced that the best way to advocate
for a technology is to use it. This is Make
With Ada means to me.

Happy hacking!

No Ada DevRoom in
FOSDEM 2023

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Subject: No Ada DevRoom in FOSDEM
2023, alternative DevRooms and Ada-
Europe support

Date: Tue, 8 Nov 2022 12:41:17 +0100
Newsgroups: comp.lang.ada

Dear Ada community,

Our proposal for an Ada Developer Room
for FOSDEM 2023 has been declined. I
asked whether we could have a virtual
DevRoom just like in FOSDEM 2022, but
it seems unlikely. This means Ada will
(most likely) not take part in the new
edition of FOSDEM. We are saddened by
this decision, but the amount of proposals
was indeed very large: 88 DevRoom
proposals were submitted!

Nonetheless, we would like to encourage
Ada developers to submit presentations to
other DevRooms that may fit your
interests You can find the accepted
DevRooms in [1]. I think the rooms that
could be of interests to the Ada
community are "Confidential
Computing", "Embedded, Mobile and
Automotive", "FOSS Educational
Programming Languages", "Microkernel
and Component-based OS", "Open Source
Firmware, BMC and Bootloader" and
"Security". However, take a look at all the
proposals! Maybe you are writing some
RISC-V or networking software in Ada,
and there is a DevRoom just for it Please
keep the AdaFOSDEM mailing list [2]
informed about submissions and
definitely about accepted proposals: we'll
build a consolidated list of Ada-related
talks at FOSDEM 2023, as we did before
[3]. If you have any questions or issues,
we will gladly help you where we can.

We are also happy to announce that Ada-
Europe [4], after learning that there would
be no Ada DevRoom in FOSDEM, has
opened the possibility of adding a new
"DevRoom like" track in their 2023
conference [5]. The Ada-Europe
conference will take place in Lisbon
between the 13 and 16 of June, 2023. If
you are interested in this possibility,
please, contact Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> to let
him know.

Best regards,
The Ada FOSDEM team

[1] https://fosdem.org/2023/news/
2022-11-07-accepted-developer-rooms/

[2] http://listserv.cc.kuleuven.be/archives/
adafosdem.html

[3] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/21/
210206-fosdem.html

[4] http://www.ada-europe.org/

[5] http://www.ada-europe.org/
conference2023/cfp.html

Advent of Code 2022

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Advent of Code 2022
Date: Sun, 4 Dec 2022 03:50:09 -0800
Newsgroups: comp.lang.ada

In case you've missed it:
https://adventofcode.com/

There is even a chat room for Adaists
about it @ https://forum.ada-lang.io/

Enjoy!

Happy Birthday, Ada!

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Subject: Happy Birthday, Ada!
Date: Sat, 10 Dec 2022 11:35:20 +0100
Newsgroups: comp.lang.ada

Born this date in 1815/1980.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Sat, 10 Dec 2022 03:31:23 -0800

Congratulation on Your Birthday,
Lady Ada

https://www.ada-deutschland.de/sites/
default/files/AdaTourCD/
AdaTourCD2004/Ada Magica/20.html

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 17 Dec 2022 05:47:10 -0600

Also the 10th Anniversary of Ada 2012.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Sun, 18 Dec 2022 04:35:38 -0800

> Also the 10th Anniversary of Ada 2012.
- Randy.

I would have bet that this date would be
the release of ISO 2022. So it's going to
be 2023?

CfC 27th Ada-Europe Int.
Conf. Reliable Software
Technologies

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC 27th Ada-Europe Int. Conf.
Reliable Software Technologies

Date: Tue, 20 Dec 2022 16:49:01 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

[CfC is included in the Forthcoming
Events Section. —arm]

Post-Ada Workshop at Ada-
Europe 2023

From: Marius Amado-Alves
<amado.alves@gmail.com>

Subject: Post-Ada at Ada-Europe 2023
anyone?

Date: Wed, 21 Dec 2022 09:25:22 -0800
Newsgroups: comp.lang.ada

Would anyone be interested in co-
organizing or attending a Post-Ada
workshop at Ada-Europe 2023 (Lisbon,
13-16 June)?

Any thoughts appreciated.

200 Ada-re lated Resources

Volume 43, Number 4, December 2022 Ada User Journal

The "Post-Ada" concept has been debated
here in CLA. It encompasses lessons
learnt from the three decade long Ada
experiment, ideas for betterment of the
language, and creation of languages anew,
like Parasail and King.

One way to approach the 'problem' would
be to classify features of Ada as "keep,
kill, or to be improved," for example:

- loop statements: keep

- function expressions: keep

- cursors: kill

- attributes vs. operations (tick vs. dot):
kill

- inheritance: to be improved

- Unicode characters and strings: to be
improved

A general issue could be to compare or
harmonize this approach with the future
(?) revision of Ada via Ada Issues.
Personally I feel Ada (202X) is already
too big to grow anymore. I suspect
compiler maintainers would agree, and
hope they could participate (sponsor?)

Maybe a full-day workshop with the
structure:

1. plenary: presentations, debate coffee
break

2. creation of a list of topics, of some kind
of organization lunch

3. parallel sessions by subgroups of
participants, by topic

coffee break

4. plenary: subgroup reports, debate,
integration, conclusion, maybe plans for
the future

Please relay at will.

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 21 Dec 2022 18:08:18 +0000

> Would anyone be interested in co-
organizing or attending a Post-Ada
workshop at Ada-Europe 2023 (Lisbon,
13-16 June)?

> Any thoughts appreciated.

I probably won't be able to attend; my life
is pretty much being destroyed right now.

> The "Post-Ada" concept has been
debated here in CLA. It encompasses
lessons learnt from the three decade
long Ada experiment, ideas for
betterment of the language, and
creation of languages anew, like
Parasail and King.

Really? No love for my "mad" :)
ramblings?

https://github.com/Lucretia/orenda

> One way to approach the 'problem'
would be to classify features of Ada as
"keep, kill, or to be improved," for
example:

> - loop statements: keep

> - function expressions: keep

> - cursors: kill

> - attributes vs. operations (tick vs. dot):
kill

Wrong. Attributes are a really interesting
and useful part of Ada and the solution in
Orenda to getting addresses of objects,
aspects would enable setting them on
creation.

> - inheritance: to be improved

> - Unicode characters and strings: to be
improved

Should be the basis of all text.

> A general issue could be to compare or
harmonize this approach with the future
(?) revision of Ada via Ada Issues.
Personally I feel Ada (202X) is already
too big to grow anymore. I suspect
compiler maintainers would agree, and
hope they could participate (sponsor?)

Won't happen, I've mentioned it before
and was told it was not going to happen.

Ada-related Resources

[Delta counts are from November 13th to
February 12th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 12 Feb 2023 12:44 CET
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: 8_291 (+91) members [1]

- LinkedIn: 3_418 (+19) members [2]

- Stack Overflow: 2_309 (+36)
 questions [3]

- Telegram: 159 (+6) users [4]

- Gitter: 151 (+11) people [5]

- Ada-lang.io: 101 (+51) users [6]

- Libera.Chat: 82 (+5) concurrent
 users [7]

- Twitter: 32 (-5) tweeters [8]
 49 (-36) unique tweets [8]

[1] http://www.reddit.com/r/ada/

[2] https://www.linkedin.com/groups/
114211/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://t.me/ada_lang

[5] https://gitter.im/ada-lang

[6] https://forum.ada-lang.io/u

[7] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

[8] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: 12 Feb 2023 12:44 CET
To: Ada User Journal readership

Rosetta Code: 920 (+1) examples [1]
 39 (=) developers [2]

GitHub: 763* (=) developers [3]

Alire: 324 (+15) crates [4]

Sourceforge: 240 (+2) projects [5]

Open Hub: 214 (=) projects [6]

Codelabs: 54 (+1) repositories [7]

Bitbucket: 31 (=) repositories [8]

AdaForge: 0** (-8) repositories [9]

*This number is unreliable due to GitHub
search limitations.

**This site is currently unreachable.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://alire.ada.dev/crates.html

[5] https://sourceforge.net/directory/
language:ada/

[6] https://www.openhub.net/tags?
names=ada

[7] https://git.codelabs.ch/?
a=project_index

[8] https://bitbucket.org/repo/all?
name=ada&language=ada

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: 12 Feb 2023 12:44 CET
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 23 (+4) 0.60%
 (+0.12%) [1]

- PYPL Index: 17 (=) 0.94%
 (+0.13%) [2]

- IEEE Spectrum* (general): 35 (=)
 Score: 1.16 [3]

- IEEE Spectrum (jobs): 33 (=)
 Score: 0.79 [3]

Ada-re lated Tools 201

Ada User Journal Volume 43, Number 4, December 2022

- IEEE Spectrum (trending): 32 (=)
 Score: 3.95 [3]

*The Spectrum ranking has been
revamped, no longer using the same
categories and rating methodology. Thus,
historic trends are omitted for this issue
except for the default category.

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/
top-programming-languages/

XMPP Public Ada MUCs

From: Alastair Hogge <agh@riseup.net>
Subject: Re: XMPP public Ada MUCs
Date: Wed, 7 Dec 2022 09:02:20 -0000
Newsgroups: comp.lang.ada

Someone has created an Ada MUC
[multi-user chat] at
xmpp:ada@conference.magicbroccoli.de.
It is low traffic at the moment.

Interested participates can sign up for free
XMPP accounts at:

https://404.city/

https://magicbroccoli.de/register/

Some information on getting started with
XMPP:

https://xmpp.org/getting-started/

New Process for Submitting
Comments about the Ada
Language

From: Tucker Taft
<tucker.taft@gmail.com>

Subject: New process for submitting
comments about the Ada language

Date: Sun, 18 Dec 2022 16:54:55 -0800
Newsgroups: comp.lang.ada

[The announcement with the new
commenting process for the Ada language
standard appears in page 220 of this same
issue —arm]

Ada-related Tools

AdaStudio-2022 Release
01/10/2022 Free Edition

From: Leonid Dulman
<leonid.dulman@gmail.com>

Subject: Announce: AdaStudio-2022 release
01/10/2022 free edition

Date: Sat, 1 Oct 2022 00:19:44 -0700
Newsgroups: comp.lang.ada

I'm pleased to announce AdaStudio-2022.

It’s based on Qt-6.4.0-everywhere
opensource (expanded with modules from
Qt-5.15: qtgraphicaleffects qtgamepad
qtx11extras qtwinextras), VTK-9.2.0,

FFMPEG-5.1.1, OpenCV-4.6.0, SDL2-
2.24.0, MDK-SDK(wang-bin)

Qt6ada version 6.4.0 open source and
qt6base.dll ,qt6ext.dll (win64),
libqt6base.so, libqt6txt.so(x86-64) built
with Microsoft Visual Studio 2022 x64
Windows, GCC amd64 in Linux.

Package tested with GNAT gpl 2020 Ada
compiler in Windows 64bit, Linux amd64
Debian 11.2

AdaStudio-2022 includes the following
modules: qt6ada, vtkada, qt6mdkada,
qt6cvada (face recognition, QRcode
detector, BARcode detection and others)
and voice recognizer.

Qt6Ada is built under GNU LGPLv3
license https://www.gnu.org/licenses/
lgpl-3.0.html.

Qt6Ada modules for Windows, Linux
(Unix) are available from Google drive
https://drive.google.com/drive/folders/
0B2QuZLoe-yiPbmNQRl83M1dTRVE?
resourcekey=0-b-M35gZhynB6-
LOQww33Tg&usp=sharing

WebPage is https://r3fowwcolhrz
ycn2yzlzzw-on.drv.tw/
AdaStudio/index.html

[Removed detailed file contents. —arm]

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.pdf"

The simple manual how to build Qt6Ada
application can be read in "How to use
Qt6ada.pdf"

HAC v.0.21

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Ann: HAC v.0.21
Date: Sat, 1 Oct 2022 02:37:27 -0700
Newsgroups: comp.lang.ada

HAC (HAC Ada Compiler) is a quick,
small, open-source Ada compiler,
covering a subset of the Ada language.

HAC is itself fully programmed in Ada.

Web site: http://hacadacompiler.sf.net/

From there, links to sources, and an
executable for Windows.

Source repositories:

#1 svn: https://sf.net/p/hacadacompiler/
code/HEAD/tree/trunk/

#2 git: https://github.com/zertovitch/hac

HAC is also available through Alire:
https://alire.ada.dev/

* Main improvements since v.0.2:

 - Added Virtual Machine Variables,
another means for exchanging data
between the HAC program and the
program hosting the VM.

 - SmallAda's tasking is working again in
its HAC reincarnation -- at least, for
some simple tasks.

 - HAL becomes HAT (HAC Ada
Toolbox), to avoid name collision with
HAL = "Hardware Abstraction Layer".

Enjoy!

LEA v.0.82

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Ann: LEA v.0.82
Date: Sat, 1 Oct 2022 02:46:10 -0700
Newsgroups: comp.lang.ada

LEA is a Lightweight Editor for Ada

Web site: http://l-e-a.sf.net/

Source repository #1:
https://sf.net/p/l-e-a/code/HEAD/tree/

Source repository #2:
https://github.com/zertovitch/lea

Improvements:

 - more ready-to-use Ada code samples

 - improved Dark Side look

 - indentation lines

 - improvements in navigation
(find/replace, compilation errors)

 - embeds HAC v.0.21; details: see other
post...

Features:

 - multi-document

 - multiple undo's & redo's

 - multi-line edit, rectangular selections

 - color themes, easy to switch

 - duplication of lines and selections

 - syntax highlighting

 - parenthesis matching

 - bookmarks

Currently available on Windows.

Gtk or other implementations are
possible: the LEA_Common[.*] packages
are pure Ada, as well as HAC.

Enjoy!

VIM Bundle for Ada

From: Martin Krischik
<martin.krischik@gmail.com>

Subject: VIM bundle for Ada
Date: Tue, 11 Oct 2022 10:19:57 -0700
Newsgroups: comp.lang.ada

I have updated the VIM bundle for Ada.
If you are using VIM you should consider
updating:

https://github.com/krischik/vim-ada

https://r3fowwcolhrz/

202 Ada-re lated Tools

Volume 43, Number 4, December 2022 Ada User Journal

GCC 12.1.0 macOS Cross-
compiler to arm-eabi

From: Simon Wright
<simon@pushface.org>

Subject: Ann: GCC 12.1.0 macOS cross-
compiler to arm-eabi

Date: Sat, 15 Oct 2022 20:11:45 +0100
Newsgroups: comp.lang.ada

Find the above at
https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.1.0-arm-eabi.

Built on Intel, also runs on Apple silicon
under Rosetta.

Scroll down to the bottom of the page to
find the installation package.

VisualAda for Visual Studio
2022 Release 1.0.0

From: Alex Gamper
<alby.gamper@gmail.com>

Subject: ANN: VisualAda (Ada Integration
for Visual Studio 2022) release 1.0.0

Date: Sat, 15 Oct 2022 15:06:20 -0700
Newsgroups: comp.lang.ada

Dear Ada Community,

VisualAda version 1.0.0 for Visual Studio
2022 has been released.

This is the initial release for Visual Studio
2022 and is a port of the existing
VisualAda version 1.3 for Visual Studio
2017/2019.

Please feel free to download the free
plugin from the following URL:
https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda-2022

VIM Plugin Update

From: Martin Krischik
<martin.krischik@gmail.com>

Subject: Another update to the VIM plugin.
Date: Tue, 25 Oct 2022 09:42:06 -0700
Newsgroups: comp.lang.ada

Since GPS support was dropped for
macOS having proper Vim plugins for
Ada has become kind of important again.
I added Alire compiler support so a press
of <F7> will compile again.

It's actually two updated:

https://github.com/krischik/
vim-ada/releases/tag/v_5.1.0

https://github.com/krischik/
vim-ada/releases/tag/v_5.2.0

Have fun.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Wed, 26 Oct 2022 00:21:19 -0700

Thanks Martin,

I also recommend using neovim instead of
vim, because of the builtin LSP
(language-server protocol) support. We
can then independently install the Ada
language server from AdaCore
(https://github.com/AdaCore/ada_languag
e_server), and with a small configuration
step we now have full cross-references in
Ada...

The main difficulty is loading the proper
project file. I will likely write a small blog
post on the subject, though I could simply
post the config I have here if there's
interest.

From: Martin Krischik
<martin.krischik@gmail.com>

Date: Wed, 26 Oct 2022 07:45:36 -0700

Thanks for the heads up.

[...]

Nice, there is a macOS version. But I
notice no dependencies to any GUI
framework and when I did try it out there
was indeed no GUI support. I'm actually
using GVim — the Vim with the
graphical user interface and I'm not going
back to a Terminal based editor. Still
good to know the option exists.

Gnu Emacs Ada Mode 7.3.1

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Gnu Emacs Ada mode 7.3.1
released

Date: Wed, 26 Oct 2022 06:29:58 -0700
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 7.3.1 is now
available in GNU ELPA; the beta version
has been promoted to release.

ada-mode and wisi are now compatible
with recent GNAT versions. The grammar
is updated to the proposed Ada 2022
version.

Incremental parse is provided. It still has
some bugs, so it is not enabled by default.
To try it:
(setq-default wisi-incremental-parse-
enable t).

Incremental parse often gets confused; to
recover, use M-x wisi-reset-parser. That
does a full parse of the entire buffer,
which can be noticeably slow in large
buffers.

See the NEWS files in
~/.emacs.d/elpa/ada-mode-7.3.1
and wisi-4.0.0, or at
http://www.nongnu.org/
ada-mode/, for more details.

The required Ada code requires a manual
compile step, after the normal list-
packages installation ('install.sh' is new in
this release):

cd ~/.emacs.d/elpa/ada-mode-7.3.1
./build.sh
./install.sh

This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

Gnu Emacs Ada Mode 8.0
Beta

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Gnu Emacs Ada mode 8.0 beta
released.

Date: Mon, 07 Nov 2022 16:12:29 -0800
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 8.0 beta is now
available in GNU ELPA devel for beta
testing.

All Ada mode executables can now be
built with Alire (https://alire.ada.dev/);
this greatly simplifies that process.

gpr-query and gpr-mode are split out into
separate GNU ELPA packages. You must
install them separately (Emacs install-
package doesn't support "recommended
packages" like Debian does).

Ada mode can now be used with Eglot;
this is controlled by new variables:

ada-face-backend - one of wisi, eglot,
none
ada-xref-backend - one of GNAT,
gpr_query, eglot, none
ada-indent-backend - one of wisi, eglot,
none

The indent and face backends default to
wisi if the wisi parser is found in PATH,
to eglot if the Ada LSP server is found,
and none otherwise. The xref backend
also looks for the gpr_query executable in
PATH.

The current AdaCore language server (23)
support face but not indent. The current
version of eglot (19) does not support
face. So for now, eglot +
ada_language_server only provides xref.

The AdaCore language server
ada_language_server is installed with
GNATStudio (which ada-mode will find
by default), or can be built with Alire. If
you build it with Alire, either put it in
PATH, or set gnat-lsp-server-exec.

I have not tested ada-mode with lsp-
mode. You can set ada-*-backend to
'other to experiment with that, or tree-
sitter, or some other backend.

To access the beta version via Gnu ELPA,
add the devel archive to package-
archives:
(add-to-list 'package-archives (cons "gnu-
devel" "https://elpa.gnu.org/devel/"))

Then M-x list-packages; the beta release
shows as ada-mode version
8.0.3.0.20221106.55317, wisi version
similarly.

Ada-re lated Tools 203

Ada User Journal Volume 43, Number 4, December 2022

Please report success and issues to the
Emacs ada-mode mailing list
https://lists.nongnu.org/mailman/listinfo/a
da-mode-users.

The required Ada code requires a manual
compile step, after the normal list-
packages installation:

cd ~/.emacs.d/elpa/ada-mode-7.3beta*
./build.sh
./install.sh

If you have Alire installed, these scripts
use it. Otherwise, this requires AdaCore
gnatcoll packages which you may not
have installed; see ada-mode.info
Installation for help in installing them.

Artificial Intelligence
Libraries

From: Marius Amado-Alves
<amado.alves@gmail.com>

Subject: Re: Artificial Intelligence libraries
in ADA

Date: Thu, 10 Nov 2022 09:58:27 -0800
Newsgroups: comp.lang.ada

Resurrecting this 3-year old thread, see
what happens:-)

I too need AI and Machine Learning
libraries, and I am literally disgusted at
the perspective of having to use Python or
Go or C++ for this. Has anything come up
in the last 3 years? Maybe a binding to
TensorFlow?

I plan to use Carter's REM NN, and
maybe Kasakov's fuzzy_ml, for some
experiments, but at some point, I'll want,
like Bjorn Ludin, *recurrent*
architectures, probably LSTM (Long
Short* Term Memory), as I want to
segment and classify text.

(Jeff: can we somehow reengineer REM
NN towards recurrency? Maybe by
inserting recurrent layers?)

*Not a typo. The ML geniuses really say
"long short"...

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 10 Nov 2022 20:10:00 +0100

> (Jeff: can we somehow reenginer REM
NN towards recurrency? Maybe by
inserting recurrent layers?)

Probably best to discuss this off line. You
can contact me by e-mail.

From: Rod Kay <rodakay5@gmail.com>
Date: Fri, 11 Nov 2022 21:20:04 +1100

> Also, Rod Kay (charlie on irc) did
something re TF iirc.

 I generated a thin binding to the
TensorFlow C API via swig4ada around
mid June. The binding has not been tested
apart from a 'hello_TF' demo which
simply calls the 'TF_Version' function and
prints it.

I've been distracted by other projects since
but as chance would have it, I've recently
resumed work on swig4ada and TF will
definitely be one of the top priorities re
testing swig4ada.

I'll try to take another look at it this
weekend and to get the TF binding onto
github, if possible.

GCC 12.2.0 for macOS
(x86_64 and aarch64)

From: Simon Wright
<simon@pushface.org>

Subject: ANN: GCC 12.2.0 for macOS
(x86_64 and aarch64)

Date: Sun, 20 Nov 2022 19:02:46 +0000
Newsgroups: comp.lang.ada

Find GCC 12.2.0 & tools for Intel silicon
(will run on Apple silicon under Rosetta)
at https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.2.0-x86_64

Built on High Sierra with Python 3.9
(because Apple has withdrawn 2.7 in
Monterey).

Also, the same for Apple silicon, built on
Ventura but I’ve done my best to make
sure it’ll run on Monterey, at
https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.2.0-aarch64

I’ve marked both as pre-release, but I’m
especially interested (if anyone has some
time on their hands) in a check of the
aarch64 version on Monterey.

XNAdaLib and
GNATStudio 2022 Binaries
for macOS Monterey

From: Blady <p.p11@orange.fr>
Subject: [ANN] XNAdaLib and GNATStudio

2022 binaries for macOS Monterey.
Date: Sat, 26 Nov 2022 09:07:51 +0100
Newsgroups: comp.lang.ada

This is XNAdaLib 2022 built on macOS
12.6 Monterey for Native Quartz with
GNAT FSF 12.1
(github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.1.0-x86_64) including:

- GTKAda 22.2
(www.adacore.com/gtkada) with GTK+
3.24.33 (www.gtk.org) complete,

- Glade 3.40.0 (glade.gnome.org),

- Florist mid-2022a
(github.com/Blady-Com/florist),

- AdaCurses 6.3 (patch 20221105)
(invisible-island.net/ncurses/
ncurses-Ada95.html),

- Gate3 0.5d
(sourceforge.net/projects/lorenz),

- Components 4.64
(www.dmitry-kazakov.de/ada/
components.htm),

- AICWL 3.25
(www.dmitry-kazakov.de/ada/
aicwl.htm),

- Zanyblue 1.4.0
(zanyblue.sourceforge.net),

- PragmARC mid-2022
(pragmada.x10hosting.com/
pragmarc.htm),

- UXStrings 0.4.0
(github.com/Blady-Com/
UXStrings) - NEW

- GNOGA 2.2 mid-2022
(www.gnoga.com),

- SparForte 2.5 (sparforte.com),

- HAC 0.21
(https://hacadacompiler.sourceforge.io)

Here is also GNATStudio 23.0wb as a
standalone app for macOS 12.

See readme for important details. There
could be some limitations that you might
meet. Feel free to report them on MacAda
list (http://hermes.gwu.edu/archives/gnat-
osx.html). Any help will be really
appreciated.

Both packages have been posted on
Source Forge:
https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2022-monterey

Simple Components v4.65

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components v4.65
Date: Sat, 26 Nov 2022 23:08:41 +0100
Newsgroups: comp.lang.ada

The library provides implementations of
smart pointers, directed graphs, sets,
maps, B-trees, stacks, tables, string
editing, unbounded arrays, expression
analyzers, lock-free data structures,
synchronization primitives (events, race
condition free pulse events, arrays of
events, reentrant mutexes, deadlock-free
arrays of mutexes), pseudo-random non-
repeating numbers, symmetric encoding
and decoding, IEEE 754 representations
support, streams, persistent storage,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes the previous version:

- Bug fix in HTTP server causing memory
leaks in accumulated bodies when
browser keeps connection on;

- Python bindings, backward
compatibility to lower versions of
Python 3, e.g. 3.8;

https://lists.nongnu.org/mailman/listinfo/ada-mode-users
https://lists.nongnu.org/mailman/listinfo/ada-mode-users

204 Ada-re lated Tools

Volume 43, Number 4, December 2022 Ada User Journal

- Julia and Python bindings for OSX
corrected.

Units of Measurement for
Ada v3.12

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Units of measurement for
Ada v3.12 (New SI prefixes)

Date: Sat, 26 Nov 2022 23:11:57 +0100
Newsgroups: comp.lang.ada

The library provides measurement unit
support for Ada.

http://www.dmitry-kazakov.de/ada/
units.htm

Changes to the previous version:

- Added four new SI prefixes adopted by
General Conference on Weights and
Measures (CGPM) in November 2022.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Wed, 30 Nov 2022 07:44:13 -0800

This is a bit confusing. From

https://www.lne.fr/en/news/general-
conference-weights-and-measures-2022:

to express quantities of digital
information using orders of magnitude in
excess of 1024, has been adopted.

Thus, four new prefixes have been
introduced:

 ronna pour 1027

 ronto pour 10-27

 quetta pour 1030

 quecto pour 10-30

End quote.

Abbreviations?

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 30 Nov 2022 18:03:36 +0100

> ronna pour 1027

> ronto pour 10-27

> quetta pour 1030

> quecto pour 10-30

> End quote.

>

> Abbreviations?

q, r, R, Q

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Wed, 30 Nov 2022 09:49:48 -0800

> I'm wondering when these prefixes will
turn up in https://physics.nist.gov/cuu/
Units/prefixes.html.

You can find them here:

https://www.bipm.org/en/
measurement-units/si-prefixes

The PragmAda Reusable
Components

From: Pragmada Software Engineering
<pragmada@
pragmada.x10hosting.com>

Subject: [Reminder] The PragmAda
Reusable Components

Date: Thu, 1 Dec 2022 11:57:28 +0100
Newsgroups: comp.lang.ada

The PragmARCs are a library of (mostly)
useful Ada reusable components provided
as source code under the GMGPL or BSD
3-Clause license at
https://github.com/jrcarter/PragmARC.

This reminder will be posted about every
six months so that newcomers become
aware of the PragmARCs. I presume that
those who want notification when the
PragmARCs are updated have used
Github's notification mechanism to
receive them, so I no longer post update
announcements. Anyone who wants to
receive notifications without using
Github's mechanism should contact me
directly.

GNAT 12 on FreeBSD

From: Alastair Hogge <agh@riseup.net>
Subject: GNAT-12 on FreeBSD
Date: Mon, 12 Dec 2022 05:17:53 -0000
Newsgroups: comp.lang.ada

Description: This is an Ada compiler,
from GCC-12.

Since Ada support must be built by an
Ada-capable compiler, only platforms for
which a bootstrap compiler is available
can build it.

It is based on release versions of the Free
Software Foundation's GNU Compiler
Collection. It uses the GCC Runtime
Library Exception, so the resulting
binaries have no licensing requirements.
Binaries produced by the AUX compiler
should be legally handled the same as
binaries produced by any FSF compiler.

It offers continuous improvements to the
Ada 2022 standard since GCC 11.

https://www.freshports.org/lang/gnat12/
https://cgit.freebsd.org/ports/tree/lang/
gnat12

laceOS: an Operating
System Tailored for Ada
Development

From: Rod Kay <rodakay5@gmail.com>
Subject: Ann: 'laceOS' ~ An operating

system tailored for Ada development.
Date: Sat, 17 Dec 2022 17:23:24 +1100
Newsgroups: comp.lang.ada

After spending many years installing
various operating systems and setting
them up for Ada development, I thought
I'd try to make a simple OS installer
which contains all the configuration and
packages I usually use.

I thought this might be useful to others,
perhaps lecturers/students, hobbyists,
newcomers to Ada or anyone wanting to
experiment with the latest Ada features.

The installer is very simple, asking a few
questions (several with defaults) and takes
about 10 minutes to do the installation.

Here is the Github link for anyone
interested ...

https://github.com/charlie5/laceOS

Feedback/critique/suggestions most
welcome.

Regards.

P.S. The installer is written in Ada. :)

Adare_Net v0.0.128

From: Daniel Norte De Moraes
<danielcheagle@tutanota.com>

Subject: ANN: Adare_Net v0.0.128
Date: Mon, 19 Dec 2022 20:08:53 -0000
Newsgroups: comp.lang.ada

Adare_Net new version v0.0.128:

Better code,

Added a adare_net.pdf manual,

Full client and server examples in udp and
tcp.

Adare_net from version v0.0.128
approaches its v.0.1.0 version!

Adare_Net is a small, portable and easy to
use Ada network lib. It supports ipv4 ipv6
udp and tcp, Socket Synchronous I/O
Multiplexing and can 'listen' with ipv6,
too.

https://github.com/danieagle/adare-net

SDLAda 2.5.5

From: Luke A. Guest
<laguest@archeia.com>

Subject: [COTY] SDLAda-2.5.5 submitted
Date: Sat, 31 Dec 2022 14:27:23 +0000
Newsgroups: comp.lang.ada

Just to inform people that SDLAda isn't
dead, yet, it's just dormant. I finally got
around my issues with Alire and
submitted the 2.5.5 crate.

https://github.com/AdaCore/
Ada-SPARK-Crate-Of-The-Year/
issues/22

https://www.lne.fr/en/news/general-conference-weights-and-measures-2022
https://www.lne.fr/en/news/general-conference-weights-and-measures-2022

Ada and Other Languages 205

Ada User Journal Volume 43, Number 4, December 2022

References to
Publications

NSA Guidance on Software
Memory Safety

From: Jerry <list_email@icloud.com>
Subject: NSA Releases Guidance on How to

Protect Against Software Memory Safety
Issues

Date: Thu, 10 Nov 2022 15:48:00 -0800
Newsgroups: comp.lang.ada

"Examples of memory safe languages
include C#, Go, Java®, Ruby™, Rust®,
and Swift®."

https://www.nsa.gov/Press-Room/
News-Highlights/Article/Article/
3215760/nsa-releases-guidance-on-how-
to-protect-against-software-memory-
safety-issues/

https://media.defense.gov/2022/Nov/10/
2003112742/-1/-1/0/CSI_SOFTWARE_
MEMORY_SAFETY.PDF

Didn't the U.S. government once sponsor
the development of a memory-safe
language? (eye-roll)

Ada and Other
Languages

MS Going to Rust (and
Linux Too)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: MS going to rust (and Linux too)
Date: Sat, 24 Sep 2022 09:52:34 +0200
Newsgroups: comp.lang.ada

Apparently, Microsoft does not want to
use C/C++ anymore:
https://www.zdnet.com/article/
programming-languages-its-time-to-stop-
using-c-and-c-for-new-projects-says-
microsoft-azure-cto
and going to Rust. No word about
glorious VBA and illustrious C#, though.
The best ever inventions of the computing
era deserve no mention... (:-))

Ah, GC does not sit well with them, who
might think? (:-))

BTW, it seems that the Linux kernel will
rust as well...

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 24 Sep 2022 09:50:33 +0100

> Apparently Microsoft does not want to
use C/C++ anymore:

Yeah, they're 20 years behind, I came to
that conclusion then.

Well, people and companies will follow
like sheep.

>No word about glorious VBA and
illustrious C#

They'll stay as they are but likely will
move to being implemented in rust.

[...]

> BTW, it seems that the Linux kernel
will rust as well...

There was conversation about using zig as
well a while ago.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 24 Sep 2022 11:13:07 +0200

> They'll stay as they are but likely will
move to being implemented in rust.

I bet MS-Rust gets written in QBasic...
(:-))

> There was conversation about using zig
as well a while ago.

This one is from Linus himself.

Anyway, as expected, since computing
resources begin actively stagnating, damn,
even a used rusted (no pun intended (:-)) 3
years old HDD is twice more expensive
now, the SW industry slowly turns away
from well established practices of not
caring about performance, efficiency,
quality etc. I wonder, who will first dare
proclaim that Agile was trash... (:-))

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sat, 24 Sep 2022 04:09:48 -0700

Sounds like "U.S. Department of Defense
going to Ada" :-) ...

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sat, 24 Sep 2022 13:41:24 +0200

> I wonder, who will first dare proclaim
that [xyz] was trash... (:-))

Won't it be the presenter to use [xyz] in an
economically informed speech about a
new trendy replacement that is already a
thing.

Trash in systems obeys a universal law,
familiar to every consultant. That it piles
up, and while leading to stagnation, trash
also creates opportunities

- for oblivion,

- for cleaning out and

- for rebuilding.

A fresh start.

As a starting point, Rust has the fine
mechanisms that will facilitate turning the
language into a generator of consumable
goods, including itself. It is, therefore,
economically viable. By design, Rust
meets many a business demand, since it
doesn't stop at just technical ideas, of
which it inherits many.

Write a really good driver for Linux using
Ada 2012 and do not use capital letters in

the source text, at least where Linux
doesn't. Be silent about the language. Can
an Adaist do that, to save the language?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 24 Sep 2022 14:31:38 +0200

> Write a really good driver for Linux
using Ada 2012 [...]

The song remains the same. No, Python
need not to have Linux drivers in order to
be hugely popular, like the Herpes virus
need not to be...

And it is not about Ada. It is about a
potentially turning point as the SW
developing process hits certain limits one
ignored before. Selling hot air is a very
respectable and profitable activity, but in
this case the reality begins showing its
ugly bigotry face. Though Ada could
provide some answers, it is not in the
game anyway. Nevertheless, things
become interesting...

From: Nasser M. Abbasi
<nma@12000.org>

Date: Sat, 24 Sep 2022 07:46:46 -0500

> BTW, it seems that Linux kernel will
rust as well...

This is a link that talks about using rust in
Linux kernel

"Linux embracing Rust will boost
robotics community"

"Linus Torvalds mentioned that the Rust
programming language would be used in
the upcoming Linux 6.1 kernel"

<https://www.therobotreport.com/
linux-embracing-rust-will-boost-robotics-
community/>

What I do not understand is, why not Ada
instead of Rust? I thought Ada was
designed for embedded low level
software.

Maybe it is just more verbose than rust,
and do not use {}.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 24 Sep 2022 15:36:07 +0200

> What I do not understand is, why not
Ada instead of Rust?

Look at it this way. If Linus was not
aware 30 years ago that there were better
OSes than UNIX and better languages
than C, why should he suddenly do now?

> Maybe it is just more verbose than Rust,
and do not use {}.

It is never technical. You can try to
rationalize your preference afterwards,
but in reality, it is free will at play, even
in the case of choosing Ada.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sat, 24 Sep 2022 10:29:54 -0700

206 Ada Pract ice

Volume 43, Number 4, December 2022 Ada User Journal

There is also a lot more emphasis on
performance in the Rust world than in the
Ada world. Part of this is due to
resources, but a lot has to do with how the
language itself is defined unfortunately.
People working on the Linux kernel are
definitely interested in performance (and
remember they are using any
programming language in a significantly
different fashion than other
programmers). People coming from C++
likely initially chose that language
because it was advertised as the most
performant.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sat, 24 Sep 2022 19:56:02 +0200

> why should he suddenly do now?

Why not? He is actually talking about
Rust, given C.

> It is never technical.

It needs to be technical to some extent.
Suggesting to write a kernel in Python
would encounter some technical
opposition.

> You can try to rationalize your
preference afterwards, but in reality, it
is free will at play, even in the case of
choosing Ada.

The point is that it's not free will. It seems
about choice and about what drives
choice. Some very old job descriptions
very sincerely include "manipulating
public opinion".

Think "Ada mandate"... Or better, don't,
just don't.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 24 Sep 2022 21:07:01 +0200

> Why not? He is actually talking about
Rust, given C.

He is just growing old... (:-))

> It needs to be technical to some extent.

To some very infinitesimal extent.
Actually my point was that the extent has
an obvious tendency to grow now. Which
is why we observe knee-jerk reactions
from some weaklings... (:-))

> Suggesting to write a kernel in Python
would encounter some technical
opposition.

Honestly? The next generation will fully
embrace Python as soon the last of the old
farts retire. Linux held way too long,
IMO... (:-))

> It seems about choice and about what
drives choice.

Huh, in the not so distant future I expect
drivers using HTTP to communicate
inside the kernel encoding data in JSON
and XML and written in JavaScript... I am
almost serious. This garbage triumphally

marches across embedded world right
now, so no smiley.

Ada Practice

Reexposing Generics Formal
Parameters

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Subject: Calling inherited primitive
operations in Ada

Date: Wed, 31 Aug 2022 01:15:38 -0700
Newsgroups: comp.lang.ada

[Although the original post is about
reusing inherited subprograms, the
conversation quickly veered into a
technical issue with generic formals,
which is raised in the first answer. —arm]

A small blog post that you might find
interesting:

https://deepbluecap.com/calling-inherited-
primitive-operations-in-ada/

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 31 Aug 2022 21:13:14 +0200

This same technique is used in generics to
work around another language design
"feature":

 generic

 type Foo is ...;

 package

 subtype Actual_Foo is Foo;

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Wed, 31 Aug 2022 23:56:26 -0700

To me, this is an orthogonal issue though
(which would be worth its own blog post
in fact). I can never remember (or perhaps
not even understand) the reason for this
limitation in Ada, which is a major pain
when dealing with generics indeed…

I like the "Actual_" prefix, which I
assume is some sort of convention in your
code.

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Thu, 1 Sep 2022 00:57:33 -0700

Is this about how according to some
mystifying rules generic formals are[n't]
visible from outside the generic?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 1 Sep 2022 12:02:43 +0200

Right. I do not remember the rules, just
the fact that they are quite logical.
Unfortunately the logic of [it] is not very
helpful. (:-))

As for primitive operations the problems
are on many levels, from lacking
introspection to missing inheritance of

implementation by composition (AKA
hooking).

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 1 Sep 2022 13:59:29 +0200:

> Is this about how according to some
mystifying rules generic formals
are[n't] visible from outside the
generic?

This seems like a non-issue to me. Any
code that has visibility to a generic
instance knows the actuals used for that
instance. Can anyone provide real
examples where this is a problem?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 1 Sep 2022 14:37:36 +0200

> This seems like a non-issue to me. Any
code that has visibility to a generic
instance knows the actuals used for that
instance.

That would make the code fragile. Should
be avoided as much as possible as a form
of aliasing. [...]

> Can anyone provide real examples
where this is a problem?

Defaulted formal package actual part:

 generic

 package Foo is new Bar (<>);

 package Baz is ...

 -- What were these actuals in Foo?

This is one of most useful features used to
reduce lists of formal parameters and
simplify instantiations.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 1 Sep 2022 07:10:03 -0700

I have seen quite a number of cases of
needing the subtype like Dmitry was
showing. In a small number of cases,
those were actual bugs in GNAT, but
most of the time the compiler was correct.
Mostly, you start to see the issue when
you have generic packages that have
formal generic packages.

Here is a quick example and the
corresponding compiler error message. In
Main, there is no way to see T. Of course,
I can use Integer_Signature directly, but
this is an issue.

If I rename Integer_Signature then I have
to change a lot of places in my code (The
aliasing that Dmitry was talking about)

with Signature;

generic

 with package Sign is new Signature (<>);

package Algo is

 procedure Compute (V : Sign.T) is null;

end Algo;

with Algo;

with Signature;

Ada Pract ice 207

Ada User Journal Volume 43, Number 4, December 2022

package Lib is

 package Integer_Signature is new

 Signature (Integer);

 package Integer_Algo is new Algo

 (Integer_Signature);

end Lib;

with Lib;

procedure Main is

 V : Lib.Integer_Algo.Sign.T;

 -- main.adb:3:24: "Sign" is not a visible

 -- entity of "Integer_Algo"

begin

 null;

end Main;

generic

 type T is private;

package Signature is

end Signature;

There are more interesting examples,
somehow this one doesn't seem that bad.
So here is another one:

 generic

 type T is private;

 package Gen is

 end Gen;

 with Gen;

 generic

 type T is private;

 with package Must_Match is new

 Gen (T);

 with package Need_Not_Match is new

 Gen (<>);

 package Gen2 is

 V1 : Must_Match.T; -- "T" is not a

 -- visible entity of "Must_Match"

 V2 : Need_Not_Match.T; -- instance of -

 -- same package,but this time T is visible

 end Gen2;

 with Gen, Gen2;

 procedure P2 is

 package G is new Gen (Integer);

 package G2 is new Gen2

 (Integer, G, G);

 begin

 null;

 end P2;

I dug out the explanation that Tucker Taft
once sent to the Ada-Comment mailing
list (2019-11-14):

<<<

10/2

{AI95-00317-01} The visible part of a
formal package includes the first list of
basic_declarative_items of the
package_specification. In addition, for
each actual parameter that is not required
to match, a copy of the declaration of the
corresponding formal parameter of the
template is included in the visible part of
the formal package. If the copied
declaration is for a formal type, copies of
the implicit declarations of the primitive
subprograms of the formal type are also

included in the visible part of the formal
package.

10.a/2

Ramification: {AI95-00317-01} If the
formal_package_actual_part is (<>), then
the declarations that occur immediately
within the generic_formal_part of the
template for the formal package are
visible outside the formal package, and
can be denoted by expanded names
outside the formal package.If only some
of the actual parameters are given by <>,
then the declaration corresponding to
those parameters (but not the others) are
made visible.

10.b/3

Reason: {AI05-0005-1} We always want
either the actuals or the formals of an
instance to be nameable from outside, but
never both. If both were nameable, one
would get some funny anomalies since
they denote the same entity, but, in the
case of types at least, they might have
different and inconsistent sets of primitive
operators due to predefined operator
“reemergence.” Formal derived types
exacerbate the difference. We want the
implicit declarations of the
generic_formal_part as well as the
explicit declarations, so we get operations
on the formal types.

>>>

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Thu, 1 Sep 2022 08:50:21 -0700

> I have seen quite a number of cases of
needing the subtype like Dmitry was
showing. In a small number of cases,
those were actual bugs in GNAT, but
most of the time the compiler was
correct.

> Mostly, you start to see the issue when
you have generic packages that have
formal generic packages.

This matches exactly my experience. I
don't have enough grasp of the details to
come up with a realistic short example,
but I did hit this issue pretty often in two
libs where I used signature packages quite
extensively:

https://github.com/mosteo/rxada

https://github.com/mosteo/iterators

Initially I was always under the
impression I was hitting GNAT bugs but
then it turned out there were rules about
it. A couple example places (you can see
the renamings at the top. I was adding
them "on demand" so to say):

https://github.com/mosteo/iterators/blob/
master/src/iterators-traits-containers.ads

https://github.com/mosteo/rxada/blob/
master/src/priv/rx-impl-transformers.ads

Thanks Emmanuel for the examples and
digging out Tucker's explanation.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 1 Sep 2022 18:03:19 +0200

> Mostly, you start to see the issue when
you have generic packages that have
formal generic packages.

None of these deal with the example I
responded to

generic

 type T is ...

package P is

 subtype Actual_T is T;

> Reason: {AI05-0005-1} We always
want either the actuals or the formals of
an instance to be nameable from
outside, but never both.

This is true in all these examples. I have
used Ada since 1984, and this has never
been a problem for me (as initially
presented, this would have existed in Ada
83). Of course, I generally avoid generic
formal packages. They seem to me to be a
work around for poor design, and I prefer
to correct the design.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 1 Sep 2022 11:54:00 -0700

I think I have a more interesting example.
This one is extracted from my attempted
traits containers, for which I had
published a blog post at AdaCore. My
enhanced fork of the library is at

https://github.com/briot/
ada-traits-containers

if someone wants to experiment with non-
trivial generics code (and containers are
of course a case where generics fully
make sense).

Here is the example:

generic

 type Element_Type is private;

 type Stored_Type is private;

package Elements is

end Elements;

with Elements;

generic

 type Element_Type is private;

package Definite_Elements is

 package Traits is new Elements

 (Element_Type, Stored_Type =>

 Element_Type);

end Definite_Elements;

with Definite_Elements;

generic

 type Key_Type is private;

package Maps is

 package Keys is new Definite_Elements

 (Key_Type);

 function "=" (L, R : Keys.

 Traits.Stored_Type) return Boolean

 -- "Stored_Type" is not a visible entity of

 -- "Traits"

208 Ada Pract ice

Volume 43, Number 4, December 2022 Ada User Journal

 is (False);

end Maps;

This is not case where the actual is visible
unless I happen to know how
Definite_Element is implemented and that
it will use Element_Type for Stored_Type
(and this is not a knowledge I wish client
packages to have, the whole point of
Element and Definite_Element is to
basically hide how elements can be stored
in a container, and whether we need
memory allocation for instance).

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 1 Sep 2022 23:33:44 +0200

> [traits example]

As presented, this seems very over
complicated. Elements and
Definite_Elements add no value, and this
is just a complex way of writing

generic

 type Key is private;

package Maps is

 function "=" (L : in Key; R : in Key) return

 Boolean is (False);

end Maps;

One hopes that the actual library makes
better use of these packages than this
small example. [...]

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 1 Sep 2022 23:11:45 -0700

> Elements and Definite_Elements add no
value, and this is just a complex way of
writing

I did point you to the full repository if you
prefer an extensive, real-life code sample.
This was just an extract showing the gist
of the issue.

> One hopes that the actual library makes
better use of these packages than this
small example.

[...] These packages are mostly
implementation details. They are used to
build high-level packages similar to the
Ada containers, except with much better
code reuse, more efficient, and SPARK-
provable.

> Ada has excellent features for hiding,
but these are not among them.
Assuming

And that's exactly our point in this
discussion. Ada on the whole is very good
(we would not be using it otherwise), but
it does have a number of limitations
which are sometimes a pain, this being
one of them. Not acknowledging the
limitations when they exist is naive, all
languages have them.

[...]

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Fri, 2 Sep 2022 01:35:11 -0700

> this seems very over complicated.
Elements and Definite_Elements add
no value, and this is just a complex way
of writing

Going in a tangent, and I guess you know
perfectly well, but this is caused by the
painful duplication of code that Ada
pushes you to by not having a native way
to abstract storage of definite vs indefinite
types. So the provider of a generic library
very soon faces this conundrum about
duplicating most interfaces, if not
implementations, or resort to non-trivial
generics, or accept an unnecessary penalty
for definite types, or push to the client the
definite storage matter. There's simply no
satisfying solution here (that I know of).
The duplication of every standard
container to have both (in)definite
variants is a strong indictment.

I can understand the desire to have full
control of allocation and object sizes, but
that there's not a language way to work
around this duplication, with appropriate
restrictions to go with it, is... bothersome.
Not making a dig at the ARG, which I
understand is overstretched as it is.

There was a proposal circulating some
time ago that seemed promising, that I
can't quickly find. Something like

type Blah is record

 Dont_care_if_in_heap: new

 Whatever_Definiteness;

 -- Would apply to indefinite types or formals

end record;

I don't think it made into
https://github.com/AdaCore/
ada-spark-rfcs/ or https://github.com/
Ada-Rapporteur-Group/
User-Community-Input/issues or I can't
find it.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 2 Sep 2022 10:48:53 +0200

> I can understand the desire to have full
control of allocation and object sizes,
but that there's not a language way to
work around this duplication, with
appropriate restrictions to go with it,
is... bothersome. Not making a dig at
the ARG, which I understand is
overstretched as it is.

Containers should be implementable
without generics. Just saying.

> There was a proposal circulating some
time ago [...]

I would prefer constraint
propagation/management support + tuples
instead:

 type Blah (Parameters :

 Whatever_Definiteness'Constraints) is

 Sill_Care : Whatever_Definiteness

 (Parameters);

 end record;

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Fri, 2 Sep 2022 02:20:44 -0700

> Containers should be implementable
without generics. Just saying.

Are you now referring to current Ada or
to hypothetical features?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 2 Sep 2022 11:55:11 +0200

> Are you now referring to current Ada or
to hypothetical features?

Hypothetical like all types having classes
and supertypes. E.g. when you instantiate
generic with a type you semantically
place the type in the implicit class of
formal types of the generic. You cannot
do that now without generics.
Furthermore, there is no way to describe
relationships between types like array
index and array, like range and discrete
type of its elements etc.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 2 Sep 2022 12:41:42 +0200

> [...]not having a native way to abstract
storage of definite vs indefinite types
[...]

The only indefinite data structure that is
needed seems to be holders. Any other
indefinite data structure can be
implemented as the equivalent definite
data structure of holders, so there need be
no duplication of implementations. That
one cannot use a single pkg for both does
result in duplication of the spec, but that
seems like less of an issue to me.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 2 Sep 2022 13:04:34 +0200

> The only indefinite data structure that is
needed seems to be holders.

The language should support and
encourage design that does not rely on
memory pools.

In my view one of the major advantages
of Ada is that indefinite objects can be
handled without resorting to hidden or
explicit pointers to pools.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Fri, 2 Sep 2022 04:20:38 -0700

> I was not willing to spend more than
about 15 minutes trying to understand
this, so I may be missing something.

Fair enough. The library is really a set of
experiments, mostly successful, and I
think it might have been used for the
implementation of the current SPARK
containers in GNAT, though I am not
positive there. I did look at the
pragmARC components, and there you
indeed chose to have a large number of
similar-looking packages and code
duplication. I guess we'll have just to

Ada Pract ice 209

Ada User Journal Volume 43, Number 4, December 2022

agree to disagree on the design approach
there. But of course, users having choices
is what makes an ecosystem interesting.

What I was really going after are graphs
and their algorithms. In particular, I want
those algorithms to work on any graph
data structure provided it has a number of
primitive operations. In fact, the
algorithm could also work when the graph
is kind of implicit in the code, even if we
do not have an actual Graph object. And
for this, you need generics.

A similar approach is what Rust uses all
over the place with its traits, or what C++
Boost library uses for its graphs, too.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 2 Sep 2022 19:01:28 -0500

>[...] painful duplication of code that Ada
pushes you to by not having a native
way to abstract storage of definite vs
indefinite types.

This is premature optimization at its
worst.

> [...]

There is no penalty in a code sharing
implementation like Janus/Ada: the
implementation of definite types is
essentially the same as you would write
by hand for an indefinite type. In most
cases, all one needs is an indefinite
generic.

(The plan for Janus/Ada was always to
use post-compilation optimization to
reduce the overhead of generics, but
admittedly, that part never got built. If I
had infinite time...)

Assuming otherwise is certainly
premature optimization.

> There's simply no satisfying solution
here [...]

The original expectation for the
containers was that there would be many
variants of each container, because the
needs for memory management, task
management, and persistence differ
between applications: there is no one-size
fits all solution.

But I agree on one point: the "basic"
container is unnecessary; one should
either use the indefinite or bounded
container (depending on your memory
management needs, either fully fixed or
fully heap-based)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 2 Sep 2022 19:07:27 -0500

>These packages are mostly
implementation details [...]

(Wading in where I should probably not
tread... :-)

But they violate the #1 principle of the
Ada.Containers: ease of use. One

principle that we insisted on was that a
single instantiation was the maximum we
would use, because we did not want
people moving from arrays to containers
to have to replace one declaration with a
half page of magic incantations. (This is
the reason that there is no container
interface, for one consequence, and
certainly no signature packages.)

In general, people either understand and
like signature packages, or really do not
understand them and just use them when
insisted on. The standard containers in
Ada needed to be usable by the maximum
number of users, and insisting on bells
and whistles that many don't understand
does not help.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 2 Sep 2022 19:12:25 -0500

> In my view one of the major advantages
of Ada is that indefinite objects can be
handled without resorting to hidden or
explicit pointers to pools.

But they're implemented with some sort
of hidden allocation. (GNAT uses a
"secondary stack", whatever that is, but
that is just a restricted form of pool).
Janus/Ada uses built-in pools with
cleanup for all such things to simplify the
interface (the code for allocations and
stand-alone objects is mostly shared, both
within the compiler and at runtime).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 3 Sep 2022 10:23:01 +0200

> But they're implemented with some sort
of hidden allocation. [...]

For a programmer that does not matter.
The problem with pools is locking, non-
determinism, issues with protected
actions. If [the] secondary or primary
stack is the program stack, nobody really
cares.

BTW, merely doing pool
tracing/bookkeeping becomes a sheer
nightmare if you cannot return a string
from a function.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 3 Sep 2022 10:59:16 +0200

> One principle that we insisted on was
that a single instantiation was the
maximum we would use

Except for queues

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 6 Sep 2022 19:42:57 -0500

> Except for queues

Right, and one consequence of that is that
the queues aren't used much. (Not sure if
they would be used much in any case,
they're definitely a specialized need
compared to a map.)

From: Simon Wright
<simon@pushface.org>

Date: Sat, 03 Sep 2022 20:00:00 +0100

> One principle that we insisted on was
that a single instantiation was the
maximum

And this was one reason that I didn't put
up any arguments at Ada Europe 2002 for
the Ada 95 Booch Components to form a
basis for Ada.Containers - you'd need 3
instantiations, one after the other.

-- A company's Fleet holds a number of

-- Cars.

 with BC.Containers.Collections.Bounded;

 with Cars;

 package My_Fleet is

 use type Cars.Car;

 package Abstract_Car_Containers

 is new BC.Containers (Cars.Car);

 package Abstract_Car_Collections

 is new

 Abstract_Car_Containers.Collections;

 package Fleets

 is new

 Abstract_Car_Collections.Bounded

 (Maximum_Size => 30);

 The_Fleet : Fleets.Collection;

 end My_Fleet;

The other was a lack of consistency in the
implementation (Length? Size?).

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sun, 4 Sep 2022 23:56:43 -0700

> for the Ada 95 Booch Components [...]
you'd need 3 instantiations

I definitely see the same issue. The way
my library is trying to workaround that is
as follows: Those instantiations are only
needed for people who want/need to
control every aspect of their containers,
for instance how elements are stored,
how/when memory is allocated, what is
the growth strategy for vectors, and so on.

Most users should not have to care about
that in practice. So we use code
generation at compile time to generate
high-level packages similar to the Ada
containers, with a limited set of formal
parameters (in src/generated, to be more
specific). We can generate
bounded/unbounded versions,
definite/indefinite versions, and any
combination of those.

One of the intentions of the library,
initially, had been the implementation of
the Ada containers and SPARK
containers in GNAT, as a way to share as
much code as possible between the two.

Randy Brukardt:

210 Ada Pract ice

Volume 43, Number 4, December 2022 Ada User Journal

> Assuming otherwise is certainly
premature optimization.

I am quoting a bit out of context, though I
believe it is close enough. Designers of
containers must care about performance
from the get-go. Otherwise, people might
just as well use a list for everything and
just traverse the list all the time. We all
know this would be way too inefficient, of
course, which is why there are various
sorts of containers. Anyone who has
actually written performance-sensitive
code knows that memory allocations are
definitely something to watch out for, and
the library design should definitely take
that into account.

Jeff Carter:

> The only indefinite data structure that is
needed seems to be holders

Although it is certainly true that using
holders works, it is not applicable when
designing a containers library that intends
to be mostly compatible with Ada
containers. The latter have chosen, long
ago and before Holder was a thing, to
have definite and indefinite versions. The
main benefit to this approach is that users
still retrieve directly the type they are
interested in (e.g. String) rather than a
holder-to-string. I must admit I have very
limited experience with Holders, which I
have never used in production code (nor,
apparently, have my colleagues and ex-
colleagues).

Randy Brukardt:

> Ada *DOES* support default values for
formal parameters of generics

Hey, I just discovered that, thanks Randy
! For people who also did not know that:

 generic

 type Item_Count is range <> or use

 Natural;

 package Gen is

It is supported by GNAT's newer versions
(I don't know when it was implemented
though)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 5 Sep 2022 09:34:37 +0200

> Although it is certainly true that using
holders works, it is not applicable when
designing a containers library that
intends to be mostly compatible with
Ada containers.

Right. Holder requires finalization and
finalization means language prescribed
finalization lists which is highly
undesirable in many cases.

> The main benefit to this approach is that
users still retrieve directly the type they
are interested in (e.g. String) rather than
a holder-to-string.

And that the container designer has
control over the pool where the items get
actually allocated.

> I must admit I have very limited
experience with Holders, which I have
never used in production code (nor,
apparently, have my colleagues and ex-
colleagues).

I have been using the idea for a long time,
since Ada 95 before the standard library
had them. In my experience holders
multiply the number of container variants:

1. Definite elements

2. Indefinite elements

 +

3. Holder elements in the interface (and
maybe implementation)

The third gets a holder package as a
formal parameter or, alternatively, is a
child of a holder package (for
performance reasons). The container
interface has direct operations in terms of
the Element_Type as well as in terms of
the holder type.

Sometimes the holder variant is actually
the indefinite one that promotes holders
only in its interface.

P.S. In my opinion helper types/package
is an evil of far greater scale than any
premature optimization!

The programmers doing the latter at least
try to understand the code they write.

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Mon, 5 Sep 2022 01:53:19 -0700

> This is premature optimization at its
worst.

Just because the language doesn't offer a
way to do it. Otherwise I wouldn't need to
care.

> There is no penalty in a code sharing
implementation like Janus/Ada

Well, that sounds neat for Janus/Ada, but
is a different issue to clients having to
wrap their indefinite types prior to
instantiation, and suffer the unwrapping
throughout the code.

> Assuming otherwise is certainly
premature optimization.

I'm of the opinion that it goes beyond just
premature optimization, in the terrain of
readability/maintainability by causing
boilerplate, and when generics
specializations do become necessary, by
causing code duplication.

[...]

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Mon, 5 Sep 2022 11:30:56 +0200

> Those instantiations are only needed for
people who want/need to control every
aspects of their containers [...] So we
use code generation at compile time to
generate high-level packages similar to
the Ada containers

This seems backwards. The user should
encounter the forms most likely to be
used first; if part of the packages are in a
subdirectory, those should be the ones
less likely for the typical user to use.

> The main benefit to this approach
[definite+indefinite containers] is that
users still retrieve directly the type they
are interested in (e.g. String) rather than
a holder-to-string.

Before Ada.Containers existed, I
commonly used definite data structures
from the PragmARCs with
Unbounded_String, which is partly a
specialized holder for String (and partly a
specialized Vector for
Positive/Character). Generalizing from
this led to implementing a Holder pkg.

When I said a holder is the only indefinite
pkg that is needed, I meant to imply that
other indefinite structures would be
implemented using the definite form +
holder.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 6 Sep 2022 19:51:44 -0500

> I am quoting a bit out of context

Definitely out of context. If you have
code which is truly performance sensitive,
then it cannot also be portable Ada code.
That's because of the wide variety of
implementation techniques, especially for
generics. (For Janus/Ada, if you have
critical performance needs, you have to
avoid the use of generics in those critical
paths -- sharing overhead is non-zero.)

I agree that the design of the containers
matters (which is why we made the sets of
operations for the various containers as
close as possible, so switching containers
is relatively easy). But the
indefinite/definite thing is premature
optimization - it makes little difference
for a Janus/Ada generic, at least in the
absence of the full-program optimizer
(that we never built). If your code isn't
intended to be portable Ada code, then
maybe it makes sense to worry about
such things. But the expectation was
always that containers would be useful in
cases where the performance is *not*
critical - one probably should use a
custom data structure for performance
critical things. (But most things aren't
really performance critical in reality.)

GNAT Speed Comparison
on Older Intel versus Apple
Silicon M1

From: Jerry <list_email@icloud.com>
Subject: GNAT Speed Comparison on Older

Intel versus Apple Silicon M1
Date: Tue, 8 Nov 2022 20:07:32 -0800
Newsgroups: comp.lang.ada

I use GNAT on a late 2008 MacBook Pro
with a 2.4 GHz Intel Core 2 Duo for

Ada Pract ice 211

Ada User Journal Volume 43, Number 4, December 2022

heavy numerical computing. It is not
uncommon for my programs to run
several minutes to several hours. Does
anyone have a feel for how much speed
increase I would see using GNAT on an
Apple Silicon M1 PowerBook Pro? My
main curiosity is single-core runs since
GNAT does not parallelize; I am aware
that I can run multiple programs
simultaneously on multiple cores.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Wed, 9 Nov 2022 08:38:48 +0100

Hi Jerry,

taking the results from Geekbench: [1] for
your current MacBook and [2] for the M1
MacBook from 2021; the results show
that single core performance of the M1
MacBook Pro is about 6.4 times faster.

However, notice that it is running on
Aarch64 natively for the M1.
Nonetheless, you can run x86 programs
with little performance hit thanks to
Apple Rosetta.

Also, GNAT afaik, allows for parallel
computations using tasks. The multicore
performance gain between the two models
is about 24x.

These results are however just an average.
Maybe your program does not see such
improvements as it may bottleneck earlier
or it may see greater gains.

Regards,

[1] https://browser.geekbench.com/macs/
macbook-pro-early-2008

[2] https://browser.geekbench.com/v5/
cpu/18518008

From: Jerry <list_email@icloud.com>
Date: Wed, 9 Nov 2022 22:26:18 -0800

> Hi Jerry,

> taking the results from Geekbench:

That's a great site. Thanks. Clicking
around a bit I was able to find separate
comparisons for single-core floating point
and the speed-up is 5.2.

 > However, notice that it is running on
Aarch64 natively for the M1.

GNAT compiles to Aarch64 now, right?

> Nonetheless, you can run x86 programs
with little performance hit thanks to
Apple Rosetta.

"little performance hit" compared to Intel
code running on Rosetta versus Intel
silicon or compared to native ARM? And
I wonder how long until Apple takes
away Rosetta this time? Last time it was
two OS updates and then, poof, gone.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 13 Nov 2022 16:29:54 +0000

> GNAT compiles to Aarch64 now, right?

You can download an aarch64-apple-
darwin21 compiler for C, C++, Ada at
[1]. However, it won't compiler C (or, I
guess, C++) on Ventura - I'm working on
a GCC 12.2 version.

[1] https://github.com/simonjwright/
distributing-gcc/releases/tag/gcc-
12.1.0-aarch64-1

Variable Value If Exception
Is Raised

From: Nytpu <alex@nytpu.com>
Subject: Variable value if exception is

raised
Date: Sun, 20 Nov 2022 18:03:04 -0000
Newsgroups: comp.lang.ada

Hello everyone,

If an exception is *explicitly* raised
during a variable assignment, what
happens to the variable contents Are they
in an undefined ("abnormal") state, or are
the previous contents preserved?

For example:

``` 

with Ada.Text_IO; 

procedure Test is 

    function Always_Raises return Integer is 

    begin 

        raise Program_Error; 

        return 1; 

    end Always_Raises; 

     

    I : Integer := 0; 

begin 

    -- insert a nested handler, because the     

   -- ARM § 11.4 ¶ 3 *does* say that the    

   -- currently executing body is "abnormally 

   -- completed" (including finalizing  

   -- everything) before 

    -- entering the exception handler 

    begin 

        I := Always_Raises; 

    exception 

        when others => null; 

    end; 

    Ada.Text_IO.Put_Line(Integer'Image(I)); 

end; 

``` 

What, if anything, will be printed
(Disclaimer: I know the preexisting
variable value will be preserved in GNAT
specifically, but I'm asking if the standard
guarantees that's the case)

I read through the ARM 2012 § 11 and §
5.2, as well as skimming through
everything related to “assignment” and
“exceptions” in the ARM index; and
didn't see much relating to this. All I saw
is this:

> When an exception occurrence is raised
by the execution of a given construct,
the rest of the execution of that
construct is abandoned

— ARM 2012 § 11.4 ¶ 3

Which I guess implicitly protects variable
values since assigning to a variable is
performed after evaluating the right hand
side, but still not necessarily a clear
answer.

I did see in § 13.9.1 that language-defined
validity checks (e.g. bounds checks)
failing or calling `abort` in a task during
an assignment will cause the variable to
enter an "abnormal" (i.e. invalid) state,
but that doesn't cover user-raised
exceptions.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 20 Nov 2022 20:00:32 +0100

If the exception occurs during evaluation
of the RHS, as in your example, then the
language guarantees that the value of the
LHS is unchanged. The execution of the
assignment statement is abandoned before
the value of the LHS is changed.

If an exception is raised while adjusting a
controlled LHS, then the value of the LHS
has already been changed before the
exception is raised.

> -- insert a nested handler, because

> -- the ARM § 11.4 ¶ 3 *does*

> -- say that the currently executing

> -- body is "abnormally completed"

> -- (including finalizing everything)

> -- before entering the exception

> -- handler

This comment is false. Finalization does
not occur until the exception handler
finishes. Exception handlers would be
pretty useless otherwise.

String View of File

From: Jesper Quorning
<jesper.quorning@gmail.com>

Subject: String view of file
Date: Mon, 21 Nov 2022 00:30:00 -0800
Newsgroups: comp.lang.ada

Is it possible to write something like this
with Ada

```Ada 

package my_rw_file is new file 

  (name => "whatever", 

   mode => read_write, 

   implementation => standard  

   -- or portable or fast 

  ); 

package as_string is new xxx 

   (from => my_rw_file); 

-- parse (as_string); 

package data is new parse (as_string, 

format => markdown); -- or whatever 

``` 

Sorry, I’m new to Ada

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Mon, 21 Nov 2022 14:01:01 +0100

212 Ada Pract ice

Volume 43, Number 4, December 2022 Ada User Journal

Do you mean, gobble up a file into a
string and then parse that? Yes, that's
possible in a number of ways.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Mon, 21 Nov 2022 14:48:47 +0100

[...]

If you want to read the arbitrary contents
of a file into a String, that's easily done:

with Ada.Directories;

package String_A_File is

 use type Ada.Directories.File_Size;

 function File_As_String (Name : in String)

 return String with

 Pre => Ada.Directories.Exists (Name)

 and then

 Ada.Directories.Size (Name) <=

 Ada.Directories.File_Size (Integer'Last),

 Post => File_As_String'Result'First = 1

 and

 File_As_String'Result'Last =

 Integer (Ada.Directories.Size (Name));

end String_A_File;

with Ada.Sequential_IO;

package body String_A_File is

 function File_As_String (Name : in String)

return String is

 subtype FAS is String (1 .. Integer

 (Ada.Directories.Size (Name)));

 package FAS_IO is new

Ada.Sequential_IO (Element_Type => FAS);

 File : FAS_IO.File_Type;

 Result : FAS;

 begin -- File_As_String

 FAS_IO.Open (File => File, Mode =>

 FAS_IO.In_File, Name => Name);

 FAS_IO.Read (File => File, Item =>

 Result;

 FAS_IO.Close (File => File);

 return Result;

 end File_As_String;

end String_A_File;

This presumes that Result will fit on the
stack. If that's likely to be a problem, then
you will need to use Unbounded_String
and read the file Character by Character.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 21 Nov 2022 17:52:14 +0200

For the OP's benefit (Jeffrey of course
knows this): an alternative to
Unbounded_String is to allocate the
Result string on the heap, and return an
access to the heap string. With that
method, you can still read the entire string
with one call of FAS_IO.Read instead of
Character by Character.

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Mon, 21 Nov 2022 08:11:05 -0800

Use Ada.Sequential_IO (Character), load
to an Unbounded_String, save from a
String or Unbounded_String.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Mon, 21 Nov 2022 17:42:56 +0100

> For the OP's benefit (Jeffrey of course
knows this)

I know it, and I deliberately reject it.
Having access types in a pkg spec is poor
design. Delegating the associated memory
management and all its opportunities for
error to the pkg client is very poor design.

If access types are used, they should be
hidden and encapsulated with their
memory management. This makes it
easier to get the memory management
correct. Since this is what using
Unbounded_String does for you, I think
it's better to use it than to expend extra
effort doing something similar.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 21 Nov 2022 19:29:12 +0200

> I know it, and I deliberately reject it.

I agree in general, but there are design
trade-offs that depend on issues not made
clear in the original question, such as the
size of the file and the performance
requirements. So I thought that the OP
should know of the heap alternative, even
if it has some poorer properties too.

From: Qunying <zhu.qunying@gmail.com>
Date: Mon, 21 Nov 2022 09:29:49 -0800

If you are using GNAT with gnatcoll,
then you may try its mmap facility,
https://docs.adacore.com/gnatcoll-
docs/mmap.html

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Mon, 21 Nov 2022 13:43:39 -0800

You may be interested by this:

https://github.com/zertovitch/
zip-ada/blob/master/zip_lib/
zip_streams.ads#L148

It can be actually used out of the context
of Zip archives.

Ada 2022 in GNAT

From: Simon Belmont
<sbelmont700@gmail.com>

Subject: Ada 2022 in GNAT
Date: Thu, 8 Dec 2022 15:37:15 -0800
Newsgroups: comp.lang.ada

Has anyone seen (or willing to type up...)
any broad-strokes information about how
GNAT (et al) actually plans to implement
the parallelization features of Ada 2022?
Take advantage of GPUs or just stick to
CPU cores, or some kind of binding to
OpenMP, etc, on Linux vs Windows vs
Vworks, etc? I'm mostly just curious and
haven't seen any of that in-the-weeds type
information floating around, or at least
anything that isn't a few years old.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Fri, 9 Dec 2022 09:07:50 -0800

> In the past year or so, we have been
working hard assessing and
implementing most of these Ada 202x
changes (called AIs: Ada Issues in
ARG terms). The implementation work
and feedback from first users allowed
us to identify that a few of these
features would need additional time and
attention. This led us to make a difficult
decision - in order to allow for more
investigation and to avoid users to start
to rely on constructs that may need to
change or be replaced, we decided to
put on hold the implementation of some
of the changes in language. Of course,
we’re currently engaged with the ARG
to discuss these.

> The main set of features that AdaCore
and GNAT are putting on hold are
related to the support for parallel
constructs. While the overall vision is
an exciting and promising one, we
realized when looking at the state of the
art and gathering user requirements that
there were a lot more aspects to
consider on top of those currently
addressed by the AIs. Some of these are
related to GPGPU (General Purpose
GPU) support as well as their future
CPU counterparts, and include topics
such as control of memory transfer,
precise allocation of tasks and memory
on the hardware layout, target-aware
fine tuning options as well as various
other parametrization needs. These
capabilities happen to be fundamental
to obtain actual performance benefits
from parallel programming, and
providing them may require profound
changes in the language interface.
Consequently, we’re putting all parallel
AIs on hold, including support for the
Global and Nonblocking aspects
beyond the current support in SPARK.

See https://blog.adacore.com/
ada-202x-support-in-gnat

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Sat, 10 Dec 2022 12:03:08 -0800

> See https://blog.adacore.com/ada-202x-
support-in-gnat

That post is over two years old, surely
that can't still be the state of things? I'm
not sure what it says when the big,
marquee item of the newest standard isn't
even actively being worked on in the big,
marquee compiler.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Tue, 13 Dec 2022 04:10:43 -0800

> That post is over two years old, surely
that can't still be the state of things?

There has been progress on the Ada2022
support, but no change on that part.

