

Ada User Journal Volume 44, Number 1, March 2023

ADA
USER
JOURNAL

Volume 44

Number 1

March 2023

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 25

Forthcoming Events 33

Proceedings of the “HILT’22 - Supporting a Rigorous Approach to Software Development

Workshop”

 H. Ausden. “Achieving 100% Availability in the ERAM Air Traffic Control System” 35

 D. Hardin. “Hardware/Software Co-assurance for the Rust Programming Language Applied

to Zero Trust Architecture Development” 38

 D. Larraz, A. Viswanathan, C. Tinelli, M. Laurent. “Beyond Model Checking of Idealized Lustre

in KIND 2” 44

 J. Hatcliff, D. Stewart, J. Belt, F. Robby, A. Schwerdfeger. “An AADL Contract Language

 Supporting Integrated Model- and Code-Level Verification” 49

 T. Bordis, T. Runge, A. Kittelmann, I. Schaefer. “Correctness-by-Construction: An Overview

of the CorC Ecosystem” 59

Proceedings of the “ADEPT: AADL by its practitioners Workshop” of AEiC 2022

 J. C. Roger, P. Dissaux. “AADL Modelling with SysML v2” 63

 X. Xu, S. Wang, B. Zhan, X. Jin, N. Zhan, J-P. Talpin. “Unified Graphical Co-modeling, Analysis and

Verification of Cyber-physical Systems by Combining AADL and Simulink/Stateflow” 67

 Z. Yang, Z. Qiu, Y. Zhou, Z. Huang, J-P. Bodeveix, M. Filali. “C2AADL_Reverse: A Model-Driven

Reverse Engineering Approach for Development and Verification of Safety-Critical Software” 71

 A. Bombardelli, A. Bonizzi, M. Bozzano, R. Cavada, A. Cimatti, A. Griggio, M. Nazaria, E. Nicolodi,

S. Tonetta, G. Zampedri. “COMPASTA: Integrating COMPASS Functionality into TASTE” 75

 P. Denzler, D. Ramsauer, D. Scheuchenstuhl, W. Kastner.“Experiences Modeling a OPC UA / DDS

Gateway in AADL in the Context of Fog Computing” 79

 G. Bardaro, M. Matteucci. “Modelling Robot Architectures with AADL” 80

 E. Senn, L. W. J. Bourdon. “Modeling ROS Based Applications with AADL” 84

 D. Blouin, P. Crisafulli, C. Maxim, F. Caron. “An Introduction to ALISA and Its Usage for an

Industrial Railway System Case Study” 88

Ada-Europe Associate Members (National Ada Organizations) 92

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

4

Volume 44, Number 1, March 2023 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 4
Ada-related Events 4
Ada and Education 7
Ada-related Resources 7
Ada-related Tools 7
Ada and Other Languages 8
Ada Practice 11
Ada in Jest 24

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

We are fast approaching the main Ada-
Europe yearly event, the AEiC
conference. You can get the gist of this
year's plans in this post: [1].

For the technically minded, several
intricate aspects of the language are
discussed in, e.g., [2] and [3]. It seems
one never stops learning new details about
Ada!

Finally, from the ‘Ada-not-the-language’
department (usually very quiet), several
resources that promise lots of fun: An
opera based on the wonderful work of
Sydney Padua, the steampunk comic
where Ada Lovelace and Charles
Babbage team up to fight crime (!) is in
the making [4]. Based on the same duo of
scientists, you can already get your hands
on an educational tabletop game [5].
Lastly, you may want to check an
impressive Ada Lovelace cosplay sewn
entirely from scratch [6].

[1] “AEiC 2023 - Ada-Europe Conference
- Final Deadline Approaching”, in Ada-
related Events.

[2] “Ada Array Contiguity”, in Ada
Practice.

[3] “Assignment Access Type with
Discriminants”, in Ada Practice.

[4] “Babbage & Lovelace - The Opera”,
in Ada-related Events.

[5] “Table Game”, in Ada and Education.

[6] “Ada Lovelace Cosplay”, in Ada in
Jest.

Sincerely,
Alejandro R. Mosteo.

Ada-related Events

Babbage & Lovelace - The
Opera

From: Simon Wright
<simon@pushface.org>

Subject: Babbage & Lovelace - The Opera
Date: Mon, 16 Jan 2023 18:30:56 +0000
Newsgroups: comp.lang.ada

https://guerillaopera.org/repertoire/
thrilling-adventures

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Thu, 19 Jan 2023 12:17:08 -0000

> https://guerillaopera.org/repertoire/
thrilling-adventures

As I reacted on Twitter when I saw
Sydney Padua @sydneypadua announcing
this opera adaption of her graphic novel
"The Thrilling Adventures of Lovelace
and Babbage":

-------start-quote-------

The late Robert Dewar, of
#AdaProgramming language fame, would
have loved this. For some history, look
for "The Maiden and the Mandate" in
https://ada-europe.org/archive/auj/
auj-41-1-withcovers.pdf and
https://adacore.com/adacore25...

-------end-quote-------

Those were hilariously funny fully staged
musical performances at several ACM
SIGAda and Ada-Europe conferences,
which I was lucky enough to attend. It
would be great if AdaCore could put
online one of the video recordings that
were made at the time.

Dirk

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

* 27th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2023)

* June 13-16, 2023, Lisbon, Portugal,
www.ada-europe.org/conference2023

Ada Stand at FOSDEM 2023

[Past event for the record. —arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada Stand at FOSDEM 2023 - Sat
4 & Sun 5 Feb (was: No Ada DevRoom
in FOSDEM 2023, alternative
DevRooms and Ada-Europe) support

Date: Thu, 2 Feb 2023 13:13:26 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Reminder: FOSDEM 2023 takes place
this weekend, Sat 4 and Sun 5, in
Brussels, Belgium. See www.fosdem.org.

Even though we didn't manage to get an
Ada DevRoom this year […], the Ada
FOSDEM team has an Ada stand in the
"Education" group on level 2 of building
K at the ULB site, with theme "It's time to
learn Ada!"

Looking forward to meet many Adaists!

Dirk Craeynest, Ada FOSDEM team

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

AEiC 2023 - Ada-Europe
Conference - Final Deadline
Approaching

[For the record, as the deadline is past.
—arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: AEiC 2023 - Ada-Europe
conference - Final Deadline
Approaching

Date: Thu, 16 Feb 2023 09:39:33 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

FINAL Call for Contributions

27th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2023)

13-16 June 2023, Lisbon, Portugal

www.ada-europe.org/conference2023

*** FINAL submission DEADLINE 27
February 2023 ***

Organized by Ada-Europe in cooperation
with ACM SIGAda (approval pending)

and the Ada Resource Association (ARA)

mailto:amosteo@unizar.es

Ada-re lated Events 5

Ada User Journal Volume 44, Number 1, March 2023

#AEiC2023 #AdaEurope
#AdaProgramming

General Information

The 27th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2023) will take place
in Lisbon, Portugal. The conference
schedule comprises a journal track, an
industrial track, a work-in-progress track,
a vendor exhibition, parallel tutorials, and
satellite workshops.

* Journal-track submissions present
research advances supported by solid
theoretical foundation and thorough
evaluation.

* Industrial-track submissions highlight
the practitioners' side of a challenging
case study or industrial project.

* Work-in-progress-track submissions
illustrate a novel research idea that is still
at an initial stage, between conception and
first prototype.

* Tutorial submissions guide attenders
through a hands-on familiarization with
innovative developments or with useful
features related to reliable software.

Schedule

[CLOSED] Extended submission deadline
for journal-track papers

27 February 2023: Submission deadline
for industrial-track and work-in-progress-
track papers, tutorial & workshop
proposals

20 March 2023: First round notification
for journal-track papers, acceptance
notification for other submission types

13-16 June 2023: Conference

Scope and Topics

The conference is a leading international
forum for providers, practitioners, and
researchers in reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development, and maintenance of long-
lived, high-quality software systems for a
challenging variety of application
domains. The program will allow ample
time for keynotes, Q&A sessions and
discussions, and social events.
Participants include practitioners and
researchers from industry, academia, and
government organizations active in the
promotion and development of reliable
software technologies.

The topics of interest for the conference
include but are not limited to:

- Formal and Model-Based Engineering
of Critical Systems;

- Real-Time Systems;

- High-Integrity Systems and Reliability;

- Ada Language;

- Applications in a variety of domains.

More specific topics are described on the
conference web page.

Call for Journal-track Submissions

Following a journal-first model, this
edition of the conference again includes a
journal track, which seeks original and
high-quality papers that describe mature
research work on the conference topics.
Accepted journal-track papers will be
published in the "Reliable Software
Technologies (AEiC2023)" Special Issue
of JSA -- the Journal of Systems
Architecture (Scimago Q1 ranked, impact
factor 5.936).

[Submission details removed. Call is
closed now.]

Authors who have successfully passed the
first round of review will be invited to
present their work at the conference.
Please note that the AEiC 2023
organization committee will waive the
Open Access fees for the first four
accepted papers, which do not already
enjoy OA from personalized bilateral
agreements with the Publisher.
Subsequent papers will follow JSA
regular publishing track.

Call for Industrial-track Submissions

The conference seeks industrial
practitioner presentations that deliver
insight on the challenges of developing
reliable software. Especially welcome
kinds of submissions are listed on the
conference web site. Given their applied
nature, such contributions will be subject
to a dedicated practitioner-peer review
process. Interested authors shall submit a
one-to-two pages abstract, by 27 February
2023, via EasyChair at
https://easychair.org/my/conference?
conf=aeic2023, selecting the "Industrial
Track". The format for submission is
strictly in PDF, following the Ada User
Journal style. Templates are available at
http://www.ada-europe.org/auj/guide.

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference and
will also be invited to expand their
contributions into full-fledged articles for
publication in the Ada User Journal,
which will form the proceedings of the
industrial track of the Conference.
Prospective authors may direct all
enquiries regarding this track to its chairs
Alexandre Skrzyniarz
(alexandre.skrzyniarz at
fr.thalesgroup.com) and Sara Royuela
(sara.royuela at bsc.es).

Call for Work-in-Progress-track
Submissions

The work-in-progress track seeks two
kinds of submissions: (a) ongoing
research and (b) early-stage ideas.
Ongoing research submissions are 4-page
papers describing research results that are
not mature enough to be submitted to the
journal track. Early-stage ideas are 1-page
papers that pitch new research directions
that fall within the scope of the
conference. Both kinds of submissions
must be original and shall undergo
anonymous peer review. Submissions by
recent MSc graduates and PhD students
are especially sought. Authors shall
submit their work by 27 February 2023,
via EasyChair at
https://easychair.org/my/conference?conf
=aeic2023, selecting the "Work in
Progress Track". The format for
submission is strictly in PDF, following
the Ada User Journal style. Templates are
available at http://www.ada-
europe.org/auj/guide.

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference and
will also be offered the opportunity to
expand their contributions into 4-page
articles for publication in the Ada User
Journal, which will form the proceedings
of the WiP track of the Conference.
Prospective authors may direct all
enquiries regarding this track to the
corresponding chairs Bjorn Andersson
(baandersson at sei.cmu.edu) and José
Cecílio (jmcecilio at fc.ul.pt).

Awards

Ada-Europe will offer an honorary award
for the best technical presentation, to be
announced in the closing session of the
conference.

Call for Tutorials

The conference seeks tutorials in the form
of educational seminars on themes falling
within the conference scope, with an
academic or practitioner slant, including
hands-on or practical elements. Tutorial
proposals shall include a title, an abstract,
a description of the topic, an outline of the
presentation, the proposed duration (half-
day or full-day), the intended level of the
contents (introductory, intermediate, or
advanced), and a statement motivating
attendance. Tutorial proposals shall be
submitted by e-mail to Tutorial and
Education Chair, Luís Miguel Pinho (lmp
at isep.ipp.pt), with subject line: "[AEiC
2023: tutorial proposal]". Tutorial
proposals shall be submitted by 27
February 2023. The authors of accepted
full-day tutorials will receive a
complimentary conference registration,
halved for half-day tutorials. The Ada
User Journal will offer space for the

6 Ada-re lated Events

Volume 44, Number 1, March 2023 Ada User Journal

publication of summaries of the accepted
tutorials.

Call for Workshops

The conference welcomes satellite
workshops centred on themes that fall
within the conference scope. Proposals
may be submitted for half- or full-day
events, to be scheduled at either end of
the AEiC conference. Workshop
organizers shall also commit to producing
the proceedings of the event, for
publication in the Ada User Journal.
Workshop proposals shall be submitted
by e-mail to the Workshop Chair, Frank
Singhoff (singhoff at univ-brest.fr), with
subject line: "[AEiC 2023: workshop
proposal]". Workshop proposals shall be
submitted at any time but no later than the
27 February 2023. Once submitted, each
workshop proposal will be evaluated by
the conference organizers as soon as
possible.

Call for Exhibitors

The conference will include a vendor and
technology exhibition. Interested
providers should direct inquiries to the
Exhibition & Sponsorship Chair, Ahlan
Marriott (ahlan at Ada-Switzerland.ch).

Venue

The conference will take place at the
Hotel Fénix Lisboa, near downtown
Lisbon, Portugal. June is full of events in
Lisbon, including the festivities in honour
of St. António (June 13 is the town
holiday), with music, grilled sardines, and
popular parties in Alfama and Bairro Alto
neighbourhoods. There's plenty to see and
visit in Lisbon, so plan in advance!

Organizing Committee

- Conference Chair

António Casimiro,
University of Lisbon, Portugal
casim at ciencias.ulisboa.pt

- Journal-track Chair

Elena Troubitsyna,
KTH Royal Inst. of Technology, Sweden
elenatro at kth.se

- Industrial-track Chairs

Alexandre Skrzyniarz,
Thales, France
alexandre.skrzyniarz at
fr.thalesgroup.com

Sara Royuela,
Barcelona Supercomputing Center, Spain
sara.royuela at bsc.es

- Work-In-Progress-track Chairs

Bjorn Andersson,
Carnegie Mellon University, USA
baandersson at sei.cmu.edu

José Cecílio,
University of Lisbon, Portugal
jmcecilio at fc.ul.pt

- Tutorial and Education Chair

Luis Miguel Pinho,
ISEP, Portugal
lmp at isep.ipp.pt

- Workshop Chair

Frank Singhoff,
University of Brest, France
singhoff at univ-brest.fr

- Exhibition & Sponsorship Chair

Ahlan Marriott,
White Elephant GmbH, Switzerland
ahlan at Ada-Switzerland.ch

- Publicity Chair

Dirk Craeynest,
Ada-Belgium & KU Leuven, Belgium
Dirk.Craeynest at cs.kuleuven.be

- Webmaster

Hai Nam Tran,
University of Brest, France
hai-nam.tran at univ-brest.fr

Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 27th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), Warsaw, Poland
('19), online from Santander, Spain ('21),
and Ghent, Belgium ('22).

Information on previous editions of the
conference can be found at

http://www.ada-europe.org/confs/ae.

--

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2023 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 27th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2023)
* June 13-16, 2023, Lisbon, Portugal,
www.ada-europe.org/conference2023

(V3.1)

Ada-Europe Conference - 6
March Extended Final
Deadline

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada-Europe Conference - 6 March
Extended Final Deadline

Date: Sat, 25 Feb 2023 14:33:00 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

The recently posted reminder for the Ada-
Europe 2023 Conference triggered several
requests for extra time. To give all authors
the same opportunity to further refine
their submission, the organizers decided
that the deadline for industrial- and work-
in-progress-track abstracts, and for
tutorial and workshop proposals will be
extended by 1 week until Monday, 6
March 2023. 1+ week remains!

FINAL UPDATED Call for Contributions

27th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2023)

13-16 June 2023, Lisbon, Portugal

*** EXTENDED FINAL submission
DEADLINE 6 March 2023 ***

Industrial- and Work-in-Progress-track:
submit via

https://easychair.org/my/conference?
conf=aeic2023

select "Industrial Track" or "Work in
Progress Track"

Tutorials: submit to Tutorial and
Education Chair,

Luís Miguel Pinho <lmp @ isep.ipp.pt>
subject "[AEiC 2023: tutorial proposal]"

Workshops: submit to Workshop Chair,
Frank Singhoff

<singhoff @ univ-brest.fr>
subject "[AEiC 2023: workshop

proposal]"

For more information please see the full
Call for Papers at

www.ada-europe.org/conference2023

#AEiC2023 #AdaEurope
#AdaProgramming

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2023 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 27th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2023)*
* June 13-16, 2023, Lisbon, Portugal,
www.ada-europe.org/conference2023

(V4.1)

http://www.ada-europe.org/conference2023

Ada-re lated Tools 7

Ada User Journal Volume 44, Number 1, March 2023

Ada and Education

Table Game

From: Mockturtle
<framefritti@gmail.com>

Subject: Table game
Date: Tue, 17 Jan 2023 05:56:31 -0800
Newsgroups: comp.lang.ada

Really?!?

https://www.amazon.com/Artana-
AAX14001-Lovelace-Babbage/
dp/B07WHMG5Y8

[The link is for a tabletop game with the
blurb “Play as a pioneer of early
computing, like Ada Lovelace or Charles
Babbage, to build a program that solves
problems for famous patrons like Charles
Darwin, Mary Shelley, and more!”. It is
priced at 19.98$ and has 4.5/5 stars rating
with 50 reviews at the time of this
writing. —arm]

Ada-related Resources

 [Delta counts are from February 12th to
April 5th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 5 Apr 2023 17:36 CET[b]
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: 8_349 (+58) members [1]

- LinkedIn: 3_436 (+18) members [2]

- Stack Overflow: 2_323 (+14)
 questions [3]

- Telegram: 160 (+1) users [4]

- Gitter: 219 (+68*) people [5]

- Ada-lang.io: 107 (+6) users [6]

- Libera.Chat: 74 (-8) concurrent
 users [7]

- Twitter: 22 (-10) tweeters [8]

 44 (-5) unique tweets [8]

* Gitter has migrated its messaging to the
Matrix open standard. The [5] reference
has been updated accordingly.

[1] http://www.reddit.com/r/ada/

[2] https://www.linkedin.com/groups/
114211/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://t.me/ada_lang

[5] https://app.gitter.im/#/room/
#ada-lang_Lobby:gitter.im

[6] https://forum.ada-lang.io/u

[7] https://netsplit.de/channels/details.php
?room=%23ada&net=Libera.Chat

[8] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: 5 Apr 2023 17:45 CET[c]
To: Ada User Journal readership

Rosetta Code: 924 (+4) examples [1]

 40 (+1) developers [2]

GitHub: 763* (=) developers [3]

Alire: 337 (+13) crates [4]

Sourceforge: 240 (=) projects [5]

Open Hub: 214 (=) projects [6]

Codelabs: 54 (=) repositories [7]

Bitbucket: 31 (=) repositories [8]

* This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://alire.ada.dev/crates.html

[5] https://sourceforge.net/directory/
language:ada/

[6] https://www.openhub.net/tags?
names=ada

[7] https://git.codelabs.ch/?
a=project_index

[8] https://bitbucket.org/repo/all?
name=ada&language=ada

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: 5 Apr 2023 17:36 CET[d]
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 28 (-5) 0.42%
 (-0.18%) [1]

- PYPL Index: 19 (-2) 0.83%
 (-0.11%) [2]

- IEEE Spectrum (general): 35 (=)
 Score: 1.16 [3]

- IEEE Spectrum (jobs): 33 (=)
 Score: 0.79 [3]

- IEEE Spectrum (trending): 32 (=)
 Score: 3.95 [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/
top-programming-languages/

Ada-related Tools

Embedded AVR Ada Setup -
Linux Edition

From: Stéphane Rivière
<stef@genesix.org>

Subject: ANN: Embedded AVR Ada Setup -
Linux edition

Date: Thu, 12 Jan 2023 11:21:30 +0100
Newsgroups: comp.lang.ada

Hi all,

Embedded AVR Ada Setup - Linux
edition.

Thanks to the work of Rolf Ebert (AVR-
Ada and AVR-Ada to Alire conversion),
Fabien Chouteau and AdaCore (GNAT-
AVR, GNAT-AVR to Alire conversion,
Alire promotion) and their friendly help,
here is a tutorial to get the most pleasant
environment to develop in Ada on 8-bit
AVR targets under Linux.

Based on Alire and GNAT Studio 23 it
allows real-time debugging in GNAT
Studio as if you were in a native X86_64
environment.

This was an opportunity to get acquainted
with Alire while keeping our usual GNAT
Studio based environment, which
integrates perfectly with Alire. Thanks to
the author Alejandro R. Mosteo, who also
wrote a very interesting presentation of
Alire in AUJ Vol 39, Number 3, Sept
2018, P 189.

This work is part of a more general desire
to empower the Ada community with
respect to the defunct GNAT CE. We
therefore adhere to this new policy of
Adacore. Between this new direction, the
arrival of Alire, the availability of many
Crates, the first successes of the
community in building GNAT Studio
independently, the arrival of Rust which
is good for the visibility of our favorite
language, Ada is certainly entering a new
era :)

https://github.com/sowebio/adam-doc
(GNAT Studio & project example
additional files)

https://github.com/sowebio/
adam-doc/blob/master/Ada%20
Development%20on%20AVR%20
Microcontroller.pdf

Feedback and criticism are welcome.

https://netsplit.de/channels/details.php

8 Ada and Other Languages

Volume 44, Number 1, March 2023 Ada User Journal

Short Video on Getting
Started with GtkAda in 2023

From: Stephen Merrony
<merrony@gmail.com>

Subject: A Short Video on Getting Started
with GtkAda in 2023

Date: Sat, 14 Jan 2023 01:01:13 -0800
Newsgroups: comp.lang.ada

I made a quick video showing how easy it
is to get started writing a Gtk application
in Ada these days...

https://youtu.be/IofrV5hsUvg

 [Video running time is 11:03 minutes.
 —arm]

Gnu Emacs Ada Mode 8.0.4
Released

From: Stephen Leake
stephen.leake84@gmail.com

Subject: Gnu Emacs Ada mode 8.0.4
released.

Date: Wed, 25 Jan 2023 05:27:57 -0800
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 8.0.4 is now
available in GNU ELPA.

All Ada mode executables can now be
built with Alire (https://alire.ada.dev/);
this greatly simplifies that process.

gpr-query and gpr-mode are split out into
separate GNU ELPA packages. You must
install them separately (Emacs install-
package doesn't support "recommended
packages" like Debian does).

Ada mode can now be used with Eglot;
this is controlled by new variables:

ada-diagnostics-backend - one of wisi,
eglot, none

ada-face-backend - one of wisi, eglot,
none

ada-indent-backend - one of wisi, eglot,
none

ada-statement-backend - one of wisi,
eglot, none

ada-xref-backend - one of GNAT,
gpr_query, eglot, none

The diagnostic, face, indent, and
statement backends default to wisi if the
wisi parser is found in PATH, to eglot if
the Ada LSP server is found, and none
otherwise. The xref backend defaults to
gpr_query if the gpr_query executable in
PATH, to GNAT otherwise.

ada-diagnostics-backend controls the
source of compilation error messages
while editing.

ada-statement-backend controls statement
motion; forward-sexp, wisi-goto-
statement-end, etc. ada-xref-backend
controls wisi-goto-spec/body and Emacs
xref commands.

In addition, name completion is provided
by eglot if any of the other backends are
using eglot; eglot completion is always
better than wisi.

The current AdaCore language server
(version 23) supports face but not indent.
The current version of eglot (1.10) does
not support face. The Language Server
Protocol does not support statement
motion. So for now, eglot +
ada_language_server only provides xref
and completion.

The AdaCore language server
ada_language_server is installed with
GNATStudio (which ada-mode will find
by default), or can be built with Alire. If
you build it with Alire, either put it in
PATH, or set gnat-lsp-server-exec.

I have not tested ada-mode with lsp-
mode. You can set ada-*-backend to
'other to experiment with that, or tree-
sitter, or some other backend. tree-sitter
will be fully supported in the next ada-
mode release.

The required Ada code requires a manual
compile step, after the normal list-
packages installation:

cd ~/.emacs.d/elpa/ada-mode-7.3beta*

./build.sh

./install.sh

If you have Alire installed, these scripts
use it.

Ada and Other
Languages

Carbon New Language

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Carbon
Date: Fri, 22 Jul 2022 14:13:08 -0700
Newsgroups: comp.lang.ada

[This thread is a bit dated as it was
deemed less of a priority due to space
constraints in past issues. —arm]

Next attempt to replace C/C++ without
really replacing it: Carbon!

You will notice, as usual, a few aspects
borrowed from Ada - and one point
inspired by Ada 83 (which was relaxed in
a later Ada version) :-)

https://mybroadband.co.za/news/software/
453410-googles-carbon-programming-
language-aims-to-replace-c.html

https://devclass.com/2022/07/20/
google-brands-carbon-language-as-
experimental-successor-to-c/

https://9to5google.com/2022/07/19/
carbon-programming-language-google-
cpp/

https://thenewstack.io/
google-launches-carbon-an-experimental-
replacement-for-c/

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Sat, 23 Jul 2022 09:09:57 -0000

I read that stuff yesterday and, yet again,
shook my head in disbelief :-(

The bit where I laughed was where it was
claimed that C++ is building technical
debt because it's not changing quickly
enough; C++ is currently a mess because
it's changing too quickly! Half-baked, and
half-implemented ideas are going into
'standards' in the full knowledge that
they'll change again in the next one. Even
g++ doesn't provide 100% support for
C++17 (https://gcc.gnu.org/projects/cxx-
status.html#cxx17)!

Carbon is likely to be even worse; every
'new' language that promises the earth,
without being designed in a rigorous way,
ends up with the same problems. Java - I
started playing with that in the 90s and
got frustrated that every update brought
more and more depreciation warnings in.
Python - 2.x -> 3.0 was a massive jump
(and took years to gain traction) because
the 'designers' just hadn't done a very
good job to start with! Rust? Mmm

As for the 'reuse C++ syntax'; why the
obsession with that? C++ syntax is really
bad! (Semantics, in some cases, are
another level - how many languages need
a book like "C++ Gotchas"?!).

Aaaaarrrrgghhh!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 23 Jul 2022 15:14:15 +0200

> Next attempt to replace C/C++ without
really replacing it: Carbon!

We have just learned how dangerous
carbon is for our climate. Yet these few
privileged keep on pumping it up! (:-))

From: Stéphane Rivière
<stef@genesix.org>

Date: Sat, 23 Jul 2022 15:49:05 +0200

> We have just learned how dangerous
carbon is for our climate. Yet these few
privileged keep on pumping it up! (:-))

Carbon language bad, green language
good

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 24 Jul 2022 10:38:58 +0100

> Next attempt to replace C/C++ without
really replacing it: Carbon!

Saw this last week and immediately
thought they'd failed on one of their
"design goals," i.e. to be "readable”.

> You will notice, as usual, a few aspects
borrowed from Ada - and one point
inspired by Ada 83 (which was relaxed
in a later Ada version) :-)

mailto:stephen.leake84@gmail.com

Ada and Other Languages 9

Ada User Journal Volume 44, Number 1, March 2023

What did they take from Ada?

From: John Mccabe
<john@mccabe.org.uk>

Date: Tue, 26 Jul 2022 10:31:42 -0700

> What did they take from Ada?

Certainly not the approach to making life
easier and less error-prone for developers.

I've got involved in a couple of
discussions on their forum, and I'm
inclined to think they just want C++ but
taken out of the control of ISO/IEC WGs
steering committees.

They're pretty much not considering
changing any of the aspects of C++ that
make it such a heap of junk (IMO, of
course), including, but not limited to:

1. arrays

2. enums

3. (both of the above when used together
:-))

4. symbols - overuse, duplication,
inconsistency

5. implicit stuff

6. pretend strong typing

7. forcing developers to deal manually
with numeric values that don't fit into
an n-byte range, where n is a whole
number

It really is shockingly soul-destroying
watching all that. What's worse is that,
from what I've seen over the years, the
new languages that have been developed
in a more 'relaxed' way than Ada (well,
evolved, really, like Java, Python etc) and
have become relatively successful have
taken a good 10 years or so to get to that
point, yet the discussions on the Carbon
forum are all about how to appeal to
current developers who're used to C++;
not _future_ developers who, ideally,
would _never_ be used to C++!

From: Nasser M. Abbasi
<nma@12000.org>

Date: Thu, 28 Jul 2022 18:48:49 -0500

Since Ada has solved these problems a
long time ago, then why are people still
reinventing the wheel? Why are they not
just using Ada? Ada is free software.

Maybe there is something in Ada that
prevents it from being widely adopted and
used? [...]

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Fri, 29 Jul 2022 11:03:36 -0000

> why are people still reinventing the
wheel?

Possibly for the same reason that I was so
anti-Ada in my early years; it takes
getting used to and people are lazy.

Looking at some of the languages that
have come out in recent years, it's obvious
that people can't be bothered to type

much; "fn"/"def" (or, even, nothing!)
instead of "function"/"procedure", "{"/"}"
instead of "begin"/"end", "&&" instead of
"and", "||" instead of "or" (!!!) etc.

From what I can see, some of the
"moderators" on that Carbon group don't
have much real professional software
development experience, so I suspect they
really have no clue about what they could
achieve with Ada, and have little
understanding of some of the constraints
that embedded, especially bare-metal,
systems impose on what you can and can't
include in a program. I'm thinking here of
things like heap-unfriendly container
classes, such as (in Swift) arrays that are
automatically expandable when you
append a new item, rather than being
fixed size etc.

There also seems to be a bit of an
obsession with the time between "empty
editor window" and "executable
available", rather than "empty editor
window" and "executable that actually
does what you want"!

Also, as Devin says, compiler availability
is an issue, from the point of view of
actually _using_ Ada.

However, from the point of view of
creating a new language, the fact that so
many people clearly think it _has_ to be
the C/C++ way is quite disturbing,
especially since, as I think I mentioned,
it's going to be a number of years until
any new language really makes its mark,
so new languages should be taking future
developers into account, not just
pandering to the laziness of existing ones!

At this point I think I should make it clear
that, although I think Ada has some great
features (and I regularly espouse them
amongst my colleagues), I don't use Ada
in the software I'm developing. I'd like to,
but it would take me a lot of time to get
back to a level in Ada where I'd be
comfortable creating a relatively
substantial codebase from scratch. The
alternative would be to go and join a team
that's already using Ada, but every Ada
job I've seen come up locally is to support
code that was written in Ada 95; I'd rather
be looking at Ada 2005 -> if I was to
make that jump.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Fri, 29 Jul 2022 11:59:21 -0700

 [...] IMHO the only way to make Ada
more popular is to create popular
applications with it.

From: Dennis Knorr
<dennis.knorr@gmx.net>

Date: Sat, 6 Aug 2022 16:18:12 +0200

> Maybe there is something in Ada that
prevents it from being widely adopted
and used?

An opinion from a bystander who wants
to like Ada, this is only after I looked the
resources and the community up a bit two
years ago again. you do not have to agree,
it's just my experience and sometimes gut
feeling.

* Bad to no marketing

* sometimes elitism by members of the
community/Ada fans

* no modern feeling toolchain (Even
Lazarus+Pascal or Gambas has a more
modern feeling toolchain, and that says a
lot)

* not much free software built with it

* not much free software for the toolchain
available

* not much libraries which are ready and
easy to use as a beginner

* no modern/up2date books and articles
(especially in other languages than in
English) seem to be available.

* the free Ada Compiler seems slow and a
while back it generated relatively big
binaries and the result was not very fast.

Just a few concrete examples to back that
up:

* Is there a web playground or repl shell
trying or learning/trying Ada or some of
its prominent modules?

* There's no modern book in German
about modern Ada and its libraries

* There's no syntax highlighting package
in vim for Ada

* No exercises like for example Ruby
Koans

* It *Looks* like there are no libraries
which make it easy use Ada for
programming (think json/document
formats, http/mail/mime protocols,
algorithms or cryptography libraries)

I know there are libraries out there, but
they are hard to find, not
promoted/marketed and I saw developers
(also in other languages, I admit that)
talking like, if you do not understand it,
you should go back to toy languages like
python.

I also know that not all bullet points
above are really true to the fullest, but
most of them from the outside look like it
and also have at least some grain of truth
in there.

If someone would write a book in
German, how to write Ada and use
$cryptolibrary, $networklibrary and how
to integrate it in one's favorite
development software, this surely would
be very interesting to many.

The ONLY thing where I see Ada
Marketing in the free software world is
FOSDEM. But it is in its own Room. Ada
people would need to go out and say: hey,
look we also can do good stuff, look, an

10 Ada and Other Languages

Volume 44, Number 1, March 2023 Ada User Journal

https server with letsencrypt support with
library in 30 lines.

To be honest, I am curious how the
community here will react to it. I mean, I
got the Book "Programming in Ada 2005"
as a present and I liked it, but after
reading the introduction (first 2-3 chapters
I think) back then (was like over 15 years
ago) I saw no libraries which I can use.
and I was not that big a programmer to
write them myself.

From: A.J. <ianozia@gmail.com>
Date: Sat, 6 Aug 2022 10:48:00 -0700

I agree with you on some of these points.
Ada never seemed to be big on marketing,
at least outside of specific niches, and
from a learning & resources aspect, it
took me reading Barnes' Programming in
Ada 2012 cover-to-cover to properly grok
the language. With that being said, things
have been changing a lot in the last two
years.

https://learn.adacore.com is a decent
resource in that it gives you a little Ada
interpreter with code snippets you can test
out yourself right in the browser. It's not
exactly a "web playground or repl shell"
but it's pretty good and seems to support
the standard library.

From a library and tooling standpoint, I
would check out Alire. It takes a matter of
minutes to get from not having any Ada
compilers installed at all to compiling
your own hello example and there's a lot
of libraries already supported
(https://alire.ada.dev/crates.html). To
bring, for example, Gnatcoll_sqlite, into
your project, you would simply just type
"alr with gnatcoll_sqlite" while in that
directory.

[...]

Then of course there's the awesome-ada
repository that has some nice resources,
albeit they seem to mostly be in English:
https://github.com/ohenley/awesome-ada

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sun, 7 Aug 2022 11:08:43 +0200

> * There's no modern book in German
about modern Ada and its libraries

What's the competition, considering C#,
Swift, Java or C? I.e., an original work
written by a German author, bought and
studied by many? There used to be a
number of books on Ada written in
German when the market had developed
ideas of a government mandate, the ideas
producing corresponding opportunities.

> * There's no syntax highlighting
package in vim for Ada

:syntax enable

(Does vim feature in a modern feeling
tool chain, though?)

> * No exercises like for example Ruby
Koans

> * It *Looks* like there are no libraries
which make it easy use Ada for
programming (think json/document
formats, http/mail/mime protocols,

AWS, GNATColl, $ alr with json.

> algorithms or cryptography libraries

Just use one that you can trust. If you
need it to be more Ada-ish, ChaCha20
cipher and Poly1305 digest have just been
mentioned a few postings ago. If
algorithms can address securing the entire
computation...

There used to be the PAL, which is the
Public Ada Library, easy to find. A bit
dated, and reflecting the hype back then, I
guess.

I gather that, currently, and in the past,
Ada tools are also focusing on topics of
embedded computers, a fairly large and
attractive market. JSON or MIME,
perhaps even interpreters are present, but
I think not central to control stuff near
sensors and actuators. How does one
compute deterministic responses before a
deadline using Node.js?

[...]

From: Dennis Knorr
<dennis.knorr@gmx.net>

Date: Mon, 8 Aug 2022 23:38:59 +0200

> What's the competition, considering C#,
Swift, Java or C?

From the absolute amount in English,
these languages or Python or Rust have
more books. Hell, even Raku has more
books.

Python, Kotlin(!), C# have more german
books and also more current ones. I bet in
five years from now there will be more
German books about Carbon than about
Ada, even if you include the old ones. [...]

>> * There's no syntax highlighting
package in vim for ada

> :syntax enable

Okay, that I did not know.

> (Does vim feature in a modern feeling
tool chain, though?)

Well, okay, Intellij is called more modern
of course or VSCode, but you still can
craft modern tooling onto vim and it
works well.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 8 Aug 2022 23:12:44 -0500

> P.S. Nobody writes Ada books these
days because they do not sell.

Do *any* programming books really sell?
If so, why? :-)

There are plenty of free, on-line resources
for pretty much any programming
language. Why pay for something you can
get free?

When someone starts talking about books,
I think they're a troll. I can understand
complaints about having trouble finding
stuff (although Google should find
AdaIC.org pretty easily, it’s usually pretty
high in Ada results, and most of the good
stuff is linked from there), and lack of
hype, and so on. But there's lots of good
stuff if one looks (or asks here - if
someone knows about here they're ready
to use Ada).

AdaIC has an Ada-specific search engine
which hopefully makes it easier to find
Ada stuff than a general engine like
Google.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Mon, 08 Aug 2022 23:05:12 -0700

> When someone starts talking about
books, I think they're a troll.

I don't know of any online Ada docs that
I'd call helpful past the beginner level
(Ada Distilled). Someone here
recommended a book to me a year or two
ago and I bought a copy. It looks good but
has just been sitting around waiting for
me to read it. I haven't done that because I
haven't had any occasion to mess with
Ada, and have too many other pending
projects. One of these days.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Tue, 9 Aug 2022 07:22:13 -0000

>There are plenty of free, on-line
resources for pretty much any
programming language. Why pay for
something you can get free?

FWIW, I may be 'old school', but I buy
loads of programming books. That
obviously doesn't qualify me to answer
the question of whether "*any*
programming books really sell", but the
main reasons I like books are that they
tend to be more constrained and cohesive
than jumping around websites (at least,
the decent ones are :-)). Also for those
times when I want to flick back and forth
between sections quickly, when I don't
want to be staring at a screen and so on.
One particular reason is that, unless I've
actually got a block of free time to be
experimenting with stuff, using a Web
browser presents multiple, frustrating
distractions, and it's often the case that an
example of something you might want to
do has no explanation about how it works
(books, especially Ada As A Second
Language, if I remember correctly, are
generally fairly good at that bit), so that
leads to more searching, more jumping
about webpages and, nowadays, a helluva
lot of stale and misleading information.

So, basically, that's why I pay for books.

Ada Pract ice 11

Ada User Journal Volume 44, Number 1, March 2023

From: John Perry <devotus@yahoo.com>
Date: Tue, 9 Aug 2022 18:19:47 -0700

> Do *any* programming books really
sell? If so, why? :-)

Having recently left a university, I can
attest that schoolbooks are still a thing,
and that includes textbooks on computer
programming. I recently inherited from a
member of this forum a nice textbook on
Data Structures in Ada, but it was based
on Ada 95, and I'm not sure it's in print
anymore. In fact, and alas, only three of
the Ada-based textbooks I find "easily" on
Amazon date from the early- to mid-90s,
and of the three recent ones I find, only
the Barnes book is of good quality.

I'd be delighted if someone would prove
me wrong.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Tue, 09 Aug 2022 23:20:43 -0700

> of the three recent ones I find, only the
Barnes book is of good quality. I'd be
delighted if someone would prove me
wrong.

Analysable Real-Time Systems:
Programmed in Ada by Prof. Alan Burns
is from 2016 and looks pretty good. It is
the book I mentioned that I got on the
recommendation of someone here. I've
flipped through it but still haven't read it.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 17 Aug 2022 20:02:53 -0500

The Ada 2012 book by Peter Chapin
looks promising, although I don't think
he's finished it
(https://github.com/pchapin/tutorialada).
There is a PDF version of it available on-
line.

Otherwise, I recommend Ada Distilled
(https://www.adaic.org/wp-content/
uploads/2010/05/Ada-Distilled-24-
January-2011-Ada-2005-Version.pdf)
[Ada 2005], and the Craft of Object
Oriented Programming
(http://archive.adaic.com/docs/craft/
craft.html) [Ada 95], depending on the
programmer's level. These are all written
in the textbook style, and are all available
for free on the Internet. I don't think you
miss too much learning with an Ada 95
book first (most of the newer stuff is
fairly obvious, or needs a textbook of its
own.

The Wikibook is also a good choice

(http://en.wikibooks.org/wiki/
Ada_Programming), but you do have to
be on-line to use it (the others are
downloadable and thus usable locally).

I find the Barnes book to be too much of a
good thing (sorry, John!). When John
gave me a copy at a Paris ARG meeting, I
put it on my lap to look through it (since
my hotel room was tiny), my legs got

numb after not very long. I know better
than to put it on a body part again. :-) I'd
recommend it as a reference for serious
Ada programmers, since it tries to cover
everything (the latest version has an Ada
2022 appendix).

Ada Practice

Working with Library
Versions

[This thread splinter veered off from the
announcement of ada-lang-io towards
library management. Other topics have
been pruned out. —arm]

From: Paul Jarrett
<jarrett.paul.young@gmail.com>

Date: Tue, 11 Oct 2022 21:21:31 -0700
Date: Sun, 09 Oct 2022 09:13:11 -0700
Newsgroups: comp.lang.ada

> Adahome.com is sort of like that, but it
is run by some company and hasn't
been updated in forever.

https://ada-lang.io/ is designed to be
updateable for a long time and open to
community contributions by being
completely open source. There're already
multiple people who have permissions to
merge changes to help ensure longevity.

ada-lang.io is indexed using Algolia, so
the entire site (including the Ada 2022
draft RM) is searchable.

Someone else wrote a tool for searching
through all code in Alire crates at
https://search.synack.me/

> I am not sure if package manager is a
good idea if it does not refer to the
target system's packaging tools, e.g.
DEB, RPM, MSI etc. The main
problem with that stuff is usually
architectural. Most of it is plain
aggregation of source code, which is
utterly wrong. The very idea to rebuild
everything each time on each client is
atrocious both with regard to wasting
computing resources as well as testing,
safety, consistency, interoperability
inside the target.

Alire can do additional build steps and
other things.

As an application developer, having the
code available helps in auditing third-
party software for security reasons, build
it in a debug configuration for
troubleshooting, and also provides the
means to locally fix bugs or adapt the
library if needed. Isolating libraries and
including them with a package manager
on a per project basis eases setup also by
not making developers have to look up or
use multiple installers.

I've seen inconsistencies in builds when
developers who rely on the system
libraries (installed by things like apt) join
the project at different times -- the earliest

developers might be on libfoo-1.2
whereas newer developers are on libfoo-
1.4. You don't run into this problem if the
repo points to the applicable dependencies
and everyone builds everything locally. It
also avoids other problems such as if your
system's package manager doesn't have a
particular library version, and the project
builds that library from source. It's not
perfect and there's other problems that
you run into, but it often does help
understanding what is being built in the
project more clearly. Alire even takes this
an entire step further by being able to
install and manage the toolchain as well
(gprbuild and GNAT).

Package managers also simplify having
multiple projects using the same library,
but different and possibly incompatible
versions on the same system. You get a
snapshot in time and a more consistent
path to get a build working for new
developers, or on a new system. There are
limitations due to what systems open
source library writers have available to
test on, so you shouldn't just blanket trust
code you pull in though, and you should
be careful how you use it.

Overall, Alire makes the experience
building and developing in Ada for me on
Windows, Mac and Linux, considerably
simpler and more efficient, by providing
the same interface for use across all of
these systems.

With the beautiful site styling done by
onox, someone pointed to ada-lang.io
should be able to download Alire, install a
toolchain, make a project and build in less
than 15 minutes or so (depending on
download and install time). The work
done by Fabien and Alejandro, and
everyone else who has contributed to
Alire to make this happen within the last
couple years is absolutely incredible.
Combined with Maxim's fantastic work
on the Ada language plugin for Visual
Studio Code, it's a great experience for
first-time users of the language.

[...]

> Maybe a web forum would be a good
idea, because many people nowadays
see Usenet newgroups as an outdated
thing. So the fact that the community
mostly relies on comp.lang.ada may
turn them off.

There's a dedicated forum now at
https://forum.ada-lang.io/

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 12 Oct 2022 17:06:26 -0700

>> I am not sure if package manager is a
good idea if it does not refer to the
target system's packaging tools, e.g.
DEB, RPM, MSI etc.

Alire can define crates that import system
libraries, using those tools. They are

12 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

subject to the same version checks as
other Alire crates.

>> The very idea to rebuild everything
each time on each client is atrocious
both with regard of wasting computing
resources as well as testing, safety,
consistency, interoperability inside the
target.

Actually, it's better for consistency; that's
why Alire does it.

I don't understand what you mean by
"testing" here; how does compiling from
source affect testing?

Same for "interoperability".

> I've seen inconsistencies in builds when
developers who rely on the system
libraries [...]

More precisely, an Alire crate can specify
precisely which version of each
dependency it requires/is compatible with.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 13 Oct 2022 08:58:16 +0200

> Actually, it's better for consistency;
that's why Alire does it.

Consistency is easier to enforce on pre-
built deployments, obviously. Moreover
libraries usually provide integrated checks
and/or have some target platform policy,
e.g. naming and placement conventions.

> I don't understand what you mean by
"testing" here; how does compiling
from source affect testing?

Because one can run tests on pre-built
packages impossible to run on the
sources. For example, network/hardware
protocols. In order to test a protocol
implementation one needs complex mock
setups the client simply does not have.
Such tests may run for many hours etc.

> Same for "interoperability".

See above. You cannot run integration
tests on the client, it is just silly.

>> [...] You don't run into this problem if
the repo points to the applicable
dependencies and everyone builds
everything locally.

No difference whether deployment is in
source or pre-built. Dependencies must be
enforced regardless. However it is far
easier to do with pre-built packages.

> More precisely, an Alire crate can
specify precisely which version of each
dependency it requires/is compatible
with.

It seems so. Multiple versions at once are
not supported. E.g. when you are working
on two projects both dependent on
different versions of another project:

 B -> A.1

 C -> A.2

Or even the same project, e.g. when doing
some migration from one version to
another.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Fri, 14 Oct 2022 01:41:32 -0700

> Multiple versions at once are not
supported. [...]

Yes of course, different crates can depend
on different versions of the same crate.

> Or even the same project, e.g. when
doing some migration from one version
to another.

Not sure how you would do that? Link
two different versions of the same library
in an executable? That's not going to
work.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 14 Oct 2022 12:05:00 +0200

> Yes of course, different crates can
depend on different versions of the
same crate.

It is about whether both A's can be
installed and coexist on the same
machine.

> Not sure how you would do that? Link
two different versions of the same
library in an executable? That's not
going to work.

Same as above. You have B.1 -> A.1 and
B.* -> A.2. You want to install both A.1
and A.2 and work on B.* while checking
on B.1.

In the long gone time of common sense, a
project code management system would
use a virtual file system and map different
parts of the project's graph onto a
structure of folders arranged by versions.
Today one would use something ugly like
a virtual machine or incredibly ugly like a
docker.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 14 Oct 2022 04:19:05 -0700

> It is about whether both A's can be
installed and coexist on the same
machine.

In Alire, "installed" means "checked out
the source code into a local directory".

If A depends on a system library that is a
shared object file, and those are different
versions, then it depends on the OS;
Debian can handle this nicely, Windows
only via separate directories and search
paths.

> Same as above. You have B.1 -> A.1
and B.* -> A.2. You want to install
both A.1 and A.2 and work on B.*
while checking on B.1.

And the solution is the same as well.

> [...] a project code management system
would use a virtual file system and map

different parts of the project's graph
onto a structure of folders arranged by
versions.

What prevents that now?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 14 Oct 2022 15:05:06 +0200

> What prevents that now?

Nothing except that it is to be done
manually. Why not download a source
archive and bother with anything? It is
Turing-complete, after all... (:-))

The advantage of a file system is that
developing image will be automated and
consistent. And you would not need to
move any files physically. Alire is
extremely slow because it must pull all
files [and then compile them on top of
that].

Furthermore, a virtual file system shares
duplicates of the same version of the same
file. When you work with naked Git you
must have as many copies as you have
projects. Same applies to virtual machines
and dockers. It is a huge overhead for
nothing.

Moreover, a virtual file system is instant
so long you do not access a file for read or
write. Which is the case for gprbuild,
make and other tools which use
timestamps and then never look into files.

With a virtual file system you can
automatically check in all files on closing
if it was open for write and never worry
about command-line mess or plug-ins.
Any tool will work out of the box.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sun, 16 Oct 2022 10:54:57 +0200

> Furthermore, a virtual file system shares
duplicates of the same version of the
same file. When you work with naked
Git you must have as many copies as
you have projects. Same applies to
virtual machines and dockers. It is a
huge overhead for nothing.

Inasmuch as versions are subject to
business, software configuration
management is just work that requires
resources to get it done. Problem solved.
(Well, not for the small shop on a budget,
granted.)

To what extent can static linking make
B.1 and B.2 exist on the same system?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 16 Oct 2022 11:20:33 +0200

> Inasmuch as versions are subject to
business, software configuration
management is just work that requires
resources to get it done.

Yes, human resources especially. It is a
self-feeding system that exists in each
organization. It creates problems in order

Ada Pract ice 13

Ada User Journal Volume 44, Number 1, March 2023

to justify its continuous growth. Modern
time tools excel at wasting and perfect
outright meaninglessness.

> Problem solved. (Well, not for the small
shop on a budget, granted.)

I cannot say that ClearCase, which did
things more or less right 20 years ago,
was for small business either. (:-)) AFAIK
it is still available and GNAT Studio
supports it. However, IBM (Rational,
actually) fulfills its existential end goal of
wasting personal and hardware resources
by other, no less efficient, techniques... (:-
))

> To what extent can static linking make
B.1 and B.2 exist on the same system?

To a full extent! (:-))

Sorry, I do not understand your question...

Arrays with Discriminated
Task Components

From: Adamagica
 <christ-usch.grein@t-online.de>

Subject: Arrays with discriminated task
components

Date: Sat, 24 Dec 2022 03:44:27 -0800
Newsgroups: comp.lang.ada

I've got a task type with a discriminant:

 type Index is range 1 .. N;

 task type T (D: Index);

Now I want an array of these tasks, where
each task knows its identity (the index)
via the discriminant, an
iterated_component_association:

 Arr: array (Index) of T :=

 (for I in Index => ???);

How can I do this?

This works with access, but I find this
extremely ugly:

 Arr: array (Index) of access T :=

 (for I in Index => new T (I));

Alternatively, I could use the traditional
method with a Start entry with the index
as parameter:

 task type T is

 entry Start (D: Index);

 end T;

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 24 Dec 2022 20:05:19 +0200

One way is to give the discriminant a
default value that is a function call that
returns a new identifier on each call:

 Next_Index : Index := Index'First;

 -- The value returned by the next call

 -- of New_Index.

 function New_Index return Index

 -- Returns a unique Index value (up to N).

 is

 Result : constant Index := Next_Index;

 begin

 if Next_Index < Index'Last then

 Next_Index := Next_Index + 1;

 -- else report error?

 end if;

 return Result;

 end New_Index;

 task type T (D: Index := New_Index);

Then you can declare the array without
any initial value:

 Arr: array (Index) of T;

and the initialization of each task in the
array makes its own call to New_Index
and gets its own identifier value.

A bit sneaky but has the advantage that it
extends automatically to two arrays of
tasks, or one array and some separate
single declarations of tasks, etc.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 24 Dec 2022 23:41:34 +0100

> One way is to give the discriminant a
default value that is a function call that
returns a new identifier on each call:

No, this does not guarantee that the task's
discriminant is its index in the array,
which is a requirement of the question.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 25 Dec 2022 18:16:56 +0200

This seems to work with GNAT, but I'm
not entirely sure if it is legal (could there
be a conflict between the default value of
the task discriminant, which is the same
for all tasks in the array, and the actual
discriminants which are different for each
task in the array?):

 N : constant := 10;

 type Index is range 1 .. N;

 task type T (D: Index := Index'First);

 -- A default value for D is needed to make

 -- the type constrained, as

 -- required by the Arr declaration below.

 function New_T (I : in Index)

 return T

 is

 begin

 return TI : T (D => I)

 do

 null;

 end return;

 end New_T;

 Arr: array (Index) of T := (for I in Index =>

 New_T(I));

Whether this is any less ugly than the
heap allocation method is doubtful.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Mon, 26 Dec 2022 08:39:23 -0800

Thanx, Niklas and Jeffrey. I just didn't
think of the generator function.

Sockets, Streams, and
Element_Arrays

From: Mark Gardner
<magardner2017@gmail.com>

Subject: Sockets, Streams, and
Element_Arrays: Much confusion

Date: Sat, 31 Dec 2022 14:11:55 +0200
Newsgroups: comp.lang.ada

Hello, I've been having a bit of difficulty
doing some UDP socket programming in
Ada. As outlined in my stackoverflow
question here
(https://stackoverflow.com/q/74953052/
7105391), I'm trying to reply to messages
I am getting over UDP.

GNAT.Sockets gives me a
Stream_Element_Array, which I can't find
any documentation on how to make use of
other than "You should also be able to get
a Stream, which you should use instead"
(About ten years ago, on this very
newsgroup, somebody said not to use
streams with UDP, or at least not
GNAT.Sockets.Stream).

Adasockets gives me a String, which I can
work with, except it throws away the data
recvfrom gives it, apparently making it
impossible to reply to the querying
address.

At this point, I'm half-tempted to make
my own binding, but as I've never done
that sort of thing before, I thought I'd ask
the wisdom of the Usenet if there is a way
to convert a Stream_Element_Array into
the exotic types of Unsigned_16 and
String.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Dec 2022 14:11:11 +0100

> GNAT.Sockets gives me a
Stream_Element_Array [...]

Stream_Element_Array is declared in
Ada.Streams as

 type Stream_Element_Array is

 array(Stream_Element_Offset range <>)

 of aliased Stream_Element;

For communication purposes it is an array
of octets. Your datagram is represented as
a Stream_Element_Array or a slice of.

As for streams, yes, it does not make
sense to use them for networking, unless
you override all stream primitives. The
reasons for that are

- non-portability of predefined primitives

- low efficiency for complex data types

- encoding inefficiency as well

You will need to handle some application
protocol artifacts, checksums, counters,
strange encodings, sequence numbers etc.
It is easier to do this directly on the
Stream_Element_Array elements.

14 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

And, well, do not use UDP, except for
broadcasting. There is no reason to use it.
For multicast consider delivery-safe
protocols like PGM. For single cast use
TCP/IP. (If you need low latency see the
socket NO_DELAY option)

From: Mark Gardner
<magardner2017@gmail.com>

Date: Sat, 31 Dec 2022 15:50:29 +0200

> For communication purposes it is an
array of octets.

According to RM 13.13.1,
"Stream_Element is mod implementation-
defined" which to me says there is no
guarantee that they will be octets, unless
this is specified elsewhere?

> You will need to handle some
application protocol artifacts,
checksums, counters, strange
encodings, sequence numbers etc. It is
easier to do this directly on the
Stream_Element_Array elements.

So, how would I do this directly on the
elements? I mean, if it is an octet-array to
a string, I expect an element-to-element
copy, or type conversion to work, but
what about integers? Do I need to do
something like
My_Int:=Unsigned_8(octet(1))+2**8*
Unsigned_8(octet(2)); or whatever
endianness demands? Or is this the time
to learn how to use
Unchecked_Conversion?

> And, well, do not use UDP, except for
broadcasting.

Well, my use case just so happens to be
broadcasting, and re-broadcasting data
across a binary-tree-like p2p network.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Dec 2022 15:16:05 +0100

> According to RM 13.13.1,
"Stream_Element is mod
implementation-defined"

GNAT.Sockets is GNAT-specific. All
GNAT compilers have Stream_Element 8
bits. I can imagine some DSP
implementation with Stream_Element of
32 bits. But realistically add

pragma Assert (Stream_Element'Size >= 8);

and be done with that.

[...]

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 31 Dec 2022 16:18:50 +0100

> According to RM 13.13.1,
"Stream_Element is mod
implementation-defined"

The ARM has always tried to ensure that
the language could be implemented on
any kind of processor. Thus you have
implementation-defined separate
definitions of Storage_Element and
Stream_Element, which need not be the

same, and no guarantee that Interfaces
contains declarations of Integer_8 or
Unsigned_8.

But these days almost everything is byte
oriented, so unless you need what you're
writing to work on some unusual H/W,
you can presume that both of these are
bytes, and that Interfaces contains those
declarations.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 31 Dec 2022 17:39:07 +0000

> About ten years ago, on this very
newsgroup, somebody said not to use
streams with UDP, or at least not
GNAT.Sockets.Stream.

The reasoning behind the
recommendation not to use streams with
UDP was as follows (there's a faint
possibility that it no longer applies!)

If the data type you want to send is e.g.

 type Message is record

 Id : Integer;

 Val : Boolean;

 end record;

and you create a datagram socket and
from that a stream, then use
Message'Write to the stream, GNAT will
transmit each component of Message
separately in canonical order (the order
they're written in the type declaration).
This results in two datagrams being sent,
one of 4 bytes and one of 1 byte.

If you take the same approach at the
destination, Message'Read reads one
datagram of 4 bytes, and one of 1 byte,
and it all looks perfect from the outside. If
the destination is expecting a 5 byte
record, of course, things won't work so
well.

The approach we adopted was to create a
'memory stream', which is a chunk of
memory that you can treat as a stream
(see for example
ColdFrame.Memory_Streams at [1]).
With Ada2022, you should be able to use
Ada.Streams.Storage.Bounded [2].

Message'Write the record into the
memory stream; transmit the written
contents as one datagram.

To read, create a memory stream large
enough for the message you expect; read
a datagram into the memory stream;
Message'Read (Stream =>
the_memory_stream, Item =>
a_message);

You can use gnatbind's switch -xdr to
"Use the target-independent XDR
protocol for stream oriented attributes
instead of the default implementation
which is based on direct binary
representations and is therefore target-and
endianness-dependent".

[1] https://github.com/simonjwright/
coldframe/blob/master/lib/
coldframe-memory_streams.ads

[2] http://www.ada-auth.org/standards/
22rm/html/RM-13-13-1.html#p25

From: Mark Gardner
<magardner2017@gmail.com>

Date: Sat, 31 Dec 2022 21:36:40 +0200

> The approach we adopted was to create
a 'memory stream'

Wait, so if I know what shape my data is,
and use a memory_stream (like the one in
the Big Online Book of Linux Ada
Programming chapter 11 [1]), I'm fine
using Stream, in conjunction with
Get_Address? That's wonderful. Not at all
frustrated that I just wasted approximately
three working days looking for a solution
to a problem that didn't exist.

> Message'Write the record into the
memory stream; transmit the written
contents as one datagram.

I'm guessing with
Memory_Stream'Write(Socket_Stream,
Buffer);?

> To read, create a memory stream large
enough for the message you expect

Does this second buffer need to be added?
If the datagram arrives (UDP), shouldn't
GNAT.Sockets.Stream() be able to handle
it?

> You can use gnatbind's switch -xdr to
"Use the target-independent XDR
protocol for stream oriented attributes
[...]

Oh fun, I didn't think of that aspect.
Thanks! Would I have to pass it as a
command line flag, or would there be
some kind of pragma I could use?

Thanks for the help so far, and happy new
year!

[1] http://www.pegasoft.ca/resources/
boblap/11.html#11.12

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Dec 2022 21:16:18 +0100

> I'm guessing with
Memory_Stream'Write(Socket_Stream,
Buffer);?

No, you create a memory stream object.
Then you write your packet into it:

 My_Message'Write

 (My_Memory_Stream'Access);

Once written you use the accumulated
stream contents to write it into the socket.
An implementation of a memory-resident
stream is very simple. E.g. see:
http://www.dmitry-kazakov.de/ada/
strings_edit.htm#Strings_Edit.Streams

My advice would be not to do this. It is
wasting resources and complicated being
indirect when 'Write and 'Read are
compiler-generated. If you implement

Ada Pract ice 15

Ada User Journal Volume 44, Number 1, March 2023

'Write and 'Read yourself, then why not
call these implementations directly. It just
does not make sense to me. I always
wonder why people always overdesign
communication stuff.

Build messages directly in a
Stream_Element_Array. Use system-
independent ways to encode packet data.
E.g. chained codes for integers. Mantissa
+ exponent for real numbers. If you have
Booleans and enumerations it is a good
idea to pack them into one or two octets
to shorten the packets. All this is very
straightforward and easy to implement.

You can also consider using some
standard data representation format, e.g.
ASN.1. An Ada ASN.1 implementation is
here:
http://www.dmitry-kazakov.de/ada/
components.htm#ASN.1

You describe your message in ASN.1 as
an Ada tagged type derived from building
blocks. Then you can encode and decode
it directly from Stream_Element_Array. I
would not recommend that either. ASN.1
is quite overblown.

Happy New Year!

From: philip...@gmail.com
<philip.munts@gmail.com>

Date: Sat, 31 Dec 2022 14:32:17 -0800

> And, well, do not use UDP, except for
broadcasting

I have to disagree here. UDP is perfectly
fine for RPC-like (Remote Procedure
Call) transactions on a local area network.
And it is orders of magnitude easier to
implement on microcontrollers than TCP.
An Ada program using UDP to
communicate with data collecting
microcontrollers makes perfect sense in
some contexts. I use it for my Remote I/O
Protocol.

The only trick is that the server (or
responder, as I like to call it) and client
(or initiator) can't quite use the same code.

Here is my generic package for UDP with
fixed length messages:

https://github.com/pmunts/libsimpleio/
blob/master/ada/objects/
messaging-fixed-gnat_udp.ads

https://github.com/pmunts/libsimpleio/
blob/master/ada/objects/
messaging-fixed-gnat_udp.adb

Getting between Stream_Element_Array
and a byte array is a pain and I wound up
just looping over arrays, copying one byte
at a time. If somebody has a better idea,
let me know.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 31 Dec 2022 23:49:33 +0100

> Getting between
Stream_Element_Array and a byte
array is a pain and I wound up just

looping over arrays, copying one byte
at a time. If somebody has a better idea,
let me know.

You should be able to use
Unchecked_Conversion for that.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Dec 2022 23:55:07 +0100

> I have to disagree here. UDP is
perfectly fine for RPC-like (Remote
Procedure Call) transactions on a local
area network.

RPC and other synchronous exchange
policies should be avoided as much as
possible.

Having said that, implementation of RPC
on top of streams is incomparably easier
than on top of UDP.

> And it is orders of magnitude easier to
implement on microcontrollers than
TCP.

Not at all. You need:

- Safe transmission and error correction
on top of UDP;

- Buffering and sorting out incoming
datagrams;

- Maintaining sequence numbers;

- Splitting messages that do not fit into a
single datagram and reassembling them
on the receiver side;

- Buffering on the sender side to service
resend requests.

This is extremely difficult and a huge load
for a microcontroller.

> Getting between
Stream_Element_Array and a byte
array is a pain and I wound up just
looping over arrays, copying one byte
at a time. If somebody has a better idea,
let me know.

Use "in situ" conversion if you are
concerned about copying. E.g.

 pragma Import (Ada, Y);

 for Y'Address use X'Address;

From: Simon Wright
<simon@pushface.org>

Date: Sat, 31 Dec 2022 23:41:11 +0000

> My advice would be not to do this. [...]

It has to depend on the design criteria.

If you need something now, and it's not
performance critical, and you have control
over both ends of the channel, why not go
for a low-brain-power solution?

On the other hand, when faced with e.g.
SNTP, why not use Ada's facilities (e.g.
[1]) to describe the network packet and
use unchecked conversion to convert
to/from the corresponding stream element
array to be sent/received?

I'd have thought that building messages
directly in a stream element array would
be the least desirable way to do it.

[1] https://sourceforge.net/p/coldframe/
adasntp/code/ci/default/tree/SNTP.impl
/sntp_support.ads

Real_Arrays on Heap with
Clean Syntax

From: Jim Paloander
<dhmos.altiotis@gmail.com>

Subject: Real_Arrays on heap with
overloaded operators and clean syntax

Date: Sun, 22 Jan 2023 13:34:18 -0800
Newsgroups: comp.lang.ada

Dear Ada lovers,

with stack allocation of Real_Vector
(1 .. N) when N >= 100,000 I get
STACK_OVERFLOW ERROR while
trying to check how fast operator
overloading is working for an expression

X := A + B + C + C + A + B, where
A,B,C,X are all Real_Vector (1 .. N).

So my only option was to allocate on the
heap using new. But then I lost the clean
syntax

X := A + B + C + C + A + B

and I had to write instead:

X.all := A.all + B.all + C.all + C.all +
A.all + B.all.

This is really ugly and annoying because
when you are using Real_Arrays for
implementing some linear algebra method
who relies heavily on matrix vector
products and vector updates, you do need
to allocate on the heap (sizes are
determined in runtime) and you do need a
clean syntax. So, is there any way to
simplify my life without using the .all or
even without declaring A,B,C,X as access
Real_Vector?

Thanks for your time!

From: Joakim Strandberg
<joakimds@kth.se>

Date: Sun, 22 Jan 2023 13:56:27 -0800

Easiest solution is probably to declare a
new task and specify the stack size using
the Storage_Size aspect. Allocate as much
stack space as you need to be able to do
the calculations and do all the allocations
on the declared task, not on the
environment task. You will avoid the
unnecessary heap allocations and have
nice clean syntax.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 22 Jan 2023 23:13:14 +0100

You can define "+" on the access type,
which should probably be an arena
pointer for performance reasons:

 Arena : Mark_And_Release_Pool;

 type Real_Vector_Ptr is access

16 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

 Real_Vector;

 for Real_Vector_Ptr'Storage_Pool use

 Arena;

function "+" (Left, Right :

Real_Vector_Ptr)

 return Real_Vector_Ptr is

 begin

 if Left'Length /= Right'Length then

 raise Constraint_Error;

 end if;

 return Result : Real_Vector_Ptr :=

 new Real_Vector (Left'Range) do

 for I in Result'Range loop

 Result (I) :=

 Left (I) + Right (I - Left'First +

 Right'First);

 end loop;

 end return;

 end "+";

You can overload that with

 function "+" (Left : Real_Vector_Ptr;

 Right : Real_Vector)

 return Real_Vector_Ptr is

 begin

 if Left'Length /= Right'Length then

 raise Constraint_Error;

 end if;

 return Result : Real_Vector_Ptr :=

 new Real_Vector (Left'Range) do

 for I in Result'Range loop

 Result (I) :=

 Left (I) + Right (I - Left'First +

 Right'First);

 end loop;

 end return;

 end "+";

and with

 function "+" (Left : Real_Vector;

 Right : Real_Vector_Ptr)

 return Real_Vector_Ptr;

Then you will be able to write:

 X := A + B + C + C + A + B;

 -- Use X

 Free (X); -- Pop all arena garbage

But of course, the optimal way to work
large linear algebra problems is by using
in-place operations, e.g.

procedure Add (Left : in out Real_Vector;

Right : Real_Vector);

etc.

Regards,
Dmitry A. Kazakov

http://www.dmitry-kazakov.de

From: Jim Paloander
<dhmos.altiotis@gmail.com>

Date: Sun, 22 Jan 2023 14:49:09 -0800

> It is my impression that in the Ada
community the preferred way of
working is in general stack only. [...]

With great depression I realized that the
preferred way is of stack only. This is
very restrictive excluding all scientific
modelling involving solvers for partial
differential equations, linear algebra
kernels, etc. It is insane. Completely

insane. 3D simulations of physical
phenomena may involve billions of grid-
cells and at each grid-cell several
unknowns are defined (velocity, pressure,
temperature, energy, density, etc). That is
why they are using Fortran or C++, but
Ada has really cool stuff for so many
things, why not vectors and matrices and
heap allocation? Would you please give
me an example, I googled and I cannot
find a single example demonstrating how
to use a task with the declaration of stack
size. Why is there so little information
online about so important things such as
allocation?

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sun, 22 Jan 2023 15:14:03 -0800

Note that Real_Arrays does not specify
where things are allocated (heap or stack).

Only when you define "x : Real_Vector (1
.. n)", it is on stack. You can always write
something like the snippet below.

Anyway, after a certain size, you may
have to find compromises, like avoiding
operators (they do too many allocations &
deallocations in the background, even
assuming elegant heap-allocated objects)
and also give up plain matrices, against
sparse matrices or band-stored matrices,
typically for solving Partial Differential
Equations.

with Ada.Numerics.Generic_Real_Arrays;

procedure Test_Large is

 type Float_15 is digits 15;

 package F15_R_A is new

 Ada.Numerics.Generic_Real_Arrays

 (Float_15);

 use F15_R_A;

 procedure Solve_it

 (x : in Real_Vector;

 y : out Real_Vector;

 A : in Real_Matrix) is

 begin

 null; -- Here, the big number-crunching

 end;

 n : constant := 10_000;

 type Vector_Access is access

 Real_Vector;

 type Matrix_Access is access Real_Matrix;

 x, y : Vector_Access := new Real_Vector

 (1 .. n);

 A : Matrix_Access := new Real_Matrix

 (1 .. n, 1 .. n);

begin

 Solve_it (x.all, y.all, A.all);

 -- !! Deallocation here

end;

From: Leo Brewin
<leo.brewin@monash.edu>

Date: Mon, 23 Jan 2023 12:14:47 +1100

Here is a slight variation on the solution
suggested by Gautier. It uses Ada's
"rename" syntax so that you can avoid all
the .all stuff. I use this construction
extensively in my large scale scientific
computations.

with Ada.Numerics.Generic_Real_Arrays;

with Ada.Unchecked_Deallocation;

procedure Test_Large is

 type Float_15 is digits 15;

 package F15_R_A is new

 Ada.Numerics.Generic_Real_Arrays

 (Float_15);

 use F15_R_A;

 procedure Solve_it

 (x : in Real_Vector;

 y : out Real_Vector;

 A : in Real_Matrix) is

 begin

 null; -- Here, the big number-crunching

 end;

 n : constant := 10_000;

 type Vector_Access is access

 Real_Vector;

 type Matrix_Access is access

 Real_Matrix;

 x_ptr, y_ptr : Vector_Access := new

 Real_Vector (1 .. n);

 A_ptr : Matrix_Access := new

 Real_Matrix (1 .. n, 1 .. n);

 x : Real_Vector renames x_ptr.all;

 y : Real_Vector renames y_ptr.all;

 A : Real_Matrix renames A_ptr.all;

 procedure FreeVector is new

 Ada.Unchecked_Deallocation

 (Real_Vector,Vector_Access);

 procedure FreeMatrix is new

 Ada.Unchecked_Deallocation

 (Real_Matrix,Matrix_Access);

begin

 Solve_it (x, y, A);

 -- Deallocation here

 FreeVector (x_ptr);

 FreeVector (y_ptr);

 FreeMatrix (A_ptr);

end;

From: Jim Paloander
<dhmos.altiotis@gmail.com>

Date: Sun, 22 Jan 2023 22:01:58 -0800

Thank you very much, would a
for Real_Vector_Access'Storage_Pool use
localPool; save you from the need to free
the vectors and matrix yourself?

On the other hand, is there any way of
avoiding temporaries? Possibly a modern
version of the Real_Array using
expression generic syntax or something
similar? Since you are using scientific
computations extensively, you must be
aware of Fortran. Have you compared
Fortran's complex numbers with Ada's for
inner products or similar computations to
see who is faster? You see, I like a lot of
things about Ada, but the syntax is really
difficult to follow. Sometimes it gives me
the impression that it is more difficult
than really needed to be. For example
there should be a way for Real_Arrays to
allocate memory internally and not on the
stack directly like containers. And for
containers to provide an indexer Vector(i)
and overloaded operators similarly to
Real_Vectors. But the fact that they do
not give me the impression that this
Language, although being designed by the
army for mission critical applications,

Ada Pract ice 17

Ada User Journal Volume 44, Number 1, March 2023

never realized that modern mission
critical need to simplify mathematical
calculations providing an easy syntax. I
am surprised that after so many years and
so many updates to the Standard the
designers of the Language did not realize
that such mathematical syntax should be
simplified to attract more people from
scientific computing, who are tired with
Fortran 10000 ways of declaring
something a variable.

From: Egil H H <ehh.public@gmail.com>
Date: Sun, 22 Jan 2023 23:50:11 -0800

> wanted to find the video where Jean
Pierre Rosen talks about how memory
is handled in the Ada language from
FOSDEM perhaps 2018-2019.

It was in 2016:
https://archive.fosdem.org/2016/schedule/
event/ada_memory/

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 23 Jan 2023 09:51:55 +0100

>> Something came up and I had to send
my previous reply/e-mail as is. I
wanted to find the video where Jean
Pierre Rosen talks about how memory
is handled in the Ada language from
FOSDEM perhaps 2018-2019.
Unfortunately I have been unable to
find it.

>>

> It was in 2016:

> https://archive.fosdem.org/2016/
schedule/event/ada_memory/

Thanks Egil, you were faster than me...

I also have a full tutorial at several Ada-
Europe conferences. No video, but I can
send the slides to those interested.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 23 Jan 2023 09:28:46 +0100

> I was not sure whether or not it can be
avoided with Implicit_Dereference,

> type Accessor (Data: not null access
Element) is limited private with
Implicit_Dereference => Data;

If you create a new wrapper type,
anyway, then it is easier to define
operations directly on that new type.

> Otherwise what you described for
operator+ one has to do for every
operator overloaded inside Real_Arrays
package.

You should not use the standard library
anyway. It is not intended for large
problems, which require specific
approaches and methods, like sparse
matrices, concurrent processing and so
on.

> The optimal way to work large linear
algebra problem is what you describe
because unfortunately Ada does not
allow what Fortran does since 30 years
ago or more.

I am not sure what you mean. It is quite
possible to design a wrapper datatype
allocating vectors/matrices in the pool.
E.g. Ada's Unbounded_String is such a
thing. Real_Arrays were not designed this
way because see above.

> But in C++ you can reproduce the same
functionality as Fortran using
Expression Templates and Template
Metaprogramming.

Nothing prevents you from wrapping
Real_Array in a generic way:

generic

 with package Real_Arrays is new

Numerics.Generic_Real_Arrays (<>);

package Generic_Pool_Real_Arrays is

 ...

end Generic_Pool_Real_Arrays;

> Perhaps Ada should allow something
like that. Because for maintainability
reasons the best would be to write the
mathematical expressions as close as
possible to the mathematical formulas.

There is no problem with that as you can
define operations on pointers.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Mon, 23 Jan 2023 09:39:39 +0100

> Are you aware of any libraries similar
to Real_Arrays, but who allocated
memory internally using heap?

The most natural way to work with an
array of FPT numbers is for the
programmer to declare an array indexed
by some index type. Done. If GNAT gets
in the way there, it might be worth a note
sent to its maintainers. Whenever a
programmer is tasked with considering
memory allocation, then depending on
one's propensity towards working on
memory allocation it is inconvenient and
distracting. Math programs don't make
you do this, I think.

Also, std::vector and its relatives shield
the programmer from the absurdly clever,
yet unreadable memory allocation that
needs to be stuffed behind the scenes.
More importantly, though, C++
introduced std::move semantics after a
few decades of its existence, to address
copying when using chains of +. It might
be interesting to see Ada's in-situ
construction of return values in
comparison.

> Similarly to the Containers.Vector. But
Vector has such an awful syntax. There
should be something like an indexer [i]
similarly to the C++ std::vector to make
things simpler

.at() does some of what Ada does. Is

 v.at(k) = 4;

less awful than

 v(k) := 4;

?

Another thing: Mathematical notation has
ellipsis, thus

 A + B + ... + Y + Z;

Most general purpose languages don't
have ellipsis for this kind of expression.
However, even mathematical formulas
use what programmers can usually
achieve, too. The usual

 \sum_k A_k.

No "+" at all, and an array of vectors, not
single ones. Going further, some like to
write

 reduce("+", A);

In Ada, you could have a generic function
for this, or use a function pointer.

The .all thing vanishes automatically
whenever you want to refer to a particular
component of the pointed-at object, as
opposed to all of them. So, A.all(K) is the
same as A(K). Likewise, .all can be
dropped if want to invoke the pointed-at
subprogram if it has parameters.

Broadcast / Iterate to All
Connection Objects via
Simple Components?

From: A.J. <ianozia@gmail.com>
Subject: Broadcast / iterate to all

Connection objects via Simple
Components?

Date: Tue, 7 Feb 2023 12:29:39 -0800
Newsgroups: comp.lang.ada

Hello everyone,

In an effort to better learn network
programming in Ada, I've been working
through the Protohacker Challenges
(https://protohackers.com/), and the
current challenge (number 3) is to create a
chat server.

I am using a TCP Connections Server
with Simple Components, specifically a
Connection_State_Machine, but I've run
into a problem. I'm trying to send a
message received via "procedure
Process_Packet (Client : in out
Server_Connection)" to all connected
Clients.

My (potentially incorrect) thought on how
to accomplish this is to iterate through all
of the clients currently connected, and use
Send to send the message received to
those clients. I've been struggling with
how to actually do this though, since I
couldn't use "function Get_Clients_Count
(Listener : Connections_Server) return
Natural" from within Process_Packets.

Another thought I had could be to just
place every message received in a central
queue, and then once all of the packets
have been received, to then process that
queue and send the results to every
connected client.

18 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

I tried overriding "procedure
On_Worker_Start (Listener : in out
Connections_Server)", thinking that I
could use it to read such a queue, but it
never seemed to be called from within my
program and I'm still unsure how to
iterate through the Connection objects
anyway.

Am I approaching this the right way, or
am I missing something very obvious?
I've read the test files that came with
Simple Components, including the data
server but couldn't see a way to get each
client to interact with each other. If I
didn't explain this well enough, please let
me know, I'll be happy to clarify.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Wed, 8 Feb 2023 10:55:11 +0100

For an example of this, see the
Chattanooga demo that comes with
Gnoga
(https://sourceforge.net/projects/gnoga/).
A screenshot and intermittently working
(not right now) on-line version are
available at https://sourceforge.net/p/
gnoga/wiki/Gnoga-Gallery/.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sun, 12 Feb 2023 23:28:26 -0800

I am not sure how familiar you are with
Network programming in general (not just
as it would be done in Ada). Using a
blocking Send could actually kill your
performance. You mentioned you would
be sending a message to one client after
another. Imagine one of the clients has
small socket buffers, and is busy doing
something else at the moment so not
reading your message immediately. If you
are sending a large message, your server
would only be able to send part of the
message, then it would block until the
client has read enough that there is space
again in the socket buffers to send the rest
of the message. That could take ... days.
In the meantime, your server is not doing
anything else, and no other client gets sent
anything...

Instead, you need to use non-blocking
sockets. When Send returns, it has sent
whatever it could for the moment. You
then need to monitor the socket (and all
other similar ones) using something like
select (which is limited to sockets < 1024,
so pretty useless for an actual server in
practice) poll (better version of select) or
epoll (the best in my opinion). I have
written a similar server that has 25000
concurrent clients, and serves them all
with 10 worker tasks. That would never
fly with blocking sockets.

A similar approach when receiving
messages from clients, by the way. The
message might have sent only part of its
message, so you need to give up
temporarily, and come back to it when

poll tells you there is something new to
read.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Feb 2023 09:30:22 +0100

> Using a blocking Send could actually
kill your performance. [...] A similar
approach when receiving messages
from clients, by the way.

Yes. All networking in Simple
components is built on non-blocking
sockets (socket select).

P.S. This poses difficulties for users, who
see all communication turned upside
down being driven by arbitrary socket
events rather than by the protocol logic.
This was a reason I argued for introducing
co-routines with task interfaces in Ada.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Mon, 13 Feb 2023 00:44:01 -0800

> sockets (socket select).

Have you taken a look at epoll(), on
Linux it is so much more natural to use,
and so much more efficient in practice.
The example I mentioned above (a server
with 25_000 concurrent connections)
cannot work with select (which only
accepts file descriptors up to 1024), and is
slow with poll (since the result of the
latter is the number of events, and we
need to iterate over all registered sockets
every time).

> This was a reason I argued for
introducing co-routines with task
interface in Ada.

In my own code, I basically provide an
epoll-based generic framework. One of
the formal parameters is a `Job_Type`
with one primitive operation `Execute`.
The latter is initially called when a new
connection is established, and is expected
to do as much non-blocking work as it can
(Execute is run in one of the worker
tasks). When it cannot make progress, it
returns a tuple (file_descriptor,
type_of_event_to_wait_for) to indicate
when it needs to be called again in the
future, for instance some data became
available to read on the specified
file_descriptor. The intent is that the
`Job_Type` is implemented as a state
machine internally.

Of course, a state machine is one of the
two ways I know (along with a task) to
implement the equivalent of a co-routine
in Ada. So I 100% agree with you that co-
routines would be very useful in
simplifying user code, in particular in the
scenario we are discussing here!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Feb 2023 11:55:07 +0100

> Have you taken a look at epoll(), on
Linux ?

The implementation is on top of
GNAT.Sockets, so no.

> It is so much more natural to use, and so
much more efficient in practice.

Well, if there is Linux kernel level
support why it is not used in socket select
as it is in epoll? I would expect them do
that at some point or drop epoll... (:-))

> [...] The intent is that the `Job_Type` is
implemented as a state machine
internally.

Yes, state machine is what I want to
avoid. With complex layered protocols it
imposes incredible difficulties requiring
auxiliary stacks and buffers with errors
almost intractable either by testing or by
formal proofs.

> So I 100% agree with you that co-
routines would be very useful in
simplifying user code, in particular in
the scenario we are discussing here!

I'd like to have special Ada "tasks" acting
as co-routines on top of proper tasks
yielding when the socket buffer is empty
or full.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Mon, 13 Feb 2023 03:07:04 -0800

> Well, if there is Linux kernel level
support why it is not used in socket
select as it is in epoll?

Because in practice the Linux developers
don't get to modify such APIs, which are
mandated by Posix, or Unix, or some
RFC. So the API for select and poll will
never change.

epoll is definitely the modern approach on
Linux, until of course someone finds
something even better. epoll is fully
thread safe too, which is very nice when
used from Ada. Using select() is totally
outdated at this point, and means you can
never handle more than 1000
simultaneous clients, and that only if you
do not have other file descriptors open
(database, files,...)

The person who developed
GNAT.Sockets has left AdaCore a while
ago, so "they" (which I assume is what
your message was referring to) are
actually unlikely to update that. They also
have strong concerns about platform-
agnostic support, and epoll is linux-
specific at this point (likely also BSD).
There exist multiple libraries out there
that provide an API common to multiple
platforms, and that use epoll on linux.
Maybe that's what would make sense, but
nowadays with Alire, I would expect
someone to build a crate there rather than
AdaCore modify GNAT.Sockets.

> Yes, state machine is what I want to
avoid. With complex layered protocols
it imposes incredible difficulties
requiring auxiliary stacks and buffers

Ada Pract ice 19

Ada User Journal Volume 44, Number 1, March 2023

with errors almost intractable either by
testing or by formal proofs.

Tell me about auxiliary stacks :- In
practice, in my experience, you can have
a single incoming buffer which is used by
one state, and then another when the first
state is no longer active,... so we do not
need to have too many buffers, but that
definitely is not trivial. Currently, I have a
stack of iterators reading from a socket,
buffering on top of that, then
decompressing LZ4 data, then decoding
our binary encoding to Ada values.

> I'd like to have special Ada "tasks"
acting as co-routines on top of proper
tasks yielding when the socket buffer is
empty or full.

This is an approach we had discussed at
AdaCore before I left. There are multiple
drawbacks here: the limited stack size for
tasks by default (2MB), the fact that
entries cannot return indefinite types, the
fact that currently those tasks are assigned
to OS threads (so too many of them does
impact resource usage),...

A colleague had found an external library
that would provide several stacks and thus
let people implement actual co-routines.
We did not do much more work on that,
but it was a nice proof of concept, and
efficient. I think things are mostly
blocked now, as the ARG has been
discussing these topics for quite a few
years now.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Feb 2023 12:57:19 +0100

> [...] This is an approach we had
discussed at AdaCore before I left. [...]

My idea is to have these as pseudo-tasks
scheduled by the Ada run-time and not
mapped onto any OS threads. A proper
thread would pick up such a task and run
it until it yields. The crucial point is to use
the stack of the pseudo-task in place of
the thread's stack or backing it up and
cleaning the portion of the stack at the
point of yielding, whatever.

> [...] the ARG has been discussing these
topics for quite a few years now.

I have an impression that ARG's view on
co-routines totally ignores the use case of
communication stacks and other cases
state machines show their ugly faces...

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 13 Feb 2023 15:22:19 +0200

[snip discussion of network programming
details, retain discussion about co-
routines]

So your co-routines would (1) have their
own stack and (2) be independently
schedulable, which implies (3) having
their own execution context (register
values, instruction pointer, etc.) How is
that different from the Ada concept of a

"task"? How could the ARG separate
between a "task" and a "co-routine" in the
Ada RM?

There exist Ada compilers and run-times
where the tasking concept is implemented
entirely in the run-time system, without
involving the underlying OS (if there even
is one). That approach was mostly
abandoned in favour of mapping tasks to
OS threads, which makes it easier to use
potentially blocking OS services from
tasks without blocking the entire Ada
program.

So is your problem only that using OS
threads is less "efficient" than switching
and scheduling threads of control in the
run-time system? If so, that seems to be a
quality-of-implementation issue that
could be solved in a compiler-specific
way, and not an issue with the Ada
language itself.

The point (from Emmanuel) that task
entries cannot return indefinite types is
certainly a language limitation, but seems
to have little to do with the possible
differences between tasks and co-routines,
and could be addressed on its own if Ada
users so desire.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Feb 2023 16:10:15 +0100

> So your co-routines would (1) have
their own stack and (2) be
independently schedulable, which
implies (3) having their own execution
context (register values, instruction
pointer, etc.)

Sure. You should be able to implement
communication logic in a natural way:

1. Read n bytes [block until finished]

2. Do things

3. Write m bytes [block until finished]

4. Repeat

> How is that different from the Ada
concept of a "task"?

It is no different, that the whole point of
deploying high level abstraction: task
instead of low level one: state machine.

> How could the ARG separate between a
"task" and a "co-routine" in the Ada
RM?

Syntax sugar does not bother me. I trust
ARG to introduce a couple of reserved
words in the most annoying way... (:-))

> So is your problem only that using OS
threads is less "efficient" than switching
and scheduling threads of control in the
run-time system?

This too. However the main purpose is
control inversion caused by callback
architectures. A huge number of libraries
are built on that pattern. This is OK for
the library provider because it is the most

natural and efficient way. For the user
implementing his own logic, be it
communication protocol, GUI etc. it is a
huge architectural problem as it distorts
the problem space logic. So the goal is to
convert a callback/event driven
architecture into plain control flow.

> If so, that seems to be a quality-of-
implementation issue that could be
solved in a compiler-specific way, and
not an issue with the Ada language
itself.

In Ada 83 there was no way to pass a
procedure as a parameter. We used a

task instead... (:-))

But sure, a possibility to delegate a
callback to an entry call without
intermediates is certainly welcome.

[...]

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 13 Feb 2023 16:43:31 +0100

> that task entries cannot return indefinite
types is certainly a language limitation

That's what Holders are intended for...
(changing indefinite types into a definite
one)

From: Jeremy Grosser
<jeremy@synack.me>

Date: Mon, 13 Feb 2023 08:40:05 -0800

> epoll is definitely the modern approach
on Linux, until of course someone finds
something even better.

For high performance networking,
io_uring [1] is the new kid on the block,
but the API involves a scary amount of
pointer manipulation, so I'm not
convinced that it's safe to use yet.

While epoll is thread safe, there are some
subtleties. If you register a listening
socket with epoll, then call epoll_wait
from multiple threads, more than one
thread may be woken up when the socket
has a waiting incoming connection to be
accepted. Only one thread will get a
successful return from accept(), the others
will return EAGAIN. This wastes cycles
if your server handles lots of incoming
connections. The recently added (kernel
>=4.5) EPOLLEXCLUSIVE flag enables
a mutex that ensures the event is only
delivered to a single thread.

> They also have strong concerns about
platform-agnostic support, and epoll is
linux-specific at this point (likely also
BSD). [...]

On BSD, the kqueue [2] API provides
similar functionality to epoll. I believe
kqueue is a better design, but you use
what your platform supports.

libev [3] is the library I see used most
commonly for cross-platform evented I/O.
It will use the best available polling
syscalls on whatever platform it's
compiled for. Unfortunately, it's

20 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

composed mostly of C preprocessor
macros.

I've already written an epoll binding [5]
that's in the Alire index. GNAT.Sockets
provides the types and bindings for the
portable syscalls.

For the Protohackers puzzles, I've written
a small evented I/O server using those
bindings [6]. Note that this server does
not use events for the send() calls yet,
which may block, though in practice it
isn't an issue with the size of the payloads
used in this application. I do plan to
refactor this to buffer data to be sent when
the Writable (EPOLLOUT) event is
ready.

So far, I've found tasks and coroutines to
be unnecessary for these servers, though
coroutines would make it possible to
implement Ada.Streams compatible Read
and Write procedures, providing a cleaner
interface that doesn't expose callbacks to
the user.

[1] https://lwn.net/Articles/776703/

[2] https://people.freebsd.org/~jlemon/
papers/kqueue.pdf

[3] https://linux.die.net/man/3/ev

[4] https://github.com/JeremyGrosser/
epoll-ada

[5] https://github.com/JeremyGrosser/
protohackers/blob/master/src/mini.adb

From: philip...@gmail.com
<philip.munts@gmail.com>

Date: Mon, 13 Feb 2023 17:55:52 -0800

> In an effort to better learn network
programming in Ada, I've been
working through the Protohacker
Challenges (https://protohackers.com/),
and the current challenge (number 3) is
to create a chat server.

I know it probably defeats the purpose of
what you are trying to learn, but you are
going to wind up just reinventing AMQP
(broker based, meaning there is a
intermediary computer running something
like RabbitMQ to manage message
queues) or ZeroMQ (brokerless), both
implementations of so-called enterprise
messaging protocols. Both seem to scale
pretty well to thousands of clients.

It is pretty easy to do an Ada thin binding
for the ZeroMQ C library libzmq.

From: A.J. <ianozia@gmail.com>
Date: Sat, 18 Feb 2023 17:27:02 -0800

Thank you for all of the responses and
discussion, it pointed me in the right
direction! The "chat server"[1] (if you
could call it that) does work, and my
friends and I were able to telnet into it and
chat. One of my friends even tried
throwing things at the server to break it,
but it didn't crash!

Dmitry, maintaining a list of clients was
the vital part I was missing. I played

around with using synchronized queues
and tasks, but ended up defaulting to an
ordered map with a UID as the key and
wrapped it in a protected type. I couldn't
get Send() to send more data than
Available_To_Send (after calling it,
Available_To_Send ended up returning 0,
and continued to do so despite wrapping
Send() in a loop), but increasing the send
buffer to 8kb per connection worked fine.
I would simply loop through that ordered
map each time I needed to send
something to all of the clients.

I really like simple components, and it
would be neat if the GNAT maintainers
implement epoll in the backend for Linux
systems, kqueue for BSD and MacOS.
Any server I write will be for Linux
though anyway. I'm also interested in
trying to benchmark Simple Component's
connections server (both pooled and
standard) against epoll to see how it fares.
Perhaps the clever tasking that the
Connections Server utilizes can keep up
with epoll despite what GNAT.Sockets
utilizes!

Regarding coroutines vs tasks, I think at a
high level it's hard to differentiate, but at a
lower level, when I think of tasks vs what
a coroutine would be, I think of Go, and
their "goroutines."[2] Creating a task in
Ada, at least on Linux, ends up creating a
pthread, and you get all of the overhead
that comes with threading (it's initialized
in the kernel). coroutines are managed by
the go runtime (I believe in user space)
and have much less overhead to create or
manage, since it's not creating a specific
thread.

Ada 202x supports the "parallel" block[3]
though I understand no runtime has
utilized it yet-- would that end up being a
coroutine or is it meant for something
else?

[1] https://github.com/AJ-Ianozi/
protohackers/tree/main/budget_chat/src

[2] https://www.geeksforgeeks.org/
golang-goroutine-vs-thread/

[3] http://www.ada-auth.org/standards/
22rm/html/RM-5-6-1.html

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 19 Feb 2023 16:37:51 +0200

> Creating a task in Ada, at least on
Linux, ends up creating a pthread

With the current GNAT compiler, yes.
But not necessarily with all Ada
compilers, even on Linux.

> coroutines are managed by the go
runtime (I believe in user space) and
have much less overhead to create or
manage

Some Ada compilers may have run-times
that implement Ada tasks within the run-
time, with minimal or no kernel/OS
interaction.

> Ada 202x supports the "parallel" block
[...]-- would that end up being a
coroutine or is it meant for something
else?

As I understand it, the parallel execution
constructs (parallel blocks and parallel
loops) in Ada 2022 are meant to
parallelize computations using multiple
cores -- that is, real parallelism, not just
concurrency.

The Ada2022 RM describes each parallel
computation in such a parallel construct
as its own thread of control, but all
operating within the same task, and all
meant to be /independent/ of each other.
For example, a computation on a vector
that divides the vector into non-
overlapping chunks and allocates one core
to each chunk.

Within a parallel construct (in any of the
parallel threads) it is a bounded error to
invoke an operation that is potentially
blocking. So the independent
computations are not expected to suspend
themselves, thus they are not co-routines.

The parallelism in parallel blocks and
parallel loops is a "fork-join" parallelism.
In other words, when the block or loop is
entered all the parallel threads are created,
and all those threads are destroyed when
the block or loop is exited.

So they are independent threads running
"in" the same task, as Dmitry wants, but
they are not scheduled by that task in any
sense. The task "splits" into these separate
threads, and only these, until the end of
the parallel construct.

Moreover, there are rules and checks on
data-flow between the independent
computations, meant to exclude data
races. So it is not intended that the
parallel computations (within the same
parallel construct) should form pipes or
have other inter-computation data flows.

Ada Array Contiguity

From: Rod Kay <rodakay5@gmail.com>
Subject: Ada array contiguity.
Date: Mon, 20 Feb 2023 00:34:55 +1100
Newsgroups: comp.lang.ada

I've been told that Ada array elements are
not guaranteed to be contiguous unless the
'Convention C' aspect is applied.

Is this correct?

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 19 Feb 2023 15:28:23 +0100

The strength of Ada is that it protects you
from all implementation details, thus
allowing compilers to choose the most
efficient implementation. Therefore, the
answer is yes.

(BTW: try to find a definition of
"contiguous". At byte level? At word

Ada Pract ice 21

Ada User Journal Volume 44, Number 1, March 2023

level? What if the element does not fill a
byte?)

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 19 Feb 2023 16:59:42 +0200

> Therefore, the answer is yes.

I tried to find a rule on "contiguity" in the
Ada 2022 RM, but failed. Can you point
to one? Perhaps this rule is a consequence
of C standard rules for arrays (pointer
arithmetic), and the general idea that Ada
should allow Convention C for a type
only if that type is really compatible with
the C compiler (in question).

For a constrained array type I would
choose to specify the size of the
component type, and the size of the array
type to be the length of the array times the
component size. That should (also) ensure
that the elements are stored contiguously
(if the Ada compiler accepts this size
specification).

It seems (RM B.3(62.4/3)) that Ada
compilers are not required to support
Convention C for unconstrained array
types. RM B.3 (Interfacing with C/C++)
declares such types with the Pack aspect,
but that may or may not (AIUI) give a
contiguous representation.

> (BTW: try to find a definition of
"contiguous". At byte level? At word
level? What if the element does not fill
a byte?)

Indeed. But it seems to me that Arr'Size =
Arr'Length * Comp'Size is the meaning
usually intended for programming
purposes.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 19 Feb 2023 16:08:09 +0100

> it seems to me that Arr'Size =
Arr'Length * Comp'Size is the meaning
usually intended for programming
purposes.

Rather: the bit offset of an element is a
linear function of its position.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 19 Feb 2023 18:10:44 +0100

> it seems to me that Arr'Size =
Arr'Length * Comp'Size is the meaning
usually intended for programming
purposes.

Certainly not if Comp'Size is not an
integer number of bytes.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 19 Feb 2023 19:54:13 +0200

> Certainly not if Comp'Size is not an
integer number of bytes.

I'm not so certain. By choosing various
roundings-up of the component size, you
can choose between "bit-contiguous",
"byte-contiguous", etc.

For example, bit-contiguous with 2-bit
components:

 type Comp is (A, B, C, D) with Size => 2;

 type Arr is array (1 .. 10) of Comp

 with Pack, Size => 10 * Comp'Size;

Nybble-contiguous with Comp'Size => 4,
byte- (octet-) contiguous with Comp'Size
=> 8, etc.

(However, I haven't checked that eg.
GNAT does the "right thing" with such
Size clauses, just that it accepts them. It
does require the Pack aspect for the array
type when Comp'Size is not a multiple of
8.)

> Rather: the bit offset of an element is a
linear function of its position.

That is ordering by index, but not
contiguity: there may still be gaps
between elements. However, I assume
you meant that the slope of the linear
function equals the component size, and
then it includes contiguity.

The relationship of index order to
memory-location order is certainly an
aspect that should be considered when
interfacing to C or HW.

Pet peeve: on more than one occasion I
have been disappointed that Ada
representation clauses do not let me
specify the index-order of packed array
elements in a word, relative to the bit-
numbering order, and I have had to fall
back to using several scalar-type record
components, c1 .. c7 say, instead of one
array-type component, c(1..7).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 19 Feb 2023 20:05:28 +0100

> That is ordering by index, but not
contiguity: there may still be gaps
between elements. [...]

No gaps = packed = the most dense
representation.

Contiguity is rather that the gaps are
regular and can be considered a part of
each element. E.g. a video buffer with
strides is not contiguous.

> The relationship of index order to
memory-location order is certainly an
aspect that should be considered when
interfacing to C or HW.

An definition of contiguous array
equivalent to linearity is that the array
body representation is isomorphic to
slicing.

> Pet peeve [...]

This is as blasphemous as asking for n-D
slices... (:-))

From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Sun, 19 Feb 2023 23:02:36 +0100

> I've been told that Ada array elements
are not guaranteed to be contiguous
unless the 'Convention C' aspect is
applied.

The ARM says little about how the
compiler represents objects in the absence
of representation clauses. However, ARM
13.7(12) (http://www.ada-auth.org/
standards/aarm12_w_tc1/html/
AA-13-7-1.html#I5653) says,
"Storage_Array represents a contiguous
sequence of storage elements."

ARM 13.9(17/3)
(http://www.ada-auth.org/standards/
aarm12_w_tc1/html/
AA-13-9.html#I5679) says that a
compiler that supports
Unchecked_Conversion should use a
contiguous representation for certain
constrained array subtypes.

Using convention Fortran should also
ensure a contiguous representation, add
can apply (unlike convention C) to
multidimensional arrays.

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 20 Feb 2023 08:12:41 +0100

> type Comp is (A, B, C, D) with Size
=> 2;

> type Arr is array (1 .. 10) of Comp

> with Pack, Size => 10 * Comp'Size;

> Nybble-contiguous with Comp'Size =>
4, byte- (octet-) contiguous with
Comp'Size => 8, etc.

Of course, if you add representation
clauses, the compiler will obey them. But
the OP's question was whether it was
/guaranteed/ to have contiguous
representation, and the answer is no - for
good reasons.

From: Rod Kay <rodakay5@gmail.com>
Date: Thu, 2 Mar 2023 00:22:25 +1100

Thank you all for the replies.

To summarise then, contiguity is not
guaranteed unless the array is of
convention C, convention Fortran or
representation clauses are applied.

Ada.Containers.Vectors
Capacity

From: Rod Kay <rodakay5@gmail.com>
Subject: Is this a compiler bug?
Date: Sun, 19 Mar 2023 17:17:20 +1100
Newsgroups: comp.lang.ada

Came across this during a port of the
Box2D physics engine.

It's a generic Stack package using
'ada.Containers.Vectors' to implement the
stack.

One generic parameter is the
'initial_Capacity' of the stack, used in the
'to_Stack' construction function, via the
Vectors 'reserve_Capacity' procedure.

22 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

 In the 'to_Stack' function, the Capacity is
reserved correctly but in the test program
when the stack is created and assigned to
a variable, the capacity is 0.

Here is the (very small) source code ...

https://gist.github.com/charlie5/
7b4d863227a510f834c2bfd781dd50ba

The output I get with GCC 12.2.0 is ...

[rod@orth bug]$./stack_bug

to_Stack ~ Initial Capacity: 256

to_Stack ~ Before reserve: 0

to_Stack ~ After reserve: 256

stack_Bug ~ Actual Capacity: 0

Regards.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 19 Mar 2023 11:33:50 +0100

I think this is acceptable behavior. See
ARM A.18.2 (147.19/3, 147.20/3, &
147.b/3) (http://www.ada-auth.org/
standards/aarm12_w_tc1/html/
AA-A-18-2.html). The first two sections
define the behavior of procedure Assign,
while the last states "Assign(A, B) and A
:= B behave identically".

Assign (A, B) only changes the capacity
of A if A.Capacity < B.Length.

So if the compiler does not use build-in-
place for the initialization of the variable,
then the assignment of the function result
should not change the capacity of the
variable from its (apparent) default of
zero (there is, of course, no requirement
for the capacity of a default-initialized
vector).

The discussion of capacities for vectors is
only meaningful for a subset of possible
implementations, so messing with
capacities may have no meaningful effect
at all.

For an unbounded stack based on a linked
list (with no concept of capacity) you
could use
PragmARC.Data_Structures.Stacks.
Unbounded.Unprotected
(https://github.com/jrcarter/PragmARC/
blob/Ada-12/pragmarc-data_structures-
stacks-unbounded-unprotected.ads).

From: Rod Kay <rodakay5@gmail.com>
Date: Mon, 20 Mar 2023 13:24:40 +1100

Thank you, Jeffrey, for the detailed reply.

 I'm now using a limited record with an
extended return for 'build-in-place'
initialisation and am getting the behavior I
desired.

Why Don't All Initialising
Assignments Use 'build-in-
place'?

From: Rod Kay <rodakay5@gmail.com>

Subject: Why don't all initialising
assignments use 'build-in-place' ?

Date: Tue, 21 Mar 2023 23:06:03 +1100
Newsgroups: comp.lang.ada

I'm sure there must be a good reason. All I
can think of is that it may somehow break
backwards compatibility wrt controlled
types (a vague stab in the dark).

Any thoughts?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 25 Mar 2023 03:39:14 -0500

(1) Didn't want to make work for
implementers.

(2) You shouldn't be able to tell (since it
is required for all cases involved
finalization). Finalization is the only
way to inject user-defined code into the
initialization process.

(3) True build-in-place can be expensive
and complex (especially for array
types).

(4) Build-in-place requires functions
compiled to support it (must pass in the
place to initialize into). That might not
be the case (especially if a foreign
convention is involved). Also see (3) -
an implementation might have a
cheaper way to return some types that
doesn't support build-in-place.

There's probably more, those are off the
top of my head. If it is cheap, it would be
silly for an implementation to do anything
else. (Don't ask what Janus/Ada does. ;-)
Otherwise, most people want the fastest
possible code.

From: Rod Kay <rodakay5@gmail.com>
Date: Sun, 26 Mar 2023 16:10:33 +1100

Thanks, Randy. I somehow imagined that
build-in-place would be faster :/.

So using 'extended return' *everywhere*
would decrease performance, I guess.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 26 Mar 2023 12:41:00 +0200

> So using 'extended return'
everywhere would decrease
performance, I guess.

You seem to think that using an extended
return requires building in place. This is
not required by the ARM.

"Built in place" is defined in ARM 7.6
(17.1/3-17.p/3) (http://www.ada-auth.org/
standards/aarm12_w_tc1/html/
AA-7-6.html#I4005). An initial value is
required to be built in place when

1. The object (or any part of the object)
being initialized is immutably limited

2. The object (or any part of the object)
being initialized is controlled and the
initialization expression is an aggregate

In all other cases, it is up to the compiler
to decide whether or not to build in place.

This holds regardless of the the kind of
return statement used if the initialization
expression is a function call.

Thus the initialization of an immutably
limited object is done in place even if the
initialization expression is

* an aggregate

* a function call with a simple return
statement

while the initialization of an integer object
may be by copy even if the initialization
expression is a function call with an
extended return statement.

From: Rod Kay <rodakay5@gmail.com>
Date: Mon, 27 Mar 2023 15:44:33 +1100

> You seem to think that using an
extended return requires building in
place. This is not required by the ARM.

Yes, I did rather think that. Appreciate the
correction.

Assignment Access Type
with Discriminants

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: Assignment access type with
discriminants

Date: Wed, 22 Mar 2023 10:19:28 +0100
Newsgroups: comp.lang.ada

I stumbled on a curious fact.

The value of an object with a discriminant
can be changed to a value with a different
discriminant if the type's discriminants are
defaulted.

Right?

Wrong! Not through an access type!

procedure Test is

 type F is (F1, F2, F3);

 type Foo (K : F := F1) is record

 case K is

 when F1 =>

 X1 : Integer;

 when F2 =>

 X2 : Float;

 when F3 =>

 X3 : String (1..2);

 end case;

 end record;

 type Foo_Ptr is access all Foo;

 X : aliased Foo;

 P : Foo_Ptr := X'Access;

begin

 X := (F2, 1.0); -- OK

 P.all := (F1, 3); -- Error!

end Test;

Is this a compiler bug or intentional
language design? Any language lawyers?

From: Björn Lundin <bnl@nowhere.com>
Date: Wed, 22 Mar 2023 10:31:58 +0100

> I stumbled on a curious fact. [...] Is this
a compiler bug or intentional language
design? Any language lawyers?

Ada Pract ice 23

Ada User Journal Volume 44, Number 1, March 2023

I get

Execution of ./test terminated by
unhandled exception

raised CONSTRAINT_ERROR :
test.adb:18 discriminant check failed

Call stack traceback locations:

0x402c33 0x402b27 0x7f335b5cfd8e
0x7f335b5cfe3e 0x402b63
0xfffffffffffffffe

bnl@hp-t510:/usr2$ gnatls -v

GNATLS Pro 22.2 (20220605-103)

Linux 64bit - ubuntu 22.04

So it is (also) present on that platform at
least

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Wed, 22 Mar 2023 15:10:44 +0100

Some experiments point at the general
access type.

 type Foo_Ptr is access Foo; -- sans `all`

 X : Foo;

 P : Foo_Ptr := new Foo;

 type Foo1 is new Foo_Ptr (K => F1);

begin

 X := (F2, 1.0); -- OK

 P.all := (F1, 3); -- _no_ Error!

 Foo1 (P).all := (F1, 3);

end Test;

(Doesn't rejection for general access types
seem reasonable if assignment would
otherwise require adjusting the storage
layout of a variable, including all access
paths to components? Just guessing.)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 23 Mar 2023 12:51:03 +0100

> Some experiments point at the general
access type.

You get no error because you do not
change the discriminant. Change your
code to:

 P.all := (F2, 1.0); -- Error!

> (Doesn't rejection for general access
types seem reasonable if assignment
would otherwise require adjusting the
storage layout of a variable, including
all access paths to components?

I guess that an implementation must
allocate memory for any value unless you
constraint the discriminants in a subtype.
But I am not a language lawyer to judge.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Thu, 23 Mar 2023 09:53:23 -0700

I do hope, this answers the question:

3.10(14/3) … The first subtype of a type
defined by … an
access_to_object_definition is

unconstrained if the designated subtype is
an ... discriminated subtype; otherwise, it
is constrained.

4.8(6/3) If the designated type is
composite, then … the created object is
constrained by its initial value (even if the
designated subtype is unconstrained with
defaults).

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 23 Mar 2023 20:09:21 +0200

> I do hope, this answers the question:

>

> 3.10(14/3) … The first subtype of a
type defined by … an
access_to_object_definition is
unconstrained if the designated subtype
is an ... discriminated subtype;
otherwise, it is constrained.

What do you infer from this, relating to
Dmitry's original example code and the
error? The "first subtype .. defined" here
is the access subtype, and I don't see how
that affects an assignment /via/ this access
subtype to the accessed object.

(It is not clear to me how an access
subtype that is constrained differs from
one that is unconstrained. Can someone
clarify?)

> 4.8(6/3) If the designated type is
composite, then … the created object is
constrained by its initial value (even if
the designated subtype is unconstrained
with defaults).

That rule applies to objects created by
allocators, but the original example code
has no allocators (some later variants do).
The object in question is created by a
declaration (which includes the "aliased"
keyword), not by an allocator.

Also, AARM 3.10 contains the following
notes on "Wording Changes from Ada
1995":

26.d/2 {AI95-00363-01} Most
unconstrained aliased objects with
defaulted discriminants are no longer
constrained by their initial values. [...]

26.k/2 {AI95-00363-01} The rules about
aliased objects being constrained

by their initial values now apply only to
allocated objects, and thus have been
moved to 4.8, “Allocators”.

This seems to mean that aliased objects
created by declarations are /not/
constrained by the initial value, so it
should be possible to change the
discriminant. This seems to be a change
from Ada 95 to Ada 2005. I don't see why
that change could not be done via an
access to the object.

I added some output to Dmitry's original
code, with this result:

 X'Constrained = FALSE

 P'Constrained = TRUE

 P.all'Constrained = TRUE

The first two values of 'Constrained (for
X and P) are as expected by the RM rules,
and the third value (for P.all) is consistent
with the error, and seems valid for Ada
95, but the wording change quoted above
suggests that it is wrong for Ada 2005 and
later. This leads me to suspect that GNAT
has not been fully updated for this RM
change, so it would be a GNAT bug. Still,
the addition of

 subtype Foo2_Ptr is Foo_Ptr (K => F2);

to Dmitry's original example provokes
this error message:

 fuf.adb:16:24: access subtype of
 general access type not allowed

 fuf.adb:16:24: discriminants have
 defaults

which suggests that at least this part of
AI95-00363 has been implemented, as
noted in AARM 3.10:

14.b/2 Reason: {AI95-00363-01} [...]
Constraints are not allowed on general
access-to-unconstrained discriminated
types if the type has defaults for its
discriminants [...]

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 23 Mar 2023 18:04:36 +0100

> I stumbled on a curious fact.

An access value is always constrained by
its initial value; this is necessary because
of constrained access subtypes. Here is a
slightly modified version of your
example:

procedure Test is

 type F is (F1, F2, F3);

 type Foo (K : F := F1) is record

 case K is

 when F1 =>

 X1 : Integer;

 when F2 =>

 X2 : Float;

 when F3 =>

 X3 : String (1..2);

 end case;

 end record;

 type Foo_Ptr is access all Foo;

 type Foo_Ptr2 is access Foo;

 X : aliased Foo;

 P : Foo_Ptr := X'Access;

 PF2: Foo_PTR2 (F2);

begin

 X := (F2, 1.0); -- OK

 PF2 := new Foo (F2);

 P := PF2.all'Access;

 P.all := (F1, 3); -- Error!

end Test;

Without this rule, PF2.all would now
designate a value whose discriminant is
F1!

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 23 Mar 2023 20:55:48 +0200

24 Ada in Jest

Volume 44, Number 1, March 2023 Ada User Journal

> An access value is always constrained
by its initial value; this is necessary
because of constrained access subtypes.

But constrained access subtypes are not
allowed for general access types like
Foo_Ptr in the example.

> Here is a slightly modified version of
your example:

> [...]

> Without this rule, PF2.all would now
designate a value whose discriminant is
F1!

This error is understandable and valid,
because now P.all is PF2.all which is an
allocated object and therefore constrained
by its initial value with K = F2.

But why should the same apply when P
designates X, which is unconstrained? Is
it just an optimization (in the RM) so that
a general access value does not have to
carry around a flag showing whether its
designated object is constrained or
unconstrained?

Perhaps it would be better to make the
assignment P := PF2.all'Access illegal,
because it in effect converts a constrained
access value (PF2) to an unconstrained
access subtype (P), and so in some sense
violates the prohibition of constrained
subtypes of general access types.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 23 Mar 2023 20:53:02 +0100

> Perhaps it would be better to make the
assignment P := PF2.all'Access illegal
[...]

Yes this is a substitutability violation.
Such cases never go without a
punishment. In this case it is an
implementation overhead.

Consider:

 procedure Set (Destination : in out Foo;

 Source : Foo) is

 begin

 Destination := Source;

 end Set;

The compiler cannot implement Set in a
natural way, because Destination might be
arbitrarily constrained by the caller. E.g.
when the actual for Destination is P.all.
So, the constraint must be passed together
with the actual. Quite a burden.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 24 Mar 2023 10:41:20 +0100

> But why should the same apply when P
designates X, which isunconstrained?
[...]

I didn't dig in the RM in all details, but I
think this comes from the fact that being
constrained (always) is a property of the
pointer (more precisely, its subtype), not
of the pointed-at object.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 25 Mar 2023 03:51:07 -0500

The rule is question is 4.1(9/3):

If the type of the name in a dereference is
some access-to-object type T, then the
dereference denotes a view of an object,
the nominal subtype of the view being the
designated subtype of T. If the designated
subtype has unconstrained discriminants,

the (actual) subtype of the view is
constrained by the values of the
discriminants of the designated object,
except when there is a partial view of the
type of the designated subtype that does
not have discriminants, in which case the
dereference is not constrained by its
discriminant values.

We have to do that so as otherwise the
access value would have to carry a
designation as to whether the object was
allocated or not.

This rule was inherited from Ada 83.

IMHO, this rule is stupid. It's even more
stupid with the hole for types that have
partial views without discriminants. The
proper solution is to get rid of the rarely
used and mostly useless access
constraints, and then have no extra
restrictions on access values. But that's
considered too incompatible.

Ada in Jest

Ada Lovelace Cosplay

From: Mockturtle
<framefritti@gmail.com>

Subject: Ada Lovelace cosplay
Date: Mon, 16 Jan 2023 09:48:58 -0800
Newsgroups: comp.lang.ada

Well, yes, someone cosplayed Ada...

https://blog.adafruit.com/2013/10/24/
from-scratch-ada-lovelace-costume/

