

Ada User Journal Volume 44, Number 1, March 2023

ADA
USER
JOURNAL

Volume 44

Number 1

March 2023

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 25

Forthcoming Events 33

Proceedings of the “HILT’22 - Supporting a Rigorous Approach to Software Development

Workshop”

 H. Ausden. “Achieving 100% Availability in the ERAM Air Traffic Control System” 35

 D. Hardin. “Hardware/Software Co-assurance for the Rust Programming Language Applied

to Zero Trust Architecture Development” 38

 D. Larraz, A. Viswanathan, C. Tinelli, M. Laurent. “Beyond Model Checking of Idealized Lustre

in KIND 2” 44

 J. Hatcliff, D. Stewart, J. Belt, F. Robby, A. Schwerdfeger. “An AADL Contract Language

 Supporting Integrated Model- and Code-Level Verification” 49

 T. Bordis, T. Runge, A. Kittelmann, I. Schaefer. “Correctness-by-Construction: An Overview

of the CorC Ecosystem” 59

Proceedings of the “ADEPT: AADL by its practitioners Workshop” of AEiC 2022

 J. C. Roger, P. Dissaux. “AADL Modelling with SysML v2” 63

 X. Xu, S. Wang, B. Zhan, X. Jin, N. Zhan, J-P. Talpin. “Unified Graphical Co-modeling, Analysis and

Verification of Cyber-physical Systems by Combining AADL and Simulink/Stateflow” 67

 Z. Yang, Z. Qiu, Y. Zhou, Z. Huang, J-P. Bodeveix, M. Filali. “C2AADL_Reverse: A Model-Driven

Reverse Engineering Approach for Development and Verification of Safety-Critical Software” 71

 A. Bombardelli, A. Bonizzi, M. Bozzano, R. Cavada, A. Cimatti, A. Griggio, M. Nazaria, E. Nicolodi,

S. Tonetta, G. Zampedri. “COMPASTA: Integrating COMPASS Functionality into TASTE” 75

 P. Denzler, D. Ramsauer, D. Scheuchenstuhl, W. Kastner.“Experiences Modeling a OPC UA / DDS

Gateway in AADL in the Context of Fog Computing” 79

 G. Bardaro, M. Matteucci. “Modelling Robot Architectures with AADL” 80

 E. Senn, L. W. J. Bourdon. “Modeling ROS Based Applications with AADL” 84

 D. Blouin, P. Crisafulli, C. Maxim, F. Caron. “An Introduction to ALISA and Its Usage for an

Industrial Railway System Case Study” 88

Ada-Europe Associate Members (National Ada Organizations) 92

Ada-Europe Sponsors Inside Back Cover

2

Volume 44, Number 1, March 2023 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and December.

Copy date is the last day of the month of

publication.

Aims

Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics, such

as reliable software technologies, are

welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

• Refereed original articles on

technical matters concerning Ada

and related topics.

• Invited papers on Ada and the Ada

standardization process.

• Proceedings of workshops and

panels on topics relevant to the

Journal.

• Reprints of articles published

elsewhere that deserve a wider

audience.

• News and miscellany of interest to

the Ada community.

• Commentaries on matters relating

to Ada and software engineering.

• Announcements and reports of

conferences and workshops.

• Announcements regarding

standards concerning Ada.

• Reviews of publications in the field

of software engineering.

Further details on our approach to these

are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will be

relayed to the authors at the discretion

of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues

The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups to

find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be of

interest to them.

Reprinted Articles

While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it a

wider audience. This includes papers

published in North America that are not

easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries

We publish commentaries on Ada and

software engineering topics. These may

represent the views either of individuals

or of organisations. Such articles can be

of any length – inclusion is at the

discretion of the Editor.

Opinions expressed within the Ada

User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports

We are happy to publicise and report on

events that may be of interest to our

readers.

Reviews

Inclusion of any review in the Journal is

at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to print

reviews submitted from elsewhere at

the discretion of the Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be rapid.

Currently, accepted papers submitted

electronically are typically published 3-

6 months after submission. Items of

topical interest will normally appear in

the next edition. There is no limitation

on the length of papers, though a paper

longer than 10,000 words would be

regarded as exceptional.

 3

Ada User Journal Volume 44, Number 1, March 2023

Editorial

We are starting another year and another volume of the Ada User Journal, Volume 44. A long history that started in 1989, when

the publication was named Ada-Europe News. I suggest the reader to have a look at the full history of the publication, by

visiting the dedicated “History” page on the AUJ webpage. For this new year, we expect to have the opportunity to publish a

whole lot of interesting technical contributions, coming from the Work-in-Progress and Industrial tracks of the Ada-Europe

International Conference on Reliable Software Technologies (AEiC 2023), as well as from the co-located workshops DeCPS

and ADEPT. This year the AEiC conference will take place in Lisbon, Portugal, from the 13th to the 16th of June, and the

reader is invited to participate (a Call for Participation is provided in the Forthcoming Events section).

In the present issue, we include the second part of the HILT’22 - Supporting a Rigorous Approach to Software Development

Workshop, and the complete proceedings of the 2022 ADEPT: AADL by its practitioners Workshop.

HILT 2022 was the seventh in a series of conferences and workshops focused on the use of High Integrity Language

Technology. The workshop was held in October 2022, with the 37th IEEE/ACM International Conference on Automated

Software Engineering, ASE’2022. The program included two keynotes and nine papers, of which four were published in the

previous AUJ issue and five are now provided. They address topics related to formal methods, assurance, and to use cases.

The first edition of the ADEPT: AADL by its practitioners Workshop took place in June 2022, with AEiC 2022. We publish

the proceedings of ADEPT, which include the eight papers that were presented in the workshop. As expectable, all the papers

focus on the Architecture Analysis and Design Language (AADL), either by describing tools and methods that are somehow

related to the language, or by presenting examples and experiences in using the language for modelling concrete applications.

Given the success of the first edition, the second edition of the ADEPT workshop is organized again this year, with AEiC 2023.

In addition to the rather long technical part of this March issue, the reader will find the News Digest and the Calendar and

Events sections, as usual prepared by their editors, respectively Alejandro Mosteo and Dirk Craeynest.

 Antonio Casimiro

Lisboa

March 2023

 Email: AUJ_Editor@Ada-Europe.org

mailto:AUJ_Editor@Ada-Europe.org

4

Volume 44, Number 1, March 2023 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 4
Ada-related Events 4
Ada and Education 7
Ada-related Resources 7
Ada-related Tools 7
Ada and Other Languages 8
Ada Practice 11
Ada in Jest 24

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

We are fast approaching the main Ada-
Europe yearly event, the AEiC
conference. You can get the gist of this
year's plans in this post: [1].

For the technically minded, several
intricate aspects of the language are
discussed in, e.g., [2] and [3]. It seems
one never stops learning new details about
Ada!

Finally, from the ‘Ada-not-the-language’
department (usually very quiet), several
resources that promise lots of fun: An
opera based on the wonderful work of
Sydney Padua, the steampunk comic
where Ada Lovelace and Charles
Babbage team up to fight crime (!) is in
the making [4]. Based on the same duo of
scientists, you can already get your hands
on an educational tabletop game [5].
Lastly, you may want to check an
impressive Ada Lovelace cosplay sewn
entirely from scratch [6].

[1] “AEiC 2023 - Ada-Europe Conference
- Final Deadline Approaching”, in Ada-
related Events.

[2] “Ada Array Contiguity”, in Ada
Practice.

[3] “Assignment Access Type with
Discriminants”, in Ada Practice.

[4] “Babbage & Lovelace - The Opera”,
in Ada-related Events.

[5] “Table Game”, in Ada and Education.

[6] “Ada Lovelace Cosplay”, in Ada in
Jest.

Sincerely,
Alejandro R. Mosteo.

Ada-related Events

Babbage & Lovelace - The
Opera

From: Simon Wright
<simon@pushface.org>

Subject: Babbage & Lovelace - The Opera
Date: Mon, 16 Jan 2023 18:30:56 +0000
Newsgroups: comp.lang.ada

https://guerillaopera.org/repertoire/
thrilling-adventures

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Thu, 19 Jan 2023 12:17:08 -0000

> https://guerillaopera.org/repertoire/
thrilling-adventures

As I reacted on Twitter when I saw
Sydney Padua @sydneypadua announcing
this opera adaption of her graphic novel
"The Thrilling Adventures of Lovelace
and Babbage":

-------start-quote-------

The late Robert Dewar, of
#AdaProgramming language fame, would
have loved this. For some history, look
for "The Maiden and the Mandate" in
https://ada-europe.org/archive/auj/
auj-41-1-withcovers.pdf and
https://adacore.com/adacore25...

-------end-quote-------

Those were hilariously funny fully staged
musical performances at several ACM
SIGAda and Ada-Europe conferences,
which I was lucky enough to attend. It
would be great if AdaCore could put
online one of the video recordings that
were made at the time.

Dirk

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

* 27th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2023)

* June 13-16, 2023, Lisbon, Portugal,
www.ada-europe.org/conference2023

Ada Stand at FOSDEM 2023

[Past event for the record. —arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada Stand at FOSDEM 2023 - Sat
4 & Sun 5 Feb (was: No Ada DevRoom
in FOSDEM 2023, alternative
DevRooms and Ada-Europe) support

Date: Thu, 2 Feb 2023 13:13:26 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Reminder: FOSDEM 2023 takes place
this weekend, Sat 4 and Sun 5, in
Brussels, Belgium. See www.fosdem.org.

Even though we didn't manage to get an
Ada DevRoom this year […], the Ada
FOSDEM team has an Ada stand in the
"Education" group on level 2 of building
K at the ULB site, with theme "It's time to
learn Ada!"

Looking forward to meet many Adaists!

Dirk Craeynest, Ada FOSDEM team

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

AEiC 2023 - Ada-Europe
Conference - Final Deadline
Approaching

[For the record, as the deadline is past.
—arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: AEiC 2023 - Ada-Europe
conference - Final Deadline
Approaching

Date: Thu, 16 Feb 2023 09:39:33 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

FINAL Call for Contributions

27th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2023)

13-16 June 2023, Lisbon, Portugal

www.ada-europe.org/conference2023

*** FINAL submission DEADLINE 27
February 2023 ***

Organized by Ada-Europe in cooperation
with ACM SIGAda (approval pending)

and the Ada Resource Association (ARA)

mailto:amosteo@unizar.es

Ada-re lated Events 5

Ada User Journal Volume 44, Number 1, March 2023

#AEiC2023 #AdaEurope
#AdaProgramming

General Information

The 27th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2023) will take place
in Lisbon, Portugal. The conference
schedule comprises a journal track, an
industrial track, a work-in-progress track,
a vendor exhibition, parallel tutorials, and
satellite workshops.

* Journal-track submissions present
research advances supported by solid
theoretical foundation and thorough
evaluation.

* Industrial-track submissions highlight
the practitioners' side of a challenging
case study or industrial project.

* Work-in-progress-track submissions
illustrate a novel research idea that is still
at an initial stage, between conception and
first prototype.

* Tutorial submissions guide attenders
through a hands-on familiarization with
innovative developments or with useful
features related to reliable software.

Schedule

[CLOSED] Extended submission deadline
for journal-track papers

27 February 2023: Submission deadline
for industrial-track and work-in-progress-
track papers, tutorial & workshop
proposals

20 March 2023: First round notification
for journal-track papers, acceptance
notification for other submission types

13-16 June 2023: Conference

Scope and Topics

The conference is a leading international
forum for providers, practitioners, and
researchers in reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development, and maintenance of long-
lived, high-quality software systems for a
challenging variety of application
domains. The program will allow ample
time for keynotes, Q&A sessions and
discussions, and social events.
Participants include practitioners and
researchers from industry, academia, and
government organizations active in the
promotion and development of reliable
software technologies.

The topics of interest for the conference
include but are not limited to:

- Formal and Model-Based Engineering
of Critical Systems;

- Real-Time Systems;

- High-Integrity Systems and Reliability;

- Ada Language;

- Applications in a variety of domains.

More specific topics are described on the
conference web page.

Call for Journal-track Submissions

Following a journal-first model, this
edition of the conference again includes a
journal track, which seeks original and
high-quality papers that describe mature
research work on the conference topics.
Accepted journal-track papers will be
published in the "Reliable Software
Technologies (AEiC2023)" Special Issue
of JSA -- the Journal of Systems
Architecture (Scimago Q1 ranked, impact
factor 5.936).

[Submission details removed. Call is
closed now.]

Authors who have successfully passed the
first round of review will be invited to
present their work at the conference.
Please note that the AEiC 2023
organization committee will waive the
Open Access fees for the first four
accepted papers, which do not already
enjoy OA from personalized bilateral
agreements with the Publisher.
Subsequent papers will follow JSA
regular publishing track.

Call for Industrial-track Submissions

The conference seeks industrial
practitioner presentations that deliver
insight on the challenges of developing
reliable software. Especially welcome
kinds of submissions are listed on the
conference web site. Given their applied
nature, such contributions will be subject
to a dedicated practitioner-peer review
process. Interested authors shall submit a
one-to-two pages abstract, by 27 February
2023, via EasyChair at
https://easychair.org/my/conference?
conf=aeic2023, selecting the "Industrial
Track". The format for submission is
strictly in PDF, following the Ada User
Journal style. Templates are available at
http://www.ada-europe.org/auj/guide.

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference and
will also be invited to expand their
contributions into full-fledged articles for
publication in the Ada User Journal,
which will form the proceedings of the
industrial track of the Conference.
Prospective authors may direct all
enquiries regarding this track to its chairs
Alexandre Skrzyniarz
(alexandre.skrzyniarz at
fr.thalesgroup.com) and Sara Royuela
(sara.royuela at bsc.es).

Call for Work-in-Progress-track
Submissions

The work-in-progress track seeks two
kinds of submissions: (a) ongoing
research and (b) early-stage ideas.
Ongoing research submissions are 4-page
papers describing research results that are
not mature enough to be submitted to the
journal track. Early-stage ideas are 1-page
papers that pitch new research directions
that fall within the scope of the
conference. Both kinds of submissions
must be original and shall undergo
anonymous peer review. Submissions by
recent MSc graduates and PhD students
are especially sought. Authors shall
submit their work by 27 February 2023,
via EasyChair at
https://easychair.org/my/conference?conf
=aeic2023, selecting the "Work in
Progress Track". The format for
submission is strictly in PDF, following
the Ada User Journal style. Templates are
available at http://www.ada-
europe.org/auj/guide.

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference and
will also be offered the opportunity to
expand their contributions into 4-page
articles for publication in the Ada User
Journal, which will form the proceedings
of the WiP track of the Conference.
Prospective authors may direct all
enquiries regarding this track to the
corresponding chairs Bjorn Andersson
(baandersson at sei.cmu.edu) and José
Cecílio (jmcecilio at fc.ul.pt).

Awards

Ada-Europe will offer an honorary award
for the best technical presentation, to be
announced in the closing session of the
conference.

Call for Tutorials

The conference seeks tutorials in the form
of educational seminars on themes falling
within the conference scope, with an
academic or practitioner slant, including
hands-on or practical elements. Tutorial
proposals shall include a title, an abstract,
a description of the topic, an outline of the
presentation, the proposed duration (half-
day or full-day), the intended level of the
contents (introductory, intermediate, or
advanced), and a statement motivating
attendance. Tutorial proposals shall be
submitted by e-mail to Tutorial and
Education Chair, Luís Miguel Pinho (lmp
at isep.ipp.pt), with subject line: "[AEiC
2023: tutorial proposal]". Tutorial
proposals shall be submitted by 27
February 2023. The authors of accepted
full-day tutorials will receive a
complimentary conference registration,
halved for half-day tutorials. The Ada
User Journal will offer space for the

6 Ada-re lated Events

Volume 44, Number 1, March 2023 Ada User Journal

publication of summaries of the accepted
tutorials.

Call for Workshops

The conference welcomes satellite
workshops centred on themes that fall
within the conference scope. Proposals
may be submitted for half- or full-day
events, to be scheduled at either end of
the AEiC conference. Workshop
organizers shall also commit to producing
the proceedings of the event, for
publication in the Ada User Journal.
Workshop proposals shall be submitted
by e-mail to the Workshop Chair, Frank
Singhoff (singhoff at univ-brest.fr), with
subject line: "[AEiC 2023: workshop
proposal]". Workshop proposals shall be
submitted at any time but no later than the
27 February 2023. Once submitted, each
workshop proposal will be evaluated by
the conference organizers as soon as
possible.

Call for Exhibitors

The conference will include a vendor and
technology exhibition. Interested
providers should direct inquiries to the
Exhibition & Sponsorship Chair, Ahlan
Marriott (ahlan at Ada-Switzerland.ch).

Venue

The conference will take place at the
Hotel Fénix Lisboa, near downtown
Lisbon, Portugal. June is full of events in
Lisbon, including the festivities in honour
of St. António (June 13 is the town
holiday), with music, grilled sardines, and
popular parties in Alfama and Bairro Alto
neighbourhoods. There's plenty to see and
visit in Lisbon, so plan in advance!

Organizing Committee

- Conference Chair

António Casimiro,
University of Lisbon, Portugal
casim at ciencias.ulisboa.pt

- Journal-track Chair

Elena Troubitsyna,
KTH Royal Inst. of Technology, Sweden
elenatro at kth.se

- Industrial-track Chairs

Alexandre Skrzyniarz,
Thales, France
alexandre.skrzyniarz at
fr.thalesgroup.com

Sara Royuela,
Barcelona Supercomputing Center, Spain
sara.royuela at bsc.es

- Work-In-Progress-track Chairs

Bjorn Andersson,
Carnegie Mellon University, USA
baandersson at sei.cmu.edu

José Cecílio,
University of Lisbon, Portugal
jmcecilio at fc.ul.pt

- Tutorial and Education Chair

Luis Miguel Pinho,
ISEP, Portugal
lmp at isep.ipp.pt

- Workshop Chair

Frank Singhoff,
University of Brest, France
singhoff at univ-brest.fr

- Exhibition & Sponsorship Chair

Ahlan Marriott,
White Elephant GmbH, Switzerland
ahlan at Ada-Switzerland.ch

- Publicity Chair

Dirk Craeynest,
Ada-Belgium & KU Leuven, Belgium
Dirk.Craeynest at cs.kuleuven.be

- Webmaster

Hai Nam Tran,
University of Brest, France
hai-nam.tran at univ-brest.fr

Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 27th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), Warsaw, Poland
('19), online from Santander, Spain ('21),
and Ghent, Belgium ('22).

Information on previous editions of the
conference can be found at

http://www.ada-europe.org/confs/ae.

--

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2023 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 27th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2023)
* June 13-16, 2023, Lisbon, Portugal,
www.ada-europe.org/conference2023

(V3.1)

Ada-Europe Conference - 6
March Extended Final
Deadline

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada-Europe Conference - 6 March
Extended Final Deadline

Date: Sat, 25 Feb 2023 14:33:00 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

The recently posted reminder for the Ada-
Europe 2023 Conference triggered several
requests for extra time. To give all authors
the same opportunity to further refine
their submission, the organizers decided
that the deadline for industrial- and work-
in-progress-track abstracts, and for
tutorial and workshop proposals will be
extended by 1 week until Monday, 6
March 2023. 1+ week remains!

FINAL UPDATED Call for Contributions

27th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2023)

13-16 June 2023, Lisbon, Portugal

*** EXTENDED FINAL submission
DEADLINE 6 March 2023 ***

Industrial- and Work-in-Progress-track:
submit via

https://easychair.org/my/conference?
conf=aeic2023

select "Industrial Track" or "Work in
Progress Track"

Tutorials: submit to Tutorial and
Education Chair,

Luís Miguel Pinho <lmp @ isep.ipp.pt>
subject "[AEiC 2023: tutorial proposal]"

Workshops: submit to Workshop Chair,
Frank Singhoff

<singhoff @ univ-brest.fr>
subject "[AEiC 2023: workshop

proposal]"

For more information please see the full
Call for Papers at

www.ada-europe.org/conference2023

#AEiC2023 #AdaEurope
#AdaProgramming

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2023 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 27th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2023)*
* June 13-16, 2023, Lisbon, Portugal,
www.ada-europe.org/conference2023

(V4.1)

http://www.ada-europe.org/conference2023

Ada-re lated Tools 7

Ada User Journal Volume 44, Number 1, March 2023

Ada and Education

Table Game

From: Mockturtle
<framefritti@gmail.com>

Subject: Table game
Date: Tue, 17 Jan 2023 05:56:31 -0800
Newsgroups: comp.lang.ada

Really?!?

https://www.amazon.com/Artana-
AAX14001-Lovelace-Babbage/
dp/B07WHMG5Y8

[The link is for a tabletop game with the
blurb “Play as a pioneer of early
computing, like Ada Lovelace or Charles
Babbage, to build a program that solves
problems for famous patrons like Charles
Darwin, Mary Shelley, and more!”. It is
priced at 19.98$ and has 4.5/5 stars rating
with 50 reviews at the time of this
writing. —arm]

Ada-related Resources

 [Delta counts are from February 12th to
April 5th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 5 Apr 2023 17:36 CET[b]
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: 8_349 (+58) members [1]

- LinkedIn: 3_436 (+18) members [2]

- Stack Overflow: 2_323 (+14)
 questions [3]

- Telegram: 160 (+1) users [4]

- Gitter: 219 (+68*) people [5]

- Ada-lang.io: 107 (+6) users [6]

- Libera.Chat: 74 (-8) concurrent
 users [7]

- Twitter: 22 (-10) tweeters [8]

 44 (-5) unique tweets [8]

* Gitter has migrated its messaging to the
Matrix open standard. The [5] reference
has been updated accordingly.

[1] http://www.reddit.com/r/ada/

[2] https://www.linkedin.com/groups/
114211/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://t.me/ada_lang

[5] https://app.gitter.im/#/room/
#ada-lang_Lobby:gitter.im

[6] https://forum.ada-lang.io/u

[7] https://netsplit.de/channels/details.php
?room=%23ada&net=Libera.Chat

[8] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: 5 Apr 2023 17:45 CET[c]
To: Ada User Journal readership

Rosetta Code: 924 (+4) examples [1]

 40 (+1) developers [2]

GitHub: 763* (=) developers [3]

Alire: 337 (+13) crates [4]

Sourceforge: 240 (=) projects [5]

Open Hub: 214 (=) projects [6]

Codelabs: 54 (=) repositories [7]

Bitbucket: 31 (=) repositories [8]

* This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://alire.ada.dev/crates.html

[5] https://sourceforge.net/directory/
language:ada/

[6] https://www.openhub.net/tags?
names=ada

[7] https://git.codelabs.ch/?
a=project_index

[8] https://bitbucket.org/repo/all?
name=ada&language=ada

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: 5 Apr 2023 17:36 CET[d]
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 28 (-5) 0.42%
 (-0.18%) [1]

- PYPL Index: 19 (-2) 0.83%
 (-0.11%) [2]

- IEEE Spectrum (general): 35 (=)
 Score: 1.16 [3]

- IEEE Spectrum (jobs): 33 (=)
 Score: 0.79 [3]

- IEEE Spectrum (trending): 32 (=)
 Score: 3.95 [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/
top-programming-languages/

Ada-related Tools

Embedded AVR Ada Setup -
Linux Edition

From: Stéphane Rivière
<stef@genesix.org>

Subject: ANN: Embedded AVR Ada Setup -
Linux edition

Date: Thu, 12 Jan 2023 11:21:30 +0100
Newsgroups: comp.lang.ada

Hi all,

Embedded AVR Ada Setup - Linux
edition.

Thanks to the work of Rolf Ebert (AVR-
Ada and AVR-Ada to Alire conversion),
Fabien Chouteau and AdaCore (GNAT-
AVR, GNAT-AVR to Alire conversion,
Alire promotion) and their friendly help,
here is a tutorial to get the most pleasant
environment to develop in Ada on 8-bit
AVR targets under Linux.

Based on Alire and GNAT Studio 23 it
allows real-time debugging in GNAT
Studio as if you were in a native X86_64
environment.

This was an opportunity to get acquainted
with Alire while keeping our usual GNAT
Studio based environment, which
integrates perfectly with Alire. Thanks to
the author Alejandro R. Mosteo, who also
wrote a very interesting presentation of
Alire in AUJ Vol 39, Number 3, Sept
2018, P 189.

This work is part of a more general desire
to empower the Ada community with
respect to the defunct GNAT CE. We
therefore adhere to this new policy of
Adacore. Between this new direction, the
arrival of Alire, the availability of many
Crates, the first successes of the
community in building GNAT Studio
independently, the arrival of Rust which
is good for the visibility of our favorite
language, Ada is certainly entering a new
era :)

https://github.com/sowebio/adam-doc
(GNAT Studio & project example
additional files)

https://github.com/sowebio/
adam-doc/blob/master/Ada%20
Development%20on%20AVR%20
Microcontroller.pdf

Feedback and criticism are welcome.

https://netsplit.de/channels/details.php

8 Ada and Other Languages

Volume 44, Number 1, March 2023 Ada User Journal

Short Video on Getting
Started with GtkAda in 2023

From: Stephen Merrony
<merrony@gmail.com>

Subject: A Short Video on Getting Started
with GtkAda in 2023

Date: Sat, 14 Jan 2023 01:01:13 -0800
Newsgroups: comp.lang.ada

I made a quick video showing how easy it
is to get started writing a Gtk application
in Ada these days...

https://youtu.be/IofrV5hsUvg

 [Video running time is 11:03 minutes.
 —arm]

Gnu Emacs Ada Mode 8.0.4
Released

From: Stephen Leake
stephen.leake84@gmail.com

Subject: Gnu Emacs Ada mode 8.0.4
released.

Date: Wed, 25 Jan 2023 05:27:57 -0800
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 8.0.4 is now
available in GNU ELPA.

All Ada mode executables can now be
built with Alire (https://alire.ada.dev/);
this greatly simplifies that process.

gpr-query and gpr-mode are split out into
separate GNU ELPA packages. You must
install them separately (Emacs install-
package doesn't support "recommended
packages" like Debian does).

Ada mode can now be used with Eglot;
this is controlled by new variables:

ada-diagnostics-backend - one of wisi,
eglot, none

ada-face-backend - one of wisi, eglot,
none

ada-indent-backend - one of wisi, eglot,
none

ada-statement-backend - one of wisi,
eglot, none

ada-xref-backend - one of GNAT,
gpr_query, eglot, none

The diagnostic, face, indent, and
statement backends default to wisi if the
wisi parser is found in PATH, to eglot if
the Ada LSP server is found, and none
otherwise. The xref backend defaults to
gpr_query if the gpr_query executable in
PATH, to GNAT otherwise.

ada-diagnostics-backend controls the
source of compilation error messages
while editing.

ada-statement-backend controls statement
motion; forward-sexp, wisi-goto-
statement-end, etc. ada-xref-backend
controls wisi-goto-spec/body and Emacs
xref commands.

In addition, name completion is provided
by eglot if any of the other backends are
using eglot; eglot completion is always
better than wisi.

The current AdaCore language server
(version 23) supports face but not indent.
The current version of eglot (1.10) does
not support face. The Language Server
Protocol does not support statement
motion. So for now, eglot +
ada_language_server only provides xref
and completion.

The AdaCore language server
ada_language_server is installed with
GNATStudio (which ada-mode will find
by default), or can be built with Alire. If
you build it with Alire, either put it in
PATH, or set gnat-lsp-server-exec.

I have not tested ada-mode with lsp-
mode. You can set ada-*-backend to
'other to experiment with that, or tree-
sitter, or some other backend. tree-sitter
will be fully supported in the next ada-
mode release.

The required Ada code requires a manual
compile step, after the normal list-
packages installation:

cd ~/.emacs.d/elpa/ada-mode-7.3beta*

./build.sh

./install.sh

If you have Alire installed, these scripts
use it.

Ada and Other
Languages

Carbon New Language

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Carbon
Date: Fri, 22 Jul 2022 14:13:08 -0700
Newsgroups: comp.lang.ada

[This thread is a bit dated as it was
deemed less of a priority due to space
constraints in past issues. —arm]

Next attempt to replace C/C++ without
really replacing it: Carbon!

You will notice, as usual, a few aspects
borrowed from Ada - and one point
inspired by Ada 83 (which was relaxed in
a later Ada version) :-)

https://mybroadband.co.za/news/software/
453410-googles-carbon-programming-
language-aims-to-replace-c.html

https://devclass.com/2022/07/20/
google-brands-carbon-language-as-
experimental-successor-to-c/

https://9to5google.com/2022/07/19/
carbon-programming-language-google-
cpp/

https://thenewstack.io/
google-launches-carbon-an-experimental-
replacement-for-c/

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Sat, 23 Jul 2022 09:09:57 -0000

I read that stuff yesterday and, yet again,
shook my head in disbelief :-(

The bit where I laughed was where it was
claimed that C++ is building technical
debt because it's not changing quickly
enough; C++ is currently a mess because
it's changing too quickly! Half-baked, and
half-implemented ideas are going into
'standards' in the full knowledge that
they'll change again in the next one. Even
g++ doesn't provide 100% support for
C++17 (https://gcc.gnu.org/projects/cxx-
status.html#cxx17)!

Carbon is likely to be even worse; every
'new' language that promises the earth,
without being designed in a rigorous way,
ends up with the same problems. Java - I
started playing with that in the 90s and
got frustrated that every update brought
more and more depreciation warnings in.
Python - 2.x -> 3.0 was a massive jump
(and took years to gain traction) because
the 'designers' just hadn't done a very
good job to start with! Rust? Mmm

As for the 'reuse C++ syntax'; why the
obsession with that? C++ syntax is really
bad! (Semantics, in some cases, are
another level - how many languages need
a book like "C++ Gotchas"?!).

Aaaaarrrrgghhh!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 23 Jul 2022 15:14:15 +0200

> Next attempt to replace C/C++ without
really replacing it: Carbon!

We have just learned how dangerous
carbon is for our climate. Yet these few
privileged keep on pumping it up! (:-))

From: Stéphane Rivière
<stef@genesix.org>

Date: Sat, 23 Jul 2022 15:49:05 +0200

> We have just learned how dangerous
carbon is for our climate. Yet these few
privileged keep on pumping it up! (:-))

Carbon language bad, green language
good

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 24 Jul 2022 10:38:58 +0100

> Next attempt to replace C/C++ without
really replacing it: Carbon!

Saw this last week and immediately
thought they'd failed on one of their
"design goals," i.e. to be "readable”.

> You will notice, as usual, a few aspects
borrowed from Ada - and one point
inspired by Ada 83 (which was relaxed
in a later Ada version) :-)

mailto:stephen.leake84@gmail.com

Ada and Other Languages 9

Ada User Journal Volume 44, Number 1, March 2023

What did they take from Ada?

From: John Mccabe
<john@mccabe.org.uk>

Date: Tue, 26 Jul 2022 10:31:42 -0700

> What did they take from Ada?

Certainly not the approach to making life
easier and less error-prone for developers.

I've got involved in a couple of
discussions on their forum, and I'm
inclined to think they just want C++ but
taken out of the control of ISO/IEC WGs
steering committees.

They're pretty much not considering
changing any of the aspects of C++ that
make it such a heap of junk (IMO, of
course), including, but not limited to:

1. arrays

2. enums

3. (both of the above when used together
:-))

4. symbols - overuse, duplication,
inconsistency

5. implicit stuff

6. pretend strong typing

7. forcing developers to deal manually
with numeric values that don't fit into
an n-byte range, where n is a whole
number

It really is shockingly soul-destroying
watching all that. What's worse is that,
from what I've seen over the years, the
new languages that have been developed
in a more 'relaxed' way than Ada (well,
evolved, really, like Java, Python etc) and
have become relatively successful have
taken a good 10 years or so to get to that
point, yet the discussions on the Carbon
forum are all about how to appeal to
current developers who're used to C++;
not _future_ developers who, ideally,
would _never_ be used to C++!

From: Nasser M. Abbasi
<nma@12000.org>

Date: Thu, 28 Jul 2022 18:48:49 -0500

Since Ada has solved these problems a
long time ago, then why are people still
reinventing the wheel? Why are they not
just using Ada? Ada is free software.

Maybe there is something in Ada that
prevents it from being widely adopted and
used? [...]

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Fri, 29 Jul 2022 11:03:36 -0000

> why are people still reinventing the
wheel?

Possibly for the same reason that I was so
anti-Ada in my early years; it takes
getting used to and people are lazy.

Looking at some of the languages that
have come out in recent years, it's obvious
that people can't be bothered to type

much; "fn"/"def" (or, even, nothing!)
instead of "function"/"procedure", "{"/"}"
instead of "begin"/"end", "&&" instead of
"and", "||" instead of "or" (!!!) etc.

From what I can see, some of the
"moderators" on that Carbon group don't
have much real professional software
development experience, so I suspect they
really have no clue about what they could
achieve with Ada, and have little
understanding of some of the constraints
that embedded, especially bare-metal,
systems impose on what you can and can't
include in a program. I'm thinking here of
things like heap-unfriendly container
classes, such as (in Swift) arrays that are
automatically expandable when you
append a new item, rather than being
fixed size etc.

There also seems to be a bit of an
obsession with the time between "empty
editor window" and "executable
available", rather than "empty editor
window" and "executable that actually
does what you want"!

Also, as Devin says, compiler availability
is an issue, from the point of view of
actually _using_ Ada.

However, from the point of view of
creating a new language, the fact that so
many people clearly think it _has_ to be
the C/C++ way is quite disturbing,
especially since, as I think I mentioned,
it's going to be a number of years until
any new language really makes its mark,
so new languages should be taking future
developers into account, not just
pandering to the laziness of existing ones!

At this point I think I should make it clear
that, although I think Ada has some great
features (and I regularly espouse them
amongst my colleagues), I don't use Ada
in the software I'm developing. I'd like to,
but it would take me a lot of time to get
back to a level in Ada where I'd be
comfortable creating a relatively
substantial codebase from scratch. The
alternative would be to go and join a team
that's already using Ada, but every Ada
job I've seen come up locally is to support
code that was written in Ada 95; I'd rather
be looking at Ada 2005 -> if I was to
make that jump.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Fri, 29 Jul 2022 11:59:21 -0700

 [...] IMHO the only way to make Ada
more popular is to create popular
applications with it.

From: Dennis Knorr
<dennis.knorr@gmx.net>

Date: Sat, 6 Aug 2022 16:18:12 +0200

> Maybe there is something in Ada that
prevents it from being widely adopted
and used?

An opinion from a bystander who wants
to like Ada, this is only after I looked the
resources and the community up a bit two
years ago again. you do not have to agree,
it's just my experience and sometimes gut
feeling.

* Bad to no marketing

* sometimes elitism by members of the
community/Ada fans

* no modern feeling toolchain (Even
Lazarus+Pascal or Gambas has a more
modern feeling toolchain, and that says a
lot)

* not much free software built with it

* not much free software for the toolchain
available

* not much libraries which are ready and
easy to use as a beginner

* no modern/up2date books and articles
(especially in other languages than in
English) seem to be available.

* the free Ada Compiler seems slow and a
while back it generated relatively big
binaries and the result was not very fast.

Just a few concrete examples to back that
up:

* Is there a web playground or repl shell
trying or learning/trying Ada or some of
its prominent modules?

* There's no modern book in German
about modern Ada and its libraries

* There's no syntax highlighting package
in vim for Ada

* No exercises like for example Ruby
Koans

* It *Looks* like there are no libraries
which make it easy use Ada for
programming (think json/document
formats, http/mail/mime protocols,
algorithms or cryptography libraries)

I know there are libraries out there, but
they are hard to find, not
promoted/marketed and I saw developers
(also in other languages, I admit that)
talking like, if you do not understand it,
you should go back to toy languages like
python.

I also know that not all bullet points
above are really true to the fullest, but
most of them from the outside look like it
and also have at least some grain of truth
in there.

If someone would write a book in
German, how to write Ada and use
$cryptolibrary, $networklibrary and how
to integrate it in one's favorite
development software, this surely would
be very interesting to many.

The ONLY thing where I see Ada
Marketing in the free software world is
FOSDEM. But it is in its own Room. Ada
people would need to go out and say: hey,
look we also can do good stuff, look, an

10 Ada and Other Languages

Volume 44, Number 1, March 2023 Ada User Journal

https server with letsencrypt support with
library in 30 lines.

To be honest, I am curious how the
community here will react to it. I mean, I
got the Book "Programming in Ada 2005"
as a present and I liked it, but after
reading the introduction (first 2-3 chapters
I think) back then (was like over 15 years
ago) I saw no libraries which I can use.
and I was not that big a programmer to
write them myself.

From: A.J. <ianozia@gmail.com>
Date: Sat, 6 Aug 2022 10:48:00 -0700

I agree with you on some of these points.
Ada never seemed to be big on marketing,
at least outside of specific niches, and
from a learning & resources aspect, it
took me reading Barnes' Programming in
Ada 2012 cover-to-cover to properly grok
the language. With that being said, things
have been changing a lot in the last two
years.

https://learn.adacore.com is a decent
resource in that it gives you a little Ada
interpreter with code snippets you can test
out yourself right in the browser. It's not
exactly a "web playground or repl shell"
but it's pretty good and seems to support
the standard library.

From a library and tooling standpoint, I
would check out Alire. It takes a matter of
minutes to get from not having any Ada
compilers installed at all to compiling
your own hello example and there's a lot
of libraries already supported
(https://alire.ada.dev/crates.html). To
bring, for example, Gnatcoll_sqlite, into
your project, you would simply just type
"alr with gnatcoll_sqlite" while in that
directory.

[...]

Then of course there's the awesome-ada
repository that has some nice resources,
albeit they seem to mostly be in English:
https://github.com/ohenley/awesome-ada

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sun, 7 Aug 2022 11:08:43 +0200

> * There's no modern book in German
about modern Ada and its libraries

What's the competition, considering C#,
Swift, Java or C? I.e., an original work
written by a German author, bought and
studied by many? There used to be a
number of books on Ada written in
German when the market had developed
ideas of a government mandate, the ideas
producing corresponding opportunities.

> * There's no syntax highlighting
package in vim for Ada

:syntax enable

(Does vim feature in a modern feeling
tool chain, though?)

> * No exercises like for example Ruby
Koans

> * It *Looks* like there are no libraries
which make it easy use Ada for
programming (think json/document
formats, http/mail/mime protocols,

AWS, GNATColl, $ alr with json.

> algorithms or cryptography libraries

Just use one that you can trust. If you
need it to be more Ada-ish, ChaCha20
cipher and Poly1305 digest have just been
mentioned a few postings ago. If
algorithms can address securing the entire
computation...

There used to be the PAL, which is the
Public Ada Library, easy to find. A bit
dated, and reflecting the hype back then, I
guess.

I gather that, currently, and in the past,
Ada tools are also focusing on topics of
embedded computers, a fairly large and
attractive market. JSON or MIME,
perhaps even interpreters are present, but
I think not central to control stuff near
sensors and actuators. How does one
compute deterministic responses before a
deadline using Node.js?

[...]

From: Dennis Knorr
<dennis.knorr@gmx.net>

Date: Mon, 8 Aug 2022 23:38:59 +0200

> What's the competition, considering C#,
Swift, Java or C?

From the absolute amount in English,
these languages or Python or Rust have
more books. Hell, even Raku has more
books.

Python, Kotlin(!), C# have more german
books and also more current ones. I bet in
five years from now there will be more
German books about Carbon than about
Ada, even if you include the old ones. [...]

>> * There's no syntax highlighting
package in vim for ada

> :syntax enable

Okay, that I did not know.

> (Does vim feature in a modern feeling
tool chain, though?)

Well, okay, Intellij is called more modern
of course or VSCode, but you still can
craft modern tooling onto vim and it
works well.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 8 Aug 2022 23:12:44 -0500

> P.S. Nobody writes Ada books these
days because they do not sell.

Do *any* programming books really sell?
If so, why? :-)

There are plenty of free, on-line resources
for pretty much any programming
language. Why pay for something you can
get free?

When someone starts talking about books,
I think they're a troll. I can understand
complaints about having trouble finding
stuff (although Google should find
AdaIC.org pretty easily, it’s usually pretty
high in Ada results, and most of the good
stuff is linked from there), and lack of
hype, and so on. But there's lots of good
stuff if one looks (or asks here - if
someone knows about here they're ready
to use Ada).

AdaIC has an Ada-specific search engine
which hopefully makes it easier to find
Ada stuff than a general engine like
Google.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Mon, 08 Aug 2022 23:05:12 -0700

> When someone starts talking about
books, I think they're a troll.

I don't know of any online Ada docs that
I'd call helpful past the beginner level
(Ada Distilled). Someone here
recommended a book to me a year or two
ago and I bought a copy. It looks good but
has just been sitting around waiting for
me to read it. I haven't done that because I
haven't had any occasion to mess with
Ada, and have too many other pending
projects. One of these days.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Tue, 9 Aug 2022 07:22:13 -0000

>There are plenty of free, on-line
resources for pretty much any
programming language. Why pay for
something you can get free?

FWIW, I may be 'old school', but I buy
loads of programming books. That
obviously doesn't qualify me to answer
the question of whether "*any*
programming books really sell", but the
main reasons I like books are that they
tend to be more constrained and cohesive
than jumping around websites (at least,
the decent ones are :-)). Also for those
times when I want to flick back and forth
between sections quickly, when I don't
want to be staring at a screen and so on.
One particular reason is that, unless I've
actually got a block of free time to be
experimenting with stuff, using a Web
browser presents multiple, frustrating
distractions, and it's often the case that an
example of something you might want to
do has no explanation about how it works
(books, especially Ada As A Second
Language, if I remember correctly, are
generally fairly good at that bit), so that
leads to more searching, more jumping
about webpages and, nowadays, a helluva
lot of stale and misleading information.

So, basically, that's why I pay for books.

Ada Pract ice 11

Ada User Journal Volume 44, Number 1, March 2023

From: John Perry <devotus@yahoo.com>
Date: Tue, 9 Aug 2022 18:19:47 -0700

> Do *any* programming books really
sell? If so, why? :-)

Having recently left a university, I can
attest that schoolbooks are still a thing,
and that includes textbooks on computer
programming. I recently inherited from a
member of this forum a nice textbook on
Data Structures in Ada, but it was based
on Ada 95, and I'm not sure it's in print
anymore. In fact, and alas, only three of
the Ada-based textbooks I find "easily" on
Amazon date from the early- to mid-90s,
and of the three recent ones I find, only
the Barnes book is of good quality.

I'd be delighted if someone would prove
me wrong.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Tue, 09 Aug 2022 23:20:43 -0700

> of the three recent ones I find, only the
Barnes book is of good quality. I'd be
delighted if someone would prove me
wrong.

Analysable Real-Time Systems:
Programmed in Ada by Prof. Alan Burns
is from 2016 and looks pretty good. It is
the book I mentioned that I got on the
recommendation of someone here. I've
flipped through it but still haven't read it.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 17 Aug 2022 20:02:53 -0500

The Ada 2012 book by Peter Chapin
looks promising, although I don't think
he's finished it
(https://github.com/pchapin/tutorialada).
There is a PDF version of it available on-
line.

Otherwise, I recommend Ada Distilled
(https://www.adaic.org/wp-content/
uploads/2010/05/Ada-Distilled-24-
January-2011-Ada-2005-Version.pdf)
[Ada 2005], and the Craft of Object
Oriented Programming
(http://archive.adaic.com/docs/craft/
craft.html) [Ada 95], depending on the
programmer's level. These are all written
in the textbook style, and are all available
for free on the Internet. I don't think you
miss too much learning with an Ada 95
book first (most of the newer stuff is
fairly obvious, or needs a textbook of its
own.

The Wikibook is also a good choice

(http://en.wikibooks.org/wiki/
Ada_Programming), but you do have to
be on-line to use it (the others are
downloadable and thus usable locally).

I find the Barnes book to be too much of a
good thing (sorry, John!). When John
gave me a copy at a Paris ARG meeting, I
put it on my lap to look through it (since
my hotel room was tiny), my legs got

numb after not very long. I know better
than to put it on a body part again. :-) I'd
recommend it as a reference for serious
Ada programmers, since it tries to cover
everything (the latest version has an Ada
2022 appendix).

Ada Practice

Working with Library
Versions

[This thread splinter veered off from the
announcement of ada-lang-io towards
library management. Other topics have
been pruned out. —arm]

From: Paul Jarrett
<jarrett.paul.young@gmail.com>

Date: Tue, 11 Oct 2022 21:21:31 -0700
Date: Sun, 09 Oct 2022 09:13:11 -0700
Newsgroups: comp.lang.ada

> Adahome.com is sort of like that, but it
is run by some company and hasn't
been updated in forever.

https://ada-lang.io/ is designed to be
updateable for a long time and open to
community contributions by being
completely open source. There're already
multiple people who have permissions to
merge changes to help ensure longevity.

ada-lang.io is indexed using Algolia, so
the entire site (including the Ada 2022
draft RM) is searchable.

Someone else wrote a tool for searching
through all code in Alire crates at
https://search.synack.me/

> I am not sure if package manager is a
good idea if it does not refer to the
target system's packaging tools, e.g.
DEB, RPM, MSI etc. The main
problem with that stuff is usually
architectural. Most of it is plain
aggregation of source code, which is
utterly wrong. The very idea to rebuild
everything each time on each client is
atrocious both with regard to wasting
computing resources as well as testing,
safety, consistency, interoperability
inside the target.

Alire can do additional build steps and
other things.

As an application developer, having the
code available helps in auditing third-
party software for security reasons, build
it in a debug configuration for
troubleshooting, and also provides the
means to locally fix bugs or adapt the
library if needed. Isolating libraries and
including them with a package manager
on a per project basis eases setup also by
not making developers have to look up or
use multiple installers.

I've seen inconsistencies in builds when
developers who rely on the system
libraries (installed by things like apt) join
the project at different times -- the earliest

developers might be on libfoo-1.2
whereas newer developers are on libfoo-
1.4. You don't run into this problem if the
repo points to the applicable dependencies
and everyone builds everything locally. It
also avoids other problems such as if your
system's package manager doesn't have a
particular library version, and the project
builds that library from source. It's not
perfect and there's other problems that
you run into, but it often does help
understanding what is being built in the
project more clearly. Alire even takes this
an entire step further by being able to
install and manage the toolchain as well
(gprbuild and GNAT).

Package managers also simplify having
multiple projects using the same library,
but different and possibly incompatible
versions on the same system. You get a
snapshot in time and a more consistent
path to get a build working for new
developers, or on a new system. There are
limitations due to what systems open
source library writers have available to
test on, so you shouldn't just blanket trust
code you pull in though, and you should
be careful how you use it.

Overall, Alire makes the experience
building and developing in Ada for me on
Windows, Mac and Linux, considerably
simpler and more efficient, by providing
the same interface for use across all of
these systems.

With the beautiful site styling done by
onox, someone pointed to ada-lang.io
should be able to download Alire, install a
toolchain, make a project and build in less
than 15 minutes or so (depending on
download and install time). The work
done by Fabien and Alejandro, and
everyone else who has contributed to
Alire to make this happen within the last
couple years is absolutely incredible.
Combined with Maxim's fantastic work
on the Ada language plugin for Visual
Studio Code, it's a great experience for
first-time users of the language.

[...]

> Maybe a web forum would be a good
idea, because many people nowadays
see Usenet newgroups as an outdated
thing. So the fact that the community
mostly relies on comp.lang.ada may
turn them off.

There's a dedicated forum now at
https://forum.ada-lang.io/

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 12 Oct 2022 17:06:26 -0700

>> I am not sure if package manager is a
good idea if it does not refer to the
target system's packaging tools, e.g.
DEB, RPM, MSI etc.

Alire can define crates that import system
libraries, using those tools. They are

12 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

subject to the same version checks as
other Alire crates.

>> The very idea to rebuild everything
each time on each client is atrocious
both with regard of wasting computing
resources as well as testing, safety,
consistency, interoperability inside the
target.

Actually, it's better for consistency; that's
why Alire does it.

I don't understand what you mean by
"testing" here; how does compiling from
source affect testing?

Same for "interoperability".

> I've seen inconsistencies in builds when
developers who rely on the system
libraries [...]

More precisely, an Alire crate can specify
precisely which version of each
dependency it requires/is compatible with.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 13 Oct 2022 08:58:16 +0200

> Actually, it's better for consistency;
that's why Alire does it.

Consistency is easier to enforce on pre-
built deployments, obviously. Moreover
libraries usually provide integrated checks
and/or have some target platform policy,
e.g. naming and placement conventions.

> I don't understand what you mean by
"testing" here; how does compiling
from source affect testing?

Because one can run tests on pre-built
packages impossible to run on the
sources. For example, network/hardware
protocols. In order to test a protocol
implementation one needs complex mock
setups the client simply does not have.
Such tests may run for many hours etc.

> Same for "interoperability".

See above. You cannot run integration
tests on the client, it is just silly.

>> [...] You don't run into this problem if
the repo points to the applicable
dependencies and everyone builds
everything locally.

No difference whether deployment is in
source or pre-built. Dependencies must be
enforced regardless. However it is far
easier to do with pre-built packages.

> More precisely, an Alire crate can
specify precisely which version of each
dependency it requires/is compatible
with.

It seems so. Multiple versions at once are
not supported. E.g. when you are working
on two projects both dependent on
different versions of another project:

 B -> A.1

 C -> A.2

Or even the same project, e.g. when doing
some migration from one version to
another.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Fri, 14 Oct 2022 01:41:32 -0700

> Multiple versions at once are not
supported. [...]

Yes of course, different crates can depend
on different versions of the same crate.

> Or even the same project, e.g. when
doing some migration from one version
to another.

Not sure how you would do that? Link
two different versions of the same library
in an executable? That's not going to
work.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 14 Oct 2022 12:05:00 +0200

> Yes of course, different crates can
depend on different versions of the
same crate.

It is about whether both A's can be
installed and coexist on the same
machine.

> Not sure how you would do that? Link
two different versions of the same
library in an executable? That's not
going to work.

Same as above. You have B.1 -> A.1 and
B.* -> A.2. You want to install both A.1
and A.2 and work on B.* while checking
on B.1.

In the long gone time of common sense, a
project code management system would
use a virtual file system and map different
parts of the project's graph onto a
structure of folders arranged by versions.
Today one would use something ugly like
a virtual machine or incredibly ugly like a
docker.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 14 Oct 2022 04:19:05 -0700

> It is about whether both A's can be
installed and coexist on the same
machine.

In Alire, "installed" means "checked out
the source code into a local directory".

If A depends on a system library that is a
shared object file, and those are different
versions, then it depends on the OS;
Debian can handle this nicely, Windows
only via separate directories and search
paths.

> Same as above. You have B.1 -> A.1
and B.* -> A.2. You want to install
both A.1 and A.2 and work on B.*
while checking on B.1.

And the solution is the same as well.

> [...] a project code management system
would use a virtual file system and map

different parts of the project's graph
onto a structure of folders arranged by
versions.

What prevents that now?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 14 Oct 2022 15:05:06 +0200

> What prevents that now?

Nothing except that it is to be done
manually. Why not download a source
archive and bother with anything? It is
Turing-complete, after all... (:-))

The advantage of a file system is that
developing image will be automated and
consistent. And you would not need to
move any files physically. Alire is
extremely slow because it must pull all
files [and then compile them on top of
that].

Furthermore, a virtual file system shares
duplicates of the same version of the same
file. When you work with naked Git you
must have as many copies as you have
projects. Same applies to virtual machines
and dockers. It is a huge overhead for
nothing.

Moreover, a virtual file system is instant
so long you do not access a file for read or
write. Which is the case for gprbuild,
make and other tools which use
timestamps and then never look into files.

With a virtual file system you can
automatically check in all files on closing
if it was open for write and never worry
about command-line mess or plug-ins.
Any tool will work out of the box.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sun, 16 Oct 2022 10:54:57 +0200

> Furthermore, a virtual file system shares
duplicates of the same version of the
same file. When you work with naked
Git you must have as many copies as
you have projects. Same applies to
virtual machines and dockers. It is a
huge overhead for nothing.

Inasmuch as versions are subject to
business, software configuration
management is just work that requires
resources to get it done. Problem solved.
(Well, not for the small shop on a budget,
granted.)

To what extent can static linking make
B.1 and B.2 exist on the same system?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 16 Oct 2022 11:20:33 +0200

> Inasmuch as versions are subject to
business, software configuration
management is just work that requires
resources to get it done.

Yes, human resources especially. It is a
self-feeding system that exists in each
organization. It creates problems in order

Ada Pract ice 13

Ada User Journal Volume 44, Number 1, March 2023

to justify its continuous growth. Modern
time tools excel at wasting and perfect
outright meaninglessness.

> Problem solved. (Well, not for the small
shop on a budget, granted.)

I cannot say that ClearCase, which did
things more or less right 20 years ago,
was for small business either. (:-)) AFAIK
it is still available and GNAT Studio
supports it. However, IBM (Rational,
actually) fulfills its existential end goal of
wasting personal and hardware resources
by other, no less efficient, techniques... (:-
))

> To what extent can static linking make
B.1 and B.2 exist on the same system?

To a full extent! (:-))

Sorry, I do not understand your question...

Arrays with Discriminated
Task Components

From: Adamagica
 <christ-usch.grein@t-online.de>

Subject: Arrays with discriminated task
components

Date: Sat, 24 Dec 2022 03:44:27 -0800
Newsgroups: comp.lang.ada

I've got a task type with a discriminant:

 type Index is range 1 .. N;

 task type T (D: Index);

Now I want an array of these tasks, where
each task knows its identity (the index)
via the discriminant, an
iterated_component_association:

 Arr: array (Index) of T :=

 (for I in Index => ???);

How can I do this?

This works with access, but I find this
extremely ugly:

 Arr: array (Index) of access T :=

 (for I in Index => new T (I));

Alternatively, I could use the traditional
method with a Start entry with the index
as parameter:

 task type T is

 entry Start (D: Index);

 end T;

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 24 Dec 2022 20:05:19 +0200

One way is to give the discriminant a
default value that is a function call that
returns a new identifier on each call:

 Next_Index : Index := Index'First;

 -- The value returned by the next call

 -- of New_Index.

 function New_Index return Index

 -- Returns a unique Index value (up to N).

 is

 Result : constant Index := Next_Index;

 begin

 if Next_Index < Index'Last then

 Next_Index := Next_Index + 1;

 -- else report error?

 end if;

 return Result;

 end New_Index;

 task type T (D: Index := New_Index);

Then you can declare the array without
any initial value:

 Arr: array (Index) of T;

and the initialization of each task in the
array makes its own call to New_Index
and gets its own identifier value.

A bit sneaky but has the advantage that it
extends automatically to two arrays of
tasks, or one array and some separate
single declarations of tasks, etc.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 24 Dec 2022 23:41:34 +0100

> One way is to give the discriminant a
default value that is a function call that
returns a new identifier on each call:

No, this does not guarantee that the task's
discriminant is its index in the array,
which is a requirement of the question.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 25 Dec 2022 18:16:56 +0200

This seems to work with GNAT, but I'm
not entirely sure if it is legal (could there
be a conflict between the default value of
the task discriminant, which is the same
for all tasks in the array, and the actual
discriminants which are different for each
task in the array?):

 N : constant := 10;

 type Index is range 1 .. N;

 task type T (D: Index := Index'First);

 -- A default value for D is needed to make

 -- the type constrained, as

 -- required by the Arr declaration below.

 function New_T (I : in Index)

 return T

 is

 begin

 return TI : T (D => I)

 do

 null;

 end return;

 end New_T;

 Arr: array (Index) of T := (for I in Index =>

 New_T(I));

Whether this is any less ugly than the
heap allocation method is doubtful.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Mon, 26 Dec 2022 08:39:23 -0800

Thanx, Niklas and Jeffrey. I just didn't
think of the generator function.

Sockets, Streams, and
Element_Arrays

From: Mark Gardner
<magardner2017@gmail.com>

Subject: Sockets, Streams, and
Element_Arrays: Much confusion

Date: Sat, 31 Dec 2022 14:11:55 +0200
Newsgroups: comp.lang.ada

Hello, I've been having a bit of difficulty
doing some UDP socket programming in
Ada. As outlined in my stackoverflow
question here
(https://stackoverflow.com/q/74953052/
7105391), I'm trying to reply to messages
I am getting over UDP.

GNAT.Sockets gives me a
Stream_Element_Array, which I can't find
any documentation on how to make use of
other than "You should also be able to get
a Stream, which you should use instead"
(About ten years ago, on this very
newsgroup, somebody said not to use
streams with UDP, or at least not
GNAT.Sockets.Stream).

Adasockets gives me a String, which I can
work with, except it throws away the data
recvfrom gives it, apparently making it
impossible to reply to the querying
address.

At this point, I'm half-tempted to make
my own binding, but as I've never done
that sort of thing before, I thought I'd ask
the wisdom of the Usenet if there is a way
to convert a Stream_Element_Array into
the exotic types of Unsigned_16 and
String.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Dec 2022 14:11:11 +0100

> GNAT.Sockets gives me a
Stream_Element_Array [...]

Stream_Element_Array is declared in
Ada.Streams as

 type Stream_Element_Array is

 array(Stream_Element_Offset range <>)

 of aliased Stream_Element;

For communication purposes it is an array
of octets. Your datagram is represented as
a Stream_Element_Array or a slice of.

As for streams, yes, it does not make
sense to use them for networking, unless
you override all stream primitives. The
reasons for that are

- non-portability of predefined primitives

- low efficiency for complex data types

- encoding inefficiency as well

You will need to handle some application
protocol artifacts, checksums, counters,
strange encodings, sequence numbers etc.
It is easier to do this directly on the
Stream_Element_Array elements.

14 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

And, well, do not use UDP, except for
broadcasting. There is no reason to use it.
For multicast consider delivery-safe
protocols like PGM. For single cast use
TCP/IP. (If you need low latency see the
socket NO_DELAY option)

From: Mark Gardner
<magardner2017@gmail.com>

Date: Sat, 31 Dec 2022 15:50:29 +0200

> For communication purposes it is an
array of octets.

According to RM 13.13.1,
"Stream_Element is mod implementation-
defined" which to me says there is no
guarantee that they will be octets, unless
this is specified elsewhere?

> You will need to handle some
application protocol artifacts,
checksums, counters, strange
encodings, sequence numbers etc. It is
easier to do this directly on the
Stream_Element_Array elements.

So, how would I do this directly on the
elements? I mean, if it is an octet-array to
a string, I expect an element-to-element
copy, or type conversion to work, but
what about integers? Do I need to do
something like
My_Int:=Unsigned_8(octet(1))+2**8*
Unsigned_8(octet(2)); or whatever
endianness demands? Or is this the time
to learn how to use
Unchecked_Conversion?

> And, well, do not use UDP, except for
broadcasting.

Well, my use case just so happens to be
broadcasting, and re-broadcasting data
across a binary-tree-like p2p network.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Dec 2022 15:16:05 +0100

> According to RM 13.13.1,
"Stream_Element is mod
implementation-defined"

GNAT.Sockets is GNAT-specific. All
GNAT compilers have Stream_Element 8
bits. I can imagine some DSP
implementation with Stream_Element of
32 bits. But realistically add

pragma Assert (Stream_Element'Size >= 8);

and be done with that.

[...]

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 31 Dec 2022 16:18:50 +0100

> According to RM 13.13.1,
"Stream_Element is mod
implementation-defined"

The ARM has always tried to ensure that
the language could be implemented on
any kind of processor. Thus you have
implementation-defined separate
definitions of Storage_Element and
Stream_Element, which need not be the

same, and no guarantee that Interfaces
contains declarations of Integer_8 or
Unsigned_8.

But these days almost everything is byte
oriented, so unless you need what you're
writing to work on some unusual H/W,
you can presume that both of these are
bytes, and that Interfaces contains those
declarations.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 31 Dec 2022 17:39:07 +0000

> About ten years ago, on this very
newsgroup, somebody said not to use
streams with UDP, or at least not
GNAT.Sockets.Stream.

The reasoning behind the
recommendation not to use streams with
UDP was as follows (there's a faint
possibility that it no longer applies!)

If the data type you want to send is e.g.

 type Message is record

 Id : Integer;

 Val : Boolean;

 end record;

and you create a datagram socket and
from that a stream, then use
Message'Write to the stream, GNAT will
transmit each component of Message
separately in canonical order (the order
they're written in the type declaration).
This results in two datagrams being sent,
one of 4 bytes and one of 1 byte.

If you take the same approach at the
destination, Message'Read reads one
datagram of 4 bytes, and one of 1 byte,
and it all looks perfect from the outside. If
the destination is expecting a 5 byte
record, of course, things won't work so
well.

The approach we adopted was to create a
'memory stream', which is a chunk of
memory that you can treat as a stream
(see for example
ColdFrame.Memory_Streams at [1]).
With Ada2022, you should be able to use
Ada.Streams.Storage.Bounded [2].

Message'Write the record into the
memory stream; transmit the written
contents as one datagram.

To read, create a memory stream large
enough for the message you expect; read
a datagram into the memory stream;
Message'Read (Stream =>
the_memory_stream, Item =>
a_message);

You can use gnatbind's switch -xdr to
"Use the target-independent XDR
protocol for stream oriented attributes
instead of the default implementation
which is based on direct binary
representations and is therefore target-and
endianness-dependent".

[1] https://github.com/simonjwright/
coldframe/blob/master/lib/
coldframe-memory_streams.ads

[2] http://www.ada-auth.org/standards/
22rm/html/RM-13-13-1.html#p25

From: Mark Gardner
<magardner2017@gmail.com>

Date: Sat, 31 Dec 2022 21:36:40 +0200

> The approach we adopted was to create
a 'memory stream'

Wait, so if I know what shape my data is,
and use a memory_stream (like the one in
the Big Online Book of Linux Ada
Programming chapter 11 [1]), I'm fine
using Stream, in conjunction with
Get_Address? That's wonderful. Not at all
frustrated that I just wasted approximately
three working days looking for a solution
to a problem that didn't exist.

> Message'Write the record into the
memory stream; transmit the written
contents as one datagram.

I'm guessing with
Memory_Stream'Write(Socket_Stream,
Buffer);?

> To read, create a memory stream large
enough for the message you expect

Does this second buffer need to be added?
If the datagram arrives (UDP), shouldn't
GNAT.Sockets.Stream() be able to handle
it?

> You can use gnatbind's switch -xdr to
"Use the target-independent XDR
protocol for stream oriented attributes
[...]

Oh fun, I didn't think of that aspect.
Thanks! Would I have to pass it as a
command line flag, or would there be
some kind of pragma I could use?

Thanks for the help so far, and happy new
year!

[1] http://www.pegasoft.ca/resources/
boblap/11.html#11.12

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Dec 2022 21:16:18 +0100

> I'm guessing with
Memory_Stream'Write(Socket_Stream,
Buffer);?

No, you create a memory stream object.
Then you write your packet into it:

 My_Message'Write

 (My_Memory_Stream'Access);

Once written you use the accumulated
stream contents to write it into the socket.
An implementation of a memory-resident
stream is very simple. E.g. see:
http://www.dmitry-kazakov.de/ada/
strings_edit.htm#Strings_Edit.Streams

My advice would be not to do this. It is
wasting resources and complicated being
indirect when 'Write and 'Read are
compiler-generated. If you implement

Ada Pract ice 15

Ada User Journal Volume 44, Number 1, March 2023

'Write and 'Read yourself, then why not
call these implementations directly. It just
does not make sense to me. I always
wonder why people always overdesign
communication stuff.

Build messages directly in a
Stream_Element_Array. Use system-
independent ways to encode packet data.
E.g. chained codes for integers. Mantissa
+ exponent for real numbers. If you have
Booleans and enumerations it is a good
idea to pack them into one or two octets
to shorten the packets. All this is very
straightforward and easy to implement.

You can also consider using some
standard data representation format, e.g.
ASN.1. An Ada ASN.1 implementation is
here:
http://www.dmitry-kazakov.de/ada/
components.htm#ASN.1

You describe your message in ASN.1 as
an Ada tagged type derived from building
blocks. Then you can encode and decode
it directly from Stream_Element_Array. I
would not recommend that either. ASN.1
is quite overblown.

Happy New Year!

From: philip...@gmail.com
<philip.munts@gmail.com>

Date: Sat, 31 Dec 2022 14:32:17 -0800

> And, well, do not use UDP, except for
broadcasting

I have to disagree here. UDP is perfectly
fine for RPC-like (Remote Procedure
Call) transactions on a local area network.
And it is orders of magnitude easier to
implement on microcontrollers than TCP.
An Ada program using UDP to
communicate with data collecting
microcontrollers makes perfect sense in
some contexts. I use it for my Remote I/O
Protocol.

The only trick is that the server (or
responder, as I like to call it) and client
(or initiator) can't quite use the same code.

Here is my generic package for UDP with
fixed length messages:

https://github.com/pmunts/libsimpleio/
blob/master/ada/objects/
messaging-fixed-gnat_udp.ads

https://github.com/pmunts/libsimpleio/
blob/master/ada/objects/
messaging-fixed-gnat_udp.adb

Getting between Stream_Element_Array
and a byte array is a pain and I wound up
just looping over arrays, copying one byte
at a time. If somebody has a better idea,
let me know.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 31 Dec 2022 23:49:33 +0100

> Getting between
Stream_Element_Array and a byte
array is a pain and I wound up just

looping over arrays, copying one byte
at a time. If somebody has a better idea,
let me know.

You should be able to use
Unchecked_Conversion for that.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Dec 2022 23:55:07 +0100

> I have to disagree here. UDP is
perfectly fine for RPC-like (Remote
Procedure Call) transactions on a local
area network.

RPC and other synchronous exchange
policies should be avoided as much as
possible.

Having said that, implementation of RPC
on top of streams is incomparably easier
than on top of UDP.

> And it is orders of magnitude easier to
implement on microcontrollers than
TCP.

Not at all. You need:

- Safe transmission and error correction
on top of UDP;

- Buffering and sorting out incoming
datagrams;

- Maintaining sequence numbers;

- Splitting messages that do not fit into a
single datagram and reassembling them
on the receiver side;

- Buffering on the sender side to service
resend requests.

This is extremely difficult and a huge load
for a microcontroller.

> Getting between
Stream_Element_Array and a byte
array is a pain and I wound up just
looping over arrays, copying one byte
at a time. If somebody has a better idea,
let me know.

Use "in situ" conversion if you are
concerned about copying. E.g.

 pragma Import (Ada, Y);

 for Y'Address use X'Address;

From: Simon Wright
<simon@pushface.org>

Date: Sat, 31 Dec 2022 23:41:11 +0000

> My advice would be not to do this. [...]

It has to depend on the design criteria.

If you need something now, and it's not
performance critical, and you have control
over both ends of the channel, why not go
for a low-brain-power solution?

On the other hand, when faced with e.g.
SNTP, why not use Ada's facilities (e.g.
[1]) to describe the network packet and
use unchecked conversion to convert
to/from the corresponding stream element
array to be sent/received?

I'd have thought that building messages
directly in a stream element array would
be the least desirable way to do it.

[1] https://sourceforge.net/p/coldframe/
adasntp/code/ci/default/tree/SNTP.impl
/sntp_support.ads

Real_Arrays on Heap with
Clean Syntax

From: Jim Paloander
<dhmos.altiotis@gmail.com>

Subject: Real_Arrays on heap with
overloaded operators and clean syntax

Date: Sun, 22 Jan 2023 13:34:18 -0800
Newsgroups: comp.lang.ada

Dear Ada lovers,

with stack allocation of Real_Vector
(1 .. N) when N >= 100,000 I get
STACK_OVERFLOW ERROR while
trying to check how fast operator
overloading is working for an expression

X := A + B + C + C + A + B, where
A,B,C,X are all Real_Vector (1 .. N).

So my only option was to allocate on the
heap using new. But then I lost the clean
syntax

X := A + B + C + C + A + B

and I had to write instead:

X.all := A.all + B.all + C.all + C.all +
A.all + B.all.

This is really ugly and annoying because
when you are using Real_Arrays for
implementing some linear algebra method
who relies heavily on matrix vector
products and vector updates, you do need
to allocate on the heap (sizes are
determined in runtime) and you do need a
clean syntax. So, is there any way to
simplify my life without using the .all or
even without declaring A,B,C,X as access
Real_Vector?

Thanks for your time!

From: Joakim Strandberg
<joakimds@kth.se>

Date: Sun, 22 Jan 2023 13:56:27 -0800

Easiest solution is probably to declare a
new task and specify the stack size using
the Storage_Size aspect. Allocate as much
stack space as you need to be able to do
the calculations and do all the allocations
on the declared task, not on the
environment task. You will avoid the
unnecessary heap allocations and have
nice clean syntax.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 22 Jan 2023 23:13:14 +0100

You can define "+" on the access type,
which should probably be an arena
pointer for performance reasons:

 Arena : Mark_And_Release_Pool;

 type Real_Vector_Ptr is access

16 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

 Real_Vector;

 for Real_Vector_Ptr'Storage_Pool use

 Arena;

function "+" (Left, Right :

Real_Vector_Ptr)

 return Real_Vector_Ptr is

 begin

 if Left'Length /= Right'Length then

 raise Constraint_Error;

 end if;

 return Result : Real_Vector_Ptr :=

 new Real_Vector (Left'Range) do

 for I in Result'Range loop

 Result (I) :=

 Left (I) + Right (I - Left'First +

 Right'First);

 end loop;

 end return;

 end "+";

You can overload that with

 function "+" (Left : Real_Vector_Ptr;

 Right : Real_Vector)

 return Real_Vector_Ptr is

 begin

 if Left'Length /= Right'Length then

 raise Constraint_Error;

 end if;

 return Result : Real_Vector_Ptr :=

 new Real_Vector (Left'Range) do

 for I in Result'Range loop

 Result (I) :=

 Left (I) + Right (I - Left'First +

 Right'First);

 end loop;

 end return;

 end "+";

and with

 function "+" (Left : Real_Vector;

 Right : Real_Vector_Ptr)

 return Real_Vector_Ptr;

Then you will be able to write:

 X := A + B + C + C + A + B;

 -- Use X

 Free (X); -- Pop all arena garbage

But of course, the optimal way to work
large linear algebra problems is by using
in-place operations, e.g.

procedure Add (Left : in out Real_Vector;

Right : Real_Vector);

etc.

Regards,
Dmitry A. Kazakov

http://www.dmitry-kazakov.de

From: Jim Paloander
<dhmos.altiotis@gmail.com>

Date: Sun, 22 Jan 2023 14:49:09 -0800

> It is my impression that in the Ada
community the preferred way of
working is in general stack only. [...]

With great depression I realized that the
preferred way is of stack only. This is
very restrictive excluding all scientific
modelling involving solvers for partial
differential equations, linear algebra
kernels, etc. It is insane. Completely

insane. 3D simulations of physical
phenomena may involve billions of grid-
cells and at each grid-cell several
unknowns are defined (velocity, pressure,
temperature, energy, density, etc). That is
why they are using Fortran or C++, but
Ada has really cool stuff for so many
things, why not vectors and matrices and
heap allocation? Would you please give
me an example, I googled and I cannot
find a single example demonstrating how
to use a task with the declaration of stack
size. Why is there so little information
online about so important things such as
allocation?

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sun, 22 Jan 2023 15:14:03 -0800

Note that Real_Arrays does not specify
where things are allocated (heap or stack).

Only when you define "x : Real_Vector (1
.. n)", it is on stack. You can always write
something like the snippet below.

Anyway, after a certain size, you may
have to find compromises, like avoiding
operators (they do too many allocations &
deallocations in the background, even
assuming elegant heap-allocated objects)
and also give up plain matrices, against
sparse matrices or band-stored matrices,
typically for solving Partial Differential
Equations.

with Ada.Numerics.Generic_Real_Arrays;

procedure Test_Large is

 type Float_15 is digits 15;

 package F15_R_A is new

 Ada.Numerics.Generic_Real_Arrays

 (Float_15);

 use F15_R_A;

 procedure Solve_it

 (x : in Real_Vector;

 y : out Real_Vector;

 A : in Real_Matrix) is

 begin

 null; -- Here, the big number-crunching

 end;

 n : constant := 10_000;

 type Vector_Access is access

 Real_Vector;

 type Matrix_Access is access Real_Matrix;

 x, y : Vector_Access := new Real_Vector

 (1 .. n);

 A : Matrix_Access := new Real_Matrix

 (1 .. n, 1 .. n);

begin

 Solve_it (x.all, y.all, A.all);

 -- !! Deallocation here

end;

From: Leo Brewin
<leo.brewin@monash.edu>

Date: Mon, 23 Jan 2023 12:14:47 +1100

Here is a slight variation on the solution
suggested by Gautier. It uses Ada's
"rename" syntax so that you can avoid all
the .all stuff. I use this construction
extensively in my large scale scientific
computations.

with Ada.Numerics.Generic_Real_Arrays;

with Ada.Unchecked_Deallocation;

procedure Test_Large is

 type Float_15 is digits 15;

 package F15_R_A is new

 Ada.Numerics.Generic_Real_Arrays

 (Float_15);

 use F15_R_A;

 procedure Solve_it

 (x : in Real_Vector;

 y : out Real_Vector;

 A : in Real_Matrix) is

 begin

 null; -- Here, the big number-crunching

 end;

 n : constant := 10_000;

 type Vector_Access is access

 Real_Vector;

 type Matrix_Access is access

 Real_Matrix;

 x_ptr, y_ptr : Vector_Access := new

 Real_Vector (1 .. n);

 A_ptr : Matrix_Access := new

 Real_Matrix (1 .. n, 1 .. n);

 x : Real_Vector renames x_ptr.all;

 y : Real_Vector renames y_ptr.all;

 A : Real_Matrix renames A_ptr.all;

 procedure FreeVector is new

 Ada.Unchecked_Deallocation

 (Real_Vector,Vector_Access);

 procedure FreeMatrix is new

 Ada.Unchecked_Deallocation

 (Real_Matrix,Matrix_Access);

begin

 Solve_it (x, y, A);

 -- Deallocation here

 FreeVector (x_ptr);

 FreeVector (y_ptr);

 FreeMatrix (A_ptr);

end;

From: Jim Paloander
<dhmos.altiotis@gmail.com>

Date: Sun, 22 Jan 2023 22:01:58 -0800

Thank you very much, would a
for Real_Vector_Access'Storage_Pool use
localPool; save you from the need to free
the vectors and matrix yourself?

On the other hand, is there any way of
avoiding temporaries? Possibly a modern
version of the Real_Array using
expression generic syntax or something
similar? Since you are using scientific
computations extensively, you must be
aware of Fortran. Have you compared
Fortran's complex numbers with Ada's for
inner products or similar computations to
see who is faster? You see, I like a lot of
things about Ada, but the syntax is really
difficult to follow. Sometimes it gives me
the impression that it is more difficult
than really needed to be. For example
there should be a way for Real_Arrays to
allocate memory internally and not on the
stack directly like containers. And for
containers to provide an indexer Vector(i)
and overloaded operators similarly to
Real_Vectors. But the fact that they do
not give me the impression that this
Language, although being designed by the
army for mission critical applications,

Ada Pract ice 17

Ada User Journal Volume 44, Number 1, March 2023

never realized that modern mission
critical need to simplify mathematical
calculations providing an easy syntax. I
am surprised that after so many years and
so many updates to the Standard the
designers of the Language did not realize
that such mathematical syntax should be
simplified to attract more people from
scientific computing, who are tired with
Fortran 10000 ways of declaring
something a variable.

From: Egil H H <ehh.public@gmail.com>
Date: Sun, 22 Jan 2023 23:50:11 -0800

> wanted to find the video where Jean
Pierre Rosen talks about how memory
is handled in the Ada language from
FOSDEM perhaps 2018-2019.

It was in 2016:
https://archive.fosdem.org/2016/schedule/
event/ada_memory/

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 23 Jan 2023 09:51:55 +0100

>> Something came up and I had to send
my previous reply/e-mail as is. I
wanted to find the video where Jean
Pierre Rosen talks about how memory
is handled in the Ada language from
FOSDEM perhaps 2018-2019.
Unfortunately I have been unable to
find it.

>>

> It was in 2016:

> https://archive.fosdem.org/2016/
schedule/event/ada_memory/

Thanks Egil, you were faster than me...

I also have a full tutorial at several Ada-
Europe conferences. No video, but I can
send the slides to those interested.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 23 Jan 2023 09:28:46 +0100

> I was not sure whether or not it can be
avoided with Implicit_Dereference,

> type Accessor (Data: not null access
Element) is limited private with
Implicit_Dereference => Data;

If you create a new wrapper type,
anyway, then it is easier to define
operations directly on that new type.

> Otherwise what you described for
operator+ one has to do for every
operator overloaded inside Real_Arrays
package.

You should not use the standard library
anyway. It is not intended for large
problems, which require specific
approaches and methods, like sparse
matrices, concurrent processing and so
on.

> The optimal way to work large linear
algebra problem is what you describe
because unfortunately Ada does not
allow what Fortran does since 30 years
ago or more.

I am not sure what you mean. It is quite
possible to design a wrapper datatype
allocating vectors/matrices in the pool.
E.g. Ada's Unbounded_String is such a
thing. Real_Arrays were not designed this
way because see above.

> But in C++ you can reproduce the same
functionality as Fortran using
Expression Templates and Template
Metaprogramming.

Nothing prevents you from wrapping
Real_Array in a generic way:

generic

 with package Real_Arrays is new

Numerics.Generic_Real_Arrays (<>);

package Generic_Pool_Real_Arrays is

 ...

end Generic_Pool_Real_Arrays;

> Perhaps Ada should allow something
like that. Because for maintainability
reasons the best would be to write the
mathematical expressions as close as
possible to the mathematical formulas.

There is no problem with that as you can
define operations on pointers.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Mon, 23 Jan 2023 09:39:39 +0100

> Are you aware of any libraries similar
to Real_Arrays, but who allocated
memory internally using heap?

The most natural way to work with an
array of FPT numbers is for the
programmer to declare an array indexed
by some index type. Done. If GNAT gets
in the way there, it might be worth a note
sent to its maintainers. Whenever a
programmer is tasked with considering
memory allocation, then depending on
one's propensity towards working on
memory allocation it is inconvenient and
distracting. Math programs don't make
you do this, I think.

Also, std::vector and its relatives shield
the programmer from the absurdly clever,
yet unreadable memory allocation that
needs to be stuffed behind the scenes.
More importantly, though, C++
introduced std::move semantics after a
few decades of its existence, to address
copying when using chains of +. It might
be interesting to see Ada's in-situ
construction of return values in
comparison.

> Similarly to the Containers.Vector. But
Vector has such an awful syntax. There
should be something like an indexer [i]
similarly to the C++ std::vector to make
things simpler

.at() does some of what Ada does. Is

 v.at(k) = 4;

less awful than

 v(k) := 4;

?

Another thing: Mathematical notation has
ellipsis, thus

 A + B + ... + Y + Z;

Most general purpose languages don't
have ellipsis for this kind of expression.
However, even mathematical formulas
use what programmers can usually
achieve, too. The usual

 \sum_k A_k.

No "+" at all, and an array of vectors, not
single ones. Going further, some like to
write

 reduce("+", A);

In Ada, you could have a generic function
for this, or use a function pointer.

The .all thing vanishes automatically
whenever you want to refer to a particular
component of the pointed-at object, as
opposed to all of them. So, A.all(K) is the
same as A(K). Likewise, .all can be
dropped if want to invoke the pointed-at
subprogram if it has parameters.

Broadcast / Iterate to All
Connection Objects via
Simple Components?

From: A.J. <ianozia@gmail.com>
Subject: Broadcast / iterate to all

Connection objects via Simple
Components?

Date: Tue, 7 Feb 2023 12:29:39 -0800
Newsgroups: comp.lang.ada

Hello everyone,

In an effort to better learn network
programming in Ada, I've been working
through the Protohacker Challenges
(https://protohackers.com/), and the
current challenge (number 3) is to create a
chat server.

I am using a TCP Connections Server
with Simple Components, specifically a
Connection_State_Machine, but I've run
into a problem. I'm trying to send a
message received via "procedure
Process_Packet (Client : in out
Server_Connection)" to all connected
Clients.

My (potentially incorrect) thought on how
to accomplish this is to iterate through all
of the clients currently connected, and use
Send to send the message received to
those clients. I've been struggling with
how to actually do this though, since I
couldn't use "function Get_Clients_Count
(Listener : Connections_Server) return
Natural" from within Process_Packets.

Another thought I had could be to just
place every message received in a central
queue, and then once all of the packets
have been received, to then process that
queue and send the results to every
connected client.

18 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

I tried overriding "procedure
On_Worker_Start (Listener : in out
Connections_Server)", thinking that I
could use it to read such a queue, but it
never seemed to be called from within my
program and I'm still unsure how to
iterate through the Connection objects
anyway.

Am I approaching this the right way, or
am I missing something very obvious?
I've read the test files that came with
Simple Components, including the data
server but couldn't see a way to get each
client to interact with each other. If I
didn't explain this well enough, please let
me know, I'll be happy to clarify.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Wed, 8 Feb 2023 10:55:11 +0100

For an example of this, see the
Chattanooga demo that comes with
Gnoga
(https://sourceforge.net/projects/gnoga/).
A screenshot and intermittently working
(not right now) on-line version are
available at https://sourceforge.net/p/
gnoga/wiki/Gnoga-Gallery/.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sun, 12 Feb 2023 23:28:26 -0800

I am not sure how familiar you are with
Network programming in general (not just
as it would be done in Ada). Using a
blocking Send could actually kill your
performance. You mentioned you would
be sending a message to one client after
another. Imagine one of the clients has
small socket buffers, and is busy doing
something else at the moment so not
reading your message immediately. If you
are sending a large message, your server
would only be able to send part of the
message, then it would block until the
client has read enough that there is space
again in the socket buffers to send the rest
of the message. That could take ... days.
In the meantime, your server is not doing
anything else, and no other client gets sent
anything...

Instead, you need to use non-blocking
sockets. When Send returns, it has sent
whatever it could for the moment. You
then need to monitor the socket (and all
other similar ones) using something like
select (which is limited to sockets < 1024,
so pretty useless for an actual server in
practice) poll (better version of select) or
epoll (the best in my opinion). I have
written a similar server that has 25000
concurrent clients, and serves them all
with 10 worker tasks. That would never
fly with blocking sockets.

A similar approach when receiving
messages from clients, by the way. The
message might have sent only part of its
message, so you need to give up
temporarily, and come back to it when

poll tells you there is something new to
read.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Feb 2023 09:30:22 +0100

> Using a blocking Send could actually
kill your performance. [...] A similar
approach when receiving messages
from clients, by the way.

Yes. All networking in Simple
components is built on non-blocking
sockets (socket select).

P.S. This poses difficulties for users, who
see all communication turned upside
down being driven by arbitrary socket
events rather than by the protocol logic.
This was a reason I argued for introducing
co-routines with task interfaces in Ada.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Mon, 13 Feb 2023 00:44:01 -0800

> sockets (socket select).

Have you taken a look at epoll(), on
Linux it is so much more natural to use,
and so much more efficient in practice.
The example I mentioned above (a server
with 25_000 concurrent connections)
cannot work with select (which only
accepts file descriptors up to 1024), and is
slow with poll (since the result of the
latter is the number of events, and we
need to iterate over all registered sockets
every time).

> This was a reason I argued for
introducing co-routines with task
interface in Ada.

In my own code, I basically provide an
epoll-based generic framework. One of
the formal parameters is a `Job_Type`
with one primitive operation `Execute`.
The latter is initially called when a new
connection is established, and is expected
to do as much non-blocking work as it can
(Execute is run in one of the worker
tasks). When it cannot make progress, it
returns a tuple (file_descriptor,
type_of_event_to_wait_for) to indicate
when it needs to be called again in the
future, for instance some data became
available to read on the specified
file_descriptor. The intent is that the
`Job_Type` is implemented as a state
machine internally.

Of course, a state machine is one of the
two ways I know (along with a task) to
implement the equivalent of a co-routine
in Ada. So I 100% agree with you that co-
routines would be very useful in
simplifying user code, in particular in the
scenario we are discussing here!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Feb 2023 11:55:07 +0100

> Have you taken a look at epoll(), on
Linux ?

The implementation is on top of
GNAT.Sockets, so no.

> It is so much more natural to use, and so
much more efficient in practice.

Well, if there is Linux kernel level
support why it is not used in socket select
as it is in epoll? I would expect them do
that at some point or drop epoll... (:-))

> [...] The intent is that the `Job_Type` is
implemented as a state machine
internally.

Yes, state machine is what I want to
avoid. With complex layered protocols it
imposes incredible difficulties requiring
auxiliary stacks and buffers with errors
almost intractable either by testing or by
formal proofs.

> So I 100% agree with you that co-
routines would be very useful in
simplifying user code, in particular in
the scenario we are discussing here!

I'd like to have special Ada "tasks" acting
as co-routines on top of proper tasks
yielding when the socket buffer is empty
or full.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Mon, 13 Feb 2023 03:07:04 -0800

> Well, if there is Linux kernel level
support why it is not used in socket
select as it is in epoll?

Because in practice the Linux developers
don't get to modify such APIs, which are
mandated by Posix, or Unix, or some
RFC. So the API for select and poll will
never change.

epoll is definitely the modern approach on
Linux, until of course someone finds
something even better. epoll is fully
thread safe too, which is very nice when
used from Ada. Using select() is totally
outdated at this point, and means you can
never handle more than 1000
simultaneous clients, and that only if you
do not have other file descriptors open
(database, files,...)

The person who developed
GNAT.Sockets has left AdaCore a while
ago, so "they" (which I assume is what
your message was referring to) are
actually unlikely to update that. They also
have strong concerns about platform-
agnostic support, and epoll is linux-
specific at this point (likely also BSD).
There exist multiple libraries out there
that provide an API common to multiple
platforms, and that use epoll on linux.
Maybe that's what would make sense, but
nowadays with Alire, I would expect
someone to build a crate there rather than
AdaCore modify GNAT.Sockets.

> Yes, state machine is what I want to
avoid. With complex layered protocols
it imposes incredible difficulties
requiring auxiliary stacks and buffers

Ada Pract ice 19

Ada User Journal Volume 44, Number 1, March 2023

with errors almost intractable either by
testing or by formal proofs.

Tell me about auxiliary stacks :- In
practice, in my experience, you can have
a single incoming buffer which is used by
one state, and then another when the first
state is no longer active,... so we do not
need to have too many buffers, but that
definitely is not trivial. Currently, I have a
stack of iterators reading from a socket,
buffering on top of that, then
decompressing LZ4 data, then decoding
our binary encoding to Ada values.

> I'd like to have special Ada "tasks"
acting as co-routines on top of proper
tasks yielding when the socket buffer is
empty or full.

This is an approach we had discussed at
AdaCore before I left. There are multiple
drawbacks here: the limited stack size for
tasks by default (2MB), the fact that
entries cannot return indefinite types, the
fact that currently those tasks are assigned
to OS threads (so too many of them does
impact resource usage),...

A colleague had found an external library
that would provide several stacks and thus
let people implement actual co-routines.
We did not do much more work on that,
but it was a nice proof of concept, and
efficient. I think things are mostly
blocked now, as the ARG has been
discussing these topics for quite a few
years now.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Feb 2023 12:57:19 +0100

> [...] This is an approach we had
discussed at AdaCore before I left. [...]

My idea is to have these as pseudo-tasks
scheduled by the Ada run-time and not
mapped onto any OS threads. A proper
thread would pick up such a task and run
it until it yields. The crucial point is to use
the stack of the pseudo-task in place of
the thread's stack or backing it up and
cleaning the portion of the stack at the
point of yielding, whatever.

> [...] the ARG has been discussing these
topics for quite a few years now.

I have an impression that ARG's view on
co-routines totally ignores the use case of
communication stacks and other cases
state machines show their ugly faces...

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 13 Feb 2023 15:22:19 +0200

[snip discussion of network programming
details, retain discussion about co-
routines]

So your co-routines would (1) have their
own stack and (2) be independently
schedulable, which implies (3) having
their own execution context (register
values, instruction pointer, etc.) How is
that different from the Ada concept of a

"task"? How could the ARG separate
between a "task" and a "co-routine" in the
Ada RM?

There exist Ada compilers and run-times
where the tasking concept is implemented
entirely in the run-time system, without
involving the underlying OS (if there even
is one). That approach was mostly
abandoned in favour of mapping tasks to
OS threads, which makes it easier to use
potentially blocking OS services from
tasks without blocking the entire Ada
program.

So is your problem only that using OS
threads is less "efficient" than switching
and scheduling threads of control in the
run-time system? If so, that seems to be a
quality-of-implementation issue that
could be solved in a compiler-specific
way, and not an issue with the Ada
language itself.

The point (from Emmanuel) that task
entries cannot return indefinite types is
certainly a language limitation, but seems
to have little to do with the possible
differences between tasks and co-routines,
and could be addressed on its own if Ada
users so desire.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Feb 2023 16:10:15 +0100

> So your co-routines would (1) have
their own stack and (2) be
independently schedulable, which
implies (3) having their own execution
context (register values, instruction
pointer, etc.)

Sure. You should be able to implement
communication logic in a natural way:

1. Read n bytes [block until finished]

2. Do things

3. Write m bytes [block until finished]

4. Repeat

> How is that different from the Ada
concept of a "task"?

It is no different, that the whole point of
deploying high level abstraction: task
instead of low level one: state machine.

> How could the ARG separate between a
"task" and a "co-routine" in the Ada
RM?

Syntax sugar does not bother me. I trust
ARG to introduce a couple of reserved
words in the most annoying way... (:-))

> So is your problem only that using OS
threads is less "efficient" than switching
and scheduling threads of control in the
run-time system?

This too. However the main purpose is
control inversion caused by callback
architectures. A huge number of libraries
are built on that pattern. This is OK for
the library provider because it is the most

natural and efficient way. For the user
implementing his own logic, be it
communication protocol, GUI etc. it is a
huge architectural problem as it distorts
the problem space logic. So the goal is to
convert a callback/event driven
architecture into plain control flow.

> If so, that seems to be a quality-of-
implementation issue that could be
solved in a compiler-specific way, and
not an issue with the Ada language
itself.

In Ada 83 there was no way to pass a
procedure as a parameter. We used a

task instead... (:-))

But sure, a possibility to delegate a
callback to an entry call without
intermediates is certainly welcome.

[...]

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 13 Feb 2023 16:43:31 +0100

> that task entries cannot return indefinite
types is certainly a language limitation

That's what Holders are intended for...
(changing indefinite types into a definite
one)

From: Jeremy Grosser
<jeremy@synack.me>

Date: Mon, 13 Feb 2023 08:40:05 -0800

> epoll is definitely the modern approach
on Linux, until of course someone finds
something even better.

For high performance networking,
io_uring [1] is the new kid on the block,
but the API involves a scary amount of
pointer manipulation, so I'm not
convinced that it's safe to use yet.

While epoll is thread safe, there are some
subtleties. If you register a listening
socket with epoll, then call epoll_wait
from multiple threads, more than one
thread may be woken up when the socket
has a waiting incoming connection to be
accepted. Only one thread will get a
successful return from accept(), the others
will return EAGAIN. This wastes cycles
if your server handles lots of incoming
connections. The recently added (kernel
>=4.5) EPOLLEXCLUSIVE flag enables
a mutex that ensures the event is only
delivered to a single thread.

> They also have strong concerns about
platform-agnostic support, and epoll is
linux-specific at this point (likely also
BSD). [...]

On BSD, the kqueue [2] API provides
similar functionality to epoll. I believe
kqueue is a better design, but you use
what your platform supports.

libev [3] is the library I see used most
commonly for cross-platform evented I/O.
It will use the best available polling
syscalls on whatever platform it's
compiled for. Unfortunately, it's

20 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

composed mostly of C preprocessor
macros.

I've already written an epoll binding [5]
that's in the Alire index. GNAT.Sockets
provides the types and bindings for the
portable syscalls.

For the Protohackers puzzles, I've written
a small evented I/O server using those
bindings [6]. Note that this server does
not use events for the send() calls yet,
which may block, though in practice it
isn't an issue with the size of the payloads
used in this application. I do plan to
refactor this to buffer data to be sent when
the Writable (EPOLLOUT) event is
ready.

So far, I've found tasks and coroutines to
be unnecessary for these servers, though
coroutines would make it possible to
implement Ada.Streams compatible Read
and Write procedures, providing a cleaner
interface that doesn't expose callbacks to
the user.

[1] https://lwn.net/Articles/776703/

[2] https://people.freebsd.org/~jlemon/
papers/kqueue.pdf

[3] https://linux.die.net/man/3/ev

[4] https://github.com/JeremyGrosser/
epoll-ada

[5] https://github.com/JeremyGrosser/
protohackers/blob/master/src/mini.adb

From: philip...@gmail.com
<philip.munts@gmail.com>

Date: Mon, 13 Feb 2023 17:55:52 -0800

> In an effort to better learn network
programming in Ada, I've been
working through the Protohacker
Challenges (https://protohackers.com/),
and the current challenge (number 3) is
to create a chat server.

I know it probably defeats the purpose of
what you are trying to learn, but you are
going to wind up just reinventing AMQP
(broker based, meaning there is a
intermediary computer running something
like RabbitMQ to manage message
queues) or ZeroMQ (brokerless), both
implementations of so-called enterprise
messaging protocols. Both seem to scale
pretty well to thousands of clients.

It is pretty easy to do an Ada thin binding
for the ZeroMQ C library libzmq.

From: A.J. <ianozia@gmail.com>
Date: Sat, 18 Feb 2023 17:27:02 -0800

Thank you for all of the responses and
discussion, it pointed me in the right
direction! The "chat server"[1] (if you
could call it that) does work, and my
friends and I were able to telnet into it and
chat. One of my friends even tried
throwing things at the server to break it,
but it didn't crash!

Dmitry, maintaining a list of clients was
the vital part I was missing. I played

around with using synchronized queues
and tasks, but ended up defaulting to an
ordered map with a UID as the key and
wrapped it in a protected type. I couldn't
get Send() to send more data than
Available_To_Send (after calling it,
Available_To_Send ended up returning 0,
and continued to do so despite wrapping
Send() in a loop), but increasing the send
buffer to 8kb per connection worked fine.
I would simply loop through that ordered
map each time I needed to send
something to all of the clients.

I really like simple components, and it
would be neat if the GNAT maintainers
implement epoll in the backend for Linux
systems, kqueue for BSD and MacOS.
Any server I write will be for Linux
though anyway. I'm also interested in
trying to benchmark Simple Component's
connections server (both pooled and
standard) against epoll to see how it fares.
Perhaps the clever tasking that the
Connections Server utilizes can keep up
with epoll despite what GNAT.Sockets
utilizes!

Regarding coroutines vs tasks, I think at a
high level it's hard to differentiate, but at a
lower level, when I think of tasks vs what
a coroutine would be, I think of Go, and
their "goroutines."[2] Creating a task in
Ada, at least on Linux, ends up creating a
pthread, and you get all of the overhead
that comes with threading (it's initialized
in the kernel). coroutines are managed by
the go runtime (I believe in user space)
and have much less overhead to create or
manage, since it's not creating a specific
thread.

Ada 202x supports the "parallel" block[3]
though I understand no runtime has
utilized it yet-- would that end up being a
coroutine or is it meant for something
else?

[1] https://github.com/AJ-Ianozi/
protohackers/tree/main/budget_chat/src

[2] https://www.geeksforgeeks.org/
golang-goroutine-vs-thread/

[3] http://www.ada-auth.org/standards/
22rm/html/RM-5-6-1.html

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 19 Feb 2023 16:37:51 +0200

> Creating a task in Ada, at least on
Linux, ends up creating a pthread

With the current GNAT compiler, yes.
But not necessarily with all Ada
compilers, even on Linux.

> coroutines are managed by the go
runtime (I believe in user space) and
have much less overhead to create or
manage

Some Ada compilers may have run-times
that implement Ada tasks within the run-
time, with minimal or no kernel/OS
interaction.

> Ada 202x supports the "parallel" block
[...]-- would that end up being a
coroutine or is it meant for something
else?

As I understand it, the parallel execution
constructs (parallel blocks and parallel
loops) in Ada 2022 are meant to
parallelize computations using multiple
cores -- that is, real parallelism, not just
concurrency.

The Ada2022 RM describes each parallel
computation in such a parallel construct
as its own thread of control, but all
operating within the same task, and all
meant to be /independent/ of each other.
For example, a computation on a vector
that divides the vector into non-
overlapping chunks and allocates one core
to each chunk.

Within a parallel construct (in any of the
parallel threads) it is a bounded error to
invoke an operation that is potentially
blocking. So the independent
computations are not expected to suspend
themselves, thus they are not co-routines.

The parallelism in parallel blocks and
parallel loops is a "fork-join" parallelism.
In other words, when the block or loop is
entered all the parallel threads are created,
and all those threads are destroyed when
the block or loop is exited.

So they are independent threads running
"in" the same task, as Dmitry wants, but
they are not scheduled by that task in any
sense. The task "splits" into these separate
threads, and only these, until the end of
the parallel construct.

Moreover, there are rules and checks on
data-flow between the independent
computations, meant to exclude data
races. So it is not intended that the
parallel computations (within the same
parallel construct) should form pipes or
have other inter-computation data flows.

Ada Array Contiguity

From: Rod Kay <rodakay5@gmail.com>
Subject: Ada array contiguity.
Date: Mon, 20 Feb 2023 00:34:55 +1100
Newsgroups: comp.lang.ada

I've been told that Ada array elements are
not guaranteed to be contiguous unless the
'Convention C' aspect is applied.

Is this correct?

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 19 Feb 2023 15:28:23 +0100

The strength of Ada is that it protects you
from all implementation details, thus
allowing compilers to choose the most
efficient implementation. Therefore, the
answer is yes.

(BTW: try to find a definition of
"contiguous". At byte level? At word

Ada Pract ice 21

Ada User Journal Volume 44, Number 1, March 2023

level? What if the element does not fill a
byte?)

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 19 Feb 2023 16:59:42 +0200

> Therefore, the answer is yes.

I tried to find a rule on "contiguity" in the
Ada 2022 RM, but failed. Can you point
to one? Perhaps this rule is a consequence
of C standard rules for arrays (pointer
arithmetic), and the general idea that Ada
should allow Convention C for a type
only if that type is really compatible with
the C compiler (in question).

For a constrained array type I would
choose to specify the size of the
component type, and the size of the array
type to be the length of the array times the
component size. That should (also) ensure
that the elements are stored contiguously
(if the Ada compiler accepts this size
specification).

It seems (RM B.3(62.4/3)) that Ada
compilers are not required to support
Convention C for unconstrained array
types. RM B.3 (Interfacing with C/C++)
declares such types with the Pack aspect,
but that may or may not (AIUI) give a
contiguous representation.

> (BTW: try to find a definition of
"contiguous". At byte level? At word
level? What if the element does not fill
a byte?)

Indeed. But it seems to me that Arr'Size =
Arr'Length * Comp'Size is the meaning
usually intended for programming
purposes.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 19 Feb 2023 16:08:09 +0100

> it seems to me that Arr'Size =
Arr'Length * Comp'Size is the meaning
usually intended for programming
purposes.

Rather: the bit offset of an element is a
linear function of its position.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 19 Feb 2023 18:10:44 +0100

> it seems to me that Arr'Size =
Arr'Length * Comp'Size is the meaning
usually intended for programming
purposes.

Certainly not if Comp'Size is not an
integer number of bytes.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 19 Feb 2023 19:54:13 +0200

> Certainly not if Comp'Size is not an
integer number of bytes.

I'm not so certain. By choosing various
roundings-up of the component size, you
can choose between "bit-contiguous",
"byte-contiguous", etc.

For example, bit-contiguous with 2-bit
components:

 type Comp is (A, B, C, D) with Size => 2;

 type Arr is array (1 .. 10) of Comp

 with Pack, Size => 10 * Comp'Size;

Nybble-contiguous with Comp'Size => 4,
byte- (octet-) contiguous with Comp'Size
=> 8, etc.

(However, I haven't checked that eg.
GNAT does the "right thing" with such
Size clauses, just that it accepts them. It
does require the Pack aspect for the array
type when Comp'Size is not a multiple of
8.)

> Rather: the bit offset of an element is a
linear function of its position.

That is ordering by index, but not
contiguity: there may still be gaps
between elements. However, I assume
you meant that the slope of the linear
function equals the component size, and
then it includes contiguity.

The relationship of index order to
memory-location order is certainly an
aspect that should be considered when
interfacing to C or HW.

Pet peeve: on more than one occasion I
have been disappointed that Ada
representation clauses do not let me
specify the index-order of packed array
elements in a word, relative to the bit-
numbering order, and I have had to fall
back to using several scalar-type record
components, c1 .. c7 say, instead of one
array-type component, c(1..7).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 19 Feb 2023 20:05:28 +0100

> That is ordering by index, but not
contiguity: there may still be gaps
between elements. [...]

No gaps = packed = the most dense
representation.

Contiguity is rather that the gaps are
regular and can be considered a part of
each element. E.g. a video buffer with
strides is not contiguous.

> The relationship of index order to
memory-location order is certainly an
aspect that should be considered when
interfacing to C or HW.

An definition of contiguous array
equivalent to linearity is that the array
body representation is isomorphic to
slicing.

> Pet peeve [...]

This is as blasphemous as asking for n-D
slices... (:-))

From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Sun, 19 Feb 2023 23:02:36 +0100

> I've been told that Ada array elements
are not guaranteed to be contiguous
unless the 'Convention C' aspect is
applied.

The ARM says little about how the
compiler represents objects in the absence
of representation clauses. However, ARM
13.7(12) (http://www.ada-auth.org/
standards/aarm12_w_tc1/html/
AA-13-7-1.html#I5653) says,
"Storage_Array represents a contiguous
sequence of storage elements."

ARM 13.9(17/3)
(http://www.ada-auth.org/standards/
aarm12_w_tc1/html/
AA-13-9.html#I5679) says that a
compiler that supports
Unchecked_Conversion should use a
contiguous representation for certain
constrained array subtypes.

Using convention Fortran should also
ensure a contiguous representation, add
can apply (unlike convention C) to
multidimensional arrays.

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 20 Feb 2023 08:12:41 +0100

> type Comp is (A, B, C, D) with Size
=> 2;

> type Arr is array (1 .. 10) of Comp

> with Pack, Size => 10 * Comp'Size;

> Nybble-contiguous with Comp'Size =>
4, byte- (octet-) contiguous with
Comp'Size => 8, etc.

Of course, if you add representation
clauses, the compiler will obey them. But
the OP's question was whether it was
/guaranteed/ to have contiguous
representation, and the answer is no - for
good reasons.

From: Rod Kay <rodakay5@gmail.com>
Date: Thu, 2 Mar 2023 00:22:25 +1100

Thank you all for the replies.

To summarise then, contiguity is not
guaranteed unless the array is of
convention C, convention Fortran or
representation clauses are applied.

Ada.Containers.Vectors
Capacity

From: Rod Kay <rodakay5@gmail.com>
Subject: Is this a compiler bug?
Date: Sun, 19 Mar 2023 17:17:20 +1100
Newsgroups: comp.lang.ada

Came across this during a port of the
Box2D physics engine.

It's a generic Stack package using
'ada.Containers.Vectors' to implement the
stack.

One generic parameter is the
'initial_Capacity' of the stack, used in the
'to_Stack' construction function, via the
Vectors 'reserve_Capacity' procedure.

22 Ada Pract ice

Volume 44, Number 1, March 2023 Ada User Journal

 In the 'to_Stack' function, the Capacity is
reserved correctly but in the test program
when the stack is created and assigned to
a variable, the capacity is 0.

Here is the (very small) source code ...

https://gist.github.com/charlie5/
7b4d863227a510f834c2bfd781dd50ba

The output I get with GCC 12.2.0 is ...

[rod@orth bug]$./stack_bug

to_Stack ~ Initial Capacity: 256

to_Stack ~ Before reserve: 0

to_Stack ~ After reserve: 256

stack_Bug ~ Actual Capacity: 0

Regards.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 19 Mar 2023 11:33:50 +0100

I think this is acceptable behavior. See
ARM A.18.2 (147.19/3, 147.20/3, &
147.b/3) (http://www.ada-auth.org/
standards/aarm12_w_tc1/html/
AA-A-18-2.html). The first two sections
define the behavior of procedure Assign,
while the last states "Assign(A, B) and A
:= B behave identically".

Assign (A, B) only changes the capacity
of A if A.Capacity < B.Length.

So if the compiler does not use build-in-
place for the initialization of the variable,
then the assignment of the function result
should not change the capacity of the
variable from its (apparent) default of
zero (there is, of course, no requirement
for the capacity of a default-initialized
vector).

The discussion of capacities for vectors is
only meaningful for a subset of possible
implementations, so messing with
capacities may have no meaningful effect
at all.

For an unbounded stack based on a linked
list (with no concept of capacity) you
could use
PragmARC.Data_Structures.Stacks.
Unbounded.Unprotected
(https://github.com/jrcarter/PragmARC/
blob/Ada-12/pragmarc-data_structures-
stacks-unbounded-unprotected.ads).

From: Rod Kay <rodakay5@gmail.com>
Date: Mon, 20 Mar 2023 13:24:40 +1100

Thank you, Jeffrey, for the detailed reply.

 I'm now using a limited record with an
extended return for 'build-in-place'
initialisation and am getting the behavior I
desired.

Why Don't All Initialising
Assignments Use 'build-in-
place'?

From: Rod Kay <rodakay5@gmail.com>

Subject: Why don't all initialising
assignments use 'build-in-place' ?

Date: Tue, 21 Mar 2023 23:06:03 +1100
Newsgroups: comp.lang.ada

I'm sure there must be a good reason. All I
can think of is that it may somehow break
backwards compatibility wrt controlled
types (a vague stab in the dark).

Any thoughts?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 25 Mar 2023 03:39:14 -0500

(1) Didn't want to make work for
implementers.

(2) You shouldn't be able to tell (since it
is required for all cases involved
finalization). Finalization is the only
way to inject user-defined code into the
initialization process.

(3) True build-in-place can be expensive
and complex (especially for array
types).

(4) Build-in-place requires functions
compiled to support it (must pass in the
place to initialize into). That might not
be the case (especially if a foreign
convention is involved). Also see (3) -
an implementation might have a
cheaper way to return some types that
doesn't support build-in-place.

There's probably more, those are off the
top of my head. If it is cheap, it would be
silly for an implementation to do anything
else. (Don't ask what Janus/Ada does. ;-)
Otherwise, most people want the fastest
possible code.

From: Rod Kay <rodakay5@gmail.com>
Date: Sun, 26 Mar 2023 16:10:33 +1100

Thanks, Randy. I somehow imagined that
build-in-place would be faster :/.

So using 'extended return' *everywhere*
would decrease performance, I guess.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 26 Mar 2023 12:41:00 +0200

> So using 'extended return'
everywhere would decrease
performance, I guess.

You seem to think that using an extended
return requires building in place. This is
not required by the ARM.

"Built in place" is defined in ARM 7.6
(17.1/3-17.p/3) (http://www.ada-auth.org/
standards/aarm12_w_tc1/html/
AA-7-6.html#I4005). An initial value is
required to be built in place when

1. The object (or any part of the object)
being initialized is immutably limited

2. The object (or any part of the object)
being initialized is controlled and the
initialization expression is an aggregate

In all other cases, it is up to the compiler
to decide whether or not to build in place.

This holds regardless of the the kind of
return statement used if the initialization
expression is a function call.

Thus the initialization of an immutably
limited object is done in place even if the
initialization expression is

* an aggregate

* a function call with a simple return
statement

while the initialization of an integer object
may be by copy even if the initialization
expression is a function call with an
extended return statement.

From: Rod Kay <rodakay5@gmail.com>
Date: Mon, 27 Mar 2023 15:44:33 +1100

> You seem to think that using an
extended return requires building in
place. This is not required by the ARM.

Yes, I did rather think that. Appreciate the
correction.

Assignment Access Type
with Discriminants

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: Assignment access type with
discriminants

Date: Wed, 22 Mar 2023 10:19:28 +0100
Newsgroups: comp.lang.ada

I stumbled on a curious fact.

The value of an object with a discriminant
can be changed to a value with a different
discriminant if the type's discriminants are
defaulted.

Right?

Wrong! Not through an access type!

procedure Test is

 type F is (F1, F2, F3);

 type Foo (K : F := F1) is record

 case K is

 when F1 =>

 X1 : Integer;

 when F2 =>

 X2 : Float;

 when F3 =>

 X3 : String (1..2);

 end case;

 end record;

 type Foo_Ptr is access all Foo;

 X : aliased Foo;

 P : Foo_Ptr := X'Access;

begin

 X := (F2, 1.0); -- OK

 P.all := (F1, 3); -- Error!

end Test;

Is this a compiler bug or intentional
language design? Any language lawyers?

From: Björn Lundin <bnl@nowhere.com>
Date: Wed, 22 Mar 2023 10:31:58 +0100

> I stumbled on a curious fact. [...] Is this
a compiler bug or intentional language
design? Any language lawyers?

Ada Pract ice 23

Ada User Journal Volume 44, Number 1, March 2023

I get

Execution of ./test terminated by
unhandled exception

raised CONSTRAINT_ERROR :
test.adb:18 discriminant check failed

Call stack traceback locations:

0x402c33 0x402b27 0x7f335b5cfd8e
0x7f335b5cfe3e 0x402b63
0xfffffffffffffffe

bnl@hp-t510:/usr2$ gnatls -v

GNATLS Pro 22.2 (20220605-103)

Linux 64bit - ubuntu 22.04

So it is (also) present on that platform at
least

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Wed, 22 Mar 2023 15:10:44 +0100

Some experiments point at the general
access type.

 type Foo_Ptr is access Foo; -- sans `all`

 X : Foo;

 P : Foo_Ptr := new Foo;

 type Foo1 is new Foo_Ptr (K => F1);

begin

 X := (F2, 1.0); -- OK

 P.all := (F1, 3); -- _no_ Error!

 Foo1 (P).all := (F1, 3);

end Test;

(Doesn't rejection for general access types
seem reasonable if assignment would
otherwise require adjusting the storage
layout of a variable, including all access
paths to components? Just guessing.)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 23 Mar 2023 12:51:03 +0100

> Some experiments point at the general
access type.

You get no error because you do not
change the discriminant. Change your
code to:

 P.all := (F2, 1.0); -- Error!

> (Doesn't rejection for general access
types seem reasonable if assignment
would otherwise require adjusting the
storage layout of a variable, including
all access paths to components?

I guess that an implementation must
allocate memory for any value unless you
constraint the discriminants in a subtype.
But I am not a language lawyer to judge.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Thu, 23 Mar 2023 09:53:23 -0700

I do hope, this answers the question:

3.10(14/3) … The first subtype of a type
defined by … an
access_to_object_definition is

unconstrained if the designated subtype is
an ... discriminated subtype; otherwise, it
is constrained.

4.8(6/3) If the designated type is
composite, then … the created object is
constrained by its initial value (even if the
designated subtype is unconstrained with
defaults).

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 23 Mar 2023 20:09:21 +0200

> I do hope, this answers the question:

>

> 3.10(14/3) … The first subtype of a
type defined by … an
access_to_object_definition is
unconstrained if the designated subtype
is an ... discriminated subtype;
otherwise, it is constrained.

What do you infer from this, relating to
Dmitry's original example code and the
error? The "first subtype .. defined" here
is the access subtype, and I don't see how
that affects an assignment /via/ this access
subtype to the accessed object.

(It is not clear to me how an access
subtype that is constrained differs from
one that is unconstrained. Can someone
clarify?)

> 4.8(6/3) If the designated type is
composite, then … the created object is
constrained by its initial value (even if
the designated subtype is unconstrained
with defaults).

That rule applies to objects created by
allocators, but the original example code
has no allocators (some later variants do).
The object in question is created by a
declaration (which includes the "aliased"
keyword), not by an allocator.

Also, AARM 3.10 contains the following
notes on "Wording Changes from Ada
1995":

26.d/2 {AI95-00363-01} Most
unconstrained aliased objects with
defaulted discriminants are no longer
constrained by their initial values. [...]

26.k/2 {AI95-00363-01} The rules about
aliased objects being constrained

by their initial values now apply only to
allocated objects, and thus have been
moved to 4.8, “Allocators”.

This seems to mean that aliased objects
created by declarations are /not/
constrained by the initial value, so it
should be possible to change the
discriminant. This seems to be a change
from Ada 95 to Ada 2005. I don't see why
that change could not be done via an
access to the object.

I added some output to Dmitry's original
code, with this result:

 X'Constrained = FALSE

 P'Constrained = TRUE

 P.all'Constrained = TRUE

The first two values of 'Constrained (for
X and P) are as expected by the RM rules,
and the third value (for P.all) is consistent
with the error, and seems valid for Ada
95, but the wording change quoted above
suggests that it is wrong for Ada 2005 and
later. This leads me to suspect that GNAT
has not been fully updated for this RM
change, so it would be a GNAT bug. Still,
the addition of

 subtype Foo2_Ptr is Foo_Ptr (K => F2);

to Dmitry's original example provokes
this error message:

 fuf.adb:16:24: access subtype of
 general access type not allowed

 fuf.adb:16:24: discriminants have
 defaults

which suggests that at least this part of
AI95-00363 has been implemented, as
noted in AARM 3.10:

14.b/2 Reason: {AI95-00363-01} [...]
Constraints are not allowed on general
access-to-unconstrained discriminated
types if the type has defaults for its
discriminants [...]

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 23 Mar 2023 18:04:36 +0100

> I stumbled on a curious fact.

An access value is always constrained by
its initial value; this is necessary because
of constrained access subtypes. Here is a
slightly modified version of your
example:

procedure Test is

 type F is (F1, F2, F3);

 type Foo (K : F := F1) is record

 case K is

 when F1 =>

 X1 : Integer;

 when F2 =>

 X2 : Float;

 when F3 =>

 X3 : String (1..2);

 end case;

 end record;

 type Foo_Ptr is access all Foo;

 type Foo_Ptr2 is access Foo;

 X : aliased Foo;

 P : Foo_Ptr := X'Access;

 PF2: Foo_PTR2 (F2);

begin

 X := (F2, 1.0); -- OK

 PF2 := new Foo (F2);

 P := PF2.all'Access;

 P.all := (F1, 3); -- Error!

end Test;

Without this rule, PF2.all would now
designate a value whose discriminant is
F1!

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 23 Mar 2023 20:55:48 +0200

24 Ada in Jest

Volume 44, Number 1, March 2023 Ada User Journal

> An access value is always constrained
by its initial value; this is necessary
because of constrained access subtypes.

But constrained access subtypes are not
allowed for general access types like
Foo_Ptr in the example.

> Here is a slightly modified version of
your example:

> [...]

> Without this rule, PF2.all would now
designate a value whose discriminant is
F1!

This error is understandable and valid,
because now P.all is PF2.all which is an
allocated object and therefore constrained
by its initial value with K = F2.

But why should the same apply when P
designates X, which is unconstrained? Is
it just an optimization (in the RM) so that
a general access value does not have to
carry around a flag showing whether its
designated object is constrained or
unconstrained?

Perhaps it would be better to make the
assignment P := PF2.all'Access illegal,
because it in effect converts a constrained
access value (PF2) to an unconstrained
access subtype (P), and so in some sense
violates the prohibition of constrained
subtypes of general access types.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 23 Mar 2023 20:53:02 +0100

> Perhaps it would be better to make the
assignment P := PF2.all'Access illegal
[...]

Yes this is a substitutability violation.
Such cases never go without a
punishment. In this case it is an
implementation overhead.

Consider:

 procedure Set (Destination : in out Foo;

 Source : Foo) is

 begin

 Destination := Source;

 end Set;

The compiler cannot implement Set in a
natural way, because Destination might be
arbitrarily constrained by the caller. E.g.
when the actual for Destination is P.all.
So, the constraint must be passed together
with the actual. Quite a burden.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 24 Mar 2023 10:41:20 +0100

> But why should the same apply when P
designates X, which isunconstrained?
[...]

I didn't dig in the RM in all details, but I
think this comes from the fact that being
constrained (always) is a property of the
pointer (more precisely, its subtype), not
of the pointed-at object.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 25 Mar 2023 03:51:07 -0500

The rule is question is 4.1(9/3):

If the type of the name in a dereference is
some access-to-object type T, then the
dereference denotes a view of an object,
the nominal subtype of the view being the
designated subtype of T. If the designated
subtype has unconstrained discriminants,

the (actual) subtype of the view is
constrained by the values of the
discriminants of the designated object,
except when there is a partial view of the
type of the designated subtype that does
not have discriminants, in which case the
dereference is not constrained by its
discriminant values.

We have to do that so as otherwise the
access value would have to carry a
designation as to whether the object was
allocated or not.

This rule was inherited from Ada 83.

IMHO, this rule is stupid. It's even more
stupid with the hole for types that have
partial views without discriminants. The
proper solution is to get rid of the rarely
used and mostly useless access
constraints, and then have no extra
restrictions on access values. But that's
considered too incompatible.

Ada in Jest

Ada Lovelace Cosplay

From: Mockturtle
<framefritti@gmail.com>

Subject: Ada Lovelace cosplay
Date: Mon, 16 Jan 2023 09:48:58 -0800
Newsgroups: comp.lang.ada

Well, yes, someone cosplayed Ada...

https://blog.adafruit.com/2013/10/24/
from-scratch-ada-lovelace-costume/

 25

Ada User Journal Volume 44, Number 1, March 2023

Conference Calendar
Dirk Craeynest

KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. In general the situation seems to improve

further, and only a few events are still planned to be held "virtually" or in "hybrid" mode. Where available, the status of events

is indicated with the following markers: "(v)" = event is held online, (h)" = event is held in a hybrid form (i.e. partially online).

2023

April 05 Eelco Visser Commemorative Symposium, Delft, the Netherlands. Topics include: language

engineering, program transformation, language workbenches, declarative language specification, name

binding and scope graphs, type soundness and intrinsically-typed interpreters, language specification

testing, language implementation generation, domain-specific programming languages, DSLs for

software deployment, DSLs for web application development, tool-supported programming education.

April 16-20 16th IEEE International Conference on Software Testing, Verification and Validation

(ICST'2023), Dublin, Ireland. Topics include: manual testing practices and techniques, security testing,

model-based testing, test automation, static analysis and symbolic execution, formal verification and

model checking, software reliability, testability and design, testing and development processes, testing

in specific domains (such as embedded, concurrent, distributed, ..., and real-time systems), testing for

cyber-physical systems, testing/debugging tools, empirical studies, experience reports, etc.

April 17-20 28th International Working Conference on Requirements Engineering: Foundation for Software

Quality (REFSQ'2023), Barcelona, Catalunya, Spain. Theme: "Human Values in RE".

April 22-27 26th European Joint Conferences on Theory and Practice of Software (ETAPS'2023), Paris,

France. Events include: ESOP (European Symposium on Programming), FASE (Fundamental

Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation

Structures), TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline

for registration: April 7, 2023 (VerifyThis competition grant), April 14, 2023 (VerifyThis competition).

 ☺ April 22 14th Workshop on Programming Language Approaches to Concurrency- and

communication-cEntric Software (PLACES'2023). Topics include: general area of

programming language approaches to concurrency, communication and distribution,

ranging from foundational issues, through language implementations, to applications

and case studies; design and implementation of programming languages with first

class concurrency and communication primitives; models for concurrent and

distributed systems; concurrent data types, objects and actors; verification and

program analysis methods for safe and secure concurrent and distributed software;

etc.

 April 22 2nd International Workshop on Trusted Automated Decision-Making

(TADM'2023). Topics include: approaches for assuring security and safety of

software created by LLMs, approaches for synthesis of interpretable or explainable

models from specifications, metrics to assess trustworthiness and safety in emergent

AI based systems, etc.

 April 26-27 29th International Symposium on Model Checking of Software (SPIN'2023).

Topics include: automated tool-based techniques to analyze and model software for

the purpose of verification and validation.

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html

26 Conference Calendar

Volume 44, Number 1, March 2023 Ada User Journal

April 24-28

(h)

9th International Conference on Advances and Trends in Software Engineering

(SOFTENG'2023), Venice, Italy. Topics include: software designing and production; software reuse;

software sustainability; software testing and validation; maintenance and life-cycle management;

software reliability, robustness, safety; software security; challenges for dedicated software, platforms,

and tools; etc.

April 24-28 26th Ibero-American Conference on Software Engineering (CIbSE'2023), Montevideo, Uruguay.

Topics include: formal methods applied to software engineering (SE), mining software repositories

and software analytics, model-driven SE, software architecture, software dependability, software

ecosystems and systems-of-systems, SE education and training, SE for emerging application domains

(e.g., cyber-physical systems, IoT, ...), SE in the industry, software maintenance and evolution,

software processes, software product lines, software quality and quality models, software reuse,

software testing, technical debt management, etc.

May 08-10 23rd Annual High Confidence Software and Systems Conference (HCSS'2023), Annapolis,

Maryland, USA. Topics include: development of scientific foundations for assured engineering of

software-intensive complex computing systems and transition of science into practice; approaches that

integrate previous work on verified infrastructure, programming language technology, and platform

elements to help form a vision for end-to-end, formally-supported, model-based development.

May 09-12 16th Cyber-Physical Systems and Internet of Things Week (CPS-IoT Week'2023), San Antonio,

Texas, USA. Event includes: 5 top conferences, HSCC, ICCPS, IoTDI, IPSN, and RTAS, multiple

workshops, tutorials, and competitions.

 May 09 Workshop on Time-Centric Reactive Software (TCRS'2023). Topics include:

automotive systems, compiler construction, cyber-physical systems, distributed

systems, embedded systems, formal verification, programming languages, model-

based design, modeling languages, middleware, real-time systems, etc.

 ☺ May 09-12 29th IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS'2023). Topics include: systems research related to embedded systems and

time-sensitive systems; original systems, applications, case studies, methodologies,

and algorithms that contribute to the state of practice in design, implementation,

verification, and validation of embedded systems or time-sensitive systems. Deadline

for early registration: April 7, 2023.

May 14-20 45th International Conference on Software Engineering (ICSE'2023), Melbourne, Victoria,

Australia. Topics include: the full spectrum of Software Engineering. Deadline for submissions: April

14, 2023 (childcare support applications).

 May 14-15 11th International Conference on Formal Methods in Software Engineering

(FormaliSE'2023). Topics include: approaches, methods and tools for verification

and validation; formal approaches to safety and security related issues; scalability of

formal method applications; integration of formal methods within the software

development lifecycle; model-based engineering approaches; correctness-by-

construction approaches for software and systems engineering; application of formal

methods to specific domains, e.g., autonomous, cyber-physical, intelligent, and IoT

systems; formal methods in a certification context; case studies developed/analyzed

with formal approaches; experience reports on the application of formal methods to

real-world problems; guidelines to use formal methods in practice; usability of formal

methods; etc.

 May 14-15 6th International Conference on Technical Debt (TechDebt'2023).

May 16-18 15th NASA Formal Methods Symposium (NFM'2023), Houston, Texas, USA. Topics include:

challenges and solutions for achieving assurance for critical systems, such as formal verification,

including theorem proving, model checking, and static analysis, advances in automated theorem

proving including SAT and SMT solving, use of formal methods in software and system testing,

techniques and algorithms for scaling formal methods (abstraction and symbolic methods,

compositional techniques, parallel and/or distributed techniques, ...), etc.

May 23-25 15th Software Quality Days (SWQD'2023), Munich, Germany. Topics include: all topics about

software and systems quality, such as improvement of software development methods and processes,

Conference Calendar 27

Ada User Journal Volume 44, Number 1, March 2023

testing and quality assurance of software and software-intensive systems, project and risk management,

domain specific quality issues such as embedded, medical, automotive systems, novel trends in

software quality, etc.

☺ May 23-25 26th IEEE International Symposium On Real-Time Distributed Computing (ISORC'2023),

Nashville, Tennessee, USA. Topics include: all aspects of object real-time distributed computing

(ORC) technology, such as Internet of Things (IoT), real-time scheduling theory, resilient cyber-

physical systems, autonomous systems (e.g., autonomous driving), optimization of time-sensitive

applications, real-time applications (for example, medical devices, intelligent transportation systems,

industrial automation systems and industry 4.0, ...), etc.

May 23-25 21st IEEE/ACIS International Conference on Software Engineering Research, Management and

Applications (SERA'2023), Orlando, Florida, USA. Topics include: software testing and analysis;

empirical software engineering; software requirements, modeling and design; software security and

privacy; parallel and distributed computing; software evolution and understanding; software

engineering education; embedded, automotive, cyber-physical systems; Internet of Things (IoT); etc.

May 29 ICRA2023 - Workshop on Robot Software Architectures (RSA'2023), London, UK. Topics include:

tools and approaches for automatic validation and verification of robot software architectures,

language- and model-based approaches for designing robot software architectures, etc.

☺ June 07-08 31st International Conference on Real-Time Networks and Systems (RTNS'2023), Dortmund,

Germany. Topics include: real-time applications design and evaluation (automotive, avionics, space,

railways, telecommunications, process control, ...), real-time aspects of emerging smart systems

(cyber-physical systems and emerging applications, ...), real-time system design and analysis (real-

time tasks modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time

(WCET) analysis, security, ...), software technologies for real-time systems (model-driven engineering,

programming languages, compilers, WCET-aware compilation and parallelization strategies,

middleware, Real-time Operating Systems (RTOS), ...), formal specification and verification, real-time

distributed systems, etc. Deadline for early registration: May 2, 2023.

 June 13-16 27th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2023), Lisbon, Portugal. Sponsored by Ada-Europe. In
cooperation with ACM SIGAda, SIGBED & SIGPLAN (pending), and the Ada Resource
Association (ARA).

 ☺ June 16 8th Workshop on Challenges and New Approaches for Dependable and Cyber-

Physical System Engineering (De-CPS'2023). Topics include: artificial intelligence

for CPS; model-based system engineering for CPS; transport and mobility, vehicle

of the future; Industry 4.0 / 5.0; IoT, edge and cloud continuum; digital twins; safety

and (cyber)security; human/machine interaction; real-time computing; time-sensitive

networking (TSN), 5G/6G networks. Deadline for submissions: April 30, 2023

(papers).

 June 16 2nd ADEPT workshop, AADL by its practitioners (ADEPT'2023). Topics

include: current projects in the field of design, implementation and verification of

critical systems where AADL is a first citizen technology. Deadline for submissions:

April 30, 2023 (abstracts).

☺ June 18

(v)

24th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, Tools and

Theory of Embedded Systems (LCTES'2023), Orlando, Florida. Co-located with PLDI'2023. Topics

include: programming language challenges (features to exploit multicore architectures; features for

distributed and real-time control embedded systems; capabilities for specification, composition, and

construction of embedded systems; language features and techniques to enhance reliability,

verifiability, and security; ...), compiler challenges (support for enhanced programmer productivity;

support for enhanced debugging, profiling, and exception/interrupt handling; optimization for low

power/energy, code/data size, and real-time performance; ...), tools for analysis, specification, design,

and implementation (hardware, system software, application software, and their interfaces; distributed

real-time control, media players, and reconfigurable architectures; system integration and testing; run-

time system support for embedded systems; support for system security and system-level reliability;

...), theory and foundations of embedded systems (validation and verification, in particular of

concurrent and distributed systems; formal foundations of model-based design as the basis for code

28 Conference Calendar

Volume 44, Number 1, March 2023 Ada User Journal

generation, analysis, and verification; ...), novel embedded architectures (architecture support for new

language features, virtualization, compiler techniques, debugging tools; ...), etc. Deadline for

submissions: May 1, 2023 (artifacts).

June 27 DSN2023 - 1st International Workshop on Verification & Validation of Dependable Cyber-

Physical Systems (VERDI'2023), Porto, Portugal. Topics include: all aspects related to the

dependability evaluation of safety-critical CPS using techniques such as fault/attack-injection, runtime

verification, formal verification, semi-formal analysis, simulation, and testing.

July 02-06 23rd International Conference on embedded computer Systems: Architectures, MOdeling and

Simulation (SAMOS'2023), Samos Island, Greece. Topics include: advances in systems efficiency in

various domains; novel architectures and computing methodologies and solutions for accelerating

applications in various embedded domains, such as next generation automotive and avionics, next

generation (machine) learning systems for surveillance and recognition, ...; software tools, compilation

techniques and optimizations, and code generation for reconfigurable architectures; embedded parallel

systems and MultiProcessor Systems-on-Chip; application-level resource management of multi-core

architectures; all design processes for embedded systems ranging from design languages, modeling

and simulation, performance, reliability, ...; specification languages and models; system-level design,

simulation, and verification; MP-SoC programming, compilers, simulation and mapping technologies;

profiling, measurement and analysis techniques; (design for) system adaptivity; testing and debugging;

etc.

July 11-14 35th Euromicro Conference on Real-Time Systems (ECRTS'2023), Vienna, Austria. Deadline for

submissions: May 18, 2023 (Industrial Challenge full solutions), June 26, 2023 (Industrial Challenge

early stage proposals).

July 17-21 Software Technologies: Applications and Foundations (STAF'2023), Leicester, UK. Topics

include: practical and foundational advances in software technology. Deadline for submissions: May

21, 2023 (workshop papers).

 July 18-19 17th International Conference on Tests And Proofs (TAP'2023). Topics include:

many aspects of verification technology, including foundational work, tool

development, and empirical research; the connection between proofs (and other static

techniques) and testing (and other dynamic techniques); verification and analysis

techniques combining proofs and tests; program proving with the aid of testing

techniques; formal techniques supporting the automated generation of test vectors

and oracles, and supporting novel definitions of coverage criteria; specification

inference by deductive and dynamic methods; testing and runtime analysis of formal

specifications; verification of verification tools and environments; applications of test

and proof techniques in new domains; combined approaches of test and proof in the

context of formal certifications; case studies, tool and framework descriptions, and

experience reports about combining tests and proofs; etc.

☺ July 17-21 37th European Conference on Object-Oriented Programming (ECOOP'2023), Seattle, USA.

Topics include: all practical and theoretical investigations of programming languages, systems and

environments; innovative solutions to real problems as well as evaluations of existing solutions.

Deadline for submissions: April 15, 2023 (Student Research Competition).

July 18-21 19th European Conference on Modelling Foundations and Applications (ECMFA'2023),

Leicester, UK. Co-located with STAF'2023. Topics include: all aspects of model-based engineering

(MBE); foundations of MBE, including model transformations, domain-specific languages,

verification and validation approaches, ...; application of MBE methods, tools, and techniques to

specific domains, e.g., automotive, aerospace, cyber-physical systems, robotics, Artificial Intelligence

or IoT; educational aspects of MBE; tools and initiatives for the successful adoption of MBE in

industry; etc.

☺ Aug 28 – Sep 01 29th International European Conference on Parallel and Distributed Computing (Euro-Par'2023),

Limassol, Cyprus. Topics include: all aspects of parallel and distributed processing, ranging from

theory to practice, from small to the largest parallel and distributed systems and infrastructures, from

fundamental computational problems to applications, from architecture, compiler, language and

interface design and implementation, to tools, support infrastructures, and application performance

aspects. Deadline for submissions: May 20, 2023 (posters, demos, PhD symposium).

Conference Calendar 29

Ada User Journal Volume 44, Number 1, March 2023

September 06-08 49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2023),

Durres, Albania. Topics include: information technology for software-intensive systems; tracks on

Cyber-Physical Systems (CPS), Emerging Computing Technologies (ECT), Model-Driven

Engineering and Modeling Languages (MDEML), Software Engineering and Debt Metaphors

(SEaDeM), Software Process and Product Improvement (SPPI), etc. Deadline for submissions: April

3, 2023 (papers).

September 11-13 16th International Conference on the Quality of Information and Communications Technology

(QUATIC'2023), Aveiro, Portugal. Topics include: all quality aspects in ICT systems engineering and

management. Deadline for registration: April 17, 2023 (full papers), May 29, 2023 (short papers,

Journal First).

September 17-22 Embedded Systems Week 2023 (ESWEEK'2023), Hamburg, Germany. Includes CASES'2023

(International Conference on Compilers, Architectures, and Synthesis for Embedded Systems),

CODES+ISSS'2023 (International Conference on Hardware/Software Codesign and System

Synthesis), EMSOFT'2023 (International Conference on Embedded Software). Deadline for

submissions: May 22, 2023 (Work-in-Progress track papers, Late-Breaking and Work-in-Progress

papers).

 ☺ Sep 17-22 ACM SIGBED International Conference on Embedded Software

(EMSOFT'2023). Topics include: the science, engineering, and technology of

embedded software development; research in the design and analysis of software that

interacts with physical processes; results on cyber-physical systems, which integrate

computation, networking, and physical dynamics; embedded distributed, networked

systems (time-critical embedded systems, scheduling, resource allocation, and

execution time analysis; ...); embedded software design and analysis (safety/mixed-

critical embedded software, software design for cyber-physical systems, ...);

resilience (embedded software security, robust implementation of control systems);

process, methods (formal modeling and verification; testing, validation, and

certification; model- and component-based approaches); empirical studies and their

reproduction; application areas including automotive, avionics, energy, health care,

mobile devices, multimedia, machine learning, and autonomous systems; etc.

Deadline for submissions: May 22, 2023 (Work-in-Progress submissions).

 Sep 17-22 International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems (CASES'2023). Topics include: latest advances in design,

optimization, validation, and applications of embedded systems, Internet of Things

(IoT), and the emergent trend of integrating Artificial Intelligence into IoT (AIoT);

architecture, design, and compiler techniques for reliability, and aging; modeling,

analysis, and optimization for timing and predictability; validation, verification,

testing, and debugging of embedded software; etc. Deadline for submissions: May

22, 2023 (Work-in-Progress papers).

 Sep 17-22 International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS'2023). Topics include: system-level design,

hardware/software co-design, modeling, analysis, and implementation of modern

Embedded Systems, Cyber-Physical Systems, and Internet-of-Things, from system-

level specification and optimization to synthesis of system-on-chip

hardware/software implementations. Deadline for submissions: May 22, 2023

(Work-in-Progress papers).

September 18-23 34th International Conference on Concurrency Theory (CONCUR'2023), Antwerp, Belgium. Co-

located with FORMATS, FMICS and QEST as part of CONFEST 2023 Topics include: semantics,

logics, verification and analysis of concurrent systems; basic models of concurrency; verification and

analysis techniques for concurrent systems such as abstract interpretation, model checking, race

detection, run-time verification, static analysis, testing, theorem proving, type systems, security

analysis; distributed algorithms and data structures; theoretical foundations of architectures, execution

environments, and software development for concurrent systems such as multiprocessor and multi-core

architectures, compilers and tools for concurrent programming, programming models such as

component-based, object-oriented, ...; etc. Deadline for submissions: April 24, 2023 (abstracts), May

2, 2023 (papers).

30 Conference Calendar

Volume 44, Number 1, March 2023 Ada User Journal

September 19-21 21st International Conference on Formal Modeling and Analysis of Timed Systems

(FORMATS'2023), Antwerp, Belgium. Co-located with CONCUR, FMICS and QEST as part of

CONFEST 2023 Topics include: fundamental and practical aspects of timed systems; modelling,

design and analysis of timed computational systems; theoretical foundations of timed systems,

languages and models; techniques, algorithms, data structures, and software tools for analyzing timed

systems and resolving temporal constraints, such as scheduling, worst-case execution time analysis,

optimization, model checking, testing, constraint solving; adaptation and specialization of timing

technology in application domains in which timing plays an important role (real-time software,

scheduling in manufacturing and telecommunication, robotics, ...); etc. Deadline for submissions: April

21, 2023 (abstracts), April 28, 2023 (papers).

September 19-22 42nd International Conference on Computer Safety, Reliability and Security (SafeComp'2023),

Toulouse, France. Topics include: development, assessment, operation and maintenance of safety-

related and safety-critical computer systems; safety/security risk assessment; model-based analysis,

design, and assessment; formal methods for verification, validation, and fault tolerance; validation and

verification methodologies and tools; methods for qualification, assurance and certification;

compositional verification and certification; cyber-physical threats and vulnerability analysis; safety

guidelines, standards and certification; safety and security interactions and tradeoffs; etc. Domains of

application include: railways, automotive, space, avionics, nuclear and process industries; autonomous

systems, advanced robotics; telecommunication and networks; critical infrastructures; medical devices

and healthcare; defense, emergency & rescue; logistics, industrial automation, off-shore technology;

etc.

☺ September 20-22 28th International Conference on Formal Methods for Industrial Critical Systems (FMICS'2023),

Antwerp, Belgium. Co-located with CONCUR, FORMATS and QEST as part of CONFEST 2023

Topics include: case studies and experience reports on industrial applications of formal methods,

focusing on lessons learned or identification of new research directions; methods, techniques and tools

to support automated analysis, certification, debugging, descriptions, learning, optimisation and

transformation of complex, distributed, real-time, embedded, mobile and autonomous systems;

verification and validation methods that address shortcomings of existing methods with respect to their

industrial applicability (e.g., scalability and usability issues, tool qualification, and certification);

impact of adoption of formal methods on development process and associated costs; application of

formal methods in standardisation and industrial forums. Deadline for submissions: May 15, 2023

(papers).

September 20-22 22nd International Conference on Intelligent Software Methodologies, Tools and Techniques

(SOMET'2023), Naples, Italy. Topics include: new directions in software development methodologies

and related tools and techniques; software methodologies and tools for robust, reliable, non-fragile

software design; software development techniques for legacy systems; software evolution techniques;

agile software and lean methods; software optimization and formal methods for software design;

software maintenance; software security tools and techniques; formal techniques for software

representation, software testing and validation; object-oriented, aspect-oriented, component-based and

generic programming, multi-agent technology; model driven development (DVD), code centric to

model centric software engineering; etc. Deadline for submissions: April 1, 2023 (full papers).

October 03-06 23rd International Conference on Runtime Verification (RV'2023), Thessaloniki, Greece. Topics

include: monitoring and analysis of runtime behaviour of software and hardware systems; program

instrumentation; logging, recording, and replay; combination of static and dynamic analysis;

monitoring techniques for concurrent and distributed systems; fault localization, containment,

resilience, recovery and repair; etc. Deadline for submissions: May 15, 2023 (papers).

☺ October 10-12 International Conference on Reliability, Safety and Security of Railway Systems (RSSRail'2023),

Berlin, Germany. Topics include: safety in development processes and safety management; combined

approaches to safety and security; system and software safety analysis; formal modelling and

verification techniques; system reliability; validation according to the standards; tool and model

integration, tool chain; domain-specific languages and modelling frameworks; model reuse for

reliability, safety and security; etc. Deadline for submissions: April 28, 2023 (abstracts, tutorials), May

5, 2023 (full papers), July 14, 2023 (posters).

Conference Calendar 31

Ada User Journal Volume 44, Number 1, March 2023

☺ October 17 High Integrity Software Conference (HISC'2023), Bristol, UK. Topics include: advanced software

development for high-integrity and high-assurance systems, including programming languages, AI-

assisted software development, verifiable code generation; verification of novel, high-integrity and

high-assurance systems; assurance of high-integrity, high-assurance systems; infrastructure &

ecosystem for high-integrity software. Deadline for submissions: May 31, 2023.

October 18-20

(h)

16th International Conference on Verification and Evaluation of Computer and Communication

Systems (VECoS'2023), Marrakech, Morocco. Topics include: analysis of computer and

communication systems, where functional and extra-functional properties are inter-related; cross-

fertilization between various formal verification and evaluation approaches, methods and techniques,

especially those developed for concurrent and distributed hardware/software systems. Deadline for

submissions: May 15, 2023.

October 19-20

(v)

19th International Conference on Formal Aspects of Component Software (FACS'2023), Internet.

Topics include: applications of formal methods in all aspects of software components and services;

formal methods, models, and languages for software-intensive systems, components and services:

formal aspects of concrete software-intensive systems, including real-time/safety-critical systems,

hybrid and cyber physical systems, components that use artificial intelligence, ...; tools supporting

formal methods for components and services; case studies and experience reports over the above topics;

special track on formal methods at large; etc. Deadline for submissions: July 3, 2023 (abstracts), July

10, 2023 (papers).

☺ October 21-25 32nd International Conference on Parallel Architectures and Compilation Techniques

(PACT'2023), Vienna, Austria. Topics include: parallel architectures; compilers and tools for parallel

computer systems; applications and experimental systems studies of parallel processing; computational

models for concurrent execution; support for correctness in hardware and software; reconfigurable

parallel computing; parallel programming languages, algorithms, and applications; middleware and

run time system support for parallel computing; etc. Deadline for submissions: April 1, 2023 (papers),

August 4, 2023 (artifacts).

October 22-24 30th Static Analysis Symposium (SAS'2023), Cascais (Lisbon), Portugal. Co-located with

SPLASH'2023 Topics include: static analysis as fundamental tool for program verification, bug

detection, compiler optimization, program understanding, and software maintenance. Deadline for

submissions: April 24, 2023 (full papers), April 29, 2023 (artifacts).

☺ October 22-27 ACM Conference on Systems, Programming, Languages, and Applications: Software for

Humanity (SPLASH'2023), Lisbon, Portugal. Topics include: all aspects of software construction and

delivery, at the intersection of programming, languages, and software engineering. Deadline for

submissions: April 7, 2023 (SLE), April 14, 2023 (OOPSLA), April 24, 2023 (SAS), April 28, 2023

(Onward! essays, Onward! papers), May 15, 2023 (PPDP abstract), May 19, 2023 (LOPSTR abstract),

May 22, 2023 (PPDP paper), May 26, 2023 (LOPSTR paper), June 19, 2023 (Doctoral Symposium),

June 26, 2023 (MPLR), June 28, 2023 (DLS), July 7, 2023 (GPCE), July 12, 2023 (workshop papers).

 Oct 22-27 16th ACM SIGPLAN International Conference on Software Language

Engineering (SLE'2023). Topics include: software language engineering rather than

engineering a specific software language; software language design and

implementation; software language validation (verification and formal methods for

languages, testing techniques for languages, simulation techniques for languages);

software language integration and composition; software language maintenance

(software language reuse, language evolution, language families and variability,

language and software product lines); domain-specific approaches for any aspects of

SLE (design, implementation, validation, maintenance); empirical evaluation and

experience reports of language engineering tools (user studies evaluating usability,

performance benchmarks, industrial applications); etc. Deadline for submissions:

April 7, 2023 (1st round papers), June 26, 2023 (2nd round abstracts), June 30, 2023

(2nd round papers), August 30, 2023 (artifacts).

 ☺ Oct 23-27 Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA'2023). Topics include: all practical and theoretical

investigations of programming languages, systems and environments, targeting any

stage of software development, including requirements, modeling, prototyping,

design, implementation, generation, analysis, verification, testing, evaluation,

32 Conference Calendar

Volume 44, Number 1, March 2023 Ada User Journal

maintenance, and reuse of software systems; development of new tools, techniques,

principles, and evaluations. Deadline for submissions: April 14, 2023 (round 2).

October 24-27

(h)

28th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC'2023),

Singapore. Topics include: software and hardware reliability, resilience, safety, security, testing,

verification, and validation; dependability measurement, modeling, evaluation, and tools; architecture

and system design for dependability; reliability analysis of complex systems; dependability issues in

computing systems (e.g. high performance computing, real-time systems, cyber-physical systems, ...);

emerging technologies (autonomous systems including autonomous vehicles, human machine

teaming, smart devices/internet of things); etc. Deadline for submissions: April 27, 2023 (abstracts),

May 4, 2023 (papers).

October 24-27 21st International Symposium on Automated Technology for Verification and Analysis

(ATVA'2023), Singapore. Topics include: theoretical and practical aspects of automated analysis,

synthesis, and verification of hardware and software systems; program analysis and software

verification; analytical techniques for safety, security, and dependability; testing and runtime analysis

based on verification technology; analysis and verification of parallel and concurrent systems; analysis

and verification of deep learning systems; verification in industrial practice; applications and case

studies; etc. Deadline for submissions: April 27, 2023 (abstracts), May 4, 2023 (papers).

November 08-10 21st International Conference on Software Engineering and Formal Methods (SEFM'2023),

Eindhoven, the Netherlands. Topics include: software development methods (formal modelling,

specification, and design; software evolution, maintenance, re-engineering, and reuse), design

principles (programming languages; abstraction and refinement; ...), software testing, validation, and

verification, security and safety (security, privacy, and trust; safety-critical, fault-tolerant, and secure

systems; software certification), applications and technology transfer (real-time, hybrid, and cyber-

physical systems; intelligent systems and machine learning; education; ...), case studies, best practices,

and experience reports. Deadline for submissions: June 2, 2023 (abstracts), June 9, 2023 (papers).

November 13-15 18th International Conference on integrated Formal Methods (iFM'2023), Leiden, the

Netherlands. Topics include: recent research advances in the development of integrated approaches to

formal modelling and analysis; all aspects of the design of integrated techniques, including language

design, verification and validation, automated tool support and the use of such techniques in software

engineering practice. Deadline for submissions: May 25, 2023 (abstracts), June 1, 2023 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2024

January 17-19 19th International Conference on High Performance and Embedded Architecture and

Compilation (HiPEAC'2024), Munich, Germany. Topics include: computer architecture, programming

models, compilers and operating systems for general-purpose, embedded and cyber-physical systems.

Areas include safety-critical dependencies, cybersecurity, energy efficiency and machine learning.

Deadline for submissions: June 1, 2023.

March 02-06 IEEE/ACM International Symposium on Code Generation and Optimization (CGO'2024),

Edinburgh, UK. Deadlines for paper submissions: May 19, 2023 (1st round), September 1, 2023 (2nd

round).

Advance Information

The 27th Ada‐Europe International Conference on Reliable Software Technologies (AEiC

2023) returns to Lisbon from the 13th to the 16th of June, five years after the 2018 edition.

After the hybrid‐mode edition in Ghent, Belgium, last year, AEiC 2023 returns to in‐

presence only modality.

The conference is the latest in a series of annual international conferences started in the

early 80's, under the auspices of Ada‐Europe, the international organization that

promotes knowledge and use of Ada and Reliable Software in general, into academic

education and research, and industrial practice.

The conference is an established international forum for providers, practitioners and researchers in reliable software

technologies. The conference presentations will illustrate current work in the theory and practice of developing, running

and maintaining challenging long‐lived, high‐quality software systems for a variety of application domains including

manufacturing, robotics, avionics, space, transportation.

The program features a keynote, a panel discussion, technical presentations and discussions, and social events.

Participants include practitioners and researchers from industry, academia and government organizations active in the

promotion and development of reliable software. The conference program includes two core days with special sessions

featuring presentations of invited experts, peer‐reviewed academic papers, industrial presentations, and work‐in‐

progress talks and posters.

Overview of the Conference Program

 Morning Before Lunch After Lunch Afternoon Evening

Tuesday,
June 13th

Tutorials

Tutorial 1: The HAC Ada Compiler
Tutorial 2: Controlling I/O Devices

with Ada and the Linux Simple I/O Library

Welcome

Reception

Tutorial 3: Everything you always
wanted to know about characters

and strings

Tutorial 4: Introduction to the

development of safety critical software

Tutorial 5: Rust Fundamentals
Tutorial 6: Concurrency and

Parallelism in Rust

Wednesday,

June 14th
Technical

Presentations

Keynote Talk

Session 1:

Verification and

Validation 1

Session 2:

Advanced

Systems

Session 3:

Reliability and

Performance
Conference
Banquet

WiP posters shown during breaks WiP posters shown during breaks

Thursday,
June 15th
Technical

Presentations

Panel
Session 4:

Verification and

Validation 2

Session 5:
Reliable

Programming

Session 6:
Real‐Time

Systems

WiP posters shown during breaks WiP posters shown during breaks

Friday,

June 16th

Satellite Events

Workshop 1: DeCPS 2023 (Challenges and New Approaches for

Dependable and Cyber‐Physical System Engineering)

Workshop 2: 2nd ADEPT (AADL by its practitioners)

Invited Speakers
 Wednesday, June 14th, Keynote Talk on “Applications of Liquid Types for More Reliable Software”, by Alcides

Fonseca, LASIGE, University of Lisbon, Portugal

 Thursday, June 15th, Panel on “Promises and Challenges of AI‐enabled Software Development Tools for Safety‐
Critical Applications”, with Douglas Schmidt, Vanderbilt University, USA, Jochen Quante, Robert Bosch GmbH,
Germany, Jon Pérez Cerrolaza, Ikerlan, Spain, and Björn Andersson, SEI ‐ Carnegie Mellon University, USA.

Tutorials

The following 6 half‐day tutorials will take place on Tuesday, June 13th:

 The HAC Compiler, Gautier de Montmollin, Ada Switzerland

 Controlling I/O Devices with Ada and the Linux Simple I/O Library, Philip Munts, Sweden

 Everything you Always Wanted to Know About Characters and Strings, Jean‐Pierre Rosen, Adalog, France

 Introduction to the Development of Safety Critical Software, Jean‐Pierre Rosen, Adalog, France

 Rust Fundamentals, Luis Miguel Pinho and Tiago Carvalho, ISEP, Portugal

 Concurrency and Parallelism in Rust, Luis Miguel Pinho and Tiago Carvalho, ISEP, Portugal

Co‐Located Workshops

On Friday, June 16th there will be 2 workshops: the 8th DeCPS workshop on “Challenges and new Approaches for

Dependable and Cyber‐Physical Systems Engineering” and the “2nd ADEPT: AADL by its practitioners” workshop.

Social Events

The program includes 1‐hour long coffee breaks, providing the opportunity for participants to discuss their work, to view

the WiP posters, and to socialise. Lunches will be served at the hotel restaurant, from Tuesday to Friday, providing further

interaction opportunities. Furthermore, there will be a Welcome Reception event and a Conference Banquet.

The Welcome Reception event will be in the gardens of the National

Museum of Science & Natural History. A selection of drinks and appetizers

will be served and participants will have the opportunity to taste port wine

while walking in the gardens.

The Conference Banquet will be at the

“Casa do Alentejo” restaurant, downtown

Lisbon. The dinner will include cod fish baked in olive oil, which is a very typical Portuguese

dish. The restaurant is located in a XVII century building in downtown Lisbon, which served

as a casino about a century ago and features several attractively decorated rooms.

Conference Venue

The conference takes place at Fénix Lisboa, a four‐star hotel in the centre of Lisbon, just across the “Marquês de Pombal”

metro station. The hotel meeting area will host all the meetings, tutorials, workshops and conference sessions. The hotel

restaurant, where participants will have their buffet lunch, is in the same area. Coffee breaks will be in the atrium outside

the meeting rooms, just in front of the room where WiP posters will be displayed during the two core days.

As Lisbon is now a very touristic venue, there are plenty of restaurants near the hotel and downtown. The city center also

features many historical places, landmarks and museums that you may want to visit, like the Lisbon medieval Castle

(Castelo de São Jorge), the Santa Justa elevator, the National Museum of Contemporary Art at Chiado, or the Roman

Theatre near the castle. Simply walking the streets is most enjoyable, going to the old neighbourhoods of Alfama and

Bairro Alto, or along the river front.

 35

Ada User Journal Volume 44, Number 1, March 2023

Achieving 100% Availability in the ERAM Air

Traffic Control System

Howard Ausden

ERAM Deputy Software Architect Leidos Corporation; email: Howard.Ausden@leidos.com

Abstract

Fault tolerance is a key requirement for En Route
Automation Modernization (ERAM), the FAA’s system
that manages En Route air traffic over the USA. A
system failure could lead to hundreds of flights being
delayed or cancelled. Using experience from earlier
systems a set of techniques were built into ERAM at
inception, including a hot standby copy of each
executable and the latest state checkpointed in disk
files. As the system matured through formal testing and
operational experience at the first sites (2010 – 2015),
the goal of 100% availability was not achieved so
additional techniques were added. These included
exception safety, runaway process protection, and
proactive monitoring of the system to detect defects and
often resolve them without the air traffic controllers
being aware. With the implementation of these
additional techniques the FAA has measured ERAM as
100% available from October 2016 at all 20
operational sites. Software fault tolerance techniques
have been well documented [2]; this extended abstract
describes the specific techniques that have led to
ERAM achieving continuous 24x7 availability for 6
years.

1 Introduction

The ERAM software as of July 2022 is more than 2 million

lines, of which the operational software is mostly Ada 95 and

C++. The software is constantly changing and growing. As

code units are developed, they are tested with 100% decision

coverage, loops are tested with minimum and maximum

iterations, and special cases are tested. Code units are then

combined in software testing of entire paths through an

executable. The code is then delivered to the formal test

organization, where it is tested in a replica ERAM system

against requirements and use cases and for regressions.

Further levels of testing are performed by the FAA with the

system release, and each site is equipped with a replica

ERAM system for its unique testing and training. Each level

of testing is reviewed periodically to ensure an appropriate

number of defects is detected.

The software includes a great deal of code to handle invalid

data (explicit checks for things we know to look for), but the

problem space of 4-dimensionsal air traffic control is very

complex. For example, the international aircraft route

standard [6] has complex semantics to accommodate any

kind of flight, from helicopters to military flights, and routes

are input from a variety of sources that are sometimes

manual and sometimes more automated. Not every condition

and/or test case can be foreseen, much less executed during

system test. Fault tolerance kicks in for those rare things that

weren’t explicitly planned for.

2 Initial Fault Tolerance Design

At ERAM inception the fault tolerance design comprised

techniques that had been used successfully on earlier

programs. The intent was to provide enough fault tolerance

to meet the availability requirements, and then later to add

additional fault tolerance if needed.

1. Services that have persistent state data are implemented

as ‘Operational Units (OUs)’. An OU comprises a

primary executable that services requests from its

clients, and a secondary copy of the executable that is

kept up to date by the primary and can quickly take over

if the primary fails [2] [3] [5]. The secondary protects

against software failures in the primary and against

hardware failures since the secondary is loaded on a

different machine.

2. State data is checkpointed to disk each time it changes.

If both the primary and secondary executables fail, the

data can be read from the disk. This is a slower recovery

but protects against scenarios such as power failures.

3. A second copy of the ERAM system runs in backup

mode and is kept up to date by the active system.

Controllers have an A/B switch to let them use either

system. Promotion of the backup system to active

requires an operator command. The active channel runs

continuously, sometimes for a month or more before the

backup, which may be running a new release, is

promoted to active, providing uninterrupted availability.

4. Executables report their ‘heartbeat’ frequently and are

killed if there is no heartbeat for a short interval. This

protects against, for example, endless loops.

5. Servers are designed with a specific order of processing:

a. Validate inputs

b. If input is valid, apply changes to databases

c. At this point the change has been successfully

digested, so checkpoint the changes to disk,

expecting they can be reloaded successfully.

d. Propagate the changes to clients, including the

secondary copy of the executable and the

backup copy of the system. Since the change

was successful in the server’s database, it can

36 Achiev ing 100% Avai labi l i ty in the ERAM Air Traff ic Contro l System

Volume 44, Number 1, March 2023 Ada User Journal

be expected to succeed in the replicated

databases in clients, secondary and backup.

6. Different kinds of issues exist in C++ and Ada. For

example, because C++ doesn't have Ada's protection for

walking off the end of the array we use the compiler

options -qcheck (AIX) and -fsanitize (Linux) during

integration builds to be more stringent and fail faster.

7. All problems are logged with sufficient contextual data

to allow for later debugging.

3 Testing and Early Operations

ERAM initial operations began in 2010 at 2 sites.

Availability problems encountered were:

1. Unhandled exceptions caused occasional executable

failures. The secondary would take over but by design

if the problem continues to recur over and over the

executables are not reloaded, and manual action is

needed. This causes a loss of the service for all clients,

but the exception is almost always associated with

unique circumstances for one object (e.g., a flight). Prior

systems that used the primary/secondary executable

technique had smaller real-world interfaces than ERAM

(they were fed from other systems), so they didn’t

encounter the same volume of unexpected exceptions.

2. Runaway processes in some of the many systems

ERAM interfaces with would flood ERAM with

messages, leading to denial of service.

3. There were one or two occurrences of algorithmic code

failing to exit from a loop.

4 Techniques Added to Improve
Availability

The required availability is 99.999% but in 2013, after

experience at the initial sites, the FAA asked us to make

some key parts of the system (such as the flight server)

bulletproof. The techniques listed below were used, in places

that justified the need. Either standard industry design

patterns were followed, or patterns were developed that can

be reused elsewhere in ERAM and other systems.

4.1 Strong Exception Safety [1]

Since the unhandled exceptions were almost always due to

some unique circumstances involving one or a few flights, it

was better to confine the problem than to let the executable

fail and risk the problem repeating in the secondary copy of

the executable, perhaps leading to loss of service. Hence

strong exception safety, also known as ‘commit or rollback’

semantics, was implemented: Operations can fail, but failed

operations are guaranteed to have no side effects, leaving the

original values intact. This allows the system to continue

processing all the other flights that are not impacted by the

unique circumstances.

The order of operations is essential:

1. Validate inputs: Exceptions often occur here, where the

real world meets the system.

2. If the input is valid, apply changes to databases:

Exceptions sometimes occur here, and database entries

can be rolled back to their initial state and a rejection

returned to the client.

3. When all databases have been updated we reach the

commit point, when roll back is no longer possible. At

a high-level view the server has a single path after this

point (doing what servers do – checkpoint the changes

to disk, propagate them to clients, and respond to the

input indicating success) and exceptions are vanishingly

rare.

Since the addition of exception safety, the mean time

between failure of executables has continuously increased.

The other changes were targeted at more specific scenarios,

while exception safety protects against most software faults;

other kinds of software faults, such as illegal memory

accesses, are rare.

Exception safety should be considered for any non-trivial

program. After all, if a program is not exception-safe, it

implies either that it will sometimes fail in an unmanaged

way, or that it has been proved not to raise exceptions. If the

latter isn’t true, buyer beware!

4.2 Repetitive Application Failure Protection

Repetitive Application Failure Protection handles the case

where, despite exception safety, an executable fails

repeatedly, triggered by a problem with the same object each

time. If an executable fails twice processing the same object

then that object is quarantined, and the system continues to

provide service for all other objects. This has prevented

failures at operational sites on several occasions and should

be considered for future high availability systems.

Sometimes a restart alone clears a problem. A restart resets

an executable’s state as it is brought up to date by other

servers (e.g., if a server deleted an object but a client failed

to delete the object, re-start of the client will clear out the

stuck object). A restart also clears any memory

fragmentation or leakage issues. If the problem was due to

some timing issue, it will be unlikely to recur – perhaps the

flight has moved on, or a conflicting process has finished.

4.3 Runaway Message Cycle Protection

Runaway processes in interfacing systems would drive

ERAM applications at high loading – in short, spamming,

leading to denial of the service to all clients. The solution

was:

• Close to the interface, track the number of messages of

a particular kind per second.

• If the message rate exceeds a threshold, reject

messages back to the sender until the rate falls below

the threshold.

• Additionally, where appropriate ERAM servers

monitor their rate of publications and, if too rapid,

space out the sends to protect clients from being

overwhelmed. This protects against cases like a timed

event repeatedly expiring.

H. Ausden 37

Ada User Journal Volume 44, Number 1, March 2023

4.4 Monitoring of system health

Since inception ERAM has engineered a comprehensive

recording capability that continuously captures all necessary

context for the system, including in error cases, without

requiring human interaction by the system users. This

capability allowed us to understand why 100% availability

was not initially achieved and allowed us to design the

appropriate enhancements. Additionally, automated

monitoring of data recorded at sites allows the development

team to receive notifications quickly when a problem occurs.

The fix is often delivered without the site being aware a

problem existed. Sometimes the site can be notified when

they need to take quick action (e.g., deal with a problematic

flight, or periodically restart an executable that is leaking

memory).

Not all problems need to be fixed. Some exceptions and

spam occurrences have been understood and judged not

worth either the cost of fixing or the risk of a fix causing

other unintended actions, such as when the fault is

adequately contained and the impact to the controller

workforce insignificant. We are still striving for ways to

automatically tag the recording of an exception or spam

occurrence as a known problem, to reduce the burden of

manually analyzing daily reports from sites.

4.5 Other Protections

One repetitive modeling subsystem bounds loops at 500

iterations, and this has been effective in preventing failures.

Code that uses recursion generally bounds the depth of the

recursion.

An attempt was made to provide a simplified fallback

implementation of the flight server. It was not successful

because no compromise on the requirements was acceptable,

so no simplification was possible.

No attempt was made to use N-version programming on

ERAM (our organization did use N-version programming

for the space shuttle’s in-flight computers [4]).

5 Conclusion

Since the FAA’s Operational Readiness Date (Spring 2015)

ERAM has used a variety of techniques, with defense in

depth and scaling of the number of layers to the difficulty

and impact of failure and recovery from the failure. New

programs and new ERAM developments have taken

advantage of the common frameworks that are now mature

and can be built-in from the beginning. Ordered from

preventive care to life support, the techniques include:

a. Proactive Monitoring

b. Strong Exception Safety

c. Spam Protection

d. Primary / Secondary Executables (“Operational

Unit”)

e. Checkpointed State Data on Disk

f. Repetitive Application Failure Protection

g. Active System / Backup System

There are remaining challenges (“it’s all fun until someone

divides by zero”) but they occur infrequently. Future systems

that need to be highly available should build in these

techniques at the start.

References

[1] A good description of exception safety is in

https://en.wikipedia.org/wiki/Exception_safety

[2] See the section on Process Pairs in

https://ntrs.nasa.gov/api/citations/20000120144/downl

oads/20000120144.pdf

[3] Our implementation of process pairs followed the work

of Dr. Flaviu Cristian. See the section on failure

masking in server groups in

http://csis.pace.edu/~marchese/CS865/Papers/cristian9

3understanding.pdf

[4] See for example http://www.ganssle.com/blog/blog/on-

n-version-programming.html

[5] Fault-Tolerance in the Advanced Automation System

(Cristian, Dancey, Dehn).

[6] See the route (item 15) description in

https://flightcrewguide.com/wiki/rules-

regulations/flight-plan/.

38

Hardware/Software Co-assurance for the Rust
Programming Language Applied to Zero Trust
Architecture Development

David Hardin
Collins Aerospace, Iowa, USA; email: david.hardin@collins.com

Abstract

Zero Trust Architecture requirements are of increasing
importance in critical systems development. Zero trust
tenets hold that no implicit trust be granted to assets
based on their physical or network location. Zero Trust
development focuses on authentication, authorization,
and shrinking implicit trust zones to the most granu-
lar level possible, while maintaining availability and
minimizing authentication latency. Performant, high-
assurance cryptographic primitives are thus central to
successfully realizing a Zero Trust Architecture. The
Rust programming language has garnered significant in-
terest and use as a modern, type-safe, memory-safe, and
potentially formally analyzable programming language.
Our interest in Rust particularly stems from its poten-
tial as a hardware/software co-assurance language for
developing Zero Trust Architectures. We describe a
novel environment enabling Rust to be used as a High-
Level Synthesis (HLS) language, suitable for secure and
performant Zero Trust application development. Many
incumbent HLS languages are a subset of C, and inherit
many of the well-known security shortcomings of that
language. A Rust-based HLS brings a single modern,
type-safe, memory-safe, high-assurance development
language for both hardware and software. To study the
benefits of this approach, we crafted a Rust HLS subset,
and developed a frontend to the hardware/software co-
assurance toolchain due to Russinoff and colleagues at
Arm, used primarily for floating-point hardware formal
verification. This allows us to leverage a number of
existing hardware/software co-assurance tools with a
minimum investment of time and effort. In this paper, we
describe our Rust subset, detail our prototype toolchain,
and describe the implementation, performance analysis,
formal verification and validation of representative Zero
Trust algorithms and data structures written in Rust, em-
phasizing cryptographic primitives and common data
structures.

Keywords: hardware/software co-assurance, Rust, theo-
rem proving, ACL2.

1 Introduction
Zero Trust Architecture [1] requirements are increasingly be-
coming adopted in critical systems development. Zero trust
tenets state that there is no implicit trust granted to assets
based on their physical or network location. All communica-
tions should be conducted “in the most secure manner avail-
able, protect confidentiality and integrity, and provide source
authentication” [1]. Zero trust architectures shrink implicit
trust zones to the most granular level possible, while maintain-
ing availability and minimizing authentication delays. Per-
formant, high-assurance cryptographic technologies are thus
central to successfully realizing a Zero Trust Architecture,
as are “leak-free” data structures, and other high-assurance
components.

We have developed several zero trust primitives as part of the
DARPA CASE program [2]. As the Zero Trust Architecture
specification [1] was not created until the CASE program was
well underway, this was not an explicit goal of the program,
but similar cyber-assurance concerns informed both efforts,
resulting in convergent technologies. A major guiding princi-
ple of CASE is the need for verified and validated automated
synthesis of security-enhancing components from high-level
architectural specifications, including input filters [3], safety
monitors [4], remote attestation and measurement [5], as well
as trustworthy interprocess communications [6]. Our research
and development effort on CASE has emphasized the value
of modern, type-safe, memory-safe, and formally analyzable
languages for use in automated synthesis [3, 5, 6], and has
identified the value of automated high-assurance synthesis
to hardware, software, or a combination of the two, from
architectural level specifications [7].

In this paper, we describe the development, formal verifica-
tion, and validation of a number of zero trust architecture
primitives in a High-Level Synthesis (HLS) subset of Rust,
suitable for software and/or hardware implementation. Along
the way, we introduce Rust, outline our HLS subset, describe
a prototype hardware/software co-assurance toolchain for this
subset, present case studies of zero trust primitives, and detail
verification and validation efforts. It is hoped that this expli-
cation will convince the reader of the practicality of Rust as
a high-assurance hardware/software co-design language, as
well as the feasibility of performing full functional correct-
ness proofs of code written in this Rust subset. We describe
related work, then provide concluding remarks.

Volume 44, Number 1, March 2023 Ada User Jour na l

D. Hard in 39

2 The Rust Programming Language
The Rust Programming Language [8] is a modern, high-level
programming language designed to combine the code genera-
tion efficiency of C/C++ with drastically improved type safety
and memory management features. A distinguishing feature
of Rust is a non-scalar object may only have one owner. For
example, one cannot assign a reference to an object in a local
variable, and then pass that reference to a function. The Rust
runtime performs array bounds checking, as well as arith-
metic overflow checking (the latter can be disabled by a build
environment setting). In most other ways, Rust is a fairly
conventional modern programming language, with interfaces
(called traits), lambdas (termed closures), and pattern match-
ing, as well as a macro capability. Also in keeping with other
modern programming language ecosystems, Rust features a
build and package management system, named cargo.

Rust has garnered significant interest and use as a modern,
type-safe, memory-safe language, with compiled code perfor-
mance approaching that of C/C++. Google [9] and Amazon
[10] make significant use of Rust, and Linus Torvalds has
commented positively on the near-term ability of the Rust
toolchain to be used in Linux kernel development [11]. The
latter capability comes none too soon, as use of C/C++ con-
tinues to spawn a seemingly never-ending parade of security
vulnerabilities, which continue to manifest at a high rate [12]
despite the emergence and use of sophisticated C/C++ analy-
sis tools.

Our interest in Rust additionally stems from its (until now,
unrealized) potential as a hardware/software co-assurance
language that can be used to create high-assurance systems,
including those that must meet zero trust architecture require-
ments. We are particularly motivated by new autonomous
and semi-autonomous platforms that require sophisticated
algorithms and data structures, are subject to stringent ac-
creditation/certification, and encourage hardware/software
co-design approaches. (For an unmanned aerial vehicle use
case illustrating a formal methods-based systems engineering
environment, please consult [4].) In this paper, we explore the
use of Rust as a High-Level Synthesis (HLS) language [13].
Most incumbent HLS languages are a subset of C, e.g. Mentor
Graphics’ Algorithmic C [14], or Vivado HLS by Xilinx [15].
A Rust-based HLS would bring a single modern, type-safe,
and memory-safe expression language for both hardware and
software realizations, with very high assurance.

Another keen research topic is reasoning about application
logic written in the imperative style favored by industry. Much
progress has been made in this area in recent years, and we
can now verify the correctness of algorithm and data structure
code that utilizes idioms such as records, loops, modular inte-
gers, and the like; and verified compilers can guarantee that
such code is compiled correctly to binary [16, 17]. Progress
has also been made in the verification of hardware/software
co-design algorithms, where array-backed data structures are
common [7, 18]. (NB: This style of programming addresses
one of the shortcomings of Rust, namely its lack of support
for cyclic data structures.)

3 Hardware/Software Co-assurance at
Scale

In order to begin to realize our aspirational vision for hard-
ware/software co-assurance at scale, we have conducted sev-
eral experiments employing a state-of-the-art toolchain, due
to Russinoff and O’Leary, and originally designed for use
in floating-point hardware verification [19], to determine its
suitability for the creation of safety-critical/security-critical
applications in various domains.

Algorithmic C [14] is a High-Level Synthesis (HLS) language,
and is supported by hardware/software co-design environ-
ments from Mentor Graphics, e.g., Catapult [20]. Algorithmic
C defines C++ header files that enable compilation to both
hardware and software platforms, including support for the
peculiar bit widths employed, for example, in floating-point
hardware design. Restricted Algorithmic C (RAC) imposes
several restrictions beyond those of Algorithmic C. The most
significant of these is that pointers are not allowed, all loops
must terminate, and all functions must be side-effect-free.

An ACL2 translator converts imperative RAC code to func-
tional ACL2 code. Loops are translated into tail-recursive
functions, with automatic generation of measure functions
to guarantee admission into the logic of ACL2 (RAC sub-
setting rules ensure that loop measures can be automatically
determined). Structs and arrays are converted into functional
ACL2 records. The combination of modular arithmetic and
bit-vector operations of typical RAC source code is faithfully
translated to functions supported by Russinoff’s RTL theorem
library. ACL2 is able to reason about non-linear arithmetic
functions, so this usual concern is not an issue. Finally, the
RTL theorem library in ACL2 is capable of reasoning about a
combination of arithmetic and bit-vector operations, which is
a very difficult feat for most automated solvers.

Recently, we have investigated the synthesis of Field-
Programmable Gate Array (FPGA) hardware directly from
high-level architecture models, in collaboration with col-
leagues at Kansas State University. The goal of this work is to
enable the generation of high-assurance hardware and/or soft-
ware from high-level architectural specifications expressed
in the Architecture Analysis and Design Language (AADL)
[21], with proofs of correctness in ACL2.

4 Restricted Algorithmic Rust
As a study of the suitability of Rust as an HLS, we have
crafted a Rust subset, inspired by RAC, which we have imag-
inatively named Restricted Algorithmic Rust, or RAR [22].
In fact, in our first implementation of a RAR toolchain, we
merely “transpile” (perform a source-to-source translation of)
the RAR source into RAC. By so doing, we leverage a num-
ber of existing hardware/software co-assurance tools with a
minimum investment of time and effort. By transpiling RAR
to RAC, we gain access to existing HLS compilers (we can
generate code for either the Algorithmic C or Vivado HLS
toolchains via some simple C preprocessor directives). We
are also able to leverage the RAC-to-ACL2 translator that
Russinoff and colleagues at Arm have successfully utilized in
industrial-strength floating point hardware verification.

Ada User Jour na l Vo lume 44, Number 1, March 2023

40 Hardware/Sof tware Co-assurance for Rust

Rust
Source

Plexi
Transpiler

RAC
Headers

RAC
Source

C++
Compiler

Hardware
Synthesis

ACL2
Translator

Lemma
Libs

ACL2
Thm

Prover

Proofs

Figure 1: Restricted Algorithmic Rust (RAR) prototype
toolchain.

As we wish to utilize the RAC toolchain as a backend in our
initial work, we adopt the same semantic restrictions for RAR
as described in Russinoff’s book. Additionally, in order to
ease the transition to/from C, we support a commonly used
macro that provides a C-like for loop in Rust. Note that,
despite the restrictions, RAR code is proper Rust; it compiles
to binary using the standard Rust compiler.

RAR is transpiled to RAC via a source-to-source translator, as
depicted in Fig. 1. Our transpiler is based on the plex parser
and lexer generator [23] source code. We thus call our tran-
spiler Plexi, a nickname given to a famous (and now highly
sought-after) line of Marshall guitar amplifiers of the mid-
1960s. Plexi performs lexical and syntactic transformations
that convert RAR code to RAC code. This RAC code can then
be compiled using a C/C++ compiler, fed to an HLS-based
FPGA compiler, as well as translated to ACL2 via the RAC
ACL2 translator, as illustrated in Fig. 1.

We have implemented several representative algorithms and
data structures in RAR, including:

• a suite of array-backed algebraic data types, previously
implemented in RAC [18, 22];

• a significant subset of the Monocypher [24] modern
cryptography suite, including XChacha20 and Poly1305
(RFC 8439) encryption/decryption, Blake2b hashing,
and X25519 public key cryptography; and

• a DFA-based JSON lexer, coupled with an LL(1) JSON
parser. The JSON parser has also been implemented
using Greibach Normal Form (previously implemented
in RAC, as described in [3]).

The RAR examples created to date are similar to their RAC
counterparts in terms of expressiveness, and we deem the
RAR versions somewhat superior in terms of readability
(granted, this is a very subjective evaluation). Additionally,
RAR support of basic Rust syntax gives embedded developers
an “on-ramp” to a more modern development language, as
opposed to being forced to stay with C in order to achieve
high performance and low latency. Further, the benefits of
using the Rust compiler in RAR code development should
not be discounted: its enforcement of type safety and memory
safety, coupled with its efficient code generation capability,
encourages performant, high-quality code development.

5 Examples
5.1 Circular Queue
High-assurance data structures are necessary building blocks
for any zero-trust architecture realization. In this section, we
present an example of a verified circular queue implemented
using RAR. Circular queues can be found in both hardware
and software realizations, making it an ideal example. First,
we declare the basic queue structure, as shown below. The
maximum queue size can be changed by modifying the CQ_-
SZ constant; ACL2 can reason about arrays of any size.

#[derive(Copy, Clone)]

struct CQ {
front: usize,
rear: usize,
arr: [i64; CQ_SZ],

}

A typical circular queue operator is the head-of-queue acces-
sor:

fn CQ_hd(CObj: CQ) -> (u8, i64) {
if (CQ_isEmpty(CObj)) {

return (CQ_EMPTY, 0);
} else {

return (CQ_OK, CObj.arr[CObj.front]);
}

}

The enqueue function is as follows:

fn CQ_enqueue(value: i64, mut CObj: CQ) -> (u8, CQ) {
if (CQ_isFull(CObj)) {

return (CQ_FULL, CObj);
} else {

if (CObj.front == CQ_SZ) { // Insert First Element
CObj.front = 0;
CObj.rear = 0;

} else
if (CObj.rear == CQ_MAX_NODE) {
CObj.rear = 0;

} else {
CObj.rear += 1;

}
CObj.arr[CObj.rear] = value;
return (CQ_OK, CObj);

}
}

The circular queue source comprises some 300 lines of RAR
code. We use Plexi to transpile the RAR source to RAC
(not shown), then use the RAC tools to convert the RAC
source to ACL2. An example of the translation to ACL2 is
shown below for the CQ_hd function:

(DEFUN CQ_HD (COBJ)
(IF1 (CQ_ISEMPTY COBJ)

(MV (BITS 254 7 0) (BITS 0 63 0))
(MV (BITS 0 7 0)

(AG (AG ’FRONT COBJ) (AG ’ARR COBJ)))))

In this automatically translated function, AG is an ACL2
record “get” operation, MV provides multi-value return, and
BITS provides a bit-width specification for a given value.

Volume 44, Number 1, March 2023 Ada User Jour na l

D. Hard in 41

Similarly, the enqueue function is automatically translated to
ACL2 as follows, where AS is an ACL2 record “set” opera-
tion:

(DEFUN CQ_ENQUEUE (VALUE COBJ)
(IF1 (CQ_ISFULL COBJ)

(MV (BITS 255 7 0) COBJ)
(LET ((COBJ (IF1 (LOG= (AG ’FRONT COBJ) 8191)

(LET ((COBJ (AS ’FRONT 0 COBJ)))
(AS ’REAR 0 COBJ))

(IF1 (LOG= (AG ’REAR COBJ) 8190)
(AS ’REAR 0 COBJ)
(AS ’REAR

(+ (AG ’REAR COBJ) 1)
COBJ)))))

(MV (BITS 0 7 0)
(AS ’ARR

(AS (AG ’REAR COBJ)
VALUE (AG ’ARR COBJ))

COBJ)))))

At this point, we can prove theorems about the data structure
implementation. We first define a well-formedness predicate
cqp for the queue in ACL2. We can then prove functional
correctness theorems for the circular queue operations, of the
sort stated below:
(defthm dequeue-of-enqueue-from-empty

(implies
(and
(cqp CObj)
(= 1 (CQ_isempty CObj)))

(= (nth 1 (CQ_dequeue (nth 1 (CQ_enqueue v CObj))))
v)))

ACL2 proves the 35 correctness lemmas and theorems that we
have formulated for the circular queue example automatically.
5.2 Crypto Primitives
As noted previously, cryptographic methods are commonly
used to enforce zero trust architecture tenets. We have thus
ported a majority of the Monocypher cryptography suite [24]
(approximately 2300 lines of source code) to RAR. Mono-
cypher is a simple, yet performant and well-maintained set
of modern crypto primitives implemented in C. This porting
effort was accomplished in two phases: first, the Monocypher
C sources were modified to conform to the RAC subset; then
that code was ported to Rust/RAR. The initial goal of these
first modifications was to ensure that the Monocypher sources
were amenable to the use of fixed-size arrays; and if so, to
see if there was any appreciable negative performance impact.
As it happened, for the selection of crypto primitives that
we chose (a cross-section of Monocypher capabilities, from
hashing to Encryption/Decryption to Elliptic Curve-based
public key functions), the fixed-size array modifications were
not that difficult, and as one can observe from columns two
and three of Table 1, perfomance was nearly identical after
these changes were made. (All results were obtained on one
core of a 2020 MacBook Pro with a 2 GHz Intel i5 CPU, 32
GB of RAM, and running MacOS Monterey version 12.0.1.)
Importantly, the last column of Table 1 reveals the translation
to Rust does not negatively impact execution speed, compared
to the baseline.

One additional performance measure we can readily make is
to compare the results of the Monocypher speed tests under

Function Baseline
FixedArr/
PassByRef

FixedArr/
PassByVal

Rust

Chacha20 423 437 360 389
Poly1305 1157 992 1054 1213

AuthEncrypt 309 328 264 322
Blake2b 636 631 487 735
X25519 9259 10638 7874 9433

Table 1: Monocypher performance comparisons. Higher num-
bers are better. X25519 results are exchanges/sec; all other
results are MB/sec.

pass-by-reference vs. pass-by-value (made possible due to
some C preprocessor cleverness). As one can see by compar-
ing columns three and four of Table 1, pass by value reduces
C execution speed by 20-30% for most tests.

We were able to translate the Monocypher primitives from
RAR to RAC (and thence to both hardware and software
synthesis), as well as to ACL2, using the toolchain of Figure 1.
Test vectors from the Monocypher regression suite were then
used to validate the translation to ACL2, but no significant
proof efforts have been undertaken on the translated functions
thus far, beyond the necessary loop termination proofs. Future
verification plans are discussed in the sections that follow.

6 Related Work
Our work is inspired by, and builds upon, the pioneering
work of Russinoff’s team at Arm on Restricted Algorith-
mic C for floating-point hardware verification at scale [19].
Floating-point hardware verification utilizing theorem prov-
ing technology has a notable history (e.g. [25], [26], [19]).
Many of these efforts have focused on engineering artifacts
expressed using traditional Hardware Description Languages,
such as Verilog; Russinoff’s work using an HLS is a notable
exception.

A number of domain-specific languages targeting both hard-
ware and software realization have been created. Cryptol
[27], for example, has been employed as a “golden spec” for
the evaluation of cryptographic implementations, in which
automated tools perform equivalence checking between the
Cryptol spec for a given algorithm, and the VHDL implemen-
tation.

EverCrypt [28] provides a comprehensive verified implemen-
tation of modern cryptographic algorithms written in F*, then
transpiled to lower-level languages, eventually producing C
and/or assembly. We successfully used EverCrypt for our
Remote Attestation work on CASE. We initially wished to
tie in to the EverCrypt toolchain for our current work, but
the lower-level forms produced by the EverCrypt transpilers
did not allow us to produce solely fixed-size arrays that we
needed for hardware generation. In future, we hope to mod-
ify this transpiler machinery to allow us to generate RAC or
RAR code, thus allowing us to leverage the significant formal
verification work produced by the EverCrypt team.

Rod Chapman recently translated the TweetNaCl compact
cryptographic source code suite to the SPARK Ada subset

Ada User Jour na l Vo lume 44, Number 1, March 2023

42 Hardware/Sof tware Co-assurance for Rust

[29], motivated by a similar desire to ours to produce a cryp-
tographic suite written in a higher-assurance language subset
with proof support. Chapman did not, however, contemplate
possible hardware implementation. We considered the Tweet-
NaCl sources as a starting point for our work, but Monocypher
exhibits superior performance, provides regression and per-
formance testing, and is better written.

Formal verification systems for Rust include Creusot [30],
based on WhyML; Prusti [31], based on the Viper verification
toolchain; and RustHorn [32], based on constrained Horn
clauses. And recently, AWS has announced a model-checker
for Rust, Kani [33]. It will be interesting to attempt the sorts
of correctness proofs achievable on our system using these
verification tools.

7 Conclusion
We have developed a prototype environment to enable the
Rust programming language to be used as a hardware/soft-
ware co-design and co-assurance language for critical systems,
focusing on systems that implement Zero Trust Architecture
tenets. We have demonstrated the ability to establish the
correctness of several practical data structures commonly em-
ployed in high-assurance systems through automated formal
verification, enabled by automated source-to-source transla-
tion from Rust to RAC to the ACL2 theorem prover. We have
also successfully applied our toolchain to cryptography and
data format filtering examples typical of the algorithms and
data structures employed in zero trust architecture applica-
tions.

We presented two case studies in the development, verifica-
tion, and validation of zero trust primitives. For the case of
an array-based circular queue, we presented the results of full
functional verification after automated translation from Rust
to ACL2. This was supplemented by test vectors executed
using the ACL2 read/eval/print loop, thus providing valida-
tion of the translation process. For the case of cryptographic
primitives, we detailed how we ported the Monocypher suite
first to Russinoff’s RAC, and then to the RAR Rust sub-
set. We demonstrated that translation to a fixed-array-size
formulation, needed for RAC, had no negative impacts on
performance. We then exercised the RAR toolchain on a sig-
nificant subset of the Monocypher suite, demonstrating the
feasibility of expressing cryptographic primitives under the
datatype and iterative form restrictions necessary to achieve
both hardware and software synthesis, as well as automated
translation to the ACL2 theorem prover.

In future work, we will continue to develop the RAR
toolchain, increasing the number of Rust features supported
by the RAR subset, as well as continuing to improve the
ACL2 verification libraries in order to increase the ability to
discharge RAR correctness proofs automatically. We will
also continue to work with our colleagues at Kansas State
University on direct synthesis from architectural models. Fi-
nally, we will pursue a connection to the EverCrypt work, as
described earlier.

8 Acknowledgments
This work was partly funded by DARPA contract
HR001118900011. The views, opinions and/or findings ex-
pressed are those of the authors and should not be interpreted
as representing the official views or policies of the Depart-
ment of Defense or the U.S. Government.

Many thanks to David Russinoff of Arm for answering ques-
tions about the RAC toolchain; to Loup Vaillant for devel-
oping the excellent Monocypher crypto package; to Geoffry
Song for the plex tool; and to John Hatcliff and Robby at
Kansas State University for their ongoing pioneering efforts
in the area of high-assurance synthesis from architectural
models. Thanks also go to the anonymous reviewers for their
insightful comments.

References
[1] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, NIST

Special Publication 800-207: Zero Trust Architecture.
National Institute of Standards and Technology, August
2020.

[2] D. Cofer, I. Amundson, J. Babar, D. Hardin, K. Slind,
P. Alexander, J. Hatcliff, Robby, G. Klein, C. Lewis,
E. Mercer, and J. Shackleton, “Cyberassured systems
engineering at scale,” in IEEE Security & Privacy,
May/June 2022 (to appear).

[3] D. S. Hardin and K. L. Slind, “Formal synthesis of
filter components for use in security-enhancing archi-
tectural transformations,” in Proceedings of the Seventh
Workshop on Language-Theoretic Security, 42nd IEEE
Symposium and Workshops on Security and Privacy
(LangSec 2021), May 2021.

[4] E. Mercer, K. Slind, I. Amundson, D. Cofer, J. Babar,
and D. Hardin, “Synthesizing verified components for
cyber assured systems engineering,” in 24th Interna-
tional Conference on Model-Driven Engineering Lan-
guages and Systems (MODELS 2021), October 2021.

[5] A. Petz, G. Jurgensen, and P. Alexander, “Design and
formal verification of a Copland-based attestation proto-
col,” in ACM/IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE
2021), November 2021.

[6] J. Hatcliff, J. Belt, Robby, and T. Carpenter, “HAMR:
An AADL multi-platform code generation toolset,” in
10th International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation
(ISoLA), vol. 13036 of LNCS, pp. 274–295, 2021.

[7] D. S. Hardin, “Verified hardware/software co-assurance:
Enhancing safety and security for critical systems,” in
Proceedings of the 2020 IEEE Systems Conference,
2020.

[8] S. Klabnik and C. Nichols, The Rust Programming Lan-
guage. No Starch Press, 2018.

1Distribution Statement A (Approved for Public Release, Distribution
Unlimited)

Volume 44, Number 1, March 2023 Ada User Jour na l

D. Hard in 43

[9] J. V. Stoep and S. Hines, “Rust in the Android platform,”
April 2021.

[10] S. Miller and C. Lerche, “Sustainability with Rust,”
February 2022.

[11] R. Amadeo, “Google is now writing low-level Android
code in Rust,” April 2021.

[12] M. Miller, “A proactive approach to more secure code,”
July 2019.

[13] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Ca-
nis, Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi, J. An-
derson, and K. Bertels, “A survey and evaluation of
fpga high-level synthesis tools,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 35, no. 10, pp. 1591–1604, 2016.

[14] Mentor Graphics Corporation, Algorithmic C (AC)
Datatypes, 2016.

[15] Xilinx, Inc., Vivado Design Suite User Guide: High-
Level Synthesis, December 2018.

[16] X. Leroy, “Formal verification of a realistic compiler,”
Communications of the ACM, vol. 52, no. 7, pp. 107–
115, 2009.

[17] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens,
“CakeML: a verified implementation of ML,” in The
41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014 (S. Jagannathan
and P. Sewell, eds.), pp. 179–192, ACM, 2014.

[18] D. S. Hardin, “Put me on the RAC,” in Proceedings of
the Sixteenth International Workshop on the ACL2 The-
orem Prover and its Applications (ACL2-20), pp. 142–
145, May 2020.

[19] D. M. Russinoff, Formal Verification of Floating-Point
Hardware Design: A Mathematical Approach. Springer,
second ed., 2022.

[20] Mentor Graphics Corporation, Catapult High-Level Syn-
thesis, 2020.

[21] P. H. Feiler and D. P. Gluch, Model-Based Engineering
with AADL: An Introduction to the SAE Architecture
Analysis & Design Language. Addison-Wesley Profes-
sional, 1st ed., 2012.

[22] D. S. Hardin, “Hardware/software co-assurance using
the Rust programming language and ACL2,” in Proceed-
ings of the Seventeenth International Workshop on the
ACL2 Theorem Prover and its Applications (ACL2-22),
May 2022.

[23] G. Song, plex: a parser and lexer generator as a Rust
procedural macro, 2020.

[24] L. Vaillant, Monocypher: Boring Crypto that Simply
Works, 2022.

[25] J. Harrison, “Floating-point verification using theorem
proving,” in Formal Methods for Hardware Verifica-
tion (M. Bernardo and A. Cimatti, eds.), pp. 211–242,
Springer Berlin Heidelberg, 2006.

[26] W. A. Hunt, S. Swords, J. Davis, and A. Slobodova,
“Use of formal verification at Centaur Technology,” in
Design and Verification of Microprocessor Systems for
High-Assurance Applications (D. S. Hardin, ed.), pp. 65–
88, Springer, 2010.

[27] S. Browning and P. Weaver, “Designing tunable, verifi-
able cryptographic hardware using Cryptol,” in Design
and Verification of Microprocessor Systems for High-
Assurance Applications (D. S. Hardin, ed.), pp. 89–143,
Springer, 2010.

[28] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel,
M. Polubelova, K. Bhargavan, B. Beurdouche, J. Choi,
A. Delignat-Lavaud, C. Fournet, N. Kulatova, T. Ra-
mananandro, A. Rastogi, N. Swamy, C. M. Winter-
steiger, and S. Zanella-Béguelin, “Evercrypt: A fast, ver-
ified, cross-platform cryptographic provider,” in IEEE
Symposium on Security and Privacy, IEEE, May 2020.

[29] R. Chapman, “SPARKNaCl: A verified, fast re-
implementation of TweetNaCl,” in Proceedings of FOS-
DEM’22, February 2022.

[30] X. Denis, Creusot, September 2022.

[31] V. Astrauskas, A. Bílý, J. Fiala, Z. Grannan, C. Math-
eja, P. Müller, F. Poli, and A. J. Summers, “The
prusti project: Formal verification for rust (invited),” in
NASA Formal Methods (14th International Symposium),
pp. 88–108, Springer, 2022.

[32] Y. Matsushita, T. Tsukada, and N. Kobayashi,
“Rusthorn: Chc-based verification for rust programs,”
ACM Trans. Program. Lang. Syst., vol. 43, oct 2021.

[33] Amazon Web Services, Announcing the Kani Rust Veri-
fier Project, May 2022.

Ada User Jour na l Vo lume 44, Number 1, March 2023

44

Beyond Model Checking of Idealized Lustre in
KIND 2

Daniel Larraz, Arjun Viswanathan, Cesare Tinelli
The University of Iowa, USA

Mickaël Laurent
IRIF, CNRS — Université de Paris, France

Abstract

This paper describes several new features of the open-
source model checker KIND 2. Its input language and
model checking engines have been extended to allow
users to model and reason about systems with machine
integers. In addition, KIND 2 can now provide trace-
ability information between specification and design
elements, which can be used for several purposes, in-
cluding assessing the quality of a system specification,
tracking the safety impact of model changes, and ana-
lyzing the tolerance and resilience of a system against
faults or cyber-attacks. Finally, KIND 2 is also able
to check whether a component contract is realizable or
not, and provide a deadlocking computation and a set of
conflicting guarantees when the contract is unrealizable.

Keywords: Machine-precise Model Checking, Safety
Analysis, Realizability Checking.

1 Introduction
KIND 2 [1] is an SMT-based model checker for safety proper-
ties of finite- and infinite-state synchronous reactive systems.
It takes as input models written in an extension of the dataflow
Lustre language [2]. The extension allows the specification of
assume-guarantee-style contracts for the modeled system and
its components which enables modular and compositional
reasoning and considerably increases scalability. KIND 2’s
contract language [3] is expressive enough to allow one to
represent any (LTL) regular safety property by recasting it in
terms of invariant properties. One of KIND 2’s distinguishing
features is its support for modular and compositional anal-
ysis of hierarchical and multi-component systems. KIND 2
traverses the subsystem hierarchy bottom-up, analyzing each
system component, and performing fine-grained abstraction
and refinement of the sub-components. At the architectural
level, KIND 2 runs concurrently several model checking en-
gines which cooperate to prove or disprove contracts and
properties. In particular, it combines two induction-based
model checking techniques, k-induction [4] and IC3 [5], with
various auxiliary invariant generation methods. All the en-
gines are fully automated and logic-based, relying on external
SMT solvers for satisfiability/entailment checks and other
relevant logical operations such as quantifier elimination.

KIND 2 is open-source and distributed in binary and source-
code form under a liberal license.1 This paper focuses on its
most recent features, in particular, reasoning about models
with machine integer values, providing traceability informa-
tion between specification and design elements, and checking
component contracts are realizable.

2 Machine-precise Verification
Lustre is a synchronous dataflow language that operates on
infinite streams of values of three basic types: bool, int
(finite precision integers), and real (floating point numbers).
In contrast, KIND 2 considers an idealized version of Lus-
tre, which treats int as the type of mathematical integers,
and real as the type of real numbers. Idealized Lustre pro-
grams can be faithfully encoded as state transition systems
S = ⟨s, I[s], T [s, s′]⟩ where s is a vector of typed state vari-
ables, I is the initial state predicate, and T is a two-state
transition predicate (with s′ being a renamed version of s).
Then, instances of I and T can be expressed as quantifier-
free first-order formulas over the combined theory of equality
with uninterpreted functions and integer/real arithmetic. SMT
solvers implement efficient decision procedures for the frag-
ment of this theory that limits arithmetic constraints to linear
ones. Although using idealized Lustre is often adequate for
proving and disproving a wide range of properties of pro-
grams of interest, sometimes it is important to reason with
respect to the original semantics of the numeric types (for
instance, to capture accurately the modulo n behavior of arith-
metic operators over machine integers). For the latter cases,
we have extended KIND 2 to support both signed and un-
signed versions of C-style machine integers of size 8, 16, 32,
and 64.

Semantics, declaration, and value construction. The stan-
dard semantics of machine integers of size w is binary num-
bers of width w, with signed machine integers represented
using 2’s complement. We effectively adopt the same seman-
tics by representing machine integers internally as (signed or
unsigned) bit vectors of width w. KIND 2 currently supports
signed machine integers of width 8, 16, 32 and 64, allow-
ing expressions of types int8, int16, int32, and int64,
respectively, and their unsigned versions, with types uint8,
uint16, uint32, and uint64. Machine integers values

1Kind 2 is available at http://kind.cs.uiowa.edu.

Volume 44, Number 1, March 2023 Ada User Jour na l

http://kind.cs.uiowa.edu

D. Larraz et a l . 45

can be constructed using explicit conversion functions ap-
plied to integer constants, with a conversion functions for
each possible destination type. For example, uint8 converts
any numeral n to the unsigned 8-bit value corresponding to
the integer value (n mod 8). This means, for instance that
uint8 0 and uint8 256 are both converted to the 8-bit
zero value. Conversions in the opposite direction are also
possible, with the expected inclusion semantics. Conversions
between machine integers of different widths are also allowed
as long as the types are both signed or both unsigned. Values
are adjusted modulo the range of the destination type when
converted to a smaller width, and remain unchanged when
converted to a larger width.

Operations. KIND 2 supports C-style arithmetic, logical,
shift, and comparison operations over machine integers. Lus-
tre’s integer operators +, -, *, div, and mod are overloaded
to apply also to two machine integers of the same type and
return a machine integer of that type.

The integer comparison operators >, <, >=, <=, = are over-
loaded to the corresponding binary operations over machine
integers of the same type. They all output a boolean value.

There are new machine integer operators for bit-wise con-
junction (&&), disjunction (||), and negation (!), all with the
expected arity and type, as well as left shift (lsh) and right
shift (rsh) operators. The last two are both binary: the two
inputs must have the same width but only the first can be
signed. The output is signed if the first input is signed, and is
unsigned otherwise; it is obtained by shifting the first input
by the number of positions indicated by the second input.
Right-shifting when the first operand is signed results in an
arithmetic right shift, where the sign bit is preserved. A left-
shift is equivalent to multiplication by 2 (modulo the width),
and a right-shift is equivalent to division by 2. In other words,
the left shift operator shifts towards the most-significant bit
and the right shift operator shifts towards the least-significant
bit.

To check safety properties of Lustre models with machine
integers KIND 2 relies on off-the-shelf SMT solvers by lever-
aging their support for the theory of bit vectors of fixed width.
Currently, only the SMT solvers Z3 [6] and cvc5 [7] support
logics that allow the combined use of mathematical integers
and machine integers. To use any of the other supported
SMT solvers, the Lustre input must contain only boolean and
machine integer types.

KIND 2’s manual [8] provides more detailed information
on machine integer support and on which SMT solvers are
recommended for different combinations of data types in the
input model.

In future work, we plan to extend KIND 2 to support floating
point types as well.

3 Realizability Checking of Contracts
Contract-based software development is a major methodology
for the rigorous construction of component-based reactive sys-
tems, embedded systems in particular. Contracts provide a
mechanism for capturing the information needed to specify

and reason about component-level properties at a desired level
of abstraction. In this paradigm, a component C can be as-
sociated with a contract specifying its input-output behavior
in terms of guarantees provided by C when its environment
satisfies certain assumptions. Contracts are an effective way
to establish boundaries between components and can be used
to facilitate proofs of global properties of a complex sys-
tem prior to its construction. Such proofs capitalize on the
fact that complex components are typically specified sim-
ply as the composition of lower-level components. However,
they are also built upon the implicit assumption that each
leaf-level component contract in the system hierarchy is re-
alizable. Roughly speaking, this means that it is possible
to construct a component that, for any input allowed by the
contract assumptions, can produce an output satisfying the
contract guarantees. Unfortunately, without tool support it is
all too easy for system designers to write leaf-level contracts
that are unrealizable.

In KIND 2 the behavior of each component, or node in Lustre
terminology, can be specified by providing either a set of equa-
tions that define the component’s output in terms of its input
and internal state (a low-level specification), or an assume-
guarantee contract (a high-level specification), or both. The
syntax restrictions and semantics of the Lustre language en-
sure that every low-level specification of a component is exe-
cutable in the sense that for each possible input and internal
state for the component there is a unique output and next state
for the component to move to. Hence low-level specifications
in Lustre are realizable by construction. When both specifi-
cations are provided in KIND 2, the low-level specification
is expected to be a refinement of the high-level one. KIND 2
checks this by verifying that every execution that satisfies
the former also satisfies the latter. Informally, we say that
the set of equations satisfy the contract. In compositional
reasoning, when only a contract is provided for a subcompo-
nent C, KIND 2 assumes the existence of such a component
when checking the properties of components that use C. This,
however, may lead to bogus compositional proof arguments
when C’s contract is unrealizable.

KIND 2 now provides an option to check whether the contract
of a component with no low-level specification is realizable.
When a contract is unrealizable, the only way to fully ex-
plain why the contract is impossible to satisfy is to provide a
counter-strategy, a (temporal) description of an environment
for the component that prevents any potential realization of
that component.

A user can examine a counter-strategy to try understand the
reasons the contract is unrealizable, and fix it accordingly.
However, as pointed out by Könighofer et al [9], a counter-
strategy may be very large and complex, especially if it was
generated automatically. For this reason, instead of a counter-
strategy, KIND 2 provides examples of execution scenarios
that lead to impossible conditions. Specifically, it outputs a
single, finite computation path all of whose transitions satisfy
the contract but whose end state has no outgoing transitions
that satisfy the contract. In other words, KIND 2 provides con-
crete evidence for the existence of a reachable deadlocking
state d for any putative realization of the contract. In addition,

Ada User Jour na l Vo lume 44, Number 1, March 2023

46 Beyond Model Check ing of Idea l ized Lust re in K I N D 2

to facilitate the comprehension of the deadlocked state fur-
ther, KIND 2 also provides a state d′ such that transitioning
from d to d′ would minimize the number of violated contract
guarantees. The (non-empty) set of the violated guarantees in
question is returned as well.

When the contract is proven unrealizable, the user has also
the option of invoking a sanity check on whether the contract
is satisfiable at all, i.e., whether it is possible to construct a
component such that for at least one input sequence allowed
by the contract assumptions, there is some output value that
the component can produce to satisfy the contract guarantees.

The realizability check implemented in KIND 2 is largely
based on a synthesis procedure for infinite-state reactive sys-
tems, called JSYN-VG, by Katis et al. [10]. The main dif-
ference is that while the original work relies on a dedicated
solver to implement the functionality provided by the AE-
VAL procedure [11] of JSYN-VG, our implementation only
requires a generic quantifier elimination procedure for the un-
derlying data theories supported by KIND 2 (Booleans, linear
integer arithmetic, and linear real arithmetic). Such quantifier
elimination capabilities are provided by state-of-the-art SMT
solvers such as Z3 [6] and cvc5 [7].

A detailed description of Kind 2’s realizability checking func-
tionality and an experimental evaluation comparing our imple-
mentation and the original implementation of JSYN-VG in the
JKIND model checker is available in a technical report [12].

4 Merit and Blame Assignment
One clear strength of model checkers is their ability to return
precise error traces witnessing the violation of a given safety
property. In addition to being invaluable in helping identify
and correct bugs, error traces also represent a checkable un-
safety certificate. Similarly, some model checkers are able
to return some form of corroborating evidence when they
declare a safety property to be satisfied by a system under
analysis. For instance, KIND 2 can produce an independently
checkable proof certificate for each of the properties it claims
to hold [13]. Since these proof certificates are meant for auto-
mated proof checkers, however, they usually provide limited
user-level insights on what elements of the system model
contribute to the satisfaction of a property.

KIND 2 now offers two new diagnostic features that provide
additional information on a chosen set of verified proper-
ties [14]: (i) the identification of minimal sets of model
elements that are sufficient to prove the properties together
with the subset of model elements that are necessary to prove
those properties; (ii) the computation of minimal sets of
model constraints whose violation leads the system to falsify
one of more of the chosen properties.

Although these two pieces of information are closely related,
they can be naturally mapped to difference typical use cases
in model-based software development: respectively, merit as-
signment and blame assignment. With the former the focus is
on assessing the quality of a system specification, tracking the
safety impact of model changes, and assisting human users
in the synthesis of optimal implementations. With the latter,

the goal is to determine the tolerance and resilience of a sys-
tem against faults or adversarial environments due to natural
causes or cyber-attacks. In general, proof-based traceability
information can be used to perform a variety of engineering
analyses, including vacuity detection [15]; coverage analy-
sis [16, 17]; impact analysis [18], design optimization; and
robustness analysis [19, 20].

The merit assignment functionality relies on the concept of
inductive validity core introduced by Ghassabani et al. [21].
Generally speaking, given a set of model elements M and an
invariance property P , an inductive validity core (IVC) for P
is a subset of M that is enough to prove P invariant. Kind 2
allows the user to choose among four sets of model elements:
assumptions/guarantees in contracts, node calls, equations in
node definitions, and assertions2. Note that M itself is an IVC,
although not a very interesting one. In practice, for complex
enough models, smaller IVCs exist. In fact, it is often possible
to compute efficiently a smaller IVC that contains few or no
irrelevant elements. We can ensure that the elements of an
IVC for a property P are necessary by requiring the IVC to
be minimal, that is, have no proper subsets that are also an
IVC for P . KIND 2 offers the option to compute a small but
possibly non-minimal IVC, a minimal IVC (MIVC), or all
minimal IVCs.

IVCs for coverage and change impact analysis. If a prop-
erty P of a system S has multiple MIVCs, inspecting all
of them provides insights on the different ways S satisfies
P . Moreover, given all the MIVCs for P , it is possible to
partition all the model elements into three sets [18]: a set of
MUST elements which are required for the satisfiability of
P in every case, a set of MAY elements which are optional,
and a set of elements that are irrelevant. This categorization
provides complete traceability between specification and de-
sign elements, and can be used for coverage analysis [17] and
for tracking the safety impact of model changes [14]. For
instance, a change to an element e in the MAY set for P will
not affect the satisfaction of P but will definitely impact some
other property Q if e occurs in the MUST set for Q.

IVCs for fault-tolerance or cyber-resiliency analysis. An-
other use of IVCs, is in the analysis of a system’s tolerance
to faults [20] or resiliency to cyber-attacks [19]. For instance,
an empty MUST set for a system S and one of its invariants
P indicates that the property is satisfied by S in various alter-
native ways, making the system tolerant to faults or resilient
against cyber-attacks as far as P is concerned. In contrast, a
large MUST set suggest a more brittle system, with multiple
points of failure or a big attack surface.

Quantifying a system’s resilience. To help quantify the
resilience of a system, KIND 2 also supports the computation
of minimal cut sets (aka, minimal correction sets) for an
invariance property P . Given a set of model elements M , a
cut set C for P is a subset of M such that P is no longer
invariant for M \ C. A minimal cut set (MCS) for P is a cut

2Assertions are unchecked assumptions on a node’s input. They are
deprecated in KIND 2, in favor of contract assertions, but still supported for
being part of Lustre.

Volume 44, Number 1, March 2023 Ada User Jour na l

D. Larraz et a l . 47

set none of whose proper subsets is a cut set for P . A smallest
cut set is an MCS of minimum cardinality. KIND 2 provides
options to compute a (single) smallest cut set, all the MCSs,
and all the MCSs up to a given cardinality bound. In the
context of fault or security analyses, the cardinality of an MCS
for a property P represents the number of design elements
that must fail or be compromised for P to be violated. The
smaller the MCS, or the higher the number of MCSs of small
cardinality, the greater the probability that the property can
be violated.

We refer the interested reader to a related publication [14] and
technical report [22] for implementation details and experi-
mental results on merit and blame assignment with KIND 2.

References
[1] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli,

“The Kind 2 model checker,” in Computer Aided Ver-
ification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II (S. Chaudhuri and A. Farzan, eds.), vol. 9780
of Lecture Notes in Computer Science, pp. 510–517,
Springer, 2016.

[2] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming
and verifying real-time systems by means of the syn-
chronous data-flow language LUSTRE,” IEEE Trans.
Software Eng., vol. 18, no. 9, pp. 785–793, 1992.

[3] A. Champion, A. Gurfinkel, T. Kahsai, and C. Tinelli,
“Cocospec: A mode-aware contract language for reactive
systems,” in Software Engineering and Formal Methods
- 14th International Conference, SEFM 2016, Held as
Part of STAF 2016, Vienna, Austria, July 4-8, 2016, Pro-
ceedings (R. D. Nicola and eva Kühn, eds.), vol. 9763
of Lecture Notes in Computer Science, pp. 347–366,
Springer, 2016.

[4] M. Sheeran, S. Singh, and G. Stålmarck, “Checking
safety properties using induction and a sat-solver,” in
Formal Methods in Computer-Aided Design, Third In-
ternational Conference, FMCAD 2000, Austin, Texas,
USA, November 1-3, 2000, Proceedings (W. A. H. Jr.
and S. D. Johnson, eds.), vol. 1954 of Lecture Notes in
Computer Science, pp. 108–125, Springer, 2000.

[5] A. R. Bradley, “Sat-based model checking without un-
rolling,” in Verification, Model Checking, and Abstract
Interpretation - 12th International Conference, VMCAI
2011, Austin, TX, USA, January 23-25, 2011. Proceed-
ings (R. Jhala and D. A. Schmidt, eds.), vol. 6538 of
Lecture Notes in Computer Science, pp. 70–87, Springer,
2011.

[6] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT
solver,” in Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceed-
ings (C. R. Ramakrishnan and J. Rehof, eds.), vol. 4963
of Lecture Notes in Computer Science, pp. 337–340,
Springer, 2008.

[7] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer,
H. Lachnitt, M. Mann, A. Mohamed, M. Mohamed,
A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner,
A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, “cvc5:
A versatile and industrial-strength SMT solver,” in Tools
and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022,
Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, Part I (D. Fis-
man and G. Rosu, eds.), vol. 13243 of Lecture Notes in
Computer Science, pp. 415–442, Springer, 2022.

[8] K. . Developers, The Kind 2 user manual. The Univer-
sity of Iowa, 2022.

[9] R. Könighofer, G. Hofferek, and R. Bloem, “Debugging
formal specifications: a practical approach using model-
based diagnosis and counterstrategies,” Int. J. Softw.
Tools Technol. Transf., vol. 15, no. 5-6, pp. 563–583,
2013.

[10] A. Katis, G. Fedyukovich, H. Guo, A. Gacek, J. Backes,
A. Gurfinkel, and M. W. Whalen, “Validity-guided syn-
thesis of reactive systems from assume-guarantee con-
tracts,” in Tools and Algorithms for the Construction
and Analysis of Systems - 24th International Conference,
TACAS 2018, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings,
Part II (D. Beyer and M. Huisman, eds.), vol. 10806
of Lecture Notes in Computer Science, pp. 176–193,
Springer, 2018.

[11] G. Fedyukovich, A. Gurfinkel, and A. Gupta, “Lazy but
effective functional synthesis,” in Verification, Model
Checking, and Abstract Interpretation - 20th Interna-
tional Conference, VMCAI 2019, Cascais, Portugal, Jan-
uary 13-15, 2019, Proceedings (C. Enea and R. Piskac,
eds.), vol. 11388 of Lecture Notes in Computer Science,
pp. 92–113, Springer, 2019.

[12] D. Larraz and C. Tinelli, “Realizability checking of con-
tracts with kind 2,” CoRR, vol. abs/2205.09082, 2022.

[13] A. Mebsout and C. Tinelli, “Proof certificates for smt-
based model checkers for infinite-state systems,” in 2016
Formal Methods in Computer-Aided Design, FMCAD
2016, Mountain View, CA, USA, October 3-6, 2016
(R. Piskac and M. Talupur, eds.), pp. 117–124, IEEE,
2016.

[14] D. Larraz, M. Laurent, and C. Tinelli, “Merit and
blame assignment with kind 2,” in Formal Methods for
Industrial Critical Systems - 26th International Con-
ference, FMICS 2021, Paris, France, August 24-26,
2021, Proceedings (A. Lluch-Lafuente and A. Mavri-
dou, eds.), vol. 12863 of Lecture Notes in Computer
Science, pp. 212–220, Springer, 2021.

[15] O. Kupferman and M. Y. Vardi, “Vacuity detection in
temporal model checking,” Int. J. Softw. Tools Technol.
Transf., vol. 4, no. 2, pp. 224–233, 2003.

Ada User Jour na l Vo lume 44, Number 1, March 2023

48 Beyond Model Check ing of Idea l ized Lust re in K I N D 2

[16] H. Chockler, D. Kroening, and M. Purandare, “Cover-
age in interpolation-based model checking,” in Proceed-
ings of the 47th Design Automation Conference, DAC
2010, Anaheim, California, USA, July 13-18, 2010 (S. S.
Sapatnekar, ed.), pp. 182–187, ACM, 2010.

[17] E. Ghassabani, A. Gacek, M. W. Whalen, M. P. E. Heim-
dahl, and L. G. Wagner, “Proof-based coverage met-
rics for formal verification,” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017 (G. Rosu, M. D. Penta, and T. N.
Nguyen, eds.), pp. 194–199, IEEE Computer Society,
2017.

[18] A. Murugesan, M. W. Whalen, E. Ghassabani, and
M. P. E. Heimdahl, “Complete traceability for require-
ments in satisfaction arguments,” in 24th IEEE Interna-
tional Requirements Engineering Conference, RE 2016,
Beijing, China, September 12-16, 2016, pp. 359–364,
IEEE Computer Society, 2016.

[19] K. Siu, A. Moitra, M. Li, M. Durling, H. Herencia-
Zapana, J. Interrante, B. Meng, C. Tinelli, O. Chowd-
hury, D. Larraz, et al., “Architectural and behavioral
analysis for cyber security,” in 2019 IEEE/AIAA 38th
Digital Avionics Systems Conference (DASC), pp. 1–10,
IEEE, 2019.

[20] D. Stewart, J. J. Liu, M. W. Whalen, D. Cofer, and
M. Peterson, “Safety annex for the architecture analysis
and design language,” 2020.

[21] E. Ghassabani, A. Gacek, and M. W. Whalen, “Effi-
cient generation of inductive validity cores for safety
properties,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016 (T. Zimmermann, J. Cleland-Huang, and
Z. Su, eds.), pp. 314–325, ACM, 2016.

[22] D. Larraz, M. Laurent, and C. Tinelli, “Merit and blame
assignment with kind 2,” CoRR, vol. abs/2105.06575,
2021.

Volume 44, Number 1, March 2023 Ada User Jour na l

49

An AADL Contract Language Supporting
Integrated Model- and Code-Level Verification

John Hatcliff
Kansas State University, Department of Computing and Information, USA; email: hatcliff@ksu.edu

Danielle Stewart
Galois, Inc., USA; email: danielle@galois.com

Jason Belt
Kansas State University, Department of Computing and Information, USA; email: belt@ksu.edu

Robby
Kansas State University, Department of Computing and Information, USA; email: robby@ksu.edu

August Schwerdfeger
Galois, Inc., USA; email: august.schwerdfeger@galois.com

Abstract

Model-based systems engineering approaches support
the early adoption of a model – a collection of abstrac-
tions – of the system under development. The system
model can be augmented with key properties of the sys-
tem including formal specifications of system behavior
that codify portions of system and unit-level require-
ments. There are obvious gaps between the model with
formally specified behavior and the deployed system.
Previous work on component contract languages has
shown how behavior can be specified in models defined
using the Architecture Analysis and Design Language
(AADL) – a SAE International standard (AS5506C).
That work demonstrated the effectiveness of model-level
formal methods specification and verification but did not
provide a strong and direct connection to system imple-
mentations developed using conventional programming
languages. In particular, there was no refinement of
model-level contracts to programming language-level
contracts nor a framework for formally verifying that
program code conforms to model-level behavioral spec-
ifications.

To address these gaps and to enable the practical ap-
plication of model-contract languages for verification
of deployed high-integrity systems, this paper describes
the design of the GUMBO AADL contract language that
integrates and extends key concepts from earlier con-
tract languages. The GUMBO contract language (GCL)
is closely aligned to a formal semantics of the AADL
run-time framework, which provides a platform- and
language- independent specification of AADL semantics.
We have enhanced the HAMR AADL code generation
framework to translate model-level contracts to pro-
gramming language-level contracts in the Slang high-

integrity language. We demonstrate how the Logika ver-
ification tool can automatically verify that Slang-based
AADL component implementations conform to contracts,
both at the code-level and model-level. Slang-based im-
plementations of AADL systems can be executed directly
or compiled to C for deployments on Linux or the seL4
verified microkernel.

Keywords: Program verification, model-based system
engineering, formal methods.

1 Introduction
Over the last few decades, significant advancements in Model-
Based Systems Engineering (MBSE) approaches, including
modeling languages, model-level analyses, simulation, and
code generation have improved the ability to design and de-
ploy complex critical systems. Within the broader model-
ing space, the Architecture Analysis and Design Language
(AADL) is distinguished by its relatively strong semantic
emphasis (compared to other modeling languages like UML
and SysML) and by its ecosystem of analysis tools that lever-
age that semantics. Tools that generate code from AADL
models such as Ocarina [1], RAMSES [2], and HAMR [3]
are helping fulfill the AADL community’s MBSE visions by
supporting the deployment of critical systems derived directly
from models.

Due to in part to the AADL’s strong semantics, researchers
have developed formal model-based behavior specification
and verification techniques. In particular, AADL compo-
nent contract languages such as AGREE [4] and BLESS [5]
have illustrated how system requirements can be refined into
system and component-level formal specifications based on
propositional and first-order logic.

Despite this progress, there are still gaps in the AADL MBSE
vision related to deeply integrating behavioral specifications

Ada User Jour na l Vo lume 44, Number 1, March 2023

50 AADL Cont rac t Language for Model - and Code-Leve l Ver i f i ca t ion

[6] at the model and code level. In recent years there has
been significant progress on developing highly automated
code-level verification tools including those for high-integrity
languages such Spark Ada [7] and Frama-C [8], as well as
program checking tools for general purpose languages in-
cluding Java, C, C#, Rust, etc. However, both AGREE and
BLESS analyses apply to the model-level and only address
thread behavior specifications based on rather abstract nota-
tions (Lustre-based notations for AGREE, and state transition
notations for BLESS). Given that the AADL has a significant
vision related to code generation in the standard, including
a code generation annex, descriptions of thread code orga-
nization (thread entry points), and descriptions of run-time
libraries that implement foundational thread dispatching and
communication steps, a stronger connection between model-
level contract languages and code-level contract languages
would be a significant step forward in further developing the
AADL MBSE vision.

In this paper, we address these gaps by presenting an AADL
contract language that can be utilized by AADL code gen-
eration to produce application source code with code-level
contracts derived from model-level contracts. This required us
to reorient concepts from both AGREE and BLESS to better
align with notions of AADL thread entry points and AADL
Application Programming Interfaces (APIs) associated with
AADL’s run-time services.

The contributions of this paper are as follows.

• We defined and implemented the AADL GUMBO1 con-
tract language (GCL) as an AADL annex, and we imple-
mented full editing support for the GUMBO Contract
Language (GCL) in the AADL OSATE IDE.

• We extended HAMR’s multi-platform AADL code gen-
erator to automatically extract contracts from AADL
models and weave them into the HAMR-generated code
skeletons in the Slang high-integrity subset of Scala [9].

• We illustrated how the Logika-powered Sireum Inte-
grated Verification Environment (IVE) for Slang can
support contract reasoning at the code level, and that
Logika can be used by engineers to verify that their
thread implementations conform to contracts both at the
code and model-level [10].

The framework described in this paper is included in the
publicly available, open source High Assurance Modeling
and Rapid engineering framework (HAMR) distribution [11].
A GitHub repository [12] provides the examples discussed in
this paper, along with additional examples that illustrate the
features of the contract language at both model- and source-
code levels.

1This material is based upon work supported by the U.S. Army Combat
Capabilities Development Command, Aviation and Missile Center, under
Contract No. W911W6-20-C-2020: Grand Unified Modeling of Behavioral
Operators.

2 Background Concepts
AADL: SAE International standard AS5506C [13] defines
the AADL core language for expressing the structure of em-
bedded real-time systems via definitions of software and hard-
ware components, their interfaces, and their communication.
The AADL provides a precise, tool-independent, and stan-
dardized modeling vocabulary of common embedded soft-
ware and hardware elements using a component-based ap-
proach [14]. The AADL standard also describes Run-Time
Services (RTS) – a collection of run-time libraries that pro-
vide key aspects of threading and communication behavior.
A major subset of the Run-Time Services has been formal-
ized and a reference implementation has been developed [15],
and we have designed our contract language and associated
translation to code-level contracts with these definitions in
mind.

HAMR: The HAMR framework generates code from AADL
models for multiple execution platforms [3]. This includes
generating threading, port communication, and scheduling
infrastructure code that conforms to AADL run-time seman-
tics as well as application code skeletons that engineers fill
in to complete the behavior of the system. For the JVM plat-
form, HAMR generates code in Slang [9], a high-integrity
subset of Scala, which can be integrated with support code
written in Scala and Java. Mixed Slang/Scala-based HAMR
systems can also be translated to JavaScript (e.g., for simu-
lation and prototyping) and run in a web browser or on the
NodeJS platform. HAMR generates C infrastructure and ap-
plication skeletons when targeting Linux and the seL4 micro-
kernel [16]. Slang can be transpiled to C, and HAMR factors
its C code through a Slang-based “reference implementation”
of the AADL run-time and application code skeletons. Us-
ing the Logika verification framework for Slang (described
below), Slang code can be verified with a high-degree of au-
tomation. This provides a basis for developing high-assurance
AADL-based systems using Slang directly or via translation
of Slang to C. C code transpiled from Slang can be compiled
using standard C compilers, as well as the CompCert Verified
C compiler [17].

Logika: Logika is a highly automated program verifier for
Slang [10]. Slang’s integrated contract language enables
developers to formally specify method pre/post-conditions,
data type invariants, and global invariants for global states.
Verification of code conformance to contracts is performed
compositionally and employs multiple back-end solvers in
parallel, including Alt-Ergo [18], CVC4 [19], CVC5 [20],
and Z3 [21]. The scalability of Logika is complemented
by using incremental and parallel (distributable) verification
algorithms. For situations where automated solvers cannot
provide full verification, Slang includes an extensible proof
language directly integrated with the programming language
that Logika checks. Verification results, developer feedback
on verification status, and contract/proof editing are supported
in the Sireum Integrated Verification Environment (IVE) – a
customization of the popular IntelliJ Integrated Development
Environment (IDE).

The code-level contracts for the method include a Requires
clause (pre-conditions), an Ensures clause (post-conditions),

Volume 44, Number 1, March 2023 Ada User Jour na l

Hatc l i f f e t a l . 51

and a Modifies clause (frame conditions). Within the IVE, the
developer can access program state/verification conditions
and solver interactions.

The Logika verification engine uses asynchronous communi-
cations between the plugin client and tool server. This enables
a seamless, on-the-fly integration similar to static type check-
ing analysis usually offered by IDEs. Logika’s main usability
features include an as-you-type well-formedness analysis and
verification of Slang programs by sending the checking tasks
to a background server process, and visualizations of various
helpful feedback propagated from the server as responses of
the verification requests.

Example: This section presents a small example that we use
for illustration.

Figure 1: Temperature Control Example – AADL Graphical
View

Figure 1 presents the AADL graphical view for a simple
temperature control system that maintains a temperature ac-
cording to a set point containing high and low bounds for
the target temperature. The periodic tempSensor thread
measures the temperature and transmits the reading on its
currentTemp data port. It sends a notification on its
tempChanged event port if it detects that the temperature
has changed since the last reading. When the sporadic (event-
driven) tempControl thread receives a tempChanged
event, it reads the value on its currentTemp data port and
compares it with the most recent set point. If the current
temperature exceeds the high set point or drops below the low
set point, the fan is turned on or off respectively. In turn, the
fan acknowledges these commands.

Typical Workflow: Given a collection of system require-
ments, AADL is used to develop a system architecture. As
system requirements are refined to component-level require-
ments, the GCL is used to formally specify behavioral prop-
erties on component interfaces as well as system-level prop-
erties. Construction of the GCL specifications is interleaved
with other AADL analyses for error modeling (hazard analy-
sis), timing and schedulability analysis, and information flow
analysis. Logika is used to verify compatibility of contracts
at composition points as well as system model properties.
When the architecture stabilizes, HAMR is used to generate
the initial build infrastructure, AADL run-time code, and ap-
plication code skeletons with model-level contracts translated
down to code contracts. The IVE supports development of the
AADL thread components using Slang, which also provides
conventional unit and system testing. Logika is applied to ver-
ify that thread implementation conform to interface contracts.
Verified Slang-based thread implementations can be executed
with the HAMR AADL run-time on the JVM or translated to
Javascript for simulation/visualization. As requirements and
model-level GCL specifications change, HAMR can be re-
run to update application code skeletons and contracts while

preserving existing code. Slang implementations can be tran-
spiled to C and deployed on Linux or the seL4 microkernel
(to support strong spatial and temporal partitioning). The ex-
ample used in this paper was completed using this workflow
and deployed on the JVM, Javascript, Linux, and seL4. Simi-
lar HAMR workflows were used, e.g., on the DARPA CASE
program for mission control software for military helicopters.

3 Modeling Language Elements
There are four categories of contracts in the GCL: integration
constraints, data invariants, entry point contracts, and state
variables. Space constraints do not permit a detailed explana-
tion of each, but important concepts of these categories are
presented in Figure 2, which we refer to in the subsequent
sections.

Figure 2: Categories of contracts and how they fit into infras-
tructure code.

Integration Constraints: Integration constraints are the
most simple conceptually and are likely the first to be used
by engineers in typical workflows. The purple blocks in
the concept graphic of Figure 2 indicate that each integra-
tion constraint pertains to a single port and specifies prop-
erties that must hold for any value passing through the port.
They also enable engineers to specify constraints on port
values that must be satisfied when components are inte-
grated by connecting one port to another. The integration
constraint shown below specifies a requirement on the us-
age of the currentTemp input data port of the tempera-
ture control thread: for any sender component S with out-
put port po that is connected to (uses) the currentTemp
port, the degrees field of all Temperature.i values
flowing into the port must lie within the indicated range.
TC-Assume-01 is a unique label within the declaring com-
ponent (TempControl) that is used for traceability. The
optional string "Current temperature range” pro-
vides a longer human-readable description of the constraint
that can be used in reporting. The f32".." is the current
syntax within our prototype for specifying typed literals.2

integration
assume TC-Assume-01 "Current temperature range":

currentTemp.degrees >= f32"-70.0"
& currentTemp.degrees <= f32"180.0";

2Ideally, the expression syntax used in contracts would be aligned with
the envisioned AADL V3 expression language syntax. However, since the
AADL V3 expression language and type system has not been developed yet,
for simplicity of implementation, we have chosen to use Slang expressions
and types in the contract grammar. Our implementation pipeline is designed
to easily change the front-end concrete syntax for contracts as plans for the
future of the AADL become more clear.

Ada User Jour na l Vo lume 44, Number 1, March 2023

52 AADL Cont rac t Language for Model - and Code-Leve l Ver i f i ca t ion

The listing below shows an integration constraint on the
TempSensor currentTemp output port. This specifies
the valid operating temperature range for the sensor.

integration
guarantee Sensor_Temperature_Range:

currentTemp.degrees >= f32"-50.0"
& currentTemp.degrees <= f32"150.0";

Intuitively, the integration of TempSensor to
TempControl for the respective currentTemp
ports is valid (i.e., the connected output and input
ports are compatible) because any temperature value
flowing out of the TempSensor that satisfies the
Sensor_Temperature_Range constraint will satisfy
the TempControl TC-Assume-01 constraints.

In the underlying verification framework, the connection of
any output port to input port gives rise to a verification obli-
gation requiring evidence that any value flowing from a con-
nected output port will satisfy any stated integration con-
straints on the input port. From a work flow perspective, this
can be understood as part of the component integration ac-
tivity. When the application logic of components are coded
and verified as part of the component development activity,
the verification framework requires evidence that all values
placed in the output port by the code satisfy the output port in-
tegration constraints (i.e., guarantee). For input ports, the
verification activity can assume any value flowing in from a
component port will satisfy the integration constraints on the
input port (since this must be guaranteed in the component
integration activity as described above).

The concepts described above represent conventional “as-
sume/guarantee” reasoning for component frameworks, and
both AGREE and BLESS have analogous concepts. We have
adopted the syntactic style of AGREE with the assume and
guarantee keywords. For BLESS, integration constraints
are a restricted form of BLESS port assertions. A key dif-
ference in the GCL is that integration constraints are distin-
guished from entry point contracts that specify input/output
relationships – functional behavior of component implemen-
tations. These distinct concepts are handled using the same
syntactic form in AGREE (assume/guarantee clauses) and
BLESS (port assertions). Our rationale for having them in
separate syntactic categories is explained in the discussion of
entry point contracts.

Data Invariants: Requirements often specify invariants to en-
sure that data flowing through a system is well-formed — e.g.,
a temperature cannot be less than absolute zero, a timestamp
that must be in 24-hour format. An invariant can also specify
a well-formedness condition on a composite data structure.
To support formal specification, what is needed in all these
situations is the ability to associate a constraint representing
an invariant with a datatype. The GCL supports the ability to
add an invariant to any user-defined type specified using the
Data Modeling Annex, a conventional notation in the AADL
for defining data types.

The code snippet below shows a GCL invariant defined for
the SetPoint data type. Bounds are defined for the low
and high temperature values. Then a relational constraint

specifies that the set point degrees of low is always less
than or equal to that of high.

data SetPoint
properties Data_Model::Data_Representation =>

Struct;
end SetPoint;
data implementation SetPoint.i
subcomponents
low: data TempSensor::Temperature.i;
high: data TempSensor::Temperature.i;

annex GUMBO {**
invariants
inv SetPoint_Data_Invariant:
(low.degrees >= f32"50.0") & (high.degrees <

= f32"110.0")
& (low.degrees <= high.degrees);

**};
end SetPoint.i;

In the underlying verification framework, everywhere a data
value whose type has an associated invariant is passed or ac-
cessed, the fact that the value satisfies the invariant can be
accepted as a premise. For this to be sound, at each point
where a value of the type is created or updated, there is a
verification obligation to show that the invariant holds. In re-
lation to the other contract categories, whereas an integration
constraint applies to a specific port, a data invariant on type
T is relevant for any port whose type uses or includes type
T . As indicated by Figure 2, the effective constraints on ports
include both integration constraints and data invariants asso-
ciated with types on the ports. For any such input port, the
invariant can be assumed for values retrieved from the port;
for any such output port, there is a verification obligation to
show that the invariant holds before sending the data through
the port.

AGREE and BLESS specification languages do not support
the notion of a data invariant on Data Model Annex specifi-
cations. However, it seems straightforward to add this useful
feature both to the specification languages and the underlying
verification frameworks.

Entry Points Contracts: The AADL standard specifies that
a thread’s application code is organized into entry points as
illustrated in Figure 2. The Initialize entry point is called once
during the system’s initialization phase and the Compute entry
point is called repeatedly for the thread’s normal dispatching.3

In addition to reading from and writing to ports, the thread
application code may use local state variables whose values
persist between entry point executions to perform computa-
tions and save previous port readings. Not every local state
variable is relevant for a component’s externally specified
behavior. For those that are, the GCL provides a declara-
tion clause to make the variables available for reference in
entry point contracts (center of Figure 2). For example, a
state variable currentFanState can be defined in the
tempControl thread to store the most recent command
sent to the fan:

state:
currentFanState: CoolingFan::FanCmd;
currentSetPoint: SetPoint.i;
latestTemp: TempSensor::Temperature.i;

3AADL includes other entry points for finalization, performing mode
changes, etc. These are not yet supported in HAMR code generation or our
contract language.

Volume 44, Number 1, March 2023 Ada User Jour na l

Hatc l i f f e t a l . 53

A thread’s initialize entry point typically includes code to
initialize thread local variables and to put initial values on
output ports. The listing below shows excerpts of a GCL
contract for the TempControl initialize entry point.

initialize
modifies currentSetPoint, currentFanState,

latestTemp;
guarantee defaultSetPoint:

(currentSetPoint.low.degrees == f32"70.0") &&
(currentSetPoint.high.degrees == f32

"80.0");
...

A modifies clause is used to specify the variables that may
be modified during entry point execution. A guarantee
clause is used to specify properties that a variable value must
satisfy at the completion of the entry point (similar clauses
for currentFanState and latestTemp are omitted).
In the contract for the TempSensor initialize entry point
below, the value that the currentTemp output port must
have at the completion of the entry point is specified.

initialize
guarantee currentTempPortInitialVal:

currentTemp.degrees == f32"72.0";

Initialize entry point contracts cannot have assume clauses
since the purpose of the entry point is to initialize (no as-
pects of pre-state, including input ports or variable values, are
allowed to be read).

A periodic thread component’s compute entry point is in-
voked at intervals corresponding to the thread’s declared pe-
riod, whereas a sporadic thread’s is invoked upon arrival of
a message to event or event data input ports.4 The GCL
provides several contract variants for compute entry points.
The most significant departure from AGREE or BLESS is
that sporadic threads may have clauses that apply to all
dispatches of the thread (i.e., they apply no matter what
event triggers a dispatch), and then additional clauses can
be added to specify behaviors that apply on the arrival of mes-
sages on specific ports. Excerpts from the TempControl
compute entry point contract illustrate two clauses that con-
strain the post-state values of the thread’s latestTemp,
currentSetPoint, and currentFanState state vari-
ables regardless of whether the entry point is triggered by the
arrival of, e.g., the tempChanged event or the setPoint
message. (Note: in the listing below, the symbol ->: is an
implication.)

compute
modifies currentSetPoint, currentFanState,

latestTemp;

guarantee TC_Req_01:
latestTemp.degrees < currentSetPoint.low.

degrees
->: currentFanState == CoolingFan::
FanCmd.Off;

guarantee TC_Req_02:
latestTemp.degrees > currentSetPoint.high.

degrees
->: currentFanState == CoolingFan::
FanCmd.On;

...

4An AADL model can be configured to allow exceptions to this general
rule, but we omit discussions of these special cases since they do not impact
the design of our overall approach.

Using the GCL’s handle clause, one can specify additional
constraints that apply only when the thread is dispatched by
the arrival of an event on a particular port. The contract ex-
cerpt below specifies that at the completion of the compute en-
try point when the thread is dispatched due a tempChanged
event, the latestTemp local variable will be equal to the
value of the currentTemp input data port at the time of
dispatch.

handle tempChanged:
modifies latestTemp;

guarantee tempChanged:
latestTemp == currentTemp;

The GCL also introduces a contract variant that supports
case-based reasoning. Consider a variant of the temperature
control system in which the TempControl thread is peri-
odic with currentTemp and setPoint input data ports
and a fanCmd output data port.

compute
modifies latestFanCmd;
cases

case TC_Req_01:
assume currentTemp.degrees < setPoint.low.

degrees;
guarantee (latestFanCmd == CoolingFan::

FanCmd.Off)
& (fanCmd == CoolingFan::

FanCmd.Off);
case TC_Req_02:

assume currentTemp.degrees > setPoint.high.
degrees;

guarantee (latestFanCmd == CoolingFan::
FanCmd.On)

& (fanCmd == CoolingFan::
FanCmd.On);

...

The contract excerpt above uses the cases clauses to specify,
e.g., that when the currentTemp is less than the low set
point at the time of dispatch, then at the completion of the
entry point execution, the state variable latestFanCmd
and the output port fanCmd are Off.

In the underlying semantics, due to the AADL dispatch se-
mantics and notion of input port freezing, the compute entry
point can be understood as a function from port input values
and local state variables to output port values and possibly up-
dated local state variables. Assume clauses place constraints
on the input state, and guarantee clauses state constraints on
the output state, sometimes referencing the input state. For ex-
ample, guarantee clauses can reference the input values of
state variables using an In(<varName>) construct as well
as the values of input ports. The GCL entry point contracts
can also include invariant clauses for state variables that
hold for both initialize and compute entry points. Constructs
are also available to reason about the absence or presence
of events/messages on event and event-data ports. There
are several minor well-formedness conditions that space con-
straints prevent us from enumerating completely. For exam-
ple, assume clauses cannot appear in an Initialize entry point
contract because there is no valid pre-state to refer to before
the initialization occurs, and assume clauses cannot refer to
output ports.

The GCL entry point contract notation was designed to be
similar to AGREE, however, GCL includes a number of new

Ada User Jour na l Vo lume 44, Number 1, March 2023

54 AADL Cont rac t Language for Model - and Code-Leve l Ver i f i ca t ion

concepts. AGREE was originally designed to support syn-
chronous systems whose foundations were expressed in Lus-
tre, and thus it does not have distinct initialize and compute
contract forms aligned with AADL standard’s entry point con-
cepts. BLESS does not have distinct Initialize and Compute
contracts due to its ties to behavioral specifications written in
the AADL Behavioral Annex, which does not separate state
machine behavior into separate entry points. The convenience
notation for cases is not present in AGREE or BLESS.

4 Model Contracts to Code Contracts
4.1 Code Generation Overview
A detailed overview of HAMR code generation and how code
for component application logic is integrated with HAMR’s
AADL run-time libraries is given in [3] (focusing on Slang
code generation) and [22] (focusing on C code generation).

For each thread component, HAMR generates code that pro-
vides an execution context for a real-time task. This includes:
(a) infrastructure code for linking application code to the
platform’s underlying scheduling framework, implementing
storage associated with ports, and realizing the semantics as-
sociated with event and event-data ports, and (b) templates for
developer-facing code including port APIs. Representations
of the GCL contracts are woven into code (b).

To support semantic consistency for code generation across
multiple languages and platforms, HAMR generates code in
stages. A platform-independent implementation of the AADL
Run-Time Services (RTS) is generated. HAMR specifies the
API and aspects of RTS in Slang and then uses Slang ex-
tensions in Scala and C to implement platform-dependent
aspects. As mentioned previously, there are multiple sup-
ported back-end targets including seL4 and Linux.

For the work in this paper, we focus on Slang. The GCL
contracts are translated to Slang contracts, and Slang imple-
mentations of thread component application logic are verified
to conform to the contracts. In addition to enabling veri-
fied Slang-based AADL system implementations, HAMR
can already translate formally verified Slang-based compo-
nent implementations to C, yielding high-assurance C-based
deployments which can be compiled and executed on the
seL4 formally verified microkernel. We believe that the same
strategies that we use to inject representations of the GCL
contracts into Slang could be used to inject contracts into
the generated C code, e.g., for verification using a tool like
Frama-C [8]. This could be used to provide further assur-
ance of the Slang-to-C transpiler correctness. Alternatively,
it can be used to support verification of HAMR systems in
workflows that focused on writing C application code directly
instead of coding at the Slang level.

At the front-end of the translation pipeline, we have extended
the HAMR AADL Intermediate Representation (AIR) to in-
clude representations of the GCL contracts. This JSON-based
representation enables us to support multiple modeling lan-
guages and environments. Currently, the GCL is implemented
with full IDE support (type-checking, error reporting, code
completion, etc.) as a plug-in for the AADL Eclipse-based
Open Source AADL Tool Environment (OSATE) plug-in. Al-
though the GCL is currently implemented as an AADL annex,

it is external to the HAMR framework itself, and using the
language-independent AIR gives us a mechanism to support
multiple modeling languages, e.g., SysMLv2.

4.2 Translated Contracts
Integration Constraints: According to the principles intro-
duced in Section 3, any value moving through a port must
satisfy the integration constraints associated with the port.
HAMR code generation generates dedicated APIs for putting
and getting values to/from each port. Thus, a natural strategy
for realizing integration constraints at the code level is to
add code contracts that: (a) require the value to be placed
in an output port satisfies the associated constraints as pre-
conditions to the put method, and (b) ensure the value to be
retrieved from an input port satisfies the associated constraints
as post-conditions.

For example, for the currentTemp input port in the
TempControl thread, HAMR auto-generates: (a) a Slang
representation of the predicate corresponding to the declared
integration constraint, and (b) a contract on the get API that
guarantees that the value retrieved satisfies the predicate.

// Auto-generated Slang predicate corresponding to
// currentTemp input port’s Integration Constraint
@strictpure def currentTemp_ICPred(x:TempSensor.

Temperature_i): B =
-70.0f <= x.degrees & x.degrees <= 180.0f

// Auto-gen API for retrieving value from
currentTemp input port

def get_currentTemp(): Option[TempSensor.
Temperature_i] = {

Contract(
Ensures(currentTemp_ICPred(currentTemp),

Res == Some(currentTemp))
)
...(infrastructure code)...
return value

}

For the corresponding sender side in the TempSensor, an
analogous predicate is generated for the output port inte-
gration constraint, and the put method uses that in a pre-
condition to ensure that all values placed on the port satisfy
the constraint. Behind the scenes, the translation introduces
Logika spec variables to provide a logical representation
for the state of each port. Contract aspects that operate on
ports (including the get and put methods above) use special
spec clauses to read and update the port state abstractions
during the flow of deductions in the verification.

// Auto-gen Slang predicate corresponding to
// currentTemp output port’s Integration Constraint
@strictpure def currentTemp_ICPred(x:TempSensor.

Temperature_i): B =
x.degrees >= -50.0f & x.degrees <= 150.0f

// Auto-generated API for putting value on
currentTemp output port

def put_currentTemp(value : TempSensor.
Temperature_i) : Unit = {

Contract(
Requires(currentTemp_ICPred(value))

)
...(infrastructure code)...

}

A key concept in this strategy is that the API methods serve
as an abstraction for the underlying inter-component com-
munication (specified via the AADL run-time services [15]).

Volume 44, Number 1, March 2023 Ada User Jour na l

Hatc l i f f e t a l . 55

Verifying that the infrastructure code is correct is not the fo-
cus of the verification being presented here. Rather, when a
HAMR back-end is developed for a new platform, there is an
obligation within the overall assurance case to demonstrate
that the platform implementation correctly implements the
AADL run-time communication services. This assurance ef-
fort is carried out once, and then each application built using
the platform relies on the previously developed assurance.
This allows component developers and system integrators to
focus on verifying that component implementations and their
abstract connections conform to component and system level
requirements (formalized in part, using the GCL contracts).
We have other lines of work on formalizing the semantics of
the AADL run-time services, establishing the conformance
of platform implementations to those semantics, establishing
the soundness of the contract framework verification condi-
tions against the semantics, etc. Therefore, when the contract
verification framework is applied to a HAMR code base, the
implementations of the APIs presented above are not veri-
fied against their contracts. Instead, the contracts are used in
the checking of client code (calls to the APIs) following the
usual approach for dealing with library methods in contract
verification frameworks.

The verification framework applied to the client code verifies
that for calls to put methods, the argument (e.g., temp)
satisfies the precondition of put which is derived from the
port’s integration constraint.

api.put_currentTemp(temp)

Correspondingly, in the receiver client code of
TempControl thread,

latestTemp = api.get_currentTemp().get // .get
always succeeds

// latestTemp inherits constraint assumptions
// from currentTemp port integration constraints

the return value from the get inherits constraints on the
input currentTemp port based on the get post-condition
(i.e.,
-70.0f <= tempControl.degrees and
tempControl.degrees <= 180.0f).

To verify the compatibility of integration constraints of con-
nected ports, a Slang script is generated that uses Slang proof
constructs to establish the associated entailment. For exam-
ple, for the connection above, the following script fragment
states the desired integration property: for all values v of type
Temperature_i, v satisfies integration constraint of the
receiving port, under the assumption that it satisfies the inte-
gration constraint of the sending port. These proof scripts are
verified by Logika “behind the scenes”. More complicated
forms of scripts are generated to reflect the composition of
component entry points within a particular scheduling regime.

// tempSensor.currentTemp --> tempControl.
currentTemp

@pure def SensorCurrentTemp_TempControlCurrentTemp(
v:

Temperature_i
): Unit
= {

Deduce(TempSensor_i_Api.currentTemp_ICPred(v) |-
TempControl_i_Api.currentTemp_ICPred(v))

}

Data Invariants: HAMR translates each model-level
datatype defined according to the AADL Data Model An-
nex into a Slang datatype. GCL datatype invariants are auto-
matically translated to corresponding Slang datatypes using
Slang’s type invariant mechanism.

@datatype class SetPoint_i(val low: TempSensor.
Temperature_i,

val high: TempSensor.
Temperature_i) {

// Slang datatype invariant
@spec def SetPoint_Data_Invariant = Invariant(

low.degrees >= 50.0f & high.degrees <= 110.0f &
low.degrees <= high.degrees)

}

Slang @datatype structures are immutable, and compiler
optimizations allow them to be used efficiently for embed-
ded code. In the Logika framework, each time the datatype
constructor is used, there is a verification obligation to show
that the supplied fields satisfy the invariant. Whenever the
datatype is used, the verification framework can safely assume
that the invariant holds. This achieves the GCL model-level
semantics for datatype invariants.

Entry Point Contracts: Local state variables, state variable
invariants, and all entry point contracts are automatically
inserted into the thread component application code. Due to
space constraints, we show only excerpts of the contract for
the tempChanged handler of the TempControl thread.

def handle_tempChanged(api:
TempControl_s_Operational_Api): Unit = {

Contract(
Modifies(

// BEGIN COMPUTE MODIFIES tempChanged
currentSetPoint, currentFanState,

latestTemp,
// END COMPUTE MODIFIES tempChanged

),
Ensures(

// BEGIN COMPUTE ENSURES tempChanged
// guarantee TC_Req_01
(latestTemp.degrees < currentSetPoint.low.

degrees)
->: (currentFanState == CoolingFan.
FanCmd.Off),

// guarantee TC_Req_02
(latestTemp.degrees > currentSetPoint.high.

degrees)
->: (currentFanState == CoolingFan.
FanCmd.On),

...
latestTemp == api.currentTemp
// END COMPUTE ENSURES tempChanged

)
)
...(user-supplied application logic)...

}

For sporadic threads, the HAMR structure for the Compute
entry point is a collection of event handlers. The listing above
shows that the GCL handler-independent TempControl
compute modifies declarations and guarantees are in-
jected directly into the Slang handle_ method. Then the
handler-specific constraint on latestTemp is added as ap-
propriate for this handler. This last clause constrains the
latestTemp state variable in the post-state to be equal
to the Logika spec variable api.currentTemp represent-
ing the abstract state of the currentTemp input data port.
There is an implicit conjunction for the Ensures clauses.

Ada User Jour na l Vo lume 44, Number 1, March 2023

56 AADL Cont rac t Language for Model - and Code-Leve l Ver i f i ca t ion

Contract Weaving: As the model goes through itera-
tions of development, HAMR supports this by partial code-
regeneration. One may regenerate into the same directory
and HAMR will only make the changes in the code reflecting
changes in the model and contracts. To avoid overwriting
developer code upon contract changes at the model level,
HAMR inserts comments to indicate where contracts begin
and end (e.g., // BEGIN INITIALIZES MODIFIES).
When code is regenerated, HAMR will parse the target code
file, locate markers indicating contract blocks, and weave in
updated contracts within the delimited regions. This supports
iterative model and code development without the cost of
overwriting developer-added application code in the thread
implementations.

Code-level Verification: For our example system, Logika is
able to verify that the Slang code for the thread entry points
conforms to the contracts (including data invariants, etc.) in
just a few seconds.

Figure 3: Slang implementation of Initialize entry point code in
Logika IVE

Figure 3 shows the code for the tempControl thread Ini-
tialize entry point and associated IVE verification annotations.
The developer has filled in the implementation code, and the
auto-generated contracts for the example are verified as evi-
denced by the Logika Verified banner at the bottom right of
the figure. Logika incremental checking provides on-the-fly
verification response as code is typed/edited. These capa-
bilities were demonstrated in a video presentation (e.g., that
shows checking of systems using a served-based parallelized
checking using an 80-core server) at an industrial engagement
event in January 2022 5. In addition to the example discussed
in this paper, we have specified and verified contracts for a
simple Isolette infant incubator medical device control sys-
tem as well as high-integrity-oriented system components
including voter-based sensor banks.

5 Related Work
The most closely related works are the AGREE and BLESS
AADL contract frameworks. AGREE originally targeted

5Video available at https://bit.ly/tccoe22-logika

AADL models that emphasized dataflow with synchronous
communication based on Lustre as an underlying computa-
tional model. Thus, AGREE most naturally handles thread
components with data ports and with timing and state aspects
aligned with Lustre. Component behaviors can be specified
using equations relating inputs to outputs as well as more
complex behaviors based on Lustre-inspired “node” blocks.
Model-level verification is supported by the JKind model-
checking framework, with the most common notions of veri-
fication being compatibility of guarantee/assume clauses on
port connections, conformance of composed contracts on
networks of sub-components to contracts on an enclosing
component and verification of composed component behavior
against equation-oriented property specifications. Recently
AGREE has added support for events and static scheduling
(similar to the strategy that we use, as needed to support
seL4). In addition, “fold”-operations were added to support
processing of inductively defined data types. AGREE specifi-
cation and checking is supported by an OSATE plug-in that
includes detailed reporting of verification status of claims and
counter-examples. All fixed-width data types in AGREE are
currently approximated using unbounded integers and reals.
AGREE has had a strong influence within the AADL commu-
nity, particularly in getting industrial users to understand the
benefits of assume/guarantee specifications for component
interfaces and the usefulness of automated formal methods.
In our language design, we try to maintain these qualities
while shifting the focus from the dataflow paradigm to the
general tasking/communication primitives of AADL and to
supporting integrated code level checking.
The BLESS contract language focuses on AADL thread com-
ponents whose implementations are defined using an exten-
sion of AADL’s Behavior Annex (BA) state transition no-
tation. Typical verification activities include: (a) proving
that a BLESS transition system for a thread (perhaps anno-
tated with assertions) conforms to its interface specification,
and (b) proving that the composition of thread components
satisfies end-to-end system properties. The BLESS OSATE
plug-in supports editing of BLESS artifacts and coordination
of verification activities. BLESS emphasizes a custom-built
manual proof framework. Verification conditions are gener-
ated from interface specifications and transition systems, and
then BLESS proof scripts apply proof rules to discharge the
verification conditions. Building proof scripts requires sig-
nificant additional effort on the part of developers compared
with AGREE, but this approach supports more expressive
specifications, verification of stronger properties, and detailed
auditable evidence of property satisfaction. The more ex-
pressive specifications include rich notions of timing. Due
to the ties to the AADL BA, compared to AGREE, BLESS
more naturally supports AADL notions of event-based com-
munication and complex event-oriented dispatch conditions.
BLESS has been used to verify properties of complex em-
bedded systems including pacemakers [5] and PCA infusion
pumps [23]. GCL is less expressive than BLESS with respect
to timing. In our language design, we have adopted many of
BLESS’s general verification condition principles and deduc-
tive structuring while emphasizing verification automation
using automated solvers (using Slang manual proof steps only

Volume 44, Number 1, March 2023 Ada User Jour na l

https://bit.ly/tccoe22-logika

Hatc l i f f e t a l . 57

as necessary to help the automated solvers), and direct inte-
gration with source code verification and notions of AADL
entry points.

6 Conclusion
We have presented a contract language for the AADL that
supports integrated component contract specification and ver-
ification at both model and code levels. The model-to-code
contract translation has been validated via an implementa-
tion within an industrial-relevant code generation framework.
The feasibility of the verification strategy has been validated
using Logika contract checking for the Slang high-integrity
language.

Our contract language design builds on concepts from earlier
AADL contract languages (AGREE and BLESS) and suggests
directions for more closely aligning with code generation
concepts called out in the AADL standard and AADL run-
time service semantics [15]. While we have illustrated code-
level concepts using Slang and Logika, we believe these same
principles can be supported by other code-level verification
frameworks that have been used in conjunction with AADL
such as SPARK Ada [24] and Frama-C [8].

There are some limitations to our current implementation.
First, the approach for entry point composition and end-to-
end reasoning is specialized for the static scheduling ap-
proach [22] used in our most recent industrial project that
emphasized system implementations for the seL4 verified mi-
crokernel. Second, the constructs for reasoning about AADL’s
event and event data ports apply to ports with buffer size
one. While this aligns with buffer restrictions found from
HAMR and other AADL code generation frameworks [1],
moving beyond this restriction will broaden the applicability
of the contracts to richer event-based systems that build on
widely-used message-oriented middleware frameworks. We
also hope to add greater support for timing-related specifica-
tions, aligned with AADL’s standard timing properties and
associated real-time scheduling frameworks [25].

Acknowledgments: The authors wish to thank Todd Car-
penter for his valuable inputs on this research project and
other GUMBO team members from Adventium Labs for the
feedback they provided on the toolset.

References
[1] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina:

An environment for AADL models analysis and auto-
matic code generation for high integrity applications,”
in International Conference on Reliable Software Tech-
nologies, pp. 237–250, Springer, 2009.

[2] F. Cadoret, E. Borde, S. Gardoll, and L. Pautet, “De-
sign patterns for rule-based refinement of safety critical
embedded systems models,” in 2012 IEEE 17th Interna-
tional Conference on Engineering of Complex Computer
Systems, pp. 67–76, IEEE, 2012.

[3] J. Hatcliff, J. Belt, Robby, and T. Carpenter, “HAMR: an
AADL multi-platform code generation toolset,” in Lever-
aging Applications of Formal Methods, Verification and

Validation - 10th International Symposium on Lever-
aging Applications of Formal Methods, ISoLA 2021,
Rhodes, Greece, October 17-29, 2021, Proceedings
(T. Margaria and B. Steffen, eds.), vol. 13036 of Lec-
ture Notes in Computer Science, pp. 274–295, Springer,
2021.

[4] D. D. Cofer, A. Gacek, S. P. Miller, M. W. Whalen,
B. LaValley, and L. Sha, “Compositional verification of
architectural models,” in Proceedings of the 4th NASA
Formal Methods Symposium (NFM 2012) (A. E. Good-
loe and S. Person, eds.), vol. 7226, (Berlin, Heidelberg),
pp. 126–140, Springer-Verlag, April 2012.

[5] B. Larson, P. Chalin, and J. Hatcliff, “BLESS: Formal
specification and verification of behaviors for embed-
ded systems with software,” in Proceedings of the 2013
NASA Formal Methods Conference, vol. 7871 of Lec-
ture Notes in Computer Science, (Berlin Heidelberg),
pp. 276–290, Springer-Verlag, 2013.

[6] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller,
and M. J. Parkinson, “Behavioral interface specification
languages,” ACM Comput. Surv., vol. 44, no. 3, pp. 16:1–
16:58, 2012.

[7] D. Hoang, Y. Moy, A. Wallenburg, and R. Chapman,
“SPARK 2014 and GNATprove,” International Journal
on Software Tools for Technology Transfer, vol. 17, no. 6,
2015.

[8] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-C, a software analysis perspec-
tive,” Formal Aspects of Computing, vol. 27, no. 3, 2015.

[9] Robby and J. Hatcliff, “Slang: The sireum programming
language,” in International Symposium on Leveraging
Applications of Formal Methods, pp. 253–273, Springer,
2021.

[10] S. Laboratory, “Sireum logika.” https://logika.
v3.sireum.org/index.html, 2022.

[11] S. Laboratory, “HAMR project website.” https://
hamr.sireum.org, 2022.

[12] S. Laboratory, “GCL case studies.”
https://github.com/santoslab/
hilt22-case-studies/, 2022.

[13] S. A. R. C, “Architecture analysis and design language
(AADL),” 2017.

[14] P. H. Feiler and D. P. Gluch, Model-Based Engineering
with AADL: An Introduction to the SAE Architecture
Analysis & Design Language. Addison-Wesley, 2013.

[15] J. Hatcliff, J. Hugues, D. Stewart, and L. Wrage, “For-
malization of the AADL run-time services,” in Leverag-
ing Applications of Formal Methods, Verification and
Validation - 11th International Symposium on Lever-
aging Applications of Formal Methods, ISoLA 2022,
Rhodes, Greece (To Appear), 2022.

[16] “sel4 microkernel,” 2015. sel4.systems/.

Ada User Jour na l Vo lume 44, Number 1, March 2023

https://logika.v3.sireum.org/index.html
https://logika.v3.sireum.org/index.html
https://hamr.sireum.org
https://hamr.sireum.org
https://github.com/santoslab/hilt22-case-studies/
https://github.com/santoslab/hilt22-case-studies/
sel4.systems/

58 AADL Cont rac t Language for Model - and Code-Leve l Ver i f i ca t ion

[17] X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister,
and C. Ferdinand, “Compcert-a formally verified opti-
mizing compiler,” in ERTS 2016: Embedded Real Time
Software and Systems, 8th European Congress, 2016.

[18] S. Conchon, A. Coquereau, M. Iguernlala, and A. Meb-
sout, “Alt-ergo 2.2,” in SMT Workshop: International
Workshop on Satisfiability Modulo Theories, 2018.

[19] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-
vanović, T. King, A. Reynolds, and C. Tinelli, “Cvc4,”
in International Conference on Computer Aided Verifi-
cation, pp. 171–177, Springer, 2011.

[20] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lach-
nitt, M. Mann, A. Mohamed, M. Mohamed, A. Niemetz,
A. Nötzli, et al., “cvc5: a versatile and industrial-
strength SMT solver,” in International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, pp. 415–442, Springer, 2022.

[21] L. d. Moura and N. Bjørner, “Z3: An efficient SMT
solver,” in International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems,
pp. 337–340, Springer, 2008.

[22] J. Belt, J. Hatcliff, Robby, J. Shackleton, J. Car-
ciofini, T. Carpenter, E. Mercer, I. Amundson, J. Babar,
D. Cofer, D. Hardin, K. Hoech, K. Slind, I. Kuz, and
K. Mcleod, “Model-driven development for the seL4
microkernel using the HAMR framework,” Journal of
Systems Architecture, p. (to appear), 2022.

[23] J. Hatcliff, B. R. Larson, T. Carpenter, P. L. Jones,
Y. Zhang, and J. Jorgens, “The open PCA pump project:
an exemplar open source medical device as a commu-
nity resource,” SIGBED Rev., vol. 16, no. 2, pp. 8–13,
2019.

[24] B. Carré and J. Garnsworthy, “Spark—an annotated ada
subset for safety-critical programming,” in Proceedings
of the conference on TRI-ADA’90, pp. 392–402, 1990.

[25] R. Edman, H. Shackleton, J. Shackleton, T. Smith, and
S. Vestal, “A framework for compositional timing anal-
ysis of embedded computer systems,” in IEEE Interna-
tional Conference on Embedded Software and Systems,
August 2015.

Volume 44, Number 1, March 2023 Ada User Jour na l

59

Correctness-by-Construction: An Overview of the
CorC Ecosystem

Tabea Bordis, Tobias Runge, Alexander Kittelmann, Ina Schaefer
Karlsruhe Institute of Technology (KIT), Germany; email: {first name}.{last name}@kit.edu

Abstract

Correctness-by-Construction (CbC) is an incremental
software development technique in the field of formal
methods to create functionally correct programs guided
by a specification. In contrast to post-hoc verification,
where the specification and verification take part after
implementing a program, with CbC the specification is
defined first, and then the program is successively cre-
ated using a small set of refinement rules that define side
conditions preserving the correctness of the program.
This specification-first, refinement-based approach as
pursued by CbC has the advantage that errors are likely
to be detected earlier in the design process and can
be tracked more easily. Even though the idea of CbC
emerged over 40 years ago, CbC is not widespread and
is mostly used to create small algorithms. We believe in
the idea of CbC and envision a scaled CbC approach
that contributes to solving problems of modern software
verification. In this short paper, we give an overview
of our research regarding CbC in four different lines of
research. For all of them, we provide tool support for
building the CORC ecosystem that even further enables
CbC-based development for different fields of applica-
tion and size of software systems. Furthermore, we give
an outlook on future work that extends on our concepts
for CbC.

Keywords: correctness-by-construction, information
flow control, software product lines, architecture, pro-
gram verification.

1 Introduction
The amount of software in safety-critical systems increases,
and, therefore, functional correctness of programs is an im-
portant concern. While most verification approaches rely on
post-hoc verification, where a program is only verified after
it is implemented, the incremental approach of Correctness-
by-Construction (CbC) as imagined by Dijkstra [1], Gries [2],
or Kourie and Watson [3] offers an alternative.1 CbC starts
with defining a formal specification in an abstract Hoare triple
{P} S {Q} consisting of a precondition P, an abstract state-
ment S, and a postcondition Q. Hoare triples represent total

1CbC as we pursue it is different from correctness-by-construction (CbyC)
as promoted by Hall and Chapman [4]. CbyC is a software development
process where formal modeling techniques are used to make it difficult to
introduce defects and to detect and remove any defects that do occur as early
as possible.

correctness assertions that are only true if, starting from
the precondition, the postcondition is met after executing the
eventually defined concrete program. With CbC, a Hoare
triple is successively refined using a set of refinement rules to
a concrete implementation, which satisfies the specification.
To guarantee the correctness of the refinement steps, each rule
defines specific side conditions for its applicability.

The underlying idea of this specification-first, refinement-
based approach is that better programs can be constructed
when the developer must think about their construction more
thoroughly rather than hacking them into correctness. As a
result, when applying CbC compared to classical post-hoc
verification, errors are more likely to be detected earlier in
the design process [3]. Additionally, programmers and users
gain trust because a formal methodology was used to create
the program.

To further investigate these claims and spread the idea of
correct-by-construction software development, we imple-
mented CbC in the tool CORC [5]. CORC is a graphical
and textual IDE to construct algorithms following CbC. It
supports developers to refine a program by a sequence of
refinement steps and to verify the correctness of these refine-
ment steps using the theorem prover KEY [6]. First evalua-
tion results show a decreased verification effort compared to
post-hoc verification [5, 7].

Besides CbC as we pursue it, there are also other tools that
implement different refinement-based approaches. For exam-
ple, EVENT-B [8] uses automata-based system descriptions
instead of source code as done by CORC, ARCANGEL [9] is
based on Morgan’s refinement calculus and comprises a very
large number of refinement rules compared to minimal set
in CORC, and SOCOS [10] uses invariants as specifications
instead of pre- and postcondition pairs as used in CORC.

In this short paper, we give an overview of the CORC ecosys-
tem2 that combines existing research on improving and ex-
tending the applicability of CbC to emphasize the benefit of
the ecosystem as a whole. We present four lines of research
where CbC is either considered for different fields of applica-
tion or integrated into software engineering processes to scale
its applicability from single algorithms to object-oriented
software systems and component-based architectures. All
of these lines of research are implemented as extensions of
CORC constituting the CORC ecosystem to benefit the com-
munity. Last, we give an outlook on our vision for future

2The CORC ecosystem is available at https://github.com/TUBS-ISF/CorC

Ada User Jour na l Vo lume 44, Number 1, March 2023

60 Correctness-by-Const ruc t ion: An Over v iew of the CorC Ecosystem

research on CbC for quantitative information flow control by
construction.

2 The CorC Ecosystem
In the past years, we have been investigating different fields
of application for CbC that benefit from the idea of a struc-
tured development process guided by specifications and re-
finements. First, we investigated how CbC that has been de-
signed to create single, small algorithms can be used in mod-
ern software engineering processes. We therefore integrated
object-oriented programming as a commonly used paradigm
into CORC and improved the development process of CORC
to enable the development using CbC with other verifica-
tion techniques in concert. A natural follow-up is to develop
concepts and tool support that make CbC available at scale.
Currently, we aim to address this in two further directions.
First, we study the role of correct-by-construction implemen-
tations in software architectures with ARCHICORC, where
the main goal is to bundle CORC programs into reusable soft-
ware components. Second, VARCORC is a framework for
CbC-based development of software product lines. Instead of
developing monolithic programs, the goal of software prod-
uct lines is to systematically construct a family of similar
software programs following the CbC paradigm. Last, we
applied CbC-style refinement rules to ensure security of pro-
grams. Therefore, we introduced an information flow policy
to CbC (IFbC) and implemented it in an extension of CORC.
We briefly present all these lines of research in the following
sections.

Object-Oriented Development using Correctness-by-
Construction
The size and complexity of software rapidly increases. There-
fore, software engineering paradigms need to adapt to these
requirements. Guaranteeing correctness for these complex
systems is still a challenge. To scale the applicability of CbC,
we extended CORC to support object-oriented programming
and investigated a software engineering process in CORC
to use CbC in concert with other verification strategies or
classical testing [11]. Object-oriented programming intro-
duces classes with fields and class invariants to CbC, which
allows to develop more complex projects including inheri-
tance and interfaces. At the same time, CbC may not be the
ideal method to guarantee correctness for a large software
project. Therefore, we support a roundtrip engineering pro-
cess from Java code to CbC development to correct Java code.
We integrated these concepts and further usability-features
that simplify the development using CbC in the successor of
CORC, CORC 2.0.3

Correct-by-Construction Software Architectures
Component-based architectures allow to establish a set of
reusable, correct-by-construction components. This is equally
interesting for libraries, where implementations are accessed
through interfaces, and for third-party developments that are
easier to integrate into individual projects. Most important,
creating components that modularize correct implementations
allows developers to think about how to compose software

3https://github.com/TUBS-ISF/CorC/tree/CorC2.0, CORC 2.0 supports
object-oriented development and development for software product lines
using CbC (VARCORC)

systems instead of how to program a monolithic software
system from scratch. We argue that this is the foundation
for building large and complex systems that are based on
CbC. As an extension to CORC, we propose a framework
called ARCHICORC [12] that connects UML-style compo-
nent modeling, formal specification, and code generation.
ARCHICORC4 comprises the following key ingredients. First,
a component and interface description language is used to
interconnect provided and required interfaces of components.
Second, developers can either refine method signatures of
provided interfaces to correct implementations using CORC,
or map signatures to already existing CORC programs. Third,
analyses and algorithms to check compatibility between com-
ponents are provided. Finally, ARCHICORC allows to gener-
ate Java code from the correct-by-construction components.

Correctness-by-Construction for Software Product
Lines
Software product lines provide systematic reuse paired with
variability mechanisms to realize whole product families [13].
The commonalities and differences of the product variants
are communicated as features, whose relationships are often
modeled in feature models. Guaranteeing the correctness of a
product line is especially challenging because of the number
of possible product variants resulting from the number of fea-
ture configurations and the variable code structures [14]. To
create a correct product line using CbC, we extended the orig-
inal CbC approach with a new refinement rule for a variability
mechanism that allows to call different implementations of a
method depending on the distinct feature configuration [7, 15].
Additionally, we combined this mechanism with contract com-
position for variability in the pre- and postcondition [16]. We
call this extension variational Correctness-by-Construction.
VARCORC2 uses FeatureIDE [17] and variational CbC to
support the development of correct-by-construction software
product lines.

Information Flow Control-by-Construction
Besides verifying functional correctness, it is also important
to consider non-functional properties of a program, such as
dependability, reliability, resource/energy consumption, or
security [18]. For security, an information flow policy can be
used to define how information may flow in a program (e.g.,
a flow from public to secret data is allowed, but the other
way is prohibited to ensure confidentiality and integrity of the
data). Our extension of CbC to ensure this type of security-by-
design is called Information Flow Control-by-Construction
(IFbC) [19]. Programs are constructed incrementally using
refinement rules to follow an information flow policy. In
every refinement step, security and functional correctness of
the program is guaranteed, such that insecure programs are
prohibited by construction. The information flow policy can
be specified in any bounded upper semi-lattice (i.e., secu-
rity levels are arranged in a lattice representing the allowed
direction of information flow). IFbC is implemented in an
extension of CORC.5

4https://github.com/TUBS-ISF/ArchiCorC
5https://github.com/TUBS-ISF/CorC/tree/CCorC

Volume 44, Number 1, March 2023 Ada User Jour na l

Bord is et a l . 61

Implementation of the CorC Ecosystem
The core of the CorC ecosystem is the tool CORC [5] which is
an open-source Eclipse plug-in supporting the development of
programs with CbC. It stores the structure of a CbC program
including the refinement rules through a meta-model that is
modeled using the Eclipse Modeling Framework.6 CORC
comes with a graphical and textual editor. The graphical
editor is implemented using Graphiti7 and visualizes the un-
derlying meta-model in a tree structure. The textual editor is
implemented using XText.8 The beginning of a CbC program
is a Hoare triple, which can then be refined by applying CbC
refinement rules until there are no more abstract statements.
In the background, the deductive verification tool KeY [6] is
used to prove the correct application of each refinement rule.

The presented lines of research each extend the core func-
tionality of CORC. For example, VARCORC uses Fea-
tureIDE [17] to integrate feature models and calculations
on them [15], while CORC 2.0 introduces another graphical
view for classes with fields and implements a roundtrip engi-
neering process that generates correct Java code from CbC
programs [11]. Further implementation details are provided
in the referenced papers and on GitHub.

3 Correctness-by-Construction - Next
Steps

Driven by our research in the past years that we conducted on
fields of application and extensions of CORC as tool, we can
see our vision of scaling CbC as necessary practice in modern
software engineering come together. We are convinced that
CbC in combination with good tool support is an underesti-
mated approach that is worth exploring. This belief is also
substantiated by the participants of two user studies that agree
that CORC is good tool to develop correct software [20, 21].
Besides the extensions that we presented in the previous sec-
tion, there are still some open ideas that we want to explore
in future work on CbC.
Feature Interactions in CbC Product Lines.
Naturally, features in a software product line interact with
each other using shared variables or by calling methods de-
fined in other features. While most of these feature interac-
tions are wanted or even needed to implement functionality,
sometimes there are also unwanted feature interactions that
lead to malfunctions, unexpected behavior, or security leaks.
An example of an unwanted feature interaction in an Email
product line is when a feature that automatically forwards
incoming mails to a certain address and a feature that decrypts
incoming mails are combined together in a software product.
In that case, an email may first be decrypted and afterwards
forwarded in plain text to the forward receiver which vio-
lates a security property of encrypting mails. In future work,
we will examine unwanted feature interactions and develop
concepts to integrate safety and security constraints to the
functional specification used in VARCORC, our extension of
CbC for software product lines. Our goal is to give a guaran-
tee that there are no unwanted feature interactions in a product
line constructed with CbC.

6https://eclipse.org/emf/
7https://eclipse.org/graphiti/
8https://www.eclipse.org/Xtext/

Quantitative Information Flow Control
Confidentiality and integrity requirements on data, as well
as privacy concerns can be expressed using information flow
control policies, specifying how data may flow through a pro-
gram and which observations an attacker may make about
the data that is being processed. For future work, we will
work on our vision of CbC to enable security-by-design with
an extension of IFbC for quantitaive information flow. We
will extend IFbC with quantitative and probabilistic infor-
mation flow specifications, and develop refinement rules for
correct program construction using appropriate program an-
notations and side conditions. We will further investigate how
probabilistic programming constructs can be used to capture
uncertainty of program execution and what influence they
have on the information flow specifications, both classically
and quantitative. To enable scalability of the correctness-
by-construction engineering process, we will extend existing
work on the correct construction of component-based sys-
tems with classical and quantitative information flow policies
to obtain larger functionally correct systems incorporating
security-by-design.

References
[1] E. W. Dijkstra, A Discipline of Programming. Prentice

Hall PTR, 1st ed., 1976.

[2] D. Gries, The Science of Programming. Springer, 1st ed.,
1981.

[3] D. G. Kourie and B. W. Watson, The Correctness-by-
Construction Approach to Programming. Springer,
2012.

[4] A. Hall and R. Chapman, “Correctness by Construc-
tion: Developing a Commercial Secure System,” IEEE
software, vol. 19, no. 1, pp. 18–25, 2002.

[5] T. Runge, I. Schaefer, L. Cleophas, T. Thüm, D. Kourie,
and B. W. Watson, “Tool Support for Correctness-by-
Construction,” in International Conference on Funda-
mental Approaches to Software Engineering, pp. 25–42,
Springer, 2019.

[6] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H.
Schmitt, and M. Ulbrich, Deductive Software Verifica-
tion – The KeY Book. Springer, 2016.

[7] T. Bordis, T. Runge, A. Knüppel, T. Thüm, and I. Schae-
fer, “Variational Correctness-by-Construction,” in Pro-
ceedings of the 14th International Working Conference
on Variability Modelling of Software-Intensive Systems,
pp. 1–9, 2020.

[8] J.-R. Abrial, Modeling in Event-B: System and Software
Engineering. Cambridge University Press, 2010.

[9] M. Oliveira, A. Cavalcanti, and J. Woodcock, “ArcAn-
gel: A Tactic Language for Refinement,” Formal Aspects
of Computing, 2003.

[10] R.-J. Back, J. Eriksson, and M. Myreen, “Testing and
Verifying Invariant Based Programs in the SOCOS En-
vironment,” in International Conference on Tests and
Proofs, Springer, 2007.

Ada User Jour na l Vo lume 44, Number 1, March 2023

62 Correctness-by-Const ruc t ion: An Over v iew of the CorC Ecosystem

[11] T. Bordis, L. Cleophas, A. Kittelmann, T. Runge,
I. Schaefer, and B. W. Watson, “Re-CorC-ing KeY:
Correct-by-Construction Software Development Based
on KeY,” in The Logic of Software. A Tasting Menu of
Formal Methods, pp. 80–104, Springer, 2022.

[12] A. Knüppel, T. Runge, and I. Schaefer, “Scaling
Correctness-by-Construction,” in International Sympo-
sium on Leveraging Applications of Formal Methods,
pp. 187–207, Springer, 2020.

[13] K. Czarnecki and U. Eisenecker, Generative Program-
ming: Methods, Tools, and Applications. Citeseer, 2000.

[14] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake,
“A Classification and Survey of Analysis Strategies for
Software Product Lines,” ACM Computing Surveys,
2014.

[15] T. Bordis, T. Runge, and I. Schaefer, “Correctness-by-
Construction for Feature-Oriented Software Product
Lines,” in International Conference on Generative Pro-
gramming: Concepts and Experiences, pp. 22–34, 2020.

[16] T. Bordis, T. Runge, D. Schultz, and I. Schae-
fer, “Family-based and Product-based Development of
Correct-by-Construction Software Product Lines,” Jour-
nal of Computer Languages, p. 101119, 2022.

[17] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake,
and T. Leich, “FeatureIDE: An Extensible Framework
for Feature-Oriented Software Development,” Science
of Computer Programming, vol. 79, no. 0, pp. 70–85,
2014.

[18] M. H. t. Beek, L. Cleophas, I. Schaefer, and B. W. Wat-
son, “X-by-Construction,” in International Symposium
on Leveraging Applications of Formal Methods, pp. 359–
364, Springer, 2018.

[19] T. Runge, A. Knüppel, T. Thüm, and I. Schae-
fer, “Lattice-based Information Flow Control-by-
Construction for Security-by-Design,” in Proceedings
of the 8th International Conference on Formal Methods
in Software Engineering, pp. 44–54, 2020.

[20] T. Runge, T. Thüm, L. Cleophas, I. Schaefer, and B. W.
Watson, “Comparing Correctness-by-Construction with
Post-Hoc Verification - A Qualitative User Study,” in
Refine, Springer, 2019.

[21] T. Runge, T. Bordis, T. Thüm, and I. Schaefer,
“Teaching Correctness-by-Construction and Post-hoc
Verification–The Online Experience,” in Formal Meth-
ods Teaching Workshop, pp. 101–116, Springer, 2021.

Volume 44, Number 1, March 2023 Ada User Jour na l

 63

Ada User Journal Volume 44, Number 1, March 2023

AADL Modelling with SysML v2

Jean-Charles Roger, Pierre Dissaux

Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France; email: jean-charles.roger@ellidiss.com and

pierre.dissaux@ellidiss.com

Abstract

This paper introduces a new way to implement a bridge
between SysML models used for the System
engineering activities and AADL models relevant for
more detailed specifications of the Software Sub-
Systems architecture. Proposed approach takes profit
of the features offered by SysML v2, the new standard
candidate of the OMG.

Keywords: AADL, SysML v2

1 Introduction

Ensuring digital continuity during the engineering steps of

Software intensive Systems is a key issue. To move forwards

in this direction, several SysML v1 to AADL [1] model

transformations have been implemented already. They are

based either on the definition of a dedicated UML Profile

specifying AADL stereotypes for SysML constructs, or by

the implementation of fully automated transformation rules

that do not require a change of the original SysML model

and an extension of the used SysML tool. Ellidiss chose the

second approach and provides such a transformation with

AADL Inspector. Transformation rules are expressed in

Prolog language and can be customized by the user within a

dedicated LAMP annex [5].

The arrival of SysML v2 [2] brings a set of new attractive

features that deserve to be analysed in depth. Own their own,

the three following changes represent a significant positive

move to better reach the goal of making SysML to AADL

model interchange easier:

• a normalized textual syntax,

• support of instance models and

• extension by Domain Libraries instead of UML

Profiles.

Moreover, it appears that a significant number of topics that

are on the table for the preparatory work for future v3 of

AADL have been addressed by SysML v2

• unified type system with SI units,

• consistent automata description and

• direct SW/HW binding construct.

The article first introduces the approach by comparing an

example (generated using the AADL tools developed by

Ellidiss [3]) and its SysML v2 counterpart (written by hand).

It then presents the SysML v2 Domain Library for AADL

and the motivation behind the choices we made.

2 An illustrative example

The proposed solution consists of a conceptual mapping

between AADL v2 and SysML v2 modelling elements and

its implementation under the form of a SysML v2 Domain

Library for AADL. Such a Domain Library is expressed in

SysML v2 itself and is thus supposed to be portable across

any SysML v2 compliant tool. This conceptual mapping can

also act as the list of requirements for model transformations

between SysML v2 and AADL v2 and reverse.

This first example shows a software process containing two

threads connected by an immediate data port connection and

bound to a single processor. Figure 2 presents the graphical

representation of the AADL model, edited with the Stood for

AADL tool to generate the corresponding AADL text.

Figure 1. AADL graphical representation of the example

Using the conceptual mapping, we then manually

transformed the AADL text into its SysML v2 textual

version. To close the loop, Figure 2 presents the

automatically generated graphical view from the SysML v2

text, using the SysML v2 pilot implementation [4].

Figure 2. SysML v2 graphical representation of the

illustrative example

mailto:jean-charles.roger@ellidiss.com
mailto:pierre.dissaux@ellidiss.com

64

Volume 44, Number 1, March 2023 Ada User Journal

To compare the AADL model to its counterpart in SysML

v2 using our mapping, we present at first the example in its

AADL textual representation.

AADL

package ex1_pkg public

with Base_Types;

renames data Base_Types::Integer;

system ex1 end ex1;

system implementation ex1.i

subcomponents

 hw: processor Hw {

 Scheduling_Protocol =>

 (Rate_Monotonic_Protocol);

 };

 sw: process sw.i;

properties

 Actual_Processor_Binding =>

 (reference(hw)) applies to sw;

end ex1.i;

processor Hw end Hw;

process sw

features

 i1: in data port Integer;

 o1: out data port Integer;

end sw;

process implementation sw.i

subcomponents

 th1: thread t {

 Dispatch_Protocol => Periodic;

 Period => 50ms;

 Deadline => 50ms;

Compute_Execution_Time =>

2ms ..2ms;

 };

 th2: thread t {

 Dispatch_Protocol => Periodic;

 Period => 50ms;

 Deadline => 50ms;

Compute_Execution_Time =>

2ms ..2ms;

 };

connections

 c1 : port i1 -> th1.i1;

 c2 : port th1.o1 -> th2.i1 {

 Timing => Immediate;

 };

 c3 : port th2.o1 -> o1;

end sw.i;

thread t

features

 i1: in data port Integer;

 o1: out data port Integer;

end t;

end ex1_pkg;

The SysMLv2 textual representation of this model is shown

in the next column.

A special formatting effort has been made to highlight the

similarities between the two views. Note that tokens :>>

and redefines are synonymous.

SysML v2

package ex1_pkg {

import AADL::**;

import ScalarValues::Integer;

part def ex1 specializes System;

part def 'ex1.i'

specializes ex1, SystemImplementation {

 part hw: Hw {

redefines Scheduling_Protocol =

Rate_Monotonic_Protocol;

 }

 part sw: 'sw.i';

 allocation sw_to_hw:

Actual_Processor_Binding

allocate sw to hw;

}

part def Hw specializes Processor;

part def sw specializes Process {

 in port i1: IntegerPort;

 out port o1: IntegerPort;

}

part def 'sw.i'

specializes sw, ProcessImplementation {

 part th1: t {

 :>> Dispatch_Protocol = Periodic;

 :>> Period = 50 [ms];

 :>> Deadline = 50 [ms];

:>> Compute_Execution_Time =

2 [ms] .. 2 [ms];

 }

 part th2: t {

 :>> Dispatch_Protocol = Periodic;

 :>> Period = 50 [ms];

 :>> Deadline = 50 [ms];

:>> Compute_Execution_Time =

2 [ms] .. 2 [ms];

 }

 connection c1 connect i1 to th1.i1;

 connection c2 connect th1.o1 to th2.i1 {

 redefines Timing = Immediate;

 }

 connection c3 connect (th2.o1, o1);

}

part def t specializes Thread {

 in port i1: IntegerPort;

 out port o1: IntegerPort;

}

}

3 SysML v2 Domain library for AADL

This section presents the AADL domain library that allows

to build AADL models in SysML v2. It defines the AADL

package containing all the SysML defined AADL elements

representing the AADL SAE Standard.

J-C. Roger , P. Dissaux 65

Ada User Journal Volume 44, Number 1, March 2023

3.1 SysML v2 definition of AADL Components

AADL components are defined as SysML part definitions

that specialize Component part definitions. AADL features

(ports, access, ...) are defined as SysML port definitions that

specialize Feature port definitions.

private abstract port def Feature;

abstract part def SubComponent;

abstract part def Component;

abstract part def ComponentType

 :> Component {

 port features: Feature[0..*]

 :> portsOnPart;

}

abstract part def ComponentImplementation

 :> ComponentType {

part subcomponents: SubComponent[0..*]

:> subparts;

}

Figure 3. Graphical notation for AADL components

As an example, here are the AADL process type and process

implementation SysML part definitions in the library.

abstract port def ProcessFeature

 :> Feature;

abstract part def ProcessSubComponent

 :> SubComponent;

part def Process

 :> ComponentType,

 ProcessorBindable,

 SystemSubComponent,

 AbstractSubComponent {

 port :>> features: ProcessFeature[0..*];

}

part def ProcessImplementation

 :> Process,

 ComponentImplementation {

 part :>>

 subcomponents: ProcessSubComponent[0..*];

}

ProcessSubComponent is an abstract part definition used

as a category to constrain sub-components to those allowed

for a Process. Consequently, Data, Subprogram,

SubprogramGroup, Thread, ThreadGroup and

Abstract part definitions all specialize

ProcessSubComponent.

ProcessFeature is an abstract port definition used as a

category to constrain features to those allowed for a

Process. Consequently, Port, DataAccess,

SubProgramAccess all specialize ProcessFeature.

To constrain subcomponent categories in an AADL

component implementation, each SysML component

category part definition specializes the SysML

subcomponent abstract part definition of each of its possible

containers (shown in Figure 4).

Figure 4. The diagram of the hierarchy for the sub-

components

This allows fine control over which category of

subcomponent can be included into another, provided that

the used tool supports the SysML type system. An alternate

solution could be to use SysML constraint elements.

3.2 SysML v2 definition of AADL Features

Interactions between AADL components are defined by

connections between their features. AADL features are

described using SysML port definitions used to type port

usages in component part usages and connected using

SysML connections. Figure 5 presents the specialization

hierarchy for the AADL features in SysML v2.

Figure 5. The graphical notation for the features

3.3 SysML v2 definition of AADL Hw/Sw Binding

The deployment properties defined in AADL express the

way software components are deployed onto the run time

hardware (i.e., Processors, Busses, Memories and Devices).

They can be described as an allocation of a logical

component to a physical one in SysML. The SysML

allocation definition of the Actual_Processor_Binding

AADL property is defined as follows:

abstract part def AbstractProcessor;

abstract part def ProcessorBindable;

allocation def Actual_Processor_Binding {

 end logical : ProcessorBindable;

 end physical : AbstractProcessor;

}

3.4 SysML v2 definition of AADL Properties

AADL defines several sets of standard properties applicable

to restricted categories of components. To offer a similar

66

Volume 44, Number 1, March 2023 Ada User Journal

capability in SysML v2, we have defined a series of abstract

parts that declare a group of consistent properties that the

component type part definition can specialize if needed.

As an example, the Schedulable SysML part definition

declares aliases to standard AADL properties applicable for

components interacting with a run-time scheduler (e.g.,

Threads and Devices).

abstract part def Schedulable {

abstract attribute

 Period: DurationValue[0..1];

 attribute Deadline: DurationValue;

 attribute Priority: Integer;

abstract attribute

 Compute_Execution_Time:

 DurationInterval;

abstract attribute

 Dispatch_Protocol:

 Supported_Dispatch_Protocols;

 …

}

All properties defined by the AADL specifications need to

be categorized by abstract parts to allow the concerned parts

to specialize them. Only a few AADL properties have been

defined in the SysML v2 Domain Library for now. This will

need to be discussed and completed in the future.

4 Next steps

Several aspects of the AADL language have not been

addressed at all yet. This is the case for Modes, Flows,

Prototypes and Call Sequences.

For the AADL constructs that have been considered in this

paper, more experiments and interactions with other

stakeholders will be needed to consolidate the approach.

Regarding the Behavior and Error Annex standard sub-

languages, it is likely that some existing SysML v2 features

could be reused, such as the state elements.

A simple mapping such as the one proposed below could be

used as a first step to embed existing AADL Behavior

annexes inside SysML v2 models without introducing any

syntactic change.

part def ALU :> Thread {

 …

 state behavior : Behavior {

 language "AADL::Behavior_Specification"

 /*

 * states s : initial complete final

state;

 * transitions

 * t1 : s -[on dispatch e1]-> s

 * { o := i1 + i2 };

 * t2 : s -[on dispatch e2]-> s

 * { o := i1 - i2 };

 */

 }

}

5 Conclusion

This paper describes the current state of a study conducted

internally at Ellidiss. Our goal is twofold:

• Quickly implement a bidirectional SysML v2 to

AADL transformation prototype within AADL

Inspector, to evaluate the feasibility of reusing the

same existing analysis tools (static, timing, safety,

security) for both textual representations.

• Contribute to any collaborative action within the

AADL committee, or a wider community, to specify a

SysML v2 annex for AADL v2 and reactivate the

discussions about AADL v3 if needed.

The first outcomes of this preliminary study are promising

but the work will need to be updated according to the final

definition of the SysML v2 language that was not available

when this paper was written, and the feedback of the AADL

and SysML communities regarding the relevance of the

approach.

References

[1] Architecture Analysis & Design Language (AADL) -

https://www.sae.org/standards/content/as5506c/.

[2] OMG System Modeling Language™ (SysML®) v2 -

https://github.com/Systems-Modeling/SysML-v2-

Release.

[3] Used AADL tools: https://www.ellidiss.fr/

[4] SysML v2 pilot: https://github.com/Systems-

Modeling/SysML-v2-Pilot-Implementation/releases

[5] LAMP: A new model processing language for AADL,

P. Dissaux, ERTS 2020.

https://www.sae.org/standards/content/as5506c/
https://github.com/Systems-Modeling/SysML-v2-Release
https://github.com/Systems-Modeling/SysML-v2-Release
https://www.ellidiss.fr/
https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation/releases
https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation/releases

67

Unified Graphical Co-modelling, Analysis and
Verification of Cyber-physical Systems by
Combining AADL and Simulink/Stateflow

Xiong Xu, Shuling Wang, Bohua Zhan, Xiangyu Jin, Naijun Zhan
SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of
Sciences, Beijing, China; email: {xux, wangsl, bzhan, jinxy, znj}@ios.ac.cn

Jean-Pierre Talpin
Inria, Rennes, France; email: jean-pierre.talpin@inria.fr

Abstract

The design of safety-critical cyber-physical systems
(CPSs) involve several dimensions, including physics,
hardware rchitecture and software functionality. It is
desirable to design CPSs by taking these issues into ac-
count uniformly and yet, few existing design workflows
support this aim. For instance, AADL is an architecture-
centric modelling formalism for CPSs, which focuses on
modelling architecture and prototyping real-time hard-
ware platforms, but it delegates physical and software
behavioral models to so-called annexes. By contrast,
Simulink/Stateflow (S/S) focuses on modelling interact-
ing physical and software behaviors, but does not ren-
der the non-functional characteristics of their hardware
platforms. To address this issue, in [1], we proposed
the combination of AADL and S/S, called AADL⊕S/S,
to co-model CPSs and presented a method to uniformly
analyse and verify them. AADL⊕S/S provides a unified
graphical co-modelling environment for CPS design
and supports simulation through C code generation.
Also, [1] presented a formal semantics of AADL⊕S/S by
translation to Hybrid Communicating Sequential Pro-
cesses (HCSP), yielding a deductive verification frame-
work of the combined models using Hybrid Hoare Logic
(HHL). Additionally, [1] proved the correctness of the
translation of AADL⊕S/S to HCSP.

Keywords: Simulink/Stateflow, AADL, HCSP, formal
semantics, simulation and verification.

1 Introduction
Cyber-physical systems (CPSs) tightly couple hardware and
software to sense and actuate a physical environment. To
correctly model them, it is paramount to take the three per-
spectives of their software functionalities, physical environ-
ment, hardware platform and system architecture into account,
uniformly, Figure 1.

Unfortunately, according to the commonly accepted design
principle of “separation of concerns”, most of existing de-
sign methodologies and workflows do not support all three

Figure 1: The three perspectives of CPS design

design aspects uniformly. For example, AADL [2, 3] features
strong capabilities for describing the architecture of a system
due to the pragmatic (and practice-inspired) effectiveness of
combining software and hardware component models. How-
ever, the core of AADL only supports modelling of embedded
system hardware and abstraction of its relevant discrete be-
havior, and does not support the description of the continuous
physical processes to be controlled and its combination with
software. By contrast, Simulink/Stateflow (S/S) [4, 5], the
de-facto industry standard for model-based analysis and de-
sign of embedded systems, is best-suited for modelling and
analysing continuous physical processes, discrete computa-
tions and their combination. However, S/S cannot naturally
model system architectures and hardware platforms.

To address the above issue, we presented a combination of
AADL and S/S [1], named AADL⊕S/S, that provides a uni-
fied graphical modelling formalism to represent all three per-
spectives of CPS design. An overview of AADL⊕S/S is given
in Figure 2. Using AADL⊕S/S, a CPS is modelled with the
following three layers:

Architecture layer The system architecture and its hardware

Ada User Jour na l Vo lume 44, Number 1, March 2023

68 AADL⊕Simul ink /Sta te f low

Process

Process

Hardware
Componentsubcomponent

implementation

subcomponent

implementation

subcomponent

implementation

block

block

Simulink/Stateflow

Softw
are Layer

A
rchitecture Layer

Physical Layer

B
in
di
ng

A
bs
tr
ac
t

Figure 2: An overview of AADL⊕S/S

platform are described by AADL components that de-
fine the structure, type and characteristics of composed
hardware and software components.

Software layer The software behavior can be modelled ei-
ther through AADL behavioral annexes or S/S diagrams.

Physical layer The physics of the cyber-physical system and
its interaction with the hardware/software platform are
modelled by S/S diagrams.

Paper Organization. This paper is an extended abstract of
a talk presented at ADEPT 2022, based on earlier works
reported in [1]. The rest of this paper is organized as follows:
Section 2 presents an overview of AADL⊕S/S. Section 3
briefly reviews the co-simulation of AADL⊕S/S. Section 4
introduces the formal analysis for AADL⊕S/S. Section 5
introduces a toolchain that supports the design of CPSs with
AADL⊕S/S. Finally, we conclude in Section 6.

2 Overview of AADL⊕S/S
In the combined framework, AADL is used to define the
overall architecture of the system, including connections be-
tween the software, hardware, and physical components. The
software components define the discrete behavior of the sys-
tem, either as behavior annex within AADL, or S/S diagrams.
The physical components define the continuous plants of the
system as S/S diagrams.

The architecture layer, described as AADL system composite
components, specifies the types of components, and (part of)
their implementation (an abstraction of their actual implemen-
tation), as well as their composition. It usually consists of a
central processor unit classifier with several subcomponent
devices (like sensor, controller, and actuator etc). Each of
these classifiers has its own type and implementation. For
software functionality and physical processes, the architecture
layer usually needs their abstractions, i.e., the type classifiers
of these software and physical components. The type classi-
fier of a component declares the set of input and output ports,
specifies the contract of its behavior, that are accessible from

outside. By contrast, the implementation classifier of a com-
ponent binds its type classifier with a concrete implementation
in the software and physical layers.

3 Co-simulation of AADL⊕S/S
3.1 AADL⊕S/S to C
In order to simulate AADL⊕S/S models, we presented a
way to translate AADL⊕S/S to C code [1, 6], allowing co-
simulation of the combined models. It relies on the Real
Time Workshop (RTW) toolbox of Matlab, which permits
code generation from S/S diagrams. The C code generation
is divided into three parts:

1. for the AADL part, we implement AADL2C translator
to generate C code following the execution semantics of
AADL;

2. for the S/S part, we use the existing code generation
facility in Matlab, to produce C code that can simulate
this part of the model step-by-step;

3. for the architecture part, we implement a library in C
that includes thread scheduling protocols, interaction
between components and combination of AADL and
S/S.

To realise co-simulation, the three parts are integrated together
to form an executable C code that simulates the combined
model. The translation of the combined model amounts to
coordinating code generated from AADL and S/S through
port communications specified in the architecture layer. The
result of the simulation is then displayed visually for analysis.

3.2 AADL⊕S/S to HCSP
In [1], we proposed an approach that translates AADL⊕S/S to
HCSP [7, 8]. In order to test the correctness of the translation
from AADL⊕S/S into HCSP, we also implemented a simu-
lator for HCSP with a graphical user interface. Additionally,
this allows us to quickly obtain the result of running an HCSP
process, in order to check that its behavior is as expected.

While there are non-deterministic elements in HCSP, they
are not used often. In particular, the result of translation
described in this paper is essentially deterministic. Our aim in
the simulator is to compute an execution path of the process
and visualise it in a graphical interface. The computation
follows closely the small-step operational semantics of HCSP.

The simulator is implemented in Python. In addition to real
numbers, the state of the system may contain strings and
lists. Operations on lists as stack, queue, or priority queue are
supported. Solving of ODEs is done using Python’s scipy
package (function solve_ivp), which is also able to accu-
rately calculate the time at which the boundary of the domain
is reached using a root-finding algorithm. Finally, the simu-
lator is linked to a web interface which is able to show the
HCSP process in pretty-printed form, the steps of execution,
and a plot of the variables in the process against time. This
allows us to not only view the result of running an HCSP
process, but also find out what went wrong if the process does
not execute as expected.

Volume 44, Number 1, March 2023 Ada User Jour na l

Xiong Xu, et a l . 69

4 Formal verification
However, guaranteeing the reliability of a safety-critical
CPS developed using AADL⊕S/S remains challenging, as
simulation-based techniques are inherently incomplete, and
therefore cannot ensure reliability of safety-critical CPS rig-
orously. To address this problem, we further developed an
HCSP-based deductive verification approach for AADL⊕S/S,
including

• A formal semantics of AADL in terms of transition sys-
tems, including thread dispatch, scheduling, execution,
and bus connections with latency.

• A translation from graphical AADL⊕S/S models to
HCSP [9]. HCSP is an extension of CSP with ordi-
nary differential equations (ODEs) for modelling hybrid
systems. It contains flexible constructs, including com-
munications, continuous evolution, interrupt, and it is
also extendable, to fully express behaviors of CPSs.

• The correctness of the translation is proved by building
a weak bisimulation relation between the transition se-
mantics of the source and target models. The translated
HCSP model can be formally verified using HHL and its
proof assistant [10, 11, 12] and the results are preserved
by the original AADL⊕S/S model.

5 The MARS toolchain
In order to provide tool support for AADL⊕S/S, we devel-
oped a toolchain, named MARS, for modelling, analysis,
verification and code generation of CPSs. The toolchain is
implemented upon the previous version [9,13], by combining
the AADL part.

The overall structure of MARS is shown in Figure 3. In
MARS, modelling a CPS can be given graphically with
AADL⊕S/S [1], or formally with HCSP. Both AADL and S/S
support the analysis of their models through simulation, but
they cannot be used for AADL⊕S/S models directly. In [6],
the co-simulation of AADL⊕S/S models is implemented by
translating both AADL and S/S to C code and then defining
their integration for simulation execution. The simulation
of formal HCSP models is supported by an HCSP simulator
(Section 3.2). The HCSP simulator executes a given HCSP
process according to its semantics and visualises the execu-
tion path, including the values of variables, communication
status etc, at given times in a graphical interface.

To complement incomplete simulation, in MARS,
AADL⊕S/S models can be transformed into HCSP
processes for further verification. The translation from
AADL⊕S/S to HCSP and the correctness of the translation
have been considered in [1, 14]. The verification of HCSP is
then conducted by HHL Prover, which has been implemented
in Isabelle/HOL. The HHL was first presented in [10,11]. It is
compositional such that an HCSP process can be decomposed
into smaller components to be verified. It is able to handle
synchronized communications, parallel compositions, and so
on, but on the other hand, it needs more proof effort in the
proof assistant.

The verified HCSP is then transformed automatically into
final implementation of CPSs. The transformation requires to

Figure 3: The overall architecture of MARS

discretize the continuous evolutions of HCSP and realise the
channel communications between parallel components. The
code generation to SystemC, as well as its correctness proof,
was presented in [15].

6 Conclusion
We presented AADL⊕S/S, a combination of AADL and S/S,
and developed a simulation tool for it. Moreover, to verify
AADL⊕S/S models, we defined an operational semantics and
an HCSP-based denotational semantics, and proved that there
exists a weak bisimulation between the transition system of
any AADL⊕S/S model and the transition system of the trans-
lated HCSP process. This makes all AADL⊕S/S models can
be verified with HHL Prover. In addition, we also developed
a simulator for HCSP for testing the correctness of the trans-
lation by comparing the simulation results before and after
translating, and providing the possibility that one can design
a CPS starting with HCSP. The details of our approach can
be found in [1, 6].

There are some limitations to our approach. First, AADL
provides a plenty of components and functions, while we only
consider its core functionalities, which limits the practicality
of our framework for case-studying realistic CPSs. Second,
at present, our verifier only scales to small HCSP models,
as means of model abstraction, verification automation and
modular verification would be needed to improve.

Acknowledgement
This work is partly supported by National Key R&D Pro-
gram of China under grant No. 2022YFA1005101 and
2022YFA1005100, NSFC under grant No. 62192732, and
CAS Project for Young Scientists in Basic Research, Grant
No. YSBR-040.

References
[1] X. Xu, S. Wang, B. Zhan, X. Jin, J.-P. Talpin, and

N. Zhan, “Unified graphical co-modeling, analysis and
verification of cyber-physical systems by combining
AADL and Simulink/Stateflow,” Theoretical Computer
Science, vol. 903, pp. 1–25, 2022.

Ada User Jour na l Vo lume 44, Number 1, March 2023

70 AADL⊕Simul ink /Sta te f low

[2] P. H. Feiler and D. P. Gluch, Model-Based Engineering
with AADL: An Introduction to the SAE Architecture
Analysis & Design Language. Addison-Wesley Profes-
sional, 2012.

[3] SAE International Standards, “Architecture analysis &
design language (AADL), Revision C,” 2017.

[4] MathWorks Inc., Simulink User’s Guide, 2013.
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf.

[5] MathWorks Inc., Stateflow User’s Guide, 2013.
http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf.

[6] H. Zhan, Q. Lin, S. Wang, J.-P. Talpin, X. Xu, and N. Zhan,
“Unified graphical co-modelling of cyber-physical systems
using AADL and Simulink/Stateflow,” in UTP, vol. 11885 of
LNCS, pp. 109–129, 2019.

[7] J. He, “From CSP to hybrid systems,” in A Classical Mind,
Essays in Honour of C.A.R. Hoare, pp. 171–189, Prentice Hall
International (UK) Ltd., 1994.

[8] C. Zhou, J. Wang, and A. P. Ravn, “A formal description
of hybrid systems,” in Hybrid Systems, vol. 1066 of LNCS,
pp. 511–530, 1996.

[9] N. Zhan, S. Wang, and H. Zhao, Formal Verification
of Simulink/Stateflow Diagrams: A Deductive Approach.
Springer, 2017.

[10] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou,
“A calculus for hybrid CSP,” in APLAS, pp. 1–15, 2010.

[11] S. Wang, N. Zhan, and L. Zou, “An improved HHL prover:
an interactive theorem prover for hybrid systems,” in ICFEM,
vol. 9407 of LNCS, pp. 382–399, Springer, 2015.

[12] L. Zou, N. Zhan, S. Wang, M. Fränzle, and S. Qin, “Verify-
ing Simulink diagrams via a hybrid Hoare logic prover,” in
EMSOFT, pp. 1–9, IEEE, 2013.

[13] M. Chen, X. Han, T. Tang, S. Wang, M. Yang, N. Zhan,
H. Zhao, and L. Zou, “MARS: A toolchain for modelling,
analysis and verification of hybrid systems,” in Provably Cor-
rect Systems, pp. 39–58, Springer, 2017.

[14] X. Xu, B. Zhan, S. Wang, J.-P. Talpin, and N. Zhan, “Se-
mantics foundation for cyber-physical systems using higher-
order UTP,” ACM Trans. Softw. Eng. Methodol., 2023.
https://doi.org/10.1145/3517192.

[15] G. Yan, L. Jiao, S. Wang, L. Wang, and N. Zhan, “Automat-
ically generating SystemC code from HCSP formal models,”
ACM Trans. Softw. Eng. Methodol., vol. 29, no. 1, pp. 4:1–4:39,
2020.

Volume 44, Number 1, March 2023 Ada User Jour na l

71

C2AADL_Reverse: A Model-Driven Reverse
Engineering Approach for Development and
Verification of Safety-Critical Software

Zhibin Yang, Zhikai Qiu, Yong Zhou, Zhiqiu Huang
School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing,
China; email: yangzhibin168@163.com, {2427153594, zhouyong, zqhuang}@nuaa.edu.cn

Jean-Paul Bodeveix, Mamoun Filali
IRIT-Université de Toulouse, Toulouse, France; email: {bodeveix, filali}@irit.fr

Abstract

The safety-critical system communities have been strug-
gling to manage and maintain their legacy software
systems because upgrading such systems has been
a complex challenge. To overcome or reduce this
problem, reverse engineering has been increasingly
used in safety-critical systems. This paper proposes
C2AADL_Reverse, a model-driven reverse engineer-
ing approach for safety-critical software development
and verification. C2AADL_Reverse takes multi-task
C source code as input, and generates AADL (Archi-
tecture Analysis and Design Language) model of the
legacy software systems. Compared with the existing
works, this paper considers more reversed construc-
tion including AADL component structure, behavior,
and multi-threaded run-time information. Moreover,
two types of activities are proposed to ensure the cor-
rectness of C2AADL_Reverse. First, it is necessary
to validate the reverse engineering process. Second,
the generated AADL models should conform to desired
critical properties. We propose the verification of the
reverse-engineered AADL model by using UPPAAL to
establish component-level properties and the Assume
Guarantee REasoning Environment (AGREE) to per-
form compositional verification of the architecture. This
combination of verification tools allows us to iteratively
explore design and verification of detailed behavioral
models, and to scale formal analysis to large models.
In addition, the prototype tool and the evaluation of
C2AADL_Reverse using a real-world aerospace case
study are presented.

Keywords: Safety-Critical Software, Model-Driven Re-
verse Engineering, AADL, Compositional Verification.

1 Introduction
Safety-critical systems (SCS) are the systems whose failure
could result in loss of life, substantial economic loss, or dam-
age to the environment [1]. There are many well-known exam-
ples in different domains such as aircraft flight control, space

missions, and nuclear systems. The SCS communities have
been struggling to manage and maintain their legacy software
systems because upgrading such systems has been a complex
challenge. As surveyed by FAA (Federal Aviation Adminis-
tration), reverse engineering (RE) has been increasingly used
in many industries, including aircraft applications [2].

In contrast with forward engineering, reverse engineering
can be defined as the process of examining an already imple-
mented software system to create a higher abstraction level
representation in a different form. Reverse engineers typi-
cally start with a low-level representation of a system (such
as source code, or execution traces), and try to build more
abstract representations from these (such as architectural mod-
els, or use cases, respectively) [3]. The main objective of RE
is to provide a better understanding of the software system’s
current state, which can be used to correct (e.g. fix bugs), up-
date (e.g. alignment with updated user requirements), upgrade
(e.g. add new capabilities), or even completely re-engineer
the system under study [4].

Generally, reverse engineering a software system is a time-
consuming and error-prone process. It’s difficult to predict
how much time RE will require and there are no standards to
evaluate the quality of the result of RE [4]. To overcome these
difficulties, model driven reverse engineering (MDRE) [4,5,6]
has been proposed to enhance the traditional reverse engineer-
ing processes. MDRE is the application of model driven
engineering (MDE) principles and techniques to RE in order
to generate relevant model-based views on legacy systems,
thus facilitating their understanding and manipulation.

There have been several past works on MDRE which can be
classified as two categories: specific and general solutions.
This is determined depending on whether they aim to reverse
engineer the system from a single technology and/or with a
predefined scenario in mind (e.g., a concrete kind of analysis),
or to be the basis for any other type of manipulation in later
steps of the reverse engineering process [7]. Manev et al. [8]
propose a tool, called ITACG (IoT software Analysis and
Code-Generation tool), for performing reverse engineering
and extraction. This is accomplished by scanning the source

Ada User Jour na l Vo lume 44, Number 1, March 2023

72 C2AADL_Reverse

code of the target system and extracting architectural infor-
mation from it, which is stored into a UML model. Umair
Sabir et al. [9] present a MDRE framework named Src2MoF
to generate UML structural and behavioral diagrams from the
Java source code. In order to address several kinds of scenar-
ios relying on different legacy technologies, Hugo Bruneliere
et al. [7] give an extensible and generic model driven reverse
engineering: MoDisco. MoDisco has three layered architec-
ture i.e. infrastructure, technologies and use case layers. It
defines a basic meta-model approach for MDRE based on
Knowledge Discovery Meta-model (KDM) specification to
provide support for XML, JSP and Java. MoDisco only deals
with structural aspects and does not support the MDRE for
behavioral aspects from source artifacts.

Most of the existing works of MDRE mainly consider general
domains such as desktop or business applications. In this
paper, we consider MDRE in the domain of complex embed-
ded systems, especially the safety-critical systems. Complex
embedded software systems are typically special-purpose sys-
tems developed for control of a physical process with the help
of sensors and actuators. They are often the systems requiring
a deep combination of software, runtime operational system
and hardware platform. Typical non-functional analysis of
the requirements in this domain, such as safety, schedulabil-
ity, and so on, needs the modeling of architecture, functional
behaviors and runtime. These characteristics already make it
apparent that complex embedded systems differ from desk-
top and business applications. Compared with the modeling
languages used in the existing works of MDRE such as UML,
AADL (Architecture Analysis and Design Language) [10] is
a powerful modeling language for complex embedded sys-
tem, which provides a unified formalism for the modeling of
architecture, functional behaviors, and runtime.

This paper proposes C2AADL_Reverse, a MDRE approach
for safety-critical software development and verification.
C2AADL_Reverse takes multi-task C source code as input,
and generates AADL model of the legacy software systems.
Moreover, when MDRE exists in the domain of safety-critical
systems, validation of the MDRE process and verification of
the resulted models are highly desirable because such soft-
ware systems have to undergo development regulations and
certification restrictions. Therefore, the reverse-engineered
AADL components become the basis for applying MDD de-
velopment in the same application domain, and should be
analyzed and verified.

2 Research problems
Currently, there are several researches on AADL automatic
code generation (i.e. forward engineering). For instance,
OCARINA [11] and RAMSES [12] support automatic code
generation from AADL to C, Ada and Java. Regarding the
reverse generation of AADL models, Wang et al. [13] propose
an approach for extracting AADL models from existing em-
bedded software in order to reduce maintenance costs. In an
effort to bridge the semantic and syntactic gaps between the
two languages, they have defined a set of mapping rules from
C to AADL models. For Integrated Modular Avionics (IMA)
systems, Lesovoy et al. [14] present an approach to extract the

AADL models from source code of ARINC 653-compatible
application software. They apply the ideas of counterexam-
ple and path feasibility check to the task of extracting the
architectural information from source code. As mentioned
before, safety-critical software often run on various embed-
ded platforms, reverse engineering needs to deal with the
information such as static structure, dynamic run-time, and
functional behavior. However, the existing approaches mainly
deal with structural aspects instead of behavioral and run-time
aspects of source artifacts. Safety-critical software systems
are large and intricate, often constituting hundreds of compo-
nents. Thus, the challenge is to be able to derive the informa-
tion about the functional behaviors and the runtime dynamics
of a system. In particular, as multi-core processors are widely
used in safety-critical software [15], the reverse engineering
of multi-task synchronization, mutex, communication, and
task scheduling has become an important problem.

Moreover, how to evaluate or measure a MDRE effort? On
the one hand, we can use the generated model of MDRE to
produce another version of the original software and make the
comparison between the two versions to validate the MDRE
process. On the other hand, automatic formal verification
techniques such as model-checking can be used to analyze the
behaviours of the generated model. Since the increasingly size
of the source code, formal verification of reverse-engineered
AADL models often faces the so-called state-explosion prob-
lem. An approach to deal with the state-explosion problem is
the use of compositional verification [16, 17, 18] which lever-
ages the structure of the system. The basic idea is to apply
divide-and-conquer approaches to infer global properties of
complex systems from properties of their components.

To overcome the above-mentioned research problems, we
have implemented a complete framework for the proposed
approach, that is C2AADL_Reverse, as shown in Fig.1. It
includes five phases, (1) analysis of the original source code,
(2) extraction of an intermediate model, (3) generation of an
AADL model, (4) validation of the C2AADL process, and (5)
formal verification of the generated AADL model. In our case,
the original source code is structured, i.e., it conforms with
the coding/programming rules in aerospace industry, such as
strict development patterns with clear separation of commu-
nications, data types, components types, etc. Compared with
the existing AADL RE method, this paper considers more
reverse constructions including AADL component structure,
behavior, and multi-threaded run-time information. For the
validation of the reverse process, we generate a second version
of the original software and compare the two versions of code.
Moreover, we propose the verification of the generated AADL
model by using UPPAAL to establish component-level prop-
erties and the Assume Guarantee REasoning Environment
(AGREE) [19, 20] to perform the compositional verification
of the architecture.

3 Main contributions
The main contributions of the paper can be summarized as
follows:

• A new MDRE approach named C2AADL_Reverse: The
transformation from multi-task C source code to AADL
is divided into three parts:

Volume 44, Number 1, March 2023 Ada User Jour na l

Z. Yang et a l . 73

.c

1.Code analysis

2.Intermediate

model extraction
3.AADL model

generation

AADL model

.h

AST

CAInterM
Multi-task code

5. Model

verification

AGREE

Transformation rules

UPPAAL

4. Model validation

.c .h

Generated code Compare

Figure 1: The framework of C2AADL_Reverse

– Structural aspect: the transformation from global
variables, local variables, data types, function defi-
nitions and multi-task structures to AADL compo-
nents;

– Behavioral aspect: the transformation from func-
tion and task execution behavior to AADL behavior
annex [21], which involve various types of branch
statements, assignment statements, and function
call statements;

– Run-time aspect: the transformation from multi-
task communication, multi-task synchronization
and mutex, and task scheduling to AADL
execution-model properties.

• Validation and verification approach of
C2AADL_Reverse: Two types of activities are proposed
to ensure the correctness of C2AADL_Reverse. First,
it is necessary to validate the reverse engineering
process. Second, the generated AADL models should
conform to desired critical properties. We propose the
verification of the generated AADL model by using the
model checker UPPAAL to establish component-level
properties and the AGREE environment to perform
the compositional verification of the architecture. This
combination of verification tools allows us to iteratively
explore design and verification of detailed behavioral
models, and to scale formal analysis to large models.

• The prototype tool: The C2AADL_Reverse prototype
tool adopts a modular architecture, which is imple-
mented based on the AADL open source environment
OSATE [22], in which an intermediate model is pro-
posed to facilitate the transformation from C source code
to AADL.

• Case study: A real-world aerospace industrial case, the
rocket launch control subsystem, is used to show the
feasibility of the method presented in the paper.

4 Conclusion and future work
This paper has presented a model-driven reverse engineering
approach for safety-critical software development and veri-
fication, namely C2AADL_Reverse. Compared with the
existing works, C2AADL_Reverse considers more reversed
construction including AADL component structure, behavior,
and multi-threaded run-time information. Moreover, when
MDRE exists in the domain of safety-critical systems, vali-
dation of the MDRE process and verification of the resulted

models are highly desirable because such software systems
have to undergo development regulations and certification re-
strictions. We use reverse reverse engineering to validate the
reverse engineering process, and verify the generated AADL
models by using the model checker UPPAAL to establish
component-level properties and the AGREE environment to
perform the compositional verification of the architecture. To
the best of our knowledge, this paper presents a first effort on
the validation and verification of the reverse process from C
to AADL. Finally, the effectiveness of C2AADL_Reverse
is demonstrated using a real-world aerospace case study.

We will further carry out the following future work:

• The source code cannot explicitly express non-functional
properties of the software system (such as period, execu-
tion time, resource consumption, and so on). At present,
we apply third-party dynamic tools (such as WCET anal-
ysis tools) to measure timing properties and add them to
the corresponding AADL model.

• Inspired by the restricted natural language approach pro-
posed in our previous work [23], the automatic transfor-
mation from natural language requirements into AGREE
contracts is currently being developed. As well, the
translation from AGREE contracts to TCTL properties
in UPPAAL will be also automated.

• We are considering the extension of AGREE to support
for modeling components that execute asynchronously
(or quasi-synchronously), and formalizing the reasoning
rules in the theorem prover Coq [24].

References
[1] N. G. Leveson, Engineering a safer world: Systems

thinking applied to safety. The MIT Press, 2016.

[2] M. D. George Romanski, “Reverse engineering for soft-
ware and digital systems,” tech. rep., 2016.

[3] A. van Deursen and E. Burd, “Software reverse engineer-
ing,” Journal of Systems and Software, vol. 77, no. 3,
pp. 209 – 211, 2005. Software reverse engineering.

[4] S. Rugaber and K. Stirewalt, “Model-driven reverse
engineering,” IEEE software, vol. 21, no. 4, pp. 45–53,
2004.

[5] C. Raibulet, F. A. Fontana, and M. Zanoni, “Model-
driven reverse engineering approaches: A systematic lit-
erature review,” IEEE Access, vol. 5, pp. 14516–14542,
2017.

[6] H. Bruneliere, Generic Model-based Approaches for
Software Reverse Engineering and Comprehension.
PhD thesis, Nantes, 2018.

[7] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot,
“Modisco: A model driven reverse engineering frame-
work,” Information and Software Technology, vol. 56,
no. 8, pp. 1012–1032, 2014.

Ada User Jour na l Vo lume 44, Number 1, March 2023

74 C2AADL_Reverse

[8] D. Manev and A. Dimov, “Facilitation of IoT software
maintenance via code analysis and generation,” in 2017
2nd International Multidisciplinary Conference on Com-
puter and Energy Science (SpliTech), pp. 1–6, IEEE,
2017.

[9] U. Sabir, F. Azam, S. U. Haq, M. W. Anwar, W. H. Butt,
and A. Amjad, “A model driven reverse engineering
framework for generating high level UML models from
java source code,” IEEE Access, vol. 7, pp. 158931–
158950, 2019.

[10] SAE, “Architecture Analysis & Design Language
(AADL), AS5506C,” 2017.

[11] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From
the prototype to the final embedded system using the
ocarina aadl tool suite,” ACM Transactions on Embed-
ded Computing Systems (TECS), vol. 7, no. 4, pp. 1–25,
2008.

[12] S. Rahmoun, E. Borde, and L. Pautet, “Multi-objectives
refinement of AADL models for the synthesis embedded
systems (mu-RAMSES),” in 2015 20th International
Conference on Engineering of Complex Computer Sys-
tems (ICECCS), pp. 21–30, IEEE, 2015.

[13] G. Wang, X. Zhou, Y. Dong, and H. Zhao, “Studying
on AADL-based architecture abstraction of embedded
software,” in 2009 International Conference on Scalable
Computing and Communications; Eighth International
Conference on Embedded Computing, pp. 14–19, IEEE,
2009.

[14] S. L. Lesovoy, “Extracting architectural information
from source code of ARINC 653-compatible application
software using CEGAR-based approach,” Trudy ISP
RAN/Proc, vol. 30, no. 3, 2018.

[15] S. M. Salman, A. V. Papadopoulos, S. Mubeen, and
T. Nolte, “A systematic methodology to migrate com-
plex real-time software systems to multi-core platforms,”
Journal of Systems Architecture, vol. 117, p. 102087,
2021.

[16] E. Posse and J. Dingel, “Contract-based specifica-
tion and analysis of aadl models,” in ACVI 2014–
Architecture Centric Virtual Integration Workshop Pro-
ceedings, p. 4, Citeseer, 2014.

[17] S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen,
“Compositional verification for component-based sys-
tems and application,” in International Symposium on
Automated Technology for Verification and Analysis,
pp. 64–79, Springer, 2008.

[18] D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. LaVal-
ley, and L. Sha, “Compositional verification of archi-
tectural models,” in NASA Formal Methods Symposium,
pp. 126–140, Springer, 2012.

[19] E. Ghassabani, A. Gacek, M. W. Whalen, M. P. Heim-
dahl, and L. Wagner, “Proof-based coverage metrics for
formal verification,” in 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), pp. 194–199, IEEE, 2017.

[20] A. Gacek, J. Backes, M. Whalen, L. Wagner, and
E. Ghassabani, “The JKind model checker,” in Inter-
national Conference on Computer Aided Verification,
pp. 20–27, Springer, 2018.

[21] SAE, “Architecture Analysis and Design Language
(AADL) Annex D: Behavior Model Annex,” 2017.

[22] “OSATE: Plug-ins for front-end processing of AADL
models,” tech. rep., The Software Engineering Institute,
2013.

[23] F. Wang, Z. Yang, Z. Huang, C. Liu, Y. Zhou, J. Bode-
veix, and M. Filali, “An approach to generate the trace-
ability between restricted natural language requirements
and AADL models,” IEEE Trans. Reliab., vol. 69, no. 1,
pp. 154–173, 2020.

[24] A. Chlipala, Certified Programming with Dependent
Types: A Pragmatic Introduction to the Coq Proof As-
sistant. The MIT Press, 2013.

Volume 44, Number 1, March 2023 Ada User Jour na l

75

COMPASTA: Integrating COMPASS Functionality
into TASTE

A. Bombardelli, A. Bonizzi, M. Bozzano, R. Cavada, A. Cimatti, A. Griggio, M. Nazaria, E. Nicolodi, S. Tonetta, G.
Zampedri
Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy; email: bozzano@fbk.eu

Abstract

TASTE is a tool chain dedicated to the design and imple-
mentation of embedded, real-time systems, developed
under the initiative of the European Space Agency (ESA).
It consists of various tools, which support model-based
design of embedded systems, automatic code genera-
tion, deployment and simulation. TASTE is based on
several specification languages, in particular it uses
AADL for the architectural design, whereas the behav-
ior of SW components can be specified in SDL and other
languages.

TASTE currently lacks a comprehensive support for per-
forming early verification and assessment of the design
models. COMPASTA is an ESA study that aims at filling
this gap, by integrating into TASTE the formal verifica-
tion functionality of COMPASS, a tool for model-based
HW-SW co-Engineering developed in a series of ESA
studies. COMPASTA extends TASTE by providing the
possibility to model the behavior of HW components
using SLIM, a dialect of AADL supported by COMPASS.
Moreover, it offers capabilities such as library-based
specification of HW faults, automatic fault injection,
contract-based design, functional verification and safety
assessment, fault detection and identification analysis.

Keywords: AADL, SDL, TASTE, COMPASS.

1 Introduction
TASTE [1,2] is a model-based software engineering design en-
vironment dedicated to embedded, real-time systems, which
has been actively developed by ESA since 2008. Specifica-
tions are written in different languages, such as AADL [3]
(for the architectural specification) and SDL [4] (for the be-
havioral specification). TASTE includes various other tools,
such as editors, viewers, and code generators. TASTE has
been adopted as a glue technology and for system deployment
in several projects, see e.g. [5, 6, 7].

COMPASS [8,9,10] is a tool for System-SW Co-Engineering
developed in a series of ESA studies from 2008 to 2016. Spec-
ifications are written in SLIM, a dialect of AADL. COMPASS
supports model-based verification techniques, based on model
checking, such as requirements analysis, contract-based anal-
ysis, fault specification, functional verification, safety and
dependability assessment, fault detection and identification

analysis. COMPASS is based on the ocra [11], nuXmv [12]
and xSAP [13] verification back-ends.

COMPASTA is an ESA study (2021-2022) that aims at in-
tegrating the formal verification functionalities of COM-
PASS [8, 9, 10] into TASTE [1, 2]. COMPASTA extends
TASTE by supporting model-based specification of both SW
and HW components, fault injection, and a full set of formal
analyses, based on model checking. The goal of the analyses
is to formally validate the system model, before the system is
deployed to the target HW. Thus, COMPASTA makes TASTE
a comprehensive and coherent end-to-end tool chain, that
covers system design and development SW implementation,
deployment and testing.

2 The COMPASTA Workflow Exemplified
COMPASTA extends the TASTE workflow by providing ad-
ditional functionalities which are complementary with respect
to the ones available in TASTE. TASTE is a tool for model-
based SW engineering, focusing on SW design, deployment
and implementation. COMPASTA, on the other hand, ex-
tends TASTE by providing the possibility to model HW com-
ponents and their faults, to perform fault injection, and to
carry out several formal analyses (e.g., requirements valida-
tion, contract-based design, functional verification, safety and
dependability assessment) on the complete formal model (in-
cluding both HW and SW). The goal of COMPASTA is to
enable early validation of the design model, before the SW is
implemented and deployed to the target HW.

We illustrate the COMPASTA workflow in a simple running
example, shown in Fig. 1, modeling a redundant power sys-
tem.

The example consists of HW components (batteries, genera-
tors, sensors, and switches) and SW components (the FDIR
components). Generators provide power to batteries, which in
turn provide power to sensors. In case of a fault of a generator
or a battery, the lines connecting generators, batteries and
sensors can be reconfigured. For instance, in case of a fault of
one battery, the remaining battery can be used to power both
sensors. FDIR components perform a re-configuration by
sending a command to the corresponding switch component.

The system is modeled using the graphical user interface of
TASTE. Fig. 1 shows the Interface View (architecture) of the
system, i.e. the blocks corresponding to the components, and
the connections (provided and required interfaces) between

Ada User Jour na l Vo lume 44, Number 1, March 2023

76 COMPASTA: In tegrat ing COMPASS Funct iona l i ty in to TASTE

Figure 1: A power system example.

the components. TASTE uses AADL to generate an internal
representation of the Interface View.

SW components (FDIRs in our example) can be modeled
using the SDL language. For instance, Fig 2 shows an ex-
cerpt of the code for FDIR_2. It periodically reads the input
voltages of the two batteries and, in case the output voltage of
either of them is under a given threshold, it sends a command
to the Switch_2 component to change from primary mode to
a secondary mode.

Figure 2: Sample SDL code for FDIR_1.

HW components can be modeled in SLIM, a dialect of AADL,
which extends AADL by providing the possibility, among
other things, to specify behavioral models in the form of state
machines, and to specify faults and fault injections. We show

below some sample code for the Battery_1 component. The
given transition causes the output voltage of the battery to
decrease by 1, when the input voltage is below 10.

system implementation Battery_1.others
−− BATTERY SUBCOMPONENTS
subcomponents

−− DELAY FOR TIMESTEPS
delay: data clock;

−− BATTERY STATES
states

init : initial state;
base: state while (delay <= 1);

−− BATTERY STATE TRANSITIONS
transitions

−− INIT
init −[

then voltage_out.voltage := 12
]−> base;
−− BATTERY DISCHARGES BY 1V
base −[

when delay >= 1
and get_voltage.voltage < 10
and voltage_out.voltage >= 1

then delay := 0;
voltage_out.voltage := voltage_out.voltage − 1

]−> base;
[...]

end Battery_1.others;

The SDL and SLIM models are translated by COMPASTA
into the language supported by the verification back-ends,
which are run to carry out the formal analyses. The trans-
lation performed by COMPASTA is based on the definition
of the semantics of the input languages (based on the stan-
dards [3, 4] and on the COMPASS semantics for SLIM), and
of the semantics of the communication between HW and SW
(defined in COMPASTA, and compatible with the TASTE
communication semantics).

Fault definitions can be picked from a library, and automati-
cally injected into the system model, e.g., a fault injection can
model a permanent “stuck-at-zero” fault of the “voltage_out”
signal of a battery. This is specified via the following fault
injection specification:

system implementation Battery_1.others
properties

Volume 44, Number 1, March 2023 Ada User Jour na l

A. Bombarde l l i e t a l . 77

t

Figure 3: An example Fault Tree.

FaultInjections => (
[

Description => "Dead";
Fault_Model => "StuckAtByValue_I";
Fault_Dynamics => "Permanent";
Probability => "1.e−7";
DataInput => "voltage_out.voltage";
DataVarout => "voltage_out.voltage";
DataTerm => "0";

]
);

end Battery_1.others;

Model checking can be used to verify functional properties.
For instance, the following property (specified using a prop-
erty pattern from COMPASS):

“Globally, it is always the case that sensor1.valid
and sensor2.valid holds”

states that the outputs of both sensors are always valid (which
is the case when the sensors are powered and they are not
failed. COMPASTA can automatically generate and display
artifacts such as traces (e.g., a counterexample trace, when a
property is violated). Moreover, COMPASTA can automat-
ically generate artifacts such as Fault Trees. Fig. 3 shows
an example Fault Tree for the property corresponding to the
outputs of both sensors being invalid.

When the formal model has been validated, the standard
TASTE workflow can be used for the implementation of the
SW components. To this aim, first HW components must
be replaced with corresponding interface components, that
represents the SW layer realizing the communication between
SW and HW. Then, the deployment of the SW components
(binding of the SW to the target HW platform(s)) is specified.
Finally, TASTE can then be used to generate the executable
code for the target platform(s) and to test and simulate the
final implementation.

3 Conclusions and Future Work
COMPASTA is an ESA-funded study whose goal is to extend
the TASTE toolset with formal verification and assessment
functionality, creating a comprehensive and coherent tool
chain that covers architectural and functional design, system-
level safety assessment, and deployment of the embedded
software. In the proposed workflow, system, safety, and
software engineers share the same models and use them in an
iterative process, supported by various analyses that increase

the confidence in the internal and external consistency of the
system, and the overall quality of the final product.

The integration is based on a view where the COMPASS back-
ends are split from the COMPASS front-end and integrated in
other model-based design environments such as TASTE. On
the same lines, ocra, nuXmv, and xSAP have been integrated
into CHESS for a SysML-based design [14], while FBK is
working on the integration of such back-ends into CAMEO
and on the prototype support for SySML-V2.

Acknowledgments
This work was funded by ESA-ESTEC under Contract No.
4000133700/21/NL/GLC/kk.

References
[1] J. Hugues, L. Pautet, B. Zalila, P. Dissaux, and M. Per-

rotin, “Using AADL to build critical real-time sys-
tems: Experiments in the IST-ASSERT project,” in Proc.
ERTS, 2008.

[2] “TASTE web page.” https://taste.tools/.

[3] SAE, “Architecture Analysis & Design Language
(AADL),” 2022. SAE document AS5506D.

[4] International Telecommunication Union, “ITU-T Z.100.
Specification and Description Language – Overview of
SDL-2010,” 2021.

[5] “ADE: Autonomous Decision Making in Very Long
Traverses.”

[6] “MOSAR: Modular Spacecraft Assembly and Reconfig-
uration.”

[7] R. Cavada and A. Cimatti and L. Crema, and M. Roc-
cabruna and S. Tonetta, “Model-Based Design of an
Energy-System Embedded Controller Using Taste,” in
Proc. FM 2016, vol. 9995 of LNCS, pp. 741–747, 2016.

[8] M. Bozzano, H. Bruintjes, A. Cimatti, J.-P. Katoen,
T. Noll, and S. Tonetta, “COMPASS 3.0,” in Proc.
TACAS 2019, 2019.

[9] M. Bozzano, A. Cimatti, J.-P. Katoen, P. Katsaros,
K. Mokos, V. Nguyen, T. Noll, B. Postma, and
M. Roveri, “Spacecraft Early Design Validation using
Formal Methods,” Reliability Engineering & System
Safety, vol. 132, pp. 20–35, 2014.

Ada User Jour na l Vo lume 44, Number 1, March 2023

78 COMPASTA: In tegrat ing COMPASS Funct iona l i ty in to TASTE

[10] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen,
T. Noll, and M. Roveri, “Safety, Dependability and Per-
formance Analysis of Extended AADL Models,” Com-
puter Journal, vol. 54, no. 5, pp. 754–775, 2011.

[11] “ocra web page.” https://ocra.fbk.eu.
[12] “nuXmv web page.” https://nuxmv.fbk.eu.

[13] “xSAP web page.” https://xsap.fbk.eu.

[14] A. Debiasi, F. Ihirwe, P. Pierini, S. Mazzini, and
S. Tonetta, “Model-based Analysis Support for Depend-
able Complex Systems in CHESS,” in MODELSWARD,
pp. 262–269, SCITEPRESS, 2021.

Volume 44, Number 1, March 2023 Ada User Jour na l

79

Experiences Modeling a OPC UA / DDS Gateway
in AADL in the Context of Fog Computing

P. Denzler, D.Ramsauer, D.Scheuchenstuhl, W.Kastner
Institute of Computer Engineering, TU Wien, Vienna; email:
{patrick.denzler}, {daniel.ramsauer},{daniel.scheuchenstuhl},{wolfgang.kastner}@tuwien.ac.at

Abstract

The legacy protocols still used in industrial automation
are an obstacle to interoperability. In the meantime,
while newer protocols are slowly replacing gateways,
they can provide a bridge between new and legacy pro-
tocols. The Architecture Analysis & Design Language
(AADL) was used in the Fog Computing for Robotics
and Industrial Automation (FORA) project to model a
Fog Computing Platform (FCP). Part of the FCP is an
OPC Unified Architecture (OPC UA) / Data Distribution
Service (DDS) gateway. The main goal was to develop
an AADL model that allows the creation of platform-
specific instances of such a gateway and the creation
of other gateways. While the gateway model is incom-
plete, it formed the basis for several gateway prototypes.
Challenges included complex data structures and tool-
ing issues related to code generation. Nevertheless, the
experiences with the AADL modeling of the gateway
and the FCP were positive overall.

1 Summary of the Talk
The presentation was structured as an experience report and
gave an overview of the following topics and results. As the
research was conducted as part of the European Union’s Hori-
zon 2020 research and innovation programme (FORA—Fog
Computing for Robotics and Industrial Automation [1]), the
introduction included some essential information about the
project and its members. Another part of the opening was
focused on current interoperability issues with legacy systems
within industrial automation.

A fog computing platform (FCP) is one of the outcomes of
FORA [1, 2]. During the development, the parts of the FCP
were modelled in AADL as a means for documentation and
evaluation. One part of the FCP was concerned with an OPC
Unified Architecture (OPC UA) / Data Distribution Service
(DDS) gateway as a possible solution to ease legacy protocol
issues. Both middlewares are the new defacto standard in in-
dustrial automation. The main goal was to develop an AADL
model that allows the creation of platform-specific instances
of such a gateway and the creation of other gateways.

The talk provided insights into the various AADL models
focusing on the OPC UA / DDS gateway model within this
context. In the foreground of the report were the experiences

made during the modelling activities. Some of the encoun-
tered challenges were:

• Difficulties with modelling dynamic complex data types
required in the gateway.

• Problems encountered with the code generation tools
(parsers) as part of the AADL tool environment.

• The lack of documentation and examples.

Some of the positive results were:

• All gateway parts could be modelled in AADL in full
conformity to the OMG specification.

• A reduced version of the AADL model was implemented
based on the model and used in other projects [3, 4].

In summary, the experiences were positive and were published
in more detail in Denzler et al. [5].

References
[1] P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Pun-

nekkat, J. Ruh, and W. Steiner, “The FORA fog com-
puting platform for industrial IoT,” Information Systems,
vol. 98, p. 101727, 2021.

[2] P. Denzler, J. Ruh, M. Kadar, C. Avasalcai, and W. Kast-
ner, “Towards Consolidating Industrial Use Cases on a
Common Fog Computing Platform,” in 2020 25th IEEE
International Conference on Emerging Technologies and
Factory Automation (ETFA), vol. 1, pp. 172–179, 2020.

[3] P. Denzler, D. Ramsauer, and W. Kastner, “Tunnelling
and Mirroring Operational Technology Data with IP-
based Middlewares,” in 2021 22nd IEEE International
Conference on Industrial Technology (ICIT), vol. 1,
pp. 1205–1210, 2021.

[4] P. Denzler, D. Ramsauer, T. Preindl, and W. Kastner,
“Communication and container reconfiguration for cyber-
physical production systems,” in 2021 26th IEEE Interna-
tional Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 1–8, 2021.

[5] P. Denzler, D. Scheuchenstuhl, D. Ramsauer, and W. Kast-
ner, “Modelling protocol gateways for cyber-physical sys-
tems using Architecture Analysis & Design Language,”
Procedia CIRP, vol. 104, pp. 1339–1344, 2021. 54th
CIRP CMS 2021 - Towards Digitalized Manufacturing
4.0.

Ada User Jour na l Vo lume 44, Number 1, March 2023

80

Modelling Robot Architectures with AADL

Gianluca Bardaro, Matteo Matteucci
Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milano (IT); email: {name.surname}@polimi.it

Abstract

Robots are complex systems composed of many interact-
ing subsystems, each coordinating a multitude of hard-
ware and software components. In the last twenty years,
robotic frameworks helped accelerate the development
process by providing a reference structure and publicly
available software components. However, current prac-
tices are not sustainable for modern robotic systems. In
this work, we present a modelling approach based on
the Architecture Analysis and Design Language (AADL)
to define robotic systems and enhance software develop-
ment practices for robotics. Additionally, we exploit the
model to perform automatic code generation, which re-
duces development time and guarantees a more reliable
and robust implementation.

Keywords: AADL, robotics, automatic code generation.

1 Introduction
Robots have become increasingly popular in recent years,
with a wide range of applications in fields such as manufac-
turing, healthcare, and retail. This increase in popularity is
also thanks to the introduction and consolidation of many
frameworks for software robot development. In particular,
the Robot Operating System (ROS) [1] is now the de facto
standard for robot software in academia, and it is becoming
more popular in industry since the introduction of ROS 2 [2].

Nonetheless, the process of developing and programming a
robot is complex and time-consuming. Robots are composed
of many interacting subsystems, and each of them requires
the expertise of a specific domain expert. This complexity
makes the development of software for a robot a task that
cannot be tackled by a single expert but requires cooperation
and significant integration effort.

Robotic software is well-suited for a model-based design
approach, especially when combined with automatic code
generation [3]. Given its nature as a system of systems, robot
software is easily decomposed into components and supports
a decentralised development approach. This approach allows
domain experts to focus on implementing specific function-
ality without having to worry about the overall structure of
the software. Additionally, the use of a model allows for the
identification of potential problems and errors at the design
stage, as the complete architectural view is available from
the hardware configuration to the high-level software imple-
mentation. This can be particularly useful for robots, which
have complex processing pipelines and can experience errors

that propagate through multiple components before causing
disruptions.

In this work, we present an approach based on the Architec-
ture Analysis and Design Language (AADL) [4] to model
robotic architectures and a toolchain to automatically gen-
erate boilerplate code and deployment configurations. The
work is structured as follows. In section 2, we provide an
overview of our abstraction to generalise robot components.
Next, in Section 3, we show how AADL can be used to model
robot components following our abstraction. In Section 4,
an overview of our automatic code generation toolchain is
presented. Section 5 summarises a practical use case of our
approach. Finally, in Section 6, we draw relevant conclusions.

2 Component and connector paradigm
In robotics, the most popular frameworks are based on
a component-connector paradigm, and while different ap-
proaches implement it in different ways, the underlying struc-
ture is the same. In ROS, it is the computation graph, a
peer-to-peer network of processes managing and exchang-
ing data. Here, following the terminology of graphs, the
components are called nodes, while asynchronous topics or
synchronous services represent the connections. In both cases,
communication happens by exchanging messages.

The popularity of the component-connector paradigm is not
coincidental. In their structure, robots are a system of systems,
a hierarchical collection of components interconnected to
create a working apparatus. Physically, a robot is a collection
of sensors and actuators, and the same goes for the behaviour
where simple low-level independent functionalities are not
enough to implement even the simplest robot. Given all these
needs, the most natural approach is to decompose the system
into different and simpler subsystems and to simplify and
characterise their interactions by the use of interfaces. The
result is a component-connector paradigm.

In an effort to provide a general and flexible representation
that can be used to compose robotic architectures, we identi-
fied four recurring design patterns that we called component
behaviours. Each one is characterised by how data is received
and processed. These component behaviours are composable
and can be assembled to create complex components.

Source. A component expresses a source behaviour when it
is a generator of data or events. In ROS, a node implementing
a publisher that generates messages has a source behaviour.
This type of behaviour is used, for example, for device drivers
since they create and circulate a digital version of the analogue
input they detect.

Volume 44, Number 1, March 2023 Ada User Jour na l

G. Bardaro, M. Mat teucc i 81

Sink. A sink is a component that consumes data or events. In
ROS, a node is a sink when it implements a subscriber that
receives and consumes messages. A component that controls
actuators implements this type of behaviour since it receives
commands from other components and consumes them to
operate a physical device.

Filter. The most common behaviour for a component is the
filter. This type of component receives messages or events
as input and processes or relays them to create an output.
The component does not store the data received since they
are processed and directly re-circulated in the system. This
approach is common when doing simple conversions or when
it is necessary to resample the data. In ROS, it is implemented
by processing the received message directly in the subscriber
callback and publishing it before leaving the callback envi-
ronment.

Reactive. A component has a reactive behaviour when its
functionalities are synchronously triggered by a message or
an event, and it is usually implemented by using a remote
function call. In ROS, this kind of behaviour is exemplified
by services. They offer a public interface that can be called by
external components and react with synchronous execution
of a function that may return a value.

3 Using AADL
AADL is the perfect candidate to describe architectures based
on the component-connector paradigm because one of the
main design principles of the language is the interaction of
different components through connections. AADL compo-
nents, at any level (e. g., system, process, device, subprogram,
etc.), support some form of feature (i. e., ports and accesses)
to communicate and interact with other components [5].

Following how AADL models are structured, we use the
AADL system to encapsulate the entire architecture and, if
necessary, to define any specific subsystem inside the robot.
Going one step further in the structure of a robotic architec-
ture, we encounter components or nodes, as defined in ROS.
With the exception of some niche implementations, ROS
nodes are all independent processes. Using this approach
simplifies the deployment on multiple machines. Given this,
the most straightforward candidate to model ROS nodes is
the process category.

3.1 Component behaviours
To model component behaviours, we use threads. They rep-
resent an execution path through code, and their behaviour
is periodic with various characteristics or triggered by an ex-
ternal input. Moreover, multiple threads can coexist in the
same process and execute in parallel. All these characteristics
make the thread a suitable category to model component be-
haviours. However, as we described in the previous section,
each behaviour is related to a specific external interaction. We
achieve this by combining threads and ports.

First, we exploit AADL inheritance, and we define a generic
component behaviour that only includes data access to ac-
cess the internal state of the component. Additionally, this
generic component behaviour includes one subcomponent: a

subprogram that will contain the implementation as a prop-
erty. Specific component behaviours are then created by using
inheritance and specialised ports. In particular, the sink be-
haviour is characterised by a single inbound event data port.
Its counterpart is the source, which exposes an outbound data
port. The source behaviour also specifies through a property
that the thread is executed periodically. The two combined
in a single thread represent the filter behaviour, with one in-
bound and one outbound port. Lastly, the reactive behaviour
is obtained using a subprogram access that triggers the ex-
ecution of the functionality specified as the property of the
subprogram subcomponent.

Again using inheritance, these component behaviours are ex-
tended into building blocks for ROS nodes. Ports are refined
to target a specific data component, modelling the fact that
communication in ROS is strongly typed. Moreover, ports
are added to target ROS-specific functionalities and APIs.

3.2 ROS architectural elements
When describing models closer to the implementation level, it
is necessary to take into account all the elements that compose
a robotic architecture. First of all, physical devices and hard-
ware. For elements like processors or memories, it is possible
to bind a software component (e.g., processes or data) to its
physical counterpart (e.g., processor and memory) to specify
the hardware implementation of the system. In ROS, this fea-
ture of AADL can be used to model distributed architectures
by binding components to different physical platforms, and
this specifies where each node will be executed at runtime.
Devices are connected to processes using ports or accesses.

Sensors and actuators are an integral part of a robotic architec-
ture, and to model them, it is possible to use AADL devices.
A device represents an interface between the physical world
and the architecture, and it can be modelled as a simple inter-
face or include the inner functionalities and characteristics of
the physical component. Devices can connect to processes
using ports or accesses. When modelling a ROS architecture,
physical devices and software components communicate us-
ing the same interface. This creates the issue of differentiating
between a topic-based connection and other types of connec-
tions. To solve this problem, we exploit AADL physical and
virtual buses. A virtual bus can be used to model abstract
communication channels, like ROS topics, while a bus can be
used for physical connections, like Ethernet and USB.

One of the most important features of ROS and the main
reason for its popularity is the large library of already im-
plemented and readily available packages and nodes. When
creating a modelling approach for ROS, it is essential to in-
clude the possibility of modelling existing nodes, and we
achieve it by exploiting the dual representation provided by
AADL of component type and implementation. Existing ROS
packages are modelled directly as AADL packages, while
existing nodes are modelled using the component type only.
We provide an interface that appears and behave in the same
way as the already existing component, but we do not detail
in any way the internal functioning.

Lastly, a key feature of ROS is the package managing all the
different reference frames and transformations, known as tf.

Ada User Jour na l Vo lume 44, Number 1, March 2023

82 Model l ing Robot Arch i tec tures wi th AADL

Figure 1: Overview of the automatic code generation toolchain.

Differently from other ROS features, the access to tf does
not go through any established communication channel (i. e.,
topics or services). It is a centralised resource where all the
coordinate frames of the robot and their evolution in time
are stored, and it is possible to read or update the content of
this shared resource by using specialised APIs. Given this
description, the most suitable way to model tf is to use a
single data component at system level that all the nodes can
access through data accesses when necessary.

4 Automatic code generation
In our toolchain [6], we adopted a two-steps approach, first a
model-to-model transformation that converts the input AADL
model to an intermediate XML-based representation, then a
model-to-text transformation to automatically generate ROS-
compatible C++ code.

Figure 1 summarises the complete process. The automatic
code generation requires as input a model defined in AADL,
completed by a data description, and specialised via proper-
ties to include functionality-specific source code. When all
these conditions are met, the process provides as an output a
collection of automatically generated and compilation-ready
ROS nodes, their associated communication files (i.e., mes-
sages, service and action files) and the necessary launch files
to run the architecture. A fully complete model creates an
architecture that only needs to be compiled and run.

The model-to-model transformation going from AADL to
XML is the first step of the code generation approach and
preserves the original structure of the model when it is con-
verted to an XML-based representation. This transformation
is achieved using a custom backend for Ocarina [7]. The
output of this process, combined with data models describing
the configuration of the components, is the input of the next
step of the automatic code generation toolchain.

First, the automatic programming system creates the source
code for the new custom nodes in C++. Since C++ is a com-
piled language, the system will automatically generate all the
necessary files to build the node executables. If the model
contains all the necessary information (i.e., source code of
the functionalities), the final output of the automatic program-
ming process will be ready to compile with no intervention
required. The automatically generated code will be placed in

the correct package structure expected by ROS, together with
any custom message, service or action file.

To organise the generated nodes into an architecture, it is nec-
essary to create launch files. The topology of the architecture
can be automatically extracted from the model and converted
into launch files, and the parametrisation defined using a data
modelling language can be converted in the YAML descrip-
tion used by ROS. Moreover, in launch files, existing nodes
are included in the architecture and connected to the rest of
the system.

5 Use case
In this section, we present a test use case [8] where a model-
based approach has been used to replicate and reimplement
an existing architecture developed with traditional techniques.
We started from an already implemented and fully functional
system to show that it is possible to achieve the same level
of functionalities as the original application by combining a
model-based design with automatic programming. The tar-
get robot is an electric wheelchair modified to be controlled
with a computer and equipped with various sensors to achieve
levels of autonomy and teleoperation. The wheelchair used
as the starting platform is a commercial model (Twist T4
2x2) produced by Degonda Rehab SA. It is suitable for both
indoor and outdoor usage, and it has high manoeuvrability
thanks to the two-wheeled dynamics. The conversion from
a traditional electric wheelchair to an autonomous robotic
platform is achieved by installing encoders on the wheels to
provide odometry information and two Sick TiM 561 laser
scanner distance sensors, which are used for mapping, lo-
calisation, and obstacle avoidance. The robotic wheelchair
supports three modes of operation: manual, controlled with
the on-board joystick or through a radio controller, assisted
driving, controlled by the user but obstacle-aware, and fully
autonomous, the user specifies a destination on the map.

Figure 2 shows an overview of the complete architecture of
the robotic wheelchair using AADL graphical representation.
This overview is already a significant advantage with respect
to traditional development in ROS since this kind of represen-
tation of the computation graph is available only at runtime
when connections between nodes are established.

From this architectural overview, it is possible to see many of
the elements mentioned in the previous sections. The entire
architecture is encapsulated in a system component, and more
systems are used to aggregate nodes with similar functionali-
ties. For example, we separate the teleoperation subsystem
in the top left corner from the autonomous navigation in the
bottom right corner. This division is also useful when au-
tomatically generating launch files. Moreover, differently
than the runtime computation graph, this overview also in-
cludes hardware components such as sensors, actuators, and
communication channels.

The figure also highlights the three categories of components
we have to manage during automatic code generation. Al-
ready existing nodes, defined only as interfaces, are not gen-
erated and included directly in launch files. Custom nodes
are fully modelled, and therefore, it is possible to process

Volume 44, Number 1, March 2023 Ada User Jour na l

G. Bardaro, M. Mat teucc i 83

Figure 2: Graphical representation of the robotic wheelchair’s architecture. In blue the existing ROS nodes, in light green the custom
nodes automatically generated, and in dark green the partially generated rapt_node.

them with the code generation toolchain to generate a ready-
to-compile component. Finally, special custom nodes are
managed by the toolchain but then require direct intervention
by the component developer to finalise their implementation.

6 Conclusions
In this work, we presented a complete solution to model
robotic architectures. Our approach span from the description
of a generic component-based robotic system to the refine-
ment into a model of a ROS architecture and, finally, auto-
matic code generation and deployment.

With AADL, it is possible to detail both hardware and soft-
ware components, a feature that is impactful in robotic sys-
tems. Additionally, by exploiting the language’s built-in inher-
itance and extensibility, we can minimise the amount of code
both the designer and the developer need to write. Thanks
to the definition of component behaviours, the system de-
signer can easily assemble the model of complex architectures.
While the component developer can work in well-defined
boundaries and avoid the burden of writing boilerplate code.

References
[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,

J. Leibs, R. Wheeler, A. Y. Ng, et al., “Ros: an open-
source robot operating system,” in ICRA workshop on
open source software, vol. 3, p. 5, Kobe, Japan, 2009.

[2] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and
W. Woodall, “Robot operating system 2: Design, archi-
tecture, and uses in the wild,” Science Robotics, vol. 7,
no. 66, p. eabm6074, 2022.

[3] G. Bardaro, A. Semprebon, and M. Matteucci, “Aadl
for robotics: a general approach for system architecture
modeling and code generation,” in IRC 2017-IEEE Inter-
national Conference on Robotic Computing, 2017.

[4] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architec-
ture analysis & design language (aadl): An introduction,”
tech. rep., Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst, 2006.

[5] G. Bardaro and M. Matteucci, “Using aadl to model
and develop ros-based robotic application,” in 2017 First
IEEE International Conference on Robotic Computing
(IRC), pp. 204–207, IEEE, 2017.

[6] G. Bardaro, A. Semprebon, A. Chiatti, and M. Matteucci,
“From models to software through automatic transforma-
tions: An aadl to ros end-to-end toolchain,” in 2019 Third
IEEE International Conference on Robotic Computing
(IRC), pp. 580–585, IEEE, 2019.

[7] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina:
An environment for aadl models analysis and automatic
code generation for high integrity applications,” in Inter-
national Conference on Reliable Software Technologies,
pp. 237–250, Springer, 2009.

[8] G. Bardaro, A. Semprebon, and M. Matteucci, “A use
case in model-based robot development using aadl and
ros,” in Proceedings of the 1st International Workshop on
Robotics Software Engineering, pp. 9–16, 2018.

Ada User Jour na l Vo lume 44, Number 1, March 2023

84

Modeling ROS Based Applications with AADL

E. Senn, L. W. J. Bourdon
Lab-STICC, Université de Bretagne Sud, Lorient, France; email: {eric.senn, lucie.bourdon}@univ-ubs.fr

Abstract

This paper presents a library of AADL models for ROS
based applications. AADL models are provided for
every ROS services, namely nodes, and for complete
robots hardware and embedded computer boards. The
model of the complete system describes the binding of
software onto hardware components, and allows for
CPU and bus load analysis. To this purpose, dedicated
AADL properties are included into the models, that come
from actual measurements onto the hardware platforms.

1 Introduction
Developing robot software is a difficult task. Beside being
complex, robots are often critical systems, when people safety
is at stake. The work that we present here is directly moti-
vated by the need we had in common while developing such
software, and which led us to formal modeling. Formal mod-
eling has been successfully used for years to ease the design
of complex, and critical, systems. This approach has multiple
purposes, and we are here particularly interested in checking
the correctness of the specification and guaranteeing perfor-
mances. One of the performance that is directly related to
safety is the reaction time, e.g. the time needed for a robot
to brake then to stop when a human being steps into his way.
As a matter of fact, the reaction time of a robot is greatly
impacted by the load of its processing units. We indeed
observe that when every service in the robotic application
meets its deadline, and that means, is not slowed down by an
overloaded CPU, or communication bus, the robot react as ex-
pected : its reaction time is in the fixed tolerances. Hence, the
language that we need to support formal verification from our
models must allow to describe, beside the application itself,
the hardware on which it is executed, and the deployment of
every software components on the different parts of the hard-
ware. In addition, the models of the complete robotic system
must include dedicated properties and mechanisms to check
those two features as mentioned above : CPU and bus load.
The Architecture Analysis and Design Language (AADL) [1]
is particularly well fitted to those needs. It is supported by a
set of tools, among which OSATE2, that allows to write mod-
els for the software, the hardware, and the binding of software
to hardware components. From there, the models rightness
is checked, and performances analysis is performed. Both
textual description and graphical representation are defined
in AADL.

The Robot Operating System, ROS, has been designed to ease
the writing of robot software. Now widely used by developers,
it provides a set of libraries and tools for building, debugging,

and running code possibly across multiple computers. To
model our ROS based applications with AADL, we need a
library of ROS components carrying dedicated properties for
further performance analysis. Those properties, intended to
predict CPU and bus load on different hardware targets, come
from a set of different measurements on actual embedded
computer boards. Those measurements have been presented
in [2] for CPU load, and [3] for bus load analysis. This paper
focuses on the building of the library, on the architecture of
the models for every ROS component, and presents how to
use it to describe a complete robotic system.

2 State of the art
Different works have recently studied the use of AADL for
checking robotic applications. Latencies are analyzed in [4],
but regardless of CPU or bus load, which actually impact a
robot reaction time. Beside, the approach is not dedicated to
ROS based application. The authors in [5] concentrates on
ROS components, but have to develop their own modeling
language. They propose a modeling of tasks chains to evalu-
ate response times, but tasks are only assigned to one CPU
core and communication needs are note checked against bus
capacities. The benefit from modeling and developing ROS-
based robotic application with AADL has been presented
in [6] where an automatic generation of ROS code from the
model [7] is proposed. The AADL model is only build for the
software and hardware performances are not considered here.
In [8], the author tackled, as we do, AADL modeling, hard-
ware profiling, and deployment analysis at the same time. His
approach for measuring compute execution time is however
far more complex since it involves modification and rebuild-
ing of the code. This is something we definitely do not want
for our own code, and even less for entire ROS on-the-shelf
packages as we use in our applications. Beside being time
consuming, this is also an intrusive approach whose impact
on performances should be evaluated. Nodes are also con-
sidered independently, whereas we observe a modification
of performance when they are connected to others. Hence
the necessity to profile a node in its proper usage context.
Moreover, MIPS budget properties are not determined which
prevent for checking MIPS demand at the process level.

3 Modeling ROS with AADL
ROS might be defined as different things. It is often referred
to as a set tools and libraries for obtaining, building, writing,
and running robot code across one or several computers. As
such, it provides implementation of commonly-used function-
ality, for compilation, debugging, feedback and control over
the running software, together with management of the many
software packages that may be found in a ROS distribution.

Volume 44, Number 1, March 2023 Ada User Jour na l

E. Senn, L . W. J. Bourdon 85

ROS is also commonly defined as a middleware that provides
hardware abstraction, low-level device control, and above
all a structured communications layer on top of the host op-
erating system(s) of a computer (a heterogeneous computer
cluster). Indeed, a typical robotic application involves several
services : some are deployed on the robot with its embedded
computer board, or boards. Other might be deployed on a
remote computer for control purpose. In ROS, a service is
implemented as a node. Nodes communicate through vir-
tual channels called topics. A node may publish on a topic,
subscribe to a topic, or do the both at the same time.

To begin with, the model of a ROS based application must
reflect this set of nodes with their interconnections. Hence we
provide a set of packages with models for different robotic
services, aka nodes in ROS. Since we want to analyze per-
formances from our model, and because those performances
actually depend on the way nodes are deployed on the com-
puter cluster that supports the robot software, we need models
of the different computer boards in this cluster and their con-
nections. In many cases, only one, or two, single computer
boards, specifically dedicated to ROS nodes, are used in a
robot. In those models of the actual hardware, specific AADL
properties are used in conjunction with analysis tools to pre-
dict future performances of the complete system.

Our library is organized as follows.

• A central ros package : our central ROS package con-
tains the declaration of every component type and asso-
ciated implementation that will be used in our library
of ROS nodes. Indeed, according to the AADL mod-
eling style, inputs and outputs of a any component are
declared in the component definition, and the internal
structure is declared in its implementation.

• A collection of packages for different ROS nodes : one
AADL package is written for each node that we want to
include in our library. A node package includes the node
declaration as an AADL process, defining its inputs and
outputs, and its platform independant implementation
where its internal structure is defined. In this implemen-
tation, every thread in the node is declared as an AADL
subcomponents, together with its connections to other
threads and to the node’s input and outputs.

A node package also includes several platform depen-
dent implementations for every thread in the node. Those
implementations carries AADL properties definition re-
lated to the thread performances measured on different
embedded computer boards. For one computer board,
properties might differ depending on the actual CPU
cores on which the thread is running, begetting as much
different implementations as needed.

• A package for ROS messages : This package will con-
tains the declaration of types and associated implemen-
tations for every kind of messages that the nodes in our
library could exchange.

• A set of packages for modeling the hardware : here we
will find the packages for different robots, as well as
for single computer boards and the system on chips or
multiprocessor CPU they carry.

We feel compeled to issue a warning here : our AADL library
does not include a model for all nodes that can be found in a
given ROS distribution. In order to obtain such an exhaustive
library, tenth of nodes should be modeled, when we only use a
part of them in our applications. Our approach is incremental:
we add a new AADL component to our library every time
we use a new node. It is the same for new hardware parts or
single board computers.

3.1 Modeling ROS nodes
A robot software based on ROS is a constellation of nodes
communicating through topics. A dedicated package is writ-
ten for every node that we want to include in our library. Every
node in those packages will inherit from the high-level node
component type and implementation defined in the central
ros package. A ROS node is modeled as an AADL process
component which includes several threads, mimicking the ac-
tual ROS node code. The main threads that are found running
in a ROS node are :

• The main thread in every node.

• A thread type to implement subscribers in nodes. A
subscriber thread is associated to a callback function
that is called to deal with the data received on the topic
listened to. In fact, the callback function is placed in the
FIFO callback queue of the node.

• The spinner thread keeps taking the callbacks from the
callback queue and executing them one by one in an
infinite loop acting as a “spinning” thread. One ROS
node has one spinner thread by default. However, sev-
eral spinners could be spawned to allow for multiple
concurrent executions of callback functions [9].

• A thread type to implement callback functions in nodes
(from [7]).

• A thread type to implement publishers in nodes.

• A thread to provide a ROS service to a requesting node.

• A timer thread to implement a ROS timer in nodes.

• A thread type to implement a broadcaster of transforma-
tion of frames (TF) in nodes.

A tf node will publish on the /tf topic with many others in
general in a robot application. Unlike in [7], where /tf is con-
sidered an independent bus to which different nodes require
an access, we consider it a regular topic which will be bound
to the ROS virtual bus.

Like for AADL processes modeling ROS nodes, an AADL
thread component has one declaration defining its inputs and
outputs, with an associated implementation defining its inner
structure. As many implementations as needed will inherit
from this last one, to reflect the performances of the thread
on different hardware targets and CPU cores. The AADL
extends mechanism is used there. New AADL properties
values will be declared with a new set of performances for
a thread. Those properties, namely MIPSBudget and Com-
pute_exectuion_time, are directly issued from the measure-
ments presented in [2] and [3].

Ada User Jour na l Vo lume 44, Number 1, March 2023

86 Model ing ROS Based Appl ica t ions wi th AADL

3.2 Modeling ROS communications
Communications between nodes in ROS are seen as happen-
ing on a virtual bus called TCPROS. A publisher node warns,
through XML/RPC, the master node that it is ready to send
messages on a topic. This topic is then registered by the mas-
ter and advertised in the ROS middleware. A subscriber node
warns the master that it wants to listen to this topic. If the
topic exists, the master gives the subscriber the address of the
publisher. Then the publisher and subscriber directly talk and
establish a TCP (or UDP) communication between the two
of them. Unlike [8], we finally use a regular bus to model
the ROS virtual bus because the bandwidth capacity prop-
erty does not apply to AADL virtual bus. Our measurements
show that the virtual bus speed is impacted by the hardware
on which the communicating nodes are running [3]. Several
implementation of the bus are thus provided. For instance, the
Odroid XU4 computer board begets two implementation of
the ROS bus model: one for A15 cores and the other for A7
cores. Speed differs when ROS communications use wired
Ethernet or WiFi and associated AADL components are pro-
vided in the library.

4 Modeling the hardware
A robot commonly gathers many electronic components: sen-
sors, actuators, interfaces, interconnections, and one or sev-
eral single computer boards. The purpose of our models here
is not to provide a detailed view of every parts inside a robot.
It is rather to provide a simple view, including only the min-
imum set of components needed for performance analysis.
Our hardware models might appear almost simplistic then.
For instance, the AADL model of a multi-core SoC would
only contains the CPU cores inside it, but would discard any
interconnection between them or the memory. However, it
would carry dedicated AADL properties to be used by the per-
formance analysis tools. In the AADL model of the Exynos
5422 SoC from Samsung which is a heterogeneous 8 cores
chip (4 A15 and 4 A7 cores), we chose to gather big and little
cores in two respective clusters. Indeed, it might be interest-
ing to bound a thread to a cluster rather than to unique core,
which is necessary when the thread MIPS demands exceeds
the core capacity, and afterwards to compute the load of the
whole cluster, while adding the load contribution of any thread
also bound to the cluster. However, the analysis of resource
budget allocation is only performed by OSATE when a thread
is bound to a processor. and the Actual_Processor_Binding
property of a thread can only target ONE processor.

5 Performance analysis
The underlying principle in model based design and AADL
is to have a view of the software, with software components
(processes, threads ...) connected together, a view of the hard-
ware, including standard hardware components (processors,
buses, memories ...), and a model describing the deployment,
binding in AADL, of software onto hardware components. In-
stantiation of this binding model produces an AADL instance
of the system from which analysis tools are called. Three
different analysis tools from OSATE2 are used.

Analyze Resource Allocations (Bound): resource alloca-
tions analyse can be done when a thread is bound to a proces-
sor, like this :

� �
Actual_Processor_Binding => (reference (p3DX.OdroidXU4.Exynos_SOC.

big_procs_cluster.big_proc1)) applies to rem_trk_sw.usbcam;� �
Several properties have to be defined: the Com-
pute_execution_time and Period properties in the thread
model, and the MIPSCapacity in the processor model.

The tool then computes:

• the load for a thread is the compute execution time di-
vided by the period.

• the total processor load is the sum of every load per
thread bound to the processor.

• the MIPS demand for the processor is its MIPS capacity
multiplied by its total load.

Whenever the MIPS demand exceeds the MIPS capacity for
a processor, an error is reported for the instance. As an
example, we provide an extract of the AADL model for the
usb_cam node found in many ROS distributions. This node
takes the video stream from a RGB camera pluged in the USB
bus of the computer board, and publish the video frames on
a dedicated ROS topic. The first part of our nd_usb_cam
AADL package include the PIM definition: the node input
and output in a process component, and its internal structure
in the associated implementation.� �
process usb_cam_nd extends ros::node

features
rgb_stream_in: in event data port ros_data::video_stream.rgb;
rgb_image_raw_out: out event data port ros_data::Image.rgb;

end usb_cam_nd;

process implementation usb_cam_nd.impl
subcomponents

image_broadcaster: thread imagePublisher.impl;
usbSpinner: thread usbcam_spinner.impl;

connections
con1: port image_broadcaster.pub_msg −> rgb_image_raw_out;
con2: port rgb_stream_in −> usbSpinner.rgb_stream_in;

end usb_cam_nd.impl;

thread imagePublisher extends ros::publisher
features

pub_msg: refined to out event data port ros_data::Image.rgb;
end imagePublisher;

thread implementation imagePublisher.impl
properties

Period => 33333 us;−−@ 30 images/s
end imagePublisher.impl;� �

The second part (PDM) shows the platform and CPU depen-
dent implementation for the Odroid XU4 (from HardKernel)
board, which includes ARM A15 and A7 cores. We chose to
put the node Period on the PIM implementation of the node,
since it does not depends on the hardware target, but on the
RGB camera we use. The Compute_execution_time property
is set on the PDM side.� �
process implementation usb_cam_nd.xu4_a15 extends usb_cam_nd.impl

subcomponents
image_broadcaster: refined to thread imagePublisher.xu4_a15;

properties
SEI::MIPSBudget => 141.0 MIPS;−−(197 MIPS)/(1.4 IPC)

end usb_cam_nd.xu4_a15;

thread implementation imagePublisher.xu4_a15 extends imagePublisher.
impl

properties
Compute_execution_time => 2319 us .. 2319 us;
Queue_Size => 512 applies to pub_msg;

end imagePublisher.xu4_a15;
end imagePublisher.i7;� �

Volume 44, Number 1, March 2023 Ada User Jour na l

E. Senn, L . W. J. Bourdon 87

Analyze Resource Budgets (Not Bound): the additional
MIPSBudget (SEI standard) property must be set for the pro-
cess. The tool adds the MIPS demands for every thread inside
the process and check if the total does not exceed the budget.
An error is reported if so.

Analyze Bus Load: bus load analysis is performed from the
the size of the message to be transmitted, and its frequency.
The first one is the Data_Size property, which is defined in
our ros_data package. We give below the definition for the
640x480 RGB images, 8bits per channel, 3 channels, message
stream from the RGB camera that the usb_cam node of our
former example is processing. In the PIM model of the thread
imagePublisher, given earlier, we find that the format of the
out event data port is refined to this particular data size:� �
data implementation Image.rgb extends Image.impl

properties
−−640x480x3=921600 Bytes #0.92MBytes
Data_Size => 921 KByte;
end Image.rgb;� �

The frequency of the message is the Period property of the
thread component that issues the message. From the period
and data size, the tool calculates the bandwidth demand for
a publisher thread on the bus onto which its output connec-
tion is bound. In our example, that would be 921 KBytes×
1/33333µs = 27.63 MBytes/s. The next step is to compare
this bandwidth demand with the bandwidth capacity of the
bus. For this we need to add this specific property to the
AADL model of our hardware platform, where buses are de-
clared, and to the ROS library where a bus component will
be added for every implementation of the TCPROS virtual
bus. Hence, our ROS core package includes the following
components, with the bandwidth capacities reported from the
profiling work presented in [3]:� �
bus ros_bus end ros_bus;
bus implementation ros_bus.no_taskset extends ros_bus.impl

properties
SEI::BandWidthCapacity => 122.0 MBytesps;
end ros_bus.no_taskset;

bus implementation ros_bus.A15 extends ros_bus.impl
properties

SEI::BandWidthCapacity => 166.0 MBytesps;
end ros_bus.A15;� �

Obviously, in order for any bus load analysis to take place,
software connections ought to be bound to busses. This is
done thanks to the Actual_Connection_Binding property in
the AADL model of the deployed implementation of our
complete system; e.g. for the output of our usb_cam node :� �
Actual_Connection_Binding => (reference (ROSbus)) applies to

rem_trk_sw.con6;−− usbcam−>color_tracking OK� �
6 Conclusion
Our library of AADL components for ROS based applications
allows to model complete robotic software. It is organized
in a set of AADL packages to reflect the ROS middleware
basic structure and underlying mechanism. ROS nodes are
modeled as processes including threads as spawn by ROS
at run time. ROS communications via topics are modeled
as buses, to allow for bus load analysis. Dedicated proper-
ties are set into the models of components to allow for CPU

and bus load analysis, using standard tools from OSATE2.
Those analysis stem from the binding of software compo-
nents onto hardware components which are provided in the
AADL model of the hardware of the robot. Different AADL
packages for robots and embedded computer boards are also
included in our library. Together with the continuous building
of models for new hardware and software parts, especially
integrating components from the last ROS2 distributions, one
short term perspective include automatic code generation for
ROS from our AADL models, by developing an extension of
the RAMSES (Refinement of AADL Models for Synthesis of
Embedded Systems) [10] automatic code generation tool.

References
[1] P. H. Feiler, B. A. Lewis, and S. Vestal, The SAE Archi-

tecture Analysis & Design Language (AADL) a standard
for engineering performance critical systems, pp. 1206–
1211. 2006.

[2] E. Senn and L. Bourdon, “Introducing CPU load anal-
ysis from AADL models for ROS applications : a use
case,” in FDL 2021, Forum on specification & Design
Languages, September 2021.

[3] E. Senn, “ROS communications profiling for bus load
analysis from AADL,” in ERTS 2022, 11th European
Congress on Embedded Real Time Systems, March 2022.

[4] G. Biggs, K. Fujiwara, and K. Anada, “Modelling and
analysis of a redundant mobile robot architecture using
AADL,” in Proceedings of the 4th International Con-
ference on Simulation, Modeling, and Programming for
Autonomous Robots, 2014.

[5] A. Lotz, A. Hamann, R. Lange, C. Heinzemann,
J. Staschulat, V. Kesel, D. Stampfer, M. Lutz, and
C. Schlegel, “Combining robotics component-based
model-driven development with a model-based perfor-
mance analysis,” in 2016 IEEE International Confer-
ence on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), pp. 170–176, 2016.

[6] G. Bardaro and M. Matteucci, “Using AADL to model
and develop ROS-based robotic application,” in 2017
First IEEE International Conference on Robotic Com-
puting (IRC), pp. 204–207, 2017.

[7] G. Bardaro, A. Semprebon, A. Chiatti, and M. Mat-
teucci, “From models to software through auto-
matic transformations: An AADL to ROS end-to-end
toolchain,” in 2019 Third IEEE International Confer-
ence on Robotic Computing (IRC), pp. 580–585, 2019.

[8] M. Larsen, “Modelling field robot software using
AADL,” Electrical and Computer Engineering Tech-
nical report ECE-TR-25, Aarhus University, april 2016.

[9] N. Valigi, “Concurrency in ros1 and ros2,” in ROSCon
2019, ROS developers CONference, October - Novem-
ber 2019.

[10] F. Cadoret, E. Borde, S. Gardoll, and L. Pautet, “De-
sign patterns for rule-based refinement of safety critical
embedded systems models,” in 2012 IEEE 17th Interna-
tional Conference on Engineering of Complex Computer
Systems, pp. 67–76, 2012.

Ada User Jour na l Vo lume 44, Number 1, March 2023

88

An Introduction to ALISA and Its Usage for an
Industrial Railway System Case Study

Dominique Blouin
LTCI, Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France; email: dominique.blouin@telecom-paris.fr

Paolo Crisafulli, Cristian Maxim
Institut de Recherche Technologique SystemX, Palaiseau, France; email: {first name}.{last name}@irt-systemx.fr

Francoise Caron
Eiris Conseil, Jouy en Josas, France, Palaiseau, France; email: francoise.caron@eiris.fr

Abstract

This paper presents an overview of ALISA (Architecture-
Led Incremental System Assurance) and its evaluation
for a case study of the railway domain as presented
during the ADEPT workshop collocated with the 26th

Ada-Europe International Conference on Reliable Soft-
ware Technologies.
Keywords: ALISA, AADL, Model-Based Engineering,
Safety-Critical Systems, Cyber-Physical Systems.

1 Introduction
Model-Based Engineering is a paradigm where models are
used to represent the system to be developed, at the appro-
priate level(s) of abstraction, so that analyses can be per-
formed early on these models, before the real system is im-
plemented. In doing so, design errors can be detected early
to reduce development costs. This is realized by augment-
ing the standard V-cycle development process model with
another V where validation and verification activities occur
at each phase (figure 1). In this Architecture-Centric Virtual
Integration (ACVIP) process [1], models and tools are used
to support such validation and verification activities. While
the left-hand side of the V-cycle is concerned with building
the system, the right-hand side deals with assuring that the
system meets its requirements. This is particularly important
for safety critical systems that must demonstrate their safety
to certification authorities.

The SAE Architecture Analysis & Design Language (AADL)
standard1 has been developed to support the system develop-
ment phases of figure 1, from design down to code develop-
ment. However, the other phases not supported by AADL
could also greatly benefit from modelling. To cover these
phases, ALISA (Architecture-Led Incremental System Assur-
ance) [2, 3] has been developed, complementing AADL with
notations to model requirements, requirements verification
activities and assurance case. In this short paper, we briefly
introduce ALISA and present an overview of its application
to a safety-critical system of the railway domain, covering
both sides of the development activities of figure 1.

1https://www.sae.org/standards/content/as5506c/

Figure 1: V-cycle development process model with virtual inte-
gration activities (from [2])

.

2 The safety-critical European Train Con-
trol System

This work was produced during the PST project2 where AL-
ISA and AADL were exercised for an industrial safety-critical
system from the railway domain [4]. This system consists
of the on-board equipment of the European Train Control
System (ETCS). The ETCS is a system of systems for the sig-
nalling and control of the European Rail Traffic Management
System (ERTMS)3. The European Vital Computer (EVC) is
the core component of the train on-board equipment, being the
computing platform hosting the train control functions. Some
of these functions are safety-critical, such as the emergency
breaking function.

The engineering process of the EVC is typical of the railway
industry because it is constrained by many non-functional
requirements on safety, reliability and availability. For in-
stance, a safety requirement defines that the hazard rate of the
EVC shall not exceed a threshold of 0.6× 10−9 failures per
hour of operation (ERA requirement). This lead to choose a
Triple Modular Redundant (TMR) architecture to implement
the EVC, which is very typical of safety-critical embedded

2https://www.irt-systemx.fr/en/projets/pst/
3https://www.ertms.net/

Volume 44, Number 1, March 2023 Ada User Jour na l

https://www.sae.org/standards/content/as5506c/
https://www.irt-systemx.fr/en/projets/pst/
https://www.ertms.net/

D. Blou in , P. Cr isa fu l l i , C. Max im and F. Caron 89

systems.

The EVC is composed of three identical computing platforms
intended to perform the same computation based on a sin-
gle input message. Extra functions are added including a
majority-voting process executed by each of the computers.
In case different outputs are produced, the faulty platform
will be turned off. The three execution platforms are viewed
by the train applications as a single computing unit, the EVC.

The TMR architecture of the EVC has a strong impact on the
response-time and schedulability properties due to the mid-
dleware functions. This can be adverse to the performance
requirements. The more CPU consuming the middleware
is, the less resources the application will have to execute.
This leads to a design requirement stating that at least 50%
of the CPU utilization is available for the application. Be-
sides, requirements exist at the braking system level for the
overall delay between receiving the emergency break signal
and applying the break command to be less than 1 second
(ERA requirement). In addition to performance requirements,
design requirements state that all threads of the EVC shall
be periodic and that all CPUs of the EVC hold the same
functions and shall be of same make and model.

3 Using ALISA and AADL to model the
ETCS

3.1 Overview of ALISA
ALISA takes its origins from the Requirements Definition and
Analysis Language (RDAL) [5], first developed as a fragment
language that could be combined with an existing Architec-
ture Description Language (ADL) to provide Requirements
Engineering (RE) support. RDAL was inspired from several
existing RE approaches including, among others, the require-
ments diagram of SysML4 and KAOS [6, 7]. KAOS defines
four complementary and interrelated views on a system:

1. Goals from stakeholders (owners, users, business man-
agers, regulations, etc).

2. Responsible agents (humans, automated systems or en-
vironment)

3. Problem domain (concepts and their relationships)

4. System behaviours to achieve the goals

The KAOS language to specify these views is implemented
as a single monolitic language, therefore requiring to use the
KAOS generic problem domain view. However, for ACVIP,
the problem domain is already captured in AADL making
the use of KAOS cumbersome since it requires translation
between KAOS and AADL. This justified the development of
RDAL, from which ALISA was later developed and extended
to cover the verifications and assurance domains.

The architecture of ALISA in terms of its sublanguages and
covered concepts is depicted in figure 2. In the following, we
briefly illustrate AADL and each of the ALISA sublanguages
using the ETCS system.

4http://www.omgsysml.org/

Figure 2: ALISA unified concepts (from [8])

3.2 AADL
AADL is a component-based Architecture Description Lan-
guage developed for safety-critical real-time embedded and
cyber-physical systems. It allows for modeling both the soft-
ware and hardware parts of a system. Several analyses tools
are readily available for estimating properties such as latency
and schedulability, as well as resource consumption. Auto-
matic code generation is also available.

The ETCS braking system has been modeled in AADL fol-
lowing a process similar to that of [9], where the system is
decomposed into four layers:

• A functional view where system functions are repre-
sented as abstract components interacting via abstract
features and connections. Other abstract components
are also declared to represent system variable types.
Abstract components in AADL are similar to SysML
blocks.

• A software view derived from the above functional com-
ponents converted to subprograms. Those subprograms
are called by threads to be deployed on the execution
platform according to performance requirements. Such
threads are grouped in to processes representing dedi-
cated memory space. System variable types represented
as abstract components in the functional view are refined
as data components to which properties such as data
representation and data size can be set to capture their
discrete nature.

• An execution platform view where hardware compo-
nents such as processors, memory, buses and devices are
composed to model computing platforms.

• A deployment view where components of the software
view are mapped to the selected execution platform.
Threads are mapped to processors, connections to buses
and processes and data components to memories.

Figure 3 shows the overall software view for the EVC, where
each redounded software application is modeled as a sys-
tem including several processes for the middleware and the
application functions.

Ada User Jour na l Vo lume 44, Number 1, March 2023

http://www.omgsysml.org/

90 ALISA – Indust r ia l Ra i lway System Case Study

Figure 3: The AADL software view of the EVC

3.3 ReqSpec
The ReqSpec notation allows capturing stakeholder goals and
their organization, and their corresponding verifiable require-
ments. An example requirement for the ETCS is shown in the
top of figure 5. Those verifiable requirements are gradually
decomposed into subrequirements, allocated to architecture
subcomponents responsible for satisfying them via a for con-
struct. In this iterative process, requirements decomposition is
therefore led by design decisions on the system architecture.

Requirements at the leaf of such decomposition must be ver-
ifiable, either by expressing them with a predicate of the
Resolute language [10], or linked to a set of verification ac-
tivities via a claim element, whose name is identical to the
corresponding requirement.

3.4 EMV2
The EMV2 (Error Model Annex Version 2) notation is used to
annotate AADL components with error propagations and be-
haviours to mitigate those errors. ReqSpec requirements, can
then be traced to some EMV2 elements via the mitigates con-
struct to indicate that a safety requirement has been created
to handle a hazard modeled in EMV2.

3.5 Verify
The aforementioned claim notion is part of the Verify notation,
which allows modeling sophisticated verification activities
(figure 4). A verification activity can be of different kinds
such as Resolute claim functions or Python Scripts. In addi-
tion, when the reference tool for AADL OSATE5 is used, its
analysis plugins, external Java methods or JUnit-based code

5https://osate.org/

tests can also be declared as verification activities. Those
can be registered in the development environment to be used
by claims. A combination of such claims then constitutes a
verification plan, which can be assigned to a requirement set
via the for construct.

Figure 4: A verification plan for the ETCS.

3.6 Assure

Finally, assurance cases can be modelled with the Assure
notation (bottom part of figure 5). An assurance case consists
of a set of verification plans whose execution results for a
system design (and potentially implementation artifacts such
as tests) can be used as evidence for system certification. In
OSATE, assurance cases can be automatically executed and
results are displayed in a dedicated assurance view where the
number of Success, Failed, Error or TBD verification results
are shown.

Volume 44, Number 1, March 2023 Ada User Jour na l

https://osate.org/

D. Blou in , P. Cr isa fu l l i , C. Max im and F. Caron 91

Figure 5: Requirements, verification plan and assurance case for the ECTS.

3.7 Towards an agile engineering process
The automated verification of requirements and assurance
case modeling in OSATE have been integrated into an agile
engineering process making use of the well-known Jenkins
build server. The ALISA verification results were used to
compute and display the evolution of Key Performance In-
dicators (KPI) during continuous integration. Coupled with
a Git versionning server, the KPI computation results can
be used to chart qualify system performance evolution of
design alternatives over time to evaluate their impact on per-
formances.

4 Conclusion and Perspectives
We have demonstrated how AADL and ALISA are well-suited
to model, analyse, verify and assure safety-critical systems
supporting an agile architecture-centric engineering process.
This process includes continuous verification to maintain the
design within the solution space shaped by the set of require-
ments. However, our experience showed that ALISA is not
yet completely mature. Scalability and multi-organization
issues still need to be addressed. Moreover, the development
of the design goal construct, which can be used to define
system performance objectives to support the computation of
KPIs was not completed at the time of our experiment.

Nevertheless, the AADL ecosystem of companion languages
and development environment is very promising since it opens
the way to agile engineering of highly constrained systems
requiring certification.

References
[1] A. Boydston and P. H. Feiler, “Architecture centric vir-

tual integration process (acvip) : A key component of
the dod digital engineering strategy,” 2019.

[2] J. D. McGregor, D. P. Gluch, and P. H. Feiler, “Analysis
and design of safety-critical, cyber-physical systems,”
Ada Lett., vol. 36, pp. 31–38, may 2017.

[3] J. Delange, P. H. Feiler, and N. A. Ernst, “Incremental
life cycle assurance of safety-critical systems,” 2016.

[4] P. Crisafulli, D. Blouin, F. Caron, and C. Maxim, “Engi-
neering Railway Systems with an Architecture-Centric
Process Supported by AADL and ALISA: an Expe-
rience Report,” in 10th European Congress on Em-
bedded Real Time Software and Systems (ERTS 2020),
(Toulouse, France), Jan. 2020.

[5] D. Blouin and H. Giese, “Combining requirements, use
case maps and aadl models for safety-critical systems
design,” in 2016 42th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA),
pp. 266–274, 2016.

[6] A. van Lamsweerde, Requirements Engineering: From
System Goals to UML Models to Software Specifications.
Wiley Publishing, 1st ed., 2009.

[7] A. van Lamsweerde and E. Letier, “From object orien-
tation to goal orientation: A paradigm shift for require-
ments engineering,” in Radical Innovations of Software
and Systems Engineering in the Future (M. Wirsing,
A. Knapp, and S. Balsamo, eds.), (Berlin, Heidelberg),
pp. 325–340, Springer Berlin Heidelberg, 2004.

[8] P. Feiler, “Architecture-led incremental system assur-
ance (alisa) tutorial,” 2014.

[9] D. Blouin and E. Borde, AADL: A Language to Specify
the Architecture of Cyber-Physical Systems, pp. 209–
258. Cham: Springer International Publishing, 2020.

[10] A. Gacek, J. Backes, D. Cofer, K. Slind, and M. Whalen,
“Resolute: An assurance case language for architecture
models,” in Proceedings of the 2014 ACM SIGAda An-
nual Conference on High Integrity Language Technol-
ogy, HILT 2014, (New York, NY, USA), pp. 19–28,
Association for Computing Machinery, 2014.

Ada User Jour na l Vo lume 44, Number 1, March 2023

92

Volume 44, Number 1, March 2023 Ada User Journal

National Ada Organizations

Ada-Belgium

attn. Dirk Craeynest

c/o KU Leuven

Dept. of Computer Science

Celestijnenlaan 200-A

B-3001 Leuven (Heverlee)

Belgium

Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard

Ada-Deutschland

Dr. Hubert B. Keller CEO

ci-tec GmbH

Beuthener Str. 16

76139 Karlsruhe

Germany

+491712075269

Email: h.keller@ci-tec.de
URL: ada-deutschland.de

Ada-France

attn: J-P Rosen

115, avenue du Maine

75014 Paris

France
URL: www.ada-france.org

Ada-Spain

attn. Sergio Sáez

DISCA-ETSINF-Edificio 1G

Universitat Politècnica de València

Camino de Vera s/n

E46022 Valencia

Spain

Phone: +34-963-877-007, Ext. 75741

Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland

c/o Ahlan Marriott

Altweg 5

8450 Andelfingen

Switzerland

Phone: +41 52 624 2939

e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

http://www.ada-france.org/
http://www.adaspain.org/

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels

Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

1090 Rue René Descartes
13100 Aix en Provence

France
Contact: Patricia Langle

patricia.langle@systerel.fr
www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki

Finland
Contact: Niklas Holsti

niklas.holsti@tidorum.fi
www.tidorum.fi

3271 Valley Centre Drive,Suite 300
San Diego, CA 92069

USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

46 Rue d’Amsterdam
F-75009 Paris

France
sales@adacore.com
www.adacore.com

506 Royal Road
La Caverne, Vacoas 73310

Republic of Mauritius
Contact: David Sauvage

david.sauvage@adalabs.com

Enterprise House
Baloo Avenue, Bangor

North Down BT19 7QT
Northern Ireland, UK

enquiries@sysada.co.uk
sysada.co.uk

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

	Hardin.pdf
	Introduction
	The Rust Programming Language
	Hardware/Software Co-assurance at Scale
	Restricted Algorithmic Rust
	Examples
	Circular Queue
	Crypto Primitives

	Related Work
	Conclusion
	Acknowledgments

	Hardin.pdf
	Introduction
	The Rust Programming Language
	Hardware/Software Co-assurance at Scale
	Restricted Algorithmic Rust
	Examples
	Circular Queue
	Crypto Primitives

	Related Work
	Conclusion
	Acknowledgments

	Larraz.pdf
	Introduction
	Machine-precise Verification
	Realizability Checking of Contracts
	Merit and Blame Assignment

	Hatcliff.pdf
	Introduction
	Background Concepts
	Modeling Language Elements
	Model Contracts to Code Contracts
	Code Generation Overview
	Translated Contracts

	Related Work
	Conclusion

	Blouin.pdf
	Introduction
	The safety-critical European Train Control System
	Using ALISA and AADL to model the ETCS
	Overview of ALISA
	AADL
	ReqSpec
	EMV2
	Verify
	Assure
	Towards an agile engineering process

	Conclusion and Perspectives

