

Ada User Journal Volume 44, Number 2, June 2023

ADA
USER
JOURNAL

Volume 44
Number 2
June 2023

Contents
Page

Editorial Policy for Ada User Journal 94
Editorial 95
Quarterly News Digest 96
Conference Calendar 117
Forthcoming Events 123
Special Contribution
 F. Singhoff et al.

“ADEPT 2022 Workshop: A Summary of Strengths and Weaknesses of the AADL Ecosystem” 125
Articles from the AEiC 2023 Work-in-Progress Session
 J. Ferreira, A. Oliveira, A. Souto, J. Cecílio

“Software-Based Security Approach for Networked Embedded Devices” 129
 G. Costa, J. Cecílio, A. Casimiro

“Cooperative Autonomous Driving in Simulation” 133
 F. Lucchetti, M. Voelp

“Achieving Crash Fault Tolerance in Autonomous Vehicle Autopilot Software Stacks
Through Safety-Critical Module Rejuvenation” 137

 D. de Niz, L. Wrage
“Symbolic Refinement for CPS” 141

 F. L. Malaquias, G. Giantamidis, S. Basagiannis, S. F. Rollini, I. Amundson
“Towards a Methodology to Design Provably Secure Cyber-Physical Systems” 146

 L. Creuse, M. Eyraud, V. Garèse
“Automatic Test Value Generation for Ada” 152

 J. Hughes
“Mechanization of the Ravenscar Profile in Coq” 157

 I. Rodríguez-Ferrandez, A. Jover Alvarez, M. M. Trompouki, L. Kosmidis, F. J. Cazorla
“Worst Case Execution Time and Power Estimation of Multicore and GPU Software:
A Pedestrian Detection Use Case” 161

Ada-Europe Associate Members (National Ada Organizations) 168
Ada-Europe Sponsors Inside Back Cover

94

Volume 44, Number 2, June 2023 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and December.
Copy date is the last day of the month of
publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics, such
as reliable software technologies, are
welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• Invited papers on Ada and the Ada
standardization process.

• Proceedings of workshops and
panels on topics relevant to the
Journal.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• News and miscellany of interest to
the Ada community.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Announcements regarding
standards concerning Ada.

• Reviews of publications in the field
of software engineering.

Further details on our approach to these
are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will be
relayed to the authors at the discretion
of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues
The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups to
find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be of
interest to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it a

wider audience. This includes papers
published in North America that are not
easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These may
represent the views either of individuals
or of organisations. Such articles can be
of any length – inclusion is at the
discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report on
events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal is
at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to print
reviews submitted from elsewhere at
the discretion of the Editor.

Submission Guidelines
All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be rapid.
Currently, accepted papers submitted
electronically are typically published 3-
6 months after submission. Items of
topical interest will normally appear in
the next edition. There is no limitation
on the length of papers, though a paper
longer than 10,000 words would be
regarded as exceptional.

 95

Ada User Journal Volume 44, Number 2, June 2023

Editorial

I would like to start this editorial by highlighting the new AUJ distribution procedure. The AUJ is released in both printed and
digital formats, and now all Ada-Europe members and AUJ subscribers can opt to receive only the digital version, instead of
both. With many members expressing interest in receiving only the digital version, the number of printed and mailed copies of
the journal was already reduced with the previous March 2023 issue. This represents an important cost saving for Ada-Europe,
hence a step forward towards the sustainability of the publication (whatever happens in 2024 concerning the planned merge of
the AUJ and the Ada Letters). Members wishing to receive only the digital version can let us know anytime!

Concerning the technical contents of this issue, we start with a special contribution by Frank Singhoff from the University of
Brest, providing a summary of the 2022 ADEPT Workshop (whose proceedings were published in the previous issue) and
analysing the strengths and weaknesses of the AADL ecosystem.

The rest of the issue is dedicated to publishing the first set of articles from the AEiC 2023 Work-in-Progress session. The
session included fifteen articles, eight of which are herein included. The first two articles are authored by researchers from the
Faculty of Sciences of the University of Lisbon and describe work on embedded systems security and on a simulation-based
platform to study protocols for cooperative autonomous driving systems. The third article, authored by F. Lucchetti and M.
Voelp from the University of Luxembourg, is also related to autonomous vehicles, in this case proposing a solution that exploits
the rejuvenation of some components to improve fault tolerance. Then, the reader will find two papers on the application of
formal methods for the early verification of cyber-physical systems (CPS) designs. The first, written by D. de Niz and L. Wrage,
from Carnegie Mellon University in the USA, describes an approach named Symbolic Assurance Refinement for the
verification of architectural models. The second, by F. Malaquias, G. Giantamidis, S. Basagiannis, S. F. Rollini and I.
Amundson, all from Collins Aerospace, proposes a model-based engineering approach for the design of CPS and addresses the
verification of security requirements. Two papers related to the Ada language follow, one by L. Creuse, M. Eyraud and V.
Garèse from AdaCore, on tools specifically suited for testing Ada programs, and another by J. Hughes, from Carnegie Mellon
University, reporting on an ongoing effort to mechanize the Ada Ravenscar profile using the Coq theorem prover. The last
article included in this issue is authored by researchers from the Barcelona Supercomputing Center and the Polytechnic
University of Catalonia, which addresses the problem of WCET estimation in multicore and GPU platforms using a
measurement-based probabilistic timing analysis method.

As usual, the issue includes the News Digest section prepared by its editor Alejandro R. Mosteo, and the Calendar and Events
section, prepared by Dirk Craeynest. Last but not least, we would like to call the attention of the reader to the 28th Ada-Europe
International Conference on Reliable Software Technologies (AEiC 2024), which next year will take place in Barcelona, Spain,
and whose preliminary announcement can be found on page 123.

 Antonio Casimiro
Lisboa

June 2023
 Email: AUJ_Editor@Ada-Europe.org

96

Volume 44, Number 2, June 2023 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 96
Ada-related Events 96
Ada and Education 98
Ada-related Resources 98
Ada-related Tools 99
Ada and Operating Systems 104
References to Publications 106
Ada and Other Languages 107
Ada Practice 110
Ada in Jest 116

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor
Dear Reader,

I place the single focus of this issue on the
momentous event all of us Ada
enthusiasts have long been anticipating:
Ada 2022 is officially here [1][2].

Sincerely,

Alejandro R. Mosteo.

[1] “Ada 2022 LRM by Springer”, in
References to Publications.

[2] “Ada 2022 at Last!”, in Ada Practice.

Ada-related Events
Ada-Belgium Spring 2023
Event
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Subject: Ada-Belgium Spring 2023 Event,

Sun 28 May 2023
Date: Thu, 11 May 2023 14:31:54 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,be.comp.programming

Ada-Belgium Spring 2023 Event

Sunday, May 28, 2023, 12:00-19:00

Leuven, Belgium

including at 15:00

2023 Ada-Belgium General Assembly
and at 16:00

Ada Round-Table Discussion

http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/23/230528-abga.html

*** Announcement
The next Ada-Belgium event will take
place on Sunday, May 28, 2023 in
Leuven.

After an interruption of 3 years due to the
COVID-19 pandemic, and for the 13th
time, Ada-Belgium organizes their
"Spring Event", which starts at noon, runs
until 7pm, and includes an informal lunch,
the 30th General Assembly of the
organization, and a round-table discussion
on Ada-related topics the participants
would like to bring up.

*** Schedule
 * 12:00 welcome and getting started

(please be there!)
 * 12:15 informal lunch
 * 15:00 Ada-Belgium General Assembly
 * 16:00 Ada round-table + informal

discussions
 * 19:00 end

*** Participation

Everyone interested (members and non-
members alike) is welcome at any or all
parts of this event.

For practical reasons registration is
required. If you would like to attend,
please send an email before Thursday,
May 25, 18:00, to Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> with
the subject "Ada-Belgium Spring 2023
Event", so you can get precise directions
to the place of the meeting. Even if you
already responded to the preliminary
announcement, please reconfirm your
participation ASAP.

If you are interested to join Ada-Belgium,
please register by filling out the 2023
membership application form[1] and by
paying the appropriate fee before the
General Assembly. After payment you
will receive a receipt from our treasurer
and you are considered a member of the
organization for the year 2023 with all

member benefits[2]. Early enrollment
ensures you receive the full Ada-Belgium
membership benefits (including the Ada-
Europe indirect membership benefits
package).

As mentioned at earlier occasions, we
have a limited stock of documentation
sets and Ada related CD-ROMs that were
distributed at previous events, as well as
some back issues of the Ada User
Journal[3]. These will be available on a
first-come first-serve basis at the General
Assembly for current and new members.
(Please indicate in the above-mentioned
registration e-mail that you're interested,
so we can bring enough copies.)

[1] http://www.cs.kuleuven.be/~dirk/ada-
belgium/forms/member-form23.html

[2] http://www.cs.kuleuven.be/~dirk/ada-
belgium/member-benefit.html

[3] http://www.ada-europe.org/auj/home/

*** Informal lunch
The organization will provide food and
beverage to all Ada-Belgium members.
Non-members who want to participate at
the lunch are also welcome: they can
choose to join the organization or pay the
sum of 20 Euros per person to the
Treasurer of the organization.

*** General Assembly

All Ada-Belgium members have a vote at
the General Assembly, can add items to
the agenda, and can be a candidate for a
position on the Board[4]. See the separate
official convocation[5] for all details.

[4] http://www.cs.kuleuven.be/~dirk/ada-
belgium/board/

[5] http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/23/230528-abga-
conv.html

*** Ada Round-Table Discussion

As in recent years, we plan to keep the
technical part of the Spring event informal
as well. We will have a round-table
discussion on Ada-related topics the
participants would like to bring up. We
invite everyone to briefly mention how
they are using Ada in their work or non-
work environment, and/or what kind of
Ada-related activities they would like to
embark on. We hope this might spark
some concrete ideas for new activities and
collaborations.

Ada-related Tools 97

Ada User Journal Volume 44, Number 2, June 2023

*** Directions

To permit this more interactive and social
format, the event takes place at private
premises in Leuven. As instructed above,
please inform us by e-mail if you would
like to attend, and we'll provide you
precise directions to the place of the
meeting. Obviously, the number of
participants we can accommodate is not
unlimited, so don't delay...

Looking forward to meet many of you!

Dirk Craeynest
President Ada-Belgium

Dirk.Craeynest@cs.kuleuven.be

Acknowledgements

We would like to thank our sponsors for
their continued support of our activities:
AdaCore, and KU Leuven (University of

Leuven).

If you would also like to support Ada-
Belgium, find out about the extra Ada-

Belgium sponsorship benefits:

http://www.cs.kuleuven.be/~dirk/ada-
belgium/member-benefit.html#sponsor

(V20230511.1)

AEiC 2023 Final Call
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Subject: Press Release - AEiC 2023, Ada-

Europe Reliable Softw. Technol.
Date: Fri, 9 Jun 2023 10:56:57 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

FINAL Call for Participation

*** UPDATED Program Summary ***
27th Ada-Europe International

Conference on

Reliable Software Technologies (AEiC
2023)

13-16 June 2023, Lisbon, Portugal

www.ada-europe.org/conference2023
Organized by Ada-Europe

in cooperation with ACM SIGAda,
SIGBED, SIGPLAN,

the Ada Resource Association (ARA),
and the University of Lisbon

#AEiC2023 #AdaEurope
#AdaProgramming

*** Final Program available on the
conference web site ***

*** Add tutorials and/or a workshop to
your conference registration ***

www.ada-
europe.org/conference2023/tutorials.html

*** Welcome Event on Tuesday evening

Press release:
27th Ada-Europe Int'l Conference on
Reliable Software Technologies

International experts meet in Lisbon
Lisbon, Portugal (9 June 2023) - Ada-
Europe together with the University of
Lisbon organizes from 13 to 16 June 2023
the 27th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2023), in
cooperation with the Ada Resource
Association (ARA), and with ACM's
Special Interest Groups on Ada (SIGAda),
on Embedded Systems (SIGBED) and on
Programming Languages (SIGPLAN).

The Ada-Europe series of conferences is
an established international forum for
providers, practitioners and researchers in
reliable software technologies. These
events highlight the increased relevance
of Ada in general and in safety- and
security-critical systems in particular, and
provide a unique opportunity for
interaction and collaboration between
academics and industrial practitioners.

This year's conference offers 4 tutorials, a
keynote and a panel discussion, a
technical program of 6 sessions with peer-
reviewed papers, industrial and work-in-
progress presentations, posters, social
events, and 2 workshops. Presentations
are given by authors from 15 countries.

Six tutorials are scheduled on Tuesday,
targeting different audiences:
- "The HAC Ada Compiler",
- "Controlling I/O Devices with Ada and

the Linux Simple I/O Library",
- "Everything you Always Wanted to

Know about Characters and Strings",
- "Introduction to the Development of

Safety Critical Software",
- "Rust Fundamentals",
- "Concurrency and Parallelism in Rust".

On Wednesday and Thursday, the
networking area features WiP posters, as
well as an Ada-Europe booth.

Eminent speakers have been invited on
each of the core conference days:
- on Wednesday, a keynote talk by

Alcides Fonseca, from LASIGE,
University of Lisbon Faculty of
Sciences, who will talk about
"Applications of liquid types for more
reliable software";

- on Thursday, a panel on "Promises and
Challenges of AI-enabled Software
Development Tools for Safety-Critical

Applications" with Douglas Schmidt
(Vanderbilt University, USA), Jochen
Quante (Robert Bosch GmbH,
Germany), and Jon Pérez Cerrolaza
(IKERLAN, Spain).

The technical program on Wednesday and
Thursday includes 6 journal-track
refereed technical papers, 7 industrial, and
15 work-in-progress presentations, in
sessions on: Verification and Validation
1, Advanced Systems, Reliability and
Performance, Verification and Validation
2, Reliable Programming, Real-Time
Systems.

On Friday the conference hosts for the 8th
year the workshop on "Challenges and
New Approaches for Dependable and
Cyber-Physical Systems Engineering"
(DeCPS 2023), as well as the workshop
"AADL by its Practitioners (ADEPT)".

Peer-reviewed papers have been
submitted to a special issue of the Journal
of Systems Architecture and are heading
towards final acceptance as open-access
publications. Industrial and work-in-
progress presentations, together with
tutorial abstracts, and workshop papers,
will appear in issues of the Ada User
Journal, the quarterly magazine of Ada-
Europe.

The social program includes on Tuesday
evening a Welcome Reception in the
gardens of the National Museum of
Science & Natural History, and on
Wednesday evening the Conference
Banquet in the "Casa do Alentejo"
restaurant, an old palace in downtown
Lisbon with several exquisite rooms, that
served as a casino in the 20th century.

The Best Presentation Award will be
offered during the Closing session.

The full program is available on the
conference web site.

Online registration is still possible.

Latest updates:

The 16-page "Final Program" is available
at www.ada-europe.org/conference2023/
media/AEiC_2023_Final_Program.pdf

Check out the tutorials in the PDF
program, or in the schedule at

www.ada-europe.org/conference2023/
tutorials.html.

Registration is done on-line. For all
details, go to

www.ada-europe.org/conference2023/
registration.html.

A printed Conference Booklet with
abstracts of all technical papers and
industrial presentations will be included
in every conference handout, and will be
available on the conference web site.

98 Ada-related Tools

Volume 44, Number 2, June 2023 Ada User Journal

AEiC 2023 is sponsored by Ada-Europe
(www.ada-europe.org), AdaCore
(www.adacore.com), and GMV
(www.gmv.com).

Help promote the conference by
advertising it.

Recommended Twitter hashtags:
#AEiC2023 #AdaEurope
#AdaProgramming.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2023 Publicity
Chair

Dirk.Craeynest@cs.kuleuven.be

* 27th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2023)

* June 13-16, 2023, Lisbon, Portugal,
www.ada-europe.org/conference2023

(V7.1)

Ada Monthly Meetup 2023
[see also “Ada Monthly Meeting
Proposal” in this AUJ issue, pp.114-115
—arm]
From: Fernando Oleo Blanco

<irvise_ml@irvise.xyz>
Subject: Ada Monthly Meetup 2023
Date: Wed, 31 May 2023 14:27:07 +0200
Newsgroups: comp.lang.ada

Hi all,
This message contains the final time of
the meeting, connection details and other
info.

The (first!) Ada Monthly Meetup will
take place this Saturday 3rd of June at
13:00 UTC Time. That corresponds to
15:00 CET (Central European Time:
Madrid, Paris, Berlin, Rome...).

The meetup will take place over at Jitsi, a
conferencing software that runs on any
modern browser. The link is
https://meet.jit.si/2023AdaMonthlyMeetu
pJune The room name is
"2023AdaMonthlyMeetupJune" and in
case it asks for a password, it will be set
to "first". I do not want to set up a
password, but in case it is needed, it will
be the one above without the quotes. The
room name is generally not needed as the
link should take you directly there, but I
want to write it down just in case
someone needs it.

Talks:

No one proposed any topics, but that is
fine as **this first meeting will not be
recorded.** I will record it for internal
testing and to see how it works, but it will
not be published.

Having no talks will allow us, the
community, to discuss any technical
issues and comments that may help
improve the experience of the monthly
meetup. However, I will give a short
introduction and share my ideas at the
beginning :) Someone could also propose
a topic for the next meetup too.

If I forgot something, please, point it out
so that any issues can get patched out.

Best regards,

Fer
P.S: I, Fer, will post this over at the C.L.A
and Ada-Lang.io. Feel free to repost this
to Reddit, Gitter/Matrix, Telegram or any
other channels! The more people know
about this, the better (I hope).

P.P.S: this if for C.L.A only. The main
thread was named "Ada Monthly Meetup
Proposal". However, as this is no longer a
proposal, but the actual thing, I am
creating a new thread. For more
information, please, refer to the
aforementioned thread!
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Date: Thu, 1 Jun 2023 09:58:34 -0000

Fernando Oleo Blanco
<irvise_ml@irvise.xyz> wrote:
>The more people know about this, the

better (I hope).

Reposted to all Ada-Belgium members.
HTH

Ada and Education
New Project: Alice
From: frances...@gmail.com

<francesc.rocher@gmail.com>
Subject: New project: Alice
Date: Tue, 16 May 2023 11:22:12 -0700
Newsgroups: comp.lang.ada

After months of dedicated work, I'm
thrilled to introduce my project: Alice!

Alice, "Adventures for Learning and
Inspiring Coding Excellence", is a
collaborative Ada framework that allows
programmers to enhance and share their
solutions to various problem sources (e.g.
Project Euler, CodinGame and Advent of
Code), fostering collaboration, learning
and creativity.

While it's currently in the proof of
concept stage, and only Project Euler is
supported, I believe it holds immense
potential.

The wiki pages, https://github.com/alice-
adventures/Alice/wiki, offer a glimpse
into Alice's concept, participation
opportunities, and development ideas.

I warmly invite all members of the Ada
community, as well as beginners and

students exploring Ada, to read across the
wiki pages and share your valuable
feedback. Your insights and input will be
instrumental in shaping Alice's future.
Together, let's unlock the possibilities and
make a significant impact.

Stay tuned for the upcoming public
release, as we embark on this exciting
journey together!

"Ada Computer Science" at
Raspberrypi.org
From: Ingo M. <it.marks.info@gmail.com>
Subject: "Ada Computer Science" at

raspberrypi.org
Date: Sun, 28 May 2023 07:06:51 -0700
Newsgroups: comp.lang.ada

The Raspberry Pi Foundation announces
an "Ada Computer Science" project which
has nothing to do with the Ada
programming language.

 https://www.raspberrypi.org/blog/
ada-computer-science/

"We are excited to launch Ada Computer
Science, the new online learning platform
for teachers, students, and anyone
interested in learning about computer
science."

So far the focus is set on the current
ChatGPT hype, and code examples in
Python, Java, VB, and C#. It could be a
good opportunity to promote the Ada
language by providing similar courses.
Otherwise there could be a risk that
newcomers associate Ada with this
project rather than the language.
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Date: Mon, 29 May 2023 07:36:04 -0000

FWIW, I just posted the following
comment on that page:

"Will you also be using the Ada
programming language, a modern
language with a long track record of
successful projects and ideally suited to
develop reliable and trustworthy
software?"

It is currently marked as "This comment
is awaiting moderation."

Ada-related Resources
[Delta counts are from February 12th to
July 28th. —arm]

Ada on Social Media
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada on Social Media
Date: 28 Jul 2023 14:35 CET
To: Ada User Journal readership

Ada groups on various social media:
- Reddit: 8_371 (+22) members [1]

Ada-related Tools 99

Ada User Journal Volume 44, Number 2, June 2023

- LinkedIn: 3_448 (+12) members [2]
- Stack Overflow: 2_345 (+22) questions

[3]
- Gitter: 230 (+11) people [4]
- Telegram: 159 (-1) users [5]
- Ada-lang.io: 133 (+26) users [6]
- Libera.Chat: 73 (-1) concurrent users

[7]
- Twitter: Discontinued due to free API

being removed.
[1] http://www.reddit.com/r/ada/
[2] https://www.linkedin.com/

groups/114211/
[3] http://stackoverflow.com/questions/

tagged/ada
[4] https://app.gitter.im/#/room/

#ada-lang_Lobby:gitter.im
[5] https://t.me/ada_lang
[6] https://forum.ada-lang.io/u
[7] https://netsplit.de/channels/

details.php?room=%23ada&net=Libera.
Chat

Repositories of Open Source
Software
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Repositories of Open Source

software
Date: 28 Jul 2023 14:41 CET
To: Ada User Journal readership

Rosetta Code: 941 (+15) examples [1]
 41 (+1) developers [2]

GitHub: 987* (+224) developers [3]

Alire: 363 (+26) crates [4]
Sourceforge: 243 (+3) projects [5]

Open Hub: 214 (=) projects [6]

Codelabs: 57 (+3) repositories [7]
Bitbucket: 31 (=) repositories [8]

*This number is an unreliable lower
bound due to GitHub search limitations.
[1] http://rosettacode.org/wiki/

Category:Ada
[2] http://rosettacode.org/wiki/

Category:Ada_User
[3] https://github.com/search?q=

language%3AAda&type=Users
[4] https://alire.ada.dev/crates.html
[5] https://sourceforge.net/directory/

language:ada/
[6] https://www.openhub.net/tags?

names=ada
[7] https://git.codelabs.ch/?

a=project_index
[8] https://bitbucket.org/repo/all?

name=ada&language=ada

Language Popularity
Rankings
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada in language popularity

rankings
Date: 28 Jul 2023 14:53 CET
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 23 (+5) 0.77% (+0.35%)
[1]

- PYPL Index: 16 (+3) 1.06% (+0.23%)
[2]

- Stack Overflow Survey 42 (new) 0.77%
(new) [3]

- IEEE Spectrum (general): 35 (=) Score:
1.16 [4]

- IEEE Spectrum (jobs): 33 (=) Score:
0.79 [4]

- IEEE Spectrum (trending): 32 (=) Score:
3.95 [4]
[1] https://www.tiobe.com/tiobe-index/
[2] http://pypl.github.io/PYPL.html
[3] https://survey.stackoverflow.co/2023/
[4] https://spectrum.ieee.org/top-

programming-languages/

GnatStudio Cookbook
From: Rod Kay <rodakay5@gmail.com>
Subject: [Ann] GnatStudio Cookbook
Date: Wed, 28 Jun 2023 06:53:49 +1000
Newsgroups: comp.lang.ada

Hello again all,

In the hope it might help other people
building or OS packaging GnatStudio,
I've prepared a 'cookbook' of sorts.

It provides build instructions for the entire
GnatStudio project stack, beginning with
gprbuild-bootstrap and culminating in the
build of gnatstudio. The individual
'recipes' take the form of pacman
PKGBUILDs with tarballs and patches.

Here is the link ...

https://github.com/charlie5/archlinux-
gnatstudio-support/tree/main/gnatstudio-
cookbook

Ada-related Tools
AdaStudio 2023 Release
03/04/2023 Free Edition
From: Leonid Dulman

<leonid.dulman@gmail.com>
Subject: Announce: AdaStudio-2023 release

03/04/2023 free edition
Date: Sun, 2 Apr 2023 21:12:06 -0700
Newsgroups: comp.lang.ada

It based on Qt-6.5.0-everywhere
opensource (expanded with modules from
Qt-5.15: qtgamepad,
qtx11extras,qtwinextras),VTK-
9.2.0,FFMPEG-5.2.1,OpenCV-
4.7.0,SDL2-2.24.0,QtAV-1.13 MDK-
SDK(wang-bin)

Qt6ada version 6.5.0 open source and
qt6base.dll ,qt6ext.dll
(win64),libqt6base.so,libqt6txt.so(x86-64)
built with Microsoft Visual Studio 2023
x64 Windows, GCC amd64 in Linux.

Package tested with GNAT gpl 2020 Ada
compiler in Windows 64bit , Linux
amd64 Debian 11.2

AdaStudio-2023 includes next modules :
qt6ada,vtkada,qt6mdkada,qt6cvada(face
recognition, face detection,face
identification,objects
detectection,QRcode detector,BARcode
detection and others) and voice
recognizer.

Qt6Ada is built under GNU LGPLv3
license
https://www.gnu.org/licenses/lgpl-
3.0.html.

Qt6Ada modules for Windows, Linux
(Unix) are available from

Google drive
https://drive.google.com/drive/folders/
0B2QuZLoe-yiPbmNQRl83M1dTRVE?
resourcekey=0-b-M35gZhynB6-
LOQww33Tg&usp=sharing

WebPage is
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/index.html

Directories tree is

[…]

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.pdf"

The simple manual how to build Qt6Ada
application can be read in "How to use
Qt6ada.pdf"

If you have any problems or questions,
tell me know.

Leonid(leonid.dulman@gmail.com)

VisualAda 1.0.0.12
From: Alex Gamper

<alby.gamper@gmail.com>
Subject: ANN: VisualAda (Ada Integration

for Visual Studio 2022) release 1.0.0.12
Date: Mon, 10 Apr 2023 18:43:56 -0700
Newsgroups: comp.lang.ada

Dear Ada Community

VisualAda version 1.0.0.12 for Visual
Studio 2022 has been released

Enhancements include the following
- Bug fixes in Intellisense (Statement

completion)

100 Ada-related Tools

Volume 44, Number 2, June 2023 Ada User Journal

Please feel free to download the free
plugin from the following URL

https://marketplace.visualstudio.com/
items?itemName=AlexGamper.VisualAd
a-2022

Currency Library for Ada?
From: A.J. <ianozia@gmail.com>
Subject: Currency Library for Ada?
Date: Thu, 13 Apr 2023 07:17:27 -0700
Newsgroups: comp.lang.ada

Does anyone know if Ada has a currency
library? Ideally one that includes the ISO
4217 currency standard?

I've seen currency referenced as examples
in the Style Guide[1] and other
documentation[2] but I'm having trouble
searching for anything concrete (and
googling "ada" and "currency" has not
helped due to some unfortunately named
crypto stuff).

I'm also interested in if there's any Ada
libraries for iso 3166 (country codes).

If none of this exists, that's fine, it just
gives me a reason to build it out myself,
but I don't want duplication of effort :)

[1] https://ada-lang.io/docs/style-
guide/Reusability/#guideline-16

[2] https://docs.adacore.com/live/wave/
aunit/html/aunit_cb/aunit_cb/fixture.html
From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 13 Apr 2023 19:37:19 +0200

Le 13/04/2023 à 16:17, A.J. a écrit :
> I'm also interested in if there's any Ada

libraries for iso 3166 (country codes).

It's a standard package, Ada.Locales
From: A.J. <ianozia@gmail.com>
Date: Thu, 13 Apr 2023 11:12:19 -0700

On Thursday, April 13, 2023 at
1:37:22 PM UTC-4, J-P. Rosen wrote:
> It's a standard package, Ada.Locales

Thanks for finding that! This looks like a
good foundation for validating county
codes, though it doesn't appear to contain
an index of them, or expand into the 3-
letter codes (e.g. USA vs US). I was
looking into the implementation, and the
GNAT[1] runtime seems to be true to
spec, while the Drake runtime[2] looks
like it's expanding into closer to what I'm
looking for with its iso639 tables [3]. I
may be able to build on this set, though
and use the existing structures.

[1] https://github.com/gcc-
mirror/gcc/blob/master/gcc/ada/libgnat/a-
locale.ads & https://github.com/gcc-
mirror/gcc/blob/master/gcc/ada/libgnat/a-
locale.adb

[2] https://github.com/ytomino/drake/blob
/ master/source/environment/a-locale.ads

[3] https://github.com/ytomino/drake/blob
/master/source/environment/a-
locale.adb#L60
From: Devin Rozsas

<devinrozsas@gmail.com>
Date: Thu, 4 May 2023 10:59:11 -0700

Em quinta-feira, 13 de abril de 2023 às
11:17:28 UTC-3, A.J. escreveu:
> Does anyone know if Ada has a

currency library? Ideally one that
includes the ISO 4217 currency
standard?

I'm actually making something like this,
but it isn't complete, and uses Lua scripts
to handle different currencies (and
formatting). It also has location support
(country, state, city) and language
support, including message translation (so
the program can output stuff in the user's
language). For this, TOML is used.

It uses Glottolog codes to identify
languages, and FIFA codes for the
countries.

I paused the development because I'm
focusing on another project that has been
causing me some headaches lately. It's
broken and cannot deliver what you want
- as of now.
From: Devin Rozsas

<devinrozsas@gmail.com>
Date: Thu, 4 May 2023 11:27:47 -0700

By the way, the code is here:
https://sr.ht/~devin/Azurite-Ada/

Again, it's incomplete, and probably isn't
exactly what you're looking for.

Ada Interface to Excel File
From: Adamagica <christ-usch.grein@t-

online.de>
Subject: Ada interface to Excel file
Date: Wed, 19 Apr 2023 10:36:10 -0700
Newsgroups: comp.lang.ada

I create Ada code from an Excel file. For
this, I first manually export the file to csv
format. The code generator works on the
csv file. I'd like to automate this first step
by including the export into the code
generator.

I guess there is a C interface for Excel. I
only just need the export functionality,
not a full interface. However, being
illiterate in C, I'd further welcome help on
the way to define an Ada interface to this
C code.

Can anyone help, please? Thanx a lot.
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Wed, 19 Apr 2023 20:22:34 +0200

G. de Montmollin has an Ada Excel
writer, an Ada pkg for writing Excel files
(https://sourceforge.net/projects/excel-
writer/). Presumably it could be modified
to read them.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 20 Apr 2023 11:18:53 +0200

AFAIK, Excel has an ODBC driver. So
you can simply read/write an Excel table
directly from Ada using ODBC SQL
statements.

Units of Measurement for
Ada 3.13
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Units of measurement for

Ada v3.13
Date: Sun, 23 Apr 2023 09:20:44 +0200
Newsgroups: comp.lang.ada

The library provides means for handling
measurement units in Ada.

http://www.dmitry-kazakov.de/
ada/units.htm

Changes to the previous version:
- The package

Generic_Complex_Measures was added
to provide dimensioned complex values;

- The package Complex_Measures added
as an instance of
Generic_Complex_Measures with the
type Float.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 23 Apr 2023 11:14:35 +0100

Thanks for this.

The link in "You also may wish to visit
this site devoted to the problem of
dimensioned values in Ada."

(http://www.christ-usch-
grein.homepage.t-
online.de/Ada/Dimension/SI.html)

results in "Host not found".
From: Adamagica <christ-usch.grein@t-

online.de>
Date: Sun, 23 Apr 2023 03:48:50 -0700
> The link [...] results in "Host not

found".

This can be found there:

https://www.adaic.org/ada-resources/
tools-libraries/ see "Christoph Grein’s
Essentials"

or more directly:

http://archive.adaic.com/tools/CKWG/
Dimension/Dimension.html

Simple Components 4.66
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Simple components for Ada v

4.66
Date: Sun, 23 Apr 2023 09:25:10 +0200
Newsgroups: comp.lang.ada

Ada-related Tools 101

Ada User Journal Volume 44, Number 2, June 2023

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
persistent storage, multiple connections
server/client designing tools and protocols
implementations.

 http://www.dmitry-kazakov.de/
ada/components.htm

Changes to the previous version:
- The ambiguities in the ODBC.API

package implementation are fixed.

GCC 13.1.0 for MacOS
Monterey++
From: Simon Wright

<simon@pushface.org>
Subject: ANN: GCC 13.1.0 for macOS

Monterey++
Date: Thu, 27 Apr 2023 16:22:37 +0100
Newsgroups: comp.lang.ada

Find this release, built on Intel but runs on
Apple silicon under Rosetta, at
https://github.com/simonjwright/distributi
ng-gcc/releases/tag/gcc-13.1.0-x86_64

NB, previous builds were for macOS El
Capitan or later, but that machine was
elderly.

SparForte 2.6
From: Ken Burtch <koburtch@gmail.com>
Subject: ANN: SparForte 2.6
Date: Tue, 2 May 2023 05:07:35 -0700
Newsgroups: comp.lang.ada

SparForte is a scripting language,
template language and shell based on Ada
and Bourne shell. It has been in
development for 22 years and has about
129,000 lines of code.

This release includes

New features: 11

Changes: 7
Fixes: 12

New features include case procedures,
named shell sessions, and Alire support
(experimental).

The details of the release are at

https://sparforte.com/news/2023/
news_may_2023.html

A summary of the new features is at

https://www.pegasoft.ca/coder/
coder_march_2023.html

SparForte can be downloaded from the
home page at

https://sparforte.com
From: 196...@googlemail.com

<1963bib@googlemail.com>
Date: Sat, 6 May 2023 06:08:45 -0700

Can't be built without sound...

gcc -c -O1 -march=athlon64 -gnat12 -
gnatfaoN -gnatVaep -gnateEeEeF -fstack-
protector -I./adacgi-1.6/ -I./apq-2.1/ -
I./pegasock/ -I./areadline/ -lpcre
parser_sound.adb

parser_sound.adb:93:06: statement
expected

gnatmake: "parser_sound.adb"
compilation error

If you try and build it without readline...
gcc -c -O1 -march=athlon64 -gnat12 -
gnatfaoN -gnatVaep -gnateEeEeF -fstack-
protector -I./adacgi-1.6/ -I./pegasock/
pegasoft-user_io-getline.adb

pegasoft-user_io-getline.adb:286:26:
"optional_bold" is undefined

gnatmake: "pegasoft-user_io-getline.adb"
compilation error
From: Ken Burtch <koburtch@gmail.com>
Date: Sat, 6 May 2023 06:19:09 -0700

Thank you for sharing this issue.

My automated release tests build
SparForte without sound and without
readline each night and they have been
successful.

I will attempt to diagnose what the
problem is. Do you have any further
information about your build environment
that might be related to this issue?
From: Ken Burtch <koburtch@gmail.com>
Date: Sat, 6 May 2023 06:34:50 -0700

I have pushed fixes for these two issues to
the GitHub master branch.

I will do a full set of build tests manually
to ensure nothing else is missing.

I will also investigate what the errors
were not caught by the automated tests.

Thank you for reporting this issue.

UXStrings 0.5.0
From: Blady <p.p11@orange.fr>
Subject: [ANN] Release of UXStrings 0.5.0
Date: Fri, 5 May 2023 05:36:42 +0200
Newsgroups: comp.lang.ada

This Ada library, providing Unicode
character strings of dynamic length, is
enriched by a third implementation:
UXStrings3 [1] also available on Alire
[2]. With this latter implementation, the
characters are stored in Unicode form and
the management of dynamic size uses the

standard Wide_Wide_Unbounded strings
library.

Performance with Gnoga [3] is better.
UXStrings2 already brought better
performance in the case of strings only
made up of ASCII characters
(improvement by a factor 2 to 3 compared
to UXStrings1). With UXStrings3
performance in the latter case is still
improved (factor 6 to 7 compared to
UXStrings1) moreover in the case of
strings accentuated in French and strings
containing emojis the process times are
also improved (factor 7 to 8 by compared
to UXStrings1 or even more in the case of
emojis).

For all cases, the global memory
occupation of the Gnoga application is
generally similar (9 to 10 Mb). The
memory occupation due to UXStrings3 is
negligible compared to the memory
occupation of the server engine
implemented in Gnoga.

Study case: AdaEdit application using the
Gnoga graphics library with

UTF-8 files:

English 315 kb
French: 447 kb

Emojis: 439 kb

Process: read all lines of the given file and
display the full text

Regardless of the implementation chosen,
the appealing of a library is mainly based
on the capabilities it offers (API). So far
in UXStrings, these are similar to those of
the strings Ada standard libraries. If you
find some missing, make your proposals
on Github [4].

Pascal.
[1] https://github.com/Blady-Com/
UXStrings/blob/master/src/uxstrings3.ads

[2] https://alire.ada.dev/crates/
uxstrings.html

[3] https://sourceforge.net/projects/gnoga

[4] https://github.com/Blady-Com/
UXStrings/issues
From: Vincent D.

<vincent.diemunsch@gmail.com>
Date: Thu, 29 Jun 2023 01:49:12 -0700

Hello Pascal,

Thank you for this contribution. Here are
some comments:
- since UTFString is a class ("a tagged

record type"), why don't you create an
abstract root "UXString" and then derive
specialized object types ? Like
UTF_8_XString, UTF_16_XString,
ASCII_XString, Win_1252_XString,
Latin_XString, etc.

102 Ada-related Tools

Volume 44, Number 2, June 2023 Ada User Journal

- The default format to convert between
different encodings should be UTF-8 as
it is now ubiquitous.

> [...] moreover in the case of strings
accentuated in French and strings
containing emojis the process times are
also improved (factor 7 to 8 by compared
to UXStrings1
- I find quite astonishing to have a factor

8 compared to UTF-8 encoding. Do you
have an explanation ? This looks like a
poor implementation because UTF-8
encoding is fast and allows direct
manipulation in most cases. Maybe
because random access is treated as
sequential access for UTF-8 encoded
strings but this again is poor
implementation.

GnatStudio 20230501
From: 196...@googlemail.com

<1963bib@googlemail.com>
Subject: GnatStudio 20230501 released
Date: Sun, 14 May 2023 14:31:05 -0700
Newsgroups: comp.lang.ada

And for Linux it's an appimage. Why? I
mean? Its...?

I just wish they could get it into shape
where the build was doable without so
much hassle - I've never been able to
manage it.
From: Rod Kay <rodakay5@gmail.com>
Date: Mon, 15 May 2023 20:41:14 +1000

On 15/5/23 07:31,
196...@googlemail.com wrote:
> I just wish [...] the build was doable

without so much hassle

The build *has* been getting easier. I
maintain the Archlinux gnatStudio
package and have nearly got it to build.
Currently, I'm waiting on a new/matching
release of the AdaCore spawn project. I
could, I suppose, use the latest commit
version but would prefer to use a formal
release.

Also, in the new binary, 'Find all
references' appears to be broken (it finds
no references). I guess, the same would
apply for the refactoring tool. I've been
advised to report the issue and will do so
tomorrow. It might help to know if other
people also experience the same
problem(s), before reporting ?
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Mon, 15 May 2023 15:58:43 +0200

On 2023-05-15 12:41, Rod Kay wrote:
> It might help to know if other people

also experience the same problem(s)

After typing "with Ada.Strings." I
received a use clause as a suggested
completion. After completing the
subprogram name in a subprogram call, I
was shown something other than the

subprogram specification. After typing
the '(' for the parameter list, I was shown
something other than the formal
parameters.
From: Maxim Reznik

<reznikmm@gmail.com>
Date: Thu, 1 Jun 2023 02:21:55 -0700

понедельник, 15 мая 2023 г. в 13:43:31
UTC+3, Rod Kay:
> On 15/5/23 07:31, 196...@ wrote:
> > And for Linux it's an appimage. Why?

Why not? It's compact. It doesn't require
any installation, so it's handy. You can
extract content with --appimage-extract
and install GS with ./squashfs-
root/usr/doinstall as before.
> Currently, I'm waiting on a

new/matching release of the AdaCore
spawn project.

All sources are in release assets, like
gnatstudio-sources-x86_64-linux.tar.gz. It
has spawn-24.0w-20230428-162D4-
src.tar.gz for example.
> Also, in the new binary, 'Find all

references' appears to be broken

It looks like your ada_language_server
doesn't work. Take a look in GS log files
(in ~/.gnatstudio/ folder).
From: Rod Kay <rodakay5@gmail.com>
Date: Fri, 2 Jun 2023 04:27:02 +1000

On 1/6/23 19:21, Maxim Reznik wrote:
> All sources are in release assets

Ah, great. I will try to rebuild with this.
> It looks like your ada_language_server

doesn't work.

I've just re-tested and 'Find all references'
works perfectly. How embarrassing!

All i can think of is that I may have had
an old gnatstudio version running when I
did the GS update and so was still using
the old version when I initially tested.

Thanks very much Reznik, very helpful.
From: Maxim Reznik

<reznikmm@gmail.com>
Date: Mon, 5 Jun 2023 03:15:13 -0700

Great! Waiting for GNAT Studio in Arch
Linux :)

Speaking about AppImage. If you want
installed version of GNAT Studio (for
instance to have an access to the
gnatdoc/gnatdoc4), then you can extract
AppImage as an old .tag.gz archive and
run doinstall:

chmod +x ./GNAT_Studio-
x86_64.AppImage

./GNAT_Studio-x86_64.AppImage --
appimage-extract

./squashfs-root/usr/doinstall
From: Rod Kay <rodakay5@gmail.com>

Date: Mon, 5 Jun 2023 22:55:51 +1000

On 5/6/23 20:15, Maxim Reznik wrote:
> Great! Waiting for GNAT Studio in

Arch Linux :)

Heh, I've just this minute finished the
build/install of GNAT Studio for Arch
Linux. The build of GS (and all of it's
dependencies) went very well, largely due
to using all of the sources provided in the
recent GS sources tarball release. So
thank you again for suggesting that.

I still have one problem to solve. When I
run GS, i get the

following Python error ...
Fatal Python error: init_fs_encoding:
failed to get the Python codec of the
filesystem encoding

Python runtime state: core initialized

ModuleNotFoundError: No module
named 'encodings'

A quick google did not yield any
promising solutions but I will look again
tomorrow. If anyone can suggest possible
reasons/solutions I'd be very grateful. I
know little about that pesky snake and
less about how to treat one constricted by
the beast :).
From: Maxim Reznik

<reznikmm@gmail.com>
Date: Sat, 10 Jun 2023 03:25:24 -0700

Probably something wrong with your
Python installation. I've tried in GNAT
Studio console:

>>> import encodings
>>> print(encodings.__file__)

/tmp/gs/share/gnatstudio/python/lib/pytho
n3.9/encodings/__init__.py

While if I run system packaged Python in
my Ubuntu:

$ python3
>>> import encodings

>>> print(encodings.__file__)

/usr/lib/python3.10/encodings/__init__.py
$ dpkg-query -S
/usr/lib/python3.10/encodings/__init__.py

libpython3.10-minimal:amd64:
/usr/lib/python3.10/encodings/__init__.py

So, it's part of libpython3.10-minimal
From: Rod Kay <rodakay5@gmail.com>
Date: Wed, 28 Jun 2023 06:47:39 +1000

It turns out that gnatstudio expects
'/usr/share/gnatstudio/python' to contain
or point to the root of an OS's Python
installation. So a simple soft link to '/usr'
fixed this problem.

Ada-related Tools 103

Ada User Journal Volume 44, Number 2, June 2023

The only other problem was a deprecated
Python module, which was very easy to
patch/fix.

So now gnatstudio builds/runs on
Archlinux with all the bells/whistles.

A final thanks, Maxim, for your help.

GCC 13.1.0 for Apple
Silicon
From: Simon Wright

<simon@pushface.org>
Subject: [ANN] GCC 13.1.0 for Apple

silicon
Date: Wed, 17 May 2023 20:23:04 +0100
Newsgroups: comp.lang.ada

See new GCC 13.1.0 releases for aarch64-
apple-darwin (i.e. Apple silicon), both
native and cross compilation to arm-eabi,
at https://github.com/simonjwright/
distributing-gcc/releases

GWindows 29-May-2023
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann: GWindows release, 29-May-

2023
Date: Mon, 29 May 2023 09:19:11 -0700
Newsgroups: comp.lang.ada

GWindows is a full Microsoft Windows
Rapid Application Development
framework for programming GUIs
(Graphical User Interfaces) with Ada.
GWindows works only with the GNAT
development system, but with some
effort, GWindows could be made pure
Ada. GWindows is free and open-source!

Changes to the framework are detailed in
gwindows/changes.txt or in the News
forum on the project site.

In a nutshell (since last announcement
here):

GWindows release, 29-May-2023
[revision 480]

 * Fixes: color picker dialog, mouse wheel
methods

478: Contribution: added package
GWindows.Pipes

477: Contribution: added package
GWindows.Timers

476: Contribution: added package
GWindows.Persistence_IO

466: Contribution: initial release of
package Office_Applications for helping
creating office-like applications.

GWindows release, 13-Nov-2022
[revision 459]

458: GWindows.Common_Controls.
Ex_List_View: added `Using_Payloads`
to the enumerated type
`Comparison_Technique_Type`.

With this choice, sorting runs 100x faster.

451: GWindows.Common_Controls.
Ex_List_View: added
`As_Strings_Default` to the enumerated
type `Comparison_Technique_Type`
(sorting runs faster if default alphabetical
sorting is desired).

449: GWindows.Application: added
procedure `Add_To_Recent_Documents`.

Windows Explorer & Desktop puts the
name on top of various "recent
documents" lists, for instance in the task
bar.

447: GWindows.Common_Controls.
Ex_List_View: massive speedup on
sorting of large lists (e.g. 6x faster for
20,000 items).

GWindows release, 18-Jun-2022 [revision
440]

* Installer: ResEdit.xml configuration file
for the ResEdit

Resource Editor is automatically created
and set up for current GNAT
installation(s), GWindows and
GWenerator.

* Fixed a few 32/64 bit incompatibilities
in GWindows.Windows and
GWindows.Common_Controls.Ex_List_
View.

* Fixed various GNATCOM issues.

GWindows Project site:
https://sf.net/projects/gnavi/

GWindows GitHub clone:

https://github.com/zertovitch/gwindows
From: Drpi <314@drpi.fr>
Date: Mon, 29 May 2023 21:55:27 +0200

What do you mean by "pure Ada" ?
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Date: Mon, 29 May 2023 16:59:39 -0700

IIRC, there are a few GNAT-only
attributes, like Unrestricted_Access, used.
No big deal.

But good point, I could check "purity"
with the ObjectAda compiler.
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Tue, 30 May 2023 09:56:13 +0200

I took a quick look. Wouldn't all of
Gnatcom need to be replaced?
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Date: Sat, 3 Jun 2023 23:09:18 -0700

Good question.

When I compile a project using
GWindows, GNAT uses 10 of the 53
GNATCOM packages.

One GNATism is 4x 'Unrestricted_Access
in GNATCOM.Types, for accesses such
as:

VARIANT_MISSING : aliased constant
 VARIANT := (
 VT_ERROR, 0, 0, 0, u => (Which => 8,
 scode => DISP_E_PARAMNOTFOUND));
PVARIANT_MISSING :
 Pointer_To_VARIANT :=
 VARIANT_MISSING'Unrestricted_Access;

that could be either resolved into a
standard Ada form or exiled into another
package (GWindows doesn't need them).

Something tougher is a couple of intrinsic
imports (sync_add_and_fetch,
sync_sub_and_fetch):
 function sync_add_and_fetch
 (Ref : access Interfaces.Unsigned_32;
 Add : Interfaces.Unsigned_32)
 return Interfaces.Unsigned_32
 with Import,
 Convention => Intrinsic,
 External_Name =>
 ”__sync_add_and_fetch_4";

which seems to be specific to GCC (and
actually, not even all versions of GCC...)
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Sat, 17 Jun 2023 02:18:05 -0500

This looks like an atomic operation. A
portable Ada definition of such operations
is found in C.6.1-C.6.4 of Ada 2022.
Probably those could be used to replace
the operation (of course, that would limit
one to compilers supporting that part of
Ada 2022; dunno if anyone is doing that
yet).

LEA 0.87
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann: LEA v.0.87
Date: Mon, 29 May 2023 09:29:20 -0700
Newsgroups: comp.lang.ada

LEA is a Lightweight Editor for Ada

Web site: http://l-e-a.sf.net/
Source repository #1:
https://sf.net/p/l-e-a/code/HEAD/tree/

Source repository #2:
https://github.com/zertovitch/lea

Changes since last announcement here:
 - Added auto insert feature: e.g. typing

`(` inserts `)`.
 - Added color theme Solarized Light.
 - Added a "stealth mode" in which LEA

doesn't leave traces in the registry.
 - Editor adds `-- ` if the cursor is within

a comment when the Return key is
pressed (consequence: a comment is
split into two comments).

 - If the cursor is within a string literal
when the Return key is pressed, the
string literal is split into two valid string
literals with a `&` between them.

104 Ada and Operat ing Systems

Volume 44, Number 2, June 2023 Ada User Journal

 - Added unhandled exception
information to message list

 - Tabs with the various file names
 - LEA doesn't write scilexer.dll as a file;

thus, it runs as a portable application (in
the sense: you can run it from a read-
only drive directly, without installation)

 - Added a Build & Run button (for the
HAC compiler).

Features:
 - multi-document
 - multiple undo's & redo's
 - multi-line & multi-point edit,

rectangular selections
 - color themes, easy to switch
 - duplication of lines and selections
 - syntax highlighting
 - parenthesis matching
 - bookmarks

Currently available on Windows.

Gtk or other implementations are
possible: the LEA_Common[.*] packages

are pure Ada, as well as HAC.
From: Drpi <314@drpi.fr>
Date: Mon, 29 May 2023 21:56:35 +0200

Just missing Alire and ALS compatibility
;)
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Date: Mon, 29 May 2023 22:27:14 -0700

Alire: are you missing a LEA crate?

ALS: = Ada language server?
From: Drpi <314@drpi.fr>
Date: Tue, 30 May 2023 08:03:19 +0200

> Alire: are you missing a LEA crate?

Why not but I was thinking about
compiling/running Alire projects from
LEA.

> ALS: = Ada language server?

That's it. Auto-completion and mouse-
over documentation in LEA.
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Date: Wed, 31 May 2023 20:18:57 -0700
> Why not but I was thinking

compiling/running Alire projects from
LEA.

Good idea! For instance the "Build &
Run" command (the green button) would
launch "alr run" in that context.

Added to the to-do list.

Side note: a cool project would be a
graphical tool, "Alire Explorer" (good
name to be found) with buttons for the
key Alire commands, a box displaying the
contents of "alr show", ...

Perhaps something to be made with
GNOGA.

>> ALS: = Ada language server?
> That's it. Auto-completion and mouse-
over documentation in LEA.

Also added to the to-do list.
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Date: Fri, 9 Jun 2023 14:41:27 -0700

LEA is now available on Alire
(https://alire.ada.dev/) !

alr index --update-all

alr get lea

cd lea <-- here you press the Tab key to
complete

alr build

lea

Ayacc and Aflex 2023
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Re: Status of ayacc and aflex?
Date: Wed, 31 May 2023 13:42:18 -0700
Newsgroups: comp.lang.ada

Old thread, but since some search engines
point to here as top hit when searching for
"ayacc" and "aflex", it is worth
mentioning that the new developments (as
of mid 2023) of ayacc and and aflex are
located here:

https://github.com/Ada-France/ayacc

https://github.com/Ada-France/aflex

PragmAda Reusable
Components
From: Pragmada Software Engineering

<pragmada@pragmada.x10hosting.com>
Subject: [Reminder] The PragmAda

Reusable Components
Date: Thu, 1 Jun 2023 10:38:17 +0200
Newsgroups: comp.lang.ada

The PragmARCs are a library of (mostly)
useful Ada reusable components provided
as source code under the GMGPL or BSD
3-Clause license at
https://github.com/jrcarter/PragmARC.

This reminder will be posted about every
six months so that newcomers become
aware of the PragmARCs. I presume that
those who want notification when the
PragmARCs are updated have used
Github's notification mechanism to
receive them, so I no longer post update
announcements. Anyone who wants to
receive notifications without using
Github's mechanism should contact me
directly.

Qplt
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Subject: Ann: Qplt
Date: Fri, 2 Jun 2023 17:49:20 +0200
Newsgroups: comp.lang.ada

I have created Qplt (Quick Plot), and
Ada-GUI program to quickly produce a
plot of a data set, and make it publicly
available in hopes that it might prove
useful. The program automatically selects
axis ranges and tick intervals. The user
may select whether points, lines, or both
are plotted, and supply a title and axis
labels.

Qplt is available at
https://github.com/jrcarter/Qplt

Ada and Operating
Systems
GCC 13.1.0 (x86_64) on
Ventura 13.3.1
From: Bill Findlay

<findlaybill@blueyonder.co.uk>
Subject: Trying GCC 13.1.0 (x86_64) on

Ventura 13.3.1
Date: Sat, 29 Apr 2023 00:55:53 +0100
Newsgroups: comp.lang.ada

Hi Simon,

Many thanks for the x86 macOS build of
GNAT. Does it incorporate front-end
updates since the Sep 30 build of gnat-
12.2.0-1?
> which gnat
> /opt/gcc-13.1.0/bin/gnat

Using the command:
> GCC -c -I./ -I../Source -funwind-tables -

gnatl12j96 -gnatw.e -gnatwD -gnatwH
-gnatwP -gnatwT -gnatw.W -gnatw.B -
gnatwC -gnatw.u -gnatyO -gnatw.Y -
gnatw.N -fdata-sections -ffunction-
sections -gnatfn -mtune=native -Ofast -
fno-stack-check -fomit-frame-pointer -
flto -I /Users/wf/KDF9/emulation/
Source/ee9.adb

I got:
> clang (LLVM option parsing):
Unknown command line argument '-x86-
pad-for-align=false'. Try: 'clang (LLVM
option parsing) --help'

> clang (LLVM option parsing): Did you
mean '--x86-slh-loads=false'?

> gnatmake:
"/Users/wf/KDF9/emulation/Source/ee9.a
db" compilation error
From: Simon Wright

<simon@pushface.org>
Date: Sat, 29 Apr 2023 16:08:04 +0100

Ada and Operat ing Systems 105

Ada User Journal Volume 44, Number 2, June 2023

Bill Findlay
<findlaybill@blueyonder.co.uk> writes:
> Does it incorporate front-end updates

since the Sep 30 build of gnat-12.2.0-1?

It includes whatever changes AdaCore &
fellow maintainers have made! From here
<https://gcc.gnu.org/gcc-
13/changes.html>,
Ada
Traceback support added in RTEMS for

the PPC ELF and ARM architectures.
Support for versions older than VxWorks

7 has been removed.
General improvements to the contracts in

the standard libraries.
Addition of GNAT.Binary_Search.
Further additions and fixes for the Ada

2022 specification.
The Pragma SPARK_Mode=>Auto is

now accepted. Contract analysis has
been further improved.

Documentation improvements.

Ada FreeDos/DOS
Experiences
From: Hou Van Boere

<houvanboere@gmail.com>
Subject: Please Share Ada -Freedos - Dos

experiences
Date: Sat, 27 May 2023 08:44:55 -0700
Newsgroups: comp.lang.ada

Hi Everyone

I am thinking about using FreeDos as a
kind of RTOS. The application is to
control scientific instruments so
portability is a non-issue.

Can you please share bits and pieces
about running Ada on FreeDos (or MS
DOS)
From: Joakim Strandberg

<joakimds@kth.se>
Date: Sat, 27 May 2023 12:49:36 -0700

I wrote about how to get DJGPP compiler
on DOS:
https://www.reddit.com/r/ada/comments/
vrhsv5/how_to_install_gnat_314b_on_fre
edos_13/

I recommend installing a recent version of
DJGPP, you will be able to use a lot of
the Ada language except for tasking
which DJGPP does not support on
FreeDos.

I have been looking for an Ada83 or
Ada95 compiler for DOS which compiles
real-mode executables but the ones I
found are still proprietary and can be
bought. It indicates there are still old
systems on old hardware still in use.

I haven't built something on DOS, just
toying with the idea. I've successfully
been able to execute my Advent of code
solutions for 2022 on FreeDOS. I've also

successfully switched to VGA mode and
putting pixels on the screen and switching
back to text mode from an Ada
application. I did it by interfacing with C
code that had assembler embedded, if I
remember correctly.
From: Joakim Strandberg

<joakimds@kth.se>
Date: Sat, 27 May 2023 13:02:58 -0700

Another idea is to use the ObjectAda 7.0
compiler (free version) from 1996 that
can be downloaded here:

https://archive.org/details/ObjectAdaSE7

It runs on Windows 95/98 but looking at
the documentation for the ObjectAda
compiler it says it is possible to use the
compiler to create executables for DOS
by using a DOS Extender. I haven't tried
it but it should be possible to get working.
Unfortunately there are limitations with
the free version. One good thing is that it
is possible to use tasks freely for creating
a FreeDOS application but one must
restrict one-self to Ada95 since the
compiler is from 1996.

There is a professional version of
ObjectAda from 2002 that can be
downloaded here:
https://vetusware.com/download/ObjectA
da%207.2.2%20Enterprise%207.2.2/?id=
17315

I've tested it and it works but the
documentation no longer talks about
being able to create executables for
FreeDOS. Maybe it can still be used to
make executables for FreeDOS?
From: Joakim Strandberg

<joakimds@kth.se>
Date: Sat, 27 May 2023 13:07:30 -0700

However, the biggest obstacle for using
FreeDOS is hardware support. FreeDOS
depends upon BIOS and all motherboards
since 2020 no longer support BIOS. Does
anybody know of any hardware produced
today that supports FreeDOS?
From: Hou Van Boere

<houvanboere@gmail.com>
Date: Sat, 27 May 2023 14:54:28 -0700

Thanks Joakim! this is super helpful.

I downloaded the compiler cd.

I have tried this:
https://github.com/andrewwutw/
build-djgpp

It looks helpful to build dlgpp but it does
not work well enough on Trisquel Linux.
I find that building GCC on current or
old Slackware versions seems to work
well and I am going to re-try this project.
I know I will have to re-run with --enable-
languages=c,Ada later but at least it
should set up most of what is needed.

Your Freedos environment tips will help a
lot.

I just bought my son a new computer and
I am kind of depressed after. The store
was huge but completely geared towards
gaming. It seems like today's computers
are not well suited for hardware
interfacing and hacking with electronics.
There was way more expansion in the
past and I hate having to configure for
legacy bios. I think this will be dropped
soon too and then we will be stuck
From: Hou Van Boere

<houvanboere@gmail.com>
Date: Sat, 27 May 2023 14:55:28 -0700

P.S I use less than half of Ada 95 so this
compiler could help a lot.
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Sun, 28 May 2023 01:00:21 +0200

On 2023-05-27 17:44, Hou Van Boere
wrote:
> Can you please share bits and pieces

about running Ada on FreeDos(or MS
DOS)

I used Ada (83) (Janus/Ada and Meridian
Ada) on DOS PCs in the 80s and 90s. It
was much like writing command-line
applications for Linux or Windows today.
I also did some low-level stuff, trapping
key strokes and doing graphics. But if
you're thinking of using DOS as an RTOS
then that's probably not very helpful for
you.

RR Software (rrsoftware.com) continues
to sell an Ada-83 DOS compiler, and may
be able to provide an Ada-95 DOS
compiler on request. Their prices are
reasonable: the personal edition of their
Ada-95 Windows compiler is $195.

Or you could look at the MaRTE OS
RTOS (https://marte.unican.es/) which is
written mostly in Ada and supports
GNAT compilers. I don't know how that
would compare in terms of ease of getting
things set up or developing S/W for it.
From: Keith Thompson

<keith.s.thompson+u@gmail.com>
Date: Sat, 27 May 2023 16:31:39 -0700

Joakim Strandberg <joakimds@kth.se>
writes:
> There is a professional version of

ObjectAda from 2002 that can be
downloaded

I wonder if those are authorized copies. I
suspect they aren't.

Aonix no longer exists, but apparently its
assets are now owned by PTC, which still
sells (a much newer version of)
ObjectAda.
https://www.ptc.com/en/products/
developer-tools/objectada

The copy on archive.org is of a CD whose
label says "This edition of ObjectAda is
not licensed for development of
commercial software. This CD may not

106 References to Publ icat ions

Volume 44, Number 2, June 2023 Ada User Journal

be re-sold. It does have an "All rights
reserved" copyright message.

(I worked for Aonix many years ago, but I
have no current connection with them or
their successors.)
From: Drpi <314@drpi.fr>
Date: Sun, 28 May 2023 13:01:17 +0200
> However, the biggest obstacle for using

FreeDOS is hardware support.

Do you really need to use old PC
hardware ?

On a PC (and ARM), you can also run
QNX which is a real-time micro-kernel
OS. It is a commercial product but is free
for education and research.

On PCs it is currently easy to use PCIe
extension boards. Like FPGA boards.

Also, there are very powerful non x86
(mostly ARM) hardware today. Most of
these boards have PCIe ports to easily add
extension boards.
From: Drpi <314@drpi.fr>
Date: Sun, 28 May 2023 19:42:08 +0200

I forgot to say that AdaCore sells a Ada
compiler for some QNX versions (7.x +)
but I don't know if there is a free version
for education/research.

ARM 64-bit Binary Support
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ARM 64-bit binary support
Date: Sat, 24 Jun 2023 13:22:09 +0200
Newsgroups: comp.lang.ada

Recently Linux Fedora and Ubuntu
distributions stopped ARMv7 support
(32-bit).

I added 64-bit architecture to the
repositories of the following libraries for
Debian, Fedora and Ubuntu:
- Ada industrial control widget library
 http://www.dmitry-kazakov.de/

ada/aicwl.htm
- Fuzzy machine learning framework
 http://www.dmitry-kazakov.de/

ada/fuzzy_ml.htm
- Fuzzy sets, logic, numbers
 http://www.dmitry-kazakov.de/

ada/fuzzy.htm
- GtkAda (pre-built)
 http://www.dmitry-kazakov.de/

ada/gtkada.htm
- GtkAda contributions
 http://www.dmitry-kazakov.de/

ada/gtkada_contributions.htm
- MAX! cube GUI for management of

indoor radiator thermostats
 http://www.dmitry-kazakov.de/

ada/max_home_automation.htm
- Interval arithmetic

 http://www.dmitry-kazakov.de/
ada/intervals.htm

- Measurement units
 http://www.dmitry-kazakov.de/

ada/units.htm
- Simple component
 http://www.dmitry-kazakov.de/

ada/components.htm
- String editing, UTF-8 issues
 http://www.dmitry-kazakov.de/

ada/strings_edit.htm
- Table management
 http://www.dmitry-kazakov.de/

ada/tables.htm

ARMv7 builds are continued for the last
official releases of the corresponding
OSes.

References to
Publications
Ada 2022 LRM by Springer
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Subject: Ada 2022 Language Reference

Manual to be Published by Springer
Date: Wed, 14 Jun 2023 06:49:45 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

FOR IMMEDIATE RELEASE

Ada 2022 Language Reference Manual to
be Published by Springer

Lisbon, Portugal, June 14, 2023 - Ada-
Europe today announced, at its 27th
International Conference on Reliable
Software Technologies (AEiC 2023), that
the Ada 2022 Language Reference
Manual (LRM) will be published by
Springer in its LNCS series later this year.

Ada 2022 is the latest edition of the Ada
programming language standard,
technically denominated ISO/IEC
8652:2023, which was formally approved
and officially published by ISO, the
Geneva-based International Organization
for Standardization, on May 2, 2023.

The Ada 2022 LRM is available online:

www.ada-auth.org/standards/ada22.html.
An overview of Ada 2022 is at:

www.ada-auth.org/standards/
overview22.html.

To mark this official milestone, and in
continuation of its established practice,
Ada-Europe undertook to support the
production of the new LRM as a
dedicated issue of the Springer-published
LNCS series.

About Ada-Europe

Ada-Europe is the international non-profit
organization that promotes the knowledge
and use of the Ada programming
language in academia, research and
industry. Its flagship event is the annual
International Conference on Reliable
Software Technologies, a high-quality
technical and scientific event that has
been successfully running in the current
format for the last 27 years. Ada-Europe
has member organizations in Belgium,
Denmark, France, Germany, Spain, and
Switzerland, as well as individual
members in many other countries. For
information about Ada-Europe, its
charter, activities and sponsors, please
visit: www.ada-europe.org. Ada-Europe is
headquartered in Brussels, Belgium.

A PDF version of this press release is
available at www.ada-europe.org.

Organization Contacts

Ada-Europe

Tullio Vardanega, Ada-Europe President
president@ada-europe.org

Press Contacts

Ada-Europe
Dirk Craeynest, Ada-Europe Vice-
president

c/o KU Leuven, Department of Computer
Science

dirk.craeynest@cs.kuleuven.be

(VAda2022.1)
From: Adamagica <christ-usch.grein@t-

online.de>
Date: Wed, 14 Jun 2023 01:20:19 -0700
> The Ada 2022 LRM is available online:
> www.ada-

auth.org/standards/ada22.html.

This is still Draft 35. The final version is
not yet available. See also
https://groups.google.com/g/comp.lang.ad
a/c/P26SS3L7kA0 - Ada 23 at Last!
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Date: Wed, 14 Jun 2023 14:13:33 -0000

AdaMagica <christ-usch.grein@t-
online.de> wrote:
>This ist still Draft 35. The final version

is not yet available.

Note that the page at the above URL
mentions:

 "This is draft 35. This draft contains all
ARG-approved AI12s. This is the draft
that has been submitted to complete the
standardization process."

So draft 35 *is* what was submitted to
ISO.

Ada and Other Languages 107

Ada User Journal Volume 44, Number 2, June 2023

Randy, the RM editor, is aware that this
and a few other web pages still have to be
updated now ISO published the new RM,
and he assured me after the WG9 meeting
yesterday that this is on his "to do list".
>See also

https://groups.google.com/g/comp.lang.
ada/c/P26SS3L7kA0 - Ada 23 at Last!

That message claimed about the ISO
document: "The ToC is very different
from Draft 35."

While draft 35 is what was submitted to
ISO, the documents indeed are not
identical. Though I would not say the
ToC's are "very different".

Yes, the introductory chapters in the ISO
document are slightly different from those
in the RM on ada-auth.org, and there's no
Annex on "Obsolescent Features" nor a
"Glossary" (that was removed in draft 35
anyway). All this is due to specific
requirements that ISO has for its
standards. There are more differences,
such as the ISO document not having any
paragraph numbers as those are not
allowed in ISO standards.

But the bulk of the ToC is identical, apart
from those differences required by ISO.
Most importantly: the described language
in both documents is identical.
From: Egil H H <ehh.public@gmail.com>
Date: Wed, 14 Jun 2023 09:11:05 -0700

On Wednesday, June 14, 2023 at
3:13:36 PM UTC+1, Dirk Craeynest
wrote:
> But the bulk of the ToC is identical,

apart from those differences required
by ISO. Most importantly: the
described language in both documents
is identical.

The clause numbering is not the same, as
clause 1 has been split into 4 clauses in
the ISO version, so clause `2 Lexical
Elements` in the Draft corresponds to `5
Lexical Elements` in the ISO version.

And (at least) one bug in the ISO ToC,
`7.3.4 Delta Aggregates` and `7.3.5
Container Aggregates` are collapsed
beneath `7.3.3. Array Aggregates`, even
though the subclause level is the same.
From: Adamagica <christ-usch.grein@t-

online.de>
Date: Wed, 14 Jun 2023 09:15:37 -0700

Dirk Craeynest schrieb am Mittwoch, 14.
Juni 2023 um 16:13:36 UTC+2:
> So draft 35 *is* what was submitted to

ISO.

Yes; I know...
> That message claimed about the ISO

document: "The ToC is very different
from Draft 35."

Funny, when I first opened the preview,
the complete table of contents with page

numbers could be read. The ISO
document had far fewer pages than Draft
35 (951 pages). I wondered how this
could be...

Now the ToC is without page numbers, so
I cannot compare.

If you compare the ISO ToC and the Draft
35 one, you'll see that clause and
subclause numbers differ. So old
references like RM 3.5 will lead astray.

--- ISO locuta, causa finita. ---
From: Adamagica <christ-usch.grein@t-

online.de>
Date: Wed, 14 Jun 2023 10:03:26 -0700

Egil H H schrieb am Mittwoch, 14. Juni
2023 um 18:11:07 UTC+2:

> And (at least) one bug in the ISO ToC,
Not only this. The whole of 7.4 to 7.10 is
collapsed under 7.3.3.
From: Keith Thompson

<keith.s.thompson+u@gmail.com>
Date: Wed, 14 Jun 2023 12:47:29 -0700

dirk@orka.cs.kuleuven.be. (Dirk
Craeynest) writes:
> the ISO document not having any

paragraph numbers as those are not
allowed in ISO standards.

Is disallowing paragraph numbers a recent
change I have a copy of the 2011 ISO C
standard, ISO/IEC 9899:2011 (E), and it
definitely has paragraph numbers.
(Which are extremely useful, BTW; it
seems silly for ISO to disallow them.)
From: Simon Wright

<simon@pushface.org>
Date: Thu, 15 Jun 2023 20:36:35 +0100

Egil H H <ehh.public@gmail.com>
writes:

> And (at least) one bug in the ISO ToC,

From my point of view, never mind the
bug, this makes the ISO document a white
elephant.

The stability of the clause numbering, and
the hyperlinking, make the RM the
valuable document that it is.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Sat, 17 Jun 2023 02:49:12 -0500

Actually, paragraph numbers weren't
allowed back in the Ada 83/Ada 95 days.
So the original ISO versions didn't have
them. You can use them in ISO
documents now (I don't know when this
changed), but you have to get a special
waiver to do so - for *every* individual
standard that you want to have them
(that's a recent change, for the worse).
And if we added them to the ISO version
(after getting the appropriate waiver --
which I didn't know about for this last
round of standardization), they'd be
different than the ones in the RM

(because they wouldn't allow versioning
or inserted numbers). That doesn't seem
helpful to me, YMMV.

ISO no longer lets us be compatible with
the clause numbering of previous versions
-- ALL standards have to follow their
numbering for initial stuff. They've also
changed from requiring not using
Annexes I and O (since they're easily
confused with chapters (nope, now
sections (nope, now clauses)) -- to
requiring having Annexes I and O.

Bob Duff explained it best: The people
maintaining the "standards for standards''
have made no attempt to keep upward
compatibility in their work (unlike us Ada
people). Every standard in existence has
to be changed substantially with each new
edition in order to meet the ever-changing
requirements. It's hard to believe that
these people don't understand (or don't
care) that these standards are used for a
very long time.

Randy Brukardt, Project Editor, ISO/IEC
8652

Ada and Other
Languages
Java and Python get
"record" Type after 40
Years.
From: Nasser M. Abbasi

<nma@12000.org>
Subject: Java and Python have just

discovered "record" type finally after 40
years.

Date: Fri, 12 May 2023 12:50:14 -0500
Newsgroups: comp.lang.ada

Java 14 now has "Record" !
"records are meant to be data carriers"

https://www.digitalocean.com/community
/tutorials/java-records-class

And Python 3.7 now has records, they call
it "data class"

https://realpython.com/python-data-
classes/

"One new and exciting feature coming in
Python 3.7 is the data class. A data class
is a class typically containing mainly
data"

What took them so long? Pascal and Ada
had records from day one, only 40 years
ago or so.
From: Richardthiebaud

<thiebauddick2@aol.com>
Date: Fri, 12 May 2023 14:58:52 -0400

And Cobol had them 63 years ago.
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Fri, 12 May 2023 23:33:54 +0200

108 Ada Pract ice

Volume 44, Number 2, June 2023 Ada User Journal

Pascal had them in 1970. Algol, I think,
had them in 1960.
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Sat, 13 May 2023 10:13:22 +0300

On 2023-05-12 19:50, Nasser M. Abbasi
wrote:

> What took them so long?
Java and Python have classes, which have
records as a special case, if the term
"record" is understood as in most other
languages, including Ada.

But it seems that the Java 14 "record" is
not quite the same as an Ada record,
because Java 14 records are meant to be
immutable data carriers, not mutable data
structures. Still, Java 14 records are
described as a (very) special case of
classes.
> Pascal had them in 1970. Algol, I think,

had them in 1960.

Algol 60 did not have records, only
arrays.

Algol W, a precursor to Pascal, had them
in 1966.

Simula had them in 1967. (Wikipedia
says "In 1966 C. A. R. Hoare introduced
the concept of record class construct".)

Algol 68 had them in 1968.

Pascal had them in 1970, as you say.
From: Luke A. Guest

<laguest@archeia.com>
Date: Sat, 13 May 2023 12:18:04 +0100

What about COBOL and LISP?
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Sat, 13 May 2023 19:53:45 +0300

On 2023-05-13 14:18, Luke A. Guest
wrote:

> What about COBOL and LISP?

As I understand it (but I don't claim to be
expert), the early COBOL languages
could describe the structure of file
records, and of working-storage objects,
as nested sequences of components and
sub-records, but each such description
defined a _single_ "record" object, not a
"record" data-type that could have many
instances. So if you wanted to have two
record objects with the same structure,
you had to duplicate the whole record
description.

However, Wikipedia says that the
COBOL record structure inspired records
for Pascal.

Early LISP languages did not have record
types, AFAIK. But you could of course
use lists to program record-like data
structures.
From: J-P. Rosen <rosen@adalog.fr>

Date: Sun, 14 May 2023 08:46:15 +0200

Le 13/05/2023 à 18:53, Niklas Holsti a
écrit :
> So if you wanted to have two record

objects with the same structure, you
had to duplicate the whole record
description.

AFAIR, COBOL didn't have types, but
you could define a variable LIKE another
one.
> Early LISP languages did not have

record types, AFAIK. But you could of
course use lists to program record-like
data structures.

Of course, in LISP there is only one
structure, for data and programs alike: the
list!
From: Nasser M. Abbasi

<nma@12000.org>
Date: Sun, 14 May 2023 02:20:42 -0500

On 5/14/2023 1:46 AM, J-P. Rosen wrote:
> Of course, in LISP there is only one

structure, for data and programs alike:
the list!

This is similar to Mathematica. I
programmed a little in Lisp, and it was
kinda fun.

In Mathematica, its main data struct is
also the list and list of lists and list of list
of lists and so on.

a={1,2,3};

a={{1,2,3},{4,5,6}};
Everything in Mathematica is pretty much
build using lists.

Few years ago, Wolfram introduced
Association, which acts like a RECORD.
It is really like a dictionary. It has
key->value pairs so one can do:

 myData = <| "name"->"me","age"->99 |>

To read the value of a field one uses
myData["name"] or myData["age"].

It is amazing how people can program so
much code using only just a list as the
main basic data structure and be able to
get away with it :)

I think RECORD is the most important
data structure myself.

Without a RECORD (called struct in C),
programming is much harder. This is
what Java and Python have discovered
just now. I guess the language designers
of these languages never bothered to look
at Pascal or Ada before.

But better late than never I guess.
From: Luke A. Guest

<laguest@archeia.com>
Date: Sun, 14 May 2023 10:45:36 +0100

On 14/05/2023 07:46, J-P. Rosen wrote:

> Of course, in LISP there is only one
structure, for data and programs alike:
the list!

Well, that's not true anymore, especially
not in common lisp which has a variety of
data structures including records, I was
quite surprised to see that when I was
looking at it last year.
From: Luke A. Guest

<laguest@archeia.com>
Date: Sun, 14 May 2023 10:49:17 +0100

On 14/05/2023 08:20, Nasser M. Abbasi
wrote:
> This is what Java and Python have

discovered just now.

I think people might finally be realising
that you can't do everything with only one
programming paradigm.
From: Ben Bacarisse

<ben.usenet@bsb.me.uk>
Date: Sun, 14 May 2023 11:37:21 +0100

"J-P. Rosen" <rosen@adalog.fr> writes:
> Of course, in LISP there is only one

structure, for data and programs alike:
the list!

LISP had S-expressions -- pairs of atoms
or other S-expressions. A list was just a
special case. Many other structures could
be built using S-expressions. An
important one was that association list -- a
list of (key . value) pairs that was often
used very much like a record type (though
it's quite a different beast).
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Sun, 14 May 2023 12:39:02 +0200

On 2023-05-14 08:46, J-P. Rosen wrote:
> Of course, in LISP there is only one

structure, for data and programs alike:
the list!

In the LISP I learned, there were only S-
expressions (SEXes). A SEX is either an
atom or a list of SEXes. Another way of
putting it was there were atoms and lists
of atoms or lists. Either way, there were
also atoms.
From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 14 May 2023 17:10:23 +0200

Le 14/05/2023 à 12:39, Jeffrey R.Carter a
écrit :
> A SEX is either an atom or a list of

SEXes.

Right, but I would define atoms as the
basic data, not a data /structure/. Oh well,
just a matter of definition...
From: Ben Bacarisse

<ben.usenet@bsb.me.uk>
Date: Sun, 14 May 2023 16:14:33 +0100

"Jeffrey R.Carter"
<spam.jrcarter.not@spam.acm.org.not>
writes:

Ada and Other Languages 109

Ada User Journal Volume 44, Number 2, June 2023

> A SEX is either an atom or a list of
SEXes.

I never saw a LISP S-expressions defined
that way. Did this list really not have a
"dotted pair" as the basic structure with
lists being simply a special case?
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Sun, 14 May 2023 18:56:27 +0200

On 2023-05-14 17:14, Ben Bacarisse
wrote:
> Did this list really not have a "dotted

pair" as the basic structure with lists
being simply a special case?

The book I learned from (/Let's Talk
LISP/ by Laurent Siklóssy, 1976)
introduces dotted pairs in chapter 10.7.1
(out of 12 chapters) on page 145 (out of
213, excluding appendices and index).
Chapter 10 deals with the internal
representation of data in LISP. The
implication is that they were not
considered part of the normal use of the
language.

S-expressions, on the other hand, are
introduced in chapter 1.1 on page 2. The
book also presents the grammar

S-expression ::= atom | list
list ::= '(' inside ')'

inside ::= empty | S-expression | S-
expression inside

empty ::=
From: Ben Bacarisse

<ben.usenet@bsb.me.uk>
Date: Mon, 15 May 2023 02:11:55 +0100

"Jeffrey R.Carter"
<spam.jrcarter.not@spam.acm.org.not>
writes:
> The book I learned from (/Let's Talk

LISP/ by Laurent Siklóssy, 1976)

Do you still have it? Does it discuss
association lists? I'd call them a normal
part of LISP and it would be odd to force
the associations to be lists rather than
pairs. Does Siklóssy imply that an
ASSOC list is a list of lists of length 2, or
does he not discuss them until the very
end?
> The book also presents the grammar

That's an interesting way to simplify
things for the leaner though I would not
have chosen to use a term that already had
another meaning by 1976. The author
could have used something like L-
expression and avoided any future
confusion.
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Mon, 15 May 2023 12:44:13 +0200

On 2023-05-15 03:11, Ben Bacarisse
wrote:

> Do you still have it? Does it discuss
association lists?

The Function ASSOC is discussed in
Chapter 9 as an auxiliary function used by
EVAL (Chapter 9 discusses the working
of EVAL). It says

 “ASSOC finds the value of a variable in
the ALIST. The ALIST is a list of sublists
of two SEXes each of the form (variable
value-of-the-variable).”

In a footnote he notes that the ALIST
could be a list of dotted pairs, which are
defined in the next chapter.

I never did much with LISP after learning
it, and never looked at any other
textbooks, so he might have an
idiosyncratic approach. Seems rather OT
for c.l.a.
From: Ben Bacarisse

<ben.usenet@bsb.me.uk>
Date: Wed, 17 May 2023 01:24:32 +0100

"Jeffrey R.Carter"
<spam.jrcarter.not@spam.acm.org.not>
writes:
> ASSOC finds the value of a variable in

the ALIST. The ALIST is a list of
sublists of two SEXes each of the form
(variable value-of-the-variable).

Thanks. Is this a dialect made up for
pedagogic purposes? I don't know of any
practical LISP that went down this route.
> Seems rather OT for c.l.a.

Yes, it is. Happy to stop. I was just
curious about where your use of terms
originated and that now explained.

Ada Scales Down!
From: Hou Van Boere

<houvanboere@gmail.com>
Subject: Ada Scales Down!
Date: Sat, 13 May 2023 17:17:50 -0700
Newsgroups: comp.lang.ada

Hi Everyone

Just a little cross post:

https://sourceforge.net/p/gnucobol/
discussion/cobol/thread/5f771109ad/

I am having so much fun with Ada again.
I think the foreign binding examples on
the net are horrible. With little wimpy
inline packages, you can bring foreign
code in easily.

Everyone complains about C but a
teenager can fool around with it on a
weekend and end up a C programmer a
few years later. Ada does not present this
way but in fact it is easy to write little
wimpy programs in it just for fun and
even wimpy programs will often need
non-Ada libraries.
From: Luke A. Guest

<laguest@archeia.com>
Date: Sun, 14 May 2023 10:53:29 +0100

On 14/05/2023 01:17, Hou Van Boere
wrote:
> Hi Everyone
>
> Just a little cross post:
> https://sourceforge.net/p/

gnucobol/discussion/cobol/thread/5f771
109ad/

It's not 1979 anymore, you can use
unicode in Ada and even lowercase
letters. This is not Oberon where the
language is stuck in the 70's where there
was a limited character set available on
keyboards. I think even COBOL can now
accept lowercase keywords now, but I'm
not sure about this.
From: Hou Van Boere

<houvanboere@gmail.com>
Date: Sun, 14 May 2023 06:59:25 -0700

Hi Luke

I knew someone would mention this :)
Most people program in lowercase with
COBOL now. It is a personal preference.
I use a smaller font and have more code
on the screen with uppercase and I am just
kinda retro about a lot of things. Think
Amish using a computer :)

Does Safer Mean Slower?
From: Nasser M. Abbasi

<nma@12000.org>
Subject: does a safer language mean it is

slower to run?
Date: Wed, 7 Jun 2023 22:55:51 -0500
Newsgroups: comp.lang.ada

Some folks in this thread

https://discourse.julialang.org/t/compariso
n-of-rust-to-julia-for-scientific-
computing/78508

"I’m not an expert, but my feeling is that
Rust is a “safer” language, which to me
means it must be slower."

etc..
Some in that thread seem to argue that a
safer language will/could be slower than
otherwise.

Since Ada is known to be one of the
safest languages, do others here feel there
is any truth to this?

I thought that by having more type
information in the language, the compiler
will be able to make more optimizations
(because it knows more), and hence the
generated code should actually be faster,
not slower with a language that is less
safe?

I am not a compiler expert but what do
others here think?
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Thu, 8 Jun 2023 09:57:14 +0300

110 Ada in Jest

Volume 44, Number 2, June 2023 Ada User Journal

If a language needs run-time checks to
ensure safety, those checks usually take
some time, making for slower execution.

If a language has a type system and
compilation-time (legality) rules such that
the compiler can prove that some run-time
checks are not needed, that reduces or
eliminates the slow-down. This is the case
for Ada.

The effect of type information on
optimization is harder (at least for me) to
understand. If the type information lets
the compiler assume that some objects are
not aliased, that can help optimization
because more computation can be done in
registers alone, without using main
memory. This applies to Ada, but also
applies to standard C, for example,
although some people use non-standard C
features (compiler options) to negate this.

However, when comparing the "speed" of
two languages and their two
implementations I think that the
implementations usually matter more than
the languages.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 8 Jun 2023 10:00:52 +0200

On 2023-06-08 05:55, Nasser M. Abbasi
wrote:
> "I’m not an expert, but my feeling is

that Rust is a “safer” language, which
to me means it must be slower."

I think the comparison is misplaced. Julia
is an interpreted language, very slow, on
par with Python. It has memory mapped
arrays like Ada does, but lacks Python's
precompiled modules. The syntax is
wonderfully arbitrary and unpredictable...

If safety is prevention of logical errors
(bugs) you and your team and people
deploying the software could make, then
techniques and processes determine the
outcome. The language can only support
certain techniques. Of these techniques
and processes some may require run-time
overhead. When people compare
languages, they frequently do
programming techniques instead. As it
was observed many decades ago:

"Besides, the determined Real
Programmer can write Fortran programs
in any language."

And finally, if you are determined to use
some technique, then lack of language
support makes the language less safe. E.g.
if you are in some agile programming
league then semantic constraints imposed
by Ada would make things only worse.

Even Brainf*ck might be the safest
language under circumstances... (:-))
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Thu, 8 Jun 2023 10:50:44 +0200

On 2023-06-08 05:55, Nasser M. Abbasi
wrote:
> Since Ada is known to be one of the

safest languages, do others here feel
there is any truth to this?

Equivalent programs in compiled, non-
GC languages have equivalent execution
times. Robert Dewar famously had a set
of equivalent Ada and C programs that
produced identical machine code when
compiled with gcc. So this is false.

The problem is getting equivalent
programs. If the safe language includes
run-time checks, then equivalent checks
must be manually added to the unsafe
language. Ada.Text_IO is not equivalent
to C's I/O facilities. And so on.

One consequence of this is that both
programs will be equally correct. What is
usually compared is a correct (run-time
checks) program in the safe language to
an incorrect (no run-time checks) program
in the unsafe language.

About optimization, Tartan made its
living selling highly optimizing C
compilers for TI chips, which came with a
free C compiler. They also made highly
optimizing Ada compilers, which did a
better job of optimization than their C
compilers. This was documented in

C vs Ada: arguing performance religion

(https://dl.acm.org/doi/10.1145/
216578.216583)

which discusses four advantages Ada (83)
has over C for optimization.

See also

Ada Outperforms Assembly: A Case
Study

(https://www2.seas.gwu.edu/~adagroup/
sigada-website/lawlis.html)

TI bought Tartan and sold its Ada
compilers to DDC-I.

Ada Practice
Working around
-ffreestanding Limitations
From: Hou Van Boere

<houvanboere@gmail.com>
Subject: Working around -freestanding

limitations?
Date: Sat, 1 Apr 2023 05:26:37 -0700
Newsgroups: comp.lang.ada

Hi Everyone.

I know there are several floss RTOS
options for us but I don't really need all of
the support they offer and they just make
things more complex.

Here are my goals:

1)I want to build my own circuit board
with a microprocessor not
microcontroller.

2)I want to run with gcc/gnatmake ...
-freestanding

3)I only need the Ada 83 subset, which I
guess is pretty close to Ravenscar

What options do I have? I like to keep
things small and simple when possible.

Thanks for reading
From: Simon Wright

<simon@pushface.org>
Date: Sat, 01 Apr 2023 14:35:23 +0100

Hou Van Boere
<houvanboere@gmail.com> writes:
> 2)I want to run with gcc/gnatmake ... -

freestanding

-freestanding isn't an option for gnatmake;
where does it come from?
> 3)I only need the Ada 83 subset, which

I guess is pretty close to Ravenscaler

The Ada 83 subset is going to be larger
than Ravenscar.

If you don't want an RTOS you could use
one of the light runtimes, e.g. light-
cortex-m0.
From: Hou Van Boere

<houvanboere@gmail.com>
Date: Sat, 1 Apr 2023 09:12:54 -0700

Could you tell me where to find the light
runtimes? I have only worked with Ada
on full desktops. Does the FSF version
ship with light runtimes?
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Sat, 1 Apr 2023 19:14:28 +0300

Certainly using most RTOS from Ada is
more complex than using an Ada RTS
from Ada.

Do you want to use tasking at all? Or just
a single thread?
> 1)I want to build my own circuit board

with a microprocessor not
microcontroller.

Can you explain why? Input/output is
often more complex with a
microprocessor (I assume you mean
something that could run a PC or a tablet)
than with a microcontroller. A
microprocessor may need a lot of
complex initialization and driver SW
which you can get in some RTOS but not
in an Ada RTS. And I believe that circuit-
board design is more complex for
microprocessors than for
microcontrollers, however I have no
experience with either case.
> 3)I only need the Ada 83 subset, which

I guess is pretty close to Ravenscaler

I see the Ada 83 tasking features as
almost orthogonal to Ravenscar. Ada 83
has no protected objects, and all inter-task

Ada and Other Languages 111

Ada User Journal Volume 44, Number 2, June 2023

communication must be done with
rendez-vous using task entries. Ravenscar
forbids task entries and rendez-vous and
substitutes protected objects. Both work,
but Ravenscar is perhaps more resistant to
deadlock errors.
From: Drpi <314@drpi.fr>
Date: Sat, 1 Apr 2023 18:29:45 +0200

Le 01/04/2023 à 18:12, Hou Van Boere a
écrit :
> " -freestanding isn't an option for

gnatmake; where does it come from?"

I guess it is -ffreestanding :
https://stackoverflow.com/questions/1769
2428/what-is-ffreestanding-option-in-gcc
From: Hou Van Boere

<houvanboere@gmail.com>
Date: Sat, 1 Apr 2023 09:42:26 -0700

Thanks for your feedback Niklas. I am
new to Ravenscar (just spelled it wrong
today), this is very helpful.

It would be nice to have threads but I am
not sure I actually need them.

I have serviced scientific instruments for
24 years now. I want to start fabricating
them. I will have some bumps along the
way with PCB design but I am confident
that it will work out.

I have been playing around with Ada
since 2012 but I still have lots to learn and
I don't program in the day so it is not my
strong suit. The hardware side should
work out but I am worried about the
software end of things. Ada is lovely but
massive. There are so many features, so
many libraries(some of which are
abandoned). There are only so many
hours in a day.

I have a subset of the language I like and
if I can just control CPU address and data
lines, I shouldn't need a RTOS. Trying
several of them out could take a great deal
of time.

I don't seem to have any extra runtimes
with my install:

gnatls -v

GNATLS 11.2.0

Copyright (C) 1997-2021, Free Software
Foundation, Inc.

Source Search Path:

<Current_Directory>
/usr/lib64/gcc/x86_64-slackware-
linux/11.2.0/adainclude

Object Search Path:
<Current_Directory>

/usr/lib64/gcc/x86_64-slackware-
linux/11.2.0/adalib

Project Search Path:

<Current_Directory>

/usr/x86_64-slackware-linux/lib/gnat

/usr/x86_64-slackware-linux/share/gpr

/usr/share/gpr
/usr/lib/gnat
From: Hou Van Boere

<houvanboere@gmail.com>
Date: Sat, 1 Apr 2023 09:50:28 -0700

"Could you tell me where to find the light
runtimes?”

I am just answering my own question to
avoid wasting people's time. I found this:

https://github.com/AdaCore/bb-runtimes
From: Drpi <314@drpi.fr>
Date: Sat, 1 Apr 2023 18:54:20 +0200
> 1) I want to build my own circuit board

with a microprocessor not
microcontroller.

Nowadays, microprocessors are rare.
Even x86 microprocessors could be
named microcontrollers since they
integrate many (not all) peripherals.

High end microcontrollers are very
complex to initialize. Especially since
they integrate security functionalities (like
secure boot), SDRAM controllers, PCIe
controllers, Gigabit Ethernet controllers,
3D GPUs, video encoders/decoders,
camera interface, LCD interface, HDMI
interface...

Even middle range microcontrollers are
(very) complex.

Manufacturers provide drivers source
code (in C) for all peripherals. They also
provide tools to graphically set chip
configuration and output C code to help
the programmer.

Complexity depends on the chip you
choose.
From: Drpi <314@drpi.fr>
Date: Sat, 1 Apr 2023 18:55:36 +0200

Le 01/04/2023 à 18:50, Hou Van Boere a
écrit :
> I am just answering my own question to

avoid wasting people's time. I found
this:

> https://github.com/AdaCore/bb-
runtimes

The best way is to use Alire
https://alire.ada.dev/
From: Hou Van Boere

<houvanboere@gmail.com>
Date: Sat, 1 Apr 2023 09:58:49 -0700

Thanks DrPi

I will probably stick with what I know.
Most of the instruments I work on have
Motorola chips and parallel buses. I don't
think I will use SPi, IC2 or dozens of
other protocols/features found in most
modern circuit boards.
From: Drpi <314@drpi.fr>

Date: Sat, 1 Apr 2023 18:59:42 +0200

Le 01/04/2023 à 18:42, Hou Van Boere a
écrit :
> I don't seem to have any extra runtimes

with my install:

Today, the easiest route is to use ARM
based chips as there are maintained
runtimes for them (through Alire and
bbruntimes).
From: Drpi <314@drpi.fr>
Date: Sat, 1 Apr 2023 19:02:15 +0200

Le 01/04/2023 à 18:58, Hou Van Boere a
écrit :
> I will probably stick with what I know.

Most of the instruments I work on have
Motorola chips

Great chips at their time but I'm afraid
you'll have hard time compiling a
dedicated GNAT compiler.
From: Hou Van Boere

<houvanboere@gmail.com>
Date: Sat, 1 Apr 2023 10:24:28 -0700

I am sure you are right but still, you get
the general idea.

Thermo Electron has pretty much bought
most of the industry out. I will copy and
paste, mix and match old stuff to re-
implement instruments they don't care
about anymore. I don't need to make
anything cutting edge. The old stuff was
more than good enough
From: Drpi <314@drpi.fr>
Date: Sat, 1 Apr 2023 20:33:36 +0200

Le 01/04/2023 à 19:24, Hou Van Boere a
écrit :
> The old stuff was more than good

enough

Indeed, an interesting project.

You first need an Ada cross-compiler.
Here is a link about this :
https://wiki.osdev.org/GNAT_Cross-
Compiler

You also need a runtime. This is up to you
to code it. You can use bbruntimes as a
template. This can request modifications
on your hardware. For example, the
runtime needs a timer to track time. If
your microprocessor does not have an
embedded timer, you'll have to add one on
your board.

Other links of interest :
https://forum.ada-lang.io/

https://github.com/ohenley/awesome-ada

Matrix rooms (https://matrix.org/clients) :
Ada news : https://matrix.to/#/#ada-
lang:matrix.org

Ada language : https://matrix.to/#/#ada-
lang:matrix.org

112 Ada in Jest

Volume 44, Number 2, June 2023 Ada User Journal

Alire : https://matrix.to/#/#ada-
lang_Alire:gitter.im

Many other resources exist.
From: philip...@gmail.com

<philip.munts@gmail.com>
Date: Wed, 5 Apr 2023 09:21:44 -0700

I would suggest you look at my Linux
Simple I/O Library:
https://github.com/pmunts/libsimpleio

The Ada binding makes it pretty easy to
build test fixtures, control devices, etc. I
even used an Ada program to replace a
multizone sprinkler controller.

Next, take a look at MuntsOS Embedded
Linux:
https://github.com/pmunts/muntsos

Together, they make it possible to replace
many microcontroller applications with a
Raspberry Pi or a BeagleBone or a
PocketBeagle. With the Raspberry Pi
family, it is very easy to fabricate custom
boards using a Raspberry Pi Zero, CM3,
or CM4 (least to most complex) as a CPU
module. If you run Raspberry Pi OS
instead of MuntsOS, it is even self
hosting.

Currently I don't have any support for
IEEE-488, though I have a USB interface
and an old CalComp plotter on the shelf
I've been meaning to play around with.

I'll be teaching a workshop at AdaEurope
2023 in Lisbon in June showing how all
this works.

Constancy of X'Address
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Subject: Constancy of X'Address?
Date: Wed, 5 Apr 2023 12:24:39 +0300
Newsgroups: comp.lang.ada

A discussion in comp.arch (on the new
C23 standard for C) brought up these
questions, which I could not answer with
confidence:
- Is the address of an object constant in

Ada? That is, if I have some object X in
an Ada program, do repeated
applications of X'Address always return
the same value?

- Does the answer depend on how X is
allocated (created): on the library level,
on the stack, or in a pool ("new")?

The issue behind this question is whether
an Ada program could use garbage
collection that moves objects around, for
example a compacting collector.
From: Maxim Reznik

<reznikmm@gmail.com>
Date: Fri, 7 Apr 2023 10:04:24 -0700

If the type of the object is limited, then
the object address is a constant. For other
objects there is no such guarantee I guess.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 7 Apr 2023 19:19:14 +0200

'Address is discussed in ARM 13.3
(http://www.ada-
auth.org/standards/aarm12_w_tc1/html/A
A-13-3.html). (12.c) says "The validity of
a given address depends on the run-time
model; thus, in order to use Address
clauses correctly, one needs intimate
knowledge of the run-time model."

Under Implementation Advice, (15-16)
say "The recommended level of support
for the Address attribute is:

"X'Address should produce a useful result
if X is an object that is aliased or of a by-
reference type, or is an entity whose
Address has been specified."

There is nothing specific about whether
the value can change.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Sat, 8 Apr 2023 04:03:02 -0500

I agree with the other answers (for the
most part). Not much is guaranteed about
'Address. But by-reference and aliased
objects have to *work* like they are not
moved. If the runtime can deal with
moving such things, Ada doesn't care.

As a practical matter, most Ada
implementations assume objects don't
move. Janus/Ada assigns everything at
compile-time, so the only time anything
moves is when it is created or destroyed.

The big problem with garbage collection
in Ada is that early finalization is not
allowed (other than a few tiny exceptions
in failure cases and [in post-Ada 22]
certain function results.) So any object
that might have a controlled part can
never be garbage collected, even if there
is no other use or access to it.

Changing that is a very hard problem, as
you cannot allow finalization to happen at
any instant or by any arbitrary task (if you
did, every finalization would be a race
scenario, and every Finalize routine
would need dedicated locking). I've
suggested allowing it for "unreachable
objects" (not a useful definition by itself,
it would need to be defined) at places
where masters are being exited anyway
(so finalization should be expected at
those locations). But it's unclear if you
can build a useful garbage collector that
way (and what the overhead would be).

Contracts in Generic Formal
Subprogram
From: Mockturtle

<framefritti@gmail.com>
Subject: Contracts in generic formal

subprogram
Date: Sat, 8 Apr 2023 00:00:38 -0700
Newsgroups: comp.lang.ada

Dear.all,

this is something that looked like a natural
and nice idea to me, but the compiler
disagreed :-): specifying contracts in
formal subprograms in generic
declarations. Actually, RM 12.6 does not
prohibit this on a syntactic level (an
aspect_specification part is included), but
the compiler complains.

To understand what I mean, please check
the following real code toy-zed (can you
hear the grammar screaming?)

generic
 type Ring is private;
 with function Divides (Num, Den : Ring)
 return Boolean;
 with function Is_Invertible (X : Ring)
 return Boolean;
 with function Inv (X : Ring) return Ring
 with Pre => Is_Invertible (X);

 with function Gcd (X, Y : Ring)
 return Ring
 with Post => Divides (X, Gcd'Result)
 and Divides (Y, Gcd'Result);
package Pippo is
 -- stuff
end Pippo;

The meaning I have in mind is something
like

* For "Pre" aspect: whoever writes the
function Inv can assume that X is
invertible since Inv will never be called
(by the package code, at least) with X not
invertible. Also Inv cannot have a stricter
pre-condition. In a sense, the package
expects Inv to work correctly if and only
if the pre-condition is true.

* For "Post" aspect: I expect that the
result of GCD satisfies the post condition.
Post conditions for the actual subprogram
can be stricter, as long as the post
condition of the formal parameter is
satisfied. For example, if Ring is Integer,
GCD could always return a positive value
that divides both X and Y. The fact that
the result is positive does not hurt.

Should the actual subprogram specify the
same contract? I am not sure (and I guess
this could be a stumbling block for the
adoption of this idea). One could say that
the actual subprogram gets a contract that
is the AND of the actual subprogram and
the contract specified in the generic
declaration, it is up to the programmer to
check that they are compatible. I guess
the compatibility could be verified by the
compiler itself in simple cases, but I
expect that this could not be feasible in
some cases (maybe of academic
interest?).
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 8 Apr 2023 10:02:31 +0200

Ada and Other Languages 113

Ada User Journal Volume 44, Number 2, June 2023

On 2023-04-08 09:00, mockturtle wrote:
> Should the actual subprogram specify

the same contract? I am not sure (and I
guess this could be a stumbling block
for the adoption of this idea).

The general principle of substitutability is
that the preconditions can be weakened,
the postoconditions can be strengthened.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Sat, 8 Apr 2023 04:09:38 -0500

Ada 2022 allows such contracts; Ada
2012 did not. (See 6.1.1, and specifically
6.1.1(1/5)). Whether your compiler has
caught up, who knows.

Logically the contracts should "match"
(with the weakening/strengthing that
Dmitry mentioned), but that was too hard
for Ada, so they're just additive. (A proper
matching mechanism is more the sort of
thing that SPARK does, Ada only
enforces these contracts at runtime) That
is, when you call through a generic formal
subprogram, you enforce the
preconditions of both the formal and the
actual subprogram, and similarly for the
postconditions. If they mismatch, you
might not be able to make a successful
call. If it hurts, don't do that. ;-)
From: Simon Wright

<simon@pushface.org>
Date: Sat, 08 Apr 2023 17:48:11 +0100

GCC 12.2.0 accepts this code with
-gnat2022.
From: Mockturtle

<framefritti@gmail.com>
Date: Sat, 8 Apr 2023 10:27:16 -0700

On Saturday, April 8, 2023 at 6:48:14 PM
UTC+2, Simon Wright wrote:
> GCC 12.2.0 accepts this code with -

gnat2022.

True! Cool... In my opinion, contracts
are among the coolest (and maybe more
exclusive) features of Ada
From: G.B.

<bauhaus@notmyhomepage.invalid>
Date: Tue, 11 Apr 2023 07:56:45 +0200

On 08.04.23 10:02, Dmitry A. Kazakov
wrote:
> The general principle of substitutability

is that the preconditions can be
weakened, the postconditions can be
strengthened.

Side track: "weak" and "strong" alone
sounding like a valuation to the
uninitiated, but neither technical nor
precise; and the "objects" of comparison
of sets of conditions being implicit; and
the ARM not defining a technical term for
these adjectives unless weak ordering
helps.

If these adjectives induce confusion, can
they be avoided? E.g., by instead
mentioning the sets of Pre- and Post-

conditions of those
actual/formal/overriding subprograms. I
guess that super- and subset relations will
permit helpfully defining an ordering to
be understood (in general, if not in the
ARM).
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 11 Apr 2023 14:03:27 +0200

On 2023-04-11 07:56, G.B. wrote:
> Side track: "weak" and "strong" alone

sounding like a valuation to the
uninitiated [...]

The formal meaning of weaker/stronger
relation on predicates P and Q:

weaker P => Q
stronger Q => P

The formal rationale is that if you have a
proof

 P1 => P2 => P3

Then weakening P1 to P1' => P1 and
strengthening P3 => P3' keeps it:

 P1' => P2 => P3'

As for ARM.

Regarding dynamic checks all the above
is irrelevant because dynamic checks are
no contracts. Furthermore, since the
proper contracts include Constraint_Error
or Storage_Error raised, do you really
care how are you going to bomb your
program while keeping proper contracts?
(:-)) Sincere advice: forget about this
mess.

For static checks a proof of implication is
rather straightforward since we assume
that all static predicates must be decidable
anyway.

Of course, with generics you might run
into troubles as you would have both
proper contracts, i.e. the instantiated ones,
and the generic ones expressed in generic
terms. Instantiated contracts are easy to
check, but what one would actually wish
is checking generic contracts, which
might turn out to be impossible. The
glimpse of the problem is what any Ada
programmer knows: generic instantiations
may fail to compile even if the actual
parameters match...
From: Spiros Bousbouras

<spibou@gmail.com>
Date: Wed, 12 Apr 2023 02:18:45 -0000

On Tue, 11 Apr 2023 14:03:27 +0200

"Dmitry A. Kazakov" <mailbox@dmitry-
kazakov.de> wrote:

> P1' => P2 => P3'

You have it backwards ; if P1 implies P
then P1 is stronger than P1 .
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Wed, 12 Apr 2023 09:49:35 +0300

Speaking of logic in general, rather than
Ada contracts in particular, I would say
that you got it right, and Dmitry did not.

Suppose we have a theorem about
geometrical figures F, and at first we can
prove the theorem only if we assume
(precondition) that the figure F is a
square. Later we manage to improve the
proof so that it holds also for rectangles. I
would say, and I think mathematicians
would say, that we /weakened/ the
assumptions from "F is a square" to "F is
a rectangle", and indeed the former
(stronger) implies the latter (weaker),
which is not as Dmitry defined "stronger".
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 13 Apr 2023 08:27:30 +0200

On 2023-04-12 04:18, Spiros Bousbouras
wrote:
> On Tue, 11 Apr 2023 14:03:27 +0200
> "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de> wrote:
>> P1' => P2 => P3'
>
> You have it backwards ; if P1' implies

P1 then P1' is stronger than P1 .

Yes, you are right. Inclusion is an inverse
of implication.

A weaker predicate is true on a set that
contains the set where the stronger
predicate is.

Looking for Feedback: ISO
3166-1 Country Country
Code Reference in Ada
From: A.J. <ianozia@gmail.com>
Subject: Looking for feedback: ISO 3166-1

country Country Code Reference in Ada
Date: Sat, 15 Apr 2023 11:52:08 -0700
Newsgroups: comp.lang.ada

I just created a library for accessing ISO
3166-1 records in Ada compatible with
Ada.Locales. Before I try to publish it to
Alire, I'm hoping to get some feedback if
anyone has some. It's possible that
feedback will result in the function calls,
naming convention, or structure being set
up differently, so please let me know what
you think.

https://github.com/AJ-Ianozi/iso_3166
I also posted this on the subreddit, so
apologies for any redundancy for those
viewing both!
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Mon, 17 Apr 2023 11:36:53 +0200

Some initial thoughts on what you have:

It seems likely that your clients will use
the alpha codes for input and display. It
will be more convenient for that if the

114 Ada in Jest

Volume 44, Number 2, June 2023 Ada User Journal

alpha codes are subtypes of String rather
than distinct types.

Since you have already enumerated all
250 possible alpha codes, your predicates
could look like
subtype Alpha_Code_2 is String (1 .. 2)
 with Dynamic_Predicate => Alpha_Code_2
 in "AF" | "AL" | ...;

and similar for the 3-letter codes.

Since you have already enumerated all
250 possible numeric codes, you could
use a restricted range for your numeric
(sub)type, with a predicate restricting it to
valid values.

These use the language to do validity
checking for you.

Regarding the design of such a pkg, my
initial instinct was to use enumeration
types for the alpha codes, but a little
investigation shows that some of the
codes are Ada reserved words, so that
doesn't work. So I would stick with the
String subtypes and provide functions
such that, given one of the values, the
client can obtain the others, as well as the
name. Alternatively, one could have
functions to return a record such as you
provide. Which is preferable depends on
how such a pkg is typically used.

There are various possible
implementations, with different tradeoffs.

2023 Stack Overflow: Ada in
the Programming Options
for the First Time
From: Fabien Chouteau

<fabien.chouteau@gmail.com>
Subject: 2023 Stack Overflow: Ada in the

programming options for the first time
Date: Tue, 9 May 2023 02:39:56 -0700
Newsgroups: comp.lang.ada

The 2023 Stack Overflow survey is live:
https://stackoverflow.blog/2023/05/08/the
-2023-developer-survey-is-now-live/

And for the first time Ada is listed in the
options for "programming, scripting, and
markup languages"!

Don't hesitate to fill the survey and show
that the Ada community is alive.

Ada 2022 at Last!
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Subject: Ada 23 at Last!
Date: Wed, 10 May 2023 11:45:01 +0200
Newsgroups: comp.lang.ada

https://www.iso.org/standard/83621.html
From: Nasser M. Abbasi

<nma@12000.org>
Date: Wed, 10 May 2023 09:27:18 -0500

Is there a site that gives summary of new
features/changes/improvements in Ada
2023?
From: Adamagica <christ-usch.grein@t-

online.de>
Date: Wed, 10 May 2023 07:32:25 -0700

Yes, Ada now has an ARM and a LEG
(language enhancement guide), see:

http://www.ada-auth.org/standards/
overview22.html

Ada Monthly Meeting
Proposal
[see also “Ada Monthly Meetup 2023” in
this AUJ issue, p.98 —arm]
From: Fernando Oleo Blanco

<irvise_ml@irvise.xyz>
Subject: Re: Ada Monthly Meeting proposal
Date: Wed, 10 May 2023 17:39:45 +0200
Newsgroups: comp.lang.ada

* Reboot of the Ada Monthly Meeting

Dear all. Once again, after a long pause, I
want to revive the idea of a monthly
meeting to discuss the latest Ada events,
projects, releases or just have a chat about
a topic.

I will not repeat what I said in the original
message as all points still stand.

I was happy with the reception that the
proposal gathered, alas it did not take
place. However, I was thinking about
having one at the beginning of each
month. There would be a pause during
summer (August for most people and
potentially September) and FOSDEM.

* When do "we" start?

As I would not like to postpone it much
more, I would like to kickstart it this June.
So the first one would be either Saturday
3 or Sunday 4 of July.

I know this sounds a bit rushed. However,
if I do not set a date for me and other
people, we will just keep pushing it
further and further. This first meetup
would just be to test the waters and
receive feedback. There would be another
one in July and then summer, after which
I hope to get a serious and continuous
stream of meetups.

I was thinking that we could have a
meetup at around 12PM UTC time. It is
early but not crazy early for those in the
USA and late for those in far east Asia
such as Australia. Here in Europe it falls
close to the meal time, which is not
ideal... If a lot of people do not like this
time, it can be easily moved a bit earlier
or later... I WOULD LIKE TO RECEIVE
SOME FEEDBACK ON THIS.

* What to expect?

I would like to keep these meetups sweet
and short. I was thinking maybe 45
minutes long, maybe an hour. That would

allow for a quick round of news, topics
and introductions (something like what
Maxim Reznik does but a lot shorter).
Then 2 to 4 topics (depending on the time
needed by each one). The topics would be
what other and I already proposed. This
would give between 20 to 10 minutes for
each topic.

Once again, this is the starting proposal.
Adjustments will be needed.

* What do I need?

Feedback:
- What is your opinion?
- Do you have a topic/project that you

would like to show to the community?
- Do you like the chosen time?
- Do you like the week of the month?
- Is Jitsi [1] a good enough platform to do

the meetings?
- Do you think that 45 min / 1 h is a good

enough duration?
- Would you like to participate on

Saturday 3 or Sunday 4?

[1] https://meet.jit.si/
From: Simon Wright

<simon@pushface.org>
Date: Wed, 10 May 2023 20:26:36 +0100

Fernando Oleo Blanco
<irvise_ml@irvise.xyz> writes:

> - What is you opinion?

Good idea.
> - Do you have a topic/project that you

would like to show to the community?

Will have to think about that! Mac issues?
Alire vs Mac?
> - Do you like the chosen time?

Fine by me.
> - Do you like the week of the month?

No problem
> - Is Jitsi [1] a good enough platform to

do the meetings?

Will have to see!
> - Do you think that 45 min / 1 h is a

good enough duration?

Certainly OK for the first meeting
> - Would you like to participate on

Saturday 3 or Sunday 4?

Either could be managed! Slight
preference for Saturday
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Wed, 10 May 2023 21:41:33 +0200

On 2023-05-10 17:39, Fernando Oleo
Blanco wrote:
> - Do you like the chosen time?

Ada and Other Languages 115

Ada User Journal Volume 44, Number 2, June 2023

Any time will be inconvenient for some,
but one must be chosen. 12:00 UTC is
fine with me, but during January, the time
on the west coast of the US is UTC -08,
and on the east coast of Australia, UTC
+11. 12:00 UTC corresponds to 04:00 in
California and 23:00 in Sydney. 04:00 is
rather painful. It might be better to choose
13:00 UTC (05:00 and 00:00).
From: Ben Bacarisse

<ben.usenet@bsb.me.uk>
Date: Wed, 10 May 2023 20:47:02 +0100

Fernando Oleo Blanco
<irvise_ml@irvise.xyz> writes:
> * When do "we" start?

Presumably 3rd or 4th June.
From: frances...@gmail.com

<francesc.rocher@gmail.com>
Date: Wed, 10 May 2023 23:55:48 -0700

El dia dimecres, 10 de maig de 2023 a les
17:39:50 UTC+2, Fernando Oleo Blanco
va escriure:
> - What is you opinion?

Great initiative!
> - Do you have a topic/project that you

would like to show to the community?

Not yet, but for sure I'd like to show a
couple of projects I'm working on.
> - Do you like the chosen time?

No problem.
> - Do you like the week of the month?

Good enough, easy to remember.
> - Is Jitsi [1] a good enough platform to

do the meetings?

Let's see how it works.
> - Do you think that 45 min / 1 h is a

good enough duration?

It could be flexible as it depends on the
schedule and Q&A, so let's see.
> - Would you like to participate on

Saturday 3 or Sunday 4?

Both are ok, but preferably Saturday.

Thanks Fernando for leading this
proposal,
From: amo...@unizar.es

<amosteo@unizar.es>
Date: Thu, 11 May 2023 04:05:44 -0700

On Wed, May 10, 2023 at 5:39 PM
'Fernando Oleo Blanco' via comp.lang.ada
<comp.lang.ada@googlegroups.com>
wrote:
- What is you opinion?

Great initiative!
 - Do you have a topic/project that you

would like to show to the community?

Not right now, happy to just meet people.
- Do you like the chosen time?

Works for me.

 - Do you like the week of the month?

No opinion.
- Is Jitsi [1] a good enough platform to do
the meetings?

It's worked for me in the past.
- Do you think that 45 min / 1 h is a good

enough duration?

Yes, no more than that.
- Would you like to participate on

Saturday 3 or Sunday 4?

For this instance, I can only on the 3rd. It
should be indifferent normally.

Thanks Fer for leading.
From: A.J. <ianozia@gmail.com>
Date: Mon, 15 May 2023 18:19:07 -0700
> Feedback:
> - What is you opinion?

I'm absolutely up for this.
> - Do you have a topic/project that you

would like to show to the community?

I recently released an Ada ISO Library for
country and currency codes[1], I could
talk about that if anyone is interested. I
also use Ada with Alire on a mac, so I'm
interested in listening to that discussion.
> - Do you like the chosen time?

It looks like 12pm UTC is 8am EDT. I
normally get up around 6AM, so I can
make this work.
> - Do you like the week of the month?

That should be fine.
> - Is Jitsi [1] a good enough platform to

do the meetings?

If it works in a browser, I have no issues
with it.
> - Do you think that 45 min / 1 h is a

good enough duration?

This is good for the first such meeting.
We can see how it goes and adjust in later
meetings.
> - Would you like to participate on

Saturday 3 or Sunday 4?

I prefer Saturday over Sunday, but either
one works for me.

[1] https://github.com/ada-iso/
ada_iso/tree/v2.0.0
From: Fernando Oleo Blanco

<irvise_ml@irvise.xyz>
Date: Thu, 25 May 2023 19:35:12 +0200

Hi all and especially A.J.

I will try to make the meeting happen. I
made the announcement here [1].

If you would like to participate, save the
date! If you have any ideas or proposals,
they are welcome (this goes specially to

you A.J., I assume you would like to
present :).

There is a bit more info in the link if
anybody else is interested. I will select the
exact time next week.

[1] https://forum.ada-lang.io/t/
ada-monthly-meeting/384/2?u=irvise
From: Keith Thompson

<keith.s.thompson+u@gmail.com>
Date: Thu, 25 May 2023 13:22:56 -0700

The proposed time is 12:00 or 13:00 UTC
on Sat 2023-06-03.

That's 05:00 or 06:00 in the US Pacific
time zone (California et al).

I understand that scheduling meetings for
an international audience is hard. I might
join if it's later in the day in my time zone
-- but I wouldn't have much to contribute
anyway, so please don't base your
decision on that. But I suspect a lot of
people in the US won't join if it's that
early.

Is a Boolean Type Inherently
Atomic?
From: Rod Kay <rodakay5@gmail.com>
Subject: Is a Boolean type inherently

atomic?
Date: Fri, 12 May 2023 22:17:48 +1000
Newsgroups: comp.lang.ada

Surely only the least significant bit of the
least significant byte is relevant and so the
value cannot be garbled by one task
writing and another reading at the same
time ?
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Date: Fri, 12 May 2023 14:53:24 +0200

Boolean types with other representations
using multiple bits are possible, so your
assumption doesn't hold.
From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 12 May 2023 18:56:54 +0200

Le 12/05/2023 à 14:53, Jeffrey R.Carter a
écrit :
> Boolean types with other

representations using multiple bits are
possible, so your assumption doesn't
hold.

True, especially considering the special
exception for boolean types in 13.4(8)

Anyway, if you intend to access a variable
from multiple tasks, it doesn't cost much
to add an Atomic aspect to the
declaration, at least to inform the reader!
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Fri, 12 May 2023 20:38:29 +0300

On 2023-05-12 15:17, Rod Kay wrote:
> Surely only the least significant bit of

the least significant byte is relevant and
so the value cannot be garbled by one

116 Ada in Jest

Volume 44, Number 2, June 2023 Ada User Journal

task writing and another reading at the
same time ?

That seems very likely indeed, unless (as
others have commented) the
representation has been specified to use
more bits. However, the Ada RM states in
C.6(8/3) that "every atomic type or object
is also defined to be volatile", and of
course Boolean variables are not
considered volatile unless they are
specified to be Atomic or Volatile. So a
Boolean type is not inherently atomic in
the Ada RM sense of "atomic".

And of course if you use a shared variable
to communicate data between tasks, that
variable should be marked as Volatile,
and there should also be some Atomic

accesses to ensure that actions are
"sequential", so marking the variable as
Atomic is best.
From: Adamagica <christ-usch.grein@t-

online.de>
Date: Fri, 12 May 2023 11:02:15 -0700

AARM 3.5.3(1.a), 13.4(8.b, 10/5) has
some information about boolean
representations.

Ada in Jest
Doggerel
From: Rod Kay <rodakay5@gmail.com>
Subject: Doggerel

Date: Sat, 3 Jun 2023 12:33:30 +1000
Newsgroups: comp.lang.ada

I've been holding off posting this for fear
of rotten tomatoes … but here goes ...

"Tis no uncertain adage,

 That that balmy beggar Babbage,
 Was to antsy Aunty Ada,

 No uncertain ennui saviour!"

... just putting on my hazmat suit now, so
fire away :).

 117

Ada User Journal Volume 44, Number 2, June 2023

Conference Calendar
Dirk Craeynest
KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with  denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.
The COVID-19 pandemic had a catastrophic impact on conferences world-wide. In general the situation seems to improve
further, and only a few events are still planned to be held "virtually" or in "hybrid" mode. Where available, the status of events
is indicated with the following markers: "(v)" = event is held online, (h)" = event is held in a hybrid form (i.e. partially online).

2023

July 02-06 23rd International Conference on embedded computer Systems: Architectures, MOdeling and

Simulation (SAMOS'2023), Samos Island, Greece. Topics include: advances in systems efficiency in
various domains; novel architectures and computing methodologies and solutions for accelerating
applications in various embedded domains, such as next generation automotive and avionics, next
generation (machine) learning systems for surveillance and recognition, ...; software tools, compilation
techniques and optimizations, and code generation for reconfigurable architectures; embedded parallel
systems and MultiProcessor Systems-on-Chip; application-level resource management of multi-core
architectures; all design processes for embedded systems ranging from design languages, modeling and
simulation, performance, reliability, ...; specification languages and models; system-level design,
simulation, and verification; MP-SoC programming, compilers, simulation and mapping technologies;
profiling, measurement and analysis techniques; (design for) system adaptivity; testing and debugging;
etc.

July 11-14 35th Euromicro Conference on Real-Time Systems (ECRTS'2023), Vienna, Austria.

 July 17-21 37th European Conference on Object-Oriented Programming (ECOOP'2023), Seattle, USA. Topics
include: all practical and theoretical investigations of programming languages, systems and environments;
innovative solutions to real problems as well as evaluations of existing solutions.

July 18-21 Software Technologies: Applications and Foundations (STAF'2023), Leicester, UK. Topics include:
practical and foundational advances in software technology.

July 18-19 17th International Conference on Tests And Proofs (TAP'2023). Topics include:
many aspects of verification technology, including foundational work, tool
development, and empirical research; the connection between proofs (and other static
techniques) and testing (and other dynamic techniques); verification and analysis
techniques combining proofs and tests; program proving with the aid of testing
techniques; formal techniques supporting the automated generation of test vectors and
oracles, and supporting novel definitions of coverage criteria; specification inference by
deductive and dynamic methods; testing and runtime analysis of formal specifications;
verification of verification tools and environments; applications of test and proof
techniques in new domains; combined approaches of test and proof in the context of
formal certifications; case studies, tool and framework descriptions, and experience
reports about combining tests and proofs; etc.

July 18-21 19th European Conference on Modelling Foundations and Applications (ECMFA'2023), Leicester,
UK. Co-located with STAF'2023. Topics include: all aspects of model-based engineering (MBE);
foundations of MBE, including model transformations, domain-specific languages, verification and
validation approaches, ...; application of MBE methods, tools, and techniques to specific domains, e.g.,
automotive, aerospace, cyber-physical systems, robotics, Artificial Intelligence or IoT; educational
aspects of MBE; tools and initiatives for the successful adoption of MBE in industry; etc.

118 Conference Calendar

Volume 44, Number 2, June 2023 Ada User Journal

 Aug 28 – Sep 09 29th International European Conference on Parallel and Distributed Computing (Euro-Par'2023),
Limassol, Cyprus. Topics include: all aspects of parallel and distributed processing, ranging from theory
to practice, from small to the largest parallel and distributed systems and infrastructures, from fundamental
computational problems to applications, from architecture, compiler, language and interface design and
implementation, to tools, support infrastructures, and application performance aspects.

September 06-08 49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2023),
Durres, Albania. Topics include: information technology for software-intensive systems; tracks on Cyber-
Physical Systems (CPS), Emerging Computing Technologies (ECT), Model-Driven Engineering and
Modeling Languages (MDEML), Software Engineering and Debt Metaphors (SEaDeM), Software
Process and Product Improvement (SPPI), etc.

September 11-13 2nd Summer School on Security Testing and Verification 2023. Brussels, Belgium. Topics include:
static and dynamic security testing; software verification; security by design; etc. Deadline for early
registration: July 31, 2023.

September 11-13 16th International Conference on the Quality of Information and Communications Technology
(QUATIC'2023), Aveiro, Portugal. Topics include: all quality aspects in ICT systems engineering and
management.

September 11-15 38th IEEE/ACM International Conference on Automated Software Engineering (ASE'2023),
Kirchberg, Luxembourg. Topics include: foundations, techniques, and tools for automating the analysis,
design, implementation, testing, and maintenance of large software systems. Deadline for submissions:
July 14 - August 4, 2023 (workshop papers), Jul 15, 2023 (industry challenge competition). Deadline for
early registration: August 17, 2023.

September 17-22 Embedded Systems Week 2023 (ESWEEK'2023), Hamburg, Germany. Includes CASES'2023
(International Conference on Compilers, Architectures, and Synthesis for Embedded Systems),
CODES+ISSS'2023 (International Conference on Hardware/Software Codesign and System Synthesis),
EMSOFT'2023 (International Conference on Embedded Software). Deadline for submissions: July 10,
2023 (student travel grants, undergraduate scholar program), July 14, 2023 (PhD forum). Deadline for
early registration: August 25, 2023.

 Sep 17-22 ACM SIGBED International Conference on Embedded Software (EMSOFT'2023).
Topics include: the science, engineering, and technology of embedded software
development; research in the design and analysis of software that interacts with physical
processes; results on cyber-physical systems, which integrate computation, networking,
and physical dynamics; embedded distributed, networked systems (time-critical
embedded systems, scheduling, resource allocation, and execution time analysis; ...);
embedded software design and analysis (safety/mixed-critical embedded software,
software design for cyber-physical systems, ...); resilience (embedded software security,
robust implementation of control systems); process, methods (formal modeling and
verification; testing, validation, and certification; model- and component-based
approaches); empirical studies and their reproduction; application areas including
automotive, avionics, energy, health care, mobile devices, multimedia, machine
learning, and autonomous systems; etc.

Sep 17-22 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES'2023). Topics include: latest advances in design,
optimization, validation, and applications of embedded systems, Internet of Things
(IoT), and the emergent trend of integrating Artificial Intelligence into IoT (AIoT);
architecture, design, and compiler techniques for reliability, and aging; modeling,
analysis, and optimization for timing and predictability; validation, verification, testing,
and debugging of embedded software; etc.

Sep 17-22 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS'2023). Topics include: system-level design, hardware/software co-
design, modeling, analysis, and implementation of modern Embedded Systems, Cyber-
Physical Systems, and Internet-of-Things, from system-level specification and
optimization to synthesis of system-on-chip hardware/software implementations.

September 18-23 34th International Conference on Concurrency Theory (CONCUR'2023), Antwerp, Belgium. Co-
located with FORMATS, FMICS and QEST as part of CONFEST 2023. Topics include: semantics, logics,
verification and analysis of concurrent systems; basic models of concurrency; verification and analysis

Conference Calendar 119

Ada User Journal Volume 44, Number 2, June 2023

techniques for concurrent systems such as abstract interpretation, model checking, race detection, run-
time verification, static analysis, testing, theorem proving, type systems, security analysis; distributed
algorithms and data structures; theoretical foundations of architectures, execution environments, and
software development for concurrent systems such as multiprocessor and multi-core architectures,
compilers and tools for concurrent programming, programming models such as component-based, object-
oriented, ...; etc.

September 19-21 21st International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS'2023), Antwerp, Belgium. Co-located with CONCUR, FMICS and QEST as part of
CONFEST 2023. Topics include: fundamental and practical aspects of timed systems; modelling, design
and analysis of timed computational systems; theoretical foundations of timed systems, languages and
models; techniques, algorithms, data structures, and software tools for analyzing timed systems and
resolving temporal constraints, such as scheduling, worst-case execution time analysis, optimization,
model checking, testing, constraint solving; adaptation and specialization of timing technology in
application domains in which timing plays an important role (real-time software, scheduling in
manufacturing and telecommunication, robotics, ...); etc.

September 19-22 42nd International Conference on Computer Safety, Reliability and Security (SafeComp'2023),
Toulouse, France. Topics include: development, assessment, operation and maintenance of safety-related
and safety-critical computer systems; safety/security risk assessment; model-based analysis, design, and
assessment; formal methods for verification, validation, and fault tolerance; validation and verification
methodologies and tools; methods for qualification, assurance and certification; compositional
verification and certification; cyber-physical threats and vulnerability analysis; safety guidelines,
standards and certification; safety and security interactions and tradeoffs; etc. Domains of application
include: railways, automotive, space, avionics, nuclear and process industries; autonomous systems,
advanced robotics; telecommunication and networks; critical infrastructures; medical devices and
healthcare; defense, emergency & rescue; logistics, industrial automation, off-shore technology; etc.
Deadline for submissions: July 10, 2023 (position papers). Deadline for early registration: July 20, 2023.

 September 20-22 28th International Conference on Formal Methods for Industrial Critical Systems (FMICS'2023),
Antwerp, Belgium. Co-located with CONCUR, FORMATS and QEST as part of CONFEST 2023. Topics
include: case studies and experience reports on industrial applications of formal methods, focusing on
lessons learned or identification of new research directions; methods, techniques and tools to support
automated analysis, certification, debugging, descriptions, learning, optimisation and transformation of
complex, distributed, real-time, embedded, mobile and autonomous systems; verification and validation
methods that address shortcomings of existing methods with respect to their industrial applicability (e.g.,
scalability and usability issues, tool qualification, and certification); impact of adoption of formal methods
on development process and associated costs; application of formal methods in standardisation and
industrial forums.

September 20-22 22nd International Conference on Intelligent Software Methodologies, Tools and Techniques
(SOMET'2023), Naples, Italy. Topics include: new directions in software development methodologies
and related tools and techniques; software methodologies and tools for robust, reliable, non-fragile
software design; software development techniques for legacy systems; software evolution techniques;
agile software and lean methods; software optimization and formal methods for software design; software
maintenance; software security tools and techniques; formal techniques for software representation,
software testing and validation; object-oriented, aspect-oriented, component-based and generic
programming, multi-agent technology; model driven development (DVD), code centric to model centric
software engineering; etc.

October 02-04 25th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS'2023), Jersey City, New Jersey, USA. Topics include: design and development of distributed
systems with a focus on systems that are able to provide guarantees on their structure, performance, and/or
security in the face of an adverse operational environment; distributed and concurrent computing
(foundations, fault-tolerance and scalability); distributed, concurrent, and fault-tolerant algorithms;
synchronization protocols; formal methods, validation, verification, and synthesis; secure software and
secure programming methodologies; formal methods, semantics and verification of secure systems; fault
tolerance, reliability, availability of distributed secure systems; etc.

October 03-06 23rd International Conference on Runtime Verification (RV'2023), Thessaloniki, Greece. Topics
include: monitoring and analysis of runtime behaviour of software and hardware systems; program
instrumentation; logging, recording, and replay; combination of static and dynamic analysis; monitoring

120 Conference Calendar

Volume 44, Number 2, June 2023 Ada User Journal

techniques for concurrent and distributed systems; fault localization, containment, resilience, recovery
and repair; etc. Deadline for early registration: August 15, 2023.

 October 10-12 5th International Conference on Reliability, Safety and Security of Railway Systems (RSSRail'2023),
Berlin, Germany. Topics include: safety in development processes and safety management; combined
approaches to safety and security; system and software safety analysis; formal modelling and verification
techniques; system reliability; validation according to the standards; tool and model integration, tool
chain; domain-specific languages and modelling frameworks; model reuse for reliability, safety and
security; etc. Deadline for submissions: July 14, 2023 (posters). Deadline for early registration: July 31,
2023.

 October 17 High Integrity Software Conference (HISC'2023), Bristol, UK. Topics include: advanced software
development for high-integrity and high-assurance systems, including programming languages, AI-
assisted software development, verifiable code generation; verification of novel, high-integrity and high-
assurance systems; assurance of high-integrity, high-assurance systems; infrastructure & ecosystem for
high-integrity software.

October 18-20 (h) 16th International Conference on Verification and Evaluation of Computer and Communication Systems
(VECoS'2023), Marrakech, Morocco. Topics include: analysis of computer and communication systems,
where functional and extra-functional properties are inter-related; cross-fertilization between various
formal verification and evaluation approaches, methods and techniques, especially those developed for
concurrent and distributed hardware/software systems.

October 19-20 (v) 19th International Conference on Formal Aspects of Component Software (FACS'2023), Internet.
Topics include: applications of formal methods in all aspects of software components and services; formal
methods, models, and languages for software-intensive systems, components and services: formal aspects
of concrete software-intensive systems, including real-time/safety-critical systems, hybrid and cyber
physical systems, components that use artificial intelligence, ...; tools supporting formal methods for
components and services; case studies and experience reports over the above topics; special track on
formal methods at large; etc. Deadline for submissions: July 3, 2023 (abstracts), July 10, 2023 (papers).

 October 21-25 32nd International Conference on Parallel Architectures and Compilation Techniques
(PACT'2023), Vienna, Austria. Topics include: parallel architectures; compilers and tools for parallel
computer systems; applications and experimental systems studies of parallel processing; computational
models for concurrent execution; support for correctness in hardware and software; reconfigurable parallel
computing; parallel programming languages, algorithms, and applications; middleware and run time
system support for parallel computing; etc. Deadline for submissions: July 3, 2023 (workshops), August
4, 2023 (artifacts), August 14, 2023 (tutorials).

October 22-24 30th Static Analysis Symposium (SAS'2023), Cascais (Lisbon), Portugal. Co-located with
SPLASH'2023. Topics include: static analysis as fundamental tool for program verification, bug detection,
compiler optimization, program understanding, and software maintenance.

October 22-26 23nd IEEE International Conference on Software Quality, Reliability and Security (QRS'2023),
Chiang Mai, Thailand. Topics include: reliability, security, availability, and safety of software systems;
software testing, verification, and validation; program debugging and comprehension; fault tolerance for
software reliability improvement; modeling, prediction, simulation, and evaluation; metrics,
measurements, and analysis; software vulnerabilities; formal methods; operating system security and
reliability; benchmark, tools, industrial applications, and empirical studies; etc. Deadline for submissions:
July 15, 2023 (abstracts), July 22, 2023 (regular and short papers), August 15, 2023 (workshop papers,
fast abstracts, industry track, posters).

 October 22-27 ACM Conference on Systems, Programming, Languages, and Applications: Software for Humanity
(SPLASH'2023), Lisbon, Portugal. Topics include: all aspects of software construction and delivery, at
the intersection of programming languages and software engineering. Deadline for submissions: July 7,
2023 (GPCE), July 12, 2023 (workshop papers), July 21, 2023 (Student Research Competition), July 24,
2023 (PLMW), July 27, 2023 (SPLASH-E), August 15, 2023 (posters).

October 22-27 16th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2023). Topics include: software language engineering rather than engineering a
specific software language; software language design and implementation; software
language validation (verification and formal methods for languages, testing techniques
for languages, simulation techniques for languages); software language integration and

Conference Calendar 121

Ada User Journal Volume 44, Number 2, June 2023

composition; software language maintenance (software language reuse, language
evolution, language families and variability, language and software product lines);
domain-specific approaches for any aspects of SLE (design, implementation, validation,
maintenance); empirical evaluation and experience reports of language engineering
tools (user studies evaluating usability, performance benchmarks, industrial
applications); etc. Deadline for submissions: August 30, 2023 (artifacts).

 October 23-27 Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'2023). Topics include: all practical and theoretical
investigations of programming languages, systems and environments, targeting any
stage of software development, including requirements, modeling, prototyping, design,
implementation, generation, analysis, verification, testing, evaluation, maintenance, and
reuse of software systems; development of new tools, techniques, principles, and
evaluations.

October 23 12th Workshop on Programming Languages and Operating Systems (PLOS'2023), Koblenz,
Germany. Topics include: domain-specific and type-safe languages for the OS; the design of language-
specific unikernels; language-based approaches to crosscutting system concerns, such as security and run-
time performance; PL support for system verification, testing, and debugging; the use of OS abstractions
and techniques in language runtimes; verification and static analysis of OS components; critical
evaluations of new programming language ideas in support of OS construction; experience reports on
applying new language techniques in commercial OS settings; etc. Deadline for paper submissions:
August 4, 2023.

October 24-27 (h) 28th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC'2023),
Singapore. Topics include: software and hardware reliability, resilience, safety, security, testing,
verification, and validation; dependability measurement, modeling, evaluation, and tools; architecture and
system design for dependability; reliability analysis of complex systems; dependability issues in
computing systems (e.g. high performance computing, real-time systems, cyber-physical systems, ...);
emerging technologies (autonomous systems including autonomous vehicles, human machine teaming,
smart devices/internet of things); etc.

October 24-27 21st International Symposium on Automated Technology for Verification and Analysis
(ATVA'2023), Singapore. Topics include: theoretical and practical aspects of automated analysis,
synthesis, and verification of hardware and software systems; program analysis and software verification;
analytical techniques for safety, security, and dependability; testing and runtime analysis based on
verification technology; analysis and verification of parallel and concurrent systems; analysis and
verification of deep learning systems; verification in industrial practice; applications and case studies; etc.

November 08-10 21st International Conference on Software Engineering and Formal Methods (SEFM'2023),
Eindhoven, the Netherlands. Topics include: software development methods (formal modelling,
specification, and design; software evolution, maintenance, re-engineering, and reuse), design principles
(programming languages; abstraction and refinement; ...), software testing, validation, and verification,
security and safety (security, privacy, and trust; safety-critical, fault-tolerant, and secure systems; software
certification), applications and technology transfer (real-time, hybrid, and cyber-physical systems;
intelligent systems and machine learning; education; ...), case studies, best practices, and experience
reports.

November 13-15 18th International Conference on integrated Formal Methods (iFM'2023), Leiden, the Netherlands.
Topics include: recent research advances in the development of integrated approaches to formal modelling
and analysis; all aspects of the design of integrated techniques, including language design, verification
and validation, automated tool support and the use of such techniques in software engineering practice.
Deadline for submissions: July 13, 2023 (PhD symposium).

November 13-17 (h) 18th International Conference on Software Engineering Advances (ICSEA'2023), Valencia, Spain.
Topics include: trends and achievements; advances in fundamentals for software development; advanced
mechanisms for software development; advanced design tools for developing software; software
performance; software security, privacy, safeness; advances in software testing; specialized software
advanced applications; open source software; agile and Lean approaches in software engineering;
software deployment and maintenance; software engineering techniques, metrics, and formalisms;
software economics, adoption, and education; etc. Deadline for submissions: August 10, 2023.

122 Conference Calendar

Volume 44, Number 2, June 2023 Ada User Journal

December 04-07 30th Asia-Pacific Software Engineering Conference (APSEC'2023), Seoul, South Korea. Topics
include: requirements and design (component-based software engineering; software architecture,
modeling, and design; middleware, frameworks, and APIs; software product-line engineering; ...); testing
and analysis (testing, verification, and validation; program analysis; program repairs; ...); formal aspects
of software engineering (formal methods, model-driven and domain-specific engineering); software
comprehension and traceability; dependability, safety, and reliability; software maintenance and evolution
(refactoring, reverse engineering, software reuse, debugging and fault localization, ...); software
repository mining; etc. Deadline for submissions: July 7, 2023 (papers), August 25, 2023 (Software
Engineering Education track, Early Research Achievement track, Doctoral symposium, tutorials), August
30, 2023 (Software Engineering in Practice track), September 1, 2023 (student research competition).

December 05-08 43rd IEEE Real-Time Systems Symposium (RTSS'2023), Taipei, Taiwan. Deadline for submissions:
September 6, 2023 (Brief Presentations track).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2024

January 17-19 19th International Conference on High Performance and Embedded Architecture and Compilation

(HiPEAC'2024), Munich, Germany. Topics include: computer architecture, programming models,
compilers and operating systems for general-purpose, embedded and cyber-physical systems. Areas
include safety-critical dependencies, cybersecurity, energy efficiency and machine learning. Deadline for
submissions: July 3, 2023 (workshops).

March 02-06 IEEE/ACM International Symposium on Code Generation and Optimization (CGO'2024),
Edinburgh, UK. Deadlines for paper submissions: September 1, 2023 (2nd round).

♦ June 11-14 28th Ada-Europe International Conference on Reliable Software
Technologies (AEiC'2024), Barcelona, Spain. Sponsored by Ada-Europe. #AEiC2024
#AdaEurope #AdaProgramming

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Conference Chair
Sara Royuela
sara.royuela@bsc.es
Barcelona Supercomputing Center, Spain

Journal-track Chairs
Bjorn Andersson
baandersson@sei.cmu.edu
Carnegie Mellon University, USA

Luis Miguel Pinho
lmp@isep.ipp.pt
ISEP & INESC TEC, Portugal

Industrial-track Chairs
Luciana Provenzano
luciana.provenzano@mdu.se
Mälardalen University, Sweden

Michael Pressler
Michael.Pressler@de.bosch.com
Bosch, Germany

Work-In-Progress-track Chairs
Alejandro R. Mosteo
amosteo@unizar.es
CUD Zaragoza, Spain

Ruben Martins
rubenm@andrew.cmu.edu
Carnegie Mellon University, USA

Tutorial Chair
Maria A. Serrano
maria.serrano@nearbycomputing.com
NearbyComputing, Spain

Workshop Chair
Sergio Saez
ssaez@disca.upv.es
Universitat Politècnica de València, Spain

Exhibition & Sponsorship Chair
Ahlan Marriott
ahlan@Ada-Switzerland.ch
White Elephant GmbH, Switzerland

Publicity Chair
Dirk Craeynest
Dirk.Craeynest@cs.kuleuven.be
Ada-Belgium & KU Leuven, Belgium

Webmaster
Hai Nam Tran
hai-nam.tran@univ-brest.fr
University of Brest, France

Local Chair
Nuria Sirvent
nuria.sirvent@bsc.es
Barcelona Supercomputing Center, Spain

General Information

The 28th Ada-Europe International Conference on Reliable Software Technologies
(AEiC 2024) will take place in Barcelona, Spain. The conference schedule comprises a
journal track, an industrial track, a work-in-progress track, a vendor exhibition, parallel
tutorials, and satellite workshops.

• Journal-track papers present research advances supported by solid theoretical
foundation and thorough evaluation.

• Industrial-track contributions highlight the practitioners' side of a challenging case
study or industrial project.

• Work-in-progress-track illustrates novel research ideas that are still at an initial
stage, between conception and first prototype.

• Tutorials guide attenders through a hands-on familiarization with innovative
developments or with useful features related to critical software.

• Workshops provide discussion forums on themes related to the conference topics.

Schedule

Scope and Topics

The conference is a leading international forum for providers, practitioners, and
researchers in reliable software technologies. The conference presentations will illustrate
current work in the theory and practice of the design, development, and maintenance of
long-lived, high-quality software systems for a challenging variety of application domains.
The program will allow ample time for keynotes, Q&A sessions and discussions, and social
events. Participants include practitioners and researchers from industry, academia, and
government organizations active in the promotion and development of reliable software
technologies.

The topics of interest for the conference include but are not limited to:

• Formal and model-based engineering of critical systems

• High-Integrity Systems and Reliability

• AI for High-Integrity Systems Engineering

• Real-Time Systems

• Ada Language

• Applications in relevant domains

More specific topics are described on the conference web page, at http://www.ada-
europe.org/conference2024.

15 January 2024 Deadline for submission of journal-track papers

26 February 2024 Deadline for submission of industrial-track papers, work-in-
progress papers, tutorial and workshop proposals

22 March 2024 First round notification for journal-track papers, and notification
of acceptance for all other types of submissions

11-14 June 2024 Conference

28th Ada-Europe

International Conference on Reliable Software Technologies (AEiC 2024)

11-14 June 2024, Barcelona, Spain

http://www.ada-europe.org/conference2024

http://www.ada-europe.org/conference2024
http://www.ada-europe.org/conference2024
http://www.ada-europe.org/conference2024

124

Volume 44, Number 2, June 2023 Ada User Journal

Join Ada-Europe!

Become a member of Ada-Europe and support Ada-
related activities and the future development of the
Ada programming language.

Membership benefits include receiving the quarterly
Ada User Journal and a substantial discount when
registering for the annual Ada-Europe conference.

To apply for membership, visit our web page at

http://www.ada-europe.org/join

 125

Ada User Journal Volume 44, Number 2, June 2023

ADEPT 2022 Workshop: A Summary of Strengths
and Weaknesses of the AADL Ecosystem

Frank Singhoff1, Jérôme Hugues2, Hai Nam Tran1, Gianluca Bardaro3, Dominique Blouin4, Marco
Bozzano5, Patrick Denzler6, Pierre Dissaux7, Eric Senn8, Xiong Xu9, Zhibin Yang10

1. University of Brest, Lab-STICC UMR CNRS 6285, Brest, France, firstname.lastname@univ-brest.fr
2. Software Engineering Institute, Carnegie Mellon University, USA, jhugues@andrew.cmu.edu
3. Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milano (IT); email: {name.surname}@polimi.it
4. LTCI, Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France,
dominique.blouin@telecom-paris.fr
5. Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy, bozzano@fbk.eu
6. Institute of Computer Engineering, TU Wien, Vienna; patrick.denzler@tuwien.ac.at
7. Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France; pierre.dissaux@ellidiss.com.
8. Lab-STICC, Université de Bretagne Sud, Lorient, France; eric.senn@univ-ubs.fr
9. SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China; University of Chinese
Academy of Sciences, Beijing, China; xux@ios.ac.cn
10. School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, China; yangzhibin168@163.com

Abstract
The Architecture Analysis and Design Language
(AADL) is a SAE Standard for the modeling of both the
hardware and the software of embedded systems. The
AADL standard is now mature and is today employed
by numerous stakeholders in the domain of critical
embedded real-time systems to address a large set of
concerns: performances (latency, schedulability),
safety, or security, ... The ADEPT workshop aims to
present and report on current projects in the field of
design, implementation, and verification of critical
systems where AADL is a first-citizen technology. This
article is a summary of the ADEPT 2022 workshop.

Keywords: AADL, critical embedded real-time
systems, design, implementation and verification.

1 Introduction
The Architecture Analysis and Design Language (AADL) is
a SAE standards for the modeling of both the hardware and
the software of embedded systems [1]. The AADL standard
is now a mature standard for the modeling of critical
embedded real-time systems. AADL is today employed by
numerous stakeholders in the domain of critical embedded
real-time systems to address a large set of concerns: safety

[13], security [15], or performance (latency, schedulability)
[14] but also code generation [12, 21]. One key strength of
AADL as a language is the set of tools that provide those
analysis capabilities.

The ADEPT workshop aims to present and report on current
projects in the field of design, implementation and
verification of critical systems where AADL is a first citizen
technology. The ADEPT workshop is also an opportunity for
AADL beginners to meet experienced AADL practitioners.

The ADEPT 2022 workshop was a full day workshop. A
morning session was introducing new tools and was an
opportunity for AADL beginners to discover the language,
its tools, and its potential uses. The afternoon was dedicated
to the presentation of success stories and returns of
experience in the form of a discussion with the workshop
attendees. The workshop was co-located with the 26th Ada-
Europe International Conference on Reliable Software
Technologies (AEiC 2022) at Ghent, Belgium.

In the sequel, we describe the 2022 workshop program in
section 2. Section 3 presents a summary of the return of
experience reported by the workshop participants. Then we
conclude is section 4.

126 ADEPT 2022 Workshop

Volume 44, Number 2, June 2023 Ada User Journal

2 Workshop program
The workshop gathered 22 participants, with 8 presentations.
It was organized in 4 sessions: 1) an introduction from the
workshop organizers about the AADL standard, its
ecosystem and the ongoing standardization activities, 2) a
session introducing emerging AADL tools, 3) a session
presenting success stories, case studies, and return of
experience, and 4) a discussion between the workshop
participants leading to a review of the current strengths and
weaknesses of the AADL standards and tools.

The tool session was composed of 4 presentations. [2]
addresses SysML v2 and AADL. The speakers show how
SysML v2 constructs can be mapped to AADL entities,
allowing verifications on SySML models by AADL tools
such as AADLInspector. The 3 next presentations were
examples of how formal methods can be combined with
AADL [3, 4, 5]. [3] introduces MARS, a graphical modeling
and verification tool. MARS inputs are models combining
AADL and Simulink/Stateflow components. Both AADL
and Simulink components are translated to hybrid
communicating sequential processes for formal verification
purposes. [4] describes C2AADL_Reverse, which is both an
approach and a tool for model-driven reverse engineering.
The proposal is to extract design artefacts from a multi-
tasked C code in order to automatically produce AADL
models. The produced model can then be used for formal
verification or code generation. Finally, presentation [5] was
dealing with the COMPASTA project in which the
COMPASS [11] and the TASTE [10] tools are combined.
Both are AADL oriented tools: TASTE is a set of tools
bridged by AADL models while COMPASS provides
formal safety analysis on models expressed with a dialect of
AADL.

The case study session hosted 4 presentations [6, 7, 8, 9].
Two presentations were addressing robotic systems
modeling and verification [7, 8]. They are both focussing on
the ROS platform and show how AADL is able to model
ROS nodes, network and device entities. In [7], AADL
modeling of ROS entities targets early performance
verification to predict required network bandwidth, end to
end latencies or processor utilization. [8] proposes to
generate a part of the C/C++ code for ROS architecture from
similar AADL models. Network modelling is also a concern
in the talk [6] where the AADL is used to model a gateway
architecture in the context of fog computing. One of the
motivations of this AADL model is to generate complex
gateway configurations. Finally, the last talk illustrates the
use of AADL in the context of a railways system with
ALISA (Architecture-Led Incremental System Assurance)
[9]. In this context, ALISA is used to both express and verify
system requirements of a train control system.

3 Strengths and weaknesses of the AADL
ecosystem
During the workshop, a session dedicated to a discussion
about return of experience from workshop participants has
been organized. Return of experience collected during this
session is summarised in the sequel.

3 topics were discussed: topics related to the AADL
language, its tools and its community.

About the AADL language, the main addressed topics
covered the rationale to choose AADL. The participants also
identified the language features that are missing today in
AADL and the ones they wish for in the next versions of the
standards.

Availability of tools is one of the motivations to select a
design or a programming language. AADL tools used by the
workshop participants have been enumerated during the
workshop. Participants also reviewed the main issues they
faced when using them. Such review is an opportunity to
understand the future features workshop participants are
waiting for in the next tool versions.

Finally, model based technologies such as AADL
technologies strongly change how practitioners design and
implement software. Having an active user community
contributes to increasing stakeholders AADL skills and then
contributes to successfully applying AADL on concrete
projects. What AADL users expect from the user community
and how this community would be organized were also
topics discussed during the workshop.

In the sequel, we only describe the items reported by
workshop participants that we believe are more important.

Figure 1: User's intends and used tools

3.1 Rationale to choose AADL

Workshop participants explained why they have chosen
AADL for the work they presented. Sometimes, AADL was
simply chosen because it was part of a larger toolset (e.g.
TASTE) they are using. Sometimes also, as with any
technologies, AADL was chosen simply because
participants knew it before.

About the language itself, AADL was frequently selected
because it has the ability to both model hardware and
software components, with both textual and graphical
syntaxes, and with features that bring software engineering
good practices (e.g. inheritance, abstract components,
modularity, …).

AADL's ability to model both static and dynamic aspects of
embedded systems architecture and to predict its behavior is
also an important rationale for most of the workshop
participants. Participants aim to assess properties on the
architecture behavior or to do design space exploration by
investigating various architecture alternatives (e.g.

F. Singhoff et a l . 127

Ada User Journal Volume 44, Number 2, June 2023

deployment options), to identify, for example, performance
bottlenecks or safety/security vulnerabilities.

Last but least, the availability of AADL mature tools was an
argument for several workshop participants. The list of
AADL tools workshop participants are using is displayed in
the word cloud of Figure 1. This figure also contains words
representing the concerns of the workshop participants when
using AADL. Not surprisingly, and it is easy to see it in
Figure 1, participants expect analysis features on various
aspects while simultaneously keeping mandatory features
such as modeling and code generation services/tools.
Finally, many tools exist for AADL, but one aspect which
was highlighted by workshop participants is the ability of
AADL to build heterogeneous tool-chains (e.g., TASTE,
OSATE, AADLInspector).

3.2 AADL standard review

In the sequel, we enumerate several issues in the AADL
standards which were pointed out by workshop participants.
One of the workshop objectives was to identify the features
that are currently missing in the AADL standards.

First, we must notice that several participants underlined the
(too) large number of features already defined in the AADL
standards. One of the expressed needs by workshop
participants is to instead provide a better formal specification
of the current AADL features and to define and support well-
defined subsets of AADL standards. Some concepts are also
expected to be simplified (e.g. flow specification is seen as
cumbersome). Furthermore, workshop participants also
missed proper documentation of standard constructs and
options, to reduce the learning curve of AADL for beginners.
We see there that improving the current AADL standard but
with the same feature bounding box would be a first user
requirement.

There are however few missing features that were identified
by workshop participants. One of them is about safety and
behavioral specification (e.g. specification of timed/hybrid
behavior in state machines, bridge between behavioral and
safety annexe). Workshop participants also remind that the
standard proposes nothing today to model the physical
environment of the system to implement.

Finally, AADL has extensions mechanisms that can be
solutions for some of the requests discussed during the
workshop, but the spirit of those mechanisms have probably
to be more explained to practitioners. For example,
workshop participants complain about the lack for the
modelling of multi-core systems, machine learning
components, ROS components, specific aspects of virtual
bus or resource binding, while the current AADL standard
provides extension mechanisms to allow users to define their
own domain or application specific properties and property
sets. Assessing that those extensions are able to cope with
the requirements expressed by workshop participants stays
an open question.

3.3 AADL tools issues and expected features

During the workshop, participants have also made a return
of experience on the AADL tools they are using. One of the
main reported issues is the level of compliance to the
standard. Most of the tools cover only a part of the standard

and as it is difficult to extend them by users, such limits
restrict tool applicability. Tool interoperability would be
probably better experimented by tool developers.

An important identified lack is about the relationships
between AADL declarative models and instance models.
There is a need of bi-directional transformation/flow
between AADL declarative and instance models. Most of the
tools only provide transformations from declarative models
to instance models, but few provide the reverse after analysis
for example. Second, an interest for transformation from or
to a graphical representation is also pointed out.

Of course, AADL tools, as any software, are subject to bugs,
deprecated features or release, poor documentation,
unmaintained tools, and it was also pointed out by workshop
participants.

3.4 AADL community

The last topic discussed during the workshop dealt with the
AADL community and what users expect from it.

First, several participants highlighted that it is difficult to
reach other AADL users. There is a demand for Internet
forums animated to share experience, material, problems and
solutions. Workshop participants expressed the needs of
workshops, open source teaching materials, case studies, or
working examples, in fact any materials that contribute to
reducing learning time for AADL newcomers.

Few repositories and websites providing a part of such
AADL material exist however: model repositories and
examples with OpenAADL and AADLib [16], AADL cook
books [17], AADL labs or teaching materials [18, 19, 20],
… Those repositories and websites probably have to be
better advertised but also updated to cope with user’s
expectations.

Workshop participants also raised the interest to continue the
AADL users' days that were taking place during the AADL
standardization committee meetings. It shows that there is
also a need for meetings devoted to users where open source
tools/materials can be presented, demonstrated. An annual
workshop as ADEPT could play that role.

4 Conclusion
AADL is a set of SAE international standards that aims to
improve the quality of the critical embedded systems design.
The AADL standards are now mature. The objective of the
ADEPT workshop was to encourage discussion between
members of the AADL community. ADEPT may be a
location to share experiences on AADL and its ecosystem.
In this article, we summarized the discussions during the first
edition of the ADEPT workshop co-located with the 26th
Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2022) at Ghent, Belgium.

Obviously, we cannot state as representative the return of
experience presented in this article as it is the opinion of 22
workshop participants only. However, the workshop shows
that AADL is an active standard currently used in various
domains in Europe. The workshop pointed out also that the
community lacks events to share experiences on the
standards and its tools.

128 ADEPT 2022 Workshop

Volume 44, Number 2, June 2023 Ada User Journal

Acknowledgments
We would like to thank Ellidiss Technologies who supported
the registration fees for the speakers of the workshop.
References
[1] Architecture Analysis and Design Language (AADL)

AS-5506c: Tech. Rep. The Engineering Society For
Advancing Mobility Land Sea Air and Space,
Aerospace Information Report (2017), Version 2.2.

[2] Jean-Charles Roger, Pierre Dissaux. AADL modelling
with SysML v2. Ada User journal, volume 44, number 1,
March 2023, pages 63-66. Also presented in the ADEPT
2022 workshop, Ghent, Belgium, 2022.

[3] Xiong Xu, Shuling Wang, Bohua Zhan, Xiangyu Jin,
Naijun Zhan, Jean-Pierre Talpin. Unified graphical co-
modeling, analysis and verification of cyber-physical
systems by combining AADL and Simulink/Stateflow.
Ada User journal, volume 44, number 1, March 2023,
pages 67-70. Also presented in the ADEPT 2022
workshop, Ghent, Belgium, 2022.

[4] Zhibin Yang, Zhikai Qiu, Yong Zhou, Zhiqiu Huang,
Jean-Paul Bodeveix, Mamoun Filali.
C2AADL_Reverse: A model-driven reverse engineering
approach for development and verification of safety-
critical software. Ada User journal, volume 44, number
1, March 2023, pages 71-74. Also presented in the
ADEPT 2022 workshop, Ghent, Belgium, 2022.

[5] Alberto Bombardelli, Marco Bozzano, Roberto Cavada,
Alessandro Cimatti, Alberto Griggio, Massimo Nazaria,
Edoardo Nicolodi, Stefano Tonetta, Gianni Zampedri.
COMPASTA: Integrating COMPASS Functionality into
TASTE. Ada User journal, volume 44, number 1, March
2023, pages 75-78. Also presented in the ADEPT 2022
workshop, Ghent, Belgium, 2022.

[6] Patrick Denzler, Daniel Ramsauer, Daniel
Scheuchenstuhl, Wolfgang Kastner. Experiences
Modeling a OPC UA / DDS Gateway in AADL in the
Context of Fog Computing. Ada User journal, volume
44, number 1, March 2023, pages 79-79. Also presented
in the ADEPT 2022 workshop, Ghent, Belgium, 2022.

[7] Gianluca Bardaro, Matteo Matteucci. Modelling robot
architectures with AADL. Ada User journal, volume 44,
number 1, March 2023, pages 80-83. Also presented in
the ADEPT 2022 workshop, Ghent, Belgium, 2022.

[8] Eric Senn, Lucie Bourdon. Modeling ROS based
applications with AADL. Ada User journal, volume 44,
number 1, March 2023, pages 84-87. Also presented in
the ADEPT 2022 workshop, Ghent, Belgium, 2022.

[9] Dominique Blouin, Paolo Crisafulli, Françoise Caron,
Cristian Maxime. An Introduction to ALISA and an
Experience Report on its Usage for an Industrial

Railway System Case Study. Ada User journal, volume
44, number 1, March 2023, pages 88-91. Also presented
in the ADEPT 2022 workshop, Ghent, Belgium, 2022.

[10] Perrotin, Maxime, et al. TASTE: An open-source tool-
chain for embedded system and software development.
Embedded Real Time Software and Systems
(ERTS2012). 2012, France, Toulouse.

[11] Bozzano, M., Cavada, R., Cimatti, A., Katoen, J. P.,
Nguyen, V., Noll, T., & Olive, X. Formal verification
and validation of AADL models. In ERTS2 2010,
Embedded Real Time Software & Systems 2010, May,
France, Toulouse.

[12] Hugues, J., Zalila, B., Pautet, L., & Kordon, F. From the
prototype to the final embedded system using the
Ocarina AADL tool suite. ACM Transactions on
Embedded Computing Systems (TECS), 7(4), 1-25,
2008.

[13] Delange, J., & Feiler, P. Architecture fault modeling
with the AADL error-model annex. In 2014 40th
EUROMICRO Conference on Software Engineering
and Advanced Applications (pp. 361-368). IEEE, 2014.

[14] Singhoff, F., Legrand, J., Nana, L., & Marcé.
Scheduling and memory requirements analysis with
AADL. ACM SIGAda Ada Letters, 25(4), 1-10, 2005.

[15] Ellison, R., Hudak, J., Kazman, R., Woody, C., &
Householder, A. Extending aadl for security design
assurance of cyber physical systems. CMU/SEI, USA,
2015.

[16] AADLib repositories, http://www.openaadl.org/

[17] AADL cook book, http://beru.univ-brest.fr/AACB/

[18] Cyber-Physical Systems Design & Analysis course
teaching, by Georgia Institute of Technology,
https://www.udacity.com/course/cyber-physical-
systems-design-analysis--ud9876

[19] CPS-IoT Summer School 2022,
https://mem4csd.telecom-
paristech.fr/blog/index.php/training-schools/cps-iot-
summer-school-2022/

[20] SEA UE Teaching week 2022, http://beru.univ-
brest.fr/cheddar/contribs/educational/ubo/SEA-
UE_TEACHING_WEEK_2022/LAB/tp.html

[21] F. Cadoret, E. Borde, S. Gardoll and L. Pautet, "Design
Patterns for Rule-Based Refinement of Safety Critical
Embedded Systems Models," 2012 IEEE 17th
International Conference on Engineering of Complex
Computer Systems, Paris, France, 2012, pp. 67-76, doi:
10.1109/ICECCS20050.2012.6299202.

129

Software-based Security Approach for Networked
Embedded Devices

José Ferreira, Alan Oliveira, André Souto, José Cecílio
LASIGE, Departamento de Informática, Faculdade de Ciências da Universidade
Lisboa; email: fc53311@alunos.ciencias.ulisboa.pt,{aodsa,ansouto,jmcecilio}@ciencias.ulisboa.pt

Abstract

As the Internet of Things (IoT) continues to expand, data
security has become increasingly important for ensuring
privacy and safety, especially given the sensitive and,
sometimes, critical nature of the data handled by IoT de-
vices. There exist hardware-based trusted execution en-
vironments used to protect data, but they are not compat-
ible with low-cost devices that lack hardware-assisted
security features. The research in this paper presents
software-based protection and encryption mechanisms
explicitly designed for embedded devices. The proposed
architecture consists of two parts: the Agent, which is
designed to work with low-cost, low-end devices without
requiring modifications to the underlying hardware, and
the Computing Module, which is designed for slightly
more computationally powerful devices. The Comput-
ing Module enables devices to write data in protected
memory and continuously verifies its integrity to provide
protection. Additionally, it utilizes the Agents located
on the device to safeguard device applications against
attacks by requesting the Agent to generate an appli-
cation code signature and validating it. The proposed
solution is an alternative data security approach for low-
cost IoT devices without compromising performance or
functionality. Our work underscores the importance
of developing secure and cost-effective solutions for
protecting data in the context of IoT.

Keywords: IoT Security, Trusted Execution Environment,
Code Protection, Memory Integrity.

1 Introduction
As a result of the Internet of Things (IoT) popularization,
millions of embedded devices are being deployed and con-
nected to the worldwide network [1]. These devices allow
IoT to extend the boundaries of the Internet. At the same
time, they connect digital processes to the physical world [2].
Although the resulting systems create added-value services
for the respective applications, they inherently also bring vul-
nerabilities [3]. The threats must be mitigated since these
systems might collect and process critical and sensitive data.

Among the techniques proposed to protect data are the Trusted
Execution Environments (TEEs). TEEs are designed to pro-
vide mechanisms to protect applications (code and critical
data), ensuring confidentiality and integrity [3]. However,

most existing TEEs proposals rely on hardware [3], such as
Trusted Platform Modules (TPMs) [4], Intel SGX [5] and
ARM TrustZone [6]. Due to cost and size constraints, those
hardware features mainly exist on high-end platforms and
are unavailable on cost-effective and low-end embedded de-
vices [3].

Alternatively, software-based approaches are being proposed,
such as PISTIS [3], Security MicroVisor (SµV) [2], Sof-
TEE [7], and Virtual Ghost [8]. These solutions have some
advantages when compared with hardware-assisted ones. One
advantage is related to update costs. It is easier and cheaper
to update a software-based TEE. Another advantage is hard-
ware portability, given that those TEEs do not require specific
hardware features (such as ARM TrustZone or Intel SGX) [7].
Despite these advantages, most of those software-based se-
cure architectures do not consider hardware-based attacks in
their scheme, i.e., they do not consider scenarios in which
the attacker has access to the device where the application is
running and can change its code.

In the literature, it is possible to find solutions hybrid architec-
tures, i.e., architectures that combine hardware and software
modules to achieve the best of both solutions [9, 10, 11, 12].
Although those solutions offer strong security guarantees
for applications running on low-end devices, to be imple-
mented in those devices, they require hardware modifica-
tion [3]. Hardware modification is impracticable in real-world
scenarios, considering that every device needs the addition of
customized hardware [3], and it is difficult for legacy devices
to take advantage of them [7]. Moreover, the hybrid solution
approaches usually consider that hardware-based attacks are
out of scope.

Considering the lack of hardware security features in low-cost
embedded systems and the benefits offered by software-based
TEEs, this work aims to develop a software-based security
approach for networked embedded devices (SbS4NED) that
provides a set of lightweight mechanisms to protect software
and data integrity (continuously verifying the integrity of
memory) and offer correction in case of unexpected changes.
The application code will also be protected using encryp-
tion. This way, it becomes tamper resistant and offers more
reliability to the verification process. Moreover, it will be
supported by lightweight cryptography algorithms presented
at the National Institute of Standards and Technology (NIST)
competition [13]. In particular, Xoodyak [14], one of NIST’s
finalists, will be used to encrypt data.

Ada User Jour na l Vo lume 44, Number 2, June 2023

130 Sof tware-based Secur i ty Approach for Networked Embedded Devices

Figure 1: SbS4NED architecture. SbS4NED Computing mod-
ules (CM) on the Gateway and SbS4NED Agents on each node
connected to the Gateway.

2 Thread Model and Assumptions
Defining the assumptions about the attacker’s capabilities
and goals, the system’s components and interactions, and the
security goals that need to be achieved are essential. In this
work, we consider adversaries with the following capabilities:

• The adversaries have access to the device. They may
modify the application code running on the device to
read or change the data the application handles.

• The adversaries can sniff the network, modify messages
exchanged between devices, and perform man-in-the-
middle attacks.

• Software-based adversaries may be present on the device
where the architecture will be deployed. Their goal may
be to change the data available in memory and conse-
quently control the entities that rely on data accuracy.

We assume that the SbS4NED is correctly installed on the
devices by a trusted party. We also assume it is bug-free,
encrypted, and working as expected. Therefore, the adversary
can not surpass the code, and the verification process carried
out by its components. The final assumption is that each
device has mechanisms to compute the encryption key used
to protect the local files where SbS4NED keys are stored.

3 Software-based security Architecture
As mentioned in the Introduction, this work aims to build
a software-based tamper-resistant solution that protects the
software and data in networked embedded devices. Driven by
this goal, we design the SbS4NED proposed architecture.

Figure 1 shows a high-level description of the proposed
architecture, where the SbS4NED Computing Module
(SbS4NED_CM) runs inside the Gateway. It is responsible for
monitoring applications running on the nodes connected to the
Gateway. Each node will have an agent (SbS4NED_Agent)
generating the signature of the application code running on the
node and sending it to the SbS4NED_CM for code integrity
check. The SbS4NED_CM and the node code’s application
are encrypted to increase security and to offer more protection
to SbS4NED_CM internal processes. Moreover, the messages
exchanged between SbS4NED_CM and its agent are also en-
crypted. Next, we describe the SbS4NED components:

Figure 2: SbS4NED Modules. CM-specific and Agent-specific
modules, along with Common modules (Key Manager and
Crypto)

• App Manager – It interacts with the applications de-
ployed in the node and aims to perform application up-
dates and send and receive data from the nodes.

• Key Manager – This component is responsible for
managing (i.e., generating and renewing) the keys used
internally by SbS4NED_CM and for external communi-
cation (with a SbS4NED_Agent running on the node).
It uses Diffie-Hellman (DH) key-exchange protocol for
external communication to generate or renew the key.

• Crypto – Provides cryptography services inside the
SbS4NED_CM and the SbS4NED_Agent. It can en-
crypt, decrypt, and compute the message authentica-
tion code (MAC). In the SbS4NED_CM side, the App
Manager can also use this component to encrypt the
compiled app code before sending it to the node. This
way, secure code update is ensured.

• Integrity Checker – Designed for memory in-
tegrity checking. It writes the data from App Manager in
the memory and holds the (randomized) position where
it is written. The Integrity Checker is also responsible
for remotely checking the integrity of the nodes’ code.

• Logger – It is responsible for keeping the log files
updated regarding the memory integrity state, which app
the data came from, which nodes are connected, and any
network activity that must be logged to easily detect if
an attacker is trying to join the network or injecting any
data on the network.

• App Thread – It is used for executing the application
code developed by the user. It offers an API to interact
with the node’s underlying software and hardware layers.
All the interaction must be done using the API to ensure,
for instance, that the exchanged data is encrypted.

The system architecture of SbS4NED_CM and its agents is
illustrated in Figure 2. The figure provides an overview of the
individual components and their interconnections within the
system.

Volume 44, Number 2, June 2023 Ada User Jour na l

J. Fer re i ra et . a l 131

The Key Manager and Crypto components are the essential
modules used in the SbS4NED_CM and also in its agents.
These components are deployed on both sides of the system,
providing the necessary encryption services and ensuring
that data transmitted between the agents and SbS4NED_CM
remain secure and confidential.

The App Manager, Integrity Checker, and Logger are part
of SbS4NED_CM. These must be deployed in the Gateway.
The App Manager plays a crucial role in dealing with the
application code deployed in the agents, providing the neces-
sary services to manage, update, and configure them. On the
other hand, the Integrity Checker ensures that the code and
messages transmitted by the agent are authentic and have not
been tampered with.

3.1 Data Protection
Memory integrity is nowadays a crucial security concern. The
integrity of the data stored in memory is essential to ensure
the system’s proper functioning and to prevent unauthorized
access or manipulation of sensitive information. When data is
written in the memory, two pieces of information are stored:
the value (v) that can be accessed by any other external entity,
such as an actuator, and the data integrity (I) needed to check
the integrity of the data. Data integrity I is computed using
the MAC, and its purpose is to ensure that the data in memory
remains untampered and unmodified. The formula to compute
it is I =MAC(v⊕ t), where t can be a timestamp or a random
number known only to the integrity checker. The position
of the value I in memory is arbitrary, and only the Integrity
Checker knows where it is placed. The choice of MAC over
hash functions is because MAC uses a secret key to generate
the authentication code. Assuming that SbS4NED_CM has
exclusive access to this private key, only authorized accesses
to SbS4NED_CM can generate the correct MAC result. In
contrast, anyone can compute the hash value by identifying
the function used. A secret key prevents anyone from com-
puting the hash value and faking the integrity data. This way,
SbS4NED_CM provides a strong level of security against
malicious attacks to the memory and an easy and efficient
verification of the memory’s integrity.

3.2 Application Protection
Besides confidentiality protection provided by encryption,
the application code is locally stored in the node and de-
crypted only during execution. Application code also has
integrity protection to ensure it remains unmodified even
when other parties can access the node. To check the code’s
integrity, a challenge-response protocol is used, in which the
SbS4NED_CM will send enc(t), an encrypted challenge to
the node, where t can be a timestamp or a value randomly
generated by the SbS4NED_CM. The node has to reply with
the hash of the whole application code (ac) XOR-ed with t,
i.e., enc(hash(ac ⊕ t)). Then, the SbS4NED_CM checks
the validity of the result. If the node fails the validation,
SbS4NED_CM could force an update to restore the node
application. If the node gives no response, SbS4NED_CM
assumes that the node is lost or compromised and its data is
dropped.

3.3 Keys Renewal
A renewal cycle mechanism can extend the system’s lifetime.
Therefore, before any application update, the key used to
encrypt the application code and for communication between
the SbS4NED_CM and node is renewed using a DH proto-
col. However, the application could take a long time without
needing an update. Therefore, the node is provided with an
encryption application code, and the SbS4NED_CM can ini-
tialize the DH key exchange with the node to generate the new
key even when there is no call of the functionally. The gener-
ated key will be used to renew the encrypt of the application
code and in further communication with SbS4NED_CM.

3.4 Encryption Algorithms
Since the proposed architecture uses an encryption algorithm
and targets low-end devices, the algorithms that can be used
must be lightweight, including the cryptographic ones. Thus,
this architecture will use NIST lightweight encryption algo-
rithms to protect code and data during message exchange [13].
Although by the time of writing this manuscript, the final
stage of the NIST competition comprises ten finalists, we are
only interested in algorithms that can deal with stream encryp-
tion. The main reason is that we want the encrypted code and
messages to have the same size as the original ones. Among
the ten finalists, few support stream encryption natively. For
the SbS4NED architecture, Xoodyak and ISAP schemes with
keyed mode association are considered. Since the SbS4NED
architecture is modular, other algorithms may also be used.

4 Proof of concept
To verify and characterize the proposed architecture, we are
currently implementing it. We plan to deploy the architecture
in a prototype, enabling system testing in a distributed envi-
ronment. The prototype will consist of a Gateway on which
the SbS4NED_CM will be running, with connections to mul-
tiple nodes where the SbS4NED agents and applications will
be deployed. By conducting tests in a distributed environment,
we can ensure that the architecture can effectively handle the
communication and data exchange requirements between the
Gateway and the nodes. Additionally, we will be able to iden-
tify potential issues or limitations during deployment, which
will help us refine the architecture further.

During the early stages of designing the proposed architecture,
we conducted experiments using two NIST lightweight en-
cryption algorithms, ISAP and Xoodyak, to determine which
would be more suitable for our research. Our experiment
used a Raspberry Pi Model 3+ platform with a Quad-core
@1.4GHz and 1GB LPDDR2 SRAM. We tested both algo-
rithms for their execution time and memory usage using the
same key length of 16 bytes, a nounce of 16 bytes, and file
sizes from 1 to 65 kilobytes (kB) (Figure 3). The tests also
included both the encryption (Figure3a) and decryption (Fig-
ure 3b) processes.

Our experiment shows that Xoodyak was more suitable for
our research than ISAP in terms of both average execution
time and memory usage. The average execution time for
Xoodyak was consistently lower, especially for larger file
sizes (generally, Xoodyak is 30 to 60 times faster than ISAP
with a maximum standard deviation of 0.004 ms). Moreover,

Ada User Jour na l Vo lume 44, Number 2, June 2023

132 Sof tware-based Secur i ty Approach for Networked Embedded Devices

(a) [ISAP] and [Xoodyak] Encryption.

(b) [ISAP] and [Xoodyak] Decryption.

Figure 3: [ISAP] and [Xoodyak] Encryption and Decryption
Average Execution Time [ms] on Raspberry Pi 3+. Based on
Different File Sizes.

both algorithms required about 370 kb of RAM to perform
encryption and decryption tasks. It was noticed that file size
does not affect the algorithm’s memory usage. In summary,
our experiments with ISAP and Xoodyak algorithms, con-
ducted on a Raspberry Pi Model 3+ platform, helped us to
determine which algorithm is more suitable for our research.

5 Conclusion
This work proposes a software-based secure execution envi-
ronment architecture that is lightweight, requires no hardware
modifications and is resistant to the most common hardware
attacks. Currently, this architecture is being implemented
as a proof of concept. After the implementation, tests will
be conducted to analyze its performance and characterize its
efficiency.

Acknowledgments
This work was supported by the LASIGE Research Unit (ref.
UIDB/00408/2020 and ref. UIDP/00408/2020), and by the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871259 (ADMORPH
project).

References
[1] M. Ammar and B. Crispo, “Verify&revive: Secure de-

tection and recovery of compromised low-end embed-
ded devices,” in Annual Computer Security Applications
Conference, (New York, NY), p. 717–732, ACM, 2020.

[2] M. Ammar, B. Crispo, B. Jacobs, D. Hughes, and
W. Daniels, “Sµv—the security microvisor: A formally-
verified software-based security architecture for the in-
ternet of things,” IEEE Transactions on Dependable and
Secure Computing, vol. 16, no. 5, pp. 885–901, 2019.

[3] M. Grisafi, M. Ammar, M. Roveri, and B. Crispo, “PIS-
TIS: Trusted computing architecture for low-end em-
bedded systems,” in 31st USENIX Security Symposium,
(Boston, MA), pp. 3843–3860, Aug. 2022.

[4] T. C. Group, “TCG specification architecture
overview.” https://trustedcomputinggroup.
org/wp-content/uploads/TCG_1_4\
_Architecture_Overview.pdf, 2007. [On-
line - Accessed on 11-11-2022].

[5] V. Costan and S. Devadas, “Intel sgx explained.” Cryp-
tology ePrint Archive, Paper 2016/086, 2016. https:
//eprint.iacr.org/2016/086.

[6] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and
S. Martin, “Trustzone explained: Architectural features
and use cases,” in 2nd IEEE Int. Conf. on Collaboration
and Internet Computing, pp. 445–451, 2016.

[7] U. Lee and C. Park, “Softee: Software-based trusted exe-
cution environment for user applications,” IEEE Access,
vol. 8, pp. 121874–121888, 2020.

[8] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost:
Protecting applications from hostile operating systems,”
SIGARCH Comput. Archit. News, vol. 42, p. 81–96, feb
2014.

[9] I. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner,
and G. Tsudik, “VRASED: A verified Hardware/Soft-
ware Co-Design for remote attestation,” in 28th USENIX
Security Symposium, (Santa Clara, CA), pp. 1429–1446,
2019.

[10] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik,
“Smart: Secure and minimal architecture for (establish-
ing a dynamic) root of trust,” in 19th Annual Network
and Distributed System Security Symposium, February
5-8, San Diego, USA (ISOC, ed.), (San Diego), 2012.

[11] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadhara-
jan, “Trustlite: A security architecture for tiny embed-
ded devices,” in Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, (New
York, NY, USA), ACM, 2014.

[12] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachs-
mann, and P. Koeberl, “Tytan: Tiny trust anchor for
tiny devices,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6, 2015.

[13] NIST, “Lightweight cryptography.”
https://csrc.nist.gov/projects/
lightweight-cryptography. Accessed:
2022-12-04.

[14] J. Daemen, S. Hoffert, S. Mella, M. Peeters, G. Van Ass-
che, and R. Van Keer, “Xoodyak, a lightweight crypto-
graphic scheme,” NIST, 05 2021.

Volume 44, Number 2, June 2023 Ada User Jour na l

133

Cooperative Autonomous Driving in Simulation

Gonçalo Costa, José Cecílio, António Casimiro
LASIGE, Departamento de Informática, Faculdade de Ciências da Universidade de
Lisboa; email: fc53352@alunos.ciencias.ulisboa.pt,{jmcecilio, casim}@ciencias.ulisboa.pt

Abstract

Autonomous driving is an area that has been growing
in recent years. However, cars are unprepared to coop-
erate with others nearby, wasting resources and compu-
tational power. Thus, cooperative autonomous driving
reveals its importance in the future. In this work-in-
progress paper, we define, implement and test an archi-
tecture for a simulation environment where cooperative
autonomous driving protocols can be tested. Addition-
ally, a Manoeuvre Negotiation Protocol is implemented.
This protocol will make an existing autonomous driv-
ing (AD) stack more resilient in real driving scenarios,
improving its robustness and safety.

Keywords: Autonomous Driving stack, Simulator, Ma-
noeuvre Negotiation Protocol, SVL, Apollo

1 Introduction
With the increase in the number of vehicles present on the
roads [1], it became necessary to research autonomous driv-
ing, not only to allow better traffic management on the road
and thus reduce travel time but also to reduce the number of
accidents and, consequently, the amount of money dispended
for health recovering [2].

According to the Society of Automotive Engineers (SAE),
there are five levels of automation [3]. At level 1, most com-
ponents are controlled by the human driver, and only some
essential functions are automated (computer controlled). In
contrast, at level 5, the vehicle is fully autonomous, with all
controls being automated, without any human driver inter-
vention or dependence [2, 4, 5]. Currently, the highest level
of automation used in commercialized vehicles is between
level 2 and level 2.5, in which vehicles are autonomous up
to a certain point, requiring human intervention in adverse or
extreme situations [4].

Vehicle to Everything (V2X) is a concept that is very com-
mon in the area of autonomous driving and refers to commu-
nication between vehicles (V2V) and communication with
infrastructures (V2I). The V2X system is crucial for iden-
tifying and analyzing obstacles and phenomena, which are
then communicated to other vehicles and infrastructures. This
way, drivers can learn information without observing it in
person, which improves driving safety [6]. Subir et al. [7]
reinforce using V2V and V2I communication, addressing the
topic of Cooperative Collision Avoidance. This article indi-
cates the advantages of using broadcast messages instead of
performing a specific routing.

However, over these years of evolution towards autonomous
driving, there has been a significant increase in the number
of sensors and cameras in vehicles, increasing the number
of cables and data buses crucial for passing and sharing data.
Furthermore, the code required for all these components to
work correctly is extensive and increasingly complex, which
can put reliability at risk. Finally, the increasing technology
in vehicles requires more computational power [4] since they
comprise a lot of sensors that generate a considerable amount
of data to be processed quickly.

This approach of putting as much technology as possible into
vehicles refers to scenarios where each vehicle reacts to the
surrounding environment. Despite being a viable approach for
the present, we must consider that in a future where all vehi-
cles are considered autonomous, there will be a considerable
waste of computation since all the vehicles will be performing
the same processing of the environment surrounding them [4].

The advantages of cooperative autonomous driving systems
have already been demonstrated and discussed in [7]. How-
ever, its implementation is not addressed. One of the main
difficulties is the costs associated with installing and testing
those systems in actual vehicles, in which the prices of cars
and infrastructure are too high [7, 8, 9, 10, 11]. Another diffi-
culty associated with the implementation is the high number
of hours that would have to be devoted to testing the algo-
rithms on the roads, with algorithms that require hundreds
of hours of testing in different conditions (e.g., atmospheric
conditions). This makes the process very complicated to carry
out [8, 9, 10].

Considering all difficulties, the one that makes the entire im-
plementation process very difficult refers to the safety condi-
tions of humans, in which many tests involve pedestrians and,
in general, all tests carried out on the road can compromise the
life of any pedestrian who is present in the vicinity [8, 10, 11].

According to the ISO/PAS 21448:2019 [12] standard, several
safety measures were created to guarantee safe conditions
while testing autonomous driving algorithms and protocols.
Thus, using simulators of real environments to test algorithms
and protocols became necessary since we can virtually test
any condition without creating dangerous situations. The
main advantage of simulators is the ability to change reality
for the different tests that the algorithms need to be trained
and evaluated [8, 10, 11]. The work in [10] used the CARLA
simulator to train a driving policy through Reinforcement
Learning to test it in the real world later. As such, they
recreated the route in the simulator and trained the system ac-
cording to the real-world scenario. The work done in [13] also

Ada User Jour na l Vo lume 44, Number 2, June 2023

134 Cooperat ive Autonomous Dr iv ing in Simula t ion

presents a protocol for vehicle coordination and implements it
using the V-REP simulator. The author then conducted some
tests on the protocol, namely implementing purposeful com-
munication failures, to verify the protocol’s robustness. All
these works indicate methods to test algorithms and protocols,
maintaining the security of people and infrastructures.

This work will explore the advantages of cooperative driving
systems, where vehicles can cooperate in the surrounding
environment. We will use a simulator to implement and
test a cooperative protocol for manoeuvre interception. The
protocol was designed to guarantee greater safety conditions
for each vehicle while reducing the construction complexity
and code necessary for correct operations [14]. This work
helps to remove the human factor in driving through vehicle
control and decision-making, improving vehicle efficiency
and safety. This work is also motivated by the need to test the
protocol in different scenarios to observe its behavior. Using
failure scenarios to analyze their impact on the protocol is
crucial. It is also essential to consider real-world factors such
as message losses, latency variations, and malicious behaviors
that can influence the autonomous driving system [4, 5, 7, 8,
10, 11].

This work uses a realistic simulator (SVL [15]) to demonstrate
immersively how the entire architecture works. It allows the
simulation of a driving scenario, considering other vehicles,
pedestrians, traffic signs, and traffic rules. Furthermore, each
vehicle corresponds to an instance of the Apollo autonomous
driving stack [16], along with the protocol proposed in [14]. A
network simulator is also integrated to recreate real conditions
for introducing failures.

2 Autonomous Driving Protocol
The Manoeuvre Negotiation Protocol used [14] is based on a
solution where vehicles have different priorities, depending
on the manoeuvre they intend to perform. However, to avoid
a scenario where vehicles wait indefinitely to manoeuvre,
a lower-priority vehicle can increase its priority and carry
out the manoeuvre it wants to perform. Suppose the time
to complete the manoeuvre is less than the time the higher-
priority vehicle takes to reach the intersection. In that case,
the vehicle can increase its priority and make the intersection.

The protocol was designed to handle specific conditions, like
Priority Violation. It is considered that there has been a
Priority Violation when a vehicle that has increased its priority
cannot complete the intersection, causing vehicles with higher
priorities to be unable to perform normal traffic behaviour.
To prevent this, the protocol predicts the time for the vehicle
to reach the intersection and pass the intersection. Suppose
the time interval of the passing vehicle intersects the time
interval of the vehicle present on the road of the intersection.
In that case, the protocol will not allow the vehicle to cross
the intersection.

Each vehicle (pi) also has a membership that indicates to
other vehicles, with higher priority, that it intends to perform
a manoeuvre.

The protocol updates the membership every TM unit of time.
It is also responsible for calculating which vehicles have

higher priority than pi and which can reach the intersection
during the execution of the manoeuvre. This way, the protocol
is prepared for different types of intersections (ex, three-way
or four-way intersections). Timestamps are used to check the
correctness of the membership to guarantee security. Finally,
the value of Manoeuvre Opportunity (MO) is determined,
which only becomes True if all vehicles with the highest
priority are within the communication range. The vehicle is
in an admissible crossing opportunity if the membership is
empty and fresh.

This protocol is also responsible for describing vehicles’
states and messages when carrying out a manoeuvre and
scenarios where messages may not reach the intended des-
tination due to network failures. Before any vehicle wants
to carry out a manoeuvre, it must connect to the server and
store its information (e.g., location). Then, this information
is used to create the membership. When a vehicle intends to
perform a manoeuvre, it invokes the tryManoeuvre procedure,
which generates a request tag, including the timestamp when
the request was made, the requester ID, and the manoeuvre to
be performed.

Next, the vehicle checks its state, and if it is in the NORMAL
(no manoeuvre is being performed) or TRYGET state (agent
intends to execute a manoeuvre), it invokes the Membership
Algorithm (MA). If the vehicle can perform the grant request
after invoking the MA, it sends it and starts a timer named
tRETRY. Suppose the vehicle receives all responses with the
GRANT message (sent when the agent accepts the required
manoeuvre). In that case, the vehicle changes its state to
EXECUTE and executes the manoeuvre. Otherwise, it sends
a RELEASE message (sent when the vehicle intends to revoke
the GRANT) to the agents that granted him, changes its state
to TRYGET, and starts the tRETRY command for a new round,
avoiding a deadlock situation. If the vehicle does not receive
all the responses within the tRETRY time, the vehicle changes
its state to TRYGET and executes the tryManoeuvre procedure
again.

In a scenario where the vehicle is in the GRANT state (vehicle
gives in to another to perform a manoeuvre) but wants to
perform a manoeuvre, it switches to the GRANTGET state
(vehicle gives a GRANT message but intends to perform
a manoeuvre) and will invoke the tryManoeuvre procedure
when it receives a RELEASE message.

This protocol also covers scenarios where communication can
fail. If the RELEASE message does not reach the vehicles,
they check the vehicle’s last position to whom the GRANT
message was sent and inferred, using sensors, whether it is
outside the intersection or not. The protocol can also discard
messages sent in previous rounds to avoid interfering with the
current round.

3 Autonomous Driving Simulator
Regarding the simulator, it was decided to choose the SVL
simulator [15] because it is open source, largely customizable,
and has a realistic graphics engine that can be easily extended.
In addition, the SVL allows the creation of modules that can
be used to establish communication between vehicles, being

Volume 44, Number 2, June 2023 Ada User Jour na l

G. Costa , J. Cecí l io, A. Cas imi ro 135

MNP_A MNP_I
BROKER

Vehicle 1
PUB

SUB

PUB

SUB

PUB SUB

Membership Service

Apollo

SVL

MNP_A MNP_I

Vehicle 2

Apollo

MNP_A MNP_I

Vehicle 3

Apollo

Figure 1: Architecture of the simulator

crucial for the work. Regarding the simulator’s architecture,
SVL has a section responsible for loading the map, vehicles,
sensors, and environmental settings. The SVL is then respon-
sible for sending the results obtained by the sensors to the AD
Stack. After receiving inputs from the SVL, the Autonomous
Driving (AD) Stack is responsible for applying the protocol
and updating the vehicle status in the SVL. This update cor-
responds to the manoeuvre or strategic route changes by the
vehicle. There is also a Visual section that receives the output
of the SVL, corresponding to the vehicle circulating on the
road according to the actuators provided by the AD stack.

Regarding the AD stack, the Apollo stack is used since it is
easily incorporated with the SVL, which makes the implemen-
tation of the protocol much easier. Apollo runs inside a docker
container, making it possible to create multiple instances of
Apollo, each corresponding to an autonomous vehicle.

Figure 1 represents the system architecture implemented in
this work. It comprises modules corresponding to the Ma-
noeuvre Negotiation Protocol, the Apollo AD stack, and the
network simulator used to conduct communication tests be-
tween the different vehicles.

In our architecture, each vehicle comprises an Apollo AD
stack, a Manoeuvre Negotiation Protocol Agent (MNP_A)
and a Manoeuvre Negotiation Protocol Instance (MNP_I).
The MNP_A fetches data from the Apollo AD stack and
sends it to MNP_I. Then, MNP_I updates the membership,
applies the protocol, and returns the protocol commands to
the Apollo AD stack through the MNP_A. All the MNP_I
and the membership are connected to a broker. This broker
implements pub/sub mechanisms to support the integration of
multiple vehicles in a seamless way. All vehicles registered on
the broker can use the protocol since the messages exchanged
are broadcasted to a specific topic that everyone is subscribed
to. The protocol also defines specific message types to update
the membership. Access to these topics is restricted to the
Membership Service.

Lastly, all the vehicles are connected to the SVL simulator to
represent their status.

4 Implementation of the Simulator
Implementing the architecture defined in Figure 1, requires
docker since the Apollo AD stack runs inside a docker con-
tainer. In our implementation, there are two containers per
vehicle: one that supports and runs Apollo and another con-
tainer responsible for the protocol’s operation. In each Apollo
instance, the Planning and Control modules connect to the
MNP_A module to receive information about the vehicle,
such as speed, position, acceleration, and trajectories.

The connection between MNP_A and MNP_I is made by
sending UDP messages. Then, MNP_I uses MQTT topics
to communicate with the broker and other vehicles to create
safe manoeuvres. Each MQTT message includes specific
information concerning the intention of each vehicle. For
instance, if a vehicle intends to start a manoeuvre, it must
publish a message with the vehicle identification (vehicle ID),
a timestamp, a manoeuvre code, and the trajectory.

All instances are subscribed to the same topic. The vehicles
filter each message, and if it corresponds to a message sent
by itself, it is discarded. If the vehicle ID is different, the
message is processed by the MNP_I module, allowing it to
change the values of acceleration, velocity, and trajectory of
the vehicle. If necessary, it sends updated information to the
MNP_A module, which will update the information inside the
Apollo container by changing the information in the Control
module and completing the execution flow.

Finally, the communication between Apollo and SVL sim-
ulator is done through a network bridge. This bridge refers
to the local host if the entire simulation is performed on one
machine. Otherwise, the bridge refers to the IPv4 address
of the machines running the Apollo stack. In this way, SVL
supports multiple systems connected simultaneously.

Ada User Jour na l Vo lume 44, Number 2, June 2023

136 Cooperat ive Autonomous Dr iv ing in Simula t ion

The entire architecture can be implemented in a single ma-
chine. However, it requires a machine with a considerable
amount of graphics and processing power to process the sen-
sor results in the AD stack and to render the world in which
the cars are. In addition, in the implementation carried out in
this work, multiple autonomous vehicles will be used. They
will receive and process data, increasing the requirements for
a machine to process the simulation. Thus, it is important to
spread the processing across several machines when needed.

5 Conclusion
This work proposes an architecture to develop a simulator
for testing cooperative autonomous driving protocols. The
solution comprises integrating an autonomous driving stack
and the SVL simulator that represents the environment and
the physical conditions/status of the sensors presented in the
vehicles, as well as integrating a cooperative autonomous
driving protocol. In the prototype developed, two vehicles
were considered, and we concluded that the simulator requires
a machine with a considerable amount of graphics and pro-
cessing power, which may suggest spreading the processing
across several machines if more vehicles are considered. We
intend to test the functioning of the protocol by evaluating
possible collisions between vehicles when going through the
intersection. We also plan to insert hundreds of vehicles in
the same intersection to observe the protocol’s behavior and
latencies to reach a consensus regarding access to the intersec-
tion. We also intend to test the functioning of the architecture
by adding several vehicles to verify the performance of the
membership service and the latency in the generation of mem-
berships. In addition, we intend to compare the behavior of
vehicles in a simulation without using the architecture and
with the use of the architecture to verify the improvements
associated with the safety and organization of the vehicles.
Finally, tests that measure the consumption of machine re-
sources when the architecture is running are essential to verify
its efficiency.

Acknowledgments
This work was supported by the LASIGE Research Unit (ref.
UIDB/00408/2020 and ref. UIDP/00408/2020), and by the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871259 (ADMORPH
project).

References
[1] J. Dargay and D. Gately, “Income’s effect on car and

vehicle ownership, worldwide: 1960–2015,” Transporta-
tion Research Part A: Policy and Practice, vol. 33, no. 2,
pp. 101–138, 1999.

[2] S. Mariani, G. Cabri, and F. Zambonelli, “Coordination
of autonomous vehicles: taxonomy and survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 1, pp. 1–33,
2021.

[3] SAE, “Taxonomy and Definitions for Terms Related
to Cooperative Driving Automation for On-Road Mo-
tor Vehicles.” https://www.sae.org/standa
rds/content/j3216_202107, 2023. [Online;
accessed 16-May-2023].

[4] J. Wang, J. Liu, and N. Kato, “Networking and com-
munications in autonomous driving: A survey,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 2,
pp. 1243–1274, 2018.

[5] I. Yaqoob, L. U. Khan, S. A. Kazmi, M. Imran,
N. Guizani, and C. S. Hong, “Autonomous driving cars
in smart cities: Recent advances, requirements, and
challenges,” IEEE Network, vol. 34, no. 1, pp. 174–181,
2019.

[6] A. Abacus, “Vehicle-to-everything (V2X) communica-
tion – the design engineer’s guide.” https://www.
avnet.com/wps/portal/abacus/solution
s/markets/automotive-and-transportat
ion/automotive/communications-and-c
onnectivity/v2x-communication/, 2023.
[Online; accessed 7-February-2023].

[7] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-
vehicle wireless communication protocols for enhancing
highway traffic safety,” IEEE communications magazine,
vol. 44, no. 1, pp. 74–82, 2006.

[8] J. Seymour, Q.-H. Luu, et al., “An empirical testing of
autonomous vehicle simulator system for urban driving,”
in 2021 IEEE International Conference on Artificial
Intelligence Testing (AITest), pp. 111–117, IEEE, 2021.

[9] D. Zhao, Y. Liu, C. Zhang, and Y. Li, “Autonomous driv-
ing simulation for unmanned vehicles,” in 2015 IEEE
Winter Conference on Applications of Computer Vision,
pp. 185–190, IEEE, 2015.

[10] B. Osinski, A. Jakubowski, P. Zięcina, P. Miłoś,
C. Galias, S. Homoceanu, and H. Michalewski,
“Simulation-based reinforcement learning for real-world
autonomous driving,” in 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 6411–
6418, IEEE, 2020.

[11] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun, “Carla: An open urban driving simulator,” in
Conference on robot learning, pp. 1–16, PMLR, 2017.

[12] ISO, “ISO/PAS 21448:2019(en) Road vehicles — Safety
of the intended functionality.” https://img.auto
-testing.net/testingimg/202003/19/07
1723321.pdf, 2023. [Online; accessed 7-February-
2023].

[13] J. P. V. Pinto et al., Design and implementation of a
protocol for safe cooperation of self-driving cars. PhD
thesis, 2019.

[14] A. Casimiro, E. Ekenstedt, and E. M. Schiller,
“Membership-based manoeuvre negotiation in au-
tonomous and safety-critical vehicular systems,” arXiv
preprint arXiv:1906.04703, 2019.

[15] SVL, “Introduction.” https://www.svlsimulat
or.com/docs/getting-started/introdu
ction/, 2022. [Online; accessed 9-December-2022].

[16] Apollo, “Apollo Platform.” https://developer.
apollo.auto/developer.html, 2022. [Online;
accessed 12-December-2022].

Volume 44, Number 2, June 2023 Ada User Jour na l

137

Achieving Crash Fault Tolerance in Autonomous
Vehicle Autopilot Software Stacks Through
Safety-Critical Module Rejuvenation

Federico Lucchetti, Marcus Voelp
Critical and Extreme Security and Dependability Group (CritiX), Interdisciplinary Centre for Security Reliability and
Trust, University of Luxembourg, Luxembourg; email: {federico.lucchetti,marcus.voelp}@uni.lu

Abstract

Autonomous driving vehicles (ADV), have been in recent
years, victims of their own success. Through their use of
increasingly sophisticated sensor modalities and deep
learning capabilities, ADVs have not only learned how
to probe their chaotic environment with higher gran-
ularity coupled with smooth trajectory execution but
also inherited all the vulnerabilities that were hiding
behind these new features. Ensuring the safety of ADVs
is crucial since a simple fault along their underlying au-
topilot software stack can lead to catastrophic accidents
with the loss of human lives. Therefore we propose a
crash-fault tolerant scheme that can be triggered when-
ever a crash fault of the safety critical submodules of
the autopilot software stack is detected, which executes
an emergency trajectory and effectively steers the car
into a safe spot where the autopilot can be rejuvenated.
We implement and evaluate the efficacy of this recovery
scheme in the Apollo ADV software stack in conjunction
with the SVL simulator. Keywords: autonomous driving
vehicles, rejuvenation, crash fault tolerance, simplex
architecture, apollo software stack.

1 Introduction
Autonomous driving vehicles (ADVs) have become more
advanced in recent years, incorporating advanced features
such as deep neural networks and intricate obstacle prediction
modules. These developments are crucial to the success of
computer vision algorithms, precise ADV trajectory planning,
and smooth control algorithms, and have raised the level of
driving automation to new heights. However, this increasing
sophistication also comes with a downside. The growing
complexity of ADVs increases their vulnerability to malicious
intrusions and introduces new potential faults, which can lead
to dangerous and even deadly outcomes.

Another limitation is that the autonomous driving software
stack is typically regarded as reliable and expected to with-
stand accidental failures and cyber-attacks, which lately have
become increasingly more advances. This assumption places
an additional constraint on the development of autonomous
driving technology, as it must be designed to be highly robust
and resistant to potential security breaches.

Indeed, ADVs have been involved in numerous tragic inci-
dents over the past two decades. One major contributing
factor to these accidents has been unintended accelerations
(UA), which have resulted in the deaths of 89 individuals [1].
Such behaviors can have two possible origins: they may result
from an accidental internal fault or the absence of a fail-safe
mechanism, or they may be intentionally provoked by a mali-
cious attacker [2].

The adoption of ADVs on a large scale depends on convincing
human drivers of their reliability. Therefore, the resilience
of ADVs must play a critical role in ensuring their effective
adoption by the general public. It is inevitable that faults
will occur at any level, so it is crucial to equip ADVs with
mechanisms that enable them to tolerate these faults. In
the event of faults, a responsibility gap arises, in which it
is unclear who can be held responsible for any unintended
catastrophic outcomes. This gray zone is even wider due to
the over-reliance of modern ADV modules on artificial neural
networks (NN) whose safety and reliability properties are
seldom studied in conjunction with the entire ADV software
stack [3].

In addition to their black-box nature, NNs are susceptible
to common faults that can originate from either software
or hardware issues [4]. In the former, malicious intruders
can reprogram, evade, or data-poison NNs during either the
inference or training phase [5, 6, 7]. In the latter case NNs
can for instance be targets of single-event upsets leading to
permanent or transitory faults such as stuck-at or bit-flip types
which can alter the parameter space of the NN or cause an
erroneous computation of hidden layers’ activation functions
[8].

Similarly, sensors are not immune to attacks. Malicious actors
can modify the lane-keeping system by installing dirty road
patches, causing the ADV to drift out of its lane [9]. Jamming
the camera modules or executing LIDAR spoofing attacks in
order to inject false obstacle depth can lead to false sensor
data and cause the ADV’s data processing chain to compute
erroneous control commands [10, 11]. In these cases, the
health of the sensors remains uncompromised, and traditional
fault detection schemes are unable to detect the attacks.

Autonomous driving software stacks, such as Apollo Baidu,
typically consist of a series of interconnected modules that

Ada User Jour na l Vo lume 44, Number 2, June 2023

138 Crash Faul t To lerance in Autonomous Vehic le Sof tware

process information sequentially in a event-triggered manner.
Sensor values are gathered and processed in the prediction
module, then forwarded to the prediction module for obstacle
trajectory prediction. A planning module computes the safest
and shortest trajectory given the constraints forwarded by
the prediction module. The ADV trajectory coordinates are
translates into control commands by the control module and
sent to the electronic control unit (ECU) for actuation. Due
to the downstream interdependence of these modules and the
causal interlinking of the computation and safe execution of
control commands, the failure of an intermediary module can
propagate throughout the information processing chain and
result in unforeseen behaviors.

To mitigate the risk of single points of failure in ADV soft-
ware, efforts have been made to employ redundancy by gath-
ering data from multiple sources, such as RGB cameras, LI-
DAR, and RADAR, and fusing it to minimize the impact
of a faulty device [12]. However, redundancy comes at an
additional computational cost, and certain modules, such as
GPU-resource greedy NNs, cannot be easily replicated. Other
have developed adaptive control algorithms and equipped sen-
sor fusion modules with fault detection capabilities to enhance
the overall fault tolerance of ADVs [13]. However, validating
ADV software in a real physical environment is costly and not
scalable for all possible driving scenarios. Therefore, inter-
facing physics simulators like SVL [14] with ADV software
stacks is crucial to ensure quality assurance in the automotive
sector as required by the evolving standard ISO 21448: Safety
of the Intended functionality [15].
1.1 Related Work
The studies referenced in [12] and [13] investigated fault tol-
erance in ADV systems. The former focused on fusing data
from different sensor modalities to mask potentially faulty
outputs, while the latter developed a model adaptive control
algorithm with fault detection capabilities to enhance overall
fault tolerance. Abad et al. [16] studied the safety conditions
for recovering software-faulty modules in cyber-physical sys-
tems, while Abdi et al. [17] proposed a system-wide restart
method that leveraged system inertia to prevent destabiliza-
tion. The efficacy of redundancy was studied and applied
to individual neurons in trained NNs to increase fault toler-
ance [18], and Khunasaraphan et al. [19] developed a tech-
nique for quickly restoring weights and recovering the entire
NN after fault detection.

In this work we plan to design a resilience scheme that recov-
ers the full safety critical features of the ADV software stack
through rejuvenation after having triggered upon fault detec-
tion an emergency trajectory execution mechanisms which
steers the ADV into a safe spot.

The recovery method proposed in this paper belongs to the
category of shallow recovery methods, which aim to repair
faulty components of a CPS with minimal or no operation
on the system states. For instance, Abad et al. developed a
technique that restarts a failed component and replaces it with
a healthy one [16], while Shin et al. suggest leveraging re-
dundancy to fuse the output of multiple replicas and isolating
and restarting the origin of the faulty contribution upon attack
detection [20].

2 Emergency Recovery Scheme
2.1 System Model
We refer to a standard ADV architecture and which can be
delineated as a succession of cascading modules:

• Perception system comprising sensors (cameras, LIDAR,
localization) and computer vision tools to first fuse dif-
ferent sensor modalities and then detect, classify sur-
rounding obstacles.

• Prediction module predict through the use of trained
neural networks, the trajectories of previously detected
obstacles.

• Planning task outputs a spatio-temporal ADV trajectory
latest prediction output and a selected destination point.

• Control task computes the required steering, braking and
throttling commands in order to execute the received
ADV trajectory in a stable fashion.

• Electronic control unit (ECU) actuates the computed
control commands.

2.2 Fault Model
In analyzing the ADV architecture shown in the top half of
Figure 2, it becomes clear that each module within the system
represents a single point of failure. This means that any
fault occurring in one module can result in either an incorrect
computation by subsequent modules or a delay and/or absence
in the transmission of information, ultimately leading to the
disruption of the ECU’s ability to generate accurate and timely
control commands. GPU greedy algorithms such as obstacle
classification and prediction that power the perception and
prediction modules, make this part of the software stack not
only safety-critical to the safe maneuver execution of the
ADV but are also highly vulnerable to potential faults. We
consider in this work only software based crash fault i.e. non-
responsiveness in the perception and/or prediction modules
or time delayed attacks [21] performed on any of the task
which all together can lead to missing or delayed information
forwarded to the subsequent modules. We assume that this
type of fault can be detected with high coverage by setting a
hard deadline on the periodic execution time of the control
task.

2.3 Emergency Maneuver
In order to tolerate the type of crash fault laid out in out fault
model without the need to investigate its source, we propose
to instantiate a parallel and more lightweight software stack
following a simplex architecture [22]. The latter is devoid of
the fault-prone perception-prediction module complex and is
composed of a simpler planning module and a replica of the
original control module. We refer to the lightweight planning
module as the simplex-planning module whose task is to
compute at every moment a potential trajectory to the nearest
safe spot e.g. an emergency lane on a highway or a parking
spot (see Figure 1).

A switch reads at every processing cycle the output of both
the original and simplex stack, and by default forwards the
commands of the original module to the ECU. If a crash of
the original stack is detected via a missing or delayed control

Volume 44, Number 2, June 2023 Ada User Jour na l

F. Lucchet t i 139

Figure 1: Emergency parking. A module crash is detected at
time tF which triggers the simplex-planning module to compute
a trajectory into the safe spot area (green) where the whole
autopilot software stack can be rejuvenated.

command, the switch forwards the control commands of the
simplex stack to the ECU which steers the ADV into a safe
spot. Once the car is at a given safe spot, a reboot signal is
sent to the original software stack and consequently triggering
a rejuvenation of the latter. This is schematically represented
on Figure 2. While freshly rebooting a new stack during
which all the software components have been re-instantiated
from a trusted source (e.g. original NN weights are loaded
into GPU memory and control algorithms are rejuvenated
with new internal states) we exclude intermittent software
faults to be resolved by this procedure.

To ensure the safe execution of this type of emergency ma-
neuver, it is necessary to assume that the ADV is always near
a safe lane, such as on a highway, and therefore cannot be
performed in highly congested areas like city centers. With
this assumption, it becomes feasible to compute an emergency
trajectory at each processing cycle. However, in order to guar-
antee the dependability of switching from the original to the
simplex stack devoid of perception system, the most recent
computed trajectory has a short expiration time which should
be significantly longer than the crash-fault detection time of
the original stack. The specific duration of this expiration time
depends on the speed of the ADV and the distance between
the current and safe spot position. This will be investigated in
the evaluation section of this manuscript.

We make the standard assumption that both stack, original and
simplex are isolated and diverse enough, for example through
obfuscation, to ensure that they fail independently with high
coverage. Implementation-wise, this will be achieved via
containerization (see next section). Our design employs a
hybrid architecture, in which we differentiate the fault model
of our trusted components in the simplex stack. While the
components of the original stack are susceptible to crash
failures, simplex-planning and the replicated control module
must not fail. We justify this requirement based on their
simplicity, as both components have considerably less number
of lines of code than those in the original stack. Specifically,
we assume that techniques such as ECC and scrubbing are in
place to correct the effects of accidental faults in the stored
data.

3 Implementation and Evaluation
The scheme proposed in the system model above will be
implemented in the Apollo ADV software stack and simulated
using the SVL physics simulator.

Figure 2: Top: Switching between the original and the simplex
autopilot software stack once a crash (red boxes) in the original
stack cause a delayed response from the original control module
to the ECU. Bottom: Temporal logic of the recovery scheme
presented above in which a fault is detected at time tF and the
parking scenario by the simplex stack is executed by the ECU.
Green area denotes the time where the original stack is rejuve-
nated after which the normal driving conditions are restored.

Apollo utilizes containers to provide isolation and protection
for its components. Containers provide a restricted execu-
tion environment with communication capabilities between
containers and are hosted on top of a Linux-based operating
system within Apollo. In a deployed system, we assume
that critical component containers will be directly hosted
on top of a real-time operating system (RTOS) capable of
providing the necessary isolation. However, the RTOS in
these architectures represents a single point of failure that
will need to be addressed in the future (as demonstrated in
the Midir architecture [23]). For demonstration purposes, we
will implement both the original and simplex architecture of
the software stack in two isolated containers, in which the
inter-process communication will be assured via a simple
TCP socket. Moreover, we plan to run the switching mecha-
nisms between the two stacks in a third container for further
separation.

In order to demonstrate our approach, we plan to design a
set of diverse driving scenarios in SVL comprising a simple
cruise control along a highway and a more complex situation
inside a congested city area with multiple pedestrians and
other vehicles. We will evaluate the efficacy qualitatively
i.e. the ability of the ADV to avoid sudden crashes with
surrounding obstacles. We will simulate a crash fault of the
original stack by stopping the processing of any of the original
stack submodules.

As we have laid out in out fault model section, the depend-
ability of the emergency maneuver can only be guaranteed if

Ada User Jour na l Vo lume 44, Number 2, June 2023

140 Crash Faul t To lerance in Autonomous Vehic le Sof tware

the crash fault detection delay is significantly shorter than the
expiry time of the planned emergency trajectory. By simulat-
ing a whole range of scenarios, we will study the dependency
of the crash-fault detection delay and the ADV speed at the
moment of the crash on the efficacy of the emergency maneu-
ver.

4 Acknowledgments
This work was supported by the European Union’s Horizon
2020 research and innovation programme under grant agree-
ment No 871259 (ADMORPH project).

References
[1] “Toyota "unintended acceleration" has killed 89,” May

2010.

[2] A. Lima, F. Rocha, M. Völp, and P. Esteves-Veríssimo,
“Towards safe and secure autonomous and cooperative
vehicle ecosystems,” in Proceedings of the 2nd ACM
Workshop on Cyber-Physical Systems Security and Pri-
vacy, pp. 59–70, 2016.

[3] Z. Peng, J. Yang, T.-H. P. Chen, and L. Ma, “A first
look at the integration of machine learning models in
complex autonomous driving systems,” 2020.

[4] C. Torres-Huitzil and B. Girau, “Fault and error toler-
ance in neural networks: A review,” IEEE Access, vol. 5,
pp. 17322–17341, 2017.

[5] G. F. Elsayed, I. Goodfellow, and J. Sohl-Dickstein,
“Adversarial reprogramming of neural networks,” arXiv
preprint arXiv:1806.11146, 2018.

[6] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
C. Xiao, A. Prakash, T. Kohno, and D. Song, “Robust
physical-world attacks on deep learning visual classifi-
cation,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 1625–1634,
2018.

[7] H. Aghakhani, D. Meng, Y.-X. Wang, C. Kruegel, and
G. Vigna, “Bullseye polytope: A scalable clean-label
poisoning attack with improved transferability,” in 2021
IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 159–178, IEEE, 2021.

[8] B. S. Arad and A. El-Amawy, “On fault tolerant train-
ing of feedforward neural networks,” Neural Networks,
vol. 10, no. 3, pp. 539–553, 1997.

[9] T. Sato, J. Shen, N. Wang, Y. Jia, X. Lin, and Q. A.
Chen, “Dirty road can attack: Security of deep learning
based automated lane centering under {Physical-World}
attack,” in 30th USENIX Security Symposium (USENIX
Security 21), pp. 3309–3326, 2021.

[10] M. Panoff, R. G. Dutta, Y. Hu, K. Yang, and Y. Jin, “On
sensor security in the era of iot and cps,” SN Computer
Science, vol. 2, no. 1, pp. 1–14, 2021.

[11] C. Zhou, Q. Yan, Y. Shi, and L. Sun, “Doublestar:
Long-range attack towards depth estimation based obsta-
cle avoidance in autonomous systems,” arXiv preprint
arXiv:2110.03154, 2021.

[12] M. Darms, P. Rybski, and C. Urmson, “Classification
and tracking of dynamic objects with multiple sensors
for autonomous driving in urban environments,” in 2008
IEEE Intelligent Vehicles Symposium, pp. 1197–1202,
IEEE, 2008.

[13] K. Geng and S. Liu, “Robust path tracking control for
autonomous vehicle based on a novel fault tolerant adap-
tive model predictive control algorithm,” Applied Sci-
ences, vol. 10, no. 18, p. 6249, 2020.

[14] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke,
M. Možeiko, E. Boise, G. Uhm, M. Gerow, S. Mehta,
E. Agafonov, T. H. Kim, E. Sterner, K. Ushiroda,
M. Reyes, D. Zelenkovsky, and S. Kim, “SVL Simula-
tor: A High Fidelity Simulator for Autonomous Driving,”
arXiv e-prints, p. arXiv:2005.03778, May 2020.

[15] I. Iso, “Pas 21448-road vehicles-safety of the intended
functionality,” International Organization for Standard-
ization, 2019.

[16] F. A. T. Abad, R. Mancuso, S. Bak, O. Dantsker, and
M. Caccamo, “Reset-based recovery for real-time cyber-
physical systems with temporal safety constraints,” in
2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–8,
IEEE, 2016.

[17] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan,
and M. Caccamo, “Guaranteed physical security with
restart-based design for cyber-physical systems,” in
2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS), pp. 10–21, IEEE, 2018.

[18] L.-C. Chu and B. W. Wah, “Fault tolerant neural net-
works with hybrid redundancy,” in 1990 IJCNN interna-
tional joint conference on neural networks, pp. 639–649,
IEEE, 1990.

[19] C. Khunasaraphan, T. Tanprasert, and C. Lursinsap, “Re-
covering faulty self-organizing neural networks: By
weight shifting technique,” in Proceedings of 1994
IEEE International Conference on Neural Networks
(ICNN’94), vol. 3, pp. 1513–1518, IEEE, 1994.

[20] J. Shin, Y. Baek, J. Lee, and S. Lee, “Cyber-physical
attack detection and recovery based on rnn in automotive
brake systems,” Applied Sciences, vol. 9, no. 1, p. 82,
2018.

[21] K. Xiahou, Y. Liu, and Q. Wu, “Robust load frequency
control of power systems against random time-delay
attacks,” IEEE Transactions on Smart Grid, vol. 12,
no. 1, pp. 909–911, 2020.

[22] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Cac-
camo, and L. Sha, “The system-level simplex architec-
ture for improved real-time embedded system safety,” in
2009 15th IEEE Real-Time and Embedded Technology
and Applications Symposium, pp. 99–107, IEEE, 2009.

[23] I. P. Gouveia, M. Völp, and P. Esteves-Verissimo, “Be-
hind the last line of defense: Surviving soc faults and
intrusions,” Computers & Security, vol. 123, p. 102920,
2022.

Volume 44, Number 2, June 2023 Ada User Jour na l

141

Symbolic Refinement for CPS

Dionisio de Niz, Lutz Wrage
Software Engineering Institute, Carnegie Mellon University. Pittsburgh, PA,
USA; email: {dionisio,lwrage}@sei.cmu.edu

Abstract

In this paper we present an analysis contract approach
that takes advantage of efficient domain-specific analy-
sis algorithms, enable incremental analysis of archi-
tectural model refinements, and implement assume-
guarantee reasoning in symbolic domains in SMT.

1 Introduction
There is an increasing understanding that assuring large
Cyber-Physical Systems (CPS) must start as early as pos-
sible to avoid re-work cost that increases exponentially the
later problems are discovered. Such an assurance involves a
variety of verification procedures that evaluate claims both
during development but especially during the final acceptance
evaluation. This final evaluation involves, in most commercial
(e.g., FAA and FDA) and defense systems (Operational Test
and Evaluation), a certification authority that must determine
if the final system is fit and safe to operate.

Early assurance requires early design evaluation and verifi-
cation procedures that first must be conducted with limited
information and second generate results that must be pre-
served across design refinements that lead all the way down
to the final implementation. In this paper we present an ap-
proach that enables the symbolic integration of verification
results at different levels of refinement applied to architectural
models. To do this we developed contracts that enable the
determination of the level of refinement and the selection of
the analyses corresponding to this level. We call our approach
Symbolic Assurance Refinement (SAR).

1.1 Symbolic Refinement
SAR encodes assume-guarantee contracts that wrap model
analyses to create a contract argumentation tree that defines, at
each level, how specific contracts discharge claims from either
a root verification plan or assumptions of other contracts.
This argumentation is encoded as a constraint satisfaction
problem expressed in Satisfiability Modulo Theories (SMT)
form, which allows us to validate the final claims of the
verification plan with an SMT solver.

To handle different level of refinement, SAR allows the omis-
sion of design details, leaving them as proof obligations that
allow us to (1) figure out if the analysis contracts applied to
the current level of refinement lead to contradictions and if
(2) at the end of the refinement, our complete model still has
remaining proof obligations to discharge.

1.2 Related Work
Assume/guarantee reasoning is based on Hoare triples [1].
This approach evolved into more abstract domains with the
development of contract algebras [2]. Contracts have also
been used in Assume/Guarantee reasoning over components
in AADL models [3]. However, component contracts rea-
son about properties of the values that AADL components
communicate through their ports to other components and the
computation that occurs inside a component that transform
the input values into output values. This is indeed a more
traditional way of thinking about contracts that perhaps is eas-
ier to map to a Hoare triples. In contrast, analysis contracts
reason about properties of analysis algorithms applied to (e.g.,
AADL) models, not to the components of the model. This
is because our goal is to reason about how multiple analyses
work together to prove top-level assurance claims instead of
how properties on values generated by model components
discharge properties of top-level components. From this point
of view, an analysis that uses component contracts to verify
value transformation properties is just another analysis that
we integrate and that would have its own analysis contract.

Previous work in analyses contract started with [4], where
contracts were defined for resource allocation models. These
contracts were defined in Alloy [5] and the analyses algo-
rithms were implemented in Mathematica and included in the
AADL models. Analyses contracts were later extended [6]
first to remove the bounded verification limitations of Alloy,
implementing the contracts specification with a mixture of
SMT and LTL [7] with a verification in Z3 and SPIN [8]. This
work also extended the analyses beyond resource allocation to
domains such as thermal dissipation and security. Later, the
authors in [9] created an implementation of analysis contracts
with a special emphasis on lower-level analysis assumptions
within the same domain.

In [10], the authors present a contract model close to analy-
sis contracts with a synthesis approach to combine multiple
contracts that restrict the design space out of pre-crafted parts.
Their approach works at a more abstract level closer to [2] and
it is applied at the assurance case level and reuse of assurance
case patterns, but provides no connection to domain-specific
analysis algorithms.

2 Architectural Verification of CPS
Architectural models allow the description of early designs
that can be analyzed to find and correct errors that otherwise
would be discovered in later stages of development. The Ar-
chitecture Analysis and Design Language (AADL) [11] is a

Ada User Jour na l Vo lume 44, Number 2, June 2023

142 Symbol ic Ref inement for CPS

modeling language that allows us to describe the software ex-
ecution architecture of Cyber-Physical Systems. AADL cap-
tures the software execution elements like processes, threads,
connections, flows, etc. and the hardware architecture in-
cluding devices, processors, networks, and storage as well as
the relationship between software and hardware that affect
their execution like thread deployment, scheduling algorithms,
connection allocation to networks, bandwidth, CPU capacity,
error models, system modality etc. AADL models have been
used in multiple DARPA [12,13] and US Army programs [14]
with multiple analyses to verify critical software and system
properties.

The analyses used on AADL models are typically applied by
system designers who define the high-level architectural struc-
tures that are then incrementally refined. These designers are
not experts in all analyses domains (e.g., real-time scheduling,
control theory, safety, security, etc.). They are expected to
execute analyses that automatically validate different prop-
erties without knowing the internals of these analyses, i.e.,
they used them as black boxes. Unfortunately, most analyses
make implicit assumptions about the models that, if not met,
will void their results. When this occurs, the analyses fail
or produce invalid results, leaving the designers in the dark
about the cause of these failures given their lack of expertise
in the analysis domain.

As an example consider a real-time system that we want to
analyze for schedulability. When applying the rate-montonic
schedulability bound analysis to validate if all tasks (a.k.a.
threads) will finished before their deadline, two sample as-
sumptions are that (1) the deadlines of all tasks should be
equal to their respective periods (a.k.a., implicit deadlines)
and (2) that for any two tasks τi and τj in the system if τi’s
period is larger than τj’s then τj’s priority should be higher
than τi’s (known as rate-montonic priority assignement).

Analysis contracts are designed to explicitly model the as-
sumptions of the analysis used. Then, our verification frame-
work evaluates whether these assumptions are met in the
architectural model (e.g., by the priorities, periods, and dead-
lines of the tasks from our example) preserving the validity of
the analysis results. This evaluation is performed in multiple
ways, including ensuring that the assumptions from different
analysis do not contradict each other. The structure of the
assumption validation and their dependencies are captured in
an assurance argumentation that we discuss in Section 3.1.

3 Analysis Contracts
To evaluate the guarantees and assumptions that verification
analyses make about architectural models we created analysis
contracts [6]. In our previous work we defined these con-
tracts between the analyses and the model for a fully finished
architectural model.

In this paper we extend our previous work to (1) enable model
refinement, (2) enable automatic analyses selection based on
assumption satisfaction including level of refinement, and (3)
enable contracts for exact and approximate analysis.

An analysis contract follows Hoare triples [1] of the form
{P}S{P ′} where both P and P ′ are Boolean predicates over

variables derived from architectural models, and S is another
predicate over the model. In traditional program verification,
Hoare triplets encode that if P holds, the execution of a state-
ment S will make P ′ hold. In contrast to the traditional use
of Hoare triples, the statements S are left as an uninterpreted
black box assumed to be correct. This approach allows us to
re-use proofs for analysis algorithms without the need to re-
encode these proofs. For instance, we have created contracts
for schedulability where the post-condition P ′ encodes that
the worst-case response time of a task will never exceed its
deadline. This post condition can be applied to utilization-
bound tests where a response time is never calculated, or
a response time test where the response time is calculated
explicitly. In the future we plan to connect analysis proof
mechanization such as PROSA [15] to the analysis contracts
to close the loop.

To enable the reuse of domain-specific analysis algorithms
we allow the implementation of predicates over model vari-
ables (e.g., thread periods, priorities, execution time, thread-
to-processor bindings, errors, error propagations, etc) as
imperative functions (imperative predicate) that return a
Boolean to test a condition. The imperative predicate is then
paired up with a symbolic formula that encodes the condi-
tion in a symbolic interpretation of the analysis domain (e.g.,
∀τi ∈ τ : Ri ≤ Di – with Ri as the response time and Di

its deadline). To encode this interpretation we defined a sym-
bolic domain as the tuple Dd = (Vd, Sd) with Vd as the set
of symbolic variables and Sd as the set of predicates on Vd

that define the invariants of the domain.

An analysis contract is defined as a tuple Ci =
(Vd, Q, I, A,G,N) where, Q is the set of model variables
over which predicates are applied. I is a set of input as-
sumption predicates over Q that defines whether the analysis
predicate N can run or not. This is necessary to ensure that
the imperative function does not fail due to lack of data or
incorrect data. A is the set of pairs (pj , aj) where pj is a
predicate implemented as a call to a Boolean function in an
imperative language or a reference to yet another contract
and aj is an assertion over the domain variables Vd, modeling
pj =⇒ aj . G is an assertion over Vd that is asserted as
I =⇒ (

∧
j aj |(pj , aj) ∈ A ∧N =⇒ G).

We encode contracts as an AADL annex (an AADL extension
mechanism to define sublanguages [11]) with the template
shown in Listing 1.

1 annex contract {**
2 contract <name> {
3 queries
4 <model var> =
5 <query to obtain model data>
6 domains
7 <domain reference>
8 input assumptions
9 <Bool func to check data consistency>(

10 <model vars>)
11 assumptions
12 <Bool func>(<model vars>)
13 −> <symbolic assertion>
14 analysis

Volume 44, Number 2, June 2023 Ada User Jour na l

D. de Niz , L .Wrage 143

15 <Bool func>(<model vars>)
16 −> <symbolic guarantee>
17 }
18 **};

Listing 1: Contract Template

3.1 Contract Argumentation
When Hoare triples are used to create contracts for program
verification, these contracts are connected through the con-
trol flow of the program, and the predicates are evaluated
against the value transformations of the program statements.
In contrast, in an architectural model we do not have a unique
control flow given that each analysis defines its own behav-
ioral model where predicates can be evaluated. For instance,
a schedulability model defines a task model as an infinite
sequence of jobs that arrive with some specific periodicity.
Each job consumes some limited amount of processing time
from the processor it runs on, and has a timing requirement
on when to finish such processing.

Analysis contracts are connected through an assurance argu-
ment flow. That is, first we start with the top-level claims
needed to assure a system. From there we connect the analy-
sis contracts that discharge such claims. These contracts, in
turn, encode a number of assumptions (pre-conditions) that
must be discharged for the analysis results to be valid. We
then connect these assumptions to further contracts whose
guarantees can discharge the assumptions of the previous
analysis. This creates a contract argumentation that is used
to prove the top-level claims.

The contract argumentation encoding starts with a verification
plan that defines the set of top-level claims that must be
verified in a model together with the analysis contracts that
must be executed to prove these claims. The verification plan
is defined as the tuple P = (K,D) where K is the set of
pairs (ki, Ci) with ki as a predicate over variables of one of
the domains Vi ∈ Di.V |Di ∈ D and Ci is the contract use
to discharge the predicate. In turn, each contract specify a
set of assumptions that must be validated in order for the
results of the analysis to be valid. These assumptions can be
satisfied either by simple model value comparisons, a complex
behavioral validation that involves another analysis contract,
or a imperative predicate that validates some data from the
model. In order to combine multiple analysis to satisfy a
claim or assumptions we have a special contract call contract
argument of the form α = (Cα, Fα, Gα, Vα) where Cα is the
set of contracts combined in the argument, Fα is the Boolean
formula that combines the contracts and Gα is a predicate
over domain variables Vα that is asserted (guarantee) if the
formula holds.
3.2 SMT Encoding of Contract Argumentation
We implemented the contract argumentation as a constraint
satisfaction problem in SMT. This is created using z3py (SMT
encoded in python statements) as the conjunction of a set of
constraints obtained from the contract argumentation. More
specifically, we obtain the SMT encoding from the verifi-
cation plan as described in Algorithm 1. In this algorithm
replG4C(F) replaces the contract names with their respec-
tive guarantees within the Boolean formula F .

Algorithm 1 getSMTEncoding(Plan)

1: F ← {ki|(ki, Ci) ∈ Plan.K}
2: T ← {Ci|(ki, Ci) ∈ Plan.K}
3: while T ̸= ∅ do
4: select t from T and remove it from T
5: if t is argument then
6: T ← T ∪ t.Cα

7: F ← F ∪ (replG4C(t.Fα) =⇒ t.Gα)
8: else if

∧
i∈t.I i then

9: for p ∈ {p|(p, a) ∈ t.A} do
10: if p is contract then
11: T ← T ∪ p
12: F ← F ∪ (

∧
∀{a|(p,a)∈t.A} a)

∧N =⇒ t.G)
13: else
14: F ← F ∪ (p =⇒ a)
15: end if
16: end for
17: end if
18: end while
19: return F

3.2.1 Discharging Claims on Partial Models
The traditional use of SMT for program verification involves
the creation of a constraint satisfaction problem by declaring
constraints on symbolic variable valuations, and evaluating a
high level claim. This evaluation is typically done by negating
such a claim and asking the solver if there is any possible
value assignment that will make this negated claim true, i.e., a
counter example. If the solver cannot find a counter example
then we know that the claim has been proven.

Looking for counter examples requires a full model. However,
when we allow partial models, as in our case, we look for
whether the constraints that the partial model creates still
allow for value assignments that satisfy our top-level claim.
Hence, for a partial model, we do not negate the claim and use
the solver to find models that cannot possibly be completed
to satisfy the top level claim.

4 Model and Assurance Refinement
The partial model verification presented before allows us to
verify partial models. This is important to allow early analysis
but also verify that subsequent refinements do not invalidate
previous analysis.

AADL has explicit mechanisms to refine a model1. With
these mechanisms it is possible to add details to a model. For
instance, assume we have a model where we are interested in
the end-to-end latency of a data flow through the system. In
an early model it is possible to define the flow as the sequence
of AADL flow specifications through components and their
expected delays without specifying threads, scheduling, and
other details. At this stage, then, we can apply an analysis that
simply adds up the intermediate delays to get the end-to-end
latency.

Later on, as the model is refined to include details of threads
and their scheduling, we use a more sophisticated analysis

1Not discussed here for brevity.

Ada User Jour na l Vo lume 44, Number 2, June 2023

144 Symbol ic Ref inement for CPS

that can verify whether or not the threads meet intermedi-
ate deadlines and whether the final more precise end-to-end
latency based on such deadlines can still be met.

4.1 Determining Pending Proof Obligations
The verification of partial models implicitly disregards con-
straints over symbolic variables for which we do not have
data yet. For instance, consider the constraint that the priori-
ties assigned to the threads follow the rate-monotonic priority
assignment (i.e., the shorter the period the higher the priority)
needed for a utilization bound test. If no priorities have been
assigned, then the verification of the partial model will find
priorities that can satisfy this constraint. We call these con-
straints proof obligations whose verification is deferred to a
later stage when the corresponding data is available.

At the end of our design process we should have a complete
model with all the details necessary to verify all the claims.
At this stage, we follow the approach used for program ver-
ification by negating the claims and searching for counter
examples. Any counter examples that we find informs us that
we are either still missing information in the model such that
some proof obligations cannot be discharged, or that we have
all the detail but the model does not satisfy all requirements.

5 Assumption-Based Path Selection
Our contract argumentation allows us to select argumentation
paths based on assumption satisfaction. We can select the
path based on (1) the level of refinement of the model or (2)
the design choices made to satisfy different assumptions.

5.1 Refinement-Based Path Selection
Path selection based on refinement level is implemented
through input assumptions. More specifically, input
assumption check if there is enough data in the model to run a
certain analysis contract. Missing data can lead to the choice
of an alternative contract. This choice is encoded as a contract
argument where the Boolean formula is a disjunction of the
two contracts where each contract check for complementary
input assumption conditions. Listing 2 shows an example.

1 annex contract {**
2 verification plan myPlan {
3 claims
4 EndToEndDelayArgument−>
5 And([E2EResp[i] <= E2ELatency[i]
6 for i in range(len(E2EResp))]
7 }
8
9 argument EndToEndDelayArgument {

10 argument
11 Or(E2ESched, E2ESFlowSpec)−>
12 And([E2EResp[i] <= E2ELatency[i]
13 for i in range(len(E2EResp))]
14 }
15
16 contract E2ESched {
17 input assumptions
18 allSchedDataPresent()
19 ...
20 }
21
22 contract E2EFlowSpec {

23 input assumptions
24 notAllSchedDataPresent()
25 ...
26 }
27 **}

Listing 2: Path Selection Based on Refinement

This structure allows us to select the argumentation path based
on amount of detail a model has.

5.2 Design-Choice Selection
The other way to select an argumentation path is by assump-
tions on design choices. For instance, it is possible to use
the rate-monotonic bound analysis if we choose to use rate-
monotonic priorities (among other things). However, if for
some reason we decide to not follow rate-monotonic priorities,
it is not possible to use the bound to analyze schedulability
but it is possible to use the response time test. This is encoded
in the argument presented in Listing 3.

1 annex contract {**
2 argument schedulability
3 argument
4 Or(RMBound, RTA)
5 ...
6 }
7
8 contract RMBound {
9 assumptions

10 RMPriorities(periods, priorities)
11 analysis
12 RMBoundTest(...)
13 }
14
15 contract RTA {
16 assumptions
17 ...
18 analysis
19 RTATest (...)
20 }
21 **}

Listing 3: Path Selection Based on Assumptions

6 Exact / Over-Approximation Contracts
Another important aspect of domain-specific analyses is that
some of them perform an exact analysis while others per-
form an over-approximation. This fact was not captured
in previous work [6] where we considered all analyses as
over-approximations. More specifically, when an analysis
verification returns true then we can infer the guarantee, that
is, the analysis implies the guarantee as presented in Section 3.
Furthermore, when the analysis returns false, we cannot con-
clude anything about the guarantee given that there could
exist a more exact analysis that can still verify the guarantee,
hence the single implication.

An exact analysis, on the other hand, is not only able to
prove that a guarantee holds if it returns true, but also is
able to assert the negation of the guarantee if it returns false.
This is because this analysis has been proven to be exact,

Volume 44, Number 2, June 2023 Ada User Jour na l

D. de Niz , L .Wrage 145

i.e., if it fails to verify the guarantee we can get a counter-
example that exists in the model. In our annex we capture an
exact analysis using a double implication arrow <-> instead
of the simple implication arrow -> in the assumptions and
analysis of a contract shown in lines 13 and 16 of Listing 1, as
well as lines 4 and 11 of Listing 2 for assumptions, analysis,
verification plan and argument respectively. Similarly, the
SMT generation algorithm is modified to replace the simple
implication =⇒ in lines 7, 12, and 14 with a double
implication ⇐⇒ in the exact case.

7 Conclusion
In this paper we presented our work in progress on the de-
velopment of an efficient analysis contract argumentation
approach that takes advantage of efficient domain-specific
analysis algorithms, enables incremental analysis of model
refinements and encodes assume guarantee reasoning in sym-
bolic domains in SMT. This approach has allowed us to de-
scribe dependencies related to assumptions, design choices,
and refinement level that automatically selects the appropriate
analysis whose preconditions can be met or report errors if no
options are available to validate the claims of a verification
plan.

8 Acknowledgement
The following markings MUST be included in work product
when attached to this form and when it is published. For
purposes of blind peer review, markings may be temporar-
ily omitted to ensure anonymity of the author(s). Copyright
2023 Carnegie Mellon University. This material is based
upon work funded and supported by the Department of De-
fense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engi-
neering Institute, a federally funded research and develop-
ment center NO WARRANTY. THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING INSTI-
TUTE MATERIAL IS FURNISHED ON AN "AS-IS" BA-
SIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WAR-
RANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT IN-
FRINGEMENT. [DISTRIBUTION STATEMENT A] This
material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Govern-
ment use and distribution. Carnegie Mellon© is registered in
the U.S. Patent and Trademark Office by Carnegie Mellon
University. DM23-0179

References
[1] C. A. R. Hoare, “An axiomatic basis for computer pro-

gramming,” Commun. ACM, 1969.

[2] A. Benveniste and et al., Contracts for System Design,
2018.

[3] D. Cofer and et al., “Compositional Verification of Ar-
chitectural Models,” in NASA Formal Methods, 2012.

[4] M.-Y. Nam, D. de Niz, L. Wrage, and L. Sha, “Resource
allocation contracts for open analytic runtime models,”
in 2011 Proceedings of the Ninth ACM International
Conference on Embedded Software (EMSOFT), 2011,
pp. 13–22.

[5] D. Jackson, “Alloy: A language and tool for exploring
software designs,” Communications of the ACM, vol. 62,
pp. 66–76, 08 2019.

[6] I. Ruchkin, D. De Niz, S. Chaki, and D. Garlan,
“Contract-based integration of cyber-physical analyses,”
in EMSOFT, 2014.

[7] Y. Kesten, A. Pnueli, and L.-o. Raviv, “Algorithmic
verification of linear temporal logic specifications,” in
Automata, Languages and Programming, K. G. Larsen,
S. Skyum, and G. Winskel, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 1–16.

[8] G. Holzmann, “The model checker spin,” IEEE Trans-
actions on Software Engineering, vol. 23, no. 5, pp.
279–295, 1997.

[9] G. Brau, J. Hugues, and N. Navet, “Towards the System-
atic Analysis of Non-Functional Properties in MBE for
RTES,” Science of Computer Programming, 2018.

[10] T. E. Wang, Z. Daw, P. Nuzzo, and A. Pinto, “Hierar-
chical contract-based synthesis for assurance cases,” in
NASA Formal Methods: 14th International Symposium,
NFM 2022, Pasadena, CA, USA, May 24–27, 2022, Pro-
ceedings. Berlin, Heidelberg: Springer-Verlag, 2022,
p. 175–192.

[11] “Architecture Analysis and Design Language (AADL),”
SAE International, USA, Standard, Mar. 2009.

[12] “High-Assurance Cyber Military Sys-
tems,” https://www.darpa.mil/program/
high-assurance-cyber-military-systems, accessed:
2023-02-26.

[13] “Cyber Assured Systems Engineering
(CASE),” https://www.darpa.mil/program/
cyber-assured-systems-engineering, accessed: 2023-02-
26.

[14] “Applying AADL Expertise to Future Vertical Lift
Modeling,” https://www.sei.cmu.edu/publications/
annual-reviews/2021-year-in-review/year_in_review_
article.cfm?customel_datapageid_315013=335714,
accessed: 2023-02-26.

[15] F. Cerqueira, F. Stutz, and B. B. Brandenburg, “Prosa:
A case for readable mechanized schedulability analysis,”
in ECRTS, 2016.

Ada User Jour na l Vo lume 44, Number 2, June 2023

146

Towards a Methodology to Design Provably Secure
Cyber-Physical Systems

Felipe Lisboa Malaquias, Georgios Giantamidis, Stylianos Basagiannis
Collins Aerospace, Applied Research and Technology Centre, Ireland; email: {firstname.lastname}@collins.com

Simone Fulvio Rollini
Collins Aerospace, Applied Research and Technology Centre, Italy; email: simonefulvio.rollini@collins.com

Isaac Amundson
Collins Aerospace, Applied Research and Technology Centre, United States; email: isaac.amundson@collins.com

Abstract

The inordinate financial cost of mitigating post-
production cybersecurity vulnerabilities in cyber-
physical systems (CPS) is forcing the industry to rethink
systems design cycles: greater attention is being given
to the design phase – with the goal of reducing the at-
tack surface of systems at an early stage (i.e., before
silicon tape out). Fortunately, formal methods have ad-
vanced to the point that they can address such needs
and contribute towards achieving security certification.
However, new methods and tools focusing on industrial
scalability and usability for systems engineers are re-
quired. In this ongoing research paper, we describe a
framework that will help systems engineers to: a) design
cyber-assured CPS using a Model Based Engineering
(MBE) approach; b) formally map security requirements
to different hardware and software blocks in the model;
and c) formally verify security requirements. Based on
the nature of each requirement, our framework collects
formal correctness evidence from different tools: while
high-level architectural properties are suitable for a
contract- or ontology-based reasoning, more complex
properties with rich semantics require the use of model
checking or theorem proving techniques.

Keywords: Formal Methods, Cybersecurity, Cyber-
Physical Systems, Model Checking, Theorem Proving.

1 Introduction
In 2020, researchers estimated that there were 12 billion ac-
tive Internet of Things (IoT) devices, and that number would
at least double within five years [1]. The attack surface for IoT
devices is large, and an attacker may use several attack vectors
to compromise a device, ranging from physical side-channel
attacks to programming bugs like buffer and arithmetic over-
flows [2].

This document contains no technical information subject to EAR or
ITAR. Work is funded under the REWIRE Horizon Europe project (REWiring
the composItional security veRification and assurancE of systems) with grant
agreement No. 101070627.

Considering that many of these IoT devices are used in criti-
cal Cyber-Physical Systems (CPS), security breaches can lead
to seriously hazardous outcomes, both in terms of human
life and financial loss. A well-publicised example of an IoT
security breach is the remote hijacking of a Jeep on a U.S.
highway [3]: white hat hackers were not only able to manipu-
late non-critical systems (e.g. display, air conditioning), but
they were also able to control the engine and brakes.

Given the high stakes, guaranteeing that these devices cor-
rectly implement the appropriate security countermeasures is
crucial. Furthermore, in order to achieve a high degree of trust
regarding security claims, engineering teams must go beyond
dynamic testing of software and hardware components and
tackle the problem with formal methods tools.

While in the past formal methods encountered a strenuous
barrier regarding industry adoption, theoretical advances led
by academia, software engineering best practices, and the ex-
ponential growth of computational power have all contributed
to reaching the current state-of-the-art: tools are now sophis-
ticated enough to abstract from mathematical theories and
provide user-friendly interfaces for systems engineers. This is
highly beneficial, given the fast-paced needs of the industry.

Although recent research has successfully proposed frame-
works for formal reasoning about cybersecurity in CPS, no
comprehensive framework exists for modelling and formally
verifying general-purpose CPS, such as IoT devices. There-
fore, we propose a framework that will allow engineers to
write requirements (not only security-related but also safety,
timing, and functional requirements), design system architec-
tures, and gather, on the same model, formal evidence that
the stated requirements are satisfied either by the architectural
model or by specific component implementations.

2 Related Work & Background
2.1. Model-Based Engineering & AADL

Model-Based Engineering (MBE) has emerged as a key set of
methodologies to design complex systems [4]. One widely-
adopted MBE technology is the Architecture Analysis & De-
sign Language (AADL) [5]. Initially developed for avionics

Volume 44, Number 2, June 2023 Ada User Jour na l

147

applications, AADL has since been used to design a wide
range of embedded real-time system architectures, largely
due to its language constructs for specifying both software
and hardware configurations. Moreover, AADL has a refer-
ence implementation called OSATE [6], which is an open-
source modelling environment that comes with a few built-in
analysis tools such as flow control and schedulability. Be-
cause OSATE is based on the Eclipse framework, creating
new analysis plugins is relatively straightforward.

AADL includes an annex mechanism for extending the base
grammar, thereby supporting new language features and anal-
yses. One such annex is the Assume Guarantee REasoning
Environment (AGREE) [7], which is a compositional assume-
guarantee-style formal analysis tool. AGREE attempts to
prove properties about one layer of the architecture using
properties allocated to subcomponents. The composition is
performed in terms of formal assume-guarantee contracts
that are provided for each component. Assumptions describe
the expectations the component has on its inputs and the
environment, while guarantees describe bounds on the com-
ponent’s behaviour. The model checker then attempts to find
any model execution traces that violate these contracts using
one of several Satisfiability Modulo Theories (SMT) solvers.
If the model checker covers all reachable states in the model
without finding a violation, the model is proven to satisfy its
contracts.

Another important annex for reasoning over AADL models
is Resolute [8], which includes a language for embedding
assurance cases in AADL models and a tool for evaluating
the validity of the associated evidence. An assurance case is
a structured argument, supported by evidence that a system
will operate as intended in a specified environment. Because
high-assurance products generally undergo certification at the
system level, there is a natural mapping between a system
design and the corresponding assurance argument. Resolute
takes advantage of this alignment by enabling the specifica-
tion of the assurance argument directly in the AADL model.
The assurance case can then be instantiated and evaluated
with elements specified in the model. The resulting assurance
case can be viewed in the modelling environment, or exported
to graphical tools such as AdvoCATE [9]. Resolute assurance
cases are at the core of our approach, and we describe them
in greater detail in Section 3.

Our choice of using AADL over other MBE languages such
as SysML [10] is informed by multiple factors. First, AADL
was designed for specifying hierarchical system architectures,
enabling the composition of systems from subsystems, and re-
finement from abstract to concrete types. It includes first class
objects for representing components that comprise embedded
systems such as memory, buses, processors, threads, subpro-
grams, and data. SysML, on the other hand, is more abstract
and thus better-suited for early stages of system engineering.
Second, AADL has a sufficiently rigorous run-time semantics,
enabling a wide range of analyses that would otherwise not be
possible. And third, AADL’s annex support cannot be over-
stated. The ability to extend the language in order to perform
new types of analyses is critical in the rapidly evolving – and
heavily regulated – CPS design space.

2.2. Cyber-Assured Systems Engineering Framework
Cofer et al. recently developed BriefCASE [11], an AADL-
based framework for designing, building and assuring cyber-
resilient systems. In that work, high-level security require-
ments are mapped to seL4 microkernel [12] features via a
(very) trustworthy tool chain. Although they did succeed at
creating a framework for crafting formally verified secure
applications, their work did not focus heavily on hardware
security, which plays a fundamental role in protecting a wide
range of CPS including IoT devices. In contrast, we propose
a framework that allows system engineers to specify a wide
range of system requirements and map them to the appropriate
software or hardware block.
For example, one might require a platform capable of per-
forming trusted boot to verify the authenticity of an over-
the-air firmware update, or a platform capable of executing
hardware-implemented crypto-primitives (e.g., symmetric or
asymmetric encryption, hash functions, etc.). While the for-
mer security goal could be achieved through the use of a
hardware Root of Trust (RoT) acting as the Trusted Platform
Module (TPM), the latter would require Instruction Set Exten-
sions (ISEs) or memory-mapped crypto-accelerators. These
solutions are outside the scope of what BriefCASE currently
offers.
Another important work that introduces a tool aimed at for-
mal reasoning about CPS is KeYmaera X [13], a theorem
prover for differential dynamic logic (dL). KeYmaera X in-
troduces important advances in formal verification of CPS –
its logic is well suited for reasoning about discrete and con-
tinuous dynamics, which are useful to encode functional and
safety properties of CPS. It has been used, for instance, to
model and verify the safety of flight collision avoidance soft-
ware [14] and train controls with air pressure brakes [15].
In comparison, our work focuses instead on characterising
software/hardware running in CPS and its underlying cyber-
security properties.
Finally, VRASED [16] is a HW/SW co-design that imple-
ments a formally verified Remote Attestation protocol. To
achive that ultimate goal, VRASED relies on different formal
verification techniques: a custom hardware module (used to
reset the internal state of the micro-controller studied in their
paper in case the code to be attested is compromised) has
its correctness specified with Linear Temporal Logic (LTL)
and checked with NuSMV – a model checker; the overall
soundness and correctness of the resulting system is modelled
and proved in a theorem prover; and finally, they also make
use of pre-verified cryptographic code [17]. While VRASED
is an impressive effort, their architecture is bare-metal and
specific to a family of micro-controllers, such as MSP430.
The goal of our work, contrarily, is to leverage MBE tools in
conjunction with formal verification techniques to formally
reason about more generic, richer architectures (e.g. with
RISC-V cores and Trusted Execution Environments (TEE)).
We thus propose building a framework that: a) provides the
tools to formally reason about security solutions implemented
by both software and hardware; and b) maps security re-
quirements to evidence gathered not only from AADL and its
plugins, but also external tools, such as Coq.

Ada User Jour na l Vo lume 44, Number 2, June 2023

148 Towards a Methodology to Des ign Provably Secure Cyber-Phys ica l Systems

3 Framework Description
Figure 1 presents an abstract architectural overview of the
tool-chain, under development at the time of writing. Note
that, while some of the tools are embedded within OSATE,
some are called by Resolute as an external source of formal
correctness evidence.

Figure 1: Toolchain. Legend: OSATE tools External tools

The framework we propose is intended to be used according
to the following workflow:

1. Security requirements are specified;

2. System architecture is modelled in AADL;

3. Formal analysis of model is performed using AGREE to
verify the design satisfies security properties;

4. Hardware and Software components are implemented
manually, or through verified synthesis [18];

5. Where possible, formal analysis is performed on compo-
nent implementations – this could be done by a variety
methods (e.g., model checking and theorem proving);

6. Component implementations are integrated into a system
build;

7. System testing is performed;

8. An assurance case is generated using Resolute, confirm-
ing that security goals are support by evidence (main-
tained by the framework).

In the following, we detail some of the steps presented above.

Requirement Specification (Step 1)

Consider three illustrative high-level security requirements,
which are motivated by industrial use-case scenarios for em-
bedded systems controlling safety-critical operations of CPS:

R1: “The TEE shall provide the necessary mechanisms to en-
able the isolated execution of sensitive functions in enclaves”

R2: “The crypto schemes that will be used for the secure
communication of devices shall be provably secure, based on
well-accepted underlying assumptions”

R3: “The system shall include mechanisms that detect replay
attacks and can tell if newer messages or part of them are
unauthorised repetitions of previously authorised exchanges”

Architecture Modelling (Step 2)

Based on the security requirements from Step 1 (as well
as other high-level requirements), engineers use AADL to
model a system architecture that captures the appropriate
security solutions. Here, for illustrative purposes, consider
the following architecture:

• On the hardware layer: a RISC-V core, such as the
2-stage pipeline 32-bit Ibex core1 or the 6-state 64-bit
Arianne core2, and a hardware RoT (such as the Open-
Titan3), which is assumed to have a crypto co-processor
capable of enhancing the performance of functions such
as AES and SHA-256.

• On the firmware layer: a custom-tailored Keystone
TEE [19], configured to use not only the RISC-V Phys-
ical Memory Protection (PMP) Registers – primitives
for ensuring memory isolation between secure enclaves
– but also custom RISC-V instructions to access crypto
co-processors and the RoT;

• On the software layer: a set of secure applications (Key-
stone enclave application), such as attestation agents,
evidence collectors, and SW/FW update agents.

Figure 2 shows an abstraction of the proposed architecture.4

RISC-V
Core

AES
co-processor

Keystone’s
Security Monitor (SM)

Root of Trust

SHA-256
co-processor

Secure Key
Storage

Trusted
Hardware

M-Mode

U-Mode

S-Mode
Run-Time OS

(e.g. seL4)

Enclave Application
(e.g. Attestation Agent)

Eapp

RT OS

Other

Untrusted
Application

Untrusted
Run-Time OS

Figure 2: Abstraction of the example architecture.

Modelling software and hardware components in AADL is
a straightforward and well-documented process: software is
described using components such as processes and threads,
while hardware components include processors, buses, and
memories. Modelling the TEE and its properties in AADL
however is still an open problem and we consider it to be part
of our research.

Note that the architecture proposed above is merely illustra-
tive and its security implications are not the focus of this
paper. Rather, here our focus is on providing an overview of

1https://ibex-core.readthedocs.io/en/latest/
2https://github.com/lowRISC/ariane
3https://opentitan.org/
4The architecture used as example here is similar, in some sense, to

Keystone’s architecture [19], although not entirely. Keystone, in this case,
would have to be configured by the Keystone Programmers [19] to use the
custom proposed hardware.

Volume 44, Number 2, June 2023 Ada User Jour na l

149

a methodology to formally verify a diverse range of security
requirements.

Translation of Higher-Level Requirements into Low-Level
Specifications (Step 5)

In order to determine whether individual component imple-
mentations satisfy their requirements, a necessary prerequisite
is the translation of those requirements into a formal repre-
sentation that facilitates (semi-)automated, computer-aided
analysis/reasoning.

For low-level functional requirements characterising compo-
nent behaviour, this representation can, for example, be a
form of modal logic, such as Linear Temporal Logic (LTL) or
Computation Tree Logic (CTL) [20], or differential dynamic
logic (dL) [21].

For intermediate-level non-functional requirements, ap-
proaches for describing constraints on system architecture
/ component interconnections (or other desired properties of a
non-functional nature) can vary. For example, in cases where
properties are quite abstract and their satisfaction is difficult
to define, so called soft-goal approaches are more appropri-
ate [22], while in cases where properties are more concrete, a
(constraint) logic-based approach is preferred [23]. Require-
ments R1, R2, and R3 fall under the latter category. R1, for
instance, can be formalised in first-order logic as follows:

∀e ∈ Enclaves,

∀f ∈ Functions, sensitive(f) =⇒
allocated_on(f, e) =⇒
ensured_isolated_execution(f, e)

(1)

In natural language, R1 is said to be satisfied if any arbitrary
sensitive function f is allocated inside of a secure enclave e.

Development of automated requirement formalisation tools is
out of scope for this work. Furthermore, it will likely be the
case that not all requirements can be formalised in a manner
that permits automated reasoning. For now, we assume that
translating high-level requirements into low-level specifica-
tions is a manual task to be performed by the framework user
and verified through manual review.

Formal Verification of Requirements (Step 5) and System
Assurance (Step 8)

Here, we detail how formal analysis can be performed (Step
5) considering requirements R1, R2, and R3; and how we can
use Resolute to generate assurance cases, which can be used
to provide confidence that cybersecurity requirements have
been satisfied in both the design and implementation.

Requirement R1 can be checked using Resolute, since it is
structural in nature. We can use Resolute to “traverse” the
model and check that a component implementing the de-
sired functionality is present, cannot be bypassed, and has
been implemented appropriately. In the proposed architecture,
Keystone’s Secure Monitor (SM) [19] implements enclave
isolation by manipulating RISC-V Physical Memory Protec-
tion (PMP) registers, and thus, “isolated execution of sensitive
functions in enclaves” is achieved.

Listing 1 is a first attempt at writing an assurance argument for
requirement R1 in Resolute. In the listing, SW.Impl is a rather
simplified representation of a software process hosted in a
system equipped with Keystone, where Eapp is a sensitive
function. The Resolute goal Iso_Exec traverses the model
to check that: 1) the enclave where Eapp executes is properly
implemented and initialised, 2) Eapp executes on the enclave,
and 3) Applications on U-Mode or S-mode cannot bypass the
Security Monitor (see Figure 2). We omit the connections
between threads for conciseness.

Listing 1: Verifying R1 with Resolute.

process implementation SW.Impl
subcomponents

Eapp : thread Eapp.Impl;
RT : thread RT.Impl;
Enclave : thread Enclave.Impl;
SM : thread SM.Impl;

annex resolute {**
argue Iso_Exec (this.Eapp, this.

Enclave, this.SM)
**};

end SW.Impl;

goal Iso_Exec (eapp : component, encl :
component, sm : component) <=
strategy: "Reason about architecture";
enclave_exists(encl) and
enclave_initialized(encl) and
allocated_on(eapp, encl) and
sm_not_bypassed(sm, encl)

The second requirement, R2, is more difficult. Informally,
“provably secure” is naturally more complex than “shall pro-
vide”. Here, for simplicity, let us first assume that the “crypto-
schemes that will be used for the secure communication of
devices” can be simply reduced to AES and SHA-256, as
these are the co-processors specified in the architecture. Re-
alistically, this is a strong assumption, since a real device
would also require asymmetric encryption schemes, which
are mostly implemented in software.

We can assume that the cryptographic algorithms themselves
(AES and SHA-256) are secure by design and focus our
efforts in proving that the actual hardware implementations
are correct against a high-level formal specification of these
algorithms. For that goal, considering that the architecture
proposes the use of hardware co-processors, we could either:
a) perform typical verification techniques, such as property
checking with SystemVerilog Assertions (SVA) on existing
HW IPs or b) produce correct-by-design Register Transfer
Level (RTL) code using Coq Domain Specific Languages
(DSLs), such as Kôika [24]. At this phase of our research, we
explore the second option, as depicted in Listing 2. Notably,
we prove that the hardware implementation of the RISC-V
standardised crypto custom instructions [25] is correct against
the instruction semantics, expressed in SAIL [26].

Ada User Jour na l Vo lume 44, Number 2, June 2023

150 Towards a Methodology to Des ign Provably Secure Cyber-Phys ica l Systems

Listing 2: Verifying R2 with Resolute.

system implementation HW.Impl
subcomponents

AES : processor AES.Impl;
SHA_256 : processor SHA_256.Impl;

annex resolute {**
argue Correct_By_Design (this)

**};
end HW.Impl;

goal Correct_By_Design (sys : system) <=
** "RTL code is provably correct" **
forall(proc : processors(sys)) .

analysis("coq", proc)

Finally, R3 requires that the architecture includes mecha-
nisms for detecting intruder operations such as message re-
play attacks. In such an attack, a malicious agent intercepts
a message and/or controls its delivery to the intended target,
thereby disrupting system operations or obtaining unautho-
rised information. If a protection mechanism is enabled (e.g.,
by including timestamps), then a model checker could explore
whether or not a successful replay-attack state is reachable in
which the protection would fail to detect the repetition of the
message within a specific time threshold.

Devices that are part of communication networks are com-
monly modelled together with an intruder model (e.g., Dolev-
Yao [27]) that can perform attack operations against eaves-
dropped messages. Model checking using SPIN [28] or
OFMC [29] can provide evidence that proves the absence
of a series of such attacks. Recent approaches also involve
the usage of TAMARIN [30] in an attempt to verify cryp-
tographic protocols using adversaries within the tool itself.
In the case of R3, since the requirement can be directly
modelled in the language of a model checker, the Resolute
assurance argument can take the form of a simple predi-
cate: safe_against_replay_attacks(), supported by evi-
dence generated by the model checking tool.

4 Conclusion & Next Steps
We propose a framework aimed at modelling and formally
verifying cyber-assured CPS under the following design prin-
ciples: a) security requirements are allocated to either system
software or hardware, b) the system is modelled in a language
(e.g., AADL) with sufficiently rich semantics that enable for-
mal analysis, c) formal methods are applied at multiple points
in the development workflow (compositional reasoning at the
architecture level, verified synthesis for component genera-
tion, model checking and theorem proving of hardware and
software component implementations, etc.), and c) an assur-
ance case is generated that substantiates cybersecurity claims
with evidence from formal analyses (and other workflow pro-
cesses managed by the framework).

Currently, we focus our efforts on modelling Keystone and
custom hardware in AADL – an open problem – since AADL
has not been previously used to model TEEs. A subsequent
challenge is how to scale the approach to model larger sys-
tems.

References
[1] K. L. Lueth, “State of the IoT 2020: 12 billion IoT

connections, surpassing non-IoT for the first time,” IoT
Analytics, Nov 2021.

[2] K. Keerthi, I. Roy, A. Hazra, and C. Rebeiro, “For-
mal verification for security in IoT devices,” Security
and Fault Tolerance in Internet of Things, pp. 179–200,
2019.

[3] A. Greenberg, “Hackers remotely kill a Jeep on the
highway-with me in it,” Wired, Jul 2015.

[4] P. de Saqui-Sannes and J. Hugues, “Combining SysML
and AADL for the design, validation and implementa-
tion of critical systems,” in ERTS2 2012, p. 117, 2012.

[5] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architec-
ture analysis & design language (AADL): An introduc-
tion,” tech. rep., Carnegie-Mellon Univ Pittsburgh PA
Software Engineering Inst, 2006.

[6] P. Feiler, “The open source AADL tool environment
(OSATE),” tech. rep., Carnegie Mellon University Soft-
ware Engineering Institute, 2019.

[7] D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. LaVal-
ley, and L. Sha, “Compositional verification of architec-
tural models,” in NASA Formal Methods: 4th Interna-
tional Symposium, NFM 2012, Norfolk, VA, USA, April
3-5, 2012. Proceedings 4, pp. 126–140, Springer, 2012.

[8] A. Gacek, J. Backes, D. Cofer, K. Slind, and M. Whalen,
“Resolute: an assurance case language for architecture
models,” ACM SIGAda Ada Letters, vol. 34, no. 3,
pp. 19–28, 2014.

[9] E. Denney and G. Pai, “Tool support for assurance
case development,” Automated Software Engineering,
vol. 25, September 2018.

[10] M. Hause et al., “The SysML modelling language,” in
Fifteenth European Systems Engineering Conference,
vol. 9, pp. 1–12, 2006.

[11] D. Cofer, I. Amundson, J. Babar, D. Hardin, K. Slind,
P. Alexander, J. Hatcliff, G. Klein, C. Lewis, E. Mer-
cer, et al., “Cyberassured systems engineering at scale,”
IEEE Security & Privacy, vol. 20, no. 3, pp. 52–64,
2022.

[12] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood, “seL4: formal verification of an OS kernel,” in
Proceedings of the 22nd ACM Symposium on Operating
Systems Principles 2009, SOSP 2009, Big Sky, Montana,
USA, October 11-14, 2009 (J. N. Matthews and T. E.
Anderson, eds.), pp. 207–220, ACM, 2009.

[13] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and
A. Platzer, “KeYmaera X: An axiomatic tactical the-
orem prover for hybrid systems,” in CADE (A. P. Felty
and A. Middeldorp, eds.), vol. 9195 of LNCS, pp. 527–
538, Springer, 2015.

Volume 44, Number 2, June 2023 Ada User Jour na l

151

[14] R. Cleaveland, S. Mitsch, and A. Platzer, “Formally
verified next-generation airborne collision avoidance
games in ACAS X,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 1, pp. 1–30, 2023.

[15] S. Mitsch, M. Gario, C. J. Budnik, M. Golm, and
A. Platzer, “Formal verification of train control with air
pressure brakes,” in RSSRail (A. Fantechi, T. Lecomte,
and A. Romanovsky, eds.), vol. 10598 of LNCS, pp. 173–
191, Springer, 2017.

[16] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon,
M. Steiner, and G. Tsudik, “Vrased: A verified hard-
ware/software co-design for remote attestation.,” in
USENIX Security Symposium, pp. 1429–1446, 2019.

[17] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and
B. Beurdouche, “Hacl*: A verified modern crypto-
graphic library,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 1789–1806, 2017.

[18] E. Mercer, K. Slind, I. Amundson, D. Cofer, J. Babar,
and D. Hardin, “Synthesizing verified components for
cyber assured systems engineering,” in 2021 ACM/IEEE
24th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), pp. 205–
215, 2021.

[19] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and
D. Song, “Keystone: An open framework for architect-
ing trusted execution environments,” in Proceedings of
the Fifteenth European Conference on Computer Sys-
tems, pp. 1–16, 2020.

[20] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani,
“Model checking and the state explosion problem,” Tools
for Practical Software Verification: LASER, Interna-
tional Summer School 2011, Elba Island, Italy, Revised
Tutorial Lectures, pp. 1–30, 2012.

[21] A. Platzer, “Differential dynamic logic for hybrid sys-
tems,” Journal of Automated Reasoning, vol. 41, no. 2,
pp. 143–189, 2008.

[22] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-
functional requirements in software engineering, vol. 5.
Springer Science & Business Media, 2012.

[23] J.-P. Katoen, T. Noll, H. Wu, T. Santen, and D. Seifert,
“Model-based energy optimization of automotive control
systems,” in 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 761–766, IEEE,
2013.

[24] T. Bourgeat, C. Pit-Claudel, and A. Chlipala, “The
essence of Bluespec: a core language for rule-based
hardware design,” in Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pp. 243–257, 2020.

[25] B. Marshall, G. R. Newell, D. Page, M.-J. O. Saarinen,
and C. Wolf, “The design of scalar AES instruction
set extensions for RISC-V,” Cryptology ePrint Archive,
2020.

[26] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid,
K. E. Gray, R. Norton-Wright, P. Mundkur, M. Wassell,
J. French, C. Pulte, et al., “ISA semantics for ARMv8-a,
RISC-V, and CHERI-MIPS,” 2019.

[27] D. Dolev and A. Yao, “On the security of public key
protocols,” IEEE Transactions on Information Theory,
vol. 29, no. 2, pp. 198–208, 1983.

[28] G. J. Holzmann, “The model checker SPIN,” IEEE
Transactions on software engineering, vol. 23, no. 5,
pp. 279–295, 1997.

[29] A. A. et al, “The AVISS security protocol analysis tool,”
in Computer Aided Verification, 14th International Con-
ference, CAV 2002,Copenhagen, Denmark, July 27-31,
2002, Proceedings, vol. 2404 of Lecture Notes in Com-
puter Science, pp. 349–353, Springer, 2002.

[30] D. A. Basin, C. Cremers, J. Dreier, and R. Sasse,
“Tamarin: Verification of large-scale, real-world, cryp-
tographic protocols,” IEEE Secur. Priv., vol. 20, no. 3,
pp. 24–32, 2022.

Ada User Jour na l Vo lume 44, Number 2, June 2023

152

Automatic Test Value Generation for Ada

L. Creuse, M. Eyraud, V. Garèse
Adacore; email: {creuse,eyraud,garese}@adacore.com

Abstract

This article introduces novel tools to automatically gen-
erate pertinent Ada values in order to produce higher
quality tests for Ada subprograms. A first tool will gen-
erate valid Ada values based on a structural analysis
of the types of the parameters of the subprogram under
test following various customizable strategies. Those
values will then be filtered in order to satisfy the specifi-
cations of the subprogram, and new coverage criteria
for executable specifications will be used to assess the
relevance of the generated testsuite. This first set of
values will then be used as seeds both for a fuzzing pro-
cess, and a symbolic execution campaign, from which
values of interest will be then extracted. This integrated
process will enable users to generate a high value start-
ing test corpus, which can then be expanded upon by
domain-specific tests.

Keywords: Ada, generation, fuzzing, symbolic execution,
automatic testing,

1 Introduction
Software occupies a predominant place within critical sys-
tems, whether civil or military: aeronautics, railways, space,
financial, medical. Failures and vulnerabilities in such soft-
ware can have dramatic consequences in human, material or
environmental terms. The Ada language is widely used in the
development of such software. It is therefore essential to be
able to ensure a high level of quality and security for the soft-
ware developed in Ada. Whatever validation and verification
techniques are used throughout the development process, the
essential method for revealing run-time errors is testing.

Testing a program consists of executing it on a finite set of
input values, so as to detect discrepancies between its actual
behavior and the expected behavior. Although testing is the
most widely used software validation method in the industrial
context, tests are written manually most of the time. Writing
these tests, as well as maintaining them, is one of the difficult
and costly points for verification and validation teams.

The field of test generation has undergone major develop-
ments in recent years, which have seen the previously separate
technologies of structure-aware random generation, fuzzing
and symbolic execution being combined into a single system.

There are tools that generate Ada test input values [1, 2, 3],
with various configurable generation strategies. However,
there are limitation with these approaches, such as a lack of
generation of discriminated records, with or without variant

parts or a lack of integration with other forms of dynamic
analysis, such as fuzzing campaigns and symbolic execution.

The tools being developed aim to lift some of these limitations
by generating values for a wider range of types, to port test
generation techniques not yet available to the Ada ecosystem
and to combine various dynamic analysis methods to create a
single consolidated test corpus. It is important to note that the
work remains restricted to a subset of the Ada types. Notably,
tagged types and access types are not in the scope of the
project.

As shown on Figure 1, the idea is to combine several existing
techniques for generation of test values and make them co-
operate. These techniques include random generation based
on types, described in section 3, fuzzing (see section 5) and
symbolic execution (section 5.2). In addition, as contracts,
in particular pre and postconditions, are first class citizens
in Ada, the tool should take them into account to guide the
generation process.

This development is being led by AdaCore, conjointly with
Thales Research and Technologies, as part of the RAPID
initiative [4].

2 Related work
The main motivation for developments centered around test
generation is the discovery of vulnerabilities, mainly in C
or C++ code bases, languages well known for their security
flaws. This breakthrough in test generation techniques has
been driven by the undeniable success of fuzzing as the main
technique for vulnerability discovery, supplanting static anal-
ysis for this activity in many domains, and becoming one of
the leading tools in black hat and white hat hacking.

In parallel, the academic symbolic execution platforms KLEE
[5] and CBMC [6], dedicated to the C language, have seen
their use grow in industry. These platforms are now co-
developed by communities of academics and industrialists.
Other symbolic execution platforms continue to be developed
(SymCC [7], Driller, Munch) which also offer integration
with fuzzing tools.

Finally, random testing is probably the least expensive and
simplest test generation technique to implement. However,
the relevance of the generated tests is strongly linked to the
constraints on the data, expressed through types or explicit
preconditions, which requires an additional programming
effort. The founding tool of this approach, QuickCheck [8]
initially developed for the Haskell language, has given many
successors, such as recently Hypothesis [9] for the Python
language or proptest [10] for the Rust language. Some of

Volume 44, Number 2, June 2023 Ada User Jour na l

L. Creuse, M. Eyraud, V. Garèse 153

Figure 1: Generation methods and interactions among the tools

these property based-testing tools have started integrating
with fuzzing engines to ease the use of the fuzzer and make it
protocol-aware, such as Hypofuzz [11].

As these different test generation techniques have gained
sufficient maturity for languages such as C, it now seems
necessary to share them with the Ada community. Theoret-
ically, the tools available for C can be applied to Ada code,
but they require adaptations on several points, both for the
kind of uses this development is aimed at, and languages
specificities in the Ada type model. In addition to the neces-
sary switch to Ada tooling, the techniques available for C are
generally aimed at testing complete programs, and not unit
testing. Moreover, they are generally used for applications ex-
posing a simple interface (reading a binary file for example),
and not for embedded code that must support, for example,
multiple inputs from sensors, which are more difficult to test
by fuzzing. To this end, we will rely on the existing technolo-
gies GNATtest, GNATcoverage and GNATfuzz developed by
AdaCore. GNATtest is a unit test harness generation tool for
Ada, generating for a given project a test harness based on
the AUnit unit test library. GNATCoverage is a structural cov-
erage analysis tool for Ada, C and C++, compatible with the
most stringent civil avionic standards (DO-178c). GNATfuzz
is an AFL++ based high level fuzzing tool for Ada, simpli-
fying the fuzzing process by automatically generating a test
harness, generating a starting corpus and running the fuzz test
campaign.

3 Type-based test value generation
3.1 Library for type introspection
The first approach to generating values relies on the detailed
type system available in Ada. The rich typing system can
be used to express various invariants of a subprogram, but
they can also be used as constraints for semi-random value
generation. The solution being developed first extracts, using
the Libadalang code analysis library, a high level represen-
tation of the types of all the parameters of the subprogram
under test (SUT), including bounds for scalar types, and the
possible shapes a record can take depending on the values of
its discriminants expressed in each of the variant choices.

3.2 Generation of values
The type representation is then used to generate values within
the type constraints, with various strategies the user will be

able to configure. The strategies currently implemented in the
prototypes include a uniformly distributed random generation
for scalar types, unless they are used as parameters for strate-
gies for compound types. For arrays, the size of the array is
currently randomly generated between 0 and 101 elements
to avoid generating objects too large to be allocated on the
stack but this value and record types use biased strategies to
generate discriminant values in order to explore all the shapes
of the record. For instance, consider the discriminated record
type in Figure 2.

type My_Record (I : Integer) is record
case I is

when 0 =>
Comp : Integer;

when others =>
null ;

end case;
end record

Figure 2: Example record with unbalanced variant

If we were to do random generation, the odds of producing
an instance with the Comp component would be too low. We
thus coerce the strategy generation for I to pick in one of the
value samples ({O} or the rest) or to be random (to keep some
uniformity).
3.3 Challenges
The main challenge with this approach is that it is generally
not possible to fully determine the characteristics of a type
through a single approach. A static analysis of the code,
with the help of libadalang, will allow to determine for a
record, which are the components of the record depending
on the values of the discriminants, but it won’t make it pos-
sible to determine the bounds of defined scalar type whose
bound are not statically known. Conversely, while it is pos-
sible to determine the bounds of scalar at runtime with the
’First and’Last attributes, Ada lacks dynamic introspec-
tion capabilities, making it impossible to determine the list of
components for a given record object. The types in Figure 3
illustrate such a case: It is impossible to determine the list of
components of Rec_Type at runtime, but we cannot statically
determine the bounds of Component_Type. This was solved by

1The choice for this value has not undergone extensive testing, and was
introduced to aid the usability of the first prototypes. Finer strategy cus-
tomization later on will allow the user to set this bound to a more meaningful
value

Ada User Jour na l Vo lume 44, Number 2, June 2023

154 Automat ic Test Va lue Generat ion for Ada

function From_Env return Positive;

type Component_Type is range 0 .. From_Env;
type Rec_Type is record

X : Component_Type;
end record;

Figure 3: An example of types with non-static bounds
Component_Type_Repr : constant Integer_Repr :=

(Name => "Component_Type",
First => Component_Typ’First,
Last => Component_Type’Last);

Rec_Type_Repr : constant Record_Type_Repr :=
(Name => "Rec_Type",
Components =>

(1 => (Name => "X", Typ => Component_Type_Repr)));

Figure 4: An example of representation for types with non-static
bounds

generating a partial type representation (namely the nature
of the type, array index types, record discriminant and com-
ponent types as well as variant part information) as an Ada
support library, which when executed extracts the missing
information (scalar type bounds), which can then be used to
generate relevant values. A pseudo-code example of what
would be generated for the types in Figure 3 is represented in
Figure 4.

This dynamic introspection allows us to implement builtin
generic strategies that will work for a variety of types (e.g.
the same random strategy can be used for all of the record
types). Such strategies need to generate values that can be
of a variety of types, thus in a format generic enough to
represent all kind of Ada values. The format picked there
was the JSON format, as it has a structural advantage over
e.g. a string format. The generated support library also
contains JSON serializers (converting from JSON to the Ada
type and the opposite) to be able to use the values that the
generic strategies generate. An alternative could have been
to generate specialized generators (that would return a value
of the Ada type) but this was deemed much less convenient
as it makes it harder to extend the built-in generators, and
make code generation harder as the generators contain some
intelligence.

This "two-stage" generation first analyzes the SUT and gener-
ates a support library and then execute generators from this
support library to produce testcases values. It will allow the
user to add custom generation strategies for subprogram pa-
rameters for which specific invariants are not captured in the
type definition, in the form of an Ada subprogram. These
strategies would be encoded as aspects, attached to a particu-
lar subprogram to drive its testing, or to a type, to provide a
default generation strategy, should the tool-provided ones not
fully match the intended testing pattern.

An example would correspond to Figure 5. This syntax, which
is still being refined, is inspired by property-based testing
tools such as Hypothesis [9].

function Generate_Integer return Integer;

function Foo (I, J : Integer) return Boolean
with Generation => (Strategies => (I => Generate_Integer)

Nb_Tests => 10);

Figure 5: Example of custom strategy specification

Here, we specify for the parameter I a dedicated custom strat-
egy using a function implemented by the user. The strategy
of the parameter J is left unspecified, meaning that our tool
will pick the default (random) strategy. As random generation
can yield an arbitrary number of values, the number of tests
would be configurable through the Generation .Nb_Tests aspect.

One could also use a built-in strategy but that is not the one
used by default, e.g. the Builtin_Sample strategy which picks an
arbitrary value from a sample, as seen in Figure 6.

function Foo (I, J : Integer) return Boolean
with Generation =>

(Strategies => (I => Builtin_Sample ([1, 2, 3]))
Nb_Tests => 10);

Figure 6: Example of strategy specification

Another challenge we face when generating values for com-
plex record types, or subprograms with a high number of
parameters, is to handle the combination of all the values gen-
erated for the various parameters and components. We will be
implementing various combinatorial strategies, in addition to
random strategies (which are the default in the current imple-
mentation) to let the user choose how the individual generated
values need to be combined, such as N-way testing.

One could imagine enhancing the previous strategy specifica-
tion syntax to account for enumerative strategies as in Figure
7:

procedure Initialize (S : in out State);
function Has_Next (S : State) return Boolean;
function Generate_Integer

(S : in out State;
Success : out Boolean) return Integer;

function Foo (I, J : Integer) return Boolean
with Generation => (Strategies => (I => Generate_Integer),

Driving => Enumerate);

Figure 7: Example of custom enumerative strategy specification

A custom enumerative strategy would need a state (to keep
track of what has been generated before), and coercing the
generation engine to enumerate the values produced by the
(enumerative) strategies instead of producing a fixed number
of tests, which is what the aspect Generation . Driving would
specify.

4 Using subprogram specifications to their
full extent

The generated test corpus will aim, through the various strate-
gies available, to generate relevant inputs for the SUT, but
some of the inputs generated solely based on the types of the
input parameters may not be in conformance with the full
specifications of the SUT.

Ada has first class support for executable precondition and
postconditions, which take the form of a Boolean expression,
such as in Figure 8, and are evaluated on each call of the
subprogram to which they are attached.

Taking advantage of the executable specifications that can
be attached to Ada subprograms, the type based generation
tool will extract simple relational constraints on the input
parameters to be taken into account during generation, filter

Volume 44, Number 2, June 2023 Ada User Jour na l

L. Creuse, M. Eyraud, V. Garèse 155

function Swap (Arr : Array_Type; I, J : Index_Type) with
Pre => I in Arr ’ First .. Arr ’Last

and then J in Arr’ First .. Arr ’Last
Post => Arr (I) = Arr ’Old (J)

and then Arr (J) = Arr ’Old (I);

Figure 8: Example of preconditions and postconditions

input values not validating the precondition, and use the post-
condition to detect abnormal executions during the generated
executable tests.

4.1 Measuring Contract coverage
Simply validating a post-condition does not however indicate
if all the outcomes specified in the subprogram contracts are
tested or not, in particular if the post-condition is a complex
expression.

Contract coverage analysis performed by the tool GNATcov
already makes use of three levels of detail for the coverage
analysis of Ada code. For decisions, they heavily rely on
checking that Boolean expressions have been evaluated to
both True and False. However, contracts are expected to
never evaluated to False, making the regular criteria unfit to
be used for checking the proper coverage of contracts.

We are thus developing new coverage criteria, based on the
proposals by C. Comar et al [12], so that the tool will be able
to assess quality of the generated tests.

In keeping with the possibility to choose between three levels
of requirements to achieve coverage of Ada code, contract
coverage would be achieved according to three levels of strict-
ness:

• Assertion True Coverage (ATC): The expression as a
whole has been evaluated True at least once.

• Assertion True Condition Coverage (ATCC): All the ex-
pression conditions have been evaluated at least once as
part of a complete expression evaluation to True. Dif-
ferent conditions may have been evaluated as part of
different outer expression evaluation instances.

• Assertion True Path Coverage (ATPC): All the paths
leading to a True outcome within the expression’s BDD
were taken.

5 Generating values through fuzzing
While the values generated from the structural analysis of
the SUT parameter’s type may generate a highly valuable
starting corpus, its generation does not take into account the
implementation of the SUT. As such, critical values on which
particular behaviors could be observed may not be represented
in the corpus. A fuzzer is a powerful tool which can find
vulnerabilities in subprograms it operates on by mutating the
input values of the SUT, but it can also be used to explore
more paths in a subprogram, and thus help build a quality
test corpus which maximizes structural coverage. Fuzzers
however rely on a pre-existing test corpus to operate, and
the higher the structural coverage is attained by the starting
corpus, the less mutations are required to find the remaining
unexplored execution paths.

5.1 Efficiently fuzzing Ada values
We are integrating our test generation tool with GNATfuzz, a
tool developed around AFL++ [13] for Ada code. Since there
currently are no custom AFL++ mutators for Ada values, the
contents of the inputs to the SUT must be serialized in a file,
which will undergo the mutations strategies in AFL++, then
these variables need to be read from disk, and passed to the
SUT to check if new paths or vulnerabilities are found with
the mutated values.

AFL++ operates by flipping bits of the binary representation
of the input values for the SUT. As there are currently no
structure-aware mutators implemented for Ada, these bit flips
may happen on alignment padding bits. These bit-flips are
thus useless, and render the fuzzing process less efficient. To
solve this, we have developed a binary representation for Ada
values that aims at minimizing the number of padding bits.

Moreover, as an Ada variable may encode some structural
information, such as array length or discriminant values in
the binary representation for that variable, it is important to
adapt what part of the binary representation of a value can be
mutated during the fuzzing process, and which should remain
unchanged. If the length of an array is mutated, and grows
larger, it won’t be possible to read back the added component
values, as they do not exist. We have thus split the binary
representation for Ada values, separating the immutable com-
ponents from the mutable ones, to be used in GNATfuzz to
ensure only the relevant components are mutated during a
fuzzing campaign.

5.2 Using symbolic execution to find edge-cases
Structure-aware values generation and fuzzing combined are
not always enough to explore all the execution paths of the
SUT. Symbolic execution is a third method that can help find
input values for the SUT that will reach previously unex-
plored execution paths. GNATFuzz integrates SymCC [7], a
compiler-based symbolic execution tool that will be used in
conjunction with the AFL++ fuzzing loop, when the later can-
not find input values that explore new paths. Given the costly
nature of a symbolic execution run of the SUT, this alternat-
ing use of the AFL++ loop and of SymCC help minimize the
number of symbolic execution runs, while still exploring all
the relevant execution paths.

As Ada contracts can contain any valid Boolean expression,
including calls to other subprograms, arbitrary code can be
executed as part of the evaluation of a pre-condition or a
post-condition. It is thus not always possible to extract sim-
ple relations between the various formals of the SUT. How-
ever, given the executable nature of contracts in Ada, and the
compiler-based nature of SymCC, it can be used to explore
branches that have not been executed in the precondition and
postcondition to generate input values of higher interest, that
will increase coverage for the various Assertion criteria.

6 Consolidating the test-cases in a coherent
test-suite

Each value generation phase is handled by a specific tool,
which requires communicating test case values amongst each
other. To do so, we are defining two test case exchange

Ada User Jour na l Vo lume 44, Number 2, June 2023

156 Automat ic Test Va lue Generat ion for Ada

Figure 9: Integration workflow among the various tools

format. The first one is in plain text so it can be reviewed
by any human, which serves as the exchange medium for the
tools. The second one is a binary dump of the input data, as
presented in Section 5. The type based generation creates
tests cases in the text based format, which can then be either
incorporated into a test harness generated by GNATtest, and
then executed. The test cases are also passed to the fuzzer as
a starting corpus in the form of binary input dumps. The tests
of interest generated by the fuzzer are themselves converted
to the text format to be inserted back into the test harness. If
GNATfuzz is used in conjunction with SymCC, the values
generated by it are also fed back into the source test harness
for inspection by the user.

This test exchange format can also be used to extract test
values from existing GNATtest harnesses, by instrumenting
the SUT to convert its input parameter to the format, which
can then be used in the fuzzing phase and symbolic execution
phase to augment the pre-existing testsuite. Figure 9 gives an
overview of the interactions of the tools and how they each
contribute to the testsuite generation.

Many of the tests generated by the three approaches combined
may be redundant, which is why a testsuite minimisation
tool is being worked on, keeping only the test-cases yielding
unexpected behaviors, and measuring the impact on coverage
on the SUT to find the minimal amount of tests that achieve
the highest coverage possible.

7 Conclusion
The tools presented in this article have the potential to signifi-
cantly help reduce the testing efforts for Ada subprograms, by
both introducing new ways to generate input values based on
the strong typing system present in Ada, and by combining
multiple dynamic analysis techniques to create a high qual-
ity and high coverage consolidated test-suite, either starting
from a pre-existing GNATtest harness, or from the type of
the parameters of the subprogram under test, as well as its
specifications.

Future work may include lifting the limitations concerning
tagged types, and investigate the possibility to use abstract
interpretation tools to generate input sets that would satisfy
the precondition of the SUT.

References
[1] Midoan Software Engineering Solutions, “Mika: Test

data generation for ada.” http://www.midoan.com/mika.
html.

[2] QA systems, “Adatest95: Automated unit & integra-
tion testing for ada.” https://www.qa-systems.com/tools/
adatest-95/.

[3] IBM, “Real-time rational-testing.” https:
//www.ibm.com/docs/en/rtr/8.0.2?topic=
rational-test-realtime-overview.

[4] Direction Générale de l’armement, “RAPID homepage.”
https://www.defense.gouv.fr/aid/deposez-votre-projet/
rapid-regime-dappui-a-linnovation-duale.

[5] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unas-
sisted and automatic generation of high-coverage tests
for complex systems programs.,” in OSDI (R. Draves
and R. van Renesse, eds.), pp. 209–224, USENIX Asso-
ciation, 2008.

[6] K. Khazem and M. Tautschnig, “Cbmc path: A sym-
bolic execution retrofit of the c bounded model checker,”
in Tools and Algorithms for the Construction and Anal-
ysis of Systems (D. Beyer, M. Huisman, F. Kordon, and
B. Steffen, eds.), (Cham), pp. 199–203, Springer Inter-
national Publishing, 2019.

[7] S. Poeplau and A. Francillon, “Symbolic execution with
SymCC: Don’t interpret, compile!,” in 29th USENIX Se-
curity Symposium (USENIX Security 20), pp. 181–198,
USENIX Association, Aug. 2020. https://www.usenix.
org/conference/usenixsecurity20/presentation/poeplau.

[8] K. Claessen and J. Hughes, “Quickcheck: A lightweight
tool for random testing of haskell programs,” SIGPLAN
Not., vol. 46, p. 53–64, may 2011.

[9] D. R. MacIver, Z. Hatfield-Dodds, et al., “Hypothesis:
A new approach to property-based testing,” Journal of
Open Source Software, vol. 4, no. 43, p. 1891, 2019.

[10] Proptest-Rs, “Proptest.” https://proptest-rs.github.io/
proptest/intro.html.

[11] Zac Hatfield-Dodds, “Hypofuzz: adaptive fuzzing
of property-based test suites.” https://zhd.dev/phd/
hypofuzz.html.

[12] C. Comar, J. Guitton, O. Hainque, and T. Quinot, “Struc-
tural coverage criteria for executable assertions,” in 8th
European Congress on Embedded Real Time Software
and Systems (ERTS 2016), 2016.

[13] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse,
“AFL++: Combining incremental steps of fuzzing re-
search,” in 14th USENIX Workshop on Offensive Tech-
nologies (WOOT 20), USENIX Association, Aug. 2020.

Volume 44, Number 2, June 2023 Ada User Jour na l

157

Mechanization of the Ravenscar Profile in Coq

J. Hugues
Carnegie Mellon University/Software Engineering Institute; email: jhugues@andrew.cmu.edu

Abstract

The Ravenscar profile has been added to the Ada lan-
guage as part of the 2005 revision. It is a pragmatic
definition of concurrency patterns for real-time systems
for mono-core processor. In this paper, we report on
an ongoing effort to mechanize a toy language derived
from IMP that embeds the Ravenscar profile constructs
as they are specified in the Ada Reference Manual. We
define the denotational semantics of the language and
derive two interpreters for the language.

Keywords: Coq, mechanization, Ravenscar

1 Introduction
The semantics of a programming language can be expressed
in multiple ways using either structural, reduction, or natural
semantics, see [1] for a survey of the various styles. Defining
the semantics of sequential programming languages is a well-
mastered exercise, with numerous variations for imperative or
functional programming languages. They usually focus on the
type system. Process algebras complement these approaches
to express concurrency in programming languages [2]. These
approaches are usually out of touch of actual programming
languages that implement a model of concurrency.

The Ada programming language has been one of the first
languages with built-in concurrency features. Ada builds on
the notion of task, protected object (akin to the Hoare monitor,
see §9 in [3] for a discussion). This model of concurrency can
be restricted to meet the constraints of high-integrity systems,
for instance the Ravenscar profile, introduced in Ada 2005.

In [4], the authors propose an operational semantics for the
Ada Ravenscar profile. This fundational work provides only
definitions, but no associated proof. Being a paper exercise,
its consistency and correctness is not asserted.

In this paper, we report on an ongoing effort to mechanize the
Ada Ravenscar profile using the Coq theorem prover. Our con-
tributions cover 1) the definition of a toy imperative language
to mimic the key constructs of Ada concurrent languages for
control flows and concurrency, 2) the definition of its seman-
tics using an axiomatic and a reduction-style semantics, 3)
the definition of a simulator for this language, and a proof of
its correctness. Finally, we propose 4) a simulator of multiple
Ravenscar programs, each representing a thread.

This paper is organized as follows: in section 2, we introduce
the Ravenscar profile; section 3 introduces the Coq theorem
prover. In section 4, we first introduce the IMP language,
and then its extension to support Ravenscar constructs for
concurrency (section 5), and then conclude.

2 The Ada Ravenscar profile
The Ada Ravenscar profile is a normative subset of the Ada
2005 language [5]. This profile defines guidelines to imple-
ment deterministic real-time systems. Ravenscar restricts a
system’s constructs to periodic and sporadic tasks that interact
through one-way asynchronous communications. This model
of computation restricts constructs to those that allow for de-
terminism, scheduling analysis, and memory boundedness.
It has been initially defined for the Ada language and later
adapted to other languages and APIs.

This profile is organized into four categories:

• Static Existence Model are restrictions that guarantee the
system is comprised of a set of tasks with static prop-
erties. This ensures some properties of the task set are
invariant and enable scheduling analysis using classi-
cal Liu and Layland or Joseph & Pandia schedulability
test [6]. The supported task set supports only sporadic
or periodic tasks;

• Static Synchronization and Communication Model de-
fines the resources to support the task set (activation
based on the arrival of the event) and shared resources.
This model uses a static set of Ada protected objects that
use the Immediate Ceiling Priority Protocol.

• Deterministic Memory Usage restrictions disallow im-
plicit memory allocation by the Ada runtime. Additional
Ada High-Integrity restrictions may forbid the secondary
stacks or all forms of dynamic memory allocation.

• Deterministic Execution Model further restricts Ada con-
structs to fully adhere to the task model of the Response-
Time Analysis and forbid situations that would create a
synchronization point with a complex dispatch trigger
such as the conjunction of multiple input events.

3 The Coq Theorem Prover
Coq [7] is a proof assistant, or Interactive Theorem Prover
(ITP). A developer may use the Coq language, Gallina, to
write mathematical definitions, executable algorithms, and
theorems within an Interactive Development Environment
(IDE). Coq has been used to prove non-trivial mathematical
theorems and also develop formally certified software and
hardware. One interesting feature of many ITPs is the ca-
pability to generate certified code (e.g. OCaml or Haskell)
from Coq definitions. In this context, “certified” means that
there exists a proof script – the certificate – that connects the
software produced and the proofs that accompany it. Many
references exist to learn more about the Coq ITP such as

Ada User Jour na l Vo lume 44, Number 2, June 2023

158 Mechanizat ion of the Ravenscar Prof i le in Coq

Pierse et al. [8]. In the following, we introduce a minimal set
of notions prior to introducing our Coq development.

Coq relies on Gallina, a functional language that acts as a
specification language to describe types, functions, and proofs
of some statement. Coq’s core follows the rules of the Cal-
culus of Inductive Constructions. The basic types in Coq are
either propositions, Prop, or sets Set. All other types are
built on top of these two types. Prop is the type of logical
propositions. It denotes the class of terms representing proofs.
Set represents typical data types.

In Figure 1, we show some fragments of Coq. First, we
define the statements that is the list of statements we use
in our mechanization (see section 4). Then, we define the
Legal_Periodic_Body_Spec lemma that assesses that the
function Legal_Periodic_Body is decidable. The syntax
uses sumbool. A sumbool, which is written A + B, is the
informative disjunction "A or B", where A and B are logical
propositions. The script proof asserts that we can either build
a proof of A or a proof of B. The proof is done by induction
overs the program p and proceeds by simplification and basic
reasoning steps on the terms produced using Coq’s default
proof tactics.

Inductive statements : Type :=
(* A sequential execution step *)
| COMP (WCET : Time)
(* Delay until some time *)
| DELAY_UNTIL_NEXT_PERIOD
(* Sequence of statements *)
| SEQ (s1: statements) (s2: statements)

Lemma Legal_Periodic_Body_dec: forall p,
{ Legal_Periodic_Body p } +

{ Legal_Periodic_Body p }.
Proof.
induction p ; simpl ; auto.
destruct p1 ; auto ;
apply dec_sumbool_and ; auto.

Qed.

Figure 1: A Coq inductive type

Coq has a rich standard library that defines regular types such
as booleans, integers, lists, and typical results on them. Coq
type system support polymorphisms and Java-like interfaces
(typeclasses). Because Prop and Set are both types, they
can be part of expressions. One of the key aspects of Coq is
that a proposition is more powerful than a boolean expression.
The type bool is computational: one can define functions
or perform case analysis. On the other hand, the type Prop
supports universal quantification over elements, that is typical
exists (∃) and for all (∀) quantifiers.

Writing proofs can be a repetitive task. Coq provides a rich
library of tactics that encode specific reasoning steps. A
typical example is auto that will prove basic propositions by
applying well-known facts and computations. Coq’s set of
tactics can be extended by the user using the LTAC language.

4 The IMP language
In [4], the authors propose an operational semantics for the
Ada Ravenscar profile. Yet, the authors opted to abstract
the Ada language and define Ada concurrency constructs
using concepts such as synchronizers and exchangers that
are runtime abstraction used in their implementation of a
Ravenscar runtime. Also, their work provides only definitions,
but no proof of consistency or correctness of their approach.

In the following, we opted to extend a well-studied impera-
tive language called IMP and extend it with Ada Ravenscar
constructs for concurrency in section 5.

4.1 Sequential IMP
IMP is a toy language used to represent a basic imperative
programming language. It is presented in depth in [9]. We
present here the key elements of the language. There are three
types of statements in IMP:

• arithmetic expressions AEXP (denoted by a, a0, a1, . . .)

• Boolean expressions BEXP (denoted by b, b0, b1, . . .)

• commands COM (denoted by c, c0, c1, . . .)

A program in the IMP language is a command in COM.

Let VAR be a countable set of variables. Elements of VAR
are x, x0, x1 Let n, n0, n1, . . . be integers and n be an
integer constant symbol representing the number n. The BNF
grammar for IMP is

AEXP ::= n | x | (a0 ⊕ a1)

BEXP ::= TRUE | FALSE | (a0 ⊙ a1) | (b0 ⊘ b1) | (¬b)
COM ::= SKIP | x := a | (c0 ; c1) |

(IF b THEN c1 ELSE c2) | (WHILE b DO c)

⊕ ::= + | ∗ | − | /
⊙ ::= ≤ | =

⊘ ::= ∨ | ∧

It relies on common notations for arithmetic and boolean
operators, assignments, and control flows.

From this BNF, we can then define the notion of configuration
of a program. A configuration is a pair < c, σ >, where
c ∈ Com is a command and σ is a store. A store (also known
as a state) is a function V ar → Z that assigns an integer to
each variable. The set of all stores is denoted Σ.

Intuitively, the configuration < c, σ > represents an instanta-
neous snapshot of reality during a computation, in which σ
represents the current values of the variables, and c represents
the next command to be executed.

As defined, IMP is a low-level language, close to an assembly
language, with registers being substituted with more general
variables. We claim it is suitable for expressing a language
like Ada: an Ada program is turned into a simpler form with a
similar power of expression as part of the compilation process.

Volume 44, Number 2, June 2023 Ada User Jour na l

J. Hugues 159

4.2 Structural Operational Semantics of IMP
Small-step semantics specifies the operation of a program
one step at a time. There is a set of rules that we continue
to apply to configurations until reaching a final configuration
< SKIP, σ > (if ever). We write < c, σ >→< c′, σ′ >
to indicate that the configuration < c, σ > reduces to <

c′, σ′ > in one step, and we write < c, σ >
∗→< c′, σ′ >

to indicate that < c, σ > reduces to < c′, σ′ > in zero or
more steps. Thus < c, σ >

∗→< c′, σ′ > iff there is a k ≥ 0
and configurations < c0, σ0 >, . . . , < ck, σk > such that
< c, σ >=< c0, σ0 >, < c′, σ′ >=< ck, σk >, and <
ci, σi >→< ci+1, σi+1 > for 0 ≤ i ≤ k − 1.

We define auxiliary small-step operators →a and →b for
arithmetic and Boolean expressions, respectively, as well as
→ for commands. The types of these operators are

→ : (Com× Σ) → (Com× Σ)

→a : (AExp× Σ) → Z
→b : (BExp× Σ) → B

One can derive the following rules for evaluating expressions.

• Constants: < n, σ >→a n

• Variables: < x, σ >→a σ(x)

• Operations:
< a0, σ >→a n0 < a1, σ >→a n1

< a0 ⊕ a1, σ >→a n0 ⊕ n1

The rules for evaluating Boolean expressions and comparison
operators are similar.

The definition of the semantics of commands follows a similar
approach. First, we define an operator for updating a store:let
σ[n/x] denote the store that is identical to σ except possibly
for the value of x, which is n.

σ[n/x](y) ≜

{
σ(y), if y ̸= x,
n, if y = x.

The semantics of all commands is presented in Figure 2. Note
that there is no rule for SKIP, since < SKIP, σ > is a final
configuration. This closes the definition of IMP.

5 IMP-Ravenscar
An Ada program is defined by three sets: {S, T ,P} represent-
ing the sets of subprograms, threads, and protected objects1.
An Ada task Ti ∈ T is defined by the subprogram Si it
executes and real-time parameters: its runtime state (IDLE,
RUNNING, or READY), its priority and its period. The latter
is not an explicit parameter in the Ada programming language
but is used for, e.g. scheduling analysis or simulation. Sim-
ilarly, an Ada protected object Pi is defined by the set of
subprograms from S it can execute and a unique entry, a sub-
program whose execution is guarded by a boolean expression
and a priority value for the Immediate Ceiling Priority Proto-
col concurrency policy2. Note that the Ada Ravenscar profile
does not allow for dynamic allocation of tasks or protected
objects. Similarly, Ada tasks are not allowed to terminate.

1We omit elements like global variables or interrupt handlers for clarity.
2i.e. when a thread enters the protected object, its priority is immediately

raised to this value

5.1 Semantics of IMP-Ravenscar
Concurrency in the Ada Ravenscar profile relies on two pat-
terns. First, absolute delays to suspend the execution of a
task until a future date is reached. Second, communication
through a protected object function or entry. We extend the
set of commands accordingly.

COM’ ::= DELAY_UNTIL | PO_ENTRY) (e)
| PO_FUNCTION) (f) | COM

The state of an Ada thread (T) is defined by a command
denoting the subprogram it executes, its store used for local
variables (σ), the time for the next dispatch of a thread (ND).
We define in the figure 3 the rules for these commands. By
convention, T [a ::=< expr >] indicates that member a of T
is updated by the value of expr, P[a] fetches the value.

The semantics follows the description of the Ada language:
for delay until, the next dispatch time of the task is updated
by the value of period and the task becomes idle. The exe-
cution of a protected function can be done immediately, the
priority of the thread is updated to the ceiling priority. This is
made possible thanks to the simplification of the Ravenscar
profile [10]. Protected entries follow a similar approach: if
the guard evaluates to true, the execution proceeds, otherwise
the thread becomes IDLE.
5.2 Validity of IMP-Ravenscar program
The previous rules defined the semantics of Ada Ravenscar
programs in basic mathematical terms. They have a direct
translation in Coq. We sketch some of the results we proved3:
IMP-Ravenscar is deterministic, one can assert a program
terminates or not. We also defined the notion of valid pe-
riodic and sporadic programs as decidable properties. Per
the Ravenscar profile, a task never terminates. A periodic
thread executes an infinite loop. It can be suspended only by
one delay until per cycle. A sporadic thread also executes an
infinite loop, it enforces a minimum inter-arrival time (period)
between two cycles and waits on one protected object entry
to receive events from another thread.

In addition, IMP-Ravenscar inherits properties from the IMP
language: it is defined by both a denotational and a reduction
semantics. We defined an evaluation function for a program,
allowing to compute its final state. We also implemented
a continuation-passing style semantics (CPS) that is equiv-
alent to the initial semantics. In CPS, the command to be
executed is explicitly decomposed into a sub-command un-
der focus, where computation takes place; a context that
describes the position of the sub-command in the whole com-
mand; or, equivalently, a continuation that describes the parts
of the whole command that remain to execute once the sub-
command terminates. This allows us to execute a subprogram
for x steps. In other words, to stop or preempt the execution
of a program. All proofs are technical, but follow the same
pattern of a proof by induction on either the command to be
executed or the number of steps to be computed.

3The full mechanization is available at https://github.com/
Oqarina/oqarina/blob/main/src/MoC/ravenscar.v

Ada User Jour na l Vo lume 44, Number 2, June 2023

160 Mechanizat ion of the Ravenscar Prof i le in Coq

• Assignments:
< a, σ >→a n

< x := a, σ >→< SKIP, σ[n/x] >

• Sequences:
< c0, σ >→< c′0, σ

′ >

< c0; c1, σ >→< c′0; c1, σ
′ > < SKIP; c1, σ >→< c1, σ >

• Conditionals:
< b, σ >→b true

< IF b THEN c0 ELSE c1, σ >→< c0, σ >

< b, σ >→b false

< IF b THEN c0 ELSE c1, σ >→< c1, σ >

• While statements: < WHILE b DO c, σ >→< IF b THEN (c;WHILE b DO c) ELSE SKIP, σ >

Figure 2: Small-step semantics for IMP commands

• Delay: < DELAY_UNTIL, T >→< SKIP, T [nd ::= nd+ period, state := IDLE] >

• PO_Function: < PO_FUNCTION (f), T ,P >→< f, T [priority ::= P[priority]] >

• PO_Entry:

P[guard] →b true

< PO_ENTRY (f), T ,P >→< f, T [priority ::= P[priority]] >
P[guard] →b false

< PO_ENTRY (f), T ,P >→< f, T [state := IDLE] >

Figure 3: Small-step semantics for Ravenscar commands

5.3 Simulation of IMP-Ravenscar program
The previous definitions allow one to reason on the execution
of one program. We implemented a simulation procedure for
a Ravenscar system that leverages the CPS-style semantics.
We are concerned with mono-core systems, therefore the sim-
ulation procedure is simple. We first elect the next thread
to be executed and compute the time of dispatch of the next
thread that may preempt it (e.g. because of a higher-priority
thread awaking). We then simulate this thread for the cor-
responding amount of time. We repeat the process until we
reach the end of the simulation.

6 Conclusion
In this paper, we sketched how to mechanize the Ada Raven-
scar profile by extending IMP, a canonical imperative lan-
guage. Although Ada has a richer semantics, its control flow
mechanisms can be expressed in both denotational and re-
duction semantics, allowing one to derive a simulator that
conforms by construction to this semantics. This work is the
first step in fully defining the semantics of the Ravenscar pro-
file in the Coq theorem prover. We plan to finalize this effort
and demonstrate other canonical results like the absence of
deadlock that comes from the usage of ICPP and mono-core
systems; we will also evaluate the connection with formal
scheduling analysis tools like PROSA.

Acknowledgments
Copyright 2023 ACM. This material is based upon work
funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon Uni-
versity for the operation of the Software Engineering Institute,
a federally funded research and development center.
DM23-0191

References
[1] Y. Zhang and B. Xu, “A survey of semantic description

frameworks for programming languages,” SIGPLAN
Not., vol. 39, pp. 14–30, Mar. 2004.

[2] J. Baeten, “A brief history of process algebra,” Theo-
retical Computer Science, vol. 335, no. 2, pp. 131–146,
2005. Process Algebra.

[3] Ada 95 Rationale The Language - The Standard Li-
braries. Lecture Notes in Computer Science, 1247,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1st ed.
1995. ed., 1995.

[4] I. Hamid and E. Najm, “Operational semantics of ada
ravenscar,” in Reliable Software Technologies – Ada-
Europe 2008 (F. Kordon and T. Vardanega, eds.), (Berlin,
Heidelberg), pp. 44–58, Springer Berlin Heidelberg,
2008.

[5] B. Dobbing, A. Burns, and T. Vardanega, “Guide for
the use of the of the Ravenscar Profile in High Integrity
Systems,” tech. rep., 2003.

[6] M. Chetto, ed., Real-Time Systems Scheduling 1: Fun-
damentals. Hoboken, NJ, USA: John Wiley & Sons,
Inc., Aug. 2014.

[7] Y. Bertot and P. Castéran, Interactive theorem proving
and program development - Coq’Art: The calculus of
inductive constructions. Texts in theoretical computer
science. An EATCS series, Springer, 2004.

[8] B. C. Pierce, A. Azevedo de Amorim, C. Casinghino,
M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg, and
B. Yorgey, Logical Foundations. Software Foundations
series, volume 1, Electronic textbook, May 2018.

[9] T. Nipkow and G. Klein, Concrete Semantics - With
Isabelle/HOL. Springer, 2014.

[10] J. A. de la Puente, J. F. Ruiz, and J. Zamorano, “An open
ravenscar real-time kernel for GNAT,” in Reliable Soft-
ware Technologies - Ada-Europe 2000, 5th Ada-Europe
International Conference, Potsdam, Germany, June 26-
30, 2000, Proceedings (H. B. Keller and E. Plödereder,
eds.), vol. 1845 of Lecture Notes in Computer Science,
pp. 5–15, Springer, 2000.

Volume 44, Number 2, June 2023 Ada User Jour na l

161

Worst Case Execution Time and Power Estimation
of Multicore and GPU Software: A Pedestrian
Detection Use Case

Ivan Rodriguez Ferrandez, Alvaro Jover Alvarez, Matina Maria Trompouki, Leonidas Kosmidis, Francisco J.
Cazorla
Barcelona Supercomputing Center (BSC) and Universitat Politecnica de Catalunya (UPC); email: {ivan.rodriguez,
alvaro.jover, matina.trompouki, leonidas.kosmidis, francisco.cazorla}@bsc.es

Abstract

Worst Case Execution Time estimation of software run-
ning on parallel platforms is a challenging task, due to
resource interference of other tasks and the complexity
of the underlying CPU and GPU hardware architec-
tures. Similarly, the increased complexity of the hard-
ware, challenges the estimation of worst case power
consumption. In this paper, we employ Measurement
Based Probabilistic Timing Analysis (MBPTA), which
is capable of managing complex architectures such as
multicores. We enable its use by software randomisation,
which we show for the first time that is also possible
on GPUs. We demonstrate our method on a pedestrian
detection use case on an embedded multicore and GPU
platform for the automotive domain, the NVIDIA Xavier.
Moreover, we extend our measurement based probabilis-
tic method in order to predict the worst case power
consumption of the software on the same platform.

1 Introduction
Applications with real-time requirements such as the ones
used in automotive and other safety critical systems, require
the computation of worst case execution time (WCET). How-
ever, the increased complexity of modern platforms targeting
these domains, which includes multiple cores and GPUs,
makes the computation of the WCET a very challenging task.

Conventional timing analysis methods such as static timing
analysis require detailed information about the hardware ar-
chitecture which are not available for these platforms, espe-
cially for GPUs. Similarly, traditional measurement-based
methods (MBTA) are unable to deal with the uncertainty in-
troduced by shared caches and GPUs. Measurement-Based
Probabilistic Timing Analysis (MBPTA) [1] can address this
complexity, allowing to compute WCET on multicores [2].

However, MBPTA requires certain properties to be present
in the platform in order to be used, namely independent
and identically distributed (i.i.d) execution times ensuring
that execution conditions at analysis match the ones at sys-
tem operation. These properties require either specially de-
signed hardware [3] [4] or software randomisation [5] on

Commercial-off-the-shelf (COTS) platforms. However, soft-
ware randomisation methods have been only demonstrated
so far on CPUs. In this work, we demonstrate for the first
time that software randomisation is also applicable on GPUs,
and in particular its static variant which works at source code
level, known as Toolchain Agnostic Software Randomisation
(TASA) [6].

In addition to the Worst Case Execution Time, safety critical
systems require the estimation of their power consumption.
Such an estimation is useful in order to guarantee the ade-
quate thermal design of the system, so that it stays within its
operational limits, otherwise there is a risk of unavailability
of the safety critical system. However, the complexity of
the hardware complicates this estimation using measurement
based techniques [7], since during the experiments perfor-
mance during analysis time, there are power measurement
peaks which might not be observed.

Usually manufacturers provide a conservative upperbound of
the worst case power consumption, known as Thermal Design
Power (TDP), however this can result in overprovisioning
of the system resources. The use of Extreme Value Theory
(EVT) [8], which is one of the foundations of MBPTA, has
been shown possible in the past for the worst case power
consumption of a simulated time-randomised multicore CPU
based on the NGMP [7]. Similar to MBPTA, hardware or
software randomisation is required to enable the use of this
method. In this work, TASA can provide this property.

In particular, we demonstrate our method on a pedestrian
detection use case deployed on the automotive platform
NVIDIA Xavier, showing that it is possible to obtain com-
petitive WCET estimations with respect to traditional mea-
surement based methods, as well as to estimate the worst case
power consumption, too.

2 System Architecture
This work has been developed within the H2020 project
UP2DATE [9], which aims to provide safe and secure up-
dates on complex, heterogeneous platforms featuring multiple
CPUs and including accelerators such as GPUs. The bench-
marking of the available embedded high performance plat-
forms early in the project, led to the selection of the NVIDIA

Ada User Jour na l Vo lume 44, Number 1, June 2023

162 WCET and Power Est imat ion of Mul t icore and GPU Sof tware

libvirt

Automotive Gateway

Event recorder

LINUX

O
ff

lin
e

M
o

n
it

o
ri

n
g

Partition 2Partition 0

RT-
LINUX

U
p

d
a

te
m

a
n

a
g

er

Partition 1

RT-
LINUX

Ex
t-

U
p

d
a

te
m

a
n

a
g

er
(s

)

RT-
LINUX

O
n

lin
e

M
o

n
it

o
ri

n
g

Partition 3

NVIDIA JETSON XAVIER

Inter-partition Communication (IPC)

HOST (RT-LINUX + KVM)

GPU

Docker

Partition 4 (Target 2)

Event recorder

Viola JonesImage Acquisition

Visualization

ER ER ER ER

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 7

Pedestrian Detection

CPU 6 CPU 8

Figure 1: UP2DATE System architecture based on the Xavier Automotive Gateway Platform, featuring multiple CPUs and a GPU.

Xavier automotive platform [10]. This platform contains 8
ARM v8 compatible CPUs designed by NVIDIA, codenamed
as Carmel. Each of the CPUs has private instruction and
data caches, and shared L2 and L3 caches, connected to a
32GB LPDDR memory. Moreover, a GPU with 8 Streaming
Multiprocessors (SMs) is connected to the LPDDR memory.

Since software updates are key for the project, it is important
not only that to compute the WCET of safety-related soft-
ware, but to remain also valid after an update. This led us to
the following decisions regarding the system architecture. In
order to facilitate software updates as well as time and space
isolation required for the deployment of safety critical applica-
tions, the use of virtualisation has been decided [10] in order
to create application partitions. For the deployment of CPU
only partitions, the Linux KVM hypervisor has been selected,
while for partitions requiring access to the GPU, the NVIDIA
supported docker solution is used, since currently it is the
only way that the GPU can be accessed from a virtualised
environment on this platform. Figure 1 shows an overview of
the system architecture considered in the UP2DATE project.

In order to simplify per-partition timing analysis, each par-
tition is statically bound to a CPU and uses a single CPU.
Similarly, in order to avoid the timing implications of GPU
sharing, only a single partition is accessing the GPU. Overall,
up to 8 partitions can be deployed on the platform, one for
each CPU, and up to 1 of them is able to access the GPU.
Given the large number of CPUs and the available memory of
the platform (32GB), this approach is feasible. If the number
of functionalities which need to be deployed are larger than
the number of cores, they can be consolidated in one of the
partitions.

3 Use Case Description
The UP2DATE project incorporates several industrial use
cases from the railway and automotive domains [9]. However,
none of them – which are based on legacy industrial applica-
tions deployed in existing single core safety critical platforms
– had a high computational requirement needing a GPU. For
this reason, we have developed a research use case which
resembles a computationally intensive automotive task, such
as pedestrian detection. Pedestrian detection is an important

task needed for the implementation of Automatic Emergency
Breaking functionality which since 2023 is required in all
new cars sold in the European Union [11].

As a basis of the UP2DATE research use case we used a pre-
viously developed open source multi-CPU, multi-GPU pedes-
trian detection benchmark [12], based on Viola-Jones [13]
[14]. While this classic machine vision algorithm has lower
accuracy compared to modern implementations based on deep
learning, it has the advantage of explainability, which is im-
portant for functional safety certification.

The main code changes are the code conversion to use
only one CPU and GPU, and the instrumentation with the
UP2DATE monitoring middleware, which allows to measure
the execution time of the CPU and GPU tasks of the ap-
plication, as well as the collection of performance counter
measurements for both CPU and GPU. Moreover, the applica-
tion has been enhanced with a new pedestrian data set, which
has been used for project demos at dissemination events. The
modified application is released also as open source at [15].

The application consists of 3 tasks. The first task performs
the image acquisition. The second task processes the im-
age in order to detect the pedestrians using the Viola-Jones
method and returns the coordinates and the bounding boxes
of the detections, which can be used as input by subsequent
tasks e.g. for the implementation of the automatic emergency
breaking functionality. Finally, the third task is responsible of
displaying the detection, as well as saving the resulting image
for logging purposes, e.g. for post accident examination for
insurance or legal reasons.

4 GPU Software Randomisation
In order to enable the application of MBPTA on a conven-
tional CPU and GPU platform, we apply software randomi-
sation. Existing software randomisation methods [5] [6] are
only available for CPUs. Moreover, dynamic software ran-
domisation – the method with the highest Technology Readi-
ness Level (TRL), demonstrated with several industrial use
cases from the avionics [16] and the space [17] domain – is
not available for ARM processors and more importantly, it
is not possible to be implemented on GPUs. The reason is

Volume 44, Number 1, June 2023 Ada User Jour na l

I . Rodr iguez-Ferrandez et a l . 163

that dynamic software randomisation requires compiler mod-
ifications. However, GPU vendors and especially NVIDIA
are notorious for using proprietary languages, such as CUDA,
with closed source compiler and runtime systems, which pre-
vent the implementation of such functionality.

Toolchain Agnostic Software Randomisation (TASA) [6], was
developed to overcome this limitation, by performing soft-
ware randomisation at source code level. TASA relies on
the principle that compilers generate object code in the same
order they appear in the source code. However, TASA was
prototyped as a proof of concept, only for CPUs and demon-
strated with small benchmarks. Moreover, it only supported
ANSI C and had no support for the C preprocessor, which
limited its capability to work with industrial grade code.

In this work we have reimplemented TASA from scratch
within the CIL [18] source-to-source compiler framework.
CIL is capable of parsing any C code, including gcc exten-
sions, which makes it capable of working even with the Linux
kernel, which is likely the most complex and largest C code
base. This makes our TASA reimplementation, which we
have open sourced at [19] to achieve the highest TRL on CPU.
CIL provides features which are useful for the application
of TASA such as inclusion of function prototypes as well
as a linker at source code level, which allows to merge all
application’s source code files in a single source code file
which can be randomised with TASA.

In order to enable GPU software randomisation, we extended
CIL to support the CUDA programming language. CUDA is a
C/C++ extension for GPU programming, therefore our imple-
mentation only supports its C subset, due to the capabilities
of our compiler toolchain. Using the NVIDIA binary utilities
such as cuobjdump, we verify that similar to the applica-
tion of TASA in CPUs, the location of functions and variables
in the program executable follows their definition order in
the source file. Moreover, we verify with microbenchmarks
that the randomisation of GPU code randomises GPU cache
conflicts, which in turn provide random execution times.

5 Methodology
In order to compute the WCET of the pedestrian detection
use case which is considered our Unit of Analysis (UoA), first
we measure the timing of the pedestrian detection partition in
isolation. In conventional measurement based timing analysis
(MBTA) for single core systems, the maximum execution
time (max(ETUoAisol

)) is inflated by an engineering margin
(EM) in order to compute the WCET:

WCETMBTA = max(ETUoAisol
)× EM (1)

In order to adapt the WCET to account for the contention
created by other partitions, we use two different approaches,
similar to [2].

In order to make the estimation completely independent of
the software running on the other partitions, and therefore
support arbitrary updates of any partition, we use a Fully Time
Composable (FTC) approach. This approach considers the
worst possible contention from the other partitions running

in the cores 2 to 8 (WCi, i ∈ [2, 8]), therefore at system
operation the actual contention of other partitions is lower
than the one considered at analysis:

WCETFTC = max(ETUoA) under WCi , where i ∈ [2, 8]

and max(ETUoA) ≥ max(ETUoAisol
) (2)

In order to obtain the WCETFTC , we perform the measure-
ment of the UoA, which is executed in the CPU core 1, while
the rest of the cores in the system (7 cores, from CPU 2
until CPU 8) are executing a program which generates the
maximum contention. In order to achieve this effect, we are
using a microbenchmark which always misses in the L2 and
L3 shared caches, similar to [2]. Therefore, whenever the
software of the pedestrian detection partition (UoA) attempts
to access memory (L2, L3 or the LPDDR) it suffers multicore
contention from 7 more cores.

Although the WCETFTC estimation obtained with the Full
Time Composable scenario is completely independent of the
actual software executed in the rest of the CPU cores or par-
titions (given the one-to-one mapping of partitions to CPU
cores), this comes at the expense of excessive pessimism in
the WCET.

However, the resulting measured pessimism of FTC is still
lower than the theoretical upperbound of the multicore con-
tention. Note that the theoretical upperbound of this method
is to consider that in an 8 core processor, in the worst case
the expected maximum slowdown that can be experienced
due to memory contention is 8×. The reason for this is the
following: assuming that the memory hierarchy serving the
8 cores of the system is completely fair, each core will get
1/8th of its bandwidth.

In terms of Power consumption, the same Fully Composable
method can be applied. The power consumption is observed
under the same worst case contenders in order to generate a
higher power consumption than the one that is going to be
experienced during the system deployment.

The manufacturer-provided Thermal Design Power (TDP) is
also a safe upper bound that can be used, regardless of the
workload executed in the other cores.

In order to alleviate the pessimism of FTC, we also consider
a Partial Time Composable scenario (PTC). In this case, the
maximum contention (max(Ci)) generated by each partition
is measured using the UP2DATE middleware in terms of
cache misses per second. Then a higher contention threshold
(THi) is decided for each partition (CTi), which can account
for future updates of that partition.

CTi = max(Ci)× THi (3)

Based on this threshold, a configurable contender is created,
which generates at least CTi memory contention. By re-
placing each partition with its corresponding configurable
contender, the partition under analysis (the pedestrian detec-
tion partition in our case) is software randomised, and its

Ada User Jour na l Vo lume 44, Number 1, June 2023

164 WCET and Power Est imat ion of Mul t icore and GPU Sof tware

Table 1: Pedestrian detection execution time measurements (ms)
in isolation (left) and FTC (right)

Time per processed image (ms)
isolation FTC

Minimum 17,519 18,605
Average 19,00468 22,24689
Maximum 26,521 111,923

probabilistic Worst Case Execution time is computed under
that configuration (WCETconf) using MBPTA.

The purpose of using software randomisation in the software
under analysis is two fold: first, it allows to compute the
WCET using MBPTA. The second reason is that the mea-
sured execution time under contention depends on the align-
ment in time of the memory requests generated by the other
partitions. Unlike the FTC case in which every time that
the pedestrian detection application tries to access memory
suffers contention from the other 7 cores, in the PTC sce-
nario this contention can be much lower. Therefore, there is
a chance that the software under analysis accesses memory
when the memory subsystem is not occupied serving requests
by other CPUs/partitions. However, software randomisation
changes both the number of miss requests generated from
the software under analysis (i.e. due to the different conflicts
among them in the caches) as well as the execution time of
the task under analysis. Therefore, it allows to cover more
cases during the analysis of the system.

In that case, the partial time composable WCET
(WCETPTC) is defined as:

WCETPTCconf
= WCETconf under CTi , where

i ∈ [2, 8] (4)

It is worth noting that this PTC WCET is only valid for the
particular configuration (conf i.e. number of partitions and
their specific thresholds) from which it was derived. For
example, a given configuration may use less than 8 cores, e.g.
if the number of partitions deployed in the system is lower.
However, if a software update enables the use of an additional
core, then the PTC WCET is no longer valid and the analysis
needs to be repeated.

Moreover, this WCETPTCconf
continues to remain valid for

as long as any new version of a partition after an update does
not exceed the contention threshold CTi used in the determi-
nation of the WCET. At system operation, the UP2DATE mon-
itoring middleware ensures that each partition stays within
the limit defined in the particular configuration used during
the analysis and takes corrective action. Examples of correc-
tive actions are restarting the offending partition, stopping
the partition if it is not a high criticality one, or rolling back
to the previous software version. In our case, no violations
have been observed, providing additional evidence that our
estimations are valid.

For the energy consumption under the Partially Composable
scenario we apply the same methodology. Again the software
randomisation of the unit under analysis is used in order

to generate power peaks that might not be observed during
the measurements performed at analysis, e.g. due to the
increased number of misses generated by a given memory
layout, and predict its probabilistic worst case using Extreme
Value Theory, similar to [7]. In addition, the configurable
contenders allow to upperbound the power consumption of
the activity in the other cores.

For the implementation of the worst case contention of the
FTC we are using a microbenchmark that always misses in
the various cache levels similar to [2], as well as the linux
stress benchmark for memory traffic and we select the one that
generates the highest slowdown to the pedestrian detection
partition. For the configurable contenders we use the same
approach, but the contention of each contender is tuned using
the cpulimit linux utility, in order to match the selected CTi

value.

6 Evaluation
In the left column of Table 1 the maximum observed execu-
tion time (max(ETUoAisol

)) from equation 1) per frame is
26,521 ms. In traditional measurement-based timing analysis
methods (MBTA) applied on single core setups, this time is
inflated by an engineering margin (EM) based on prior ex-
perience with the platform, in order to account for unknown
latencies introduced by the architecture. In the PowerPC MPC
755 processor used in avionics, this EM is 20% (therefore
the EM in equation 1 is 1,20 in this case) when the L2 cache
of this single core processor is disabled [20]. Enabling the L2
cache would make the engineering margin much higher, and
therefore cancel out much of the performance benefit offered
by the use of the cache. The reason for this is that the L2 cache
is unified and write-back, which means that the worst case for
each cache entry is encountered when the replaced entry is
dirty, and therefore its value needs to be written to memory be-
fore storing the new contents of the cache line. Consequently,
level two or higher level caches are not used in industrial
deployments of real-time systems or they are used under very
specific configurations. To our knowledge, the only solution
capable of analysing multi-level caches with a measurement
based method, including the particularly challenging case of
unified caches, is using time-randomisation [21].

For the NVIDIA Xavier which contains 3 cache levels and
additional high-performance features compared to the MPC
755 such as dynamic branch predictor, prefetchers and mul-
ticore contention etc, there is no prior experience which can
suggest an appropriate EM, although the previous example in-
dicates that a higher EM is expected. However, for the sake of
simplicity for the rest of this section we will assume optimisti-
cally that 20% is a sufficient EM also for NVIDIA Xavier
as it has been done for comparison reasons in the MBPTA
literature [20] [21]. Therefore, we assume that the WCET
estimation per frame is WCETMBTA = 26, 521× 1, 20 =
31, 8252ms.

The average power consumption per frame with this setup is
9,99W while the maximum observed (high watermark) power
consumption per frame is 10,973W. Note that the NVIDIA-
supplied TDP (Thermal Design Power) of the platform we
are using is 30W. In the absence of a reliable way to measure

Volume 44, Number 1, June 2023 Ada User Jour na l

I . Rodr iguez-Ferrandez et a l . 165

Table 2: Analysis of each UP2DATE partitions in terms of cache misses per second

use case online monitoring update_manager external_update_manager offline_monitoring
L1 Accesses 126953948,353333 1059333 511360,7 218952,5 1701044
L1 Misses 783343,2 48374,79 35733,05 19553,89 73019,85
L2 Accesses 81260172 6660086 2490600 2133653 3290321
L2 Misses 1926062 888311,5 399974,2 344016,6 560166,6

Figure 2: PTC pWCET curve obtained using MBPTA and com-
parison with conventional timing analysis.

worst-case power consumption, this is the safe upper-bound
that has to be used as a worst-case estimation.

Then, we profile the pedestrian detection partition under
heavy stress to observe the worst-case execution time in
terms of multicore contention for the FTC setup, in which
the software executed in the other cores is replaced by worst-
case contenders. Therefore the observed execution time is
a safe upper-bound of the actual execution time when any
other software is executed in the other cores. In the right
column of Table 1 the maximum observed execution time
(WCETFTC) per frame is 111,923ms, which is 4,2× higher
than the baseline execution time (max(ETisol)). Since the
NVIDIA Xavier contains 8 CPUs, the theoretical maximum
bus contention can be up to 8×. Note that this is a conserva-
tive estimate, since prior work has shown that the combined
effect of bus, a shared L2 cache and memory controller of a 4
core processor can be as high as 9× and under certain cases,
more than 9× [22]. Therefore, under the assumption that 8×
can be the contention upper-bound for NVIDIA Xavier, this
means that the use of worst-case contenders in UP2DATE, can
provide a WCET improvement in the full time composable
scenario of 52%.

In terms of power consumption per frame, the average power
consumption in the FTC scenario (i.e. under worst case con-
tenders) is 11,35W, while the worst case observed (high wa-
termark) power consumption is 12,05W, which is 10% higher
than the baseline. Considering again that the safe upper bound
of the power consumption is the 30W TDP provided by the
manufacturer, the use of worst-case contenders in UP2DATE
provides a 60% improvement.

Next, we analyse each UP2DATE partition in terms of cache

Figure 3: Partially Composable Probabilistic Worst Case Power
Consumption curve obtained using EVT and comparison with
TDP.

misses in order to build a custom configurable contender
which can replace each one. The obtained values are pre-
sented in Table 2. We select a tight threshold (THi) of 1%,
which is one of the tightest PTC estimations we could provide.

Finally, we replace each UP2DATE partition with config-
urable contenders and apply software randomisation to the
pedestrian detection, so that MBPTA can be used to estimate
its probabilistic WCET (pWCET) and power consumption.
We perform 500 randomisations and collect measurements
over 2000 experiments, which we verify that satisfy the i.i.d
property using the Box-Ljung test for independence and the
Kolmogorov- Smirnov test for identical distribution.

Figure 2 shows the pWCET curve obtained using
Measurement-Based Probabilistic Timing Analysis (MBPTA).
The black line as well as the maximum observed execution
time with software randomisation, are slightly longer than
the corresponding one of the non-randomised version. This
is expected since software randomisation allows to explore
much more memory layouts and contention alignments in
time, so that their timing effect is taken into account. We
notice that for the cut-off probability 10−12 the estimated
WCET (WCETPTC) is slightly higher than the optimistic
20% engineering margin which was assumed to be enough for
Xavier. This partial time composable pWCET is 4× smaller
than the fully time composable WCET as well as 7,5× smaller
compared to the theoretical maximum contention that can be
experienced among the 8 cores of the NVIDIA Xavier.

The application of MBPTA for the power measurements
shown in Figure 3 predicts that the power consumption can
be up to 15W per frame. This estimate is larger than the

Ada User Jour na l Vo lume 44, Number 1, June 2023

166 WCET and Power Est imat ion of Mul t icore and GPU Sof tware

highest observed power consumption of 12,05W in the fully
composable case. This is valid because despite the fact that
the worst-case contenders can increase power consumption,
they are not able to increase the power of the platform to its
maximum, since this depends also on the task under analysis.
This estimate is 2× better than the conservative use of TDP.

7 Conclusion
In this paper we presented the Worst Case Execution Time
and Power Estimation of a GPU application executing on
the NVIDIA Xavier embedded multicore and GPU platform.
We have achieved our goal using software randomisation
which we enabled for the first time on GPU. Timing and
power estimates per frame are 50-60% improved in the fully
composable scenario compared to the theoretical contention
(number of cores) and power consumption bounds (TDP).
The partial composable scenarios provide a 4× improvement
compared to the fully composable scenario in timing, but
more conservative power results which are 50% better than
the TDP.

8 Acknowledgments
This work was funded by the Ministerio de Ciencia e Innova-
cion - Agencia Estatal de Investigacion (PID2019-107255GB-
C21/AEI/10.13039/501100011033 and IJC-2020-045931-I),
the European Commission’s Horizon 2020 programme under
the UP2DATE project (grant agreement 871465), an ERC
grant (No. 772773) and the HiPEAC Network of Excellence.

References
[1] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo,

T. Vardanega, L. Kosmidis, J. Abella, E. Mezzetti,
E. Quiñones, and F. J. Cazorla, “Measurement-Based
Probabilistic Timing Analysis for Multi-path Programs,”
in 24th Euromicro Conference on Real-Time Systems
(ECRTS), 2012.

[2] E. Díaz, M. Fernández, L. Kosmidis, E. Mezzetti,
C. Hernández, J. Abella, and F. J. Cazorla, “MC2: Mul-
ticore and Cache Analysis via Deterministic and Proba-
bilistic Jitter Bounding,” in Reliable Software Technolo-
gies - Ada-Europe, 2017.

[3] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla,
“A Cache Design for Probabilistically Analysable Real-
time Systems,” in Design, Automation and Test in Eu-
rope (DATE), 2013.

[4] M. Fernández, D. Morales, L. Kosmidis,
A. Bardizbanyan, I. Broster, C. Hernández, E. Quiñones,
J. Abella, F. J. Cazorla, P. Machado, and L. Fossati,
“Probabilistic Timing Analysis on Time-randomized
Platforms for the Space Domain,” in Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE),
2017.

[5] L. Kosmidis, C. Curtsinger, E. Quiñones, J. Abella, E. D.
Berger, and F. J. Cazorla, “Probabilistic Timing Analysis
on Conventional Cache Designs,” in Design, Automation
and Test in Europe (DATE), 2013.

[6] L. Kosmidis, R. Vargas, D. Morales, E. Quiñones,
J. Abella, and F. J. Cazorla, “TASA: Toolchain-agnostic
Static Software Randomisation for Critical Real-time
Systems,” in Proceedings of the 35th International Con-
ference on Computer-Aided Design (ICCAD), 2016.

[7] D. Trilla, C. Hernández, J. Abella, and F. J. Cazorla, “An
Approach for Detecting Power Peaks During Testing and
Breaking Systematic Pathological Behavior,” in 2019
22nd Euromicro Conference on Digital System Design
(DSD), 2019.

[8] S. Kotz and S. Nadarajah, Extreme Value Distributions.
Imperial College Press, 2000.

[9] I. Agirre, P. Onaindia, T. Poggi, I. Yarza, F. J. Cazorla,
L. Kosmidis, K. Grüttner, M. Abuteir, J. Loewe, J. M.
Orbegozo, and S. Botta, “UP2DATE: Safe and Secure
Over-the-air Software Updates on High-performance
Mixed-Criticality Systems,” in 23rd Euromicro Confer-
ence on Digital System Design (DSD), 2020.

[10] A. Jover-Alvarez, A. J. Calderón, I. Rodriguez, L. Kos-
midis, K. Asifuzzaman, P. Uven, K. Grüttner, T. Poggi,
and I. Agirre, “The UP2DATE Baseline Research Plat-
forms,” in Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2021.

[11] P. E. Ross, “Brakes that Slam Themselves: Automatic
emergency braking will become standard in Europe,”
IEEE Spectrum, vol. 59, no. 1, 2022.

[12] M. M. Trompouki, L. Kosmidis, and N. Navarro,
“An Open Benchmark Implementation for Multi-CPU
Multi-GPU Pedestrian Detection in Automotive Sys-
tems,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2017.

[13] P. A. Viola and M. J. Jones, “Rapid Object Detection
Using a Boosted Cascade of Simple Features,” in 2001
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), 2001.

[14] P. A. Viola and M. J. Jones, “Robust Real-Time Face
Detection,” International Journal of Computer Vision,
2004.

[15] A. Jover-Alvarez and L. Kosmidis, “Open-Source
UP2DATE Pedestrian Detection Use Case Repos-
itory.” https://gitlab.bsc.es/up2date/
violajones-tasa.

[16] L. Kosmidis, C. Maxim, V. Jégu, F. Vatrinet, and F. J.
Cazorla, “Industrial Experiences with Resource Man-
agement Under Software Randomization in ARINC653
Avionics Environments,” in Proceedings of the Interna-
tional Conference on Computer-Aided Design (ICCAD),
2018.

[17] F. Cros, L. Kosmidis, F. Wartel, D. Morales, J. Abella,
I. Broster, and F. J. Cazorla, “Dynamic software ran-
domisation: Lessons learned from an aerospace case
study,” in Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2017.

Volume 44, Number 1, June 2023 Ada User Jour na l

https://gitlab.bsc.es/up2date/violajones-tasa
https://gitlab.bsc.es/up2date/violajones-tasa

I . Rodr iguez-Ferrandez et a l . 167

[18] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer,
“CIL: Intermediate Language and Tools for Analysis
and Transformation of C Programs,” in Conference on
Compiler Construction (CC), 2002.

[19] L. Kosmidis, “Open-Source TASA repository.” https:
//gitlab.bsc.es/lkosmidi/tasa_cil.

[20] F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quiñones,
J. Abella, A. Gogonel, A. Baldovin, E. Mezzetti,
L. Cucu, T. Vardanega, and F. J. Cazorla, “Measurement-
based Probabilistic Timing Analysis: Lessons from an
Integrated-Modular Avionics Case Study,” in 8th IEEE

International Symposium on Industrial Embedded Sys-
tems (SIES), 2013.

[21] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla,
“Multi-level Unified Caches for Probabilistically Time
Analysable Real-Time Systems,” in Proceedings of the
IEEE 34th Real-Time Systems Symposium (RTSS), 2013.

[22] M. Fernández, R. Gioiosa, E. Quiñones, L. Fossati,
M. Zulianello, and F. J. Cazorla, “Assessing the Suit-
ability of the NGMP Multi-core Processor in the Space
Domain,” in Proceedings of the 12th International Con-
ference on Embedded Software (EMSOFT), 2012.

Ada User Jour na l Vo lume 44, Number 1, June 2023

https://gitlab.bsc.es/lkosmidi/tasa_cil
https://gitlab.bsc.es/lkosmidi/tasa_cil

168

Volume 44, Number 2, June 2023 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard

Ada-Deutschland
Dr. Hubert B. Keller CEO
ci-tec GmbH
Beuthener Str. 16
76139 Karlsruhe
Germany
+491712075269
Email: h.keller@ci-tec.de
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels

Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

1090 Rue René Descartes
13100 Aix en Provence

France
Contact: Patricia Langle

patricia.langle@systerel.fr
www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki

Finland
Contact: Niklas Holsti

niklas.holsti@tidorum.fi
www.tidorum.fi

3271 Valley Centre Drive,Suite 300
San Diego, CA 92069

USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

46 Rue d’Amsterdam
F-75009 Paris

France
sales@adacore.com
www.adacore.com

506 Royal Road
La Caverne, Vacoas 73310

Republic of Mauritius
Contact: David Sauvage

david.sauvage@adalabs.com

Enterprise House
Baloo Avenue, Bangor

North Down BT19 7QT
Northern Ireland, UK

enquiries@sysada.co.uk
sysada.co.uk

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

	Ferrandez-OK.pdf
	Introduction
	System Architecture
	Use Case Description
	GPU Software Randomisation
	Methodology
	Evaluation
	Conclusion
	Acknowledgments

