
Ada
User
Journal

The journal for the international
Ada community

Produced by Ada-Europe

Volume 45
Number 1

March 2024

Editorial
Quarterly News Digest

Conference Calendar
Forthcoming Events

Proceedings of the ADEPT: AADL by its Practitioners
Workshop of AEiC 2023

H. N. Tran et al
ADEPT 2023 Workshop Summary

K. Bae, P. C. Ölveczky
Formal Model Engineering of Synchronous CPS Designs in AADL

B. R. Larson, E. Ahmad
BLESS Behavior Correctness Proof as Convincing Verification Artifact

J. Hughes
Mechanizing AADL in Coq – Extended Abstract

H. Valente, M. A. de Miguel, A. G. Pérez, et . al.
Extension of the TASTE Toolset to Support Publisher-Subscriber

Communication
L. Kosmidis

METASAT’s Model Based Design Solutions
R. Mittal, D. Blouin

Facilitating AADL Model Processing and Analysis with OSATE-DIM
P. Dissaux

LAMP: to Shed Light on AADL Models
D. Blouin, A. Bhobe, L. Pautet

Challenges in Model Synchronization for Information Preservation
Illustrated with the FACE and AADL Standards

3
4
17
25

28

31

35

47

51

54

55

59

63

Editor in Chief
António Casimiro University of Lisbon, Portugal

AUJ_Editor@Ada-Europe.org

Ada User Journal Editorial Board
Luís Miguel Pinho
Associate Editor

Polytechnic Institute of Porto, Portugal
lmp@isep.ipp.pt

Jorge Real
Deputy Editor

Universitat Politècnica de València, Spain
jorge@disca.upv.es

Patricia López Martínez
Assistant Editor

Universidad de Cantabria, Spain
lopezpa@unican.es

Dirk Craeynest
Events Editor

KU Leuven, Belgium
Dirk.Craeynest@cs.kuleuven.be

Alejandro R. Mosteo
News Editor

Centro Universitario de la Defensa, Zaragoza, Spain
amosteo@unizar.es

Ada-Europe Board
Tullio Vardanega (President)
University of Padua

Italy

Dirk Craeynest (Vice-President)
Ada-Belgium & KU Leuven

Belgium

Dene Brown (General Secretary)
SysAda Limited

United Kingdom

Ahlan Marriott (Treasurer)
White Elephant GmbH

Switzerland

Luís Miguel Pinho (Ada User Journal)
Polytechnic Institute of Porto

Portugal

António Casimiro (Ada User Journal)
University of Lisbon

Portugal

Ada-Europe General Secretary
Dene Brown
SysAda Limited
Signal Business Center
2 Innotec Drive
BT19 7PD Bangor
Northern Ireland, UK

Tel: +44 2891 520 560
Email: Secretary@Ada-Europe.org
URL: www.ada-europe.org

Information on Subscriptions and Advertisements
Ada User Journal (ISSN 1381-6551) is published in one volume of four issues. The Journal is provided free of
charge to members of Ada-Europe. Library subscription details can be obtained direct from the Ada-Europe General
Secretary (contact details above). Claims for missing issues will be honoured free of charge, if made within three
months of the publication date for the issues. Mail order, subscription information and enquiries to the Ada-Europe
General Secretary.

For details of advertisement rates please contact the Ada-Europe General Secretary (contact details above).

Ada User Journal Volume 45, Number 1, March 2024

ADA
USER
JOURNAL

Volume 45

Number 1

March 2024

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 17

Forthcoming Events 25

Proceedings of the “ADEPT: AADL by its Practitioners Workshop” of AEiC 2023

 H. N. Tran et al

“ADEPT 2023 Workshop Summary” 28

 K. Bae, P. C. Ölveczky

“Formal Model Engineering of Synchronous CPS Designs in AADL” 31

 B. R. Larson, E. Ahmad

“BLESS Behavior Correctness Proof as Convincing Verification Artifact” 35

 J. Hughes

“Mechanizing AADL in Coq – Extended Abstract” 47

 H. Valente, M. A. de Miguel, A. G. Pérez, A. Alonso, J. Zamorano, J. A. de la Puente

 “Extension of the TASTE Toolset to Support Publisher-Subscriber Communication” 51

 L. Kosmidis

 “METASAT’s Model Based Design Solutions” 54

 R. Mittal, D. Blouin

“Facilitating AADL Model Processing and Analysis with OSATE-DIM” 55

 P. Dissaux

“LAMP: to Shed Light on AADL Models” 59

 D. Blouin, A. Bhobe, L. Pautet

“Challenges in Model Synchronization for Information Preservation Illustrated with the

FACE and AADL Standards” 63

Ada-Europe Associate Members (National Ada Organizations) 68

Ada-Europe Sponsors Inside Back Cover

2

Volume 45, Number 1, March 2024 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and December.

Copy date is the last day of the month of

publication.

Aims

Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics, such

as reliable software technologies, are

welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

• Refereed original articles on

technical matters concerning Ada

and related topics.

• Invited papers on Ada and the Ada

standardization process.

• Proceedings of workshops and

panels on topics relevant to the

Journal.

• Reprints of articles published

elsewhere that deserve a wider

audience.

• News and miscellany of interest to

the Ada community.

• Commentaries on matters relating

to Ada and software engineering.

• Announcements and reports of

conferences and workshops.

• Announcements regarding

standards concerning Ada.

• Reviews of publications in the field

of software engineering.

Further details on our approach to these

are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will be

relayed to the authors at the discretion

of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues

The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups to

find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be of

interest to them.

Reprinted Articles

While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it a

wider audience. This includes papers

published in North America that are not

easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries

We publish commentaries on Ada and

software engineering topics. These may

represent the views either of individuals

or of organisations. Such articles can be

of any length – inclusion is at the

discretion of the Editor.

Opinions expressed within the Ada

User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports

We are happy to publicise and report on

events that may be of interest to our

readers.

Reviews

Inclusion of any review in the Journal is

at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to print

reviews submitted from elsewhere at

the discretion of the Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be rapid.

Currently, accepted papers submitted

electronically are typically published 3-

6 months after submission. Items of

topical interest will normally appear in

the next edition. There is no limitation

on the length of papers, though a paper

longer than 10,000 words would be

regarded as exceptional.

 3

Ada User Journal Volume 45, Number 1, March 2024

Editorial

My initial words in this editorial, the first in 2024, are about the significant changes that are happening in our Ada ecosystem.

I’m referring to the integration of SIGAda (the ACM Special Interest Group on Ada) in SIGPLAN (the SIG on Programming

Languages). Despite this change, SIGAda's sister publication, Ada Letters, will continue to exist in online form and share

content with the Ada User Journal. Therefore, we still hope that at some point, possibly by the end of 2024, it may be possible

to entail conversations with the ACM on how and in which terms a single publication may come to life. As a side note, but also

very importantly, a consequence of the extinction of SIGAda is that a new global association is being created, aiming to become

a solid home base for Ada friends from all over the world. The plans, as explained in a letter from the Ada-Europe Board to all

Ada-Europe members, are grounded on several principles. The one directly relevant to the AUJ is that, and I quote, “The merger

of our Ada User Journal with Ada Letters into a single quarterly magazine, attributed to the new association and shared with

Ada-Europe’s membership base, should be swiftly finalized”. I will probably come back to this topic in the next editorial.

Concerning the technical contents of this issue, it provides the Proceedings of the “ADEPT: AADL by its Practitioners

Workshop” of AEiC 2023, which took place in Lisbon, Portugal, last June. It was the second edition of the workshop, and again

a successful event. The proceedings include eight technical contributions and a summary paper prepared by the workshop

organizers H. N. Tran and F. Singhoff from the University of Brest, in France, and J. Hugues from Carnegie Mellon University

in the USA. The workshop features contributions that somehow explore or are related to the Architecture Analysis and Design

Language (AADL), which is an SAE International Standard dedicated to the precise modelling of complex embedded systems,

which allows, among other things, to perform reliability analysis of the modelled systems. The reader is invited to read the

summary paper to get a complete perspective of the contents of these proceedings.

As usual, the issue includes the News Digest section prepared by Alejandro R. Mosteo and the Calendar and Events section

prepared by Dirk Craeynest.

 Antonio Casimiro

Lisboa

March 2024

 Email: AUJ_Editor@Ada-Europe.org

mailto:AUJ_Editor@Ada-Europe.org

4

Volume 45, Number 1, March 2024 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 4
Ada-related Events 4
Ada-related Resources 8
Ada-related Tools 9
Ada Practice 9

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

Once more, the flagship Ada conference
is upon us [1], this year taking place in
Barcelona, Spain. Furthermore, among its
satellite activities is an “Ada Developers
Workshop” [2] that aims to fill in for the
sorely missed “Ada Developer Room” of
FOSDEM past.

For lovers of Ada nitty-gritty details, this
period includes a discussion of Container
and Cursor semantics [3] with head-
butting positions, so the reader can take
sides (or hold their unopposed personal
truth at home ;-)).

Sincerely,

Alejandro R. Mosteo.

[1] “AEiC 2024 - Ada-Europe Conference
- Deadlines Approaching”, in Ada-
related Events.

[2] “Ada Developer Workshop @ AEiC
2024, a New “FOSDEM DevRoom”
for the Community”, in Ada-related
Events.

[3] “Re: Map Iteration and Modification”,
in Ada Practice.

Ada-related Events

Ada-Europe Conference - 31
Jan Journal Track Extended
Deadline

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada-Europe conference - 31 Jan
Journal Track Extended Deadline

Date: Mon, 8 Jan 2024 10:43:48 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

UPDATED Call for Contributions

28th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2024)

11-14 June 2024, Barcelona, Spain

www.ada-europe.org/conference2024

*** Journal track deadline EXTENDED
to 31 January 2024 ***

*** Other submissions by
26 February 2024 ***

Organized by Ada-Europe and Barcelona
Supercomputing Center (BSC), in

cooperation with ACM SIGAda, ACM
SIGBED, ACM SIGPLAN, and Ada

Resource Association (ARA)

#AEiC2024 #AdaEurope
#AdaProgramming

General Information

The 28th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2024) will take place
in Barcelona, Spain.

AEiC is a leading international forum for
providers, practitioners, and researchers in
reliable software technologies. The
conference presentations will illustrate
current work in the theory and practice of
the design, development, and maintenance
of long-lived, high-quality software
systems for a challenging variety of
application domains. The program will
also include keynotes, Q&A and
discussion sessions, and social events.
Participants include practitioners and
researchers from industry, academia, and
government organizations active in the
development of reliable software
technologies.

The topics of interest for the conference
include but are not limited to (more
specific topics are described on the
conference web page):

* Formal and Model-Based Engineering
of Critical Systems;

* High-Integrity Systems and Reliability;

* AI for High-Integrity Systems
Engineering;

* Real-Time Systems;

* Ada Language;

* Applications in Relevant Domains.

The conference comprises different tracks
and co-located events:

* Journal track papers present research
advances supported by solid theoretical
foundation and thorough evaluation.

* Industrial track contributions highlight
industrial open challenges and/or the
practitioners' side of a relevant case
study or industrial project.

* Work-in-progress track papers illustrate
novel research ideas that are still at an
initial stage, between conception and
first prototype.

* Tutorials guide attenders through a
hands-on familiarization with innovative
developments or with useful features
related to reliable software.

* Workshops provide discussion forums
on themes related to the conference
topics.

* Vendor presentations and exhibitions
allow for companies to showcase their
latest products and services.

Important Dates

31 January 2024 EXTENDED submission
deadline for journal track papers

26 February 2024 Deadline for
submission of industrial track papers,
work-in-progress papers, tutorial and
workshop proposals

22 March 2024 First round notification
for journal track papers, and notification
of acceptance for all other types of
submissions

11-14 June 2024 Conference

Call for Journal Track Submissions

Following a journal-first model, this
edition of the conference includes a
journal track, which seeks original and

mailto:amosteo@unizar.es

 5

Ada User Journal Volume 45, Number 1, March 2024

high-quality papers that describe mature
research work on the conference topics.
Accepted journal track papers will be
published in a Special Issue of Elsevier
JSA - the Journal of Systems Architecture
(Q1 ranked, CiteScore 8.5, impact factor
4.5). Accordingly, the conference is listed
as "Journal Published" in the latest update
of the CORE Conference Ranking
released in August 2023. Contributions
must be submitted by 31 January 2024.
Submissions should be made online at
https://www.editorialmanager.com/jsa/,
selecting the "Ada-Europe AEiC 2024"
option (submission page open from 15
November 2023) as article type of the
paper. General information for submitting
to the JSA can be found at the Journal of
Systems Architecture website.

JSA has adopted the Virtual Special Issue
model to speed up the publication
process, where Special Issue papers are
published in regular issues, but marked as
SI papers. Acceptance decisions are made
on a rolling basis. Therefore, authors are
encouraged to submit papers early, and
need not wait until the submission
deadline. Authors who have successfully
passed the first round of review will be
invited to present their work at the
conference. The abstract of the accepted
contributions will be included in the
conference booklet.

The Ada-Europe organization will waive
the Open Access fees for the first four
accepted papers (whose authors do not
already enjoy Open Access agreements).
Subsequent papers will follow JSA
regular publishing track. Prospective
authors may direct all enquiries regarding
this track to the corresponding chairs,
Bjorn Andersson
(baandersson@sei.cmu.edu) and Luis
Miguel Pinho (lmp@isep.ipp.pt).

Call for Industrial Track Submissions

The conference seeks industrial
practitioner presentations that deliver
insight on the challenges of developing
reliable software. Especially welcome
kinds of submissions are listed on the
conference website. Given their applied
nature, such contributions will be subject
to a dedicated practitioner-peer review
process. Interested authors shall submit a
1-to-2 pages abstract, by 26 February
2024, via EasyChair at
https://easychair.org/my/conference?conf
=aeic2024, selecting the "Industrial
Track". The format for submission is
strictly in PDF, following the Ada User
Journal style. Templates are available at
http://www.ada-europe.org/auj/guide.

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference and
will also be invited to expand their
contributions into full-fledged articles for

publication in the Ada User Journal,
which will form the proceedings of the
industrial track of the Conference.
Prospective authors may direct all
enquiries regarding this track to its chairs
Luciana Provenzano
(luciana.provenzano@mdu.se) and
Michael Pressler
(Michael.Pressler@de.bosch.com).

Call for Work-in-Progress Track
Submissions

The work-in-progress track seeks two
kinds of submissions: (a) ongoing
research and (b) early-stage ideas.
Ongoing research submissions are 4-page
papers describing research results that are
not mature enough to be submitted to the
journal track. Early-stage ideas are 1-page
papers that pitch new research directions
that fall within the scope of the
conference. Both kinds of submissions
must be original and shall undergo
anonymous peer review. Submissions by
recent MSc graduates and PhD students
are especially sought. Authors shall
submit their work by 26 February 2024,
via EasyChair at
https://easychair.org/my/conference?conf
=aeic2024, selecting the "Work-in-
Progress Track". The format for
submission is strictly in PDF, following
the Ada User Journal style. Templates are
available at http://www.ada-
europe.org/auj/guide.

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference and
will also be offered the opportunity to
expand their contributions into 4-page
articles for publication in the Ada User
Journal, which will form the proceedings
of the WiP track of the Conference.
Prospective authors may direct all
enquiries regarding this track to the
corresponding chairs Alejandro R.
Mosteo (amosteo@unizar.es) and Ruben
Martins (rubenm@andrew.cmu.edu).

Awards

The organization will offer an honorary
award for the best technical presentation,
to be announced in the closing session of
the conference.

Call for Tutorials

The conference seeks tutorials in the form
of educational seminars on themes falling
within the conference scope, with an
academic or practitioner slant, including
hands-on or practical elements. Tutorial
proposals shall include a title, an abstract,
a description of the topic, an outline of the
presentation, the proposed duration (half-
day or full-day), the intended level of the
contents (introductory, intermediate, or
advanced), and a statement motivating
attendance. Tutorial proposals shall be
submitted at any time but no later than the

26 February 2024 to the respective chair
Maria A. Serrano
(maria.serrano@nearbycomputing.com),
with subject line: "[AEiC 2024: tutorial
proposal]". Once submitted, each tutorial
proposal will be evaluated by the
conference organizers as soon as possible,
with decisions from January 1st. The
authors of accepted full-day tutorials will
receive a complimentary conference
registration, halved for half-day tutorials.
The Ada User Journal will offer space for
the publication of summaries of the
accepted tutorials.

Call for Workshops

The conference welcomes satellite
workshops centred on themes that fall
within the conference scope. Proposals
may be submitted for half- or full-day
events, to be scheduled at either end of
the AEiC conference. Workshop
organizers shall also commit to producing
the proceedings of the event, for
publication in the Ada User Journal.
Workshop proposals shall be submitted at
any time but no later than the 26 February
2024 to the respective chair Sergio Saez
(ssaez@disca.upv.es), with subject line:
"[AEiC 2024: workshop proposal]". Once
submitted, each workshop proposal will
be evaluated by the conference organizers
as soon as possible, with decisions from
January 1st.

Academic Listing

The Journal of Systems Architecture,
publication venue of the journal track
proceedings of the conference, is Q1
ranked, with CiteScore 8.5 and Impact
Factor 4.5. The Ada User Journal, venue
of all other technical proceedings of the
conference, is indexed by Scopus and by
EBSCOhost in the Academic Search
Ultimate database.

Call for Exhibitors and Sponsors

The conference will include a vendor and
technology exhibition with the option of a
20 minutes presentation as part of the
conference program. Interested providers
should direct inquiries to the Exhibition &
Sponsorship Chair Ahlan Marriot
(ahlan@ada-switzerland.ch).

Venue

The conference will take place in
Barcelona, Spain. Barcelona is a major
cultural, economic, and financial centre,
known for its architecture, culture, and
Mediterranean atmosphere, a hub for
technology and innovation. There's plenty
to see and visit in Barcelona, so plan in
advance!

Organizing Committee

- Conference Chair

Sara Royuela, Barcelona Supercomputing
Center, Spain
sara.royuela@bsc.es

6 Ada-re lated Events

Volume 45, Number 1, March 2024 Ada User Journal

- Journal Track Chairs

Bjorn Andersson, Carnegie Mellon
University, USA
baandersson@sei.cmu.edu

Luis Miguel Pinho, ISEP & INESC TEC,
Portugal
lmp@isep.ipp.pt

- Industrial Track Chairs

Luciana Provenzano, Mälardalen
University, Sweden
luciana.provenzano@mdu.se

Michael Pressler, Robert Bosch GmbH,
Germany
Michael.Pressler@de.bosch.com

- Work-In-Progress Track Chairs

Alejandro R. Mosteo, CUD Zaragoza,
Spain
amosteo@unizar.es

Ruben Martins, Carnegie Mellon
University, USA
rubenm@andrew.cmu.edu

- Tutorial Chair

Maria A. Serrano, NearbyComputing,
Spain
maria.serrano@nearbycomputing.com

- Workshop Chair

Sergio Saez, Universitat Politècnica de
València, Spain
ssaez@disca.upv.es

- Exhibition & Sponsorship Chair

Ahlan Marriott, White Elephant GmbH,
Switzerland
ahlan@Ada-Switzerland.ch

- Publicity Chair

Dirk Craeynest, Ada-Belgium & KU
Leuven, Belgium
Dirk.Craeynest@cs.kuleuven.be

- Webmaster

Hai Nam Tran, University of Brest,
France
hai-nam.tran@univ-brest.fr

- Local Chair

Nuria Sirvent, Barcelona Supercomputing
Center, Spain
nuria.sirvent@bsc.es

Journal Track Committee

Al Mok, University of Texas at Austin,
USA

Alejandro Mosteo, CUD Zaragoza, Spain

Alwyn Godloe, NASA, USA

António Casimiro, University of Lisbon,
Portugal

Barbara Gallina, Mälardalen University,
Sweden

Bernd Burgstaller, Yonsei University,
South Korea

C. Michael Holloway, NASA, USA

Cristina Seceleanu, Mälardalen
University, Sweden

Doug Schmidt, Vanderbilt University,
USA

Frank Singhoff, University of Brest, FR

George Lima, Universidade Federal da
Bahia, Brazil

Isaac Amundson, Rockwell Collins, USA

Jérôme Hugues, CMU/SEI, USA

José Cruz, Lockeed Martin, USA

Kristoffer Nyborg Gregertsen, SINTEF
Digital, Norway

Laurent Pautet, Telecom ParisTech,
France

Leonidas Kosmidis, Barcelona
Supercomputing Center, Spain

Mario Aldea Rivas, University of
Cantabria, Spain

Matthias Becker, KTH - Royal Institute of
Technology, Sweden

Patricia López Martínez, University of
Cantabria, Spain

Sara Royuela, Barcelona Supercomputing
Center, Spain

Sergio Sáez, Universitat Politècnica de
València, Spain

Tucker Taft, AdaCore, USA

Tullio Vardanega, University of Padua,
Italy

Xiaotian Dai, University of York,
England

Industrial Track Committee

Aida Causevic, Alstom, Sweden

Alexander Viehl, Research Center for
Information Technology, Germany

Ana Rodríguez, Silver Atena, Spain

Aurora Agar, NATO, Netherlands

Behnaz Pourmohseni, Robert Bosch
GmbH, Germany

Claire Dross, AdaCore, France

Elena Lisova, Volvo CE, Sweden

Enricco Mezzeti, Barcelona
Supercomputing Center, Spain

Federico Aromolo, Scuola Superiore
Sant'Anna, Italy

Helder Silva, Edisoft, Portugal

Hugo Torres Vieira, Evidence Srl, Italy

Irune Agirre, Ikerlan, Spain

Jordi Cardona, Rapita Systems, Spain

José Ruiz, AdaCore, France

Joyce Tokar, Raytheon, USA

Luciana Alvite, Alstom, Germany

Marco Panunzio, Thales Alenia Space,
France

Patricia Balbastre Betoret, Valencia
Polytechnic University, Spain

Philippe Waroquiers, Eurocontrol NMD,
Belgium

Raúl de la Cruz, Collins Aerospace,
Ireland

Santiago Urueña, GMV, Spain

Stef Van Vlierberghe, Eurocontrol NMD,
Belgium

Work-in-Progress Track Committee

Alan Oliveira, University of Lisbon,
Portugal

J. Javier Gutiérrez, University of
Cantabria, Spain

Jérémie Guiochet, LAAS-CNRS, France

Kalinka Branco, University of São Paulo,
Brazil

Katherine Kosaian, University of Iowa,
USA

Kevin Cheang, AWS, USA

Kristin Yvonne Rozier, Iowa State
University, USA

Leandro Buss Becker, University of
Manchester, UK

Li-Pin Chang, National Yang Ming Chiao
Tung University, Taiwan

Mathias Preiner, Stanford University,
USA

Raffaele Romagnoli, Carnegie Mellon
University, USA

Robert Kaiser, RheinMain University of
Applied Sciences, Germany

Sara Abbaspour, Mälardalen University,
Sweden

Sergi Alcaide, Barcelona Supercomputing
Center, Spain

Simona Bernardi, Unizar, Spain

Stefan Mitsch, School of Computing at
DePaul University, USA

Teresa Lázaro, Aragon's Institute of
Technology, Spain

Tiago Carvalho, ISEP, Portugal

Yannick Moy, AdaCore, France

Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 28th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), Warsaw, Poland
('19), online from Santander, Spain ('21),

 7

Ada User Journal Volume 45, Number 1, March 2024

Ghent, Belgium ('22), and Lisbon,
Portugal ('23).

Information on previous editions of the
conference can be found at www.ada-
europe.org/confs/ae.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2024 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 28th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2024)

* June 11-14, 2024, Barcelona, Spain,
www.ada-europe.org/conference2024

(V4.1)

AEiC 2024 - Ada-Europe
Conference - Deadlines
Approaching

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: AEiC 2024 - Ada-Europe
conference - Deadlines Approaching

Date: Fri, 16 Feb 2024 19:07:10 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

UPDATED Call for Contributions -

Additional Tracks

28th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2024)

11-14 June 2024, Barcelona, Spain

*** DEADLINES approaching: 26
February and 4 March 2024 ***

www.ada-europe.org/conference2024

*** Submission DEADLINE
26 February 2024 ***

Workshops: submit to Workshop Chair,
Sergio Saez ssaez@disca.upv.es
subject "[AEiC 2024: workshop
proposal]"

Tutorials: submit to Tutorial and
Education Chair,
Maria A. Serrano
maria.serrano@nearbycomputing.com
subject "[AEiC 2024: tutorial proposal]"

*** EXTENDED submission
DEADLINE 4 March 2024 ***

Industrial- and Work-in-Progress-track:
submit via https://easychair.org/my/
conference?conf=aeic2024
select "Industrial Track" or "Work in
Progress Track"

For more information please see the full
Call for Papers at www.ada-europe.org/
conference2024/cfp.html

Organized by Ada-Europe and Barcelona

Supercomputing Center (BSC), in
cooperation with ACM SIGAda, ACM
SIGBED, ACM SIGPLAN, and Ada

Resource Association (ARA)

#AEiC2024 #AdaEurope
#AdaProgramming

--

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2024 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 28th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2024)

* June 11-14, 2024, Barcelona, Spain,
www.ada-europe.org/conference2024

(V6.1)

Ada Developer Workshop @
AEiC 2024, a New
“FOSDEM DevRoom” for
the Community

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: Ada Developer Workshop @ AEiC
2024, a new “FOSDEM DevRoom” for
the community

Date: Sat, 24 Feb 2024 22:30:03 +0100
Newsgroups: comp.lang.ada

Dear Ada community,

I come with great news! For the past two
years, there was no Ada DevRoom over
@ FOSDEM, a place where the Ada
community used to meet and share their
work and projects. Some of us wanted to
keep having such experience as we
believed it to be a greatly beneficial
aspect to the wider Ada community.

For this reason, Fabien Chouteau, Dirk
Craeynest and Fernando Oleo Blanco,
made a proposal to the Ada-Europe
International Conference on Reliable
Software Technologies (AEiC 2024 aka
Ada-Europe 2024) in order to have a
“devroom” for the wider Ada community,
just like in FOSDEM.

We were accepted and you can already
find all the information over at the Ada
Developer Workshop webpage [1]!

I would encourage everybody to take a
look at it! Nonetheless, here is a quick
summary highlighting some of the points:

- It will take place on Friday, 14th of June
in Barcelona. Friday was chosen in order
to minimise the amount of free
days/holidays that we would need to
take off from our jobs and allow us to
then use the weekend to visit and enjoy
Barcelona.

- The cost will be lower than for the main
conference. Our goal is to make it
completely free, just like FOSDEM, but
this is still a Work-In-Progress (WIP).

- The nature of the event is similar to any
past DevRoom that took place @
FOSDEM. The main difference is that
now, being an open-source project will
not be a requirement.

- March 31st, 2024 is the (current)
deadline for submissions. If you would
like to present your work or discuss
topics, please, please please, keep this
date in mind!

We are eager to hear from all of you. And
if you have any questions, please, let us
know!

[1] https://www.ada-europe.org/
conference2024/adadev.html

From: Streaksu <streaksu@mailbox.org>
Date: Tue, 27 Feb 2024 06:51:03 +0100

That sounds amazing! Thank you so much
for your work and to the people at AEiC
for making it happen.

 > The cost will be lower than for the
main conference.

That would be a huge deal. I have not
checked this edition's registrations, but if
2023's are anything to go by, as a
hobbyist Ada developer, I don't think I
can justify it for myself. But a cheaper
event would be a great alternative. Please
do keep us updated!

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Date: Fri, 22 Mar 2024 19:18:04 +0100

Hi Ada community!

This is a kind reminder that you can still
submit any talks to the Ada Developer
Workshop that will take place during the
AEiC 2024, on the 14th of June in
Barcelona!

Entry prices should be published shortly
in the AEiC website. Nonetheless, we are
still looking for some sponsorships :)

For more information see
http://www.ada-europe.org/
conference2024/adadev.html or email any
of the organisers (Fabien, Dirk and
Fernando).

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Date: Mon, 25 Mar 2024 23:18:42 +0100

Great news everybody! This was posted
by Dirk on the Ada-Lang forum.

Hot news! Thanks to AdaCore sponsoring
the Ada Developer Workshop in
Barcelona, the early registration fee for
in-person participation will be only 10
EUR, including lunch and coffee breaks.

That’s as low-cost as attending an Ada
Developer Room at FOSDEM in

http://www.ada-europe.org/conference2024
mailto:ssaez@disca.upv.es
mailto:maria.serrano@nearbycomputing.com

8 Ada-re lated Resources

Volume 45, Number 1, March 2024 Ada User Journal

Brussels, as you easily spend 10 EUR on
food and drinks there… ;)

Registration info, for the conference,
tutorials, workshops, social events, will
shortly be added to the conference
website at Ada-Europe 2024 [1].

Hope to see many of you there!

And remember, submissions are still
welcome!

[1] http://www.ada-europe.org/
conference2024/

Ada Monthly Meetup 2024

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: Ada Monthly Meetup 2024
Date: Sun, 3 Mar 2024 20:31:05 +0100
Newsgroups: comp.lang.ada

Dear all, this is just a quick reminder that
the next Ada Monthly Meetup will take
place on Saturday 9th of March!

No topics were proposed for this meetup.
Nonetheless, I will take the opportunity to
talk a bit about FOSDEM (and WolfSSL),
the newly proposed Ada Developer
Workshop during AEiC, remind people
about the newly released Alire v2.0-RC1
and a few other topics if we have time.

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Date: Sun, 17 Mar 2024 10:10:26 +0100

Hello everybody!

I would like to announce the April (2024)
Ada Monthly Meetup which will be
taking place on the 6th of April at
13:00 UTC time (15:00 CEST). As
always the meetup will take place over at
Jitsi. The Meetup will also be
livestreamed to Youtube.

If someone would like to propose a talk or
a topic, feel free to do so! We currently
have no topics :wink:

Though I will try to focus more on Ada
and I would like to bring people's
attention to [Tsoding's Ada livestreams]
(https://forum.ada-lang.io/t/
making-a-game-in-ada-with-raylib/704).

Here are the connection details from
previous posts: The meetup will take
place over at Jitsi, a conferencing
software that runs on any modern
browser. The link is [Jitsi Meet]
(https://meet.jit.si/AdaMonthlyMeetup)
The room name is “AdaMonthlyMeetup”
and in case it asks for a password, it will
be set to “AdaRules”.

I do not want to set up a password, but in
case it is needed, it will be the one above
without the quotes. The room name is
generally not needed as the link should
take you directly there, but I want to write
it down just in case someone needs it.

Best regards and see you soon! Fer

P.S: it is that time of year when clocks
have their time changed. So please, take a
look at whether this affects you. (Central)
Europe will now go from CET to CEST,
so +2h. USA and related countries already
had their time changed last week.

Ada-related Resources

[Delta counts are from February 19th to
May 28th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 28 May 2024 13:23 CET
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: _705 (+144) members [1]

- LinkedIn: 3_509 (+30) members [2]

- Stack Overflow: 2_405 (+12)
 questions [3]

- Gitter: 253 (+10) people [4]

- Ada-lang.io: 219 (+37) users [5]

- Telegram: 201 (+28) users [6]

- Libera.Chat: 75 (-1) concurrent users [7]

[1] http://old.reddit.com/r/ada/

[2] https://www.linkedin.com/
groups/114211/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://app.gitter.im/#/room/
#ada-lang_Lobby:gitter.im

[5] https://forum.ada-lang.io/u

[6] https://t.me/ada_lang

[7] https://netsplit.de/channels/details.php
?room=%23ada&net=Libera.Chat

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: 28 May 2024 13:33 CET
To: Ada User Journal readership

GitHub: >1_000* (=) developers [1]

Rosetta Code: 950 (+10) examples [2]

 42 (+4) developers [3]

Alire: 405 (+12) crates [4]

 1_048 (new) releases [5]

Sourceforge: 251 (+3) projects [6]

Open Hub: 214 (=) projects [7]

Codelabs: 57 (=) repositories [8]

Bitbucket: 38 (+1) repositories [9]

*This number is a lower bound due to
GitHub search limitations.

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] https://rosettacode.org/wiki/
Category:Ada

[3] https://rosettacode.org/wiki/
Category:Ada_User

[4] https://alire.ada.dev/crates.html

[5] `alr search --list --full`

[6] https://sourceforge.net/directory/
language:ada/

[7] https://www.openhub.net/
tags?names=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] https://bitbucket.org/repo/all?
name=ada&language=ada

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: 28 Feb 2024 13:43 CET
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 22 (+3) 0.83%
 (+0.06%) [1]

- PYPL Index: 19 (-4) 0.82% 1.08%
 (-0.26%) [2]

- Languish Trends: 180 (new) 0.01% [3]

- Stack Overflow Survey: 42 (=)
 0.77% (=) [4]

- IEEE Spectrum (general): 36 (=)
 Score: 0.0107 (=) [5]

- IEEE Spectrum (jobs): 29 (=)
 Score: 0.0173 (=) [5]

- IEEE Spectrum (trending): 30 (=)
 Score: 0.0122 (=) [5]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://tjpalmer.github.io/languish/

[4] https://survey.stackoverflow.co/2023/

[5] https://spectrum.ieee.org/top-
programming-languages/

Certificate Error Accessing
Adapower.com

From: Juanmiuk <juanmiuk@gmail.com>
Subject: Certificate Security Error when.

access adapower.com
Date: Wed, 24 Jan 2024 05:30:39 -0800
Newsgroups: comp.lang.ada

When I tried to access adapower.com
from the last version of Chrome and

https://netsplit.de/channels/details.php

Ada Pract ice 9

Ada User Journal Volume 45, Number 1, March 2024

NordVPN VPN the browser shows me
this error:

Your connection isn't private. The web
page you are trying to enter is not
certified by a known certifying authority.
Attackers might be trying to steal your
information (for example, passwords,
messages, or credit cards).

This error did not happen with Safari or
Microsoft Edge (last version)

What's going on?

From: Stéphane Rivière
<stef@genesix.org>

Date: Wed, 24 Jan 2024 16:11:42 +0100

Simply no TLS certificates (see the
padlock status before the URL)

This site is in ruins, out of date and should
no longer exist.

What's more, a Google search turns up
some dubious links.

Ada-related Tools

NeoVim Plugin to Publish
Alire Packages

From: Tama Mcglinn
<t.mcglinn@gmail.com>

Subject: NeoVim plugin to publish Alire
packages

Date: Sat, 17 Feb 2024 00:01:47 -0800
Newsgroups: comp.lang.ada

In case there's any NeoVim users who
also publish Alire packages, I wrote a
plugin for that;

https://github.com/
TamaMcGlinn/nvim-alire-tools

allows you to bind or call `:AlirePublish`
which handles everything for your Alire
toml file, and intelligently sees where you
are in the version publishing process.

Aunit.Checks

From: Simon Wright
<simon@pushface.org>

Subject: AUnit.Checks
Date: Sun, 24 Mar 2024 09:19:38 +0000
Newsgroups: comp.lang.ada

Has anyone come across this package?
AFAICT it doesn't appear in the AUnit
repo on Github.

Even the spec would be invaluable!

From: Simon Wright
<simon@pushface.org>

Date: Sun, 24 Mar 2024 11:17:06 +0000

Cancel that! It's in Stephe Leake's AUnit
extensions, encountered in ada-mode.

Ada Practice

Re: Map Iteration and
Modification

[Continues from AUJ 44-4, December
2023. The discussion initially addressed
how to modify a container during
iteration, to later move onto iteration
semantics. —arm]

From: G.B.
<bauhaus@notmyhomepage.invalid>

Subject: Re: Map iteration and modification
Date: Mon, 1 Jan 2024 20:27:51 +0100
Newsgroups: comp.lang.ada

>> Suppose that there is a way of orderly
proceeding from one item to the next. It
is probably known to the
implementation of map. Do single steps
guarantee transitivity, though, so that
an algorithm can assume the order to be
invariable?

> An insane implementation can expose
random orders each time.

An implementation order should then not
be exposed, right? What portable benefits
would there be when another interface is
added to that of map, i.e., to Ada
containers for general use? Would it not
be possible to get these benefits using a
different approach? I think the use case is
clearly stated:

First, find Cursors in map =: C*.

Right after that, Delete from map all
nodes referred to by C*.

> Unless removing element invalidates all
cursors. Look, insanity has no bounds.
Cursors AKA pointers are as volatile as
positions in certain implementations.
Consider a garbage collector running
after removing a pair and shuffling
remaining pairs in memory.

> [...]

> you assume that cursors are ordered and
the order is preserved from call to call.
[...]

Yes, given the descriptions of
Ordered_Maps, so long as there is no
tampering, a Cursor will respect an order.
Likely the one that the programmer has in
mind.

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 1 Jan 2024 21:55:12 +0100

> An implementation order should then
not be exposed, right?

IMO, an order should be exposed. Not
necessarily the "implementation order"
whatever that might mean.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 2 Jan 2024 21:15:01 -0600

>> There is no "natural" order to the
key/element pairs; they are effectively
unordered.

> Iteration = order. It is the same thing. If
you provide iteration of pairs in the
mapping by doing so you provide an
order of.

Certainly not. An iteration presents all of
the elements in a container, but there is no
requirement that there is an order. Indeed,
logically, all of the elements are presented
at the same time (and parallel iteration
provides an approximation of that).

If you try to enforce an order on things
that don't require it, you end up
preventing useful parallelism (practically,
at least, no one has succeeded at
providing useful parallelism to sequential
code and people have been trying for
about 50 years -- they were trying when I
was a university student in the late
1970s).

>> [...] Certainly, no concept of "forward"
or "reverse" applies to such an ordering
(nor any stability requirement).

> It does. You have a strict total order of
pairs which guarantees existence of
previous and next pairs according to.

Again, this is unrelated. Iteration can
usefully occur in unordered containers
(that is, "foreach"). Ordering is a separate
concept, not always needed (certainly not
in basic structures like maps, sets, and
bags).

[...]

Ada requires that cursors continue to
designate the same element through all
operations other than deletion of the
element or movement to a different
container. Specific containers have
additional invariants, but this is the most
general one. No other requirement is
needed in many cases.

> Yes, position is a property of
enumeration.

Surely not. This is a basis for my
disagreement with you here. The only
requirement for enumeration is that all
elements are produced. The order is an
artifact of doing an inherently parallel
operation sequentially. We don't care
about or depend on artifacts.

[...]

>> You have some problem with an
iterator interface as opposed to an array
interface??

> Yes, I am against pointers (referential
semantics) in general.

This is nonsense - virtually everything is
referential semantics (other than
components). Array indexes are just a

10 Ada Pract ice

Volume 45, Number 1, March 2024 Ada User Journal

poor man's pointer (indeed, I learned how
to program in Fortran 66 initially, and the
way one built useful data structures was
to use array indexes as stand-ins for
pointers). In A(1), 1 is a reference to the
first component of A.

So long as you are using arrays, you are
using referential semantics. The only way
to avoid it is to embed an object directly
in an enclosing object (as in a record), and
that doesn't work for many problems.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 2 Jan 2024 21:22:00 -0600

> Cursor is merely a fat pointer.

A cursor is an abstract reference. It
might be implemented with a pointer or
with an array index. Indeed, the bounded
containers pretty much have to be
implemented with an underlying array.

It would be nice if there was some
terminology for abstract references that
hadn't been stolen by some programming
language. Terms like "pointer" and
"access" and "reference" all imply an
implementation strategy. That's not
relevant most of the time, and many
programming language design mistakes
follow from that. (Anonymous access
types come to mind).

From: Moi <findlaybill@blueyonder.co.uk>
Date: Wed, 3 Jan 2024 04:05:59 +0000

> It would be nice if there was some
terminology for abstract references that
hadn't been stolen by some
programming language. [...]

What about "currency", as used in DB
systems?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 3 Jan 2024 11:04:58 +0100

> Certainly not. An iteration presents all
of the elements in a container, but there
is no requirement that there is an order.

The meaning of the word "iterate" is
doing something (e.g. visiting an element)
again. That *is* an order.

> Indeed, logically, all of the elements are
presented at the same time (and parallel
iteration provides an approximation of
that).

Parallel iteration changes nothing because
involved tasks are enumerated and thus
ordered as well.

> If you try to enforce an order on things
that don't require it, you end up
preventing useful parallelism [...]

Ordering things does not prevent
parallelism. But storing cursors for later is
a mother of all Sequentialisms! (:-))

Whether container elements can be
effectively deleted in parallel is an

interesting but rather impractical one.
Nobody, literally nobody, cares because
any implementation would be many times
slower than the worst sequential one! (:-))

> [...] Iteration can usefully occur in
unordered containers (that is,
"foreach").

"An enumeration is a complete, ordered
listing of all the items in a collection."

 -- Wikipedia

If "foreach" exposes an arbitrary ordering
rather than some meaningful (natural)
one, that speaks for "insanity" but changes
nothing.

> Ordering is a separate concept, not
always needed

Right. But no ordering means no iteration,
no foreach etc. If I can iterate, that I can
create an ordered set of (counter, element)
pairs. Done.

> Surely not. This is a basis for my
disagreement with you here.

Then you are disagreeing with core
mathematics... (:-))

> The only requirement for enumeration
is that all elements are produced.

Produced in an order. Elements only
produced" is merely an opaque set.
Enumeration of that set is ordering its
elements.

> The order is an artifact of doing an
inherently parallel operation
sequentially.

Yes, ordering is an ability to enumerate
elements of a set. It is not an artifact it is
the sole semantics of.

[...]

> So long as you are using arrays, you are
using referential semantics. [...]

The key difference is that index does not
refer to any element. It is container +
index that do.

From the programming POV it is about
avoiding hidden states when you try to
sweep the container part under the rug.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 3 Jan 2024 22:07:30 -0600

> Parallel iteration changes nothing
because involved tasks are enumerated
and thus ordered as well.

Nonsense. There is no interface in Ada to
access logical threads (the ones created by
the parallel keyword).

> Ordering things does not prevent
parallelism.

Yes it does, because it adds unnecessary
constraints. It's those constraints that
make parallelizing normal sequential code

hard. A parallelizer has to guess which
ones are fundamental to the code meaning
and which ones are not.

[...]

You are adding an unnecessary property
to the concept of iteration. Iteration does
not necessarily imply enumeration (it can,
of course). Iteration /= enumeration.

[...]

Iteration is not necessarily enumeration. It
is applying an operation to all elements,
and doing that does not require an order.
Some specific operations might require an
order, and clearly for those one needs to
use a data structure that inherently has an
order.

> The key difference is that index does
not refer to any element. It is container
+ index that do.

That's not a "key difference". That’s
exactly how one should use cursors,
especially in Ada 2022. The Ada
containers do have cursor-only
operations, but those should be avoided
since it is impossible to provide useful
contracts for those operations (the
container is unknown, so the world can be
modified, which is bad for parallelism and
understanding). Best to consider those
operations obsolete. (Note that I was
always against the cursor-only
operations in the containers.)

So, using a cursor implies calling an
operation that includes the container of its
parameter.

> From the programming POV it is about
avoiding hidden states when you try to
sweep the container part under the rug.

That's easily avoided -- don't use the
obsolete operations. (And a style tool like
Jean-Pierre's can enforce that for you.)

> [...] Usability always trumps
performance.

That's the philosophy of languages like
Python, not Ada. If you truly believe this,
then you shouldn't be using Ada at all,
since it makes lots of compromises to
usability in order to get performance.

> And again, looking at the standard
containers and all these *tagged*
intermediate objects one needs in
order to do elementary things, I kind of
have doubts... (:-))

The standard containers were designed to
make *safe* containers with decent
performance. As I noted, they're not a
built-in part of the programming
language, and as such have no impact on
the performance of the language proper.
One could easily replace them with an
unsafe design to get maximum
performance -- but that would have to
return pointers to elements, and you've
said you don't like referential semantics.
So you would never use those.

Ada Pract ice 11

Ada User Journal Volume 45, Number 1, March 2024

You also can avoid all of the "tagged
objects" (really controlled objects) by
using function Element to get a copy of
the element rather than some sort of
reference to it. That's preferred if it
doesn't cost too much for your
application.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 4 Jan 2024 12:28:04 +0100

> Iteration is not necessarily enumeration.
It is applying an operation to all
elements, and doing that does not
require an order.

That is not iteration, it is unordered
listing, a totally useless thing because the
result is the same unordered set.

You could not implement it without prior
ordering of the elements you fed to the
threads. If the threads picked up elements
concurrently there would be no way to do
that without ordering elements into a
taken / not yet taken order. You cannot
even get an element from a truly
unordered set, no way! If the programmer
tried to make any use of the listing he
would again have to impose ordering
when collecting results per some shared
object.

The unordered listing is a null operation
without ordering.

> [...] So, using a cursor implies calling an
operation that includes the container of
its parameter.

OK. It is some immensely over-designed
index operation, then! (:-)) So, my initial
question is back, why all that overhead?
When you cannot do elementary things
like preserving your indices from a well-
defined set of upon deleting elements with
indices outside that set?

[...]

> Specifically, the containers are separate
from Ada.

Not really. Like STL with C++ it
massively influenced the language design
motivating adding certain language
features and shifting general language
paradigm in certain direction.

>> Usability always trumps performance.

> That's the philosophy of languages like
Python, not Ada.

Ah, this is why Python is totally
unusable? (:-))

Ada is usable and performant because of
the right abstractions it deploys. If you
notice performance problems then,
maybe, just my guess, you are using the
wrong abstraction?

> The standard containers were designed
to make *safe* containers with decent
performance.

Well, we always wish for the best... (:-))

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 4 Jan 2024 20:00:37 -0600

> [...]

> Ah, this is why Python is totally
unusable? (:-))

I would tend to argue that it is indeed the
case that you get dubious results when
you put usability first. Ada puts
readability/understandability,
maintainability, and consistency first
(along with performance). Those
attributes tend to provide usability, but
not at the cost of making things less
consistent or understandable.

I wrote an article on this topic a year and
a half ago that I wanted to publish on
Ada-Auth.org. But I got enough pushback
about not being "neutral" that I never did
so. (I don't think discussing why we don't
do things some other languages do is
negative, but whatever.) I've put this on
RR's blog at
http://www.rrsoftware.com/html/blog/
consequences.html
so it isn't lost.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 05 Jan 2024 09:26:03 +0000

> http://www.rrsoftware.com/html/blog/
consequences.html

Thanks for this!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 5 Jan 2024 12:51:50 +0100

> http://www.rrsoftware.com/html/blog/
consequences.html

Thanks for posting this.

I disagree with what you wrote on several
points:

1. Your premise was that use = writing.
To me using includes all aspects of
software developing and maintenance
process. Writing is only a small part of
it.

2. You argue for language regularity as if
it were opposite to usability. Again, it
is pretty much obvious that a regular
language is easier to use in any possible
sense.

3. Removing meaningless repetitions
contributes to usability. But X := X + Y
is only one instance where Ada
required such repetition. There are
others. E.g.

 if X in T'Class then

 declare

 XT : T'Class renames T'Class (X);

 T'Class is repeated 3 times. A
discussion point is whether a new name
XT could be avoided etc.

 Introducing @ for a *single* purpose
contradicts the principle of regularity. I

would rather have a regular syntax for
most if not all such instances.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 6 Jan 2024 01:25:46 -0600

> 1. Your premise was that use = writing.

Perhaps I didn't make it clear enough, but
my premise was that many people making
suggestions for Ada confuse "ease-of-use"
with "ease-of-writing". I said
"mischaracterized" for a reason (and I see
that "mis" was missing from the first use,
so I just added that). "Ease-of-writing" is
not a thing for Ada, and it isn't considered
while the other aspects are weighed. And
as I said in my last message, there is a
difference in that writing more can help
understandability, but it never helps
writing.

[...]

> T'Class is repeated 3 times. A
discussion point is whether a new name
XT could be avoided etc.

Of course, this example violates OOP
dogma, and some people would argue that
it should be harder than following it.
That's the same reason that Ada doesn't
have that many implicit conversions. In
this particular example, I tend to think the
dogma is silly, but I don't off-hand see a
way to avoid the conversion being
somewhere (few implicit conversions
after all).

> Introducing @ for a *single* purpose
contradicts the principle of regularity.

@ is regular in the sense that it is allowed
anywhere in an expression. If you tried to
expand the use to other contexts, you
would have to differentiate them, which
would almost certainly require some sort
of declaration. But doing that risks
making the mechanism as wordy as what
it replaces (which obviously defeats the
purpose).

We looked at a number of ideas like that,
but they didn't seem to help
comprehension. In something like:

 LHS:(X(Y)) := LHS + 1;

(where LHS is an arbitrary identifier), if
the target name is fairly long, it could be
hard to find where the name for the target
is given, and in any case, it adds to the
name space that the programmer has to
remember when reading the source
expression. That didn't seem to add to
readability as much as the simple @ does.

In any case, these things are trade-offs,
and certainly nothing is absolute. But @
is certainly much more general than ":=+"
would be, given that it works with
function calls and array indexing and
attributes and user-defined operations
rather than just a single operator.

12 Ada Pract ice

Volume 45, Number 1, March 2024 Ada User Journal

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 7 Jan 2024 16:06:10 +0100

> [...] But @ is certainly much more
general than ":=+" would be [...]

For the 9X and 0X revisions I suggested
adding "when <condition>" to return and
raise statements, similar to its use on exit
statements. This was rejected because the
language already has a way to accomplish
this: if statements.

Given that one can do

declare

 V : T renames Very_Long_Identifier;

begin

 V := V - 23;

end;

it seems that @ should also have been
rejected. Probably more so, since @ is
completely new syntax rather than reusing
existing syntax on some additional
statements. What is the justification of
accepting @ while still rejecting the
other?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 8 Jan 2024 22:46:59 -0600

> For the 9X and 0X revisions I suggested
adding "when <condition>" to return
and raise statements, similar to its use
on exit statements.

I don't recall ever seriously considering
this (might just my memory getting old). I
suspect that didn't get rejected so much as
not making the cut as important enough.
We do try to limit the size of what gets
added, not just adding everyone's favorite
feature.

I'd guess that "raise Foo when Something"
would get rejected now as it would be
confusing with "raise Foo with
Something" which means something very
different. (At least the types of
"Something" are different in these two.)
OTOH, we added "when condition" to
loops (which I thought was unnecessary,
but I lost that), so arguably it would be
consistent to add it to other statements
and expressions as well. Perhaps you
should raise it again on Github.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Tue, 9 Jan 2024 10:43:38 +0100

>I suspect that didn't get rejected so much
as not making the cut as important
enough.

I don't consider special syntax to shorten
names in assignment statements important
at all. We have renames for that, and it is
a more general mechanism, applying to
more than just assignments.

“Usability” (was Re: Map
Iteration and Modification)

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Subject: Re: “Usability” (was Re: Map
iteration and modification)

Date: Sat, 6 Jan 2024 02:54:09 -0000
Newsgroups: comp.lang.ada

> http://www.rrsoftware.com/html/blog/
consequences.html

Without reading that, I would never have
understood “usability” to mean “ease of
writing”. I learned from early on in my
programming career that readability was
more important than writability. So
“using” a language doesn’t end with
writing the code: you then have to test and
debug it-- basically lick it into shape--then
maintain it afterwards.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 6 Jan 2024 01:03:05 -0600

> Without reading that, I would never
have understood "usability" to mean
"ease of writing". [...]

Usability is of course not just ease-of-
writing, but a lot of people tend to co-
mingle the two. For readability, too little
information can be just as bad as too
much. For writability, the less you have to
write, the better.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 6 Jan 2024 10:14:07 +0200

> Usability is of course not just ease-of-
writing, but a lot of people tend to co-
mingle the two. For readability, too
little information can be just as bad as
too much. For writability, the less you
have to write, the better.

I feel that is too narrow a definition of
writability (and perhaps you did not
intend it as a definition). Before one can
start typing code, one has to decide what
to write -- which language constructs to
use. A systematically constructed, regular
language like Ada makes that mental
effort easier, even if it results in more
keystrokes; a plethora of special-case
syntaxes and abbreviation possibilities
makes it harder.

Perhaps "writability" should even be
taken to cover the whole process of
creating /correct/ code, and include all the
necessary testing, debugging and
corrections until correct code is achieved.
Here of course Ada shines again, with so
many coding errors caught at compile
time.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 6 Jan 2024 21:21:30 -0400

> Usability is of course not just ease-of-
writing, but a lot of people tend to co-
mingle the two.

Yes, I'm always surprised to see many
languages (including Rust) praising
themselves for being "concise". Apart
from saving some keystrokes, I fail to see
the benefit of being concise...

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Tue, 09 Jan 2024 15:19:52 +0000

> [...] Apart from saving some keystrokes,
I fail to see the benefit of being
concise...

Agreed. However, it is a bit of a totem in
the FP cult.

Limited with Too
Restrictive?

From: Blady <p.p11@orange.fr>
Subject: Limited with too restrictive?
Date: Sat, 13 Jan 2024 17:11:35 +0100
Newsgroups: comp.lang.ada

I want to break some unit circularity
definitions with access types as for
instance with record:

type R1;

type AR1 is access R1;

type R1 is record

 Data : Natural;

 Next : AR1;

end record;

In my case, I have a unit:

package test_20240113_modr is

 type R2 is record

 Data : Natural;

 end record;

 type AR2 is access R2;

end test_20240113_modr;

"limited withed" in:

limited with test_20240113_modr;

package test_20240113_mods is

end;

Let's imagine the circularity, thus PS1 and
PS2 definitions are legal.

Of course the following isn't legal:

type AS1 is array (1..2) of

test_20240113_modr.R2; -- illegal

However why not with access type:

type AS2 is array (1..2) of

test_20240113_modr.AR2; -- illegal

Likewise, why not:

type AS3 is record

 Data : Natural;

 Next : test_20240113_modr.AR2; -- illegal

end record;

Isn't "limited with" too restrictive, is it?

Well, I could make some code transfers
from unit to another or access
conversions, that's what I actually do but
at heavy cost.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 13 Jan 2024 22:31:12 -0600

Ada Pract ice 13

Ada User Journal Volume 45, Number 1, March 2024

> However why not with access type:

> type AS2 is array (1..2) of
test_20240113_modr.AR2; -- illegal

For a limited with, one only knows the
syntactic declarations (we cannot assume
any analysis). Therefore, we cannot know
the representation of any type, including
access types.

Specifically, compilers may support
multiple representations for access types,
for a variety of reasons (the underlying
machine has different representations, as
on the 8086 and U2200 that we did
compilers for; because additional data
needs to be carried along to implement
Ada semantics - GNAT did that for access
to unconstrained arrays, and so on). The
representation can depend upon aspect
specifications, the designated subtype,
and more, none of which is known at the
point of a limited with.

We couldn't restrict implementations to a
single representation for access types, and
thus limited with has to treat them the
same as other types.

It's necessary to declare local access types
for entities that are accessed from a
limited view. The reason that anonymous
access types were expanded was to make
that less clunky -- but I don't think it
succeeded.

> Well, I could make some code transferts
from unit to another or access
conversions, that's what I actually do
but at heavy cost.

Yup, but the alternative is worse -
requiring all access types to be the most
general representation (which can have a
heavy performance cost).

String_Access in Unbounded
String Handling?

From: Blady <p.p11@orange.fr>
Subject: String_Access in unbounded string

handling?
Date: Sun, 14 Jan 2024 12:05:40 +0100
Newsgroups: comp.lang.ada

String_Access is defined in A.4.5
Unbounded-Length String Handling:

7 type String_Access is access all String;

and note:

75 The type String_Access provides a
(nonprivate) access type for explicit
processing of unbounded-length strings.

I wonder what String_Access is for and
what could be "explicit processing"?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 14 Jan 2024 12:17:25 +0100

String_Access is a mistake that should not
exist.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 14 Jan 2024 16:12:31 +0100

> String_Access is a mistake that should
not exist.

Well, from one point of view, surely.

However I frequently need such a type
because I in general refrain from using
Unbounded_String. Now, it would be no
problem to declare it as needed, except for
generics! If you have generic packages
like:

generic

 type Object_Type (<>) is private;

 type Object_Access_Type

 is access all Object_Type;

You want all instances to share the same
String_Access. So it is conflicting. One is
true, it has no place there. It should have
been the package Standard or none.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 16 Jan 2024 19:24:40 -0600

> String_Access is a mistake that should
not exist.

I agree with Jeffrey. Whatever reason it
was initially put into the package has long
since ceased to be relevant. And, as
Dmitry notes, when you want such a type,
it's usually because you didn't want to use
Ada.Strings.Unbounded (or Bounded). So
the placement is odd at best.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 16 Jan 2024 19:30:57 -0600

> ... It should have been the package
Standard or none.

None for me. ;-)

One really doesn't want to put anything in
Standard that isn't widely needed, as those
names become hard to use in other
circumstances. In particular, declarations
in Standard hide anything that is use-
visible with the same name, so adding
something to Standard can be rather
incompatible.

One could mitigate use-visibility
problems by allowing more extensive
overloading (for instance, of objects), but
that causes rare and subtle cases where a
program could change meaning without
any indication. (Where a different object
would be used, for instance.) That makes
that too risky a change for Ada.

From: Blady <p.p11@orange.fr>
Date: Wed, 17 Jan 2024 10:54:24 +0100

Thanks for all your answers,

This is probably a very minor subject,
however I submitted it:
https://github.com/
Ada-Rapporteur-Group/
User-Community-Input/issues/79

From: Tucker Taft
<tucker.taft@gmail.com>

Date: Wed, 17 Jan 2024 05:34:12 -0800

> I wonder what String_Access is for and
what could be "explicit processing"?

The idea was to support the explicit use of
new String'(...), X.all, and
Unchecked_Deallocation rather than the
implicit use of the heap inherent in
Unbounded strings. It was recognized that
you need a single global access type to
avoid having to do conversions all over
the place. This predated the availability of
stand-alone objects of an anonymous
access type (aka "SAOOAAATs" ;-), but
those are not universally loved either. It
certainly cannot be removed now without
potentially very painful disruption of
existing users. It could be moved to a
different package without too much
disruption, but I haven't seen any
groundswell of interest in doing that
either.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 18 Jan 2024 19:36:59 -0600

>[...] It certainly cannot be removed now
without potentially very painful
disruption of existing users.

I'm dubious that there are any such users.
Certainly, in the handful of cases where I
needed such a type, I just declared it
(strong typing, you know?) and never
thought of Ada.Strings.Unbounded as
being a place to find such a type already
defined. It is such an odd place I doubt
anyone outside of perhaps the people who
defined the type ever used it.

OTOH, I agree that the compatibility
impact is non-zero (anyone who did use it
would have to change their code), and the
benefit of removing the type at this point
is close to zero (junk declarations abound
in long-term Ada packages, what's one
more; and certainly there is a lot of
unused stuff in any particular reusable
package and any particular use), so the
cost-benefit ratio doesn't seem to make a
change here worth it. An Ada successor
language would design
Ada.Strings.Unbounded rather differently
(so as to be able to use string literals
directly with the type) and probably
would include universal character support
as well, so it's hard to find an important
reason to change this.

Also, I'm pretty sure we're discussed this
within the ARG several times in the past,
so this is well-trodden ground.

From: Blady <p.p11@orange.fr>
Date: Tue, 30 Jan 2024 16:53:22 +0100

At least, the type String_Access could be
tagged as obsolescent.

14 Ada Pract ice

Volume 45, Number 1, March 2024 Ada User Journal

Choice Must Be Static?

From: Blady <p.p11@orange.fr>
Subject: error: choice must be static?
Date: Sun, 11 Feb 2024 13:29:59 +0100
Newsgroups: comp.lang.ada

I've got the following GNAT error:

$ GCC -c -gnat2022 -gnatl

2024/test_20240211_static_choice.adb

GNAT 13.2.0

1. procedure test_20240211_static_choice is

2.

3. package Maps is

4. type Map_Type is private

5. with Aggregate => (Empty =>

 Empty_Map,

6. Add_Named => Add_To_Map);

7. procedure Add_To_Map (M : in out

 Map_Type; Key : in Integer; Value : in

 String);

8. Empty_Map : constant Map_Type;

9. private

10. type Map_Type is array (1..10) of String

 (1..10);

11. procedure Add_To_Map (M : in out

 Map_Type; Key : in

 Integer; Value : in String) is null;

12. Empty_Map : constant Map_Type :=

 [1..10 => " "];

-- error: choice must be static

>>> error: choice must be static

I wonder what more static it should be.
Any clue?

[Full source code removed. —arm]

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 11 Feb 2024 21:56:17 +0100

I don't know what this means, but it's
definitely related to the Aggregate aspect.
This compiles:

Empty_Base : constant Map_Base :=

 (1 .. 10 => (1 .. 10 => ' '));

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 12 Feb 2024 09:12:37 +0100

Square brackets are the root of all evil!
(:-))

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 12 Feb 2024 20:12:01 -0600

Looks like a compiler bug to me. The
nonsense message gives that away... :-)

From: Simon Wright
<simon@pushface.org>

Date: Tue, 13 Feb 2024 11:45:17 +0000

> Looks like a compiler bug to me. The
nonsense message gives that away... :-)

GCC 14.0.1 says

[...]

 4. type Map_Type is private

 5. with Aggregate => (Empty =>

Empty_Map,

>>> error: aspect "Aggregate" can only be

applied to non-array type

[...]

14. Empty_Map : constant Map_Type :=

[1..10 => " "];

>>> error: choice must be static

I think the first is because of ARM
4.3.5(2), "For a type other than an array
type, the following type-related
operational aspect may be specified"[1]
and the second is a "nonsense"
consequence.

[1] http://www.ada-auth.org/standards/
22rm/html/RM-4-3-5.html#p2

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 13 Feb 2024 22:28:22 -0600

Ah, yes, I didn't notice that part. One
cannot give the Aggregate aspect on an
array type, directly or indirectly. That's
because container aggregates are designed
to work like array aggregates, and we
didn't want visibility to determine the
interpretation of an aggregate (especially
where the same syntax could have a
different meaning in different visibility)..
Thus, there can be no point where a single
type can have both array aggregates and
container aggregates.

Note that record aggregates and container
aggregates are always syntactically
different, and thus it is OK to have both in
a single location (that's one of the reasons
that we adopted square brackets for
container aggregates). That seemed
important as the majority of private types
are completed by record types, and not
allowing record types in this context
would be difficult to work around.

From: Blady <p.p11@orange.fr>
Date: Sat, 17 Feb 2024 09:51:39 +0100

Thanks Randy for the explanation, it
helps.

In-Memory Stream

From: Drpi <314@drpi.fr>
Subject: In memory Stream
Date: Fri, 16 Feb 2024 10:41:12 +0100
Newsgroups: comp.lang.ada

I want to transfer some data between
applications through a memory buffer.
The buffer transfer between applications
is under control. My problem is with the
buffer content. I thought I'll use a Stream
writing/reading in/from the memory
buffer. How can I achieve this? I've found
no example doing this.

Note: I use Ada 2012.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 16 Feb 2024 11:40:54 +0100

I don't know if this is what you want, but
at least it is an example of using
streams…

Package Storage_Streams, from Adalog's
components page:
https://adalog.fr/en/components.html#
Storage_Stream

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 16 Feb 2024 13:40:27 +0100

> How can I achieve this? I've found no
example doing this.

It of course depends on the target
operating system. You need to create a
shared region or memory mapped file etc.
You also need system-wide events to
signal the stream ends empty or full.

Simple Components has an
implementation interprocess streams for
usual suspects:
http://www.dmitry-kazakov.de/ada/
components.htm#12.7

> Note : I use Ada 2012.

No problem, it is kept Ada 95 compatible.

From: Pascal Obry <pascal@obry.net>
Date: Fri, 16 Feb 2024 13:49:54 +0100

AWS comes with a memory stream
implementation.

https://github.com/AdaCore/aws/blob/
master/include/memory_streams.ads

You may want to have a look here.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 16 Feb 2024 20:19:42 +0000

A spec and body for an implementation
I've had since 2008:
https://github.com/simonjwright/
coldframe/blob/alire/src/common/
coldframe-memory_streams.ads

https://github.com/simonjwright/
coldframe/blob/alire/src/common/
coldframe-memory_streams.adb

From: Drpi <314@drpi.fr>
Date: Sat, 17 Feb 2024 14:36:46 +0100

Concerning the OS and the buffer transfer
mechanism, as I said, this is under
control. I use Windows and the
WM_COPYDATA message.

My usage is a bit special. The writing
process writes a bunch of data in a
memory buffer then requests this buffer to
be transferred to another process by way
of WM_COPYDATA. The receiving
process reads the data from the "new"
memory buffer. I say "new" since the
address is different from the one used in
the writing process (of course it cannot be
the same).

The library Jean-Pierre pointed me to
perfectly matches this usage. Light and
easy to use. Thanks.

One enhancement I see is to manage the
buffer size to avoid buffer overflow (or
did I miss something?).

Thanks again to everybody.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 17 Feb 2024 15:26:45 +0100

Ada Pract ice 15

Ada User Journal Volume 45, Number 1, March 2024

> The library Jean-Pierre pointed me to
perfectly matches this usage. Light and
easy to use. Thanks.

:-)

 > One enhancement I see is to manage
the buffer size to avoid buffer overflow
(or did I miss something?).

I don't see what you mean here... On the
memory side, we are reading/writing
bytes from memory, there is no notion of
overflow. And the number of bytes
processed by Read/Write is given by the
size of Item, so no overflow either...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 17 Feb 2024 15:28:54 +0100

You ask Windows to copy a chunk of
memory from one process space into
another, so yes, it is physically different
memory. Different or same address tells
nothing because under Windows
System.Address is virtual and can point
anywhere.

As you may guess it is a quite heavy
overhead, not only because of copying
data between process spaces, but also
because of sending and dispatching
Windows messages.

Note, that if you implement stream
Read/Write as individual Windows
messages it will become extremely slow.
GNAT optimizes streaming of some built-
in objects, e.g. String. But as a general
case you should expect that streaming of
any non-scalar object would cause
multiple calls to Read/Write and thus
multiple individual Windows messages.

An efficient way to exchange data under
Windows is a file mapping. See
CreateFileMapping and MapViewOfFile.

https://learn.microsoft.com/
en-us/windows/win32/api/winbase/
nf-winbase-createfilemappinga

https://learn.microsoft.com/
en-us/windows/win32/api/memoryapi/
nf-memoryapi-mapviewoffile

Then use CreateEvent with a name to
signal states of the stream buffer system-
wide. Named Windows events are shared
between processes.

https://learn.microsoft.com/
en-us/windows/win32/api/synchapi/
nf-synchapi-createeventa

[This is how interprocess stream is
implemented for Windows in Simple
Components]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 17 Feb 2024 15:48:05 +0100

> On the memory side, we are
reading/writing bytes from memory,
there is no notion of overflow.

In the Simple Components there is a pipe
stream.

type Pipe_Stream

 (Size : Stream_Element_Count) is

 new Root_Stream_Type with private;

When a task writes the stream full (Size
elements), it gets blocked until another
task reads something out.

Another implementation

type Storage_Stream

 (Block_Size : Stream_Element_Count)

 is new Root_Stream_Type with private;

rather allocates a new block of memory.
The allocated blocks get reused when
their contents are read out.

From: Drpi <314@drpi.fr>
Date: Sat, 17 Feb 2024 15:56:34 +0100

> [...] As you may guess it is a quite
heavy overhead [...]

In my use case, there is no performance
problem. The purpose is to make an editor
single instance. When you launch the
editor the first time, everything is done as
usual. Next time you launch the editor
(for example by double clicking on a file
in file explorer) the init code of the editor
detects an instance of the editor is already
running, transfers the command line
arguments to the first instance and exits.

The buffer transfer occurs once when
starting a new instance of the editor.

However, I keep your solution in mind. I
might need it one day.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 17 Feb 2024 18:09:02 +0000

> But as a general case you should expect
that streaming of any non-scalar object
would cause multiple calls to
Read/Write and thus multiple
individual Windows messages.

Our motivation for the memory stream
was the equivalent of this for UDP
messages; GNAT.Sockets behaves
(behaved?) exactly like this, so we
buffered the result of 'Output & wrote the
constructed buffer to the socket; on the
other side, we read the UDP message,
stuffed its contents into a memory stream,
then let the client 'Input.

I can't remember at this distance in time,
but I think I would have liked to construct
a memory stream on the received UDP
packet rather than copying the content;
the compiler wouldn't let me. Perhaps
worth another try.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 17 Feb 2024 19:52:00 +0100

> One enhancement I see is to manage the
buffer size to avoid buffer overflow (or
did I miss something?).

The purpose of this stream is to access
raw memory, so there is no notion of

"buffer size". It is up to you to match your
(user) buffer with the memory buffer. Of
course, you can add a layer with all the
checks you want...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 17 Feb 2024 22:33:17 +0100

> I can't remember at this distance in
time, but I think I would have liked to
construct a memory stream on the
received UDP packet rather than
copying the content; the compiler
wouldn't let me.

UDP is a kind of thing... Basically, there
is no use of UDP except for broadcasting,
e.g. in LAN discovery.

In all other cases it is either TCP or
multicast. Since UDP does not guarantee
either delivery or ordering. It would be a
huge overhead to implement reliable
buffered streams on top of UDP, with
sequence numbers, acknowledgements,
re-sending, reordering etc.

As for taking apart a UDP packet, it is
straightforward. You simply declare a
stream element array of the packet size
and map it on the packet using:

pragma Import (Ada, A);

for A'Address use UDP_Packet'Address;

And somewhere

pragma Assert (Stream_Element'Size = 8);

just in case...

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 18 Feb 2024 00:00:11 -0000

> The writing process writes a bunch of
data in a memory buffer then requests
this buffer to be transferred to another
process by way of WM_COPYDATA.

I thought Windows had pipes.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 18 Feb 2024 00:02:33 -0000

> When writing in the stream, you have to
care to not overflow the buffer.

With pipes, the OS takes care of this for
you. Once its kernel buffer is full, further
writes are automatically blocked until a
reader has drained something from the
buffer.

It’s called “flow control”.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 18 Feb 2024 11:06:16 +0100

> I thought Windows had pipes.

Yes it has, but very rarely used though
much better designed than UNIX pipes.
See https://learn.microsoft.com/
en-us/windows/win32/api/winbase/
nf-winbase-createnamedpipea

In general Windows has much richer and
better API regarding interprocess

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga

16 Ada Pract ice

Volume 45, Number 1, March 2024 Ada User Journal

communication than Linux. After all
Windows NT was sort of descendant of
VMS, which was light years ahead of
UNIX Sys V. In recent times Linux
improved, e.g. they added futex stuff etc.
BSD is far worse than Linux in respect of
API.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 18 Feb 2024 10:06:46 +0000

> UDP is a kind of thing... Basically,
there is no use of UDP except for
broadcasting, e.g. in LAN discovery.

Worked for us, sending radar
measurements p-2-p at 200 Hz

> for A'Address use
UDP_Packet'Address;

OK if the participants all have the same
endianness. We used XDR (and the
translation cost is nil if the host is big-
endian, as PowerPCs are; all the critical
machines were PowerPC).

From: Björn Lundin <bnl@nowhere.com>
Date: Sun, 18 Feb 2024 12:36:54 +0100

> I thought Windows had pipes.

It does, we use it for our IPC in both
Linux and Windows. Works very well.
We use named pipes - where each process
knows its name through via env-var At
start they create a named pipe with that
name

We use anonymous pipes for client
communication

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 18 Feb 2024 14:02:32 +0100

> OK if the participants all have the same
endianness. We used XDR [...]

I always override stream attributes and
use portable formats. E.g. some chained
code for integers. Sign + exponent +
normalized mantissa for floats, again
chained. That is all. There is no need in
XDR, JSON, ASN.1 or other data
representation mess. They are just
worthless overhead.

Raise Expressions from
AARM

From: Blady <p.p11@orange.fr>
Subject: Raise expressions from AARM.
Date: Sat, 24 Feb 2024 10:50:31 +0100
Newsgroups: comp.lang.ada

AARM Ada 2022 section 11.3 presents
some uses of raise expressions including
this one:
(http://www.ada-auth.org/standards/
22aarm/html/AA-11-3.html)

2.a.10/4 ...

B : Some_Array := (1, 2, 3, others =>

 raise Not_Valid_Error);

What could be the use cases?

My guess: whatever the size of
Some_Array (greater than 3), B is
elaborated but raises Not_Valid_Error
when accessing component beyond
position 3:

type Some_Array is array

 (Positive range 1..10) of Natural;

...

B : Some_Array := (1, 2, 3, others =>

 raise Not_Valid_Error);

...

begin

X := B (2); -- OK

X := B (6); -- raises Not_Valid_Error

end;

Is it correct?

NB: GNAT 13.2 issues a compilation
error:
>>> error: "others" choice not allowed here
see: https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=113862

Thanks, Pascal.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 24 Feb 2024 11:39:08 +0100

> Is it correct?

No. This will raise the exception upon the
elaboration of B.

The only use of this that I can imagine is
if the length of Some_Array is 3. Then the
others choice is null, so the raise
expression is never evaluated. But if
someone changes the definition of
Some_Array to be longer, then the
exception will be raised.

> NB: GNAT 13.2 issues a compilation
error:

> >>> error: "others" choice not allowed
here

> see: https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=113862

The example in the error report has
Some_Array unconstrained, in which case
an others choice is not allowed. With the
constrained definition given above, the
aggregate is valid.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 24 Feb 2024 12:39:43 +0200

> What could be the use cases?

The point of these examples (which are
only in the discussion annotation, not in
the normative standard) is to discuss what
is syntactically legal and why. The
examples need not make practical sense.

> My guess: [...] raises Not_Valid_Error
when accessing component beyond
position 3:

No. A raise-expression is not a value that
can be stored in an array or passed
around; its evaluation raises an exception
/instead/ of yielding a value.

In this example, if the evaluation of the
array aggregate that initializes B evaluates
the expression supplied for the "others"
choice, this evaluation will raise
Not_Valid_Error and disrupt the
initialization of B.

It is not clear to me if the RM requires the
evaluation of the "others" expression if
there are no "other" indices.
Experimenting with GNAT (Community
2019) shows that if the Some_Array type
has 'Length = 3, the exception is not
raised (so the "others" value is not
evaluated), while if the 'Length is greater
than 3 the exception is raised.

> type Some_Array is array (Positive
range 1..10) of Natural;

> B : Some_Array := (1, 2, 3, others =>
raise Not_Valid_Error);

That should raise Not_Valid_Error during
the initialization of B.

From: Blady <p.p11@orange.fr>
Date: Sun, 25 Feb 2024 12:09:08 +0100

If I understand well, no compiler error nor
warning at compilation time but
Not_Valid_Error raised at run time
elaboration.

To be compared with:

B1 : Some_Array := (1, 2, 3);

No compiler error, one compiler warning
"Constraint_Error will be raised at run
time" and Constraint_Error range check
failed raised at run time elaboration.

From: Blady <p.p11@orange.fr>
Date: Sun, 25 Feb 2024 12:23:48 +0100

> The examples need not make practical
sense.

Well, despite I knew that, I wanted to
draw some use cases from them.

For instance:

 A : A_Tagged := (Some_Tagged'

 (raise TBD_Error) with Comp => 'A');

It will raise TBD_Error if Some_Tagged
is not a null record, good to know, isn't it?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 26 Feb 2024 22:01:23 +0200

> It will raise TBD_Error if
Some_Tagged is not a null record, good
to know, isn't it?

Hm, not raising the exception for a null
record seems weird to me, and I cannot
deduce it from the RM. Moreover, for a
plain qualified expression

Some_Tagged'(raise TBD_Error)

not in an extension aggregate GNAT
raises the exception even if the type is a
null record. I suspect that not raising the
exception for an extension aggregate
where the ancestor type is a null record is
a bug in GNAT.

 17

Ada User Journal Volume 45, Number 1, March 2024

Conference Calendar
Dirk Craeynest

KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2024

April 06 Ada Monthly Meetup 2024 April, Internet. New edition of the monthly online
meeting to gather the community, see each other, talk about some things, and let
people present or showcase their work and discuss the news.

April 06-11 27th European Joint Conferences on Theory and Practice of Software (ETAPS'2024), Luxembourg

City, Luxembourg. Events include: ESOP (European Symposium on Programming), FASE (Fundamental

Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation

Structures), TACAS (Tools and Algorithms for the Construction and Analysis of Systems), SPIN

(Symposium on Model Checking of Software).

April 08-11 19th European Dependable Computing Conference (EDCC'2024), Leuven, Belgium. Topics include:

hardware and software architecture of dependable systems; mixed-criticality systems design and

evaluation; dependability modelling and tools; testing and validation methods; dependability and security

of artificial intelligence, critical infrastructures, cyber-physical systems, (industrial) Internet of Things,

...; safety-critical system design and analysis; etc.

April 08-11 30th International Working Conference on Requirements Engineering: Foundation for Software

Quality (REFSQ'2024), Winterthur, Switzerland. Theme: "Out of the Lab, into the Wild!"

April 08-12 36th ACM Symposium on Applied Computing (SAC'2024), Avila, Spain.

☺ April 08-12 Track on Programming Languages (PL'2024). Topics include: technical ideas and

experiences relating to implementation and application of programming languages, such

as compiling techniques, domain-specific languages, garbage collection, language design

and implementation, languages for modeling, model-driven development, new

programming language ideas and concepts, practical experiences with programming

languages, program analysis and verification, etc. Deadline for submissions: October 13,

2019 (regular papers, SRC research abstracts).

April 08-12 Software Verification and Testing Track (SVT'2024). Topics include: new results in

formal verification and testing, technologies to improve the usability of formal methods

in software engineering, applications of mechanical verification to large scale software,

model checking, correct by construction development, model-based testing, software

testing, static and dynamic analysis, abstract interpretation, analysis methods for

dependable systems, software certification and proof carrying code, fault diagnosis and

debugging, verification and validation of large scale software systems, real world

applications and case studies applying software testing and verification, etc.

April 08-12 19th Track on Dependable, Adaptive, and Secure Distributed Systems (DADS'2024).

Topics include: Dependable, Adaptive, and secure Distributed Systems (DADS);

modeling, design, and engineering of DADS; foundations and formal methods for DADS;

applications of DADS; etc.

April 14-20 46th International Conference on Software Engineering (ICSE'2024), Lisbon, Portugal.

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html

18 Conference Calendar

Volume 45, Number 1, March 2024 Ada User Journal

April 14-15 12th International Conference on Formal Methods in Software Engineering

(FormaliSE'2024). Topics include: approaches, methods, and tools for verification and

validation; formal approaches to safety and security related issues; scalability of formal

method applications; integration of formal methods within the software development

lifecycle; model-based engineering approaches; correctness-by-construction approaches

for software and systems engineering; application of formal methods to specific domains

(such as, autonomous, cyber-physical, intelligent, and IoT systems); formal methods for

certification; guidelines to use formal methods in practice; usability of formal methods;

etc.

April 22-25 19th European Conference on Computer Systems (EuroSys'2024), Athens, Greece. Topics include:

distributed systems; language support and runtime systems; systems security and privacy; dependable

systems; analysis, testing and verification of systems; parallelism, concurrency, and multicore systems;

real-time, embedded, and cyber-physical systems; etc.

April 24-25 16th Software Quality Days (SWQD'2024), Vienna, Austria. Theme: "Software Quality as a Foundation

for Security". Topics include: all topics related to software and systems quality, such as methods and tools

for constructive and analytical quality assurance; testing of software and software-intensive systems;

process improvement for development and testing; automation in quality assurance and testing; domain

specific quality issues such as embedded, medical, automotive systems; continuous integration,

deployment, and delivery; project and risk management; secure coding, software engineering and system

design; detection and prevention of vulnerabilities and security threats; etc.

May 06-10 27th Ibero-American Conference on Software Engineering (CIbSE'2024), Curitiba, Paraná, Brazil.

Topics include: software architecture and variability; software quality, quality models and technical debt

management; software reliability; software ecosystems and systems of systems; software Engineering

(SE) education and training; software evolution and modernisation; SE for emerging application domains

(cyber-physical systems, Internet of Things, ...); industrial experience reports in SE; software product

lines and processes; software repository mining and software analytics; software processes; software

reuse; software testing; etc.

May 07-11 15th ACM/SPEC International Conference on Performance Engineering (ICPE'2024), London, UK.

May 11 Ada Monthly Meetup 2024 May, Internet. New edition of the monthly online
meeting to gather the community, see each other, talk about some things, and let
people present or showcase their work and discuss the news.

May 13-16 17th Cyber-Physical Systems and Internet of Things Week (CPS-IoT Week'2024), Hong Kong. Event

includes: 5 top conferences, HSCC, ICCPS, IoTDI, IPSN, and RTAS, as well as poster and demo sessions,

workshops, tutorials, competitions, industrial exhibitions, and PhD forums. Deadline for submissions:

April 5, 2024 (student travel grant applications). Deadline for early registration: April 15, 2024.

☺ May 13-16 29th IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS'2024). Topics include: time-sensitive applications; real-time and embedded

operating systems; application profiling, WCET analysis, compilers, tools, benchmarks

and case studies; modelling languages, modelling methods, model learning, model

validation and calibration; scheduling and resource allocation; verification and validation

methodologies; etc. Deadline for early registration: April 9, 2024.

May 13-16 15th ACM/IEEE International Conference on Cyber-Physical Systems

(ICCPS'2024). Topics include: safety and resilience for CPS; software platforms and

systems for CPS; specification languages and requirements; design, optimization, and

synthesis; testing, verification, certification; security, trust, and privacy in CPS; tools,

testbeds, demonstrations and deployments; etc.

May 27-31 38th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2024), San

Francisco, California, USA. Topics include: applications to solve problems using parallel and distributed

computing concepts; programming models, compilers, and runtime systems (ranging from the design of

parallel programming models and paradigms to languages and compilers supporting these models and

paradigms, to runtime and middleware solutions); system software; existing and emerging architectures;

experiments and performance-oriented studies in the practice of parallel and distributed computing; etc.

Conference Calendar 19

Ada User Journal Volume 45, Number 1, March 2024

May 27-31 17th IEEE International Conference on Software Testing, Verification and Validation (ICST'2024),

Toronto, Canada. Topics include: manual testing practices and techniques, security testing, model-based

testing, test automation, static analysis and symbolic execution, formal verification and model checking,

software reliability, testability and design, testing and development processes, testing in specific domains

(such as embedded/cyber-physical systems, concurrent, distributed, ..., and real-time systems),

testing/debugging tools, empirical studies, experience reports, etc.

June 04-06 16th NASA Formal Methods Symposium (NFM'2024), Moffett Field, California, USA. Topics include:

identifying challenges and providing solutions towards achieving assurance for critical systems; formal

techniques for software and system assurance for applications in space, aviation, robotics, and other

NASA-relevant safety-critical systems.

June 10-12 21st International Conference on Software and Systems Reuse (ICSR'2024), Limassol, Cyprus.

Theme: "Sustainable Software Reuse". Topics include: new and innovative research results and industrial

experience reports dealing with all aspects of software reuse within the context of the modern software

development landscape, such as technical aspects of reuse (model-driven development, variability

management and software product lines, domain-specific languages, new language abstractions for

software reuse, software composition and modularization, technical debt and software reuse, ...), software

reuse in industry and in emerging domains (reuse success stories, reuse failures and lessons learned, reuse

obstacles and success factors, return on investment studies, ...).

☺ June 11-12 12th European Congress on Embedded Real Time Systems (ERTS'2024), Toulouse, France. Topics

include: all aspects of critical embedded real-time systems, such as model-based system and safety

engineering, product line engineering, programming languages, verification methods, software

development frameworks, dependability, safety, cyber security, quality of service, fault tolerance,

maintainability, certification, etc. Deadline for submissions: April 3, 2024 (regular papers), May 5, 2024

(final short and regular papers).

June 11-14 28th Ada-Europe International Conference on Reliable Software
Technologies (AEiC'2024), Barcelona, Spain. Organized by Ada-Europe and Barcelona
Supercomputing Center (BSC), in cooperation with ACM SIGAda, ACM SIGBED, ACM
SIGPLAN, and Ada Resource Association (ARA), supported and sponsored by
ASCENDER project, ACM-W, Eurocity, AdaCore, Rising STARS project, ACM-W
Barcelona Chapter, and OpenMP. Deadline for early registration: May 20, 2024.
#AEiC2024 #AdaEurope #AdaProgramming

June 14 Ada Developers Workshop. Topics include: everything related to Ada
software development, i.e. similar to the Ada DevRooms at FOSDEM,
technical presentations, tutorials, demos, live performances, project
status reports, discussions, etc, offering a place where the Ada community
can meet and share their work and projects.

☺ June 14 9th Workshop on Challenges and New Approaches for Dependable and Cyber-

Physical System Engineering (De-CPS'2024). Topics include: artificial intelligence for

CPS; model-based system engineering for CPS; transport and mobility, vehicle of the

future; Industry 4.0 / 5.0; IoT, edge and cloud continuum; digital twins; safety and

(cyber)security; human/machine interaction; real-time computing; time-sensitive

networking (TSN), 5G/6G networks. Deadline for submissions: April 30, 2024 (papers).

June 14 3rd ADEPT workshop, AADL by its practitioners (ADEPT'2024). Topics include:

current projects in the field of design, implementation and verification of critical systems

where AADL is a first-citizen technology.

June 17-21 19th International Federated Conference on Distributed Computing Techniques (DisCoTec'2024),

Deadline for submissions: May 6, 2024 (workshop papers). Groningen, the Netherlands. Topics include:

a broad spectrum of distributed computing subjects, from theoretical foundations and formal description

techniques, testing and verification methods, to language design and system implementation approaches.

Events include: FORTE (Formal Techniques for Distributed Objects, Components and Systems),

COORDINATION (Coordination Models and Languages), DAIS (Distributed Applications and

Interoperable Systems), ICE (Interaction and Concurrency Experience Workshop).

June 19-21 28th International Conference on Engineering of Complex Computer Systems (ICECCS'2024),

Limassol, Cyprus. Topics include: all areas related to complex computer-based systems, including the

20 Conference Calendar

Volume 45, Number 1, March 2024 Ada User Journal

causes of complexity and means of avoiding, controlling, or coping with complexity, such as model-

driven development, security, reliability and dependability, safety-critical and fault-tolerant architectures,

formal methods, verification and validation, reverse engineering and refactoring, software architecture,

agile methods, cyber-physical systems and Internet of Things (IoT), industrial case studies, etc.

☺ June 24-28 25th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, Tools and

Theory of Embedded Systems (LCTES'2024), Copenhagen, Denmark. Topics include: programming

language challenges (domain-specific languages; features to exploit multicore architectures; features for

distributed and real-time control embedded systems; capabilities for specification, composition, and

construction of embedded systems; language features and techniques to enhance reliability, verifiability,

and security; compiler challenges; ...), interaction between embedded architectures, operating systems,

and compilers (support for enhanced programmer productivity; support for enhanced debugging,

profiling, and exception/interrupt handling; optimization for low power/energy, code/data size, and real-

time performance; tools for analysis, specification, design, and implementation; hardware, system

software, application software, and their interfaces; distributed real-time control; system integration and

testing; run-time system support for embedded systems; support for system security and system-level

reliability; ...), predictability of resource behavior: energy, space, time (validation and verification, in

particular of concurrent and distributed systems; formal foundations of model-based design as the basis

for code generation, analysis, and verification; ...), design and implementation of novel architectures

(architecture support for new language features, virtualization, compiler techniques, debugging tools; ...),

etc.

Jun 29 – Jul 04 24th International Conference on embedded computer Systems: Architectures, MOdeling and

Simulation (SAMOS'2024), Samos Island, Greece. Topics include: advances in systems efficiency in

various domains; software tools, compilation techniques and optimizations, and code generation for

reconfigurable architectures; embedded parallel systems application-level resource management of multi-

core architectures; specification languages and models; system-level design, simulation, and verification;

profiling, measurement and analysis techniques (design for) system adaptivity; testing and debugging;

etc. Deadline for submissions: April 1, 2024.

July 01-05 24th IEEE International Conference on Software Quality, Reliability and Security (QRS'2024),

Cambridge, UK. Topics include: reliability, security, availability, and safety of software systems; software

testing, verification, and validation; program debugging and comprehension; fault tolerance for software

reliability improvement; modeling, prediction, simulation, and evaluation; metrics, measurements, and

analysis; software vulnerabilities; formal methods; operating system security and reliability; benchmark,

tools, industrial applications, and empirical studies; etc. Deadline for submissions: April 1, 2024

(workshop papers), April 6, 2004 (fast abstracts, industry track, posters).

July 09-12 36th Euromicro Conference on Real-Time Systems (ECRTS'2024), Lille, France. Topics include: all

aspects of timing requirements in computer systems; elements of time-sensitive software systems, such

as operating systems, hypervisors, middlewares and frameworks, programming languages and compilers,

runtime environments, ...; real-time applications topics, such as modeling, design, simulation, testing,

debugging, and evaluation in domains such as automotive, avionics, control systems, industrial

automation, robotics, space, railways telecommunications, multimedia, ...; foundational scheduling and

predictability questions, such as schedulability analysis, synchronization protocols, ...; static and dynamic

techniques for resource demand estimation, such as classic worst-case execution time (WCET) analysis,

...; formal methods for the verification and validation of real-time systems; the interplay of timing

predictability and other non-functional qualities, such as reliability, security, quality of control, testability,

scalability, ...; etc. Deadline for submissions: May 9, 20024 (workshop contributions), May 27, 2024

(Industrial Challenge solutions).

July 15-19 32nd ACM International Conference on the Foundations of Software Engineering (FSE'2024), Porto

de Galinhas, Brazil. Topics include: debugging and fault localization; dependability, safety, and

reliability; embedded software, safety-critical systems, and cyber-physical systems; model checking;

model-driven engineering; parallel, distributed, and concurrent systems; program analysis; programming

languages; software architectures; software engineering education; software evolution; software security;

software testing; software traceability; symbolic execution; tools and environments; etc. Deadline for

submissions: April 29, 2024 (workshop papers).

Jul 29 – Aug 01 36th International Conference on Software Engineering Education and Training (CSEET'2024),

Würzburg, Germany. Topics include: novel ideas, methods, and techniques for software engineering

education; education experience & industrial training reports; teaching formal methods, teaching "real

Conference Calendar 21

Ada User Journal Volume 45, Number 1, March 2024

world" SE practices, software quality assurance education, motivating students and trainees, open source

in education, cooperation between industry and academia, training models in industry, continuous

integration and continuous delivery education, cyber-physical system or Internet of Things education, etc.

Deadline for submissions: April 4, 2024 (journal-first papers), April 7, 2024 (2nd round: Improved and

new short papers, posters, tools).

☺ August 26-30 30th International European Conference on Parallel and Distributed Computing (Euro-Par'2024),

Madrid, Spain. Topics include: all aspects of parallel and distributed processing, ranging from theory to

practice, from small to the largest parallel and distributed systems and infrastructures, from fundamental

computational problems to applications, from architecture, compiler, language and interface design and

implementation, to tools, support infrastructures, and application performance aspects. Deadline for

submissions: May 6, 2024 (workshop papers), May 17, 2024 (posters, demos, PhD symposium).

August 28-30 50th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2024),

Paris, France. Topics include: information technology for software-intensive systems; tracks on Cyber-

Physical Systems (CPS), Emerging Computing Technologies (ECT), Model-Driven Engineering and

Modeling Languages (MDEML), Software Process and Product Improvement (SPPI), Practical Aspects

of Software Engineering (KKIO), etc. Deadline for submissions: May 5, 2024 (papers).

September 09-10 20th International Conference on Formal Aspects of Component Software (FACS'2024), Milan, Italy.

Co-located with FM'2024. Topics include: applications of formal methods in all aspects of software

components and services; formal methods, models, and languages for software-intensive systems,

components and services, including verification techniques, ...; formal aspects of concrete software-

intensive systems, including real-time/safety-critical systems, hybrid and cyber physical systems, ...; tools

supporting formal methods for components and services; case studies and experience reports over the

above topics; etc. Deadline for submissions: May 8, 2024 (abstracts), May 15, 2024 (papers).

☺ Sep 09-11 29th International Conference on Formal Methods for Industrial Critical Systems (FMICS'2024),

Milan, Italy. Co-located with FM'2024. Topics include: case studies and experience reports on industrial

applications of formal methods, focusing on lessons learned or identification of new research directions;

methods, techniques, and tools to support automated analysis, certification, debugging, learning,

optimization, and transformation of complex, distributed, real-time, embedded, mobile, and autonomous

systems; verification and validation methods that address shortcomings of existing methods with respect

to their industrial applicability (e.g., scalability and usability issues, tool qualification, and certification);

application of formal methods in standardization and industrial forums; etc. Deadline for submissions:

April 25, 2024 (abstracts), May 1, 2024 (papers).

September 09-13 26th International Symposium on Formal Methods (FM'2024), Milan, Italy. Topics include:

development and application of formal methods in a wide range of domains including trustworthy AI,

software, computer-based systems, systems-of-systems, cyber-physical systems, security, human-

computer interaction, manufacturing, sustainability, energy, transport, smart cities, healthcare and

biology; techniques, tools, and experiences in interdisciplinary settings; experiences of applying formal

methods in industrial settings; design and validation of formal method tools; etc. Deadline for

submissions: April 15, 2024 (abstracts), April 19, 2024 (full papers, tutorial papers), June 17, 2024

(artifact abstracts), June 24, 2024 (artifacts).

Sep 09-10 18th International Conference on Tests And Proofs (TAP'2024). Topics include: many

aspects of verification technology, including foundational work, tool development, and

empirical research; the combination of static techniques such as proving and dynamic

techniques such as testing; verification and analysis techniques combining proofs and

tests; static analysis of programs with the aid of dynamic techniques; deductive techniques

supporting the automated generation of test vectors and oracles, and supporting (novel)

definitions of coverage criteria; specification inference by deductive or dynamic methods;

testing and runtime analysis of formal specifications; verification of verification tools and

environments; applications of test and proof techniques in new domains; combined

approaches of test and proof in the context of formal certifications; case studies, tool and

framework descriptions, and experience reports; etc. Deadline for submissions: May 8,

2024 (abstracts), May 15, 2024 (papers), July 3, 2024 (artifacts).

September 09-13 35th International Conference on Concurrency Theory (CONCUR'2024), Calgary, Canada. Topics

include: verification and analysis techniques for concurrent systems such as abstract interpretation, model

checking, race detection, run-time verification, static analysis, testing, theorem proving, type systems,

22 Conference Calendar

Volume 45, Number 1, March 2024 Ada User Journal

security analysis, ...; distributed algorithms and data structures: design, analysis, complexity, correctness,

fault tolerance, reliability, availability, consistency, ...; theoretical foundations, tools, and empirical

evaluations of architectures, execution environments, and software development for concurrent systems

such as multiprocessor and multi-core architectures, compilers and tools for concurrent programming,

programming models such as component-based, object-oriented, ...; etc. Deadline for submissions: April

26, 2024 (papers).

September 09-13 22nd International Conference on Formal Modeling and Analysis of Timed Systems

(FORMATS'2024), Calgary, Canada. Topics include: fundamental and practical aspects of systems with

quantitative nature; modelling, design and analysis of computational systems; models and metrics for the

correctness, performance, reliability, safety, and security of systems; techniques, algorithms, data

structures for analysis, evaluation, and verification of the models mentioned above, e.g., for model

checking, testing, constraint solving, scheduling, optimization, and worst-case execution time analysis;

novel software tools to support practical application of research results in all of the above areas; etc.

Deadline for submissions: April 10, 2024 (abstracts), April 15, 2024 (papers).

☺ Sep 16-20 38th European Conference on Object-Oriented Programming (ECOOP'2024), Vienna, Austria.

Topics include: programming languages, software development, systems and applications. Deadline for

submissions: April 17, 2024 (submissions round 2), April 23, 2024 (artifacts round 2).

☺ Sep 17-20 43rd International Conference on Computer Safety, Reliability and Security (SafeComp'2024),

Florence, Italy. Topics include: all aspects related to the development, assessment, operation, and

maintenance of safety-related and safety-critical computer systems; safety guidelines and standards;

safety/security co-engineering and tradeoffs; safety and security qualification, quantification, assurance

and certification; model-based analysis, design, and assessment; formal methods for verification,

validation, and fault tolerance; testing, verification, and validation methodologies and tools; etc. Domains

of application include: railways, automotive, space, avionics & process industries; highly automated and

autonomous systems; telecommunication and networks; critical infrastructures; medical devices and

healthcare; surveillance, defense, emergency & rescue; logistics, industrial automation, off-shore

technology; education & training; etc.

Sep 29 – Oct 03 19th International Conference on Software Engineering Advances (ICSEA'2024), Venice, Italy.

Topics include: trends and achievements; advances in fundamentals for software development; advanced

mechanisms for software development; advanced design tools for developing software; software

performance; software security, privacy, safeness; advances in software testing; specialized software

advanced applications; open source software; agile and lean approaches in software engineering; software

deployment and maintenance; software engineering techniques, metrics, and formalisms; software

economics, adoption, and education; etc. Deadline for submissions: June 17, 2024.

Sep 29 – Oct 04 Embedded Systems Week 2024 (ESWEEK'2024), Raleigh, North Carolina, USA. Includes CASES'2024

(International Conference on Compilers, Architectures, and Synthesis for Embedded Systems),

CODES+ISSS'2024 (International Conference on Hardware/Software Codesign and System Synthesis),

EMSOFT'2024 (International Conference on Embedded Software). Deadline for submissions: June 2,

2024 (Work-in-Progress track papers, Late Breaking track papers).

☺ October 13-16 33rd International Conference on Parallel Architectures and Compilation Techniques (PACT'2024),

Long Beach, California, USA. Topics include: parallel architectures; compilers and tools for parallel

architectures; applications and experimental systems studies of parallel processing; computational models

for concurrent execution; support for correctness in hardware and software; reconfigurable parallel

computing; parallel programming languages, algorithms, and applications; middleware and run time

system support for parallel computing; distributed computing architectures and systems; etc. Deadline for

submissions: April 1, 2024 (papers).

October 15-18 24th International Conference on Runtime Verification (RV'2024), Istanbul, Türkiye. Topics include:

monitoring and analysis of runtime behavior of software, hardware, and cyber-physical systems; program

instrumentation; combination of static and dynamic analysis; monitoring techniques for concurrent and

distributed systems; fault localization, containment, resilience, recovery and repair; etc. Deadline for

submissions: May 14, 2024 (papers).

October 16-18 17th International Conference on Verification and Evaluation of Computer and Communication

Systems (VECoS'2024), Djerba, Tunisia. Topics include: analysis of computer and communication

systems, where functional and extra-functional properties are inter-related; cross-fertilization between

Conference Calendar 23

Ada User Journal Volume 45, Number 1, March 2024

various formal verification and evaluation approaches, methods and techniques, especially those

developed for concurrent and distributed hardware/software systems. Deadline for submissions: May 13,

2024.

October 20-22 31st Static Analysis Symposium (SAS'2024), Pasadena, USA. Co-located with SPLASH'2024. Topics

include: static analysis as fundamental tool for program verification, bug detection, compiler optimization,

program understanding, and software maintenance. Deadline for submissions: May 5, 2024 (papers), May

12, 2024 (artifacts).

☺ October 20-25 ACM Conference on Systems, Programming, Languages, and Applications: Software for Humanity

(SPLASH'2024), Pasadena, California, USA. Deadline for submissions: July 7, 2024 (workshop papers).

☺ Oct 20-25 Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA'2024). Topics include: all practical and theoretical investigations

of programming languages, systems and environments, targeting any stage of software

development, including requirements, modelling, prototyping, design, implementation,

generation, analysis, verification, testing, evaluation, maintenance, and reuse of software

systems; development of new tools, techniques, principles, and evaluations. Deadline for

submissions: April 5, 2024 (round 2).

October 21-24 21st International Symposium on Automated Technology for Verification and Analysis

(ATVA'2024), Kyoto, Japan. Topics include: theoretical and practical aspects of automated analysis,

synthesis, and verification of hardware and software systems; program analysis and software verification;

analytical techniques for safety, security, and dependability; testing and runtime analysis based on

verification technology; analysis and verification of parallel and concurrent systems; verification in

industrial practice; applications and case studies; automated tool support; etc. Deadline for submissions:

April 19, 2024 (papers).

October 22-24 22nd Asian Symposium on Programming Languages and Systems (APLAS'2024), Kyoto, Japan.

Topics include: all areas of programming languages and systems; programming paradigms and styles;

methods and tools to specify and reason about programs and languages; programming language

foundations; methods and tools for implementation; concurrency and distribution; applications, case

studies and emerging topics. Deadline for submissions: May 24, 2024 (regular research papers).

Oct 27 – Nov 01 39th IEEE/ACM International Conference on Automated Software Engineering (ASE'2024),

Sacramento, California, USA. Topics include: foundations, techniques, and tools for automating analysis,

design, implementation, testing, and maintenance of large software systems. Deadline for submissions:

Mar 6, 2024 (workshops), May 31, 2024 (research abstracts), Jun 7, 2024 (research papers), Jun 26, 2024

(tool demos), Jul 2, 2024 (journal-first papers), Jul 12, 2024 (industry showcase).

October 28-31 35th IEEE International Symposium on Software Reliability Engineering (ISSRE'2024), Tsukuba,

Japan. Topics include: development, analysis methods and models throughout the software development

lifecycle; dependability attributes (i.e., security, safety, maintainability, survivability, resilience,

robustness) impacting software reliability; reliability threats, i.e. faults (defects, bugs, etc.), errors,

failures; reliability means (fault prevention, fault removal, fault tolerance, fault forecasting); software

testing and formal methods; software fault localization, debugging, root-cause analysis; reliability of AI-

based systems; reliability of model-based and auto-generated software; reliability of open-source

software; normative/regulatory/ethical spaces about software reliability; societal aspects of software

reliability; etc. Deadline for submissions: May 3, 2024 (abstracts), May 10, 2024 (papers).

November 04-08 22nd International Conference on Software Engineering and Formal Methods (SEFM'2024), Aveiro,

Portugal. Topics include: software development methods (formal modelling, specification, and design;

software evolution, maintenance, re-engineering, and reuse; design principles); programming languages

(abstraction and refinement, ...); software testing, validation, and verification (testing and runtime

verification, security and safety, ...); security, privacy, and trust (safety-critical, fault-tolerant, and secure

systems; software certification; applications and technology transfer); real-time, hybrid, and cyber-

physical systems; intelligent systems and machine learning; education; case studies, best practices, and

experience reports; etc. Deadline for submissions: June 7, 2024 (abstracts), June 14, 2024 (papers).

☺ Nov 07-08 32nd International Conference on Real-Time Networks and Systems (RTNS'2024), Porto, Portugal.

Deadline for submissions: June 5, 2024 (abstracts 2nd round), June 7, 2024 (papers 2nd round), August

14, 2024 (abstracts 3rd round), August 16, 2024 (papers 3rd round).

24 Conference Calendar

Volume 45, Number 1, March 2024 Ada User Journal

November 13-15 19th International Conference on integrated Formal Methods (iFM'2024), Manchester, UK. Topics

include: recent research advances in the development of integrated approaches to formal modelling and

analysis; all aspects of the design of integrated techniques, including language design, verification and

validation, automated tool support and the use of such techniques in software engineering practice.

Deadline for submissions: June 3, 2024 (abstracts), June 10, 2024 (papers).

☺ December 10-13 45th IEEE Real-Time Systems Symposium (RTSS'2024), York, UK. Topics include: addressing some

form of real-time requirements/constraints, such as deadlines, response time, or delay/latency. Deadline

for submissions: May 23, 2024 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Advance Information

The 28th Ada‐Europe International Conference on Reliable Software Technologies

(AEiC 2024) returns to Spain, for the first time in Barcelona, from the 11th to the 14th of June.

The conference is the latest in a series of annual international conferences started in the

early 80's, under the auspices of Ada‐Europe, the international organization that promotes

knowledge and use of Ada and Reliable Software in general, into academic education and

research, and industrial practice.

The conference is an established international forum for providers, practitioners and researchers in reliable software

technologies. The conference presentations will illustrate current work in the theory and practice of developing, running

and maintaining challenging long‐lived, high‐quality software systems for a variety of application domains including

manufacturing, robotics, avionics, space, transportation. The conference schedule comprises a keynote and an invited

talk, a panel with invited speakers, a journal track, an industrial track, a work‐in‐progress track, parallel tutorials, a

hackathon, and satellite workshops. Participants include practitioners and researchers from industry, academia and

government organizations active in the promotion and development of reliable software. The conference program

includes two core days with special sessions featuring presentations of invited experts, peer‐reviewed academic papers,

industrial presentations, and work‐in‐progress talks.

Invited Speakers
 Keynote Talk on “Strategies to build safety relevant high‐performance HW/SW platforms for critical embedded

systems”, by Francisco J. Cazorla and Jaume Abella, Barcelona Supercomputing Center, Spain

 Panel on “AI for Safety‐Critical Systems: How ‘I’ Should the AI be?”, with Kerstin Bach, Norwegian University of Science
and Technology, Norway, Irune Yarza, Ikerlan, Spain, Marta Barroso, Barcelona Supercomputing Center, Spain,
moderated by Cristina Seceleanu, Mälardalen University, Sweden

 Invited Talk on “Simplifying the life‐cycle management of complex application workflows”, by Rosa Badia, Barcelona
Supercomputing Center, Spain

 Invited Talk on “The Compute Continuum: An Efficient Use of Edge‐to‐Cloud Computing Resources”, by Eduardo
Quiñones, Barcelona Supercomputing Center, Spain

Tutorials and Hackathon

The following tutorials will take place on Tuesday, June 11th:

 “Lock‐Free Programming in Ada‐2022: Implementing a work‐stealing scheduler for Ada‐2022's light‐weight

parallelism”, S. Tucker Taft, AdaCore

 “Ada for Business Applications”, Gautier de Montmollin, Ada Switzerland

 “Rust Fundamentals” and “Concurrency and Parallelism in Rust”, Luis Miguel Pinho and Tiago Carvalho, ISEP, Portugal

 “Modeling Concurrent State Machines in TLA+”, J. Germán Rivera, Tesla

 “Introduction to the Development of Safety Critical Software”, Jean‐Pierre Rosen, Adalog, France

 “METASAT: Programming High Performance RISC‐V Technologies for Space”, Leonidas Kosmidis, Barcelona

Supercomputing Center, Alejandro Calderon, Ikerlan, Aridane Alvarez Suarez, fentISS, Lorenzo Lazzara, Collins

Aerospace, Eckart Göhler, OHB

 “Introduction to Certifiable General Purpose GPU Programming for Safety‐Critical Systems”, Leonidas Kosmidis,

Barcelona Supercomputing Center, Rod Burns, Codeplay/Intel, Verena Beckham, Codeplay/Intel

Also on Tuesday, June 11th, the conference will host an hackathon on “Optimizing AI‐driven workflows within a mission‐

critical cyber‐physical system”, organized by Damien Gratadour, CNRS – Observatoire de Paris, France.

Co‐Located Workshops

On Friday, June 14th there will be 4 workshops:

 9th DeCPS workshop on “Challenges and new Approaches for Dependable and Cyber‐Physical Systems

Engineering”

 3rd ADEPT: AADL by its practitioners

 Safe AI: Enabling the use of AI in Safety‐Critical Systems

 Ada Developers Workshop

Technical Presentations

The conference technical days will provide six sessions of presentations related to the conference tracks, including

presentations of the 13 research articles which have passed the first round of reviews in the journal track, 5 presentations

of industrially relevant research and development, and 8 work‐in‐progress presentations. Please see the conference

website for information.

Social Events

The program includes long coffee breaks, providing the opportunity for participants to discuss their work, and network.

Lunches will be served at the conference location, from Tuesday to Friday, providing further interaction opportunities.

Furthermore, there will be a Welcome Reception event, a Conference Banquet, and a post‐conference chill‐out event.

The welcome reception is scheduled for Tuesday, June 11, starting at 17:45 at the Barcelona Supercomputing Centre

(BSC). The attendees will have the opportunity to visit (in groups) the new Marenostrum 5, inaugurated in December

2023, a supercomputer on track to reach its maximum capacity of 311.95PFLOPS. In parallel to the visit, drinks and finger

food will be provided. Afterwards, the reception will continue in the nearby “Jardins de l'abadessa" restaurant, for a

cocktail dinner.

The conference banquet is scheduled for Wednesday, at the emblematic restaurant "7

portes". Attendees will have the opportunity to savor the finest flavors of the Catalan

and Mediterranean cuisines. Among the culinary delights awaiting you is the renowned

"Paella Perallada", a masterpiece that harmoniously combines semi‐dry rice with

succulent peeliled shellfish, delectable seafood and tender meats. With a history

spanning over 180 years, "7 portes" stands as a witness to the

evolution of some of the most illustrious artists of their time, including Pablo Picasso and

Antoni Tàpies.

The organization also prepared a chill out event as a culmination party for this year's main

conference. The event is scheduled for Thursday, at the Moritz Barcelona Brewery, the brewery

of the first beer of Barcelona.

Conference Venue

The conference will take place in the UPC Campus Nord. Workshops and tutorials will be hosted in the BSC‐Repsol Building.

Functioning since 2021, this is a research infrastructure housing more than 500 workers and the recently inaugurated

MareNostrum 5 supercomputer. The main conference will be hosted in the Vèrtex UPC Building, in the "Sala d'Actes" (or

Conference Hall). This building offers a series of classrooms where both training and congresses are held.

Barcelona is a city renowned for its vibrant culture and rich history. Nestled along the picturesque Mediterranean coast,

Barcelona offers not only a breathtaking backdrop but also a dynamic hub for academic exchange. With its world‐class

research institutions and cutting‐edge facilities, like the Barcelona Supercomputing Center (BSC), the ALBA Synchrotron

light facility, the Barcelona Biomedical Research Park (PRBB), or the Barcelona Science Park (PCB), Barcelona embodies

innovation and excellence in the scientific realm.

From the iconic architecture of Antoni Gaudí to the bustling streets of the Gothic Quarter, delegates attending AEiC2024

can immerse themselves in a blend of tradition and modernity. Moreover, the city's renowned culinary scene and vibrant

nightlife provide opportunities for networking and cultural exploration.

 27

Ada User Journal Volume 45, Number 1, March 2024

Join Ada-Europe!

Become a member of Ada-Europe and support Ada-

related activities and the future development of the

Ada programming language.

Membership benefits include receiving the quarterly

Ada User Journal and a substantial discount when

registering for the annual Ada-Europe conference.

To apply for membership, visit our web page at

http://www.ada-europe.org/join

28

ADEPT 2023 Workshop Summary

Hai Nam Tran, Frank Singhoff
University of Brest, Lab-STICC UMR CNRS 6285, Brest, France; email: firstname.lastname@univ-brest.fr

Jérôme Hugues
Software Engineering Institute, Carnegie Mellon University, USA; email: jhugues@andrew.cmu.edu

Pierre Dissaux
Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France; email: pierre.dissaux@ellidiss.com

Bruce Lewis, Hazel Shackleton, Joseph Kiniry, Frank Zeyda
Galois, Inc., USA; email: firstname.lastname@galois.com

Rakshit Mittal, Dominique Blouin, Anish Bhobe, Laurent Pautet
LTCI, Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France; email: firstname.lastname@telecom-paris.fr

Kyungmin Bae
Pohang University of Science and Technology, South Korea; email: kmbae@postech.ac.kr

Peter Csaba Ölveczky
University of Oslo, Norway; email: peterol@ifi.uio.no

Brian R Larson
Multitude Corporation; email: brl@multitude.net

Ehsan Ahmad
Saudi Electronic University; email: e.ahmad@seu.edu.sa

Leonidas Kosmidis
Barcelona Supercomputing Center (BSC) and Universitat Politecnica de Catalunya
(UPC); email: leonidas.kosmidis@bsc.es

Hugo Valente, Miguel A de Miguel, Ángel G Pérez, Alejandro Alonso, Juan Zamorano, Juan A de la Puente
Universidad Politécnica de Madrid, Madrid, Spain; email: firstname.lastname@upm.es

Abstract

The Architecture Analysis and Design Language
(AADL) is a SAE standard for modeling both hardware
and software architecture of embedded systems. Widely
embraced by stakeholders in critical real-time embed-
ded systems, the AADL standard is used to address a
large set of concerns including performances (latency,
schedulability), safety, and security. The ADEPT work-
shop aims to present and report on current projects in
the field of design, implementation, and verification of
critical real-time embedded systems where AADL is a
first-citizen technology. This article is a summary of the
second edition of the workshop in 2023.

Keywords: AADL, critical embedded real-time systems,
design, implementation and verification

1 Introduction
The Architecture Analysis and Design Language (AADL) is
a SAE standard for modeling both hardware and software

architecture of embedded systems. [1]. The AADL standard
is now a mature standard for modeling critical real-time em-
bedded systems. It is employed by numerous stakeholders
in the domain to address a large set of concerns: safety [2],
security [3], or performance (latency, schedulability) [4] but
also code generation [5, 6]. One key strength of AADL as a
language is the set of tools that provide those analysis capa-
bilities.

The ADEPT workshop aims to present and report on current
projects in the field of design, implementation and verification
of critical real-time embedded systems where AADL is a
first citizen technology. It is also an opportunity for AADL
beginners to meet experienced AADL practitioners.

In 2023, the workshop was a full day workshop. It was co-
located with the 27th Ada-Europe International Conference
on Reliable Software Technologies (AEiC 2023) at Lisbon,
Portugal. The workshop gathered more than 20 participants,
with 10 presentations.

Volume 45, Number 1, March 2024 Ada User Jour na l

H. N. Tran et a l 29

2 Workshop Program
The workshop was organized in 4 sessions: (1) an introduction
from the workshop organizers about the AADL standard, its
ecosystem and the ongoing standardization activities, (2) a
session about formal methods, (3) a session about TASTE,
and (4) a session about model driven engineering (MDE).

2.1 Formal methods session
In this session, workshop participants present two approaches
to integrate formal methods in the Open Source AADL Tool
Environment (OSATE) [7], which is the reference tool for
AADL. It is released under the Eclipse Integrated Develop-
ment Environment.

In [8], the authors tackle the problem of specifying syn-
chronous designs of cyber-physical systems (CPS) in AADL.
Three synchronous subsets of AADL, namely Synchronous
AADL, Multirate Synchronous AADL, and HybridSyn-
chAADL, have been defined and integrated into OSATE. For-
mal model checking analysis of synchronous AADL models
is also integrated in the tool. It allows system designers to
develop synchronous systems/design in OSATE and formally
verify them without leaving the tool or having to know formal
methods.

In [9], the authors present the BLESS methodology which
creates programs together with deductive proofs that every
possible program execution will conform to its specification.
This methodology applies to an architectural model of CPS
using AADL. It has been demonstrated to prove the moment
authority scenario of the Chinese Train Control System Level
3 [10]. The BLESS IDE is designed as a plugin that can be
integrated in OSATE.

The session continues with two presentation focusing on the
mechanization of the semantic of AADL in interactive the-
orem provers such as Coq [11] and Isabelle/HOL [12]. The
objective is to provide unambiguous formal semantics for
AADL. As part of Galois’s Rigorous Digital Engineering
process, formal specifications in Unified Theories of Pro-
gramming (UTP) are also developed for AADL and other
languages to allow formal cross verification across multiple
system specifications.

2.2 TASTE session
In this session, workshop participants have presented the us-
age of TASTE in their projects. TASTE [13] is a model-based
toolset dedicated to embedded, real-time systems and was cre-
ated under the initiative of the European Space Agency back
in 2008, after the completion of the FP6 project ASSERT.

In [14], the authors propose a solution focused on integrating
cFS - a Publisher Subscriber runtime made by NASA - inside
TASTE. As TASTE relies on AADL for the automatic code
generation, the current property set has been extended with
new properties to support the new functionalities.

In [15], the authors present the usage of TASTE in the
METASAT project. In this project, the code generation capa-
bilities from AADL models in TASTE will be extended to (1)
cover support of the RISC-V compilation and emulation in-
frastructure and (2) support multicore using RTEMS SMP and
Xtratum partitions. Integration with parallel programming

models such as SPARROW SIMD intrinsics, OpenMP and
at least one GPU programming API and Machine Learning
framework will be implemented. All these modifications will
be submitted for inclusion in the official TASTE repository.

2.3 MDE session
In this session, workshop participants discuss several ap-
proaches to improve the usage of AADL in the MDE process.

In [16], the authors tackle the view-update problem between
Declarative and Instance models in OSATE. In the current
OSATE, Instance models can be updated manually or by tools.
However, there are no means to reflect the changes back to the
Declarative model. Providing an automated Instance model
Deinstantiation capability will be very beneficial since it will
allow tools to process the simpler Instance model directly.
The authors demonstrates a novel OSATE-based Declarative-
Instance Mapping tool (OSATE-DIM) for incremental dein-
stantiation of AADL models.

In [17], the authors address the information preservation when
multiple Domain Specific Modeling Languages (DSML) are
used in the development process. Models are described in
DSMLs that can capture the different but complementary as-
pects of a system. Thus we have to use multiple DSMLs
to describe all the aspects of the entire system. However,
there is a significant overlap in information captured by the
many aspects of the system. When a model is edited, any
changes in the information in the overlapping part must be
propagated to the other models. A model synchronization
approach based on Triple Grammar Graph to handle the syn-
chronization between models in AADL and FACE - Future
Airborne Capabilities Environment [18] is presented.

In [19], the authors present LAMP an introspective analysis
and processing framework for AADL. With LAMP, explo-
ration, verification, transformation or any other processing
rules are directly embedded inside the AADL model as annex
subclauses. The framework leverages the Prolog language to
propose a powerful and flexible solution to implement online
model exploration and processing features. Thus, it does not
require the specification of a complete language syntax as in
dedicated language for online processing AADL models like
REAL [20] or RESOLUTE [21].

In [22], the authors present a SysML V1 to AADL Bridge
which allows users to annotate portions of SysML models
using an AADL Profile and automatically translate such por-
tions into AADL. It provides a bidirectional workflow, which
allow generating AADL models from SysML and then update
the SysML model from modified AADL ones. The bridge will
also create a SysMLv1 model from an AADL specification
for bottom up/re-engineering/component based development.

3 Conclusion
AADL is a set of SAE international standards that aims to im-
prove the quality of the critical real-time embedded systems
design. The objective of the ADEPT workshop was to encour-
age discussion between members of the AADL community
and to provide location to share experiences on AADL and
its ecosystem.

Ada User Jour na l Vo lume 45, Number 1, March 2024

30 ADEPT 2023 Workshop Summar y

Acknowledgments
We would like to thank Ellidiss Technologies who supported
the registration fees for the speakers of the workshop.

References
[1] S. I. (Society), Architecture Analysis & Design Lan-

guage (AADL) AS5506C. SAE International, 2017.

[2] J. Delange and P. Feiler, “Architecture fault modeling
with the AADL error-model annex,” in 2014 40th EU-
ROMICRO Conference on Software Engineering and
Advanced Applications, pp. 361–368, IEEE, 2014.

[3] R. Ellison, A. Householder, J. Hudak, R. Kazman, and
C. Woody, “Extending AADL for security design as-
surance of cyber-physical systems,” CMU/SEI Report,
2015.

[4] F. Singhoff, J. Legrand, L. Nana, and L. Marcé,
“Scheduling and memory requirements analysis with
aadl,” ACM SIGAda Ada Letters, vol. 25, no. 4, pp. 1–
10, 2005.

[5] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the
prototype to the final embedded system using the ocarina
AADL tool suite,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 7, no. 4, pp. 1–25,
2008.

[6] F. Cadoret, E. Borde, S. Gardoll, and L. Pautet, “De-
sign patterns for rule-based refinement of safety critical
embedded systems models,” in 2012 IEEE 17th Interna-
tional Conference on Engineering of Complex Computer
Systems, pp. 67–76, IEEE, 2012.

[7] P. Feiler, “Open source aadl tool environment (OSATE),”
in AADL Workshop, paris, pp. 1–40, 2004.

[8] K. Bae and P. Ölveczky, “Formal model engineering of
synchronous CPS designs in AADL,” Ada User journal,
vol. 45, no. 1, pp. 31–34, 2024. Also presented in the
ADEPT 2023 workshop, Lisbon, Portugal, 2023.

[9] B. R. Larson and E. Ahmad, “BLESS behavior correct-
ness proof as convincing verification artifact,” Ada User
journal, vol. 45, no. 1, pp. 35–46, 2024. Also presented
in the ADEPT 2023 workshop, Lisbon, Portugal, 2023.

[10] M. of Railways, “CTCS level 3 train control system
requirements specification (srs) vi. o [m],” 2009.

[11] J. Hugues, “Mechanizing AADL in coq – extended ab-
stract,” Ada User journal, vol. 45, no. 1, pp. 47–50,
2024. Also presented in the ADEPT 2023 workshop,
Lisbon, Portugal, 2023.

[12] J. Kiniry and F. Zeyda, “Formalizing AADL in the unify-
ing theories of programming.” Presented in the ADEPT
2023 workshop, Lisbon, Portugal, 2023.

[13] M. Perrotin, E. Conquet, J. Delange, and T. Tsiodras,
“TASTE: An open-source tool-chain for embedded sys-
tem and software development,” in Embedded Real Time
Software and Systems (ERTS2012), 2012.

[14] H. Valente, M. A de Miguel, Á. G. Pérez, A. Alonso,
J. Zamorano, and J. A de la Puente, “Extension of the
TASTE toolset to support publisher-subscriber commu-
nication,” Ada User journal, vol. 45, no. 1, pp. 51–53,
2024. Also presented in the ADEPT 2023 workshop,
Lisbon, Portugal, 2023.

[15] L. Kosmidis, “METASAT’s model based design solu-
tions,” Ada User journal, vol. 45, no. 1, p. 54, 2024.
Also presented in the ADEPT 2023 workshop, Lisbon,
Portugal, 2023.

[16] R. Mittal and D. Blouin, “Facilitating AADL model
processing and analysis with OSATE-DIM,” Ada User
journal, vol. 45, no. 1, pp. 55–58, 2024. Also presented
in the ADEPT 2023 workshop, Lisbon, Portugal, 2023.

[17] D. Blouin, A. Bhobe, and L. Pautet, “Challenges in
model synchronization for information preservation il-
lustrated with the FACE and AADL standards,” Ada
User journal, vol. 45, no. 1, pp. 63–66, 2024. Also pre-
sented in the ADEPT 2023 workshop, Lisbon, Portugal,
2023.

[18] “Future airborne capabilities environment.” https://
www.opengroup.org/face. Accessed: 2024-04-
15.

[19] P. Dissaux, “LAMP: to shed light on AADL models,”
Ada User journal, vol. 45, no. 1, pp. 59–62, 2024. Also
presented in the ADEPT 2023 workshop, Lisbon, Portu-
gal, 2023.

[20] O. Gilles and J. Hugues, “Expressing and enforcing user-
defined constraints of aadl models,” in 2010 15th IEEE
International Conference on Engineering of Complex
Computer Systems, pp. 337–342, IEEE, 2010.

[21] A. Gacek, J. Backes, D. Cofer, K. Slind, and M. Whalen,
“Resolute: an assurance case language for architecture
models,” ACM SIGAda Ada Letters, vol. 34, no. 3,
pp. 19–28, 2014.

[22] H. Shackleton, “Bidirectional translation of SysML v1
to AADL.” Presented in the ADEPT 2023 workshop,
Lisbon, Portugal, 2023.

Volume 45, Number 1, March 2024 Ada User Jour na l

31

Formal Model Engineering of Synchronous CPS
Designs in AADL

Kyungmin Bae
Pohang University of Science and Technology, South Korea; email: kmbae@postech.ac.kr

Peter Csaba Ölveczky
University of Oslo, Norway; email: peterol@ifi.uio.no

Abstract

Many cyber-physical systems (CPSs)—such as aircrafts,
cars, robots, and manufacturing plants—have syn-
chronous designs and are realized on platforms with
bounded network delays and clock skews. This paper
summarizes how we have: (i) defined modeling lan-
guages for synchronous CPS designs in the embedded
systems modeling standard AADL, and (ii) integrated
Maude-based formal model checking (“push-button”)
analysis of such AADL synchronous designs into the
OSATE tool environment for AADL. This enables a

“formal model engineering” approach which combines
the convenience of domain-specific modeling with auto-
matic “under-the-hood” formal analysis. Furthermore,
by the PALS synchronizers, the correctness of such syn-
chronous designs implies the correctness of the much
more complex and harder-to-analyze asynchronous im-
plementations, greatly simplifying the task of designing
and analyzing “virtually synchronous” CPSs.

1 Introduction
A cyber-physical system (CPS) is a collection of “controller”
components (“cyber”) that interact with each other and with
physical environments (“physical”). Many CPSs, such as
avionics and automotive systems, networked medical devices,
industrial manufacturing plants, and other distributed control
systems are virtually synchronous: The underlying design
of the system is synchronous; i.e., in each iteration of the
system, all components should in lockstep read inputs from
the previous iteration, change their local states, and produce
output (for the next iteration). A sound design principle
for such virtually synchronous CPSs should be to develop a
correct synchronous design, before this task is made much
harder by considering deployments on actual networks.

Such a design principle raises the following questions:

1. What modeling languages and modeling environments
are suitable for domain experts to develop these underly-
ing synchronous CPS designs?

2. How can we ensure that these designs are correct?

3. How can we ensure that the deployed system is correct?

In the body of work that we summarize in this paper, we
address Question (1) as follows: The Architecture Analysis
and Design Language (AADL) [1] is an industrial model-
ing standard for the classes of CPSs that we target (avionics,
automotive, and other cyber-physical systems), developed
and used by entities such as Carnegie Mellon University,
US Army, Honeywell, Rockwell Collins, Lockheed Martin,
General Dynamics, Airbus, the European Space Agency, Das-
sault, EADS, Ford, and Toyota. AADL also has a good
open-source modeling environment, OSATE. However, (i) in
AADL a system is modeled as software components mapped
onto hardware platforms, and thereby models the deployed
(asynchronous) system instead of its “underlying synchronous
design,” and (ii) AADL does not support specifying continu-
ous physical environments, which also hinders our ability to
simulate/analyze the models.

We address these last two issues by identifying a “syn-
chronous subset” of AADL (and its Behavior Annex), where
AADL constructs keep their standard intuitive meaning, and
define an AADL property set—including properties for speci-
fying continuous environment behaviors—which should be
suitable to define the synchronous designs of CPSs in AADL.

To address Question (2), we integrate automatic formal model
checking analysis of such HybridSynchAADL models into OS-
ATE. This enables a formal model engineering methodology
in which the AADL modeler develops her designs in AADL,
specifies requirements of her design in an intuitive “AADL-
friendly” way, and gets powerful formal analysis for free,
without leaving OSATE or having to know formal methods.

This is made possible for HybridSynchAADL—with its
expressive control programming language combined with
continuous behaviors—using the expressive rewriting-logic-
based Maude language and tool combined with SMT solving.
In addition, benchmarking shows that such Maude-with-SMT-
based analysis in many cases outperforms state-of-the-art
hybrid systems reachability tools (such as HyComp) [2].

In this way, the modeler can develop correct “synchronous”
designs of her CPSs. However, these designs have to be
realized in a messy “real” world, with asynchronous com-
munication, message delays, and imprecise local clocks, so
Question (3) still remains: Is the deployed system correct
as well? CPSs such as cars, airplanes, factories, and so on,

Ada User Jour na l Vo lume 45, Number 1, March 2024

32 For mal Model Engineer ing of Synchronous CPS Designs in AADL

typically run on networks where the communication delay
is bounded; clock synchronization is also well understood.
With colleagues at the University at Illinois and Rockwell
Collins we have therefore developed the PALS (“physically
asynchronous, logically synchronous”) family of synchroniz-
ers for CPSs where the network delays and clock skews are
bounded. PALS takes a synchronous design SD—without
message delays, asynchronous, imperfect clocks, etc.—and
infrastructure performance bounds Γ, and provides the corre-
sponding asynchronous “realization” PALS (SD ,Γ), so that
SD and PALS (SD ,Γ) satisfy the same properties [3]. PALS
therefore reduces the very complicated task of designing and
verifying a distributed CPS to the much simpler task of de-
signing and verifying its underlying synchronous design; fur-
thermore, HybridSynchAADL allows these latter tasks to be
performed using AADL inside OSATE.

The benefit of the PALS methodology is significant: PALS
was motivated by a seemingly simple, yet hard to design and
verify, avionics system. Even with perfect local clocks and
no message delays, model checking the asynchronous model
took 35 minutes; when message delays could be either 0 or
1, automatic model checking was unfeasible. However, the
“PALS-equivalent” underlying synchronous design could be
model checked in much less than a second.

2 Overview
2.1 The PALS family of synchronizers for CPSs
PALS. Although many CPSs are virtually synchronous, i.e.,
have an underlying synchronous design, they have to be re-
alized in a distributed setting, with asynchronous message
communication, message delays, execution times, imprecise
local clocks, etc. This makes their design very challenging,
and model checking verification quickly becomes unfeasible
due to the state space explosion caused by asynchrony. This
is the case even when the underlying infrastructure guarantees
bounds on network delays, as in aircrafts, cars, factories, etc.

Motivated by a simple avionics active standby system (which
of two cabinets is the active one?) developed by Rockwell
Collins, which was surprisingly hard to get right and model
check, together with colleagues at the University of Illinois
and Rockwell Collins we developed the PALS formal design
and verification pattern [3, 4]. The active standby system is a
simple virtually synchronous CPS: in each round, the three
components (the two cabinets and their environment, which
includes the pilot) together send 10 boolean-valued messages.
Before even accounting for the difficulty of ensuring that mes-
sages are read in the correct round (which requires buffering
and backoff timers), the 10 messages sent in one round can
be received in 10! (> 3.6 million) different orders.

The key thing with PALS is that if the infrastructure has
bounds Γ on the network delays, clock skews, and execution
times, it is sufficient to specify and verify the idealized under-
lying synchronous design SD . We prove in [3] that if the sim-
ple synchronous design SD satisfies a temporal logic property
Φ, then so does the distributed “realization” PALS (SD ,Γ),
as long as Γ satisfies the PALS constraint. PALS therefore
allows us to abstract from asynchronous communication, mes-
sage delays, clock skews, and execution times. In the active

standby system, this reduced the reachable state space from
3,047,832 in the simplest possible distributed setting—with
no message delays, executions times, or clocks skews—to a
mere 185 reachable states in the synchronous model [3].

Multirate PALS. A CPS may be composed of different
“off-the-shelf” components whose controllers operate with
different frequencies, yet need to synchronize. A prototypical
example is turning an airplane, whose aileron and rudder con-
trollers operate at different frequencies (e.g., 30-100 Hz and
30-50 Hz for, respectively, commercial rudder and aileron
controllers), yet need to synchronize to achieve a safe turn.
We therefore developed the Multirate PALS pattern for such
systems [5]. One challenge is that a “fast” controller executes
k > 1 rounds—reading inputs and producing outputs in each
of them—while a slow component with which it communi-
cates only executes one round in the same time. User-defined
input adaptors, which generate k inputs from one output, and
vice versa, allow us to compose different-rate controllers into
a “synchronous” (single-rate-equivalent) design [5]. We ap-
plied the Multirate PALS design and verification methodology
on a textbook algorithm for turning an aircraft, albeit with
Euler approximations of the continuous dynamics [6].

Hybrid PALS. The airplane turning system underscores
that many CPSs are hybrid systems having physical environ-
ments with continuous dynamics. Controllers sample and
actuate such continuous environments at times defined by
their imprecise local clocks. We can therefore no longer
abstract from clock skews, since the precise sampling and ac-
tuation times matter. In the synchronous abstractions we must
analyze the continuous behaviors for all possible samplings
and actuation times based on the imprecise local clocks. Hy-
brid PALS [7] extends PALS to this setting, and has been used
to specify and formally analyze the airplane turning algorithm
and networked controllers for water tanks and thermostats.

2.2 The Synchronous AADL modeling languages
To support formal model engineering of (virtually) syn-
chronous CPSs (with the PALS methodology) we: (i) De-
veloped the Synchronous AADL modeling language by iden-
tifying a software subset of AADL (with its Behavior An-
nex) which, together with a small AADL property set, is
convenient for defining synchronous designs in AADL, with-
out changing the “meaning” of AADL constructs, so that
the AADL expert can easily specify synchronous designs in
AADL; (ii) Defined the formal semantics of Synchronous
AADL in Maude; and (iii) Integrated into OSATE: (a) check-
ing whether an AADL model is also a Synchronous AADL
model, (b) synthesizing a Maude model from a Synchronous
AADL model, and (c) reachability analysis and temporal
logic model checking of the (Maude model generated from
the) Synchronous AADL model [8, 9].

We successfully applied Synchronous AADL modeling lan-
guage and analysis tool to model and verify the active standby
system inside OSATE. We emphasize that Synchronous
AADL—while developed in the context of PALS—should be
useful in general to model and formally analyze synchronous
systems/designs in AADL.

Volume 45, Number 1, March 2024 Ada User Jour na l

K. Bae and P. C. Ölveczky 33

Multirate Synchronous AADL [10] extends Synchronous
AADL to the multirate setting, and has been applied to, e.g.,
the airplane turning system.

HybridSynchAADL [2, 11, 12] defines another AADL subset
and property set, e.g., to specify clock skews and continuous
behaviors, for specifying synchronous designs of hybrid CPSs.
In this setting, explicit-state Maude analysis cannot cover all
possible behaviors, since we need to cover all possible sensing
and actuation times and capture continuous behaviors.

We therefore exploit that Maude has been combined with
SMT solving. We represent sensing and actuating times sym-
bolically, and use SMT solving to deal with continuous behav-
iors and clock skews. The HybridSynchAADL OSATE plugin
provides: (i) randomized simulations; (ii) bounded reacha-
bility analysis; and (iii) portfolio analysis running these two
analysis methods in parallel. HybridSynchAADL has been
applied to collections of collaborating autonomous drones.

3 The HybridSynchAADL language
HybridSynchAADL is a subset of AADL extended with
the property set Hybrid_SynchAADL. HybridSynchAADL
can specify synchronous designs of distributed controllers,
environments with continuous dynamics, and controller-
environment interactions based on imprecise local clocks
and sampling and actuation times.

For discrete controllers, we consider a behavioral subset of
AADL suitable for defining synchronous designs. It includes
system, process, and thread components; subprograms; ports
and connections; data components and composite data types;
and thread behaviors modeled using AADL’s Behavior An-
nex [13]. We do not consider the hardware aspects of AADL,
since they are not needed for synchronous designs.

For environments, we consider real-valued variables that
change continuously over time. The continuous dynamics
is specified using a Hybrid_SynchAADL property, as real
functions over time or ordinary differential equations. An
environment component can have multiple modes to specify
different trajectories. An input from a controller may change
the mode of the environment or the value of a state variable.

Example. We consider distributed drones that collaborate
to achieve common goals. Figure 1 shows the AADL archi-
tecture of a rendezvous model for four drones [2, 12]. Each
drone is connected to two other drones to exchange their po-
sitions. A drone component consists of an environment (with
the drone’s position and velocity) and its controller.

The corresponding components in HybridSynchAADL are
shown below. The implementation of Drone declares three
Hybrid_SynchAADL properties to specify the maximal
clock skew, and sampling and actuating time intervals.

system FourDronesSystem
end FourDronesSystem;

system implementation FourDronesSystem.impl
subcomponents

drone: system Drone[4];
connections

C: port drone.oP −> drone.iP {Timing => Delayed;};

FourDronesSystem
Drone[1] Drone[2]

Drone[3]Drone[4]

Drone

DroneEnv

DroneCtrl
oP

iP
cP v

Figure 1: Four drones (left) and a drone component (right).

properties
Hybrid_SynchAADL::Synchronous => true;
Period => 100ms;
Connection_Pattern => ((Cyclic_Next)) applies to C;

end FourDronesSystem.impl;

system Drone
features

iP: in data port Vector; oP: out data port Vector;
end Drone;

system implementation Drone.impl
subcomponents

ct : system DroneCtrl.impl; ev: system DroneEnv.impl;
connections

C1: port ct .oP −> oP; C2: port iP −> ct. iP;
C3: port ct .v −> ev.v; C4: port ev.cP −> ct.cP;

properties
Hybrid_SynchAADL::Max_Clock_Deviation => 10ms;
Hybrid_SynchAADL::Sampling_Time => 30ms .. 33ms;
Hybrid_SynchAADL::Response_Time => 60ms .. 63ms;

end Drone.impl;

4 The HybridSynchAADL tool
Property specification language. The HybridSynchAADL
tool provides an intuitive language for specifying system
requirements of the form

type [name]: ψ ==> ϕ in time τ

A reachability property, with type reachability, holds
if a state satisfying ϕ is reachable from a state satisfying ψ
within time τ . An invariant property, with type invariant,
holds if, for every initial state satisfying ψ, all states reachable
within time τ satisfy ϕ.

Two requirements for the example in Section 3 are that drones
do not collide within 500ms (safety), and that all drones
can gather together within 500ms (rendezvous):

invariant [safety]: ?init ==> not ?collide in time 500ms;
reachability [rendezvous]: ?init ==> ?gather in time 500ms;

The user-defined propositions init, collide, and
gather are declared as follows, where the keyword const
is used to introduce a VectorArray constant p:

proposition [initial]:
forall i in {1..4}. abs(drone[i].ev.p.x − c[i].x) < 0.1 and

abs(drone[i].ev.p.y − c[i].y) < 0.1;

const c:VectorArray = [{x: 1.2, y: 1.7}, {x: −1.7, y: −1.2},
{x: 1.7, y: 1.2}, {x: −1.2, y: −1.7}];

proposition [gather]:
forall i in {1..3}. forall k in {1..4}. k <= i or

(abs(drone[i].ev.p.x − drone[k].ev.p.x) < 2.0 and
abs(drone[i].ev.p.y − drone[k].ev.p.y) < 2.0);

Ada User Jour na l Vo lume 45, Number 1, March 2024

34 For mal Model Engineer ing of Synchronous CPS Designs in AADL

Figure 2: HybridSynchAADL window in OSATE.

proposition [collision]:
forall i in {1..3}. forall k in {1..4}. k <= i or

(abs(drone[i].ev.p.x − drone[k].ev.p.x) < 0.1 and
abs(drone[i].ev.p.y − drone[k].ev.p.y) < 0.1);

Tool interface and performance. Figure 2 shows the tool
interface that is fully integrated into OSATE. The HybridSyn-
chAADL menu contains three items for constraint checking
(to check if a given model is a valid HybridSynchAADL
model), code generation (to generate the corresponding
Maude-with-SMT model), and formal analysis. The Port-
folio Analysis item has already been clicked, and the Result
view at the bottom displays the analysis results.

The tool provides three analysis methods: symbolic reacha-
bility analysis, which can verify that all possible behaviors
satisfy a given requirement using Maude combined with SMT
solving; randomized simulation, which repeatedly executes
the model by randomly choosing concrete data values, sam-
pling and actuating times, etc.; and portfolio analysis, which
invokes both methods in parallel using multithreading.

We have compared the performance of HybridSynchAADL’s
symbolic reachability analysis with four hybrid systems reach-
ability analysis tools, HyComp, SpaceEx, Flow*, and dReach.
The experiments showed that (in most cases) HybridSyn-
chAADL outperforms these state-of-the-art tools [2, 12].

5 Concluding remarks
We have defined the Synchronous AADL, Multirate Syn-
chronous AADL, and HybridSynchAADL modeling lan-
guages for specifying synchronous (designs of) CPSs in
AADL. We have integrated the modeling and Maude-based
intuitive push-button formal analysis of such models into the
OSATE tool environment for AADL, so that the AADL ex-
pert can easily develop and formally verify her synchronous
systems/designs within OSATE. In addition, because of the
PALS equivalences, verifying such synchronous designs also
verifies the much more complex “distributed implementations”
of the designs, as long as the infrastructure satisfies the PALS
bounds on network delays and clocks skews.

Future work—apart from more applications and including
larger subsets of AADL and richer continuous dynamics—
includes: (i) combining Synchronous AADL-defined designs
with deployment platforms (defined using, e.g., AADL) by
developing methods for checking whether the deployment
platform satisfies the PALS constraints, and then generat-
ing the corresponding deployment model; and (ii) develop
symbolic temporal logic analyses also for the hybrid setting.

Acknowledgments. We thank the organizers of ADEPT
2023 for inviting us to present this work. Bae was supported
by the NRF grants funded by the Korea government (No.
2021R1A5A1021944 and No. RS-2023-00251577). This
work was supported by the NATO Science for Peace and
Security Programme project SymSafe (grant number G6133).

References
[1] P. H. Feiler and D. P. Gluch, Model-Based Engineering

with AADL. USA: Addison-Wesley, 2012.

[2] J. Lee, S. Kim, K. Bae, and P. C. Ölveczky, “HybridSyn-
chAADL: Modeling and formal analysis of virtually
synchronous CPSs in AADL,” in CAV, vol. 12759 of
LNCS, pp. 491–504, Springer, 2021.

[3] J. Meseguer and P. C. Ölveczky, “Formalization and
correctness of the PALS architectural pattern for dis-
tributed real-time systems,” Theoretical Computer Sci-
ence, vol. 451, pp. 1–37, 2012.

[4] A. Al-Nayeem, M. Sun, X. Qiu, L. Sha, S. P. Miller, and
D. D. Cofer, “A formal architecture pattern for real-time
distributed systems,” in RTSS, pp. 161–170, IEEE, 2009.

[5] K. Bae, J. Meseguer, and P. C. Ölveczky, “Formal pat-
terns for multirate distributed real-time systems,” Sci.
Comput. Program., vol. 91, pp. 3–44, 2014.

[6] K. Bae, J. Krisiloff, J. Meseguer, and P. C. Ölveczky,
“Designing and verifying distributed cyber-physical sys-
tems using Multirate PALS: An airplane turning control
system case study,” Science of Computer Programming,
vol. 103, pp. 13–50, 2015.

[7] K. Bae, P. C. Ölveczky, S. Kong, S. Gao, and E. M.
Clarke, “SMT-based analysis of virtually synchronous
distributed hybrid systems,” in HSCC, ACM, 2016.

[8] K. Bae, P. C. Ölveczky, J. Meseguer, and A. Al-Nayeem,
“The SynchAADL2Maude tool,” in FASE, vol. 7212 of
LNCS, pp. 59–62, Springer, 2012.

[9] K. Bae, P. C. Ölveczky, A. Al-Nayeem, and J. Meseguer,
“Synchronous AADL and its formal analysis in Real-
Time Maude,” in ICFEM, vol. 6991 of LNCS, pp. 651–
667, Springer, 2011.

[10] K. Bae, P. C. Ölveczky, and J. Meseguer, “Definition, se-
mantics, and analysis of Multirate Synchronous AADL,”
in FM, vol. 8442 of LNCS, pp. 94–109, Springer, 2014.

[11] J. Lee, K. Bae, and P. C. Ölveczky, “An extension of
HybridSynchAADL and its application to collaborating
autonomous UAVs,” in ISoLA, vol. 13703 of LNCS,
pp. 47–64, Springer, 2022.

[12] J. Lee, K. Bae, P. C. Ölveczky, S. Kim, and M. Kang,
“Modeling and formal analysis of virtually synchronous
cyber-physical systems in AADL,” Int. J. Softw. Tools
Technol. Transf., vol. 24, no. 6, pp. 911–948, 2022.

[13] R. França, J.-P. Bodeveix, M. Filali, J.-F. Rolland,
D. Chemouil, and D. Thomas, “The AADL Behaviour
Annex - experiments and roadmap,” in ICECCS, pp. 377–
382, IEEE, 2007.

Volume 45, Number 1, March 2024 Ada User Jour na l

35

BLESS Behavior Correctness Proof as Convincing
Verification Artifact

Brian R. Larson
Multitude Corporation, St. Paul, MN 55126, USA; email: brl@multitude.net

Ehsan Ahmad
College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi
Arabia; email: e.ahmad@seu.edu.sa

Abstract

Safety-critical cyber-physical systems require evidence
they are indeed safe. In practice, such evidence is results
of system tests. Unfortunately, tests can only demon-
strate the presence of software errors, not their absence,
and can practically cover a tiny fraction of system state
space. Valiant efforts to formally verify program correct-
ness have either been excruciatingly difficult (theorem
proving) or incomplete (static analysis, model checking,
SAT or SMT solving).

The BLESS Methodology was created specifically for
engineers in industry to formally verify software con-
trolling machines. The BLESS Methodology transforms
programs that control machines, annotated with asser-
tions to form proof outlines, into deductive proofs that
every possible program execution will conform to its
specification. To the extent that cyber-physical system
specifications have been validated to express system
safety and performance, a deductive proof can be a con-
vincing argument to a person of program correctness.

This paper uses a simple safety-critical system to ar-
gue that behavior correctness proof under the BLESS
Methodology is a convincing verification artifact in ad-
dition to customary testing.

Keywords: BLESS, AADL, correctness proof, formal
method, declarative specification

1 Introduction
BLESS is an acronym for Behavior Language for Embedded
Systems with Software, but the BLESS Methodology is a way
to specify, design, and verify software controlling machines.

The BLESS Methodology provides a formal method for ver-
ification of software that controls machines. Such software-
controlled machines are often called embedded or cyber-
physical systems. The BLESS Methodology creates programs
together with deductive proofs that every possible program ex-
ecution will conform to its specification. A deductive proof is
a sequence of theorems, each of which are axioms or derived
from prior theorems by sound inference rules. A deductive
proof will be a convincing argument to a person when he or

she can examine and understand each theorem to determine
whether it is individually convincing.

The BLESS Methodology applies to an architectural model of
a cyber-physical system using the Architecture Analysis and
Design Language (AADL) [1]. A deployed system can be
correct-by-construction to the extent that the implementation
can be auto-generated from the architecture.

1.1 What is Proof?
Colloquially, “proof” usually means “evidence”, with perhaps
some reasoning about it. Legally, proof is confirmation of fact
by evidence. For civil trials, “preponderance of the evidence”
suffices for proof. For criminal trials, proof requires “beyond
a reasonable doubt.” Proof is (or should be) an argument to
convince people of its conclusion.

A deductive proof is a sequence of theorems, each of which is
given, or an axiom, or derived from theorems in the sequence
by some reason. The last theorem is the conclusion: what is
being proved. When the axioms have been proved (by some
other means) to be tautologies, the reasons are inference rules
proved to be sound (derive true facts from true facts), and
the givens appropriately describe the subject of the argument,
people can decide if they believe the conclusion and with
what confidence.

Metamath [2] strives for proofs of (meta-)theorems with max-
imal confidence with a simple, robust proof checker. Meta-
math’s proof checker has been implemented in more than a
dozen languages, by as many people, to provide maximal
confidence in its theorems. Although Metamath allows any-
one to define their own axioms, and will check the theorems
derived from them, the most popular and largest theorem data
base, set.mm uses the axioms of logic together with ax-
ioms of ZFC set theory. At the time of this writing, set.mm
has 43509 axioms, definitions, and theorems. Every theo-
rem can be traced back to the axioms and definitions. Best
of all, the native text representation of Metamath theorems
can be exported to LATEX and typeset into mathematical nota-
tion, so people can examine the proofs and decide if they’re
convinced.

Too many formal methods for verification of software pro-
vide evidence without argument. Others produce proofs that

Ada User Jour na l Vo lume 45, Number 1, March 2024

36 BLESS Correctness Proof

uses a much different language that the programs being veri-
fied, and often are unreadable. Unreadable proofs cannot be
convincing.

1.2 BLESS Proofs
Correctness proofs under BLESS Methodology are written in
the same language as BLESS programs. A BLESS program
expresses detailed behavior of an architectural component
using state-transition machines. Every effort has been made
to make generated proofs understandable and persuasive. All
of the axioms, and many of the inference rules used in BLESS
proofs have Metamath soundness proofs. The BLESS proof
assistant is written in Java, thus have no proof that the proved-
sound axioms and inference rules were implemented correctly.
However, the proof themselves can be examined to determine
if they are convincing arguments for program correctness–
regardless of how they were produced.

1.3 Outline
The rest of the paper is organized as follows. Section 2
presents an overview of the AADL and BLESS Methodology.
In Section 3, the movement authority scenario of Chinese
Train Control System Level 3 is presented as an exemplar to
demonstrate precise behavior specification and its correctness
proof under the BLESS Methodology. Section 4 presents
structural modeling of the components involved in the move-
ment authority scenario. Behavior specification using BLESS
properties is presented in Section 5. Behavior implementation
as a state-transition machine in a BLESS annex subclause
appears in Section 6. Section 7 discuses verification condition
generation while Section 8 presents the correctness proof for
one of the thread component. Potential doubts are discussed
in Section 9, and Section 10 concludes the study.

2 Background
2.1 AADL
An embedded system architecture in AADL consists of con-
nected components specified by their type and implementation
classifiers for both the application software and the execution
platform. Components are connected through externally vis-
ible interfaces called ports specified in the features section
of the type classifier. Port communication is typed and direc-
tional and is used to transmit and receive data, control and
data and control through data ports, event ports and event
data ports, respectively. Internal structure of a particular com-
ponent is realized by specifying its subcomponents and the
connections between them in the implementation classifier.

Logical architectures (software) are modeled with process,
data, subprogram, thread, and thread group components. Pro-
cess components model the protected memory space shared
among thread subcomponents which model active software
which can issue and respond dynamically to events. Data
components model types, persistent values directly accessible
by multiple threads. Subprogram components model proce-
dures and functions which must be invoked by threads or
other subcomponents.

Physical architectures are modeled with processor, memory,
bus, and device components. Hardware that executes software
is modeled with processor components. Memory components
model data storage. Device components model other physical

entities like actuators and sensors or custom logic. Bus com-
ponents model the physical connections (i.e. wires) between
execution platform components.

AADL allows binding of logical components and connections
to physical components. This allows separation of functional
architecture (software) from physical architecture (what must
be manufactured) to allow implementation by teams with
specialized skills, yet assure that the software will execute on
the hardware.

AADL also provides system components to model composi-
tion of logical and physical components, and abstract com-
ponents to model interfaces without further elaboration. In
a previous study, we used abstract components with Hybrid
annex [3] subclauses to model environments controlled by
the system being designed. In this way, AADL models elec-
tronics being designed, and the system/environment being
controlled.

The core AADL standard only provides support for struc-
tural modeling of embedded computing systems and nothing
related to detailed behavior of the software and physical pro-
cesses which are controlled by the software can be modeled.
BLESS was introduced as an annex sublanguage of AADL to
model precise behavior for formal verification [4].

Open Source AADL Tool Environment (OSATE) [5] is an
open source platform and tool set built on Eclipse to im-
plement AADL for the modeling and analysis of real-time
embedded systems.

2.2 BLESS Methodology
BLESS Methodology creates programs together with their
specifications and correctness proofs. BLESS Methodology
cannot be applied to legacy programs–even though they may
be correct. BLESS programs are specially crafted to include
“proof outlines" so that correctness proofs may be constructed.
Proof outlines are predicates (assertions) attached to states,
and interspersed throughout actions. The predicates are true
when the program is at a particular state, or a point during exe-
cution. Correctness proofs are derived from BLESS programs
having proof outlines using an interactive proof assistant.

BLESS methodology uses five domain specific languages
(DSLs) edited with a plugin extension to OSATE. Each DSL
is used in AADL subclauses, libraries, or properties. An
Assertion language to make assertions (statements of fact), a
Typedef language to define types and units, a Unit language
to specify measure units, a State Machine language to express
thread behavior, and an Action language to express imperative
control-flow computation.

The BLESS proof assistant transforms program proof outlines
into deductive proofs, given human selection of proof tactics.
Complete description of the BLESS Methodology is beyond
the scope of this paper. For more details, refer to the BLESS
reference and proof assistant guide [6]. Below, we briefly
introduce the components of the BLESS Methodology related
to this study.

Volume 45, Number 1, March 2024 Ada User Jour na l

B. R. Larson, E. Ahmad 37

2.2.1 Assertion Language
A BLESS assertion is a statement of fact believed to be true,
enclosed in angle brackets <<>> . AADL component be-
havior can be declaratively-specified using BLESS assertions.
BLESS assertions are interspersed throughout actions in pro-
grams to be proof outlines. BLESS assertions are first-order
predicates extended with a simple temporal operator to for-
mally express the behavior constraints.

For concision and clarity, a named BLESS assertion defines a
label for a predicate which may be used as a placeholder in
other assertions as if the label was replaced by the predicate.
Named assertions may have parameters. Formal parame-
ters are replaced by actual parameters before replacement
of the named assertion invocation. A comprehensive use of
the BLESS assertion language for behavior specification is
detailed in [7].

An Assertion annex library collects globally-visible
named assertions and defines “ghost” variables denoting val-
ues occurring in assertions, but not actions in programs.

2.2.2 Behavior Language
AADL component behavior may be defined in the architec-
tural model by an annex subclause attached to the component.
BLESS behavior language is used to express detailed behav-
ior of threads and devices as state-transition machines. A set
of states is declared, followed by transitions from a source
state to a destination state when a transition condition is true,
with possibly an action performed after leaving the source
state and prior to entering the destination state. There are
four kinds of states. There must be exactly one “initial” state
which cannot be the destination of any transition. There may
be one or more “final” states which cannot be the source of
any transition. Entering a “complete” state suspends execu-
tion until next dispatch. An “execution” state is transitory
between dispatch and suspension, therefore must always have
at least one, enabled outgoing transition.

BLESS annex subclauses attached to thread components
express software behavior while BLESS annex subclauses
attached to device components express hardware behavior
and its device driver.

Action annex subclauses define behavior of passive sub-
program components which calculate the values of out pa-
rameters solely from values of in parameters. Subprograms
may not have side-effects such as persistent state, waiting on
locks, or other component interaction.

2.2.3 BLESS IDE Plugin to Eclipse/OSATE
After installing OSATE, the BLESS IDE (integrated devel-
opment environment) plugin can be easily installed from the
“Help” menu, selecting “Install Additional OSATE Compo-
nents”. The BLESS plugin checks syntax of all BLESS annex
sublanguages, performs unified unit-type checking, validates
many other rules and constraints, and generates code in other
languages.

2.2.4 BLESS Proof Assistant
The BLESS Proof Assistant generates verification conditions
(VCs), reducing them to axioms according to human selected
tactics. When all VCs have been reduced to axioms, theorem
numbers are assigned, depth-first, and the deductive proof of
correctness emitted.

Tactics applied manually are recorded in a proof script, which
may be subsequently applied. As VCs are incrementally
solved, proof scripts can be extended, so effort can be focused
on the next unsolved VC. Should program changes made to
solve the current VC affect previously solved VCs, re-running
the proof script stops when three consecutive tactics have no
effect. This invariably indicates where program text, tactics,
or both must be updated for VCs affected by the change.

3 Chinese Train Control System Level 3
Chinese Train Control System Level 3 (CTCS-3) has been
cited in various studies as an example of how formal ap-
proaches might be employed [8], [9], [10]. The CTCS-3 de-
fines two subsystems: an on-board subsystem and a trackside
subsystem. The on-board subsystem monitors the movement
of the train based on communications with the trackside sub-
system and the train to which it belongs. The behavior of
CTCS-3 is defined in terms of 14 basic scenarios, all of which
cooperate with each other to constitute safe functionality of
train control system. The Movement Authority scenario is
considered in this paper to demonstrate that BLESS behavior
correctness proofs are convincing verification artifacts.

In a previous paper [10], we used the Movement Authority
scenario to explain the use of the BLESS and Hybrid annex
sublanguages to model the discrete behavior of controller and
continuous behavior of the train, respectively. The system-
level behavior was verified using the Hybrid Hoare Logic
theorem prover. On other hand, this study considers a modi-
fied set of requirements with different modeling components.
As a result, the architectural model (shown in Figure 3) is
more complex, and the detailed behavior is specified using
latest BLESS behavior and assertion languages. Additionally,
this paper aims to investigate BLESS behavior correctness
proof as convincing verification artifact, so behavior specifi-
cation, verification condition generation, and transformation
of verification conditions into theorems are all extensively
covered.
3.1 The Movement Authority Scenario
According to [11], in CTCS-3, the train applies for a move-
ment authorization (MA) from the Radio Block Center (RBC).
If MA is granted by RBC, the train gets permission to move
within the portion of track in the domain of the MA under the
control of a train operator. To assure safety, under certain con-
ditions, control of the train may be overridden and the brakes
are automatically applied to slow or stop the train. First, the
normal, service brake is applied. If the service brake fails,
or does not slow the train sufficiently, emergency brakes are
automatically applied. Thus hazards of both operator error
and brake malfunction are mitigated.

Each MA is composed of a sequence of segments where each
segment has two speed limits vs and ve, the segment end point
e and the mode to represent the operating mode of the train.

Ada User Jour na l Vo lume 45, Number 1, March 2024

38 BLESS Correctness Proof

Figure 1: Trains coordination with dynamic movement authori-
ties in CTCS-3

Speed limits vs and ve represent the limits for train to apply
normal service brake and emergency brake, respectively.

Figure 1 depicts an MA with n segments; s1 to sn. The train
applies for a MA for the next section of track when it enters
the final segment of its current MA. If MA for the next section
of track is not received, the train fully stop at the end of the
final segment of its current MA.

Figure 2 depicts the static and dynamic speed profiles for
each segment for a given MA segment. Let the current train
velocity be v and the current segment be seg, with service
brake limit vs and emergency brake limit ve. The service
brake is applied if the velocity is at least the service brake
limit, v ≥ seg.vs, and the emergency brake is applied if the
velocity is at least the emergency brake limit, v ≥ seg.ve.

If the speed limits for the next segment are lower than the cur-
rent segment, service or emergency brakes are applied before
the end of the current segment. Let the current position be p,
the end of the current segment be seg.e, and the service and
emergency speed limits of the next segment be next(seg).vs
and next(seg).ve, respectively.

If the speed limits for the next segment are less than the
current segment, automatic braking may need to be applied
even though the train velocity is below seg.ve and seg.vs. The
dynamic speed profiles (shown as dotted lines in Figure 2) are
calculated using train’s deceleration for either normal braking
b, or emergency braking e, its position p, the position of the
end of the segment seg.e, and the speed limits of the next
segment, next(seg).vs and next(seg).ve.

Apply service brake:

SB = v ≥ seg.vs ∨ v2 ≥ next(seg).v2s + 2× b × (seg.e − p)

Apply emergency brake:

EB = v ≥ seg.ve ∨ v2 ≥ next(seg).v2e + 2× e × (seg.e − p)

Except for the last segment of a MA, the next segment,
next(seg) has a segment number one higher than the cur-
rent segment seg. Upon entering the last segment of a MA,
an new MA is requested. Until the new MA is received, the
speed limits are zero, so the train won’t leave the current MA.
If a new MA is received the next segment is changed to the
first segment of the new MA.

Figure 2: Static and dynamic speed profiles

3.2 Involved Components
Below we explain the components involved in the MA sce-
nario.

3.2.1 Radio Block Center
The Radio Block Center (RBC), a computer-based system,
communicates with the train using information gathered from
trackside and on-board subsystems. The main objective of
RBC is to provide/extend MAs (in CTCS-3) to allow the
safe movement of trains. As depicted in Figure 1, dynamic
MA is assigned depending on the current track situation and
movement of other trains within the region of responsibility
of a particular RBC.

3.2.2 Train
The Train is a typical hybrid system in CTCS-3 with contin-
uous evolution of its position, speed and discrete changes in
its acceleration computed to follow the speed constrains in
each segments of a particular MA. The speed and distance
of the train is sampled periodically by the controller and new
acceleration value is computed on the basis of the current
position and speed of the train and the information received
from RBC.

3.2.3 Automatic Braking
In the MA scenario, a human train operator normally controls
the train’s acceleration, and thus velocity, subject to velocity
limitations. The automatic braking responsible for controlling
the speed of the train such that its movement is restricted to
the MA it owns. Depending on the current speed and the po-
sition of the train (sampled after every 200 milliseconds) the
controller adjusts the acceleration so that the train never runs
beyond the static and dynamic speed profiles of a particular
segment of the current MA and stops safely before the End of
Authority (EoA) if the MA is not extended in time.

4 Structural Modeling using AADL
This section describes modeling of the movement author-
ity scenario using AADL. As shown in Figure 3, the MA
scenario is modeled with an AADL system implementation
MovementAuthority.i . It is composed of two main
subcomponents, the RadioBlockCenter (rbc) and
the Train (train).

Volume 45, Number 1, March 2024 Ada User Jour na l

B. R. Larson, E. Ahmad 39

� �
system MovementAuthority
end MovementAuthority;

system implementation MovementAuthority.i
subcomponents
rbc : system RadioBlockCenter;
train : system Train::Train.i;
connections
ma_request : port train.r -> rbc.r;
ma : port rbc.ma -> train.ma;

end MovementAuthority.i;� �
4.1 RadioBlockCenter
The RBC is modeled by the RadioBlockCenter system.
Its r in event port receives MA requests, and ma out event
data port transmits a granted MA. The BLESS::Value
property of port ma specifies that it has BLESS type
movementAuthorization with value RMA , which is a
“ghost” variable only appearing in assertions representing the
requested movement authority.� �
system RadioBlockCenter
features
r : in event port; --MA request
ma : out event data port --MA grant
CTCS_Types::movementAuthorization

{BLESS::Value =>
"<<returns movementAuthorization := RMA>>";};

end RadioBlockCenter;� �
4.2 Train
The Train system type features mirror the
RadioBlockCenter features having opposite
directions. The features are connected in the
MovementAuthority.i system implementation� �
system Train
features
r : out event port; --train requests MA
ma : in event data port --received MA
CTCS_Types::movementAuthorization

{BLESS::Value =>
"<<returns movementAuthorization := RMA>>";};

end Train;� �
The Train.i system implementation has six subcompo-
nents:

motor accelerate and decelerate the train

sensor measure train position and velocity

controller auto-braking software

driver human train operator

ebrake emergency brake

sbrake service (normal) brake� �
system implementation Train.i
subcomponents
motor : device Motor;
sensor : device Sensor;
controller : process ControllerProcess.i;
driver: abstract Operator;
ebrake: device EmergencyBrake;
sbrake: device ServiceBrake;
connections
ma_request : port controller.r -> r;
auth : port ma -> controller.m_a;
pos: port sensor.p -> controller.p;
vel : port sensor.v -> controller.v;
mxl : port controller.ca -> motor.ca;
dxl : port driver.xl -> controller.xl;
cpsb: port controller.sb -> sbrake.brake;
cpeb: port controller.eb -> ebrake.brake;

end Train.i;� �

4.2.1 Motor
The Motor device component moves the train with accel-
eration chosen by operator, unless overridden by automatic
braking.� �
device Motor
features
xl : --current acceleration
in data port CTCS_Types::Acceleration

{BLESS::Value =>
"<<returns quantity mpss := OPERATOR_XL>>";};

end Motor;� �
4.2.2 Sensor
The Sensor device measures train position p in meters and
velocity v in meters per second. The position value is relative
to the endpoints of segments to determine whether dynamic
braking must be done to transition to the next segment.� �
device Sensor
features
p : out event data port CTCS_Types::Position
{BLESS::Value=>
"<<returns quantity m := POSITION>>";};

v : out event data port CTCS_Types::Velocity
{BLESS::Value=>
"<<returns quantity mps := VELOCITY>>";};

properties
Dispatch_Protocol => Periodic;
Period => 200 ms;

end Sensor;� �
4.2.3 Operator
The human Operator is modeled as an abstract component.
The xl out data port transmits the intended train acceleration
value, without automatic braking.� �
abstract Operator
features
xl : out data port CTCS_Types::Acceleration
{BLESS::Value =>
"<<returns quantity mpss := OPERATOR_XL>>";};

end Operator;� �
4.2.4 Controller Process
In AADL, a process is a protected address space. Thread com-
ponents must be contained within a process component. Be-
cause ControllerProcess.i contains a single thread
which has the same features, so further explanation is unnec-
essary.

4.2.5 AutoBrake Thread
The AutoBrake thread automatically applies either the
service brake or emergency brake. Its behavior is the subject
of the next section.

5 Behavior Specification using BLESS
Properties

Behavior of the AutoBrake thread is specified using
BLESS::Assertion and BLESS::Value properties
of its ports.� �

9 thread AutoBrake
10 features
11 sb: out event data port BLESS_Types::Boolean -- apply service brake
12 {BLESS::Assertion => "<<SB() and not EB()>>";};
13 eb: out event data port BLESS_Types::Boolean -- apply emergency brake
14 {BLESS::Assertion => "<<EB()>>";};
15 r: out event port; -- request new movement authorization (MA)
16 m_a: in event data port CTCS_Types::movementAuthorization -- received MA
17 {BLESS::Value => "<<returns movementAuthorization := RMA>>";};
18 p: in event data port CTCS_Types::Position -- current measured position
19 {BLESS::Value => "<<returns quantity m := POSITION>>";};
20 v: in event data port CTCS_Types::Velocity -- current measured velocity
21 {BLESS::Value => "<<returns quantity mps := VELOCITY>>";};
22 xl : in data port CTCS_Types::Acceleration --operator chosen acceleration
23 {BLESS::Value => "<<returns quantity mpss := OPERATOR_XL>>";};
24 ca : out data port CTCS_Types::Acceleration --acceleration to motor
25 {BLESS::Value => "<<returns quantity mpss := TRAIN_XL()>>";};
26 properties
27 Dispatch_Protocol => Sporadic;
28 end AutoBrake;� �

Ada User Jour na l Vo lume 45, Number 1, March 2024

40 BLESS Correctness Proof

Figure 3: AADL graphical model for Movement Authority scenario

BLESS::Assertion properties define predicates within
<<>> which must match the values of boolean-
typed ports. Therefore port sb outputs true when
<<SB() and not EB()>> and false otherwise. Be-
cause sb is an “out” port, thread AutoBrake guaran-
tees the BLESS::Assertion property. Conversely, a
BLESS::Assertion property of an “in” port is assumed.
Connections from out ports to in ports have assume-guarantee
verification conditions, which are not considered in this paper.
The parentheses of SB() and EB() indicate they reference
labelled assertions, without parameters, defined elsewhere.

BLESS::Value properties define non-boolean expres-
sions which must match the values of (non-boolean)
data ports. Port m_a expects a value having type
movementAuthorization with value RMA , which is a
“ghost” variable defined in Assertion annex libraries.� �
annex Assertion
{**
ghost variables
def POSITION ~ quantity m -- measured position
def VELOCITY ~ quantity mps -- measured velocity
def RMA ~ movementAuthorization -- requested movement authorization
def CMA ~ movementAuthorization -- currently active movement authorization
def NEXT_MA ~ movementAuthorization -- next MA if granted
def OPERATOR_XL ~ quantity mpss --operator commanded acceleration
. . .� �
RMA represents the value of the movement authorization
provided by the RBC in 4.1.

Thread specifications may include a thread invariant in ad-
dition to BLESS::Assertion and BLESS::Value
properties of its ports, but was not needed for this example.
Thus users of a thread need only concern themselves with the
thread type, provided the thread implementation has proof
that it conforms to its specification by its type.

6 Behavior Implementation using BLESS
Annex Subclause

Behavior of the AutoBrake thread is implemented using
BLESS annex sublanguage of AADL within thread imple-
mentation AutoBrake.i . In AADL, names of component
types are identifiers, and names of implementations are the
identifier of their type separated from the identifier of the im-
plementation by a period. A component type may have several
implementations having different implementation identifiers.

BLESS annex subclauses occur within the text of a compo-
nent beginning with annex BLESS {** and ending with
**}; . The optional assert section defines assertions
with labels. Here, assertions SB() and EB() are defined.
The mandatory invariant defines the assertion which
must be true whenever the thread suspends or dispatches. For
this case, no invariant is necessary so it is always true .� �

30 thread implementation AutoBrake.i
31 annex BLESS
32 {**
33 assert
34 <<SB: : --apply service brake
35 v >= iSeg.v_n or v*v >= nSeg.v_n*nSeg.v_n + 2*b*(iSeg.e-p)>>
36 <<EB: : --apply emergency brake
37 v >= iSeg.v_e or v*v >= nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p)>>
38
39 invariant << true >> --no thread invariant is necessary� �

6.1 Variables
The variables section, in the BLESS annex, declares
variables having values which persist between thread suspen-
sion and dispatch. Temporary, scope-limited variables may be
declared if necessary. BLESS Methodology has a type-unit
system which unifies type and unit checking. Consequently,
every number is a quantity having a unit which may be
scalar. Simple, scalar integers are whole quantities. Oth-
erwise all quantities are real numbers to be approximated by
floating point.

Volume 45, Number 1, March 2024 Ada User Jour na l

B. R. Larson, E. Ahmad 41

Units are defined in Unit annex libraries. Unit mpss is
defined as m/s2 for acceleration in SI.aadl which defines
base and derived units for the SI international system of units
including m for meter, s for second, and mps for m/s.

Variables b and e are constants defined to provide short
names for AADL property constants. AXIOM_B and
AXIOM_E define “givens” that the short identifiers are equiv-
alent to their AADL property constants. Because assertions
with labels beginning with AXIOM are accepted by the proof
assistant as given, special scrutiny must be appleid to assure
that they are actually true, or proofs using them may be falla-
cious.� �

41 variables
42 i ~ quantity whole := 0 whole -- segment indexing
43 b ~ quantity mpss constant := CTCS_Property::SB_Rate mpss --service braking
44 <<AXIOM_B: : b = CTCS_Property::SB_Rate mpss>>
45 e ~ quantity mpss constant := CTCS_Property::EB_Rate mpss --emergency braking
46 <<AXIOM_E: : e = CTCS_Property::EB_Rate mpss>>
47 ma ~ movementAuthorization -- current movement authorization
48 next_ma ~ movementAuthorization --next movement authorization
49 iSeg ~ segment --current segement
50 nSeg ~ segment --next segment� �

BLESS types are declared in Typedef annex libraries.� �
annex Typedef
{**
type segment is record (
v_n : quantity mps -- velocity for (normal) service brake limit (SBL)
v_e : quantity mps -- velocity for emergency brake limit (EBL)
e : quantity m) -- position of end of this segment

type movementAuthorization is record (
ba : quantity m --beginning position of this MA
num_segments : quantity whole --number of segments in this MA
seg : array[#CTCS_Property::MaxSegments] of segment
ea : quantity m) --ending position of authority

**};� �
6.2 States
The states section of the BLESS annex declares states
used by the state-transition machine. Each state may have
an assertion which must be true when the state-transition ma-
chine has that state. There must be exactly one initial
from which the state-transition machine begins. There may
be one or more final states from which no transitions
are allowed. When the state-transition machine enters a
complete state, it suspends until next dispatch. Execu-
tion states have no other label and must be transitory. When
dispatched from a complete state, a finite number of execution
states may be traversed before entering a complete state to
suspend execution until next dispatch.

We find descriptive, camel-case, state identifiers to be helpful
in writing and understanding state machine–even when they
get long.� �

52 states
53 Start: initial state --train stopped
54 WaitFirstMA: complete state --Wait for first MA
55 CheckFirstMA: state -- Check first MA
56 MoveForward: complete state --Move Forward
57 << i<CMA.num_segments and iSeg=CMA.seg[i] and nSeg=CMA.seg[i + 1] and ma=CMA>>
58 CheckMoveForward: state --Check Move Forward
59 << i<CMA.num_segments and iSeg=CMA.seg[i] and nSeg=CMA.seg[i + 1] and ma=CMA>>
60 CheckForLastSegment: state --check for last segment
61 << iSeg = CMA.seg[i] and ma=CMA >>
62 MoveForwardLastSegment: complete state --Move Forward Last Segment, no new MA
63 << i=CMA.num_segments and iSeg=CMA.seg[i] and nSeg=NULL_SEGMENT() and ma=CMA>>
64 CheckMoveForwardLastSegment: state --check move forward last segment, no new MA
65 << i=CMA.num_segments and iSeg=CMA.seg[i] and nSeg=NULL_SEGMENT() and ma=CMA>>
66 GotNewMA: complete state --on last segment, got new MA
67 << i=CMA.num_segments and iSeg=CMA.seg[i] and nSeg=NEXT_MA.seg[1] and ma=CMA
68 and next_ma=NEXT_MA >>
69 CheckMATransition: state --change to new MA?
70 << i=CMA.num_segments and iSeg=CMA.seg[i] and nSeg=NEXT_MA.seg[1] and ma=CMA
71 and next_ma=NEXT_MA >>
72 FAIL: final state --failure occurred� �

6.3 Transitions
Transitions leaving initial or execution states have transition
conditions which are boolean expressions which may use
values of variables or ports, or nothing at all which is taken
to be “true”. At least one transition condition leaving an
execution state must be true. If more than one condition of
transitions leaving an execution state are true, any of them
may be taken, non-deterministically.

Transitions leaving complete states have dispatch conditions,
which begin on dispatch and are restricted to a disjunc-
tion of conjunctions of dispatch triggers. Dispatch triggers
can be arrival of events or event data, or a timeout. In this
example dispatch is limited to arrival of position data at event
data port p .

The transitions, Go , FirstMA , GotFirstMA , and
NotYet request and receive the first MA necessary for
the train to move. The CheckSpeed transition does
most of the work, determining whether the service brake
or the emergency brake should be applied, or the train op-
erator’s choice of acceleration should be used. Transitions
SameSegment , NextSegment , NotLastSegment
, IsLastSegment , and PastLastSegment check
whether a new segment of the current MA is entered, and
if so, whether it is the last segment of the current MA.
IsLastSegment requests the next MA, and set the brak-
ing velocities temporarily to 0. Transition LastSegment
performs the same calculation as CheckSpeed . Transi-
tions NoMAYet and GetNewMA handle receipt (or not) of
a new MA. Transitions LastBitOfMa , NotEndOfMA ,
and StartNextMa handle transition to the new MA.� �

74 transitions
75 Go: --request movement authorization
76 Start -[]-> WaitFirstMA { r! }
77
78 FirstMA: --dispatch before first MA
79 WaitFirstMA -[on dispatch p]-> CheckFirstMA
80
81 NotYet: --did not get requested movement authorization
82 CheckFirstMA -[not m_a’fresh]-> WaitFirstMA
83
84 GotFirstMA: --received movement authorization
85 CheckFirstMA -[m_a’fresh]-> MoveForward
86 { << AXIOM_CMA_IS_RMA() >>
87 m_a?(ma) --save received movement authorization
88 ; << ma=CMA >>
89 i := 1 --first segment of new movement authorization
90 ; << i=1 and ma=CMA >>
91 iSeg := ma.seg[1] --set current segment to first segment
92 ; << i=1 and ma=CMA and iSeg=CMA.seg[i]
93 and AXIOM_NUM_SEG(ma:ma) >>
94 nSeg := ma.seg[2] --set next segment to second segment
95 << i=1 and ma=CMA and iSeg=CMA.seg[i]
96 and nSeg=CMA.seg[i+1] and AXIOM_NUM_SEG(ma:CMA) >>
97 }
98
99 CheckSpeed:

100 MoveForward -[on dispatch p]-> CheckMoveForward
101 { << i<CMA.num_segments and iSeg=CMA.seg[i]
102 and nSeg=CMA.seg[i + 1] and ma=CMA and AXIOM_B()
103 and AXIOM_E() and AXIOM_V(seg:iSeg)
104 and AXIOM_V(seg:nSeg) >>
105 if --exceed emergency brake velocity?
106 (v >= iSeg.v_e)~>
107 { eb!(true) & sb!(false) & ca!(0 mpss) }
108 [] --emergency brake for next segment?
109 (v*v >= nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p))~>
110 { eb!(true) & sb!(false) & ca!(0 mpss) }
111 [] --exceed service brake velocity?
112 (v >= iSeg.v_n and v < iSeg.v_e and
113 v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p))~>
114 { sb!(true) & eb!(false) & ca!(0 mpss) }
115 [] --service brake for next segment?
116 (v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p)
117 and v < iSeg.v_e
118 and v*v >= nSeg.v_n*nSeg.v_n + 2*b*(iSeg.e-p))~>
119 { sb!(true) & eb!(false) & ca!(0 mpss) }
120 [] --no auto brake needed
121 (v < iSeg.v_n
122 and v*v < nSeg.v_n*nSeg.v_n + 2*b*(iSeg.e-p)
123 and v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p))~>
124 { sb!(false) & eb!(false) & ca!(xl) }
125 fi
126 }
127
128 SameSegment: --not at end of this segment

Ada User Jour na l Vo lume 45, Number 1, March 2024

42 BLESS Correctness Proof

129 CheckMoveForward -[p < iSeg.e]-> MoveForward
130
131 NextSegment: --go to next segment
132 CheckMoveForward -[p >= iSeg.e]-> CheckForLastSegment
133 {
134 iSeg := nSeg
135 ; << iSeg = CMA.seg[i+1] and ma=CMA >>
136 i := i+1
137 }
138
139 NotLastSegment: --not the last segment
140 CheckForLastSegment -[i < ma.num_segments]-> MoveForward
141 { nSeg := ma.seg[i+1] }
142
143 IsLastSegment: --is the last segment
144 CheckForLastSegment -[i = ma.num_segments]-> MoveForwardLastSegment
145 {
146 r! --request new movement authorization
147 ; << i=CMA.num_segments and iSeg=CMA.seg[i] and ma=CMA >>
148 --set nSeg to stop
149 nSeg := [segment :
150 v_n => 0 mps
151 v_e => 0 mps
152 e => ma.ea]
153 }
154
155 PastLastSegment: --only for Serban’s theorem, will never be executed
156 CheckForLastSegment -[i > ma.num_segments]-> FAIL
157
158 LastSegment:
159 MoveForwardLastSegment -[on dispatch p]-> CheckMoveForwardLastSegment
160 { << i=CMA.num_segments and iSeg=CMA.seg[i] and nSeg=NULL_SEGMENT()
161 and ma=CMA and AXIOM_B() and AXIOM_E()
162 and AXIOM_V(seg:iSeg) and AXIOM_V(seg:nSeg) >>
163 if --exceed emergency brake velocity?
164 (v >= iSeg.v_e)~>
165 { eb!(true) & sb!(false) & ca!(0 mpss) }
166 [] --emergency brake for next segment?
167 (v*v >= nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p))~>
168 { eb!(true) & sb!(false) & ca!(0 mpss) }
169 [] --exceed service brake velocity?
170 (v >= iSeg.v_n and v < iSeg.v_e and
171 v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p))~>
172 { sb!(true) & eb!(false) & ca!(0 mpss) }
173 [] --service brake for next segment?
174 (v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p)
175 and v < iSeg.v_e
176 and v*v >= nSeg.v_n*nSeg.v_n + 2*b*(iSeg.e-p))~>
177 { sb!(true) & eb!(false) & ca!(0 mpss) }
178 [] --no auto brake needed
179 (v < iSeg.v_n
180 and v*v < nSeg.v_n*nSeg.v_n + 2*b*(iSeg.e-p)
181 and v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p))~>
182 { sb!(false) & eb!(false) & ca!(xl) }
183 fi
184 }
185
186 NoMAYet:
187 CheckMoveForwardLastSegment -[not m_a’fresh]-> MoveForwardLastSegment
188
189 GetNewMA:
190 CheckMoveForwardLastSegment -[m_a’fresh]-> GotNewMA
191 { << i=CMA.num_segments and iSeg = CMA.seg[i] and ma = CMA
192 and AXIOM_NEXT_MA_IS_RMA() >>
193 m_a?(next_ma)
194 ; << i=CMA.num_segments and next_ma = NEXT_MA
195 and iSeg = CMA.seg[CMA.num_segments] and ma = CMA >>
196 nSeg := next_ma.seg[1]
197 << i=CMA.num_segments and next_ma = NEXT_MA
198 and iSeg = CMA.seg[CMA.num_segments] and ma = CMA
199 and nSeg = NEXT_MA.seg[1] >>
200 }
201
202 LastBitOfMa:
203 GotNewMA -[on dispatch p]-> CheckMATransition
204
205 NotEndOfMA:
206 CheckMATransition -[p < ma.ea]-> GotNewMA
207
208 StartNextMa:
209 CheckMATransition -[p >= ma.ea]-> MoveForward
210 { << AXIOM_CMA_IS_NEXT_MA() and next_ma=NEXT_MA >>
211 ma := next_ma
212 ; <<ma=CMA>>
213 i := 1 --first segment of new movement authorization
214 ; << i=1 and ma=CMA >>
215 iSeg := ma.seg[1] --set current segment of MA to first segment
216 ; << i=1 and ma=CMA and iSeg=CMA.seg[i]>>
217 nSeg := ma.seg[2] --set next segment of MA to second segment
218 << i=1 and ma=CMA and iSeg=CMA.seg[i] and nSeg=CMA.seg[i+1]
219 and AXIOM_NUM_SEG(ma:ma) >>
220 }
221
222 **};
223
224 end AutoBrake.i;
225
226 end Threads;� �

7 Verification Conditions
Correctness of a thread as a whole is reduced to a set of
verification conditions (VCs), which if true imply the program
meets its specification for all executions. Upon command
VCs are generated for every state and transition in the state-
transition machine defining thread’s behavior.

For a sequential program S, beginning with predicate P be-
ing true applied to program variables, will terminate with

predicate Q being true applied to program variables has been
traditionally represented as a Hoare triple [12]:

{P} S {Q}

The curly brackets mean “set of variable values”. P is the
precondition of S; Q is the postcondition of S. {P} is the
set of variable values for which P is true. If S begins in
an element of {P} it will terminate in an element of {Q}.
{P} S {Q} is the verification condition for S.

Because in BLESS state-transition machines, curly brackets
are used for action grouping, the verification condition for S
is expressed as:

≪P≫ S ≪Q≫

7.1 Transition VCs
Each transition in a BLESS state machine has a verification
condition:

≪P ∧ b≫ S ≪Q≫

where P is the assertion of the source state, Q is the assertion
of the destination state, b is the transition condition, and S is
the action of the transition.

When source or destination state assertions are missing, P
or Q default to true. Similarly for empty transition condi-
tions. So the VC for transition Go: Start -[]->
WaitFirstMA {r!} is:� �
[serial 1013]: Threads::AutoBrake.i
P [53] << true >>
S [76]r!
Q [54] << true >>
What for: <<M(Start)>> A <<M(WaitFirstMA)>> for GoStart-[]->WaitFirstMA{A};� �
Numbers is square brackets are line numbers. In
Threads.aadl which has package Threads and thread
implementation AutoBrake.i , line 53 holds the declara-
tion of source state Start , line 54 holds the declaration
of destination state WaitFirstMA , and line 76 holds the
action r! which outputs an event on port r to request the
first MA.

Transitions leaving complete states have dispatch conditions
which makes the transition condition b more complex. Ba-
sically, the dispatch condition holds when dispatched (at
time now), and dispatch has not happened since the time-
of-previous-dispatch (tops). So the VC for transition
FirstMA: WaitFirstMA -[on dispatch p]->
CheckFirstMA is� �
[serial 1014]: Threads::AutoBrake.i
P [79] << (true)

and (p@now)
and not (exists u ~ time
in tops ,, now
that p@u) >>

S [78]->
Q [55] << true >>
What for: <<M(WaitFirstMA) and x>> -> <<M(CheckFirstMA)>> for

FirstMAWaitFirstMA-[x]->CheckFirstMA{};� �
Because FirstMA has no action, it defaults to implication:

≪P ∧ b≫ → ≪Q≫

Transition CheckSpeed has an appropriately more com-
plex VC:

Volume 45, Number 1, March 2024 Ada User Jour na l

B. R. Larson, E. Ahmad 43

� �
[serial 1017]: Threads::AutoBrake.i
P [100] << (i < CMA.num_segments
and iSeg = CMA.seg[i]
and nSeg = CMA.seg[i + 1]
and ma = CMA)
and (p@now)
and not (exists u ~ time
in tops ,, now
that p@u) >>

S [101]<< i < CMA.num_segments
and iSeg = CMA.seg[i]
and nSeg = CMA.seg[i + 1]
and ma = CMA
and AXIOM_B()
and AXIOM_E()
and AXIOM_V(seg : iSeg)
and AXIOM_V(seg : nSeg) >>
if
(v >= iSeg.v_e)~>

{
eb!(true)
&
sb!(false)
&
ca!(0 mpss)

}
[]
(v*v >= nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e - p))~>

{
eb!(true)
&
sb!(false)
&
ca!(0 mpss)

}
[]
(v >= iSeg.v_n
and v < iSeg.v_e
and v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e - p))~>

{
sb!(true)
&
eb!(false)
&
ca!(0 mpss)

}
[]
(v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e - p)
and v < iSeg.v_e
and v*v >= nSeg.v_n*nSeg.v_n + 2*b*(iSeg.e - p))~>

{
sb!(true)
&
eb!(false)
&
ca!(0 mpss)

}
[]
(v < iSeg.v_n
and v*v < nSeg.v_n*nSeg.v_n + 2*b*(iSeg.e - p)
and v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e - p))~>

{
sb!(false)
&
eb!(false)
&
ca!(xl)

}
fi

Q [59] << i < CMA.num_segments
and iSeg = CMA.seg[i]
and nSeg = CMA.seg[i + 1]
and ma = CMA >>

What for: <<M(MoveForward) and x>> A <<M(CheckMoveForward)>> for
CheckSpeedMoveForward-[x]->CheckMoveForward{A};� �

7.2 Complete State VCs
Each state (except for final states) has a VC. The assertion of
complete states must imply the thread invariant.

A loop invariant must be true before and after each itera-
tion of the loop. Similarly, a thread invariant must be true
before dispatch and after suspension. In AutoBrake.i
the thread invariant is <<true>> so its VCs for com-
plete states are trivially proved. For example, the VC for
MoveForwardLastSegment :� �
[serial 1003]: Threads::AutoBrake.i
P [63] << i = CMA.num_segments
and iSeg = CMA.seg[i]
and nSeg = NULL_SEGMENT()
and ma = CMA >>

S [39]->
Q [39] << true >>
What for: <<M(MoveForwardLastSegment)>> -> <<I>> from invariant I
when complete state MoveForwardLastSegment has Assertion
<<M(MoveForwardLastSegment)>> in its definition.� �

7.3 Execution State VCs
The assertion of initial and execution states must imply the
disjunction of outgoing transition conditions.

There must be a finite number of transitions between dispatch
and suspension. Therefore every intervening execution state
must have an enabled, outgoing transition, and loops are disal-
lowed. For example, the VC for CheckForLastSegment
is� �
[serial 1010]: Threads::AutoBrake.i
P [61] << iSeg = CMA.seg[i]

and ma = CMA >>
S [61]->
Q [61] << (i < ma.num_segments)

or (i = ma.num_segments)
or (i > ma.num_segments) >>

What for: Serban’s Theorem: disjunction of execute conditions leaving
execution state CheckForLastSegment,
<<M(CheckForLastSegment)>> -> <<e1 or e2 or . . . en>>� �

It is called “Serban’s Theorem” in honor of Serban Gheorghe
who inspired the theorem during discussions at an AADL
Standard Committee meeting.

7.4 Verification Condition Sufficiency
Suppose proofs are constructed for every transition VC and
every state VC, and there are no infinite loops among execu-
tion states. Is this sufficient to conclude correctness of the
state machine as a whole?

We believe it is, but cannot prove sufficiency. It’s definitional.

Similarly, is a proof of Hoare triple {P} S {Q} sufficient
to conclude S is correct? Many, including us, believe it’s
sufficient, but are wiling to consider counterexamples which
will falsify this belief.

8 AutoBrake Proof
The proof of AutoBrake.i has 658 theorems. Each theo-
rem is an axiom, given, or derived from a previous theorem
by a sound inference rule. Proofs for all of the axioms, and
soundness proofs for many, but not yet all, inference rules can
be found in [6], for those interested.

However, here we try to show how the theorems form a con-
vincing argument (to a person) of program correctness.

Starting from the last theorem:� �
Theorem (658) [serial 1002]
P [33] << >>
S [39] ->
Q [33] << AutoBrake.i proof obligations >>
Why created: Initial proof obligations for AutoBrake.i
Solved by: Component verification conditions
and theorems 1 2 3 5 9 11 12 15 17 21 25 26 27 106 313 315 322 332 357 358 549

550 593 595 596 657:
Theorem (1) [serial 1003] used for:

<<M(MoveForwardLastSegment)>> -> <<I>> from invariant I when complete state
MoveForwardLastSegment has Assertion <<M(MoveForwardLastSegment)>>
in its definition.

Theorem (2) [serial 1004] used for:
<<M(WaitFirstMA)>> -> <<I>> from invariant I when complete state WaitFirstMA
has Assertion <<M(WaitFirstMA)>> in its definition.

Theorem (3) [serial 1005] used for:
<<M(MoveForward)>> -> <<I>> from invariant I when complete state MoveForward
has Assertion <<M(MoveForward)>> in its definition.

Theorem (5) [serial 1006] used for:
<<M(GotNewMA)>> -> <<I>> from invariant I when complete state GotNewMA
has Assertion <<M(GotNewMA)>> in its definition.

Theorem (9) [serial 1007] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
CheckMoveForward, <<M(CheckMoveForward)>> -> <<e1 or e2 or . . . en>>

Theorem (11) [serial 1008] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
CheckMoveForwardLastSegment,
<<M(CheckMoveForwardLastSegment)>> -> <<e1 or e2 or . . . en>>

Theorem (12) [serial 1009] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
Start, <<M(Start)>> -> <<e1 or e2 or . . . en>>

Theorem (15) [serial 1010] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
CheckForLastSegment, <<M(CheckForLastSegment)>> -> <<e1 or e2 or . . . en>>

Theorem (17) [serial 1011] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
CheckFirstMA, <<M(CheckFirstMA)>> -> <<e1 or e2 or . . . en>>

Theorem (21) [serial 1012] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
CheckMATransition, <<M(CheckMATransition)>> -> <<e1 or e2 or . . . en>>

Theorem (25) [serial 1013] used for:
<<M(Start)>> A <<M(WaitFirstMA)>> for GoStart-[]->WaitFirstMA{A};

Theorem (26) [serial 1014] used for:

Ada User Jour na l Vo lume 45, Number 1, March 2024

44 BLESS Correctness Proof

<<M(WaitFirstMA) and x>> -> <<M(CheckFirstMA)>> for
FirstMAWaitFirstMA-[x]->CheckFirstMA{};

Theorem (27) [serial 1015] used for:
<<M(CheckFirstMA) and x>> -> <<M(WaitFirstMA)>> for
NotYetCheckFirstMA-[x]->WaitFirstMA{};

Theorem (106) [serial 1016] used for:
<<M(CheckFirstMA) and x>> A <<M(MoveForward)>> for
GotFirstMACheckFirstMA-[x]->MoveForward{A};

Theorem (313) [serial 1017] used for:
<<M(MoveForward) and x>> A <<M(CheckMoveForward)>> for
CheckSpeedMoveForward-[x]->CheckMoveForward{A};

Theorem (315) [serial 1018] used for:
<<M(CheckMoveForward) and x>> -> <<M(MoveForward)>> for
SameSegmentCheckMoveForward-[x]->MoveForward{};

Theorem (322) [serial 1019] used for:
<<M(CheckMoveForward) and x>> A <<M(CheckForLastSegment)>> for
NextSegmentCheckMoveForward-[x]->CheckForLastSegment{A};

Theorem (332) [serial 1020] used for:
<<M(CheckForLastSegment) and x>> A <<M(MoveForward)>> for
NotLastSegmentCheckForLastSegment-[x]->MoveForward{A};

Theorem (357) [serial 1021] used for:
<<M(CheckForLastSegment) and x>> A <<M(MoveForwardLastSegment)>> for
IsLastSegmentCheckForLastSegment-[x]->MoveForwardLastSegment{A};

Theorem (358) [serial 1022] used for:
<<M(CheckForLastSegment) and x>> -> <<M(FAIL)>> for
PastLastSegmentCheckForLastSegment-[x]->FAIL{};

Theorem (549) [serial 1023] used for:
<<M(MoveForwardLastSegment) and x>> A <<M(CheckMoveForwardLastSegment)>> for
LastSegmentMoveForwardLastSegment-[x]->CheckMoveForwardLastSegment{A};

Theorem (550) [serial 1024] used for:
<<M(CheckMoveForwardLastSegment) and x>> -> <<M(MoveForwardLastSegment)>> for
NoMAYetCheckMoveForwardLastSegment-[x]->MoveForwardLastSegment{};

Theorem (593) [serial 1025] used for:
<<M(CheckMoveForwardLastSegment) and x>> A <<M(GotNewMA)>> for
GetNewMACheckMoveForwardLastSegment-[x]->GotNewMA{A};

Theorem (595) [serial 1026] used for:
<<M(GotNewMA) and x>> -> <<M(CheckMATransition)>> for
LastBitOfMaGotNewMA-[x]->CheckMATransition{};

Theorem (596) [serial 1027] used for:
<<M(CheckMATransition) and x>> -> <<M(GotNewMA)>> for
NotEndOfMACheckMATransition-[x]->GotNewMA{};

Theorem (657) [serial 1028] used for:
<<M(CheckMATransition) and x>> A <<M(MoveForward)>> for
StartNextMaCheckMATransition-[x]->MoveForward{A};� �

Theorem (658) says which prior theorems it depends upon,
and why. It lists all complete state, execution state, and tran-
sition VCs. We believe that all listed theorems with proofs
(and all the necessary theorems are in the list) form a con-
vincing verification artifact for behavior correctness of the
AutoBrake.i thread implementation.

Theorem (1) comes from the VC for complete state
MoveForwardLastSegment from 7.2:� �
Theorem (1) [serial 1003]
P [63] << i = CMA.num_segments
and iSeg = CMA.seg[i]
and nSeg = NULL_SEGMENT()
and ma = CMA >>

S [39] ->
Q [39] << true >>
Why created: <<M(MoveForwardLastSegment)>> -> <<I>> from invariant I when
complete state MoveForwardLastSegment has Assertion
<<M(MoveForwardLastSegment)>> in its definition.

Solved by: True Conclusion Schema (tc): P->true� �
For those that need convincing that anything implies true,
perhaps the proof of (tc) will suffice.

Theorem (15) comes from the VC for execution state
CheckForLastSegment using Theorem (14) which uses
Theorem (13):� �
Theorem (13) [serial 1059]
P [61] << CMA = ma
and CMA.seg[i] = iSeg >>

S [61] ->
Q [61] << true >>
Why created: Less than, greater than, or equal:
|-a<b or b<a or a=b [serial 1057]
Solved by: True Conclusion Schema (tc): P->true� �
Theorem (13) claims to be true by the True Conclusion
Schema. The “Why created:” statement explains for what the
theorem is used–not why it’s true.� �
Theorem (14) [serial 1057]
P [61] << CMA = ma
and CMA.seg[i] = iSeg >>

S [61] ->
Q [61] << i = ma.num_segments

or i < ma.num_segments
or ma.num_segments < i >>

Why created: normalization of [serial 1010]
Solved by: Less than, greater than, or equal: |-a<b or b<a or a=b

and theorem 13:
Theorem (13) [serial 1059] used for:

Less than, greater than, or equal: |-a<b or b<a or a=b [serial 1057]� �
Theorem (14) uses Theorem (13) and that

a < b ∨ b < a ∨ a = b� �
Theorem (15) [serial 1010]
P [61] << iSeg = CMA.seg[i]

and ma = CMA >>
S [61] ->
Q [61] << (i < ma.num_segments)

or (i = ma.num_segments)
or (i > ma.num_segments) >>

Why created: Serban’s Theorem: disjunction of execute conditions leaving
execution state CheckForLastSegment,
<<M(CheckForLastSegment)>> -> <<e1 or e2 or . . . en>>

Solved by: Reflexivity of Equality: (a=b) = (b=a)
Irreflexivity of Greater Than: (a>b) = (b<a)
Add Unnecessary Parentheses For No Good Reason: a = (a)
Reflexivity of Conjunction: (m and k) = (k and m)
Reflexivity of Disjunction: (m or k) = (k or m)

and theorem 14:
Theorem (14) [serial 1057] used for:

normalization of [serial 1010]� �
Theorem (15) comes from Theorem (14) and a bunch of trans-
formations called "normalization". Proof derivation starts
with a VC, applying human-selected tactics until reduced to
axiom(s). Here, Theorem (15) was "normalized" to put it in
normal form by removing parentheses, changing greater than
to less than, and sorting reflexive operators. In the resulting
proof, unnecessary parentheses are added, and operators un-
sorted. Conjunction is not proved to be reflexive, but defined
to be reflexive.

Theorem (313) proves the VC for transition CheckSpeed
using 207 theorems which is too long for inclusion in this
paper. However, each theorem says why it is axiomatic, or
derived from prior theorems in natural language intended to
be both understood by, and persuasive to a person1.

9 Potential Doubts
Contention that a proof is a convincing argument for its con-
clusion should honestly state reasons for doubt. Here, we
claim that a given deductive proof means that BLESS behav-
ior meets its specification for every possible execution.

Reasons for doubting our claim:

1. The executable code generated from the state machine
may be incorrect.

2. The set of verification conditions generated for a state
machine may be incorrect or incomplete.

3. The formal semantics of the BLESS language may be
incorrect (or implemented incorrectly).

4. The built-in axioms may not be tautologies (or imple-
mented incorrectly).

5. User-defined axioms (really givens) may be incorrect or
inappropriate.

6. The inference rules may not be sound (or implemented
incorrectly).

7. The specification of state machine behavior may be in-
correct or incomplete.

1AADL model with complete set of all verification conditions
and the proof script is available at https://github.com/brlarson/BLESS-
models/tree/master/CTCS-3.

Volume 45, Number 1, March 2024 Ada User Jour na l

B. R. Larson, E. Ahmad 45

For (1), the usual testing of programs will detect gross com-
pilation errors, providing at least as much confidence in cor-
rectness of compilation alone. Higher confidence could be
achieved with a formally verified compiler like CompCert C,
or decompilation of binary into execution graphs to compare
with executions graphs of source code similar to [13].

For (2), the proof assistant could generate VCs inconsistent
with their mathematical definitions in [6], the mathematical
definitions themselves could be incorrect, or additional VCs
not generated, should be. For example, Yannick Moy noticed
a tiny gap between a thread’s time-of-previous-suspension
(tops) and the next dispatch. Because the thread is sus-
pended, it’s not changing any of its persistent variables, and
new values are not loaded into its in port buffers, so there’s
nothing to falsify an assertion at tops , but there’s no pos-
itive proof of this either. An option for the proof assistant
allows VC generation which includes this gap. BLESS thread
behaviors re-proved for the gap-less VCs required no changes
in their actions, but the text in their proof outlines roughly
doubled, and lengths of generated proofs similarly extended.
For those who want to prove that when nothing changes as-
sertions remain true, they can do so. If others believe that the
mathematical definitions of VCs are deficient, please inform
us so they may be rectified, particularly if necessary VCs are
missing. Whether VCs generated by the proof assistant match
their definitions can be more easily discerned.

For (3), the formal semantics of BLESS language constructs
are definitional; they are correct by definition. Whether the
semantics are correctly implemented by the proof assistant
can be checked for theorems when either composite or atomic
actions are reduced.

For (4), all of the axioms used by the proof assistant have
proofs in Metamath down to the axioms of logic and set
theory. Whether they have been correctly implemented in the
proof assistant can be easily discerned because any theorem
claiming to be an axiom says why, which can be compared
with the text of the theorem.

For (5), user-defined axioms (assertions beginning AXIOM)
are givens which help define the context of the proof. They
must have special scrutiny in both their definition and use. In
this example, RMA is the ghost variable for the movement
authorization send to the Train by the RBC. Initially, RMA
is used as the current MA, CMA . When the train enters the
last segment, it requests MA for the next portion of track.
Then RMA from RBC is NEXT_MA . Finally, when the
train crosses into the next MA CMA becomes NEXT_MA .
Therefore use of the axioms which state these facts must be
scrutinized.� �
<<AXIOM_CMA_IS_RMA: : CMA = RMA >>
<<AXIOM_NEXT_MA_IS_RMA: : NEXT_MA = RMA >>
<<AXIOM_CMA_IS_NEXT_MA: : CMA = NEXT_MA >>� �
Similarly, the fact that for any segment the velocity at which
the normal, service brake velocity is less than the emergency
brake velocity is� �
<<AXIOM_V:seg~segment : seg.v_n < seg.v_e >>� �
and that ever MA must have at least two segment is

� �
<<AXIOM_NUM_SEG: ma~movementAuthorization : 1 < ma.num_segments>>� �
For (6), many inference rules derived from the formal seman-
tics of the language, hence are definitional. Soundness proofs
for some of the other inference rules have proofs in Meta-
math, but this work is not complete, so we cannot (yet) claim
soundness for the proof system as a whole. Much more likely
would be incorrect implementation of inference rules by the
proof assistant. That’s why it’s so important that theorems be
human comprehensible–each theorem derived by an inference
rule from prior theorems states explicitly what rule is being
used, and for what the prior theorems are used.

For (7), this is the most likely cause of a proof being inappli-
cable. The BLESS properties of features (ports) specifying
behavior might be wrong or incomplete. That’s why spec-
ifications must be validated by domain experts. In [7], we
show how natural language requirements can be expressed
by BLESS assertions. In addition, a thread state machine
may comply with its specification, but fail to do something
it should. The proof shows that everything the state ma-
chine does conforms to its specification (verification)–not
that it does everything its supposed to (validation). Such
validation could be assisted by architecture-level simulation
before any hardware is build or executable binary generated.
Architecture-level simulation is but one of the capabilities of
HAMR [14] with which the BLESS IDE is being integrated.

10 Conclusion
Confidence that cyber-physical systems perform as intended
is enhanced by proof that executions of programs meets their
specifications. Understandable proofs can be convincing ar-
guments for program correctness–regardless of what, who,
or how the proof was created. To be understandable, proofs
should be written in the same language, having the same se-
mantics, as programs themselves and clearly trace to source
code they purport to prove. The BLESS Methodology was
created so practising engineers and programmers could craft
programs, specifications, and correctness proofs together. The
BLESS Proof Assistant attempts to create proofs (given hu-
man guidance) which are convincing arguments of program
correctness. Whether such arguments actually convince is
entirely subjective, but that is one goal of the BLESS Method-
ology to which much effort is applied. Suggestions for im-
provement in the persuasiveness of BLESS proofs are eagerly
requested.

References
[1] SAE International, “SAE AS5506D, Architecture Anal-

ysis & Design Language (AADL),” 2022.

[2] N. D. Megill and D. A. Wheeler, Metamath: A Com-
puter Language for Mathematical Proofs. Morrisville,
North Carolina: Lulu Press, 2019.

[3] E. Ahmad, B. R. Larson, S. C. Barrett, N. Zhan, and
Y. Dong, “Hybrid annex: An aadl extension for continu-
ous behavior and cyber-physical interaction modeling,”
in Proceedings of the 2014 ACM SIGAda Annual Con-
ference on High Integrity Language Technology, HILT
’14, (New York, NY, USA), p. 29–38, Association for
Computing Machinery, 2014.

Ada User Jour na l Vo lume 45, Number 1, March 2024

46 BLESS Correctness Proof

[4] B. R. Larson, P. Chalin, and J. Hatcliff, “Bless: Formal
specification and verification of behaviors for embed-
ded systems with software,” in NASA Formal Methods
(G. Brat, N. Rungta, and A. Venet, eds.), (Berlin, Heidel-
berg), pp. 276–290, Springer Berlin Heidelberg, 2013.

[5] OSATE, “Open Source AADL Tool Environment, ver-
sion version 2.12.0.” http://osate.org/, 2023.

[6] B. R. Larson, Behavior Language for Embedded Sys-
tems with Software Language Reference and Proof As-
sistant Guide, 2022. Version 3.

[7] B. R. Larson, “Formal semantics for the pacemaker
system specification,” in Proceedings of the 2014 ACM
SIGAda Annual Conference on High Integrity Language
Technology, HILT ’14, (New York, NY, USA), p. 47–60,
Association for Computing Machinery, 2014.

[8] L. Zou, J. Lv, S. Wang, N. Zhan, T. Tang, L. Yuan, and
Y. Liu, “Verifying chinese train control system under
a combined scenario by theorem proving,” in Verified
Software: Theories, Tools, Experiments (E. Cohen and
A. Rybalchenko, eds.), (Berlin, Heidelberg), pp. 262–
280, Springer Berlin Heidelberg, 2014.

[9] L. Jiang, X. Wang, and Y. Liu, “Reliability evaluation
of the chinese train control system level 3 using a fuzzy
approach,” Proceedings of the Institution of Mechanical

Engineers, Part F: Journal of Rail and Rapid Transit,
vol. 232, no. 9, pp. 2244–2259, 2018.

[10] E. Ahmad, Y. Dong, B. Larson, J. Lü, T. Tang, and
N. Zhan, “Behavior modeling and verification of move-
ment authority scenario of chinese train control sys-
tem using aadl,” Science China Information Sciences,
vol. 58, pp. 1–20, Nov 2015.

[11] Ministry of Railways, CTCS Level 3 Train Control Sys-
tem Requirements Specification (SRS) VI.O[M]. Beijing:
China Railway Publishing House, 2009.

[12] D. Gries, The Science of Programming. Monographs in
Computer Science, Springer New York, 1981.

[13] T. A. L. Sewell, M. O. Myreen, and G. Klein, “Transla-
tion validation for a verified os kernel,” SIGPLAN Not.,
vol. 48, p. 471–482, jun 2013.

[14] J. Hatcliff, J. Belt, Robby, and T. Carpenter, “HAMR:
An aadl multi-platform code generation toolset,” in
Leveraging Applications of Formal Methods, Verifica-
tion and Validation: 10th International Symposium on
Leveraging Applications of Formal Methods, ISoLA
2021, Rhodes, Greece, October 17–29, 2021, Proceed-
ings, (Berlin, Heidelberg), p. 274–295, Springer-Verlag,
2021.

Volume 45, Number 1, March 2024 Ada User Jour na l

47

Mechanizing AADL in Coq – Extended Abstract

J. Hugues
Carnegie Mellon University/Software Engineering Institute; email: jhugues@andrew.cmu.edu

Abstract

In this extended abstract, we present a mechanization
of the SAE AADL language using Coq along with spe-
cific analysis capabilities. Our contribution provides
an unambiguous semantics for a large set of the lan-
guage and can be used as a foundation to build rich
analysis capabilities. Our contribution differs from typ-
ical language mechanization, it provides support for
manipulating modeling constructs, perform verification
- ranging from syntactic and semantics checks to formal
verification of key properties, and support simulation
capabilities.

Keywords: Coq, mechanization, Ravenscar

1 Introduction
In this paper, the author is interested in the following ques-
tion: “How can a modern interactive theorem prover like
Coq assist in implementing a large DSML and its verification
toolchain?”. By large, we mean a complete DSML defined
by an industry standard that would encompass static and dy-
namic semantics. Our contribution focuses on defining and
implementing the SAE AADL language, a large DSML de-
signed for modeling safety-critical systems. We provide the
mechanization using the Coq theorem prover. The AADL
language has rich static and dynamic semantics which allows
one to model the architecture of real-time safety-crticial sys-
tems and perform performance, safety, or security analyses in
addition to code generation. Although multiple tools exist to
process AADL models, very few capture the entirety of the
language dynamic semantics. The Coq theorem prover has a
rich set of features to support the definition and implementa-
tion of a DSL. We selected Coq because of its large user base
and set of libraries.

In the following, we show that Coq is a viable implementation
strategy for defining and implementing a DMSL.

2 The Coq Theorem Prover
Coq [1] is a proof assistant, or Interactive Theorem Prover
(ITP). A developer may use the Coq language, Gallina, to
write mathematical definitions, executable algorithms, and
theorems within an Interactive Development Environment
(IDE). Coq has been used to prove non-trivial mathematical
theorems and also develop formally certified software and
hardware. One interesting feature of many ITPs is the ca-
pability to generate certified code (e.g. OCaml or Haskell)
from Coq definitions. In this context, “certified” means that
there exists a proof script – the certificate – that connects the
software produced and the proofs that accompany it. Many

references exist to learn more about the Coq ITP such as
Pierse et al. [2]. In the following, we introduce a minimal set
of notions prior to introducing our Coq development.

Coq relies on Gallina, a functional language that acts as a
specification language to describe types, functions, and proofs
of some statement. Coq’s core follows the rules of the Cal-
culus of Inductive Constructions. The basic types in Coq are
either propositions, Prop, or sets Set. All other types are
built on top of these two types. Prop is the type of logical
propositions. It denotes the class of terms representing proofs.
Set represents typical data types.

In Listing 1, we show some fragments of Coq. First, we
define the component inductive type, the type definition lists
the elements of a component definition: identifier, category,
etc. This component type is recursive: one of its elements is
actually a list of components. Then, we define the Unfold
function that recursively build the list of components and
subcomponents by iterating over subcomponents, with ++

being the list concatenation operator.

Listing 1: A Coq inductive type

Inductive component :=
| Component : identifier→

ComponentCategory→ (* category *)
fq_name→ (* classifier

*)
list feature→ (* features *)
list component→ (*

subcomponents *)
list property_association→
component

(* .. *)

Fixpoint Unfold (c : component) : list
component :=

c ::
((fix Unfold_subs (ls : list component) :=
match ls with
| nil⇒ nil
| c :: lc ⇒ Unfold (c) ++Unfold_subs (lc

)
end) (c→ subcomps)).

Coq has a rich standard library that defines regular types such
as booleans, integers, lists, and typical results on them. Coq
type system support polymorphisms and Java-like interfaces
(typeclasses). Because Prop and Set are both types, they
can be part of expressions. One of the key aspects of Coq is
that a proposition is more powerful than a boolean expression.

Ada User Jour na l Vo lume 45, Number 1, March 2024

48 Mechanizat ion of the Ravenscar pro f i le in Coq

The type bool is computational: one can define functions
or perform case analysis. On the other hand, the type Prop
supports universal quantification over elements, that is typical
exists (∃) and for all (∀) quantifiers.

Writing proofs can be a repetitive task. Coq provides a rich
library of tactics that encode specific reasoning steps. A
typical example is auto that will prove basic propositions by
applying well-known facts and computations. Coq’s set of
tactics can be extended by the user using the LTAC language.

3 AADL Mechanization – Core Concepts
3.1 AADL generic component model
At its core, AADL relies on a restricted set of concepts to
support its constructs. Formally,

Definition 1 An AADL component Comp is a tuple
(cid, catC ,F ,Prop, S) s.t.

cid: the unique component id,

catC: the component category,

F : the set of features,

Prop: the set of properties associated with this component,

S: the set of subcomponents.

The mechanization of this type in Coq relies on inductive
type definitions, i.e. the capability to define a new type from
constants and functions that create terms of that type. We
illustrate this in the code snippet shown in Listing 2. First,
we define ComponentCategory, it is an enumeration type
that lists all possible component categories. We then pro-
vide a joint definition for components, features, and con-
nections. Because these types are mutually dependent, they
must be defined in conjunction. The types DirectionType
and FeatureCategory are also enumerations, whereas
identifier, fq_name, and feature_ref are variants of
string-like type to denote respectively an identifier, a fully
qualified name, and a patch (a list of identifiers). They are
omitted for conciseness.

The definitions shown in Listing 2 are understood as follows.
A connection can be built using the Connection constructor
and three parameters: an identifier and two feature references.

Another key aspect of an AADL model is the concept of
property association, linking a property value (e.g. 42) to a
property type (e.g. Priority) that applies to component of
a specific category such as threads. The definition of those
types follow the same pattern.

An important concept in Coq is that programs and proofs are
equivalent. This applies to all concepts, including equality.
Coq relies on so-called Leibniz equality which states that,
given any x and y, x = y if and only if, given any predicate
P , P (x) if and only if P (y). Building such proof could
be seen as a tedious and repetitive effort. Fortunately, Coq
provides appropriate tactics to derive these equality principles
automatically.

Listing 2: A Coq inductive type

Inductive ComponentCategory : Type :=
| system | abstract | process | thread
(* [..] *)

Inductive component :=
| Component : identifier→

ComponentCategory→ (* category *)
fq_name→ (* classifier

*)
list feature→ (* features *)
list component→ (*

subcomponents *)
list property_association→
component

with feature :=
| Feature : identifier→

DirectionType→
FeatureCategory→
component→
list property_association→
feature

with connection :=
| Connection : identifier→

feature_ref→
feature_ref→
connection.

3.2 AADL concepts as a Coq DSL
Using Coq constructors to build a full AADL model results
in cumbersome syntax constructs as shown in Listing 3. A
solution is to use Coq notations: advanced commands to
modify the way Coq parses and prints objects. A notation is
an alternate syntax for entering or displaying a specific term
or term pattern and is well-used [3].

Listing 3: Building AADL components

Example A_Component := Component
(Id "a_component")
(abstract)
(FQN [Id "pack1"] (Id "foo_classifier")

None)
nil nil nil nil.

A notation is a construct similar to regular expressions that
maps elements to arguments of some constructors. This is
shown in the code snippet of Listing 4. In this example, we
present the notation to define an abstract component and build
the corresponding Coq term along with an example of use.
Coq notations can be combined. In the example below, we
also use the notation for representing lists without explicitly
using the cons constructor.

With this notation, we provide a way for the user to define
AADL models. We devised the notations to be close to the
AADL original syntax.

An alternative strategy, not presented in this paper, is to import
a JSON serialization of an AADL model as a Coq type and
then map it to the corresponding AADL declarations.

Volume 45, Number 1, March 2024 Ada User Jour na l

J. Hugues 49

Listing 4: Notation for AADL

(* Coq notation for defining an AADL
abstract component *)

Notation "’abstract:’
id → | classifier
features: lf
subcomponents: ls
connections: lc
properties: lp" :=
(Build_Component id abstract classifier

lf ls lc lp)
(at level 200).

Example A_Component_2 :=
abstract: "a_component"→ | "pack1::

foo_classifier"
features: [
feature: in_event "a_feature" ;
feature: out_event "a_feature2"]

subcomponents: [
thread: "a_thread"→ | "pack2::

thread_t"
features: nil
subcomponents: nil
connections: nil
properties: nil]

connections: [
connection: "c1" ⋆"a_feature" −→ "

a_feature_2"]
properties: nil.

3.3 AADL rules as decidable properties
The previous elements can be used to build AADL models
elements that are typed statically by Coq rules. The AADL
standard defines additional rules that judge the correctness of
an AADL model through naming, legality, and consistency
rules.

These rules, in their most general form, are defined in the stan-
dard as natural language predicates. For instance naming rule
4.5(N1) states that “The defining identifier of a subcompo-
nent declaration placed in a component implementation must
be unique within the local namespace of the component imple-
mentation that contains the subcomponent.” In other words,
the list of identifiers built from the list of subcomponents has
no duplicates.

Such a predicate has a direct translation in Coq: we build
the list of the subcomponent identifiers and check there is no
duplicate. This rule is obviously decidable: one can derive a
proof for either the true or false case by computing the term
explicitly.

We implemented most rules defined by the AADL standards.
They have a uniform pattern: a predicate that combines con-
junctions or disjunctions of basic predicates and the eval-
uation of properties on lists (test for duplicated elements,
inclusion, etc.). This is a direct consequence of the general
structure of the AADL and Coq languages. AADL model
elements are components, and their well-formedness depends
on the way their features, connections, and subcomponents
are defined, all of which are built on top of Coq basic types

and lists. Hence, the implementation in Coq of these rules
has no practical difficulty. Likewise the proof of their decid-
ability that has been partially automated thanks to Coq tactics
mechanism.

In addition, we defined a specific induction principle to extend
the previous rules to the case of a hierarchy of components.
This induction scheme is similar to a visitor pattern that will
walk through a model and check that each node is defined
according to language rules.

Although this step yields little implementation challenge, it
proved to be an interesting step to assess AADL rigor in defin-
ing its semantics. First, it confirmed that all rules are defined
with sufficient details and can be written as formal proposi-
tions. Second, it confirmed that all rules are unambiguous
and decidable, which is stronger than boolean-based imple-
mentation used in other AADL tools. In a few situations, we
engaged with the AADL standardization body to clarify the
semantics of rules and their order of evaluation.

3.4 Coverage of AADL concepts
One of our goals is to support an extensive subset of AADL
as Coq elements. In this section, we introduced the key ele-
ments of our mechanization. Our mechanization allows for
the definition of AADL property sets and packages. We im-
plemented Coq types, functions, and lemmas that cover the
AADL instance model, and the definition of property sets.
We provide a full library to manipulate AADL concepts as
either native Coq types or through notations.

Our mechanization covers all AADL concepts except for
flows and modes. Flows are annotations on an AADL archi-
tecture to mark a particular data flow for an analysis. We
do not consider them given their special usage. Modes are
specific configurations of a system, e.g. specific values for
property values of activated/deactivated components and con-
nections at specific time. The support of modes is a contend-
ing issue in the standard. The authors’ analysis is that the
current definion of modes is not precise enough to warrant a
mechanization effort.

The resulting Coq library can be used in two different ways.
First, code can be extracted to validate the JSON-serialization
of AADL models produced by AADL third-party tools like
Ocarina [4]. Code extraction consider only the elements that
are in the transitive closure of a main function. This includes
typical functions (e.g. model navigation or name resolution),
but also decision procedures that judge that a component is
valid that is defined as a decidable proposition. All rules
stated in the standard fall into this category, and we could
generate a proof-carrying oracle that checks the conformance
of an AADL model to the standard. This capability allows us
to derive a validity checker for AADL models that is deemed
sound by construction: it reflects AADL semantics defined in
a mathematically grounded framework.

Another option is to use Coq as an interactive theorem prover
so that one can proof more complex lemmas. We discuss this
in the next section.

Ada User Jour na l Vo lume 45, Number 1, March 2024

50 Mechanizat ion of the Ravenscar pro f i le in Coq

4 Conclusion
In this paper, we presented the main elements of the mech-
anization of AADL in Coq. Our contribution delivers the
mechanization of a significantly large subset of AADL along
with verification capabilities. We used multiple features of
Coq to define an AST-like structure as a Coq inductive type
representing an AADL instance model, along with accessor
functions to build decidable properties. We exercised this on
the verification of schedulability for some classes of real-time
processors on mono-processor systems.

The resulting Coq development represents approximatively
12KSLOCS and include examples and testsuite. It demon-
strates a first step towards the full mechanization of AADL
in Coq. Our development is available as an Open Source
software at https://github.com/Oqarina/.

Acknowledgments
Copyright 2024 ACM. This material is based upon work
funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon Uni-
versity for the operation of the Software Engineering Institute,

a federally funded research and development center. [DISTRI-
BUTION STATEMENT A] This material has been approved
for public release and unlimited distribution. Please see Copy-
right notice for non-US Government use and distribution.
DM24-0684

References
[1] Y. Bertot and P. Castéran, Interactive theorem proving

and program development - Coq’Art: The calculus of
inductive constructions. Texts in theoretical computer
science. An EATCS series, Springer, 2004.

[2] B. C. Pierce, A. Azevedo de Amorim, C. Casinghino,
M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg, and
B. Yorgey, Logical Foundations. Software Foundations
series, volume 1, Electronic textbook, May 2018.

[3] C. Pit-Claudel and T. Bourgeat, “An experience report on
writing usable DSLs in Coq,” 2021.

[4] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the
prototype to the final embedded system using the ocarina
AADL tool suite,” ACM Trans. Embed. Comput. Syst.,
vol. 7, no. 4, pp. 42:1–42:25, 2008.

Volume 45, Number 1, March 2024 Ada User Jour na l

 51

Ada User Journal Volume 45, Number 1, March 2024

Extension of the TASTE Toolset to Support

Publisher-Subscriber Communication

Hugo Valente, Miguel A de Miguel, Ángel G Pérez, Alejandro Alonso, Juan Zamorano, Juan A de la

Puente

Universidad Politécnica de Madrid, Madrid, Spain; email: hugo.svalente@upm.es

Abstract

New Space has been revolutionizing how space
software is developed. While in the past the
development of systems lasted years to minimize
errors, nowadays, with the reduction in manufacturing
costs of micro and nanosatellites, companies are
capitalizing by focusing on launching frequently,
focusing on rapid iterations and innovations. As a
result, software development of space systems is also
adapting to meet the demands from platform specific
code to code that can be reused across different
platforms. As a result, there has been a shift from
developing tightly coupled client-server systems to
loosely coupled publisher subscriber systems.

In this article, we propose a solution focused on
integrating cFS, a Publisher Subscriber runtime made
by NASA, inside TASTE, a model-based toolset
developed by ESA, to build space systems focusing on
a publisher-subscriber methodology, allowing the user
to develop platform agnostic components, allowing for
faster iterations, reducing the development time and
increasing portability and reusability.

Keywords: automatic code generation, publisher-
subscriber architecture, model-driven development,
component-based design, new space.

1 Introduction

Due to considerable reductions in the manufacturing and

launch costs associated with satellite miniaturization, teams

are more willing to take risks and innovate than they were in

the past. This paradigm change is known as New Space [1].

While the cost of building and launching satellites has

decreased, the complexity and size of the software, as well

as its price, has been increasing.

It can be quite expensive to start a flight software project

from scratch, which serves as a barrier for businesses with

limited financial resources. This can be managed with the

use of toolchains and frameworks. As a result, better-quality

software can be developed with less time and effort,

lowering the barrier to entry for new companies in the space

industry [2].

TASTE, or The Asserted Set of Tools for Engineering, was

created by the European Space Agency (ESA) to enable the

use of Model-Based Systems Engineering (MBSE) for

heterogeneous, embedded, real-time systems. It offers the

ability to develop, assemble, test, and deploy embedded

technologies [3].

Core flight system (cFS) is a framework developed by

NASA. The cFS architecture consists of three essential

concepts: a layered architecture, a dynamic run-time

environment, and a component-based design. The

combination of these features allows for a bigger reusability

and portability of components across different projects and

platforms, resulting in a reduction in the development time

and cost of space software [4], [5].

In this article we explain how TASTE was modified to

support a Publisher Subscriber communication pattern using

cFS as the runtime.

2 Toolset modifications

The original TASTE toolchain follows a client-server

communication paradigm with PolyORB-HI as the

middleware.

In our modified TASTE toolset, in order to support a

publisher-subscriber communication paradigm, PolyORB-

HI has been replaced with the cFS middleware, as shown in

Figure 1.

Figure 1 – Comparison original TASTE vs cFS TASTE

Taking advantage of the TASTE code generation

capabilities, the metamodel and templates were extended to

generate code that takes advantage of the communication

functionalities provided by cFS. The extension process

followed was the one described in [6] by the authors.

2.1 Graphical representation

The main tool that the user interacts with is Space Creator,

the graphical user interface (GUI), to build the system

description. Consequently, although it has no impact on the

code generated, visual experience is an important

consideration when adding new functionalities.

52 Extens ion of TASTE Support Publ isher -Subscr iber Communicat ion

Volume 45, Number 1, March 2024 Ada User Journal

As a result, the GUI has been extended to show the flow of

data between components, with the message icon

represented based on the SAVOIR notation, as shown in

Figure 2.

Figure 2 – Publisher subscriber cFS representation

2.2 AADL representation

TASTE relies on AADL for the automatic code generation.

As a consequence, the current property set has been extended

with new properties to support the new functionalities.

Listing 1 shows the new property set.

-- Message properties

MessageContent: aadlstring applies to

(subprogram);

MessageID: aadlinteger applies to

(subprogram);

MessageSize: aadlinteger applies to

(subprogram);

MessageType: aadlstring applies to

(subprogram);

MessageDirection: enumeration

(PUB,SUB) applies to (subprogram);

2.3 Kazoo

Kazoo is responsible for parsing the generated AADL model

description and rendering the templates.

Since the property set has been modified, Kazoo needs to be

modified to parse the new properties.

Listing 2 uses the example of the parsing of the message ID

to show how properties are parsed using Kazoo.

-- Get_Message_ID --

function Get_Message_ID (D : Node_Id)

return String is

 Event_Name : constant Name_Id :=

 Get_String_Name

 "taste::messageid");

begin

 return Get_Integer_Property (D,

 Event_Name);

end Get_Message_ID;

[…]

function Parse_Interface (If_I :

Node_Id) return Taste_Interface is

 […]

 Result.Message_ID := US (

 Get_Message_ID (If_I));

Finally, new templates were created to make the necessary

API calls to provide new functionality. An excerpt of the

initialization of a message or subscription to a message pipe

depending on whether the component is a publisher, or a

subscriber is shown in Listing 3.

@@IF@@ @_Direction_@ = "PUB" and

@_Kind_@ = MESSAGE_OPERATION

// Initialize message @_Name_@

@_UPPER:Parent_Function_@_Data.MsgId_@

Name@ =

@_UPPER:Parent_Function_@_APP_COMMUNIC

ATION_MID_@_Message_ID_@;

@_UPPER:Parent_Function_@_Data.Size_@_

Name_@ = asn1Scc@_REPLACE_ALL((-

)/_):Param_Types_@_REQUIRED_BITS_FOR_E

NCODING;

CFE_MSG_Init(&@_UPPER:Parent_Function_

@_Data.MsgPtr_@_Name_@,

@_UPPER:Parent_Function_@_Data.MsgId_@

Name@,

@_UPPER:Parent_Function_@_Data.Size_@_

Name_@);

@@ELSIF@@ @_Kind_@ = MESSAGE_OPERATION

 // Initialize pipe @_Name_@

 // Subscribe to @_Name_@

0x0@_Message_ID_@ msg id

CFE_SB_Subscribe(0x0@_Message_ID_@,

@_UPPER:Parent_Function_@_Data.Command

Pipe);

@@END_IF@@

3 Case study UPMSat2

The UPMSat2 system was built using the new

communication paradigm moving from a client-server-

oriented architecture to a publisher-subscriber

communication architecture.

The resulting system is shown in Figure 3.

The Manager is responsible for setting the operation mode

of the satellite. The Telemetry, Tracking and Command

(TTC) is responsible for receiving the telecommands from

the ground station and sending telemetry data back.

The Sensors are responsible for gathering data of the

environment. The Storage is responsible for storing the data

gathered by the sensors. The Platform is responsible for

checking the sensor data received to ensure correct

functioning of the sensors. The Simulated ACS HW,

Attitude Control System Hardware is responsible for

H. Valente et a l 53

Ada User Journal Volume 45, Number 1, March 2024

gathering the data from the magnetometers and activating

the magnetorquers to change the current satellite attitude.

The ACS Algorithm is a Simulink algorithm designed to do

the calculations necessary to correct the attitude. The

Measurer and Actuator is the middleman between the two

components mentioned above, responsible for sending the

magnetometer data, receiving the corresponding

magnetorquer data and sending it back to the first component

in order to change the satellite attitude.

The proposed system enables demonstrate the use of new

technologies for special use.

The experimental results demonstrate that this

communication paradigm can significantly improve the

portability, reusability and scalability of the components of

the system when compared with the traditional client-server

TASTE approach by allowing a loosely coupled N to M

publisher-subscriber communication

Conclusions

In this article, we proposed a modification to the TASTE

toolchain to support the publisher-subscriber

communication paradigm. This functionality is supported

with the addition of the cFS runtime to the TASTE toolchain.

A case study has been presented validating the proposed

solution.

Acknowledgements

The work described in this paper has been developed within

the European project AURORA (101004291), and the

project OAPES-CM (Y2020/NMT-6427). We would like to

acknowledge the financial support of the European Union’s

H2020 R+I programme, and the Comunidad de Madrid

(Spain) Proyectos Sinérgicos de I+D plan, as well as the

collaboration with the partners in both projects. The authors

are indebted to the Horizon 2020 IOD/IOV Programme of

the European Union that funded the UPMSat-2 launch.

References

[1] D. Paikowsky, “What Is New Space? the Changing

Ecosystem of Global Space Activity,” 67th

International Astronautical Congress, vol. 20, no. 20,

pp. 84–88, 2017, doi: 10.1089/space.2016.0027.

[2] D. J. F. Miranda, M. Ferreira, F. Kucinskis, and D.

McComas, “A comparative survey on flight software

frameworks for ‘new space’ nanosatellite missions,”

Journal of Aerospace Technology and Management,

vol. 11, 2019, doi: 10.5028/jatm.v11.1081.

[3] M. Perrotin, E. Conquet, P. Dissaux, T. Tsiodras, and J.

Hugues, “The TASTE Toolset: turning human designed

heterogeneous systems into computer built

homogeneous software.,” European Congress on

Embedded Real-Time Software (ERTS 2010), pp. 1–10,

2010.

[4] CCSDS, Space Packet Protocol: Recommended

Standard, no. CCSDS 133.0-B-2. Washington, DC: The

Consultative Committee for Space Data Systems, 2020.

[5] NASA, “NASA cFS.” https://github.com/nasa/cfs

(accessed Jun. 23, 2022).

[6] H. Valente et al., “Extension of the Modeling Tool Suite

for Development of Embedded Systems for the Space

Domain,” IFAC-PapersOnLine, vol. 55, no. 4, pp. 286–

291, 2022, doi: 10.1016/j.ifacol.2022.06.047.

Figure 3 – Case Study UPMSat2

54

METASAT’s Model Based Design Solutions

Leonidas Kosmidis
Barcelona Supercomputing Center (BSC) and Universitat Politecnica de Catalunya
(UPC); email: leonidas.kosmidis@bsc.es

Abstract

METASAT is a recently started project (January 2023)
in the Horizon Europe programme, in the SPACE call,
coordinated by the Barcelona Supercomputing Cen-
ter (BSC). METASAT will develop model-based design
(MBD) solutions for high performance on-board pro-
cessors such as multicores, Graphics Processing Units
(GPUs) and Artificial Intelligence (AI) Accelerators.
While the developed tools and methodologies are par-
ticularly focusing on the space domain, reusability to
other safety critical domains is also a project goal. This
talk will provide an overview of the solutions which will
be developed during the project, which will be centered
around the open source TASTE framework used at the
European Space Agency (ESA), which leverages AADL.

1 Talk Details
Modern space systems require increasing levels of perfor-
mance for the implementation of advanced functionalities
such as high performance on-board processing and the in-
corporation of artificial intelligence algorithms which will
enable a higher level of autonomy. In fact, there is gen-
eral trend of moving functionality that once was available
only on ground segments, to on-board space systems. How-
ever, these functionalities cannot be provided with existing
conventional hardware architectures used in current space
systems. Instead, there is a need to adopt new multi-core
systems and high performance hardware elements such as
Graphics Processing Units (GPU) and Artificial Intelligence
(AI) accelerators which have been proven very efficient in
many domains of embedded systems on ground applications.
Apart from the hardware complexity, the implementations of
these features require complex, usually low-level parallel pro-
gramming models such as SIMD (Single Instruction, Multiple
Data) intrinsics, OpenMP, OpenCL and other safety critical
oriented ones like Brook Auto, Vulkan SC or the upcoming
SYCL SC (Safety Critical).

The METASAT consortium which consists of the Barcelona
Supercomputing Center, IKERLAN, fentISS, Collins
Aerospace and OHB will address these challenges by em-
ploying a model-based design approach, which is widely used
in all safety critical domains, and specifically in aerospace.
METASAT will rely on the TASTE [1] framework, which has
long heritage of use at ESA, as well as in prior EU funded
projects within the PERASPERA cluster.

The METASAT MBD solutions will be demonstrated on
a novel, prototype hardware platform for future high-

performance on-board processing currently developed by
BSC, which will consist of a high-performance multicore plat-
form based on FrontGrade Gaislers’s next generation space
processor based on RISC-V, NOEL-V, extended with the
SPARROW SIMD AI accelerator [2] and coupled with an
open source, RISC-V based GPU, Vortex [3]. The METASAT
hardware platform will be open source and implemented on
an FPGA, and will be capable of mixed-criticality workloads,
using the Xtratum hypervisor.

During the project, the TASTE code generation capabilities
from AADL models, which rely on Ocarina [4] will be ex-
tended in multiple ways. First, existing support will be ex-
tended to cover support of the RISC-V compilation and em-
ulation infrastructure, including the SPARROW accelerator.
Next, code generation for necessary multicore support us-
ing RTEMS SMP and Xtratum multicore partitions will be
added. Integration with parallel programming models such
as SPARROW SIMD intrinsics, OpenMP and at least one
GPU programming API and (Machine Learning) ML frame-
work will be implemented. All these modifications will be
submitted for inclusion in the official TASTE repository.

Finally, the solutions will be evaluated using two open source
aerospace ML use cases developed by BSC for ESA – a
cloud screening and a ship detection application from satellite
images – as part of the OBPMark benchmarking suite [5] as
well as with an industrial use case provided by OHB.

Acknowledgments: This work was supported by the European Community’s
Horizon Europe programme under the METASAT project (GA 101082622).

References
[1] M. Perrotin, E. Conquet, J. Delange, and T. Tsiodras,

“TASTE: An Open-source Tool-chain for Embedded Sys-
tem and Software Development,” in ERTS, 2012.

[2] M. S. Bonet and L. Kosmidis, “SPARROW: A Low-Cost
Hardware/Software Co-designed SIMD Microarchitec-
ture for AI Operations in Space Processors,” in DATE,
2022.

[3] B. Tine et al, “Vortex: Extending the RISC-V ISA for
GPGPU and 3D-Graphics,” in MICRO, 2021.

[4] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina :
An Environment for AADL Models Analysis and Auto-
matic Code Generation for High Integrity Applications,”
in Ada-Europe, 2009.

[5] D. Steenari, L. Kosmidis, I. Rodriguez-Ferrandez,
A. Jover-Alvarez, and K. Förster in 2nd European Work-
shop on On-Board Data Processing (OBDP2021), 2021.
https://doi.org/10.5281/zenodo.5638577.

Volume 45, Number 1, March 2024 Ada User Jour na l

55

Facilitating AADL Model Processing and Analysis
with OSATE-DIM

Rakshit Mittal
Universiteit Antwerpen, Middelheimlaan 1, 2018 Antwerp, Belgium.; email: rakshit.mittal@uantwerpen.be

Dominique Blouin
Telecom Paris, Institut Polytechnique de Paris, Place Marguerite Perey, 91120 Palaiseau,
France.; email: dominique.blouin@telecom-paris.fr

Abstract

The Architecture Analysis and Design Language
(AADL) is a rich component-based language for mod-
elling embedded systems. To ease processing AADL
models, OSATE, the reference tool for AADL, provides
the ‘instance’ model derived from base ‘declarative’
model/s. An instance model represents the operational
view of a declarative model in a simple object tree where
information is flattened (with no component extensions /
refinements) so that tools can easily analyze the model.
Note that information is lost in instantiation. Since the
instance model is a (un-symmetric) ‘view’ of the declara-
tive model, the capability to directly modify the instance
model requires a solution to the view-update problem.
We demonstrate the OSATE Declarative-Instance Map-
ping Tool (OSATE-DIM) to perform incremental dein-
stantiation in AADL. OSATE-DIM significantly eases
the development of AADL model processing tools for
analysis and code generation.

Keywords: view-update problem, AADL, de-
instantiation, RAMSES.

1 Introduction
The Architecture Analysis and Design Language (AADL) [1]
is used to model real-time embedded systems composed of
software and execution platform components tightly coupled
with actuators and sensors to interact with the physical world.
It is standardized by the Society of Automotive Engineers
(SAE-AS5506D) to be primarily used for scheduling/flow-
control analyses and code generation for various embedded
platforms. It is supported by the Open-Source AADL Tool
Environment (OSATE), which is the reference tool for AADL,
and released under the Eclipse Integrated Development Envi-
ronment (IDE).

OSATE includes two meta-models: Declarative and Instance.
Factorization of component declarations in AADL is made
possible through constructs like component extensions, refine-
ments and different levels of component abstractions allowing
for a rich specification of the structural and behavioral char-
acteristics of embedded systems in the Declarative part of the
language.

This richness of the declarative sub-language complicates
the analysis of an AADL model. To solve this, OSATE pro-
vides the simpler Instance metamodel extending the declara-
tive metamodel. An Instance model represents the run-time
configuration of a system. It is generated from the original
Declarative model through a transformation called Instantia-
tion. During Instantiation, all properties of the system com-
ponents and their elements like Features, Connections and
Modes are collected from all parent classifiers/specifications,
and collapsed into one entity. The architecture of the system
is represented in the Instance model through a containment
tree of components and other elements. Traces in the form
of references relate the generated Instance elements to their
corresponding Declarative elements.

Many AADL analysis tools work with the Instance model,
since all information is readily available in a single tree of
objects. Frequently, results computed by these tools must
be set in the original system model (e.g. static scheduling
tables computed by our MC-DAG tool [2] for automatic code
generation), or tools may even change the structure of the
system by splitting or merging components following the
application of some design patterns (e.g. RAMSES [3], an
AADL-based tool developed by our group that refines a model
taking into account a specific target operating system and
generates code from the refined model).

In the current OSATE, Instance models can be updated man-
ually or by tools. However, this is not recommended because
there are no means to reflect the changes back to the Declara-
tive model. This situation makes an Instance model an updat-
able view of the corresponding AADL Declarative model(s),
and our problem becomes similar to the well known view
update problem for databases [4] and for Model-Driven Engi-
neering (MDE) [5]. Synchronization of these view updates
(changes in Instance model) back to the base model (Declar-
ative model) is an important task to maintain consistency and
reliability of knowledge/data throughout the development pro-
cess (Fig. 1). Currently, tools must always take care of setting
their results at the right place in the Declarative model, which
is very cumbersome. Furthermore, the Instance model must
again be regenerated to remain consistent with the updated
Declarative model.

It is also more natural / intuitive for systems engineers to

Ada User Jour na l Vo lume 45, Number 1, March 2024

56 AADL Model Process ing and Analys is wi th OSATE-DIM

Figure 1: Process diagram of AADL analysis

work in a top-down approach. The information in instance
model is clear and concise because it is flattened. Hence, it
will be easier for an engineer to design the AADL model of
the system-under-study from its instance model rather than
the declarative model.

Therefore, providing an automated Instance model Deinstan-
tiation capability will be very beneficial for users of the grow-
ing AADL community, since it will allow tools to process the
simpler Instance model directly. This is a crucial advantage
especially that AADL is being more and more used in indus-
try. For instance, it is ranked among one of the most used
architecture description languages in industry [6] and even
the US Department of Defense has made it the heart of its
Digital Engineering Strategy [7].

2 OSATE-DIM
OSATE-DIM has been developed with the following key
objectives: maximum information preservation, minimal/sim-
plest change in the declarative model, and maximum effi-
ciency, while providing flexibility for users to take part in the
Deinstantiation decision algorithms.

OSATE-DIM supports Deinstantiation in many different sce-
narios. A View-Update, may be an in-place or an out-of-place
transformation. Consequently, the Model-Update, should be
an in-place or out-of-place transformation respectively. The
transformation rules for all the scenarios are the same. The
difference is only in the interface to the transformation rules.

Firstly, OSATE-DIM supports a state-based deinstantiation
scenario as shown in Fig.2.(i). This state-based case is derived
from the delta-based case as a pure backward transformation
when it is assumed there is no original Declarative model.
In this scenario, OSATE-DIM takes all information from the
Instance and creates the simplest Declarative model from that
information. By comparing the output of this scenario with
the original Declarative model (if it exists) used to create the
View, the user can also understand what kind of information
is lost in the Instantiation transformation.

Modifications of an instance model can be carried out in
two ways. In an in-place transformation, the changes are

made directly in the model. Hence, for an in-place View-
Update, the corresponding Update in the base Declarative
model should be in-place as well. That is, it should make
changes directly on the Declarative model. OSATE-DIM
detects the changes in this scenario, using VIATRA’s built-in
transformation engine (see section 3) that listens for changes
to query patterns in the View model as shown in Fig.2.(ii).

The scenario where an entirely new Instance model (with
modifications) is computed from the base Instance model, is
the out-place scenario as shown in Fig.2.(iii). In this case, a
new corresponding Declarative model should be constructed
reflecting the modifications, instead of directly modifying the
Declarative model.

In this scenario, the View-Updates can be computed from
differences between the new and original Instance models.
OSATE-DIM provides the delta-trace model to define trace
relations between an instance model and its out-of-place up-
date. The delta-trace model borrows concepts from EMF
Change [8] to store information regarding the specific change
operations that were performed on the Instance model to lead
to the new Instance model.

3 Implementation
The proposed tool, OSATE-DIM, has been implemented as
a set of Eclipse IDE-based plugins. The source code for the
tool is available in a GitLab repository1. Users can install this
tool into their Eclipse installations through an update-site2.

OSATE-DIM uses VIATRA3 for executing graph-
transformations. The Instance and Declarative models are
graphs where objects are nodes, and their relationships are
edges. VIATRA is a scalable reactive framework, which
allows for incremental execution of transformations. Incre-
mentality is offered by separating the pattern matching and
transformation steps. The transformation uses information of
each pattern (and its state of creation, updation, or deletion) as
input. When the state of a pattern changes, the corresponding
transformation rules are ‘fired’. A new match for a pattern is
a creation, the disappearance of a match is a deletion, and a
change in the properties of objects in the match is an update.
Patterns are specified through a Domain-Specific Language
(DSL) called Viatra Query Language. The transformations
are written in an Xtend-based DSL providing a model
manipulation Application Programming Interface (API).

OSATE-DIM is packaged as two plugins, one for the user-
interface, and the other of for providing the core transforma-
tion rules and framework. The transformations can be run
in a standalone mode, i.e. without the need for the Eclipse
IDE, as is done in the test classes (provided in a separate ‘test’
package).

1https://gitlab.telecom-paris.fr/mbe-tools/
osate-dim/

2https://mem4csd.telecom-paristech.fr/download/
update-site/osate-dim/

3https://projects.eclipse.org/projects/modeling.
viatra

Volume 45, Number 1, March 2024 Ada User Jour na l

https://gitlab.telecom-paris.fr/mbe-tools/osate-dim/
https://gitlab.telecom-paris.fr/mbe-tools/osate-dim/
https://mem4csd.telecom-paristech.fr/download/update-site/osate-dim/
https://mem4csd.telecom-paristech.fr/download/update-site/osate-dim/
https://projects.eclipse.org/projects/modeling.viatra
https://projects.eclipse.org/projects/modeling.viatra

R. Mi t ta l , D. B lou in 57

Figure 2: Possible AADL deinstantiation scenarios supported by OSATE-DIM

4 Validation and Scope
OSATE-DIM is validated through two case studies.

The first case-study is taken from the MC-DAG framework
where the change on Instance models consists of addition of
various mixed-criticality static scheduling tables and time-
related properties to various components of an unmanned
aerial vehicle control system. These additions need to be
reflected on the declarative side in the appropriate AADL
elements.

The second case-study is an example from the RAMSES tool,
which consists of various refinements of an instance model
corresponding to design patterns. This is a more complex
example which includes additions, deletions, and element
updates for the outplace scenario (figure 2). The RAMSES
refinement rules are described in detail in [3].

Scenarios were prepared for both the case studies, and the
OSATE-DIM tool was invoked for deinstantiation. Successful
deinstantiation was verified by instantiating the generated
declarative model, which should be equivalent to the initial
changed instance model. The entire test suite is also made
available in the tool repository as a specific test project.

It is to be noted that the current scope of OSATE-DIM is lim-
ited to component instances, features, connections, properties,
and modes, which are the major and most frequent AADL
constructs. We intend to integrate support for deinstantia-
tion of flow-specifications in later versions of the tool. It is
also envisioned to give users greater flexibility in terms of
level of modification of the declarative model in future itera-
tions. While the current implementation of OSATE-DIM is
designed with the principle of minimal changes, adding more
information to the deinstantiated declarative model could be
more desirable. For example, the engineer may not desire
any changes to the original component declarations of the
declarative model (for example, if the component is imported
from a component library which should not be modified). In
this case, new component declarations need to be added for
every change recorded, which is not a minimal change.

More information about the tool is available on the OSATE-
DIM web-site4. The tool is also listed on OpenHub5. Fur-
ther clarification of the technical concepts is given in [9]. A
demonstration of the tool was also presented in [10]. The
overall approach used for Deinstantiation within OSATE-
DIM can also potentially be applied for de-compilation of
various High-Level Languages for example from Rust, Swift,
or C/C++ to LLVM-IR [9].

4https://mem4csd.telecom-paristech.fr/blog/
index.php/osate-dim/

5https://openhub.net/p/osate-dim

5 Discussion
While developing OSATE-DIM we experienced some short-
comings and unnecessary complications of AADL that need
to be discussed within the community:

1. The current Declarative metamodel is highly compli-
cated, since it includes specific classes for each category
of Component, Feature, and Connection. This was done
to introduce constraints on component composition. The
Object Constraint Language (OCL) could be used to ex-
pressed these constraints instead of component category
subclasses.

2. In the current version of OSATE, there is no class in
the Instance model to represent Subprograms and Sub-
program Calls. Information for these elements is only
available from the Declarative model.

3. Another issue relates to Annexes. The core AADL lan-
guage can be extended by embedding sub-languages
such as the Behavioral Annex (BA) and the Error Model
Annex (EMV2). Currently those are not represented in
the Instance model although it is currently under devel-
opment for EMV2.

6 Envisioned Utility of OSATE-DIM
OSATE-DIM has been developed keeping in mind the needs
of both AADL-based tool developers and AADL-users. Sup-
port for various scenarios allows for integration of OSATE-
DIM into a wide array of workflows for AADL-based research
and development. For users, OSATE-DIM is envisioned
to provide incremental model-synchronization capabilities,
which ensures no loss and consistency of information. It also
simplifies the modification of AADL models for users, who
previously had to make changes in the Declarative models
directly.

For the AADL-based tool developer, OSATE-DIM is useful
for them by simplifying the development of their tool. Instead
of having to design complex algorithms to modify the Declar-
ative model at the correct location, the developer can simply
implement algorithms to modify the Instance model. They
can integrate OSATE-DIM within this modification (whether
in-place our out-of-place) to automatically perform the syn-
chronization with the quality of being the simplest changes
having least loss of knowledge.

This especially will simplify the migration of tools to later
versions/implementations of AADL.AADL targets signifi-
cant changes of the Declarative metamodel on the lines of
suggestion (1) in Section 5. If developers have integrated
OSATE-DIM into their pipeline being therefore isolated from
the Declarative model, they need not worry about such up-
dates of the Declarative language, since OSATE-DIM after
having been updated will take care of interfacing tools with
Declarative models.

Ada User Jour na l Vo lume 45, Number 1, March 2024

https://mem4csd.telecom-paristech.fr/blog/index.php/osate-dim/
https://mem4csd.telecom-paristech.fr/blog/index.php/osate-dim/
https://openhub.net/p/osate-dim

58 AADL Model Process ing and Analys is wi th OSATE-DIM

7 Related Work
Many tools apply the concept of views to MDE. EMF Views
[11]uses an SQL-like DSL to define a virtualization engine. It
looks at views as non-concrete entities, and implements them
as virtualization of real base models so that there is no data
duplication. Thus, changing data in the view implies change
of the data in the base model.

OpenFlexo [12]is a tool for homogeneously handling and
relating data from various sources. As soon as a view is
computed, it is connected with different base models for
synchronization. The synchronization is conceptually similar
to EMF Views.

ModelJoin [13] is a tool for the creation of heterogeneous
models. Its DSL is used to define not just the elements of
the view, but also the meta-model of the view. Support for
editability inside the views is provided using OCL constraints.

Orthographic Software Modelling (OSM) [14] is a hub-and-
spoke architecture-based approach and tool that allows for the
definition of multiple views from a Single Underlying Model
(SUM). The definition is through a unique bidirectional trans-
formation between the SUM and each view. Vitruvius [15]
is based on the OSM approach but instead of a SUM, it uses
a Virtual-SUM that is a non-invasive combination of many
legacy metamodels. Flexible view definition allows restric-
tion of possible view updates. Updating a view results in
execution of corresponding synchronizing transformations.

These methods provide light-weight backward transforma-
tions, through virtualization using invertible transformations
to define virtual views (EMF Views, OpenFlexo), or through
constraints and restrictions on possible model edits (Mod-
elJoin, OSM, Vitruvius). They are not as flexible and as
specifically made for AADL as OSATE-DIM and often re-
quire to severely limit the class of possible updates to the
view to guarantee well-behavedness.

8 Conclusion
In this article, we demonstrated a novel OSATE-based
Declarative-Instance Mapping tool, OSATE-DIM, for incre-
mental deinstantiation of AADL models. Deinstantiation
is an important task for synchronization of information in
the view-update paradigm. OSATE-DIM is a light-weight
tool that accomplishes the task in various complex scenar-
ios. An additional delta-trace meta-model is developed with
OSATE-DIM, to track out-of-place model refinements. The
tool, verified through two case studies, is available online.

References
[1] P. Feiler, D. Gluch, and J. Hudak, “The architecture anal-

ysis & design language (aadl): An introduction,” Tech.
Rep. CMU/SEI-2006-TN-011, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, 2006.

[2] R. Medina, E. Borde, and L. Pautet, “Scheduling multi-
periodic mixed-criticality dags on multi-core architec-
tures,” in 2018 IEEE Real-Time Systems Symposium
(RTSS), pp. 254–264, 2018.

[3] S. Rahmoun, A. Mehiaoui-Hamitou, E. Borde, L. Pautet,
and E. Soubiran, “Multi-objective exploration of archi-
tectural designs by composition of model transforma-
tions,” Software & Systems Modeling, vol. 18, 02 2019.

[4] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Her-
mann, and F. Orejas, “From state- to delta-based bidi-
rectional model transformations: The symmetric case,”
vol. 6981, pp. 304–318, 10 2011.

[5] H. Klare, M. E. Kramer, M. Langhammer, D. Werle,
E. Burger, and R. Reussner, “Enabling consistency in
view-based system development — the vitruvius ap-
proach,” Journal of Systems and Software, vol. 171,
p. 110815, 2021.

[6] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and
A. Tang, “What industry needs from architectural lan-
guages: A survey,” IEEE Transactions on Software En-
gineering, vol. 39, no. 6, pp. 869–891, 2012.

[7] A. Boydston, P. Feiler, S. Vestal, and B. Lewis, “Archi-
tecture Centric Virtual Integration Process (ACVIP): A
Key Component of the DoD Digital Engineering Strat-
egy,” tech. rep., Software Engineering Institute, 2019.

[8] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMF: Eclipse Modeling Framework 2.0. Addison-
Wesley Professional, 2nd ed., 2009.

[9] R. Mittal, D. Blouin, A. Bhobe, and S. Bandyopadhyay,
“Solving the instance model-view update problem in
aadl,” in International Conference on Model Driven
Engineering Languages and Systems 2022, 2022.

[10] R. Mittal and D. Blouin, “Osate-dim solves the instance
model-view update problem in aadl,” in Proceedings
of the 25th International Conference on Model Driven
Engineering Languages and Systems: Companion Pro-
ceedings, MODELS ’22, (New York, NY, USA), p. 1–6,
Association for Computing Machinery, 2022.

[11] H. Bruneliere, J. Garcia, M. Wimmer, and J. Cabot,
“Emf views: A view mechanism for integrating hetero-
geneous models,” vol. 9381, 10 2015.

[12] S. Guérin, J. Champeau, J.-C. Bach, A. Beugnard,
F. Dagnat, and S. Martínez, “Multi-Level Modeling
with Openflexo/FML,” Enterprise Modelling and Infor-
mation Systems Architectures, vol. 17, 2022.

[13] P. Langer, K. Wieland, M. Wimmer, and J. Cabot, “Emf
profiles: A lightweight extension approach for emf mod-
els,” Journal of Object Technology, vol. 11, p. 8, 04
2011.

[14] C. Atkinson, “Orthographic software modelling: A
novel approach to view-based software engineering,”
in Modelling Foundations and Applications (T. Kühne,
B. Selic, M.-P. Gervais, and F. Terrier, eds.), (Berlin,
Heidelberg), pp. 1–1, Springer Berlin Heidelberg, 2010.

[15] H. Klare, M. E. Kramer, M. Langhammer, D. Werle,
E. Burger, and R. Reussner, “Enabling consistency in
view-based system development — the vitruvius ap-
proach,” Journal of Systems and Software, vol. 171,
p. 110815, 2021.

Volume 45, Number 1, March 2024 Ada User Jour na l

 59

Ada User Journal Volume 45, Number 1, March 2024

LAMP: to Shed Light on AADL Models

Pierre Dissaux

Ellidiss Technologies, 24 quai de la douane, 29200 Brest, Brittany, France ; Tel: +33 298 45 18 70; email:

pierre.dissaux@ellidiss.com

Abstract

LAMP is an introspective analysis and processing
framework for AADL. With LAMP, exploration,
verification, transformation or any other processing
rules are directly embedded inside the AADL model as
annex subclauses. LAMP is based on the underlying
LMP (Logic Model Processing) technology that itself
leverages the Prolog language and a Prolog inference
engine. This paper illustrates the use of LAMP by five
practical use cases addressing some of the most
important design issues in critical real-time software
development.

Keywords: AADL, Prolog. LMP, LAMP

1 Introduction

LAMP [6] (Logic AADL Model Processing) is one of the

model processing features that are provided by the AADL

Inspector tool [7]. It addresses any kind of AADL [2] model

processing, such as:

- AADL model exploration

- AADL model static analysis

- X to AADL and AADL to X model transformations

LAMP is an “online” model processing tool (the model and

the processing functions are collocated), as opposed to LMP

[4,5] (Logic Model Processing) that is a more conventional

“offline” model processing solution where the processing

functions are stored in a tool configuration area. However,

many LMP features are reused by LAMP, and they are both

based on a particular way to use of the Prolog language [1].

This paper provides a description of this LAMP framework

and a selected list of practical use cases that are all supported

by the current AADL Inspector distribution.

2 The LAMP framework

The LAMP framework is composed of a control panel

(LAMP Lab) that is part of the AADL Inspector Graphical

User Interface and a library of predefined rules (LAMP Lib)

expressed in Prolog source code embedded inside AADL

annexes in packages.

LAMP Lab allows for building Prolog fact bases on several

sources (AADL, SysML, FACE, Capella, XML, CSV,

simulation traces...) and specifying the processing goals to

reach.

LAMP Lib contains accessors to the AADL model

(declarative model, instance model, behavior annex, error

annex), several predefined model transformations (SysML

to AADL, FACE to AADL, Capella to AADL, AADL to

HOOD), as well as an AADL printer (unparser), an end-to-

end flow latency computation algorithm and a framework to

implement cyber-security policies.

An end-user can interactively write his own processing rules

within AADL Packages and combine them with the existing

library.

As shown in Figure 1, the LAMP framework can also be

represented by the association of a set of Prolog fact bases

and rule bases.

The fact bases correspond to the various kinds of input data

that can be processed, including of course the AADL model

itself, that is composed of a list of packages. Other fact bases

can be added and may come from any other source of

information thanks to dedicated syntactic transformations

into Prolog. This is in particular the case for Prolog

representations of other models or tools results.

The rule bases include the predefined LAMP Lib as well as

all the rules that are embedded inside the AADL applicative

model packages. A special case concerns the high-level goal

that is submitted as the query to the Prolog engine. By

convention, these goals are located inside an AADL annex

subclause associated with a component instead of a package.

3 LAMP use cases

The predefined rules provided by LAMP Lib enable quick

and easy development of simple exploration and processing

features by the end user. This chapter shows a few more

advanced LAMP use cases that can also be adapted for other

Figure 1 the LAMP framework

60 LAMP: to Shed Light on AADL Models

Volume 45, Number 1, March 2024 Ada User Journal

similar usages, as all the corresponding Prolog source code

is made available in LAMP Lib.

In this chapter, we address some of the most important

design issues in critical real-time software development and

show how LAMP can help solving them:

- Functional chain latency

- System to software model bridging

- Reverse engineering

- Cyber security analysis

- Composite assurance cases

3.1 Scheduling aware flow latency analysis

One of the main high level analysis goals for critical real-

time systems is the ability to estimate the end-to-end latency

of a global system functional chain. Such a functional chain

typically involves a distributed architecture composed of

sensors, software processing and actuators. All that can be

properly described in AADL and the logical link between the

ultimate source of information (usually a sensor) and the

ultimate destination of the same information (usually an

actuator) can be described by AADL flows.

Moreover, the AADL architecture can carry all the details

that are required to perform precise timing analysis, and in

particular to evaluate the response time of each concurrent

thread and bus message.

These two individual analyses of the same AADL

architecture, i.e., end-to-end flow analysis and response time

analysis can be efficiently combined to offer a more precise

estimate of function chains latency. We named this approach

SAFLA (Scheduling Aware Flow Latency Analysis) and

implemented it as a LAMP service.

Running SAFLA with LAMP Lab consists in automatically

executing the following sequence of actions:

- Launching one of the timing analysis tools that are

available with AADL Inspector (Cheddar or Marzhin)

- Computing the response time of each thread and bus

message and putting these data into a separate Prolog

facts base.

- Performing end to end flow analysis to identify all the

contributors (threads and bus messages) of each

functional chain.

- Summing up the response time of all the contributors to

provide an estimate of the end-to-end flow latency.

Because it considers thread interferences and the behaviour

of the real-time scheduler, SAFLA estimates are more

accurate than other end-to-end flow latency analysis

techniques that are based on static thread properties such as

its period, deadline or user defined individual latency.

3.2 Model transformations into AADL

Another important goal while integrating system wide

Model Driven Engineering solutions is the ability to

implement model to model transformations. In this area, the

realization of an efficient path between the system

engineering and the software engineering activities is a

frequent request of end users and tool-chain integrators.

Let us consider, as a representative example, the

transformation between a SysML (v1) global system model

and an AADL model representing its software sub-systems.

The aim of such a transformation is to ensure that all the

useful information already expressed at system level is

preserved while going down into the details of software

design and analysis.

There are several well documented approaches to address

this kind of needs and many technical solutions to implement

them.

One of the common approaches consists in overloading the

source system model by software details so that the

transformation into the destination software model becomes

easier. With SysML v1, this is typically realized by defining

an AADL profile and associating entities at system level

with AADL stereotypes. This approach has two main

drawbacks:

- It overloads the system model with data that cannot be

processed during system engineering activities.

- It requires an adaptation of the SysML design tools to

support the AADL profile.

With LAMP Lab, the approach is different and does not have

these drawbacks. It relies on a two steps process. The first

step is purely syntactic and converts the source system

model into a dedicated Prolog fact base. The second step

consists in implementing the model transformation

semantics with a Prolog rule base. An initial version of these

rules is provided in LAMP Lib as a template. The LAMP

approach has the following advantages:

- It preserves a clean separation of the source and

destination models.

- It does not require a configuration of the upstream

engineering tools.

- The transformation rules can easily be customized to

implement a specific conceptual mapping between the

two models.

- The same transformation rules can be shared for all

input models, and then stored inside the common LAMP

Lib, or defined locally within the destination project to

address more specific mappings.

- The transformation rules can easily apply to a fusion of

source fact bases originating from different modelling

languages.

Figure 2 Scheduling Aware Flow Latency Analysis

Figure 3 Model transformations into AADL

P. Dissaux 61

Ada User Journal Volume 45, Number 1, March 2024

3.3 Textual AADL reverse engineering

The preceding section deals about model transformations

ending to the creation of AADL models. Reverse path is also

possible, i.e., generating a new kind of model from a source

AADL project. An example of that is converting a set of

AADL textual files to feed a graphical design tool for reverse

engineering purposes.

The primary representation of the AADL language is its

textual syntax. A graphical notation is also specified by the

standard, and it can be helpful for describing the software

architecture in a more visual way. However, this graphical

notation may be used in different ways. It may simply mirror

the architectural part of the textual representation with

graphical artefacts (declarative model) or provide a view of

the hierarchical decomposition of the top-level system

(instance model). Note that a third possible graphical

representation will consider the allocation of software

instances onto hardware instances by graphical containment

(deployment model).

The AADL variant of the Stood design tool (Stood for

AADL) supports graphical edition of both the declarative

and the instance models. When associated with the HOOD

software design methodology, the instance model approach

is required for the main “system to design” and its

environment, whereas the declarative model option can be

used to describe libraries of reusable components. AADL

textual notation can be automatically generated by Stood

from the combination of declarative and instance graphical

models representing a complete HOOD design.

Corresponding AADL files can then be loaded into any

compliant AADL text editor such as AADL Inspector to

perform static, timing, safety, and security analysis.

Although Stood offers its own AADL import feature, a more

flexible reverse path has been implemented within AADL

Inspector with LAMP. It consists of doing a model

transformation from the original AADL project to a HOOD

Standard Interchange Format (SIF) file that represents the

AADL instance model.

This transformation is implemented by two LAMP modules.

The first one, genSIF, provides the entry point for the

reverse engineering operation and the production rules for

the SIF output file. The second module, aadl2hood,

implements the mapping between an AADL instance model

and the HOOD entities and relationships.

These rules are available in LAMP Lib and can thus be easily

customized if needed. Moreover, they can be used as a

template to implement other reverse engineering approaches

and target different design tools.

3.4 Security policy checker

Cyber security has become a very important concern for

embedded real time critical systems. The level of

confidentiality, integrity and availability of these system

must thus be evaluated as early as possible during the

development process to reduce the threats of unauthorized

disclosure, modification, or loss of data when the software

becomes operational.

Ideally, cyber security criteria should be addressed “by

construction” thanks to a well-defined modular architecture

of the “system to design” associated with suitable visibility

rules. The “data hiding” and “low coupling” principles

supported by the HOOD methodology can be a way to reach

this goal. However, it is also recommended to perform

dedicated early analysis and verification activities to check

that the applicable security policy is respected.

As opposed to safety engineering where the verification

processes have been well formalized and standardized for

decades, security engineering approaches remains much

more specific to limited scopes, at corporate, project, or

sometimes team level. The online, flexible, and rigorous

solution offered by LAMP is thus very beneficial to adapt

the security verification process to each practical context.

Although significant work has been done on that topic, the

AADL standard does not include a published security annex

to extend the language specification for cyber security

analysis purposes. Moreover, no general recommendation

about the AADL security verification process is proposed by

the standard. All that must thus be done at a tool, project, or

user level. With LAMP, we have the ability to manage that

at a project level, i.e., to embark the security verification

rules inside the AADL model itself.

Concretely, supporting cyber-security analysis features with

AADL requires the three following preparatory actions that

are illustrated below with fragments of a simple example.

Define a security model, typically by specifying a dedicated

property set to add security related information to AADL

artefacts. Such additional information will thus become

directly available as LAMP facts.

 property set Lamp_Security_Model is

 Security_Level : aadlinteger 1 .. 5

 applies to (Data);

 end Lamp_Security_Model;

Formalize a security policy that is appropriate for the current

project and its use cases. Such a policy can take the form of

a list of verification goals that may need to be reached

according to more or less complex logics. LAMP goals fit

well this need.

 checkSecurityRules :-

 /* Sec_R1 */ checkFlowSecurity,

 /* Sec_R2 */ checkMaxSecurityLevel,

 /* Sec_R3 */ checkNoWriteDown.

Implement each individual security policy rules associated

with the verification goals. LAMP rules are a good solution

to achieve that.

Figure 2 Textual AADL reverse engineering

62 LAMP: to Shed Light on AADL Models

Volume 45, Number 1, March 2024 Ada User Journal

 /* Sec_R3: When two components are */

 /* connected via a shared Bus, */

 /* they must comply with the */

 /* No-Write-Down rule. */

 checkNoWriteDown :-

 isAADLBusBinding(C),

 isAADLConnection(P,T,I,C),

 getConnectionEnds(P,T,I,C,Xs,Xd),

 getMaxSecurityLevel(Xs,Ls),

 getMaxSecurityLevel(Xd,Ld),

 Ls > Ld,

 printMessageSec_R3(C,Ls,Ld).

With this solution, the security model, security policy and

security rules can be fully customized to fit each project

requirements. The rules can either be stored inside LAMP

Lib for a higher reusability or kept within the AADL model

for a higher confidentiality.

3.5 Composite assurance cases

In the previous sections, we have presented four individual

model processing use cases that take benefit of the LAMP

technology. Compared to other frameworks, LAMP inherits

the advantages of the Prolog language, and especially its

capacity to provide at the same time powerful model

agnostic data representations (fact bases) providing implicit

accessors and iterators, as well as rigorous logic

programming features (rule bases).

In addition to these characteristics that are common to all

usages of Prolog, LAMP leverages its deep integration with

the AADL ecosystem. The exhaustive representation of an

AADL project, including annexes, under the form of a fact

base can be enriched by other sources of information also

handled as additional mergeable fact bases. These

complementary facts may come from any other phases of the

development process (requirements engineering, system

engineering, coding, testing…), or represent results

previously obtained by other modelling, analysis, or

verification tools.

All that makes LAMP a good candidate to formalize

complex composite assurance cases that may need to be put

in place to comply with high demanding V&V processes.

As opposed to the preceding use cases that are based on pre-

existing features offered by LAMP Lib, such assurance cases

implementation requires that new sets of rules are added by

the development team.

4 Related works

A few dedicated languages like REAL [8] or RESOLUTE

[9] have been developed to offer advanced online processing

solutions for AADL.

The main difference with LAMP is that they are not

leveraging an existing standard solution like Prolog. They

thus require the specification of a complete language syntax,

semantics and run-time environment, and its maintenance

over the time.

5 Conclusion

This paper shows how the LAMP framework leverages the

Prolog language to propose a powerful and flexible solution

to implement online model exploration and processing

features. LAMP is currently strongly focused on the

realization of AADL related analysis and verification

activities and is implemented as a part of the AADL

Inspector tool.

However, its general principles (Prolog rules embedded

inside the model to be processed) could be applied to any

other modelling language and especially those supporting a

textual notation such as SysML v2 [3].

References

[1] David S. Warren and all (2023), Prolog: The Next 50

Years, LNAI 13900, Springer

[2] SAE International (2022), Architecture Analysis &

Design Language (AADL),

https://www.sae.org/standards/content/as5506d/.

[3] OMG (2023), System Modeling Language™ v2,

https://github.com/Systems-Modeling/SysML-v2-Release.

[4] P. Dissaux and P. Farail (2014), Model Verification:

Return of Experience, 7th European Congress on

Embedded Real Time Software and Systems (ERTS).

[5] P. Dissaux and B. Hall (2016), Merging and

Processing Heterogeneous Models, 8th European

Congress on Embedded Real Time Software and

Systems (ERTS).

[6] P. Dissaux (2020), LAMP: A new model processing

language for AADL, 10th European Congress on

Embedded Real Time Software and Systems (ERTS).

[7] AADL Inspector:

https://www.ellidiss.fr/public/wiki/inspector

[8] Gilles O., Hugues J (2010), Expressing and Enforcing

User-Defined Constraints of AADL Models, ICECCS

2010, pp 337-342.

[9] A. Gacek and all (2014), Resolute: an assurance case

language for architecture models, HILT.

https://www.sae.org/standards/content/as5506d/
https://github.com/Systems-Modeling/SysML-v2-Release
https://www.ellidiss.fr/public/wiki/inspector

63

Challenges in Model Synchronization for
Information Preservation Illustrated with the FACE
and AADL Standards

Dominique Blouin, Anish Bhobe, Laurent Pautet
LTCI Lab, Télécom Paris, Institut Polytechnique de Paris,
France; email: <firstname>.<lastname>@telecom-paris.fr

Abstract

This article explores the challenges in Model Synchro-
nization in Model Driven Engineering, focusing on In-
formation Preservation. It introduces modern architec-
ture description languages such as FACE and AADL
and describes the challenges in reliably maintaining
consistency of their models, as well as determining how
to propagate changes of one model to the other. It de-
scribes ongoing efforts including improving Information
Preservation in model synchronization approaches such
as Triple Graph Grammars, as well as the required foun-
dations and ideas for the establishing effective Model
Management and Synchronization frameworks.

Keywords: Model Synchronization, Model Management,
Model Driven Engineering, AADL, FACE

1 Introduction
Modern engineered systems are increasingly complex and
expensive to develop and this is further exacerbated in the case
of safety-critical systems where certification and reliability
of systems is paramount. Using conventional waterfall or
V-cycle development methods lead to errors being discovered
late during the testing and integration phase. Significant time
and financial investment is wasted to fix the issues in an
already implemented system.

This has increased the adoption of Model Driven Engineering
(MDE) in development of critical systems. In MDE process,
the developers build Models i.e. abstractions of the system,
which are used for validation and generation of the software
code. The various components and subsystems are modeled
using different models which are brought together through
the process of Virtual Integration during the end of the design
phase. This allows integration testing early in the develop-
ment process, highlighting any flaws in design before any
effort is committed to it.

The models are described in Domain Specific Modeling Lan-
guages (DSML) that can capture the different but comple-
mentary aspectsof a system. Thus we have to use multiple
DSMLs to describe all the aspects of the entire system. How-
ever, there is a significant overlap in information captured by
the many aspects of the system. When a model is edited, any

changes in the information in the overlapping part must be
propagated to the other models.

A well known error caused by the lack of synchronization
was in the development of the Airbus A380 wherein the CAD
software used between the teams in France (CATIA 5) and in
Germany (CATIA 4) had differences in calculation of cable
lengths. As such, while each team independently could create
models that passed validation, the final aircraft had cables
that were shorter that required by the airframe and thus cost
an additional estimated 4.8 billion euros in development [1].

Model Management approaches attempt to solve this prob-
lem by applying changes and validation globally to the set
of models instead of locally to each model, and synchronize
changes across models to ensure consistency (Model Synchro-
nization). They also can provide virtual integration capability
to verify and validate the system as a whole, with all models
working together similar to the integration step within conven-
tional software development. These processes are generally
implemented as a set of Model Transformations (MT) which
contain the rules to generate target (unmodified) models from
source (modified) models. However, not all the information
in the target model is available to the source and thus may
be erased by the model transformation. As such, ensuring
that the information is preserved during the MT process is
important for the reliability of the MDE process.

Model Management and Model Synchronization approaches
are increasingly attempting to reduce the information loss by
using methods such as Incremental Model Transformation [2]
as well as newer Generalized Concurrent Rules [3] to reduce
the information lost. However, there is no way of comparing
the methods and their preserved information as no metric for
analysing Information Preservation exists.

2 Motivation
The increasing use of MDE in aviation, automobiles and
other safety-critical fields puts increasing demand on improve-
ments in the space of Model Synchronization and Information
Preservation. One such challenging example is the case of
synchronization of models of the Architecture Analysis and
Design Language (AADL)1 and the Future Airborne Capabil-
ities Environment (FACE)2.

1https://www.sae.org/standards/content/as5506d/
2https://www.opengroup.org/face

Ada User Jour na l Vo lume 45, Number 1, March 2024

https://www.sae.org/standards/content/as5506d/
https://www.opengroup.org/face

64 Chal lenges in Model Synchron izat ion and In for mat ion Preser vat ion

Figure 1: FACE and AADL information overlap [6]

2.1 FACE
FACE is a technical standard for the reference architecture
for portable software components. It is an Architecture De-
scription Language (ADL) that specifies different Units of
Conformance (UoC) or Units of Portability (UoP) and the
data that they exchange, as well as rich set of software data
structures. However, it lacks language constructs to define
component behaviors or non-functional properties such as
timing, resource consumption, etc.

2.2 AADL
AADL is an SAE international Aerospace Standard (AS). It
is an ADL that supports performance and safety analyses
and code generation (synthesis) on descriptions of computer
hardware, software representations, and hierarchical system
compositions. It allows specific description of threading,
processes, scheduling etc. of systems.

2.3 FACE and AADL
FACE describes the various Units of Conformances and Units
of Portability and the data exchanged between them, while
AADL can use these UoCs and UoPs to model the entire
Cyber-Physical System with the hardware and operational
properties such as behaviors, threading, task timings, etc.
This allows analysis tools to detect problems of the integrated
system such as memory over-usage, overrun task deadlines,
unhandled error propagation etc. from AADL models of
systems, while FACE focuses on reusability and modularity,
software requirement conformance, and the interoperation of
system or components through shared protocols.

Information such as the message types, the details on portabil-
ity and connections, message routing etc. as shown in fig. 1.
Any change in a FACE model that changes these properties
will invalidate the corresponding AADL model. Thus, such
changes must be propagated to the generated AADL model
and vice versa in order to keep the models consistent. Such
propagation is described by Model Transformations that pro-
vide rules defining how the synchronization must take place.

To this end, there is a need to find the best Model Transforma-
tion (MT) approaches for implementing such synchronization
based on computing performance, as well as Information
Preservation capability. There is work on benchmarking and
comparing of MT approaches [4] [5] but no such benchmark
or metric for analyzing information preservation exists.

Figure 2: A Triple Graph Grammar rule for mapping a FACE
unit of portability with an AADL process

3 Background
3.1 Model Transformations
Model Transformations (MT) can translate a model to another
model in the same or a different DSML. A MT generally
define these as a set of transformation rules or procedures.
MTs that create entire target models from the source models
at every change are known as Batch Model Transformations,
while MTs that can only update the set of inconsistent model
elements by applying only the relevant subset of rules are
known as Incremental Model Transformations.

3.2 Triple Graph Grammar
Triple Graph Grammars (TGG) [7] [8] are a well formalized
method for bi-directional incremental Model Transformations.
A TGG is a set of 3 Graph Grammars, each of which describes
how a graph can be constructed by a set of transformation
rules. All models in a TGG are interpreted as graphs. A TGG
describes the construction of 3 models simultaneously: the
Left Model (e.g. FACE), the Right Model (e.g. AADL) and
a Trace Model that links the elements that are constructed
together. A TGG thus contains rules that define how a source
model is edited, which rules to correspond to target model
and which rules to apply on the target model. Either Left
or Right model may be a source. As such, the TGG rules
can construct the entirety of the Left Model from the Right
Model, or vice versa, as well as only synchronize updates
by applying only a subset of rules. For illustration, fig 2
shows simple left and right graphs being connected via a
Correspondence Graph in the center. Within such a set of
models, in case the uop element is created in the left graph
(as marked by <create>) then, the set of provided rules can
automatically generate (marked by <generate>) the process-
ForUoP element in the right graph, and also add the uop2proc
correspondence element between the two graphs. uop only
corresponds to processForUoP if their parents i.e. architec-
ture and system correspond to each other. As such, we can
say that in the correspondence model, uop2proc depends on
arch2sys

While this method is well formalized and robust, it often
applies rules redundantly. For example, consider a case where
a new node is added as a root in the source model. TGG will
revoke all the relations, create a root node in the target model
and then apply the required rules to create the sub-tree of the
target model from the source model, instead of re-using the
existing model elements. Any time the types of an element
or its hierarchy is changed, the correspondence relations are
revoked and the tree has to be recreated.

Volume 45, Number 1, March 2024 Ada User Jour na l

D. Blou in , A. Bhobe, L . Paute t 65

4 Challenges
4.1 Information Preservation (IP)
There has been work on improving both the computational
performance as well as IP by using Incremental Model Trans-
formations which preserve information by simply preserving
the target model’s unedited elements. However, there may
still be information loss in the edited sections. Examples of in-
cremental MT tools are VIATRA3, YAMTL4, MoTE (TGG)5

and eMoflon (TGG)6.

A well known case in information loss in TGGs occurs for
fields in target model’s modified elements that were not cap-
tured by the source model. Whenever a delete and re-create
takes place, for example in fig. 2, if architecture is re-parented.
The system will get re-parented and processForUoP will be
deleted and re-created. During the delete the category field
will be deleted and the information in it will be lost.

4.2 Non-Bijective Relations
Languages like AADL use concepts of Inheritance and Refine-
ment commonly seen within Object-Oriented Programming.
These concepts allow multiple AADL components to derive
from the same base AADL system properties. As processes
and other components in AADL are linked to elements from
FACE such as UoC, any addition of elements or structural
changes in the FACE model need to be propagated to the
AADL model. However, this gives rise to the question of
where in the inheritance hierarchy should the change take
place, as a modified element may require a modification of
the base class, or a refinement of the same. Mittal et al [9]
tackle this problem specifically for AADL instancing trans-
formation.

4.3 Recovery from Inconsistent States
AADL and FACE ecosystems also contain specialized editors
and tools that help develop these models. At certain times,
concurrent accesses or modification to both models being
synchronized can leave the system in an inconsistent state.
As such, the synchronization process needs to identify the
information from the two models that is to be preserved in
preference to the other. Virtual Integration processes such as
System Architecture Virtual Integration (SAVI) [10] define
and require a Single Source of Truth (SSoT) that contains the
information that is considered correct or has authority over
other sources of information. These approaches generally
use models that can be demarcated into SSoT and dependent
models. But as AADL and FACE capture different aspects
better, they must be considered as both Sources of Truth.
Thus we cannot necessarily define a single source of truth,
especially in a synchronization process where the two models
can be considered to be separate but equally important.

We can often identify cases of information loss and correct
it and find specific solutions for particular uses. However,
the lack of any formal metric on the amount and type of

3https://projects.eclipse.org/projects/modeling.
viatra

4https://yamtl.github.io/
5https://www.hpi.uni-potsdam.de/

giese/public/mdelab/mdelab-projects/
mote-a-tgg-based-model-transformation-engine/

6https://emoflon.org/

information preserved poses significant challenge in compar-
ing approaches with each other to find the most appropriate
method.

The following research questions are of great importance:

1. How do we measure Information Preservation in Model
Transformations?

2. Under what circumstance may information be lost in
each approach?

3. What is the appropriate location for an information?
4. Which information in a conflict is correct?

5 State of work on reducing information
loss in TGG

To tackle the problem of information loss during the process
of synchronization due to the delete and create operations, Ko-
siol et al. [3] propose the inclusion of generalized concurrent
rules (GCR). The GCR use Negative Application Conditions
(NACs) to recognize elements that will be deleted and re-
created and instead preserves and re-uses such elements to
avoid the loss of uncaptured fields. The work further pro-
vides proofs that for TGGs that have completely specified
NACs and consist of monotonic graph transformations that
are covered by the approach, information loss of such kind is
prevented.

However, this adds additional constraints on the developers to
add the NACs as well as to ensure monotonic transformations.
Monotonic transformations involve rules that square such as
architecture and arch2sys in fig 2 form with uop and uop2proc
i.e. for each pair of rules (f, g) that transform a model M into
M1 and M2, there exists a pair (f ′, g′) that transforms M1

and M2 into the same model M ′. As such, the Information
Preservation is limited to a subset of the set of possible TGGs
and also requires additional work to specify the NACs.

6 Perspective
There is a need for identifying the cases and causes of Infor-
mation loss, as well as developing generalized frameworks
that can patch the limitations of the approaches, or at least
recognize and warn the users in case a change would lead to
Information Loss.
6.1 Information Preservation Metric
Information Preservation in a primitive model element is non-
probabilistic - it is either preserved, lost, or imprecised but is
not corrupted in the MT process so long as the MT approach
and the rules are correctly implemented to match the required
synchronization. Using this we analyze patterns or cases
where information is always preserved, deliberately deleted
or sometimes lost. Such a metric will be useful to evaluate
the previous body of work in Information preservation, and
also provide a scaffolding for the future work.
6.2 Architecture Centric Model Management (AC-

MoM)
ACMoM7 is a framework built to support the Architecture
Centric Virtual Integration Process (ACVIP) [11] The frame-
work is based on Hierarchical Megamodels [12] and man-
ages the relationships and consistency between different mod-
els. It considers the relations for model synchronization as

7https://mem4csd.telecom-paristech.fr/blog/
index.php/acmom/

Ada User Jour na l Vo lume 45, Number 1, March 2024

https://projects.eclipse.org/projects/modeling.viatra
https://projects.eclipse.org/projects/modeling.viatra
https://yamtl.github.io/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/mote-a-tgg-based-model-transformation-engine/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/mote-a-tgg-based-model-transformation-engine/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/mote-a-tgg-based-model-transformation-engine/
https://emoflon.org/
https://mem4csd.telecom-paristech.fr/blog/index.php/acmom/
https://mem4csd.telecom-paristech.fr/blog/index.php/acmom/

66 Chal lenges in Model Synchron izat ion and In for mat ion Preser vat ion

black-boxes and can use different Model Synchronization
approaches for different relations. ACMoM also maintains a
well typed understanding of the models that are managed and
can thus analyse the set of models as well as the relationships
at large scale. As such, it can act as a platform to analyse In-
formation Preservation as well as being able to warn users or
conditionally apply the transformations if required i.e. apply
Change Policies as described in section 6.3.

6.3 Model Change Policies
Completely solving the problem of Information Preservation
in Model Synchronization approaches is difficult and may
not be possible or scalable for all the approaches. However,
Information Loss can be identified during the use of a tool
and the cases can be noted. In such cases, even if an approach
is lossy, an external intervention can allow preserving or
restoring information. As such, Model Management methods
can analyse the used models and transformations to recognize
loss cases automatically, or based on heuristics created by the
users and apply specific strategies to counter the issues. The
strategies can be based on:

• Using different approaches based on the IP metrics or
other criteria.

• Adding additional conditional rules to store and preserve
information that is known to be lost.

• Disallowing/Replacing changes on the input that lose
information in favor of other changes that have the same
effect but better preserve information.

• Warning the user of the information loss for manual
preservation.

6.4 Authoritative Source of Truth
To solve the problem of Single Source of Truth noted in
section 4.3, there is a notion of Authoritative Source of Truth
(ASoT)8 which defines which model(s) is the Source of Truth
for the given information. As such, a model management
framework can use the ASoT to decide the transformation to
use, and which information is dropped and updated in favor
of the ASoT. The ASoT must be organized on the basis of the
technological and conceptual domains instead of the various
models or programs in use. Such ASoTs can also include
requirement models, engineering costs and other data, and
can be leveraged by the model synchronization as well as the
validation involved.

7 Conclusion
In summary, the increasing complexity of modern safety-
critical systems requires MDE for early design verification
and validation and development. The use of multiple mod-
els gives rise to the challenge of model synchronization, es-
pecially in cases such as AADL and FACE in the aviation
domain. We look at TGGs as a Model Synchronization ap-
proach as well as the effort made to improve Information
Preservation with methods such as Generalized Concurrent
Rules (GCR). However, a crucial need exists for a metric
to quantify and identify information loss. Ongoing and fu-
ture work includes development of Model Change Policies to
automate identification and/or mitigation of information loss.

8https://www.omgwiki.org/MBSE/doku.php?id=mbse:
authoritative_source_of_truth

References
[1] Admin, “Why do projects fail?.” "https://

calleam.com/WTPF/?p=4700", Jan 1970.

[2] D. Hearnden, M. Lawley, and K. Raymond, “Incremen-
tal model transformation for the evolution of model-
driven systems,” in Model Driven Engineering Lan-
guages and Systems: 9th International Conference,
MoDELS 2006, Genova, Italy, October 1-6, 2006. Pro-
ceedings 9, pp. 321–335, Springer, 2006.

[3] J. Kosiol, “Formal foundations for information-
preserving model synchronization processes based on
triple graph grammars,” 2022.

[4] H. Mkaouar, D. Blouin, and E. Borde, “A benchmark
of incremental model transformation tools based on an
industrial case study with aadl,” Software and Systems
Modeling, vol. 22, no. 1, pp. 175–201, 2023.

[5] E. Leblebici, A. Anjorin, A. Schürr, S. Hildebrandt,
J. Rieke, and J. Greenyer, “A comparison of incremental
triple graph grammar tools,” 01 2014.

[6] A. Labs, “Introduction to aadl analysis and
modeling with face units of conformance.”
"https://camet-library.com/sites/
default/files/documents/2018.08.28_
Introduction_to_AADL_with_FACE.pdf",
2018.

[7] A. Schürr, “Specification of graph translators with triple
graph grammars,” in Graph-Theoretic Concepts in Com-
puter Science (E. W. Mayr, G. Schmidt, and G. Tin-
hofer, eds.), (Berlin, Heidelberg), pp. 151–163, Springer
Berlin Heidelberg, 1995.

[8] H. Giese and R. Wagner, “From model transformation to
incremental bidirectional model synchronization,” Soft-
ware & Systems Modeling, vol. 8, pp. 21–43, 2009.

[9] R. Mittal, D. Blouin, A. Bhobe, and S. Bandyopadhyay,
“Solving the instance model-view update problem in
aadl,” in Proceedings of the 25th International Confer-
ence on Model Driven Engineering Languages and Sys-
tems, MODELS ’22, (New York, NY, USA), p. 55–65,
Association for Computing Machinery, 2022.

[10] P. Feiler, J. Hansson, D. de Niz, and L. Wrage, “Sys-
tem architecture virtual integration: An industrial case
study,” Tech. Rep. CMU/SEI-2009-TR-017, Nov 2009.
Accessed: 2023-Dec-8.

[11] A. Boydston and P. H. Feiler, “Architecture centric vir-
tual integration process (acvip) : A key component of
the dod digital engineering strategy,” 2019.

[12] A. Seibel, Traceability and model management with ex-
ecutable and dynamic hierarchical megamodels. PhD
thesis, Hasso-Plattner-Institut fur Softwaresystemtech-
nik, Universität Potsdam, 2013.

Volume 45, Number 1, March 2024 Ada User Jour na l

https://www.omgwiki.org/MBSE/doku.php?id=mbse:authoritative_source_of_truth
https://www.omgwiki.org/MBSE/doku.php?id=mbse:authoritative_source_of_truth
https://calleam.com/WTPF/?p=4700
https://calleam.com/WTPF/?p=4700
https://camet-library.com/sites/default/files/documents/2018.08.28_Introduction_to_AADL_with_FACE.pdf
https://camet-library.com/sites/default/files/documents/2018.08.28_Introduction_to_AADL_with_FACE.pdf
https://camet-library.com/sites/default/files/documents/2018.08.28_Introduction_to_AADL_with_FACE.pdf

 67

Ada User Journal Volume 45, Number 1, March 2024

Call for Contributions

Topics: Ada, Programming Languages, Software

Engineering Issues and Reliable Software

Technologies in general.

Contributions: Refereed Original Articles, Invited

Papers, Proceedings of workshops and panels and

News and Information on Ada and reliable software

technologies.

More information available on the

Journal web page at

http://www.ada-europe.org/auj

Online archive of past issues at http://www.ada-europe.org/auj/archive/

Ada User Journal

68

Volume 45, Number 1, March 2024 Ada User Journal

National Ada Organizations

Ada-Belgium

attn. Dirk Craeynest

c/o KU Leuven

Dept. of Computer Science

Celestijnenlaan 200-A

B-3001 Leuven (Heverlee)

Belgium

Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard

Ada-Deutschland

Dr. Hubert B. Keller CEO

ci-tec GmbH

Beuthener Str. 16

76139 Karlsruhe

Germany

+491712075269

Email: h.keller@ci-tec.de
URL: ada-deutschland.de

Ada-France

attn: J-P Rosen

115, avenue du Maine

75014 Paris

France
URL: www.ada-france.org

Ada-Spain

attn. Sergio Sáez

DISCA-ETSINF-Edificio 1G

Universitat Politècnica de València

Camino de Vera s/n

E46022 Valencia

Spain

Phone: +34-963-877-007, Ext. 75741

Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland

c/o Ahlan Marriott

Altweg 5

8450 Andelfingen

Switzerland

Phone: +41 52 624 2939

e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

http://www.ada-france.org/
http://www.adaspain.org/

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels

Belgium
Contact: Ludovic Brenta

ludovic@ludovic-brenta.org

46 Rue d’Amsterdam
F-75009 Paris

France
sales@adacore.com
www.adacore.com

506 Royal Road
La Caverne, Vacoas 73310

Republic of Mauritius
Contact: David Sauvage

david.sauvage@adalabs.com
www.adalabs.com

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

Rue Marie de Bourgogne 52
1000 Brussels

Belgium
Contact: Emma Claus

Emma.Claus@eurocity.be
www.eurocity.com

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

3271 Valley Centre Drive,Suite 300
San Diego, CA 92069

USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tool

Enterprise House
Baloo Avenue, Bangor
North Down BT19 7QT

Northern Ireland, UK
enquiries@sysada.co.uk

sysada.co.uk

1115 Rue Ren Descartes
13100 Aix en Provence

France
Contact: Patricia Langle

patricia.langle@systerel.fr
www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki

Finland
Contact: Niklas Holsti

niklas.holsti@tidorum.fi
www.tidorum.fi

Beckeng�sschen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

http://www.ada-europe.org/info/sponsors

	template.pdf
	Introduction
	OSATE-DIM
	Implementation
	Validation and Scope
	Discussion
	Envisioned Utility of OSATE-DIM
	Related Work
	Conclusion

	main.pdf
	Introduction
	Motivation
	FACE
	AADL
	FACE and AADL

	Background
	Model Transformations
	Triple Graph Grammar

	Challenges
	Information Preservation (IP)
	Non-Bijective Relations
	Recovery from Inconsistent States

	State of work on reducing information loss in TGG
	Perspective
	Information Preservation Metric
	Architecture Centric Model Management (ACMoM)
	Model Change Policies
	Authoritative Source of Truth

	Conclusion

