
Ada
User
Journal

The journal for the international
Ada community

Produced by Ada-Europe

Volume 45
Number 2
June 2024

Editorial
Quarterly News Digest

Conference Calendar
Forthcoming Events

Articles from the AEiC 2024 Work-in-Progress Session
V. Manjunath, M. Baunach

A Framework for Improving Portability and
Ensuring Correctness of Operating System Kernels

F. Siebert, M. Lill, M. Teufel
Algebraic Effects and Static Analysis for

Safety-Critical Applications in Fuzion
S. Levieux, F. Singhoff, S. Rubini, P. Plasson, P.V. Gouel, L.R. Malac-Allain,

L. Miné, G. Brusq
An Iterative Benchmark Configuration Method for

Quantifying Multi-core Interference

G. Rincon, C.F. Nicolas, T. Poggi
Improving Reliability in a Robotic Application without Loss of Safety

L. Sousa, J. Cecílio, P. M. Ferreira, A. Oliveira de Sá
Reconfigurable and Scalable Honeynet for Cyber-physical Systems

J. Cecílio, A. Oliveira de Sá, A. Souto
Software-Based Security Framework for Edge and Mobile IoT

P. Pirkelbauer, C. Liao, P.H. Lin, D. Wright, C. Reynolds, D. Quinlan
Supporting Ada in the ROSE Compiler

M. Samadi, T. Carvalho, L. M. Pinho, S. Royuela
Task-to-Thread Mapping in OpenMP Using Fuzzy Decision Making

71
72
80
87

89

94

99

105

109

113

118

124

Editor in Chief
António Casimiro University of Lisbon, Portugal

AUJ_Editor@Ada-Europe.org

Ada User Journal Editorial Board
Luís Miguel Pinho
Associate Editor

Polytechnic Institute of Porto, Portugal
lmp@isep.ipp.pt

Jorge Real
Deputy Editor

Universitat Politècnica de València, Spain
jorge@disca.upv.es

Patricia López Martínez
Assistant Editor

Universidad de Cantabria, Spain
lopezpa@unican.es

Dirk Craeynest
Events Editor

KU Leuven, Belgium
Dirk.Craeynest@cs.kuleuven.be

Alejandro R. Mosteo
News Editor

Centro Universitario de la Defensa, Zaragoza, Spain
amosteo@unizar.es

Ada-Europe Board
Tullio Vardanega (President)
University of Padua

Italy

Dirk Craeynest (Vice-President)
Ada-Belgium & KU Leuven

Belgium

Dene Brown (General Secretary)
SysAda Limited

United Kingdom

Ahlan Marriott (Treasurer)
White Elephant GmbH

Switzerland

Luís Miguel Pinho (Ada User Journal)
Polytechnic Institute of Porto

Portugal

António Casimiro (Ada User Journal)
University of Lisbon

Portugal

Ada-Europe General Secretary
Dene Brown
SysAda Limited
Signal Business Center
2 Innotec Drive
BT19 7PD Bangor
Northern Ireland, UK

Tel: +44 2891 520 560
Email: Secretary@Ada-Europe.org
URL: www.ada-europe.org

Information on Subscriptions and Advertisements
Ada User Journal (ISSN 1381-6551) is published in one volume of four issues. The Journal is provided free of
charge to members of Ada-Europe. Library subscription details can be obtained direct from the Ada-Europe General
Secretary (contact details above). Claims for missing issues will be honoured free of charge, if made within three
months of the publication date for the issues. Mail order, subscription information and enquiries to the Ada-Europe
General Secretary.

For details of advertisement rates please contact the Ada-Europe General Secretary (contact details above).

Ada User Journal Volume 45, Number 2, June 2024

ADA
USER
JOURNAL

Volume 45

Number 2

June 2024

Contents
Page

Editorial Policy for Ada User Journal 70

Editorial 71

Quarterly News Digest 72

Conference Calendar 80

Forthcoming Events 87

Articles from the AEiC 2024 Work-in-Progress Session

 V. Manjunath, M. Baunach

“A Framework for Improving Portability and Ensuring Correctness of Operating

System Kernels” 89

 F. Siebert, M. Lill, M. Teufel

“Algebraic Effects and Static Analysis for Safety-Critical Applications in Fuzion” 94

 S. Levieux, F. Singhoff, S. Rubini, P. Plasson, P. V. Gouel, L. R. Malac-Allain,

L. Miné, G. Brusq

“An Iterative Benchmark Configuration Method for Quantifying Multi-core Interference” 99

 G. Rincon, C. F. Nicolas, T. Poggi

“Improving Reliability in a Robotic Application without Loss of Safety” 105

 L. Sousa, J. Cecílio, P. M. Ferreira, A. Oliveira de Sá

“Reconfigurable and Scalable Honeynet for Cyber-physical Systems” 109

 J. Cecílio, A. Oliveira de Sá, A. Souto

“Software-Based Security Framework for Edge and Mobile IoT” 113

 P. Pirkelbauer, C. Liao, P. H. Lin, D. Wright, C. Reynolds, D. Quinlan

“Supporting Ada in the ROSE Compiler” 118

 M. Samadi, T. Carvalho, L. M. Pinho, S. Royuela

“Task-to-Thread Mapping in OpenMP Using Fuzzy Decision Making” 124

Ada-Europe Associate Members (National Ada Organizations) 128

Ada-Europe Sponsors Inside Back Cover

70

Volume 45, Number 2, June 2024 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and December.

Copy date is the last day of the month of

publication.

Aims

Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics, such

as reliable software technologies, are

welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

• Refereed original articles on

technical matters concerning Ada

and related topics.

• Invited papers on Ada and the Ada

standardization process.

• Proceedings of workshops and

panels on topics relevant to the

Journal.

• Reprints of articles published

elsewhere that deserve a wider

audience.

• News and miscellany of interest to

the Ada community.

• Commentaries on matters relating

to Ada and software engineering.

• Announcements and reports of

conferences and workshops.

• Announcements regarding

standards concerning Ada.

• Reviews of publications in the field

of software engineering.

Further details on our approach to these

are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will be

relayed to the authors at the discretion

of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues

The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups to

find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be of

interest to them.

Reprinted Articles

While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it a

wider audience. This includes papers

published in North America that are not

easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries

We publish commentaries on Ada and

software engineering topics. These may

represent the views either of individuals

or of organisations. Such articles can be

of any length – inclusion is at the

discretion of the Editor.

Opinions expressed within the Ada

User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports

We are happy to publicise and report on

events that may be of interest to our

readers.

Reviews

Inclusion of any review in the Journal is

at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to print

reviews submitted from elsewhere at

the discretion of the Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be rapid.

Currently, accepted papers submitted

electronically are typically published 3-

6 months after submission. Items of

topical interest will normally appear in

the next edition. There is no limitation

on the length of papers, though a paper

longer than 10,000 words would be

regarded as exceptional.

 71

Ada User Journal Volume 45, Number 2, June 2024

Editorial

I would like to start this editorial by mentioning that there are still no new developments concerning the merge between the

Ada User Journal and Ada Letters. On the other hand, significant efforts are ongoing for the creation of the new organization

that I mentioned in my previous editorial: the Ada User Society. It is to expect that this organization will soon be founded,

operating alongside Ada-Europe to keep the Ada language alive, as a recognized standard. This is surely a relevant topic to

which we will keep paying attention.

Also to be highlighted is the fact that we had the 28th Ada-Europe International Conference on Reliable Software Technologies

(AEiC 2024) taking place this month, in Barcelona, Spain. It was a very well-organized conference, hosting several tutorials

and workshops, and including diverse social events that, despite the unexpected rain, allowed the participant to taste the Catalan

culture while providing further interaction opportunities. Therefore, not surprisingly, this issue provides the Proceedings of the

AEiC 2024 Work-in-Progress session, which includes 8 papers. They address diverse topics relevant to the conference, notably

methods and tools for software analysis and verification (applicable to operating system kernels and safety-critical

applications), a method for quantifying task interference in multi-core systems, an approach for designing robot systems with

improved availability while meeting safety goals, solutions for improving the security of cyber-physical and IoT systems,

developments for adding Ada support to the ROSE source-to-source compiler, and work towards the performance improvement

of task-to-thread mapping in OpenMP. Despite being presented as work-in-progress, we believe the reader will appreciate the

high quality and even maturity of these works.

For the News Digest section, Alejandro R. Mosteo, its editor, selected the most relevant news concerning the past three months,

collected from the relevant newsgroups. For the Calendar and Events section, Dirk Craeynest collected information from several

sources to let us know which relevant events for the Ada community will be happening over the forthcoming months. We hope

you can profit from their work!

Finally, I would like to call your attention for the announcement included in page 87. It is about the 29 th Ada-Europe

International Conference on Reliable Software Technologies (AEiC 2025), which will take place on June 10-13, 2025, in Paris,

France.

 Antonio Casimiro

Lisboa

June 2024

 Email: AUJ_Editor@Ada-Europe.org

mailto:AUJ_Editor@Ada-Europe.org

72

Volume 45, Number 2, June 2024 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 72
Ada-related Events 72
Ada-related Resources 76
Ada-related Tools 77
Ada Practice 78

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

In this quiet period leading up to the
summer holidays, there are a couple of
more meaty topics in the News Digest.
For one, you can peruse the final &
detailed information about the latest Ada-
Europe conference [1]. You can even find
on-line recordings of some of the
sessions, as is the case for the Ada
Developers Workshop [2]. (Link included
in the thread.)

Times are always a-changin’, and Alire is
now a strong player in the Ada open
source community. Not everyone has
jumped on the train, and in this issue you
can get an idea on the complexities of
contributing your projects with the
lending hand of a maintainer [3].

Sincerely,
Alejandro R. Mosteo.

[1] “Ada-Europe Int. Conf. Reliable
Software Technologies, AEiC 2024”,
in Ada-related Events.

[2] “Ada Developers Workshop @ AEiC
2024, Speaker and Talk List”, in Ada-
related Events

[3] “Software Engineer Seeks Compatible
Cratifier”, in Ada Practice.

Ada-related Events

Ada-Europe Int. Conf.
Reliable Software
Technologies, AEiC 2024

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada-Europe Int. Conf. Reliable
Software Technologies, AEiC 2024

Date: Tue, 16 Apr 2024 10:55:23 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Call for Participation

28th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2024)

11-14 June 2024, Barcelona, Spain

www.ada-europe.org/conference2024

*** Online registration open! ***

*** Extensive info on conference site ***

Organized by Ada-Europe and Barcelona
Supercomputing Center (BSC), in

cooperation with ACM SIGAda, ACM
SIGBED, ACM SIGPLAN, and Ada

Resource Association (ARA), supported
and sponsored by ASCENDER project,

ACM-W, Eurocity, AdaCore, Rising
STARS project, ACM-W Barcelona

Chapter, and OpenMP

#AEiC2024 #AdaEurope
#AdaProgramming

*** Early registration discount until May
20 ***

*** Highly recommended to book your
hotel ASAP ***

Exciting News!

Preparations for AEiC 2024, the 28th
Ada-Europe International Conference on
Software Reliable Technologies, are well
underway!

Registrations opened Tuesday April 16,
and we've got some exciting offers lined
up for you, courtesy of our generous
sponsors Rising STARS and AdaCore, as
well as an inspiring program.

See below for an overview, and visit our
website for more details about accepted

contributions, registration fees, social
events and many more.

General Information

The 28th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2024) will take place
in Barcelona, Spain. The conference
schedule comprises a keynote and an
invited talk, a panel with invited experts,
a journal track, an industrial track, a
work-in-progress track, a vendor
exhibition, parallel tutorials and hackaton,
and satellite workshops. There will be
time for networking during breaks and
lunches, as well as various social events.

AEiC 2024 is the latest in a series of
annual international conferences started in
the early 80's, under the auspices of Ada-
Europe, the international organization that
promotes knowledge and use of the Ada
programming language and reliable
software in general, into academic
education and research, and industrial
practice.

The Ada-Europe series of conferences has
over the years become a leading
international forum for providers,
practitioners and researchers in reliable
software technologies. These events
highlight the increased relevance of Ada
in general and in safety- and security-
critical systems in particular, and provide
a unique opportunity for interaction and
collaboration between academics and
industrial practitioners.

The 2024 edition of the conference
continues a number of important
innovations started in previous years:

- reduced conference registration fee for
all authors;

- low registration fee for all tutorials and
workshops;

- journal-based open-access publication
model for peer-reviewed papers;

- compact program with two core days
(Wednesday & Thursday);

- tutorials on Tuesday, followed by
welcome event for all participants;

- workshops on Friday, optional chill
event on Thursday evening

Overview of the Week

- Tue 11: six half-day tutorials, full-day
hackaton, welcome reception

mailto:amosteo@unizar.es

Ada-re lated Events 73

Ada User Journal Volume 45, Number 2, June 2024

- Wed 12: core technical program,
conference banquet

- Thu 13: core technical program, post
conference chill-out

- Fri 17: four full-day workshops

Extensive information on AEiC 2024 is
on the conference website, such as an
overview of the program, the list of
accepted papers and presentations, and
descriptions of workshops, tutorials,
hackaton, keynote and invited
presentations, panel, and social events.
Also check the conference site for
registration, accommodation and travel
information. The Advance Program
brochure will be available there as well.

Venue

The conference will take place in UPC
Campus Nord, easily accessible by metro
from the airport and city centre. If you
can stay over before or after the
conference, there's a lot to see around.
Check the Practical Information section of
the conference website for more info.

Invited Speakers

This year the conference will feature a
keynote talk on the first day, and a panel
with three invited speakers on the second,
plus an invited talk. All will address
topics of relevance in the conference
scope, with time for questions and
answers.

- On Wed June 12, a keynote talk by
Francisco J. Cazorla and Jaume Abella,
from Barcelona Supercomputing Center,
who will talk about "Strategies to Build
Safety Relevant High-Performance
HW/SW Platforms for Critical
Embedded Systems".

- On Thu June 13, a panel on "AI for
Safety-Critical Systems: How 'I' Should
the AI be?", moderated by Cristina
Seceleanu, Mälardalen University, with
three invited experts: Kerstin Bach
(Norwegian University of Science and
Technology), Irune Yarza (Ikerlan),
Marta Barroso (Barcelona
Supercomputing Center).

- And an invited talk by Rosa Maria
Badia, Barcelona Supercomputing
Center, on "Simplifying the Life-Cycle
Management of Complex Application
Workflows".

Conference Core Composition

The core conference program features
three distinct types of technical
presentations, with different duration, in
addition to the keynote talk and the
pannel session: journal-track talks (25
minutes), industrial-track talks (15
minutes), work-in-progress-track talks (10
minutes).

All papers presented in the journal track,
the industrial track and the work-in-
progress track have undergone peer

review. Presentations are combined into
by-theme and not by-track sessions, in
order that authors and participants alike
enjoy all flavors of the program in a
mixed as opposed to segregated
combination.

Papers and Presentations:

- 8 sessions with a mix of presentations on
specific topics

- 13 journal-track talks

- 8 work-in-progress reports

- 5 industrial presentations and experience
reports

- submissions from around the world

- accepted contributions by authors from
Belgium, China, France, Germany,
India, Italy, Portugal, Spain, Sweden,
UK, USA

Tutorials

Six three-hour tutorials are offered on
Tuesday 11th:

- "Lock-Free Programming in Ada-2022:
Implementing a Work-Stealing
Scheduler for Ada-2022's Light-Weight
Parallelism", by S. Tucker Taft,
AdaCore, USA

- "Ada for Business Applications", by
Gautier de Montmollin, Ada-
Switzerland, Switzerland

- "Rust Fundamentals", by Luis Miguel
Pinho and Tiago Carvalho, ISEP,
Portugal

- "Concurrency and Parallelism in Rust",
by Luis Miguel Pinho and Tiago
Carvalho, ISEP, Portugal

- "Modeling Concurrent State Machines
in TLA+", by J. Germán Rivera, Tesla,
USA

- "Introduction to the Development of
Safety-Critical Software", by Jean-Pierre
Rosen, Adalog, France

- "METASAT: Programming High
Performance RISC-V Technologies for
Space", by Leonidas Kosmidis,
Barcelona Supercomputing Center,
Alejandro Calderon, Ikerlan, Aridane
Alvarez Suarez, fentISS, Lorenzo
Lazzara, Collins Aerospace, Eckart
Göhler, OHB

- "Introduction to Certifiable General
Purpose GPU Programming for Safety-
Critical Systems", by Leonidas
Kosmidis, Barcelona Supercomputing
Center, Rod Burns and Verena
Beckham, Codeplay/Intel

as well as a "hackaton":

- "Optimizing AI-driven Workflows
within a Mission-Critical Cyber-
Physical System", if you're keen to
explore the latest AI techniques for
Adaptive Optics applications in giant
telescopes with Damien Gratadour,
Observatoire de Paris, CNRS, France

Satellite Events

Four workshops are held on Friday 14th:

- 3rd ADEPT workshop "AADL by its
practitioners"

- 9th International Workshop on
"Challenges and New Approaches for
Dependable and Cyber-Physical System
Engineering" (DeCPS 2024)

- "Enabling the use of AI in Safety-
Critical Systems"

- "Ada Developers Workshop", an
informal yet dynamic gathering for
developers in the Ada community to
meet, share insights, and present their
latest projects or project updates, using
the Ada programming language and
Ada-related technology

Social Program

The conference provides several
opportunities to socialize:

- Each day: coffee breaks and lunches
offer ample time for interaction and
networking with participants and
vendors.

- Tuesday early evening: welcome
reception at the picturesque gardens of
Torre Girona. Guests will be treated to a
curated selection of local wines paired
with the globally renowned Iberian ham,
and an array of delectable appetizers
representing the rich culinary heritage of
Catalonia and Spain. Attendees will
have the unique opportunity to explore
the cutting-edge facilities of the
Barcelona Supercomputing Center, and
marvel at its latest addition, the
Marenostrum V supercomputer, and its
predecessor, Marenostrum IV, housed
within the historic chapel of Torre
Girona.

- Wednesday evening: Conference
Banquet at the emblematic restaurant "7
portes". Attendees will have the
opportunity to savor the finest flavors of
the Catalan and Mediterranean cuisines,
such as the renowned "Paella Perallada",
a masterpiece that harmoniously
combines semi-dry rice with succulent
peeled shellfish, delectable seafood and
tender meats. With a history spanning
over 180 years, "7 portes" stands as a
witness to the evolution of some of the
most illustrious artists of their time,
including Pablo Picasso and Antoni
Tàpies. Their presence has left an
indelible mark, forming a captivating
small art gallery within the restaurant's
walls, waiting to be discovered by
guests.

- Thursday evening: Chill event at the
Moritz Barcelona Brewery, the brewery
of the first beer of Barcelona. The event
is divided in three parts: a visit to the
brewery, a welcome drink at the
Brasserie room, offering an exclusive
vantage point overlooking the
maceration tanks, and a banquet served

74 Ada-re lated Events

Volume 45, Number 2, June 2024 Ada User Journal

within the same Brasserie room, by
renowned chef Jordi Vilà, adorned with
a Michelin star, promising a
gastronomic experience to be savored
and remembered.

Further Information

Registration:

- registration information is provided at
<http://www.ada-europe.org/
conference2024/registration.html>

- early registration discount until Monday
May 20, 2024

- payment possible by credit card or bank
transfer

- special low conference fee for authors

- discount for Ada-Europe, ACM
SIGAda, SIGBED and SIGPLAN
members

- registration includes coffee breaks,
lunches and social events

- low tutorial and workshop fees for all
participants

- strong discount on all fees for students

- minimal fee for AI Hackaton and Ada
Developers Workshop

- see registration page for all details

Promotion:

- recommended Twitter hashtags:
#AEiC2024 #AdaEurope
#AdaProgramming

AEiC 2024 Sponsors:

- Barcelona Supercomputing Center:
<https://www.bsc.es/>

- ASCENDER project:

 <https://www.bsc.es/
research-and-development/projects/
ascender-arquitectura-software-para-
entornos-de-computo-continuo>

- ACM-W: <https://women.acm.org/>

- Eurocity: <https://eurocity.be/>

- AdaCore: <https://www.adacore.com/>

- Rising STARS project:
<https://risingstars-project.eu/>

- ACM-W Barcelona Chapter:
<https://twitter.com/BCN_ACM_W>

- OpenMP: <https://www.openmp.org/>

The conference is supported and
sponsored by

- Ada-Europe:
<http://www.ada-europe.org/>

and organized in cooperation with

- ACM SIGAda:
<http://www.sigada.org/>

- ACM SIGBED: <https://sigbed.org/>

- ACM SIGPLAN:
<http://www.sigplan.org/>

- ARA:
<https://www.adaic.org/community/>

Please make sure you book
accommodation as soon as possible. For
more info and latest updates see the
conference website at
<http://www.ada-europe.org/
conference2024>.

We look forward to seeing you in
Barcelona in June 2024!

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2024 Publicity
Chair

Dirk.Craeynest@cs.kuleuven.be

* 28th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2024)

* June 11-14, 2024, Barcelona, Spain,
www.ada-europe.org/conference2024

(V7.1)

Ada Monthly Meetup, May
2024

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: Ada Monthly Meetup, May 2024
Date: Wed, 17 Apr 2024 12:29:46 +0200
Newsgroups: comp.lang.ada

I would like to announce the May (2024)
Ada Monthly Meetup which will be
taking place on the 11th of April at 13:00
UTC time (15:00 CEST). As always, the
meetup will take place over at Jitsi. The
Meetup will also be livestreamed to
Youtube.

If someone would like to propose a talk or
a topic, feel free to do so! We currently
have one talk that will be given by A.J.
Ianozi about GetAda[1], an all-batteries
included installer for Ada tooling in a
short single command!

Here are the connection details from
previous posts: The meetup will take
place over at Jitsi, a conferencing
software that runs on any modern
browser. The link is Jitsi Meet The room
name is “AdaMonthlyMeetup” and in
case it asks for a password, it will be set
to “AdaRules”. I do not want to set up a
password, but in case it is needed, it will
be the one above without the quotes. The
room name is generally not needed as the
link should take you directly there, but I
want to write it down just in case
someone needs it.

 [1] https://www.getada.dev/

From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 17 Apr 2024 14:49:57 +0200

> I would like to announce the May
(2024) Ada Monthly Meetup which
will be taking place on the 11th of April

Presumably, you meant May 4th... (1st
saturday of May)

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Date: Wed, 17 Apr 2024 16:27:36 +0200

> Presumably, you meant May 4th... (1st
saturday of May)

Ouch! My mistake, thank you for noticing
it! But it is indeed the 11th of *May*, so
April -> May. I changed it to the second
Saturday since I will most likely not be
available the first week due to some
holidays here in Spain :)

[...]

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Date: Thu, 9 May 2024 22:19:26 +0200

This is a kind reminder that the next Ada
Monthly Meetup will take place this
Saturday, so in less than 48h!

The main topics to be talked about are
going to be AJ's GetAda and the Ada
Developers Workshop that will take place
on the 14th of June!

There will be no Ada Monthly Meetup in
June due to the aforementioned
Workshop.

Ada Developers Workshop
@ AEiC 2024, Speaker and
Talk List

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: Ada Developers Workshop @ AEiC
2024, Speaker and Talk list

Date: Wed, 15 May 2024 13:03:51 +0200
Newsgroups: comp.lang.ada

[The video recordings and slides from the
workshop are now available via
http://www.ada-europe.org/
conference2024/adadev.html —arm]

The list of speakers, talks and schedule
for the Ada Developer Workshop has
been published [1]. The Workshop will
take place on the 14th of June in
Barcelona. The entry has a small price of
10€ if paid before the 20th of May and
20€ if later. The price covers the cost of
two coffee breaks and a meal. You can
find more information in the registration
page [2]

Here is a short summary of what will be
shown during the workshop:

- "SweetAda: a Multi-architecture
Embedded Development Framework"
by Gabrielle Galeotti (Italy), Fernando
Oleo Blanco (Spain)

- "Avoiding Access Types" by Jeffrey R.
Carter (Belgium)

- "G-NAV: Soaring the Clouds with
AdaWebPack" by Guillermo A.
Hazenbrouck (Belgium)

Ada-re lated Events 75

Ada User Journal Volume 45, Number 2, June 2024

- "Alire 2.0: a Quality of Life Update" by
Alejandro Mosteo (Spain)

- "HiRTOS: a Multicore RTOS Written in
SPARK Ada" by J. German Rivera
(USA)

- "Ironclad: a Formally Verified OS
Kernel Written in SPARK/Ada" by
Cristian Simon (Spain)

- "An Ada Story of Time" by Jean-Pierre
Rosen (France)

- "Controlled I/O: a Library for Scope-
Based Files" by Jeffrey R. Carter
(Belgium)

- "Ada Community Advocacy" by
Fernando Oleo Blanco (Spain)

[1] http://www.ada-europe.org/
conference2024/adadev.html

[2] http://www.ada-europe.org/
conference2024/registration.html

Best regards,

The Ada Developers Workshop
organisation team

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Tue, 28 May 2024 10:15:33 -0000

Update: thanks to sponsoring, in-person
participants will only pay the low
registration fees specified above; remote
participants are required to register as
well, but participation will be totally free!

Dirk Craeynest
Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

* 28th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2024)

* June 11-14, 2024, Barcelona, Spain,
www.ada-europe.org/conference2024

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Sat, 1 Jun 2024 10:10:55 -0000

Remember that registration is still open
for the Ada Developers Workshop
#AdaDevWS at the #AdaEurope
conference #AEiC2024 in Barcelona on
Friday 14 June 2024.

Some places remain for in-person
participation, many remain for remote
participation. ;-)

Dirk Craeynest

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

* 28th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2024)

* June 11-14, 2024, Barcelona, Spain,
www.ada-europe.org/conference2024

Ada-Europe - AEiC 2024
Early Registration Deadline
Imminent

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada-Europe - AEiC 2024 early
registration deadline imminent

Date: Sat, 18 May 2024 11:01:38 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

UPDATED Call for Participation

*** Early registration DEADLINE
May 20 ***

28th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2024)

11-14 June 2024, Barcelona, Spain

www.ada-europe.org/conference2024

* Extensive info and registration online *

*** Add tutorials and/or a workshop to
your conference registration ***

#AEiC2024 #AdaEurope
#AdaProgramming

Organized by Ada-Europe and Barcelona
Supercomputing Center (BSC), in

cooperation with ACM SIGAda, ACM
SIGBED, ACM SIGPLAN, and Ada

Resource Association (ARA), supported
and sponsored by ASCENDER project,
Eurocity, Collins Aerospace, ACM-W,

BSC Severo Ochoa Center of Excellence,
AdaCore, Rising STARS project, ACM-

W Barcelona Chapter, and OpenMP
--

UPDATE

Ada-Europe - AEiC 2024 early
registration deadline imminent

Come to the Ada-Europe conference in
Barcelona, experience a packed program
in an exciting town, benefit from tutorials
or a hackaton on Tuesday, join a
workshop on Friday, enjoy the social
events and some sightseeing!

Register now: discounted fees until May
20!

<http://www.ada-europe.org/
conference2024/registration.html>

Extra conference sponsorship allows for
an extremely low 10 EUR fee for the AI
Hackaton on Tuesday and the Ada
Developers Workshop on Friday!

See below for an overview, and visit our
website for more details about accepted
contributions, registration fees, social
events and many more.

[General Information, Overview of the
Week, Venue, Invited Speakers,
Conference Core Composition, Tutorials,

Satellite Events and Social Program
sections are the same as in “Ada-Europe
Int. Conf. Reliable Software
Technologies, AEiC 2024” in this AUJ
issue, pp. 70-72 —arm]

*** Further Information

Registration:

- registration information is provided at
<http://www.ada-europe.org/
conference2024/registration.html>

- early registration discount until Monday
May 20, 2024

- payment possible by credit card or bank
transfer

- special low conference fee for authors

- discount for Ada-Europe, ACM
SIGAda, SIGBED and SIGPLAN
members

- registration includes coffee breaks,
lunches and social events

- low tutorial and workshop fees for all
participants

- strong discount on all fees for students

- minimal fee for AI Hackaton and Ada
Developers Workshop

- see registration page for all details

Promotion:

- recommended Twitter hashtags:
#AEiC2024 #AdaEurope
#AdaProgramming

The conference is organized by:

- Ada-Europe
<http://www.ada-europe.org/>

- Barcelona Supercomputing Center
<https://www.bsc.es/>

in cooperation with:

- ACM SIGAda <http://www.sigada.org/>

- ACM SIGBED
<http://www.sigbed.org/>

- ACM SIGPLAN
<http://www.sigplan.org/>

- Ada Resource Association (ARA)
<http://www.adaic.org/community/>

supported and sponsored by:

- ASCENDER Project:
<https://www.bsc.es/research-and-
development/projects/ascender-
arquitectura-software-para-entornos-de-
computo-continuo>

- Eurocity <https://eurocity.be/>

- Collins Aerospace
<https://www.collinsaerospace.com/>

- ACM-W <https://women.acm.org/>

- BSC Severo Ochoa Center of Excellence

 <https://www.bsc.es/news/bsc-news/
bsc-achieves-severo-ochoa-center-
excellence-accreditation>

- AdaCore <https://www.adacore.com/>

http://www.ada-europe.org/

76 Ada-re lated Resources

Volume 45, Number 2, June 2024 Ada User Journal

- Rising STARS project
<https://risingstars-project.eu/>

- ACM-W Barcelona Chapter
<https://twitter.com/BCN_ACM_W>

- OpenMP <https://www.openmp.org/>

Please make sure you book
accommodation as soon as possible.

For more info and latest updates see the
conference website at
<http://www.ada-europe.org/
conference2024>.

We look forward to seeing you in
Barcelona in June 2024!

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2024 Publicity
Chair

Dirk.Craeynest@cs.kuleuven.be

* 28th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2024)

* June 11-14, 2024, Barcelona, Spain,
www.ada-europe.org/conference2024

(V8.1)

2024 Ada-Belgium General
Assembly

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: 2024 Ada-Belgium General
Assembly

Date: Tue, 28 May 2024 08:52:59 -0000
Newsgroups: comp.lang.ada

To all Ada-Belgium members who didn't
register yet for the 2024 Ada-Belgium
General Assembly meeting, to be held
online Tuesday 28 May 2024 18:30
CEST, please check your mailbox for the
convocation that was sent some time ago,
and register ASAP.

Ada-related Resources

[Delta counts are from May 28th to July
11th. –arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 11 Jul 2024 18:24 CET[b]
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: 8_741 (+36) members [1]

- LinkedIn: 3_521 (+11) members [2]

- Stack Overflow: 2_411 (+6)
 questions [3]

- Gitter: 258 (+5) people [4]

- Ada-lang.io: 241 (+21) users [5]

- Telegram: 205 (+4) users [6]

- Libera.ChaT: 73 (-2) concurrent
 users [7]

[1] https://old.reddit.com/r/ada/

[2] https://www.linkedin.com/groups/
114211/

[3] https://stackoverflow.com/questions/
tagged/ada

[4] https://app.gitter.im/#/room/
#ada-lang_Lobby:gitter.im

[5] https://forum.ada-lang.io/u

[6] https://t.me/ada_lang

[7] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

Repositories of Open Source
Software

From: Alejandro R. Mosteo
amosteo@unizar.es

Subject: Repositories of Open Source
software

Date: 11 Jul 2024 18:27 CET[c]
To: Ada User Journal readership

GitHub: >740* (=) developers [1]

Rosetta Code: 979 (+29) examples [2]

 42 (=) developers [3]

Alire: 412 (+7) crates [4]

 1_068 (+20) releases [5]

Sourceforge: 252 (+1) projects [6]

Open Hub: 214 (=) projects [7]

Codelabs: 57 (=) repositories [8]

Bitbucket: 37 (-1) repositories [9]

*This number is a lower bound due to
GitHub search limitations.

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] https://rosettacode.org/wiki/
Category:Ada

[3] https://rosettacode.org/wiki/
Category:Ada_User

[4] https://alire.ada.dev/crates.html

[5] `alr search --list --full`

[6] https://sourceforge.net/directory/
language:ada/

[7] https://www.openhub.net/tags?
names=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] https://bitbucket.org/repo/all?
name=ada&language=ada

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: 11 Jul 2024 18:38 CET[d]
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 24 (-2) 0.78%
 (-0.05%) [1]

- PYPL Index: 17 (+2) 0.96%
 (+0.14%) [2]

- Languish Trends: 192 (-12) 0.00%
 (-0.01)% [3]

- Stack Overflow Survey: 42 (=)
 0.77% (=) [4]

- IEEE Spectrum (general): 36 (=)
 Score: 0.0107 (=) [5]

- IEEE Spectrum (jobs): 29 (=)
 Score: 0.0173 (=) [5]

- IEEE Spectrum (trending): 30 (=)
 Score: 0.0122 (=) [5]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://tjpalmer.github.io/languish/

[4] https://survey.stackoverflow.co/2023/

[5] https://spectrum.ieee.org/
top-programming-languages/

We Are Hiring Software
Engineers

From: Björn Lundin <bnl@nowhere.com>
Subject: We are hiring software engineers
Date: Thu, 25 Apr 2024 16:11:31 +0200
Newsgroups: comp.lang.ada

This is not technical, just a note that we
are hiring.

We are hiring software engineers to work
on our WCS (Warehouse Control
System). It means communication with
automation devices, and making them
move pallets or totes in a way that we and
customers are happy with.

We have mostly largish customers, but
some less large as well.

It is circa 1.2 Mloc of Ada - a mix from
Ada83 -> Ada22.

We (can) adapt quite some to customers
so usually

* design

* implementation

* testing

* commissioning

* support

mailto:amosteo@unizar.es

Ada-re lated Tools 77

Ada User Journal Volume 45, Number 2, June 2024

is part of the package

Remote is ok, but willingness to travel
will then be needed sometimes

The ad is here

<https://careers.consafelogistics.com/jobs/
3613985-software-developer-to-the-wcs-
team>

To give some insight - the site shown here
- the conveyors and Autostore are
controlled by our software. We tell the
devices where to pickup and where to
deliver - different protocols. It went live
this spring.

<https://www.youtube.com/watch?
v=57oSqx19C4w>

What is an Autostore?

<https://www.youtube.com/watch?
v=iHC9ec591lI&t=43s>

What we do? We control devices like the
ones in this video

<https://www.youtube.com/watch?
v=IW3PkMMN8ns>

Ada-Lang and Its Forum

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: Ada-Lang and it's (more active
than CLA) forum

Date: Sat, 11 May 2024 13:30:32 +0200
Newsgroups: comp.lang.ada

This is a simple and quick reminder (or
announcement if it's the first time you get
notified) regarding Ada-Lang [1] and its
Forum [2].

Ada-Lang is a community maintained and
supported webpage whose intent is to give
a nice "landing page" to anybody wanting
to learn Ada and become a hub for all
Ada users. It has a few nice links to social
media and chat-rooms (at the bottom), a
section to read C.L.A directly on your
web-browser [3], a formatted version of
the ARM [4], tutorial and examples
(WIP) [5] and a few other nice features.

The Forum is quite active and it has a lot
of topics. You can think about it as a
modern web version of C.L.A :) Though,
an account is required... And I do not
mean to belittle C.L.A, it is a great
resource!

Everybody is more than welcomed to
participate in the forums and help the
website grow in quality and content.
Everything is open source, so it is very
easy to help around!

[1] https://ada-lang.io/

[2] https://forum.ada-lang.io/

[3] https://usenet.ada-
lang.io/comp.lang.ada/

[4] https://ada-lang.io/docs/arm

[5] https://ada-lang.io/docs/learn/why-ada

Ada-related Tools

GCC 14.1.0 for MacOS

From: Simon Wright
<simon@pushface.org>

Subject: ANN: GCC 14.1.0 for macOS
Date: Thu, 16 May 2024 21:09:55 +0100
Newsgroups: comp.lang.ada

GCC 14.1.0 suite available for macOS:

aarch64,

https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-14.1.0-aarch64

x86_64,

https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-14.1.0-x86_64

From: Simon Wright
<simon@pushface.org>

Date: Thu, 23 May 2024 16:00:32 +0100

> GCC 14.1.0 suite available for macOS:

> aarch64,

>https://github.com/simonjwright/distribu
ting-gcc/releases/tag/gcc-14.1.0-
aarch64

> x86_64,

>https://github.com/simonjwright/distribu
ting-gcc/releases/tag/gcc-14.1.0-x86_64

and an aarch64-based cross-compiler to
arm-eabi, at
https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-14.1.0-aarch64-arm-eabi

From: Orangefish
<orangefish@invalid.invalid>

Date: Fri, 17 May 2024 11:01:09 -0400

> aarch64,

>https://github.com/simonjwright/distribu
ting-gcc/releases/tag/gcc-14.1.0-
aarch64

Do you know how this differs from Iain
Sandoe's port

(https://github.com/iains/gcc-darwin-
arm64)?

From: Simon Wright
<simon@pushface.org>

Date: Sat, 18 May 2024 21:02:05 +0100

> Do you know how this differs from Iain
Sandoe's port?

It's from Iain's repo
https://github.com/iains/gcc-14-branch.

I _think_ that this corresponds to GCC's
releases/gcc-14.1.0 tag ????

I can't find it now, but when I asked why
he separated the release "branches" from
the development one (gcc-darwin-arm64)
Iain referenced some difficulty with
Github.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sat, 18 May 2024 21:42:34 -0000

> Iain referenced some difficulty with
Github.

People need to remember that GitHub ≠
Git.

PragmAda Reusable
Components

From: Pragmada Software Engineering
<pragmada@
pragmada.x10hosting.com>

Subject: [Reminder] The PragmAda
Reusable Components

Date: Sat, 1 Jun 2024 14:48:06 +0200
Newsgroups: comp.lang.ada

The PragmARCs are a library of (mostly)
useful Ada reusable components provided
as source code under the GMGPL or BSD
3-Clause license at
https://github.com/jrcarter/PragmARC.

This reminder will be posted about every
six months so that newcomers become
aware of the PragmARCs. I presume that
those who want notification when the
PragmARCs are updated have used
Github's notification mechanism to
receive them, so I no longer post update
announcements. Anyone who wants to
receive notifications without using
Github's mechanism should contact me
directly.

Simple Components v4.69

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components v4.69
Date: Sat, 29 Jun 2024 09:30:47 +0200
Newsgroups: comp.lang.ada

The library provides implementations of
smart pointers, directed graphs, sets,
maps, B-trees, stacks, tables, string
editing, unbounded arrays, expression
analyzers, lock-free data structures,
synchronization primitives (events, race
condition free pulse events, arrays of
events, reentrant mutexes, deadlock-free
arrays of mutexes), pseudo-random non-
repeating numbers, symmetric encoding
and decoding, IEEE 754 representations
support, streams, persistent storage,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/
ada/components.htm

Changes the previous version:

- The procedure Compile was added to
Python bindings in order to get a handle
to the compiled module;

- The function Object_Super of the
bindings is an equivalent of x.super().y.
It returns the implementation of y from
the x's parent class.

https://ada-lang.io/docs/learn/why-ada

78 Ada Pract ice

Volume 45, Number 2, June 2024 Ada User Journal

Ada Practice

Was the Mandate Change a
Poor Decision?

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Subject: Was the mandate change a poor
decision?

Date: Thu, 4 Apr 2024 00:47:20 -0000
Newsgroups: comp.lang.ada

https://dl.acm.org/doi/pdf/10.1145/
260096.260385

This paper completely ignored arguments
such as the mandate apparently only
requiring demonstrating an expectation of
being more cost effective than Ada.
Replaced by a mandate that is apparently
ignored as it is basically reduced to an
aim of being cost effective without
competition to Ada which was designed
to be cost effective and so hard to beat.

History seems to have shown that he was
completely wrong and in my opinion the
mandate change has inflated costs to
taxpayers significantly, such as in the F-
35/JSF program.

Do you think that this paper had any
influence on making the mandate
impotent?

Am I ignorant of improvements that the
mandate change has brought about?

Software Engineer Seeks
Compatible Cratifier

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Subject: Software Engineer Seeks
Compatible Cratifier

Date: Tue, 18 Jun 2024 15:05:38 +0200
Newsgroups: comp.lang.ada

https://forum.ada-lang.io/t/
2024-crate-of-the-year-awards/923/
8?u=jc001

[Contents of the above link follow.
—arm]

I don’t use gprbuild or Alire, but I, too,
have a collection of software on GitHub
that might benefit from cratification, if
someone would find that a worthwhile
activity.

From: Pascal Obry <pascal@obry.net>
Date: Tue, 18 Jun 2024 15:40:01 +0200

The first thing would be to accept adding
a GPR project file into your projects. You
have rejected my PR proposing just this.
How one is supposed to build a set of
unrelated Ada files?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Tue, 18 Jun 2024 20:06:06 +0200

IIUC, there has to be a project file in the
crate. That does not mean there has to be
a project file in my Github repository.

From: Pascal Obry <pascal@obry.net>
Date: Tue, 18 Jun 2024 20:27:16 +0200

But then you impose on someone to
create a project file. And this would be
needed by all packagers, there are not
only crates around to build a component.
And moreover, you let the "packager"
find the correct options to be used which
is certainly not a good solution.

That's exactly why I had proposed a PR
with a project file. It "documents" the way
the code must be compiled (at least with
GNAT) and installed for everyone
wanting to package your components.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 18 Jun 2024 22:12:15 +0100

>> IIUC, there has to be a project file in
the crate. That does not mean there has
to be a project file in my Github
repository.

The crate in the index contains (amongst
other things) the name of the .gpr and a
link to the source; e.g.

 project-files = "minimal_containers.gpr"

 [origin]
 commit = "592661c64b8ad6fa40864
 e9584a8faa3a1d2b283”
 url ="git+https://github.com/
 simonjwright/minimal_containers.git"

The project file is in the source.

It would be possible to 'cratify' the
PragmaARCs by forking the repo and
adding an alire.toml and a .gpr - which
would be very simple if there was no
particular need for special compilation
switches (and one wouldn't need
compile_all.adb). But it would feel a bit
daunting without a helpful README.

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 19 Jun 2024 09:36:33 +0100

> How one is supposed to build a set of
unrelated Ada files?

alr init --lib --in-place

From: Simon Wright
<simon@pushface.org>

Date: Wed, 19 Jun 2024 11:22:19 +0100

> https://forum.ada-lang.io/t/2024-crate-
of-the-year-awards/923/8?u=jc001

I'm prepared to do this, if we can agree.

I would fork your repo, and make
changes/distribute from there.

I propose an alire.toml, on these lines:

 name = "pragmarc"
 ### needs to be in lower case

 description = "Utility library"

 version = "4.0.0"
 ### you have 4 releases on Github, the
 ### current code is the 4th, I believe.
 ### The release needs to be in this
 ### form; I did think about
 ### e.g. 2024.03.23, that might work

 authors = ["Jeffrey R. Carter"]
 maintainers = ["Simon Wright
 <simon@pushface.org>"]
 maintainers-logins = ["simonjwright"]
 licenses = "BSD-3-Clause"

 website = https://github.com/
 jrcarter/PragmARC
 ### is there a better one? if not, this
 ### should probably be to my fork

 tags = ["utility", "library"]
 ### what should this list be
 ### extended to?

 [build-switches]
 "*".Style_Checks = "no"
 ### alire's style checks disagree
 ### violently with your usage!

 "*".Ada_Version = "Ada12"
 ### this is what you specify in the code

(email: simon@pushface.org)

From: Alastair Hogge <agh@riseup.net>
Date: Sun, 23 Jun 2024 08:10:04 -0000

> That's exactly why I had proposed a PR
with a project file.

+1 for a .gpr project file to enable
package maintainers; it makes it easier to
integrate Ada systems with the host
system.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 23 Jun 2024 15:21:51 +0200

> +1 for a .gpr project file to enable
package maintainers; it makes it easier
to integrate Ada systems with the host
system.

Yes, but the system must generate a
parent gpr file with the target settings.
Fedora's GNAT has such a thing in a very
primitive form. It must define the target
OS description, default switches, 32 vs 64
bit, architecture, availability of pragma
Atomic for 64-bit scalars, some standard
libraries for the linker etc. Then the user
gpr will be able to refer to these in the
main gpr.

OT, the reason why I do not use Alire is
because it has no upload function. I
cannot manually submit my projects each
time I ship a new version of some of
them. It should support automated
uploads.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Tue, 25 Jun 2024 22:47:49 +0200

> The first thing would be to accept
adding a GPR project file into your
projects.

https://github.com/%20%20%20jrcarter/PragmARC
https://github.com/%20%20%20jrcarter/PragmARC

Ada Pract ice 79

Ada User Journal Volume 45, Number 2, June 2024

Might a good README actually be
better? And also stable?

The number of programming languages in
production used to be really large. So
large, 400+, that a reduction project was

given green light. To get the number up
again, it seems that the market is having
every programming language multiplied
by at least two build tools' description
language.

As before, mostly single vendors are
providing the definitions of a respective
formalism, versions, obsolescence, life
cycle policies, all included.

80

Volume 45, Number 2, June 2024 Ada User Journal

Conference Calendar
Dirk Craeynest

KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2024

July 01-05 24th IEEE International Conference on Software Quality, Reliability and Security (QRS'2024),

Cambridge, UK. Topics include: reliability, security, availability, and safety of software systems; software

testing, verification, and validation; program debugging and comprehension; fault tolerance for software

reliability improvement; modeling, prediction, simulation, and evaluation; metrics, measurements, and

analysis; software vulnerabilities; formal methods; operating system security and reliability; benchmark,

tools, industrial applications, and empirical studies; etc.

July 08-12 Software Technologies: Applications and Foundations (STAF'2024), Twente, the Netherlands. Topics

include: practical and foundational advances in software technology.

July 08-12 20th European Conference on Modelling Foundations and Applications (ECMFA'2024), Twente, the

Netherlands. Co-located with STAF'2024. Topics include: all aspects of model-based engineering (MBE);

foundations of MBE, including model transformations, domain-specific languages, verification and

validation approaches, ...; application of MBE methods, tools, and techniques to specific domains, e.g.,

automotive, aerospace, cyber-physical systems, robotics, Artificial Intelligence or IoT; educational

aspects of MBE; tools and initiatives for the successful adoption of MBE in industry; etc.

July 09-12 36th Euromicro Conference on Real-Time Systems (ECRTS'2024), Lille, France. Topics include: all

aspects of timing requirements in computer systems; elements of time-sensitive software systems, such

as operating systems, hypervisors, middlewares and frameworks, programming languages and compilers,

runtime environments, ...; real-time applications topics, such as modeling, design, simulation, testing,

debugging, and evaluation in domains such as automotive, avionics, control systems, industrial

automation, robotics, space, railways telecommunications, multimedia, ...; foundational scheduling and

predictability questions, such as schedulability analysis, synchronization protocols, ...; static and dynamic

techniques for resource demand estimation, such as classic worst-case execution time (WCET) analysis,

...; formal methods for the verification and validation of real-time systems; the interplay of timing

predictability and other non-functional qualities, such as reliability, security, quality of control, testability,

scalability, ...; etc.

July 15-19 32nd ACM International Conference on the Foundations of Software Engineering (FSE'2024), Porto

de Galinhas, Brazil. Topics include: debugging and fault localization; dependability, safety, and

reliability; embedded software, safety-critical systems, and cyber-physical systems; model checking;

model-driven engineering; parallel, distributed, and concurrent systems; program analysis; programming

languages; software architectures; software engineering education; software evolution; software security;

software testing; software traceability; symbolic execution; tools and environments; etc.

July 22-27 36th International Conference on Computer-Aided Verification (CAV'2024), Montreal, Canada.

Topics include: theory and practice of computer-aided formal analysis methods for hardware and software

systems, algorithms and tools for verifying models and implementations, specifications and correctness

criteria for programs and systems, deductive verification using proof assistants, program analysis and

software verification, hybrid systems and embedded systems verification, formal methods for cyber-

physical systems, verification methods for parallel and concurrent systems, testing and run-time analysis

based on verification technology, applications and case studies in verification and synthesis, verification

in industrial practice, formal models and methods for security, etc.

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html

Conference Calendar 81

Ada User Journal Volume 45, Number 2, June 2024

Jul 29 – Aug 01 36th International Conference on Software Engineering Education and Training (CSEET'2024),

Würzburg, Germany. Topics include: novel ideas, methods, and techniques for software engineering

education; education experience & industrial training reports; teaching formal methods, teaching "real

world" SE practices, software quality assurance education, motivating students and trainees, open source

in education, cooperation between industry and academia, training models in industry, continuous

integration and continuous delivery education, cyber-physical system or Internet of Things education, etc.

Deadline for early registration: July 15, 2024.

Jul 30 – Aug 2 19th International Conference on Availability, Reliability and Security (ARES'2024), Vienna,

Austria. Topics include: various aspects of dependability; crucial linkage between availability, reliability

and security; availability, safety, confidentiality, integrity, maintainability and security in different fields

of applications; dependability in emerging areas; compliance, certification and legal aspects related to

security and privacy; dependability, and resilience; software security; static and dynamic code analysis

for security and privacy; security and privacy for IoT, cyber-physical systems, and critical infrastructures;

security requirements and secure design of applications; trusted computing; etc.

☺ August 26-30 30th International European Conference on Parallel and Distributed Computing (Euro-Par'2024),

Madrid, Spain. Topics include: all aspects of parallel and distributed processing, ranging from theory to

practice, from small to the largest parallel and distributed systems and infrastructures, from fundamental

computational problems to applications, from architecture, compiler, language and interface design and

implementation, to tools, support infrastructures, and application performance aspects.

August 28-30 50th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2024),

Paris, France. Topics include: information technology for software-intensive systems; tracks on Cyber-

Physical Systems (CPS), Emerging Computing Technologies (ECT), Model-Driven Engineering and

Modeling Languages (MDEML), Software Process and Product Improvement (SPPI), Practical Aspects

of Software Engineering (KKIO), etc.

September 04-06 27th Forum on specification & Design Languages (FDL'2024), Stockholm, Sweden. Topics include:

results, experiences, advances and new trends related to languages, tools, and techniques used for

developing software and hardware systems; targeted systems encompass cyber-physical systems,

distributed systems, real-time systems, embedded systems, mechatronics, IoT, and reactive systems;

based on the four non-limiting scientific areas of languages, semantics, verification and analysis,

simulation. Deadline for submissions: July 12, 2024 (PhD/WiP papers).

September 09-10 20th International Conference on Formal Aspects of Component Software (FACS'2024), Milan, Italy.

Co-located with FM'2024. Topics include: applications of formal methods in all aspects of software

components and services; formal methods, models, and languages for software-intensive systems,

components and services, including verification techniques, ...; formal aspects of concrete software-

intensive systems, including real-time/safety-critical systems, hybrid and cyber physical systems, ...; tools

supporting formal methods for components and services; case studies and experience reports over the

above topics; etc.

September 09-11 3rd Summer School on Security Testing and Verification (ST&V'2024), Brussels, Belgium. Topics

include: static and dynamic security testing; software verification; security by design; etc. Deadline for

early registration: July 21, 2024.

☺ Sep 09-11 29th International Conference on Formal Methods for Industrial Critical Systems (FMICS'2024),

Milan, Italy. Co-located with FM'2024. Topics include: case studies and experience reports on industrial

applications of formal methods, focusing on lessons learned or identification of new research directions;

methods, techniques, and tools to support automated analysis, certification, debugging, learning,

optimization, and transformation of complex, distributed, real-time, embedded, mobile, and autonomous

systems; verification and validation methods that address shortcomings of existing methods with respect

to their industrial applicability (e.g., scalability and usability issues, tool qualification, and certification);

application of formal methods in standardization and industrial forums; etc.

September 09-13 26th International Symposium on Formal Methods (FM'2024), Milan, Italy. Topics include:

development and application of formal methods in a wide range of domains including trustworthy AI,

software, computer-based systems, systems-of-systems, cyber-physical systems, security, human-

computer interaction, manufacturing, sustainability, energy, transport, smart cities, healthcare and

biology; techniques, tools, and experiences in interdisciplinary settings; experiences of applying formal

82 Conference Calendar

Volume 45, Number 2, June 2024 Ada User Journal

methods in industrial settings; design and validation of formal method tools; etc. Deadline for early

registration: July 30, 2024.

Sep 09-10 18th International Conference on Tests And Proofs (TAP'2024). Topics include: many

aspects of verification technology, including foundational work, tool development, and

empirical research; the combination of static techniques such as proving and dynamic

techniques such as testing; verification and analysis techniques combining proofs and

tests; static analysis of programs with the aid of dynamic techniques; deductive

techniques supporting the automated generation of test vectors and oracles, and

supporting (novel) definitions of coverage criteria; specification inference by deductive

or dynamic methods; testing and runtime analysis of formal specifications; verification

of verification tools and environments; applications of test and proof techniques in new

domains; combined approaches of test and proof in the context of formal certifications;

case studies, tool and framework descriptions, and experience reports; etc. Deadline for

submissions: July 7, 2024 (artifacts).

September 09-13 35th International Conference on Concurrency Theory (CONCUR'2024), Calgary, Canada. Topics

include: verification and analysis techniques for concurrent systems such as abstract interpretation, model

checking, race detection, run-time verification, static analysis, testing, theorem proving, type systems,

security analysis, ...; distributed algorithms and data structures: design, analysis, complexity, correctness,

fault tolerance, reliability, availability, consistency, ...; theoretical foundations, tools, and empirical

evaluations of architectures, execution environments, and software development for concurrent systems

such as multiprocessor and multi-core architectures, compilers and tools for concurrent programming,

programming models such as component-based, object-oriented, ...; etc.

September 09-13 22nd International Conference on Formal Modeling and Analysis of Timed Systems

(FORMATS'2024), Calgary, Canada. Topics include: fundamental and practical aspects of systems with

quantitative nature; modelling, design and analysis of computational systems; models and metrics for the

correctness, performance, reliability, safety, and security of systems; techniques, algorithms, data

structures for analysis, evaluation, and verification of the models mentioned above, e.g., for model

checking, testing, constraint solving, scheduling, optimization, and worst-case execution time analysis;

novel software tools to support practical application of research results in all of the above areas; etc.

Deadline for submissions: July 16, 2024 (Work-in-Progress presentations).

September 11-13 17th International Conference on the Quality of Information and Communications Technology

(QUATIC'2024), Pisa, Italy. Topics include: all quality aspects in ICT systems engineering and

management.

☺ Sep 16-20 38th European Conference on Object-Oriented Programming (ECOOP'2024), Vienna, Austria.

Topics include: programming languages, software development, systems and applications. Deadline for

submissions: June 30 - July 8, 2024 (workshop papers).

☺ Sep 17-20 43rd International Conference on Computer Safety, Reliability and Security (SafeComp'2024),

Florence, Italy. Topics include: all aspects related to the development, assessment, operation, and

maintenance of safety-related and safety-critical computer systems; safety guidelines and standards;

safety/security co-engineering and tradeoffs; safety and security qualification, quantification, assurance

and certification; model-based analysis, design, and assessment; formal methods for verification,

validation, and fault tolerance; testing, verification, and validation methodologies and tools; etc. Domains

of application include: railways, automotive, space, avionics & process industries; highly automated and

autonomous systems; telecommunication and networks; critical infrastructures; medical devices and

healthcare; surveillance, defense, emergency & rescue; logistics, industrial automation, off-shore

technology; education & training; etc. Deadline for submissions: July 1, 2024 (position papers).

Sep 29 – Oct 03 19th International Conference on Software Engineering Advances (ICSEA'2024), Venice, Italy.

Topics include: trends and achievements; advances in fundamentals for software development; advanced

mechanisms for software development; advanced design tools for developing software; software

performance; software security, privacy, safeness; advances in software testing; specialized software

advanced applications; open source software; agile and lean approaches in software engineering; software

deployment and maintenance; software engineering techniques, metrics, and formalisms; software

economics, adoption, and education; etc.

Conference Calendar 83

Ada User Journal Volume 45, Number 2, June 2024

Sep 29 – Oct 04 Embedded Systems Week 2024 (ESWEEK'2024), Raleigh, North Carolina, USA. Includes CASES'2024

(International Conference on Compilers, Architectures, and Synthesis for Embedded Systems),

CODES+ISSS'2024 (International Conference on Hardware/Software Codesign and System Synthesis),

EMSOFT'2024 (International Conference on Embedded Software). Deadline for submissions: July 8 -

August 15, 2024 (workshop papers), July 15, 2024 (competitions), July 31, 2024 (education classes).

October 03 Workshop on Time-Centric Reactive Software (TCRS'2024). Topics include:

automotive systems, compiler construction, cyber-physical systems, distributed systems,

embedded systems, formal verification, programming languages, model-based design,

modeling languages, middleware, real-time systems, etc. Deadline for submissions: July

8, 2024.

October 03-04 22nd ACM/IEEE International Symposium on Formal Methods and Models for

System Design (MEMOCODE'2024). Topics include: formal methods in system design

that address the foundations, engineering methods, tools, or experimental case studies;

modeling languages, methods, and tools (programming languages and models, software

and system modeling languages, architecture and high-level hardware description

languages, ...), formal methods and tools (correct-by-construction methods; contract-

based design and verification; static, dynamic, and type theoretic analysis; verification;

validation; test generation; ...), models and methods for developing critical systems

(security-critical and safety-critical systems, cyber-physical systems, autonomous

systems, ...), formal methods/models in practice, etc.

October 01-03 2024 International Conference on Software Engineering Research & Development (SERD'2024),

Oklahoma City, Oklahoma, USA & Online. Topics include: general and social aspects of software

engineering (SE); software design, testing, evolution, and maintenance; formal methods and theoretical

foundations; programming languages (PLs), systems, and environments; object- oriented (OO) design and

analysis; emerging SE technologies and dependability; distribution, componentization, and collaboration;

concurrent, parallel and distributed systems; etc. Deadline for submissions: July 15, 2024.

October 07-08 24th IEEE International Working Conference on Source Code Analysis and Manipulation

(SCAM'2024), Flagstaff, Arizona, USA. Topics include: abstract interpretation, bad smell detection, clone

detection, program comprehension, program slicing, program transformation and refactoring, security

vulnerability analysis, source level metrics, source level optimization, source-level testing and

verification, static and dynamic analysis, etc. Deadline for submissions: July 1, 2024 (abstracts

Engineering and New Ideas and Emerging Results (NIER) tracks), July 5, 2024 (papers Engineering and

New Ideas and Emerging Results (NIER) tracks).

☺ October 13-16 33rd International Conference on Parallel Architectures and Compilation Techniques (PACT'2024),

Long Beach, California, USA. Topics include: parallel architectures; compilers and tools for parallel

architectures; applications and experimental systems studies of parallel processing; computational models

for concurrent execution; support for correctness in hardware and software; reconfigurable parallel

computing; parallel programming languages, algorithms, and applications; middleware and run time

system support for parallel computing; distributed computing architectures and systems; etc.

October 15-18 24th International Conference on Runtime Verification (RV'2024), Istanbul, Türkiye. Topics include:

monitoring and analysis of runtime behavior of software, hardware, and cyber-physical systems; program

instrumentation; combination of static and dynamic analysis; monitoring techniques for concurrent and

distributed systems; fault localization, containment, resilience, recovery and repair; etc.

October 15-18 24th International Conference on Formal Methods in Computer-Aided Design (FMCAD'2024),

Prague, Czech Republic. Topics include: methods, technologies, theoretical results, and tools for

reasoning formally about computing systems; formal aspects of computer-aided system design including

verification, specification, synthesis, and testing; etc.

October 16-18 17th International Conference on Verification and Evaluation of Computer and Communication

Systems (VECoS'2024), Djerba, Tunisia. Topics include: analysis of computer and communication

systems, where functional and extra-functional properties are inter-related; cross-fertilization between

various formal verification and evaluation approaches, methods and techniques, especially those

developed for concurrent and distributed hardware/software systems. Deadline for submissions: July 5,

2024.

84 Conference Calendar

Volume 45, Number 2, June 2024 Ada User Journal

October 20-22 31st Static Analysis Symposium (SAS'2024), Pasadena, USA. Co-located with SPLASH'2024. Topics

include: static analysis as fundamental tool for program verification, bug detection, compiler optimization,

program understanding, and software maintenance.

☺ October 20-25 ACM Conference on Systems, Programming, Languages, and Applications: Software for Humanity

(SPLASH'2024), Pasadena, California, USA. Deadline for submissions: July 7, 2024 (workshop papers),

July 8, 2024 (student research competition), July 30, 2024 (volunteer applications).

October 20-21 17th ACM SIGPLAN International Conference on Software Language Engineering

(SLE'2024). Topics include: software language engineering in general rather than

engineering a specific software language; software language design and implementation;

validation of software language tools and implementations (verification and formal

methods, testing techniques, simulation techniques); software language maintenance

(software language reuse; language evolution; language families and variability,

language and software product lines); software language integration and composition

domain-specific approaches for any aspects of SLE; (analysis, design, implementation,

validation, maintenance); empirical studies and experience reports of tools (user studies

evaluating usability, performance benchmarks, industrial applications); etc.

☺ Oct 20-25 Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA'2024). Topics include: all practical and theoretical

investigations of programming languages, systems and environments, targeting any stage

of software development, including requirements, modelling, prototyping, design,

implementation, generation, analysis, verification, testing, evaluation, maintenance, and

reuse of software systems; development of new tools, techniques, principles, and

evaluations.

October 21-24 21st International Symposium on Automated Technology for Verification and Analysis

(ATVA'2024), Kyoto, Japan. Topics include: theoretical and practical aspects of automated analysis,

synthesis, and verification of hardware and software systems; program analysis and software verification;

analytical techniques for safety, security, and dependability; testing and runtime analysis based on

verification technology; analysis and verification of parallel and concurrent systems; verification in

industrial practice; applications and case studies; automated tool support; etc.

October 22 High Integrity Software Conference (HISC'2024), Newport, South Wales, UK. Topics include:

advanced software development for high-integrity and high-assurance systems, including programming

languages, verifiable code generation; verification and testing of high-integrity systems; assurance of

high-integrity systems; infrastructure and ecosystem for high-integrity software; etc.

October 22-24 22nd Asian Symposium on Programming Languages and Systems (APLAS'2024), Kyoto, Japan.

Topics include: all areas of programming languages and systems; programming paradigms and styles;

methods and tools to specify and reason about programs and languages; programming language

foundations; methods and tools for implementation; concurrency and distribution; applications, case

studies and emerging topics.

Oct 27 – Nov 01 39th IEEE/ACM International Conference on Automated Software Engineering (ASE'2024),

Sacramento, California, USA. Topics include: foundations, techniques, and tools for automating analysis,

design, implementation, testing, and maintenance of large software systems. Deadline for submissions:

July 2, 2024 (journal-first papers), July 12, 2024 (industry showcase).

October 28-31 35th IEEE International Symposium on Software Reliability Engineering (ISSRE'2024), Tsukuba,

Japan. Topics include: development, analysis methods and models throughout the software development

lifecycle; dependability attributes (i.e., security, safety, maintainability, survivability, resilience,

robustness) impacting software reliability; reliability threats, i.e. faults (defects, bugs, etc.), errors,

failures; reliability means (fault prevention, fault removal, fault tolerance, fault forecasting); software

testing and formal methods; software fault localization, debugging, root-cause analysis; reliability of AI-

based systems; reliability of model-based and auto-generated software; reliability of open-source

software; normative/regulatory/ethical spaces about software reliability; societal aspects of software

reliability; etc. Deadline for submissions: July 23, 2024 (Doctoral Symposium), July 28, 2024 (workshop

papers).

November 04-08 22nd International Conference on Software Engineering and Formal Methods (SEFM'2024), Aveiro,

Portugal. Topics include: software development methods (formal modelling, specification, and design;

Conference Calendar 85

Ada User Journal Volume 45, Number 2, June 2024

software evolution, maintenance, re-engineering, and reuse; design principles); programming languages

(abstraction and refinement, ...); software testing, validation, and verification (testing and runtime

verification, security and safety, ...); security, privacy, and trust (safety-critical, fault-tolerant, and secure

systems; software certification; applications and technology transfer); real-time, hybrid, and cyber-

physical systems; intelligent systems and machine learning; education; case studies, best practices, and

experience reports; etc.

☺ Nov 07-08 32nd International Conference on Real-Time Networks and Systems (RTNS'2024), Porto, Portugal.

Deadline for submissions: August 14, 2024 (abstracts 3rd round), August 16, 2024 (papers 3rd round).

November 13-15 19th International Conference on integrated Formal Methods (iFM'2024), Manchester, UK. Topics

include: recent research advances in the development of integrated approaches to formal modelling and

analysis; all aspects of the design of integrated techniques, including language design, verification and

validation, automated tool support and the use of such techniques in software engineering practice.

November 13-15 29th IEEE Pacific Rim International Conference on Dependable Computing (PRDC'2024), Osaka,

Japan. Topics include: software and hardware reliability, resilience, safety, security, testing, verification,

and validation; dependability measurement, modeling, evaluation, and tools; architecture and system

design for dependability; reliability analysis of complex systems; dependability issues in computing

systems (e.g. high performance computing, real-time systems, cyber-physical systems, ...); emerging

technologies (autonomous systems including autonomous vehicles, human machine teaming, smart

devices/Internet of Things); etc. Deadline for submissions: July 24, 2024 (abstracts), July 31, 2024

(papers).

December 03-06 31st Asia-Pacific Software Engineering Conference (APSEC'2024), Chongqing, China. Topics include:

requirements and design; component-based software engineering; software architecture, modeling and

design; middleware, frameworks, and APIs; software product-line engineering; testing and analysis;

testing, verification, and validation; program analysis; program repairs; formal aspects of software

engineering; formal methods; model-driven and domain-specific engineering; software comprehension

and traceability; dependability, safety, and reliability; software maintenance and evolution; refactoring;

reverse engineering; software reuse; debugging and fault localization; software repository mining; etc.

Deadline for submissions: July 6, 2024 (abstracts), July 13, 2024 (papers).

☺ December 10-13 45th IEEE Real-Time Systems Symposium (RTSS'2024), York, UK. Topics include: addressing some

form of real-time requirements/constraints, such as deadlines, response time, or delay/latency. Deadline

for submissions: July 1, 2024 (Hot Topics Day proposals), September 30, 2024 (TCRTS award

nominations).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2025

☺ January 19-25 52nd ACM SIGPLAN Symposium on Principles of Programming Languages (POPL'2025), Denver,

Colorado, USA. Topics include: all aspects of programming languages and programming systems, both

theoretical and practical; fundamental principles and important innovations in the design, definition,

analysis, transformation, implementation and verification of programming languages, programming

systems, and programming abstractions. Deadline for submissions: July 11, 2024 (papers), July 26, 2024

(workshops, co-located events).

January 20-21 International Conference on Certified Programs and Proofs (CPP'2025). Topics

include: research areas related to formal certification of programs and proofs; new

languages and tools for certified programming; program analysis, program verification,

and program synthesis; program logics, type systems, and semantics for certified code;

teaching mathematics and computer science with proof assistants; etc.

March 01-05 ACM/IEEE International Symposium on Code Generation and Optimization (CGO'2025), Las

Vegas, USA. Deadlines for paper submissions: September 12, 2024 (2nd round).

Mar 30 – Apr 03 20th European Conference on Computer Systems (EuroSys'2025), Rotterdam, the Netherlands. Topics

include: all areas of computer systems research, such as distributed systems, language support and runtime

systems, systems security and privacy, dependable systems, analysis, testing and verification of systems,

86 Conference Calendar

Volume 45, Number 2, June 2024 Ada User Journal

parallelism, concurrency, and multicore systems, real-time, embedded, and cyber-physical systems, etc.

Fall deadline for submissions: October 15, 2024 (abstracts), October 22, 2024 (submissions).

Apr 26 – May 04 47th International Conference on Software Engineering (ICSE'2025), Ottawa, Ontario, Canada.

Topics include: the full spectrum of Software Engineering (SE), trustworthy AI for SE; AI-assisted

software design and model driven engineering; mining software repositories; software metrics (and

measurements); software design methodologies, principles, and strategies; architecture quality attributes,

such as security, privacy, performance, reliability; modularity and reusability; dependency and

complexity analysis; patterns and anti-patterns; technical debt in design and architecture; formal methods

and model checking; reliability, availability, and safety; resilience and antifragility; design for

dependability and security; vulnerability detection to enhance software security; dependability and

security for embedded and cyber-physical systems; evolution and maintenance; API design and evolution;

software reuse; refactoring and program differencing; program comprehension; reverse engineering;

environments and software development tools; human and social aspects (focusing on programming

languages, environments, and tools supporting individuals, teams, communities, and companies; focusing

on software development processes; ...); modeling and model-driven engineering; variability and product

lines; modeling languages, techniques, and tools; empirical studies on the application of model-based

engineering; software testing; automated test generation techniques such as fuzzing, search-based

approaches, and symbolic execution; testing and analysis of non-functional properties; program analysis;

debugging and fault localization; runtime analysis and/or error recovery; etc. Deadline for submissions:

July 24, 2024 (showdow PC self-nomination), July 26, 2024 (2nd cycle abstracts), August 2, 2024 (2nd

cycle submissions), November 11, 2024 (workshop papers).

May 03-08 28th ETAPS International Joint Conferences on Theory and Practice of Software (ETAPS'2025),

Hamilton, Canada. Deadline for submissions: July 18, 2024 (satellite events), October 10, 2024 (TACAS,

FoSSaCS, FASE, ESOP)

 June 10-13 29th Ada-Europe International Conference on Reliable Software Technologies

(AEiC'2025), Paris, France. Organized by Ada-Europe and Ada-France. #AEiC2025 #AdaEurope
#AdaProgramming

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

The 29th Ada-Europe International Conference on Reliable

Software Technologies (AEiC 2025) will take place

on June 10-13, 2025, in Paris, France.

It will be hosted by the prestigious “École des Mines de Paris”,

located next to the Quartier Latin.

Did you enjoy the superb views of Paris during the Olympics? Now

is the time to visit by yourself and enjoy famous monuments,

museums, or just walk along the streets of the beautiful city of light!

And of course, attend the conference, which will offer all the usual

features that you liked on previous occasions: keynotes,

presentations, posters, vendor booths, and interactions with other

participants.

We'll offer the logistics for a great event, with enjoyable social,

cultural, and touristic opportunities. Start now preparing

submissions for an interesting scientific and industrial program!

Paris, France

Picture from Wikimedia / Yann Caradec - CC BY-SA 2.0

Looking forward to AEiC 2025

https://www.flickr.com/people/10288162@N07
https://creativecommons.org/licenses/by-sa/2.0

88

Volume 45, Number 2, June 2024 Ada User Journal

Call for Contributions

Topics: Ada, Programming Languages, Software

Engineering Issues and Reliable Software

Technologies in general.

Contributions: Refereed Original Articles, Invited

Papers, Proceedings of workshops and panels and

News and Information on Ada and reliable software

technologies.

More information available on the

Journal web page at

http://www.ada-europe.org/auj

Online archive of past issues at http://www.ada-europe.org/auj/archive/

Ada User Journal

89

A Framework for Improving Portability and
Ensuring Correctness of Operating System Kernels

Vignesh Manjunath
Pro2Future GmbH, Graz, Austria; email: vignesh.manjunath@pro2future.at

Marcel Baunach
Graz University of Technology, Graz, Austria; email: baunach@tugraz.at

Abstract

Traditional embedded Real-Time Operating Systems
(RTOS) or Basic Software (BSW) implementations
typically require manual porting to new hardware
platforms. However, this approach can be
time-consuming and error-prone, especially given the
frequent introduction of new or upgraded hardware
architectures. In addition, traditional testing methods
may not fully capture the complexity and nuances of the
system, making it difficult to ensure correctness and
dependability. To address these challenges, we propose
a comprehensive methodology that integrates formal
methods, a WCET tool, and a code generation technique.
We use formal methods to create models and verify
their correctness against functional and non-functional
specifications or properties such as safety, liveness, and
timing. We use the WCET tool as a microarchitecture
analyzer to analyze the low-level binary code. The
intermediate results of the tool are used to verify the
correctness of the software implementation against the
runtime effects of the hardware, such as data/memory
race conditions. Finally, the code is generated from the
formal models. Our proposed framework simplifies the
maintenance of RTOS or BSW implementations while
ensuring their correctness and partially automating
portability to new hardware architectures.

Keywords: RTOS, formal methods, dependability

1 Introduction
Conventional implementations of embedded RTOS and BSW
modules, such as device drivers, typically require manual
porting to new hardware (HW) architectures. This is because
the low-level implementations (e.g., system initialization,
context switch) of these modules are hardware-dependent and
do not compile for different targets. In contrast, high-level
implementations (e.g., scheduler, task management) that
are hardware-independent can be reused more easily. The
manual porting process can be tedious, time-consuming, and
error-prone, especially given the frequent introduction of new
or upgraded hardware. Developers must repeat the porting
process for each new hardware platform they encounter.

In addition, traditional software testing methods may not fully
capture the complexity and nuances of the system, which can
lead to issues of correctness and dependability. Testing might
only cover specific scenarios or functionalities, potentially
leaving out corner cases or other system behaviors that may
impact the overall correctness of the system. This could be
a major challenge for critical systems, e.g., automotive and
avionics, where high levels of dependability are required.

While approaches such as [1, 2] attempt to model and
verify OS kernels using formal methods, the low-level
implementations still need to be ported manually. The
process even requires additional effort to implement a formal
specification of the low-level code, eventually increasing the
overall time required to port the RTOS. Some approaches
such as [3, 4] use formal methods to model, verify, and
generate low-level code. They provide the basis for automatic
portability and correctness of RTOS implementations.
However, they do not have a hardware model to consider
other internal hardware effects such as pipeline and cache
behavior, data and instruction synchronization dependencies,
and memory race conditions during verification, which limits
their applicability.

Our framework addresses the portability and correctness
challenges mentioned earlier by integrating three main
concepts: First, we use UPPAAL [5] and Event-B [6] as
formal methods to model an RTOS, and then verify its
correctness with respect to functional specifications and
non-functional properties, i.e., safety, liveness, and timing.
Second, we use the WCET analyzer OTAWA [7] as a
microarchitecture analyzer for the low-level implementations
of the RTOS. The intermediate results of OTAWA are
used to verify correctness against runtime effects of the
hardware architecture, i.e., the data/memory race conditions
and synchronization dependencies. Third, we use a code
generation technique based on the LLVM backend [8] to
generate assembly code from the models.

The primary focus of this paper is on the development
of the proposed framework. Section 2 provides some
design decisions on the key components and their integration
within our framework. Section 3 describes the underlying
methodology, and Section 4 presents the preliminary results
of a part of our framework. Section 5 discusses the expected
benefits and limitations. Section 6 compares related work,

Ada User Jour na l Vo lume 45, Number 2, June 2024

90 A Framework for Improv ing Por tab i l i ty and Ensur ing Correc tness of OS Ker ne ls

and Section 7 summarizes the paper with an outlook to future
work.

2 Design Decisions
This section presents a brief overview of the main components
of our framework and discusses the design decisions that lead
to their integration into the framework.

UPPAAL [5] is a formal modeling and verification tool based
on timed automata. Since RTOS must meet strict timing
constraints, it is essential to verify their correctness using
timing verification. Therefore, UPPAAL is an appropriate
choice for our framework to model and verify the correctness
by checking both functional, temporal (safety and liveness),
and timing properties. In addition, UPPAAL is a symbolic
model-checking tool that facilitates a seamless transition from
code-based development to formal model-based development.

Event-B [6] is a formal method based on set theory and
refinements. First, an abstract model of the system is created
and then incrementally refined to a concrete model. The
refinement approach makes Event-B suitable for formally
modeling the low-level implementations of RTOS. Similar
to [3], the idea is to include hardware details (e.g., registers)
only in the final refinement so that the previous refinements
can be reused for different hardware architectures. For
example, the existing work reuses 10 out of 14 model
refinements across MSP430 and RISC-V architectures. This
way, we reduce the manual porting effort and partially
automate portability. Our framework uses Event-B to verify
safety and liveness properties.

LLVM [9] is a compiler infrastructure that consists of a
frontend for high-level languages such as C and C++, and
generates an Intermediate Representation (IR). Its backend
uses the LLVM IR to generate assembly code for a specific
target architecture. Due to its modular structure, the LLVM
backend can be used as a standalone tool in our framework to
generate assembly code for a target architecture.

OTAWA [7] is a static analysis framework to estimate WCET.
It first generates a Control Flow Graph (CFG) of a program
from the ELF executable. The CFG consists of a set of
connected basic blocks based on the program flow. The basic
blocks contain a sequence of instructions with one entry and
exit. OTAWA then performs a timing analysis for each basic
block and its predecessor blocks to calculate the possible
execution times for each execution path while considering
hardware effects (e.g., cache hit/miss, pipeline behavior). By
extracting the timing analysis results into eXecution Graphs
(XGraphs) [10], we obtain pipeline-level (e.g., fetch, decode,
and execute) timing information in CPU cycles while covering
all possible execution paths and hardware behavioral aspects
(pipeline, memory and cache access). Although we can
use cycle-accurate simulators such as gem5 [11] to analyze
the programs, we cannot simultaneously analyze different
execution paths and consider all hardware effects. Therefore,
in our framework, we use OTAWA as a microarchitecture
analyzer to analyze the low-level implementations and extract
the intermediate (program and timing analysis) results of
the WCET analysis. Furthermore, OTAWA supports major

embedded hardware architectures such as ARM7TDMI,
TriCore, and RISC-V.

3 Framework and Methodology
Figure 1 illustrates the proposed methodology which
integrates formal methods, a WCET analyzer, and a code
generation technique. The process involves a sequence
of steps, referred to by No. in the figure. To modularize
our approach, we begin by manually splitting the RTOS
specifications into two categories: hardware dependent and
independent. While the hardware-independent specifications
(e.g., scheduler, task management) are reusable across
different hardware platforms, the hardware-dependent (e.g.,
context switch, system initialization) ones require manual
porting. In step 1 , we use the formal method UPPAAL
to model the hardware-independent specifications. Next, in
steps 2 through 6b , we model low-level specifications and
verify them for correctness against functional specifications
and runtime hardware effects. In steps 7 and 8 , we use the
results of the verification and hardware analysis to formally
verify functional and non-functional correctness. In step 9 ,
we generate code, which is then subject to post-generation
verification in step 10 . Finally, if the verification is successful,
we deploy the final code in step 11 . Let’s take a closer look
at each of these steps and their specific tasks:

1 We use UPPAAL to model the hardware-independent
specifications of an RTOS, such as the scheduler or resource
manager. We also model the syscalls, since these are typically
implemented in a high-level programming language. By
formalizing the related specifications, we aim to create a set
of models that can be used for different hardware platforms,
making them automatically portable.

2 We use the refinement approach in Event-B to model
and functionally verify the hardware-dependent RTOS
specifications, such as context switch or system initialization.
The hardware details are included only in the final refinement
so that the previous refinements can be reused for different
hardware platforms. We then translate the Event-B models
to LLVM IR and use the LLVM backend to generate the
corresponding assembly code. This approach builds upon the
works presented in [12] and [13].

3 After generating the low-level code in the previous step,
we compile it into an ELF executable for analysis by OTAWA.
We ensure the correctness of the low-level code w.r.t. the
runtime effects of the hardware architecture, we analyze the
ELF instead of the low-level code. This is because we need
to consider assembly-level optimizations that may affect the
behavior of the code.

4 To analyze the input ELF with OTAWA, we need to
provide additional information, such as hardware architecture
details (ISA, memory, and pipeline). OTAWA then analyzes
the input ELF, and we extract the intermediate results of the
analysis, such as CFGs and XGraphs.

5 We use the CFGs and XGraphs to verify low-level
code for correctness against runtime hardware effects, i.e.,
data hazards, memory race conditions, and synchronization

Volume 45, Number 2, June 2024 Ada User Jour na l

V. Manjunath , M. Baunach 91

Figure 1: Overview of the proposed methodology and the interacting tools.

dependencies. Our verification process involves the following
steps.

First, we logically deduce and formalize the freedom from
side-effects of the low-level code as a timing constraint.
An example of a timing constraint derived for a data
synchronization dependency hazard is

EXE(In).C ≤ EXE(In+1).A

where In is an instruction which modifies a CPU special
function register or manipulates the cache, In+1 is any
instruction that follows In in the pipeline, EXE(In).C is
the completion time of the execution stage of instruction In,
and EXE(In+1).A is the arrival time (start) of the execution
stage of instruction In+1. The timing constraint represents
that the execution stage of In should be completed before the
execution stage of In+1 begins, ensuring the changes made
by In are completed before the execution of In+1. If this
constraint fails, then a data synchronization instruction is
required between In and In+1. The data synchronization
instruction ensures that In is completed before In+1 is
executed. Similarly, we derive the timing constraints for
the intended hardware effects.

Next, we parse the CFGs to extract the set of basic blocks
and their connections, and we also parse the XGraphs
to extract the timing information at the pipeline level for
each instruction in the given basic block and its immediate
predecessor. Then, we calculate the execution time of the
given basic block by subtracting the completion times of
the last instruction of the basic block and its immediate
predecessor.

Finally, we check if the timing information extracted from
the XGraphs satisfy the timing constraints derived at the first
step of our verification process. If all the timing constraints
are satisfied, the verification is considered successful. The
results of the verification process consist of the program flow
information, the execution times of instructions and basic
blocks, and the results of the timing constraints check.

6a If any of the timing constraints are not satisfied, the
verification fails. So we repeat steps 2 through 5 by

modifying the respective low-level Event-B model(s) to fix
the problem, and then re-verify the newly generated low-level
code. The process involving steps 3 through 6a presents
a comprehensive framework for verifying the correctness
of low-level code under the influence of hardware runtime
effects. The framework can be applied to verify any low-level
code, whether it is manually implemented or automatically
generated.

6b Once the verification process is successful, the results are
used to generate the formal models of the low-level code in
UPPAAL. The output is a set of UPPAAL models representing
the basic blocks with instruction sequences of the low-level
code. These models are synchronized to match the code flow.

7 We integrate the instruction sequence models generated
in the previous step with the hardware-independent models
created in step 1 . The integration process involves
synchronizing the models based on the system requirements.

8 We use UPPAAL verification formulas to verify the
functional correctness and non-functional properties like
safety, liveness, reachability, and timing. We follow
a compositional verification process where only relevant
models are included based on the verification formula. In
this way, we aim to reduce the size of the verification state
space.

9 After successful verification, we translate the UPPAAL
models to LLVM IR and then use the LLVM backend to
generate the assembly code.

10 We compile the assembly code as an ELF executable
and use OTAWA to perform microarchitecture analysis. We
then repeat step 5 by extracting intermediate results and
performing a timing constraints check. In addition to timing
constraints related to hardware effects, we also formalize
system requirements as timing constraints. In this way, we
ensure that the generated code is correct.

11 If the code verification fails, then we need to fix the issue
in step 9 and repeat step 10 and 5 . Once the verification
is successful, the final code is deployed.

Ada User Jour na l Vo lume 45, Number 2, June 2024

92 A Framework for Improv ing Por tab i l i ty and Ensur ing Correc tness of OS Ker ne ls

4 Preliminary Results
As a first step in realizing the proposed methodology, we
used our framework for verifying low-level RTOS code
against runtime effects of the AURIX TriCore architecture
(i.e., steps 3 to 6a in Figure 1). In our implementation,
we considered the following runtime effects: (1) data and
instruction synchronization dependencies, (2) data hazards
(read-after-write, write-after-read, and write-after-write), and
(3) memory race conditions.

To evaluate our implementation, we analyzed and verified
the context switch assembly code of FreeRTOS [14] on the
AURIX TC375 architecture [15]. As a result, we identified (1)
two constraint check fails with respect to data synchronization
dependency, (2) nine potential memory race conditions that
need further investigation, and (3) 68 data hazards that can be
resolved at compile time to save execution time. Additionally,
we extracted the program flow information and computed
the execution times of instructions and basic blocks. For
reference, we uploaded the results of our analysis at https:
//dx.doi.org/10.6084/m9.figshare.2528882
5.

5 Benefits and Limitations
Our proposed methodology for developing and maintaining
RTOS or BSW implementations is still under construction but
already shows some benefits and limitations. It is important
to understand these aspects to improve or extend the software,
evaluate the suitability of our methodology for specific use
cases, and determine how to use its strengths effectively while
overcoming its limitations.

Expected benefits:

• Improved software correctness and dependability since
we use formal methods and consider hardware effects
for verification.

• Improved accuracy of timing verification as we analyze
all possible execution scenarios with a WCET tool.

• Improved software portability and maintenance by
using the refinement approach in Event-B with a code
generation technique.

Current limitations:

• High initial cost and effort to train developers in formal
methods and implement formal models of the software.

• Overhead due to manual effort for partitioning RTOS
specifications and formalizing system requirements into
timing constraints or UPPAAL verification formulas.

6 Related Work
There are a variety of approaches that focus on formal
modeling and verification of RTOS. In [3], an Event-B-based
approach for formal modeling, verification, and generation of
low-level RTOS code is proposed. However, the internal
hardware effects such as pipeline and cache behavior,
synchronization dependencies, and memory race conditions
were not considered during the verification.

Similar to our methodology, the work [4] also proposes a
comprehensive methodology that integrates formal methods

with other tools to verify their OS. However, they exclude
hardware architecture information such as memory, cache,
and pipeline and only verify correctness at the ISA level.

In [2], the seL4 kernel is proposed as a formally verified
microkernel to ensure correctness, security, and reliability.
The hardware-independent specifications of the kernel are
verified using Isabelle/HOL [16]. While the high-level
implementations are done in C, their formal specifications
developed and verified in parallel. This approach requires
a high implementation and maintenance effort and may
lead to difficulties in maintaining consistency between
the formal specifications and the C code. In addition,
low-level verification of seL4 is performed using simulators or
emulators, which leaves room for errors similar to traditional
testing methods.

The architecture proposed in [1], called CertikOS, aims
to develop certified concurrent OS kernels using a
Coq [17] proof assistant for formal verification. Their
approach follows a refinement strategy, starting from
an abstract model to a concrete C implementation
for hardware-independent specifications. However, the
hardware-dependent specifications, such as context switching,
are implemented manually in assembly language and linked to
the C implementation at assembly level. Unlike our approach,
this requires an intensive manual porting effort when targeting
new hardware platforms.

As far as we know, other works focus primarily on achieving
correctness rather than portability or maintainability, as we
do in our framework. Moreover, low-level verification in
these works often depends on testing methods that involve
simulators or emulators, which can easily miss errors.
It appears that the research community needs to further
investigate the portability and maintainability of RTOS.

7 Conclusion and Future Work
In this work, we proposed a novel framework that integrates
formal methods, a WCET tool, and a code generation
technique to verify and automatically port low-level code.
We minimized the manual porting effort by keeping most of
the low-level models free of hardware-specific information.
In addition, we used code generation to transform the models
into code and partially automate the porting process for
new hardware architectures. The use of formal methods
in conjunction with the WCET tool supports rigorous
verification of RTOS or BSW implementations against
functional specifications and non-functional properties such
as safety, liveness, and timing while taking hardware aspects
into account. In this way, our framework improves portability
while ensuring the correctness of RTOS kernels.

As future work we plan to improve and implement missing
parts of our framework, and empirically evaluate it using
existing RTOS implementations. We also intend to
automate the formalization of system requirements into
verification formulas. This will enable or improve traceability
and consistency between requirements and the formal
specification.

Volume 45, Number 2, June 2024 Ada User Jour na l

https://dx.doi.org/10.6084/m9.figshare.25288825
https://dx.doi.org/10.6084/m9.figshare.25288825
https://dx.doi.org/10.6084/m9.figshare.25288825

V. Manjunath , M. Baunach 93

Acknowledgement
This work has been supported by the FFG under contract No.
881844: "Pro²Future" (Products and Production Systems of
the Future), Graz University of Technology (TU Graz), and
Elektrobit Automotive GmbH in the joint research project
CompEAS.

References
[1] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg,

and D. Costanzo, “Certikos: An extensible architecture
for building certified concurrent os kernels.,” in OSDI,
vol. 16, pp. 653–669, 2016.

[2] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, et al., “sel4: Formal
verification of an os kernel,” in Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles, pp. 207–220, 2009.

[3] R. M. Gomes, B. Aichernig, and M. Baunach, “A
Formal Modeling Approach for Portable Low-Level
OS Functionality,” in Software Engineering and Formal
Methods (F. de Boer and A. Cerone, eds.), (Cham),
pp. 155–174, Springer International Publishing, 2020.
doi: 10.1007/978-3-030-58768-0_9.

[4] J. Shi, J. He, H. Zhu, H. Fang, Y. Huang, and
X. Zhang, “ORIENTAIS: Formal verified OSEK/VDX
real-time operating system,” in 2012 IEEE 17th
International Conference on Engineering of Complex
Computer Systems, pp. 293–301, IEEE, 2012. doi:
10.1109/ICECCS20050.2012.6299224.

[5] G. Behrmann, A. David, and K. G. Larsen, “A tutorial
on uppaal,” Formal Methods for the Design of Real-Time
Systems: International School on Formal Methods
for the Design of Computer, Communication, and
Software Systems, Bertinora, Italy, September 13-18,
2004, Revised Lectures, pp. 200–236, 2004.

[6] T. S. Hoang, “An introduction to the event-b modelling
method,” Industrial Deployment of System Engineering
Methods, pp. 211–236, 2013.

[7] C. Ballabriga, H. Cassé, C. Rochange, and
P. Sainrat, “OTAWA: An Open Toolbox for
Adaptive WCET Analysis,” in IFIP International
Workshop on Software Technolgies for Embedded and

Ubiquitous Systems, pp. 35–46, Springer, 2010. doi:
10.1007/978-3-642-16256-5_6.

[8] C. Chung-Shu, “Tutorial: Creating an llvm backend for
the cpu0 architecture,” 2021.

[9] C. Lattner and V. Adve, “Llvm: A compilation
framework for lifelong program analysis &
transformation,” in International symposium on
code generation and optimization, 2004. CGO 2004.,
pp. 75–86, IEEE, 2004.

[10] X. Li, A. Roychoudhury, and T. Mitra, “Modeling
out-of-order processors for software timing analysis,” in
25th IEEE International Real-Time Systems Symposium,
pp. 92–103, IEEE, 2004. doi: 10.1109/REAL.2004.33.

[11] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian,
R. Amslinger, M. Andreozzi, A. Armejach,
N. Asmussen, B. Beckmann, S. Bharadwaj, et al.,
“The gem5 simulator: Version 20.0+,” arXiv preprint
arXiv:2007.03152, 2020.

[12] R. Martins Gomes, B. Aichernig, and M. Baunach,
“A framework for embedded software portability and
verification: from formal models to low-level code,”
Software and Systems Modeling, pp. 1–27, 2024. doi:
10.1007/s10270-023-01144-y.

[13] R. M. Gomes and M. Baunach, “Code generation
from formal models for automatic rtos portability,” in
2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pp. 271–272,
IEEE, 2019.

[14] “FreeRTOS.” https://freertos.org/(accessed
Dec. 10, 2023).

[15] Infineon Technologies AG, AURIX TC3xx Architecture
Volume 1, V1.2.2, 01 2020. https://www.infi
neon.com/cms/en/product/microcontrol
ler/32-bit-tricore-microcontroller/3
2-bit-tricore-aurix-tc3xx/aurix-fam
ily-tc37xtp/#!?fileId=5546d46276fb7
56a01771bc4c2e33bdd.

[16] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL:
a proof assistant for higher-order logic. Springer, 2002.

[17] G. Huet, G. Kahn, and C. Paulin-Mohring, “The coq
proof assistant a tutorial,” Rapport Technique, vol. 178,
1997.

Ada User Jour na l Vo lume 45, Number 2, June 2024

https://freertos.org/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc37xtp/#!?fileId=5546d46276fb756a01771bc4c2e33bdd
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc37xtp/#!?fileId=5546d46276fb756a01771bc4c2e33bdd
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc37xtp/#!?fileId=5546d46276fb756a01771bc4c2e33bdd
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc37xtp/#!?fileId=5546d46276fb756a01771bc4c2e33bdd
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc37xtp/#!?fileId=5546d46276fb756a01771bc4c2e33bdd
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc37xtp/#!?fileId=5546d46276fb756a01771bc4c2e33bdd

94

Algebraic Effects and Static Analysis for
Safety-Critical Applications in Fuzion

Fridtjof Siebert, Michael Lill, Max Teufel
Tokiwa Software GmbH, Karlsruhe, Germany; email: {siebert, michael.lill, max.teufel}@tokiwa.software

Abstract

This work-in-progress paper presents the introduction
of algebraic effects to the Fuzion language and how
algebraic effects can be used in the context of safety-
critical systems.

Fuzion is a modern, general purpose programming
language that unifies functional and object-oriented
paradigms into a pure functional language. Algebraic
effects are used to represent and manage non-functional
aspects like I/O operations or mutable state. Static anal-
ysis is used extensively at several stages in the Fuzion
toolchain to verify different correctness aspects of the
application.

We start with a condensed overview of the Fuzion lan-
guage to then describe how algebraic effects are used to
represent non-functional aspects. The Fuzion toolchain
will be explained and how static analysis is used to build
and validate applications. Finally, it will be shown how
algebraic effects can be used to model aspects relevant
to safety-critical systems.

Keywords: programming languages, algebraic effects,
static analysis, safety, security

1 Introduction

Fuzion is a work-in-progress project to design a new high-
level language targeting safety critical applications [1]. It
provides a novel way that combines aspects of object-oriented
and functional programming paradigms in a coherent and
simple way. Fuzion is pure in the sense that no public routine
will have any non-functional side-effects unless it is explicitly
declared to do so.

2 Fuzion Language Introduction

This section gives a condensed and recursive overview of the
Fuzion language and an introduction to its terminology, a
tutorial is available online [2].

2.1 Building Block: Feature

The building blocks of Fuzion applications are feature declara-
tions. There are different kinds of features, the most common
kinds are field and routine. A field is an immutable variable of

a statically fixed type that is initialized with a value calculated
from an expression. A routine is a callable feature with formal
arguments and code given as an expression. A routine may be
one of two kinds: a function that results in the value produced
by evaluation of its expression or a constructor that defines a
product type consisting of its inner fields. The arguments of a
routine themselves are features, they may be type parameters
or fields.

2.2 Types

Fuzion’s types fall into two categories, product types that
are defined by a constructor and sum types that are defined
by choice features. A choice feature defines a tagged union
type (choice type) of its type parameters, complementary to
a constructor feature that defines a product type of its inner
fields. Unlike constructor features, a choice feature may not
be called in an expression. An instance of a choice type is
created by an assignment of a value whose type is one of the
choice’s type parameters to a field of the choice type.

2.3 Expressions

An expression is code that can be evaluated to produce a result
value of the expression’s type. Any code that is executed must
therefore produce a result value when it returns, but there are
types like unit for values that do not contain any information
or void to indicate that the expression does not return1.

The most important expression is a feature call to a routine.
On a call, actual values are assigned to the routine’s formal
arguments: For arguments that are type parameters, the actual
values must be types, while for argument fields corresponding
expressions must be given. The result of a call to a function
is the value of the function’s expression, while the result of a
call to a constructor is the instance of the product type defined
by that constructor with arguments set to the actual types and
values and inner fields initialized to their initial values.

The only expression that permits conditional code is a match
that takes an expression that evaluates to an instance of a
choice type. Depending on the original type stored in the
choice, evaluation proceeds with one of several expressions.

Finally, Fuzion expressions allow nested declarations de-
scribed in the next sub-section:

1e.g., as the result type of a call to panic that aborts with an error

Volume 45, Number 2, June 2024 Ada User Jour na l

F. Sieber t , M. L i l l , M. Teufe l 95

2.4 Nested Features

A feature declaration itself is a Fuzion expression that results
in a unit type result value. This permits fields to be nested
within routines, but also permits the nesting of routines. An
inner routine may access features declared in all of its outer
routines. On a call to a routine, a reference to the outer
instance is passed as an implicit argument.

2.5 Inheritance and Dynamic Binding

Constructors may inherit from other constructor features by
adding calls to these parents in the declaration. As a result,
the child inherits the parents’ inner features, which the child
may redefine.

Since Fuzion uses value semantics, using inheritance and
redefinition does not require dynamic binding. However, a
constructor may be defined as a reference type. If this is the
case for the parent, the child becomes assignable to fields of
the parent type and dynamic binding will be used.

2.6 Algebraic Effects

Fuzion routines are pure, i.e., their result depends only on the
values of the actual arguments including the implicit outer
instance. The only means to perform state changes or to inter-
act with the outside world is via algebraic effects. These are
features that inherit from a base feature effect and add effect
operations as inner features. Effects can be installed to run
code that can access the effect’s operations in its environment.
Static analysis is used to verify that all effects required for
certain code are actually installed in the code’s environment.

2.7 Syntactic Sugar

Fuzion uses extensive syntactic sugar to provide a more
human-readable syntax for common code patterns.

Conditionals of the form if -then-else are internally handled
like match expressions. This is possible since type bool in
Fuzion’s base library is defined as a choice type of unit types
FALSE and TRUE.

Loops are supported via a powerful syntax that is, internally,
mapped to tail-recursive calls2 and match expressions.

Type inference is used extensively in the frontend such
that —even though Fuzion is statically typed— types can be
omitted in most cases.

2.8 Information Hiding

Visibility of features and types can be restricted as private
(same source file, default), module (same module) and public.

2that will be optimized by the backends

3 Algebraic Effects

Purely functional code brings a number of advantages for
the correctness of a complex software system: The result of
every call depending only on the call’s arguments simplifies
(automatic) reasoning about the code, the absence of mutable
state results in thread-safety and the absence of side-effects
permits optimizations since there is no observable effect if
code is not executed or executed repeatedly. Also, if purity of
code from an untrusted source can be verified, it can safely
be used without compromising a system’s security.

However, for code to interact with the outside world or for
mere performance reasons, actual systems must be able to
perform non-functional operations. Examples include i/o
operations, mutation of data, inter-thread communication,
access to hw timers, sensors, actuators, aborting an operation,
and many more.

Algebraic Effect handlers [3,4,5,6] are used in recent program-
ming languages as a means to handle operations that would
break the purity by having non-functional side-effects. An
effect defines a set of such operations, while an effect handler
provides a concrete implementation of these operations. Code
that calls these operations is then said to require an instance
of the given effect in its environment. The environment is
essentially a stack of effects that is used to find the innermost
handler for each operation to be used.

3.1 Effects in Fuzion

Fuzion uses algebraic effects to wrap non-functional opera-
tions. An effect in Fuzion is a constructor feature that inherits
from a base library feature called effect and that defines a set
of operations as inner features. An effect can be instantiated
and installed to run code that uses the effect’s operations.
Effects are identified by their type [7].

Feature declarations in Fuzion include an optional section
to list all the effect types that are required to call that fea-
ture. Features that are marked as public must include this
information, which will be verified by static analysis.

3.2 Effects in dynamic code

A major difficulty in specifying the effects of a feature orig-
inates in the presence of dynamic code: functions that are
passed as arguments to routines may require additional effects
that are unknown to the called routine. E.g., one might want
to log calls to a function passed to a library routine, where
the effect that performs this logging is unknown to the library.
The same problem may occur if a redefinition of an inher-
ited feature uses effects that were unexpected by the original
routine.

To solve this, languages like Koka introduce effect polymor-
phism to declare required effects explicitly [8] while the Ef-
fekt language [9] simplifies effect polymorphism by viewing
effects as capabilities [10].

In Fuzion, static analysis is used both at module level and
at whole application level. At module level, effect polymor-
phism is analyzed only to the extend that control flow reaches

Ada User Jour na l Vo lume 45, Number 2, June 2024

96 Algebra ic Ef fec ts for Sta t ic Analys is in Fuz ion

the use of a given effect, while additional effects introduced
by users of that module through function arguments or redefi-
nition are ignored. At the application level, whole program
data-flow analysis verifies that all uses of effects occur in
environments that provide corresponding effect instances.

3.3 Effect Example

We will present a small example using an effect temp to model
a temperature sensor that can read a temperature in degrees
Centigrade:

temp (hdlr ()−>f64) : simple_effect is
read => hdlr ()

Here, temp is the effect constructor and also its type, and
read is the only operation, which gives a temperature reading.
read is implemented by calling a handler function hdlr, which
permits different implementations for different instances of
this effect.

Our application main loop now requires this temp effect to
repeatedly perform a temperature reading and printing the
result unless it is larger than 41°C, when it should call panic:

main ! temp =>
do

t := temp.env.read
if t > 41

panic " *** get doctor ***"
say "ok: $t°C."
time.nano.sleep (time.durations.ms 500)

In a deployed system, this would run with an instance of temp
using a handler that reads the temperature from a thermometer.
In a test setup, we can simulate the hardware using a handler
test_temp that reads and modifies a mutable field cur_temp:

cur_temp := mut 37.0
test_temp =>

t := cur_temp.get
cur_temp <− t+0.3
t

(temp test_temp).use main

This illustrates that, when using effects, we can separate the
program logic, main in this example, from the implementation
of non-functional aspects like reading a sensor.

4 Compilation Phases

The Fuzion toolchain (Fig 1) starts by compiling a set of
Fuzion source files *.fz into a Fuzion module name.fum. Mod-
ules may depend on other modules and compilation is done
against pre-compiled modules. The frontend phase checks
that the source code respects the language validity rules that
include type checks, visibility rules, etc.

Module files have unique version numbers, any change or
recompilation of one module requires recompilation of all
modules that depend on that module. There is hence no need
for mechanisms to detect incompatible changes at link or load
time as in other languages3.

3Java produces an IncompatibleClassChangeError in some cases, C could
fail during linking or crash at runtime in this case.

The middle end then builds an application name.fuir from
a main module that defines a main feature plus all the mod-
ules the main module depends on. The middle end performs
monomorphization, i.e., all type parameters are replaced by
actual types, features called with different type parameters
are specialized for all combinations of type parameters that
are used in the application.

Consequently, the intermediate code used for the application
is fairly simple, all types except runtime types of reference
values are known. Whole program static analyzers can now
process the application that is represented using the Fuzion
intermediate representation.

Finally, the intermediate representation is used by one of
the Fuzion backends to produce executable code. Currently,
three backends are implemented: a JVM bytecode genera-
tor, one backend that create C source code to be processed
by clang/llvm or other C toolchains and an interpreter that
directly executes the intermediate code.

5 Static Analysis in Fuzion

The use of static code analysis is essential in all compilation
phases of Fuzion: During the frontend phase, static data-flow
analysis is used to verify that dependencies on effects are
declared for public features, while whole application analysis
can be used for a variety of applications.

5.1 Intermediate Representation

The basis of the whole-program analysis is the Fuzion Inter-
mediate Representation FUIR. This representation consists
of a collection of features that were monomorphized, i.e., all
type parameters are replaced by actual runtime types while
features are duplicated for every combination of runtime types
found by the middle end.

Expressions that provide the code of routines are encoded
using a stack-based bytecode format, comparable to Java
bytecode [11]. However, there are currently only ten different
bytecode instructions:

• AdrOf — used for call-by-references for outer instances

• Assign — assign a value to a field

• Box — create a reference instance from a value instance

• Call — perform a call to a routine

• Comment — only used for debugging

• Const — create an instance from serialized byte data

.fz

Front
end

Middle
end

.fuir

JVM

backend
.class

.c

Analyzer

.fum

C
backend

Inter-
preter

JVM

.fuir

Figure 1: Fuzion toolchain and intermediate data.

Volume 45, Number 2, June 2024 Ada User Jour na l

F. Sieber t , M. L i l l , M. Teufe l 97

• Current — return the instance of the current feature

• Env — obtain current instance of an algebraic effect type

• Pop — discard a value from the stack

• Match — extract the original value from a tagged union
type value and branch to code that processes that value

• Tag — create tagged union type value from a value of
one of the choice types

The low number of instructions helps to simplify the imple-
mentation of static analyzers and code generators.

There are no instructions for basic arithmetic operations. In-
stead, fundamental features like addition of values of type i32
are calls to features of kind intrinsic that must be provided by
the backends and handled by static analyzers correctly4.

5.2 Whole Application Analysis

The whole application analysis performs a data-flow anal-
ysis over an application until a fix-point is reached. As a
result, upper-bound sets of possible values for all fields and
expressions in different call contexts are found.

This analysis can be used for a number of purposes, e.g.

• Elimination of deactivated code

• proof of absence of errors5

• verification of pre- and post-conditions

• specialization of code for actual values

• determination of life-spans of instances, e.g., for auto-
matic stack or static allocation

• user feedback on heap allocation

Furthermore, we expect the application wide data-flow analy-
sis to be useful during the verification and validation process
by producing evidence for deactivated code, developing test
cases for better code coverage, or even correctness proofs by
verification of pre- and post-conditions.

6 Algebraic Effects for Safety and Security

Algebraic effects can be used to manage non-functional as-
pects related to the safety and security of the system:

6.1 Security along SW Supply Chain

Static, program-wide analysis will find all effects required by
code, including all effects required by third-party libraries.
This could be used to increase the security by providing harm-
less handlers to suppress undesired functionality. An example
is the log4shell vulnerability [12] that enabled downloading
and execution of arbitrary code in a widely used logging
library for Java. Static analysis would first help to detect
that such effects are used. Then, the library code could be
sandboxed by applications using effect handlers that prohibit
operations like network access or execution of arbitrary code.

4which, depending on the analysis, often permits ignoring them.
5which essentially means error handling. like calls to panic. is deactivated

6.2 Safety and Real-Time Aspects

With the presence of algebraic effects as a powerful means
to describe behavior that is not purely functional, we expect
to use these effects to address aspects that are of particular
importance to many safety-critical systems, e.g., to describe
and verify real-time behavior.

The following gives a list of possible effects that we want to
implement and apply in Fuzion:

• constant time — code contains no conditionals

• bounded time — code contains no unbounded recursion6

• non blocking — code performs no blocking operations

• no heap — code performs no heap allocation7

• interruptible — code may be aborted asynchronously

• worst-case execution time — execution time limit, en-
forced by analysis or at runtime

The flexible way that algebraic effects permit to introduce
scopes of arbitrary types into the program in conjunction with
the ability of static analysis to attach semantics to these effects
and verify these semantics appears to give a powerful tool to
handle safety and real-time aspects.

7 Conclusions and Future Work

We have presented the Fuzion project that develops a pure
functional language using algebraic effects and a correspond-
ing toolchain and showed how we expect the use of Fuzion to
help enhance security and help during safety verification and
validation.

The project is still in an early prototype state, we have basic
implementations of the frontend, middle-end, first versions
of static analysis using data-flow analysis and three different
backends.

The current focus of our work is on improving the base li-
brary, in particular to model a variety of non-functional as-
pects using algebraic effects. The Fuzion intermediate rep-
resentation is kept simple to encourage the integration with
different powerful tools, an integration with proof assistants
like Rocq/Coq [13] or Isabelle [14] might increase the power
of correctness proofs significantly.

Fuzion has a powerful interface to call Java code, but we will
need other foreign function interfaces, in particular for C, to
inter-operate with legacy code. The C backend currently uses
the garbage collector by Hans Boehm [15], for use of Fuzion
in real-time systems, we will need to ensure that all allocation
can be performed statically or use a real-time GC [16].

6this implies bounded loops since loops use recursion
7and, with a suitable GC, is hence never preempted by GC work

Ada User Jour na l Vo lume 45, Number 2, June 2024

98 Algebra ic Ef fec ts for Sta t ic Analys is in Fuz ion

References

[1] F. Siebert, “Fuzion - safety through simplicity,” Ada
Lett., vol. 41, p. 83–86, oct 2022.

[2] “Fuzion Portal Website.” https://fuzion-lang.dev, 2024.

[3] G. Plotkin and J. Power, “Algebraic operations and
generic effects,” Applied categorical structures, vol. 11,
pp. 69–94, 2003.

[4] G. Plotkin and M. Pretnar, “Handlers of algebraic ef-
fects,” in Proceedings of the 18th European Symposium
on Programming Languages and Systems: Held as Part
of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2009, ESOP ’09, (Berlin, Hei-
delberg), p. 80–94, Springer-Verlag, 2009.

[5] G. D. Plotkin and M. Pretnar, “Handling algebraic ef-
fects,” Logical methods in computer science, vol. 9,
2013.

[6] M. Pretnar, “An introduction to algebraic effects and
handlers. invited tutorial paper,” Electron. Notes Theor.
Comput. Sci., vol. 319, p. 19–35, dec 2015.

[7] F. Siebert, “Types as first-class values in fuzion.” Talk
at TyDe 2023: 8th ACM SIGPLAN International
Workshop on Type-Driven Development, https://fuzion-
lang.dev/talks/tyde23types, sep 2023.

[8] D. Leijen, “Koka: Programming with row polymorphic
effect types,” arXiv preprint arXiv:1406.2061, 2014.

[9] The Effekt research team, “Effekt Language — Ef-
fect Safety.” https://effekt-lang.org/docs/concepts/effect-
safety, 2023.

[10] J. I. Brachthäuser, P. Schuster, and K. Ostermann, “Ef-
fekt: Lightweight effect polymorphism for handlers
(technical report),” tech. rep., University of Tübingen,
Germany, 2020.

[11] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The
Java Virtual Machine Specification, Java SE 21 Edition.
Oracle America, Inc., sep 2023.

[12] “Cve-2021-44228 apache log4j2 jndi fea-
tures do not protect against attacker con-
trolled ldap and other jndi related endpoints.”
https://www.cve.org/CVERecord?id=CVE-2021-
44228, dec 2021.

[13] Coq Development Team, “The coq proof assitant.”
https://coq.inria.fr/.

[14] Isabelle Contributors, “Isabelle proof assitant.”
https://isabelle.in.tum.de/.

[15] H.-J. Boehm, “Space efficient conservative garbage col-
lection,” in Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and
Implementation, PLDI ’93, (New York, NY, USA),
p. 197–206, Association for Computing Machinery,
1993.

[16] F. Siebert, “Concurrent, parallel, real-time garbage-
collection,” in Proceedings of the 2010 International
Symposium on Memory Management, ISMM ’10, (New
York, NY, USA), p. 11–20, Association for Computing
Machinery, 2010.

Volume 45, Number 2, June 2024 Ada User Jour na l

99

An Iterative Benchmark Configuration Method for
Quantifying Multi-core Interference

Sébastien Levieux, Frank Singhoff, Stéphane Rubini
Lab-STICC UMR CNRS 6285, University of Brest, 29200 Brest, France; email: firstname.lastname@univ-brest.fr

Philippe Plasson, Pierre-Vincent Gouel, Lee-Roy Malac-Allain
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 5 place Jules
Janssen, 92195 Meudon, France; email: firstname.lastname@obspm.fr

Lucas Miné, Gabriel Brusq
Centre National d’Etudes Spatiales (C.N.E.S.), 18 av. Edouard Belin, 31401 Toulouse,
France; email: firstname.lastname@cnes.fr

Abstract

Interference within a multi-core architecture may have
several origins. Understanding where interference
comes from is mandatory for verification and certifica-
tion purposes. Unfortunately, the complexity of current
architectures makes it difficult to quantify such inter-
ference. In this article, a new approach is introduced
that enables benchmark configurations to isolate and
quantify interference. An experiment with DMA inter-
ference is presented and shows a WCET overhead of up
to 0.26% at 25 Mbit/s. This experiment was also able
to discover and identify interference related to DMA,
such as interruptive flow overhead, around 3% for 25
Mbit/s, or packet transmission memory access overhead,
around 9% for 25 Mbit/s.

1 Introduction
Predicting the temporal behavior of tasks running in a multi-
core system is hard due to the number of various interference
that tasks may suffer [1]. Many approaches have attempted
to quantify interference. Several are model-based [2], which
involves modeling the system and, for example, simulating
its execution. Other methods involve measurement on the
system itself [3] by running it under different scenarios to
obtain the interference and its impact.

Problem Statement The context of this article is flight
software for space missions. Such mission-critical software
undergoes a cycle of reviews during which schedulability
analysis must be performed to justify the designed real-time
architectures. For example, PLATO [4] flight software archi-
tecture was justified using an AADL model and simulations
with Cheddar [5] as early as the Preliminary Definition Re-
view (PDR).

When schedulability is investigated in such a context, and
when a multi-core architecture is used, it may be difficult
to model all interference that could occur because of the
hardware mechanisms and their interactions.

Contribution In this article, a new approach is introduced
to understand the interference that an application may suffer
when running on a multi-core architecture. The proposed
approach enables the production of a set of configurations,
which are combinations of different viewpoints of the target
platform and the application. These configurations can then
be used to associate metrics (collected at execution time) and
interference (produced by one or more components).

The rest of the article is organized as follows. Section 2
presents background. Section 3 introduces the method pro-
posed to quantify interference, following in section 4 by an
example and preliminary results obtained from it. Finally,
related works and the conclusion complete the article, respec-
tively in sections 5 and 6.

2 Background
This section introduces the notions and terms required to
understand the proposed benchmarking method.

2.1 Multi-core Architecture and Interference
In this article, interference is a delay in the task execution
time caused by the action of another component in the system.

A multi-core architecture is composed at least of two cores
and, generally, of one or further cache units. In addition, each
architecture provides a set of hardware mechanisms to ensure
robustness, reliability, performance. . .

With this type of architecture, the interference suffered by
a task may come from different sources [1]. From a hard-
ware point of view, DMA transfers, for example, generate
hardware interrupts for each packet of sent data. Another
example is Compare and Swap (CASA) instructions that lock
the memory bus for execution. When two tasks use the same
cache unit, the miss rate may increase, and accesses to the
main memory may cause additional delays due to such inter-
ference. From a software point of view, the activity of other
tasks in the system may be another source of interference.
The use of a memory bus may be concurrent with the activity
of tasks producing memory accesses on other cores. Shared

Ada User Jour na l Vo lume 45, Number 2, June 2024

100 Conf igura t ion Method for Quant i fy ing Mul t i -core In ter ference

SYSTEMHARDWARE

Configuration

ADD/REMOVE

Concept 2

(A)

(E)

APPLICATION

victimTask*

Concept1*

EXECUTION
(B)

METRICS
EXPERIMENTATION N

WCET/WCRT
...

.

.

.

METRICS
EXPERIMENTATION

N-1

WCET/WCRT
...

METRICS
EXPERIMENTATION

N-1

WCET/WCRT
...

METRICS
EXPERIMENTATION

N-1

WCET/WCRT
...

METRICS
EXPERIMENTATION

N-1

WCET/WCRT
...

RESULTS ANALYSIS

(D)

CONFIGURATION (C)

Figure 1: Interference Analysis Process

memory locked by tasks, or any preemption are also sources
of interference.

In this work, we consider all sources of interference.
2.2 Benchmark
A benchmark is an application designed to be run on a tar-
get platform to evaluate its performance. For example, the
Mälardalen benchmark suite [6] aims to evaluate WCET
(Worst Case Execution Time). PapaBench [7] provides a
set of applications useful for scheduling analysis. From the
point of view of interference in a multi-core architecture, Ro-
dinia [8] offers a representative set of multi-core applications.
Splash-2 [9], and its extension Splash-4 [10], provide a set
of applications characterized in particular by their memory
traffic. The latter allows us to show interference related to
memory bus.
2.3 GERICOS
GERICOS [11] is a C++ framework developed by LESIA
for space applications. This framework offers an integrated
solution for rapidly developing multi-core applications us-
ing an AMP (Asymmetric MultiProcessing) approach. The
framework allows the developer to define application archi-
tectures and the assignment of each component to each core.
The C++ classes implementing the application are defined
independently of the core on which they will run. GERICOS
also provides services to measure task WCET and WCRT
(Worst Case Response Time). However, in GERICOS, there
is no means to quantify the delays for each interference that
contributes to WCET.

3 Proposed Approach
In a multi-core architecture, it may be difficult to obtain the
accurate delay resulting of a specific interference. The WCET,

even though it is supposed to be measured in isolation, may
suffer interference from the hardware resources that interact
with the system in the background.

Our work aims to quantify all interference through metrics,
but in this article we illustrate with an example concerning
only hardware resources. In this article, two metrics are
considered: the WCET and WCRT. A method is proposed to
configure a benchmark, and, with a set of experiments, deduce
the delay caused by a hardware resource. First, we explain
what we mean by benchmark configuration. Second, we
present the proposed analysis process. Finally, we introduce
examples of benchmark configurations that will be used in
the next section of this article.
3.1 Benchmark Configuration
A benchmark configuration is produced from 3 viewpoints
represented by (A) in figure 1. A configuration is the assign-
ment of the various components of the 3 viewpoints on the
target platform. In addition, one or more victim tasks are also
defined in each benchmark configuration. Victim tasks are
tasks from which the metrics are retrieved after benchmark
execution to measure delays related to interference.

The first viewpoint is related to the kind of application the
benchmark will run. The proposal is to design and run a set
of applications that stress the system in a particular way. For
example, in this article, as [12], two types of applications are
investigated: MemoryBound applications that are composed
of a task making memory accesses during its execution, and
ComputeBound which runs a task taking CPU time only, i.e.
without any memory access.

The second viewpoint models any hardware entities and mech-
anisms that may raise a potential interference. For example,

Volume 45, Number 2, June 2024 Ada User Jour na l

S. Lev ieux et a l . 101

APPLICATION HARDWARE SYSTEM
Configuration

Name
Compute

Bound
Memory
Bound

SpaceWire
Sender

SpaceWire
Receiver

Interrupt
Bound Core Instruction

Cache
Data

Cache
Interrupt

(IRQ) DMA Spinlock Circular
Buffer

Single
Buffer

InterCore
Manager

Interrupt
Handler

Shared
Object

Single
Object

Synchronized
Object Task Timer OS Scheduling

Policy

Allocation
Resource

Policy
Configuration 1.1 1 0 1 1 0 2 True True True True 0 4 4 0 2 0 1 0 3 3 RTEMS HPF PIP
Configuration 1.2 0 1 1 1 0 2 True True True True 0 4 4 0 2 0 1 0 3 3 RTEMS HPF PIP
Configuration 2.1 1 0 1 1 0 2 True True True True 0 4 4 0 2 0 1 0 3 3 RTEMS HPF PIP
Configuration 2.2 0 1 1 1 0 2 True True True True 0 4 4 0 2 0 1 0 3 3 RTEMS HPF PIP
Configuration 3.1 1 0 1 1 0 3 True True True True 0 4 4 0 2 0 1 0 2 2 RTEMS HPF PIP
Configuration 3.2 0 1 1 1 0 3 True True True True 0 4 4 0 2 0 1 0 2 2 RTEMS HPF PIP

Figure 2: The 3 viewpoints for the GR712RC board

most of the current multi-core architectures have different
levels of cache or hardware interruption types. Each of these
entities may be modeled since they may cause interference.

The last viewpoint models system artifacts that may change
the scheduling or the synchronization of the task composing
the benchmark. For example, GERICOS provides the concept
of GscSharedResource that enforces critical section on
shared data with spin locks and mutexes. In this viewpoint
are also specified the scheduling policy, the operating system
and the allocation resource policies.

Figure 2 is a 3-viewpoint model of the benchmark for the
GR712RC board used in the section 4. Each line represents
a configuration. Each column stores either a quantity or a
boolean indicating whether the element is activated or not.
For example, configuration 1.1 uses 2 cores and the instruc-
tion cache is enabled. In the Application view, MemoryBound
is a task that constantly performs memory accesses, and Com-
puteBound which only takes CPU time without memory any
accesses. SpwSender and SpwReceiver are tasks that
respectively send and receive data packets on the SpaceWire
ports of the board. Finally, InterruptBound is a task that
generates hardware interrupts during its execution.

At hardware viewpoint, we have to specify, the number of
cores used during execution, data and instruction cache units,
IRQ interrupts and DMA transfers from SpaceWire ports
(which can be enabled or not).

The last viewpoint, i.e. the system viewpoint, contains GERI-
COS concepts, such as the InterCoreManager, a task in
charge of the communications between cores. Notice that
several concepts in this viewpoint, such as spinlock or the
operating system, may be not specific to GERICOS.

3.2 Analysis Process
We now describe how benchmark configurations are expected
to be used iteratively to understand how interference occurs.

The analysis process is shown in figure 1. The process con-
sists of iteratively running several benchmark configurations.

In the benchmark configuration phase (A), two benchmark
configurations are produced at least. The first, named the
victim configuration, suffers desired interference. The second
configuration, named reference configuration, does not suffer
any interference. The reference configuration execution is
compared to the victim configuration execution to discover
interference.

Benchmark configurations are executed on the platform in
(B), and from the victim tasks, a set of metrics is retrieved
(i.e. WCET and WCRT).

In (C) and (D), metrics retrieved from configuration execution
helps the user to understand whether components contribute
or not to interference on the victim tasks. At those steps, two
outcomes are possible: either the number of executed configu-
rations is sufficient to understand interference, or interference
is not identified and the analysis process is repeated.

To sum up the method, we derive benchmark configurations
to progressively eliminate undesired interference until the in-
terference created by a specific hardware resource is isolated,
or at least quantified. The interest of this method is to be
able to characterize, using a configuration cycle, interference
caused by a specific hardware resource.

In this article, we focus on WCET and WCRT to quantify
interference. Notice that other metrics could be mandatory to
understand the system behavior. For example, CPU load or
DMA transfers can be the indicator of a background activity.
Furthermore, Cache information such as the L1 or L2 hit/miss
rates may reveal precious information on memory usage and
can explain interference origin. Hardware counters would be
used also for such a purpose.

3.3 Example
We now illustrate the proposed method with a use case in
which we expect to quantify interference due to bus con-
tention during DMA transfers.

The hardware viewpoint in figure 4 models two GR712RC
boards. Each board is a Dual-Core LEON3FT SPARC V8 pro-
cessor with a 32KiB L1 cache for each core and 4 SpaceWire
ports. The GR712RC block diagram is represented in figure 3.

We model this system as 6 configurations. Each of them
represents different steps to isolate interference and will be
used to run the benchmark. To investigate the impact of DMA
transfers on bus contention different measurements are done
with different transfer rates. All the results are discussed in
the next section.

The first configuration, named 1.1, is the reference config-
uration. In this configuration, a task named SpwEmitter,
which periodically sends data packets on the SpaceWire net-
work, is assigned and run to core0. On the other core, called
core1, runs the task SpwReceiver which is receiving pack-
ets emitted from the core0. Connection (A) in the figure 4

Ada User Jour na l Vo lume 45, Number 2, June 2024

102 Conf igura t ion Method for Quant i fy ing Mul t i -core In ter ference

Figure 3: GR712RC Block Diagram

models such communication. The victim task, Compute-
Bound, is placed on core1. The victim task, by its nature,
cannot be subject to interference from memory accesses and
is therefore used as a reference. The second configuration,
named 1.2, is the 1.1 configuration when ComputeBound is
replaced by MemoryBound.

The third configuration is the reference configuration, noted
2.1, is similar to the first configuration but SpwReceiver is
moved on the core0. The objective is to isolate the victim task
on the core1, i.e. not suffer interference from the presence of
SpwReceiver on the same core. The fourth configuration,
named 2.2, is the 2.1 configuration when ComputeBound is
replaced by MemoryBound.

The fifth configuration is the reference configuration,
noted 3.1, SpwEmitter is assigned on core0 of Board2.
SpwRmapConfigurator is run on core1 of Board1. Com-
munications between the two boards are modeled by the con-
nection (B) of figure 4. The task SpwReceiver is replaced
by SpwRmapConfigurator in this benchmark configura-
tion. The victim task is assigned on the core0 of Board1 to
fully isolate it of all perturbations, except the bus contention
created by the SpaceWire network during DMA operations.
The sixth configuration, named 3.2, is the 3.1 configuration
when ComputeBound is replaced by MemoryBound.

victimTask*

Concept1* Concept2*

(A)

(B)

Figure 4: Example of a benchmark configuration

The next section shows the results when running the bench-
mark configurations above.

4 Evaluation
In this section, we illustrate the proposed analysis process
with an experiment. This section presents the goal, the details

of the experiment process, and the results obtained.

The aim of this experiment is to characterize the interference
of bus contention in a DMA transfer context. To quantify this
interference, a communication is generated on a SpaceWire
network which creates DMA transfers and then generates
contention on the memory bus.

The system is evaluated with various data rates on the
SpaceWire network: 0.5 Mbit/s, 1 Mbit/s, 5 Mbit/s, 10 Mbit/s
and 25 Mbit/s. In the configurations, in order to ensure packet
transmission, the tasks responsible for sending and receiving
data have higher priority levels than the victim tasks. The size
of a packet is constant. The period of the sending task defines
the data rate. The victim tasks are executed 10 times, with an
execution time of 1 second and a period of 10 seconds. Statis-
tics related to tasks, such as WCET, are measured through
the GscMethodReport class of GERICOS. GscMethodReport
provides a set of functions that will be called by the task itself
to measure and record data.

We apply the process proposed in section 3 by configuring
and running the benchmark with 6 configurations. The results,
shown below, compare the overhead due to interference on the
WCET of the victim tasks. Each graph shows the results of
two comparable configurations for a different type of victim
task.

First, we configure the benchmark according to the configura-
tions 1.1 and 1.2 described in section 3, run it, and get results
of figure 5. In this figure, the overhead of ComputeBound
and MemoryBound are closer, respectively of 11,41% and
11,33% for 25 Mbit/s, which means suffered interference is
the same. However, ComputeBound does not use the memory
bus, so interference should not be found for this task with
these configurations. In fact, the first configuration creates
interference than even a task that does not access memory
suffer. It is caused by SpwReceiver, which is on the same
core, and has a higher priority than the victim task. Such
results lead us to investigate the system performance with the
configurations 2.1 and 2.2.

O
ve

rh
ea

d
(%

)

0

3

6

9

12

Spacewire Data Rates (Mbit/s)

0 5 10 15 20 25

MemoryBound overhead ComputeBound overhead
Theoretical overhead due to DMA transfers

Figure 5: Throughput for configurations 1.1 and 1.2

Figure 6 shows the results for the configuration 2.1 and 2.2,
described in section 3. In this figure, we show the Compute-
Bound overhead curve rises more slowly than MemoryBound
overhead curve, reaching a gap of 0.86% at 25 Mbit/s. This
indicates a difference in suffered interference which cannot

Volume 45, Number 2, June 2024 Ada User Jour na l

S. Lev ieux et a l . 103

be related to the contention on the memory bus, as 89.69% of
the interference perceived by MemoryBound is also perceived
by ComputeBound. This may be due to the number of inter-
ruptions caused by DMA transfers, which are performed on
the same board as the task being analyzed. To investigate this
assumption, we run the next configurations.

O
ve

rh
ea

d
(%

)

0

3

6

9

12

Spacewire Data Rates (Mbit/s)

0 5 10 15 20 25

MemoryBound overhead ComputeBound overhead
Theoretical overhead due to DMA transfers

Figure 6: Throughput for configurations 2.1 and 2.2

To complete the analysis, we run the benchmark with the
configurations 3.1 and 3.2, and get the results of the figure
7. Now, ComputeBound suffers no interference with an over-
head of 0.1 ms between 10 Mbit/s and 25 Mbit/s; whereas
MemoryBound suffers interference of up to 0.26% overhead at
25 Mbit/s. Assuming that the performance gap between Com-
puteBound and MemoryBound is due to memory accesses, it
means that we succeeded to isolate interference created by
DMA accesses on the memory bus with this last experiment.

O
ve

rh
ea

d
(%

)

0

0,5

1

1,5

2

Spacewire Data Rates (Mbit/s)

0 5 10 15 20 25

MemoryBound overhead ComputeBound overhead
Theoretical overhead due to DMA transfers

Figure 7: Throughput for configurations 3.1 and 3.2

In the 3 figures presenting the results, a curve called theoreti-
cal overhead is displayed. In the case of the PDR of PLATO
project, interference of DMA transfers was estimated by a
theoretical computation. Our experiments showed that this
theoretical computation predicted an interference overhead
of 7.33 times higher than those measured for 25 Mbit/s with
configuration 3.2. This is explained because theoretical com-
putation was carried out with the assumption that all DMA
accesses are concurrent and have the highest priority, which
is a pessimistic case that does not occur with configurations
3.1 and 3.2. In figure 5 and 6, the measurements show higher
values than the theoretical curve because the measures are
composed of different interference origins and not only from

DMA memory bus contention, this motivated configurations
3.1 and 3.2 to better isolate DMA interference.

Furthermore, DMA transfers using SpaceWire also cause
interrupts on reception, and memory accesses on transmis-
sion. Figures 5, 6 and 7 show the overhead caused by these
two mechanisms. Switching the SpwReceiver to core1
in configurations 2.1 and 2.2, shows that interrupts related
to reception no longer interfere with the victim task. This
leads to a loss of about 3% overhead for 25 Mbit/s between
the curves in figure 5 and 6. Similarly, for configurations
3.1 and 3.2, the packet emission is no longer on the same
board as the victim task, so it no longer competes for access
to the memory bus. This reduces overhead by about 9% for
25 Mbit/s between the curves on the figure 6 and 7.

In conclusion, by applying the proposed method, the set of
configurations that was produced enabled us to characterize
the interference of bus contention in a DMA context. In ad-
dition, within the PLATO context, the measurements demon-
strated the pessimism of the theoretical evaluation. Finally, all
the curves enable us to make assumptions about the overhead
caused by other mechanisms resulting from DMA transfers.

5 Related Works
A lot of works deals with interference management in multi-
core architectures. Interference can be either predicted, mea-
sured or mitigated by proposing software and/or hardware
designs that reduce them [13].

In [12], the author introduces a method to quantify inter-
ference by measurements. He focuses on several hardware
components such as shared L1 and L2 caches by experimen-
tations with memory bound and compute bound benchmarks.
Applied benchmarks are similar to the one we have used in
our configuration process.

In contrary, the multi-phases task model [14] avoids interfer-
ence with the PREM model [15]. Tasks are designed as set
of different phases that limit memory bus interference. The
main drawback of this approach is to not support legacy pro-
grams. Supporting legacy programs is mandatory for systems
targeted by the configuration process we propose.

Several benchmarks provide means to understand interfer-
ence. Rodinia [8] and Splash-2 [9] are examples of them.
Interference analysis with these benchmarks focuses on mem-
ory interference and does not consider many others such as
interruption, DMA or operating system interference. Our
approach expects to quantify any type of interference.

6 Conclusion
In this article, a method to isolate and evaluate interference in
multi-core architectures is proposed. The approach consists of
running several configurations of a benchmark and measuring
task metrics to understand how interference contributes to the
metrics. An experiment has shown that the proposed method
can characterize, from a set of configurations, interference of a
shared hardware resource through the WCET. For the PLATO
mission, the theoretical computations for such interference,
for 25 Mbit/s, were 3.25 times higher than our measurements
which estimated it to 0.26% of the WCET. This demonstrates

Ada User Jour na l Vo lume 45, Number 2, June 2024

104 Conf igura t ion Method for Quant i fy ing Mul t i -core In ter ference

the pessimism of the theoretical results and the accuracy of the
benchmarking method we proposed. Finally, the experiment
was also able to identify interference related to DMA, such as
interruptive flow overhead, around 3% or packet transmission
memory access overhead, around 9%.

In the future, we expect to evaluate the method on more
complex architectures such as GR740RC, a naked quad-core
with different cache levels and interference reduction mech-
anisms. Furthermore, this article has presented a method
that gives users the ability to design benchmark configura-
tions according to their understanding of the system behavior,
which can be difficult to achieve. In the next steps, we expect
to help users by defining configuration design patterns for
specific hardware resource patterns. Finally, the hardware
architecture of the GR712RC does not provide statistics on
system interactions. More and more architectures are intro-
ducing performance counters [16] [17] [18] [19], notably the
GR740RC. Performance counters may contribute to quanti-
fy/identify interference. We plan to integrate these counters
in our benchmark configuration process.

References
[1] T. Lugo, S. Lozano, J. Fernández, and J. Carretero, “A

survey of techniques for reducing interference in real-
time applications on multicore platforms,” IEEE Access,
vol. 10, pp. 21853–21882, 2022.

[2] V. A. Nguyen, E. Jenn, W. Serwe, F. Lang, and R. Ma-
teescu, “Using model checking to identify timing inter-
ferences on multicore processors,” in ERTS 2020-10th
European Congress on Embedded Real Time Software
and Systems, pp. 1–10, 2020.

[3] J. Stärner and L. Asplund, “Measuring the cache interfer-
ence cost in preemptive real-time systems,” in Proceed-
ings of the 2004 ACM SIGPLAN/SIGBED conference on
Languages, compilers, and tools for embedded systems,
pp. 146–154, 2004.

[4] P. Plasson, G. Brusq, F. Singhoff, H. N. Tran, S. Rubini,
and P. Dissaux, “Plato n-dpu on-board software: an
ideal candidate for multicore scheduling analysis,” in
10th European Congress ERTSS Embedded Real Time
Software and System, 2022.

[5] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Ched-
dar: a flexible real time scheduling framework,” in Pro-
ceedings of the 2004 annual ACM SIGAda international
conference on Ada: The engineering of correct and reli-
able software for real-time & distributed systems using
Ada and related technologies, pp. 1–8, 2004.

[6] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper,
“The mälardalen wcet benchmarks: Past, present and fu-
ture,” in 10th International Workshop on Worst-Case Ex-
ecution Time Analysis (WCET 2010), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2010.

[7] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and
M. De Michiel, “Papabench: a free real-time bench-
mark,” in 6th International Workshop on Worst-Case
Execution Time Analysis (WCET’06), Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2006.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron, “Rodinia: A benchmark
suite for heterogeneous computing,” in 2009 IEEE in-
ternational symposium on workload characterization
(IISWC), pp. 44–54, Ieee, 2009.

[9] J. M. Arnold, D. A. Buell, and E. G. Davis, “Splash 2,”
in Proceedings of the fourth annual ACM symposium
on Parallel algorithms and architectures, pp. 316–322,
1992.

[10] E. J. Gómez-Hernández, J. M. Cebrian, S. Kaxiras, and
A. Ros, “Splash-4: A modern benchmark suite with
lock-free constructs,” in 2022 IEEE International Sym-
posium on Workload Characterization (IISWC), pp. 51–
64, IEEE, 2022.

[11] P. Plasson, C. Cuomo, G. Gabriel, N. Gauthier,
L. Gueguen, and L. Malac-Allain, “Gericos: A generic
framework for the development of on-board software,”
DASIA 2016-Data Systems In Aerospace, vol. 736, p. 39,
2016.

[12] T. Beck, Evaluation and analysis of Linux applications
on multi-core processors in a space environment. PhD
thesis, Toulouse, ISAE, 2023.

[13] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Alt-
meyer, and R. I. Davis, “A survey of timing verification
techniques for multi-core real-time systems,” ACM Com-
puting Surveys (CSUR), vol. 52, no. 3, pp. 1–38, 2019.

[14] C. Maia, L. Nogueira, L. M. Pinho, and D. G. Pérez,
“A closer look into the aer model,” in 2016 IEEE 21st
International Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 1–8, IEEE, 2016.

[15] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell,
M. Caccamo, and R. Kegley, “A predictable execution
model for cots-based embedded systems,” in 2011 17th
IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, pp. 269–279, IEEE, 2011.

[16] G. Cabo, S. Alcaide, C. Hernández, P. Benedicte, F. Bas,
F. Mazzocchetti, and J. Abella, “Safesu-2: a safe statis-
tics unit for space mpsocs,” in 2022 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE),
pp. 1085–1086, IEEE, 2022.

[17] T. Scheipel, F. Mauroner, and M. Baunach, “System-
aware performance monitoring unit for risc-v architec-
tures,” in 2017 Euromicro Conference on Digital System
Design (DSD), pp. 86–93, IEEE, 2017.

[18] F. Cosimi, F. Tronci, S. Saponara, and P. Gai, “Analysis,
hardware specification and design of a programmable
performance monitoring unit (ppmu) for risc-v ecus,” in
2022 IEEE International Conference on Smart Comput-
ing (SMARTCOMP), pp. 213–218, IEEE, 2022.

[19] M. Lei, T.-Y. Yin, Y.-C. Zhou, and J. Han, “Highly
reconfigurable performance monitoring unit on risc-v,”
in 2020 IEEE 15th International Conference on Solid-
State & Integrated Circuit Technology (ICSICT), pp. 1–
3, IEEE, 2020.

Volume 45, Number 2, June 2024 Ada User Jour na l

105

Improving Availability in a Robotic Application
without Loss of Safety

Gema Rincon, Carlos-F. Nicolas
Ikerlan Research Center, J. M. Arizmendiarrieta 2, 20500 Arrasate-Mondragon (Spain), Spain; Tel: +34 943 712
400; email: {grincon, cfnicolas}@ikerlan.es

Tomaso Poggi
Mondragon University - Faculty of Engineering, Loramendi 4, 20500 Arrasate-Mondragon (Spain); Tel: +44 123
987 6543; email: {tpoggi}@mondragon.edu

Abstract

In our automated and industrialized world, ensuring
safety in human-robot interaction is essential, a com-
plex engineering task especially in dynamic environ-
ments. The widespread adoption of collaborative and
autonomous robots across various sectors underscores
the critical need for robust safety measures.

This article examines the current state of safety in collab-
orative robotics and proposes a strategy for assessing
the safety of the robot task against the indications of
existing standards. If the task is not considered safe in
the current environment, a new task is sought for the
robot, which increases its availability. These addresses
dynamic environments where robots and humans coexist,
allowing the autonomous robot to make task decisions
based on safety considerations.

Keywords: Safety, Autonomous Robots, Collaborative
robots, Availability.

1 Introduction
Industry 4.0 integrates intelligent elements into industries,
enabling real-time decision-making, increased productivity,
and flexibility in manufacturing and distribution processes [1].
This necessitates autonomous and adaptive industrial sys-
tems, with Digital Twins, Industrial Internet of things (IIoT),
and Cyber-Physical Systems (CPS) playing key roles. How-
ever, current systems find it difficult to adapt to unforeseen
events, thus showing the need for greater flexibility. With ad-
vancements in Industry 4.0, human-robot collaboration (HRC)
gains significance in industrial processes.

Introducing cobots in industrial settings highlights the need to
prioritize worker safety due to their potential economic bene-
fits and versatility, despite the new safety challenges posed by
human interaction [2]. Therefore, adapting verification tech-
niques to effectively tackle these challenges and ensure safety
in robotics becomes even more critical [3]. Additionally, the
implementation of robotic systems without physical barriers
requires thorough risk assessment and the establishment of
robust safety measures to safeguard workers and optimize
operational efficiency [4].

In general, safety in collaborative robotic environments is
ensured by stopping or reducing the speed or torque of the
robot, thus causing an interruption of the task and a conse-
quent momentary loss of performance. The objective of this
research is to enhance the availability of robotic applications
while keeping the safety of the system uncompromised. To
achieve this goal, automated metrics and evaluators will be
deployed in ROS 2, to assess the safety of the environment,
allowing the robot to make optimal decisions. This approach
seeks to ensure both effectiveness and safety of robotic appli-
cations in dynamic and evolving environments. We will seek
to minimize unnecessary stops by allowing the robot to adjust
its trajectory in real time by means of motion predictions [5].
In this way automatic stopping will be kept only as a last
resource safety measure in situations where the high level
risk demands it, thus preventing unwarranted interruptions in
robot operation.

The article provides a critical analysis of current collabora-
tive robotics safety practices, identifying areas that require
enhancements. The main contribution is the introduction of a
high-level software framework to obtain a safety assessment
of the environment that can be use to increase the availabil-
ity. Section 2 reviews existing standards, while Section 3
proposes a solution, followed by a conclusion.

2 State of the art of robotics safety
Safety in robotics remains a challenge, as it lacks a general
validation standard such as ASAM in the automotive indus-
try [6]. The European project (COVR) attempts to solve
this problem by proposing a set of tools that provide safety
validation protocols [7]. However, the project is limited to
the requirements for the design of a safe robotic application.
In addition, other research, which also discusses safety in
robotics and the need for regulatory standards, emphasizes
the importance of integrating safety from the very beginning
in the design phase [8, 9].

To date, there is still a lack of a software tool that assesses
the safety of an online application, enabling it to make secure
decisions.

Ada User Jour na l Vo lume 45, Number 2, June 2024

106 Improv ing Avai lab i l i ty in a Robot ic Appl ica t ion wi thout Loss of Safe ty

2.1 Safety standards
Safety functions are crucial in coexistent robotics, where
robots share workspace with humans. Advanced technolo-
gies such as force feedback, low-inertia servo motors, elastic
actuators, and collision detection systems facilitate this coex-
istence.

In robotics, key standards include ISO 13482 for healthcare
robots, ISO 10218 for industrial robot safety, and ISO 15066
for safe human-robot collaboration. For this study, safety
functions will be aligned with ISO 10218 and ISO 15066,
which describe the use of safety features. ISO 10218-1 de-
scribes the required safety functions, while ISO 15066 details
their application in robotic collaboration scenarios. These
standards identify specific hazards and enable the selection of
risk reduction measures (RRMs). Operation methods, such
as SRMS (Stop and Restart), SSM (Speed and Separation
Monitoring), PFL (Power and Force Limiting), HG (Hand
Guiding), defined in ISO 10218, can be implemented with
various tools and technologies [10, 11].

ISO 15066 classifies human-robot interactions into two main
types: quasi-static and transient. Quasi-static interactions
involve slow or minimal motion between the robot and the
human, while transient interactions are characterized by brief
and dynamic contact. This study specifically examines tran-
sient interactions, emphasizing the need for safety measures
even when autonomous robots and humans share space with-
out direct interaction.

Sections 5.10 of ISO 10218-1 and 5.5 of ISO 15066 detail the
functionalities that must be limited or monitored in collabo-
rative operation applications; see Table 1. In addition, these
points are essential for the implementation of safety functions
in robotic applications.

Table 1: Functionalities for Collaborative Operation Applica-
tions: ISO 10218-1 and ISO 15066 Sections 5.10 and 5.5 [10].

Safety function Image Description
Safety-rated
monitored stop

The robot must stop
if a person enters
its workspace

Hand guidance Specifies manual mode
activation and its
requirements

Speed and separation
monitoring

Specifies robot speed
and safety distance
requirements

Power and
force limiting

Specifies torque and
force limits for the
robot

ISO 15066 specifies that not all the functionalities should
be included. For instance, the Safety-rated Monitored Stop
function, which halts the robot upon detecting a person in the
shared workspace, may be omitted to prioritize continuous
operation.

While manual guidance is assessed during commissioning
tests, it does not impact the proposed software framework’s

design. Safety functions such as speed and separation moni-
toring, together with force and torque limits, are an integral
part of the robot, which is detailed in section 5.5 of ISO
15066. [12].

In collaborative operations with power and force limitations,
contact between robot and operator can occur in a variety of
situations: as part of the application, in accidents or applica-
tion failures such as hardware failures. Due to the different
types of interaction, both passive (increased contact surface,
energy absorption, limitation of moving masses) and active
(control of forces, velocities and energy) measures are applied
to reduce risks [13]. Power and force control limits should be
designed not to exceed the applicable threshold values, and
robots should be able to set these limits.The procedures for
establishing and maintaining these thresholds are described
in detail in Annex A of ISO 15066 [12].

Safe speed monitoring and automatic stop functions on the
robot are essential, being activated if the separation distance
with a human falls below the evaluated threshold. The dy-
namic determination of the protective separation distance
considers factors such as operator speed, robot reaction and
stopping, and position uncertainty. This distance can vary
depending on the application conditions. During automatic
operation, hazardous parts of the robotic system should never
approach the operator beyond the protective separation dis-
tance. When the distance decreases, the robot stops auto-
matically, applying measures such as speed reduction or an
alternative route to avoid violating the safety distance. Contin-
uous speed and separation monitoring is applied to all people
in the collaborative space, adjusting to the number of people
present. A safety speed limitation can also be implemented to
avoid exceeding the limits set by the risk assessment [12, 14].

2.2 Safe software in collaborative robotics
Proposing software as a response to enhancing robotics safety
introduces a new aspect to consider, as the safety of the soft-
ware to be used must be verified. ISO 31010 details common
conflicts in software analysis. It demonstrates that it is not
only application risks that affect safety, but that it is relevant
especially in safety to know the fidelity of each element that
makes up the system. Therefore, it is necessary to understand
the critical aspects of the software, knowing what faults it can
commit, that is to say, its weakest parts [15]. In our case, we
will be using ROS 2, so it will be crucial to understand the
fidelity it provides and what elements are essential.

ROS 2 is a robotic middleware that is making additional ef-
forts to enhance safety within the ROS 2 ecosystem. It is
important to mention that safety functions will not be inte-
grated within ROS 2, but will be separated into safe software
and hardware. This is exemplified by the ROS 2 Critical
Security Working Group. The goal of the working group is
to support the development of safe robots and systems with
ROS 2, focusing on the creation of tools, libraries and doc-
umentation. Its future projects are the enhancement of the
open source requirements management tool Doorstop and the
development of reusable nodes such as watchdog nodes [16].

Volume 45, Number 2, June 2024 Ada User Jour na l

G. Rincon, C. -F. Nico las, T. Poggi 107

3 Problem formulation and proposed ap-
proach

This research proposes a ROS 2 software module to evaluate
the environment and calculate real-time risk associated with
robot actions, enhancing risk prevention and system availabil-
ity. Figure 1 shows two rectangles differentiated by colour:
the green rectangle symbolizes elements of the environment,
while the yellow rectangle represents software components.
Within the yellow rectangle, two essential elements stand
out: The "Evaluator" evaluates the safety information in the
environment, while the "Task List" directs the control of the
robot based on this evaluation, determining the execution of
the task or switching to a new safe task.

Figure 1: Diagram of the general logical flow of the proposal,
showing the relationships between the established blocks.

3.1 Evaluator
This software makes use of data from the external world
environment to generate a spatial map around the robot, dis-
playing the level of risk (see figure 2). In this way, it enhances
the decision-making process of the software application by
enabling real-time risk assessment, thus improving overall
availability in dynamic environments. The main contribu-
tion is that, through the use of standards, it is possible to set
specific requirements and to determine which parameters are
necessary for risk calculation.

The evaluator module determines the degree of risk using
a Hazard Rating Number (HRN) equation [17], in addition
to the use of the ISO 12100 standard to understand each
parameter of the equation [18].

HRN = LO × FE × DPH × NP (1)

• Likelihood of Occurrence (LO)

• Frequency of Exposure (FE)

• Degree of Possible Harm (DPH)

• Number of Persons at risk (NP)

To understand the parameters of the HRN equation, Reference
is made to ISO 12100 (identification and assessment of risks
in industry).

Following ISO 12100 guidelines, a list of system environ-
ment hazards is compiled. In particular, section 5.5.2 of
this standard deals with risk assessment, which is based on
the severity of the damage and the probability of occurrence
of the hazard. This section also evaluates human exposure
to hazards, potential hazardous events, and preventive mea-
sures [18], aligning with components of the HRN equation.
Parameters like damage severity will be determined based on
this standard.

The output will be a spatial risk map (figure 2), divided into
four zones around the robot, each indicating a specific risk
level. The strategy entails enveloping the robot with two
concentric layers: an inner danger zone, where strict limits
are applied, and an outer attention zone, where the robot
adjusts its trajectory and tasks based on risk levels.

Figure 2: The figure shows the robot and its environment divided
into four areas for task selection according to the level of risk

The parameters will be selected by reviewing the ISO 15066,
identifying safety functions related to distance, speed, torque
and force [12]. Thus, factors such as object location (i.e. the
distance between the robot and other objects), robot speed,
torque and force are crucial considerations. The occupancy
parameter is relevant too, as the safe availability of the robot
could be affected if the space is crowded. Therefore, the
parameters to consider are:

• Occupancy: Number of people in a specific area, mea-
sured in people per square meter.

• Localization: The distance at which the objects are
placed from the robot and where they are positioned.

• Limit speed: At lower speeds, tasks are safer; velocity
should not exceed 250 mm/s when humans are in the
attention zone [10].

• Force and torque limit: By limiting the robot torque, the
possibility to cause hazards will be reduced.

In Figure 3, the diagram outlines the Evaluator block’s phases,
featuring conditional (if) questions in elliptical blocks and
corresponding actions in rectangular ones. It is split into
two sections: one for initial dynamic parameter analysis and
another for subsequent risk calculation. Safe speed and force
values for each zone (envelope) of the robot can be determined
using the equations provided in ISO 15066 [12].

Ada User Jour na l Vo lume 45, Number 2, June 2024

108 Improv ing Avai lab i l i ty in a Robot ic Appl ica t ion wi thout Loss of Safe ty

Figure 3: Evaluator block operation process. The logic is di-
vided into two parts: analysis of dynamic parameters and risk
calculation.

3.2 Task list: ROS 2 Behaviour Trees Integration
After the Evaluator block diagnoses the task’s safety and
deems it unsafe, another block will communicate a new task
to the control system to enhance availability. This will be
accomplished using ROS 2 behaviour trees, a set of tools
integrated into the robotic system to define its behaviour and
schedule the tasks to achieve objectives. Behaviour trees
offer a hierarchical structure for organizing robot actions
logically, simplifying complex and adaptive behaviours. They
include nodes representing actions like moving, avoiding
obstacles, or interacting with objects, dynamically adapting
to environmental conditions and goals for effective responses
[19].

4 Conclusion
This work aims to improve robotic system availability while
ensuring safety through software design. By evaluating the
environment in real-time, assessing risk associated with robot
actions, and integrating with ROS 2, it enhances decision-
making and defines robot tasks, ultimately addressing safety
concerns and improving availability in collaborative robotics.

Acknowledgment
This research has been funded by the Basque Government
through the ELKARTEK programme within the framework
of the AUTOTRUST project (grant number KK-2023/00019)
and by the CERVERA programme within the framework of
the MEDUSA project (grant number CER-20231011).

References
[1] IBM, “What is Industry 4.0 and how does it work?.”

Accessed: March 26, 2024.

[2] D. Rodriguez-Guerrera, G. Sorrosal, I. Cabanes, and
C. Calleja, “Human-robot interaction review: Chal-
lenges and solutions for modern industrial environ-
ments,” IEEE User Journal, 2021.

[3] J. Guiochet, “Safety-critical advanced robots: A survey,”
Robotics and Autonomous Systems, 2017.

[4] A. Giallanza, G. La Scalia, R. Micale, and C. M. La Fata,
“Occupational health and safety issues in human-robot
collaboration: state of the art and open challenges,”
Safety science, vol. 169, p. 106313, 2024.

[5] Z. Jiang, B. Jin, and Y. Song, “A novel pet trajectory
prediction method for intelligent plant cultivation robot,”
IEEE Sensors Letters, vol. 7, no. 2, pp. 1–4, 2023.

[6] D. Bassermann, “Asam-standarization for automative
development.” [Accessed 20-11-2023].

[7] J. Saenz, I. Fassi, G. B. Prange-Lasonder, M. Valori,
C. Bidard, A. B. Lassen, and J. Bessler-Etten, “Covr
toolkit–supporting safety of interactive robotics appli-
cations,” in 2021 IEEE 2nd International Conference
on Human-Machine Systems (ICHMS), pp. 1–6, IEEE,
2021.

[8] J. Saenz, R. Behrens, E. Schulenburg, H. Petersen,
O. Gibaru, P. Neto, and N. Elkmann, “Methods for con-
sidering safety in design of robotics applications featur-
ing human-robot collaboration,” The International Jour-
nal of Advanced Manufacturing Technology, vol. 107,
pp. 2313–2331, 2020.

[9] P. Chemweno, L. Pintelon, and W. Decre, “Orienting
safety assurance with outcomes of hazard analysis and
risk assessment: A review of the iso 15066 standard for
collaborative robot systems,” Safety Science, vol. 129,
p. 104832, 2020.

[10] https://www.iso.org/standard/51330.html, “iso 10218-
1.org.” [Accessed 17-11-2023].

[11] https://www.iso.org/standard/41571.html, “iso 10218-
2.org.” [Accessed 17-11-2023].

[12] https://www.iso.org/standard/62996.html, “iso
15066.org.” [Accessed 17-11-2023].

[13] W. D. Peter Chemweno, Liliane Pintelon, “Orienting
safety assurance with outcomes of hazard analysis and
risk assessment: A review of the iso 15066 standard for
collaborative robot systems,” 2020.

[14] A. Pupa, M. Minelli, and C. Secchi, “A dynamic plan-
ner for safe and predictable human-robot collaboration,”
IEEE Robotics and Automation Letters, vol. 9, no. 1,
pp. 507–514, 2023.

[15] https://www.iso.org/standard/72140.html, “Iec
31010:2019 iso.org.” , 2019. [Accessed 14-12-2023].

[16] “Github - ros 2 safety-critical working group.”
https://github.com/ros-safety/
safety_working_group. [Accessed 19-12-
2023].

[17] M. P. H. et al., “Towards safety level definition for indus-
trial robots in collaborative activities,” Procedia Manu-
facturing, vol. 38, pp. 1481–1490, 2019.

[18] https://www.iso.org/standard/51528.html, “iso
12100.org.” [Accessed 17-11-2023].

[19] J. A. Segura-Muros and J. Fernández-Olivares, “Inte-
gration of an automated hierarchical task planner in ros
using behaviour trees,” in 2017 6th International Con-
ference on Space Mission Challenges for Information
Technology (SMC-IT), pp. 20–25, 2017.

Volume 45, Number 2, June 2024 Ada User Jour na l

109

Reconfigurable and Scalable Honeynet for
Cyber-physical Systems

Luís Sousa, José Cecílio, Pedro M. Ferreira, Alan Oliveira de Sá*

LASIGE, Faculdade de Ciências da Universidade de Lisboa, Portugal; email: fc60428@alunos.fc.ul.pt,{jmcecilio,
pmf, aodsa}@ciencias.ulisboa.pt

Abstract

Industrial Control Systems (ICS) constitute the back-
bone of contemporary industrial operations, ranging
from modest heating, ventilation, and air conditioning
systems to expansive national power grids. Given their
pivotal role in critical infrastructure, there has been
a concerted effort to enhance security measures and
deepen our comprehension of potential cyber threats
within this domain. To address these challenges, nu-
merous implementations of Honeypots and Honeynets
intended to detect and understand attacks have been
employed for ICS. This approach diverges from con-
ventional methods by focusing on making a scalable
and reconfigurable honeynet for cyber-physical systems.
It will also automatically generate attacks on the hon-
eynet to test and validate it. With the development of a
scalable and reconfigurable Honeynet and automatic at-
tack generation tools, it is also expected that the system
will serve as a basis for producing datasets for train-
ing algorithms for detecting and classifying attacks in
cyber-physical honeynets.

Keywords: Industrial Control Systems, Cyber-Physical
Systems, Honepot/Honeynet, Dataset, Attack Capturing.

1 Introduction
Honeypots serve as tools designed to mislead attackers by
creating an illusion that they are targeting genuine infrastruc-
ture. In reality, these systems gather valuable information
about the ongoing attack, enabling the enhancement of both
the actual infrastructure and the honeypot. Additionally, they
provide insights into the attackers’ intentions and the origin
of the attack [1]. Honeynets are multiple Honeypots work-
ing together in the same system [1] which is the intended
implementation of this work. A system like a CPS is typi-
cally considered a honeynet because each component can be
considered a honeypot.

Honeynets are important for Industrial Control Systems (ICS),
as the impact of a cyber-attack on these systems can cause
significant harm to countries and society. Examples of some
of the most prolific attacks on CPS include the Stuxnet [2],
which attacked the nuclear enrichment facilities of Iran, or
the 2015 attacks on the Ukrainian power grid [3]. Note that

*Corresponding author.

the difficulty of also identifying the culprits and plausible
deniability of the attacks makes it attractive for governments
to influence foreign opinion and cause unrest without many
consequences [4].

A ICS is a type of Cyber-physical System (CPS) that is typi-
cally composed of actuators and sensors that interact with the
physical world (called the Plant), the control is composed of
Programmable Logic Controllers (PLC) or Remote Terminal
Units (RTU) that control the Plant and Monitoring typically
done through a Human Machine Interface (HMI). This system
is typically called a Supervisory Control and Data Acquisi-
tion (SCADA). To develop a CPS honeynet it is necessary
to simulate all the components of a typical CPS so that it
provides realistic data to fool the attacker into thinking it is
a real system. For this, the use of real-time simulations to
provide realistic data and information about a physical system
is required. For that, there needs to be a complete simulation
of the entire system from monitoring to the physical world.

In this context, this work aims to implement a software-based
scalable and reconfigurable honeynet. This means that it
should be able to add components and reconfigure the exist-
ing components. This work also focuses on the generation
of dynamic and orchestrated attacks in the honeynet. The
attack generation capability is used to validate the system.
For this, the work includes the creation of a component called
the Attack coordinator, which using attack modelling algo-
rithms can attack the CPS dynamically. After having a good
implementation of the honeynet and the attack generator, an
additional goal is to use this setup to produce a data set for
Machine Learning (ML)-based intrusion detection systems
(IDS) in cyber-physical honeynets.

With this, the main objectives of this work are:

1. Develop a honeynet capable of being scalable and re-
configurable.

2. Produce an automatic attack generation tool to validate
and test the honeynet.

3. Using the results of objectives 1 and 2 create datasets for
ML-based IDSs in cyber-physical honeynets.

The rest of this work is organized as follows: Section 2
shows some of the work related to the topics of honeynets.
Section 3 describes the proposed system design. In Section 4
discusses the results achieved so far and the work that has to
be done. Section 5 brings the conclusions.

Ada User Jour na l Vo lume 45, Number 2, June 2024

110 Reconf igurable and Scalable Honeynet for Cyber-phys ica l Systems

Work Year Scalability LoI Attack Simulation Physical Interaction
Hilt et al. [5] 2020 None High - Real Hardware
HoneyVP [6] 2021 Limited High - PLC level
HoneyPLC [7] 2020 Good Medium - None
Pliatsios et al. [8] 2019 Limited Medium - Recorded data
ICSpot [9] 2022 Good Medium - MiniCPS [10]
PLCHoney [11] 2023 Limited High Data injection Matlab Simulation
MimePot [12] 2019 Limited High Integrity Attack Python Simulation

Table 1: Table representing the honeypots analyzed (LoI: Level of Interaction)

2 Related Work
The related works focus on similar implementations of hon-
eynets to the honeynet this work is going to implement.

Hilt et al. [5] goes into detail on the implementation of a
honeynet using real hardware in a real factory. Hilt’s im-
plementation focuses on having a realistic system so that an
attacker will be fooled, but it also shows the costs that are
required for a honeynet with real hardware, and that’s why
this work implementation diverges from having real hardware
and instead uses a simulated environment.

HoneyVP [6] is a honeypot that uses a real PLC and routes
the attack traffic to it. This approach is capable of handling
multiple requests and attacks simultaneously by sending them
to the same PLC. It uses Memoization [13] to reduce the re-
quired interactions with the PLC, this implementation reduces
the cost compared to a traditional full hardware implemen-
tation but doesn’t offer much realism when looking at the
complete environment of a CPS as it only targets the PLC.

HoneyPLC [7] is a honeynet for simulating PLCs. It starts
with real physical PLCs and tries to copy all relevant infor-
mation from the PLC. After this HoneyPLC can simulate the
different PLCs that it reads allowing for scalability and diver-
sity in what an attacker sees. This work limits its scope to the
PLCs thus still lacking when it comes to the other components
of a CPS.

The study [8] (Pliatsios et al.) specifies a procedure to create
a simple honeynet from an already existing CPS. It uses Con-
pot [14] a honeypot framework and uses real traffic from an
RTU with two sensors. Afterwards, Conpot uses that recorded
traffic to generate fake traffic by replaying it. From the at-
tacker’s perspective, there seems to be real traffic thus looking
like a real system.

In [9] the authors build on top of HoneyPLC to add a physical
component. In this article, they add MiniCPS [10] which is a
CPS simulation. The use of a physical simulation improves
the realism of the system compared to a system without it.

The work presented in [11] creates a honeypot called PL-
CHoney. It uses OpenPLC [15] and uses data from a recorded
Simulink simulation to generate the Plant to PLC traffic. This
implementation reduces the cost of running the simulation but
by only using the data from the simulation the environment
the honeypot tries to simulate is less dynamic.

MimePot is the honeypot conceived in [12]. It uses a real-time
simulation for the Plant that feeds data to an HMI to form its
CPS. This CPS is simple as it only includes a PLC and an

Figure 1: Architecture
HMI but is similar to the work we intend to make by having
a real-time simulation for the plant.

The implementation that this work aims to achieve diverges
from the other by having good scalability, a high level of
interaction, attack simulation and a simulation for the physical
interactions. Some of the works focus on different aspects
similar to this work from the scalability or simulation of the
plant, but they either only focus on a single component of a
CPS or they don’t achieve real scalability. This work will also
focus on the attack simulation that PLCHoney and MimePot
have but will try to have multiple attacks working together
instead of just one.

3 System Design
Figure 1 shows the architecture of the system. It’s divided
into four modules: Coordinators, Attacks, CPS and Data
Collection. The Coordinators are responsible for managing
the system. This module is composed of the Architecture
Coordinator and the Attack Coordinator. They communicate
among themselves so that when the Architecture Coordinator
generates the structure of the system the Attack Coordinator
knows it as well.

There is the CPS composed of the elements that the attacker
will have access to. They are a mix of HMIs, PLCs and
Plants. The number of components in this group can vary as
the architecture is scalable and controlled by the Architecture
Coordinator. They are networked between them in a realistic
way that is meant to be similar to implementations of CPS in
the industry.

Then there is the Data Collection module which is composed
of the tools necessary to collect metrics, logs and network

Volume 45, Number 2, June 2024 Ada User Jour na l

L. Sousa, J. Cecí l io, P. M. Ferre i ra , A. Ol ive i ra de Sá 111

data. It will interact with all the other components so they
can garner the information necessary to validate and later
generate the dataset from that data.

In the implementation, all the components will be docker [16]
containers as this will help isolate every running component
and make their implementation dynamic to expand and re-
place components. This will also help the implementation of
attacks, as attacks can be docker components that initialize in
runtime.

3.1 Architecture Coordinator
The Architecture Coordinator will only run in the setup phase
so it can generate the necessary extra files to configure each
component on the architecture and provide the required arhi-
tectural information to the Attack Coordinator. With this
information, the Attack Coordinator can orchestrate attacks
that make sense on the instantiated network.

3.2 Attack Coordinator
The Attack Coordinator will use the architecture of the system
to plan and organize attacks, this should be done dynamically
for any structure of the system. This helps improve the di-
versity of attacks that are performed. Having diverse attacks
will lead to a higher level of confidence when validating this
solution. With the improved variability, we also have a more
diverse and complete input to feed into a dataset.

To create realistic attacks, the attack coordinator needs to
have a good idea of the architecture of the system and for this,
it needs to keep track of all the useful system information.
The information of the network is in a graph containing the
information of each service running in each component and
the possible corresponding attacks for each service. The
attacks will depend on the architecture that was generated by
the Architecture Coordinator. The realism of the attacks will
emerge from a combination between the network graph and
a set of cataloged attack graphs that represent existing (and
well-known) attack chains.

The coordination of multiple attacks will require information
about what each attack does and what changes they do to the
system. This is important to make a good attack sequence
where the attacks need to make changes to the system to
achieve the attacker’s goal.

The attacks were chosen from [17] which specifies common
attacks in CPSs. From there, the following attacks were
chosen to be implemented based on how common and the
complexity of implementation:

• Man-in-the-middle
• Modbus-Register Reading
• Denial of service
• Modbus-Register spoofing
• Replay attack

More attacks can be added as we progress with the implemen-
tation.

3.3 CPS
This section describes the components of the CPS module.
The Plant is described in the Section 3.3.1, the SCADA/HMI
in Section 3.3.2, and the PLC in Section 3.3.3.

Figure 2: Plant
3.3.1 Plant
The Plant is implemented as a container simulating the phys-
ical process of the system and interacts and communicates
with the PLCs using different protocols – currently imple-
mented is the Modbus/TCP. The details of the software-based
Plant simulator are presented in Figure 2, which represents an
overview of how it works. A simulation feeds the data to the
server and can be configured with different parameters from a
configuration file. The aim is to include multiple simulations
and be able to choose between the different simulations with
the configuration file. Currently, the implemented simulation
is the heating up of a gas container following Boyle’s law.

3.3.2 SCADA/HMI
The SCADA is implemented with an open-source solution.
The one used is FUXA which is a simple HMI that is easy to
configure and use.

This solution also allows some further expansion. By allowing
more protocols that can add additional attacks making a more
diverse and realistic environment, the diverse protocols also
serve to create background network traffic.

3.3.3 PLC
For the PLC we used OpenPLC which is also an open-source
implementation of a PLC that implements our used protocols.
In this case, it can use Modbus to communicate with the Plant
and with the SCADA.

This solution will allow us to control the Plant with a realistic
control structure. The code implemented on the PLC for
the simulation follows the simple instructions of heating the
container if the pressure and the temperature are below those
specified on the HMI.

3.4 Data collection
To collect the data, the network traffic of all the components
running on containers will be collected and run through a
pre-processing step that will add information from the type
of data in the packet.

The network capture will be implemented to allow the Attack
Coordinator to inform which packets are attacks, and add
information to the traffic about what is passing through the
network. Beyond the data about the attacks, there will also
be some of the data added about the kinds of protocols being
used as can be seen in Figure 3.

There will be data collected beyond the network traffic. The
system will also collect the metrics of the running system,
from the number of network connections to processes run-
ning on the containers. The collection of logs will also be

Ada User Jour na l Vo lume 45, Number 2, June 2024

112 Reconf igurable and Scalable Honeynet for Cyber-phys ica l Systems

Figure 3: Network Capture
important and can be useful in feeding into the dataset to train
a machine-learning algorithm, to fulfil Objetive 3.

4 Current Status and Forthcoming Work
Currently, the Plant, PLC and HMI are implemented in the
CPS thus being able to run a simple CPS. The initial work in
the Architecture Coordinator and Network Capture is being
done. After the completion of those two components, the
focus will be on the Attack Coordinator to start the realization
of attacks on the system to validate and generate the data set.
The work will be expanded with more features, and will be
made available (open source) as a tool to produce datasets of
cybeattacks in ICSs.

5 Conclusion
This work aims to improve the current state of the art in
honeynets by creating a honeynet that can fit any ICS, it also
tries to provide better training data to create better IDSs so
they can be integrated with machine learning and artificial
intelligence by providing controlled environment to generate
and execute attacks on a system that can follow the structure
of a real CPS.

6 Acknowledgement
This work was supported by FCT through the LASIGE
Research Unit, ref. UIDB/00408/2020 (https://doi.org/
10.54499/UIDB/00408/2020) and ref. UIDP/00408/2020
(https://doi.org/10.54499/UIDP/00408/2020).

References
[1] J. Franco, A. Aris, B. Canberk, and A. S. Uluagac, “A

survey of honeypots and honeynets for internet of things,
industrial internet of things, and cyber-physical systems,”
IEEE Communications Surveys & Tutorials, vol. 23,
no. 4, pp. 2351–2383, 2021.

[2] R. Langner, “Stuxnet: Dissecting a cyberwarfare
weapon,” IEEE Security & Privacy, vol. 9, no. 3, pp. 49–
51, 2011.

[3] G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong,
“The 2015 ukraine blackout: Implications for false data
injection attacks,” IEEE Transactions on Power Systems,
vol. 32, no. 4, pp. 3317–3318, 2017.

[4] J. K. Canfil, “The illogic of plausible deniability: why
proxy conflict in cyberspace may no longer pay,” Jour-
nal of Cybersecurity, vol. 8, p. tyac007, 09 2022.

[5] S. Hilt, F. Maggi, C. Perine, L. Remorin, M. Rösler, and
R. Vosseler, “Caught in the act: Running a realistic fac-
tory honeypot to capture real threats,” tech. rep., Trend
Micro, Inc.

[6] J. You, S. Lv, Y. Sun, H. Wen, and L. Sun, “Honeyvp: A
cost-effective hybrid honeypot architecture for industrial
control systems,” in ICC 2021 - IEEE International
Conference on Communications, pp. 1–6, 2021.

[7] E. López-Morales, C. Rubio-Medrano, A. Doupé,
Y. Shoshitaishvili, R. Wang, T. Bao, and G.-J. Ahn,
“Honeyplc: A next-generation honeypot for industrial
control systems,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’20, (New York, NY, USA), p. 279–291,
Association for Computing Machinery, 2020.

[8] D. Pliatsios, P. Sarigiannidis, T. Liatifis, K. Rompolos,
and I. Siniosoglou, “A novel and interactive industrial
control system honeypot for critical smart grid infras-
tructure,” in 2019 IEEE 24th International Workshop on
Computer Aided Modeling and Design of Communica-
tion Links and Networks (CAMAD), pp. 1–6, 2019.

[9] M. Conti, F. Trolese, and F. Turrin, “Icspot: A high-
interaction honeypot for industrial control systems,” in
2022 International Symposium on Networks, Computers
and Communications (ISNCC), pp. 1–4, 2022.

[10] D. Antonioli and N. O. Tippenhauer, “Minicps: A
toolkit for security research on cps networks,” in Pro-
ceedings of the First ACM Workshop on Cyber-Physical
Systems-Security and/or PrivaCy, CPS-SPC ’15, (New
York, NY, USA), p. 91–100, Association for Computing
Machinery, 2015.

[11] S. Y. Chowdhury, B. Dudley, and R. Sun, “The case for
virtual plc-enabled honeypot design,” in 2023 IEEE Eu-
ropean Symposium on Security and Privacy Workshops
(EuroS&PW), pp. 351–357, 2023.

[12] G. Bernieri, M. Conti, and F. Pascucci, “Mimepot: a
model-based honeypot for industrial control networks,”
in 2019 IEEE International Conference on Systems,
Man and Cybernetics (SMC), pp. 433–438, 2019.

[13] D. Michie, ““memo” functions and machine learning,”
Nature, vol. 218, pp. 19–22, Apr. 1968.

[14] L. Rist, “Conpot.” http://conpot.org/. Ac-
cessed: 2024-01-5.

[15] “Openplc.” https://autonomylogic.com/. Ac-
cessed: 2023-12-9.

[16] “Docker.” https://www.docker.com/
get-started/. Accessed: 2023-12-8.

[17] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical
systems security—a survey,” IEEE Internet of Things
Journal, vol. 4, no. 6, pp. 1802–1831, 2017.

Volume 45, Number 2, June 2024 Ada User Jour na l

113

Software-Based Security Framework for Edge and
Mobile IoT

José Cecílio, Alan Oliveira de Sá, André Souto
LASIGE, Faculdade de Ciências da Universidade Lisboa, Portugal; email: {jmcecilio, aodsa,
ansouto}@ciencias.ulisboa.pt

Abstract

With the proliferation of Internet of Things (IoT) de-
vices, ensuring secure communications has become im-
perative. Due to their low cost and embedded nature,
many of these devices operate with computational and
energy constraints, neglecting the potential security vul-
nerabilities that they may bring. This work-in-progress
is focused on designing secure communication among
remote servers and embedded IoT devices to balance
security robustness and energy efficiency. The proposed
approach uses lightweight cryptography, optimizing de-
vice performance and security without overburdening
their limited resources. Our architecture stands out for
integrating Edge servers and a central Name Server,
allowing secure and decentralized authentication and
efficient connection transitions between different Edge
servers. This architecture enhances the scalability of
the IoT network and reduces the load on each server,
distributing the responsibility for authentication and key
management.

Keywords: IoT Security, Edge, Device Protection, Data
reliability.

1 Introduction
Given the increasing ubiquity of Internet of Things (IoT)
devices in our daily lives, understanding the variety and com-
plexity of cyberattacks these devices face has become im-
perative. Johnston, in [1], highlights a broad spectrum of
vulnerabilities in IoT devices, leading to a large range of
attack techniques that compromise data integrity and confi-
dentiality, significantly threatening IoT systems’ functionality
and security.

One of the primary challenges in the IoT landscape is balanc-
ing the affordability of devices with the implementation of
robust security measures. For instance, jamming and adversar-
ial attacks, which aim to disrupt wireless communication, are
particularly disruptive in resource-limited devices [2]. Mea-
sures such as signal strength analysis and packet delivery
rate verification have been proposed as effective solutions to
detect such activities [3]. Additionally, the insecure setup
of IoT devices exposes them to various vulnerabilities. Re-
searchers have suggested introducing artificial noise and ro-
bust authentication processes to secure devices during this
critical phase [4]. Similarly, for low-level Sybil and spoofing

attacks, channel-based detection and RSS consistency emerge
as fundamental preventive measures [5].

Insecure physical interfaces also represent a considerable
risk. Strategies for preventing physical tampering and secure
access service management are essential to mitigate these
risks [6]. For sleep deprivation attacks, which aim to deplete
devices’ energy, cluster-based techniques and anomaly detec-
tion offer a potential solution [7]. Fragmentation in IoT de-
vices creates additional vulnerabilities, where replay attacks
can be particularly damaging. Content chaining schemes and
split buffer approaches are presented as viable solutions [8].
Within the scope of IoT attacks, there is a need for a deeper
analysis of middleware security. Robust authentication, ac-
cess control, and secure protocols like HTTPS and XMPP are
proposed measures to bolster security at this layer [9].

Given the wide range of potential attacks and solutions, it is
clear that IoT device security is continuously changing, requir-
ing a comprehensive approach that considers effectiveness,
cost, and practicality.

This work-in-progress delves into the intricate challenge of
having a balanced approach to security while maintaining op-
erational efficiency and safeguarding against potential threats.
We propose an architectural framework for secure IoT com-
munications designed to address the emerging challenges of
the mobile Internet of Things (MIoT). This architecture is
focused on enhancing security through decentralized authen-
tication, which is achieved by integrating a combination of
Edge servers and a central Name Server, aiming to provide
robust and decentralized authentication mechanisms across
the network.

This work extends the software-based security approach pro-
posed in [10] by adding new features for mobile IoT devices
and multiple Edge servers, allowing mobile-embedded IoT
devices to change their Edge server. Considering the typ-
ical constraints of IoT devices, our architecture optimizes
resource and energy consumption using a strategic cache sys-
tem implemented at each Edge server. This minimizes the
need for repetitive and resource-intensive re-authentication
processes, thereby conserving energy. Scalability and flex-
ibility is another feature of the proposed architecture. The
design is intended to be highly scalable, easily accommo-
dating an increasing number of IoT devices without com-
promising performance. Central to this scalability is the ar-
chitecture’s flexibility in seamlessly integrating new Edge

Ada User Jour na l Vo lume 45, Number 2, June 2024

114 Sof tware-Based Secur i ty Framework for Edge and Mobi le IoT

servers into the network and allowing devices to switch con-
nections between these servers without friction. Balancing
security with resource usage (efficiency) and energy consump-
tion is vital. The architecture is tailored to balance robust
security measures and efficient performance, particularly on
resource-constrained IoT devices. Given the IoT context of
the proposed solution, the encryption mechanism must be
lightweight, ensuring minimal resource consumption while
preserving data privacy. In alignment with this requirement,
the encryption strategy leverages NIST’s lightweight encryp-
tion standards1 to handle data encryption and integrity.

2 Threat Model and Assumptions
Developing a threat model and establishing assumptions are
crucial to designing a secure architecture. Next, we outline
the threat model considered in the design of our architecture,
as well as the adopted countermeasures:

• Unauthorized Access: Malicious actors are attempt-
ing to access IoT devices or communication channels
illegally. This threat is addressed by considering robust
decentralized authentication through Edge servers and a
central Name Server, leveraging secure protocols.

• Data Tampering: Attackers try to manipulate or tamper
with data during communication. The proposed archi-
tecture uses lightweight encryption standards following
NIST guidelines for data encryption and integrity.

• Physical Tampering: Physical access to IoT devices
for tampering or unauthorized manipulation. Secure
access service management and regular code integrity
verification are applied.

• Jamming and Adversarial Attacks: Deliberate dis-
ruptions to wireless communication to compromise IoT
devices. Signal strength analysis and packet delivery
rate verification are used to detect and counter jamming
and adversarial attacks.

• Replay Attacks: Replay attacks exploiting fragmenta-
tion vulnerabilities in IoT devices. Challenge approach,
data integrity, and application integrity verifications are
used to prevent and detect replay attacks.

Considering this threat model, the following assumptions are
made:

• Communication Channels: The architecture assumes
the availability of reliable communication channels, and
the threat model focuses on securing the data transmitted
over these channels.

• Adequate Resource Allocation: The proposed architec-
ture assumes that sufficient resources, such as bandwidth
and processing power, are allocated to Edge servers to
handle authentication and encryption processes effec-
tively.

• Cooperation Among Edge Servers: The architecture
assumes a cooperative environment among Edge servers
to facilitate seamless authentication and communication
between devices switching connections.

1https://www.nist.gov/news-events/news/2023/02/nist-selects-
lightweight-cryptography-algorithms-protect-small-devices

These threat scenarios and assumptions provide a basis for
evaluating the security features of the proposed architecture
and guide the implementation of relevant security measures.

3 Edge and IoT mobile management archi-
tecture

In [10], we introduced software-driven protection and en-
cryption mechanisms tailored for embedded devices. Our
design incorporates an Agent specifically designed to operate
seamlessly with low-cost and low-end devices, eliminating
the need for any alterations to the underlying hardware. Com-
plementing this, we introduce a Computing Module designed
for devices with slightly greater computational capabilities.
The Computing Module empowers devices to write data in
secure memory, ensuring ongoing verification of its integrity
for sustained protection. Moreover, it leverages the Agents
present on the device to strengthen device applications against
potential attacks. This is achieved by instructing the Agent
to generate a code signature for the application and subse-
quently validating it, enhancing the overall security posture
of the embedded system.

This work extends the previous software-based security ap-
proach for mobile IoT devices and multiple Edge servers,
allowing mobile-embedded IoT devices to change their Edge
server. It aims to balance robust security measures and energy
efficiency harmoniously, avoiding new authentication proce-
dures every time a new device changes the Edge server. Our
proposed methodology uses lightweight cryptography, strate-
gically optimizing device performance and ensuring security
without imposing undue strain on their constrained resources.
The architectural framework incorporates Edge servers and
a central Name Server, fostering secure and decentralized
authentication processes.

This integration also provides seamless and efficient transi-
tions between different Edge servers, which allows to increase
the number of nodes. Our architecture reduces the burden
on individual servers by distributing authentication and key
management responsibilities, leading to a more robust and
resource-efficient system.

Figure 1: General architecture for Edge and IoT mobile man-
agement service.

Volume 45, Number 2, June 2024 Ada User Jour na l

J. Cecí l io, A. Ol ive i ra de Sá, A. Souto 115

Figure 1 shows the proposed architecture where we have
envisioned a dynamic and mobile network of Nodes capable
of disconnecting from one server and seamlessly connecting
to another. To facilitate this mobility without needing re-
authentication each time a Node switches servers, we propose
a system where the authentication credentials, specifically the
key and the hashed application data, are transferred alongside
the Node to the new server. To support this seamless transfer,
each edge in the network will maintain a secure cache to
store authentication information and keys associated with
each Node. These keys are subject to renewal, triggered by
the Edge servers or when a specific time interval has lapsed,
ensuring that authentication remains updated and secure.

Moreover, the key renewal protocol is designed to respect the
mobility of the Nodes. If a Node transitions to a new Edge
server, the key migrates, and subsequent key renewals are
exclusively negotiated with the new server. Upon recogniz-
ing that a key is due for renewal and is marked as shared,
the initial server will remove that key and associated Node
from its registry, effectively transferring full authentication
responsibility to the new server.

The system is also designed to achieve high scalability, with
provisions for new Edge servers to integrate into the existing
system using the protocol proposed in Rosa et al. [11]. When
a Node wishing to join sends an encrypted authentication
message to nearby authenticated Nodes (any Edge server).
This message includes a unique identifier and a random key
from a pre-established set, ensuring the Node’s authenticity
from the outset. Upon receipt, an authenticated Node decrypts
the message using a default key. If the random key is recog-
nized, a challenge is issued to the new Node to confirm its
identity. It uses encryption functions with a mix of the Node’s
characteristics and randomly generated values. Only upon
a successful response to this challenge the process proceed.
This authentication is not isolated. It is part of a broader
protocol that seamlessly adds new servers to the network.

When a new Edge server joins, it undergoes a similar authenti-
cation process and must be registered with the name server by
the authenticating server. This ensures that all entities within
the network, whether Nodes or servers, are authenticated and
authorized, maintaining a secure network environment.

A Server’s authentication message includes a random key and
the Server’s ID, encrypted with a default key known as DK,
pre-loaded by an administrator. When an existing authenti-
cated Server receives this message, it decrypts and verifies the
random key against its own set. A failure to recognize the key
results in the Server’s ID being placed on a denylist. How-
ever, if the key is validated, the authenticated Server issues a
cryptographic challenge to the new Server. The challenge and
subsequent response ensure that only Servers with the correct
credentials can join the network, preventing unauthorized
accesses.

Once authenticated, Nodes can freely move within the net-
work, connecting to different servers without needing to re-
authenticate, as their credentials and keys are securely trans-
ferred between servers. This procedure aligns with the earlier

detailed method for authenticating new servers within the net-
work. It emphasizes the reuse of established authentication,
minimizing overhead and enhancing network fluidity.

When a new Edge server joins and is authenticated, the authen-
ticating Server is responsible for registering the newcomer in
the Name Server.

The Name Server holds essential metadata about the network.
This includes mapping addresses to names, the physical lo-
cations of Edge servers –potentially using GPS coordinates –
the resources available on each Edge server, and records of
which entities have authenticated which.

Each Edge Server and Node implements the software-based
security solution outlined in [10], ensuring that each compo-
nent contributes to the network’s security posture.

When a Node moves from the coverage of one server to an-
other, it relies on the initial server to guide its connection
to the optimal Edge server. After consulting the metadata
from the name server, the initial server directs the Node to
the most suitable server based on a set of criteria derived
from the available metadata. This decision-making process
is informed by a comprehensive understanding of the net-
work’s topology, resources, and authentication relationships,
which are meticulously maintained and updated in the Name
Server’s database.

4 Device-Edge Communication
The proposed architecture defines an innovative protocol for
handling Edge servers within the network, allowing it to shift
from the traditional central Gateway model to a more flexible
and scalable system with multiple Edge servers and a Name
Server.

In this system, the authentication of a new Edge server is
conducted by an already authenticated Edge server, thus trans-
ferring the computational burden and responsibility of the au-
thentication process from a central server to the Edge servers
themselves. This decentralized methodology allows each
Edge server to authenticate new network participants, simpli-
fying network management and reducing the load on a single
central point.

The authentication process begins when an authenticated
Edge server sends detailed information about a new Edge
server to the Name Server following a successful challenge
process. The Name Server then maintains a comprehensive
registry of Edge servers in the network, including their ad-
dresses, names, locations, resources, and authentication his-
tory.

Figure 2 illustrates the message exchange process when a
node disconnects from a previous Edge server and seeks to
connect to another Edge server recommended by the initial
one. This connection transition in the proposed architecture
is conducted with a particular focus on resource and energy
efficiency, thus avoiding unnecessary consumption of both
energy and computational resources.

To ensure this efficiency, the previous Edge Server passes
the encrypted key to the new Edge server, which was used to

Ada User Jour na l Vo lume 45, Number 2, June 2024

116 Sof tware-Based Secur i ty Framework for Edge and Mobi le IoT

Figure 2: Overview of node connection with a new edge.

establish the initial connection with the Node. It also provides
the encrypted hash of the application. As a result, the new
Edge Server that will now establish a new connection with
the Node does not need to expend energy and computational
resources to create a new shared key for authentication.

Upon receiving the key and the application’s hash, the new
server will decrypt the data sent by the Node and understand
its application’s hash, which is then compared with the Initial
Server’s. If the hashes coincide, it indicates that the data
integrity has been maintained, and therefore, the Edge server
and the Node can securely establish the connection.

This process not only ensures the security and integrity of the
data during connection transitions between Edge servers and
nodes but also optimizes the use of resources and energy, a
relevant aspect in IoT networks, especially for devices with
limited capabilities.

5 Conclusion
This work-in-progress is focused on designing secure com-
munication among remote servers and mobile-embedded IoT
devices to balance security robustness and energy efficiency.
Our focus on addressing several threat vectors led us to pro-
pose a comprehensive architectural framework. The integra-
tion of Edge servers and a central Name Server, coupled with
the deployment of lightweight cryptography, allows for im-
proved security while respecting resource-constrained IoT
devices’ limitations.

The strategic use of a secure cache system at each Edge server
minimizes the need for resource-intensive re-authentication
processes, contributing to energy preservation. The defined
threat model allows to establish a robust security framework
addressing unauthorized access, data tampering, physical tam-
pering, and other potential threats. We balance security ro-
bustness, efficiency, and feasibility by adhering to NIST’s
lightweight encryption standards and enforcing device partic-
ipation policies.

This work-in-progress represents a significant advance to-
wards establishing a nuanced and balanced approach to IoT
device security. By intertwining decentralized authentication,

lightweight cryptography, and thoughtful design principles,
our proposed architecture sets the stage for a more secure,
scalable, and energy-efficient future for the Mobile Internet
of Things (MIoT).

Acknowledgments
This work was supported by FCT through the LASIGE
Research Unit, ref. UIDB/00408/2020 (https://doi.org/
10.54499/UIDB/00408/2020) and ref. UIDP/00408/2020
(https://doi.org/10.54499/UIDP/00408/2020).

References
[1] N. Johnston, “A gentle introduction and an exploration

of root causes,” 2019.

[2] Q. Dong, D. Liu, and M. Wright, “Mitigating jamming
attacks in wireless broadcast systems,” Wireless net-
works, vol. 19, pp. 1867–1880, 2013.

[3] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The fea-
sibility of launching and detecting jamming attacks in
wireless networks,” 2005.

[4] S. H. Chae, W. Choi, J. H. Lee, and T. Q. Quek, “En-
hanced secrecy in stochastic wireless networks: Arti-
ficial noise with secrecy protected zone,” IEEE Trans-
actions on Information Forensics and Security, vol. 9,
pp. 1617–1628, 10 2014.

[5] L. Xiao, L. J. Greenstein, N. B. Mandayam, and
W. Trappe, “Channel-based detection of sybil attacks in
wireless networks,” IEEE Transactions on Information
Forensics and Security, vol. 4, pp. 492–503, 9 2009.

[6] S. K. Khatri, A. U. Dubai, A. U. D. A. D. of Engineering
& Technology, I. of Electrical, E. E. U. A. E. Section,
I. of Electrical, and E. Engineers, 2017 International
Conference on Infocom Technologies and Unmanned
Systems (ICTUS) (Trends and Future Directions): De-
cember 18-20, 2017.

[7] T. Bhattasali and R. Chaki, “A survey of recent intru-
sion detection systems for wireless sensor network,” in
Advances in Network Security and Applications: 4th
International Conference, CNSA 2011, Chennai, India,
July 15-17, 2011 4, pp. 268–280, Springer, 2011.

[8] WiSec ’13: Proceedings of the Sixth ACM Conference on
Security and Privacy in Wireless and Mobile Networks,
(New York, NY, USA), Association for Computing Ma-
chinery, 2013.

[9] D. Conzon, T. Bolognesi, P. Brizzi, A. Lotito, R. Tomasi,
and M. A. Spirito, “The virtus middleware: An xmpp
based architecture for secure iot communications,” in
2012 21st International Conference on Computer Com-
munications and Networks (ICCCN), pp. 1–6, IEEE,
2012.

[10] J. Ferreira, A. Oliveira, A. Souto, and J. Cecílio,
“Software-based security approach for networked em-
bedded devices,” Ada Lett., vol. 43, p. 73–77, oct 2023.

Volume 45, Number 2, June 2024 Ada User Jour na l

J. Cecí l io, A. Ol ive i ra de Sá, A. Souto 117

[11] P. Rosa, A. Souto, and J. Cecílio, “Light-sae: A
lightweight authentication protocol for large-scale iot en-
vironments made with constrained devices,” IEEE Trans-

actions on Network and Service Management, vol. 20,
no. 3, pp. 2428–2441, 2023.

Ada User Jour na l Vo lume 45, Number 2, June 2024

118

Supporting Ada in the ROSE Compiler

Peter Pirkelbauer, Chunhua Liao, Pei-Hung Lin, David Wright, Charles Reynolds, Daniel Quinlan
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA;
email: {pirkelbauer2, lin32, liao6, wright97, reynolds12, quinlan1}@llnl.gov

Abstract

Manual code maintenance of large code bases is tedious,
time-consuming, and error-prone. To enable the engi-
neering of source code maintenance tools for Ada, a
mature infrastructure that provides capabilities for pars-
ing, unparsing, semantic analysis, and transformations
is needed.

This work discusses our progress of adding Ada sup-
port to ROSE, a mature source-to-source translation
infrastructure. The paper discusses the design of ROSE,
the extensions required for adding Ada, difficulties we
encountered with processing existing code bases, and
several prototype analysis and translation tools enabled
by the new Ada support in ROSE.

Keywords: source-to-source translation; ROSE

1 Introduction
Manual code maintenance of large code bases is tedious, time-
consuming, and error-prone. Tool support for the maintenance
of large-code bases is needed. To be accepted by software
engineers, such tools need to be able to soundly reason about
the source code and produce output that is understandable
and maintainable. With understandable and maintainable
we mean that the output file needs to preserve much of the
original code formatting and it needs to contain all elements
that were part of the original code, including comments and
preprocessor directives. To meet these requirements, tools
need to operate on an intermediate representation (IR) that
is similar to compilers. In addition tools need to preserve
many details present in source code that compilers typically
discard in early processing stages, such as comments and
preprocessor directives.

To enable the development of such tools, this work adds Ada
support to the ROSE source-to-source translation infrastruc-
ture [1]. We chose the ROSE framework, because we expect
that existing analysis and transformation tools that are avail-
able in ROSE would be portable to Ada with minimal effort.

The contributions of this work are: (1) the extension of the
ROSE infrastructure to support Ada 95, (2) an initial set of
tools enabled by the Ada support in ROSE.

The remainder of the paper is organized as follows: §2 pro-
vides background on ROSE, §3 describes our extension to
ROSE, §4 discusses a set of prototype tools, §5 compares
this work to related work, and §6 offers a brief summary and
outlook on future work.

2 Background - ROSE infrastructure
The ROSE source-to-source compiler infrastructure [1] offers
unique capabilities for building software maintenance tools.

ROSE is a source-to-source compiler infrastructure that en-
ables static analysis and transformation tools. ROSE is a ma-
ture open-source project that provides frontends and backends
for many popular languages and parallel programming mod-
els, including C, C++, UPC, Fortran, OpenMP, and CUDA.
ROSE represents program code at a high-level that is close to
the source code. ROSE preserves comments, pragmas, and
preprocessor directives so that code can be unparsed with all
elements that were in the original source file. ROSE’s goal is
to produce source code that is understandable and maintain-
able by humans. This makes ROSE very suitable for building
source code maintenance tools.

Fig. 1: The Rose source-to-source infrastructure

Fig. 1 shows ROSE’s system architecture. To process input
files, ROSE uses industrial strength compiler frontends. The
frontend parses the input files and ROSE generates its in-
termediate representation (IR). Typically compiler frontends
discard important information, such as preprocessor direc-
tives and comments. Thus, ROSE post-processes the input
file to extract information that was discarded. In this phase,
ROSE creates representations for comments and preprocessor
directives, and attaches them to the IR based on source code
location information.

ROSE’s IR is designed as object-oriented class hierarchy,
implemented in C++. Fig. 1 in §3 shows a small subset of
classes that represent source code. At the root is a class Node,
and derived from it are various subclasses representing differ-
ent concepts, such as types, nodes with source code locations
(i.e., LocatedNode), including expressions, statements, and
declarations, and nodes for symbols representing declarations
in symbol tables.

ROSE offers application programming interfaces (API) for
the traversal and manipulation of its IR. Custom analysis and

Volume 45, Number 2, June 2024 Ada User Jour na l

P. Pi r ke lbauer et a l . 119

transformation tools use the API to access and modify the
program representation.

3 Implementation for Ada
We extend the ROSE source-to-source compiler infrastructure
with support for the Ada programming language.

Frontend - Parser: For Ada, we follow the ROSE frontend
workflow. First we use the Ada Semantic Interface Specifi-
cation (ASIS) [2] implementation by AdaCore [3] to process
Ada source files. Then, post-processing attaches comments
and non-standard preprocessor directives1. Currently, ROSE
supports Ada 95 [4] and additional selected language features
from more recent standards (e.g., aspects, if expressions, null
procedures).

Like ROSE, ASIS represents the source code in the form of
an abstract syntax tree (AST). In ASIS, each node has an ID.
Edges in the AST are represented by using these IDs to link
source to the target nodes. The translation traverses the ASIS
AST and generates a ROSE AST from it. Declarations from
ASIS are mapped to ROSE AST nodes through their IDs. The
translation follows three guiding principles: (1) represent the
Ada source code accurately; (2) preserve ROSE Intermediate
Representation (IR) invariants; (3) reuse existing IR nodes, if
the Ada concepts are close to already existing IR nodes.

The translation faced the following challenges:

Standard package: We were unable to extract the content
of the Standard package from ASIS. Therefore, any ASIS
node with references to Standard cannot be resolved (e.g.,
types, operators). To solve this problem, ROSE builds a
representation for the Standard package internally. Names
that the translator cannot resolve through ASIS IDs get looked
up by name in the context, including Standard.

Scope qualification: ASIS preserves scope qualification in
source code, for example the prefix Ada.Text_IO is pre-
served in Ada.Text_IO.Put_Line("Hello"). To sim-
plify the development of transformation tools that move dec-
larations from one scope to another, ROSE does not represent
the prefix currently. Instead, the ROSE unparser uses a scope-
qualification pass that computes a valid prefix based on the
scope of the declaration and the scope of its use. The scope
qualifier tracks with clauses, renaming declarations, and
shadowing declarations to generate an accessible prefix.

Symbol overload resolution: Ada’s derived types inherit prim-
itive subprograms from the base type. While ASIS represents
inherited subprograms, it does not use them at call sites. In-
stead, the call links to the original subprogram. Since the
original subprogram and the inherited subprogram may reside
in different scopes, scope-qualification based on the origi-
nal subprogram declaration would generate an invalid scope
prefix.

Consider the following example, where package A introduces
a new type Num and a primitive operation Init. Package B
creates a new type Number derived from Num. Number also
inherits the primitive operations.

1While the Ada language standard does not define preprocessing, many
compilers support it.

1 package A is
2 type Num is new Integer;
3 function Init return Num;
4 end A;
5
6 package B is
7 type Number is new A.Num;
8 end B;

and the initialization of some variable val of type B.Number.

9 val : B.Number := B.Init;

Here, in package B ASIS provides information about the in-
herited subprogram, whereas the callee in the call of B.Init
links to the declaration in package A. In addition, ASIS pre-
serves the package prefix B. ROSE, on the other hand, does
not preserve the prefix in its IR, but represents the callee
through the inherited subprogram symbol that was created in
package B.

To resolve these calls correctly to an inherited subprogram
symbol, ROSE post-processes the initial AST created from
ASIS. For any expression that involves subprogram calls, a
overload resolution pass generates all candidate callees, con-
sisting of a subprogram symbol and its inherited subprogram
symbols. Then, we use argument and return types derived
from the context to identify the called target symbol. Since
such calls can be subexpressions of other expressions, over-
load resolution iterates over the expression tree until no more
ambiguity can be resolved.

The scope qualifier relies on the correct symbol to generate
the correct prefix.

Operator declarations: Built-in operator declarations (e.g., +,
*) for types declared in the Standard package are also declared
in Standard. For types that derive from built-in types, we are
unable to find the corresponding operator declarations. In
such cases, ROSE generates implicit operator declarations
and places them into the corresponding scope, usually the
scope of the derived type declaration. This enables the correct
generation of a subprogram’s scope qualification prefix.

Uniform forward and defining declarations: ROSE requires
forward declarations and defining declarations to use the same
IR node type. This is not the case for ASIS, where a package
may forward declare a type name and define it later, for ex-
ample in the private part of a package. ROSE resolves this
by using the type definition to inform what kind of IR node
needs to be used for the forward declaration (e.g., record,
enumeration, scalar).

Placement by source location information: To our knowledge,
ASIS does not preserve the source location information of
certain block structure related keywords, such as declare,
begin, exception. This makes it hard to attach additional
IR nodes for comments, pragmas, and preprocessor directives
to the relevant AST nodes, because it is unclear whether the
extra information should be part of the declarative section or
the code section (the source location is after the last declara-
tion, but before the first statement). Currently, pragmas get
placed based on their kind, while comments and preprocessor
nodes are attached to the last declaration (if available).

Ada User Jour na l Vo lume 45, Number 2, June 2024

120 Suppor t ing Ada in the ROSE Compi ler

Midend - Abstract Syntax Tree (AST): ROSE’s IR repre-
sents the source code at a high-level in the form of an abstract
syntax tree. Tools that are based on ROSE, will access and
manipulate the IR.

The IR for representing source-level information across all
languages comprises 684 classes (including Ada). Thus far
72 classes have been added to represent distinct features in
Ada. Most of the new classes are related to the language’s
rich type system, generics, and concurrency.

The classes are organized in an object-oriented hierarchy.
Fig. 2 shows the top levels of the hierarchy. At the root
are Node, the foundational root class, and LocatedNode,
a base class for all nodes that carry source location infor-
mation. Type, Statement, DeclarationStatement, and
Expression are common base classes for source-level in-
formation in source files. In addition, ROSE also maintains
declaration symbols (Symbol) and symbol tables for scopes.
The nodes with a blue bold frame are examples for classes
that have been added to represent Ada.

A complete list of ROSE IR classes and their hierarchy
is available at http://rosecompiler.org/ROSE_
HTML_Reference/classSgNode.html.

Each class contains additional information and edges to other
nodes as needed. This includes back links to types and sym-
bols, which makes the program representation a directed
graph.

Consider the following recursive implementation of a factorial
function, Fact.

1 function Fact(n: Natural) return Natural is
2 begin
3 return (if n < 2 then 1 else n*Fact(n-1));
4 end Fact;

Fig. 3 shows the AST that ROSE generates for Fact. The
top node is the global scope. Purple nodes underneath Global
refer to declarations, statements, and expressions. Operators
on the type Natural are represented as function calls to dec-
larations in package Standard. The figure shows a forward
declaration of Fact (called first nondefining declaration in
ROSE) that is not part of the original tree, but that is required
by ROSE. The ROSE IR is fully typed. The red edges indicate
the type information attached to declaration and computed
for expressions. Note, the type LongLong (located at the bot-
tom) currently serves as the universal integer type from which
other integer types are derived (e.g., Natural). Some nodes,
such as unreferenced nodes in Standard, symbol tables, and
symbols are omitted.

Backend: ROSE supports three ways to write out the AST
or parts of the AST.

Standard unparsing generates code for an input file. Currently,
the unparser has been developed to produce compilable code.
Improving code formatting is work in progress.

Token-based unparsing uses the token sequence and token
location in the original source code to print unmodified AST

subtrees. Only manipulated AST nodes are pretty-printed.
This unparsing technique is not yet supported for Ada.

Patch generation uses the source location information in mod-
ified subtrees to generate patch files that can be applied using
the patch utility in Unix2.

Evaluation: We have used ROSE to process a range of Ada
codes, including ACATS 2 to test for completeness. Our tests
ingest source files and unparse the IR to source files. Then
the produced files are compiled with GNAT and executed.
ROSE+GNAT currently passes 2,151 of the ACATS 2 tests,
while GNAT alone passes 2,170 successful tests. Most of
the 19 failing tests are caused by the scope qualification pass
producing an invalid scope prefix, by missing or misplaced
pragmas, and by issues with querying the ASIS representa-
tion.

We have also tested on open-source software and other large
code bases. Our tests involve compiling the original code
with ROSE, generating output with the default unparser, and
recompiling the output with GNAT.

Some projects were written for different architectures and
compilers. Here, we noticed the following portability issues.

Source code portability: Some code that is accepted by some
compilers is rejected by the GNAT/ASIS frontend due to com-
piler implementation choices. For example, different numeric
base types enable code to compile on some systems that fail
with GNAT/ASIS. The following code snippet illustrates the
problem.

1 type Msp is range 0 .. 3;
2 b : Msp := 1;
3 x : Integer := Integer(b * 2**9); -- ERROR

Here, Line 3 fails to compile, because GNAT uses the range
-128..127 as Msp’s base type. Since the result of 2**9 is
outside that range the compilation fails. Other compilers may
choose a larger base type for MSP. This can be worked around
by converting b into an Integer before the multiplication,
Integer(b) * 2**9.

Another case we saw was that one compiler allows passing
the same variable to multiple out parameters in the same
function call, whereas GNAT flags that usage as an error. The
reason for this is that GNAT community edition 2019 uses
the Ada 2012 language standard, whereas the code base was
written for Ada 95. Ada 2012 rejects the code [5, §4.2], while
earlier compilers may have produced warnings against that
coding practice, as the order of write backs to the aliased
variable is unspecified.

To solve these portability issues and differences in language
standards, we have manually rewritten the source code to
make them compilable with GNAT.

Different Target Hardware and Architectures: Some of the
code that we have used to evaluate our Ada support has been
coded for different target architectures than the GNAT/ASIS
frontend. One specific example is Ada code that has been

2https://en.wikipedia.org/wiki/Patch_(Unix)

Volume 45, Number 2, June 2024 Ada User Jour na l

http://rosecompiler.org/ROSE_HTML_Reference/classSgNode.html
http://rosecompiler.org/ROSE_HTML_Reference/classSgNode.html
https://en.wikipedia.org/wiki/Patch_(Unix)

P. Pi r ke lbauer et a l . 121

Fig. 2: ROSE AST class hierarchy, showing a subset of nodes that were used or added to support Ada.

Fig. 3: Abstract Syntax Tree for Factorial

targeted for a 32-bit architecture, whereas the GNAT/ASIS
frontend is running on a 64-bit architecture. That is only a
problem when the evaluation software does not encapsulate
architecture-specific code with this portability in mind.

Another issue we had to address when dealing with differ-
ent target hardware was the different embedded assembly
languages and support (ASM calls) with the GNAT/ASIS
frontend. In addition to the actual different assembly state-
ments, there were even some style differences that caused
issues with the GNAT/ASIS frontend. Most of the embedded
ASM from the sample Ada code was just commented out, or
changed to NOP statements.

Preprocessor: Processing preprocessor directives poses
unique challenges, similar to C++. Preprocessor directives
may be used to maintain multiple configurations of a program.
The problem is that the preprocessor constitutes its own lan-
guage that modifies the source code before the compiler runs,
yet the preservation of preprocessor directives is important
for a truthful representation of the original source file. ROSE
frontend post-processing adds the preprocessor directives, but
the AST only represents code enabled by the preprocessor.

4 Applications
Several software maintenance tools were prototyped.

LCOM Code quality metrics: Code quality metrics play
an important role in software engineering. They indicate code
that may be difficult to understand, modify, and test. Tracking
code quality metrics during code maintenance is particularly
important. In contrast to a clean design, adding features or
making changes to the code may make the code architecture
deteriorate over time. Loss of Cohesion of Methods (LCOM)
describe a set of metrics that assess the cohesion of object-
oriented designs by analyzing how methods and data defined
in a class are related. Our adaptation of the LCOM metrics
for Ada is described separately [6].

Duplicate with clause removal Code refactoring is an im-
portant software development practice to improve the quality
of source code, while still keeping its desired behavior. For
some large scale Ada codes, duplicated with clauses may be
introduced by developers as the codes evolve. While techni-
cally not harmful, extra with clauses clutter the code. Thus

Ada User Jour na l Vo lume 45, Number 2, June 2024

122 Suppor t ing Ada in the ROSE Compi ler

it is desirable to identify and remove such duplicated with
clauses in the source code.

Fig. 4: Internal Components of refactAda

Using ROSE, we have developed a source-to-source code
refactoring tool named refactAda (shown in Fig. 4). It cur-
rently supports the code transformation to remove duplicated
with clauses. The tool works in the following steps:

1. The ROSE frontend creates an AST from Ada sources
2. Track: By traversing the AST, the tool finds all with

clauses and stores package declarations included by
with clauses into a dictionary.

3. Remove with’ed package: For each new with clause, it
checks if the included packages have been seen before.
If so, the included package is marked for removal.

4. Remove with clause: If all packages in a with clause
were marked, the entire clause is marked for removal.

5. The tool creates a patch file that specifies the lines to be
modified or deleted to eliminate the duplicates.

Note that in Step 3, a unit referenced by a with clause can be
a package, a function, or a package renaming declaration. The
tool has to differentiate them. For multiple levels of renamed
packages originating from the same package, the tool does not
trace all the way to their root package. Instead, any packages
with different names are treated as not duplicated, since the
code may later refer to the package using the changed name.

We currently generate patch files to represent the transforma-
tion. The reason is that the default unparser for Ada does
not preserve the original code indentation. Using patch files
allows users to inspect changes to their codes before applying
the patches.

Null exclusion: The semantics of anonymous access type
parameters differs slightly between the Ada 95 and the Ada
05 standards. While the former standard implicitly excludes
null values, the latter requires null exclusion to be explicitly
specified [7, §3.2]. With Ada 95, passing null as argument
fails at the caller. With Ada 05, the same code would fail in
the callee, only if a value is accessed through the access-type
parameter.

To facilitate code migration of Ada 95 code bases to newer
Ada standards, we have used ROSE to prototype a migration
tool that adds null exclusion to access type parameters. The
tool traverses the ROSE IR and finds all function, procedures,
and subprogram access type declarations that use anonymous
access types. Then it adds the null exclusion specification as
declaration modifier to the parameter declaration.

Translating Ada to C++: Some code teams might want to
translate their legacy software written in Ada to C++ versions,
since C++ has a large community of developers which makes
it easier to hire trained software developers.

Given the largely shared AST among Ada and C++ in ROSE,
it is convenient to build a cross-language translator using
ROSE. We have explored ways of translating a subset of
sequential Ada code to C++. Specifically, we focused on
exploring ways to model the rich type system in Ada as do-
main specific C++ template libraries. Our prototype translator
(named Ada2Cpp) works as follows:

1. Parsing Ada files to create an Ada Abstract Syntax Tree
(AST) using ROSE’s frontend.

2. Collecting type information, primarily array types, to
facilitate later processing.

3. Conducting AST Normalization such as loop normaliza-
tion, adding explicit loop labels, and constant folding.

4. Converting Ada symbol tables to a C++ style, ensuring
case sensitivity. Ada operator declarations from the
Standard packages are converted to operator notation.

5. Top-down traversal of the AST (using preorder) to trans-
late types to C++ types and type constants. This step
also maps loop exits to loop labels and translates Ada
comments into C++ style comments.

6. Bottom-up traversal of the AST (using the reversed pre-
order) to rewrite different types of Ada nodes into equiv-
alent C++ nodes, including Ada operators, constants, ex-
pressions, and statements. The reversed preorder traver-
sal in this step ensures the walking of the AST is still
valid when being modified, avoiding issues similar to
C++ iterator invalidation.

7. Running AST consistency tests after all transformation
is done. This helps catch any translation errors.

8. Running ROSE’s Backend generating the final C++
source code from the translated AST.

The design of Ada2Cpp follows some best practices we have
accumulated when developing ROSE-based tools. For exam-
ple, AST normalization is applied first to simplify and unify
the AST as much as possible. This step makes later transla-
tion easier to implement. The major translation work is done
through a two-pass: 1) a top-down tree walk to translate and
populate types followed by 2) a bottom-up walk to translate
operators, expressions and statements.

In the end, the original Ada AST is changed to C++ AST in
place, preserving shared input AST nodes as many as possible.
An alternative translation choice is to keep the original Ada
AST while generating a complete new C++ AST. We did not
choose this option to be more memory efficient.

Given the specific semantics of Ada arrays and ranges, we
created a C++ library to mimic Ada array and range types.
The translator generates C++ code utilizing the special library
to preserve Ada-specific semantics.

Consider the procedure Demo_range1 containing a loop com-
puting the sum of elements in an integer range type.

Volume 45, Number 2, June 2024 Ada User Jour na l

P. Pi r ke lbauer et a l . 123

1 -- example using range
2 procedure Demo_range1 is
3 subtype Index_Range is Integer range 0..9;
4 Sum : Integer := 0;
5 begin
6 for I in Index_Range loop
7 Sum := Sum + I;
8 end loop;
9 end Demo_range1;

The output C++ code generates a main function, which in
turn calls the Demo_range1 function which contains the for
loop.

1 #include "Ada/Range.hxx"
2 #include "Ada/Array.hxx"
3 //example using range
4 void Demo_range1 () {
5 typedef struct Ada::Range<int, 0, 9>
6 Index_Range;
7 int Sum = 0;
8 for (auto I: Index_Range())
9 {

10 Sum = Sum + I;
11 }
12 }

Note that static Ada range types are translated into C++ tem-
plate types in the form of Ada::Range<type,start,end>
provided by our C++ array library mimicking semantics of
Ada types. The corresponding header files are also included
so that the generated C++ code has access to the type dec-
larations. Ada comments are also translated to C++ style
comments.

The Ada style loop using a range is translated into a C++ for
loop using the Ada::Range<> type. The Index_Range()

expression creates an instance of the Index_Range type (the
range from 0 to 9), and auto I deduces the type of I auto-
matically from the range’s elements, which are integers in
this case.

5 Related Work
Several other source-to-source translation frameworks exist.
The Clang [8] and LLVM [9] frameworks form the high-level
and low-level components of a compiler toolchain. In contrast
to ROSE, Clang uses an immutable internal representation
and transforming the code involves updating the source text
followed by reparsing the code. LLVM represents code more
closely to machine level and it is difficult to generate code that
is maintainable by humans from a low-level representation.

The libadalang framework offers capabilities for parsing, anal-
ysis, and instrumentation [10] of Ada sources. We are plan-
ning to adopt libadalang as frontend for ROSE.

Coccinelle is a transformation system for C code [11]. Coc-
cinelle uses a semantic patching language (SmPL) to describe
transformations and has been applied to evolve the Linux
kernel.

6 Conclusion
This paper has discussed the Ada support within the ROSE
compiler. ROSE enables software maintenance tools that
target source code. Four prototype tools were presented.

We plan to continue enhancing the Ada support in ROSE by
adopting libadalang as the frontend parser for long-term sup-
port and for being more permissive with respect to accepted
source code. Also, with libadalang we will strive to support
modern Ada standards fully. Lastly, we plan on implement-
ing token-based unparsing for Ada, which promises to fully
generate files from the IR while preserving code formatting
in the original file.

ROSE is available as open source from https://github.
com/rose-compiler/rose. How to install ROSE with
Ada is detailed in the LCOM tool repository https://
github.com/LLNL/ROSE-LCOM-Tools.

Acknowledgments
We thank the anonymous referees for their feedback and
suggestions for improvement.

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labora-
tory under Contract DE-AC52-07NA27344. LLNL-CONF-
861134.

References
[1] D. Quinlan and C. Liao, “The ROSE source-to-source

compiler infrastructure,” in Cetus users and compiler in-
frastructure workshop, in conjunction with PACT, 2011.

[2] ISO/IEC 15291 International Standard, Ada Semantic
Interface Specification (ASIS). International Organiza-
tion for Standardization, Apr. 1999.

[3] AdaCore, “GNAT ASIS library,” 2019.

[4] ISO/IEC 8652 International Standard, Ada. Interna-
tional Organization for Standardization, Feb. 1995.

[5] J. Barnes, Rationale for Ada 2012. John Barnes Infor-
matics, 2013.

[6] K. Lamar, P. Pirkelbauer, and D. Dechev, “LCOM met-
ric analyzer: A case study.” under review. available upon
request.

[7] J. Barnes, Rationale for Ada 2005. John Barnes Infor-
matics, 2005.

[8] “Clang transformation tutorial.”
https://clang.llvm.org/docs/
ClangTransformerTutorial.html, 2024.
accessed on June 15, 2024.

[9] C. Lattner and V. Adve, “LLVM: A compilation frame-
work for lifelong program analysis and transformation,”
(San Jose, CA, USA), pp. 75–88, Mar 2004.

[10] AdaCore, “Libadalang User Manual 25.0w.”
https://docs.adacore.com/live/
wave/libadalang/html/libadalang_
ug/introduction.html, 2023. accessed on June
20, 2024.

[11] J. Lawall, “On the origins of coccinelle,” in Eelco Visser
Commemorative Symposium (EVCS 2023), pp. 18:1–
18:10, 2023.

Ada User Jour na l Vo lume 45, Number 2, June 2024

https://github.com/rose-compiler/rose
https://github.com/rose-compiler/rose
https://github.com/LLNL/ROSE-LCOM-Tools
https://github.com/LLNL/ROSE-LCOM-Tools
https://clang.llvm.org/docs/ClangTransformerTutorial.html
https://clang.llvm.org/docs/ClangTransformerTutorial.html
https://docs.adacore.com/live/wave/libadalang/html/libadalang_ug/introduction.html
https://docs.adacore.com/live/wave/libadalang/html/libadalang_ug/introduction.html
https://docs.adacore.com/live/wave/libadalang/html/libadalang_ug/introduction.html

124

Task-to-Thread Mapping in OpenMP Using Fuzzy
Decision Making

Mohammad Samadi*, Tiago Carvalho, Luís Miguel Pinho
Polytechnic Institute of Porto & INESC TEC, Porto, Portugal; email: {mmasa, tdc, lmp}@isep.ipp.pt

Sara Royuela
Barcelona Supercomputing Center, Barcelona, Spain; email: sara.royuela@bsc.es

Abstract

The performance of shared-resource multi-core hard-
ware platforms in complex cyber-physical systems
(CPSs), e.g., automotive industry, can be improved us-
ing task-based parallelism through OpenMP. However,
most CPS require certain level of predictability, which
challenges the efficient implementation of the task-to-
thread mapping process. This exploratory work build
on the fact that existing mapping methods mostly use
elementary or heuristic algorithms, and the idea that
artificial intelligence (AI) algorithms can be used to
enhance the efficiency of such processes. Accordingly,
this paper (1) evaluates the suitability of AI-based tech-
niques in improving the performance of task-to-thread
mapping in the OpenMP framework, and (2) proposes
a hypothesis to perform an intelligent mapping using
fuzzy logic for multi-queue schedulers to improve the
predictability of the system.

Keywords: OpenMP, predictability, task-to-thread map-
ping, artificial intelligence (AI), fuzzy logic.

1 Introduction
OpenMP is a parallel framework for heterogeneous shared-
memory architectures, which can be used to leverage high-
performance computing (HPC) capabilities. It has been in-
creasingly used over the past decade to improve the perfor-
mance of CPSs, e.g., robotics, automation, and satellites.
Although OpenMP applications can be executed on multi-
core hardware platforms at high speed, the predictability (e.g.,
real-time analysis) of the parallel system is still a challenge.

Early versions of OpenMP support a thread-centric model
for exploiting massively loop-intensive and data-parallel pro-
grams, while later versions support a task-centric model that
allows complex, fine-grained, and irregular parallelism [1].
Focusing on the latter, task-to-thread mapping can be per-
formed using centralized or distributed queues. In the former
case, ready tasks are added to a single queue accessed by all
threads to execute tasks (which increases contention in the
queue) [2]. In the latter model, instead, each thread includes
an individual allocation queue [3, 4], possibly reducing the
contention of the system.

*PhD Candidate, Universitat Politècnica de Catalunya, Barcelona, Spain

In parallel frameworks, task-to-thread mapping can be per-
formed according to the timing requirements of the system.
However, the main restriction of most of the existing algo-
rithms is that they mainly use elementary or heuristic tech-
niques that may not be able to make more efficient decisions
under unforeseen conditions, which is the target of knowledge-
based system [1, 2, 3, 4]. This paper explores an AI-based
mechanism for task-to-thread mapping in OpenMP using
fuzzy theory. A multi-queue system model is considered,
where OpenMP tasks are allocated to threads’ queues in the
allocation phase, while they are deallocated from the queues
and dispatched to threads in the dispatching phase. A fuzzy
controller is proposed for the allocation phase to select the
most appropriate queue for each OpenMP task. It is worth
noticing that the First In, First Out (FIFO) algorithm is applied
in the dispatching phase to select the task from the queue to
execute by its idle thread. The main objective is to enhance
the predictability of critical systems.

2 Background and Related Work
This section provides an overview of the terms needed to
understand this article and introduces the most relevant state-
of-the-art works related to the proposed technique.
2.1 Task-to-thread mapping
Task-to-thread mapping is a key process in parallel applica-
tions (e.g., OpenMP). It can be carried out through a single-
queue (e.g., GCC) or multi-queue (e.g., LLVM) system. In the
former model, after a task meets its input data dependencies,
it is allocated to a queue, from which it is later deallocated
and dispatched to an idle thread. In the latter model, which is
considered in this paper, tasks are allocated to one of the al-
locations queues (belonging to threads) and then deallocated
from the queue and dispatched to the thread when idle. The
main problem with the former system is that all threads access
the same queue for allocating and deallocating tasks, so the
contention in the queue can potentially increase.

Mainstream implementations for OpenMP task-to-thread
mapping use breadth-first scheduler (BFS). This algorithm
creates all child tasks before executing them. Some imple-
mentations might also support work-first scheduler (WFS).
This algorithm executes new tasks immediately after they
are created, causing the suspension of the encountering (i.e.,
parent) task [1]. However, WFS causes in many cases the
sequentialization of the execution and it is typically not used.

Volume 45, Number 2, June 2024 Ada User Jour na l

M. Samadi , T. Car va lho, L . M. Pinho, S. Royuela 125

Melani et al. [2] have introduced two schedulers for OpenMP,
including optimal and sub-optimal approaches. The optimal
(but expensive) approach uses an integer linear programming
(ILP) formulation to optimally allocate task-parts (i.e., the
chunks of sequential code in-between task scheduling points,
or points in which the scheduler might decide to suspend a
task for resuming it later) to threads and minimize the task-set
makespan. For the cases where the optimal approach may be
too computationally expensive, the sub-optimal approach uses
several tractable and less computational expensive heuristics
to select tasks from a single queue and execute them by idle
threads.

Samadi et al. [4] have presented a heuristic task-to-thread
mapping through a multi-queue tasking system, which con-
sists of allocation and dispatching phases. Multiple heuristics
are provided in the allocation phase to select allocation queues
for OpenMP tasks, as well as several heuristics are employed
in the dispatching phase to select tasks from the queues and
execute them by idle threads. Some heuristics are proved to
reduce the application response time. However, in general,
this method is still not be able to perform better than basic
ones in uncertain conditions.

2.2 Artificial intelligence
AI can be used in engineering applications to solve the
problems in unforeseen conditions. Some of the AI algo-
rithms (e.g., machine learning and fuzzy logic) use prede-
fined information (i.e., training set), while others (e.g., A*
and ant colony) employ intelligent procedures (e.g., heuristic
path finding) to find near-optimal solutions to complex prob-
lems [5]. AI techniques can be used in different applications
(e.g., cyber-physical systems [6]) to improve the performance
of the system.

Fuzzy logic is one of the most prominent AI techniques. It
uses a knowledge-based system capable of making suitable
decisions even in unforeseen conditions. This mechanism
uses if-then rules composed of linguistic terms (e.g., high)
as a knowledge base to first train a model based on the rules
and then estimate unforeseen situations based on the model.
Instead of using only boolean values, as boolean logic does,
fuzzy logic uses all values between 0 and 1 [7]. All opera-
tions in this logic are performed using the fuzzy inference
system (FIS), which is composed of four main components:
fuzzification, rule making, inference engine, and defuzzifi-
cation. Fuzzification converts a crisp value (e.g., 20°C) to a
fuzzy set (e.g., [0, 0.2, 1, 0.5, 0]). Note that a universal set
(e.g., [-40, -5, 5, 20, 50] °C for temperature) is defined to
represent linguistic terms and crisp values as fuzzy sets. Rule
making creates a fuzzy rule based on inputs and output(s)
through the if-then rule and linguistic terms. The total fuzzy
rule (i.e., model) can be built using the aggregation operation
between all fuzzy rules. The inference engine predicts un-
certain conditions (i.e., new output) based on new inputs and
the model. Finally, defuzzification converts a fuzzy set into a
crisp value [8].

3 System model
The system model considers real-time tasks implemented us-
ing graphs of OpenMP parallel computation. Each real-time

1 #pragma omp parallel
2 #pragme omp single
3 {
4 #pragma omp task depend (out : A ,B ,C)
5 Task1 () ;
6
7 #pragma omp task depend (in : A) depend (out : D ,F)
8 Task2 () ;
9

10 #pragma omp task depend (in : C) depend (out : E)
11 Task3 () ;
12
13 #pragma omp task depend (in : B ,D ,E)
14 Task4 () ;
15
16 #pragma omp task depend (in : F)
17 Task5 () ;
18 }

Figure 1: OpenMP data dependencies.

DAG

Thread 0 Thread 1 Thread 2 Thread 3

2

1

3 54

1

2

5

3

4

A

B
C

F

D
E

Figure 2: Multi-queue tasking systems.

task is represented as one OpenMP task dependency graph
(TDG). OpenMP allows us to specify data dependencies be-
tween OpenMP tasks (Figure 1), where data dependent tasks
can be executed if and only if the input data dependencies are
met. 1

In this model, a real-time task is therefore represented as a
directed acyclic graph (DAG), i.e. the task dependency graph
(TDG), nominated with G = (V, E), where V is the set of
vertices (i.e., OpenMP tasks) and E is the set of edges (i.e.,
the data dependencies between tasks). Furthermore, a real-
time task in multi-threaded applications can be executed with
multiple threads; Figure 2 exemplifies a possible deployment
of the OpenMP DAG created by the code in Figure 1 onto
a multi-threaded systems, where the number of OpenMP
threads is assumed to be equal to the number of processor
cores.

1Note that in some of the OpenMP-based benchmarks (available at
https://gitlab.bsc.es/ampere-sw/wp2/general-information/), e.g., the AXPY
application, OpenMP tasks do not include any data dependencies, so OpenMP
tasks can be allocated to the queues at the beginning of the execution pro-
cess. Other cases, e.g., the Heat application, tasks can only be allocated
after the data they depend upon is available. Accordingly, the complex-
ity of an OpenMP program depends on the number of tasks and their data
dependencies.

Ada User Jour na l Vo lume 45, Number 2, June 2024

126 Task- to-Thread Mapping in OpenMP Using Fuzzy Dec is ion Making

F
u

zz
if

ic
at

io
n

D
ef

u
zz

if
ic

at
io

n

Knowledge

Base

Inference

Engine

Number

of tasks

Total

execution

time

Selection

rate

Figure 3: Structure of the suggested fuzzy controller.

4 Methodology
With the aim of achieving predictability, this work proposes
a new methodology based on FIS for the allocation phase of
the task-to-thread mapping process of OpenMP applications
deployed on a multi-queue system. The methodology uses
a fuzzy controller to select the most appropriate allocation
queue for each OpenMP task when it does not include any
data dependencies or they have been met. The controller,
shown in Figure 3, consists of two input parameters, nomi-
nated as number of tasks and total execution time, and one
output parameter, nominated as selection rate. The queue
with the highest selection rate will be chosen for the task
allocation process. As this controller is used for predictable
OpenMP applications, the parameters have been selected in a
way to improve the performance and the predictability of the
system, i.e., the application’s response time.

The linguistic terms used in the proposed controller are {fee-
ble, few, normal, many, lots} for the number of tasks, {very
small, small, mean, large, very large} for the total execu-
tion time, and {very low, low, medium, high, very high} for
the selection rate. The number of (maximum) rules for this
controller is based on the number of inputs, which are 5 for
each possible input, hence 52 = 25 in total. Then, the rules
are defined in such a way that the queue with the minimum
number of tasks and the least total execution time is selected
in the task allocation process. For example, if the number of
tasks is feeble and the total execution time is very small, then
the selection rate should be very high. Table 1 contains some
of the if-then rules defined in the controller.

Rule # Number of
tasks

Total execu-
tion time

Selection rate

1 feeble very small very high
2 few small high
3 normal mean medium
4 many large low
5 lots very large very low

Table 1: Some of the if-then rules used in the controller

A fuzzy set is used in FIS based on the universal set to rep-
resent a linguistic term or a crisp value. In the suggested
controller, the lower and upper bounds in the universal set
are {0, 4} for the number of tasks, {0, 100,000,000} ns for
the total execution time, and {0, 1} for the selection rate.

Knowledge

BaseFuzzification

Fuzzy

RulesRule Making

Aggregation Model

Linguistic

terms

Input

fuzzy sets

Output

fuzzy set

Export rulei

Input

fuzzy set

Export

Import all rules

R
u

le
i

Figure 4: Workflow that builds the model using the controller.

Consequently, the universal set for each parameter can be de-
fined with continuous numbers between the lower and upper
bounds. Note that these bounds are collected based on record-
ing the tasks-to-thread mapping using two heuristics recently
proposed in the state-of-the-art [4]: (i) MNTP (selecting the
most appropriate allocation queue based on the minimum
number of task-parts) for the number of tasks parameter, and
(ii) MTET (selecting the most suitable queue based on the
least total execution time of tasks in the queues) for the total
execution time parameter.

In the fuzzification process, the triangular membership func-
tion is used to fuzzify the linguistic terms and crisp values
for the input parameters, while the bell-shaped membership
function is used to fuzzify them for the output parameter.
The Mamdani rule-making type (i.e., the Maximum-Minimum
function) is used to make the fuzzy rules based on the input
and output fuzzy sets for each if-then rule, as well as the Max-
imum function is applied to build the total fuzzy rule (i.e., the
model) based on the aggregation of all the fuzzy rules. Addi-
tionally, in the defuzzification process, the Center of Gravity
(also known as Center of Area or Centroid) method is used
to defuzzify fuzzy set of the output parameter. More details
about these processes can be found in recent works [8].

Figure 4 shows the process of building the model using the
proposed controller. All the processes within the blue dashed
region are separately performed for each fuzzy rule (i.e.,
Rulei). First, linguistic terms belonging to the if-then rule
in the knowledge base are converted to fuzzy sets during the
fuzzification process. The input fuzzy sets are then converted
to a fuzzy set to specify a unified input fuzzy set using the
Minimum function. Finally, the fuzzy rule is created using
the rule making process based on the input and output fuzzy
sets. After performing this process for each if-then rule, all
the fuzzy rules are aggregated using the aggregation process
to build the final set of fuzzy rules, namely the model. This
model will be used in the execution process to predict a selec-
tion rate for each queue based on new inputs.

Volume 45, Number 2, June 2024 Ada User Jour na l

M. Samadi , T. Car va lho, L . M. Pinho, S. Royuela 127

1 N = Number of threads
2 NT [0 . . N−1] = Number of tasks
3 TET [0 . . N−1] = Total execution time
4 SR [0 . . N−1] = Selection rate
5
6 / / A l l o c a t i o n phase
7 For each OpenMP task in the DAG do {
8 Update the information of queues
9 I = 0

10 While (I < N) {
11 NT_Fuzzy = Fuzzification (NT [I])
12 TET_Fuzzy = Fuzzification (TET [I])
13 Input_Fuzzy = Minimum (NT_Fuzzy , TET_Fuzzy)
14 SR_Fuzzy = Inference (Input_Fuzzy , Model)
15 SR [I] = Defuzzification (SR_Fuzzy)
16 I = I + 1
17 }
18 Select queue with highest selection rate
19 Allocate task to the queue
20 }
21
22 / / D i s p a t c h i n g phase
23 For each thread do {
24 If thread is idle and its queue is not empty {
25 Select a ready task based on the FIFO
26 Dispatch task−to−thread and execute it
27 }
28 }

Figure 5: Intelligent task-to-thread mapping.

Figure 5 illustrates the algorithm for performing an intelligent
task-to-thread mapping in OpenMP using the suggested fuzzy
controller based on the model built above. First, lines 1-to-
4 define the variables. Then, during the allocation phase in
lines 7-to-20, each OpenMP task with no data dependencies or
whose data dependencies have been already met is allocated
to one of the queues. During this process, (1) the scheduler
updates the information of queues (i.e., number of tasks and
total execution time), (2) a selection rate is predicted for
each queue based on the new inputs and the model, and (3)
the queue with the highest selection rate (to improve the
timing requirements of the system) is selected, and the task is
allocated to this queue. Finally, during the dispatching phase
in lines 23-to-28, tasks are selected for execution following
the typical implementations based on multi-queue schedulers
(e.g., the LLVM compilation framework), where each idle
thread selects a task from its own queue using the FIFO
algorithm. Note that the approach does not use work-stealing
(e.g., as implemented by LLVM) where threads can steal tasks
from other threads’ queues.

5 Conclusions and future work
This paper introduces the preliminary ideas to implement
an OpenMP scheduler for task-to-thread mapping in multi-
queue systems using a controller based on fuzzy logic. The
controller includes number of tasks and total execution time
as the inputs, and selection rate as the output to select the
most suitable queue (belonging to threads) for OpenMP tasks
in the allocation phase. Additionally, idle threads select ready

tasks from their queues using the FIFO algorithm to execute
them in the dispatching phase. In the future work, this AI-
based mapping will be simulated first and implemented later
under different configurations (i.e., number of tasks, types
of TDGs, and number of threads, among others) to show its
performance in achieving efficient task-to-thread mapping
compared to the literature.

6 Acknowledgment
This work has been partly funded by the RESPECT project
(Departament de Recerca i Universitats de la Generalitat de
Catalunya record No 2021 PROD 00179).

References
[1] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu,

M. Bertogna, and E. Quinones, “Timing characteriza-
tion of openmp4 tasking model,” pp. 157–166, 2015 In-
ternational Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES), 2015.

[2] A. Melani, M. A. Serrano, M. Bertogna, I. Cerutti,
E. Quinones, and G. Buttazzo, “A static scheduling ap-
proach to enable safety-critical openmp applications,”
pp. 659–665, 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), 2017.

[3] M. S. Gharajeh, S. Royuela, L. M. Pinho, T. Carvalho,
and E. Quiñones, “Heuristic-based task-to-thread map-
ping in multi-core processors,” pp. 1–4, 2022 IEEE 27th
International Conference on Emerging Technologies and
Factory Automation (ETFA), 2022.

[4] M. Samadi, S. Royuela, L. M. Pinho, T. Carvalho, and
E. Quiñones, “Time-predictable task-to-thread mapping
in multi-core processors,” Journal of Systems Architec-
ture, vol. 148, p. 103068, 2024.

[5] E. Tõugu, Algorithms and Architectures of Artificial In-
telligence, vol. 159. IOS Press, 2007.

[6] G. Tartarisco, G. Cicceri, R. Bruschetta, A. Tonacci,
S. Campisi, S. Vitabile, A. Cerasa, S. Distefano, A. Pel-
legrino, P. A. Modesti, et al., “An intelligent medical
cyber–physical system to support heart valve disease
screening and diagnosis,” Expert Systems with Applica-
tions, vol. 238, p. 121772, 2024.

[7] V. Novák, “Reasoning about mathematical fuzzy logic
and its future,” Fuzzy Sets and Systems, vol. 192, pp. 25–
44, 2012.

[8] M. S. Gharajeh, “Fsb-system: a detection system for fire,
suffocation, and burn based on fuzzy decision making,
mcdm, and rgb model in wireless sensor networks,” Wire-
less Personal Communications, vol. 105, no. 4, pp. 1171–
1213, 2019.

Ada User Jour na l Vo lume 45, Number 2, June 2024

128

Volume 45, Number 2, June 2024 Ada User Journal

National Ada Organizations

Ada-Belgium

attn. Dirk Craeynest

c/o KU Leuven

Dept. of Computer Science

Celestijnenlaan 200-A

B-3001 Leuven (Heverlee)

Belgium

Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard

Ada-Deutschland

Dr. Hubert B. Keller CEO

ci-tec GmbH

Beuthener Str. 16

76139 Karlsruhe

Germany

+491712075269

Email: h.keller@ci-tec.de
URL: ada-deutschland.de

Ada-France

attn: J-P Rosen

115, avenue du Maine

75014 Paris

France
URL: www.ada-france.org

Ada-Spain

attn. Sergio Sáez

DISCA-ETSINF-Edificio 1G

Universitat Politècnica de València

Camino de Vera s/n

E46022 Valencia

Spain

Phone: +34-963-877-007, Ext. 75741

Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland

c/o Ahlan Marriott

Altweg 5

8450 Andelfingen

Switzerland

Phone: +41 52 624 2939

e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

http://www.ada-france.org/
http://www.adaspain.org/

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels

Belgium
Contact: Ludovic Brenta

ludovic@ludovic-brenta.org

46 Rue d’Amsterdam
F-75009 Paris

France
sales@adacore.com
www.adacore.com

506 Royal Road
La Caverne, Vacoas 73310

Republic of Mauritius
Contact: David Sauvage

david.sauvage@adalabs.com
www.adalabs.com

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

Rue Marie de Bourgogne 52
1000 Brussels

Belgium
Contact: Emma Claus

Emma.Claus@eurocity.be
www.eurocity.com

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

3271 Valley Centre Drive,Suite 300
San Diego, CA 92069

USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tool

Enterprise House
Baloo Avenue, Bangor
North Down BT19 7QT

Northern Ireland, UK
enquiries@sysada.co.uk

sysada.co.uk

1115 Rue Ren𿿿 Descartes
13100 Aix en Provence

France
Contact: Patricia Langle

patricia.langle@systerel.fr
www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki

Finland
Contact: Niklas Holsti

niklas.holsti@tidorum.fi
www.tidorum.fi

Beckeng�sschen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

http://www.ada-europe.org/info/sponsors

	template.pdf
	Introduction
	Design Decisions
	Framework and Methodology
	Preliminary Results
	Benefits and Limitations
	Related Work
	Conclusion and Future Work

	AdaForRose.pdf
	Introduction
	Background - ROSE infrastructure
	Implementation for Ada
	Applications
	Related Work
	Conclusion

	paper.pdf
	Introduction
	Background and Related Work
	Task-to-thread mapping
	Artificial intelligence

	System model
	Methodology
	Conclusions and future work
	Acknowledgment

