

Ada User Journal Volume 45, Number 3, September 2024

ADA
USER
JOURNAL

Volume 45

Number 3

September 2024

Contents
Page

Editorial Policy for Ada User Journal 130

Editorial 131

Quarterly News Digest 132

Conference Calendar 146

Forthcoming Events 154

Articles from the AEiC 2024 Ada Developers Workshop

 F. Oleo Blanco, D. Craeynest

“First Ada Developers Workshop at AEiC 2024” 156

 G. Galeotti

“SweetAda: a Lightweight Ada-Based Framework” 157

 J. R. Carter

“Avoiding Access Types” 159

 G. A. Hazebrouk

“G-NAV: Soaring the Clouds with AdaWebPack” 161

 A. R. Mosteo

“Alire 2.0: a ‘Quality of Life’ Update” 162

 J. G. Rivera

“HiRTOS: A Multi-core RTOS Written in SPARK Ada” 164

 C. Simon

“Ironclad: A Formally Verified OS Kernel Written in SPARK/Ada” 168

 J. P. Rosen

“An Ada Story of Time” 171

 J. R. Carter

“Controlled I/O: a Library for Scope-Based Files” 173

 F. Oleo Blanco

“Ada Community Advocacy” 175

Article

 R. Krishnan, A. Gupta, N. Chandrachoodan, V. R. Lalithambika

“Formal Verification of Safety Critical Software in Ada: Two Approaches” 178

Ada-Europe Associate Members (National Ada Organizations) 194

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

132

Volume 45, Number 3, September 2024 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 132
Ada-related Events 132
Ada-related Resources 133
Ada-related Tools 136
Ada Inside 137
Ada and Other Languages 138
Ada Practice 138

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

Today, I want to highlight two
conversations in the Digest that interested
me particularly. Firstly, documentation
about the ‘Red’ language has been found
online, and it seems that this completes
the availability of all contestants from
which Ada emerged victorious [1].
Curiously, I found the style of the code
not that unfamiliar for an Ada
programmer.

Secondly, an animated discussion
emerged around the idea of “what Jean
Ichbiah would want to find in Ada 2022”
[2]. Therein you can also find the
reservations he had about preliminary
versions of Ada 95 [3], which is in itself
worth a read if you have not read them
before (as I had not).

Sincerely,
Alejandro R. Mosteo.

[1] “‘Red’ and the DoD Language
Competition”, in Ada and Other
Languages.

[2] “Ichbiah 2022 Compiler Mode”, in
Ada Practice

[3] https://web.elastic.org/~fche/
mirrors/old-usenet/ada-with-null

Ada-related Events

[AEiC 2024] Ada Developers
Workshop Videos and Slides

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: [AEiC 2024] Ada Developers
Workshop videos and slides are public

Date: Thu, 8 Aug 2024 20:49:18 +0200
Newsgroups: comp.lang.ada

Dear Ada community,

the recordings of the talks that were held
in the Ada Developers Workshop have
been made available in the AEiC 2024
website [1]. The slides for each
presentation can also be found there. The
links can be found just under the title for
each entry.

Also, huge thanks to Dirk, Nam, Fabien,
the organisers of the conference; Ada-
Europe and AdaCore for their sponsorship
and their funding to get the technology
ready to record the Workshop.

[1] https://www.ada-europe.org/
conference2024/adadev.html

Best regards,
Fer & the Ada Developers Workshop
team

P.S: any kind of feedback is more than
welcome!

Ada Monthly Meetup,
September 2024

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: Ada Monthly Meetup, September
2024

Date: Sun, 11 Aug 2024 17:21:09 +0200
Newsgroups: comp.lang.ada

I would like to announce the September
(2024) Ada Monthly Meetup which will
be taking place on the 7th of September at
13:00 UTC time (15:00 CEST). As
always the meetup will take place over at
Jitsi. The Meetup will also be
livestreamed/recorded to Youtube.

If someone would like to propose a talk or
a topic, feel free to do so! We currently
have no proposals. Nonetheless, I would
like to talk about the AEiC 2024 Ada
Developers Workshop, remind people
about the 2024 Crate of the Year Award

and maybe talk a bit about the Ada Users
Society :)

Here are the connection details from
previous posts: The meetup will take
place over at Jitsi, a conferencing
software that runs on any modern
browser. The link is Jitsi Meet The room
name is “AdaMonthlyMeetup” and in
case it asks for a password, it will be set
to “AdaRules”. I do not want to set up a
password, but in case it is needed, it will
be the one above without the quotes. The
room name is generally not needed as the
link should take you directly there, but I
want to write it down just in case
someone needs it.

Ada Monthly Meetup, 5th
October 2024

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: Ada Monthly Meetup, 5th October
2024

Date: Mon, 16 Sep 2024 22:43:14 +0200
Newsgroups: comp.lang.ada

I would like to announce the October
(2024) Ada Monthly Meetup which will
be taking place on the **5th of October at
13:00 UTC time (15:00 CEST).** As
always the meetup will take place over at
Jitsi. The Meetup will also be
livestreamed/recorded to Youtube.

**If someone would like to propose a talk
or a topic, feel free to do so! We currently
have no proposals.** Nonetheless, I
would like to bring some topics that were
left off during September’s Meetup.

Here are the connection details from
previous posts: The meetup will take
place over at Jitsi [1], a conferencing
software that runs on any modern
browser. The link is Jitsi Meet The room
name is “AdaMonthlyMeetup” and in
case it asks for a password, it will be set
to “AdaRules”. I do not want to set up a
password, but in case it is needed, it will
be the one above without the quotes. The
room name is generally not needed as the
link should take you directly there, but I
want to write it down just in case
someone needs it.

Best regards and see you soon!
Fer

[1] https://meet.jit.si/AdaMonthlyMeetup

mailto:amosteo@unizar.es

Ada-re lated Resources 133

Ada User Journal Volume 45, Number 3, September 2024

P.S: you can see the September summary
in https://forum.ada-lang.io/t/
ada-monthly-meeting-september-2024/
1073/6 or in YouTube (with audio issues)
https://www.youtube.com/live/
i_bVoiDlw5E

Ada-related Resources

[Delta counts are from July 11th to
November 13th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 13 Nov 2024 19:35 CET[b]
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: 8_868 (+127) members [1]

- LinkedIn: 3_549 (+28) members [2]

- Stack Overflow: 2_426 (+15)
 questions [3]

- Ada-lang.io: 287 (+46) users [4]

- Gitter: 271 (+13) people [5]

- Telegram: 208 (+3) users [6]

- Libera.Chat: 69 (-4) concurrent
 users [7]

[1] https://old.reddit.com/r/ada/

[2] https://www.linkedin.com/groups/
114211/

[3] https://stackoverflow.com/questions/
tagged/ada

[4] https://forum.ada-lang.io/u

[5] https://app.gitter.im/#/room/
#ada-lang_Lobby:gitter.im

[6] https://t.me/ada_lang

[7] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: 13 Nov 2024 19:39 CET[c]
To: Ada User Journal readership

GitHub: >1_000* (+260) developers [1]

Rosetta Code: 1_005 (+26) examples [2]

 42 (=) developers [3]

Alire: 483 (+71) crates [4]

 1_268 (+200) releases [5]

Sourceforge: 251 (-1) projects [6]

Open Hub: 214 (=) projects [7]

Codelabs: 60 (+3) repositories [8]

Bitbucket: 37 (=) repositories [9]

*This number is a lower bound due to
GitHub search limitations.

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] https://rosettacode.org/wiki/
Category:Ada

[3] https://rosettacode.org/wiki/
Category:Ada_User

[4] https://alire.ada.dev/crates.html

[5] `alr search --list --full`

[6] https://sourceforge.net/directory/
language:ada/

[7] https://www.openhub.net/tags?
names=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] https://bitbucket.org/repo/all?
name=ada&language=ada

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: 13 Nov 2024 19:48 CET
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 25 (-1) 0.71%
 (-0.08%) [1]

- PYPL Index: 15 (+2) 1.03%
 (+0.07%) [2]

- Languish Trends: 153 (+39) 0.01%
 (+0.01)% [3]

- Stack Overflow Survey: 40 (+2)
 0.9% (+0.13%) [4]

- IEEE Spectrum (general): 50 (-14)
 Score: 0.0014 0107 (-0.093) [5]

- IEEE Spectrum (jobs): 55 (-26)
 Score: 0.0 (-0.0173) [5]

- IEEE Spectrum (trending): 46 (-16)
 Score: 0.0022 (0.01) [5]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://tjpalmer.github.io/languish/

[4] https://survey.stackoverflow.co/2024/

[5] https://spectrum.ieee.org/top-
programming-languages/

Re: Ada-Lang and Its
Forum

From: Randy Brukardt
<randy@rrsoftware.com>

Subject: Re: Ada-Lang and it's (more active
than CLA) forum

Date: Tue, 2 Jul 2024 02:55:49 -0500
Newsgroups: comp.lang.ada

[Cont’d from AUJ 45-2, April 2024
—arm]

> Ada-Lang is a community maintained
and supported webpage whose intent is
to give a nice "landing page" to
anybody wanting to learn Ada and
become a hub for all Ada users.

I was adding this site to AdaIC's "Learn"
pages (I think it disappeared some years
ago, it is good to see it back), and noted
that nowhere does it identify itself as
"Ada-Lang" or any other short name on
the site itself. It just calls itself "Ada
Programming Language", which is a bit
grandiose (there are a number of sites that
can lay claim to part of that title, but
surely none that can lay claim to all of it).
Within the Ada Community in particular,
it helps to identify the site more precisely.
And I don't think that many people really
look at the links that they click on, I doubt
many people using AdaIC do, so just
using the domain name and assuming
people know what it is without any
identification elsewhere is not ideal.

My two cents worth. (Humm, given prices
these days, I don't think you can actually
buy anything with two cents. That's
probably one cliche that needs updating.
;-)

AWS-friendly Web Hosting

From: Marius Alves
<marius2023pt@gmail.com>

Subject: Ada/GNAT/AWS-friendly web
hosting

Date: Thu, 12 Sep 2024 15:25:41 +0100
Newsgroups: comp.lang.ada

Researching how to build an HTTP server
(serving a website) on a local machine
(MacOS) using AWS (Ada Web Server)
and deploy it on a web hosting provider
(e.g. 1dollar-webhosting.com).

Anyone done that? I've searched but could
not find [anything].

Thanks.

Some specific questions on my mind
follow.

Is a macOS host required (e.g. Ultahost
15 euros/month; I'd rather stay with
1dollar)?

If the host runs on Linux then cross-
building (from macOS to Linux) is
required, right? GNAT does that, right?

Or, must the program be built in the host?
(Thus requiring GNAT to be there.)

The host is already running an HTTP
server program (probably Apache). Must
it be turned off? How?

In general, can the executable be launched
on a VPS (Virtual Private Server)? Which
port?

134 Ada-re lated Resources

Volume 45, Number 3, September 2024 Ada User Journal

Will dynamic linking work? I'm guessing
not, so, static; but then, will GNAT
integrate the right libraries for Linux in
the executable?

Will "Community GNAT" do? (Instead of
GNAT Pro.)

Are those the right questions?

Thanks, thanks, thanks, thanks, thanks,
thanks and thanks.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 12 Sep 2024 16:48:40 +0200

Adalog's site (https://www.adalog.fr/) is a
standalone program written in Ada with
AWS.

So are the sites for the various Ada-
Europe conferences (see https://www.ada-
europe.org/conference2024/ for example).

And many others...

> Is a macOS host required

No

> If the host runs on Linux then cross-
building (from macOS to Linux)
required, right?

Never tried, but no reason it shouldn't be
possible

> Or, must the program be built in the
host?

That's what I do

> The host is already running an HTTP
server program (probably Apache).
Must it be turned off? How?

Of course, you cannot have two programs
listening on the same port, so if you want
to listen to 80 or 8080, you'd better stop
Apache (or any other program) to do that.
As for me, I don't run Apache at all.

> In general, can the executable be
launched on a VPS (Virtual Private
Server)? Which port?

The port is given by the initial data of
AWS

> Will dynamic linking work?

You just compile your program like any
other Ada program

> Will "Community GNAT" do? (Instead
of GNAT Pro.)

Yes, that's what I do

> Are those the right questions?

All questions are right....

> Thanks, thanks, thanks, thanks, thanks,
thanks and thanks.

You're welcome

From: Drpi <314@drpi.fr>
Date: Thu, 12 Sep 2024 16:54:45 +0200

> The host is already running an HTTP
server program (probably Apache).
Must it be turned off? How?

The usual way is to use Apache (or nginx
or another one) as a front end. Your
application uses port 1080 (or something
else) and the front end relays this port to
the external 80 port.

This way, the security stuff is managed by
the front end, not your application. You
can also run multiple applications, each
being redirected to its domain name/path.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 12 Sep 2024 18:22:28 +0200

> Researching how to build an HTTP
server (serving a website) on a local
machine (MacOS) using AWS (Ada
Web Server) and deploy it on a web
hosting provider (e.g. 1dollar-
webhosting.com).

In my experience, this would be easier
done with Gnoga (https://sourceforge.net/
projects/gnoga/) than AWS. On a web-
based system using AWS quite a while
ago, we had to have a number of JS files.
Although we had a lot more Ada than JS,
we spent a lot more effort correcting JS
errors than Ada errors.

Gautier de Montmollin has made Gnoga
programs publicly available, such as his
Pasta! game (http://pasta.phyrama.com/),
so might be able to help with your hosting
questions.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 12 Sep 2024 19:06:08 +0200

> This way, the security stuff is managed
by the front end

But security breaches mainly use known
bugs in Apache... If you write your own
server with AWS, the attacker knows
nothing about the software that answers!
And as for buffer overflow attacks... Well,
it's Ada. You'll see some handled
Constraint_Error in the log file, end of
story!

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Thu, 12 Sep 2024 17:16:29 -0000

> But security breaches mainly use known
bugs in Apache… [...]

AWS uses OpenSSL or a fair bit better
LibreSSL for TLS, written in C and quite
often found vulnerable. You could isolate
the nginx proxy to another machine
though.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 12 Sep 2024 20:48:29 +0200

> Researching how to build an HTTP
server (serving a website) on a local
machine (MacOS) using AWS (Ada
Web Server) and deploy it on a web
hosting provider (e.g. 1dollar-
webhosting.com).

That depends on what the provider would
allow you to upload to the host. Likely
nothing executable... (:-))

> If the host runs on Linux then cross-
building (from macOS to Linux) is
required, right?

It is possible, but far simpler would be a
virtual machine running Linux. E.g. I
compile for Linux targets on virtual
machines. Only for ARM I am using
physical machines. You must know what
kind of Linux your provider has in order
to choose the right version of the libc etc.
[...]

> Will dynamic linking work?

If you ship the libraries together with the
server. Then if the host runs Apache it
must have some TLS library installed.
You must learn the version and link
against it. In any case you need either
OpenSSL or else GNUTLS. The HTTP
server from Simple Components can use
both. I believe that either can be built as a
static library. I see no reason why AWS
could not be linked statically. BTW you
must maintain certificates on the server.

> Will "Community GNAT" do?

I am not sure if all-static builds were
possible, e.g. libc, libgnat.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 12 Sep 2024 22:29:36 -0000

> we spent a lot more effort correcting JS
errors than Ada errors.

Did you “use strict”?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 13 Sep 2024 11:03:03 +0200

> Did you “use strict”?

I don't know. It was quite a while ago and
I didn't work on the JS. But the point is
that when you use Gnoga, you don't need
any to create any JS.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 12 Sep 2024 22:35:20 -0000

> But security breaches mainly use known
bugs in Apache…

That’s called “security through
obscurity”. Not recommended.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 12 Sep 2024 22:40:35 -0000

> The usual way is to use Apache (or
nginx or another one) as a front end.

Yup, I do things this way for my
Python+ASGI code, too. This is called a
“reverse proxy”, though I don’t know
why -- I think “server-side proxy” would
be more accurate.

Make sure your back-end server is
listening only on a loopback address:
127.0.0.0/8 (IPv4) or ::1 (IPv6). That way
the only access to it from outside the
machine is through the public web-server
front end.

Ada-re lated Resources 135

Ada User Journal Volume 45, Number 3, September 2024

(Question to ponder: why does Ipv4 offer
over 16 million different loopback
addresses, while IPv6, with its much
larger address space, has to make do with
only one?)

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 13 Sep 2024 08:46:33 +0200

> That’s called “security through
obscurity”. Not recommended.

No, AWS is public and there is nothing
hidden. Just that, since there are wayyyyy
more users of Apache than of AWS,
attackers will not bother to try to break in

From: Stéphane Rivière
<stef@genesix.org>

Date: Fri, 13 Sep 2024 15:15:03 +0200

As a professional web hoster, I strongly
advise you to forget Apache and use only
Nginx, both as a proxy (in your case) and
as a web server (generic case). Not only
does Apache have security problems, but
its performance is pitiful compared to
Nginx.

If you have several sites, the ideal
solution is to enter everything in
https/port 443 on the nginx proxy (which
will be able to manage X509/TLS https
certificates) and exit on as many ports
8080, 8081, 8082, etc. as you have
websites.

From: Björn Persson
<bjorn@xn--rombobjrn-67a.se>

Date: Fri, 13 Sep 2024 16:33:15 +0200

> Researching how to build an HTTP
server (serving a website) on a local
machine (MacOS) using AWS (Ada
Web Server) and deploy it on a web
hosting provider (e.g. 1dollar-
webhosting.com).

I don't know about 1dollar, but a typical
web hosting provider will only let you
upload static files (HTML, pictures et
cetera), limited snippets of web server
configuration, and certain kinds of
programs that run under their web server's
control. PHP is common. Some might run
Perl programs with mod_perl, or Python
programs using WSGI.

Maybe some web hosts support CGI or
FastCGI. Those interfaces can be
implemented in Ada. I think you'll have
limited use for AWS in that case, as the
HTTP parsing is handled by the web
server.

I think it would be hard to find a web host
that lets you run arbitrary network-facing
daemons. To run your own web server
you want a VPS (or a physical server in a
colocation facility, but if your security
needs don't rule out a web host, then a
VPS is also fine).

> The host is already running an HTTP
server program (probably Apache).
Must it be turned off? How?

A typical web host won't let you turn off
their web server. They serve many
customers' content from the same Apache
instance, so turning that off would break
all those websites.

> In general, can the executable be
launched on a VPS (Virtual Private
Server)?

Sure. In a VPS you have the whole
operating system to yourself (maybe
except for the kernel if the VPS provider
uses OpenVZ). You install and run
whatever programs you want, just like on
your own physical computer. Maybe
you'll be able to get a VPS with macOS, if
that's your preference.

In a VPS it's also your responsibility to
install updates regularly, and upgrade to a
new major OS version from time to time.
If you fail to keep up, then criminals will
take over your VPS and use it as a relay
when attacking others. Make sure that
you'll be notified automatically when
there are updates to install.

> If the host runs on Linux then cross-
building (from macOS to Linux) is
required, right?

GCC – and thus GNAT – can be built as a
cross-compiler. Perhaps you can find one
that someone has built and packaged for
MacOS. Otherwise you'll need to build
your own from the GCC source code,
configuring it to be a cross-compiler.
(That's theoretical knowledge. I have no
practical experience with cross-
compilation).

> Or, must the program be built in the
host? (Thus requiring GNAT to be
there.)

No, but in my opinion it's much easier
that way. Either build on the computer
you'll run on, or on another computer of
the same processor architecture, running
the same version of the same operating
system. That way you don't need to worry
about getting the wrong version of some
library or build tool.

> Will dynamic linking work?

Cross-compilation should be able to work
with shared libraries. Regardless of
whether the libraries are shared or static,
libraries for the target machine must be
available on the build host. I guess you
would either install packaged libraries on
the target machine, and copy those to the
build host, or else cross-compile the
libraries too. You need to configure
search paths carefully so that both the
compiler and the linker find the cross-
libraries instead of the native ones. This is
one of the complications you avoid by
building natively.

> Which port?

Normally port 443, because of course
you'll use HTTPS, won't you? Optionally
you can also have an HTTP server on port

80 that responds to every request with a
redirection to HTTPS.

If you choose to put AWS behind a
reverse proxy like DrPi suggested, then
the reverse proxy listens on port 443 on
your public IP address, and you tell AWS
to listen on some other port and only on
the localhost address, ::1 or 127.0.0.1.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 14 Sep 2024 01:38:16 -0500

> That's called "security through
obscurity". Not recommended.

That's the wrong way to look at it. An
Ada program is better thought of as
"security by simplicity and correctness",
because you are running an Ada that only
does a few things (and which can be
thoroughly tested, checked with static
analysis, and so on) rather than a general
program that does a zillion things (with
many combinations that can't be tested).

The only place "obscurity" comes into it
is that no one else is running the exact
same program as you. So attacks that
depend on any sort of knowledge of the
program cannot succeed.

In any case, there is no such thing as
"secure", there are only levels, and for the
sorts of non-critical stuff that we're doing,
an Ada program is certainly secure
enough. I wouldn't try to run a storefront
on it (although that would be more
because you'd have a hard time
convincing your bank that it is OK than
any real problems), or anything that needs
high-level security.

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Sat, 14 Sep 2024 12:02:05 -0000

> work with Gnoga
(https://v22.soweb.io).

Runs on Android/IOS. Does that require
an internet web server?

From: Stéphane Rivière
<stef@genesix.org>

Date: Sat, 14 Sep 2024 15:00:00 +0200

> Runs on Android/IOS.

Yes, v22.Gui/Gnoga is responsive. Tested
with 5" smartphones as old as Nexus 5
(with a browser more recent than the
stock one to handle websockets). Also
tested on 43” 4K ;)

On some iOS devices, the menu bar is
slightly offset. I didn't look too hard. It's a
Safari problem. It works fine with Firefox
and Chrome.

> Does that require an internet web
server?

Not necessarily. v22.Gui/Gnoga supports
itself X509 TLS https certificates (tested).
However, for various reasons (such as the
possibility of having several web
applications on the same instance and on

136 Ada-re lated Tools

Volume 45, Number 3, September 2024 Ada User Journal

the same 80/443 input port), in
production, I've always chosen to have a
Nginx proxy on the front end, which is
also more flexible and handles automatic
switching from http/80 to https/443.

adaic.org; Is There a
Problem?

From: John Mccabe
<john@nospam.mccabe.org.uk>

Subject: adaic.org; is there a problem?
Date: Tue, 17 Sep 2024 16:19:47 -0000
Newsgroups: comp.lang.ada

Sorry to ask here; I wasn't sure where else
to go, but is www.adaic.org ok for
everyone? I'm just seeing a mostly white
screen with a blackish bar at the top on
Firefox, Chrome and Edge (Chrome on
both Windows and Android). It might just
be me, but I thought I'd ask in case
anyone else sees it like that and can prod
the right people to fix it or, alternatively,
just let me know that it's a problem at my
end!

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Tue, 17 Sep 2024 18:35:16 +0200

FOOBAR.

It looks as though a significant part of the
HTML is missing.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Tue, 17 Sep 2024 16:42:37 -0000

Thanks for that Bill; at least I'm not going
mad then :-)

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Tue, 17 Sep 2024 17:59:37 -0000

I noticed the problem with adaic.org as
well, and have informed Randy, its
webmaster, yesterday already. Stay tuned
until he kicks the server back into action...
;-)

From: Blady <p.p11@orange.fr>
Date: Mon, 23 Sep 2024 20:31:42 +0200

I noticed a similar problem with
www.ada-auth.org?

From: Luke A. Guest
<laguest@archeia.com>

Date: Tue, 24 Sep 2024 13:56:47 +0100

Yup both down, just tried them.

Ada-related Tools

GNAT Studio 25.0 for
macOS Ventura.

From: Blady <p.p11@orange.fr>
Subject: [ANN] GNAT Studio 25.0 for

macOS Ventura.
Date: Fri, 26 Jul 2024 12:02:15 +0200
Newsgroups: comp.lang.ada

Here is a very preliminary version of
GNAT Studio 25.0wa as a standalone app
for macOS:
https://sourceforge.net/projects/gnuada/
files/GNAT_GPL Mac OS X/
2024-ventura

NEW:

The GNATStudio launcher looks for a
gnatstudio_launcher.rc file in the
.gnatstudio folder from either $HOME or
$GNATSTUDIO_HOME locations. If it
exists, we can define some environment
variables with the standard syntax
VAR=VALUE. If the VAR exists then
VALUE is appended to it. If not, VAR is
created with VALUE. Thus, it permits to
set extra PATH to GNAT compiler and
builder folders or
GPR_PROJECT_PATH. If a line begins
with ‘#’ then it is not considered. An
example file of gnatstudio_launcher.rc is
provided in the archive. Modify the
content and put it in your .gnatstudio
folder.

See readme for details.

Limitation: Ada Language Server has
some latences and doesn't respond when
parsing source code with more than 1000
lines. It may be due to some compilation
options I missed.

There could be some other limitations that
you might meet.

Feel free to report them here.

Any help will be really appreciated to fix
these limitations.

KDF9 Pascal, Thanks to Ada

From: Moi <findlaybill@blueyonder.co.uk>
Subject: KDF9 Pascal, thanks to Ada
Date: Tue, 2 Jul 2024 01:27:43 +0100
Newsgroups: comp.lang.ada

Some time ago it occurred to me that the
best way to illustrate the remarkable
architecture of the EE KDF9 would be to
write a cross-compiler that generates
idiomatic KDF9 Usercode (assembly
language) and displays it in association
with the source code.

I chose Pascal as the source language,
having compiler texts available for
retargeting.

PASKAL, which implements a large
subset of Pascal, is now available.

The only parts of Pascal not implemented
are file types and packed types, including
the 'text' type, which means that there is
no Standard Pascal I/O. However, I
provide some basic KDF9-oriented output
routines as a stopgap. They are more than
adequate to show the correct execution of,
for example, the Whetstone Benchmark,
and many other classic codes, such as
Quicksort.

PASKAL is written in Pascal, using the
fpc compiler, and in Ada 2012, and is
included with V11.2c of ee9, my KDF9
emulator (also in Ada 2012).

Included with it are the following
documents:

* PASKAL: Users' Guide

* PASKAL: Object Program Structure.

* PASKAL: Implementation Overview

Compiled binaries are available for:

* Apple Silicon Macs

* Intel Macs

* 64-bit Intel (Debian Bookworm) Linux

* 64-bit Raspberry Pi (Debian
Bookworm) OS

The Intel Linux binary should run under
WSL on MS Windows 10 or 11.

Get your copy here:
http://www.findlayw.plus.com/KDF9/
#PSK

There is a direct link there to the Users'
Guide. It includes an example of a
complete Pascal program and the
corresponding KDF9 Usercode, should
that be the extent of your interest.

Gnoga's 10th Anniversary -
2.2 Released.

From: Blady <p.p11@orange.fr>
Subject: Gnoga's 10th anniversary - V2.2

released.
Date: Sun, 8 Sep 2024 18:30:49 +0200
Newsgroups: comp.lang.ada

Gnoga was born on SourceForge [1] on
September 8, 2014.

Gnoga (GNU Omnificent Gui for Ada) is
the multi-platform graphics library
created natively in Ada. I immediately
liked Gnoga for the coherence and
simplicity of these APIs naturally fitting
together. The programmer can rely on
Ada for his business code and on the
multitude of Javascript libraries for the
graphical interface.

For 10 years Gnoga has evolved in
maturity to fulfill its founding principles:

- providing a framework and associated
tools for developing GUI applications
using the Ada language, leveraging web
technologies for application developers

- developing native applications for
desktop and mobile just as easy to
create, all using the same code base

- providing better tools means better
application quality

- offering the application developer a
powerful toolset for secure cloud based
computing, mobile apps, desktop apps
and web apps the combination not found
in any other set of tools in any other
language

Ada Ins ide 137

Ada User Journal Volume 45, Number 3, September 2024

Gnoga statistics:

- 1031 commits

- 2200 downloads

- 2196 posts on the mailing list

- 56 tickets

You'll find a special Gnoga's wiki
anniversary page [2] with some materials
and my testimony.

Feel free to post your testimony, your
own story with Gnoga.

On this occasion, Gnoga V2.2a has been
released [3] and [4], with main changes:

- Added key field to keyboard event

- If present command line options gnoga-
host, gnoga-port, gnoga-boot and gnoga-
verbose will override host, port, boot file
and verbosity programmed in source
code (see TIPS).

- Improve logging implementation in a
separate package in order to allow user
defined logging handlers.

- Add a backslash compatibility mode on
the behavior of Escape_String for
SQLite with the one for MySQL.

- Change MYSQL_Real_Connect profile
to better match with documentation

This version has been tested on macOS
13.6 and GNAT 14.1. Please provide
feedback of other environments.

[1] https://sourceforge.net/p/gnoga/
 code/ci/45c76779e7af7b869deacc698
 478eb3ef25cfe91

[2] https://sourceforge.net/p/gnoga/wiki/
 Gnoga-Anniversary

[3] https://sourceforge.net/projects/
 gnoga/files

[4] https://sourceforge.net/p/gnoga/code/
 ci/dev_2.2/tree

Ada Inside

Canal+ Crash

From: Nicolas Paul Colin De Glocester
<master_fontaine_is_dishonest
@strand_in_london.gov.uk>

Subject: Canal+ crash
Date: Fri, 19 Jul 2024 23:41:44 +0200
Newsgroups: fr.comp.lang.ada,

comp.lang.ada

Canal+ uses Ada but one is alleging that
Canal+ suffered a crash today with
Windows. Cf.

https://www.UniversFreeBox.com/
article/568957/orange-canal-et-bouygues-
telecom-annoncent-a-leurs-abonnes-etre-
touches-par-la-panne-informatique-
mondiale

Cf. a complaint by Mister Brukardt that
Ada cannot control non-Ada software on
a shared system.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 20 Jul 2024 09:23:11 +0200

It is not about Ada. It is about the
fundamental principle that security cannot
be added on top of an insecure system.
The lesson never learned is that security
levels impose safety problems not solving
security issues. Modern security
architectures are nothing but a huge scam.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sat, 20 Jul 2024 07:43:18 -0000

> It is about the fundamental principle
that security cannot be added on top of
an insecure system.

Actually, it can. Notice how the Internet
itself is horribly insecure, yet we are
capable of running secure applications
and protocols on top of it.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 20 Jul 2024 11:08:47 +0200

> we are capable of running secure
applications and protocols on top of it.

Of course we can. That is the whole idea
of the scam. Why on earth do we need
security updates? Do you update your
screwdriver each week?

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 21 Jul 2024 01:04:44 -0000

> Why on earth do we need security
updates?

Because computer systems are complex,
and new bugs keep being discovered all
the time.

> Do you update your screwdriver each
week?

I don’t depend on my screwdriver to keep
my bank account secure.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 21 Jul 2024 09:22:06 +0200

> Because computer systems are complex,
and new bugs keep being discovered all
the time.

This does not make sense. You can create
a very complex system out of
screwdrivers and still each screwdriver
would require no update.

Systems consist of computers and
computers of software modules. There is
nothing inherently complex about making
a module safe and bug free. Security
interactions are primitive and 100%
functional. There are no difficult issues
with non-functional stuff like real-time
problems. It is purely algorithmic while
all mathematical complexity of
cryptography is NOT what gets updated.
It is complex only because it was
designed as a Wood Block Tumbling
Game.

> I don’t depend on my screwdriver to
keep my bank account secure.

I don't need a bank account to fasten the
screws. Application area is irrelevant.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 21 Jul 2024 11:00:36 +0300

> Security interactions are primitive and
100% functional. There is no difficult
issues with non-functional stuff like
real-time problems.

Well, several recent attacks use variations
in execution timing as a side-channel to
exfiltrate secrets such as crypto keys. The
crypto code can be functionally perfect
and bug-free, but it may still be open to
attack by such methods.

But certainly, most attacks on SW have
used functional bugs such as buffer
overflows.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 21 Jul 2024 11:10:06 +0200

> But certainly, most attacks on SW have
used functional bugs such as buffer
overflows.

A problem that has been solved since
1983, and even before (Pascal had bounds
checking). Sigh…

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 21 Jul 2024 11:19:30 +0200

> Well, several recent attacks use
variations in execution timing as a side-
channel to exfiltrate secrets such as
crypto keys.

It is always a tradeoff between the value
of the information and costs of breaking
the protection. I doubt that timing attack
are much more feasible in that respect
than brute force.

> But certainly, most attacks on SW have
used functional bugs such as buffer
overflows.

Exactly. Non-functional attacks are
hypothetical at best. They rely on internal
knowledge which is another problem. An
insider work is the most common case of
all breaches. So, maybe, it is better to
update the staff? (:-))

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 21 Jul 2024 11:34:14 +0200

> A problem that has been solved since
1983, and even before (Pascal had
bounds checking). Sigh...

Yup, however some crackpot could
always suggest an attack on bounds
checking, e.g. exception vs. not, index to
bounds comparison dependent on the
actual values etc., and then produce a
lengthy paper on a constructed absolutely
unrealistic scenario... (:-))

138 Ada Pract ice

Volume 45, Number 3, September 2024 Ada User Journal

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 21 Jul 2024 14:31:27 +0300

> I doubt that timing attack are much
more feasible in that respect than brute
force.

Security researchers and crypto
implementers seem to take timing attacks
quite seriously, putting a lot of effort into
making the crucial crypto steps run in
constant time.

> Non-functional attacks are hypothetical
at best. They rely on internal
knowledge which is another problem.

As I understand it, the "internal
knowledge" needed for timing attacks is
mostly what is easily discoverable from
the open source-code of the SW that is
attacked.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 21 Jul 2024 18:49:27 +0200

> Security researchers and crypto
implementers seem to take timing
attacks quite seriously

Cynically: they certainly know how to
butter their bread...

> the "internal knowledge" needed for
timing attacks is mostly what is easily
discoverable from the open source-code

Considering many many layers of
software to predict timing from code in
uncontrolled environment would be a
challenge.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 21 Jul 2024 21:52:58 -0000

> You can create a very complex system
out of screwdrivers and still each
screwdriver would require no update.

There is an old engineering adage, that the
complexity of a system arises, not so
much from the number of individual
components, as from the number of
potential interactions between them.

If you have a box full of screwdrivers,
then all you have is a box full of
screwdrivers.

If you have a computer system made up
of a bunch of modules interacting with
each other, then you could have,
potentially, quite a complex system
indeed.

Look up the term “combinatorial
explosion” to learn more.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 21 Jul 2024 21:53:46 -0000

> A problem that has been solved since
1983, and even before (Pascal had
bounds checking). Sigh...

Pascal had no checking for memory leaks
or double-frees.

Rust certainly seems to be a next-
generation solution to these sorts of
memory problems.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 21 Jul 2024 21:55:10 -0000

> Considering many many layers of
software to predict timing from code in
uncontrolled environment would be a
challenge.

And yet it has been successfully done on
the hardware itself, right down under all
those layers of software (cf
Spectre/Meltdown).

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 22 Jul 2024 08:36:08 +0200

> Pascal had no checking for memory
leaks or double-frees.

> Rust certainly seems to be a next-
generation solution to these sorts of
memory problems.

We were talking about bounds checking,
that Pascal had. Nowadays, you should
not use pointers directly, but containers.
Pointers are necessary only for writing
containers, thanks to Ada's features not
found in other languages, like allocating
dynamically sized arrays on the stack.

Note that in Rust, containers are written
using unsafe Rust, therefore Rust is not
better than Ada on that aspect, it is a
complicated solution to a problem that
Ada doesn't have.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 22 Jul 2024 09:16:09 +0200

> If you have a computer system made up
of a bunch of modules interacting with
each other, then you could have,
potentially, quite a complex system
indeed.

Tight coupling = bad design. No
difference to screwdrivers. However you
can take integer arithmetic if you dislike
screwdrivers. However complex system
you build, there is no need to update
integers.

> Look up the term “combinatorial
explosion” to learn more.

Bad design leads to explosion of non-
trivial unanticipated system states making
it unpredictable. This is what happens
when you add security on top. You patch
holes drilling new ones to fix the patches.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Tue, 23 Jul 2024 01:48:12 -0000

> We were talking about bounds
checking, that Pascal had.

Which is only one potential pitfall for
bugs with security implications.

Ada and Other
Languages

“Red” and the DoD
Language Competition

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Subject: “Red” And The DoD Language
Competition

Date: Fri, 6 Sep 2024 01:55:00 -0000
Newsgroups: comp.lang.ada

While browsing around for Ada-related
docs some years ago, I came across this
site:
https://iment.com/maida/computer/
redref/index.htm
which collects info on the DoD’s
“Strawman”, “Woodenman”, “Tinman”,
“Ironman” and “Steelman” series of
RFPs, and the specs for the “Red”
language that didn’t become Ada.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 7 Sep 2024 17:43:26 +0100

We have all the colours now:
https://www.reddit.com/r/ada/comments/
165f5zg/common_hol_phase_1_reports/

Ada Practice

Accessing the Command
Line

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Subject: Accessing The Command Line
Date: Thu, 4 Jul 2024 00:08:56 -0000
Newsgroups: comp.lang.ada

with Ada.Command_Line;

with Ada.Text_IO;

procedure Echo is

package cli renames

 Ada.Command_Line;

 package tio renames Ada.Text_IO;

 package int_io is new tio.Integer_IO

(Num => Integer);

begin

 tio.put("my name: ");

 tio.put(cli.Command_name);

 tio.Put_Line("");

 tio.Put("nr args: ");

 int_io.Put(cli.Argument_Count, width => 1);

 tio.Put_Line("");

 for i in 1 .. cli.Argument_Count loop

 tio.put("[");

 int_io.put(i, width => 1);

 tio.put("]: ");

 tio.put(cli.argument(i));

 tio.put_line("");

 end loop;

end Echo;

Comments:

Ada, like Python, offers the convenience
of being able to specify local “nicknames”

Ada Pract ice 139

Ada User Journal Volume 45, Number 3, September 2024

for imported packages, to save some
typing.

Having become used to the convenience
of printf-style formatting in C and other
languages that have adopted it (including
Lisp and Python), I don’t miss the tedium
of having to format and output one item at
a time. Though I recognize that there is no
way to do printf style in a type-safe
fashion, short of going to a fully-dynamic
language.

Being able to access the POSIX command
line via some globally-defined entity
instead of arguments to a “mainline”
procedure is something that just about
every decent language offers. C is notably
absent from this list.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 03 Jul 2024 18:16:01 -0700

> Though I recognize that there is no way
to do printf style in a type-safe fashion,
short of going to a fully-dynamic
language.

C++ does that polymorphism stuff in
iostream so you'd write std::cout << "my
name: " << command_line << ...

Haskell does something sort of similar
with additional machinery.

printf for some people is one of the
motivations for dependent types.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 4 Jul 2024 01:50:59 -0000

> C++ does that polymorphism stuff in
iostream so you'd write std::cout <<
"my name: " << command_line << ...

I know. The disadvantage of the C++
scheme is you cannot easily reorder items
as necessary to fit the grammar of
localized messages. That, I think, is why
lots of other languages (including Python
and Lisp) have copied the printf scheme,
yet none have seen fit to copy the C++
scheme.

> printf for some people is one of the
motivations for dependent types.

I wonder how you would express such a
thing in an Ada-friendly fashion?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 4 Jul 2024 13:27:05 +0200

Remember that you can concatenate
strings:

> tio.put("my name: ");

> tio.put(cli.Command_name);

> tio.Put_Line("");

Tio.Put_Line (Item => "my name: " &

Cli.Command_Name);

Image functions thus allow similar
simplifications. 'Image is one such

function, if you can accept the initial
space for non-negative values:

> tio.Put("nr args: ");

> int_io.Put(cli.Argument_Count,
width => 1);

> tio.Put_Line("");

Tio.Put_Line (Item => "nr args:" &

Cli.Argument_Count'Image);

For simple cases you can roll your own:

function Image (Value : in Integer) return

String is

 Raw : constant String := Value'Image;

begin -- Image

 return Raw ((if Value < 0 then 1 else 2) ..

 Raw'Last);

end Image;

> tio.put("[");

> int_io.put(i, width => 1);

> tio.put("]: ");

> tio.put(cli.argument(i));

> tio.put_line("");

Tio.Put_Line (Item => '[' & Image (I) & "]: " &

Image (Cli.Argument (I)));

For more complex uses, you can use
something like
PragmARC.Images[.Image]

(https://github.com/jrcarter/PragmARC).

You probably should review the
definition of Ada.Text_IO

(http://www.ada-auth.org/standards/
aarm12_w_tc1/html/AA-A-10.html),
especially

for procedure New_Line.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 4 Jul 2024 15:01:05 +0200

> with Ada.Command_Line;

> with Ada.Text_IO;

[...]

A general advice processing strings, any
strings: messages, commands, payload
etc.

Always read a complete string into a fixed
size buffer (safety). Never use streams.
Process the whole string consequently.
Never tokenize. Never copy anything.
Ada has slices.

The same is true for the output. Build a
complete substring in a buffer.
Consequently. Flush the complete
substring to the output.

Do not use Unbounded_String.

From: Rod Kay <rodakay5@gmail.com>
Date: Fri, 5 Jul 2024 01:13:36 +1000

> I wonder how you would express such a
thing in an Ada-friendly fashion?

There is the 'GNAT.Formatted_String'
package, which provides 'printf'
functionality.

Unfortunately, its formatting is somewhat
buggy and has been so for many years.
Usage is quite simple and reasonably
elegant but the occasional incorrect
formatting is a major problem, essentially
rendering the package useless.

There is also the new 2022 f"X =
{An_X_Variable} notation for embedding
Variable'Image into strings, which is very
nice. However, it does not allow for
formatting, so not useful for your needs.
Just thought I'd mention it, as it is now
available in GCC 14.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 4 Jul 2024 18:15:54 +0200

>> printf for some people is one of the
motivations for dependent types.

> I wonder how you would express such a
thing in an Ada-friendly fashion?

For example:
http://www.dmitry-kazakov.de/ada/
strings_edit.htm

From: Ben Bacarisse <ben@bsb.me.uk>
Date: Thu, 04 Jul 2024 20:42:00 +0100

> ... Though I recognize that there is no
way to do printf style in a type-safe
fashion, short of going to a fully-
dynamic language.

Not so. Haskell has Text.Printf.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Thu, 04 Jul 2024 15:06:00 -0700

> Not so. Haskell has Text.Printf.

Text.Printf is not fully type safe. printf
"%d\n" "foo" throws a "bad formatting
character" exception, really amounting to
a runtime type exception.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 4 Jul 2024 23:54:49 -0000

> Remember that you can concatenate
strings:

> Tio.Put_Line (Item => "my name: " &
Cli.Command_Name);

I’m sure I can, but I’m not sure what the
point is. Let Ada collect the pieces in its
own buffers. That saves copying steps.

> PragmARC.Images[.Image]
(https://github.com/jrcarter/
PragmARC).

I don’t really feel the need to resort to
third-party libraries just to do simple I/O.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 5 Jul 2024 10:58:00 +0200

> I’m sure I can, but I’m not sure what the
point is. Let Ada collect the pieces in
its own buffers. That saves copying
steps.

140 Ada Pract ice

Volume 45, Number 3, September 2024 Ada User Journal

Agreed. I don't understand why people
dislike printing piece by piece. In the old
FORTRAN, you could write only line by
line, but this time is long gone…

With the various Put procedures, you
have individual formatting options that
you don't have otherwise. Moreover, there
is a nice property that few people noticed:
if you have an algorithm writing data to a
file, with loops and so on, you can keep
the exact same structure replacing every
Put with the matching Get, and you will
read your data correctly. This feature goes
away as soon as you have a 'Image.

Reduction Expressions

From: Simon Wright
<simon@pushface.org>

Subject: Reduction expressions
Date: Tue, 13 Aug 2024 13:36:54 +0100
Newsgroups: comp.lang.ada

Are the Accum_Type & Value_Type
(ARM 4.5.10(9/5)) of a reduction
attribute reference required to be definite?

ARM 4.5.10(24/5) & (25.5) seem to
imply so, which explains why GNAT
doesn't support e.g. String.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 19 Aug 2024 22:59:04 -0500

Accum_Subtype (we changed the name
since it is a subtype, not a type; various
clarifications were made to the wording as
well in AI22-0011-1, AI22-0047-1, and
AI22-0069-1) most likely has to be
definite since the accumulator is of that
type, and the bounds/constraints of the
accumulator are thus defined by the initial
value. In most uses, the first call on
Reduce would then raise Constraint_Error
(because the bounds/constraints are
incorrect). I don't think there is any reason
that the Value_Subtype has to be definite
for a sequential reduce (a parallel reduce
requires the two subtypes to statically
match).

Note that if someone has a clever way to
use an indefinite result, it is allowed. For
instance, I could see a class-wide result
making sense in some limited
circumstances. But I don't think String
would do anything useful, since the
bounds are determined by the initial
value.

BTW, this answer is essentially topic #1
of AI22-0011-1.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 20 Aug 2024 22:23:27 +0100

> Accum_Subtype (we changed the name
since it is a subtype, not a type;

Amazing how a person (I) can have used
Ada for ~40 years and still be hard put to
it to describe the difference, at least in a
case like this one, where the ARG

members clearly see meanings that leave
me lukewarm if not cold. Maybe "the
heart of twilight"?

> But I don't think String would do
anything useful

String was just the simplest indefinite
type for an example.

> BTW, this answer is essentially topic #1
of AI22-0011-1.

Thanks for the pointer.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Tue, 20 Aug 2024 23:30:54 -0000

> Amazing how a person (I) can have
used Ada for ~40 years and still be hard
put to it to describe the difference

I thought the difference was obvious.
“subtype” is the C equivalent of
“typedef”, just giving a new name to an
existing type. So

 subtype A is B;

(where A and B are simple identifiers) is
valid, whereas

 type A is B;

is not: a “type” declaration always creates
a new type: you have to write at least

 type A is new B;

and now you have two types with
different names that are structurally the
same, but not compatible.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Tue, 20 Aug 2024 16:41:55 -0700

> I thought the difference was obvious.
“subtype” is the C equivalent of
“typedef” [...]

A subtype with no added constraint is
similar to a C typedef, but given

 subtype Digit is Integer range 0..9;

Digit is distinct from Integer (though
they're both the same type).

C doesn't have anything directly
corresponding to Ada subtypes.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Wed, 21 Aug 2024 01:37:22 -0000

> Digit is distinct from Integer (though
they're both the same type).

“Integer range 0..9” is a subtype of
Integer, and is valid for example as a
return type where Integer is expected. The
“subtype” declaration doesn’t actually
create the subtype: “Digit” is just a
shorthand name for that, just like a C
typedef.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 21 Aug 2024 08:47:49 +0100

> I thought the difference was obvious.
[...]

Yes, I've understood that for a long time
but ... ARM22 4.5.10(8,9)[1] say

(8) The expected type for a
reduction_attribute_reference shall be a
single nonlimited type.

(9) In the remainder of this subclause, we
will refer to nonlimited subtypes
Value_Type and Accum_Type of a
reduction_attribute_reference. ...

and in AI 22-0011-1 [2] starting at 22-
Oct-2021 5:25 PM,

* SB: raises a series of observations,

* STT: "... You really need to think of
Accum_Type as a particular *subtype*"

* SB: "Ok, I was confused - Accum_Type
is a subtype, not a type. So a lot of my
message was noise."

If SB can be confused, so can I!

[1] http://www.ada-auth.org/standards/
22rm/html/RM-4-5-10.html#p8

[2] http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ai22s/
ai22-0011-1.txt?rev=1.2

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 23 Aug 2024 23:27:48 -0500

> If SB can be confused, so can I!

Which is why we changed the name - if
SB can be confused, it is a good bet that
there is something wrong with the
wording. That's why I usually recommend
bleeding edge users use the bleeding edge
RM - no point in rediscovering all of the
bugs that we already know about.
Unfortunately, in this case, I'm the only
one that has the bleeding edge RM
because I haven't finished adding all of
the approved AIs to it. This group is some
that I've done, which is why the answer to
your question was relatively easy to find.

Ichbiah 2022 Compiler
Mode

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Subject: Ichbiah 2022 compiler mode
Date: Thu, 5 Sep 2024 11:52:37 -0000
Newsgroups: comp.lang.ada

I guess this is a very subjective question.

A number of Ada users have expressed
that they would rather Ada was simpler
whilst others desire more features.

I appreciate Ada 83 portability but also
like a lot of modern Ada features.

Out of interest. Could anyone help me
with what a GNAT or other compiler
Ichbiah_2022_Mode might look like.
Perhaps it might be possible to use
pragmas to get an estimated mode of what
features he might keep or drop.

Ada Pract ice 141

Ada User Journal Volume 45, Number 3, September 2024

I can continue research but currently I do
not have the details of his objections to
Ada 95 and how those may have
continued through to today is perhaps a
nuanced question.

What do you think Ichbiah would jettison
from Ada 2022? All comments welcome.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 5 Sep 2024 15:40:35 +0200

> I do not have the details of his
objections to Ada 95

Ichbiah's objections to Ada 95 are in
https://web.elastic.org/~fche/mirrors/
old-usenet/ada-with-null

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Thu, 5 Sep 2024 16:08:01 -0000

What does this mean?

"elimination of accuracy constraints in
subtypes"

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 5 Sep 2024 21:24:05 +0200

> "elimination of accuracy constraints in
subtypes"

See ARM-95 J.3
(https://www.adaic.org/resources/
add_content/standards/95lrm/
ARM_HTML/RM-J-3.html),

Reduced Accuracy Subtypes.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 5 Sep 2024 19:03:22 -0500

> What do you think Ichbiah would
jettison from Ada 2022?

My recollection is that he wanted a more
complex "class" feature, which IMHO
would have made Ada more complex, not
simpler.

In any case, I can't guess what Ichbiah
would have suggested after 40 years of
experience. (He probably would have
moved on to some other language
anyway, you have to be somewhat
resistant to change to stick with a single
language for your entire career. I seem to
resemble that remark... ;-)

What I can do is suggest what an
RLB_2022 mode would look like, as I did
the exercise when we all were cooped up
during the early days of the pandemic. My
philosophy is that Ada has a lot of
combinations of features that cause a lot
of implementation trouble, but which are
not very useful. So I want to reduce the
combinations that cause trouble. I note
that every feature is useful for something
(else it wouldn't be in Ada in the first
place). But some things are not useful
enough for the trouble that they cause.
Also note that I am not worrying about
compatibility with Ada, which is always a
problem when updating Ada itself.

Here's some highlights off the top of my
head:

(1) Simplify the resolution model;
essentially everything resolves like a
subprogram. For instance, objects resolve
similarly to enumeration literals. This
substantially reduces the danger of use
clauses (having matching profiles and
names is less likely than just matching
names), and eliminates the subtle
differences between a constant and a
function (they should really act the same).

(2) Operator functions have to be
primitive for at least one of the types in
the profile. (Operators in a generic formal
part have a pseudo-primitive
requirement.) That includes renamings. In
exchange for that, operators have the
same visibility as the type (which means
they are always directly visible when any
object of the type is visible). One then can
eliminate "use type" (since it would
literally do nothing).

(3) A number of syntax options are
eliminated. Matching identifiers are
required at the end of subprograms and
packages. Initializers are always required
(<> can be used if default initialization is
needed). Keyword "variable" is needed to
declare variables (we do not want the
worst option to be the easiest to write, as
it is in Ada).

(4) Anonymous types of all sorts are
eliminated. For access types, we would
use aspects to declare properties (static vs.
dynamic accessibility, "closure" types,
etc.). For arrays, see next item.

(5) The array model would be greatly
simplified. New Ada users (and old ones
as well) have a hard time dealing with the
fact that the lower bound is not fixed in
Ada. Additionally, the existing Ada
model is very complex when private types
are involved, with operators appearing
long after a type is declared. The more
complex the model, the more complex the
compiler, and that means the more likely
that errors occur in the compiler. There
also is runtime overhead with these
features. The basic idea would be to
provide the features of an
Ada.Containers.Vector, and no more.
Very little is built-in. That means that
arrays can only be indexed by integers,
but that is a good thing: an array indexed
by an enumeration type is really a map,
and should use a map interface. So I
would add a Discrete_Map to the
Ada.Containers packages.
Bounded_Arrays are a native type (most
of the uses of arrays that I have are really
bounded arrays built by hand).

A side-effect of this model change is to
greatly simplify what can be written as
discriminant-dependent components.
Discriminant-dependent arrays as we
know them are gone, replaced by a
parameterized array object that has only

one part that can change. Much of the
nonsense associated with discriminant-
dependent components disappears with
this model.

(6) Static items have to be declared as
such (with a "static" keyword rather than
"constant"). Named numbers are replaced
by explicit static constants. (I would allow
writing Universal_Integer and
Universal_Real, so one could declare
static objects and operations of those
types.)

(7) Types and packages have to be
declared at library-level. This means that
most generic instances also have to be
declared at library-level. Subtypes,
objects, and subprograms still can be
declared at any nesting level. I make this
restriction for the following reasons:

 (A) Accessibility checks associated
with access types are simplified to
yes/no questions of library-level or not.
The only cases where accessibility
checks do any real good is when library-
level data structures are constructed out
of aliased objects. These would still be
allowed, but almost all of the
complication would be gone. Even if the
check needs to be done dynamically, it
is very cheap.

 (B) Tagged types declared in nested
scopes necessarily require complex
dynamic accessibility checks to avoid
use of dangling types (that is, an object
which exists of a type that does not
exist).

 (C) Reusability pretty much requires
ODTs to be declared in library-level
packages. Mandating that won't change
much for most programs, and you'll be
happier in the long run if you declare the
types in library packages in the first
place.

 (D) There are a lot of semantic
complications that occur from allowing
packages in subprograms, but this is
rarely a useful construct.

(8) Protected types become protected
records (that is, a regular record type with
the keyword "protected"). Primitive
operations of a protected record type are
those that are protected actions. (Entries
can be declared and renamed as such, they
would no longer match procedures, which
leads to all kinds of nonsense.) This
would eliminate the problems declaring
helper types and especially *hiding*
helper types for protected types. (See the
problems we had defining the queues in
the Ada.Containers to see the problem.)
The protected operations would allow the
keyword "protected" in order to make the
subprograms involved explicit.

(9) Strings are not arrays! Strings would
be provided by dedicated packages,
supporting a variety of representations.
There would be a Root_String'Class that
encompasses all string types. (So many

142 Ada Pract ice

Volume 45, Number 3, September 2024 Ada User Journal

operations could be defined on
Root_String'Class).

(10) Variable-returning functions are
introduced. They're pretty similar the
semantics of anonymous access returns
(or the aliased function returns suggested
by Tucker). This means that a variable
can easily be treated as a function (and
indeed, a variable declaration is just
syntactic sugar for such a function).

(11) Various obsolete features like
representation_clauses, representation
pragmas, and the ability to use 'Class on
untagged private types are eliminated or
restricted.

There were a couple of areas that I never
made up my mind on:

(A) Do we need tasks at all? Parallel and
task are very much overlapping
capabilities. But the parallel model would
need substantial changes if we were to
allow suspension of parallel threads (Ada
2022 does not allow this). Suspension
seems necessary to support intermittent
inputs of any type (including interrupts)
without wasting resources running busy-
wait loops.

(B) Should type conversions be operators
or remain as the type name as in Ada? A
type conversion operator, automatically
constructed, would allow user-defined
types to have the same sort of conversions
to numeric and string types that the
predefined do. But an operator would
make conversions easier, which is
probably the wrong direction for a
strongly typed language.

(C) I wanted to simplify the assignment
model, but my initial attempt did not work
semantically. I'm not sure that
simplification is possible with the Ada
feature set (I'm sure Bob and Tuck tried to
do that when creating Ada 95, but they
failed). The main issue is that one would
like to be able to replace discriminant
checks on user-defined assignment.
(Imagine the capacity checks on a
bounded vector; Ada requires these to
match, but that's way too strong; the only
problem is if the target capacity cannot
hold the actual length of the source object.
A user-defined replacement would be
helpful.)

My $20 worth (this was a lot more work
than $0.02!!). I probably forgot a number
of items; my actual document is about 20
pages long.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Fri, 6 Sep 2024 00:58:05 -0000

> Keyword "variable" is needed to declare
variables

One language idea I toyed with years ago
was that

 «name» : «type»;

declared a variable, while

 «name» : «type» := «value»;

declared a constant. So, no initialization
of variables at declaration time allowed.

> (10) Variable-returning functions are
introduced.

Is this like updater functions in POP-11,
or “setf” in Lisp? So you have a
procedure

 set_var(«var», «new value»)

which is declared to be attached to «var»
in some way, such that when you write

 «var» := «new_value»

this automatically invokes set_var?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 6 Sep 2024 13:07:27 +0200

> Out of interest. Could anyone help me
with what a GNAT or other compiler
Ichbiah_2022_Mode might look like.

I have no idea what he would have done.
For an idea of what I think a language
should have, you can look at my informal
description of King
(https://github.com/jrcarter/King).

From: Simon Wright
<simon@pushface.org>

Date: Fri, 06 Sep 2024 22:22:08 +0100

> (A) Do we need tasks at all? Parallel
and task are very much overlapping
capabilities.

I don't think I've ever wanted parallel.
Most embedded system tasks are one-off,
aren't they?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 7 Sep 2024 20:13:03 +0300

> I don't think I've ever wanted parallel.
Most embedded system tasks are one-
off, aren't they?

More and more embedded systems use
multi-core processors and do heavy,
parallelizable computations. "Parallel" is
intended to support that in a light-weight
way. In a recent discussion with the
European Space Agency, they expressed
interest in using OpenMP for such
computations on-board spacecraft with
multi-core processors, which is an
"embedded" context.

Regarding tasks in embedded systems, I
agree that most are one-off, but I have
occasionally also used tens of tasks of the
same task type.

I disagree with Randy's view that tasks
and "parallel" are much overlapping.
Tasks are able to communicate with each
other, but AIUI parallel tasklets are not
meant to do that, and may not be able to
do that. Tasks can have different
priorities; tasklets cannot.

From: Nioclás Pól Caileán De Ghloucester
<master_fontaine_is_dishonest
@strand_in_london.gov.uk>

Date: Sat, 7 Sep 2024 22:34:52 +0200

"[...] they expressed interest in using
OpenMP for such computations [...]"

Hei!

Most of the languages which are referred
to by WWW.OpenMP.org/resources/
openmp-compilers-tools facilitate bugs.
(The Spark which is referred to thereon is
not the Ada-related Spark language.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 11 Sep 2024 23:39:27 -0500

>> (10) Variable-returning functions are
introduced.

> this automatically invokes set_var?

No, it is a function that returns a variable,
meaning you can assign into the function
result. If you have:

 function Foo return variable Integer;

then you can use Foo on either side of an
assignment:

 Foo := 1;

 Bar := Foo + 1;

Essentially, this idea treats:

 Var : variable Integer;

as syntactic sugar for

 function Var return variable Integer;

The worth of that is two-fold: (1) Objects
and functions now resolve the same; (2)
one can write a function that acts exactly
like an object, and thus can replace it in
all uses.

Note that Ada currently has generalized
reference objects and functions that return
anonymous access types, and both of
these act similarly to a variable returning
function. But neither is quite a perfect
match.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 12 Sep 2024 22:24:29 -0000

> No, it is a function that returns a
variable, meaning you can assign into
the function result.

I think an updater function would be more
generally useful. Because some things
you want to update might not (depending
on the implementation) live independently
in an explicit variable. And it seems good
not to constrain implementations
unnecessarily.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 14 Sep 2024 01:18:25 -0500

> I think an updater function would be
more generally useful.

Ada Pract ice 143

Ada User Journal Volume 45, Number 3, September 2024

Unfortunately, "updater" functions don't
work with the Ada model of components,
because you can't tell what to do when a
component appears or disappears in an
assignment. (That's why Ada doesn't
allow overloading ":=".) And composition
is very important to Ada -- stand-alone
objects are pretty rare outside of those for
scalar types. I don't think something that
only worked with stand-alone objects
would be very useful (can't use those with
ODTs, for instance).

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sat, 14 Sep 2024 07:18:29 -0000

> Unfortunately, "updater" functions don't
work with the Ada model of
components [...]

But it’s just syntactic sugar, nothing more.
Instead of

 a := obj.get_prop()

 obj.set_prop(a)

(both of which have valid Ada
equivalents), you can unify them into

 a:= obj.prop

 obj.prop := a

What difference does writing it differently
make?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 11 Sep 2024 23:46:18 -0500

> Tasks are able to communicate with
each other, but AIUI parallel tasklets
are not meant to do that, and may not
be able to do that. Tasks can have
different priorities; tasklets cannot.

I was (of course) presuming that
"tasklets" would get those capabilities if
they were to replace tasks. That's what I
meant about "suspension", which is not
currently allowed for threads in Ada
(parallel code is not allowed to call
potentially blocking operations). If that
was changed, then all forms of existing
task communication would be allowed.

I'm less certain about the value of
priorities, most of the time, they don't
help writing correct Ada code. (You still
need all of the protections against race
conditions and the like.) I do realize that
they are a natural way to express
constraints on a program. So I admit I
don't know in this area, in particular if
there are things that priorities are truly
required for.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 12 Sep 2024 10:42:38 +0300

> I was (of course) presuming that
"tasklets" would get those capabilities

Ok, I understand. In that case, what
"parallel" adds to the current tasking
feature is an easy way to create a largish
and perhaps dynamically defined number

of concurrent threads from a "parallel"
loop, where the threads are automatically
created when the loop is started and
automatically "joined" and destroyed
when the loop completes.

I don't mind at all if a future Ada
evolution merges tasks and "parallel",
although it might defeat the easier access
to multi-core true parallelism that is the
goal of the "parallel" extension, AIUI.

> I'm less certain about the value of
priorities

Priorities (or the equivalent, such as
deadlines) are absolutely required for
real-time systems where there are fewer
cores than concurrent/parallel activities so
that the system has to schedule more than
one such activity on one core.

If Ada did not have tasks with priorities,
most of the Ada applications I have
worked on in my life would have had to
avoid Ada tasking and retreat to using
some other real-time kernel, with ad-hoc
mapping of the kernels's threads to Ada
procedures.

Despite the transition to multi-core
processors, I think that there will continue
to be systems where scheduling is
required, because the number of
concurrent/parallel activities will increase
too.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 12 Sep 2024 11:04:58 +0200

> I was (of course) presuming that
"tasklets" would get those capabilities
[...]

Well, tasks are not only for speeding up
code. They can be a very useful design
tool (active objects, independent
activities). I think the Ada model is clean
and simple, I would hate to see it
disappear.

> I'm less certain about the value of
priorities [...]

If you had as many cores as tasks, you
would not need priorities. Priorities are
just optimization on how to manage cores
when there are not enough of them.

I know that people use priorities to
guarantee mutual exclusion, and other
properties. All these algorithms were
designed at the time of mono-CPU
machines, but they fail on multi-cores.
Nowadays, relying on priorities for
anything other than optimization is bad -
and dangerous- design.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 12 Sep 2024 11:07:01 +0200

> I don't mind at all if a future Ada
evolution merges tasks and "parallel"
[...]

To me usefulness of "parallel" is yet to be
seen, while tasks proved to be immensely
useful on all architectures available.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 12 Sep 2024 14:35:27 +0300

> Well, tasks are not only for speeding up
code. They can be a very useful design
tool (active objects, independant
activities). I think the Ada model is
clean and simple, I would hate to see it
disappear.

I agree.

> Priorities are just optimization on how
to manage cores when there are not
enough of them.

In some contexts it could be optimization
-- for example, to increase throughput in a
soft real-time system -- but in hard real-
time systems priorities (or deadlines) are
needed for correctness, not just for
optimization.

> I know that people use priorities to
guarantee mutual exclusion, and other
properties. All these algorithms were
designed at the time of mono-CPU
machines, but they fail on multi-cores.

In SW for multi-core systems it can be
beneficial to collect tasks that frequently
interact with each other or with the same
single-user resources in the same core,
and then the mono-core mutual-exclusion
algorithms like priority ceiling inheritance
can be used for that group of tasks, while
using other algorithms for mutual
exclusion between tasks running in
different cores.

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Thu, 12 Sep 2024 12:36:19 -0000

>If Ada did not have tasks with priorities,
most of the Ada applications I have
worked on in my life would have had to
avoid Ada tasking and retreat to using
some other real-time kernel, with ad-
hoc mapping of the kernels's threads to
Ada procedures.

Counter intuitively it is possible that this
is holding Ada back. A lot of Ada code
cannot run without some fairly complex
runtime support due to tasks, protected
objects, finalization etc.. Runtimes have
to be developed for each chip instead of
each cpu. At Least I assume that that is
why these features are not available to
e.g. the light cortex-m33 or cortex-m4 or
cortex-m0+ runtimes. This requires
rewriting code which isn't required with
equivalent C code such as containers and
ip stacks etc.. Even support for the Ada
interrupt package is missing but it looks
like porting that support to chips is less
work and research.

If you need advanced multi core support
then using an OS seems like a more
suitable situation to be in to me.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 12 Sep 2024 18:43:45 +0300

144 Ada Pract ice

Volume 45, Number 3, September 2024 Ada User Journal

> Counter intuitively it is possible that
this is holding Ada back. [...]

True, however an Ada RTS can
implement many of the tasking features
with moderate effort on top of non-Ada
real-time kernels such as FreeRTOS,
VxWorks, etc., as AdaCore have done for
some kernels. At least for the Ravenscar
and Jorvik profiles. AIUI, the processor-
specific stuff is then mainly in the kernel,
not in the RTS.

> If you need advanced multi core support
then using an OS seems like a more
suitable situation to be in to me.

Using a large OS like Linux would not be
acceptable for many embedded systems.
Fortunately the smaller real-time kernels
are adding multi-core support too.

The great advantage of using the standard
Ada tasking feature, special syntax and
all, is that your embedded Ada program
can then be executed on a PC or other
non-embedded computer, for testing or
other purposes, tasking and all. It can also
be analysed by static-analysis tools such
as AdaControl for race conditions and
other tasking-sensitive issues.

From: Nioclás Pól Caileán De Ghloucester
<master_fontaine_is_dishonest
@strand_in_london.gov.uk>

Date: Fri, 13 Sep 2024 22:45:03 +0200

> Counter intuitively it is possible that
this is holding Ada back [...]

A book by Burns and Wellings unsensibly
boasts that the demanding runtime
demands of Ada are an advantage because
if you are with them then you are with
them, whereas as Kevin Chadwick points
out - they are not easy to make.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 14 Sep 2024 01:13:28 -0500

> [...] in hard real-time systems priorities
(or deadlines) are needed for
correctness, not just for optimization.

This I don't buy: priorities never help for
correctness. At least not without extensive
static analysis, but if you can do that, you
almost certainly can do the correctness
without depending upon priorities.

I view priorities as similar to floating
point accuracy: most people use them and
get the results they want, but the reason
for that is that they got lucky, and not
because of anything intrinsic. Unless you
do a lot of detailed analysis, you don't
know if priorities really are helping or not
(and similarly, whether your results
actually are meaningful in the case of
floating point).

Anyway, I don't see any such changes
coming to Ada, but rather to some
separate follow-on language (which
necessarily needs to be simpler), and thus
some things that are sometimes useful
would get dropped.

(Different message)

...

> [...] what "parallel" adds to the current
tasking feature is an easy way to create
a largish and perhaps dynamically
defined number of concurrent threads
from a "parallel" loop [...]

I think the parallel block is more useful
for general tasking. The advantage of
using parallel structures is that they look
very similar to sequential structures, and
one lets the system do the scheduling
(rather than trying to figure out an
organization manually).

One of the advantages of the model I'm
thinking about is that it separates concerns
such as parallel execution, mutual
exclusion, inheritance, organization
(privacy, type grouping), and so on into
separate (mostly) non-overlapping
constructs. Ada started this process by
having tagged types a separate construct
from packages; you need both to get
traditional OOP, but you can also
construct many structures that are quite
hard in traditional "one construct" OOP. I
think that ought to be done for all
constructs, and thus the special task and
protected constructs ought to go. We
already know that protected types cause
problems with privacy of implementation
and with inheritance. Tasks have similar
issues (admittedly less encountered), so
splitting them into a set of constructs
would fit the model.

In any case, this is still a thought
experiment at this time, whether anything
ever comes of it is unknown.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 14 Sep 2024 08:47:49 +0200

> The advantage of using parallel
structures is that they look very similar
to sequential structures, and one lets the
system do the scheduling (rather than
trying to figure out an organization
manually).

Tasking is not about scheduling. It is
about program logic expressed in a
sequential form. It is about software
decomposition. Parallel constructs simply
do not do that.

> One of the advantages of the model I'm
thinking about is that it separates
concerns such as parallel execution,
mutual exclusion, inheritance,
organization (privacy, type grouping),
and so on into separate (mostly) non-
overlapping constructs.

To me it is exactly *one* construct:
inheritance. You should be able to inherit
from an abstract protected interface at any
point of type hierarchy in order to add
mutual exclusion:

 type Protected_Integer is new Integer and

 Protected;

> Ada started this process by having
tagged types a separate construct from
packages;

I see modules and types as unrelated
things.

> you need both to get traditional OOP,
but you can also construct many
structures that are quite hard in
traditional "one construct" OOP. I think
that ought to be done for all constructs,
and thus the special task and protected
constructs ought to go.

Constructs yes, they must go. It must be
all inheritance. The concepts must stay.

> We already know that protected types
cause problems with privacy of
implementation and with inheritance.
Tasks have similar issues (admittedly
less encountered) [...]

The problems are of syntactic nature,
IMO.

There is an issue with an incomplete
inheritance model. You need not just
complete overriding but also more fine
mechanisms like extension in order to
deal with entry point implementations.
The same problem is with constructors
and destructors, BTW. What should really
go is Ada.Finalization mess replaced by a
sane user construction hooks model for all
types, class-wide ones included.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sat, 14 Sep 2024 07:19:47 -0000

> ... priorities never help for correctness.

Concurrent programming was never about
correctness, it was about
efficiency/performance (throughput,
latency, whatever is appropriate). And
priorities are just another part of this.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 14 Sep 2024 11:12:43 +0300

> This I don't buy: priorities never help
for correctness. At least not without
extensive static analysis, but if you can
do that, you almost certainly can do the
correctness without depending upon
priorities.

You misunderstood me; perhaps I was too
brief.

I said "hard real-time systems", which
means that the program is correct only if
it meets its deadlines, for which priorities
or deadline-based scheduling are
necessary if there are fewer cores than
concurrent/parallel activities, and the
application has a wide range of deadlines
and activity execution times.

(To be honest, there is the alternative of
using a single thread that is manually
sliced into small bits, interleaving all the
activities increment by increment,
according to a static, cyclic schedule, but
that is IMO a horribly cumbersome and

Ada Pract ice 145

Ada User Journal Volume 45, Number 3, September 2024

unmaintainable design, though
unfortunately still required in some
contexts.)

I believe we agree that priorities should
be used for other things, such as
controlling access to shared data, only if
there is a well-defined and safe

mechanism for it, such as protected
objects with priority ceilings and priority
inheritance on a single core.

