What to make
of multi-core
processors for reliable real-

Memory Controller

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

Short version

= More
= complexity, choices, variability, uncertainty

= Less
= safe generalizations, reliability?

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

Overview

= Scheduling theory foundations & results

= How is the theory affected by multiple
processors?

= How valid is the theory for real machines?
= Disaster brewing?
= Survival Plans

Rl ol
A k \ S\) 2 !

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

Why do we have multi-core processors?

= Can't make clocks faster

= Energy usage grows with cube of speed
= So does heat

= Can pack circuits denser

Advantages

More processors

More processing power, when we need it
Fewer preemptions

Can switch off unused cores

Problems

= We don't know how to write good scalable
parallel programs

= More complexity

SMP Scheduling Theory Foundations

= Workload model
= jobs
* tasks

= Processor model

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

Job

A procedure to execute, with

Known maximum execution time
» assumed to be "worst case” (WCET)
= actually, a property of scheduling algorithm

Release/arrival time, deadline
Possibly other attributes

maximum execution time (WCET)

A
- N

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

Job terms

arrival/release time completion time
response time 0
A
- —
%

absolute

start time deadline
< 4)

Y Y

relative deadline lateness

Schedule

= Maps jobs to processor(s)
= over time

= Feasible if timing constraints all satisfied
= no early releases, no missed deadlines

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

10

Scheduling Algorithm

Finds schedule for jobs

May be static, determined off-line

May be dynamic, determined on-line
Reliable algorithms sustain ability to find

feasible schedules under expected variations
from model, especially job parameter
"improvements” including

= Shorter execution times

= Longer relative deadlines

Non-Preemptive Scheduling Anomaly

= Shorter execution time @missed deadline
= Suppose priorities of J;>J, > J;

|)

Ji J3 J

= Motivates preemptive scheduling

Task

Defines collection of sequences of jobs
= Sequences generally assumed to be unbounded

Serial execution usually required

Various constraints on job characteristics
= e.g., onarrivals: periodic, sporadic
Constraints enable schedulability analysis
Example: sporadic task system t; T,

Sporadic task t; = (¢, T, D)

A A A
— ~ ~N ~
< C; ‘ < C; ‘ < C. ‘
Y I Y I Y I
|
| \ I I
/ -) -)
N N N

relative deadline D;

Implicit deadline : D; = T; it /T
Constrained deadline : D; < T, q uti 'ZGT'?nCU/i -.Ci.‘_ |
Unconstrained : arbitrary T; ensity §; = C;/min(T;,D;)

Schedulability Test

= Tells whether given algorithm will find
feasible schedules
= For job sequences of a given set of tasks

» Exact
= "Yes" means it will succeed always
= "No" means it will fail sometimes

= Sufficient

= "Yes" means it will succeed always
= "No" provides no information

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

15

For Reliable Systems

= Scheduling algorithm is only as good as its
Tests

SMP Processor Model

= All processors have same speed
= or linearly related speeds, for "uniform” model

= Any processor can execute any task

CPU
CPU

CPU

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

17

What makes many processors
different from one?

Reliable Software Technologies — Ada-Europe 2010

(Valencia) - Ted Baker 18

Differences

1. Some covered by the model

2. More not in the model, but in real multi-core
systems (later)

Single-Processor Wisdom

Priority does not affect total completion time
EDF scheduling optimal for deadlines
Deadline Monotonic (DM) optimal for fixed
task priority

Critical Zone:

Worst case response time occurs when all
tasks are started together

Not valid for SMP scheduling

Examples

|)
) |)
) |)
) | >
Jz J2 ‘J4
Ji Js Ji Js
| >
EDF, DM | > X
. >
Jo | s Jo | s
s Jyg J3
Optimal Simultaneous Releases

Not Critical Zone

Demand Analysis

Bound max demand for processor time of job
in its scheduling window

Bound maximum interference in window

= Time that the job cannot run

= Caused by other jobs not yet completed

= Preemption, blocking, etc.

Supply = window size - interference

If supply > demand, job will complete within
its deadline

Single-Processor Preemption

arrival/release time completion time
: A

response time
A

- ™

~ \ /
~L /
v SO _ \“ ,

~ = V4
start time ~o 0\ e

\~/

Preemption interference

= "Work conserving” (no idle when job waiting)
= no idle time

Multi-Processor Preemption

arrival/release time completion time
. A
response time

A
- N

Y S i
DS p ¢
\\\ \ /

start time >SN

~./

/

Only block interference matters

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

24

Changes from Single Processor

= Two dimensions (processors, time)

= "Work-conserving" is not enough

= Optimal schedule for near deadlines can create idle
time, increasing backlog

= Causing avoidable future delays
= Tn the long run, keeping all processors busy wins

= Locks have larger impact

= Can force idling of processors
= Priority ceiling does not prevent deadlock

Reliable Software Technologies — Ada-Europe 2010

(Valencia) - Ted Baker 25

Migration Costs

= Additional cost of resuming preempted job, or

next of job of task, on a different processor
= Communication delay

= Evicting preempted task/job (if any)
= Loading cache on new processor

= Can be avoided by partitioned scheduling

= Often cited as problem with global scheduling,
probably exaggerated

Migration Costs

= Can be modeled by adding constant to WCET
of each job, like preemption costs

= With shared cache, may not cost more than
preemption

Migration Costs

= Highly architecture-
dependent
= How much cache is shared?
* How fast is interconnect?

= Highly context-dependent

= What has ftranspired in old
processor's cache since
preemption or last job
execution?

This is just one among several more serious architecture-dependent
sources of execution-time variation.

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

28

SMP Scheduling Theory Results

29

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

Sample Results: Static Scheduling

= Optimal scheduling NP-hard
= A form of bin packing problem
= Optimal is not necessary

= Greedy heuristics within 2x optimal, in worst
case, very good on average

= Can handle complex constraints
= precedence, task interdependences
= additional resources

Extending EDF & DM to SMP

= Partitioned
= Assignh tasks to processors statically

= Schedule tasks on each processor dynamically
= Fewer combinations of interference effects
= Allows cheaper local locks

= Global

= Assign tasks to processors dynamically
= Less idle time, better average throughput

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

31

Some Results: Partitioned EDF & RM

= Optimal partitioning NP-hard
= Still bin-packing variants
= Optimal is not necessary
= Greedy heuristics good

= Worst-case utilization bound = 50%

PV VA V4

Some Results: Global EDF & RM

= "Heavy" tasks cause problems
= Worst-case utilization bound = 1/9,,

%
)

N/

Density Bounds

= Sufficient schedulability conditions

= For EDF: @&
Eéi =m—-(m-1)0,___
i=1

<o0_ A
o
- J (m-1)0,_. A
J. J,

m-1

Sufficient Tests for Global
Scheduling

= Density bounds simplest, and most
conservative

= Capture the significance of "heavy" vs. “light"
tasks

* There are about a dozen tests that are less
conservative (more accurate)

Global Hybrids

Assigh top priority to tasks with §; > cut-of f

Apply global EDF or DM to the rest

Intuition

= longer job = more opportunity for parallelism

= and more need to start early

Can achieve higher worst-case utilization

bound
For EDF with 50% cut-off:

m+1
2

Processor Sharing (Pfair)

= Approximates "fluid" scheduling

= Utilization bound 100% for implicit-deadline
periodic tasks

= Limited by time-slicing overhead

N/

Many Algorithms, Tests

= eg, EDZL, task-splitting

= Growing set of sufficient tests
= not simply comparable
= difficult to choose one that is best
= all quite usable

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

38

Extensions

= Aperiodic servers
= Locking protocols

Aperiodic Servers

= Not much published
= Generalizations fo SMP seem fairly simple
= Group budgets seem to be a problem

Locking Protocols

= Not yet well understood
= Results not as satisfying as for single processor

= Some spinning necessary for general solutions
= When is blocking lock worth the overhead?

= One size does not fit all

Reliable Software Technologies — Ada-Europe 2010

(Valencia) - Ted Baker =

Locking Protocols

= Impact of global locks grows with number of
processors

= Periodicity and parallel decomposition can
Increase contention
= A weakness of global scheduling

= Partitioning allows optimization of local locks
= Static scheduling can eliminate locks

Lock-Free Methods

= Circular buffers, Read-Copy-Update, Atomic
Queues, Software Transactional Memory

= Again, one size does not fit all

solid is the foundation?

) -4
Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

44

Dangerous Assumption

= That actual workloads and processors fit the
models

Dataflow Blocking

Execution of one task must wait for results of

computation by another task

Not a big problem for single processor system

= consumer must wait anyway, since CPU is shared
Results in idle processors in SMP system
Tasks are not independent

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

46

WCET Myth

= Already a growing problem for single
processors

= Cache & DMA I/0 effects problematic

)
/S

%
./
"

-

8

n‘

3
74

l}

¥
J VA

- .

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

Execution Time Dependences

» Effects of other concurrent tasks

= Differences between "identical” processors
= Heat protection mechanisms
= Bus priorities

= System elements other than the processors
= memory hierarchy

= component interconnects
= T/0 devices

A simple example

Local
RAM

Memory Controller

L3

7

L2

L2

L2

19)008

2100-RINN

Reliable Software Technologies — Ada-Europe 2010

(Valencia) - Ted Baker

49

Task Interference

= New ways for tasks to interfere

» shared cache eviction conflicts - all the time, not
just at context switches

= cache snooping delays
= cache and memory access path (bus) conflicts
= dataflow blocking (see next slide)

= Interference is dynamic, hard to model
= Reports of execution time variations up to 100%

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

50

Myth Grows Worse with Multicore

CPU
CPU

F-j /O
CPU S—
CPU

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

51

Many Variations

= Designs continue to evolve
= There is no single common architecture

B L

HyperTransport

Core 0 Core 1

Cache for Cache for
Core 0 Core 1

F X
System Request Interface § §
(22000MHz) = AMD 3

& Crossbar Switch £ Multi-core -

g Socket 3

> o

< -

HyperTransport™ Memory
System Bus Contruller

Full Memo! e -.
20%%::"11 T glock Speedrg ==ﬁ!ﬁ==
HyperTransport
- e
1/0 (Full Processor Clock
Chipset Speed Communication)

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

Processor Dependence

= Different processors in same chip may have
different internal cache access priorities
= see reports of variations up to 400%

= Seems certain to become more variable with
larger numbers of cores

Apparent Trends

More cores

Serial connections between modules on chip
On-chip networks: grid, ring, etc.
Packetized routing of data

Less cache coherency

More opportunity for tasks to interfere
More variation in execution time

We have seen these before, in HPC

= In larger scale (not on one chip)

= "Supercomputers”

= Architectural dependence of code

= Lack of standard architecture

= Exploiting potential of HW took lots of
programming time

= Results were not portable

= SW development could take longer than time
to next HW generation

Network Dependence

Can no longer ignore data paths between
cores, caches, memory

These may be the real bottlenecks
Delays depend on dynamic interactions

Nominal (single core) WCET becomes
irrelevant

System-on-a-Chip

= Chip needs to be viewed as "distributed”

= Routing algorithms and message transmission
delays need to be taken into account

= But ...

Network analysis?

= SW cannot control on-chip routing

= Can it be modeled?
= Ts enough information available?
= Ts it portable?
= Does it change between instances of the same part

number?

= Granularity of transactions and micro-task
complexity seem to make detailed analysis
impracticable

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

59

Scenario

= Complex architectures

+ Extreme execution time variability

+ Need to consider entire processor network
+ Dynamic dependence on core interactions
+ Lack of documentation

+ Lack of standard architectural models

= No meaningful WCET bounds

= End of “hard" real time analysis?

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

60

Survival

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

61

Need to Cope with

Inter-task data flow delays
Inter-processor data flow bottlenecks
Wide variation in execution times

Variations in architecture

= Cache, intra/inter-chip data paths
= Poorly documented, hard to model

Manage Data Flows

= Avoid global data wherever possible

= Divide work into units with explicit input/
output parameters

= Use data flow design constructs, e.g.
= Pipelines
= Work queues

Allow for Execution Time Variation

= Design to avoid hard deadlines

= For unavoidable cases
= Reserve resources
= Overprovision

= Apply static scheduling

= Focus on throughput
= Apply HPC techniques

Contain Architectural Variation

= Separate concurrency design from functional
design

= Look for abstractions that can hide
optimizations to fit hardware
= eg., cache line size, sharing, coherency

= Break free of thread model
= Adopt message/event-handler model

What to do in Ada?

Reduce casual memory sharing

Design to run on variable number of cores,
without recoding

Reduce focus on tasks as semantic units

Move toward event-driven model
= Example: work queues & servers

Consider optimizable standard packages
= Example: Atlas linear algebra library

Apply distributed systems annex?

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

66

Problems with Tasks/Threads

Implicitly share access to global data

= encourages undisciplined sharing
* hides data flow within internal task logic

Mix concerns that should be separable
= semantics vs. performance

Limit concurrency, ability to use more cores
* hard coded

Limit fine-grained concurrency
= single thread of control, heavy weight

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

67

Problems with Protected Objects

= Implicitly share access to global data
= same as with tasks

= Overly general & overly complex semantics
= |imit cache-friendly optimization

Summary

= More complexity, choices, variability,
uncertainty

= Less safe generalizations, reliability?

THE END

Debate?

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

70

Appendices

* The real story of the tortoise &
the hare

* An event-driven design example

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

71

Who really won the race?

= Each was ahead at
times

= Positions reversed,
several times

= This seems to be
true of technological
choices, also

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

72

Re*versals

CPU vs. memory as bottleneck

Global vs. partitioned scheduling superiority
Static vs. dynamic scheduling

Hashed vs. sequential access to data
Interrupts vs. polling for I/0

etc.

Work Queues & Servers

= An illustrative example, not a panacea
= In particular, cannot handle "joins" of work flows

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

74

Work Queues™: Goals

Fit collection of servers to available
processors, transparent to program logic

Make data flows visible enough to manage &
analyze

Provide deadline service with fixed task
priorities
Do without new language features

WO r' k QUCUC preemption levels

A list of work items all'n
Has associated priority
or preemption level

Has associated set of processors

One server task per processor l l
Has a specified queuing discipline

* e.g. FIFO or deadline

Data flows between queues

Reliable Software Technologies — Ada-Europe 2010

(Valencia) - Ted Baker 76

Server

A general-purpose task
Serves a single work queue

Has a fixed priority
= to match its queue

Is assighed to a specific CPU
Suspends while queue is empty

Executes the service methods
of items in the queue

per
CPU

Work Item

Derived from base work_item class
Has associated service method
Visibility limited to explicit parameters

= Inputs: constant components, or access-constant
components

= Outputs: copied to another item, or updated via
access-variable components

Preemption level matches queue

Reliable Software Technologies — Ada-Europe 2010
(Valencia) - Ted Baker

78

