C‘STER Research Centre in
= 7) Real-Time Computing Systems
- FCT Research Unit 608

Implementing Multicore Real-Time Scheduling
Algorithms Based on Task Splitting Using Ada 2012

Bjorn Andersson and Luis Miguel Pinho

Ada-Europe 2010, Valencia, Spain
June, 15, 2010

EP@ H U}‘R RAY ! I

instituto
superiorde ~ |NSTITUTO
nnnnnnnnnnn

Forewood

| | | | | S
&

2000 2005 2010 2015 2020 time

Attempts to transition RM and EDF to multicores.

Development of
multicore scheduling using
the task-splitting
class of algorithms.

New language constructs for
multicore real-time scheduling
proposed

C‘STER Research Centre in Task Splitting and Ada | AEZ2010, June, 15

= -) Real-Time Computing Systems
- FCT Research Unit 608 2

Forewood

2000 2005 2010 2015 2020 time

Attempts to transition RM and EDF to multicores.

Development of
multicore scheduling using
the task-splitting
class of algorithms.

Question: Can the new language constructs for supporting
multicore real-time scheduling be used to
Implement previously published multicore
scheduling algorithms based on task-splitting?

Outline

m System model and terminology
m Understanding task-splitting multiprocessor scheduling
m The new language constructs

m Implementing task-splitting multiprocessor scheduling with the
new language constructs

m Discussion and Conclusions

|STER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

C/ P) Real-Time Computing Systems
- FCT Research Unit 608 4

System model

®* midentical processors

®* Atask set Tcomposed of ntasks. t={r,, 7,,..., T}
* Atask t,is characterized by T, C;and D,.

* Atask 7, generates a (potentially infinite) sequence of jobs with
at least T, time units between arrivals of two consecutive jobs.

®* A job of 7; must perform C; units of execution at most D, time
units from its arrival.

|STER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15
C/.__/_j Real-Time Computing Systems

FCT Research Unit 608 5

Terminology

* For an implicit-deadline task set, it holds that: Vi: D=T..
* For a constrained-deadline task set, it holds that: Vi: D<T..

* For an arbitrary-deadline task set, there are no restrictions on
D;and T,

* The utilization of a task set is U=(1/m)*x3., , C/T,

* The utilization bound of a scheduling algorithm A is the
maximum number UB, such that for each task set with
utilization at most for UB, and Vi:C=<D, it implies that all
deadlines are met.

|STER Research Centre in Task splitting in Ada 2012 || AE2010, June, 15
C/.__/_j Real-Time Computing Systems 6

FCT Research Unit 608

Design space of multiprocessor scheduling
algorithms

Priority restriction

non-preemptive

Migration
allowed

Migration not
allowed

preemptive

Migration
allowed

Migration not
allowed

C‘STER Research Centre in

/./_7 Real-Time Computing Systems

FCT Research Unit 608

task-static | job-static dynamic

Task splitting in Ada 2012 AE2010, June, 15

7

Design space of multiprocessor scheduling
algorithms

Priority restriction

non-preemptive

Migration
allowed

Migration not
allowed

preemptive

Migration
allowed

Migration not
allowed

task-static | job-static dynamic

Task splitting algorithms are here.

C‘STER Research Centre in

/./_7 Real-Time Computing Systems

FCT Research Unit 608

Task splitting in Ada 2012 AE2010, June, 15

8

lllustration of Task Splitting

ISTE Research Centre in Task splitting in Ada 2012 AE2010, June, 15
Cfoé_)R Real-Time Computing Systems

FCT Research Unit 608 9

lllustration of Task Splitting

C‘STER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

= 7) Real-Time Computing Systems
bl FCT Research Unit 608 10

lllustration of Task Splitting

C‘STER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

= 7) Real-Time Computing Systems
bl FCT Research Unit 608 11

lllustration of Task Splitting

C‘STER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

= 7) Real-Time Computing Systems
bl FCT Research Unit 608 12

lllustration of Task Splitting

ISTE Research Centre in Task splitting in Ada 2012 || AE2010, June, 15
Cfoé_)R Real-Time Computing Systems

FCT Research Unit 608 13

lllustration of Task Splitting

ISTE Research Centre in Task splitting in Ada 2012 || AE2010, June, 15
Cfoé_)R Real-Time Computing Systems

FCT Research Unit 608 14

lllustration of Task Splitting

We can split it

ISTE Research Centre in Task splitting in Ada 2012 || AE2010, June, 15
Cfoé_)R Real-Time Computing Systems

FCT Research Unit 608 15

lllustration of Task Splitting

And now it is possible
to allocate the task(s)

|STER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15
C/./_D Real-Time Computing Systems

FCT Research Unit 608 16

lllustration of Task Splitting

™.

v

N\

It can happen that two pieces of a split task
executes simultaneously.

We need a dispatcher that avoids this. |

cls ER Research Centre in Task splitting in Ada 2012

= 7) Real-Time Computing Systems
bl FCT Research Unit 608 17

v

Different types of split-task dispatching

m Slot-based split-task dispatching
m Job-based split-task dispatching

m Suspension-based split-task dispatching

search Centre in Task splitting in Ada 2012 | AE2010, June, 15

al-Time Computing Systems
Research Unit 608 18

CISTER

3

Re
Re
FCT

Different types of split-task dispatching

m Suspension-based split-task dispatching

These types of algorithms have requirement sets
where they are superior.

ISTER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15
C/./_D Real-Time Computing Systems 19

FCT Research Unit 608

Different types of split-task dispatching

m Slot-based split-task dispatching

m Job-based split-task dispatching

This type of algorithms has no requirement set
where it is superior.

|STER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15
C/./_D Real-Time Computing Systems

FCT Research Unit 608 20

Different types of split-task dispatching

m Suspension-based split-task dispatching

We will only discuss these.

C‘STER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15
/./_D Real-Time Computing Systems 21

FCT Research Unit 608

Slot-based split-task dispatching: assign
reserves for the split tasks

Let 7, denote a task that is split between processor 1
and processor 2.

capacity reserved forz, on processor P,

capacity reserved for 7, on processor P,

A split task is only allowed to execute In its reserve.

Real-Time Computing Systems
FCT Research Unit 608

Slot-based split-task dispatching: assign
reserves for the split tasks

Let 7, denote a task that is split between processor 1
and processor 2.

capacity reserved forz, on processor P,

capacity reserved for 7, on processor P,

A split task executes with the highest priority in its reserve.

Real-Time Computing Systems
FCT Research Unit 608

Slot-based split-task dispatching: assign
reserves for the split tasks

Let 7, denote a task that is split between processor 1
and processor 2.

capacity reserved forz, on processor P,

time

P, 3 - II ¥ II II

"0 "Is 28 ' —4S ' 5S time

capacity reserved for 7, on processor P,

If processor p does not execute a split task at time ¢t then it
executes at time f the non-split task assigned to processor p
with the highest priority at time {.

Job-based split-task dispatching: assign subdeadlines
and offsets to “pieces” of the split tasks

7,1s a split task. When a job of 7, arrives, it executes on processor 1 and then 1t migrates to processor 2.

P4
>
time
P>
>
time
arrival of a job of task deadline of the job.

We let C,” and D, denote the execution time of the “piece”
of 7, that is assigned to P,.

IDicC oIS
Vv

C g e :
/._D Real-Time Computing Systems

FCT Research Unit 608 25

Job-based split-task dispatching: assign subdeadlines
and offsets to “pieces” of the split tasks

7,1s a split task. When a job of 7, arrives, it executes on processor 1 and then 1t migrates to processor 2.

P4
>
time
P>
>
time
arrival of a job of task deadline of the job.

We let C,”" and D, " denote the execution time of the “piece”
of 7, that is assigned to P,.

IDicC oIS
Vv

C g e :
/._D Real-Time Computing Systems

FCT Research Unit 608 26

Job-based split-task dispatching: assign subdeadlines
and offsets to “pieces” of the split tasks

7,1s a split task. When a job of 7, arrives, it executes on processor 1 and then 1t migrates to processor 2.

P4
>
time
P>
>
time
arrival of a job of task deadline of the job.

We select C," and C,"" as C, +C," "=C..

CISTE R Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

=) Real-Time Computing Systems
Rt FCT Research Unit 608 27

Job-based split-task dispatching: assign subdeadlines
and offsets to “pieces” of the split tasks

7,1s a split task. When a job of 7, arrives, it executes on processor 1 and then 1t migrates to processor 2.

P4
>
time
P>
>
time
arrival of a job of task deadline of the job.

We select D,” and D,"" as D, +D," "=D.,.

CISTE R Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

=) Real-Time Computing Systems
Rt FCT Research Unit 608 28

New language constructs
(recalling previous presentation)

The extension defines package Ada.Dispatching is

packages for handling the type Dispatching_Domain_Policy is private;

CPUs available, and the -- other declared types and subprograms not shown here
creation of dispatching end Ada.Dispatching;

domains.

package Ada.Dispatching.Domains is
type Dispatching Domain is private;

We are deadling with a single System_Dispatching_Domain: Dispatching_Domain;

domain so our main interest is
in Set CPU and -- other declared subprograms not shown here
Delay Until And_Set CPU

procedure Set CPU(P : in CPU_Range;
T :in Task _Id := Current_Task);

procedure Delay Until And_Set CPU(
Delay Until_Time : in Ada.Real _Time.Time;
P :in CPU_Range);
end Ada.Dispatching_Domains;

C‘STER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15
/'/j Real-Time Computing Systems
Rt FCT Research Unit 608 29

Implementing split-task multiprocessor
scheduling: slot-based split-task dispatching

m As seen in the example

o A high priority band is used for the split tasks’ slots

o Asynchronous task control is used to suspend a task if it
has reached the end of left slot

o Timing events manage the dispatching points
o Management encapsulated in a Protected Object

capacity reserved forz, on processor P,

capacity reserved for 7, on processor P,

Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

Real-Time Computing Systems
FCT Research Unit 608 30

Implementing split-task multiprocessor
scheduling: slot-based split-task dispatching

pragma Priority Specific_Dispatching (EDF_Across_Priorities, 1, 10) ;
pragma Priority Specific_Dispatching (FIFO_Within_Priorities, 11, 12);

protected type Sporadic_Switcher is
pragma Priority(12);
procedure Register(ID : Task ID; Phase 1 CPU, Phase 2 CPU: CPU_Range;
Phase 1 Reserve, Phase 2 Reserve : Time Span);
procedure Handler(TM :in out Timing_Event);
procedure Release Task;
procedure Finished,;
entry Wait;
private
-- private data
end Sporadic_Switcher;

CISTE R Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

=) Real-Time Computing Systems
Rt FCT Research Unit 608 31

Implementing split-task multiprocessor
scheduling: slot-based split-task dispatching

procedure Release Task is -- called by someone else or by interrupt
begin
-- decide if release or not depending of phase
if Release Time >= Slot_Start and Release Time < End_of Phase 1 then
Set CPU(Client_Phase 1 _CPU, Client_ID);
Switch_Timer.Set_Handler(End_of Phase 1, Handler'Access);
Client_Current_Phase := Phase 1;
Released := True;
elsif Release Time >= Start_of Phase 2 and Release Time < End_of Slot then
Set CPU(Client_Phase_2 CPU, Client_ID);
Switch_Timer.Set_Handler(End_of Slot, Handler'Access);
Client_Current_Phase := Phase 2;
Released := True;
else
Client_Current_Phase := Not_Released;
Switch_Timer.Set _Handler(Start_of Phase 2, Handler'Access);
end if;
end Release Task;

CISTE R Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

=) Real-Time Computing Systems
Rt FCT Research Unit 608 32

C/“

Implementing split-task multiprocessor
scheduling: slot-based split-task dispatching

procedure Handler(TM :in out Timing_Event) is

begin
case Client Current_Phase is

when Not_Released =>
Set CPU(Client_Phase 2 CPU, Client_ID);
Switch_Timer.Set_Handler(End_of Slot, Handler'Access);
Client_Current_Phase := Phase 2; Released := True;

when Phase 1 =>
Client_Current_Phase := Suspended;
Switch_Timer.Set_Handler(Start_of Phase 2, Handler'Access);
Hold(Client_ID);

when Suspended =>
Set CPU(Client_Phase 2 CPU, Client_ID);
Switch_Timer.Set_Handler(End_of Slot, Handler'Access);
Client_Current_Phase := Phase 2; Continue(Client_ID);

when Phase 2 =>
Set CPU(Client_Phase 1 _CPU, Client_ID);
Switch_Timer.Set_Handler(End_of Phase 1, Handler'Access);
Client_Current_Phase := Phase 1;

end case;
end Handler:;

Implementing split-task multiprocessor
scheduling: slot-based split-task dispatching

task body Task 2 is

begin My Switcher.Register(Current_Task,
CPU_2, CPU_1,
Reserve Phase 1 Task 2,
Reserve Phase 2 Task 2);
loop

My Switcher.Wait;
-- Code of application
My Switcher.Finished,;

end loop;
end Task 2;

C‘STER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

= 7) Real-Time Computing Systems
bl FCT Research Unit 608 34

Implementing split-task multiprocessor
scheduling: job-based split-task dispatching #1

m Simpler
o Uses Priorities
o Timing Event to change CPU in the end of phase 1
o Management encapsulated in a Protected Object

7,1s a split task. When a job of 7, arrives, it executes on processor 1 and then i1t migrates to processor 2.

P4
>
time
P
- >
time

CISTE R Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

= 7) Real-Time Computing Systems
Rt FCT Research Unit 608 35

Implementing split-task multiprocessor
scheduling: job-based split-task dispatching #1

Priority_Task1_First Phase : constant Priority := 20;
Priority _Task1_Second_Phase : constant Priority := 19;

Priority _Task2 : constant Priority := 18;
Priority _Task3 : constant Priority := 17;

protected type Job Based Switcher is
procedure Register(lID : Task_ID; Phase 1 CPU, Phase 2 CPU: CPU_Range;
Phase 1 C, Phase 2 C, Phase 1 D, Phase 2 D: Time Span;
Phase 1 _Prio, Phase 2 Prio: Priority);
procedure Handler(TM :in out Timing_Event);
procedure Release Task;
procedure Finished,;
entry Wait;
private
-- private data
end Sporadic_Switcher;

CISTE R Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

=) Real-Time Computing Systems
Rt FCT Research Unit 608 36

Implementing split-task multiprocessor
scheduling: job-based split-task dispatching #1

procedure Handler(TM :in out Timing_Event) is

begin
-- in this algorithm, handler is just called in the end of phase 1
Set CPU(Client_Phase_2 CPU, Client_ID);
Set_Priority(Client_Phase_ 2 Prio, Client_ID);

end Handler;

procedure Release Task is

begin
-- calculate parameters
-- set first phase parameters
Set CPU(Client_Phase_1 CPU, Client_ID);
Set_Priority(Client_Phase_1_Prio, Client_ID);
-- set timer
Switch_Timer.Set_Handler(End_of Phase 1, Handler'Access);
-- release
Released := True;

end Release Task;

CISTE R Research Centre in Task splitting in Ada 2012 AE2010, June, 15

= 7) Real-Time Computing Systems
Rt FCT Research Unit 608 37

Implementing split-task multiprocessor
scheduling: job-based split-task dispatching #2

m T[he second algorithm is also job-based split-task
m However, it uses EDF for scheduling tasks, and

m Migration is in dependent on actual execution time
o So a executon time timer is used

7,1s a split task. When a job of 7, arrives, it executes on processor 1 and then i1t migrates to processor 2.

P, >
time
P, >
time
C‘S E R Research Centre in Task splitting in Ada 2012 AE2010, June, 15

/._/_3 Real-Time Computing Systems

FCT Research Unit 608 38

Implementing split-task multiprocessor
scheduling: job-based split-task dispatching #2

protected body My Job Based Switcher is
procedure Register(ID : Task_ID; Phase 2 CPU: CPU_Range) ...

procedure Budget Expired(T : in out Ada.Execution_Time.Timers.Timer) is
begin
-- Similarly to previous section, handler just called in the end of phase 1
Set CPU(Client_Phase 2 CPU, Client_ID);
end Budget Expired;

end My_Job_Based_Switcher;

CISTE R Research Centre in Task splitting in Ada 2012 AE2010, June, 15

= 7) Real-Time Computing Systems
Rt FCT Research Unit 608 39

Implementing split-task multiprocessor
scheduling: job-based split-task dispatching #2

task body Task 2 is

begin
My Job Based Switcher.Register(...);
Next := Ada.Real_Time.Clock;

loop
Delay_Until_and_Set_Deadline(Next, Deadline_Task_2);

Set CPU(Phase 1 _CPU, My _ID);
Ada.Execution_Time.Timers.Set_Handler(The_Timer, C_First Phase,
My Job Based Switcher.Budget Expired'Access);

-- Code of application
Ada.Execution_Time.Timers.Cancel Handler(The_Timer, Cancelled);

Next := Next + Period _Task 2;

end loop;
end Task 2;

STE R Research Centre in Task splitting in Ada 2012 | AE2010, June, 15
C/_./D Real-Time Computing Systems 0

FCT Research Unit 608

Discussion

2000 2005 2010 2015 2020 time

Attempts to transition RM and EDF to multicores.

Development of
multicore scheduling using
the task-splitting
class of algorithms.

Question: Can the new language constructs for supporting
multicore real-time scheduling be used to
Implement previously published multicore
scheduling algorithms based on task-splitting?

CONSIFUCLS 10l sUppoeriing multcoere

S 1
ng Can e used e Implement
Ofie'S

d rnulrlr '€ scheduling algeritnms

Question: Can the new language constructs for supporting
multicore real-time scheduling be used to
implement previously published multicore
scheduling algorithms based on task-splitting?

Lonclusion
anguage oruu S TOr SUPPOrNG multcore
ed.llmg Can Pe Usea o implement
UpliIsnead multicere secheaduling algenthms
ASK=SPIItliNg.

2000

Jpen Question

W language CoNSLUCLS 1o SUpPortng
multicore real-time scheduling allow: efficient/strict
lm,)lamarz IONS Of; Previously publisnea multcore
SCHeauling algofithms basea on tasK=spliting 7

Question: Can the new language constructs for supporting
multicore real-time scheduling be used to
implement previously published multicore
scheduling algorithms based on task-splitting?

Discussion

m There are a few practical imperfections

m Code executing in the wrong processor
o Handlers and release procedures

o Should we specify in which CPU timing event and
execution time handlers execute?

m Setting in a different CPU may need to reschedule so
we need more experience with implementations
m In particular, a potential source of priority/deadline
Inversion
o Task 2 in the last example
o Also, periodic tasks in slot-based approaches must be via
a timer
m Should we defer changing CPU and Deadline?

o Instead a lot of Delay _Until And_Set X And_ Y And Z

CISTER Res (and do not forget Yield_And_Set_Deadline?)
/‘/‘D ECeTcResearchbn’ii’éOSr s | 44

Lonclusion
anguage oruu S TOr SUPPOrNG multcore
ed.llmg Can Pe Usea o implement
UpliIsnead multicere secheaduling algenthms
ASK=SPIItliNg.

2000

Jpen Question

W language CoNSLUCLS 1o SUpPortng
multicore real-time scheduling allow: efficient/strict
lm,)lamarz IONS Of; Previously publisnea multcore
SCHeauling algofithms basea on tasK=spliting 7

Question: Can the new language constructs for supporting
multicore real-time scheduling be used to
implement previously published multicore
scheduling algorithms based on task-splitting?

Thank You

Questions?

cls ER Research Centre in Task splitting in Ada 2012 | AE2010, June, 15

s Real-Time Computing Systems
bl FCT Research Unit 608 46

