

Program Verification in SPARK and ACSL:
A Comparative Case Study

Eduardo Brito and Jorge Sousa Pinto
{edbrito,jsp}@di.uminho.pt

15th International Conference on Reliable Software Technologies – Ada-Europe 2010

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

● Introduction
● Background

● Software Contracts & Verification Process
● SPARK
● ACSL
● Running Example (Stack)

● Bounded Stack Specification
● Reasoning With Specifications

● Implementation, Refinement & Program Verification
● Conclusion
● Future Work

Outline

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

● Why compare SPARK and ACSL?

● C and Ada are the most used languages in critical systems;

● SPARK enables program verification (among other things)

for a subset of Ada;

● ACSL is “ANSI/ISO C Specification Language”;

● To show the similarities and differences between the two

specification languages and approaches.

● Promoting the use of verification tools for both languages!

● As a short tutorial using a simple example.

Introduction

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

● Software Contracts
● We write the contracts in a Behavioral Interface

Specification Language;
● The contracts are the specification of properties;
● The contracts state:

– what a subprogram is expecting; (pre-condition)
● Established by the caller.

– what is expected from the suprogram. (post-condition)
● Established by the callee.

– There are usually contracts describing the state of the
program (e.g. data and class invariants).

Background

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

● Program Verification

● After the program is annotated with its annotations...

● … the Verification Condition (VC) generator (VCGen)

generates the VCs/Proof Obligations;

● The VCs are fed to theorem provers;

● They may be discharged (proved to be valid)

automatically (if possible) or manually.

– Or we may be able to find counter-examples that show the VC

is not valid.

Background

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

● SPARK

● The language is a strict/true subset of Ada;

● Uses its own BISL for the contracts;

● Uses a toolset to enforce its subset of Ada and to

generate and discharge Vcs;

● Depends on Ada compilers;

● Used in several large safety-critical projects and is

the focus of on-going academic research.

Background

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

● ACSL

● It is used for ANSI/ISO C code;

● The language is a separate entity from the

annotations;

● The BISL has to deal with more problems (e.g.

pointers, dynamic memory...);

● It provides several ways to specify mathematical

properties (axioms, lemmas, predicates,

behaviours...).

Background

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

Running example (general stack specification)

What is missing?

Background

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

Now in C/ACSL

Bounded Stack Specification

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Specification

State labels

Program Verification in SPARK and ACSLBounded Stack Specification

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

● Reasoning With Specifications

Bounded Stack Specification

Is it wrong not to ensure that the stack stays the same? We say it depends(?)

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

● Automatic proof with Simplifier

Bounded Stack Specification

Equivalent rules but only the second is able to discharge the VC.

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

● Proof rules in SPARK

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

● Proof rules in SPARK

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

● Proof rules in SPARK

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

● Proof rules in SPARK

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

● Proof rules in SPARK

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

Now for C/ACSL

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

Array bounds safety condition

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

● Same “swap with stack” as in the SPARK example.

● Discharges all proof obligations without needing additional

rules;

● Requires an implementation.

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLConclusion

● Safety in SPARK is easier to prove;

● SPARK is better for software contracts;

● Because of separate specification, mainly.

● SPARK has better support for abstraction;

● ACSL is more expressive;

● Functional correctness with ACSL is easier to prove;

● ACSL has better proof tool support;

● Hi-Lite, which has been announced last month, addresses the

strengths of both approaches.

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLFuture work

● This work is part of an effort aiming at formal

verification of Ada;

● A MSc thesis related to the formalization of a subset of

SPARK will be finished this year (hopefully!);

● 2 PhD projects starting now.

	Diapositivo 1
	Diapositivo 2
	Diapositivo 3
	Diapositivo 4
	Diapositivo 5
	Diapositivo 6
	Diapositivo 7
	Diapositivo 8
	Diapositivo 9
	Diapositivo 10
	Diapositivo 11
	Diapositivo 12
	Diapositivo 13
	Diapositivo 14
	Diapositivo 15
	Diapositivo 16
	Diapositivo 17
	Diapositivo 18
	Diapositivo 19
	Diapositivo 20
	Diapositivo 21
	Diapositivo 22
	Diapositivo 23
	Diapositivo 24
	Diapositivo 25
	Diapositivo 26
	Diapositivo 27
	Diapositivo 28
	Diapositivo 29
	Diapositivo 30
	Diapositivo 31
	Diapositivo 32
	Diapositivo 33
	Diapositivo 34
	Diapositivo 35
	Diapositivo 36

