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Program Verification in SPARK and ACSL

● Why compare SPARK and ACSL?

● C and Ada are the most used languages in critical systems;

● SPARK enables program verification (among other things) 

for a subset of Ada;

● ACSL is “ANSI/ISO C Specification Language”;

● To show the similarities and differences between the two 

specification languages and approaches.

● Promoting the use of verification tools for both languages!

● As a short tutorial using a simple example.

Introduction
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Program Verification in SPARK and ACSL

● Software Contracts
● We write the contracts in a Behavioral Interface 

Specification Language;
● The contracts are the specification of properties;
● The contracts state:

– what a subprogram is expecting; (pre-condition)
● Established by the caller.

– what is expected from the suprogram. (post-condition)
● Established by the callee.

– There are usually contracts describing the state of the 
program (e.g. data and class invariants).

Background
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Program Verification in SPARK and ACSL

● Program Verification

● After the program is annotated with its annotations...

● … the Verification Condition (VC) generator (VCGen) 

generates the VCs/Proof Obligations;

● The VCs are fed to theorem provers;

● They may be discharged (proved to be valid) 

automatically (if possible) or manually.

– Or we may be able to find counter-examples that show the VC 

is not valid.

Background
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Program Verification in SPARK and ACSL

● SPARK

● The language is a strict/true subset of Ada;

● Uses its own BISL for the contracts;

● Uses a toolset to enforce its subset of Ada and to 

generate and discharge Vcs;

● Depends on Ada compilers;

● Used in several large safety-critical projects and is 

the focus of on-going academic research.

Background
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Program Verification in SPARK and ACSL

● ACSL

● It is used for ANSI/ISO C code;

● The language is a separate entity from the 

annotations;

● The BISL has to deal with more problems (e.g. 

pointers, dynamic memory...);

● It provides several ways to specify mathematical 

properties (axioms, lemmas, predicates, 

behaviours...).

Background
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Program Verification in SPARK and ACSL

Running example (general stack specification)

What is missing?

Background
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Program Verification in SPARK and ACSL

Now in C/ACSL

Bounded Stack Specification
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Program Verification in SPARK and ACSLBounded Stack Specification



  



  



  

State labels

Program Verification in SPARK and ACSLBounded Stack Specification

Eduardo Brito @ Ada-Europe 2010 - 15/06/2010



  
Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSL

● Reasoning With Specifications

Bounded Stack Specification

Is it wrong not to ensure that the stack stays the same? We say it depends(?)
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Program Verification in SPARK and ACSL

● Automatic proof with Simplifier

Bounded Stack Specification

Equivalent rules but only the second is able to discharge the VC.
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Program Verification in SPARK and ACSLBounded Stack Implementation
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Program Verification in SPARK and ACSLBounded Stack Implementation
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Program Verification in SPARK and ACSLBounded Stack Implementation



  
Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation

● Proof rules in SPARK
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Program Verification in SPARK and ACSLBounded Stack Implementation

● Proof rules in SPARK
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Program Verification in SPARK and ACSLBounded Stack Implementation
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Program Verification in SPARK and ACSLBounded Stack Implementation
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Program Verification in SPARK and ACSLBounded Stack Implementation

● Proof rules in SPARK
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Program Verification in SPARK and ACSLBounded Stack Implementation

Now for C/ACSL
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Program Verification in SPARK and ACSLBounded Stack Implementation
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Program Verification in SPARK and ACSLBounded Stack Implementation
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Program Verification in SPARK and ACSLBounded Stack Implementation
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Program Verification in SPARK and ACSLBounded Stack Implementation

Array bounds safety condition
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Program Verification in SPARK and ACSLBounded Stack Implementation

● Same “swap with stack” as in the SPARK example.

● Discharges all proof obligations without needing additional 

rules;

● Requires an implementation.



  
Eduardo Brito @ Ada-Europe 2010 - 15/06/2010

Program Verification in SPARK and ACSLBounded Stack Implementation
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Program Verification in SPARK and ACSLConclusion

● Safety in SPARK is easier to prove;

● SPARK is better for software contracts;

● Because of separate specification, mainly.

● SPARK has better support for abstraction;

● ACSL is more expressive;

● Functional correctness with ACSL is easier to prove;

● ACSL has better proof tool support;

● Hi-Lite, which has been announced last month, addresses the 

strengths of both approaches.
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Program Verification in SPARK and ACSLFuture work

● This work is part of an effort aiming at formal 

verification of Ada;

● A MSc thesis related to the formalization of a subset of 

SPARK will be finished this year (hopefully!);

● 2 PhD projects starting now.
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