
Introduction Static State Versioning Version Computation Conclusion

Static Versioning of Global State for
Race Condition Detection

Steffen Keul

Dept. of Programming Languages and Compilers
Institute of Software Technology

University of Stuttgart

15th International Conference on Reliable Software
Technologies – Ada-Europe 2010

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 1 / 20



Introduction Static State Versioning Version Computation Conclusion

Outline

Introduction
Motivation

Static State Versioning
Motivation
Algorithm Design

Version Computation
Algorithm Outline
Interference Data Flow
Versioning

Conclusion
Conclusion

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 2 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Example: Real-World Data Race

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 3 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Example: Real-World Data Race

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 3 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Example: Real-World Data Race

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 3 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Example: Real-World Data Race

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 3 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Data Races

Definition (Data Race)

A data race occurs if two threads access a common storage
location without ordering constraints, and one of the accesses
modifies the storage contents.

Presence of data race means:
I possibly missing explicit synchronization
I for non-atomic accesses, possibility of illegal bit-patterns

Absence of data race means:
I some serialization of accesses exists
I no illegal bit-patterns are created

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 4 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Race detection

I data races can indicate programming errors
I confidence in absence of races through static analysis
I many analysis algorithms exist for data race detection
I some data races can be tolerated if the shared variable is

accessed atomically
I however, some critical race conditions are not data races
I this work aims at detection of all potentially harmful race

conditions

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 5 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Example: Static State Versioning

I Shared Variables:
sens_1, sens_2, sens_3

I Data Race because of
read of sens_3

I no synchronization
necessary if ints read
atomically, Data Race
uninteresting

I Versioning of reads
I Use of different versions

indicates programming
error

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 6 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Example: Static State Versioning

I Shared Variables:
sens_1, sens_2, sens_3

I Data Race because of
read of sens_3

I no synchronization
necessary if ints read
atomically, Data Race
uninteresting

I Versioning of reads
I Use of different versions

indicates programming
error

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 6 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Example: Static State Versioning

I Shared Variables:
sens_1, sens_2, sens_3

I Data Race because of
read of sens_3

I no synchronization
necessary if ints read
atomically, Data Race
uninteresting

I Versioning of reads

I Use of different versions
indicates programming
error

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 6 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Example: Static State Versioning

I Shared Variables:
sens_1, sens_2, sens_3

I Data Race because of
read of sens_3

I no synchronization
necessary if ints read
atomically, Data Race
uninteresting

I Versioning of reads
I Use of different versions

indicates programming
error

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 6 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Violation of Atomicity: uninteresting warnings

Example (Conflict accesses on g in thread2 and
thread3, but inconsistent expression only in thread3)

int g;

void *thread1(void *p)
{ while (1) g = read_sensor_value(); }

void *thread2(void *p)
{ while (1) act_1(5 * g + 17); }

void *thread3(void *p)
{ while (1) act_2(g * g); }

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 7 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Violation of Atomicity: nonatomic expressions
Example (Free of data races, but the mutex_lock-calls
around g1+g2 have no effect)

void *t1(void *p) void *t2(void *p)
{ mutex_lock(&m); { mutex_lock(&n);

g1 = ...; g2 = ...;
mutex_unlock(&m); mutex_unlock(&n);

} }

int main()
{ create(t1); create(t2);

mutex_lock(&m); mutex_lock(&n);
res = g1 + g2;
mutex_unlock(&n); mutex_unlock(&m);

}
Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 8 / 20



Introduction Static State Versioning Version Computation Conclusion

Motivation

Stale Updates

Example (Nonatomic increments)

pthread_mutex_lock(&m);
int local = global;
pthread_mutex_unlock(&m);

local += 17;

pthread_mutex_lock(&m);
global = local;
pthread_mutex_unlock(&m);

The LHS’s version (global directly before the assignment)
differs from the RHS’s version (local).

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 9 / 20



Introduction Static State Versioning Version Computation Conclusion

Algorithm Outline

State Versioning Algorithm

1. translate source code into intermediate representation, use
only atomic read and write operations

2. represent interfering data flow explicitly by insertion of
ψ-nodes for

I conflict reads
I uses of shared variables in protected regions

3. assign versions to reads in every function independent of
calling context, in bottom-up traversal of the call graph

4. adjust versions depending on context in top-down traversal
of the call graph

5. produce warning list for potentially inconsistent
expressions

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 10 / 20



Introduction Static State Versioning Version Computation Conclusion

Interference Data Flow

Lockset analysis

I determine the set of all possible (mutex-) locks: Lfull
I associate each site s in the program with the set of

mutex-locks lact(s) ⊆ Lfull that are active
I use monotonic analysis framework over (2Lfull ,⊆)
I initial value ∅ at function entry, Lfull for all other basic blocks
I at confluence points use intersection as meet operator
I distinguish different caller locksets at call sites

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 11 / 20



Introduction Static State Versioning Version Computation Conclusion

Interference Data Flow

Interference flow for conflict reads
I determine shared objects
I use locksets to determine conflict reads
I place ψ-node in front of every conflict read

Example (Insertion of ψ-nodes for conflict reads)

s = 0;

s = s + s;

⇒
sm1 = 0;
sm2 = ψ(sm1, st1 , . . . , stn );
sm3 = ψ(sm1, st1 , . . . , stn );
sm4 = sm2 + sm3;

So far . . .
I Synchronization is ignored

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 12 / 20



Introduction Static State Versioning Version Computation Conclusion

Interference Data Flow

Interference flow for protected regions
I identify protected regions
I regions protected by a common lock are mutually exclusive
I data flow can only occur from end to beginning of mutually

exclusive regions
⇒ Add Link-out and ψ nodes
I interference flow for multiple objects is stored into a single
ψ-node

A = {(lold, lnew) ∈ 2Lfull × 2Lfull :

lold ∩ Lout(bb) 6= ∅
∧ lnew ∩ Lout(bb) = ∅
∧ lold ∩ Lact(bb) = ∅
∧ lnew ∩ Lact(bb) = ∅}

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 13 / 20



Introduction Static State Versioning Version Computation Conclusion

Versioning

State Version Analysis

I every execution of a ψ-node represents a unique
observation of global state

I a unique version is assigned to every observation
I versions are propagated along the data flow paths
I every expression is assigned a version based on the

versions that flow into the expression
I if values of more than one version flow into an expression,

it is considered potentially inconsistent

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 14 / 20



Introduction Static State Versioning Version Computation Conclusion

Versioning

Bottom-up Pass

I state space: set of mappings Var→ {⊥,>, ψ1, . . . , ψn}
I optimistic assumption: caller does not propagate versions

into callee function
I analyze functions separately in reverse topological order
I multiple iterations for loops and recursion until fixed point is

reached
I transfer function propagates versions across

copy-statements
I if a node a = ψi is encountered, all variables of version i

are set to ⊥ and a’s version is set to i
I at call sites, use result of callee’s analysis, treat every

version j of the callee like an encounter of a node ψj

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 15 / 20



Introduction Static State Versioning Version Computation Conclusion

Versioning

Top-down Pass

I use the active state at a call site to propagate versions into
the callee function

I propagate versions along the def-use data flow links inside
the callee to update versions

I contexts at different call sites can be distinguished or can
be joined before the propagation

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 16 / 20



Introduction Static State Versioning Version Computation Conclusion

Versioning

l1 l2 l3 p xpr
void f(int p) > > > >
{
lock(&m);
sens_1,2 = ψ1(sens_1,2,...);
int l1 = sens_1; 1 > > >
int l2 = sens_2; 1 1 > >
unlock(&m);
...
sens_3 = ψ2(sens_3,...);
int l3 = sens_3; 1 1 2 >
if (l1 < l2) ...; 1 1 2 >
if (l2 < l3) ...; 1 1 2 >
if (l3 < p) ...; 1 1 2 >
}

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 17 / 20



Introduction Static State Versioning Version Computation Conclusion

Versioning

l1 l2 l3 p xpr
void f(int p) > > > >
{
lock(&m);
sens_1,2 = ψ1(sens_1,2,...);
int l1 = sens_1; 1 > > >
int l2 = sens_2; 1 1 > >
unlock(&m);
...
sens_3 = ψ2(sens_3,...);
int l3 = sens_3; 1 1 2 >
if (l1 < l2) ...; 1 1 2 > 1
if (l2 < l3) ...; 1 1 2 > ⊥
if (l3 < p) ...; 1 1 2 > 2
}

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 17 / 20



Introduction Static State Versioning Version Computation Conclusion

Versioning

f(ψ3(...)); l1 l2 l3 p xpr
void f(int p) > > > 3
{
lock(&m);
sens_1,2 = ψ1(sens_1,2,...);
int l1 = sens_1; 1 > > >
int l2 = sens_2; 1 1 > >
unlock(&m);
...
sens_3 = ψ2(sens_3,...);
int l3 = sens_3; 1 1 2 >
if (l1 < l2) ...; 1 1 2 > 1
if (l2 < l3) ...; 1 1 2 > ⊥
if (l3 < p) ...; 1 1 2 3 ⊥
}

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 17 / 20



Introduction Static State Versioning Version Computation Conclusion

Versioning

State Versioning Output
I warnings on possibly inconsistent expressions
I displayed in their syntactical context
I warnings on same combination of versions are output only

once

function f
psi: 0

l 3 < p
psi: 0

l2< l3
psi: 0

l1< l2
psi: 1

l3
psi: 2

p
psi: 3

l2
psi: 1

l3
psi: 2

l1
psi: 1

l2
psi: 1

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 18 / 20



Introduction Static State Versioning Version Computation Conclusion

Versioning

Evaluation

I implementation of the analysis in the Bauhaus system
I able to handle larger programs

I clamd: 66 KSLoC
I full context sensitivity needs 15 min
I 6,667 warnings

I number of warnings
I precision in data flow relation important
I flow-insensitive points-to information
I recognition of reference parameters not yet implemented

I future work
I increase precision in data flow representation
I determine cut-off strategy for data flow chains

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 19 / 20



Introduction Static State Versioning Version Computation Conclusion

Conclusion

Conclusion

I new analysis algorithm to detect inconsistent uses
I can find error patterns that data race detectors cannot
I can deal with atomic accesses
I generates higher quality warnings, easier to validate
I future work to deal with precision

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 20 / 20


	Introduction
	Motivation

	Static State Versioning
	Motivation
	Algorithm Design

	Version Computation
	Algorithm Outline
	Interference Data Flow
	Versioning

	Conclusion
	Conclusion


