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Motivation

Data Races

Definition (Data Race)

A data race occurs if two threads access a common storage
location without ordering constraints, and one of the accesses
modifies the storage contents.

Presence of data race means:
I possibly missing explicit synchronization
I for non-atomic accesses, possibility of illegal bit-patterns

Absence of data race means:
I some serialization of accesses exists
I no illegal bit-patterns are created
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Motivation

Race detection

I data races can indicate programming errors
I confidence in absence of races through static analysis
I many analysis algorithms exist for data race detection
I some data races can be tolerated if the shared variable is

accessed atomically
I however, some critical race conditions are not data races
I this work aims at detection of all potentially harmful race

conditions
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Motivation

Example: Static State Versioning

I Shared Variables:
sens_1, sens_2, sens_3

I Data Race because of
read of sens_3

I no synchronization
necessary if ints read
atomically, Data Race
uninteresting

I Versioning of reads
I Use of different versions

indicates programming
error
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Motivation

Violation of Atomicity: uninteresting warnings

Example (Conflict accesses on g in thread2 and
thread3, but inconsistent expression only in thread3)

int g;

void *thread1(void *p)
{ while (1) g = read_sensor_value(); }

void *thread2(void *p)
{ while (1) act_1(5 * g + 17); }

void *thread3(void *p)
{ while (1) act_2(g * g); }
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Motivation

Violation of Atomicity: nonatomic expressions
Example (Free of data races, but the mutex_lock-calls
around g1+g2 have no effect)

void *t1(void *p) void *t2(void *p)
{ mutex_lock(&m); { mutex_lock(&n);

g1 = ...; g2 = ...;
mutex_unlock(&m); mutex_unlock(&n);

} }

int main()
{ create(t1); create(t2);

mutex_lock(&m); mutex_lock(&n);
res = g1 + g2;
mutex_unlock(&n); mutex_unlock(&m);

}
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Motivation

Stale Updates

Example (Nonatomic increments)

pthread_mutex_lock(&m);
int local = global;
pthread_mutex_unlock(&m);

local += 17;

pthread_mutex_lock(&m);
global = local;
pthread_mutex_unlock(&m);

The LHS’s version (global directly before the assignment)
differs from the RHS’s version (local).
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Algorithm Outline

State Versioning Algorithm

1. translate source code into intermediate representation, use
only atomic read and write operations

2. represent interfering data flow explicitly by insertion of
ψ-nodes for

I conflict reads
I uses of shared variables in protected regions

3. assign versions to reads in every function independent of
calling context, in bottom-up traversal of the call graph

4. adjust versions depending on context in top-down traversal
of the call graph

5. produce warning list for potentially inconsistent
expressions
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Interference Data Flow

Lockset analysis

I determine the set of all possible (mutex-) locks: Lfull
I associate each site s in the program with the set of

mutex-locks lact(s) ⊆ Lfull that are active
I use monotonic analysis framework over (2Lfull ,⊆)
I initial value ∅ at function entry, Lfull for all other basic blocks
I at confluence points use intersection as meet operator
I distinguish different caller locksets at call sites
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Interference Data Flow

Interference flow for conflict reads
I determine shared objects
I use locksets to determine conflict reads
I place ψ-node in front of every conflict read

Example (Insertion of ψ-nodes for conflict reads)

s = 0;

s = s + s;

⇒
sm1 = 0;
sm2 = ψ(sm1, st1 , . . . , stn );
sm3 = ψ(sm1, st1 , . . . , stn );
sm4 = sm2 + sm3;

So far . . .
I Synchronization is ignored

Steffen Keul (University of Stuttgart) Static Versioning of Global State for Race Condition Detection AE 2010 12 / 20



Introduction Static State Versioning Version Computation Conclusion

Interference Data Flow

Interference flow for protected regions
I identify protected regions
I regions protected by a common lock are mutually exclusive
I data flow can only occur from end to beginning of mutually

exclusive regions
⇒ Add Link-out and ψ nodes
I interference flow for multiple objects is stored into a single
ψ-node

A = {(lold, lnew) ∈ 2Lfull × 2Lfull :

lold ∩ Lout(bb) 6= ∅
∧ lnew ∩ Lout(bb) = ∅
∧ lold ∩ Lact(bb) = ∅
∧ lnew ∩ Lact(bb) = ∅}
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Versioning

State Version Analysis

I every execution of a ψ-node represents a unique
observation of global state

I a unique version is assigned to every observation
I versions are propagated along the data flow paths
I every expression is assigned a version based on the

versions that flow into the expression
I if values of more than one version flow into an expression,

it is considered potentially inconsistent
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Versioning

Bottom-up Pass

I state space: set of mappings Var→ {⊥,>, ψ1, . . . , ψn}
I optimistic assumption: caller does not propagate versions

into callee function
I analyze functions separately in reverse topological order
I multiple iterations for loops and recursion until fixed point is

reached
I transfer function propagates versions across

copy-statements
I if a node a = ψi is encountered, all variables of version i

are set to ⊥ and a’s version is set to i
I at call sites, use result of callee’s analysis, treat every

version j of the callee like an encounter of a node ψj
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Versioning

Top-down Pass

I use the active state at a call site to propagate versions into
the callee function

I propagate versions along the def-use data flow links inside
the callee to update versions

I contexts at different call sites can be distinguished or can
be joined before the propagation
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Versioning

l1 l2 l3 p xpr
void f(int p) > > > >
{
lock(&m);
sens_1,2 = ψ1(sens_1,2,...);
int l1 = sens_1; 1 > > >
int l2 = sens_2; 1 1 > >
unlock(&m);
...
sens_3 = ψ2(sens_3,...);
int l3 = sens_3; 1 1 2 >
if (l1 < l2) ...; 1 1 2 >
if (l2 < l3) ...; 1 1 2 >
if (l3 < p) ...; 1 1 2 >
}
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Versioning

f(ψ3(...)); l1 l2 l3 p xpr
void f(int p) > > > 3
{
lock(&m);
sens_1,2 = ψ1(sens_1,2,...);
int l1 = sens_1; 1 > > >
int l2 = sens_2; 1 1 > >
unlock(&m);
...
sens_3 = ψ2(sens_3,...);
int l3 = sens_3; 1 1 2 >
if (l1 < l2) ...; 1 1 2 > 1
if (l2 < l3) ...; 1 1 2 > ⊥
if (l3 < p) ...; 1 1 2 3 ⊥
}
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Versioning

State Versioning Output
I warnings on possibly inconsistent expressions
I displayed in their syntactical context
I warnings on same combination of versions are output only

once

function f
psi: 0

l 3 < p
psi: 0

l2< l3
psi: 0

l1< l2
psi: 1

l3
psi: 2

p
psi: 3

l2
psi: 1

l3
psi: 2

l1
psi: 1

l2
psi: 1
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Versioning

Evaluation

I implementation of the analysis in the Bauhaus system
I able to handle larger programs

I clamd: 66 KSLoC
I full context sensitivity needs 15 min
I 6,667 warnings

I number of warnings
I precision in data flow relation important
I flow-insensitive points-to information
I recognition of reference parameters not yet implemented

I future work
I increase precision in data flow representation
I determine cut-off strategy for data flow chains
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Conclusion

Conclusion

I new analysis algorithm to detect inconsistent uses
I can find error patterns that data race detectors cannot
I can deal with atomic accesses
I generates higher quality warnings, easier to validate
I future work to deal with precision
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