
This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Hardware support for scheduling with Ada

Rod White

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 2 - 25/6/10

Topics

•  Context – the application domain
•  Background and motivation
•  Overall scheme
•  What is a “Butler”

•  concept
•  hardware perspective
•  “instruction” set

•  Integration with Ada
•  Zero-footprint
•  Ravenscar(-like)

•  Cooperative vs. preemptive scheduling
•  Results and observations
•  Future developments
•  Conclusions/questions

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 3 - 25/6/10

Context – the application domain

•  Real-time embedded systems
•  Constrained by

-  Available volume
-  Allowable mass
-  Power availability and dissipation

•  Harsh operational environment (temperature, vibration, shock etc)
-  COTS can not be used – few real technology choices available

•  High integrity
•  Defstan 00-55/56 SIL3/4, DO-178B Level A/B

•  Long lived products
•  Periodic updates – obsolescence and technology insertion
•  Evolving roles – requirements change and become more demanding over

time
•  Moderate production volumes – limited opportunity for economy of scale

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 4 - 25/6/10

Background and motivation

•  Nature of the application is hard real-time
•  A large number of external stimuli which can be at a high rate (e.g. > 15 kHz)
•  Complex and wide ranging algorithmic requirements

-  e.g. control, navigation, and image/radar processing
-  Safety related/critical parts

•  Processing deadlines must be met
•  Can’t afford to use all of the capacity on first delivery

-  Evolving roles require some usable processing margin
•  Products can only be supplied with limited processing resources

•  The computer system is always being squeezed
-  Small volume and mass (fuel and payload are considered to be more “useful”)
-  Aim to minimise cost in production

 limited processing resources
•  Need to maximise the potential capacity of processing platform

•  Dedicated hardware functions can be an efficient way of offloading tasks from the
general purpose processor

•  Diverse tasks and a high rate of interrupts make scheduling decisions potentially
costly

-  Can some of the scheduling “problem” be offloaded to hardware support?

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 5 - 25/6/10

Overall scheme

•  The goal is to offload the collection
and organisation of information that
is used to handle interrupts and
schedule tasks in a unified manner
•  Minimal space and power footprint
•  Efficient coupling to the processor –

low latency, simple access
•  High integrity – sufficiently

deterministic for safety related
applications

•  COTS processors and memory
parts in a custom package
•  ASIC is the glue that binds it all

together

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 6 - 25/6/10

What is a butler – the concept

•  Why a Butler? Using the term in its traditional (British) sense:
•  the person who organises the smooth operation of the household whilst deferring to

a higher “authority” for the important decisions
•  The hardware Butler handles all of the interrupts and is the focus for all of the

inter-task interactions, determining what is available to execute
•  Highly parallel hardware is good at handling a diverse range of asynchronous

sources
•  The decision to execute what is suggested is taken by a simple software kernel

-  Controls and interacts with the Butler using a small number of simple instructions
•  The fundamental “element” is the activity – something that may be scheduled

•  All of the other elements relate to the organisation and “control” of the activities –
waiting, stimulating, delaying etc

•  One idea but there have been several implementation variants depending on:
-  the platform
-  the technology
-  the production volumes
-  …

•  Range from a bespoke ASIC solution, through FPGA firmware, to software in a co-
processor

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 7 - 25/6/10

What is a “Butler” – hardware perspective

•  Set of “resources” that relate to the
activities and their grouping
•  The activities
•  Pollsets – groupings of activities

considered to be at the same
priority

•  Stim-wait nodes allowing activities
to wait on, and be released by a
particular event

•  A mechanism for the selection of
the next activity to be executed

•  Number of activities and width of
the set of stim/wait nodes depends
on the application

•  Other (per activity) features include:
•  Watchdog timers to detect over-

runs
•  Delay timers

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 8 - 25/6/10

What is a Butler – instruction set

•  Small number of instructions are use to control the activities operationally
•  Suspend – causes the current activity to release control and make itself

schedulable, allows other ready activities at the same or higher priority to be run
•  Wait <bit vector> – causes the current activity to release control and set the

wait bits defined in the <bit vector>. Becomes reschedulable once a corresponding
stim bit has been set by an event or stim instruction

•  Stim <activity, bit vector> – sets the stim bits in the bit vector for the
defined activity, if any stim matches a corresponding wait then the activity becomes
schedulable (used for s/w-s/w interactions)

•  Next_Activity <activity> – causes the selection logic to complete the
evaluation of the next activity to execute, the highest priority one is returned. [used
in conjunction with the suspend and wait instructions]

•  Curract <activity> – return the number of the current activity
•  AMI <boolean> – the returned state of the boolean indicates if there is an activity

of higher priority than the current one ready to be run (Anything More Important)

•  … and a few other are used in their initialisation, organisation into pollsets,
and general house-keeping functions

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 9 - 25/6/10

Integration with Ada – general approach

•  The general design approach follows that of a real-time network
•  Focus on threads and their interactions
•  Somewhat old-fashioned but well suited to these kinds of applications

•  Implementation uses a restricted subset of the Ada language
•  Only requires a simple runtime
•  High integrity – lots of SPARK Ada (keeping the required runtime small)

•  Two approaches:
•  A virtually runtime free environment (zero-footprint)

-  Butler activities are related to threads supplied by a simple kernel
-  Kernel supports a wide variety of inter-thread communication protocols

•  A runtime supporting Ravenscar-like tasking constructs
-  Butler activities are related to Ada tasks
-  … which in turn are implemented over the threads supplied by the simple kernel
-  Protected object are used for inter-task communication

•  The latter has the advantages of application portability at the cost of some
complexity in the kernel and runtime

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 10 - 25/6/10

Integration with Ada – Zero-footprint runtime

•  Main program creates all of the
threads
•  Associates these with Butler

activities
•  Organises them into pollsets

•  Inside the inter-task communication
protocols the Butler Wait, Stim
and Next_Activity instructions
are used to provide the desired
behaviours

•  Events are either handled by polling
the AMI instruction periodically or
as interrupts
•  Interrupts cause a full context

switch to the thread mapped to the
appropriate activity

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 11 - 25/6/10

Integration with Ada – Ravenscar(-like) runtime

•  All tasks are declared at library
level in a single package
•  Simplifies activation management
•  Each task is associated with a

Butler activity
•  Pollsets are are organised to group

the tasks of equal priority
•  Interrupts are mapped to protected

procedures
•  Each “interrupt” is also associated

with a particular Butler activity
•  Delay until statements use

dedicated timers within the Butler to
stimulate the activity as necessary

•  Protected entries are underpinned
by the use of the Wait and Stim
instructions

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 12 - 25/6/10

Cooperative vs. preemptive scheduling

•  Cooperative – no interrupts, the possible
task switching points are defined a priori
•  The assumed advantages of cooperative

scheduling are better schedulability and
lower processing overheads

•  Disadvantage in hard-real time system is
ensuring an adequate response to external
events

-  Application needs to be “seeded” with
cooperation points
-  Not possible to automate (so far) – too many
points swamp the benefits

•  The support provided by the Butler makes
the implementation of such a scheme
efficient and simple
•  Especially the AMI instruction

•  Two primitives used to seed application
•  Yield (same or higher priority)
•  Yield_to_Higher (strictly higher priority)

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 13 - 25/6/10

Results and observations

•  Using the Butler in a preemptive environment delivers only small gains
•  1-2% (of processor capacity)
•  However not heavily loaded

•  Cooperative savings were better
•  5% (of processor capacity)
•  Again, not heavily loaded

•  More recently, on a more heavily loaded system savings of ~10% have been
observed, also the loading profiles are less variable with the cooperative
approach
•  10% is considered to be a very worthwhile saving

•  The effort required to seed the application is not insignificant
•  Especially in the early phases of development where the rate of change is high

•  Suggests that starting with a preemptive approach and migrating to a
cooperative one once the solution is relatively stable is probably a good way to
proceed
•  Of course tool support for seeding would make this transition unnecessary

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 14 - 25/6/10

Future developments

•  More powerful platforms based on
FPGAs with embedded processing
cores
•  Hardcores used for the application
•  Softcore use to manage interfaces

and undertake the related Butler
functions

•  …challenges of scheduling the
application distributed across
multiple cores with a single Butler
device

•  Integration with Ada 2005 features
•  Use of the Butler watchdog to

support Ada.Execution_Time.Timers
for overrun detection

•  Low overhead approach based on
mapping the protected procedures
in Ada.Real_Time.Timing_Events to
Butler activities

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 15 - 25/6/10

Conclusions

•  Using hardware to support Ada scheduling has proven to be effective
•  Used across a number of fielded products
•  Has allowed “easy” migration as the processing platform has evolved

•  Integration with the limited Ada runtime has not proven to be too problematic
•  Given the high-integrity domain there seems little point in extending support beyond

Ravenscar to allow a more “complete” tasking model
•  … still some limited possibilities to explore (Ada 2005 timer related)

•  Cooperative scheduling enhances the benefits
•  Larger margins and more stable execution profiles
•  Ada 2012(?) should have support for the concepts of Yield_to_Higher and

Yield for non-preemptive dispatching

•  However modern processors present difficult challenges
•  Very high speed
•  Multiple cores
 … hardware scheduling coordination seems like a good idea – but how? (efficiently)

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2008.

Ref.: Page 16 - 25/6/10

Questions…

