Cache-aware Development
of High-Integrity Systems-

E. Mezzettif, A. Betts®, J. Ruiz!, T. Vardanega'

TUniversity of Padua (1), 8Rapita Systems (UK), *AdaCore (F)

‘The GNAT Pro Company

Valencia, June, 15t 2010

*Work performed with ESA/ESTEC support, under the COLA Project (ESTEC/Contract 22167/09/NL/jk)

Ada Europe 2010 15t International Conference on Reliable Software Technologies

AdaEurope
2010

Valencia

Table of contents

Caches in High Integrity Real-time Systems
m Cache Predictabilty Problem
m Current Industrial Practice

Cache-aware Development Process
m Cache-aware Coding
m Computing Better Code Organization
m Explicitly Controlling the Cache
m Integration in the Industrial Development Process

Conclusion

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 2/15

Caches in High Integrity Real-time Systems Cache Predictabilty Problem égf(giurope

Current Industrial Practice Valencia

High Integrity Real-time Systems

High requirements on verification and validation (V&V)
m time, space and communication dimensions (above functional)
m Execution of system activities within a least upper bound
m Sound and early information on the timing behavior
m Schedulability analysis techniques
- Preferably on an architectural model of the system
- Worst-Case Execution Time (WCET)
m Most conservative domain
m Especially in aerospace
m Avoid any changes, unless mission-critical
- w.r.t. both hardware and software technologies

Driven by ever-increasing user demands

m Advanced functionalities » more computational power
m Pushes toward the adoption of more complex processors
- Advanced features (caches, complex pipelines, etc.)

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 3/15

Caches in High Integrity Real-time Systems Cache Predictabilty Problem @gﬂf”mpe

Current Industrial Practice Valencia

Cache Predictabilty

m Execution-time variation in presence of caches
m Factors of influence
- Execution history, memory layout and task interactions
m Difficult to hit into their worst-case combination
- Especially in a scenario-based measurement approach
m Timing behavior depends on context (hardware and software)
m Cache-aware timing analysis and industrial-level tools
m Static WCET analysis (aiT form Absint)
m Hybrid WCET analysis (RapiTime from Rapita Systems)
- Combining static analysis with measurements
m Cache-aware schedulability analysis
- Accounting for Cache-Related Preemption Delay (CRPD)

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 4/15

Caches in High Integrity Real-time Systems Cache Predictabilty Problem ééjla(giurope

Current Industrial Practice Valencia

Timing Analysis in Industrial Practice

m Still rely on software simulation and testing

m Early WCET figures drawn from past experiences
m Safety margins

m WCET bounds consolidated by testing

m Unsafe in the presence of caches

m Existing tools and techniques not acknowledged yet

m Main motivations

m Overall complexity of analysis (and tools)
m Sometimes exceeding overestimation (static analysis)

- May lead to over-dimensioning of a system
m Late applicability
- On the final executable » too late in the development process!

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 5/15

Cache-aware Coding
Computing Better Code Organization AdaEurope
Explicitly Controlling the Cache 2010
Integration in the Industrial Development Process

Cache-aware Development Process
Valencia

Cache-awareness

m The domain seeks guarantees on the timing behavior
m From design to implementation
- Even in the presence of caches
m Development should be aware of the cache impact
m Caches accounted for in the early stages of development
m To control cache variability factors
m To ease system analyzability
m To be able to predict the system timing behavior earlier
- Final analysis should only confirm our expectations
m Involved dimensions
m Improvement of cache predictability at code level
m Control of the cache behavior
m Integration in the industrial development process

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 6/15

Cache-aware Coding
Computing Better Code Organization AdaEurope
Explicitly Controlling the Cache 2010
Integration in the Industrial Development Process

Cache-aware Development Process
Valencia

Cache-aware Coding

m Code Patterns and Coding Styles
m Affect both cache performance and analysability
- Reduce timing variability
- Avoid sources of overestimation that hamper cache analysis
m More easily enforced through automatic code-generation
m The role of compilers cannot be disregarded
- Mapping source code to machine code
- Several complex optimisation passes
m Software architectures
m Set the overall structure of the system
- Memory layout, execution paths, etc.
m Determine pattern of tasks interleaving and interactions
- Cache interference between tasks
m Each SW architecture » differing cache behavior
- Some architectural choices may reduce cache variability
- E.g. resource access protocols
- Cache-awareness as a factor of choice between architectures

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 7/15

Cache-aware Coding
Computing Better Code Organization AdaEurope
Explicitly Controlling the Cache 2010
Integration in the Industrial Development Process

Cache-aware Development Process
Valencia

Cache-aware Memory Layout

m Conflict misses in instruction cache

m Can be reduced or avoided through code placement

m Restraining variability from layout (and concurrency)
m Advantages include:

- Better WCET behavior
- Reduced execution-time variability
- Guarantees on the worst impact of cache misses

m Linker process is cache-oblivious
m Places sub-programs in consecutive memory locations

according to order found in object files
m Cache behavior may change because of

- Sub-programs ordering
- Increase in sub-program size
- More sub-programs added

m Compute cache-aware layout and force it on the linker

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 8/15

Cache-aware Coding
Computing Better Code Organization AdaEurope
Explicitly Controlling the Cache 2010
Integration in the Industrial Development Process

Cache-aware Development Process
Valencia

Effectiveness of a Cache-aware Layout

m Two Implemented Strategies

m Genetic Algorithm (onerous)

m Structural-based Algorithm

- Exploits knowledge of program structure
(call graph, execution frequency)

m Experimental evaluation

m Software representative of part of the Attitude and Orbit

Control System (AOCS)
m Instruction cache simulator

- 32 KB, 32 B lines, LRU, 4-ways set-associative
| Layout | Hits | Misses |
‘ Worst layout ‘ 526,444 ‘ 55,932 ‘

Best layout 582,115 261

m Worst Layout » sub-procedures mapping to the same cache set
m Best Layout » structural layout

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 9/15

Cache-aware Coding

Computing Better Code Organization AdaEurope
Explicitly Controlling the Cache 2010
Integration in the Industrial Development Process

Cache-aware Development Process
Valencia

Run-time support for cache management

m Goals

m Design of cache-aware application
m User in control of cache behavior in tasking application
- Forbid the usage of the cache to some tasks (or parts of it)
- Activities polluting the cache and not taking advantage of it,
e.g.:Memory scrubbing, parity checks, etc.

m Per-task cache control
m Enable/disable/freeze/flush cache

- Independent for instruction/data cache
Kept in the task control block

- Stored/restored during context switches
Interrupt may automatically freeze cache

- Handler automatically re-enable cache after frozen-on-interrupt
Global operations also possible

- Changing the cache behavior for all tasks
m At the cost of few extra assembly instructions in context

switches and interrupt handlers

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 10/15

Cache-aware Coding
izati AdaEurope
Cache-aware Development Process Eom_pytmg Better_ Geil2 Openiveiiem 2010 P
xplicitly Controlling the Cache .
v . Valencia
Integration in the Industrial Development Process

How to handle the cache at run time

task body Use_Cache is
begin
Set_Cache_State
(Cache => Instruction , State => Enabled, Partition.Wide => True);

Set_Cache_State
(Cache => Data, State => Enabled, Partition_.-Wide => True);

Enable_Cache_Freeze_On_Interrupt

(Cache => Instruction , Partition.Wide => True);
Enable_Cache_Freeze_On_Interrupt

(Cache => Data, Partition.Wide => True);

end l-J.s-e.Cache o

task body Optimize_-Loops is
begin
Set_Cache_State (Instruction, Frozen);

Set_Cache_State (Instruction, Enabled);
loop

end loop;
Set_Cache_State (Instruction, Frozen);

end Optimize_Loops;

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 11/15

Cache-aware Coding

Computing Better Code Organization AdaEurope
Cache-aware Development Process Explicitly Controlling the Cache 2010
Integration in the Industrial Development Process

Effectiveness of cache controlled by the user

Valencia

Tasking example

m Loop-intensive task benefits from cache

m Sequential task pollutes the cache

- Long sequential code which does not benefit from cache
m Results

- Reduced cache interference and hence faster execution

Sequential (cache disabled) 100 ~——Sequential (cache enabled)
s0 l —— periodic (cache enabled) s0 —— periodic (cache enabled)
o0 o0
w0 w0
20 20
0 o

B Cache controlled by the user B No cache control

- Better Performance -

Decrease cache performance
- Slightly less variability

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 12/15

Cache-aware Coding
Computing Better Code Organization AdaEurope
Explicitly Controlling the Cache 2010
Integration in the Industrial Development Process

Cache-aware Development Process
Valencia

Integration in the Industrial Development Process

m Timing behavior relevant throughout the whole process
m At different stages in the development process

- System and SW design » system dimensioning, tasks
allocation, budgeting, etc.

- SW Coding » performance and predictability

- SW lIntegration » final timing behavior

m At different levels of precision
m Allow to detect timing problem as early as possible
m Timing behavior determined and analysed at the lowest level
m Near the machine code
m Difficult to address it at higher levels of abstraction

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 13/15

Cache-aware Coding

izati AdaEurope
Cache-aware Development Process Compytmg Better_ Gaila Openiceiiey 2010 P
Explicitly Controlling the Cache .
A . Valencia
Integration in the Industrial Development Process

WCET Analysis in Early Development Process

m Static Analysis
m Complex low-level annotations to improve analysis precision
- No black-box analysis 4*

- Annotations may need to be changed after a re-compilation %*
- Quite onerous and error prone!

m Does not require the actual hardware v/
- A precise and sound model
m WCET estimates even of uncomplete code
- Program parts may be temporarily replaced by stubs
m Hybrid Analysis
m Allows black-box testing v/

m Produces not necessarily safe WCET estimates “*
m Does require the actual hardware (or simulator)

- Should not be a problem in the domain
m All program code must be available 4*

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 14/15

Conclusion

Conclusion

m Cache variability and predictability

m Hardly accountable for in early development process
m Static analysis » safe but not enough flexible

m The only solution on the "safe side”

m Unfit for prototyping and iterative development
m Hybrid analysis » much more agile but unsafe

m Less demanding approach

m Can leverage on available test cases

m WCET estimates must be consolidated

m Partial guarantees on the timing behavior

m Exclude extremely variable and unpredictable cache behavior
- Deciding a priori which tasks will benefit from caches
- Reducing cache variability arising from conflict misses
- Forcing good code patterns by automatic code generation

m Much work still to be done in this direction...

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems

AdaEurope
2010

Valencia

15/15

	Caches in High Integrity Real-time Systems
	Cache Predictabilty Problem
	Current Industrial Practice

	Cache-aware Development Process
	Cache-aware Coding
	Computing Better Code Organization
	Explicitly Controlling the Cache
	Integration in the Industrial Development Process

	Conclusion

