
Cache-aware Development
of High-Integrity Systems*

E. Mezzetti†, A. Betts§, J. Ruiz‡, T. Vardanega†

†University of Padua (I), §Rapita Systems (UK), ‡AdaCore (F)

Valencia, June, 15th, 2010

*Work performed with ESA/ESTEC support, under the COLA Project (ESTEC/Contract 22167/09/NL/jk)

Ada Europe 2010 15th International Conference on Reliable Software Technologies

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

AdaEurope
2010
Valencia

Table of contents

1 Caches in High Integrity Real-time Systems
Cache Predictabilty Problem
Current Industrial Practice

2 Cache-aware Development Process
Cache-aware Coding
Computing Better Code Organization
Explicitly Controlling the Cache
Integration in the Industrial Development Process

3 Conclusion

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 2/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache Predictabilty Problem
Current Industrial Practice

AdaEurope
2010
Valencia

High Integrity Real-time Systems

High requirements on verification and validation (V&V)
time, space and communication dimensions (above functional)

Execution of system activities within a least upper bound
Sound and early information on the timing behavior
Schedulability analysis techniques

- Preferably on an architectural model of the system
- Worst-Case Execution Time (WCET)

Most conservative domain
Especially in aerospace
Avoid any changes, unless mission-critical

- w.r.t. both hardware and software technologies

Driven by ever-increasing user demands

Advanced functionalities � more computational power
Pushes toward the adoption of more complex processors

- Advanced features (caches, complex pipelines, etc.)

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 3/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache Predictabilty Problem
Current Industrial Practice

AdaEurope
2010
Valencia

Cache Predictabilty

Execution-time variation in presence of caches
Factors of influence

- Execution history, memory layout and task interactions

Difficult to hit into their worst-case combination

- Especially in a scenario-based measurement approach

Timing behavior depends on context (hardware and software)

Cache-aware timing analysis and industrial-level tools

Static WCET analysis (aiT form AbsInt)
Hybrid WCET analysis (RapiTime from Rapita Systems)

- Combining static analysis with measurements

Cache-aware schedulability analysis

- Accounting for Cache-Related Preemption Delay (CRPD)

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 4/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache Predictabilty Problem
Current Industrial Practice

AdaEurope
2010
Valencia

Timing Analysis in Industrial Practice

Still rely on software simulation and testing

Early WCET figures drawn from past experiences
Safety margins
WCET bounds consolidated by testing
Unsafe in the presence of caches

Existing tools and techniques not acknowledged yet

Main motivations

Overall complexity of analysis (and tools)
Sometimes exceeding overestimation (static analysis)

- May lead to over-dimensioning of a system

Late applicability

- On the final executable � too late in the development process!

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 5/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache-aware Coding
Computing Better Code Organization
Explicitly Controlling the Cache
Integration in the Industrial Development Process

AdaEurope
2010
Valencia

Cache-awareness

The domain seeks guarantees on the timing behavior
From design to implementation

- Even in the presence of caches

Development should be aware of the cache impact

Caches accounted for in the early stages of development

To control cache variability factors
To ease system analyzability
To be able to predict the system timing behavior earlier

- Final analysis should only confirm our expectations

Involved dimensions

Improvement of cache predictability at code level
Control of the cache behavior
Integration in the industrial development process

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 6/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache-aware Coding
Computing Better Code Organization
Explicitly Controlling the Cache
Integration in the Industrial Development Process

AdaEurope
2010
Valencia

Cache-aware Coding

Code Patterns and Coding Styles
Affect both cache performance and analysability

- Reduce timing variability
- Avoid sources of overestimation that hamper cache analysis

More easily enforced through automatic code-generation
The role of compilers cannot be disregarded

- Mapping source code to machine code
- Several complex optimisation passes

Software architectures
Set the overall structure of the system

- Memory layout, execution paths, etc.
Determine pattern of tasks interleaving and interactions

- Cache interference between tasks
Each SW architecture � differing cache behavior

- Some architectural choices may reduce cache variability
- E.g. resource access protocols
- Cache-awareness as a factor of choice between architectures

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 7/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache-aware Coding
Computing Better Code Organization
Explicitly Controlling the Cache
Integration in the Industrial Development Process

AdaEurope
2010
Valencia

Cache-aware Memory Layout

Conflict misses in instruction cache

Can be reduced or avoided through code placement
Restraining variability from layout (and concurrency)
Advantages include:

- Better WCET behavior
- Reduced execution-time variability
- Guarantees on the worst impact of cache misses

Linker process is cache-oblivious

Places sub-programs in consecutive memory locations
according to order found in object files
Cache behavior may change because of

- Sub-programs ordering
- Increase in sub-program size
- More sub-programs added

Compute cache-aware layout and force it on the linker

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 8/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache-aware Coding
Computing Better Code Organization
Explicitly Controlling the Cache
Integration in the Industrial Development Process

AdaEurope
2010
Valencia

Effectiveness of a Cache-aware Layout

Two Implemented Strategies
Genetic Algorithm (onerous)
Structural-based Algorithm

- Exploits knowledge of program structure
(call graph, execution frequency)

Experimental evaluation
Software representative of part of the Attitude and Orbit
Control System (AOCS)
Instruction cache simulator

- 32 KB, 32 B lines, LRU, 4-ways set-associative

Layout Hits Misses

Worst layout 526,444 55,932
Best layout 582,115 261

Worst Layout � sub-procedures mapping to the same cache set
Best Layout � structural layout

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 9/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache-aware Coding
Computing Better Code Organization
Explicitly Controlling the Cache
Integration in the Industrial Development Process

AdaEurope
2010
Valencia

Run-time support for cache management

Goals

Design of cache-aware application
User in control of cache behavior in tasking application

- Forbid the usage of the cache to some tasks (or parts of it)
- Activities polluting the cache and not taking advantage of it,

e.g.:Memory scrubbing, parity checks, etc.

Per-task cache control
Enable/disable/freeze/flush cache

- Independent for instruction/data cache

Kept in the task control block
- Stored/restored during context switches

Interrupt may automatically freeze cache
- Handler automatically re-enable cache after frozen-on-interrupt

Global operations also possible
- Changing the cache behavior for all tasks

At the cost of few extra assembly instructions in context
switches and interrupt handlers

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 10/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache-aware Coding
Computing Better Code Organization
Explicitly Controlling the Cache
Integration in the Industrial Development Process

AdaEurope
2010
Valencia

How to handle the cache at run time

t a s k body Use Cache i s
beg in

S e t C a c h e S t a t e
(Cache => I n s t r u c t i o n , S t a t e => Enabled , P a r t i t i o n W i d e => True) ;

S e t C a c h e S t a t e
(Cache => Data , S t a t e => Enabled , P a r t i t i o n W i d e => True) ;

E n a b l e C a c h e F r e e z e O n I n t e r r u p t
(Cache => I n s t r u c t i o n , P a r t i t i o n W i d e => True) ;

E n a b l e C a c h e F r e e z e O n I n t e r r u p t
(Cache => Data , P a r t i t i o n W i d e => True) ;

. . .
end Use Cache ;

t a s k body O p t i m i z e L o o p s i s
beg in

S e t C a c h e S t a t e (I n s t r u c t i o n , Frozen) ;
. . .

S e t C a c h e S t a t e (I n s t r u c t i o n , Enabled) ;
l oop

. . .
end loop ;
S e t C a c h e S t a t e (I n s t r u c t i o n , Frozen) ;

. . .
end O p t i m i z e L o o p s ;

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 11/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache-aware Coding
Computing Better Code Organization
Explicitly Controlling the Cache
Integration in the Industrial Development Process

AdaEurope
2010
Valencia

Effectiveness of cache controlled by the user

Tasking example

Loop-intensive task benefits from cache
Sequential task pollutes the cache

- Long sequential code which does not benefit from cache

Results
- Reduced cache interference and hence faster execution

Cache controlled by the user
- Better Performance
- Slightly less variability

No cache control
- Decrease cache performance

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 12/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache-aware Coding
Computing Better Code Organization
Explicitly Controlling the Cache
Integration in the Industrial Development Process

AdaEurope
2010
Valencia

Integration in the Industrial Development Process

Timing behavior relevant throughout the whole process
At different stages in the development process

- System and SW design � system dimensioning, tasks
allocation, budgeting, etc.

- SW Coding � performance and predictability
- SW Integration � final timing behavior

At different levels of precision
Allow to detect timing problem as early as possible

Timing behavior determined and analysed at the lowest level

Near the machine code
Difficult to address it at higher levels of abstraction

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 13/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

Cache-aware Coding
Computing Better Code Organization
Explicitly Controlling the Cache
Integration in the Industrial Development Process

AdaEurope
2010
Valencia

WCET Analysis in Early Development Process

Static Analysis
Complex low-level annotations to improve analysis precision

- No black-box analysis j
- Annotations may need to be changed after a re-compilation j
- Quite onerous and error prone!

Does not require the actual hardware X
- A precise and sound model

WCET estimates even of uncomplete code

- Program parts may be temporarily replaced by stubs

Hybrid Analysis
Allows black-box testing X
Produces not necessarily safe WCET estimates j
Does require the actual hardware (or simulator)

- Should not be a problem in the domain

All program code must be available j

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 14/15

Caches in High Integrity Real-time Systems
Cache-aware Development Process

Conclusion

AdaEurope
2010
Valencia

Conclusion

Cache variability and predictability
Hardly accountable for in early development process

Static analysis � safe but not enough flexible
The only solution on the ”safe side”
Unfit for prototyping and iterative development

Hybrid analysis � much more agile but unsafe
Less demanding approach
Can leverage on available test cases
WCET estimates must be consolidated

Partial guarantees on the timing behavior
Exclude extremely variable and unpredictable cache behavior

- Deciding a priori which tasks will benefit from caches
- Reducing cache variability arising from conflict misses
- Forcing good code patterns by automatic code generation

Much work still to be done in this direction...

Mezzetti, Betts, Ruiz, Vardanega Cache-aware Development of High-Integrity Systems 15/15

	Caches in High Integrity Real-time Systems
	Cache Predictabilty Problem
	Current Industrial Practice

	Cache-aware Development Process
	Cache-aware Coding
	Computing Better Code Organization
	Explicitly Controlling the Cache
	Integration in the Industrial Development Process

	Conclusion

