
The Evolution of Real-Time
Programming Revisited

Programming the Giotto Model in
Ada 2005

Structure

  Kirsch and Sengupta original paper
  Temporal Scopes
  Giotto
  Controlling Input and Output Jitter in Ada
  Conclusions

Kirsch and Segupta

  Physical execution time model
  assembly languages

  Bounded execution time model
  Ada, Real-Time Java, RTOS

  Zero execution time model
  Esterel, Lustre

  Logical execution time model
  Giotto

Deadline
Now

a

b

c

Minimum delay

Maximum
elapse time

Units of execution

Maximum execution time = a + b +c

Temporal Scopes

Giotto

  A language for control applications
  Output produced at deadline, not before
  A task is logically executing from release to

deadline
  Supports

  Time Safety and
  I/O Composability

The Logical Execution-Time Model

release
event

termination
event

Logical Execution Time

Input ports
updated at
release event

Actual
execution
can occur at
any time

Output ports updated
at termination event

Example – pseudo code
sensor
 port temperature type integer range 10 .. 500
 port pressure type integer range 0 .. 750
actuator
 port heater type (on, off)
 port pump type integer 0 .. 9
input
 T1 type integer range 10 .. 500
 PI type integer range 0 .. 750
output
 TO type (on, off)
 PO type integer 0 .. 9

Controlling I/O Jitter
  A periodic control task needs to take input from the

environment is a very regular way, and similarly produce
output with little variation in time
  Input jitter
  Output jitter

  This is the key issue the LET model addresses
  I/O composability
  Time safety by schedulability analysis

Example of Input/Output Jitter

Controlling Input and Output Jitter

  Sensors and actuators are read and written by
asynchronous event handlers

  Work done by a task

Processing real-time thread

0 Max Input
Jitter

Minimum
Latency

Deadline
(Max latency)

Controlling jitter in Ada

  Use a timing event for input and a separate
timing event for output

  Use a task for processing the input data to
produce the output

  Assume a period of 40ms in a controller

Sensor Reader spec

protected type Sensor_Reader is
 pragma Interrupt_Priority (Interrupt_Priority’Last);
 procedure Start;
 entry Read(Data : out Sensor_Data);
 procedure Timer(Event : in out Timing_Event);
end Sensor_Reader;

Input_Jitter_Control : Timing_Event;
Input_Period : Time_Span := Milliseconds(40);

Sensor Reader body
protected body Sensor_Reader is
 procedure Start is
 begin
 Reading := Read_Sensor;
 Next_Time := Clock + Input_Period;
 Data_Available := True;
 Set_Handler(Input_Jitter_Control,
 Next_Time, Timer'Access);
 end Start;

 entry Read(Data : out Sensor_Data) when Data_Available is
 begin
 Data := Reading;
 Data_Available := False;
 end Read;

Sensor Reader body
 procedure Timer(Event : in out Timing_Event) is
 begin
 -- Reading from sensor interface
 Data_Available := True;
 Next_Time := Next_Time + Input_Period;
 Set_Handler(Input_Jitter_Control, Next_Time,
 Timer'Access);
 end Timer;

end Sensor_Reader;

Output jitter control

  A type is also defined for output jitter control
(Actuator_Writer)

  Assuming a deadline of 30ms (period is
40ms) and max output jitter of 4ms:

SR.start; -- of type Sensor_Reader
delay 0.026; -- ie 26ms later
AW.start; -- of type Actuator_Writer

Controlling task
task type Control_Algorithm
 (Input : access Sensor_Reader;
 Output : access Actuator_Writer);
task body Control_Algorithm is
 Input_Data : Sensor_Data;
 Output_Data : Actuator_Data;
begin
 loop
 Input.Read(Input_Data);
 -- process data;
 Output.Write(Output_Data);
 end loop;
end Control_Algorithm;

A Three-task model

  The main disadvantage of the LET model
(and the Ada solution) is that all input and
output is treated identically

  It is not possible to take in to account
processing that is more tolerant to the
noise introduced by input jitter

  A three-task solution allows each tasks to
be given a deadline and be scheduled
accordingly

Conclusions
  Kirsch and Sengupta do not take into account “expressive

power” and “ease of use”
  The LET model has limited expressive power but has great

ease of use
  but only if your application requirements exactly match the

supported model
  Ada 2005 has greater expressive power

  Lower-level mechanisms allow more applications
requirements to be met

  Ease of use is the compromise
  Real-time utilities can help

