
AdaStreams : A Type-based Programming

Extension for Stream-Parallelism

with Ada 2005

Gingun Hong*, Kirak Hong*, Bernd Burgstaller* and Johan Blieberger◊

*Yonsei University, Korea
◊Vienna University of Technology, Austria

The „free performance lunch‟ is over

 By Moore‟s Law, the

number of transistors

in CPU is still

increasing

 Since 2000, Clock

speed stopped going

up

 Now: deliver more

cores per chip

(multicores, GPUs)

 “Every year we get

faster more

processors.”

1

The Fate of Sequential Programs...

 A sequential program is restricted to a single core.

 Performance might even decrease on future multi-core

architectures because of lower Perf/Clock ratio.

 No more performance gains in foreseeable future for

sequential programs on multicore architectures.
2

Programmers are Challenged...

With thread-and-lock based programs:

 race-conditions

 deadlocks

 starvation

 non-composeability of software

Hardware is back on the programmer‟s horizon:

 performance bugs

 Scalability problems

 Performance portability

 without knowing the underlying hw, it‟s impossible to write efficient

parallel programs

3

Processor Architectures

Common Properties

Single flow of control

Single memory image

Differences

Register file

Instruction set

architecture

Functional units

Uniprocessors:

Von-Neuman languages represent common

properties and abstract away differences.

Common Properties

Multiple flows of control

Multiple local memories, e.g., Cell BE

Differences

Number and capabilities of cores

Communication model

Synchronization model

Multicores:

Need a common programming paradigm for

multicore architectures.

4

Streaming as a New
Programming Paradigm

 For programs based on streams of data

 Audio, video, DSP, networking,

cryptographic processing kernels

 Examples: HDTV editing, radar tracking,

cell phone base stations, computer

graphics

 Properties of streams:

 Independent filters (aka „actors‟)

communicating via data-channels

 Regular and repeating computation &

communication

 Task, data, and pipeline parallelism

expressible

AtoD

HPF1 HPF2 HPF3

Joiner

Splitter

LPF1 LPF2 LPF3

FMDemod

Adder

Speaker

5

Task+Data+Pipeline Parallelism

T5T4T3

T6

T2

T1

Task

P
ip

e
li
n

e

Data

Data Parallelism

 Same operation on different data items

 Placed within splitter/joiner pair (fission)

 e.g., 4 x T2

Task Parallelism

 Between filters without producer/consumer

relationship

 e.g., T3, T4, T5

Pipeline Parallelism

 Between producers and consumers

 e.g., T1, T2, …

data-parallel

task-parallel

6

Splitter

Joiner

Splitter

Joiner

AdaStreams

 Programming library in Ada 2005

 Adds stream programming functionality to Ada

 Existing Ada code is reusable

 Lowers entry barrier to stream programming

 How to use AdaStreams:

1) User defines actors by extending provided type-hierarchy

 Three basic actor types : filters, splitters and joiners

 User specifies how actors will work

2) User connects actors to build stream graph

3) User starts execution

► Runtime system manages efficient execution on multi-core hardware

7

Defining actors

 Filter as a basic unit of computation

 Tagged type with AdaStreams

 Designated input and output type

 User defines filter‟s Work() function

Filter

8

Procedure Work (f:access Filter) Is

Item : In_Type;

Ret : Out_Type;

Begin

F.Pop(Item);

F.Pop(Item);

Do_Something(Item, Ret)

F.Push(Ret);

End Work;

In_Type

Out_Type

Defining actors

 Filter as a basic unit of computation

 Tagged type with AdaStreams

 Designated input and output type

 User defines filter‟s Work() function

Filter

9

In_Type

Out_Type

Procedure Work (f:access Filter) Is

Item : In_Type;

Ret : Out_Type;

Begin

F.Pop(Item);

F.Pop(Item);

Do_Something(Item, Ret)

F.Push(Ret);

End Work;

Defining actors

10

 All actors extend tagged type Base_Filter

 Splitters and Joiners

 Have no computations, just data transfers

 Enable data and task parallelism

Filter Splitter Joiner

Filter Splitter Joiner

Base_Filter

Actor class hierarchy

Actor Root Type: Base_Filter

package Base_Filter is

type Base_Filter is abstract tagged private;

procedure Work (f: access Base_Filter) is abstract;

procedure Connect(f: access Base_Filter;

b: access Base_Filter’Class;

out_weight: Positive := 1;

in_weight: Positive := 1)

is abstract;

private

type Base_Filter is abstract tagged null record;

end Base_Filter;

11

 Base_Filter is parent

of all actor types

 Actors override

Base_Filter‟s

primitive operations

 Work()

 Connect()

Filter Splitter Joiner

Base_Filter

Generic Filter Package

with Root_Data_Type, Base Filter;

generic

type In_Type is

new Root_Data_Type.Root_Data_Type with private;

type Out_Type is

new Root_Data_Type.Root_Data_Type with private;

12

 Filter type depends on

generic types

 In_Type, Out_Type

 User-defined extension of

Root_Data_Type

Filter Splitter Joiner

Base_Filter

Generic Filter Package

with Root_Data_Type, Base Filter;

generic

type In_Type is

new Root_Data_Type.Root_Data_Type with private;

type Out_Type is

new Root_Data_Type.Root_Data_Type with private;

13

 Filter type depends on

generic types

 In_Type, Out_Type

 User-defined extension of

Root_Data_Type

Int Float

Root_Data_Type

Filter Splitter Joiner

Base_Filter

Generic Filter Package

with Root_Data_Type, Base Filter;

generic

type In_Type is

new Root_Data_Type.Root_Data_Type with private;

type Out_Type is

new Root_Data_Type.Root_Data_Type with private;

package Filter is

type Filter is new Base_Filter.Base_Filter

with private;

procedure Work(F: access Filter) is abstract;

procedure Push(F: access Filter; Item: Out_Type);

function Pop(F: access Filter) return In_Type;

private

…

end Filter;

14

 Filter type depends on

generic types

 In_Type, Out_Type

 User-defined extension of

Root_Data_Type

 Work() procedure is

abstract

 User defines Work()

procedure

 Push() writes data to

output data channel

 Pop reads data from input

data channel

Stream Graph Construction

 Connect() operation attaches

downstream actor:

 Arguments:

 downstream actor (Y)

 # items produced by source (1)

 # items consumed by sink (2)

 Run-time type check:

 prevents type-clash of connected actors

 Call to run-time system (RTS):

 to build stream graph representation
15

Y

X

1

2

Out_Type = Int

In_Type = Int

X.Connect (Y, 1, 2);

Stream Graph Construction

16

Get_In_Type(Y)

X.out_type=Y.in_type?

X.out_weight:=1

Y.In_weight:=2

RTS.Connect(X,Y,1,2);

Y.Set_In_Weight(2)

AdaStreams

User

Actor

X

Actor

Y
RTS

X.Connect(Y,1,2)

Executing stream programs

 Run-time system (RTS) manages execution

 Initiated by RTS.Run()

 Maps stream-graph onto # available cores

 Executes periodic schedule # iterations times

Package RTS is

Stream_Type_Error : exception

--Raised with connections of type-incompatible actors

procedure Connect(…);

procedure Run(NrCPUs : Positive;

NrIterations : Natural);

End RTS;

17

Run-time system support

1) Determine a periodic schedule for stream graph

execution

2) Allocate data channels between actors

3) Profile actors

4) Load balance actors among available cores

18

Compute Periodic Schedule

 Periodic schedule is a finite schedule of actors

 Invokes each actor at least once

 Produces no net change in amount of buffered data

 That is, the number of tokens on each edge is the same

before/after schedule execution

3

2

X produces 3 items

Y consumes 2 items

XX YYY is a periodic schedule

X

Y
19

Buffer Communication

 Concurrent actor execution requires buffer

synchronization

 Synchronization limits parallelism

 producer/consumer synchronize once per buffer access!

 Cache-coherence causes additional slow-down!

20

Buffer

Y

X

Push()

Pop()

CPU Core 1

CPU Core 2

Double Buffering

 Empty buffer

 Filled by upstream actor‟s Work() function

 Full buffer

 Drained by downstream actor‟s Work() function

 All actors synchronize only once at barrier before next iteration.

21barrier sync.

Buffer2

Y

X

Push()

Pop()

Iteration N

empty fullBuffer1

Double Buffering

 Empty buffer

 Filled by upstream actor‟s Work() function

 Full buffer

 Drained by downstream actor‟s Work() function

 All actors synchronize only once at barrier before next iteration.

22

Buffer2

Y

X

Push()

Pop()

Iteration N barrier sync.

empty fullBuffer1 Buffer2

Y

X

Push()

Pop()

Iteration N+1

full emptyBuffer1

Profiling

 Find out CPU cycles that actor spends in its Work()

procedure

 Done during execution because of actors‟ side effects

 Profiler counts CPU cycles in the booting phase

B

A

C
23

Boot up

Boot down

Periodic schedule

BA C

BA

A

B C

C

BA C

BA C

……

Actor-to-CPU Assignment

 Load-balance actors among CPUs

 Multiple Knapsack problem, NP-complete

 Greedy approximation algorithm used

 Actors sorted by execution time from largest to smallest

 Assigned to CPU cores based on accumulated load.

 Execute program with the number of iterations

24

F

1

F

2

F

3

s

J
F1

Sorted

execution times

F3
F2

S J

24 Barrier

Core1 Core2

Idle

F1
F3

F2S

J

Benchmark Results

25

Conclusions

 Add stream programming functionality to Ada2005

 Lowers entry barrier to stream programming

 Existing Ada code is reusable

 Abstracts away underlying parallel hardware

 Runtime system supports efficient program execution

 Computes periodic schedules

 Profiles and load-balances actors

 Unlike previous approaches

 stream-graphs can be constructed at run-time

 Compute-intensive applications show best speedups.

26

Q&A

Thank you

☺

AdaStreams sources are available at

http://elc.yonsei.ac.kr/AdaStreams.htm

27

