
AdaStreams : A Type-based Programming

Extension for Stream-Parallelism

with Ada 2005

Gingun Hong*, Kirak Hong*, Bernd Burgstaller* and Johan Blieberger◊

*Yonsei University, Korea
◊Vienna University of Technology, Austria

The „free performance lunch‟ is over

 By Moore‟s Law, the

number of transistors

in CPU is still

increasing

 Since 2000, Clock

speed stopped going

up

 Now: deliver more

cores per chip

(multicores, GPUs)

 “Every year we get

faster more

processors.”

1

The Fate of Sequential Programs...

 A sequential program is restricted to a single core.

 Performance might even decrease on future multi-core

architectures because of lower Perf/Clock ratio.

 No more performance gains in foreseeable future for

sequential programs on multicore architectures.
2

Programmers are Challenged...

With thread-and-lock based programs:

 race-conditions

 deadlocks

 starvation

 non-composeability of software

Hardware is back on the programmer‟s horizon:

 performance bugs

 Scalability problems

 Performance portability

 without knowing the underlying hw, it‟s impossible to write efficient

parallel programs

3

Processor Architectures

Common Properties

Single flow of control

Single memory image

Differences

Register file

Instruction set

architecture

Functional units

Uniprocessors:

Von-Neuman languages represent common

properties and abstract away differences.

Common Properties

Multiple flows of control

Multiple local memories, e.g., Cell BE

Differences

Number and capabilities of cores

Communication model

Synchronization model

Multicores:

Need a common programming paradigm for

multicore architectures.

4

Streaming as a New
Programming Paradigm

 For programs based on streams of data

 Audio, video, DSP, networking,

cryptographic processing kernels

 Examples: HDTV editing, radar tracking,

cell phone base stations, computer

graphics

 Properties of streams:

 Independent filters (aka „actors‟)

communicating via data-channels

 Regular and repeating computation &

communication

 Task, data, and pipeline parallelism

expressible

AtoD

HPF1 HPF2 HPF3

Joiner

Splitter

LPF1 LPF2 LPF3

FMDemod

Adder

Speaker

5

Task+Data+Pipeline Parallelism

T5T4T3

T6

T2

T1

Task

P
ip

e
li
n

e

Data

Data Parallelism

 Same operation on different data items

 Placed within splitter/joiner pair (fission)

 e.g., 4 x T2

Task Parallelism

 Between filters without producer/consumer

relationship

 e.g., T3, T4, T5

Pipeline Parallelism

 Between producers and consumers

 e.g., T1, T2, …

data-parallel

task-parallel

6

Splitter

Joiner

Splitter

Joiner

AdaStreams

 Programming library in Ada 2005

 Adds stream programming functionality to Ada

 Existing Ada code is reusable

 Lowers entry barrier to stream programming

 How to use AdaStreams:

1) User defines actors by extending provided type-hierarchy

 Three basic actor types : filters, splitters and joiners

 User specifies how actors will work

2) User connects actors to build stream graph

3) User starts execution

► Runtime system manages efficient execution on multi-core hardware

7

Defining actors

 Filter as a basic unit of computation

 Tagged type with AdaStreams

 Designated input and output type

 User defines filter‟s Work() function

Filter

8

Procedure Work (f:access Filter) Is

Item : In_Type;

Ret : Out_Type;

Begin

F.Pop(Item);

F.Pop(Item);

Do_Something(Item, Ret)

F.Push(Ret);

End Work;

In_Type

Out_Type

Defining actors

 Filter as a basic unit of computation

 Tagged type with AdaStreams

 Designated input and output type

 User defines filter‟s Work() function

Filter

9

In_Type

Out_Type

Procedure Work (f:access Filter) Is

Item : In_Type;

Ret : Out_Type;

Begin

F.Pop(Item);

F.Pop(Item);

Do_Something(Item, Ret)

F.Push(Ret);

End Work;

Defining actors

10

 All actors extend tagged type Base_Filter

 Splitters and Joiners

 Have no computations, just data transfers

 Enable data and task parallelism

Filter Splitter Joiner

Filter Splitter Joiner

Base_Filter

Actor class hierarchy

Actor Root Type: Base_Filter

package Base_Filter is

type Base_Filter is abstract tagged private;

procedure Work (f: access Base_Filter) is abstract;

procedure Connect(f: access Base_Filter;

b: access Base_Filter’Class;

out_weight: Positive := 1;

in_weight: Positive := 1)

is abstract;

private

type Base_Filter is abstract tagged null record;

end Base_Filter;

11

 Base_Filter is parent

of all actor types

 Actors override

Base_Filter‟s

primitive operations

 Work()

 Connect()

Filter Splitter Joiner

Base_Filter

Generic Filter Package

with Root_Data_Type, Base Filter;

generic

type In_Type is

new Root_Data_Type.Root_Data_Type with private;

type Out_Type is

new Root_Data_Type.Root_Data_Type with private;

12

 Filter type depends on

generic types

 In_Type, Out_Type

 User-defined extension of

Root_Data_Type

Filter Splitter Joiner

Base_Filter

Generic Filter Package

with Root_Data_Type, Base Filter;

generic

type In_Type is

new Root_Data_Type.Root_Data_Type with private;

type Out_Type is

new Root_Data_Type.Root_Data_Type with private;

13

 Filter type depends on

generic types

 In_Type, Out_Type

 User-defined extension of

Root_Data_Type

Int Float

Root_Data_Type

Filter Splitter Joiner

Base_Filter

Generic Filter Package

with Root_Data_Type, Base Filter;

generic

type In_Type is

new Root_Data_Type.Root_Data_Type with private;

type Out_Type is

new Root_Data_Type.Root_Data_Type with private;

package Filter is

type Filter is new Base_Filter.Base_Filter

with private;

procedure Work(F: access Filter) is abstract;

procedure Push(F: access Filter; Item: Out_Type);

function Pop(F: access Filter) return In_Type;

private

…

end Filter;

14

 Filter type depends on

generic types

 In_Type, Out_Type

 User-defined extension of

Root_Data_Type

 Work() procedure is

abstract

 User defines Work()

procedure

 Push() writes data to

output data channel

 Pop reads data from input

data channel

Stream Graph Construction

 Connect() operation attaches

downstream actor:

 Arguments:

 downstream actor (Y)

 # items produced by source (1)

 # items consumed by sink (2)

 Run-time type check:

 prevents type-clash of connected actors

 Call to run-time system (RTS):

 to build stream graph representation
15

Y

X

1

2

Out_Type = Int

In_Type = Int

X.Connect (Y, 1, 2);

Stream Graph Construction

16

Get_In_Type(Y)

X.out_type=Y.in_type?

X.out_weight:=1

Y.In_weight:=2

RTS.Connect(X,Y,1,2);

Y.Set_In_Weight(2)

AdaStreams

User

Actor

X

Actor

Y
RTS

X.Connect(Y,1,2)

Executing stream programs

 Run-time system (RTS) manages execution

 Initiated by RTS.Run()

 Maps stream-graph onto # available cores

 Executes periodic schedule # iterations times

Package RTS is

Stream_Type_Error : exception

--Raised with connections of type-incompatible actors

procedure Connect(…);

procedure Run(NrCPUs : Positive;

NrIterations : Natural);

End RTS;

17

Run-time system support

1) Determine a periodic schedule for stream graph

execution

2) Allocate data channels between actors

3) Profile actors

4) Load balance actors among available cores

18

Compute Periodic Schedule

 Periodic schedule is a finite schedule of actors

 Invokes each actor at least once

 Produces no net change in amount of buffered data

 That is, the number of tokens on each edge is the same

before/after schedule execution

3

2

X produces 3 items

Y consumes 2 items

XX YYY is a periodic schedule

X

Y
19

Buffer Communication

 Concurrent actor execution requires buffer

synchronization

 Synchronization limits parallelism

 producer/consumer synchronize once per buffer access!

 Cache-coherence causes additional slow-down!

20

Buffer

Y

X

Push()

Pop()

CPU Core 1

CPU Core 2

Double Buffering

 Empty buffer

 Filled by upstream actor‟s Work() function

 Full buffer

 Drained by downstream actor‟s Work() function

 All actors synchronize only once at barrier before next iteration.

21barrier sync.

Buffer2

Y

X

Push()

Pop()

Iteration N

empty fullBuffer1

Double Buffering

 Empty buffer

 Filled by upstream actor‟s Work() function

 Full buffer

 Drained by downstream actor‟s Work() function

 All actors synchronize only once at barrier before next iteration.

22

Buffer2

Y

X

Push()

Pop()

Iteration N barrier sync.

empty fullBuffer1 Buffer2

Y

X

Push()

Pop()

Iteration N+1

full emptyBuffer1

Profiling

 Find out CPU cycles that actor spends in its Work()

procedure

 Done during execution because of actors‟ side effects

 Profiler counts CPU cycles in the booting phase

B

A

C
23

Boot up

Boot down

Periodic schedule

BA C

BA

A

B C

C

BA C

BA C

……

Actor-to-CPU Assignment

 Load-balance actors among CPUs

 Multiple Knapsack problem, NP-complete

 Greedy approximation algorithm used

 Actors sorted by execution time from largest to smallest

 Assigned to CPU cores based on accumulated load.

 Execute program with the number of iterations

24

F

1

F

2

F

3

s

J
F1

Sorted

execution times

F3
F2

S J

24 Barrier

Core1 Core2

Idle

F1
F3

F2S

J

Benchmark Results

25

Conclusions

 Add stream programming functionality to Ada2005

 Lowers entry barrier to stream programming

 Existing Ada code is reusable

 Abstracts away underlying parallel hardware

 Runtime system supports efficient program execution

 Computes periodic schedules

 Profiles and load-balances actors

 Unlike previous approaches

 stream-graphs can be constructed at run-time

 Compute-intensive applications show best speedups.

26

Q&A

Thank you

☺

AdaStreams sources are available at

http://elc.yonsei.ac.kr/AdaStreams.htm

27

