
Towards Ada2012 :
 an interim report from
 the Ada Rapporteur Group

Ada-Europe 2010

Valencia, Spain	

Presentation cover
page EU

www.adacore.com	

Ed Schonberg
Adacore Inc

Ada 2012: an interim report: 2

The ARG in the greater scheme of things

•  The ARG is in charge of Ada language

maintenance and design. Its technical decisions

are examined and ratified by
–  WG9,which has national representations, and is Working group nine of

-  SC22, the International Standardization Committee for Programming Languages,

which is part of

- JTC1: the joint (ISO/IEC) technical committee for Information Technology

-  which answers to two galactic entities:

-  ISO (International Standards Organization) and

- IEC (International Electrotechnical Committee)

Ada 2012: an interim report: 3

Activities and decisions of the ARG

•  Driven by user queries/comments and by internal

design activities : Ada Issues (AI’s)

•  Ada Comment (a gloss on a technical point)

•  No Action (live with it)

•  Confirmation (the RM is correct and clear)

•  Ramification (the RM is correct but obscure)

•  Binding Interpretation (The RM has a gap or is wrong)

•  Amendment : for the next standard of the language

•  Ongoing: editing the RM and the Annotated RM

Ada 2012: an interim report: 4

Current scope of activities

•  regular AI’s : processed on a rolling basis

•  Review of ASIS 2005 standard : complete

•  New amendment: time-bound.

–  Need to demonstrate language evolution

–  Need to limit size of amendment (workload, ISO issues)

•  WG9 guidelines:

–  All amendment AI’s received by June 2009

–  All corrective AI’s received by June 2010

–  Preliminary standard distributed by Nov. 2010

–  Then draft to WG9, vote, SC22, etc.

–  Tentative publication date of new document : Q2 2012.

Ada 2012: an interim report: 5

Amendment highlights

•  Certain to be adopted

–  Pre- and Post-conditions for subprograms

–  In-out parameters for functions

–  Bounded containers, proper concurrent queues, holder container

–  Better accessibility rules for anonymous access types

–  New concurrency constructs for multicores

–  Conditional and case expressions

–  Quantified expressions

Ada 2012: an interim report: 6

Major topics

•  Program correctness

•  Containers

•  Constructs for expressiveness

•  Visibility mechanisms

•  Concurrency and real-time

•  Anonymous access types and storage management

•  Syntactic sweeteners

Ada 2012: an interim report: 7

Program Correctness

•  Need a general mechanism to introduce new checkable properties of
entities : subprograms, types, subtypes.

•  Checking may be static (compiler) or dynamic (assertions)

•  AI05-0145 Pre- and Postconditions

•  AI05-0146 Type Invariants

•  AI05-0153 Subtype predicates

•  AI05-0183 Aspect Specifications

Ada 2012: an interim report: 8

Pre- and Postconditions

generic

 type Item is private;

package Stack_Interfaces is

 type Stack is interface;

 procedure Push (S : in out Stack; I : in Item) is abstract

 with Pre'Class => not Is_Full(S),

 Post'Class => not Is_Empty(S);

 …

 function Is_Empty (S : Stack) return Boolean is abstract;

 function Is_Full (S : Stack) return Boolean is abstract;

end Stack_Interfaces;

Ada 2012: an interim report: 9

Pre- and Postconditions (2)

•  Unified syntax for aspect specifications

•  Semantic analysis of conditions is done at end of package
(freeze point of subprogram)

•  Conditions can be verified dynamically like assertions, or
statically by analysis tools and/or clever compilers

•  Can specify classwide conditions and type-specific
conditions. Classwide conditions are inherited by the
corresponding primitive of each descendant type.

•  Dynamic condition checking is controlled by assertion mode

•  Check can be in caller or in callee.

Ada 2012: an interim report: 10

Pre- and postconditions (3)

•  New Attributes, mostly for use in postconditions:

•  X’Old denotes the value of X before subprogram starts
execution (X can be an arbitrary expression)

•  F’Result denotes the result of the current function call.

Ada 2012: an interim report: 11

Type invariants

package Q is

 type T(...) is private

 with Invariant => Is_Valid (T);

 type T2(...) is abstract tagged private

 with Invariant'Class => Is_Valid (T2);

 function Is_Valid (X : T) return Boolean;

 function Is_Valid (X2 : T2) return Boolean is abstract;

end Q;

Ada 2012: an interim report: 12

Type Invariants (2)

•  For private types and type extensions.

•  Classwide invariants and type-specific invariants

•  Inheritance follows Liskov’s rules

•  Invariants are checked:
–  On object initialization

–  On conversion to the type

–  On return from function that creates object of the type

–  On return from subprogram that has (in)- out parameter of the type

•  Not bullet-proof:
–  Still possible to modify object through access values

–  If invariant for private extension depends on visible inherited component,
invariant is at risk.

Ada 2012: an interim report: 13

Subtype Predicates

•  Under discussion

 type Rec is record

 A : Natural;

 end record;

 subtype Decimal_Rec is Rec

 with Predicate => Rec.A mod 10 = 0;

•  A predicate can be specified for any subtype

•  A predicate is not a constraint (akin to a null exclusion)

•  Most common use: non-contiguous enumeration types.

Ada 2012: an interim report: 14

Major topics

•  Program correctness

•  Containers

•  Constructs for expressiveness

•  Visibility mechanisms

•  Concurrency and real-times

•  Anonymous access types and storage management

•  Syntactic sweeteners

Ada 2012: an interim report: 15

Containers

•  The Ada2005 library is sparse, compared with those of other
languages, and with the state of the art in data-structure
design.

•  AI05-0001 Bounded containers

•  AI05-0069 Holder container

•  AI05-0136 Multiway tree container

•  AI05-0159 Queue containers

•  AI05-0212 Accessors and Iterators for Ada.Containers

Ada 2012: an interim report: 16

Major topics

•  Program correctness

•  Containers

•  Constructs for expressiveness

•  Visibility mechanisms

•  Concurrency and real-time

•  Anonymous access types and storage management

•  Syntactic sweeteners

Ada 2012: an interim report: 17

Programming expressiveness

•  More powerful functions

•  Better iterators on all containers

•  AI05-0139 Syntactic sugar for accessors, containers, and
iterators

•  AI05-0142 Explicitly aliased parameters

•  AI05-0143 In Out parameters for functions

•  AI05-0144 Detecting dangerous order dependences

•  AI05-0177 Renaming expressions as functions

Ada 2012: an interim report: 18

Syntactic sugar for iterators

•  Interface with implicit dereference on access
discriminant:

 package Ada.References is

 type Reference is limited interface;

 end Ada.References;

•  Allows indexing over containers:

 for Cursor in Iterate (Container) loop

 Container (Cursor) := Container (Cursor) + 1;

 end loop;

Ada 2012: an interim report: 19

Detecting dangerous order dependences

•  In-out parameters for functions and unspecified order of
evaluation are a bad combination!

•  F (Obj) + G (Obj)

•  Is problematic if F and / or G have side-effects on their actuals

•  AI provides a precise statically checkable definition of identity
and overlap between objects. Compiler can then verify that:

•  in a complex expression involving a function call with a
modifiable parameter, there is no other component of the
expression that denotes the same object or a portion of it.

Ada 2012: an interim report: 20

Renaming expressions as functions

•  Under discussion

•  To simplify the writing of pre/postconditions and predicates,
allow parametrized expressions (aka function bodies in
package specs):

•  function Cube (X : integer) is (X ** 3) ;

Ada 2012: an interim report: 21

Programming expressiveness (2)

•  Flexible syntactic forms for predicates in contracts and
elsewhere

•  AI05-0147 Conditional expressions

•  AI05-0158 Generalizing membership tests

•  AI05-0176 Quantified expressions

•  AI05-0177 Parametrized expressions

•  AI05-0188 Case expressions

•  AI05-0191 Aliasing predicates

Ada 2012: an interim report: 22

Conditional Expressions

 Value:= (if X > Y then F (X) else G (Y));

•  If result type is Boolean, else_part can be omitted.

•  Generally parenthesized

•  Must work with classwide types and anonymous access types.

Ada 2012: an interim report: 23

Extending membership operations

•  The argument of a membership test can be a set of
values:

•  If (C not in 'A' | 'B' | 'O’) then

•  Put_Line ("invalid blood type");

•  else …

Ada 2012: an interim report: 24

Quantified expressions

 A is sorted:

 (for all I in A'First .. T'Pred(A'Last) | A (I) <= A (T'Succ (I)))

N is composite:

 (for some X in 2 .. N / 2 | N mod X /= 0)

Computation is short-circuited.

some is not a reserved word

Ada 2012: an interim report: 25

Major topics

•  Program correctness

•  Containers

•  Constructs for expressiveness

•  Visibility mechanisms

•  Concurrency and real-time

•  Anonymous access types and storage management

•  Syntactic sweeteners

Ada 2012: an interim report: 26

Visibility mechanisms

•  Need more flexible ways to name entities in the rather
complex environment in which a unit is compiled.

•  Incomplete types can be useful in additional contexts

•  AI05-0135 "Integrated" nested packages

•  AI05-0150 Use all type clause

•  AI05-0151 Allow incomplete types as parameter and result
types

•  AI05-0162 Allow incomplete types to be completed by partial
views

Ada 2012: an interim report: 27

Major topics

•  Program correctness

•  Containers

•  Constructs for expressiveness

•  Visibility mechanisms

•  Concurrency and real-time

•  Anonymous access types and storage management

•  Syntactic sweeteners

Ada 2012: an interim report: 28

Concurrency and real-time features

•  Need to address the multicore revolution

•  Better scheduling tools justify more elaborate constructs

•  AI05-0117 Memory barriers and Volatile objects

•  AI05-0167 Managing affinities on multiprocessors

•  AI05-0169 Defining group budgets for multiprocessors

•  AI05-0171 Ravenscar Profile for Multiprocessor Systems

•  AI05-0166 Yield for non-preemptive dispatching

•  AI05-0168 Extended suspension objects

•  AI05-0170 Monitoring the time spent in Interrupt Handlers

•  AI05-0174 Implement Task barriers in Ada

Ada 2012: an interim report: 29

Major topics

•  Program correctness

•  Containers

•  Constructs for expressiveness

•  Visibility mechanisms

•  Concurrency and real-time

•  Anonymous access types and storage management

•  Syntactic sweeteners

Ada 2012: an interim report: 30

Anonymous access types and storage management

•  Need to simplify accessibility rules for anonymous types

•  Need more flexible storage reclamation mechanisms

•  AI05-0148 Accessibility of anonymous access stand-alone objects

•  AI05-0149 Access types conversion and membership

•  AI05-0152 Restriction No_Anonymous_Allocators

•  AI05-0189 Restriction No_Allocators_After_Elaboration

•  AI05-0190 Global storage pool controls

•  AI05-0193 Alignment of allocators

Ada 2012: an interim report: 31

Major topics

•  Program correctness

•  Containers

•  Constructs for expressiveness

•  Visibility mechanisms

•  Concurrency and real-time

•  Syntactic sweeteners

Ada 2012: an interim report: 32

Syntactic sweeteners

•  What, no “continue” statement?

•  Where are pragmas legal?

•  AI05-0100 Placement of pragmas

•  AI05-0163 Pragmas instead of null

•  AI05-0179 Labels at end of a sequence_of_statements

Ada 2012: an interim report: 33

The language design imperative

•  “You boil it in sawdust: you salt it in glue:
 You condense it with locusts and tape:
Still keeping one principal object in view—
 To preserve its symmetrical shape.”

 The Hunting of the snark

Ada 2012: an interim report: 34

Discards

•  AI05-0074-2 Allowing an explicit "end private;" in a package spec

•  AI05-0074-3 Deferred instance freezing

•  AI05-0140-1 Identity functions

•  AI05-0175-1 Cyclic fixed point types

•  AI05-0187-1 Shorthand for assignments with expressions naming
target (a += 1)

Ada 2012: an interim report: 35

TO BE CONTINUED!

•  Details at

•  http://www.ada-auth.org/AI05-SUMMARY.HTML

•  Implementors: start your compilers !

