An efficient implementation of persistent
objects

Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation

The 15th International Conference on Reliable Software
Technologies — Ada-Europe 2010

Jacob Sparre Andersen An efficient implementation of persistent objects



Outline

Q Easy Orthogonal Persistence
9 Programmer’s Interface

e Implementation

e Andersen An efficient implementation of persistent objects



Easy Orthogonal Persistence

Who Wouldn’t Want Easy Orthogonal Persistence?

type T is persistent ... ;

Unfortunately this is not legal Ada.

Jacob Sparre Andersen An efficient implementation of persistent objects



Easy Orthogonal Persistence

Almost Easy Orthogonal Persistence

type T is ...;
for T' St orage_Pool use ...;

This is legal Ada. — And with a small, fixed overhead it is
enough to give us persistent objects.

Jacob Sparre Andersen An efficient implementation of persistent objects



Easy Orthogonal Persistence

Fast Orthogonal Persistence

Execution time

Loading an object network

08 I ' T T T T T T
Memory maps
07 r i (fit
' Ada streams :--x---!
Do (fit)
0.6 3 |
%
05 By |
04 X y |
0.3 o« >< : |
0.2 XX |
—
01 | o |
- A I I T I T
= ‘ T ES
0 - + | T |$ M |L - |l & 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Size [number of nodes]

Andersen

An efficient implementation of persistent objects



Easy Orthogonal Persistence

The Idea

Memory Mapped Files and Storage Pools

There are two basic ideas behind this technique:
@ Memory mapped files is an extremely fast I/O method.

@ Ada storage pools allow us to control where in virtual
memory (VM) dynamically allocated objects are stored.
Combined, this allows us to make dynamically allocated objects

be located in a part of VM which is mapped to a file, and thus
automaticaly stored.

Jacob Sparre Andersen An efficient implementation of persistent objects



Programmer’s Interface

age Per si st ent St or age_Pool

package Persistent_Storage_Pool is
type Instance is new System Storage_Pool s. Root _St orage_Pool with private;

type Root_(bject is abstract tagged null record;
subtype Root_Cl ass is Root_Cbject’ d ass;
type Root _Name is access all Root_d ass;

Bad_Pool _Format : exception;

Error : exception;
procedure Create
( Pool in out |nstance;

As cin String;

Initial_Value : in Root _Cl ass;

Si ze cin System St orage_El enent s. St or age_Count ) ;
procedure Load (Pool : in out Instance;

From: in String);
function Root (Pool : Instance) return Root_Nane;
private

n efficient implementation of persistent objects



Programmer’s Interface

Use example

wi t h Persi stent_Storage_Pool ;
Persistent : Persistent _Storage_Pool . | nst ance;

iybe Some_Reference is access all Sone_d ass;
for Sone_Reference’ Storage_Pool use Persistent;

iybe Anot her _Reference is access all Another_d ass;
for Another_Reference’ Storage_Pool use Persistent;

i&/be Root is new Persistent_Storage_Pool . Root _Object with ...;

if ... then

Create (Storage_Pool, ...);
el se

Load (Storage_Pool, ...);
end if;

bi)._Somat hi ng (Storage_Pool . Root);

e Andersen An efficient implementation of persistent objects



Implementation

procedure Per si st ent St or age_Pool . Creat e

procedure Create

Pool . Address := Map_Menory (Length => Pool . Si ze,
Protection => All ow Read +
Allow Wite,
Mappi ng => Map_Shar ed,
File => Pool . File,
O fset => 0);
decl are

Header : Persistent_Storage_Pool . Header;

pragma | nport (Ada, Header);

for Header’ Address use Pool . Address;

begi n

Header := (Key => Per si st ent _St or age_Pool . Key,
Addr ess => Pool . Addr ess,
Al | ocated => Conversions. Storage (Header’Si ze),
Root => null);

e Andersen An efficient implementation of persistent



Implementation

Ada 2017?

The introduction of memory layout randomization complicates
the use of the presented technique.

Allowing overloading/substitution of the dereferencing operation
would remove the need to reload the memory map at its
original address.

@ Can this be done by extending package
System.Storage_Pools?

@ Or would it require a larger change to the language?

Jacob Sparre Andersen An efficient implementation of persistent objects



Implementation

Contact Information

@ E-mail: j acob@ acob- sparre. dk

@ Source code:
http://ww. j acob- sparre. dk/ persi st ence/

Jacob Sparre Andersen An efficient implementation of persistent objects


http://www.jacob-sparre.dk/persistence/

	Easy Orthogonal Persistence
	Programmer's Interface
	Implementation

