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Easy Orthogonal Persistence

Who Wouldn’t Want Easy Orthogonal Persistence?

type T is persistent ... ;

Unfortunately this is not legal Ada.
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Easy Orthogonal Persistence

Almost Easy Orthogonal Persistence

type T is ...;
for T' St orage_Pool use ...;

This is legal Ada. — And with a small, fixed overhead it is
enough to give us persistent objects.
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Easy Orthogonal Persistence

Fast Orthogonal Persistence

Execution time

Loading an object network

08 I ' T T T T T T
Memory maps
07 r i (fit
' Ada streams :--x---!
Do (fit)
0.6 3 |
%
05 By |
04 X y |
0.3 o« >< : |
0.2 XX |
—
01 | o |
- A I I T I T
= ‘ T ES
0 - + | T |$ M |L - |l & 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Size [number of nodes]

Andersen

An efficient implementation of persistent objects



Easy Orthogonal Persistence

The Idea

Memory Mapped Files and Storage Pools

There are two basic ideas behind this technique:
@ Memory mapped files is an extremely fast I/O method.

@ Ada storage pools allow us to control where in virtual
memory (VM) dynamically allocated objects are stored.
Combined, this allows us to make dynamically allocated objects

be located in a part of VM which is mapped to a file, and thus
automaticaly stored.
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Programmer’s Interface

age Per si st ent St or age_Pool

package Persistent_Storage_Pool is
type Instance is new System Storage_Pool s. Root _St orage_Pool with private;

type Root_(bject is abstract tagged null record;
subtype Root_Cl ass is Root_Cbject’ d ass;
type Root _Name is access all Root_d ass;

Bad_Pool _Format : exception;

Error : exception;
procedure Create
( Pool in out |nstance;

As cin String;

Initial_Value : in Root _Cl ass;

Si ze cin System St orage_El enent s. St or age_Count ) ;
procedure Load (Pool : in out Instance;

From: in String);
function Root (Pool : Instance) return Root_Nane;
private
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Programmer’s Interface

Use example

wi t h Persi stent_Storage_Pool ;
Persistent : Persistent _Storage_Pool . | nst ance;

iybe Some_Reference is access all Sone_d ass;
for Sone_Reference’ Storage_Pool use Persistent;

iybe Anot her _Reference is access all Another_d ass;
for Another_Reference’ Storage_Pool use Persistent;

i&/be Root is new Persistent_Storage_Pool . Root _Object with ...;

if ... then

Create (Storage_Pool, ...);
el se

Load (Storage_Pool, ...);
end if;

bi)._Somat hi ng (Storage_Pool . Root);
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Implementation

procedure Per si st ent St or age_Pool . Creat e

procedure Create

Pool . Address := Map_Menory (Length => Pool . Si ze,
Protection => All ow Read +
Allow Wite,
Mappi ng => Map_Shar ed,
File => Pool . File,
O fset => 0);
decl are

Header : Persistent_Storage_Pool . Header;

pragma | nport (Ada, Header);

for Header’ Address use Pool . Address;

begi n

Header := (Key => Per si st ent _St or age_Pool . Key,
Addr ess => Pool . Addr ess,
Al | ocated => Conversions. Storage (Header’Si ze),
Root => null);
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Implementation

Ada 2017?

The introduction of memory layout randomization complicates
the use of the presented technique.

Allowing overloading/substitution of the dereferencing operation
would remove the need to reload the memory map at its
original address.

@ Can this be done by extending package
System.Storage_Pools?

@ Or would it require a larger change to the language?
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Implementation

Contact Information

@ E-mail: j acob@ acob- sparre. dk

@ Source code:
http://ww. j acob- sparre. dk/ persi st ence/
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